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Abstract 

 
Historical decorated glass and glazed ceramics are studied with the object to determine 

the technology of production and to relate it with the optical properties (colour, shine, opacity). 

Four different case of study are investigated: production technology and replication of lead 

antimonate yellow glass from New Kingdom Egypt and the Roman Empire, technology of 

production of polychrome lustre, analyses of Syrian lustre pottery (12
th

–14
th

 centuries AD) and 

study of color and dichroism of silver stained glasses. These different coloured glazes or glasses 

have in common to be produced by the presence of micro or nanoparticles embedded into the 

glaze which give their special optical effect. Chemical and microstructural analyses are 

performed using a selection of complementary Microscopic and Spectroscopic techniques that 

are the most adequate for the analyses of each decoration. Physical optical properties are also 

modeled and measured by means of UV-Vis spectroscopy. The composition and structure of the 

different phases formed during the processing of the decorations in historical times is obtained 

with the object to learn about their stability and processing conditions and to relate them to their 

optical properties.  

 

 

Key words: Glass, Pigment, Metallic nanoparticles, Optical properties, Glaze, Lustre, 

Technology, Nanostructure, Historic objects 
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Chapter 1 

 
Introduction 

 

 
This thesis is centred in the study of bulk colour and surface decoration of historic glass and 

glazed wares and the role of micro and nanoparticles in their optical properties. It arises from a 

multidisciplinary approach that has two goals: scientific and historical. From the scientific point 

of view the purpose is to identify the materials, learn about their stability and methods of 

production and to relate them to their optical properties. From the historical point of view we 

expect to obtain information on the transfer of knowledge between cultures and regions.  

For this, the main hypothesis is the existence of a correlation between the advances in 

technology and the aesthetic innovations. Advances in the scientific knowledge or technological 

processes naturally result in the development of new materials which may initiate a new 

aesthetic paradigm which, if successful, is adopted and adapted by other cultures and regions. 

The materials studied have in common to be produced by the presence of micro or 

nanoparticles embedded into the glass/glaze for obtaining yellow or red glasses, and gold or 

coppery lustre glazes. The samples studied comprise an extended chronology including New 

Kingdom Egyptian (approximately 1500 BC) and Roman antimony yellow glass, various 

productions of lustre decorated glazed Abbasid (9
th

 century AD) and Syrian (12
th

 to 14
th
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centuries AD) ceramics and silver stain glass from early Renaissance cathedrals (15
th

-16
th

 AD) in 

Spain. In each case different specific queries are addressed:  

- The relationship between New Kingdom Egyptian and Roman antimony yellow glass. 

- The method of production of polychrome red copper in combination with yellow-golden, 

white-silvery or black silver lustre decorations from Iraq, 9
th

 century.  

- The study of the relationship between Syrian and the Egyptian Fatimid lustre production.  

- The production parameters and materials used to obtain yellow and red silver stains in 

15
th

 century stain glass and the reasons for the dichroic effect.  

The experimental methodology comprises the analyses of the materials complemented by 

replication of the materials based on written historical treatises and the data obtained from the 

analyses of the bulk colour glass and decorations. The analytical techniques used vary in each 

case depending on the characteristics of each material; thin nanometric layers, minor chemical 

elements, nano- and micro- precipitates, presence of alterations due to either aging or weathering 

of the materials, size of the samples available, among many more. For this reason, chemical and 

microstructural analyses are performed using a selection of complementary Microscopic and 

Spectroscopic techniques that are the most adequate for the analyses of each material. Physical 

optical properties (colour, reflectivity, transmittance, opacity) are measured by means of UV-Vis 

spectroscopy and also modelled.  

This memory is structured is 6 chapters. Chapter 1 is the introduction of this memory and 

includes a summary of the history and technological advances of colour and decorated glass and 

glaze ceramics. A specific section is dedicated to stain glass and lustre ware decorations due to 

the relevance of those types of decorations in the thesis and also to the technological complexity 

and important changes in the materials and processes along the history.  

Chapter 2 is about the technology of productions of yellow glasses with lead antimoniate and 

the relationships between yellow glasses from New Kingdom Egypt and the Roman Empire 

ones. 

Chapter 3 is the study of technology of production of polychrome lustre from Iraq, 9
th

 

century. 
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Chapter 4 is the study of Syrian lustre pottery and its relations with contemporany Fatimid 

lustres from Egypt (12-14
th

 centuries AD) 

Chapter 5 is the study of colour and dichroism of silver stained glasses from 15-16
th

 century 

AD. 

And, finally, Chapter 6 are the conclusions. 

Decorated glass and glazed ceramics history 

Obsidian was the first glass used by mankind, is a natural glass found in sites dating the 

Upper Palaeolithic (10000 BC); it was used for the production of ritual objects, fabrication of 

arrow heads among other daily tools. Although has been neither chronologically nor 

geographically verified, it is generally accepted that the first artificial glass was first obtained in 

the Mesopotamian area at the beginning of the Bronze Age (3300-2100 BC) as a by-product of 

metallurgical activities (Fernandez, 2003); the treatment of copper minerals is known to produce 

vitreous coloured and opaque slags. Quartz melts at 1670ºC, consequently glass could only be 

produced provided that elements able to decrease it (fluxes) were added, which in Mesopotamia 

consisted in alkaline salts obtained from plant ashes. Metals such as copper, cobalt or iron 

dissolved in the glass or lead antimony and calcium antimony oxides forming small crystalline 

precipitates were also incorporated giving colour to the glass. The earliest glass objects, 

turquoise blue beads were found in the excavations of the cemetery of Ur (2500 BC). By the end 

of the second millennium BC, Syria became also an important glass production centre and later 

between approximately 1500 and 1300 BC (18
th

 dynasty), glass was also produced in Egypt 

reaching its maximum splendour at the glass workshop of Tell-el-Amarna. It is worth to mention 

that during this period Syria had already been conquered by Thutmose III who took the best 

artisans from the conquered area. The Egyptian glass was of the type high soda-high lime type 

made of natron (a highly hydrated variety of sodium carbonate found in the valley of Wadi al 

Natrum in Egypt). Glass was mainly used to produce ornamental objects and for the production 

of precious small colourful flask and bottles. The methods of production used in Egypt were 

described by Sir Flinders Petrie from data obtained in the Tell-el-Amarna (Harden, 1956) 

excavations. The technique followed was that of the sand nuclei covered by successive layers of 

soft colour glass. By 1200 BC mould shaped and cut glass objects started being produced and the 

application of threads and drops of colour glass over the soft glass was the main decorative 

technique utilised. The Egyptian ground glass used in this period is dark (violet-blue and brown) 

decorated with yellow, orange, white, light-green and turquoise-blue glasses (Figure 1.1). Those 
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glass objects were exported to Greece, all the Mediterranean area and later to China, Japan and 

south-east Asia through India. The Egyptian supremacy in glass production lasted until the 

resurgence of the Assyrian glass industry in the last millennium BC. 

The glass conserved from the Assyrian resurgence is of the type high-potash, high-

magnesia soda-lime glazes obtained from plant ashes, usually colourless with a light greenish 

tinge and the decorations are inscriptions in cuneiform script. 

The oldest treatise on the fabrication of glass 

was found in the Palace of Assurbanipal (668-626 

BC), a set of tablets in cuneiform script containing 

recipes for the production of both colourless and 

colour glass (Forbes, 1956). Phoenician glass 

production became particularly important since the 8
th
 

century BC and during the pre-Roman time.  

During the Roman Empire many technological 

innovations were introduced and glass reached the 

highest quality standards. In particular the Romans 

improve the technique known as mosaic glass or 

“millefiori” of Egyptian origin, probably introduced 

by artisans from Sidon and Alexandria. This technique 

consists in small cans of colour glass fused together, 

cut and then stuck together to produce objects.  

In the middle of the 2
nd

 century BC, the glass centre of Sidon invented the blowing pipe 

which happens to be one of the most important technical advances in the glass fabrication 

processes. Artisans from Sidon moved to Rome and the blown glass technique soon expanded all 

over the Roman Empire, allowing for the first time “serial” fabrication of glass. Then glass 

became a more daily use and less sumptuary material. In parallel, colour glass became less 

important and thanks to the addition of manganese as a decolorizing element, colourless glass 

blown became of general use. 

During the 3
rd

 and 4
th

 century AD, enamel decorations were applied although very 

scarcely probably due to the difficulties controlling the process; the enamel is a paint made of a 

suspension of a vitrifiable colour in an organic medium which after firing is fused on to the glass 

 

Figure 1.1. Two-handled jar ca. 1539-1295 BC New 

Kingdom – 18th Dynasty - Reign of Amenhotep III. 
Gift from Charles Lang Freer. The Smithsonian’s 

Museums of Asian Art.   
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surface. This technique was perfected and widely used in Islamic times. Cool gold applications 

started also being used although is during the Byzantine Empire that was extensively used to 

produce mosaics.  

During the 4
th

 century AD exquisite objects of the highest quality were obtained: cameo 

glass was produced by etching and carving through fused layers of diverse colour glass to 

produce designs, usually with white opaque glass figures and motifs on a dark-colour 

background (Figure 1.3.); dichroic glass, such as the Lycurgus cup (Figure 1.2.), red in 

transmission and green in reflection, was obtained adding gold and silver colloidal metallic 

particles. Lead oxide is also a flux, and during Roman times was directly applied on ceramic 

wares to produce a high lead glaze. Those glazes were mainly used to waterproof and protect the 

ceramic objects. The colours obtained were yellow-green due to the presence of Fe
3+

 and Fe
2+

 

dissolved in the glaze. However, alkaline based glazes were not applied on ceramics during 

Roman times. 

  

Figure 1.2. Lycurgus cup, in transmission. British 

Museum.  

Figure 1.3. Side A of the Portland Vase. Cameo-

glass, probably made in Italy ca. 5-25 AD. British 

Museum. 

The Islamic culture expanded through North of Africa, Persia and the Middle East 

including some of the most important glass production centres of Egypt and Syria. Transparent 

glass decorated with enamel paints was mainly produced during this period. The most important 

novelty was the production of silver stain also called lustre decorations. Silver stain is a thin 

surface micro-layer made of small metallic silver and/or copper nano-particles embodied in the 
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glassy matrix. The range of colours obtained varies between green, yellow, orange and brown 

depending on the amount of copper and silver in the layers.  

At the beginning of the 8
th

 century, and due to the contact with the Chinese ceramics 

through the Silk’s route, green, yellow and brown lead glazed ceramics imitating the Tang 

sancai productions and later decorated alkaline and mixed lead-alkaline glazed ceramics started 

being produced. One of the most important innovations was the introduction of tin oxide as a 

white opaque pigment in the glazes to highlight the colour decorations during the 9
th

 century AD. 

Tin glaze ceramics became of general use in the Islamic lands and expanded to all the 

Mediterranean and Europe between 10
th

 and 16
th

 centuries. Several underglaze and overglaze 

colour decorations were used with varying colours and designs. Lustre decorations started being 

used on tin glaze ceramics during the 9
th

 century AD most probably produced in Bashra (Iraq). 

Although during the Middle Age the glass production is kept to a very low level and in 

very small workshops across Europe, they will later be the germ of the stain glass production 

which had its maximum exponent during the gothic period. The first reference of the use of stain 

glass is dated between 969 and 988 AD in the cathedral of Reims. The colours of the glasses 

were obtained either by the incorporation of metal ions into the bulk glass, grisailles (made of 

iron oxides mixed with powdered lead glass and an organic medium such as Arabic gum and 

fixed onto the flat glass surface by firing) and also silver stains since the beginning of the 14
th

 

century (Fernandez, 2003). Later colour was given also by the application of layers of colour 

glass onto the transparent glass (plaque glass) and enamels.  

Silver stain and lustre decorations 

Silver stains and lustre, as mentioned before, share the same technology of production. 

Silver stains normally referring to the decorations applied on glass while lustre is normally 

related to the decorations applied on glazed ware; both names referring to the visual appearance 

attained in each case. Silver stains were first produced on glass from which it was transferred to 

decorate glazed wares. Consequently they share a common history and also a common 

technology which will be summarised herewith. 

History 

According to the latest reported archaeological finds the earliest existing examples of 

silver stain glass were of Syrian origin during the Umayyad period (660–750) (Ashmolian, 

2004). Abundant Umayyad glass silver stain fragments are found at Qasr al-Hayr al-Sharqī that 
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was built in (728–9) by the Umayyad Caliph Hishām ibn ‘Abd al-Malik, who governed between 

723 and 742. The glass found at the ancient site of Pella in Jordan included also Umayyad silver 

stain and gilded fragments (O’Hea, 2003). 

Apart from these early fragments of Umayyad silver stain glass, two surviving complete 

glass cups one from Fustāt and the other from Damascus dated 779 and 786 respectively 

(Scanlon, 2001) are found. After the rise of the Abbasid Caliphate in 750, Syrian glass-workers 

may have been encouraged to migrate to Iraq (Halett, 2000) and silver stain glass started been 

produced in Basra, Kufa and Samarra in the eighth and ninth centuries. According to Ya‘qūbī, 

Basran glassworkers were among the artisans brought to work on Sāmarrā by the Caliph al-

Mu‘tasim (833–842). 

 It is generally accepted that silver stain 

glass is the origin of lustre wares (Caiger, 

1985). And that the first painters of lustre 

inherited some of their techniques from glass-

workers, and may actually have been glass-

painters as well. The lustre wares started being 

produced in, Iraq (Abbasid) 9
th

 century AD, 

(Figure 1.4.) and coincided with the 

introduction of lead oxide and tin oxide to the 

glazes. The first was probably added to 

improve the thermal properties of the glazed wares and reduce cooling glaze cracking, the 

second to obtain a white opaque glaze thanks to the precipitation of small cassiterite (SnO2) 

micro-crystallites in the glaze. However, as we will see in the technology description both 

produced a dramatic change in the visual appearance of lustre decorations.  

The first notice about the stain-glass technology appears in “The book of the Hidden 

Pearl (Kitāb al-Durra)” written by Jābir ibn Hayyān (c. 721–c. 815) who was philosopher and 

chemist. The paper by Ahmad Y Al-Hassan compares the recipes of Kitāb al-Durra with the 

results of modern analyses of existing Islamic stained glass objects. 

The manuscript of this practical treatise was discovered recently. Jābir ibn Hayyān wrote 

a unique treatise of technical recipes dealing with the manufacture of coloured glass, making 

silver stain glass, colouring gemstones, purifying of pearls and making artificial ones and other 

useful objects. 

 

Figure 1.4. Bowl with a red ruby glaze. Irak, 9th century.  
Musée du Louvre. OA6700. 
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The essay contains 118 recipes for talāwīh (silver stain glass), in addition to nine recipes 

inserted by al-Marrākushī, the editor. We extract two of the original recipes: one for making a 

golden-lustre and the other for silver-lustre: 

“Recipe 63, fol. 14a, gold lustre (mulawwah dhahab): One part of magnesia, two of marcasite 

(marqashīthā), one of copper, three of litharge (martak), two of arsenic (zarnīkh). They are 

worked with good vinegar and exposed to fire (talwīh) and it comes out golden.” 

Recipe 91, fol. 16a, silver lustre. Take one uqiyya from each of Yemeni alum, Egyptian alum and 

sal-ammoniac. Take one mithqāl from ceruse (isfīdhāj), borax of goldsmiths, tinkār and natron. 

Combine and pulverize with white vinegar for two hours; adorn with it and expose to fire.” 

“The Book Of The Hidden Pearl (Kitāb al-Durra)” written by Jābir ibn Hayyān and edited by 

Ahmad Y Al-Hassan (2009)  

The oldest known description about the materials and process of manufacture of lustre 

glazed pottery is the Abu’l Qasim’s work, dated at 1301 AD. This treatise of ceramics from 

Kashan (Iran) said: 

“Those (vessels) that come out of the firing white they paint with the enamel of two firings, or 

with lâjvard, or with pure turquoise. The enamel (lustre pigment) is composed as follows: Take 

one and a half mans (or: parts) of red and yellow arsenic, one man (or: part) og gold and silver 

marcasite (types of iron pyrites), one Batman (or: half a part) of Tisi (or: Tabasi or Cypriot) 

yellow vidriol (probably iron sulphate) and a quarter (of a part) of roasted copper, and mix to a 

paste and bring it. A quarter of this is mixed with six dirhams of pure silver which has been 

burned and ground (with sulphur) and is ground on a Stone for twenty-four hours until it is 

extremely fine. Dissolve this in some grape juice or vinegar and paint it on to the vessels as 

desired, and place them in a second kiln specially made for this purpose, and give them light 

smoke for seventy-two hours until they acquire the colour of two firings (which is like gold). 

When they are cold take them out and rub them with damp earth so that the colour of gold comes 

out. Other people add certain preparations like sirinj (lead oxide) and sanjâr (verdigris or 

copper acetate) to this enamel. In fact shâdanej Stone (no identified) with roasted silver serves 

the same purpose. That which has been evenly fired reflects like red gold and shines like the light 

of the sun.” 

(From Abu’l Qasim’s Treatise on Ceramics translated and annotated by J.W. Allan, Iran, IX, 

1973, p.114) 
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The first lustre decorations applied on glazed pottery were found in the Caliphs’ palace in 

Samarra (836-883 AD), although they were most possibly produced earlier, in the time of Harun-

al-Rashid (766-809 AD). Abbasid lustres were found as well in the Mosque of Kerouian in 

Tunisia (Bobin, 2003), the court of the Hammanid princess in Qal’a (Algeria), and also in the 

court of Ahman ibn Tulun (Fustat, Egypt) who was the administrator of the Samarra court posted 

to Egypt in 868 AD, and who rebuilt the city of Fustat in pretend of the luxury exhibited in 

Samarra. Although the earlier separation of Egypt from the Abbasid caliphate  (Caiger, 1991) 

and its rule by the Tulunids (868–905 AD) has sometimes been associated with the transfer of 

lustre technology from Iraq to Egypt, analyses of the so called Tulunid lustres has demonstrated 

their Iraqi origin (Mason, 2004). 

The 9
th

 century AD Abbasid lustres are polychrome showing two, three and sometimes 

four lustre colours, the designs are intricate and the effect striking. Typical colours are olive 

green; brown and amber; orange, yellow and crimson and also extremely dark, almost black, red. 

Most of the time, they do not show metallic shine but instead appear as iridescent stains. 

Sometimes, metallic and non-metallic lustre colours of different composition appear mixed in the 

same piece.  

During the 10
th

 century AD the earlier polychrome lustre of the 9
th

 century was 

substituted by a more standardised green-golden monochrome production (Pradell et al, 2008) 

associated with new shapes as well as new designs (Caiger, 1991). The occupation of Egypt by 

the Fatimids in 969 AD started the production of Egyptian Fatimid lustre with the resulting 

decline of the Abbasid lustre produced in Bashra.  

The earliest Egyptian Fatimid lustre decorations display strong stylistic links with the 

Iraqi monochrome lustre but soon later (11
th

 century AD) exhibit new motifs and also incised 

lustre decorations (Philon, 1980; Mason, 2004). The colours of Egyptian lustre are quite varied; 

the most common being yellow, green and brown-golden lustres (Figures 1.5, 1.6). The 

destruction of Fustat in AD 1168 by Shirkuh was followed by the rule of his nephew Salah-el-

Din. During the late Fatimid period, Syria was in a state of nearly permanent war, but periods of 

relative peace did permit the development of the ceramic industry (Porter, 1981). Syrian lustre is 

particularly interesting as it shows technological innovations with respect to the earlier Abbasid 

and Fatimid lustre productions with the use of transparent tin-free glazes (often alkaline) and 

stonepastes. Tell Minis and Raqqa lustres date to this period. Tell Minis wares show similar 

ceramic forms, lustre designs and colours to the Fatimid lustres, and have been attributed to 
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Egyptian potters arriving at Syria after 1075 AD (Mason, 2004). Some local low quality lustre 

productions seem to happen until the first quarter of the 13
th

 century AD when a chocolate brown 

and yellowish green lustre was produced in Raqqa (Porter and Watson, 1987; Mason, 2004). In 

AD 1250 the Mongol occupation of Syria destroyed large areas in the north of the country, 

terminating the Raqqa production. Jars and albarellos of golden lustre over cobalt-blue and white 

grounds continued to be exported from Syria in large quantities during the 14
th

 century AD. This 

production is typified by a jar with a green-golden lustre on a cobalt-blue glaze and signed by 

Yusuf from Damascus (Porter, 1981).  

 

  

Figure 1.5. Bowl fragment with lustre decoration. 

Egypt, 11th century. Musée du Louvre. K3484. 

Figure 1.6. Vessel shards of blown glass with 

lustre decoration. Egypt, 10th – 11th century.                     

Musée du Louvre. MAO 490/69. 

 

Watson (1985) disregards the link between late 12
th

 century Iranian lustre and earlier 

local Persian ceramics production and instead establishes a direct link between the beginning of 

the lustre production in Persia and the fall of the Fatimid dynasty. The earliest dated lustre piece 

from Persia is from AD 1179 and shows similar designs and decorations to Fatimid lustre 

(Watson, 1985). During the first quarter of the 13
th

 century AD standardised high quality lustre 

was produced in Kashan. The Persian lustre ware is made on a stonepaste body with a tin-

opacified glaze and is of a homogenous dark-brown-golden colour. The Mongol invasion of AD 

1220 disrupted lustre production, until after 1260 AD (Watson, 1985) a large tile manufacture 

was produced in Kashan (Watson, 1985; Porter, 1995). 
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Lustre technology expanded also to the 

Islamic kingdoms in Spain. The first examples 

of lustre that was made in Spain were found in 

Murcia and date back to the twelfth century 

AD, although main productions are also 

described in Almeria (12
th

 century) and 

Malaga (13
th

 and 14
th

 century). Subsequent 

developments following the Islamic tradition 

in the Hispano Moresque pottery, 13
th

–15
th

 

centuries (Figure 1.7.), and Italian majolica, 

15
th

–16
th

 centuries, created highly prized items 

that were extensively exported. Different 

recipes allowed potters to obtain several 

colours, such as yellow, green, olive green, brown, amber, chocolate, ruby red, and also several 

metallic sheens (copper, gold, and silver).  

Technology 

The lustre decorations are extremely thin surface 

micro-layers made of exceptionally small metal silver and/or 

copper nano-particles inside the glaze matrix, as can be seen 

in Figure 1.8. The peculiar optical properties of lustre, 

including the golden and coppery shine, are directly related to 

the size and volume fraction of the metal particles. 

The analyses of both laboratory replicas and historical 

lustres, demonstrated that the colour of the lustre layers is 

mainly related to the size of the nanoparticles and the amount 

and oxidation state of copper or silver in the layer, while the 

metallic shine is related to the presence of a high volume of 

metal nanoparticles in the layer. Although both size and 

density of particles in the lustre depend on the composition of the glaze and on the firing 

temperature and atmosphere, the composition of the glaze has proved to be the essential 

parameter that regulates the density of particles in the layer and consequently the metallic shine. 

In particular the addition of lead oxide in the glaze is directly responsible for the formation of 

 

Figure 1.7. Deep dish from Spain, after 1475, tin-glazed 

earthenware with lustred decoration, Victoria and Albert 
Museum, London. 1680-1855. 

 

Figure 1.8. TEM image from a replica of a 
copper lustre thin layer made on an 

alkaline glass. 

http://upload.wikimedia.org/wikipedia/commons/f/f6/Lustreware.jpg
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more dense and thinner lustre layers. Moreover, the analyses of historical lustre layers has shown 

an increase in the lead oxide content of the glazes from early Abbasid to later Fatimid lustre 

productions suggesting deliberate addition to improve the possibility of obtaining a successful 

golden lustre.  

Lustre was produced following a highly ingenious procedure in which the lustre design 

was painted (copper, silver and sulphur containing compounds), onto the glaze which is then 

subjected to a firing at a relatively low temperature (500-600ºC). Ag
+
 and Cu

+
 ions diffuse into 

the glaze substituting the alkalis (either Na
+
 or K

+
) from the glaze. The introduction of an 

external reducing atmosphere into the kiln favoured the precipitation on the metal particles, 

which formed in a thin layer close to the glaze surface. The paint was washed off after firing to 

leave the colourful lustre decoration which if successful exhibited a metal like shine, golden 

shine. Previous studies have shown that silver always appears as metal nanoparticles whilst 

copper, being more difficult to reduce to metal than silver, often appears either as Cu
+
 or Cu

2+ 

ions dissolved in the glaze. Only when very reducing conditions are applied, or metals capable of 

reducing copper such as iron or tin are added, can the copper ions form nanoparticles of cuprite 

(Cu2O) and metal copper. The several colours shown by lustre are not only related to the type 

and size of metal particles present but also to the presence of Cu
+
 and/or Cu

2+ 
dissolved in the 

glaze. Summarising, metal silver particles give a yellow-greenish colour while metal copper 

particles a red colour. The addition of copper then helps the reduction of silver to the metallic 

state and the growth of silver nanoparticles while copper is kept either as Cu+ or Cu
2+

, resulting 

in yellow-orange to brown colours. If the reducing atmosphere is strong enough to reduce also 

copper to the metallic state, then a combination of red coppery and white silvery spots is 

obtained.  
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Chapter 2 

 
Production technology and replication of 

lead antimonate yellow glass 

from New Kingdom Egypt and the Roman 

Empire 
 

 

 

Introduction 

 
 

Antimony-based opacifiers (i.e., lead antimonate yellow and calcium antimonate white) 

were used from the beginnings of glass production in the Near East and Egypt around 1500 BC 

through into the Roman period (Turner and Rooksby, 1959). Towards the end of the Roman 

period (i.e., from about 4
th

 century AD onwards), lead stannate replaced lead antimonate in the 

production of opaque yellow glasses (Tite et al., 2008), and it was not until the late 15
th

 century 

AD that lead antimonate started to be used again both in glass production in Venice 

(Biringuccio, 1966), and as a yellow pigment in Italian Renaissance paintings (Dik et al., 2005) 

and in Italian maiolica production (Tite, 2009). 
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As observed by Mass et al. (2002) and Shortland (2002a) for NewKingdom Egyptian 

yellow glasses and by Mass et al. (1998) and Freestone and Stapleton (2013) for Roman yellow 

glasses, a significant proportion of the lead antimonate particles exhibit an irregular, ragged 

morphology and a clumped distribution, whereas other particles exhibit euhedral morphologies 

suggesting that they were formed during cooling from the melt. It is therefore argued that 

preformed lead antimonate, rather than separate lead and antimony compounds, was added to the 

glass melt. The lead antimonate then suffered partial dissolution in the molten glass, resulting in 

both surviving clastic particles and euhedral particles that had crystallised from the melt.  

In a study of early Roman coloured glasses (1st century BC to 1st century AD), Freestone 

and Stapleton (2013, Figures 2.9 and 2.10) observed that the reduced compositions of yellow 

glasses (i.e., renormalized composition after the subtraction of lead, antimony and iron oxides) 

exhibited elevated silica contents together with lower lime, potash and magnesia contents 

relative to the reduced values for other colours. They therefore suggested that the yellow colorant 

was added to the colourless glass in the form of a lead-antimony-silica mixture comparable to the 

anime used in the production of yellow glasses in Venice in the 18
th

 and 19
th

 centuries AD 

(Moretti and Hreglich, 1984). Calculation of reduced compositions from analytical data for 1st to 

4
th

 century AD Roman glass published by Mass et al. (1998) again show that, as compared to 

white and turquoise glasses, opaque yellow and green glasses, the latter coloured by a 

combination of lead antimonate and copper oxide, exhibit elevated silica contents (Figure 2.1a). 

There is also a tendency for the opaque yellow and green glasses to have lower lime contents, 

but there is no differentiation in the potash and magnesia contents, the majority of which are less 

than 1 wt%, between the four colours. However, on the basis of the elevated silica and reduced 

lime contents, it can still be argued that anime continued to be used in the production of lead 

antimonate glasses through to the later Roman period. In contrast, on the basis of the analytical 

data for New Kingdom glass from Egypt published by Shortland and Eremin (2006), there are no 

significant differences in the reduced silica, lime, potash and magnesia contents of opaque 

yellow glasses relative to the other glasses (Figure 2.1b). Therefore, the Egyptian yellow glass 

was most probably produced by adding a pigment, made by firing a mixture of lead and 

antimony oxides, to raw colourless glass. 

In both the New Kingdom Egyptian and Roman yellow glasses, the PbO/Sb2O5 ratios of 

the bulk glass are typically in the range 5-15, and significantly higher than the ratio (1.38) for the 

stoichiometric Pb2Sb2O7 particles found in the yellow glasses. Therefore, both the lead 

antimonate pigments and animes used respectively in these two types of yellow glass would have 

contained an excess of lead. It is generally argued that excess lead facilitates the initial formation 
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of lead antimonate, the mixing of the pigment or anime into the colourless glass, and the 

subsequent stability of the lead antimonate within the glass (Shortland, 2002a; Freestone and 

Stapleton, 2013). 

In the context of Roman glasses, both Mass et al. (1998) and Freestone and Stapleton (2013) 

noted that the yellow glasses normally exhibited higher iron contents that those in most other 

colours, and Mass et al. (1998) further noted that the lead antimonate crystals were themselves 

contaminated with iron. 

More recently, Lahlil et al. (2011) have shown that 

the lead antimonate crystals in New Kingdom Egyptian 

yellow glasses contain up to about 7 wt% of iron oxide and 

up to about 5 wt% zinc oxide, and that those in Roman 

yellow glasses again contain up to about 7 wt% iron oxide, 

but instead of zinc oxide, they contain up to about 20 wt% 

tin oxide. In the present chapter, in order to supplement and 

extend the data previously obtained by Lahlil et al. (2011), 

lead antimonate particles present in a small group of New 

Kingdom Egyptian yellow and green glasses and in a single 

Roman yellow glass were first investigated. The 

compositions of the particles were determined using 

analytical scanning electron microscopy (SEM) and their 

crystallographic structure using X-ray diffraction (XRD). 

In an attempt to obtain information on the production 

procedures employed for these glasses, a number of lead 

antimonate pigments and animes were synthesised taking 

into account the procedures described in the historical 

treatises, and were similarly analysed using a combination 

of SEM and XRD. The stability of the lead antimonate 

particles in glass, and their conversion to calcium antimonate, was then investigated by firing 

pigments and animes together with colourless glasses. Because lead antimonate based pigments, 

animes and glasses exhibit a wide variety of colours, special emphasis was given to the 

investigation of the colour parameters, measured using UV-vis reflectance spectrometry, as a 

function of the synthesis parameters. Finally, on the basis of the compositions of the ancient 

glasses together with the results of the various pigment and anime syntheses, yellow lead 
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Figure 2.1. Plots of reduced lime content 

versus reduced silica content comparing (a) 

opaque yellow and green Roman glasses with 
other colours (Mass et al.,1998) and (b) 

opaque yellow New Kingdom Egyptian 

glasses with other colours (Shortland and 

Eremin, 2006).  
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antimonate glasses, comparable in composition, crystallographic particle structure, and colour to 

those produced in New Kingdom Egypt and in the Roman period, were successfully replicated. 

 

Experimental procedures 

 

Ancient glass samples 

 

Samples from five New Kingdom yellow glasses from Malkata (prefix ‘UPP’) and 

Amarna (prefix ‘COP’), and one Roman yellow mosaic tessera (116a) from the early medieval 

workshop at San Vincenzo (Italy), all containing lead antimonate particles, were studied. In 

addition, one New Kingdom green glass from Malkata (UPP14), coloured by a combination of 

lead antimonate and copper oxide, was also studied. 

 

Laboratory replications 

 

 Lead antimonate pigment 

For the laboratory replication of the lead antimonate pigment, Pb2Sb2O7, a stoichiometric 

mixture of 58 wt% lead oxide (PbO) and 42 wt% antimony oxide (Sb2O5) (PG1) (Table 2.1) was 

first used. This mixture was fired to temperatures of 800ºC or 1000ºC for 2h. Subsequently, the 

replication was repeated using the stoichiometric PbO-Sb2O5 mixtures to which varying amounts 

of iron oxide (1-8 wt% FeO) and zinc oxide (1-2 wt% ZnO) were added (PG2-6). In this case, 

the mixtures were all fired to 1000ºC for 2h. Stoichiometric mixtures, rather than those 

containing excess lead, were used principally in order to provide a reference material to compare 

with the lead antimonates identified in the ancient glasses, to see how the lattice parameters 

changed with the addition of iron and zinc, and to investigate the effect of composition and firing 

temperature on the observed colour.  

Further, both the Renaissance treatise on the potters art (Piccolpasso, 2007), and Renaissance 

painting treatises (Dik et al., 2005) indicate that an alkali flux (eg, common salt or wine lees)was 

used in the production of yellow lead antimonate pigments. Therefore, replicate pigments were 

also produced using either a pure stoichiometric mixture (PG7) or mixtures containing 1 wt% 

FeO (PG8) and 2 wt% ZnO (PG9) to which some 10 wt% sodium chloride flux (NaCl) had been 

added. The pure mixture was fired to 800ºC, 900ºC or 1000ºC for 2h, and the iron and zinc 

containing mixtures to 1000ºC for 2 h.  
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For these and subsequent 

replications, a Hobersal laboratory 

furnace (HD-230) with PXR-9/4 

programmer was used, and all 

firings were in air. The heating rate 

up to the maximum temperature 

was 5ºC/min, except in the range 

90-110ºC when a slower heating 

rate of 1ºC/min was used in order to 

eliminate humidity. The cooling 

rate was 2.5ºC/min down to 700ºC after which the furnace cooled naturally. All experimental 

mixtures were heated in ceramic crucibles, and the outer layer in contact with the crucible was 

subsequently removed in order to minimize contamination. 

 

 Lead-antimony-silica anime 

 

For the laboratory replication of the lead-antimony-silica anime, four mixtures of lead 

oxide, antimony oxide and silica were prepared (AN1-4) (Table 2.1). PbO:Sb2O5 ratios in the 

range 8:1 to 12:1 were chosen in order to span the ratios typically observed in New Kingdom 

Egyptian and Roman yellow glasses. The amounts of added silica were such that, after the 

formation of lead antimonate, there was sufficient lead oxide remaining to produce lead-silica 

glasses with PbO:SiO2 ratios equal to either 90:10 or 70:30. These mixtures were fired to 900ºC 

for 2 h. 

 

 Stability of lead antimonate particles in glass 

 

In order to investigate the temperature stability of the lead antimonate particles in glass 

and their conversion to calcium antimonate, powdered lead antimonate pigments and animes 

were fired together with powdered colourless glasses. In the case of lead antimonate pigments, 

glasses were produced by adding 12 wt% of the stoichiometric pigment to a colourless glass 

(RGM-CEG) of composition comparable to that of New Kingdom Egyptian glass (Table 2.2). 

The pigment mixtures were produced both without and with the addition of 10 wt% NaCl flux 

(PG1 and PG7 respectively) and were fired to 1000ºC for 2 h. The powdered pigment and glass 

mixtures were fired to temperatures of 800ºC, 900ºC, 1000ºC or 1050ºC for 2 h. Similarly, in the 

Table 2.1 
Chemical compositions of replicate lead antimonate pigments and animes. 

 

PbO Sb2O5 FeO ZnO SnO2 SiO2 NaCl PbO/Sb2O5

Pigments PG1 58,0 42,0 1,38

PG2 57,4 41,6 1,0 1,38

PG3 55,8 40,4 3,8 1,38

PG4 53,7 38,8 7,5 1,38

PG5 56,9 41,1 2,0 1,38

PG6 56,0 40,6 2,4 1,0 1,38

PG7 52,7 38,2 9,1 1,38

PG8 52,2 37,8 1,0 9,0 1,38

PG9 51,8 37,5 1,8 8,9 1,38

PG-EG 85,0 13,3 0,8 0,9 6,4

Animes AN1 80,9 10,1 9,0 8

AN2 83,7 7,0 9,3 12

AN3 64,4 8,0 27,6 8

AN4 65,4 6,5 28,0 12

AN-RG 75,0 10,4 3,5 1,5 9,7 7,2
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case of lead antimonate animes, glasses were produced by adding 12 wt% of the low silica, 

lower PbO/Sb2O5 ratio anime (AN1), fired to 900ºC for 2 h, to a colourless glass (RGM-CRG) of 

composition comparable to that of Roman glass (Table 2.2). The powdered anime and glass 

mixtures were fired to temperatures of 900ºC or 1000ºC for 2 h. 

 

 Lead antimonate yellow glasses 

 

In the replication of “Egyptian type” yellow glass, a lead antimonate mixture was 

prepared such as to provide a pigment with the approximate formula Pb2Sb1.8Fe0.25Zn0.25O7, and 

sufficient excess lead oxide so that PbO/Sb2O5 ratio of the mixture matched the average ratio of 

6.4 observed for New Kingdom Egyptian yellow glasses. The required pigment mixture whose 

composition is given in Table 2.1 (Pigment PG-EG) was fired to 1000ºC for 2 h, and then mixed 

with a colourless glass (Table 2.2 - RGM-CEG) of composition comparable to that of New 

Kingdom Egyptian glass.  

 

 

 

Table 2.2 Chemical compositions of New Kingdom Egyptian and Roman glasses. 

 

 
 

 

 

In the replication of “Roman type” yellow glass, the starting point for the composition of 

the anime mixture was the average composition of the lead antimonate particles present in the 

Roman glass sample, 116a; that is, 56.7 wt% PbO + 35.7 wt% Sb2O5 + 5.1 wt % FeO + 2.4 wt% 

SnO2. With the addition of silica and excess lead oxide together with slight increases in the iron 

and tin oxide contents, based on the anime compositions given by Moretti and Hreglich (1984, 

SiO2 Na2O K2O CaO MgO Al2O3 FeO PbO Sb2O5 ZnO SnO2

Lead antimonate yellow glasses

New Kingdom Egyptian1 Average - 19 62,0 17,0 2,1 7,2 4,1 0,7 0,6 5,2 0,8 0,3

Replicate "Egyptian type"                 

(PG-EG + RGM-CEG-1000°C)
SEM-EDS (x50) 58,5 14,5 2,1 7,2 7,2 1,2 0,5 6,9 1,4 0,4

Roman2 Average - 6 48,4 11,6 0,5 4,7 0,4 1,8 1,4 28,5 2,6 b.d

Roman3 Average - 20 59,4 14,7 0,6 5,8 0,5 2,1 0,8 14,8 1,4 b.d

Roman sample 116a 67,3 18,0 0,7 6,8 0,7 2,1 0,8 2,7 1,0 b.d

Replicate "Roman type"                      

(AN-RG + RGM-CRG-900°C)
SEM-EDS (x50) 64,6 13,0 0,7 5,8 1,6 2,1 0,7 12,6 1,2 0,3

Colourless glasses

Reduced NK Egyptian 1 Average - 19 66,1 18,1 2,3 7,7 4,3 0,8 0,7

RGM-CEG4 Theoretical 65,0 18,0 2,0 9,0 4,5 1,0 0,5

Reduced Roman2 Average - 6 70,3 16,8 0,7 6,9 0,6 2,7 2,0

Reduced Roman3 Average - 20 70,8 17,5 0,7 6,9 0,6 2,5 0,9

Reduced Roman sample 116a 69,9 18,7 0,7 7,1 0,7 2,1 0,8

RGM-CRG4 Theoretical 71,0 16,5 1,0 8,0 0,5 2,5 0,5
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278), the composition chosen for the anime mixture is given in Table 2.1 (Anime AN-RG). This 

anime mixture was fired to 900ºC for 2 h, and then mixed with a colourless glass (Table 2.2 – 

RGM-CRG) of composition comparable to that of Roman glass. 

 

Analytical methods 

 

Chemical compositions 

The chemical compositions of the individual lead antimonate particles and the 

surrounding glass phase were determined for the ancient glasses and replicate “Egyptian type” 

and “Roman type” glass using a Stereoscan S-360 SEM equipped with an energy dispersive X-

ray spectrometer (EDS), PCXA LINK EDX. The accelerating voltage was 20 kV and the probe 

current 1.5 nA. The bulk compositions of the Egyptian glasses, as determined by wavelength 

dispersive spectrometry (WDS), were reported previously by Shortland and Eremin (2006), and 

only the average composition is given in Table 2.2. For the Roman yellow glasses, average 

compositions, determined from the EDS and WDS analyses reported by Mass et al. (1998) and 

Freestone and Stapleton (2013), are given in Table 2.2, together with the bulk composition of 

Roman glass 116a as determined for areas including lead antimonate particles by EDS using the 

Stereoscan S-360 SEM. 

In the current study of lead antimonate, it is the detection limits for tin and antimony that 

were of particular importance. For tin, the detection limits were about 0.2 wt% SnO2 and 0.02 

at% Sn. For antimony, when tin was also present, they were about 0.4 wt% Sb2O5 and 0.1 at% 

Sb, and when tin was absent, about 0.2 wt% and 0.05 at% respectively. The equipment was 

calibrated using mineral standards. 

 

Structural analyses 

For the New Kingdom Egyptian glasses, the mineralogy of individual lead antimonate 

particles was determined using Synchrotron Radiation µ-XRD, performed on beamline BM16 at 

the ESRF (Grenoble, France) in transmission geometry with a collimated beam with 50 µm x 50 

µm spot size and monochromatic 16 keV energy (λ= 0.78 Å) X-rays on thin (about 100 µm) 

slices cut out of the glasses. The XRD patterns were recorded using a CCD detector. For the 

Roman tessera, and the replicate lead antimonate pigments, anime and yellow glasses, bulk XRD 

measurements were undertaken using a conventional diffractometer, Siemens D-500 with Cu-Kα 

radiation. The two theta range was 4-80º. Identification of the compounds has been performed 



Colour and Technology in historic decorated glazes and glasses                                                  Glòria Molina i Giralt 
 

-28- 
 

based on the Powder Diffraction File (PDF) database from the International Centre for 

Diffraction Data (ICDD). 

 

 

Colour 

For Roman tessera, and the replicate lead antimonate pigments, anime and yellow 

glasses, colour analyses was performed by recording the UV-vis spectra in reflection mode, 

using a double beam UV-vis-NIR spectrophotometer (Shimadzu 3600) equipped with an ISR 

3100 Ulbricht integrating sphere. The spot size was a slit of 5 mm x 1 mm, and measurements 

were made between 200 nm and 800 nm at 1 nm resolution. A D65 standard illumination source 

was used and barium sulphate provided a white standard. The colour coordinates were 

determined following the International Commission for Illumination (CIE) recommendation. The 

colour coordinates are evaluated by CIE 1976, the method being based on the evaluation of the 

tri-stimulus coordinates (XYZ) equivalent to the eye response to the light and corrected by the 

emission of a standard illuminant (D65) corresponding to the emission of the blackbody at 6500 

K. The XYZ coordinates are not uniformly spaced, and for this reason the Commission 

established the CIE Lab* standard measure to produce a homogeneously spaced colour system. 

From the original XYZ colour coordinates, a new set called a*, b* and L* are determined, where 

positive a* corresponds to red, negative a* to green, positive b* to yellowand negative b* to 

blue, and L* stands for the lightness. From this international standard system the hue (h*= 

arctang(b*/a*)) and saturation or chroma (c*=(a*
2
 + b*

2
)
1/2

) may also be evaluated. 

 

Results 

New Kingdom Egyptian and Roman glasses 

As previously noted by, for example, Mass et al. (2002) and Shortland (2002a) for New 

Kingdom yellow glasses, and by Mass et al. (1998) for Roman yellow glasses, significant 

variation in composition with stripes of glass richer in lead, in which the concentration of lead 

antimonate particles tends to be higher, was observed in all these glasses in polished section in 

the SEM (Figure 2.2). The size of these lead antimonate particles is highly variable, ranging 

from a few µm up to about 60 µm, and the volume fraction of particles never exceeds 7% of the 

total volume of the sample.  

Up to about five lead antimonate particles were analysed by EDS in each of the seven glasses 

with larger particles being selected in order to minimise the contribution from the surrounding 
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glass, only those analyses containing less than 5 wt% SiO2 being considered. Even so, the 

analyses contained a few wt% of silicon and sodium, and these elements were removed in order 

to obtain the composition of the lead antimonate particles. The average molar compositions of 

the particles, normalised to two atoms of lead, are given in Table 2.3. 

 

- New Kingdom Egyptian glasses 

The plots of at% of antimony, iron and zinc versus at% of lead for particles in all the 

glasses, and for the glass surrounding the particles of sample UPP9 are shown in Figure 2.3. 

From Figure 2.3a, it is seen that, in all the glasses, the lead antimonate particles contain less 

antimony than lead and show a correlation of about 0.93 Sb atom for every Pb atom. In addition, 

as previously observed by Lahlil et al. (2011) in New Kingdom Egyptian glasses, the particles 

contain small variable amounts of iron and zinc which do not show a clear correlation with the 

lead content (Figure 2.3b and c). Overall, the average composition of the lead antimonate 

particles is 55.8 wt% PbO + 37.8 wt% Sb2O5 + 2.5 wt% FeO + 1.7 wt% ZnO, with the amounts 

of FeO and ZnO varying quite a lot between particles. From the corresponding plots for the glass 

phase surrounding the lead antimonate particles in sample UPP9 (Figure 2.3d, e and f), it is seen 

that the antimony, iron and zinc contents show 

some correlation with the lead contents. However, 

the amount of antimony present in the glass is 

significantly lower than what would be expected 

from dissolution of the lead antimonate particles, 

the at% Sb/at% Pb ratio being about 1:6 in the 

glass as compared to about 1:1.1 in the particles. In 

contrast, although the amounts of iron and zinc in 

the glass are again lower than those in the lead 

antimonate particles, the at% Fe/at% Pb and at% 

Zn/at% Pb ratios are comparable in the glass and 

lead antimonate particles. 

Micro XRD on individual lead antimonate 

particles showed that, with one exception, they 

were all of the type Pb2Sb2O7 with a cubic 

crystallographic structure, space group Fd-3m 

(lattice parameters a = b = c, and α = β = 90º) 

 
Figure 2.2. SEM photomicrographs in backscatter mode 
of polished sections through (a) New Kingdom yellow 

glass from Malkata (UPP9) showing stripes of glass both 

richer in lead (lighter grey) and poorer in lead (darker 

grey) and (b) Roman yellow glass (116a) showing, in the 
central region, a concentration of lead antimonate 

particles (white) within a lead rich area of glass (lighter 

grey). Surrounding this are regions of glass poorer in 

lead (darker grey) which contain far fewer lead 
antimonate particles. 
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known as pyrochlore structure. The majority show the presence of cubic lead antimonates with 

lattice parameters equal to 10.44, 10.46 and 10.48Å which, as discussed below, are associated 

with lead antimonates containing iron and zinc (Table 2.4). Pure lead antimonate with lattice 

parameter equal to 10.40Å was only observed in one glass (UPP11). In addition to the cubic lead 

antimonates, the green glass (UPP14) contains PbSb2O6 which has a hexagonal crystallographic 

structure, space group P312 (a = b = 5.29Å, c = 5.36Å, α = β = 90º, γ = 120º). Other crystalline 

phases, such as calcium silicates and calcium magnesium silicates, were also found in all the 

glasses except UPP10 (Table 2.4). The precipitation of calcium and calcium magnesium silicates 

is ex expected as Egyptian glasses contain large amounts of calcium and magnesium oxides 

(typical averages of 7.2 wt% and 4.1 wt% respectively) as compared to Roman glasses (typical 

averages of 4.7-5.8 wt% and 0.4-0.5 wt% respectively) (Table 2.2). The plot of the reduced lime 

and silica wt% contents for the glass phase in sample UPP9 shows that there is no significant 

difference in the composition near to and away from lead antimonate particles (Figure 2.4a). 

This result is consistent with the observation that, for New Kingdom Egyptian glasses, there are 

no significant differences in the reduced silica and lime contents of yellowglasses relative to the 

other colours (Figure 2.1b), and suggests that minimal silica was included in the lead antimonate 

pigment used in the production of these glasses.  

 

- Roman glass 

 

The plots of at% of antimony iron and tin versus at% of lead for the particles and in the glass 

surrounding the 

particles are shown 

in Figure 2.5. From 

Figure 2.5a, it is 

seen that the lead 

antimonate particles 

again all contain 

less antimony than 

lead and show a 

correlation of about 

0.86 Sb atoms for every Pb atom. In addition, as previously observed by Lahlil et al. (2011) in 

Roman glasses, the particles contain small variable amounts of iron and tin. In contrast to the 

Table 2.3 

Molar composition of the lead antimonate particles after normalisation to 2 atoms of Pb (average 
number of atoms and standard deviation (in brackets) among N particles). 

 

 

Samples N particles At Sb At Fe At Zn At Sn At O

Egyptian - UPP7 2 1.84 (0.00) 0.60 (0.24) 0.53 (0.36) 7.2 (0.4)

Egyptian - UPP9 5 1.79 (0.08) 0.29 (0.15) 0.16 (0.10) 7.6 (0.6)

Egyptian - UPP10 1 1,75 0,14 0,28 8,1

Egyptian - UPP11 3 1.86 (0.13) 0.33 (0.20) 0.17 (0.07) 7.1 (1.4)

Egyptian - COP20 4 1.83 (0.05) 0.26 (0.12) 0.10 (0.02) 7.3 (1.6)

Egyptian - UPP14 4 1.94 (0.02) 0.07 (0.01) 0.14 (0.04) 5.8 (0.4)

Replicate "Egyptian type" glass 

(PG-EG + RGM-CEG-1000°C)
9 1.89 (0.29) 0.20 (0.12) 0.06 (0.09) 6.1 (0.47)

Roman - 116a 6 1.77 (0.15) 0.56 (0.06) 0.13(0.05) 7.3 (0.5)

Replicate "Roman type"glass  

(AN-RG + RGM-CRG-900°C)
7 1.45 (0.11) 0.41 (0.03) 0.23 (0.08) 8.2 (0.9)
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situation for the Egyptian glasses, the iron and tin contents correlate well with the lead content 

(Figure 2.5b and c).  

Overall, the average composition of the lead antimonate particles is 56.7 wt% PbO + 35.7 

wt% Sb2O5 + 5.1 wt% FeO + 2.4 wt% SnO2. It should be noted, however, that the bulk tin oxide 

content of the glass itself is below the detection limit (about 0.2 wt% SnO2) for analyses by EDS.  

 

 
 

Figure 2.3. Correlation between Pb at% and (a) Sb, (b) Fe and 

(c) Zn at% for the lead antimonate particles in New Kingdom 
Egyptian yellow glasses, and between Pb at% and (d) Sb, (e) Fe 

and (f) Zn at% for the glass phase surrounding the lead 

antimonate particles in New Kingdom Egyptian yellow glass 

(UPP9).  

 

 

 

 

Figure 2.6. (a) UV-vis reflectance spectra and 
(b) CIE-Lab* colour coordinates (a* and b*) for 

Roman glass (116a), and for replicate “Egyptian 

type” glass (PG-EG þ RGM-CEG-1000ºC) and 

“Roman type” glass (AN-RG + RGM-CRG-
900ºC and 1000ºC). 

                      
Figure 2.4. Plots of reduced lime content versus reduced silica content around and away from lead antimonate 
articles for (a) New Kingdom Egyptian glass UPP9) and (b) Roman glass (116a).  
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From the corresponding plots for the glass phase surrounding the lead antimonate particles, it is 

seen that the antimony and iron contents show some correlation with the lead contents (Figure 

2.5d and e). However, the amount of antimony present in the glass is again significantly lower 

than what would be expected from dissolution of the lead antimonate particles, the at% Sb/at% 

Pb ratio being about 1:4 in the glass as compared to about 1:1.1 in the particles. 

In contrast, the tin contents are not 

correlated with the lead contents (Figure 

2.5f) and both the low and high lead glass 

areas contain about 0.05 at% Sn, which is 

consistent with the low solubility of tin in 

the glass. Bulk XRD measurements 

showed that all the lead antimonate 

particles were of the type Pb2Sb2O7 (with 

Sb partly substituted by either Fe and/or 

Sn) again with a pyrochlore 

crystallographic structure, cubic space 

group Fd-3m  (lattice parameters a = b = 

c, and α = β = 90º). As a result of iron and 

tin present in the lead antimonate 

particles, the majority have lattice 

parameters equal to 10.48Å, but on one 

side of the sample, there appears a second 

cubic lead antimonate with a smaller 

lattice parameter (10.46Å)  (Table 2.4), 

thus indicating heterogeneity in the composition of the yellow particles added to the glass. The 

CIE-Lab* colour coordinates, calculated from the measured UV-vis spectra (Figure 2.6a), are 

presented in Table 2.5 and plotted in Figure 2.6b. These results show that the colours of the two 

sides of the sample are slightly different. One side has a large yellow component (b* = 26.6) and 

a small red component (positive a*) whereas the other side has only a small yellow component 

(b* = 8.2) and an even smaller green component (negative a*). 

 

 

 

 

 
 

Figure 2.5. Correlation between Pb at% and (a) Sb, (b) Fe and (c) Sn 

at% for the lead antimonate particles, and between Pb at% and (d) 
Sb, (e) Fe and (f) Sn at% for the glass phase surrounding lead 

antimonate particles in a Roman yellow glass (116a). 
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The plot of the reduced lime and silica wt% contents for the glass phase shows that the 

silica contents are significantly higher near to lead antimonate particles as compared to those 

away from the particles (Figure 2.4b). This result is consistent with the observation that, for 

Roman glass, the more reduced compositions of yellow glasses exhibit elevated silica contents 

together with lower lime contents relative to the other colours (Figure 2.1a and Freestone and 

Stapleton, 2013; Figs. 2.9 and 2.10), and again suggests that silica was included in the lead-

antimony mixture used in the production of Roman yellow glasses. 

 

Table 2.4. Lattice parameters for lead antimonate particles and other mineral phases detected in the New  

Kingdom Egyptian and Roman glasses.   
     

Samples 

Pb2Sb2O7 

other crystalline compounds lattice parameter (Å) 

Egyptian - UPP7 10,44 

diopside, ca-mg silicate, 

wollastonite 

Egyptian - UPP9 10.44, 10.48 

diopside, ca-mg silicate, 

wollastonite 

Egyptian - UPP10 10.44, 10.48 

  

  

Egyptian - UPP11 10.40, 10.44,  10,.48 

diopside, ca-mg silicate, 

wollastonite 

Egyptian - COP20 10,46 ca-mg silicate 

Egyptian - UPP14 10.44, 10.48 PbSb2O6 
 

  

Replicate "Egyptian type" glass               
(PG-EG + RGM-CEG-1000°C) 

10.46, 10.48 
diopside, 
quartz 

    

Roman - 116a 10.46, 10.48 quartz 

 

  

Replicate "Roman type"glass      

(AN-RG + RGM-CRG-900°C) 
10,48       

Replicate "Roman type"glass           
(AN-RG + RGM-CRG-1000°C) 

10,44 
Ca2Sb2O6.5 (a = 10.37 
Å) 

  
 

 

- Replication of “Egyptian type” lead antimonate glass 

In the replication of “Egyptian type” lead antimonate glass, the first step was the synthesis of 

various lead antimonate pigments based on a stoichiometric mixture of 58 wt% lead oxide and 

42 wt% antimony oxide (Table 2.1). The temperature stability when the stoichiometric pigment 

was fired with colourless glass was then investigated, and finally, based on the compositions of 

the New Kingdom glasses, an “Egyptian type” lead antimonate glass was replicated. 

 

- Synthesis of lead antimonate pigments 
 

For the lead antimonate pigments produced from the stoichiometric mixture (PG1), the bulk 

XRD results, presented in Table 2.6, shows that several lead antimonate compounds were 

formed. Pure cubic Pb2Sb2O7, with lattice spacing 10.40Å, is present for both firing 

temperatures, but it is only one of several lead antimonates present. After firing to 800ºC for 2h, 

Pb2Sb2O7 is present in trace amounts and the dominant lead antimonate is Pb3+xSb2O8+x. After 

firing to 1000ºC for 2 h, both these lead antimonates are present in medium amounts. The CIE-
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Lab* colour coordinates for these pigments, which were calculated from the measured UV-vis 

spectra, and which are presented in Table 2.5 and plotted in Figure 2.7, are consistent with the 

observed yellow colour; that is, positive b* (23-25) with small positive a* (5-6) indicative of a 

red component. For the lead antimonate pigments produced by firing the stoichiometric mixture 

with the addition of varying amounts of iron oxide and zinc oxide (PG2-6) at 1000ºC for 2h, the 

bulk XRD results show that several lead antimonate compounds were again formed but that 

cubic Pb2Sb2O7 is now dominant in all cases (Table 2.6). However, due to the incorporation of 

both Fe and Zn into the cubic lattice, the lattice spacing is greater than that for pure lead 

antimonate formed previously (a = 10.40Å), and ranges from 10.46Å for 1 wt% FeO to 10.51Å 

for 2 wt% ZnO. In contrast, the XRD results for the pigment used to produce “Egyptian type” 

yellow glass (PG-EG), which contained small amounts of iron and zinc together with excess 

lead, show that two cubic lead antimonates (Pb2Sb2O7) were formed, with lattice parameters of 

10.425Å and 10.479Å, characteristic of the incorporation of Fe and Zn into the cubic lattice. In 

addition, some orthorhombic Pb2Sb2O7, a mixed Fe-Zn oxide and Sb2O4 were formed.  

The CIE-Lab* coordinates for the stoichiometric pigments (Table 2.5, Figure 2.7) are 

again consistent with the observed yellow colour with positive b* (10-34) and small positive a* 

(2-7.5) indicative of a red component. However, there is no clear correlation between colour and 

composition of the pigment, and only the pigment mixtures containing either 4 wt% FeO (PG3) 

or 2 wt% ZnO (PG5) exhibit a significantly stronger yellow colour (i.e., b* approximately 34 

and 29 respectively) than that of the stoichiometric mixture without the addition of iron or zinc 

oxides. For the lead antimonate pigments produced from the stoichiometric mixture to which 

some 10 wt% sodium chloride flux (NaCl) was added (PG7), the bulk XRD results, presented in 

Table 2.6, show that cubic Pb2Sb2O7, with lattice spacing approximately 10.40Å, is already the 

major component after firing to 900ºC, and after firing to 1000ºC, it is the only lead antimonate 

present. 

In contrast, when small amounts of iron or zinc were included in the NaCl containing 

pigments (PG8-9), two cubic lead antimonates (Pb2Sb2O7) with lattice parameters of 10.386 and 

10.453Å for PG8, and 10.400 and 10.462Å for PG9 were formed, as in the case of pigment PG-

EG containing excess lead. The observed colours of these pigments are a more intense and 

homogeneous yellow than those observed for pigments produced from the stoichiometric 

mixtures without the addition of NaCl flux. This difference is reflected in the CIE-Lab* 

coordinates (Table 2.5, Figure 2.7) for which b* is in the range 33-46 as compared to 23-34 

without the addition of NaCl flux. 
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Table 2.5 CIE-Lab* colour coordinates. 

 
 Sample L* a* b* c* h* 

Roman yellow glass (116a)           

Side 1 33,4 -0,3 8,2 8,2 92,1 

Side 2 48,3 1,7 27,6 27,7 86,5 

Replication of "Egyptian type" glass         

Replicate pigment - PG1 (no NaCl)(fired for 2h) 

 
 

  

800ºC  55,5 5,2 23,4 24,0 77,5 

900ºC  58,1 4,0 18,7 19,1 77,9 

1000ºC 58,1 5,8 24,8 25,5 76,8 

Replicate pigments with FeO and ZnO (no NaCl)(fired 1000°C for 2h)   

  
 

  

PG2 - Fe 1 wt% 46,4 5,2 20,5 21,1 75,8 

PG3 - Fe 4 wt% 61,1 7,5 34,2 35,0 77,6 

PG4 - Fe 8 wt% 55,2 6,5 27,5 28,3 76,7 

PG5 - Zn 2 wt% 56,9 6,9 29,3 30,1 76,7 

PG6 - Zn 1 wt%+Fe 2.5 wt% 37,1 2,3 10,5 10,7 77,6 

Replicate pigment - PG7 (10 wt% NaCl)(fired for 2h)   

  
 

  

800ºC 62,6 5,6 34,0 34,5 80,6 

900ºC 58,3 5,5 33,0 33,5 80,5 

1000ºC  65,5 9,5 43,3 44,3 77,6 

Replicate pigments with FeO and ZnO (10 wt% NaCl)(fired 1000°C for 

2h)   

  

 
  

PG8 - Fe 1 wt% 73,1 5,4 46,1 46,4 83,3 

PG9 - Zn 2 wt% 71,8 1,3 46,2 46,2 88,4 

Stability of lead antimonate particles  
   

 
  

PG1 + RGM-CEG (fired for 2h) 

   
 

  

800°C 84,5 2,7 31,8 31,9 85,1 

900°C 72,9 -4,1 29,4 29,7 97,9 

1000°C 73,0 -5,2 21,2 21,8 103,8 

1050°C 53,2 -3,0 8,9 9,4 108,6 

PG7 + RGM-CEG (fired for 2h) 

   
 

  

800°C 67,2 -3,6 25,0 25,3 98,2 

900°C 66,4 -7,9 27,1 28,2 106,3 

1000°C 63,0 -6,8 23,6 24,6 106,1 

1050°C 57,3 -6,1 14,8 16,0 112,4 

"Egyptian type" glass  

   
 

  

(PG-EG + RGM-CEG -1000°C) 65,7 4,6 32,9 
33,2 82,0 

Replication of "Roman type" glass      
  

Replicate anime (fired 900°C for 2h) 

   
 

  

AN1 62,4 6,1 34,1 34,6 79,9 

AN2 38,0 1,6 9,4 9,5 80,3 

AN3 81,6 -0,1 7,5 7,5 90,8 

AN4 43,0 0,2 1,7 1,7 83,3 

Stability of lead antimonate particles    

  
 

  

AN1 + RGM-CRG (fired for 2h)   
  

 
  

900°C 59,0 -5,5 13,9 14,9 111,6 

1000°C 58,7 -2,2 3,1 3,8 125,4 

"Roman type" glass    

   

  

(AN-RG + RGM-CRG -900°C) 43,6 9,1 24,2 25,9 69,4 

(AN-RG + RGM-CRG -1000°C) 49,6 6,8 21,1 22,2 72,1 
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Table 2.6. 
 XRD data for replicate lead antimonate pigments, fired for 2 h (*: major; m: median; t: traces). 

 

Replicate pigment JPDF file Compound

Lattice 

parameter

Crystalline 

structure

PG1 (no NaCl)

800ºC 00-034-1196 Pb3+xSb2O8+x*

01-084-1423 PbSb2O6
 t

00-042-1355 Pb2Sb2O7
 t

cubic (Fd-3m)

00-039-0834 Pb2Sb2O7
 t

orthorhombic

1000ºC 01-084-1423 PbSb2O6*

00-034-1196 Pb3+xSb2O8+x
 m

00-042-1355 Pb2Sb2O7
 m

a=10.398(1) cubic (Fd-3m)

00-039-0834 Pb2Sb2O7
t

orthorhombic

PG2-PG6 (no NaCl), fired 1000°C

PG2-Fe 1 wt% Pb2Sb2O7-type
 * a=10.457(6) cubic (Fd-3m)

01-084-1423 PbSb2O6
 m

00-034-1196 Pb3+xSb2O8+x 
m

00-039-0834 Pb2Sb2O7
 m

orthorhombic

PG3-Fe 4 wt% Pb2Sb2O7-type 
*

a=10.490(4) cubic (Fd-3m)

01-084-1423 PbSb2O6 
m

PG4-Fe 8 wt% Pb2Sb2O7-type
 *

a=10.488(5) cubic (Fd-3m)

01-084-1423 PbSb2O6
 m

00-034-0372 PbSbO4
 t

01-079-1741 Fe2O3

PG5-Zn 2 wt% Pb2Sb2O7-type
 *

a=10.508(7) cubic (Fd-3m)

01-084-1423 PbSb2O6
 m

00-034-1196 Pb3+xSb2O8+x 
m

00-039-0834 Pb2Sb2O7
 m

orthorhombic

PG6-Zn 1 wt%+ Pb2Sb2O7-type
 *

a=10.494(1) cubic (Fd-3m)

FeO 2.5 wt% 01-084-1423 PbSb2O6 
m

00-034-1196 Pb3+xSb2O8+x 
t

PG7 (10 wt%  NaCl)

800ºC 00-034-1196 Pb3+xSb2O8+x

00-042-1355 Pb2Sb2O7 a=10.396(4) cubic (Fd-3m)

00-039-0834 Pb2Sb2O7
 t

orthorhombic

900ºC 00-042-1355 Pb2Sb2O7 a=10.391(1) cubic (Fd-3m)

00-034-1196 Pb3+xSb2O8+x
 t

01-084-1423 PbSb2O6
 t

1000ºC 00-042-1355 Pb2Sb2O7 a=10.398(1) cubic (Fd-3m)

PG8-PG9 (10 wt%  NaCl), fired 1000°C

PG8-Fe 1 wt% 00-042-1355 Pb2Sb2O7 a=10.386(7) cubic (Fd-3m)

Pb2Sb2O7-type a=10.453(3) cubic (Fd-3m)

PG9-Zn 2 wt% 00-042-1355 Pb2Sb2O7 a=10.400(5) cubic (Fd-3m)

Pb2Sb2O7-type a=10.462(1) cubic (Fd-3m)

PG-EG, fired 1000°C

00-042-1355 Pb2Sb2O7-type a=10.425(2) cubic (Fd-3m)

Pb2Sb2O7-type a=10.479(2) cubic (Fd-3m)
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- Stability of lead antimonate particles 
 

The bulk XRD measurements on glasses produced from mixtures of stoichiometric pigment 

without the addition of NaCl flux (PG1) and colourless glass (RGM-CEG) (Table 2.2) indicate 

that trace amounts of cubic Pb2Sb2O7 (a = 10.40Å) are present for firings up to 1000ºC. 

However, for a firing at 1000ºC, hexagonal CaSb2O6 is also present, and when the glass is fired 

to 1050ºC, the cubic Pb2Sb2O7 is converted to orthorhombic calcium antimonate, Ca2Sb2O7. 

The CIE-Lab* colour coordinates (Table 2.5) reflect the changes in the antimonate 

phases present in the glasses fired to different temperatures, as determined by XRD 

measurements. Thus, as a result of the partial conversion from Pb2Sb2O7 to CaSb2O6, the b* 

colour coordinates are reduced from 31.8 and 29.4 for the glasses fired at 800ºC and 900ºC 

respectively, to 21.2 for the glass fired at 1000ºC. 

Although these b* values are 

comparable to that for the original pigment 

(b* = 24.8), the glasses differ from the 

pigment in having small, negative a* 

coordinates (-5 to -3) and being yellow-green 

in colour, whereas the original pigment had a 

small positive a* coordinate (+5.8) and was 

yellow-red in colour. Finally, at 1050ºC, the 

decomposition of the lead antimonate and the 

formation of calcium antimonate results in the 

decolouration of the glass (i.e., b* = 9).  

In contrast, when stoichiometric 

pigment with the addition of NaCl flux 

(PG7)was used, bulk XRD measurements showed that the pure cubic Pb2Sb2O7 (a = 10.40Å) 

suffers some transformation to a cubic antimonate with a smaller lattice parameter (10.38Å at a 

firing temperature of 800ºC and 10.34Å at 900ºC and 1000ºC). These changes are most probably 

the result of Ca substituting for Pb to form an intermediate cubic lead-calcium antimonate 

(Pb,Ca)2Sb2O7. Then, at a firing at 1050ºC, this intermediate cubic antimonate decomposes to 

form orthorhombic calcium antimonate, Ca2Sb2O7. The CIE-Lab* colour coordinates reflect this 

early transformation to an intermediate cubic antimonate in that the b* for firing temperature of 

800ºC and 900ºC (25.0 and 27.1) are lower than the corresponding values (31.8 and 29.4) for the 

pigment without the addition of NaCl flux. 

 
Figure 2.7. CIE-Lab* colour coordinates (a* and b*) for 

replicate pigments PG1 (no NaCl), PG2-6 (no NaCl but added 

Fe and/or Zn), PG7 (10 wt% NaCl), and PG8-9 (10 wt% NaCl 
plus added Fe or Zn), all fired at 1000ºC. 
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- Replication of “Egyptian type” yellow glass 

 

Since Egyptian yellow glasses did not exhibit elevated silica contents relative to the other 

colours, replicate “Egyptian type” glass was produced using a lead antimonate pigment 

containing no silica. The composition of the pigment, which contained small amounts of iron and 

zinc together with excess lead oxide is given in Table 2.1 (PG-EG). 12 wt% of this powdered 

pigment was added to 88 wt% powdered colourless glass (RGM-CEG) with composition 

comparable to that of New Kingdom Egyptian glass (Table 2.2), and the combined mixture was 

fired at 1000ºC for 2 h.  

The resulting the replicate glass (PG-EG + RGM-CEG-1000ºC) showed a mottled pattern of 

bright yellow and white areas (Figure 2.8a). In polished section in the SEM, it can be seen that, 

because the glass was not stirred when molten, there are areas of glass with higher and lower 

lead oxide contents, and the lead antimonate particles are not well distributed, are frequently 

clustered together and are very variable in size (Figure 2.8c).  

From the plots of at% of antimony, iron and zinc versus at% of lead for the particles and 

glass phase, as determined by EDS analyses (Figure 2.9a-c), it can be seen that the glass phase 

contains no antimony but small amounts of iron and zinc. In the lead antimonate particles, the 

antimony content correlates with the lead content, and their compositions are close to the 

theoretical stoichiometric composition, with the iron and zinc contents being very variable 

between particles. The average molar concentrations of the particles, normalised to two atoms of 

lead, are compared with those for the New Kingdom Egyptian glasses in Table 2.3, and the bulk 

composition of the replicate glass is given in Table 2.2.  

The bulk XRD pattern shown in Figure 2.10a for the replicate glass indicates that, as for the 

New Kingdom Egyptian glass, the lead antimonate particles are of the cubic Pb2Sb2O7 type with 

two high lattice parameters (a = 10.46Å and 10.48Å) associated with various iron and zinc 

contents (Table 2.4). 

The CIE-Lab* colour coordinates, calculated from the measured UV-vis spectra (Figure2. 

6a), are included in Table 2.5 and plotted in Figure 2.6b, and indicate a strong yellow colour (b* 

= 32.9) with a small red component (a* = 4.6). Thus, the colour coordinates for a glass produced 

using a pigment with excess lead correspond well with those for the replicate lead antimonate 

pigments containing FeO and ZnO, some of which show similar yellow components (eg., b* 

equal to 29.3 and 34.2) together with small red components (a* equal to 6.9 and 7.5) (Table 2.5). 

 



Colour and Technology in historic decorated glazes and glasses                                                  Glòria Molina i Giralt 
 

-39- 
 

 
Figure 2.8. Replicate (a) “Egyptian type” (PG-EG + RGM-CEG-1000 _C) and (b) “Roman type” (AN-RG + RGM-CRG-

900ºC) lead antimonate glasses, and SEM photomicrographs in backscatter mode of polished sections throughthese replicate 

(c) “Egyptian type” and(d) “Romantype” glasses showing a scatter of lead antimonate particles(white) together with areas of 

glass both richer in lead (lighter grey) and poorer in lead (darker grey).  

 

- Replication of “Roman type” lead antimonate glass 

In the replication of “Roman type” lead antimonate glass, the first step was the synthesis of 

various lead-antimony-silica animes containing excess lead (Table 2.1). The temperature 

stability when anime was fired with colourless glass was then investigated, and finally, based 

principally on the compositions of the Roman glasses, a “Roman type” lead antimonate glass 

was replicated. 

 

- Synthesis of lead-antimony-silica anime 

In terms of colour, only the two replicate anime mixtures with low silica contents (AN1 and 

AN2 in Table 2.1) exhibit a yellow colour, although AN2 is very pale. In contrast the high silica 

animes (AN3 and AN4) are essentially white.  
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The bulk XRD 

measurements (Figure 

2.11) showed that none 

of the animes 

contained the lead 

antimonate pyrochlore, 

Pb2Sb2O7. Instead the 

dominant phases in the 

two mixtures with low 

silica contents (AN1 

and AN2) are 

Pb3+xSb2O8+x and the 

lead silicate,  

Pb2(SiO3)O whereas 

those in the two 

mixtures with high 

silica contents (AN3 and AN4) are quartz and PbSb2O6. The 

observed colour and the lead antimonate phases present are reflected in the CIE-Lab* 

coordinates (Table 2.5). Thus, of the low silica animes, AN1 with the lower PbO/Sb2O5 ratio (8 

as compared to 12) exhibits a much more intense yellow than AN2 (b* = 34.1 and 9.4 

respectively), and the two white, high silica animes exhibit even lower b* values (7.5 and 1.7 

respectively). 

 

- Stability of lead antimonate particles 

The glass resulting from firing a mixture of the low silica, lower PbO/Sb2O5 ratio anime 

(AN1) and colourless glass (RGM-CRG) to 900ºC is mottled yellow in appearance. Under the 

optical microscope, a mixture of yellow and white particles together with some particles with a 

yellow core and a white edge are visible. The bulk XRD pattern indicates the presence of a 

pyrochlore with a lattice parameter close to 10.30Å which is again most probably the result of Ca 

substituting for Pb to form an intermediate cubic lead-calcium antimonate  

 

Figure 2.10. XRD patterns for replicate (a) 

“Egyptian type” (PG-EG + RGM-CEG-1000ºC) 
and (b) “Roman type” (AN-RG + RGM-CRG) 

lead antimonate glasses, the latter fired to 

900ºC and 1000ºC.  

 
 

Figure 2.9. Correlation between Pb at% and (a) 

Sb, (b) Fe, and (c) Zn at% for the lead antimonate 

particles and surrounding glass phase in replicate 

“Egyptian type” (PG-EG + RGM-CEG-1000ºC) 
and between Pb at% and (d) Sb, (e) Fe, and (f) Sn 

at% in replicate “Roman type” (AN-RG + RGM-

CRG-900ºC) lead antimonate yellow glasses 
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(Pb,Ca)2Sb2O7. The CIE-Lab* colour coordinates (Table 2.5) indicate a fairly weak yellow 

colour (b* = 13.9) with a small green component (a* = -5.5). In contrast, the glass resulting from 

firing this same mixture to 1000ºC is opaque white with b* coordinate equal to only 3.1. 

 

- Replication of “Roman type” yellow glass 

Since Roman yellow glasses exhibited elevated silica contents relative to the other colours, 

replicate “Roman type” glasses were produced using a lead-antimony-silica anime, rather than a 

lead antimonate pigment containing no silica. The composition of the anime (AN-RG), which 

contained small amounts of iron and tin together with excess lead oxide is given in Table 2.1. 

Mixtures of this powdered anime and powdered colourless glass (RGM-CRG) with composition 

comparable to that of Roman glass were used (Table 2.2) (20 wt% anime + 80 wt% glass) and 

(12wt% anime + 88 wt% glass) mixtures being fired at 900ºC and1000ºC, respectively, for 2 h.  

The resulting replicate “Roman type” glass fired to 900ºC (AN-RG + RGM-CRG-900ºC) is a 

definite yellow-orange colour (Figure 2.8b). In polished section in the SEM, it can be seen that, 

because the glass was not stirred when molten, the lead antimonate particles are again not well 

distributed, are frequently clustered together and are very variable in size (Figure 2.8d).  

 

Figure 2.11. XRD patterns for replicate animes AN1-4.  
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From the plots of at% of antimony, iron and tin versus at% of lead for the particles and 

glass phase, as determined by EDS analyses (Figure 2.9d-f), it can be seen that the glass phase 

contains no antimony but small amounts of iron and tin. In the lead antimonate particles, the 

antimony and iron contents correlate with the lead content, but the tin contents are more variable 

between particles. The average molar concentrations of the particles, normalised to two atoms of 

lead, are compared with those for the Roman glass sample, 116a, in Table 2.3, and the bulk 

composition of the replicate glass is given in Table 2.2. 

The bulk XRD pattern (Figure 2.10b) for the replicate glass indicates that, as for the 

Roman glass sample, the lead antimonate particles are of the cubic Pb2Sb2O7 type with a high 

lattice parameter (a = 10.482 (1) Å) associated with the incorporation of iron and tin into the 

lattice (Table 2.4). The CIE-Lab* colour coordinates, calculated from the measured UV-vis 

spectra (Figure 2.6a), are included in Table 2.5 and plotted in Figure 2.6b, and indicate a strong 

yellow colour (b* = 24.2) together with a significant red component (a* = 9.1) which is most 

probably due to the high iron content of the anime.  

The plot of the reduced lime and silica wt% contents for the glass phase shows that the 

silica contents are significantly higher near to lead antimonate particles as compared to those 

away from the particles (Figure 2.12). This result is as expected with the use of lead antimonate 

anime rather than lead antimonate pigment, and consistent both with the results obtained for the 

Roman glass sample, 116a (Figure 2.4b), as well as those reported for early Roman glass by 

Freestone and Stapleton (2013) and those calculated from data published by Mass et al. (1998) 

for later Roman glass (Figure 2.1a).  

The replicate “Roman type” glass fired to 1000ºC (AN-RG + RGM-CRG-1000ºC) also 

results in a yellow-orange colour, but one that is less saturated than for the glass produced by 

firing to 900ºC. The CIE-Lab* colour coordinates, calculated from the measured UV-vis spectra 

(Figure 2.6a) and included in Table 2.5 and plotted in Figure 2.6b, are similarly slightly reduced, 

although both these observations could be the result of less anime being included in the mixture 

(12 wt% as compared to 20 wt% for the 900ºC mixture). However, the bulk XRD pattern (Figure 

2.10b) for this replicate glass indicates that, in addition to cubic lead antimonate particles (lattice 

parameter a = 10.44Å), some cubic calcium antimonate particles (Ca2Sb2O6.5 with a = 10.3Å) are 

also present. Therefore, in spite of the glass still appearing yellow in colour, there has been 

partial conversion from lead antimonate to calcium antimonate for a firing temperature of 

1000ºC, and the glass produced does not fully replicate the ancient Roman glass. 
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Discussion 

 

New Kingdom Egyptian and Roman glasses 

 

The results presented above confirm that New 

Kingdom Egyptian and Roman yellow glasses are similar in 

terms of the composition (Table 2.3) and crystallographic 

structure (Table 2.4) of their lead antimonate particles. The 

principal difference is that, in addition to the iron present in 

both types of glass, tin has replaced zinc as the second 

impurity substituting for antimony in the lead antimonate 

particles in the Roman glass. 

Lead antimonate is a cubic pyrochlore oxide with 

general formula A2B2O7 which has two interpenetrating 

lattices, an A4O tetrahedra and a BO6 vertex sharing octahedra. The A cations occupy part of 

large sites and help charge balance (either A
2+

 and B
5+

 or A
3+

 and B
4+

, whereas the Sn
4+

, Zn
2+

 

and Fe
2+

 cations substitute the octahedral sites (Sb
5+

), modifying the charge valence and 

distorting the structure. In general and taking into account the detection limits and error in the 

lattice parameter determination and the statistics, the lead antimonate particles in all the glasses 

contain seven oxygen atoms and their At Sb/At Pb ratios vary between 1.75:2.0 and 1.9:2.0. 

These results, together with the observed lattice parameters, are consistent with those previously 

reported by Rosi et al. (2009). 

The fact that at% of iron, zinc and tin show some correlation with at% lead, either in the 

lead antimonate particles or in the glass surrounding these particles, suggests that the iron, zinc 

and tin were added with the pigment or anime. However, the higher at% Sb/at% Pb ratios, but 

similar at% Fe/at% Pb, at% Zn/at% Pb and at% Sn/at%Pb ratios, in the particles as compared to 

the surrounding glass suggests that much of the iron, zinc and tin present in the pigment and 

anime was not originally incorporated into the lead antimonate particles, and therefore, on 

addition to the glass, was readily dissolved in the glass phase. In contrast, there was only limited 

dissolution of the lead antimonate particles which contained the bulk of the antimony in the 

pigment and anime. 

Mass et al. (1998) proposed, in the context of the production of Roman yellow glasses, 

that the lead antimonatewas produced from antimonial litharge (i.e., litharge contaminated with 

antimony) which they argued was a by-product of the cupellation of silver produced from 

 

Figure 2.12. Plot of reduced lime content 

versus reduced silica content around and 
away from lead antimonate particles for 

replicate “Roman type” lead antimonate 

yellow glass (AN-RG + RGM-CRG-900ºC).  
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argentiferous lead ores. Subsequently, Mass et al. (2002) suggested that antimonial litharge from 

the cupellation of silver similarly provided the lead antimonate used in the production of New 

Kingdom Egyptian yellow glasses. However, as listed in Table 2.2, New Kingdom Egyptian 

yellow glasses contain some 0.3 wt% zinc oxide (Shortland and Eremin, 2006), and Rehren 

(2003) has convincingly argued that this concentration of zinc would not have survived the 

smelting of argentiferous lead ores in the production of silver-containing lead metal, from which 

silver would have been subsequently extracted by cupellation. Further, Shortland et al. (2000) 

have established by lead isotope analyses that the Pb-Zn ore from Gebel Zeit on the Red Sea 

coast of Egypt was the probably source of the lead used in the production of New Kingdom 

Egyptian yellow glasses, and that silver metal used in Egypt at this period was produced from a 

non-Egyptian lead ore. 

Therefore, as proposed by Shortland (2002a), the lead antimonate pigment used in the 

production of New Kingdom Egyptian yellow glass was most probably produced by roasting a 

mixture of galena (PbS) and stibnite (Sb2S3) containing excess lead. The result would have been 

the formation of lead and antimony oxides which then combined to produce lead antimonate. 

Because of the refractory nature of zinc oxide (m.p. 1975ºC), the loss of zinc in this process 

would have been limited. It seems reasonable to assume that the Egyptian glass makers would 

have been able to select and combine these two metal ores since they were also being used for 

quite different purposes. Thus stibnite was being used in the production of calcium antimonate 

white glasses (Mass et al., 1998; Shortland, 2002a) and occasionally as a kohl, and galena was 

being used in the production of both lead metal and silver as well as being used as a kohl (Lucas 

and Harris, 1962, 80-84). However, although there is strong lead isotope data to show that galena 

from Gebel Zeit in Egypt was used as a kohl (Shortland et al., 2000), it is uncertain on the basis 

of limited lead isotope data (Stos-Fertner and Gale, 1979) whether either lead metal or silver was 

produced from galena from Egypt. Furthermore, the two ores were most probably being obtained 

from different places, the galena, as discussed above, from Gebel Zeit in Egypt, and the stibnite 

from the Caucasus where antimony mines that were active in the Late Bronze Age have been 

discovered (Chernykh, 1992; Shortland, 2002a).  

Conversely, because of the absence of zinc from the Roman yellow glasses, antimonial 

litharge resulting from the cupellation of silver is a possible source of the lead antimonate used 

in the production of these glasses. However, there are some doubts as to the extent to which 

cupellation litharge containing sufficient antimony would have been available (Rehren, 2003). 

The alternative would have again been to roast a mixture of galena and stibnite, but in this case, 

zinc must have been absent from the galena chosen. A further option would have been to replace 
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the galena by cupellation litharge from which any zinc originally present would have been lost 

during smelting. 

The origin of the iron present in the New Kingdom Egyptian pigment is probably the 

result of contamination from iron minerals, such as pyrite, introduced with the galena used in the 

production of the pigment, and from the clay crucibles in which the pigment was produced. If 

antimonial litharge was used to produce the Roman pigment then, as discussed by Mass et al. 

(1998), an additional source of iron could have been contamination from iron tools used during 

the cupellation process. Also, in the case of Roman yellow glass, Freestone and Stapleton (2013) 

have suggested that extra iron was deliberately added to the anime mixture in order to stabilise 

the lead antimonate and make a stronger yellow.  

The origin of the tin in the Roman yellow glass, which is present in the lead antimonate 

particles although below the detection limits for EDS analyses in the bulk glass, presents more of 

a problem. It is not impossible that the tin was introduced as an impurity from the stibnite, in that 

some 0.5 wt% of tin was detected in a much earlier, 3rd millennium BC, antimony bead from 

Syria (Shortland, 2002b). Another possibility is that the scrap lead, which was most probably 

used in the production of the pigment, contained small amounts of tin, as previously observed by 

Wyttenbach and Schubiger (1973) in the neutron activation analyses of Roman water pipes. In 

this case, it was suggested that the lead used to make the pipes included scrap lead which had 

become contaminated by the inclusion of small amounts of solder. Alternatively, if cupellation 

litharge was used, this could have contained small amounts of tin as a result of contamination 

from other adjacent metal production or working processes. Finally, in view of its role in 

increasing the stability of lead antimonate particles in glass, it is not impossible that tin oxide 

was deliberately added to the anime mixture. However, before it will be possible to resolve the 

origin of the tin, more information is needed on both the frequency with which tin is present in 

the lead antimonate particles in Roman glass, and the time period over which this occurs.  

 

Replication of “Egyptian and Roman type” lead antimonate glasses  

 

The synthesis of pure stoichiometric lead antimonate pigments has shown that the cubic 

lead antimonate, Pb2Sb2O7, is only one of several lead antimonates formed. However, the 

addition of NaCl flux to the mixture produces a pigment in which cubic Pb2Sb2O7 is the 

dominant lead antimonate and which exhibits a more intense yellow colour. This greater 

reactivity is most probably the result of the NaCl melting at 801ºC to form a liquid which wets 

the surfacesnof the lead and antimony oxide particles, and results in an increase in their 
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dissolution and the diffusivity between them. Therefore, as indicated in the relevant Renaissance 

treatises (Dik et al., 2005; Piccolpasso, 2007), the addition of an alkali flux was necessary to 

produce the intense yellow pigments required for use in paintings and Italian maiolica glazes 

from the late 15
th

 century AD onwards. In contrast, when the pigment with added NaCl is 

incorporated into a colourless glass, the cubic Pb2Sb2O7 tends to be less stable, and the resulting 

colour tends to be weaker than that produced using a stoichiometric pigment without added 

NaCl. Therefore, in the case of the lead antimonate pigment to be used in the production of 

yellow glasses, the addition of an alkali flux to the pigment mixture would not have been 

beneficial.  

The inclusion of excess lead in a pigment mixture, as in the case of the pigment (PG-EG) 

used to produce “Egyptian type” yellow glass, results in the formation of two cubic lead 

antimonates (Pb2Sb2O7) with different lattice parameters (10.425Å and 10.479Å), as otherwise 

observed only for pigments containing both NaCl flux and small amounts of iron or zinc. Thus, 

the inclusion of excess lead also facilitates the formation of cubic lead antimonates.  

Similarly, the anime produced from a lead-antimony-silica mixture with excess lead does 

not contain cubic Pb2Sb2O7 and instead, the dominant lead antimonate is Pb3+xSb2O8+x. However, 

for a mixture with a PbO/Sb2O5 ratio of 8, the yellow colour is more intense than that observed 

in a pigment produced from the pure stoichiometric mixture without the addition of NaCl flux 

(i.e., b* = 34.1 compared to b* = 24.8), but when the PbO/Sb2O5 ratio is increased to 12, the 

yellow colour becomes very pale (b* = 9.4).  

Comparison of the “Egyptian type” yellow glass produced using a pigment containing 

small amounts of iron and zinc together with excess lead oxide (i.e., PG-EG + RGM-CEG) with 

that produced using pure stoichiometric pigment (i.e., PG1 + RGM-CEG) in the context of the 

stability experiments established that the cubic lead antimonate particles and the intensity of the 

yellow colour survived to a higher temperature in the former case. In principle, this increased 

stability could be due to the addition of either iron-plus-zinc or excess lead oxide. However, the 

addition of iron-plus-zinc seems the more likely explanation since “Roman type” yellow glass 

produced from anime containing small amounts of iron and tin (i.e., AN-RG + PGM-CRG) is 

more stable than that produced in the stability experiments from a pure lead-antimony-silica 

anime (i.e., AN1 + RGM-CRG), both of which contained excess lead oxide.  

The replication experiments suggest that “Roman type” yellow glass (AN-RG + CGM-

CRG) is less stable than “Egyptian type” yellow glass (PG-EG + CGM-CEG) in that, after firing 

to 1000ºC, conversion from cubic Pb2Sb2O7 to calcium antimonate, Ca2Sb2O6.5, has started only 

for the “Roman type” glass. The lower stability of lead antimonate in Roman glass is probably 
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due to its lower viscosity compared to Egyptian glass, as observed during the replication 

experiments. The streaks of lead-rich glass containing lead antimonate, commonly seen in 

Egyptian glass (Figure 2.2a), reflects this relatively high viscosity and the resultant difficulty in 

mixing in the pigment. The higher lime and magnesia contents of the Egyptian glasses (Table 

2.2) are responsible for their increased viscosity compared to the Roman glasses. The diffusion 

coefficients of the atoms in the glass are inversely dependent on the viscosity (Einstein-Stokes 

relationship) and therefore, higher viscosity implies a lower mobility which, in turn, will help the 

stability of the lead antimonate particles in the glass. Because of the high viscosity of Egyptian 

glass, the addition of a yellow pigment with excess lead was sufficient to obtain a glass with 

stable lead antimonate particles. In contrast, the addition of the more stable yellow lead-

antimoni-silica anime was the method chosen by the Roman glass makers to solve this problem. 

Nevertheless, Roman yellow glass probably still had to be fired at a lower temperature than 

Egyptian yellow glass in order to avoid partial conversion to calcium antimonate. 

 

 

Conclusions 

 

The above analyses of New Kingdom Egyptian and Roman yellow glasses have 

established that, with one exception, the lead antimonate particles responsible for the yellow 

colour were of the type Pb2Sb2O7 with a cubic crystallographic structure. In the majority of the 

particles, the antimony was partially replaced by iron and zinc in the case of the Egyptian 

glasses, and by iron and tin in the case of the Roman glass. It seems probably that these 

impurities were incorporated into the glass through the raw materials and processes used to 

produce the lead antimonate pigment or anime employed for the Egyptian and Roman glasses 

respectively. As confirmed by the pigment replications, the impurities partially replacing the 

antimony in the lead antimonate particles resulted in observed lattice parameters in the range 

10.44-10.48Å, as compared to a lattice parameter equal to 10.40Å for pure lead antimonate 

particles. 

Replication experiments have established that both New Kingdom Egyptian and Roman 

yellow glasses could have been produced by stirring, respectively, lead antimonate pigment or 

anime, containing small amounts of iron, zinc or tin oxides together with excess lead oxide, into 

a molten colourless glass. The replication experiments further confirmed that, in producing both 

types of glass, the inclusion of small amounts of impurities, such as Fe, Zn and Sn, into the 

pigment or anime was an important factor in enhancing the stability of the lead antimonate 
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particles. However, although no conversion of yellow lead antimonate to white calcium 

antimonate had occurred at a firing temperature of 1000ºC in the case of the replicate “Egyptian 

type” yellow glass, partial conversion had started at this firing temperature in the case of the 

replicate “Roman type” glass. As discussed above, the lower stability of lead antimonate 

particles in Roman glass was probably due to its lower viscosity at equivalent temperatures 

compared to Egyptian glass, and is the reason why the more stable lead-antimony-silica anime 

was the method chosen by the Roman glass makers, rather than lead antimonate pigment which 

was used by the New Kingdom Egyptian glass makers. 
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Chapter 3 

 
Technology of production of 

polychrome lustre from Iraq (9
th
 century) 

 

Introduction 

Lustre is a metallic-like decoration applied on ceramic glazes. It consists of a thin surface 

layer (from few hundreds of nanometres up to several microns) of metal nanoparticles of silver 

and/or copper incorporated in the glaze and with sizes ranging between 2 and 50 nm
 
(Pérez-

Arantegui et al, 2001, 2004; Sciau Ph et al, 2009). The production process comprises first ion 

exchange between the Ag
+ 

and/or Cu
+ 

ions from an initial mixture applied on the glaze surface, 

which is fully removed after firing, and the Na
+
 and K

+ 
ions from the glaze, followed by 

reduction of Ag
+
 to Ag

0
 and Cu

+
 to Cu

0 
and finally, nucleation and growth of metallic 

copper/silver nanoparticles (Pradell et al, 2005). The lustre optical properties (colour and 

metallic-like shine) can be varied by modifying the composition of the initial mixture and/or the 

glaze. In particular, the addition of PbO in the glaze formulation is known to reduce the 

diffusivity of Cu
+
 and Ag

+
 ions and consequently produce more concentrated lustre layers, closer 

to the glaze surface, and also, to favour the growth of the metallic copper nanoparticles (Molera 

et al, 2007; Pradell et al, 2007, 2012; Gutiérrez et al, 2010). Moreover, additions of Sn
2+

 and/or 
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Fe
2+ 

to the glaze are also known to help the reduction not only of the silver but also of the copper 

ions to the metallic state (Barber et al, 2009). 

The earliest lustreware was produced in Iraq (Bashra) in the 9
th

 century during the 

Abbasid caliphate (Caiger, 1991). It is characterized by the use of several colours on the same 

piece (polychrome lustre) while later productions are mainly monochrome (Sarre et al, 1925; 

Mason et al, 1991; Bobin et al, 2003; Mason, 2004; Polvorinos et al, 2008). There are several 

combinations of colours and shines. The shines which are indicated in brackets are golden or 

silvery for silver-based lustres and coppery for copper-based lustres. The most common 

combinations are brown, with bluish iridescences resulting from scattering by large single silver 

nanoparticles, and ochre; brown, again with bluish iridescences, ochre and green (golden); red 

(coppery) and yellow (golden); red (sometimes coppery) and black and red (coppery) and white 

(silvery). Polychrome red (coppery) and yellow (golden) was not produced again until the last 

decades of the 15
th

 century and during the 16
th

 century in Deruta and Gubbio (Italy) (Padovani et 

al, 2003, 2004; Padeletti et al, 2004, 2010; Bontempi et al, 2006) 

Those lustre decorations combining brown, ochre and green have already been studied 

(Pradell et al, 2008). They were produced under relatively light reducing conditions using an 

initial mixture applied on the glaze surface containing both copper and silver in various amounts. 

The green colour was obtained by adding silver while copper is either absent or present in very 

small amounts; the ochre, by adding both copper and silver in similar amounts; and the brown 

also by adding both but with silver in higher amounts than copper. The addition of copper helps 

the reduction of the silver ions to metal together with the precipitation and growth of silver 

nanoparticles while, conversely, copper is oxidized appearing as Cu
+
 and also Cu

2+
 in larger or 

smaller amounts depending on the silver/copper ratio. Consequently, green lustres are formed 

exclusively by silver nanoparticles; ochre lustres contain copper mainly as Cu
+
 and cuprite and 

metallic silver nanoparticles; and brown lustres contain mainly metallic silver nanoparticles, 

Cu
2+

 and in lower amounts Cu
+
 and cuprite nanoparticles. The different colours were applied on 

separate areas of the glaze surface, and in all cases, fired under light reducing conditions. 

Consequently, all the color decorations could be applied at the same time. They are characterized 

by the presence of metallic silver nanoparticles and the absence of metallic copper nanoparticles, 

and so we usually call them silver lustres. 

On the contrary red lustres (copper lustres) are characterized by the presence of metallic 

copper and cuprite nanoparticles and also Cu
+ 

in variable amounts, although some small amounts 
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of silver nanoparticles may also be present (Molera et al, 2007). A stronger reducing 

environment is required to reduce copper to the metallic state. Consequently, the combination of 

silver lustres and copper lustres in the same decoration creates some difficulties, and specific 

methods of production are required. The three types of Abbasid lustreware combining both 

copper and silver lustre are studied with the object of determining the materials and method 

followed in their production. Although the three of them are very beautiful, it is quite obvious 

than these combining red (coppery) and yellow (golden) decorations is most probably the one 

sought. Therefore, we investigate the specific method of production followed to succeed 

obtaining this combination. Finally, the reasons for the different colours and shines observed are 

also studied and related to the specific nanostructures (type, size and distribution of the 

nanoparticles) of the lustre decorations. 

The chemical and microstructural composition of the glazes and of the lustre layers is 

obtained by combination of Scanning Electron Microscopy with an Energy-Dispersive X-ray 

Spectroscope attached (SEM-EDS), Focused Ion Beam (FIB), micro X-Ray Diffraction (µ-

XRD), Rutherford Backscattering Spectroscopy (RBS) and Ultraviolet and Visible spectroscopy 

(UV-Vis).  

FIB was used to produce polished cross sections of the lustre layers, and subsequently, 

secondary electrons (SEM) images of the nanostructure were obtained (Sciau et al, 2009); SEM-

EDS was used to analyse both the glaze cross sections and the lustre surfaces. RBS was used to 

determine the cross section composition profiles of the lustre layers. µ-XRD and UV-Vis were 

performed in order to determine the nature of the metallic nanoparticles in the lustre layers. The 

colour coordinates of the decorations were also obtained from the reflectance UV-Vis spectra. 

Finally, the relationship between colour and shine of the lustre decorations and the chemistry and 

nanostructure observed is then discussed. 

Materials and techniques 

Figure 2.1 shows the three samples characteristic of the polychrome 9
th

 century Iraqi 

lustreware production combining copper and silver lustres that were selected for study.  P624 

and P717 belong to the Ashmolean Museum (Oxford) and IV163 to the Instituto Valencia Don 

Juan (Madrid). Sample P624 combines red and black decorations, P717 red, red-coppery and 

white-silvery, and IV163 red, red-coppery and yellow-golden with some green-golden spots. 
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Figure 3.1. Polychrome lustre samples studied from 9th  century AD Iraq. Left: front side and right: rear side. 

 

P624 

 
  

P717 

  

IV163 

 

 

 

 

 

 

A crossbeam workstation (Zeiss Neon 40) equipped with SEM (Shottky FE) and Ga + 

FIB columns, was used to prepare cross sections of the lustre layers. First, the sample surface 

was coated with a thin protective Pt layer (1µm) by ion-beam-assisted deposition; then the cross 

section was cut and polished and a thin layer of Pt deposited to enhance conductivity. SEM 

images of the polished cross sections of the lustre layers were obtained at 5 kV and in some 

cases at 2 kV to minimize the penetration of the electron beam. The compositions of ceramic 

pastes and glazes were obtained from polished cross sections by SEM-EDS (INCAPentaFETx3 

detector, 30mm
2
, ATW2 window) operated at 20kV, with 120 s measuring times, and at x50 and 

x500 on representative areas of paste and glaze respectively; the data are an average of at least 2 

measurements. The average lustre composition was obtained by SEM-EDS directly on the 

surface at 20kV, point and area measurements at x500 being obtained. Finally, Backscattered 

1 cm 
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Electron (BSE) images were obtained in order to study the microstructures of cross sections of 

the glazes. 

RBS measurements were performed on the 5 MV tandem accelerator (Climent-Font et al, 

2004).  A 3070keV energy He-beam with square-section (1 mm in diagonal) was used, thus 

taking advantage of the elastic resonance 
16

O(α,α)
16

O occurring at this energy  and increasing the 

sensitivity to oxygen concentration by a factor of 23 (Cheng et al, 1993). The samples were kept 

in vacuum. A careful quantification was performed by employing the simulation code SIMNRA 

(Mayer, 1997). RBS data was fitted starting from the average chemical compositions obtained 

from Microprobe analyses of the layers and following a procedure described elsewhere (Pradell 

et al, 2007; Gutierrez et al, 2010). To determine the lustre cross section chemical profiles, a 

sequence of layers with varying silver and/or copper content was modelled. The thickness of 

each layer is given in units of areal densities, which can be converted into absolute thicknesses 

provided that the mean density of the layer is known. The mean density of the lustre layer was 

estimated by linear interpolation from the metal nanoparticle and glaze fractions taking 10.49 

g/cm
3
 for metallic silver, 8.89 g/cm

3
 for metallic copper and, for the glaze, the density calculated 

from the RBS fittings after Fluegel (Fluegel, 2006).  

µ-XRD measurements were performed on beamline BM16 of the European Synchrotron 

Radiation Facility (ESRF) in Grenoble. The measurements were performed in transmission 

geometry applying a narrow beam (50 x 50 µm)  with 15 keV energy (λ=0.83 Å) on thin (about 

100 µm) slices cut out of different areas of the lustre layers as described elsewhere (Pradell et al, 

2013). 

UV-Vis diffuse reflectance (R) measurements were performed directly on the surface of 

the samples using a double beam UV-Vis spectrophotometer (Shimadzu 2700) equipped with 

ISR 3100 Ulbricht integrating sphere. The spot size was a slit of 5 mm x 1 mm, and 

measurements were made between 200 nm and 800 nm at 1 nm resolution. A D65 standard 

illumination source was used and barium sulphate provided a white standard. The colour 

coordinates were determined following the International Commission for Illumination (CIE) 

recommendation. 
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Results 

 

The chemical compositions of the ceramic pastes are shown in Table 3.1 and correspond 

in all the cases to the use of a calcareous paste characteristic of this production. It is well known 

that the composition of the unseen or undecorated glaze surface is often different from the 

decorated side, and consequently, the glazes from both sides of the samples were analysed with 

the exception of IV163 from which only the front side was available. The chemical compositions 

of the ceramic glazes are shown in Table 3.2.  

 

Table 3.1. Analyses of the ceramic pastes in wt%. 

sample luster color Na2O K2O Al2O3 SiO2 CaO MgO FeO TiO2 

P624 red/black 2.4 (0.2) 1.4 (0.1) 14.7 (0.1) 43.3 (0.2) 22.6 (0.2) 7.6 (0.2) 7.1 (0.2) 0.25 (0.06) 

P717 red/coppery/silvery  2.3 (0.02) 1.2 (0.01) 14.0 (0.2) 42.2 (0.6) 23.8 (0.7) 8.3 (0.2) 7.3 (0.2) 0.35 (0.06) 

IV163 red/yellow golden  0.9 (0.04) 1.5 (0.12) 11.2 (1.2) 47.9 (2.3) 20.2 (1.2) 5.8 (0.7) 7.3 (0.01) 0.75 (0.06) 
 

 

Table 3.2. Analyses of the glazes in wt%. 

sample 
Glaze 

side 
Na2O K2O Al2O3 SiO2 CaO MgO MnO2 FeO SnO2 PbO 

P624 
front 7.0 (0.5) 5.0 (0.5) 1.6 (0.3) 75.4 (0.5) 6.3 (1.1) 4.2 (0.7) 0.1 (0.1) 0.5 (0.1) b.d. b.d. 

rear 8.0 (0.3) 5.5 (0.1) 2.7 (0.3) 71.3 (1.9) 6.9 (0.8) 4.4 (0.6) 0.1 (0.1) 1.5 (0.7) b.d. b.d. 

P717 

front 8.1 (0.1) 5.0 (0.2) 2.8 (0.2) 61.5 (0.8) 7.5 (0.4) 4.5 (0.2) 0.7 (0.1) 0.8 (0.1) 3.3 (0.7) 5.6 (0.7) 

rear 8.1 (0.2) 5.5 (0.3) 3.2 (0.3) 65.7 (0.9) 9.1 (0.1) 5.5 (0.2) 0.6 (0.1) 1.5 (0.7) b.d. b.d. 

IV163 front 2.7 (0.1) 4.5 (0.1) 1.8 (0.3) 59.3 (1.2) 5.0 (0.5) 2.1 (0.3) 0.5 (0.2) 1.4 (0.1) 9.4 (0.8) 13.3 (1.1) 
 

 

The glazes show also the chemistry characteristic of this production; that is, a variable 

lead and tin content from below detection limits to about 15% PbO and 9%SnO2 respectively, 

and between 2 and 5 % MgO together with the presence of small amount of MnO (0.5%) (Bobin 

et al, 2003; Mason, 2004; Polvorinos et al, 2008; Pradell et al, 2008). 
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Figure 3.2. SEM backscattering images of cross sections of (A) front glaze and (B) (C) magnifications at the surface from 

sample P717 where the bright thin layer contains lead and tin.(D) rear glaze from sample P717. 

 

 

  

 

 

 
 

 

BSE images of cross sections of the glazes are shown in Figure 3.2. The glazes from this 

production are characterized by a variable thickness and the presence of large numbers of 

bubbles and small crystallites. Using a combination of EDS analyses and micro-XRD, rounded 

grains of unreacted quartz, skeletons of the original cassiterite (SnO2) particles, recrystallized 

cristobalite crystallites, diopsides ((Ca,Mg)Si2O7) and nepheline were identified in the glaze 

section while wollastonite and aluminium rich pyroxenes were found to be concentrated near to 

the glaze-ceramic interphase as a result of the glaze-ceramic paste reaction during firing (Bobin 
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et al, 2003; Pradell et al, 2008). Moreover, the glaze surface of the rear lustre decorated glaze 

from P717 appears enriched in lead and tin, 1.4%PbO and 0.60%SnO2, Figure 3.2B and Figure 

3.2C, and these components could only be incorporated on the glaze surface together with the 

lustre decorations. 

The average compositions of the lustre layers were also measured directly on the glazes 

surface and are given in Table 3.3 for the different lustre colours and decorations. Although the 

penetration depth of the SEM beam is larger (2-3 µm) than the typical thickness of the lustre 

layer (approximately equal to or less than 1µm), the relative ratios between the different specific 

lustre compounds are essentially correct. The red and red coppery decorations are in all the cases 

copper rich, above 85 wt% Cu/(Cu+Ag). In contrast, the yellow and green golden decorations are 

silver rich, below 15 wt% Cu/(Cu+Ag). However, the black and the white-silvery decorations are 

silver richer than the red decorations but silver poorer than the yellow and green golden 

decorations, 44 and 63 wt% Cu/(Cu+Ag) respectively. Another interesting result is that although 

the rear glaze of P717 and both glazes of P624 are lead and tin free, the lustre layers show the 

presence of small amounts of lead and/or tin. Both lead and tin are present only on the lustre 

decorated surfaces and are absent from the undecorated glaze surfaces. Consequently, lead and 

tin must have been incorporated together with the lustre decoration, and therefore, should have 

been present in the initial lustre mixture. 

15μm x15μm cross sections of the different colour decorated areas were also examined 

by FIB. The corresponding inverse contrast images (5kV or 2kV for the lead free glazes) for the 

red decoration of P624-r and the black decoration of P624-f are shown in Figure 3, for the white 

silvery decoration of P717-f in Figure 4, for the red and red-coppery decorations of P717-r in 

Figure 3.5, and for the red-coppery, green-golden and yellow-golden decorations of IV-163-f in 

Figure 3.6. 

RBS analyses of some of the larger lustre areas (P717-r, P624) was also undertaken, and 

the corresponding silver and copper cross section profiles were thus obtained, and are also shown 

in Figure 3.3 and Figure 3.5. Table 3.4 summarizes some average values estimated from these 

analyses; that is, copper and silver (wt%Cu/(Cu+Ag)), content thickness of the lustre layer and 

depth at which the lustre layer has the maximum metal content, and the maximum concentration 

and the maximum volume fraction of silver and copper in the lustre layer. Finally, for the cases 

where the chemical cross section profiles could not be obtained by RBS, some qualitative SEM-
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EDS chemical analyses are also shown, that is, for the white silvery area of P717-f in Figure 3.4 

and for the green and yellow decorations of IV163 in Figure 3.6. 

Table 3.3. SEM-EDS analyses of the lustre decorations in wt%. 

 

sample 
glaze  

side 

luster 
SnO2 PbO Cu Ag Cu/(Cu+Ag) 

color shine 

P624 

rear red no 0.5 0.3 3.7 (0.7) 0.9 (0.4) 90 (7) 

front 

black no b.d. 0.2 2.7 (0.4) 2.3 (0.8) 44 (8) 

 red no b.d. 0.6 2.9 (0.2) 0.5 (0.1) 83 (5) 

P717 

front 
  

red  coppery 1.4 (0.4) 3.0 (0.3) 6.4 (0.7) 0.7 (0.2) 91 (2) 

white silvery 1.5 (0.3) 2.8 (0.2) 5.4 (0.6) 3.1 (0.6) 63 (5) 

rear 

  

red no 0.7 (0.4) 0.7 (0.1) 2.9 (0.2) 0.2 (0.1) 94 (3) 

 red coppery 0.4 (0.3) 1.0 (0.7) 5.3 (2.0) 0.4 (0.2) 93 (3) 

IV163 
front 

  

red no 3.3   10.4   3.7   0.5   89 
 

 red coppery 2.8 (0.1) 10.5 (0.1) 6.5 (0.2) 1.2 (0.1) 84 (1) 

Yellow 

 decoration  
golden 2.5 (0.6) 10.7 (0.2) 0.9 (0.1) 6.3 (1.5) 12 (2) 

Yellow 

 edge  
golden 2.4 (1.1) 9.4 (0.1) 0.6 (0.2) 6.7 (1.1) 8 (1) 

green golden 2.7 (0.7) 10.6 (0.1) 1.2 (0.2) 7.3 (0.6) 15 (2) 
 

 

From the FIB cross section images shown in Figure 3.3, it is seen that the layers 

associated with the red lustre from P624-r and of the black and red lustre from P624-f are formed 

by small copper particles with typical sizes varying between 12 nm and 20 nm. The two layers 

have a total thickness of 1100 nm and 1350 nm respectively and a top particle-free surface layer 

of about 110 nm, thicknesses that are in good agreement with the RBS copper and silver cross 

section profiles also shown in Figure 3.3. Silver appears in small amounts and mixed in the layer 

with the copper. However, in this case it should be noted that the size of the RBS probe was far 

larger than the black decoration, and therefore, the profile corresponds to the average of a larger 

area including red and black. 

Table 3.4. RBS analyses of the lustre decorations.  

 

 

sample 
glaze 

 side 

luster composition thickness maximum concentration  

color shine wt%Cu wt%Ag Cu/(Cu+Ag) (nm) position (nm) at%(Cu+Ag) Vol.Frac.(%) 

P624 
rear red no 3.5 0.3 91 1911 244 5.6 3.1 

front red&black no 3.1 0.3 91 1042 216 7.7 6.2 

P717 rear red no 6.2 0.2 97 600 299 5.3 4.3 
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Figure 3.3. SEM images of cross-sections through the red lustre of P624-r and black and red lustre of P624-f (to left) together 

with corresponding silver and copper composition obtained by RBS analyses (to right). 

 

P624-r 

  
  

P624-f 

 
  

 

 

 

 

0 2500 5000 7500
depth (1015 at/cm2)

0

2

4

6

8

a
t%

0 0.2 0.4 0.6 0.8 1
depth (m)

Ag

Cu

0 1500 3000 4500 6000 7500
depth (1015 at/cm2)

0

2

4

6

8

a
t%

0 0.25 0.5 0.75 1
depth (m)

Ag

Cu

depth (µm) 

depth (µm) 

 



Colour and Technology in historic decorated glazes and glasses                                                  Glòria Molina i Giralt 
 

-61- 
 

 

Figure 3.4  SEM Image of uneven glaze surface of P717-f (top). SEM image of cross-section through the white-silvery lustre 

layer from P717-f (bottom to left) together with EDS analyses for a selection of the particles (bottom to right). 
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From the FIB cross section images shown in Figure 3.4, it is seen that the white-silvery 

lustre layer from P717-f appears to be formed by a succession of thin layers of nanoparticles 

leading to a total thickness of about 1000 nm with a top particle free surface layer of about 110 

nm. The inner layer contains small copper particles of typical sizes ranging from 20 nm to 30 

nm. The more superficial layer shows the coalescence of the particles into larger non-spherical 

particles (200-250 nm size) which are responsible for the deformation and unevenness of the 

glaze surface shown on the top image of Figure 3.4. EDS analyses of those large particles show 

variable composition from silver-rich to copper-rich particles, and also copper and silver 

particles grow until they impinge and form aggregates such as those shown on the bottom image 

of Figure 3.4.  
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Figure 3.5 SEM images of cross-sections through the red (1) and red-coppery (2) lustre layers from sample P717-r (to left) 

together with copper and silver composition from (1), as determined by RBS (to right). 
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RBS agree with the above data, and also show that silver is present in very small amounts and 

mixed with the copper across all the layers. 

Figure 3.6 SEM images of cross-sections through the red-coppery (1), green-golden (2) and yellow-golden (3) lustre layers 

of IV-163-f (to left) together with EDS analyses of selected areas (to right). 
 

IV163-f 

 

 

 

 

 

 

 
 

 

Finally, from the FIB cross section images shown in Figure 3.6, it is seen that  the red-

coppery, green-golden and yellow-golden lustre layers from IV-163-f all have the same total 

thickness of about 600 nm. However, the red lustre has a 200 nm particle-free surface layer 

(Figure 3.6(1)) which is occupied by the silver nanoparticles in the green and in the yellow 

lustres (Figures 3.6(2) and 3.6(3) respectively). Further, the red lustre layer is formed nearly 

exclusively from copper nanoparticles while the green and the yellow golden lustres contain both 

silver and copper nanoparticles. However, in contrast to P624 and P717, silver nanoparticles 

appear concentrated on the surface layer while copper nanoparticles occupy the inner layer. In 

particular, the yellow-golden lustre is formed by a first surface layer made of very small (from 2 

nm to 10 nm) silver nanoparticles and an inner layer mainly formed by copper nanoparticles 

(size varying between 10 nm and 20 nm); in the intermediate area a few larger silver 
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nanoparticles (20 nm) are also formed. For the green-golden lustre, the surface silver rich layer is 

less concentrated and the intermediate layer contains larger silver nanoparticles (30 nm) than for 

the yellow-golden lustre. 

UV-Vis spectroscopy was also performed to identify the metallic nanoparticles present in 

the lustre layers. It is well known that the colour of the lustre layers is related to the localized 

absorption and scattering (Surface Plasmon Resonance, SPR) of the visible light by the metal 

colloids, and is dependent on their size, shape and concentration (van de Hulst, 1981; Kreibig et 

al, 1995). Spherical silver nanoparticles absorb and scatter strongly in the blue region of the 

spectra (around 400-450 nm) but are essentially transparent to the rest of the wavelengths in the 

visible, and this causes the typical greenish-yellow colour of silver colloidal solutions and the 

bluish scattering. Larger sizes tend to red shift the Surface Plasmon Resonance, and thus, the 

colour of the colloids. The SPR absorption band (at 560nm) and electronic inter-band transitions 

absorbing at shorter wavelengths for copper nanoparticles confer red hues to copper colloidal 

solutions. The presence of cuprite (Cu2O) nanoparticles (absorption at about 520 nm) and of 

Cu
2+

 ions (broad absorption band between 600nm and 1000 nm) dissolved in the glass modifies 

also the colour shown by the lustre layers. Figure 3.7 shows the Optical Density spectra (OD = 

log(1/R)) which correspond roughly to the absorbance for small silver and copper nanoparticles 

for which scattering is negligible compared to absorption. The presence of Cu
o
 nanoparticles is 

observed in all the cases (red hue). Ag
o
 nanoparticles are observed in the white silvery lustre 

from P717-f and in the Reflectance measured over the whole front surface from IV-163-f. The 

broader Cu
o
 SPR peak of P624 compared to P717 indicates the presence of smaller nanoparticles 

in the former. The broad Ag
o
 peaks (at 400-450nm) observed for the white-silvery lustre of 

P717F (Figure 3.7) are related to the large heterogeneity of sizes, non-sphericity and to multi-

scattering effects.  

The colour coordinates have also been calculated from the diffuse reflectance data using 

the protocol accepted by the International Commission for Illumination (a*, b*, L* (CIE Lab* 

1976)), and are shown also in Figure 3.7 and in Table 3.5. The reds have a hue (h*) varying 

between 21 and 27 (corresponding to a colour varying between red and deep red) and large 

saturation (c*) varying between 9 and 20.  The white-silvery lustre has h*= 54 (corresponding to 

orange) but it has a large saturation c*=34 and luminosity L*=47. 
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Finally, the whole surface of IV163-f has 

also been measured and the average colour is 

yellow-orange (h*=59). 

Micro-XRD analyses of the lustre layer 

were also obtained for some of the cross sections 

of the lustre decorations. The presence of large 

metallic copper nanoparticles in P717-r has 

already been reported elsewhere but cuprite was 

not found in good agreement with the UV-Vis 

diffuse reflectance data
27

. Metallic copper 

nanoparticles of smaller sizes were also identified 

in P624, but in none of the cases studied was 

cuprite found. 

 

Discussion 

 

 Both the calcareous nature of the ceramic 

pastes, and the variable lead and tin contents and microstructure of the glazes are characteristic 

of the 9
th

 century Abbasid lustre production. Taking into account that the addition of PbO to the 

glaze is known to reduce the diffusivity of copper and silver in the glaze and that the addition of 

tin also favours their reduction to the metallic state, the absence of lead and tin is believed to 

make it difficult to produce a shiny lustre in the case of P624. However, we have determined 

Figure 3.7 Optical density OD=log(1/R) (top), together 
with colour coordinates of the different lustre decorations 

(bottom). 

 
 

 
 

 

Table 3.5. Colour coordinates. 
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their presence in the initial lustre mixture used to produce the copper lustre in the lead and tin 

free glazes, thus helping the reduction of copper to the metallic state, and the growth of metallic 

copper crystallites, and thus, the development of the copper lustre.  

The diffusivity of copper in the glaze is greater than that of silver, resulting in the spread 

of the red color at the edges of the decorations, and also the formation of deeper copper lustre 

layers. Copper rich edges are common in silver lustres.  

The use of a copper rich initial mixture is demonstrated in the production of the copper 

lustre. Moreover, the presence of metallic copper nanoparticles and the absence of cuprite 

nanoparticles indicate also the use of a strong reducing atmosphere for the copper lustre studied 

here. Nonetheless, the large size and also the coalescence of the metallic particles observed in 

P717 indicate the use of a stronger reducing atmosphere in this case than in the other samples for 

which the nanoparticles are smaller.  

To obtain the black, white-silvery and yellow-golden decorations, a silver rich initial 

mixture is used in all the cases, but with different success. In the silver rich “black” decoration of 

P624, the silver nanoparticles are completely mixed with the copper nanoparticles, and they do 

not appear concentrated enough to produce a shiny lustre. In contrast, in the silver rich white-

silvery decoration of P717, silver appears mainly concentrated near the surface forming very 

large non-spherical particles that result from the coalescence of smaller silver particles and also 

with copper particles. The use of a silver rich initial mixture, together with a very strong 

reducing firing, is responsible for the resulting layered coarse nanostructure. 

The large particles and high concentration of silver and copper are responsible for the 

silvery shine associated with sample P717f. However, the colour of the layer determined from 

the diffuse reflectance is yellow-orange due to the combination of the red hue due to the 

presence of copper nanoparticles and also to the broad SPR peak associated to the very large 

non-spherical silver and silver-copper particles.  

IV163 shows clearly the presence of two succeeding layers, the inner one consisting 

basically of copper nanoparticles and the more superficial one consisting of extremely small 

silver nanoparticles (between 5 nm and 10 nm in size) which appears yellow. The presence of 

small silver nanoparticles with typical sizes varying between 10 and 30 nm usually gives a green 

hue. However, intrinsic size effects happening in very small particles (particles below 20 nm), 

modify the values of the dielectric functions producing a blue shift and broadening of the SPR 
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absorption peak (van de Hulst, 1981; Kreibig et al, 1995).
 
Moreover, retardation effects 

happening in nanoparticles larger than 20 nm are also known to produce a red shift and 

broadening of the SPR peak. Consequently, the colour is more yellow as a result both of 

decreasing the size below 20 nm and of increasing the size above 20 nm. Figure 3.8 shows the 

calculated colour obtained as a function of the size of the silver nanoparticles.  

The calculation of the extinction cross section is 

made using Mie expansion series for silver nanoparticles 

of variable sizes using the dielectric constants of bulk 

silver (Johnson, 1975) corrected for the small sizes, in a 

glass matrix with index of refraction ng=1.60 (typical of 

containing lead glazes (Priven et al, 2003) and neglecting 

multiscattering effects. As a consequence, lustre layers 

made of silver nanoparticles with sizes between 2 and 5 

nm show a yellow colour but with lower saturation (ie 

smaller b*) similarly to those shown by silver 

nanoparticles with sizes larger than 25 nm, while silver 

nanoparticles of sizes ranging between 10 and 25 nm 

appear greener. Consequently, in the case of IV163, the 

yellow colour of the golden silver lustre layer is due to 

the presence of silver nanoparticles smaller than 10 nm, 

and only in the few areas where silver nanoparticles are larger (ie  between 20 nm and 30 nm), is 

the colour of the lustre green. The silver nanoparticles touching the layer of copper nanoparticles 

layer from below are larger, because copper helps the reduction and growth of the silver 

nanoparticles. However, generally they are not larger than 10 nm and only in the green areas, the 

particles have grown larger. 

The presence of extremely small metallic silver nanoparticles in IV163 indicates the use 

of very light reducing conditions during the production of the silver lustre. In contrast, the 

presence of metallic copper nanoparticles in the copper lustre indicates the use of a stronger 

reducing firing. This is only possible if each lustre colour was applied and fired separately, first 

the copper lustre and afterwards the silver lustre. The presence of lead and tin in the glaze would 

also have helped the formation of thin, superficial and concentrated lustre layers preventing a 

mix up of the copper and silver layers and thus, favouring formation of  the metallic shine.  

Copper is known to enhance the reduction of silver and oxidation of copper but also the 

Figure 3.8. Calculated colour coordinates of a 
suspension of silver nanoparticles in a glass 

matrix with index of refraction ng=1.60 as a 

function of the size of the nanoparticles taking 

into account the intrinsic size effects and high 
order terms on the optical response. 
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formation of silver particles of variable size, heterogeneously distributed in the layer which, as a 

result, appears brown or white-silvery if the particles coalesce. 

 

Conclusions 

 

The different colours of the silver lustres observed in the Polychrome  lustre ware, (black, 

white, yellow, green) is associated, on the one hand, with the different size of the silver 

nanoparticles present (ie larger than 100 nm for the white, below 10 nm for the yellow, and about 

20 nm for the black and for the green), and on the other hand to their distribution in the lustre 

layer (ie mixed  with the copper nanoparticles in black and white, and in a separate layer in 

yellow and green).  

In particular the polychrome lustre combining red-coppery and yellow-golden 

decorations in the same object, was successfully developed by:  

(1) the application of the lustre decoration over a lead and tin containing glaze, and 

(2) the application, first, of a red copper rich lustre mixture which was fired under a strong 

reducing atmosphere followed by the application of a silver rich lustre mixture fired under a 

weak reducing atmosphere.  

However, objects combining either black and red or white-silvery and red-coppery lustres 

were also obtained when the procedures or materials used were not optimal. White-silvery silver 

lustres were obtained on low lead and tin containing glazes under very high reducing conditions 

and/or high firing temperature and probably submitted to several firings. Red copper and black 

silver without metallic shine were obtained over lead and tin free glazes.  

It has been demonstrated that the Abbasid Iraq potters added lead and tin in the initial 

lustre mixture. Although adding lead and tin in the initial mixture would certainly help the 

reduction of silver and copper to the metallic state as well as the growth of the metallic particles, 

the incorporation of lead into the glaze also reduces the diffusivity of silver and copper in the 

glaze and facilitates the development of the metallic shine.  
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Chapter 4 

 
Analyses of Syrian lustre pottery 

(12
th
–14

th
 centuries AD) 

 

 Introduction 

Lustre is an expensive art form developed with a strong scientific background and 

produced by skilled artisans. Consequently, although it is possible that the movement of artisans 

within the caliphate spreads lustre technology, the main diffusion occurred after the collapse of 

dynasties resulting in the migration of artisans to new production centres (Caiger-Smith, 1991). 

For instance, the occupation of Egypt by the Fatimids in 969 AD started the production of 

Egyptian Fatimid lustre with the resulting decline of the Abbasid lustre produced in Bashra. 

Although the earlier separation of Egypt from the Abbasid caliphate and its rule by the Tulunids 

(868–905 AD) has sometimes been associated with the transfer of lustre Technology from Iraq to 

Egypt, analyses of the so called Tulunid lustres has demonstrated their Iraqi origin (Mason, 

2004). Later the collapse of the Fatimid dynasty circa 1169 AD was followed by the beginning 

of the so called “Kashan lustreware” in Persia (Watson, 1985). Syrian lustreware began earlier, 

the so called “Tell Minis” lustreware dating from the late 11
th

 century or beginning of the 12
th

 

century. Syria was not a peaceful place during the 11
th

 century as the Byzantines, Fatimids and 

Crusaders among others fought for the territory until the Seljuk Turks (1084–1086) were able to 

stabilise the area for about a century. They were defeated by Saladin (1175–1185) who started 

the Ayyubid dynasty. The so called “Raqqa ware” developed during the Ayyubid dynasty in the 
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city of Raqqa and continued until Raqqa was destroyed by the Mongols in the 1260 s AD and 

abandoned in 1288 AD (Jenkins-Madina, 2006). Although in this period (12
th

–13
th

 century AD) 

lustreware was also produced in other places (Pérez-Arantegui et al., 1995; Redford and 

Blackman, 1997), the analytical study made by Dylan Smith demonstrated the existence of a 

“Raqqa ware” comprising not only the dark brown lustreware (often combined with underglaze 

cobalt blue) but also the black decoration under turquoise glaze and polychrome ceràmics 

(Smith, 2006). Other productions include green lustre with splashed purple and turquoise 

decoration and thick bodies from Gritille (Redford and Blackman, 1997) which appear to be of 

lower quality (Porter, 1981). Later ceramic productions dating to the Mamluk period (c. 1250 

onwards) and concentrated in Damascus are known to include polychrome, blue and white, 

sgraffito and lustre. Lustrewares from this period are golden on a cobalt blue tinged glaze 

(Porter, 1981; Smith, 2006; Watson, 2004). One of the characteristics of the Syrian ceràmics is 

the use of stonepaste, a synthetic ceramic paste made of sand, clay and glass frit, although a 

small part, and including all the productions, was earthenware. 

The existence of the two first groups “Tell Minis” and “Raqqa type” has been confirmed 

by several analytical studies (Franchi et al., 1995; Mason, 1997, 2004; Smith, 2006); “TellMinis” 

ware is finer, more compact and contains a higher amount of clay, with a transparent mixed 

lead–sodium rich alkaline glaze; “Raqqa” ware has a porous structure, is calcium richer, shows 

relative large variations of the clay content depending on the size and characteristics of the pot, 

and appears glazed with a sodium rich alkaline glaze. Finally, the stonepaste associated to the 

Mamluk productions appears to be clay poorer and calcareous richer than “Raqqa” and “Tell 

Minis”, contains large rounded quartz grains, and appears glazed with a sodium rich alkaline 

glaze (Franchi et al., 1995;Mason, 1997, 2004; Smith, 2006). However, in this case the 

variability found is large requiring of a more extensive study. 

Each lustre production has its own peculiarities not only in the lustre colour, 

(silver/copper composition and oxidation state) and nanostructure (size and concentration of 

particles, thickness of the layer) but also in the paste and glaze compositions, processing and 

firing conditions (Chabanne et al., 2012; Padeletti et al., 2010; Padovani et al., 2003; Pradell et 

al., 2008a, 2008b). Differences in the lustre colour and shine are in all cases related to a 

combination of the process of production and materials used. Recent studies have demonstrated 

that the production of a metallic shining lustre (either golden or coppery) is strongly related to 

the composition of the glaze, and in particular, that the use of a lead bearing glaze strongly 

increases the possibility of obtaining a successful metallic shine (golden/coppery) decoration 

(Molera et al., 2007). The diffusivity of copper and silver is greater in alkaline glazes than in 
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lead bearing glazes which results in the formation of thicker and less concentrated lustre layers. 

As the presence of a high concentration of metallic particles is fundamental for obtaining a high 

reflectance (metallic shine) (Pradell et al., 2007), the use of alkaline glazes reduces the 

possibilities of obtaining a lustrous layer. However, other strategies may be followed to obtain 

shiny lustres. For example, the precipitation and growth of the metal nanoparticles may be 

strongly increased by adding reducing agents such as Sn
2+

 and Fe
2+

 to the glaze composition or 

those such as Bi and Hg to the lustre paint (Molera et al., 2001; Padeletti et al., 2010). Tin was 

commonly added to the glazes to increase opacity and iron is also present either added as an 

impurity with the sand or incorporated into the glaze by diffusion from the ceràmic paste, both 

being known to be able to reduce copper to the metallic state. Finally, the addition of copper 

itself is known to reduce silver to the metallic state. 

In fact an increase in the lead content of the glazes has been found from the early 

Abbasid (9
th

 and 10
th

 century AD) through to the later Fatimid period (11–12
th

 century AD) 

(Gutierrez et al., 2010). Subsequent productions used lead bearing glazes with the exception of 

some Syrian lustre productions, including Raqqa ware, as well as, 16–18
th

 century Safavid lustre 

wares in Persia (Mason, 1997, 2004; Padeletti et al., 2010; Pradell et al., 2008b; Roque et al., 

2007). 

Consequently, the study of Syrian lustreware is particularly interesting not only because 

of the variety of lustre productions during a relative short period but also because of the novelties 

introduced as compared to earlier Abbasid and Fatimid Egyptian lustre productions. The use of 

transparent tin-free and/or lead-free, alkaline, glazes is accompanied by technological variations 

in order to increase the chances to produce a shiny lustre. 

In this chapter we present preliminary analyses of the ceramic pastes, glazes and lustre 

decorations used on the early Syrian lustre productions belonging to the Ashmolean Museum 

including Tell Minis (first half 12
th

 century AD), Raqqa and related wares (second half of the 

12
th

 century AD and first third of the 13
th
 century AD) and Damascus (second half of the 13

th
 

century AD and 14
th

 century AD). 

 

 

Materials and methods 

 

The materials selected belong to the collections donated by Sir A. Barlow (1956), Mr. G. 

Reitlinger (1978) and Mr. Bartels (1980) to the Ashmolean Museum (Porter, 1981; Porter and 

Watson, 1987). The Tell Minis lustreware comprises three sherds from conical bowls, two (EA-
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1978-2217 and p8834/36) with scratched arabesque brownish and green lustre decoration 

respectively (Porter and Watson, 1987) and one (p138) with calligraphic brownish lustre 

decoration (Mason, 2004). The three Raqqa typewares (p8833, p9404 and p620) are typical 

conical shaped bowls with a greenish glaze and chocolate Brown coloured lustre. The last two 

correspond chemically to a group of pots and wasters analysed by Smith (2006) which have been 

ascribed to 13
th

 century Raqqa lustrewares and are characterised by their Al/Fe ratios/contents 

while p8833 falls into the so called Raqqa related wares. Finally, the two sherds assigned to 

Damascus ware were selected, one being from a footring (p8839) and the other being from the 

base of an albarello (p8830) (Porter and Watson, 1987). p8839 shows a Brown metallic-like 

lustre on a blue glaze with characteristic interlace designs and p8830 shows a green–yellowish 

lustre on a blue glaze with disconnected designs. Those two sherds were found together in a 

context with other Mamluk wares (underglaze painted) (Porter and Watson, 1987) which 

supports their description as Damascus lustreware. 

Chemical analyses of the ceramic pastes, glazes and lustre decorations were obtained by 

Scanning Electron Microscopy and an Energy dispersive X-ray detector, Stereoscan S-360 SEM, 

PCXA LINK EDX. The accelerating voltage was 20 kV and the probe current 1.5 nA. 

X-ray microstructural analyses of the ceramic pastes and glazes was also obtained on 

polished thin cross sections (about 50 μm thick) of the samples by micro X-ray diffraction 

performed at the European Synchrotron Radiation Facility (ESRF). SR-μ-XRD was performed 

on beamline BM16 at the ESRF (Grenoble, France) in transmission geometry, using 0.78 Å 

wavelength (16 keV), and, taking advantage of the layered structured, a 100 μm × 30 μm spot 

size and recorded using a CCD detector. 

 

Results and discussion 

 

The chemical analyses of the ceramic pastes, glazes and lustre layers corresponding to 

the samples studied are shown in Tables 4.1–4.3 respectively. 

The body pastes used are stonepastes all with a creamy colour although showing some 

differences between them. Tell Minis pastes are very fine (grain sizes below 100 μm) (Figure 

4.1) and siliceous rich with very low Na, K, Ca, Mg and Fe contents (Table 4.1). This 

corresponds to a mixture of very pure quartz sand (about 60%, quartz plus cristobalite as 

determined by XRD) with clay (about 20%, assuming an illitic clay containing about 25% 

Al2O3) and Na–Ca glass frit (about 20%). The XRD data (Figure 4.2) show the presence of 

quartz and cristobalite as well as Na-feldspar (albite, NaAlSi3O8), nepheline (NaAlSiO4) and 
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diopside (CaMgSi2O6) formed in the glassy matrix that holds together the quartz and cristobalite 

grains. 

 

Table 4.1. Analyses of the pastes obtained by SEM-EDS (20 kV, 1.5 mA). Average values and standard deviation 

(between brackets) of 2 measurements. 

 

 

Cristobalite is stable at temperatures above 1470°C 

but may metastably crystalise from amorphous silica at 

lower temperatures. Therefore, it is a usual form found in 

glassy silica and in all the cases is present in small 

amounts (between 2 and 10%wt). Raqqa and related wares 

are also siliceous but contain higher amounts of Ca, Mg 

and Fe (Smith, 2006) and are coarser (grain sizes up to 

200 μm) (Figure 4.1). As before this composition 

corresponds to a mixture of quartz-rich sand but this time 

incorporating some calcareous grains with some clay and 

glass-frit. The lack of correlation between the calcium and 

the aluminium content between the two Raqqa wares 

(p9404 and p620) suggests that the calcium was not added 

with the clay. 

The same lack of correlation was observed in the study involving a large selection of 

Raqqa and other Syrian stonepastes (Smith, 2006). As before XRD data show the formation of 

the same compounds as in Tell Minis pastes, but with higher amounts of diopsides, which are a 

consequence of the higher Ca, Mg and Fe contents of Raqqa pastes. 

 

 

 

 

Figure 4.1. SEM backscattering images    

corresponding to the ceramic stonepastes from 

(A) Tell Minis (EA1978.2217) (B) Raqqa 
(p8833), Damascus (C) Ca-rich (p8830) and 

(D) Damascus Al-rich (p8839). 

  
Na2O K2O Al2O3 SiO2 CaO MgO FeO TiO2 PbO  

TELL MINIS 

EA-1978-2217r 2.5 (0.04) 0.9 (0.01) 4.6 (0.1) 88.8 (0.9) 1.6 (0.04) 1.0 (0.1) 0.6 (0.1)         

p138 2.9 (0.1) 1.3 (0.1) 5.7 (0.3) 87.1 (0.6) 1.5 (0.2) 0.7 (0.1) 0.5 (0.04) b.d.     

p8834/36 2.2 (0.2) 0.9 (0.2) 3.1 (0.2) 90.7 (0.6) 1.9 (0.5) 0.8 (0.2) 0.5 (0.63) b.d.     

    
 
  

 
  

 
  

 
  

 
  

 
  

 
  

    

RAQQA 

p8833 3.5 (0.3) 1.02 (0.01) 4.5 (0.1) 80.3 (0.3) 5.9 (0.2) 2.4 (0.2) 1.9 (0.2) 0.10 (0.05)     

p9404 2.4 (0.1) 0.88 (0.01) 2.2 (0.3) 85.5 (0.8) 3.2 (0.1) 1.7 (0.2) 2.5 (0.1) b.d.   

p620 2.9 (0.4) 0.89 (0.01) 2.5 (0.4) 84.5 (1.3) 4.5 (0.1) 1.9 (0.1) 2.9 (0.4) 0.14 (0.04)     

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
      

DAMASCUS 
p8830 1.0  (0.2) 0.8  (0.1) 2.2  (0.2) 71.5 (0.8)  18.2  (0.9) 1.3  (0.1) 0.6  (0.1) 0.4  (0.05) 4.4  (0.1) 

p8839 4.7 (0.3) 1.7 (0.1) 12.5 (0.9) 76.1 (1.5) 2.1 (0.1) 1.1 (0.1) 1.0 (0.1) 0.3 (0.04)     

  

  

  

(A) (B) 

(C) (D) 
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Table 4.2 

Analyses of the glazes obtained by SEM–EDS (20 kV, 1.5 mA). Average values and standard deviation (between brackets) of 2 
measurements. 

 

Table 4.3 

Analyses of the lustres obtained by SEM–EDS (20 kV, 1.5 mA). Average values and standard deviation (between brackets) of at least 4 

measurements. 

 

 

 

Figure 4.2. XRD pattern from p138 showing the presence of quartz, 
cristobalite, diopsides, feldspars and nepheline. 

  
 

Na2O K2O Al2O3 SiO2 CaO MgO TiO2 FeO CoO CuO SnO2 PbO 

TELL MINIS 

EA-1978-2217r  
both 

13.6 (0.4) 1.9 (0.1) 1.7 (0.1) 57.7 (1.0) 4.9 (0.4) 2.7 (0.2) b.d. 0.32 (0.3)         
b.d. 

17.2 (0.6) 

p138 front 13.3 (0.5) 1.6 (0.1) 1.5 (0.3) 55.3 (0.4) 2.7 (0.1) 1.5 (0.1) b.d. 0.40 (0.1)         b.d. 23.7 (0.7) 

p8834/36  
front 

10.9 (0.9) 1.6 (0.2) 1.3 (0.3) 64.1 (3.8) 3.7 (0.3) 1.6 (0.1) b.d. 0.66 (0.1)     0.25 (0.1) 0.32 (0.2) 15.0 (2.7) 

    
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

RAQQA 

p9404 front 15.9 (0.2) 2.1 (0.1) 1.6 (0.1) 70.6 (0.4) 5.0 (0.1) 3.3 (0.2) 0.14 (0.1) 0.89 (0.1)   b.d.  b.d. 

p8833 front 16.9 (0.3) 2.1 (0.03) 2.0 (0.1) 64.3 (0.3) 6.4 (0.1) 2.7 (0.2) 0.10 (0.1) 0.79 (0.1)   b.d.  3.9 (0.3) 

p620 rear 7.6 (0.7) 1.9 (0.4) 1.3 (0.2) 78.6 (2.0) 6.6 (2.0) 2.2 (0.3) b.d. 1.04 (0.2)     0.10 (0.11)  b.d. 

p620 front 11.6   1.7   1.2   73.0   7.2   2.9   0.11   0.87       b.d.   
 

  

      

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

    

 
DAMASCUS 

p8830 both 12.2 (0.5) 3.7 (0.2) 1.9 (0.1) 64.1 (1.6) 10.8 (1.0) 4.1 (0.5) b.d. 2.3 (0.2) 0.41 (0.2) 0.14 (0.1)  b.d. 

p8839 front 10.0 (0.1) 1.5 (0.01) 2.0 (0.0) 46.5 (0.0) 5.2 (0.1) 2.2 (0.03) b.d. 1.3 (0.1) 0.54 (0.1) b.d. 4.9 (0.2) 25.6 (0.2) 

 

  
Na2O  K2O Al2O3  SiO2  CaO MgO  FeO  SnO2  PbO  Cu Ag Cu/(Cu+Ag) 

TELL MINIS 

EA-1978-2217r  3.0 (0.7) 1.8 (0.1) 1.3 (0.1) 62.5 (2.3) 3.9 (0.4) 2.3 (0.1) 0.6 (0.1) 0.1 (0.1) 13.1 (0.4) 7.9 (0.7) 3.5 (2.3) 69 (11) 

p138 1.8 (0.7) 1.6 (0.1) 1.4 (0.2) 69.1 (2.8) 2.0 (0.2) 1.0 (0.1) 0.6 (0.1) 0.2 (0.2) 11.9 (1.3) 4.7 (0.9) 4.5 (1.5) 52 (7) 

p8834/36 5.4 (0.2) 2.0 (0.0) 1.1 (0.1) 60.3 (0.4) 4.3 (0.2) 1.9 (0.0) 0.7 (0.0) 0.1 (0.0) 14.6 (0.2) 5.2 (0.6) 4.3 (0.2) 55 (4) 

                         
  

RAQQA 

p9404 4.3 (1.4) 1.9 (0.2) 1.4 (0.2) 73.4 (1.7) 3.0 (0.1) 2.1 (0.1) 1.1 (0.1)         6.9 (0.8) 2.8 (0.8) 71 (9) 

p8833 5.6 (0.5) 2.2 (0.2) 1.0 (0.7) 67.6 (0.8) 4.8 (0.3) 2.2 (0.2) 0.6 (0.3) 0.4 (0.4) 2.9 (0.2) 9.9 (0.7) 2.9 (0.7) 78 (5) 

p620 rear 4.9 (0.7) 2.2 (0.1) 1.3 (0.3) 74.8 (0.6) 6.5 (0.2) 2.7 (0.1) 1.2 (0.4) 0.3 (0.1) 0.1 (0.1) 5.8 (0.6) 0.1 (0.1) 98 (1) 

p620 front 2.7 (0.1) 1.2 (0.1) 5.9 (1.3) 75.3 (0.1) 5.0 (0.0) 1.8 (0.1) 1.7 (0.2) b.d. b.d. 5.5 (0.5) b.d. 100 
 

    

                       
  

DAMASCUS 
p8830 3.0 (0.5) 3.3 (0.5) 1.5 (0.1) 72.4 (1.3) 8.8 (1.1) 3.8 (0.8) 1.5 (0.4) 0.3 (0.1) 0.1 (0.1) 4.4 (1.0) 0.4 (0.2) 93 (3) 

p8839 3.6 (0.6) 2.6 (0.5) 1.7 (0.1) 57.0 (1.6) 4.6 (0.2) 1.9 (0.2) 1.5 (0.1) 5.2 (1.5) 18.4 (0.5) 1.6 (0.9) 1.6 (1.2) 54 (6) 
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The two Damascus wares are also coarse but siliceous poorer (≈75 wt.% SiO2). However, 

p8830 is calcium richer while p8839 is aluminium richer. Therefore, the body analyses of p8830 

correspond to Ca rich stonepaste and that of p8839 to earthenware. The high calcareous 

stonepaste, p8830, corresponds well with the data obtained for the Mamluk Syrian productions 

(Smith, 2006) of probable common Damascus origin. XRD analyses shows that p8830 contains 

quartz, cristobalite, larger amounts of diopsides than in Tell Minis or Raqqa wares and, about 10 

wt% of calcite (CaCO3). XRD analyses of p8839 shows the presence of quartz, cristobalite, and 

larger amounts of diopsides and feldspars (Ca–Na type) than Tell Minis or Raqqa wares. In both 

cases XRD data indicate that they contain about 40–50 wt.% of quartz and cristobalite in contrast 

with the higher content in Tell 

Minis and Raqqa pastes. 

Therefore, p8830 was made of a 

mixture of quartz sand rich in 

calcite grains with some clay and 

glass frit. The mineralogical and 

chemical composition of p8839 

indicates the use of ceràmic paste 

containing about half and a half 

of quartz sand and clay with a 

small amount of glass frit. 

Earthenware was used in Syria 

contemporary with the use of 

stonepastes in all the production 

types (sgraffito, splash painted, 

moulded, tin glaze) (Jenkins-

Madina, 2006; Mason, 2004); in 

particular tin glazed ceramics 

were made of a kind of proto-

stonepaste containing quartz, 

clay and also a large amount of 

glass (Mason, 2004). 

In all the cases the 

formation of diopsides indicates 

 

Figure 4.3. SEM backscattering images corresponding to typical alkaline glazes 

from (A) Tell Minis EA2217, (B) Raqqa, p8833 (C) Damascus, p8830 and (D) 

tin opacified lead–alkaline glaze from Damascus p8839. 

 

 

 

 

  

(A) 

(D) 

(C) 

(B) 
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temperatures above 950 °C most probably above 1000 °C. 

As shown in Table 4.2 Tell Minis glazes are transparent, sodium-rich lead glazes which 

are not tin-opacified, the use of very light coloured stonepastes making the addition of cassiterite 

in the glazes unnecessary. The composition of those glazes, although slightly lead poorer, 

resembles those of Fatimid lustreware. Moreover, some authors have found a reduction of the 

lead content of the glazes in 12
th

 century Fatimid lustreware (Mason, 2004). Consequently, 

ignoring the incorporation of cassiterite, Tell Minis lustreware glazes appear very similar to 

contemporary Fatimid lustreware glazes. Finally, the glazes and bodies were fired in a single 

firing as the large glaze-paste interactions show in Figure 4.3(A); this is another advantage of the 

use of stonepastes. 

Contrarily, Raqqa glazes (Table 4.2) are mainly alkaline (sodium-rich) and if they 

contain lead, it is in very small amounts. However, they also contain a higher amount of Fe 

which, since the glazes are greenish in colour, is probably mainly present as Fe
2+.

 Therefore, its 

addition is likely to have helped the reduction of copper to the metallic state. The use of iron as 

reducing agent in the production of copper red glass is a well-known practise in the glass 

industry since Roman times (Arletti et al., 2006; Barber et al., 2009); the conservation state of 

these alkaline glazes especially their surfaces is very badwith large areas, appearing to be 

missing or showing layered structures and scales Figure 4.3(B). 

The two Damascus type sherds analysed show two different glaze compositions (Table 

4.2). Sherd p8830 is a lime-soda alkaline glaze while p8839 is an alkaline–lead tin opacified 

glaze. Both are blue and contain Co as well as Fe. SEM backscattering images of the glaze cross 

sections are shown in Figure 4.3(C) and (D) respectively. Few analyses obtained from the glazes 

used for polychrome under-glaze painted Damascus wares (Mason, 2004) revealed in all cases 

alkaline glazes. 

The surfaces of the glazes and the lustre decorations were also measured by SEM–EDS, 

which allows the comparison of the chemistry between non-decorated and decorated areas. It 

should be noted that the chemical compositions measured directly on the glaze surfaces are not 

comparable to thosemeasured on the glaze cross sections as the former are heavily affected by 

the alteration and weathering. For instance even in those cases where the glazes seem in a good 

state of conservation, as the glaze surfaces appear always depleted in Na and Pb. This is never 

seen in replicated glazes which have not been affected by the use or burial. 

Both Na and Pb leaching are expected in humid and acid environaments affecting the 2 

μm depth analysed by means of EDS. Nevertheless, the analyses allow the determination of the 

Cu and Ag composition of the lustre layers and also detect the presence of other elements 
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associated to the lustre production process. The results of the analyses obtained for the lustre 

decorations are shown in Table 4.3. 

An overall depletion of sodiumis observed in the glaze, as compared to the results 

determined on cross sections of the glazes. However, comparison of sodium, copper and silver 

contents at different points of the lustre decorations shows that those areas containing higher 

silver or copper also contain lower amounts of sodium. In Figure 4.4 the atomic content of Cu 

and Ag versus Na corresponding to different areas of the lustre decoration are plotted revealing 

an inverse correlation which supports the substitution of 

Na by Cu or Ag. Consequently, all the lustre layers 

studied herewith were made following the procedure 

described in the introduction, that is, through ionic 

exchange between sodium from the glaze and the copper 

and silver from the applied lustre materials and 

precipitation of the metal nanoparticles (Padovani et al., 

2003; Pradell et al., 2005). 

The relative copper/silver content of the lustre 

decoration is also important as it determines the range of 

colours of the lustre layers. This data is also given in 

(Table 4.3) as %Cu/(Cu + Ag) for the diferent samples 

studied. Tell Minis lustres are richer in silver — 50–70% 

Cu/(Cu + Ag) — than Raqqa lustres — 70–90% Cu/(Cu 

+ Ag) — but richer in copper than Fatimid Egyptian 

lustres — 10–30% Cu/(Cu + Ag) — and 10
th

 century 

monochrome Iraqi lustres — 0–10% Cu/(Cu + Ag) — 

(Gutierrez et al., 2010; Pradell et al., 2008a, 2008b). 

These results suggest a decrease in the silver content of 

the lustres produced in the region from 11
th

 century to 

13
th

 century AD, which could be related to either 

difficulty in acquiring silver or a voluntary modification. The increasing copper content results in 

a shift from green–yellowish to brown colour of the lustre layers. Contemporary Kashan 

lustreware which is also brown contains 50–70% Cu/(Cu + Ag) and is therefore richer in copper 

than earlier productions although not as rich as Raqqa ware. 

However, the copper/silver contents found show a large variability not only due to the 

difficulties in controlling the lustre production process but also due to the state of conservation of 

 

Figure 4.4. at% Na versus at.% (Cu + Ag) in the 

lustre showing the inverse correlation 

characteristic of ionic exchange for (A) Tell 

Minis, p8834-36 and (B) Raqqa, p8833. 
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the layers. The method of production of lustre that involves ionic exchange (Padovani et al., 

2003; Pradell et al., 2005) and the subsequent further growth of nanoparticles is known to 

develop compressive stresses on the glaze which becomes tougher. This also makes the lustre 

decorated areas more stable and less affected by burial conditions. However, the lustre layers are 

formed close to the glaze surface (some tens of nanometers below the surface) and are also very 

thin (few hundreds of nanometers thick) which is a handicap, as scratches and erosion may 

degrade them and affect the colour and shine of the layers. In particular, since silver appears in 

general more concentrated closer to the surface than copper which diffuses deeper inside the 

glaze surface (Pradell et al., 2012), surface erosion affects silver more than copper. And this 

ismore important for the lustre layers produced on lead bearing glazes as these are closer to the 

surface than those produced over alkaline glazes (Gutierrez et al., 2010; Pradell et al., 2007, 

2012). This fact has to be taken into consideration when comparing lustres from different 

productions. 

In particular, none of the Tell Minis lustre sherds studied was in a state of good 

preservation, showing lots of scratches and peelings especially on sherd EA-1978-2217r which 

shows also the higher copper content. Consequently, the silver content determined is most 

probably lower than that originally present. 

Well preserved TellMinis lustres usually showa yellow–orange colour and golden shine 

consistent with silver lustres containing some copper and the use of lead glazes. The Raqqa 

production shows a chocolate brown lustre similar to contemporary Persian lustre from Kashan; 

this is also consistent with the higher copper content shown by those lustres. However, well 

preserved Persian lustre normally shows Golden shine consistent with the fact that they were 

produced over a tin-opacified, lead glaze (Pradell et al., 2008b). Although the increase in the 

copper content of the lustre layers with respect to earlier lustre productions is observed both in 

Kashan and Raqqa lustrewares, the silver content in the Raqqa wares is very low. In fact the use 

of alkaline glazes with copper lustres has the advantage of accepting strong external reducing 

atmospheres which could not be used with lead glazes. Moreover, strong reducing atmospheres 

are not desirable for the production of silver lustres (Molera et al., 2007). 

Finally, the two Damascus lusters are different. p8830 lustre shows a yellow–green 

colour and contains only copper which suggests an incomplete reduction while p8839 has a 

brown colour and metallic shine and contains about 50% Cu/(Cu + Ag). However, since very 

limited studies concerning Damascus wares are found in the literature (Mason, 2004) and even 

less concerning lustreware, (Chabanne et al., 2012), some morework should be performed in 

order to characterise their production.  
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Conclusions 

 

The results obtained indicate the copper enrichment of the lustres from early 12
th

 century 

to 13
th

 century productions. Tell Minis and Syrian lustres are more similar in composition and 

colour to contemporary Fatimid Egyptian lustre (richer in silver), whereas Raqqa lustre is more 

similar in colour and composition (richer in copper) to contemporary Persian lustre. One of the 

peculiarities of Syrian lustres is the use of transparent glazes, lead glaze for Tell Minis and 

alkaline glaze for Raqqa. 

The Raqqa and Tell Minis sherds studied correspond well in both paste and glaze 

compositions, with data from the literature (Franchi et al., 1995; Kaczmarczyk, 1994; Mason, 

1997, 2004; Smith, 2006). In contrast, the two sherds of supposedly Damascus ware were 

completely different from each other (Ca-rich stonepaste with alkali glaze for p8830 and 

earthenware with tin glaze for p8839), and only p8830 is comparable to the few analyses of 

Damascus lustreware found in the literature. A more extensive study is therefore necessary in 

this case. 

Tell Minis lustres showing golden shine were obtained on lead bearing glazes. Raqqa 

lustres were produced over alkaline glazes but neither the sherds studied here nor the pots found 

in Museums show metallic shine. Finally, from the two Damascus wares studied, the one 

showing metallic shine was produced over a tin opacified lead glaze. Consequently the results 

obtained herewith agree with previous studies indicating that the addition of lead to the glaze 

increases the probability of producing lustre with metallic shine. 

Finally, Raqqa lustre and glazes are richer in iron than Tell Minis, Fatimid Egyptian and 

Persian lustrewares (Pradell et al., 2008b). The addition of iron to the glazes helps the reduction 

of copper andwas a common practise for the production of Roman copper red glasses (Arletti et 

al., 2006; Barber et al., 2009), a fact which suggests a direct connection between Raqqa 

lustreware and the glass industry which should be studied. 
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Chapter 5 

 
Color and dichroism of silver stained glasses 

from Spain (15-16
th
 century) 

 
 

 

 
 

Introduction 

 

Silver stain is a type of decoration applied to glass that was developed in early medieval 

times (Heaton 1947). A silver stain consists of a surface layer (between 10 and 300 µm thick) of 

metallic silver nanoparticles of varying sizes (typically between 1 and 30 nm) dispersed in the 

glass. The technique was first discovered in Islamic lands (Egypt) in the eighth century AD for 

the production of stained glass although later was used  with some variations in the production of 

the so-called luster ceramics (Pradell et al. 2005; Molera et al. 2007; Colomban 2009). The silver 

staining technique was transferred to the West through the book ‘‘El Lapidario’’ from the king of 

Castille Alfonso X where, for the first time, a formula for its production is presented. The 

translation of this treatise due to Abolais was concluded in 1250 AD (Heaton 1947). 

Nevertheless, it is not until the end of the thirteenth century or beginning of the fourteenth 

century that this decorative technique was applied to color window glasses. Its use expanded 

during the fourteenth century becoming general use in the fifteenth century and particularly in 

the sixteenth century. 
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Silver stains were obtained by applying over the glass surface a silver compound 

dispersed in a clay medium which was then fired (Jembrih-Simbürger et al. 2002; Delgado et al. 

2011; Gil et al. 2005; Gil and Villegas 2004). The method resulted in the ionic exchange of the 

silver ions with the alkali ions (either Na
+
 or K

+
) from the glass, diffusion in the glass, and 

subsequent reduction to metal and growth of silver nanoparticles. Reduction of silver ions to the 

metallic state happens by means of redox reactions with the non-bridging oxygen of the silicate 

network or with other ions such as Fe
2+

, Sb
3+

, As
3+

, and Sn
2+

 either originally present in the glass 

or added in the applied silver bearing mixture (Gil et al. 2005; Gil and Villegas 2004). Both 

diffusion coefficients and redox reactions depend on the composition of the glass. Consequently, 

the size and volume fraction of the metallic silver nanoparticles and the thickness of the silver 

stain layer are glass dependent (lime–potash, lime–soda, lead glasses). In fact, the golden-like 

shine shown by the so-called luster in ceramics and glass is consequence of the presence of a 

high volume fraction of metallic nanoparticles with the consequent change from individual to 

collective optical behavior (Pradell et al. 2005, 2012; Molera et al. 2007). Moreover, the 

production parameters, including firing temperature (between 550 and 650ºC) and time (a few 

minutes at the maximum temperature and slow/free cooling), as well as the composition of the 

precursor mixture (various silver salts such as Ag2SO4, Ag2O, AgCl, Ag2S among others, and 

iron compounds such as clay minerals and oxides) are also important (Jembrih-Simbürger et al. 

2002; Barley 1996). 

Although in the description of the procedure for silver staining window glasses due to 

Antoine de Pise (Lautier and Sandron 2008), copper is not mentioned, the interest of producing 

other colors increased and later in the fifteenth century in Flanders (Caen 2010); the addition of 

copper is indicated with the purpose of obtaining brighter yellow and orange colors. In fact, the 

addition of copper has been found to increase the size of the metallic silver nanoparticles in the 

production of luster ceramics under weak reducing conditions unable to reduce copper to the 

metallic state (Delgado et al. 2011). As a consequence more saturated yellows and also orange 

colors are produced. Although red silver stain glasses were occasionally obtained, in particular 

during the sixteenth century, this is less common due to the difficulties in the control of the 

conditions of production of such glasses which should involve the presence of reducing ions in 

the glass (Sb
3+

, As
3+

 and Sn
2+

) (Gil and Villegas 2004). Even rarer are dichroic glasses, that is, 

those showing different color in transmission than in reflection. Among them, the most famous is 

the Lycurgus cup, an exceptional cut glass from the fourth century AD opaque greenish-yellow 

in reflected light and red translucent in transmitted light. The Lycurgus cup is among those 

historical glasses colored by the presence of metal nanoparticles the best known. The dichroic 
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behavior is attributed to the presence of 50–100 nm silver–gold (7:3 ratio) alloy colloids. 

However in this case, silver and gold were added to the glass before melting resulting in their 

partial or total dissolution and further crystallization of the alloy nanoparticles thanks to the 

redox reactions in which antimoni present in the glass in small amounts must have had an 

important role (Barber and Freestone 1990). 

The color shown by those glasses containing metal colloids is related to the localized 

absorption and scattering (surface plasmon resonance, SPR) of the visible light which depend on 

their size, shape, and concentration (Kreibig and Vollmer 1995). Spherical silver nanoparticles 

absorb and scatter strongly in the blue region of the spectra (around 405 nm for silver 

nanoparticles of about 30 nm in a glass with a refraction index of 1.52) but are essentially 

transparent to the rest of the wavelengths in the visible range causing the typical yellow color of 

silver colloidal solutions and of the bluish scattering. Larger sizes tend to red shift the Surface 

Plasmon Resonance varying the color of the colloids (Gil et al. 2005; Gil and Villegas 2004; 

Kreibig and Vollmer 1995). Spherical gold nanoparticles are known to absorb and scatter in the 

yellow region of the spectra (around 535 nm for gold nanoparticles of about 30 nm in a glass 

with a refraction index of 1.52) causing the red color of gold colloidal solutions. 

The origin of the colors shown by three early Renaissance silver-stained glasses is 

discussed. Two of these glasses (Avi15 and Pal15) were produced by the same artist, Arnao of 

Flanders the Elder, belong to the cathedrals of Avila and Palencia, respectively, and date to the 

last decades of the fifteenth century. The third (Avi16) is from an unknown artist, belongs to the 

cathedral of Avila and dates to the second half of the sixteenth century. Avi15 and Pal15 are pale 

and strong yellow, respectively, and Avi16 is dichroic, yellow in reflection and red in 

transmission. The correlation between the colors observed and the silver stain nanostructure is 

studied with particular emphasis on the origin of the dichroic behavior. The optical response is 

computed and compared to the experimental data. Differences in the synthesis parameters 

responsible for the two non-dichroic and the dichroic silver stains are proposed. This will give 

insight into the methods used to control of the nanostructures of yellow and red silver stain 

glasses in the fifteenth and sixteenth century, respectively. It is of particular importance for the 

restoration/conservation of the glasses, in particular to replicate the glass pieces which have to be 

replaced. 

. 
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Materials and techniques 

 
 

The glass pieces studied belong to the set of stain glass windows from the cathedrals of 

Avila and Palencia restored by Vetraria Muñoz de Pablos S.L. although none of them has been 

installed back into windows. The pieces sampled and studied belong to the collection of glass 

panels of the cathedral, and are from historical lost glass windows which were used by the 

master glaziers for later restorations.  

Two of the glasses, Avi15 and Pal15, were produced by Arnao of Flanders ‘‘the Elder’’ 

master glazier of Flemish origin who worked in Spain between 1480 and 1515 for the cathedrals 

of Avila, Palencia and Burgos. Avi15 belongs to a window glass from the Cathedral of Avila 

showing designs similar to others found in the same cathedral which are dated to the last decades 

of the fifteenth century. Pal15 was found in a bricked up window in front of the organ in the 

cathedral of Palencia and the authorship is documented in the cathedral archive. Avi16 is from 

an unknown master but it shows a design which starts being used around 1550. This glass piece 

could have another origin as the coloration shown is not found in the glass windows existing at 

present in the cathedral. Nevertheless, the way it was decorated with a thick application, 

indicates a strategy to produce a red glass which has great technical complexity. It is not until the 

sixteenth century that the process starts being better controlled involving the addition of copper 

to the silver stain. However, it is also known that, without the adequate amount of silver and 

copper and control of the firing process, the stained glass obtained shows a brownish dark color 

and not the red color wished for (Caen 2010). 

The glasses under study were decorated on one side with silver stain and on the other side 

with grisaille. A grisaille is a brown-blackish decoration made of iron oxides and also copper, 

zinc, lead and/or manganese oxides. Some lead glass was also added to the grisaille, the lead 

glass is known to have a lower melting temperature than the window glass which after firing 

fixes the grisaille to the glass surface. Silver stains are usually fired at lower temperatures 

(between 550 and 650ºC) than the grisailles (about 700ºC) (Caen 2010; Verita´ 1996; Perez-

Villar et al. 2008). Consequently, the yellow silver stains are often applied on the other side (the 

external side) of the window glass, as happens in the three cases studied here, and fired once the 

grisaille has been fixed. Pictures of the glasses studied are displayed in Figure 1 showing the 

decoration including silver stain and grisaille. Images of the yellow stains obtained in 

transmitted and reflected light are also shown. The yellow stains from both Avi15 and Pal15 are 

essentially yellow both in transmission and reflection while on the contrary the Avi16 yellow 

stain is dichroic, yellow in reflection and red in transmission. 
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The thickness and composition of the silver stain layers were determined from polished 

cross sections of the glass surfaces by using an Electron Microprobe CAMECA SX-50 (Cameca, 

Gennevilliers, France). The measurement conditions were a 20 kV and 15 nA probe current with 

a spot size of about 1 µm. A JEOL model JSM-840 microscope (with secondary and 

backscattered electron detectors), coupled with a LINK AN 10000 microanalyses system was 

also used. 20 kV acceleration voltage, 1.5 nA probe current and 25 mm working distance were 

used for observation and analyses.  

UV–Vis Transmission measurements were performed using a UV–Vis spectrophotometer 

(Shimadzu 2700). For the Reflection measurements an ISR 3100 integrating sphere was attached 

to the spectrophotometer, and the spectra calculated with respect to a reference BaSO4 white. 

Undecorated areas of the glasses were also measured.  

A crossbeam workstation (Zeiss Neon 40) equipped with SEM (Shottky FE) and Ga
+
 FIB 

columns, was used to obtain polished cross sections of the yellow stains. The polishing obtained 

was good enough to discern the silver nanoparticles. First, the sample surface was coated with a 

thin protective Pt layer (1 µm) by ion-beam-assisted deposition; then the cross-section was cut 

and polished. In some cases, a lamella was extracted and transferred to a TEM grid for further 

TEM investigation. In a final step, the lamella was thinned down to a thickness transparent to the 

electron beam (<60 nm). High Resolution Transmission Electron Microscopy (HRTEM) 

characterization was performed on a JEOL JEM-2100 Lab6 electron microscope with an 

operating voltage of 200 kV.  

The glass transition temperature of the glasses was determined by Differential Scanning 

Calorimetry (DSC) at several heating rates (5, 10, 20, and 40 K/min), in a Netzsch F404 Pegasus. 

Above the glass transition temperature, the glass behaves as a liquid, and as a consequence 

atomic diffusion coeficients show a great increase (Greer 1999). Therefore, it is necessary to fire 

the glass and silver stain precursor compound to temperatures above the glass transition 

temperature to boost atomic diffusion in the glass. Theoretical scattering and extinction cross-

sections for spherical particles are calculated up to third order (Mie scattering) (van de Hulst 

1981), using the measured dielectric constants for metallic silver given in Johnson and Christy 

(1975) and taking into account the  particles size dependence of the dielectric constants using the 

Drude approximation (Kreibig and Vollmer 1995). The refraction index of the matrix is 

evaluated from the glass composition (Priven and Mazurin 2003). This computation is used to 

estimate the optical response of the silver stain layers 
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Figure 5.1 Pictures 

of the three 
stained glass 

pieces studied 

and the 

corresponding 
Optical 

Microscopy 

images 

taken with 
transmitted light 

(left), and 

reflected light 

(right). 
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Results 
 

 

The chemical composition of the glasses and of the silver stains is shown in Table 5.1; 

the three glasses exhibiting a similar composition. It is worth mentioning that in this period the 

glasses were usually imported from the north of Europe (Flanders or Germany) and 

consequently, for a relatively long period, they presented a similar composition. The density and 

refraction index of the glasses are calculated from the composition (Priven and Mazurin 2003; 

Fluegel 2007) and are also shown in Table 5.1. The glass transition temperatures (Tg) determined 

from the DSC data taking the middle temperature of the transition at different heating rates are 

shown in Table 5.2. In the wood fed kilns used at the time of production of the glasses, a typical 

heating rate (24 h to reach 700ºC) was 0.5 K/min. At these low heating rates, Tg follows an 

Arrhenius-like dependence which in our case gives Tg = 653ºC. These results are in reasonable 

good agreement with the values varying between 670 and 725ºC determined for very similar 

high-lime low alkali sixteenth–seventeenth century glasses (Cable and Smedley 1987).  

 

Table 5.1. Composition of the glasses measured with SEM-EDX. 

Glaze 

(wt%) 

composition 
n 

ρ 

(g/cm
3
) 

Max.Ag 

wt% 

Max.Vf 

% Na2O MgO Al2O3 SiO2 P2O5 S Cl K2O CaO MnO FeO 

Avi15 2.3 2.8 4.9 60.4 3.2 0.1 0.9 4.1 20.3 0.5 0.6 1.56 2.65 1.7 0.4 

Avi16 1.8 3.0 4.9 61.0 3.1 0.1 0.6 4.6 19.9 0.7 0.3 1.56 2.64 1.6 0.4 

Pal15 2.1 2.7 5.0 60.2 3.3 0.1 0.6 4.3 20.5 0.6 0.4 1.56 2.65 2.4 0.5 
 

 

Calculated index of refraction after Priven and Mazurin (2003) and density after Fluegel (2007). Maximum wt% and volume 
fraction of silver nanoparticles in the layer calculated from the chemical analyses obtained by SEM–EDS of the cross section of 

the glasses 

 

 

 

The yellow stain layer has in the three cases a total thickness of 

about 15 µm, as can be seen in Figure 5.2. However, Avi16 shows the 

greatest silver concentration (0.44 %) at 10 and 15 µm below the surface 

while for Avi15 and Pal15 (0.53 and 0.60 % respectively) it appears 

closer to the surface (between 2 and 5 µm). The yellow stains 

corresponding to Avi15 and Pal15 contain only silver, but Avi16 

contains also copper and lead mainly concentrated near the surface and 

showing a typical diffusion profile. The maximum wt% of silver in the layer and the 

corresponding màximum volume fraction of silver nanoparticles in the layer are also given in 

Table 5.1. Maximum volume fractions which were found to be about 0.5 % are in good 

agreement with those found in other silver stain glasses (Jembrih-Simbürger et al. 2002). 

Table 5.2. Glass transition 

temperature from DSC data 

as the medium temperature 
of the transition. 

 

HR (ºC/min) Tg (K) 

5 677 

10 686 

20 693 

40 699 
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The transmittance and reflectance corresponding to the three samples studied are shown 

with solid lines in Figure 5.3. Dashed lines correspond to the undecorated areas of the glasses 

which were also measured. Reflectance spectra were obtained from both sides of the samples, 

that is the silver stain layer side (thick line) and the reverse (thin line). We can see that the front 

side shows a more intense signal than the rear, but both spectra show the same wavelength 

dependent response. The corresponding color coordinates are evaluated from the transmittance 

(dots) and reflectance (triangles) spectra using the protocol accepted by the International 

Commission for Illumination x, y, Y (CIE 1931) 

and a, b, L (CIE Lab*) 1976) shown also in  

Figure 5.3. Solid symbols correspond to the silver 

stains and void symbols to the undecorated glasses. 

The color of the glasses is slightly yellow–green 

both in reflection and transmission. Avi15 and 

Pal15 silver stains each have a similar yellow-

greenish hue both in reflection and transmission 

with transmission being more saturated than the 

reflection. Avi16 has a stronger color than the 

other two, both in reflection and transmission, and 

the color is yellow-greenish in reflection and red 

with a small blue component in transmission 

(Table 5.3). 

The color of the silver yellow stains 

depends strongly on the size of the metallic silver 

nanoparticles. For this reason, polished cross-

sections of the silver yellow stains were prepared 

by FIB in a Zeiss Neon 40 workstation. A lamella 

of sample Avi16 was extracted for further TEM observation, which is shown in Figure 5.4. The 

silver yellow stains corresponding to samples Avi15 and Pal15 appeared concentrated near the 

surface, as we have already observed by SEM, Figure 5.2, and the size of the particles was very 

small with a wide distribution, maximum sizes of about 15 and 30 nm, respectively. The 

presence of very small particles (2–5 nm) is observed in all the cases. These results agree with 

those found in other silver-stained glasses (Jembrih-Simbürger et al. 2002). 

On the contrary, Avi16 shows particles of sizes below 20 nm in a first layer close to the 

surface and, separated by some space, a second layer of particles with sizes increasing from 30 to 

 

 

 

Figure 5.2. Top at% Ag composition profile 

corresponding to Avi15 and Pal15. Bottom at% Ag, Pb 
and Cu composition profiles corresponding to Avi16. 

The horizontal bar of the cross indicates the dimensions 

of the spot and the vertical bar the typical standard 

deviation. 

d(µm) 

at
%

A
g 

at
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90 nm with depth as is shown in Figure 5.4. The first layer of silver particles is also 

characterized by the presence of copper and lead (Figure 5.2) dissolved in the glass. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Discussion 

 
 

The three glasses are of the type containing high lime (20 % CaO), high silica (60 % 

SiO2), and low alkalis (7 % Na2O + K2O). They all contain a small amount of MnO which was 

probably added to decolorize the glass (manganese is known to oxidize Fe
2+

 to Fe
3+

 reducing the 

greenish color). The density and index of refraction of the glasses estimated from their 

composition (Priven and Mazurin 2003; Fluegel 2007) are about 2.65 kg/m
3
 and 1.56, 

 

 

 
 

 

 

Figure 5.3 Left transmission (top) and reflectance (bottom) UV–Vis spectra of the three silver stains. Dotted 

lines correspond to the transparent glass. In the Reflectance spectra, the thick lines correspond to the 

measurements obtained on front side of the glass where the yellow stain is applied and the thin solid lines to 

the measurements obtained from the back side of the glass. No differences are observed in the reflectance 
measured on both sides of the glass. Right Locus Cie-1931 color coordinates (top) corresponding to the 

three yellow stains (solid symbols) and to the glasses (open symbols) both measured in reflection and in 

transmission. The corresponding Cie Lab* color coordinates (bottom) of the glasses and yellow stains. 
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respectively. The glass transition temperature, determined by DSC at 2.5 K/min heating rate, is 

of about 653ºC. Therefore, for the glasses herewith considered the silver stains were produced at 

temperatures clearly above 653 º C and most probably approaching 700ºC, in reasonable good 

agreement with those reported for sixteenth–seventeenth century glasses (Cable and Smedley 

1987). This is a high temperature, clearly above the temperatures considered in the literature for 

the production of silver stains.  

One of the interesting differences existing between the silver stains from the fifteenth and 

sixteenth century, respectively, is the presence in the latest glasses of copper and lead.  

 

 

The diffusion-like chemical profile 

shown by those elements (Figure 5.2) and 

their absence in the bulk glass 

composition indicate that they were 

incorporated in the glass together with the 

silver. Therefore, in the case of the 

dichroic silver stain, Avi16, copper and 

lead were also present in the precursor 

material applied over the glass surface. 

The addition of copper in the precursor 

material has been reported to enhance the 

color of the silver stain. Moreover, the 

presence of copper has already been 

observed in some silver stain glasses 

(Caen 2010). Copper has the capability of reducing silver to the metallic form, and therefore 

enhances the growth of the metallic silver nanoparticles. Moreover, the presence of copper 

modifies the electronic charge valence favoring the formation of silver aggregates (Quinten and 

Kreibig 1993). Therefore, larger silver particles, showing usually a heterogeneous size 

distribution, are obtained if copper is added to the precursor material. In particular, the presence 

of large silver nanoparticles will certainly increase the absorption and therefore enhance the 

color of the silver stain. On the contrary, the addition of lead has been reported neither in the 

historical treatises nor in the analyses of stained glasses. Although the addition of PbO in the 

glass composition is known to reduce the diffusivity of silver and thus, produce thinner more 

Table 5.3. Color coordinates calculated form the transmission and 

reflection UV-Vis spectra. Cie Lab* coordinates are given and the 
calculated chroma, c* and hue, h* are also given. 

 

Transmittance L* a* b* c* h* 

Avi15 glass 66.2 -3.9 6.2 7.4 122.1 

Avi15 silver yellow 62.6 -10.0 31.3 32.8 107.7 

Avi16 glass 56.7 -1.7 5.7 6.0 106.8 

Avi16 silver yellow 20.2 33.4 -0.2 33.4 359.6 

Pal15 glass 42.2 -1.3 3.1 3.4 112.2 

Pal15 silver yellow 38.8 -3.9 39.2 39.4 95.7 

Reflectance 
     

Avi15  glass 30.1 -4.6 -0.4 4.6 185.2 

Avi15 silver yellow F 28.2 -3.8 7.1 8.1 118.1 

Avi15 silver yellow B 21.0 -4.3 8.8 9.8 115.9 

Avi16 glass 37.2 -1.8 1.8 2.5 134.1 

Avi16 silver yellow F 44.3 -5.9 23.8 24.5 103.8 

Avi16 silver yellow B 46.0 -7.9 20.5 22.0 111.1 

Pal15 glass 34.8 -2.0 -0.6 2.1 198.1 

Pal15 silver yellow F 33.6 -0.9 7.0 7.1 97.6 

Pal15 silver yellow B 27.5 -2.0 10.0 10.2 101.5 
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concentrated layers (Pradell et al. 2012), its effect when present in the precursor material has not 

yet been studied.  

TEM observation (Figure 5.4) indicates the presence of a very heterogeneous distribution 

of metallic silver nanoparticles in Avi16 which are arranged in two main layers. The layer  

 

  

closer to the surface which is 5 µm in depth and contains copper consists of smaller silver 

nanoparticles (sizes  ranging from 10 to 25 nm), and the second layer which is between 10 and 

15 µm in depth contains very large particles (from 50 to 90 nm). Those larger particles are 

concentrated in the lowest part of the layer. It is worth to note that the thickness of the TEM 

preparation is of about 70 nm, consequently most of the large particles are cut on the lamella 

Figure 5.4. TEM microstructure 
corresponding to the dichroic 

silver stained glass Avi16. 
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production process; as the sectioned particles show always an apparent diameter smaller than the 

actual one, the actual average particle size is larger than that determined from the TEM sample. 

Although this is a common problem with regard to TEM preparations, it is particularly important 

when the size of the particles is of the same dimension or larger than that of the lamella. The 

formation of larger silver nanoparticles may be related to the addition of copper and probably 

also lead in the precursor material. It is common to find the larger nanoparticles concentrated 

inside the layer when far long firing times are applied. 

The color observed in the glasses both in transmission and in reflection is related to the 

size and distribution of the metallic silver nanoparticles in the silver stain layer. Silver metallic 

nanoparticles in a non-absorbing matrix (glass) absorb and scatter the light. Absorption is 

dominated by the collective resonance of the free electrons resulting from surface polarization, 

denoted as surface-plasma resonance (SPR). The position and shape of these resonances depend 

on the optical functions of the metals and of the dielectric matrix. The extinction cross-section is 

defined as the total light loss in the system, either absorbed or scattered. Both scattering and 

extinction cross-sections are calculated for spherical particles by a series expansion (Mie 

scattering) corresponding to spherical multipolar excitations (dipolar, quadrupolar, and 

octupolar) (van de Hulst 1981). Although the dipolar approximation is sufficient for small 

particles (up to about 20 nm for silver), larger nanoparticles require the use of higher multipolar 

orders.  

The refraction index of the matrix is evaluated from the glass composition (Priven and 

Mazurin 2003), which for the glasses herewith studied is of about 1.56 as shown in Table 5.1. 

The corresponding extinction, absorption, and scattering constants (γ=fσ) evaluated for an 

equivalent volume fraction of monodispersed particles as a function of the size of the silver 

nanoparticles are shown in Figure 5.5a. In Figure 5.5b the position (Cmax) of the main SPR peak 

is plotted against the full width at half maximum (fwhm), and from this, we can see how 

increasing the size of the silver nanoparticles above 30 nm results in a red shift and broadening 

of the SPR peak from the extinction cross-section. Neglecting multiscattering which is a 

reasonably good approximation if the fraction of particles is very low, typically from f ≤ 10
-3

 to 

10
-5

, and the topology isotropic and statistical, the optical properties may be assumed to be the 

sum of the optical properties of the individual particles in a quasi-homogeneous effective-

medium. Then, the transmittance may be approximately evaluated as the total non-extinct light in 

the layer, which is T ≈ e
-2γeL

 (Nobbs 1985).  
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Figure 5.5. a) From top to bottom, absorption, scattering and extinction constants for an equivalent volume fraction 

of particles (γ=fσ); b) Full width at half maximum (fwhm) and position (λmax) of the SPR main peak corresponding 

to the extinction constant as a function of the size of the silver metallic nanoparticles. c) Color coordinates 

calculated for the corresponding transmission spectra. 

 
  

 

 

 

  

 

 

We can see in Figure 5c how to increase the size of the metallic silver nanoparticles, the 

color changes from green (≤40 nm) to yellow (≈60 nm), orange (≈ 70 nm), and finally red (≥80 

nm). Moreover, color saturation intensifies as the particle size increases, reaching a maximum 

for particles of about 40 nm, and decreases again for larger particles.However, what is more 

interesting from the above calculations is the relative contribution of scattering and absorption to 

the total extinction; for small silver nanoparticles (d<30 nm) absorption is the dominant 

contribution while for larger nanoparticles (d>30 nm) scattering progressively becomes the 
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dominant contribution. This will affect the color of the glasses measured both in reflection and in 

transmission. 

The maximum volume fraction of particles present in the studied silver stain layers is of 

about 0.5 % which falls within the order of magnitude required to neglect multiscattering. 

Therefore we can use the noninteracting particles approximation for the transmittance. The color  

measured in transmittance gives values of a* = 

-10.0 and b* = 31.3 for Avi15 and a* = -3.9 

and b* = 39.2 for Pal15 (blue and red dots 

respectively in Figure 5.3). This corresponds 

to hues of 108º and 96º for Avi15 and Pal15 

respectively (i.e., between yellow (90º) and 

green (180º), with both showing similar 

saturations (39 and 33). This observation is 

consistent with the small, but slightly larger 

for Pal15 than for Avi15, size of the silver 

nanoparticles observed by electron microscopy 

in both silver yellow stains. Avi16 shows a 

large red color a* = 33.4 with a small blue 

component b* = -0.2, and similar saturation 

(33.4). This large red component is associated 

to the large particles (60–90 nm) present in the 

inner layer. Although smaller silver 

nanoparticles are also present in the outer 

layer (20–30 nm), the corresponding volume 

fraction is small (f = 0.14 %) compared to 

those from the large nanoparticles (f = 0.36 

%), as shown in Figure 5.2. Therefore, the 

contribution to the color from the small 

particles is also small. Figure 5.6 shows the 

Optical density, OD = log(1/T), of the silver 

stains after subtracting the glass contribution. 

Under the assumptions herewith considered and taking into account reabsorption in the layer 

thickness, the transmittance can be calculated from the extinction constant by (van de Hulst 

 

 

  

Figure 5.6 (Top) Optical density, OD = log(1/T) from Av15 
and Av16 and Pal15 silver stains after subtracting the glass 

contributions. The dotted lines correspond to the extinction 

constants for 20, 30 and 85 nm spherical particles in glass 
which compare to the OD spectra of Avi15, Pal15, and Av16, 

respectively. (Bottom) log(R) from Av15 and Av16 and Pal15 

silver stains. The glass contribution has not been subtracted 

and is plotted with a dashed line. The dotted lines correspond 
to the backscatter constant minus the absorption constant 

calculated for 20, 30 and 85 nm spherical particles in glass. 

The first two compare directly to the log(R) spectra from 

Avi15 and Pal15 respectively. A combination of the small and 
large particles constants compare to the log(R) spectrum from 

Avi16. 
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1980a, b) T ≈ 2(γeL)2  .The results corresponding to a 10 µm thick layer with a volume 

fraction, f = 0.3 %, of 20, 30, and 85 nm size nanoparticles are also plotted with dash-dotted 

lines. 

  

We can see that the computed peak positions match with the experimental data. However, 

the experimental peaks are broader, due to the presence of a broad distribution of mainly smaller 

nanoparticles and multiscattering effects.  

Although the extinction constant has two contributions, absorption and scattering, the 

relative importance of both varies greatly with the size of the nanoparticles. Absorption 

dominates the Optical response for small metallic silver nanoparticles in contrast to what 

happens for large nanoparticles. This has an important effect on the Reflectance of the silver 

stains (Nobbs 1985; van de Hulst 1980a, b). The Reflectance measured has two main 

contributions: on the one hand the light back-scattered by the particles and on the other hand the 

light reflected on the glassair interface which is transmitted back through the layer. The back-

scattering contribution may be determined by integrating the Mie back-scattered light. The 

difference between the backscattering constant and the absorption constant for 20, 30, and 85 nm 

particles shown in Figure 6 demonstrates how for large particles backscattering dominates the 

optical response while for small particles it is dominated by absorption. Consequently, the large 

nanoparticles present in Avi16 are responsible for the broad reflectance peak at 530 nm. 

Conversely, the small nanoparticles are responsible for the absorbance at 450 nm of the light 

transmitted then reflected on the glass-air interface. The combination of both effects results in 

the observed yellow-greenish reflectance. Scattering is negligible for the small particles present 

in Avi15 and Pal15 stains and consequently, absorbance of the light transmitted and then 

reflected at the glass-air interface dominates the optical response resulting in the characteristic 

yellow-greenish color shown. However, the effect is small, resulting in a very low saturated 

yellow-greenish reflectance. 

Consequently, the simultaneous presence in the silver stain layer of small nanoparticles, 

for which absorption dominates the optical response and, large nanoparticles, for which 

scattering dominates the optical response, is responsible for the dichroic behavior shown by 

Avi16. Moreover, the calculations also show that as long as the conditions herewith considered 

are accomplished (i.e., a low concentration of metallic nanoparticles which assures negligible 

multiscattering and the simultaneous presence of particles with very different sizes), the position 

of the small/large nanoparticles in the layer does not affect the color observed either in 

transmission and reflection. 
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The presence of a bimodal size distribution of silver metallic nanoparticles in glass 

occupying distinct depths has been reported previously to be responsible for a dichroic 

(yellow/bluish) response (Magruder et al. 2009). However, in this case and contrarily to what 

happens in our dichroic glass, high order multipolar orders were not present as the silver 

nanoparticles were not larger than 25 nm and dipole–dipole coupling due to the high density of 

particles present was responsible for the double shifted peaks present in the 

reflectance/absorption spectrum. 

The origin of the dichroic behavior of Avi16 is the addition of copper and lead in the 

precursor mixture used to obtain the silver stain. Those elements act as reducing agents 

enhancing the reduction and growth of the silver nanoparticles. Moreover, copper is known to 

modify the electronic charge valence favoring the development of a heterogeneous size 

distribution of silver nanoparticles. Therefore, only the addition of copper and lead together with 

silver in the precursor compound is responsible for the production of the red silver stain glasses. 

No other ions such as those (Sb
3+

, As
3+

, and Sn
2+

) (Gil and Villegas 2004; Gil et al. 2005) 

considered responsible for the production of red stain silver glasses have been found.  

In contrast, the yellow silver stains Avi15 and Pal15, where copper or lead were not 

found, are both characterized by the presence of small silver nanoparticles for which absorption 

dominates the optical response, resulting in the same yellow-greenish color observed either in 

reflection and in transmission. The enhancement of the color for Pal15 in comparison with 

Avi15, observed as an increase in the color saturation, is due to the presence of larger silver 

nanoparticles in Pal15 than in Avi15. This may be related either to the use of a higher firing 

temperature or longer firing time.  

Finally, the glass transition temperature of the glasses used in this historic period has 

been determined even for very low heating rates to be higher than 650ºC and establishes a lower 

limit for the temperature used in the production of the three silver stains. 

 

Conclusions 

 
 

The fifteenth century yellow silver stains (Avi15 and Pal15) are both characterized by the 

presence of small silver nanoparticles for which absorption dominates the optical response. On 

the contrary, the simultaneous presence of small nanoparticles and large nanoparticles for which 

scattering dominates the optical response is responsible for the dichroic behavior (red 

transmittance and yellow-greenish reflectance) shown by the sixteenth century silver stain 

(Avi16). This heterogeneous size distribution of metallic silver nanoparticles is due to the 
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addition of copper and lead in the precursor mixture used to produce red silver stains in the 

sixteenth century and not due to the addition of other ions such as Fe
2+

, Sb
3+

, As
3+

 or Sn
2+

 in the 

glass. Finally, the determination of the glass transition temperature of 650ºC establishes a lower 

limit of circa 700ºC for the temperature of production of the silver stains from this historic 

period. 
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Chapter 6 

 
Conclusions 

 
The coloured historical glasses and glazes studied in this thesis were obtained either by 

the presence of micro-pigment particles in the bulk glass or by the presence of metallic nano-

particles forming thin surface layers. 

The optical properties are in both cases determined by the scattering and the absorption 

of light by the particles causing the opacity and the colour of the glass respectively. The peculiar 

optical properties of metallic nanoparticles are also responsible of the high specular reflectance 

and of the dichroism shown by some of the decoration layers. 

Pigment particles maybe either formed at high temperatures by the reaction of the 

components present in the initial glass mixture or during the cooling of the glass. The 

stabilization of the adequate pigment particles depends on the glass and pigment particles 

composition and on the temperature; consequently, the production methods must be adapted in 

each case.  
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Yellow glass in New Kingdom Egypt and during the Roman Empire 

 

- Lead antimonate particles were used to produce yellow glass in New Kingdom Egypt and 

during the Roman Empire.  

- A yellow cooked precursor was mixed with the molten transparent glass. However, in the 

Egyptian glass the precursor was a pigment obtained by firing a mixture of lead oxide and 

antimony oxide with excess lead; while in the Roman glass it was an anime (a glass with 

crystalline particles) obtained by firing a mixture of lead oxide, antimony oxide and silica 

with excess lead.  

- The pigment particles are a lead antimonate oxide of the type Pb2Sb2O7, with a cubic 

crystallographic structure (space group Fd-3m with a ≈ 10.40 Å) known as pyrochlore 

structure. Sb is partially substituted by iron and zinc in the Egyptian glass and by iron and 

tin in the Roman glass. Their presence may be related to the source of lead used, although 

it is also possible that tin was deliberately added in the Roman glass. The presence of 

these impurities modifies slightly the hue and increases the stability of the pyrochlore 

Pb2Sb2O7 crystallites. 

- The thermal stability of Pb2Sb2O7 crystallites in the Egyptian glass is probably due to the 

higher viscosity of the Egyptian glass compared to the Roman glass. This also seems to 

be the reason for the use of a high lead anime instead of a high lead pigment the Roman 

glass. 

- From the historical point of view although in both cases the pigment particles used are 

the lead antimoniate oxide, there is a change in the production process followed to obtain 

the colour glass. Consequently, at first sight we cannot talk about a direct relationship 

between both productions. However, the diverse composition of the transparent glass 

used by Egyptians and Romans seems to justify the change in the production process of 

the yellow glass. In fact the Romans most probably changed the composition of the 

transparent glass in order to obtain a more transparent glass. The high magnesium content 

of Egyptian glass is responsible for the precipitation of calcium-magnesium silicates –
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pyroxenes, (CaMg)Si2O6- which are responsible for the cloudiness and sometimes 

opacity of Egyptian glasses. 

 

Technology of production of lustre 

 

The optical properties of thin layers of metallic nanoparticles depend on the nature and size 

of the nanoparticles, on their concentration in the layers and also on the thickness of the layers. 

The technology of production of such layers is known as the lustre technique which implies a 

precursor pigment which interacts with the glass surface resulting in ionic exchange and 

diffusion of the metal ions into the glass surface. This process depends not only on the nature of 

the precursor mixture but also on the composition of the glass and firing temperature. 

Furthermore, the reduction of the metal ions to the metallic state and the formation of the 

metallic nanoparticles are determined also by the reducing atmosphere. 

We have studied three different lustre decorations: polychrome Iraqi lustre (9
th

 century AD), 

Syrian lustre-ware (12
th

 to the 14
th

 century AD) and yellow and red silver stain (16
th

 century). 

 

Polychrome Iraqi lustre (9
th

 century AD) 

 

- The samples studied combine red (produced by the presence of copper nanoparticles) and 

yellow, white or black (due to the presence of metallic silver nanoparticles).  

- As had been previously observed the addition of lead oxide in the glass composition 

helps the development of the metallic like reflectivity shown by some of those layers, 

helping the formation of more concentrated layers of metallic nanoparticles.  

- The colour of the silver lustres is essentially related to the size of the metallic silver 

nanoparticles (>100 nm for the white, <10 nm for the yellow, about 20nm for the green 

and the black) and also to their distribution in the layers; either forming separated (high 

reflectant yellow or green silver on red copper lustre layer) or mixed copper and silver 

nanoparticles in the lustre layer (black and white).  
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- We have demonstrated that the red lustre was first fired in a high reducing atmosphere 

while the silver lustre was applied subsequently and fired under a lighter reducing 

atmosphere. 

 

Syrian lustre-ware (12
th

 to the 14
th

 century AD) 

 

- Syrian lustre shows many innovations with respect to its precursor Fatimid lustre. A 

transparent glaze (without tin oxide particles) is used and also stonepaste (a ware made of 

quartz mixed with some clay and fluxes). The light colour of the ware made the use of a 

tin free glaze possible. 

- There are three main productions and also lots of small workshops working: 

Tell Minis ware shows clear stylistic similarities with Fatimid productions. The lustres 

are silver-copper lustres 

Raqqa lustre ware is made on an iron richer alkaline glaze, the lustres are copper rich. 

The addition of iron (Fe
2+

) may help the reduction of copper ions into metallic copper. 

This is clearly linked to the glass industry. The lustre is chocolate brown and does not 

show metallic shine.  

Later Damascus lustre wares are also studied, and in this case we have a variety of 

ceramic body, glaze and lustre compositions. More work has to be devoted to these 

materials. 

- Although Tell Minis lustre decorations shows stylistic and  similarities with the Fatimid 

lustre productions, and Raqqa lustre decorations with contemporary Iranian productions, 

the technology appears very different (transparent low lead and alkaline iron richer 

glazes) and in the last case with strong connections with the glass industry.  
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Yellow and red silver stain from Spain(15-16
th

 century) 

 

 

- Silver stain decorations from last quarter of the 15
th

 century- first third of the 16
th

 century 

glassiers is compared to those from the second half of the 16
th

 century onwards. In 

particular the differences in the production technology between yellow and red silver 

stains. 

- Small silver nanoparticles with sizes ranging between a few and 30 nm are found in the 

yellow silver stains. The absorption of the silver nanoparticles is responsible for the 

yellow colour shown both in transmission and in reflection. 

- Small silver nanoparticles (≈ 20 nm) near the surface and large silver nanoparticles (≈ 90 

nm) deeper in the layer are found. The scattering of the large nanoparticles is responsible 

for the red hue observed in transmission while the absorption of the small particles and 

scattering of the large particles is responsible for the yellow colour observed in reflection. 

- The production of large silver nanoparticles is related to the addition of copper and also 

of lead in the precursor mixture which also show diffusion profiles on the glass surface. 

Both copper and lead are known to help copper reduction to the metallic state and growth 

of silver nanoparticles.  

- The production of a range of colour varying from light yellow, deep-yellow, orange and 

red was of high interest to increase the colour range of glasses available. Higher 

temperatures, addition of copper in the precursor mixture and addition of other metal ions 

in the glass were the most common procedures used in the Renaissance. However, red 

silver yellows were not easy to produce. This is the first case in which the addition of 

lead in the precursor mixture is demonstrated.  

 

Finally, with regard to the analytical techniques used, it is important to highlight the need of 

specific and complementary analytical techniques used for the study of each type of decoration. 

SEM with coupled EDS, μ-XRD and UV-Vis have been used to determine the global 

composition of the glasses, glazes, micro-particles, the distribution of the particles in the glass, to 

identify their nature and structure and to determine the hue, lightness and chroma of the 

decorations. RBS has been used to determine the chemical composition profiles of lustre layers 

and FIB polishing and secondary electron images to determine the size and distribution of the 

nanoparticles in the lustre layers and the thickness of the lustre layers. Replication of the 
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technology has been used to determine methods of production and stability of the yellow 

Egyptian and Roman glasses.  
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Appendix B 

 
Glossary 

 

 

 

 

 

Anime. It refers to a coloured semi-finished crystalline product used as opaque pigment in glass 

slabs, that after cooled and reduced to a powder, was added to transparent glass to produced 

colour glass. The term meaning 'soul' was used on the Venetian island of Murano. 

. 

Blow glass. Glass obtained by a forming technique that involves blowing up molten glass into a 

bubble (or parison), with the aid of a blowpipe (or blow tube). 

 

Cameo glass: A luxury form of glass art produced by etching and carving through fused layers of 

differently coloured glass to produce designs, usually with white opaque glass figures and motifs 

on a dark-coloured background. The technique is first seen in ancient Roman art of about 30BC, 

where it was an alternative to the luxury engraved gem vessels in cameo style that used naturally 

layered semi-precious gemstones such as onyx and agate.  

 

Ceramics. It is constituted by a body of mineral origin (natural clay or synthetic paste) which 

may be wet shaped and which is afterwards fired at high temperatures resulting in a stone like 

synthetic material.  

 

Colorants. Metals that appear completely dissolved in the glass giving colour to it (mainly iron, 

copper, cobalt and manganese). The colour obtained depends on the metal colorant dissolved, its 

oxidation state and the glass composition. The presence of small amounts of other metals 
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(arsenic, zinc, nickel, titanium, chromium, tin or antimony), that may modify the oxidation state 

and the chemical coordination of the metals in the glass affects also the colour. 

 

Enamel. A material made by fusing powdered glass to a substrate (metal, glass, glazed ceramic)  

by firing, usually between 750 and 850°C. The powder melts, flows, and then hardens to a 

smooth, durable vitreous coating. The term "enamel" is most often restricted to the application 

on metal. Enameled glass is also called "painted". 

 

Faience. A mixture of quartz sand and a flux which may be wet shaped and which after firing 

acquires a stone-like consistency. During the drying of the object the flux salts migrate to the 

surface and produce a soda-rich glaze. It is considered the precursor of glass.  

 

Float glass. A sheet of glass made by floating molten glass on a bed of molten metal, typically 

tin, although lead and various low melting point alloys were used in the past. This method 

produces a glass sheet of uniform thickness and very flat surfaces. 

 

Fluxes. Substances added to reduce the melting temperature. Two different types of fluxes were 

used in the production of historical glasses and glazes, alkaline salts obtained either from plant 

ashes (sodalite plants whose ashes are rich in sodium carbonate, and wood ashes are rich in 

potassium) or natural salt deposits (natron a highly hydrated variety of sodium carbonate found 

in the valley of Wadi al Natrum in Egypt) and lead oxide. Both alkaline and lead glazes were 

also used in the production of glazes.  

 

Glass. Glasses are disordered materials with a structure similar to those of liquids but that 

behave mechanically like solids. The most common way of making a glass is by cooling a 

viscous liquid fast enough to avoid crystallization. The glassy state is therefore a kinetically 

frustrated metaestable state of matter reached decreasing the mobility of the atoms so as the 

atomic order of the liquid is frozen into an amorphous (non-crystalline) solid. This 

transformation called glass transition is reversible. 

Glasses are typically brittle and can be optically transparent. The most familiar type of glass is 

soda-lime glass, which is composed of about 75% silicon dioxide (SiO2) plus 25% sodium oxide 

(Na2O) and calcium oxide (CaO), and other several minor additives.  
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Glaze. Vitreous coating constituted by the same materials used to produce glass. During melting 

and solidification of the glaze dissolution of the ceramic in the melt, diffusion of chemicals from 

the ceramic into the glaze, and formation of new crystallites in the glaze-ceramic interface occur, 

giving adherence and stability to the glaze.  

 

Grisaille. A brown-blackish decoration made of iron oxides and also copper, zinc, lead and/or 

manganese oxides with a lead glass or other glassy materials with a low melting temperature. 

The lead glass is known to have a lower melting temperature than the window glass which after 

firing fixes the grisaille to the glass surface.   

 

Luster decorations. Extremely thin surface micro-layers made of exceptionally small metal silver 

and/or copper nano-particles inside the glaze matrix. The peculiar optical properties of lustre, 

including the golden and coppery shine, are directly related to the size and volume fraction of the 

metal particles. 

 

Mosaic glass. The technique of stretching prior thin rods of glass of different colors which are 

sintered together in a multicolor thicker rod that is cut into slabs which are joined together at 

their edges, like the pieces of a mosaic, and heat sealed. 

 

Opacifiers. Refer to those pigments formed by micro-crystallites with large scattering capability 

(lead and calcium antimony oxides, lead tin oxide and tin oxide), able to enhance the light 

reflected and reduce the light transmitted in the glaze. The use of opaque pigments is particularly 

interesting to hide the reddish colour of some ceramic pastes. A white background is so desirable 

to highlight the colour decorations and hide the colour of clay based ceramic pastes, than tin 

glazes became of general use in ceramics since the 8
th

 century until the 19
th

 century. 

 

Pigments. Compounds appearing as minute crystallites in the glaze (cuprite, metallic copper and 

silver, mixed metal oxides, metal aluminates among others). Their composition, structure and 

range of stability are highly dependent not only on the composition but also on the procedures 

followed to obtain them. Frequently the pigments are mixed with a flux that decreases the melting 

temperature of the paint up to 100°C below that of the background glaze (enamels). In this way, 

the overglaze colours may be fired in a second firing without the risk of damaging the base 

glaze. 
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Plaque glass. Coloured glass obtained by the application of layers of colour glass onto the 

transparent glass. 

  

Silver stain. A type of decoration applied to glass that was developed in early medieval times and 

consists of a surface layer (between 10 and 300 µm thick) of metallic silver nanoparticles of 

varying sizes (typically between 1 and 30 nm) dispersed in the glass. 

 

Slips. Refined clays of various colours applied as a decoration which vitrify to a larger extend 

than the ceramic body.  

 

Stained glass. Pieces of coloured glass assembled to produce large boards (windows) and objects 

(lamps, skylights, clocks, sculptures).  

 

Stonepaste. A synthetic ceramic paste made of sand, clay and glass frit. 
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