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Abstract

In recent times we are witnessing the emergence of a wide variety of information

systems that tailor the information-exchange functionality to meet the specific inter-

ests of their users. Most of these personalized information systems capitalize on, or

lend themselves to, the construction of profiles, either directly declared by a user, or

inferred from past activity. The ability of these systems to profile users is therefore

what enables such intelligent functionality, but at the same time, it is the source of

serious privacy concerns.

Although there exists a broad range of privacy-enhancing technologies aimed to

mitigate many of those concerns, the fact is that their use is far from being widespread.

The main reason is that there is a certain ambiguity about these technologies and

their effectiveness in terms of privacy protection. Besides, since these technologies

normally come at the expense of system functionality and utility, it is challenging to

assess whether the gain in privacy compensates for the costs in utility. Assessing the

privacy provided by a privacy-enhancing technology is thus crucial to determine its

overall benefit, to compare its effectiveness with other technologies, and ultimately

to optimize it in terms of the privacy-utility trade-off posed.

Considerable effort has consequently been devoted to investigating both privacy

and utility metrics. However, most of these metrics are specific to concrete systems

and adversary models, and hence are difficult to generalize or translate to other

contexts. Moreover, in applications involving user profiles, there are a few proposals

for the evaluation of privacy, and those existing are not appropriately justified or fail

to justify the choice.
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The first part of this thesis approaches the fundamental problem of quantify-

ing user privacy. Firstly, we present a theoretical framework for privacy-preserving

systems, endowed with a unifying view of privacy in terms of the estimation error

incurred by an attacker who aims to disclose the private information that the system

is designed to conceal. Our theoretical analysis shows that numerous privacy metrics

emerging from a broad spectrum of applications are bijectively related to this estima-

tion error, which permits interpreting and comparing these metrics under a common

perspective.

Secondly, we tackle the issue of measuring privacy in the enthralling application of

personalized information systems. Specifically, we propose two information-theoretic

quantities as measures of the privacy of user profiles, and justify these metrics by

building on Jaynes’ rationale behind entropy-maximization methods and fundamental

results from the method of types and hypothesis testing.

Equipped with quantifiable measures of privacy and utility, the second part of

this thesis investigates privacy-enhancing, data-perturbative mechanisms and archi-

tectures for two important classes of personalized information systems. In particular,

we study the elimination of tags in semantic-Web applications, and the combination

of the forgery and the suppression of ratings in personalized recommendation sys-

tems. We design such mechanisms to achieve the optimal privacy-utility trade-off, in

the sense of maximizing privacy for a desired utility, or vice versa. We proceed in a

systematic fashion by drawing upon the methodology of multiobjective optimization.

Our theoretical analysis finds a closed-form solution to the problem of optimal tag

suppression, and to the problem of optimal forgery and suppression of ratings. In ad-

dition, we provide an extensive theoretical characterization of the trade-off between

the contrasting aspects of privacy and utility. Experimental results in real-world ap-

plications show the effectiveness of our mechanisms in terms of privacy protection,

system functionality and data utility.

vii



Acknowledgments
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Carlos, Carolina, Elisabeth, Ernesto, Juan, Juan Felipe, Sergi, Victoria y Xavi, con

los he compartido el d́ıa a d́ıa durante esta estimulante y enriquecedora experiencia

que es el doctorado.
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Chapter 1

Introduction

Recent years have witnessed the accelerated growth of a rich variety of information

systems of unparalleled sophistication, whose aim is to help users deal with informa-

tion overload (a). The key enabling technology of these systems is personalization,

a research field that has received great attention lately and which strives to tailor

information-exchange functionality to the specific interests of their users. Examples

of personalized information systems comprise resource tagging in the semantic Web,

multimedia recommendation systems and personalized Web search.

The advent of personalization technologies is not only changing how people access

information these days, but it is also leading a profound transformation of the tradi-

tional business model. To a large extent, this is because companies are increasingly

approaching users in a personalized manner, attending their specific and particular

needs more effectively. However, this is not the only reason for such substantial

change: collecting information about the user’s tastes and preferences has created

additional opportunities with respect to monetizing and commercializing these per-

sonal data. The upshot is that personalized information systems are contributing to

(a)IBM claims that “90% of the data in the world today has been created in the last two years alone.
This data comes from everywhere: sensors used to gather climate information, posts to social media
sites, digital pictures and videos, purchase transaction records, and cell phone GPS signals” [1].

1
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unprecedented performance improvements in large business and small and medium en-

terprises (SMEs). For example, Amazon (b), who invented item-to-item collaborative-

filtering algorithms [2], one of the most widely used personalization techniques, had

more than 115 million average monthly unique visitors during the fourth quarter of

2012 [3]. Another example that illustrates this transformation is Facebook (c), which

reported $1.46 billion in revenue for the first quarter of 2013. An 86 % of total income

came from selling access to their data so that marketers could deliver targeted adver-

tising messages to Facebook users [4]. Pushed by these personalization techniques,

online advertising is expected to reach $139.8 billion in 2018, with an annual growth

rate of 7.3% during the period 2013-2018 [5].

The impact of personalized information systems on the economy is evident as

it is on user privacy. Most of these systems capitalize on, or lend themselves to,

the construction of profiles, either directly declared by a user, or inferred from past

activity, not only of the user in question, but also from the profiles of users with whom

social relationships are known to the information system. Personalization allows users

to deal with the overwhelming overabundance of information, but inevitably at the

expense of privacy, especially when profiling is conducted across several information

systems. In a nutshell, the ability of these systems to profile users based on their

queries, clicks, tags, ratings and any other digital evidence and trace they leave in the

online world is what enables such desired personalized service, but at the very same

time, it poses evident privacy and security risks.

A variety of privacy-enhancing technologies (PETs) have been proposed to pro-

tect user privacy. Anonymous-communication networks [6–15], anonymous creden-

tials [16–18], anonymous electronic cash [19], multiparty computation [20] and oblivi-

ous transfer protocols [21] are some examples of general-purpose PETs whose develop-

ment roughly originates from the fields of security and cryptography. Unfortunately,

PETs have not yet gained wide adoption. This is mainly because it remains unclear

whether their overall benefits outweigh the operational costs caused by their use [22];

(b)http://www.amazon.com
(c)https://www.facebook.com

http://www.amazon.com
https://www.facebook.com
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PETs typically come with penalties in terms of system functionality and data utility,

which pose a trade-off between privacy protection and said penalties.

Evaluating the privacy provided by a PET is therefore crucial to determine its

benefit, compare its effectiveness with other technologies, and ultimately to improve

it. Further, quantifiable measures of the privacy gained and the cost incurred en-

able system designers to devise and optimize privacy-enhancing mechanisms in terms

of the aforementioned privacy-utility trade-off; say, maximizing privacy for a given,

acceptable cost.

Consequently, it is not surprising that a great deal of research has been devoted to

the investigation of both privacy and utility metrics. The vast majority of these met-

rics have emerged from the mature fields of statistical disclosure control (SDC) [23–32]

and anonymous-communication systems (ACSs) [9,33–44]. The problem is that most

of them build upon different adversary models, capture diverse privacy threats and

are intended to be used in specific settings. This restricts the scope of application

of these metrics and precludes their generalization to other contexts such as per-

sonalized information systems. Besides, system designers often have several privacy

metrics to choose from in a concrete application. In those cases, there is no guidelines

that help designers decide which is the most appropriate approach for their privacy

requirements.

In personalized information systems, the literature of privacy criteria is still in its

infancy. There exist several proposals for assessing user privacy in this context, but

they fail to justify the choice and are often defined to evaluate just the effectiveness of

a concrete PET. This calls for the formalization of adversary models, the specification

of the privacy risks considered under such models, and the rigorous justification of

the privacy and utility metrics. Only in this way, quantitative measures of privacy

and utility will contribute to the widespread adoption of PETs.

In the context of personalization, it is of special importance for PETs to deal

with the compelling case when the intended recipient of sensitive information, i.e.,

the personalized information system, is not fully trusted and may thus be construed

as a privacy attacker. Traditional encryption techniques offer the possibility of either

fully delivering or completely obfuscating user information, by either providing or not
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a cryptographic key permitting its deciphering. In the case of intended yet untrusted

recipients, however, we are faced with a dilemma of great practical relevance.

Among a myriad of alternative PETs, those relying on data perturbation allow

users to expose portions of their data, or somewhat modified versions of it, without

the requirement of trusted intermediaries. By slightly perturbing confidential data

locally prior to its disclosure, users attain a certain level of privacy in the presence of

an untrusted information system, but at the expense of slightly degrading the utility

of the data received by such system. Naturally, any perturbation introduced in the

data will translate into a degradation of the quality of the personalized services. In a

nutshell, we are confronted with the inescapable compromise between the contrasting

aspects of privacy and utility.

The existence of this inherent compromise is a strong motivation to systematically

develop quantifiable metrics of privacy and utility, and ultimately to design practi-

cal privacy-enhancing, data-perturbative mechanisms achieving serviceable points of

operation in this privacy-utility trade-off.

1.1 Objectives

The objective of this dissertation is twofold. On the one hand, we tackle the issue of

quantifying user privacy, first, in a general context that embraces the fields of SDC,

ACSs and location-based services (LBSs); and secondly, in the specific and fascinat-

ing application of personalized information systems. On the other hand, we aim to

solve the fundamental problem of privacy protection in these information systems.

We approach this problem by means of data-perturbative mechanisms engineered to

achieve a formally optimal trade-off encompassing the contrasting aspects of privacy

and utility.

The scientific and technical objectives of this thesis may be more precisely de-

scribed as follows:

• Privacy metrics. We shall derive quantitative measures of privacy that are

meaningful in the context of each of the applications we consider. Our study

of metrics extends beyond the measurement of the privacy of user profiles in
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personalized information systems, and contemplates other applications such as

SDC and anonymous communications. We do not expect a single set of measures

to apply to every case; instead, each application is bound to call for different

measures, and perhaps even optimization approaches. Moreover, such measures

and optimization approaches will have to take into account multiple factors,

including the adversaries’ abilities and the nature of the private information to

be protected. Mathematical measures of privacy will build upon mathematical

models of user profiles, in the form of relative histograms of activity across

predetermined sets of categories of interest.

• Data-perturbative mechanisms and privacy-utility trade-off. We shall

design novel privacy-enhancing mechanisms and architectures for the privacy

protection of user profiles in personalized information systems. These mecha-

nisms and architectures will be devised in the form of parameterized models,

allowing, in particular, the perturbation of the data by means of suppression

and forgery. Building upon the previous objective, we shall measure the privacy

gained by those data-perturbative strategies, and any possible data utility loss

incurred. This will enable us to engineer such mechanism, specifically by mod-

eling them as privacy-utility, multiobjective optimization problems. In order

to achieve this goal, we shall develop and adapt theoretical procedures to solve

those optimization problems. More generally, we intend to capitalize on rich

concepts and powerful techniques from the mature fields of information theory,

statistics and convex optimization.

1.2 Summary of Contributions

Next, we give an overview of the major contributions of this dissertation.

• We investigate a theoretical framework that enables system designers, first, to

comprehend the relationships among state-of-the-art privacy criteria from SDC,

ACSs and LBSs; secondly, to grasp the privacy properties and the underlying

adversary models associated with each of these metrics; and ultimately, to as-

sess their suitability for a given application. Our framework permits interpreting
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such metrics as particular cases of our more general and unifying view of pri-

vacy, namely the attacker’s estimation error. The arguments presented in our

interpretations capitalize on fundamental results from the fields of information

theory, probability theory and Bayes decision theory.

• We propose two information-theoretic quantities as measures of the privacy

of user profiles in the context of personalized information systems. The pro-

posed criteria build on Jaynes’ rationale behind entropy-maximization methods,

and some results from large deviation theory and hypothesis testing. We con-

template two adversary models, each one capturing different objectives for the

attacker. These objectives are defined consistently with the technical literature

of profiling, thus connecting notations of this field with information theory.

• In the context of the semantic Web, we design tag suppression, a privacy-

enhancing mechanism that leverages on the principles of data perturbation and

data minimization. Such mechanism lends itself to be implemented as a soft-

ware application running on the user’s computer. We devise an architecture

that provides high-level functional specifications to implement this software.

Like any data-perturbative approach, privacy protecting comes at the cost of

data utility. This privacy-utility trade-off is formulated as a multiobjective

optimization problem. We find a closed-form solution to said problem and

mathematically characterize the trade-off curve of our privacy-utility optimized

mechanism. Experimental results show how tag suppression may enhance user

privacy in a semantic-Web application.

• The architecture of current collaborative tagging services is extended to include

a policy layer and a privacy layer. The former allows users to explicitly denote

resources of interest and to specify which resources should be blocked while

browsing the Web. The latter implements the tag-suppression mechanism. We

assess the impact that tag suppression would have on the services enabled by

such policy layer. In particular, our performance evaluation shows the effective-

ness of the extended architecture in terms data utility and filtering capabilities

for the applications of resource recommendation and parental control.
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• Finally, in the context of personalized recommendation applications we engineer

a privacy-protecting technology that simultaneously combines the forgery and

the suppression of ratings. The details of a practical implementation of this

technology are presented in the form of a modular architecture. The trade-off

between privacy risk on the one hand, and on the other, loss in the accuracy of

the recommendations, is modeled as a multiobjective optimization problem. We

find an explicit closed-form solution, which allows us to configure the operating

point of our mechanism within the optimal privacy-utility trade-off surface.

Further, we provide an extensive theoretical analysis that investigates several

compelling properties of this trade-off, including its behavior at low rates of

forgery and suppression, and some results showing when suppression is more

convenient than forgery. Lastly, we apply the forgery and the suppression of

ratings to a real-world recommendation system and evaluate to which degree

the proposed mechanism may effectively protect the privacy of its users.

1.3 Related Publications

This thesis has been developed within the framework of several Spanish R&D projects,

in particular, TSI2007-65393-C02-02 “ITACA”, TEC2010-20572-C02-02 “CONSE-

QUENCE” and CONSOLIDER 2010 CSD2007-00004 “ARES”. Most of the research

results presented in this dissertation have been published in journals and conferences.

In this section we provide a list of such publications, together with their complete

bibliographic information. Further, we include other complementary articles that are

not directly related with the research topic of this thesis, but which are especially

significant from the state-of-the-art perspective.

Journal publications:

1. J. Parra-Arnau, A. Perego, E. Ferrari, J. Forné and D. Rebollo-Monedero,

“Privacy-preserving enhanced collaborative tagging,” IEEE Transactions on

Knowledge and Data Engineering (TKDE). ISSN: 1041-4347. Impact factor

2012: 1.892. To appear [45].
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2. J. Parra-Arnau, D. Rebollo-Monedero and J. Forné, “Measuring the privacy of

user profiles in personalized information systems,” (Elsevier) Future Generation

Computer Systems (FGCS), Special Issue on Data Knowledge and Engineering.

ISSN: 0167-739X. Impact factor 2012: 1.864. To appear [46].

3. J. Parra-Arnau, D. Rebollo-Monedero, J. Forné, J. L. Muñoz and O. Esparza,

“Optimal tag suppression for privacy protection in the semantic Web,” (Else-

vier) Data & Knowledge Engineering (DKE), vol. 81-82, November-December

2012. ISSN: 0169-023X. Impact factor 2012: 1.519 [47].

4. D. Rebollo-Monedero, J. Parra-Arnau, C. Diaz and J. Forné, “On the mea-

surement of privacy as an attacker’s estimation error,” (Springer) International

Journal of Information Security (IJIS), vol. 12, no. 2, pp. 129-149, April 2012.

ISSN: 1615-5262. Impact factor 2012: 0.480 [48].

5. J. Parra-Arnau, D. Rebollo-Monedero and J. Forné, “Optimal forgery and sup-

pression of ratings for privacy enhancement in recommendation systems,” sub-

mitted. [Online]. Available: http://arxiv.org/abs/1302.2501 [49].

6. J. Parra-Arnau, D. Rebollo-Monedero and J. Forné, “A privacy-protecting ar-

chitecture for recommendation systems via the suppression of ratings,” (Science

& Engineering Research Support Society) International Journal of Security and

Its Applications (IJSIA), vol. 6, no. 2, pp. 61-80, April 2012. ISSN: 1738-

9976 [46].

Conference publications:

7. D. Rebollo-Monedero, J. Parra-Arnau and J. Forné, “An information-theoretic

privacy criterion for query forgery in information retrieval,” in Proceedings of

the International Conference on Security Technology (SecTech), Communica-

tions in Computer and Information Science (Springer), vol. 259, Jeju Island,

South Korea, December 2011, pp. 146-154. ISBN: 978-3-642-27188-5. Best

paper award [50].

http://arxiv.org/abs/1302.2501
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8. J. Parra-Arnau, D. Rebollo-Monedero and J. Forné, “A privacy-preserving ar-

chitecture for the semantic Web based on tag suppression,” in Proceedings of the

7th International Conference on Trust, Privacy & Security in Digital Business

(TrustBus), Lecture Notes in Computer Science (Springer), vol. 6264, Bilbao,

Spain, August 2010, pp. 58-68. ISBN: 978-3-642-15151-4 [51].

9. J. Parra-Arnau, D. Rebollo-Monedero and J. Forné, “A privacy-protecting ar-

chitecture for collaborative filtering via forgery and suppression of ratings,” in

Proceedings of the 6th International Workshop on Data Privacy Management

(DPM), Lecture Notes in Computer Science (Springer), vol. 7122, Leuven, Bel-

gium, September 2011, pp. 42-57. ISBN: 978-3-642-28878-4 [52].

10. D. Rebollo-Monedero, J. Parra-Arnau and J. Forné, “Un criterio de privacidad

basado en teoŕıa de la información para la generación de consultas falsas,” in

Proceedings of the XI Reunión Española sobre Criptoloǵıa y Seguridad de la

Información (RECSI), Tarragona, Spain, September 2010, pp. 129-134. ISBN:

978-84-693-3304-4 [50].

Finally, we list the complementary articles mentioned at the beginning of this section.

11. D. Rebollo-Monedero, J. Forné, E. Pallarès and J. Parra-Arnau, “A modification

of the Lloyd algorithm for k-anonymous quantization,” (Elsevier) Information

Sciences, vol. 222, February 2013, pp. 185-202. ISSN: 0020-0255. Impact factor

2011: 3.643 [53].

12. C. Tripp-Barba, L. Urquiza, M. Aguilar, J. Parra-Arnau, D. Rebollo-Monedero,

J. Forné, E. Pallarès, “A collaborative protocol for anonymous reporting in ve-

hicular ad hoc networks,” (Elsevier) Computer Standards & Interfaces, vol. 36,

November 2012, pp. 188-197. ISSN: 0920-5489. Impact factor 2012: 0.978 [54].

13. D. Rebollo-Monedero, J. Forné, E. Pallarès, J. Parra-Arnau, C. Tripp-Barba,

L. Urquiza, M. Aguilar, “On collaborative anonymous communications in lossy

networks,” (Wiley) Security and Communication Networks, Special Issue on

Security in a Completely Interconnected World. ISSN: 1939-0114. Impact factor

2012: 0.311. To appear [55].
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1.4 Outline of this Thesis

The structure of this dissertation is in line with the research objectives defined in

Sec. 1.1. In particular, this thesis is organized into two parts. The first part focuses

on the investigation of privacy criteria as well as other aspects intimately related to

them, such as adversary models and models of user profiles. The second part focuses

on PETs based on data perturbation and studies how to optimize them in terms of

the privacy-utility trade-off they pose. These two parts are called privacy metrics

and data-perturbative mechanisms and privacy-utility trade-off, respectively.

Chapter 2 illustrates the privacy risks inherent in personalized information systems

and reviews the state of the art relevant to this dissertation. Several concepts from

information theory are also examined in this chapter.

The first part starts right after this. Chapter 3 proposes quantifying privacy in

terms of the attacker’s estimation error. The theoretical framework developed in

this chapter is then shown to provide a unifying view of numerous privacy criteria

emerging from a wide range of applications. Chapter 4 focuses on measuring user

privacy in the context of personalized information systems. In particular, it describes

our assumptions about the potential privacy attackers and presents a mathematically,

tractable model of user interests. Building upon this adversary model, Chapter 4

proposes and justifies several privacy metrics stemming from information-theoretic

concepts. Such metrics lay the foundation for the investigation of novel privacy-

enhancing mechanisms in the next chapters.

The second part of this dissertation begins with Chapter 5. This chapter explores a

mechanism aimed at protecting user privacy in the semantic Web, and describes how it

could be implemented in practice. Chapter 5 also includes a theoretical characteriza-

tion of the privacy-utility trade-off posed by our approach. Afterwards, Chapter 6 pro-

vides an extension of the current architecture of collaborative tagging systems. Such

extension incorporates, on the one hand, the privacy-preserving technology explored

in Chapter 5, and on the other, additional services such as resource recommenda-

tion and parental-control filtering. This chapter examines how our data-perturbative

mechanism would degrade these two additional services. Lastly, Chapter 7 proposes
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the combination of two data-perturbative strategies as a means for safeguarding user

privacy in the context of personalized recommendation systems. This chapter ana-

lyzes the privacy gained and the cost incurred by the proposed mechanism and reports

experimental results in a popular recommender system.



Chapter 2

Background and Related Work

The first part of this chapter begins with an introduction to personalized information

systems. We explore the privacy risks inherent in such systems and emphasize the

importance of privacy and utility metrics. Then, we present data perturbation as a

compelling approach to enhance user privacy.

The second part of this chapter, namely Sec. 2.2, recalls some information-theo-

retic concepts that will be used throughout this dissertation. Afterwards, Secs. 2.3

and 2.4 review the state of the art in privacy-protecting mechanisms and privacy

measures. A great portion of this review is adapted from [46–49,53–55].

2.1 Privacy Issues in Personalized Information Systems

Selecting and directing information are crucial in every aspect of our modern lives,

including areas as diverse as health, leisure, marketing and research. In the past,

these processes were largely manual, but due to the exponential improvements in

computation and memory, sophistication of software and the gradual ubiquity of

mobile and fixed Internet access, they are now becoming increasingly automated.

The automation of these processes clearly facilitates effective handling of infor-

mation. In a world where online information systems, society and economics have

become inextricably entangled, the automated, personalized filtering and selection of

an otherwise overwhelming overabundance of information is indispensable. To put

12
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this continuous bombardment of information in numbers, every minute 6 600 pictures

are uploaded to Flickr (a), 600 videos are submitted to YouTube (b), 70 new Inter-

net domains are registered, 98 000 tweets are generated on the social networking site

Twitter (c), 20 000 new posts are published on the micro-blogging platform Tumblr (d)

and 12 000 new ads are posted on Craigslist (e) [56].

Endowing the above systems with intelligent processes for the selection and direc-

tion of such tremendous flow of information increases their usability and guarantees

their effectiveness. Said processes of information filtering and targeting can be built

on the basis of user profiles, either explicitly declared by a user, or derived from

past activity. Automated information filtering may, for example, help tailor a Google

search to the personal preferences of a user, by leveraging on their search history.

When searching in Facebook for a name of a person we would like to become virtual

friends with, the site takes into account numbers of common friends to recommend

the most likely person with that name. Under a conceptual, abstract perspective,

personalized search and social networks are really a special case of recommendation

systems, which encompass functionality of a growing variety of information services,

predominantly multimedia recommendation systems such as YouTube, Netflix (f),

Spotify (g), the Genius function of iTunes or Pandora Radio (h), to name just a few.

As for automated information targeting, the market of personalized online mar-

keting, lavishly illustrated by Google AdSense or Yahoo! Advertising, is yet another

critical aspect of modern life, to the point that the success of most competitive eco-

nomic activities is largely dependent on advertising. In a scenario with hundreds of

TV channels, Internet and spam filters, the competitiveness in the process of adver-

tising itself is of paramount importance.

(a)http://www.flickr.com
(b)http://www.youtube.com
(c)https://twitter.com
(d)http://www.tumblr.com
(e)http://www.craigslist.org
(f)http://www.netflix.com
(g)https://www.spotify.com
(h)http://www.pandora.com

http://www.flickr.com
http://www.youtube.com
https://twitter.com
http://www.tumblr.com
http://www.craigslist.org
http://www.netflix.com
https://www.spotify.com
http://www.pandora.com
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2.1.1 Impact of Personalization

We now underpin the arguments of the previous section with a few, albeit sufficiently

illustrative, quantitative, economic and social data.

During the last two decades, the Internet and the World Wide Web have been

gradually integrating into people’s daily lives and have enabled new forms of commu-

nication such as e-mail and instant messaging. The so-called network of networks [57]

not only has become an essential communication channel but also has transformed

people’s habits: online shopping, electronic voting and streaming media are just other

examples of services and applications built upon this network. In recent years, we

have also witnessed the emergence of mobile phones with advanced computing and

connectivity, allowing users to access the Internet everywhere and enabling a myriad

of new applications such as LBSs. Last but not least, we have seen how social net-

works are changing the way we socialize, create and share information with friends

and colleagues. A clear example of this is Facebook, which nowadays is the greatest

exponent of social networking with more than 1.11 billion users around the world,

including numerous firms which provide information about their products and ser-

vices [58].

The dimension of this transformation is still not appreciated in its full extent.

As the Internet is expanding from the current 2.4 billion users to the 5 billion users

predicted in 2020 [59], a recent survey indicates that the Internet has a strong influ-

ence on economic growth rates across a range of large and developed countries [60].

The report in question shows that the Internet represents, on average, 3.4% of GDP

across the large economies that make up 70% of global GDP. Should the Internet

consumption and expenses be deemed a sector, its magnitude in terms of GDP would

be greater than education or agriculture sectors. Another significant figure is the

steadily growing market penetration of smartphones, with 153.9 million units sold

worldwide in the second quarter of 2012 [61].

Nevertheless, breathing new life into traditional activities is possibly the Inter-

net’s most relevant impact. The network of networks has led to key business changes

embracing the whole value chain in almost all sectors and companies. These changes

have had an impact not only on how products are sold but also, and more importantly,
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on how companies approach users in a personalized manner, taking into account their

unique preferences. With the emergence of mobile devices, this paradigm shift is even

more exacerbated, as smartphones and tablets enable marketers to stay close by, lit-

erally in one’s hand. An example that gives an idea of this transformation is Pandora

Radio, the biggest automated music recommendation system, which streamed more

than 3.9 billion hours of music in 2012, and generated $83.9 million revenue in mobile

platforms during the last quarter of 2013 [62].

Consequently, the Internet and the technologies enabling personalization as a so-

lution to the one-size-fit-all paradigm are contributing to performance improvements

in large businesses; but their influences are also essential to SMEs: now it is feasible

for a small company to be a global company from the very beginning, spanning ge-

ographies, cultures and nearly all conceivable domains, capabilities that once were in

the hands of big corporations. In this respect, a study on SMEs showed that 75% of

the economic impact of the Internet was found in traditional companies that would

not consider themselves as being Internet’s players [63]. Another report shows that,

among the more than 4 800 SMEs surveyed, those firms using Web technologies grew

more than twice as fast as those with a minimal Web presence [60]. In a nutshell,

this just reinforces the fact that these information technologies are also contributing

to the transformation of the business model.

On the other hand, personalization is having a great impact on those technologies

that allow users to navigate and retrieve information from the Web. In the current

context of information overload, where the amount of information available to users

grows exponentially, search engines can help them separate the wheat from the chaff

by exploiting their search histories or location. The relevance of personalized infor-

mation is also stressed in the way search engines capitalize on the data available on

social networks to improve search results. For instance, Facebook’s users can use the

button “like” to indicate interest in some content they find on the Web. Afterwards,

when a user submits a query, those pages classified as “liked” by their friends may be

used to rank search results.
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The upshot is that today we are witnessing the advent of a number of services in

the Internet where personalization plays a prime role. Google Search and News (i),

Digg (j), YouTube, Netflix and FourSquare (k) are just a few examples of those ser-

vices, with billions of users worldwide. Although these services are leading to a

profound transformation both in numerous aspects of people’s lives and in economy,

we would like to emphasize that we are still in an early stage, incapable of discerning

the changes these technologies will foster. As the Internet grows and many more

enabling technologies arise, the capability of providing many more users with en-

hanced personalized services will continue to increase exponentially. As a result, our

society should be ready to embrace the myriad of opportunities that personalized

information systems can create, but without losing sight of the privacy challenges

these technologies pose.

2.1.2 Privacy Risks

At the heart of personalized information systems is profiling. From a home computer

or a smartphone, users submit queries to Google, search for news on Digg, rate

movies at IMDb (l) and tag their favorite Web pages on Delicious (m). Over time, the

collection and processing of all these actions allow such systems to extract an accurate

snapshot of their interests or user profile, without which personalized services could

not be provided. Profiling is therefore what enables those systems to determine what

information is relevant to users, but at the same time, it is the source of serious

privacy concerns.

These concerns become more serious and difficult to manage when user profiles

are cross-referenced among a number of information services. An illustrative example

is [64], which demonstrates that it is feasible to unveil private information about a

person from their movie rating history by cross-referencing data from other sources.

The cited work analyzed the Netflix Prize data set [65], which contained anonymous

(i)http://news.google.com
(j)http://digg.com
(k)https://foursquare.com/
(l)http://www.imdb.com

(m)https://delicious.com

http://news.google.com
http://digg.com
https://foursquare.com/
http://www.imdb.com
https://delicious.com
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movie ratings of around half a million users of Netflix, and was able to uncover

the identity, political leaning and even sexual orientation of some of those users, by

simply correlating their ratings with reviews they posted on the popular movie Web

site IMDb.

Moreover, the enrichment of these information services with data from social net-

works creates additional opportunities with respect to information sharing, but in-

evitably aggravates the user privacy risks. User profiles may reveal sensitive informa-

tion such as health-related issues, political preferences, salary and religion, not only

about the user in question, but also about other users with whom social relationships

are available to the service provider.

Further, the advent of cloud computing makes information and communication

technologies more interconnected: a single online transaction may involve multiple

business partners and create multiple pieces of digital evidence at various service

providers. A major current trend is the provisioning of applications of increasing

complexity and sophistication to a standard Web browser. While this eliminates

the need for the user to locally maintain software, it further increases privacy risks

because all data are necessarily stored in the cloud.

All these environments favor the collection, exchange and processing of personal

information about the users. As a consequence, there is pressing need that the systems

and applications which entail such processing of personal data take into account the

existing European legal and regulatory framework on privacy and data protection.

As the intrinsic privacy risks of personalized information systems become clearer to

society, legal compliance and social acceptance will become an increasingly important

success factor. Privacy protection may even become a competitive business advantage

in the design of such systems. Simultaneously searching for the terms “privacy” and

“Facebook” in the New York Times search tool, for example, retrieves over four

million articles (n); the progressive integration of everyday activities into the Internet

can only increase both the risk and its social awareness.

(n)As of May 28, 2013, resulting from the query http://query.nytimes.com/search/

sitesearch/#/privacy+facebook

http://query.nytimes.com/search/sitesearch/#/privacy+facebook
http://query.nytimes.com/search/sitesearch/#/privacy+facebook
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Use Case

In this subsection, we motivate and put in perspective the privacy risks posed by the

personalized information systems that proliferate these days in the Internet.

Jane Doe is about to finish a long day of work in the patent department of her law

firm in New York City. It has been a pretty hectic week, due to the forthcoming, albeit

still unannounced, release of a spanking new model of smartphone by Apple. This

patent is by far her favorite legal case, as she enjoys keeping herself up to date on the

latest technological gadgets, often browsing for them via Google search and YouTube.

She also loves how, these days, online tools retrieve both intelligent search results

and videos, almost anticipating her interests, undoubtedly learning from her past

activity. Unsurprisingly, after health, she rated technology highest when customizing

her preferences in Google News, which she accesses almost religiously every morning.

Her boyfriend, a computer scientist, keeps telling her that the future of information

systems lies in their personalization, by means of automated compilation of user

profiles, implicitly from behavior or explicitly from declared interests. Sounds about

right.

Jane is aware that her company may be tracking her work habits by monitoring

the use of applications and Internet access, with tools such as Track4Win. Still,

before turning off her desktop computer at work, she quickly checks a friend’s post in

Twitter confirming a meeting this Friday evening to chat about tomorrow’s protest,

organized by the Occupy Wall Street movement, against the budget cuts planned by

the government. She promptly responds, and adds a link to an intriguing article on

the subject in The New York Times, an American newspaper with left-wing views.

They are meeting at “Café Lalo”, a famous café on Upper West Side. During the

half-hour bus ride to that location, Jane uses her iPhone to log into Facebook, to

find the lovely pictures of her cousin’s newborn baby. She politely types a cheerful

comment in the album congratulating the happy family. Over the last few months, she

and her boyfriend have been seriously considering having a baby, although she wishes

her job at the law firm would offer a better work-life balance. Still a few bus stops

to go, giving her ample time to discover a couple of new Web sites on childbearing,

one of them showing Facebook’s “like” button, which she immediately presses almost
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Figure 2.1: During an Internet session through various personalized information systems, users leave
innumerable traces of sensitive information which, especially in combination, pose serious risks, not
only to their own privacy, but also to the privacy of others.

as a reflex response. Of course, her action will be diligently reflected back in her

profile. In a way, social networks are personalized information systems, reactively

and proactively providing media tailored to their users’ profiles of interests, built on

the basis of their social interactions. She also notes a new friend request in Facebook,

coming from a coworker in the human resources department. Even though their

relationship is strictly professional, she finally accepts the request out of courtesy.

Comfortably seated in the café, while waiting for her friend, Jane continues using

her smartphone to turn to Delicious, a social Web service where millions share and

tag their favorite bookmarks. Luckily, she comes across a bookmark pointing to a

site advertising an interesting job opportunity, also in the area of patents, in a law

firm with more flexible hours, which she tags with the description “work-life balance”,

having her plans to get pregnant in mind. However, she is not sure whether she has

to seriously consider this job opportunity since she is unfamiliar with both the law

firm and the bookmark’s author. Her friend arrives a few minutes late, but they both

have a pleasant evening.

Little does Jane know that, during her Internet expedition from Google search

to Delicious, passing by Google News, Twitter and Facebook, among other sites, she

has left innumerable traces of sensitive information which, especially in combination,
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pose a serious risk, not only to her own privacy, but also to the privacy of others. Hy-

pothetically speaking, Google could correlate queries on smartphones with patents

and Jane’s declared interests on technology news, with Internet protocol (IP) ad-

dresses, presumably targeting her computer at work, from which she recently posted

a detailed CV in LinkedIn (o), and thus learning about her occupation. Gathering

additional evidence confirming a surge in query activity on the subject from similar

sources, Google could be led to infer that Apple is likely to release the new iPhone 5,

and retaliate by moving forward the new Android version.

Also hypothetically, someone in the department of human resources in Jane’s

law firm, which has started considering her promotion, could have attempted to

become friends and inspect her Facebook profile to deduce the existence of a statistical

chance of her having pregnancy plans. Further, her Twitter account is indicative

of leftist views that might conflict with the political convictions of the company

management. The fact that she uses a pseudonym in Delicious may not prevent

the computer specialist in the human resources department from correlating users

with tags related to law, patents, smartphones, pregnancy and the political Occupy

Wall Street movement to guess her actual identity, and find out about her interest

in job positions with better work-life balance. Not to mention the monitoring of

her work habits and activity profile with Track4Win. Any of this could presumably

endanger her promotion or even her current position. Some of these privacy risks are

conceptually depicted in Fig. 2.1.

2.1.3 Privacy and Utility Metrics

The use case of Sec. 2.1.2 illustrates the privacy risks of the inherent need for profiles

in personalized information systems. A large number of mechanisms have been devel-

oped to mitigate such risks. Some examples comprise anonymizers, pseudonymizers,

ACSs [6–15], cryptography-based methods [16–18, 66, 67] and protocols relying on

user collaboration [68–70]. All these mechanisms are PETs that can be applied to

different scenarios and situations. The field of SDC, where an entity wants to publish

aggregate information about a population but without compromising the privacy of

(o)http://www.linkedin.com

http://www.linkedin.com
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the individuals in that population, has also engineered numerous mechanisms that

capitalize on data perturbation [53,71–74].

Despite the great diversity of technologies available and their broad scope of ap-

plication, the fact is that their use is far from being widespread. The main reason is

that PETs are seen as an “expensive innovation with unclear benefits” [22]. This is

because there is a certain ambiguity about PETs and their effectiveness in terms of

privacy protection. Besides, since these technologies frequently come at the expense

of system functionality and utility, it is difficult to evaluate whether the gain in pri-

vacy compensates for the costs in utility. It is worth to mention that the operational

and deployment costs these technologies impose are often perceived as higher than

those of traditional security mechanisms [22].

Consequently, measuring the privacy provided by a PET and the associated costs

goes a long way in determining its actual overall benefit. It is therefore no sur-

prise that much previous research has been dedicated to this topic. For instance, in

the context of SDC, some of the best-known privacy metrics are k-anonymity [23,

24], l-diversity [27, 28], t-closeness [29] and differential privacy [31]. In ACSs, two

information-theoretic privacy criteria are Shannon’s entropy and Hartley’s entropy.

In personalized information systems, there are a few proposals to measure the privacy

of user profiles. Section 2.4 examines these and more approaches for quantifying user

privacy.

2.1.4 Data-Perturbative Mechanisms and Privacy-Utility Trade-Off

Two main conclusions follow from the previous subsection. First, if there is a chance

to create a successful technology for privacy protection it is with a holistic approach,

treating privacy on the one hand, and utility on the other, as two sides of the same

coin. Secondly, a formal approach to evaluate, compare, improve and optimize novel

and existing mechanisms entails the definition of quantitative measures of privacy

and utility, contrasting aspects inherent in the design of practical, usable PETs for

personalized information systems.
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As we shall discuss in Sec. 2.3.2, a major portion of research initiatives build

upon extensively studied privacy-enhancing mechanisms related to data access con-

trol, anonymization and pseudonymization. However, more recent studies, reviewed

also in that section, contemplate the perturbation of sensitive data, while modeling

incurred losses in data usability.

The perturbation of user data in the context of personalized information systems

represents a completely different approach to more conventional privacy and security

strategies. In traditional approaches to privacy, users or designers decide whether

certain sensitive information, such as the user profile, is to be made available or not.

However, in practice, the intended recipient of sensitive information may not be fully

trusted. The availability of this data enables certain functionality, for example a

personalized recommendation. Its unavailability, traditionally attained by means of

access control or encryption, produces the highest level of privacy. In this dissertation

we do not only consider these two extremes, but the interesting continuum in between

enabled by data-perturbative mechanisms. Namely, we contemplate the possibility

of exposing only portions of the data, or somewhat distorted versions of it, to gain

privacy at the cost of data utility.

Inherent to data perturbation is therefore the existence of a trade-off between

privacy and utility. Throughout this thesis, when we refer to the privacy-utility

trade-off, the term utility will denote a quantification of the degree of functionality

maintained with respect to that intended by the information system, despite the

implementation of privacy mechanisms that may hide or perturb part of the data,

along with the degree of quality of service maintained, despite processing, storage

and communication overheads incurred by such mechanisms.

Data-perturbative techniques thus come at the expense of utility, but have three

important features that make them particularly interesting to the application at hand.

First, these techniques can be implemented as a software program running on the

user’s computer. This is without the need for deploying any infrastructure, one of

the reasons that currently impede the adoption of PETs [22]. Secondly, as a result of

the above, users need not trust the personalized information system, nor the Internet
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Figure 2.2: In contrast to traditional methods based on access control and encryption, where data is
transmitted in the clear (plaintext) or encrypted (cyphertext), we contemplate the entire fascinating
gray area in between. In particular, we consider the perturbation of some data, or the transmission
of certain parts of it. In doing so, users enhance their privacy to a certain extent, although clearly at
the cost of utility. In this dissertation, we investigate mechanisms based on user profile perturbation
and optimize them in terms of the privacy-utility trade-off they pose.

service provider (ISP), nor any other external entity. And thirdly, data-perturbative

mechanisms can be combined synergically with other PETs.

Equipped with quantitative measures of privacy and utility, we may strive to

conceive such mechanisms modeled and engineered to attain the optimal privacy-

utility trade-off, in the sense of maximizing privacy for a desired utility, or vice versa,

with the aid of convex optimization techniques [75]. Fig. 2.2 conceptually illustrates

such trade-off.

2.2 Statistical and Information-Theoretic Preliminaries

This section establishes notational aspects and recalls key information-theoretic con-

cepts assumed to be known in the remainder of this work.

The measurable space in which a random variable (r.v.) takes on values will be

called an alphabet. With a mild loss of generality, we shall always assume that the

alphabet is discrete. We shall follow the convention of using uppercase letters for

r.v.’s, and lowercase letters for particular values they take on. The probability mass

function (PMF) p of an r.v. X is a function that maps the values taken by X to

their probabilities. Conceptually, a PMF is histogram of relative frequencies across
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the possible values determined by the alphabet of the r.v. in question. Throughout

this dissertation, PMFs will be subindexed by their corresponding r.v.’s in case of

ambiguity risk. Accordingly, both p(x) and pX(x) denote the value of the function

pX at x. Occasionally, we shall refer to the function p by its value p(x). We use the

notations pX|Y and p(x|y) equivalently.

The expectation of an r.v. X will be written as EX, concisely denoting
∑

x x p(x),

where the sum is taken across all values of x in its alphabet. We adopt the same

notation for information-theoretic quantities used in [76]. Concordantly, entropy,

Kullback-Leibler (KL) divergence and mutual information will be denoted by the

symbols H, D and I, respectively. We briefly recall these concepts for the reader not

intimately familiar with information theory.

The Rényi entropy of order α of a discrete r.v. X with PMF pX and alphabet X
is defined as

Hα(X) =
1

1− α log
∑
x

pX(x)α.

Regarded as a measure of the uncertainty of an r.v., Rényi’s entropy may more con-

ceptually be defined as

Hα(X) = − log Mα−1[pX(X)],

where Mα−1 denotes the power mean with exponent α− 1 of the values of the distri-

bution pX , weighted by itself. In the important case when α = 0, Rényi’s entropy is

essentially given by the support set of pX , that is,

H0(X) = log |{x ∈ X : pX(x) > 0}| .

In this particular case, Rényi’s entropy is referred to as Hartley’s entropy. Evidently,

if pX is strictly positive, then H0(X) = log |X |. On the other hand, in the limit when

α approaches 1, Rényi’s entropy reduces to Shannon’s entropy,

H1(X) = −
∑
x

pX(x) log pX(x).
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We shall also use the notation H1(p) whenever we wish to emphasize the dependence

of such entropy on the PMF of X (p). Lastly, in the limit as α goes to ∞, the Rényi

entropy approaches the min-entropy

H∞(X) = min
x
− log pX(x) = − log max

x
pX(x).

Above, all logarithms are taken to base 2, and subsequently the entropy units are

bits. If the base is e, we denote the natural logarithm by ln, and entropy is measured

in nats. We use the convention that 0 log 0 = 0, which can be justified by continuity

arguments.

Given two probability distributions p(x) and q(x) over the same alphabet, the KL

divergence is defined as

D(p ‖ q) = Ep log
p(X)

q(X)
=
∑
x

p(x) log
p(x)

q(x)
,

where the expectation is taken over the distribution p. The KL divergence is often

referred to as relative entropy, as it may be regarded as a generalization of the Shannon

entropy of a distribution, relative to another. Conversely, Shannon’s entropy is a

special case of KL divergence, as for a uniform distribution u on a finite alphabet of

cardinality n,

D(p ‖u) = log n− H1(p). (2.1)

Although the KL divergence is not a distance function, because it is neither sym-

metric nor satisfies the triangle inequality, it does provide a measure of discrepancy

between distributions, in the sense that D(p ‖ q) > 0, with equality if, and only if,

p = q. On account of this fact, relation (2.1) between entropy and KL divergence

implies that H1(p) 6 log n, with equality if, and only if, p = u.

Consider two r.v. X and Y , with joint PMF pXY and marginal distributions pX

and pY . The mutual information of these two r.v.’s is defined as the KL divergence

(p)From Chapter 4 onwards, our use of Rényi’s entropies will be limited only to Shannon’s. In
those chapters, we shall drop the subindex and write H(X) to denote the Shannon entropy of the
r.v. X.
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between the joint distribution and the product distribution pX pY ,

I(X;Y ) = D(pXY ‖ pX pY ) =
∑
x

∑
y

pXY (x, y) log
pXY (x, y)

pX(x) pY (y)
,

and may be interpreted as a measure of the mutual dependence of the two r.v.’s.

Another information-theoretic quantity is the cross entropy between the distributions

p(x) and q(x), which is defined as

H(p ‖ q) = −Ep log q(X) = −
∑
x

p(x) log q(x),

from whence it follows that

H(p ‖ q) = H1(p) + D(p ‖ q).

On the other hand, we shall follow the notation in [76] to specify that two se-

quences ak and bk are approximately equal in the exponent if limk→∞
1
k

log ak
bk

= 0.

To illustrate this, consider for example the sequences ak = 23k+
√
k and bk = 23k, and

check that limk→∞
1
k

log ak
bk

= limk→∞
1√
k

= 0, which implies that they agree to first

order in the exponent. Still in the case of sequences, we shall use the abbreviated

notation xn to denote x1, x2, . . . , xn.

Last but not least, consider the variables x, y to be categorical or numerical data,

vectors, tuples or sequences of such data. Accordingly, the Hamming distance between

these two variables is defined as

dHamming(x, y) =

{
0, x = y

1, x 6= y
.

2.3 Privacy Protection in Personalized Information Systems

In this section, we shall examine the main proposals aimed at protecting user privacy

in the scenario this thesis focuses on, namely personalized information systems. Before

proceeding, Sec. 2.3.1 will introduce several trust models, essentially assumptions

about the level of trust that users place in the entities they communicate with. The

next subsection, Sec. 2.3.2, will survey the approaches of the state of the art in this

scenario, showing in each case the level of trust assumed by users.
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2.3.1 Trust Models

A number of actors are involved in the provision of personalized services. Among these

actors, we obviously find users and the information systems themselves, but also we

have the ISP, routers, switches, firewalls and any other networking infrastructure

placed between the service provider and the end user.

Any of these entities may be considered as an attacker. To hinder these attackers

in their efforts to compromise user privacy, users have a wide variety of PETs at

their disposal, such as the technologies based on proxy systems, protocols exploiting

collaboration among users, or mechanisms capitalizing on data perturbation. In some

of these cases, users must place all their trust in these technologies. In other cases,

however, it is not necessary that users trust the underlying privacy-protecting mech-

anism. In this section we define three models that specify this degree of trust. Such

levels will allow us to identify the assumptions upon which the mechanisms surveyed

in Sec. 2.3.2 build.

In the trusted model, users entrust an external entity or trusted third party (TTP)

to safeguard their privacy. That is, users put their trust in an entity which will

hereafter be in charge of protecting their private data. In the literature, numerous

attempts to protect user privacy have followed the traditional method of anonymous

communications, which is fundamentally based on the suppositions of our trusted

model. Additional examples of PETs assuming this model are anonymizers and

pseudonymizers. The idea behind these TTP-based approaches is conceptually sim-

ple. Their main drawbacks are that they come at the cost of infrastructure and

suppose that users are willing to trust other parties. However, even in those cases

where we could trust an entity completely, that entity could eventually be legally

enforced to reveal the information they have access to [77]. The AOL search data

scandal of 2006 [78] is another example that shows that the trust relationship be-

tween users and TTPs may be broken. In short, whether privacy is preserved or not

depends on the trustworthiness of the data controller and its capacity to effectively

manage the entrusted data.

On the other extreme is the untrusted model, where users mistrust any of the

aforementioned actors. Since users just trust themselves, it is their own responsibility
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to protect their privacy. Examples of mechanisms relying on the assumptions of our

untrusted model are those based on data perturbation and operating on the user side.

In this kind of data-perturbative approaches, users need not trust any entity but, as

argued in Sec. 2.1.4, privacy protection comes at the cost of system functionality and

data utility.

On a middle ground lies the semi-trusted model, where trust is distributed among

a set of peers that collaborate to protect their privacy against a set of untrusted

entities. An example of this trust model is found in the collaborative or peer-to-peer

(P2P) approaches examined later in Sec. 2.3.2. In these approaches, users trust other

peers and typically participate in the execution of a protocol aimed at guaranteing

their privacy. Users clearly benefit from this collaboration, but nothing can prevent

a subset of those peers from colluding and compromising the privacy of other users.

2.3.2 Privacy-Enhancing Technologies

In this section we review the state of the art in PETs in the context of personalized

information systems. Partly inspired by [79], we classify these technologies into five

categories: basic anti-tracking technologies, cryptography-based methods from pri-

vate information retrieval (PIR), TTP-based approaches, collaborative mechanisms

and data-perturbative techniques. We would like to stress that many of the technolo-

gies reviewed, far from being mutually exclusive, may in fact be combined synergically.

Basic Anti-Tracking Technologies

A key element in the provision of personalized services are tracking technologies.

Thanks to these technologies, personalized information systems can identify users

across different visits or sessions as well as multiple Web domains. Tracking mecha-

nisms are therefore a means of driving personalization, as they allow these systems

to follow users over time, thus enabling profiling.

The inherent operation of the Internet does permit tracking users. As many other

data-communication networks, the Internet requires that every user (q) be identified

(q)Technically, machines, not users, are identified by addresses.
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by a unique address, in order for messages to be routed through the network. ISPs are

precisely in charge of allocating addresses to users and keeping the correspondence

between user identifiers and addresses. In this manner, users wishing to communicate

through the Internet just need to attach the source and destination addresses to the

message to be sent. On the one hand, these addresses enable the intermediary entities

(switches, routers, firewalls) involved in the communication process to forward these

messages until the destination address is reached. But on the other hand, since

the addresses are transmitted in the clear, the entities themselves or any adversary

capable of intercepting the messages may ascertain who is communicating with whom

and therefore may track user activity.

Employing dynamic IP addresses and rejecting hypertext transfer protocol (HTTP)

cookies are two basic methods to prevent an attacker, possibly the service provider

itself, from tracking users. The identification of users through IP addresses actually

fails when a large number of users share a single IP address. This is the case of the

users of a private network who resort to network address translation [80] and share a

static IP address. The use of the dynamic host configuration protocol [81] also pro-

vides a means to hinder privacy attackers in their efforts to monitor user behavior.

The main drawback of dynamic IP addresses is that the assignment and renewal of

these addresses are controlled by ISPs. On the other hand, rejecting HTTP cookies

may be an alternative to avoid tracking. The problem of this approach is that it can

disable other Web services.

The result of the application of these basic mechanisms is clear: the attacker

cannot build a profile of the user in question, but this is at the expense of a nonper-

sonalized service; if the service provider is unable to profile users based, for example,

on their search or tag history, no personalization is possible. We would like to note

that if these methods were completely effective, users would achieve the maximum

level of privacy protection, but the worst level in terms of utility. In terms of perfor-

mance, these mechanisms would be comparable to those more conventional techniques

based on access control or encryption. As we shall see in the remainder of this state-

of-the-art section, other PETs aimed at preserving user privacy in the context of per-

sonalized information systems assume that users are tracked and, in a way, identified.
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The aim of some these approaches is then to thwart the attacker from accurately

profile users.

Private Information Retrieval

In this subsection we briefly touch upon a few early proposals in the field of PIR.

Afterwards, we review other mechanisms relying also on cryptography. As we shall

see, the PETs reviewed in this subsection and the anti-tracking technologies examined

above have much in common: both approaches may provide users with the highest

level of privacy protection but at the cost of nonpersonalized services.

PIR refers to cryptography-based methods that enable a user to privately retrieve

the contents of a database, indexed by a memory address sent by the user, in the

sense that it is not feasible for the database provider to ascertain which of the entries

was retrieved [82, 83]. In the context of Web search, PIR protocols allow a user to

look up information in an online database without letting the database provider know

the search query or response. A simple way to provide this functionality is as follows:

the database provider submits a copy of the entire database to the user so that they

can look up the information themselves. This is known as trivial download. The field

of PIR is aimed at transferring less data while still preserving user privacy.

The first PIR protocol [66] traces back to 1995. Said protocol allowed users

to privately retrieve records from a series of replicated copies of a database. In

this scheme, each of the servers storing a copy of that database could not learn

any information about the items retrieved by the user; this was, however, at the

expense of a large amount of communication. In the current information systems,

the implementation of this solution is impractical; normally these systems make use

of a database stored on a single server. Despite these shortcomings, this initial work

triggered numerous and important contributions to the field.

An alternative to this protocol was [67], which proposed the first single-server

approach in 1997. As in many subsequent PIR protocols, the main problem with this

alternative is that it requires the participation of the server itself. In other words,

the single-server approach implicitly assumes that the database provider will have
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some incentives to help users protect their protect. In practice, this is an unrealistic

assumption.

Although the literature of PIR is particularly rich and extensive, the mechanisms

proposed so far have several major limitations. First, considering the inherent opera-

tion of these protocols, we may conclude that personalization is unfeasible. Since the

database provider does not know neither the queries nor the corresponding answers,

users cannot be profiled by the provider. And secondly, there are several disadvan-

tages that preclude the practical deployment of these cryptographic methods: PIR

protocols require the provider’s cooperation, are limited to a certain extent to query-

response functions in the form of a finite lookup table of precomputed answers, and are

burdened with a significant computational overhead. A comprehensive and detailed

discussion of PIR protocols appears in [84].

Next, we quickly explore some other mechanisms relying on cryptographic tech-

niques. An approach to conceal users interests in recommendation systems is [85,86],

which propose a method that enables a community of users to calculate a public ag-

gregate of their profiles without revealing them on an individual basis. In particular,

the authors use a homomorphic encryption scheme and a P2P communication proto-

col for the recommender to perform this calculation. Once the aggregated profile is

computed, the system sends it to users, who finally use local computation to obtain

personalized recommendations. This proposal prevents the system or any external

attacker from ascertaining the individual user profiles. However, its main handicap is

assuming that an acceptable number of users is online and willing to participate in the

protocol. In line with this, [87] uses a variant of Pailliers’ homomorphic cryptosystem

which improves the efficiency in the communication protocol. Another solution [88]

presents an algorithm aimed at providing more efficiency by using the scalar product

protocol.

TTP-based Mechanisms

A conceptually-simple approach to protect user privacy consists in a TTP acting

as an intermediary or anonymizer between the user and the untrusted personalized

information system. In this scenario, the system cannot know the user ID, but merely
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the identity of the TTP itself involved in the communication. One of the deficiencies

of this approach is that personalized services cannot be provided, as the TTP forwards

user data, e.g., queries, tags or ratings, of multiple users on their behalf.

As a solution to this problem, the TTP may act as a pseudonymizer by supplying

a pseudonym ID’ to the service provider, but only the TTP knows the correspondence

between the pseudonym ID’ and the actual user ID. A convenient twist to this ap-

proach is the use of digital credentials [16–18] granted by a trusted authority, namely

digital content proving that a user has sufficient privileges to carry out a particular

transaction without completely revealing their identity. The main advantage is that

the TTP need not be online at the time of service access to allow users to access a

service with a certain degree of anonymity.

Unfortunately, none of these approaches prevent the service provider from profiling

a user and inferring their real identity. In its simplest form, reidentification is possible

due to the personally identifiable information often included in user-generated data

such as Web search queries or tags. However, even though no identifying information

is included, an observed user profile might be so uncommon that the attacker could

narrow their focus to concentrate on a tractable list of potential identities and eventu-

ally unveil the actual user ID. Another example that illustrates why pseudonyms are

insufficient to protect both anonymity and privacy is described as follows. Suppose

that an observer has access to certain behavioral patterns of online activity associ-

ated with a user, who occasionally discloses their ID, possibly during interactions not

involving sensitive data. The same user could attempt to hide under a pseudonym

ID’ to exchange information of confidential nature. Nevertheless, if the user exhibited

similar behavioral patterns, the unlinkability between ID and ID’ could be compro-

mised through these similar patterns. In this case, any past profiling inferences carried

out for the pseudonym ID’ would be linked to the actual user ID.

In addition to these vulnerabilities, we would like to note that a collusion of

the TTP, the network operator or some entity involved in the communication could

definitely jeopardize user privacy. Moreover, all TTP-based solutions require that

users shift their trust from the personalized information system to another party,

possibly capable of collecting user data from different applications, which finally might
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facilitate user profiling via cross-referencing inferences. In the end, traffic bottlenecks

are a potential issue with TTP solutions.

We have shown that anonymizers, pseudonymizers and digital credentials are

TTP-based approaches that may be used as an alternative to hide users’ identities

from an untrusted service provider. In the remainder of this subsection, we shall

explore a particularly rich class of PETs that also rely on trusted entities, but whose

fundamental aim is to conceal the correspondence between users exchanging mes-

sages. In the scenario of personalized information systems, ACSs may contribute to

protect user privacy against the intermediary entities enabling the communications

between systems providers and users. As we shall see next, the majority of these

systems build on the assumptions of the trusted model defined in Sec. 2.3.1. Only

those systems consisting in a network of mixes may be classified into our semi-trusted

model.

As commented at the beginning of Sec. 2.3.2, the inherent operation of the Internet

poses serious privacy concerns. This is because users’ IP addresses are attached to

every message sent through the network. Clearly, the use of encryption techniques

is not enough to mitigate such privacy risks. Hiding the content of messages hinders

adversaries in their efforts to learn the information users exchange, but does not

prevent those adversaries from unveiling who is communicating with whom, when,

or how frequently. Motivated by this, the first high-latency ACS, Chaum’s mix [10],

appeared.

Fundamentally, a mix is a system that takes a number of input messages, and

outputs them in such a way that it is infeasible to link an output to its corresponding

input with certainty. In order to achieve this goal, the mix changes the appearance

(by encrypting and padding messages) and the flow of messages (by delaying and

reordering them). Specifically, users wishing to submit messages to other peers en-

crypt the intended recipients’ addresses by using public key cryptography and send

these messages to the mix. The mix collects a number of these encrypted messages

and stores them in its internal memory. Afterwards, these messages are decrypted

and the information about senders is removed. In a last stage, when the number of
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Mix 

Figure 2.3: Many of the current ACSs are built upon the idea of Chaum’s mix. Essentially, a mix
can be seen as a black box that forwards messages in such a way that prevents an adversary from
linking an outgoing message to its corresponding input message.

messages kept reaches a certain threshold, the mix forwards all these messages to

their recipients in a random order.

In the literature, this process of collecting, storing and forwarding messages when

a condition is satisfied is normally referred to as a round. An important group of

mixes called pool mixes operate on this basis. Depending on the flushing condition,

we may distinguish different types of pool mixes. Possibly, the most relevant form

of pool mixes are threshold pool mixes [6], where the condition is imposed on the

number of messages stored, as in the case of Chaum’s mixes. The main difference

is that threshold pool mixes do not flush all messages in each round, but keep some

of them. Clearly, this strategy degrades the usability of the system: any incoming

message can be stored in the mix for an arbitrarily long period of time. But these

systems, in principle, achieve a better anonymity protection since they increase the

set of possible incoming messages linkable to an outgoing target message to include

all those messages that entered the mix before this target message was flushed.

Another important group of pool mixes outputs messages based on time [7]. Es-

sentially, these timed mixes forward all messages kept in the memory every fixed

interval of time called timeout. The major advantage of these mixes is that the delay

experienced by messages is upper bounded, in contrast to the case of threshold pool

mixes. The flip side is that the unlinkability between incoming and outgoing messages

may be seriously compromised when the number of messages arriving in that interval
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of time is small. Motivated by this, some of the current mix designs implement a

combination of the strategies based on threshold and those based on time. Namely,

these systems flush messages when a timeout expires, provided that the number of

messages stored meets a threshold [8].

An alternative to pool mixes are the mixes based on the concept of stop-and-

go, known as continuous mixes [9]. Specifically, this approach abandons the idea of

rounds and gives the user the possibility of specifying the time that their messages

will be stored in the mix before being submitted, for example, to a personalized

information system. To this end, for each message to be sent the sender selects a

random delay from an exponential distribution. This information is then attached to

the message, which is encrypted with the mix’s public key and then sent to the mix.

Once the mix decrypts the message, the mix keeps it for the time specified by the

user and then forwards it to its intended recipient.

The use of networks of mixes has also been thoroughly studied in the literature.

The main reason to route over multiple mixes is to limit the trust that is placed on

each single mix. This alternative is therefore in line with the semi-trusted model

contemplated in Sec. 2.3.1. In order to trace messages, an adversary must ideally

compromise all the mixes along the path. Depending on the network topology, we may

classify the existent approaches into cascade mixes, free-route networks and restricted-

route networks. The application of cascade mixes was already suggested by Chaum in

his original work [10]. Fundamentally, this approach contemplates the concatenation

of mixes to distribute trust. In contrast to this approach where messages are routed

through a fixed path, free-route networks recommend that users choose random paths

to route their own messages [11]. In the end, restricted-route networks consider the

case where every mix in the network is connected to a reduced number of neighboring

mixes [12].

An ACS that does not delay or reorder messages, which may be thus loosely

regarded as a low-latency alternative to mixes, is onion routing [13, 14]. Such alter-

native approach is based on connections, rather than individual messages, but the

net effect is that traffic is routed through a network of nodes in order to enhance

anonymity, similarly to the scenario of cascade mixes. When a user wishes to send
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a message, they submit it first to one of these nodes. Then, the node encrypts the

message in a layered fashion and chooses the intermediate nodes to reach the recipi-

ent. Afterwards, each of these intermediate nodes peels off a layer of encryption and

forwards the resulting message to the next node in the route. In the end, the last

node delivers the message to the recipient. Considering how the system works, we

may conclude that the functionality of the nodes essentially boils down to relaying

messages. Clearly, this is in contrast to the case of mix systems, where messages

are also delayed. Further, we would like to mention the second-generation version of

onion routing, Tor [15], which has been available to Internet users since 2002. De-

spite being an improvement on onion routing, Tor nodes do not delay messages either,

rendering the system susceptible to traffic analysis based on timing comparisons.

User Collaboration

In this subsection we examine those approaches where users collaborate to enhance

their privacy. All these approaches may be understood under the semi-trusted model

described in Sec. 2.3.1.

An archetypical example of user collaboration is the Crowds protocol [68]. This

protocol is particularly helpful to minimize requirements for infrastructure and trusted

intermediaries such as pseudonymizers, or to simply provide an additional layer of

anonymity. In the Crowds protocol, a group of users collaborate to submit their

messages to a Web server, from whose standpoint they wish to remain completely

anonymous. In simple terms, the protocol works as follows. When sending a message,

a user flips a biased coin to decide whether to submit it directly to the recipient, or

to send it to another user, who will then repeat the randomized decision.

Crowds provides anonymity from the perspective of not only the final recipient, but

also the intermediate nodes. Therefore, trust assumptions are essentially limited to

fulfillment of the protocol. The original proposal suggests adding an initial forwarding

step, which substantially increases the uncertainty of the first sender from the point

of view of the final receiver, at the cost of an additional hop. As in most ACSs,

Crowds enhances user anonymity but at the expense of traffic overhead and delay.
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Closely inspired by Crowds, [54] proposes a protocol that enables users to report

traffic violations anonymously in vehicular ad hoc networks. This protocol differs from

the original Crowds in that, first, it does take into account transmission losses, and

secondly, it is specifically conceived for multi-hop vehicular networks, rather than for

wired networks. Also in the case of lossy networks, [55] provides a mathematical model

of a Crowds-like protocol for anonymous communications. The authors establish

quantifiable metrics of anonymity and quality of service, and characterize the trade-

off between them.

Another protocol for enhancing privacy in communications, also relying on user

collaboration and message forwarding, is [70]. The objective of the cited work is

to hide the relationship between user identities and query contents even from the

intended recipient, an information provider. The main difference with respect to the

Crowds protocol is that instead of resorting to probabilistic routing with uncertain

path length, it proposes adding a few forged queries.

In the context of personalized Web search, [89] proposes a P2P protocol to safe-

guard the privacy of users querying the Web search engine. The protocol follows

the same philosophy of Crowds but leverages on social networks for grouping users

with similar interests. Another approach exploiting user collaboration is [90], which

suggests that two or more users exchange a portion of their queries before submitting

them, in order to obfuscate their respective interest profiles versus the network op-

erator or external observers. The idea of query profile obfuscation through multiple

user collaboration has also been investigated from a game-theoretic perspective [91].

In LBSs, users submit queries along with the location to which these queries re-

fer. An example would be the query “Where is the nearest Italian restaurant?”,

together with the geographic coordinates of the user’s current location. In this sce-

nario, [69] proposes a P2P spatial cloaking algorithm whereby users send their queries

to an untrusted LBS provider without disclosing their precise location. The authors

propose using the k-anonymity requirement [23, 24], a popular privacy criterion that

we shall review later in Sec. 2.4.1. Accordingly, when a user wishes to submit a query

to the provider, first they must find a group of k − 1 neighboring peers willing to
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collaborate. Once the group is formed, the originator of the query computes a geo-

graphical region including all users belonging to the group. After that, the user in

question selects uniformly at random one of the members of the group. Ultimately,

the originator sends both the query and the coordinates of that region to the selected

user, which in turn is responsible for forwarding this information to the LBS provider

on their behalf.

In the context of recommendation systems, some approaches suggest that users’

private information be stored in a distributed way, in order to mitigate the potential

privacy risks derived from the fact this information is kept in a single repository. One

of these approaches is PocketLens [92], basically a collaborative-filtering algorithm

specifically designed to be deployed to a P2P scenario. The proposed algorithm

enables users to decide which private information should be exchanged with other

users of the P2P community. In addition, the authors provide several architectures

for the problem of locating neighbors. Closely in line with this alternative, [93] as-

sumes a pure decentralized P2P scenario and proposes the use of several perturbative

strategies. Namely, this scheme recommends replacing the actual ratings with (i)

fixed, predefined values, (ii) uniformly distributed random values and (iii) with val-

ues drawn from a bell-curve distribution imitating the distribution of the population’s

ratings. In essence, this scheme could be regarded as a combination of the approaches

in [92] and [94].

Data Perturbation

An alternative to hinder an attacker in its efforts to precisely profile users consists in

perturbing the information they explicitly or implicitly disclose when communicating

with a personalized information system. The submission of false data, together with

the user’s genuine data, is an illustrative example of data-perturbative mechanism. In

this kind of mechanisms, the perturbation itself typically takes place on the user side.

This means that users need not trust any external entity such as the recommender, the

ISP or their neighboring peers. Obviously, this does not signify that data perturbation

cannot be used in combination with other TTP-based approaches or mechanisms

relying on user collaboration. It is rather the opposite—depending on the trust model



2.3 PRIVACY PROTECTION IN PERSONALIZED INFORMATION SYSTEMS 39

assumed by users, this class of PETs can be synergically combined with any of the

approaches examined in Sec. 2.3.2. In any case, data-perturbative techniques come

at the cost of system functionality and data utility, which poses a trade-off between

these aspects and privacy protection.

An interesting approach to provide a distorted version of a user’s profile of interests

is query forgery. The underlying idea boils down to accompanying original queries

or query keywords with bogus ones. By adopting this data-perturbative strategy,

users prevent privacy attackers from profiling them accurately based on their queries,

without having to trust neither the service provider nor the network operator, but

clearly at the cost of traffic overhead. In other words, inherent to query forgery is the

existence of a trade-off between privacy and additional traffic. Precisely, [95] stud-

ies how to optimize the introduction of forged queries in the setting of information

retrieval.

Other alternatives relying on the principle of query forgery are [96–101], which

propose a system for private Web browsing called PRAW. The purpose of this system

is to preserve the privacy of a group of users sharing an access point to the Web

while surfing the Internet. In order to enhance user privacy, the authors propose

hiding the actual user profile by generating fake transactions, i.e., accesses to a Web

page to hinder eavesdroppers in their efforts to profile the group. The PRAW system

assumes that users are identified, i.e., they are logged in a Web site. However, the

generation of false transactions prevents privacy attackers from the exact inference of

user profiles.

The idea behind [102] is the same as in the PRAW system—the authors come up

with the injection of false queries. In particular, they suggest a model working as

a black box, switching between real queries and false queries. The proposed model

operates as follows: it sends a real query with a certain probability, and a dummy

query with the complement of that probability. The actual status of the switch and

the probability of switching are assumed to be invisible or unknown to the attacker.

The authors justify this assumption by arguing that this information is only available

on the user side.
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A software implementation of query forgery is the Web browser add-on Track-

MeNot [103]. This popular add-on makes use of several strategies for generating

and submitting false queries. Basically, it exploits RSS feeds and other sources of

information to extract keywords, which are then used to generate false queries. The

add-on gives users the option to choose how to forward such queries. In particular,

a user may send bursts of bogus queries, thus mimicking the way people search, or

may submit them at predefined intervals of time. Despite the strategies users have

at their disposal, TrackMeNot is vulnerable to a number of attacks that leverage on

the semantics of these false queries as well as timing information, to distinguish them

from the genuine queries [104].

GooPIR [105] is another proposal aimed at obfuscating query profiles. Imple-

mented as a software program (r), this approach enables users to conceal their search

keywords by adding some false keywords. To illustrate how this approach works,

consider a user wishing to submit the keyword “depression” to Google and willing to

send it together with two false keywords. Based on this information, GooPIR would

check the popularity of the original keyword and find that “iPhone” and “elections”

have a similar frequency of use. Then, instead of submitting each of these three key-

words at different time intervals, this approach would send them in a batch. The

proposed strategy certainly thwarts attacks based on timing. However, its main lim-

itation is that it cannot prevent an attacker from combining several of these batches,

establishing correlations between keywords, and eventually inferring the user’s real

interest [106]. As an example, suppose that the user’s next query is “prozac” and that

GooPIR recommends submitting it together with the keywords “shirt” and “eclipse”.

In this case, one could easily deduce that the user is interested in health-related issues.

Another form of perturbation [107] consists in hiding certain categories of interests.

In this work, user profiles are organized in a hierarchy of categories in such a way

that lower-levels categories are regarded as more specific than those at higher levels.

Based on this user-profile model, the idea is to disclose only those parts of the user

profile corresponding to high-level interests.

(r)http://unescoprivacychair.urv.cat/goopir.php

http://unescoprivacychair.urv.cat/goopir.php
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In the case of perturbative methods for recommendation systems, [94] proposes

that users add random values to their ratings and then submit these perturbed ratings

to the recommender. After receiving these ratings, the system executes an algorithm

and sends the users some information that allows them to compute the prediction.

When the number of participating users is sufficiently large, the authors find that

user privacy is protected to a certain extent and the system reaches a decent level of

accuracy. However, even though a user disguises all their ratings, it is evident that

the items themselves may uncover sensitive information. Simply put, the mere fact of

showing interest in a certain item may be more revealing than the rating assigned to

that item. For instance, a user rating a book called “How to Overcome Depression”

indicates a clear interest in depression, regardless of the score assigned to this book.

Apart from this critique, other works [108,109] stress that the use of randomized data

distortion techniques might not be able to preserve privacy.

In line with these two latter works, [110] applies the same perturbative technique

to collaborative-filtering algorithms based on singular-value decomposition. More

specifically, the authors focus on the impact that their technique has on privacy.

For this purpose, they use the privacy metric proposed by [111], which is essentially

equivalent to differential entropy, and conduct some experiments with data sets from

Movielens (s) and Jester (t). The results show the trade-off curve between accuracy in

recommendations and privacy. In particular, they measure accuracy as the mean ab-

solute error between the predicted values from the original ratings and the predictions

obtained from the perturbed ratings.

2.4 Privacy Metrics

In this section we review the state of the art in privacy metrics. We proceed by explor-

ing, first, those metrics used in the application fields of SDC, ACSs and LBSs; and

secondly, we examine those privacy measures specifically intended for personalized

information systems.

(s)http://movielens.umn.edu
(t)http://eigentaste.berkeley.edu/user/index.php

http://movielens.umn.edu
http://eigentaste.berkeley.edu/user/index.php
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2.4.1 Statistical Disclosure Control

Traditionally, institutes and governmental statistical agencies have systematically

gathered information about individual respondents, either people or companies, with

the aim of distributing this information to the research community [112]. Commonly,

statistical agencies make this information public by releasing a microdata set, essen-

tially a database table whose records carry data concerning said respondents. While

these databases may be extremely useful for researchers, it is fundamental that their

publication not compromise the respondents’ privacy in the sense of revealing infor-

mation about specific individuals. With this purpose, considerable effort has been

devoted to the development of privacy-protecting mechanisms to be applied to the

microdata sets before their release. SDC [113] is, precisely, the research area that

deals with the inherent trade-off between protecting the privacy of the respondents

and ensuring that those data are still useful for researchers.

Usually, a microdata set contains a set of attributes that may be classified into

identifiers, key attributes or quasi-identifiers, or confidential attributes. First, identi-

fiers allow to unequivocally identify individuals. It would be the case of social security

numbers or full names, which would be removed before the publication of the micro-

data set. Secondly, key attributes are those attributes that, in combination, may be

linked with external information to reidentify the respondents to whom the records

in the microdata set refer. Examples include job, address, age, gender, height and

weight. Last but not least, the microdata set contains confidential attributes with

sensitive information on the respondent, such as salary, religion, political affiliation

or health condition.

With the aim of protecting the privacy of the individuals appearing in a microdata

set and, at the same time, preserving the usefulness of those data, the SDC community

has proposed a wide range of mechanisms [53, 71–74]. In essence, these mechanisms

rely upon some form of perturbation that permits enhancing privacy to a certain

extent, at the cost of losing some of the data utility with respect to the unperturbed

version. In order to assess the effectiveness of such mechanisms, numerous privacy

metrics have been investigated.
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Name Age Nationality 
Health  

Condition 

William 45 US AIDS 

Emmanuel 42 French AIDS 

Syme 47 Indian AIDS 

Naoto 31 Japanese Diabetes 

Katharine 30 US Heart Disease 

Julia 36 British Heart Disease 

Key Attributes Identifier 

Confidential  
Attribute 

(a) Original data

Age Nationality 
Health  

Condition 

40 – 50  * AIDS 

40 – 50  * AIDS 

40 – 50  * AIDS 

< 40 * Diabetes 

< 40 * Heart Disease 

< 40 * Heart Disease 

Perturbed 
Key Attributes 

Confidential  
Attribute 
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(b) Perturbed data

Figure 2.4: We apply generalization and suppression to the key attributes age and nationality
respectively, in such a manner that the requirement of 3-anonymity is satisfied. The upshot of this
perturbation is that each tuple of key attributes in the released table (b) is shared by at least 3
records. This means that an attacker who knows the key-attribute values of a particular respondent
cannot ascertain the record of this respondent beyond a subgroup of 3 records in the original table (a)
and in any public database with identifier attributes.

Probably, the best-known privacy metric is k-anonymity [23, 24], which is the re-

quirement that each tuple of key-attribute values be shared by at least k records in

the database. This condition may be achieved through the mechanisms of general-

ization and suppression, as illustrated by the example depicted in Fig. 2.4, where

age and nationality are regarded as key attributes, and health condition as a confi-

dential attribute. Rather than making the original table available, we publish a k-

anonymous version containing aggregated records, in the sense that all key-attribute

values within each group are replaced by a common representative tuple. As a result,

a record cannot be unambiguously linked to the corresponding record in the origi-

nal table or, more generally, to any public database containing identifier attributes.

Consequently, k-anonymity is said to protect microdata against linking attacks.

Unfortunately, while this criterion prevents identity disclosure, it may fail against

the disclosure of the confidential attribute. Precisely, the definition of this privacy

criterion establishes that complete reidentification is unfeasible within a group of

records sharing the same tuple of perturbed key-attribute values. However, if the

records in the group also share a common value of a confidential attribute, the associ-

ation between an individual linkable to the group of perturbed key attributes and the
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corresponding confidential attribute remains disclosed. More specifically, consider the

example depicted in Fig. 2.4 and suppose that a privacy attacker knows Emmanuel’s

key-attribute values. If the attacker learned that Emmanuel is included in the released

table, then the attacker might conclude that the individual in question suffers from

AIDS even though such attacker is not able to ascertain which record belongs to this

individual. This is known as homogeneity attack. Now suppose that the adversary

strives to infer the confidential-attribute value of Naoto, who belongs to a group in

which the distribution of this confidential-attribute value is not completely homoge-

neous. Even in this case, the adversary could exploit the fact that the Japanese have

a low incidence of heart disease and, hence, it could be deduced that this individual is

more likely to have diabetes. Such attack is known as background-knowledge attack.

Despite these two attacks, the main issue with k-anonymity as a privacy criterion

is its vulnerability against the exploitation of the difference between the prior dis-

tribution of confidential data in the entire population, and the posterior conditional

distribution of a group given the observed, perturbed key attributes. For example,

imagine that the proportion of respondents with heart disease is much higher than

that in the overall data set. This is normally referred to as a skewness attack.

All these vulnerabilities motivated the appearance of enhanced privacy criteria,

some of which we proceed to sketch briefly. A restriction of k-anonymity called

p-sensitive k-anonymity was presented in [25, 26]. In addition to the k-anonymity

requirement, it is required that there be at least p different values for each confi-

dential attribute within the group of records sharing the same tuple of perturbed

key-attribute values. Clearly, large values of p may lead to huge data utility loss.

A slight generalization called l-diversity [27, 28] was defined with the same purpose

of enhancing k-anonymity. The difference with respect to p-sensitivity is that the

group of records must contain at least l “well-represented” values for each confiden-

tial attribute. Depending on the definition of well-represented, l-diversity can reduce

to p-sensitive k-anonymity or be more restrictive. Concretely, a microdata is said

to meet the entropy l-diversity requirement if, for each group of records with the

same tuple of perturbed key-attribute values, the entropy of the distribution of the

confidential-attribute value within the group is at least log l. We would like to stress
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that neither of these enhancements succeeds in completely removing the vulnerability

of k-anonymity against skewness attacks. Further, they are still susceptible to simi-

larity attacks, in the sense that while confidential-attribute values within a cluster of

aggregated records might be p-sensitive or l-diverse, they might also very well be se-

mantically similar. For example, consider the confidential-attribute values to be lung

cancer, prostate cancer or bladder cancer, compared to other, noncancerous diseases.

In an attempt to overcome all these deficiencies, t-closeness [29] was proposed. A

perturbed microdata set satisfies t-closeness if for each group sharing a common tu-

ple of perturbed key-attribute values, some measure of distance between the posterior

distribution of the confidential attributes in the group and the prior distribution of

the overall population does not exceed a threshold t. As argued in [114], to the extent

to which the within-group distribution of confidential attributes resembles the distri-

bution of those attributes for the entire dataset, skewness attacks will be thwarted.

In addition, since the within-group distribution of confidential attributes mimics the

distribution of those attributes over the entire dataset, no semantic similarity can

occur within a group that does not occur in the entire dataset. The main limitation

of the original t-closeness work [29], however, is that no computational procedure to

reach t-closeness was specified.

An information-theoretic privacy criterion, inspired by t-closeness, was proposed

in [32]. In the latter work, privacy risk is defined as the conditional KL divergence

between the posterior and the prior distributions, a measure that may be regarded

as an average-case version of t-closeness. Particularly, this average privacy risk is

shown to be equal to the mutual information between the confidential attributes

and the observed, perturbed key attributes. A related criterion named δ-disclosure

is proposed in [30], a worst-case version that measures the maximum absolute log

ratio between the prior and the posterior distributions. Lastly, [31] analyzes privacy

for interactive databases, where a randomized perturbation rule is applied to a true

answer to a query, before returning it to the user. Consider two databases that differ

only by one record, but are subject to a common perturbation rule. Conceptually, the

randomized perturbation rule is said to satisfy the ε-differential privacy criterion if



46 CHAPTER 2. BACKGROUND AND RELATED WORK

the two corresponding probability distributions of the perturbed answers are similar,

according to a certain inequality.

2.4.2 Anonymous-Communication Systems

In the literature of ACSs, many proposals focus on measuring the extent to which

these systems provide anonymity guarantees. A key point is that the degree of

anonymity achieved by these systems depends on the capabilities of the adversary, and

often anonymity metrics are tailored to the corresponding assumptions. A complete

study on adversary models for these systems may be found in [115]. Next, we review

the most relevant anonymity metrics in the field of anonymous communications.

In the important case of the mix systems examined in Sec. 2.3.2, [9] defined the

anonymity set of users as the set of possible senders of a given message, or recipients,

in the sense that the likelihood of them fulfilling the role in question is nonzero.

A simple measure of anonymity was proposed by [33], namely the logarithm of the

number of users involved in the communication, that is, the Hartley entropy of the

anonymity set. The main drawback of this metric is that it does not contemplate the

probabilistic information that an adversary may obtain about users when observing

the system. In other words, this approach ignores the fact that certain users may be

more likely to be the senders of a particular message.

Several approaches have considered the use of information-theoretic quantities

to evaluate ACSs. The most significant are those proposed in [34, 35], in which

the degree of anonymity observable by an adversary is measured essentially as the

Shannon entropy of the probability distribution of possible senders of a given message.

A well-known interpretation of Shannon’s entropy refers to the game of 20 questions,

in which one player must guess what the other is thinking through a series of yes/no

questions, as quickly as possible. Informally, Shannon’s entropy is a lower bound on

—and often good approximation to the minimum of— the average number of binary

questions regarding the nature of possible outcomes of an event, to determine which

one in fact has come to pass, intelligently exploiting their known probabilities. The

use of entropy as a measure of privacy, however, is by no means new. As a matter

of fact, Shannon’s work in the fifties introduced the concept of equivocation as the
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conditional entropy of a private message given an observed cryptogram [116], later

used in the formulation of the problem of the wiretap channel [117,118] as a measure

of confidentiality.

Still in the case of information-theoretic measures, [36] formalizes the notion of

unlinkability by using Shannon’s entropy. By contrast, [37, 38] argue that a worst-

case metric should be considered instead of Shannon’s entropy, since the latter con-

templates an average case. The authors refer to this worst-case metric as local

anonymity, essentially equivalent to min-entropy, and concordantly define the source

hiding property as the requirement that no sender probability exceed a given thresh-

old. Another approach [39] proposes a method for quantifying the property of rela-

tionship anonymity, as defined in [119]. More specifically, the authors make use of

Shannon’s entropy and min-entropy for measuring this property. Similarly, [40] eval-

uates Shannon’s entropy, min-entropy and Hartley’s entropy as anonymity metrics,

and proposes then to use Rényi’s entropy, which may be regarded as a generalization

of those three metrics.

Besides Hartley’s entropy, other possibilistic —rather than probabilistic— ap-

proaches include [41–43]. According to these metrics, subjects are considered anony-

mous if an adversary cannot determine their actions with absolute certainty. Further,

[44] proposes a combinatorial anonymity metric that counts the number of possible

one-to-one correspondences between a set of senders and a set of receivers, by means

of the permanent of the matrix of adjacencies of the associated bipartite graph, con-

sistent with message timing observations ruling out some of the permutations. It

must be stressed that probability distributions weighting such possibilities are not

considered, or from a mathematically equivalent perspective, that those probabili-

ties are considered equally likely. Another difference with respect to most metrics

based on probabilities is that this metric is directly defined on a group of consistent

matchings between senders and receivers, rather than defined on the set of senders

or receivers corresponding to one given message. Some limitations and extensions of

this approach may be found in [120].
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2.4.3 Personalized Information Systems

As discussed in Sec. 2.1, personalized information systems rely on some form of profil-

ing to provide information tailored to users’ preferences. Said otherwise, personaliza-

tion comes at the risk of profiling. The literature of privacy metrics in this particular

scenario typically measures user privacy based on the profile constructed by an at-

tacker. Potential privacy attackers include the systems themselves but also any other

entity capable of eavesdropping the information users reveal to such systems. As we

shall see next, most of the proposed metrics quantify user privacy according to two

profiles. The former is the profile capturing the genuine interests of a user, and the

latter the profile observed by the attacker. In principle, the observed profile does not

need to coincide with the original one. This may be as a result of adopting any of

the PETs reviewed in Sec. 2.3.2, or even simpler, due to cookies being disabled for a

period of time.

In the context of personalized Web search, [96] proposes PRAW, a system aimed

at preserving the privacy of a group of users sharing an access point to the Web. The

cited work and its successive improvements [97–101] suggest perturbing the actual

user profile by generating fake transactions, that is, accesses to Web pages. In the

PRAW system, user profiles are modeled as weighted vectors of queries, and privacy

is computed as the similarity between the genuine profile and that observed from

the outside. More specifically, the authors use the cosine measure to capture the

similarity between both profiles. They assume, accordingly, that the lower the cosine

similarity value between these two profiles, the higher the privacy level attained by

such perturbation strategy.

Similarly to those works, [121] proposes to measure privacy as a generic function

of both the actual profile and the profile observed by a recommender. The authors

acknowledge that this function may, in principle, be different for each user, as users

may perceive privacy risks differently. Their metric is justified in the same way as

in the PRAW system. That is, it is assumed that the more those profiles differ, the

higher the privacy protection. Then, a weighted version of the Euclidean distance is

given as a particular instantiation of the generic function.
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In the literature we also find examples of privacy criteria based on information-

theoretic quantities. For example, [95] measures privacy risk as the relative entropy

between the user’s query distribution and the population’s. In the context of per-

sonalized Web search, [102] identifies two privacy breaches when submitting search

queries. The former refers to the disclosure of identifying information, e.g., asking

Google Maps (u) how to get from your home to a restaurant. The latter refers to

private information inferred indirectly from such queries, e.g., estimating the proba-

bility of suffering from a disease based on searches for medical assistance. The authors

propose the injection of false queries to counter the latter kind of privacy breach, and

measure privacy as the mutual information between the real queries X and the ob-

served ones Y . Accordingly, when I(X;Y ) is zero, the observed profile does not leak

any information about the actual profile, and perfect privacy protection is attained.

Still in the scenario of personalized Web search, [89] defines a privacy criterion

called profile exposure level. This criterion uses the mutual information between the

genuine queries of a given user and the queries submitted to the search engines, in-

cluding the genuine ones and those forwarded by this user on behalf of their neighbors.

Specifically, user privacy is measured as the quotient between the mutual informa-

tion and the Shannon entropy of the distribution of original queries. In the end, the

authors justify their metric by interpreting it as an amount of uncertainty reduction.

Another information-theoretic privacy criterion is [107]. In this approach, user

profiles are represented essentially as normalized histograms of queries. The profile

categories are organized hierarchically so that the higher-level interests are more gen-

eral than those at the lower levels. According to this representation, the authors

define user privacy based on two parameters, minDetail and expRatio. The former

parameter is a threshold that is used to filter out those components of the profile

where the user has shown little interest in. The latter is the Shannon entropy of the

filtered profile, a quantity that is taken as the level of privacy achieved. Finally, other

approaches using Shannon’s entropy as privacy criterion include [90,91].

(u)http://maps.google.com

http://maps.google.com
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Chapter 3

Measuring Privacy as an

Attacker’s Estimation Error

3.1 Introduction

The widespread use of information and communication technologies to conduct all

kinds of activities has in recent years raised privacy concerns. There is a broad diver-

sity of applications with a potential privacy impact, from social networking platforms

to e-commerce or mobile phone applications.

At the same time, a variety of PETs have emerged to support the provision of new

services and functionalities while mitigating potential privacy threats. The privacy

concerns arising in different applications are diverse and so are the corresponding

privacy-enhanced solutions that address these concerns. Similarly, a wide range of

privacy metrics have been proposed in the literature to evaluate the level of protection

offered by PETs. However, most of these metrics are specific to concrete systems

and adversary models and are difficult to generalize or translate to other contexts.

Therefore, a better understanding of the relationships between the different privacy

metrics would enable a more grounded and systematic approach to measuring privacy,

and would assist system designers in selecting the most appropriate metric for a given

application.
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In this chapter we propose a theoretical framework for privacy-preserving systems,

endowed with a general definition of privacy in terms of the estimation error incurred

by an attacker who aims to disclose the private information that the system is designed

to conceal. Further, we show that the most widely used privacy metrics, such as

k-anonymity, l-diversity, t-closeness, ε-differential privacy, as well as information-

theoretic metrics such as Shannon’s entropy, min-entropy, or mutual information, may

be construed as particular cases of the estimation error. In a nutshell, our framework

permits interpreting and comparing a number of well-known metrics under a common

perspective.

The importance of privacy metrics, accompanied with utility metrics, lies in the

fact that they provide a quantitative means of comparing the suitability of two or

more privacy-enhancing mechanisms, in terms of the privacy-utility trade-off posed.

Ultimately, such metrics enable us to systematically build privacy-aware information

systems by formulating design decisions as optimization problems, solvable theoret-

ically or numerically, capitalizing on a rich variety of mature ideas and powerful

techniques from the wide field of optimization engineering.

In our interpretations of state-of-the-art privacy metrics as particular cases of

the estimation error, we illustrate how the general framework can be instantiated in

three very different areas of application, namely SDC, anonymous communications

and LBSs.

In SDC, a great effort has been devoted to the investigation of privacy metrics.

Sec. 2.4.1 already mentioned that the best-known metric is k-anonymity, which was

first proposed in [23, 24]. In an attempt to address the weaknesses of this proposal,

various extensions and enhancements were introduced later in [25,27,29–32]. While all

these proposals have contributed to some extent to the understanding of the privacy

requirements of this field, the SDC research community would undoubtedly benefit

from the existence of a rule that could help them decide which privacy metric is the

most suitable for a particular application.

In anonymous communications, one of the goals is to conceal who talks to whom

against an adversary who observes the inputs and outputs of the communication

channel. In Sec. 2.4.2 we introduced mixes as a fundamental component of anonymous
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communications. In essence, mixes are systems that encrypt, pad, delay and reorder

messages so that it is not possible to correlate their inputs and outputs. Among these

four strategies, delaying messages causes the most noticeable impact on the usability

of the system. However, such strategy allows at the same time for stronger levels of

privacy protection. In other words, there is a trade-off between anonymity (privacy)

and delay (utility), and the only way to tackle the problem of designing mix systems

in an optimal trade-off sense, is to be equipped with quantifiable measures of both

anonymity and utility.

In the end, we approach the particularly rich, important example of LBSs, where

users submit queries along with the location to which those queries refer. In this

scenario, a wide range of approaches have been proposed, many of them based on an

intelligent perturbation of the user coordinates submitted to the provider [122]. Basi-

cally, users may contact an untrusted LBS provider directly, perturbing their location

information so as to hinder providers in their efforts to compromise user privacy in

terms of location, although clearly not in terms of query contents and activity, and

at the cost of an inaccurate answer. In short, this approach presents again the inher-

ent trade-off between data utility and privacy common to any perturbative privacy

mechanism.

The connection between state-of-the-art privacy metrics and information theory,

and the mathematical unification of these metrics as an attacker’s estimation error

presented in this chapter shed new light on the understanding of those metrics and

their suitability when it comes to applying them to specific scenarios. We also hope

to illustrate the riveting intersection between the fields of information privacy and

information theory, in an attempt towards bridging the gap between the respective

communities. Moreover, the fact that our metric boils down to an estimation error

opens the possibility of applying notions and results from the mature, vast field of

estimation theory [123].

The work presented in this chapter was published in [48].
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Chapter Outline

The rest of this chapter is organized as follows. Sec. 3.2 introduces some background

on Bayes decision theory (BDT). Then, Sec. 3.3 describes our notation, terminol-

ogy and adversary model, and afterwards presents our measure of privacy. Secs. 3.4

and 3.6 are devoted to the classification of several privacy metrics, showing the re-

lationships with our proposal and the correspondence with assumptions on the at-

tacker’s strategy. While the former section approaches this from a theoretical perspec-

tive, the latter illustrates the applicability of our framework to help system designers

choose the appropriate metrics, without having to delve into the mathematical de-

tails. Sec. 3.5 provides two numerical examples that illustrate our formulation and

the measurement of privacy as an attacker’s estimation error. Finally, conclusions are

drawn in Sec. 3.7.

3.2 Background on Bayes Decision Theory

In this section, we shall introduce some elementary concepts for those readers who

are not familiar with BDT.

BDT is a statistical method that, fundamentally, uses a probabilistic model to

analyze the making of decisions on uncertainties and the costs associated with those

decisions [124, 125]. In general, Bayes decision principles may be formulated in the

following terms. Consider the uncertainty refers to an unknown parameter modeled

by an r.v. X. In decision-theoretic terminology, this is also known as state of nature.

Let Y be another r.v. modeling an observation or measurement on the state of nature.

Suppose that, given a particular observation y, we are required to make a decision

on the unknown. Let x̂ denote the estimator of X, that is, the rule that provides

a decision or estimate x̂(y) for every possible observation y. Clearly, any decision

will be accompanied by a cost. This is captured by the loss function d : (x, x̂) 7→
d(x, x̂), which measures how costly the decision x̂ = x̂(y) will be when the unknown

is x. However, since the actual loss incurred by a decision cannot be calculated

with absolute certainty at the time the decision is made, BDT contemplates the

average loss associated with this decision. Concretely, the Bayes conditional risk for
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an estimator x̂ is defined in the discrete case as

R(y) = E[d(X, x̂(y))|y] =
∑
x

pX|Y (x|y) d(x, x̂(y)),

where the expectation is taken over the posterior probability distribution pX|Y . Ac-

cording to this, the Bayes risk associated with that estimator is defined as the average

of the Bayes conditional risk over all possible observations y, that is,

R = E E[d(X, x̂(Y ))|Y ] =
∑
x,y

pX Y (x, y) d(x, x̂(y)),

where the expectation is additionally taken over the probability distribution of Y.

Based on this definition, an estimator is called Bayes estimator or Bayes decision

rule, if it minimizes the Bayes risk among all possible estimators. It turns out that

this optimal estimator is precisely

x̂Bayes(y) = arg min
x̂

E[d(X, x̂)|y],

for all y; i.e., the Bayes estimator is the one that minimizes the Bayes conditional

risk for every observation.

Once some of the basic elements in Bayes analysis have been examined, we would

like to establish a connection between maximum a posteriori (MAP) estimator and

Bayes estimator. With this aim, first recall that a MAP estimator, as the name

implies, is the estimator that maximizes the posterior distribution. Now consider

the loss function d to be the Hamming distance between x and x̂. The Hamming

distance, which we introduced in Sec. 2.2, is in fact an indicator function. But recall

that the expectation of an indicator r.v. is the probability of the event it is based on.

Mathematically,

E[dHamming(X, x̂)|y] = P{X 6= x̂|y},

and consequently,

x̂MAP(y) = arg min
x̂

P{X 6= x̂|y} = arg max
x̂

P{X = x̂|y}. (3.1)

In conclusion, Bayes and MAP estimators coincide when the loss function is Ham-

ming distance.
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3.3 Measuring Privacy as an Attacker’s Estimation Error

This section presents a general framework that lays the foundation for the establish-

ment of a unified measurement of privacy. However, it is not until Sec. 3.4 where

we shall show that a number of privacy criteria may be regarded as particular cases

of our proposal. Previously, Sec. 3.3.1 introduces our notation. Next, Sec. 3.3.2

describes the adversary model. In Sec. 3.3.3 we present our privacy metric, and fi-

nally, in Sec. 3.3.4, we illustrate the proposed formulation with a simple but insightful

example.

3.3.1 Mathematical Assumptions and Notation

In this section we provide the notation that we shall use throughout this chapter. To

this end, we first introduce the key actors of the proposed framework:

• a user, who wishes to protect their privacy;

• a (trusted) system, to which each user entrusts their private data for its protec-

tion; the unique purpose of this entity is to guarantee the privacy of the user,

and with this aim, the system may use any privacy-preserving mechanism at its

disposal;

• and an attacker, who strives to disclose private information about this user.

To clarify the elements involved in our framework, consider a conceptually-simple

approach to anonymous Web browsing, consisting in a TTP acting as an intermediary

between Internet users and Web servers. From the perspective of our model, the users

would be those subscribed to the anonymous proxy; the system would be this proxy;

and the attackers those servers that attempt to compromise users’ privacy from their

Web browsing activity.

In the following, the term r.v. is used with full generality to include categorical

or numerical data, vectors, tuples or sequences of mixed components, but for mathe-

matical simplicity we shall henceforth assume that all r.v.’s in this chapter have finite

alphabets. The variables that constitute our framework are described as follows.
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• The attacker’s unknown or uncertainty is denoted by the r.v. X, which models

the private information about a user that the attacker wishes to ascertain.

• The system’s input is represented by the r.v.X ′ and refers to user’s data required

by the system to make a decision.

• The system’s decision is modeled by the r.v. Y ′ and denotes disclosed informa-

tion, perhaps part of X ′, or a perturbation.

• The attacker’s input is denoted by the r.v. Y and captures any evidence or

measurement the attacker has about the unknown. As its name indicates, this

variable models the information that serves as input for the adversary to as-

certain X. In some cases, Y may be directly the information revealed by the

system, i.e., Y = Y ′. That is, the only information available to the attacker

is exactly that disclosed by the system. In other circumstances, the attacker

may observe a perturbed version of Y ′, maybe together with background knowl-

edge about the unknown. In such cases, we have Y 6= Y ′. Since the attacker’s

input is, in fact, the information observed by the attacker, directly from the

system or indirectly from other sources, throughout this work we shall use the

terms attacker’s input and attacker’s observation indistinguishably to refer to

the variable Y .

• The attacker’s decision is modeled by the r.v. X̂ and represents the attacker’s

estimate of X from Y .

Table 3.1: Simplified representation of our notation.

Unknown Input Decision

Attacker X Y X̂

System - X ′ Y ′

In order to clarify this notation, we provide an example in which the above vari-

ables are put in the context of SDC. In this scenario, the data publisher plays the

role of the system. Concretely, X may represent identifying or confidential-attribute
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values the attacker endeavors to ascertain with regard to an individual appearing in

a released table. The individuals contained in this table are what we call users. The

system’s input becomes now the key-attribute values that the publisher has about the

individuals. On the other hand, Y ′ is the perturbed version of those values, which

jointly with the (unperturbed) confidential-attribute values, constitute the released

table. Furthermore, the attacker’s input consists of the released table and, possibly,

background knowledge the privacy attacker may have. In the end, the attacker’s

decision is the estimate of X. All this information is shown in Table 3.2.

Similarly, now we specify the variables of our framework in the special case of

a mix. Under this scenario, the mix represents the system, whose objective is to

hide the correspondence between the incoming and outgoing messages. Precisely,

the attacker’s uncertainty is this correspondence. The system’s input and system’s

decision are the arrival and departure times of the messages, respectively. On the

other hand, the information available to the attacker, i.e., the attacker’s observation

Y , consists of X ′, Y ′ and the design parameters of the mix. Finally, X̂ is the attacker’s

decision on the correspondence between the messages. This is depicted in Fig. 3.1

and summarized in Table 3.3.

Table 3.2: Description of the variables used in our notation in the special case of SDC.

Unknown Input Decision

Attacker
identifier or confidential

attributes
perturbed table, possibly

with background knowledge
estimate of identifier or
confidential attributes

System - key attributes perturbed key attributes

3.3.2 Adversary Model

The consideration of a framework that encompasses a variety of privacy criteria nec-

essarily requires the formalization of the attacker’s model. In this spirit, we now

proceed to present the parameters that characterize this model.

Firstly, we shall contemplate an adversary model in which the attacker uses a

Bayes (best) decision rule. Conceptually, this corresponds to the estimation made

by an attacker who uses optimally the available information, as we formally argued
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in Sec. 3.2. Namely, for every possible decision of the system resulting in an obser-

vation y, the attacker will make a Bayes decision x̂(y) on X. With regard to this

attacker’s decision rule, we would like to remark the fact that, whereas it is a deter-

ministic estimator, the system’s decision is assumed to be a randomized perturbation

rule given by pY ′ |X′ . As a consequence of this, it is clear that the system does not leak

any private information when deciding Y ′, provided that Y ′ and X ′ are statistically

independent.

TexPoint fonts used in EMF.  
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Figure 3.1: Our framework is put in the context of mixes.

Secondly, as explained in Sec. 3.2, we shall require to evaluate the cost of each

decision made by the attacker. For this purpose, we consider the attacker’s distortion

function dA : (x, x̂) 7→ dA(x, x̂), which measures the degree of dissatisfaction that

the attacker experiences when X = x and X̂ = x̂(y). Similarly, we contemplate

the system’s distortion function dS : (x′, y′) 7→ dS(x′, y′), which reflects the extent to

which the system, and therefore the user, is discontent when Y ′ = y′ and X ′ = x′.

A crucial distinction in the type of attacker’s distortion function dA considered

will be whether it captures a sort of geometry over the symbols of the alphabet, or

not. The most evident example of distortion function that does not take into account

this geometry is the Hamming function, which we already introduced at the end of

Sec. 2.2. Concretely, this binary metric just indicates whether x and x̂ coincide,

and provides no more information about the discrepancy between them. On the
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Table 3.3: Description of the variables used in our notation in the special case of mixes.

Unknown Input Decision

Attacker
correspondence between
incoming and outgoing

messages

arrival and departure times
of the messages, mix design

parameters and maybe
background knowledge

estimate of correspondence
between incoming and

outgoing messages

System - arrival times of the messages
departure times of the

messages

other hand, the squared error loss dA(x, x̂) = (x − x̂)2 and the absolute error loss

dA(x, x̂) = |x− x̂| are just two commonly-used examples of distortion functions that

do rely or induce a certain geometry.

3.3.3 Privacy-Metric Definition

Bearing in mind the above considerations, and consistently with Sec. 3.2, we define

conditional privacy as

P(y) = E[dA(X, x̂(y))|y], (3.2)

which is the estimation error incurred by the attacker, conditioned on the observa-

tion y. Based on this definition, we contemplate two possible measures of privacy. In

particular, we define worst-case privacy as

Pmin = min
y
P(y). (3.3)

On the other hand, we define average privacy as

Pavg = EP(Y ) = E dA(X, x̂(Y )), (3.4)

which is the average of the conditional privacy over all possible observations y.

In order to measure the utility loss caused by the perturbation of the original

data, we define the average distortion as

D = E dS(X ′, Y ′). (3.5)

According to these definitions, a privacy-protecting system and an attacker would

adopt the following strategies. Namely, the system would select the decision rule pY ′ |X′

that maximizes either the average privacy or the worst-case privacy, while not allow-

ing the average distortion to exceed a certain threshold. On the other hand, the
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attacker would choose the Bayes estimator, which would lead to the minimization of

both measures of privacy. The reason behind this is that the Bayes estimator also

minimizes the conditional privacy, as stated in Sec. 3.2.

In light of the definitions above, the functions dS and dA clearly give us a measure

of distortion and privacy, respectively. In the former case, distortion is measured

from the system’s point of view, whereas in the latter case, privacy is quantified from

the standpoint of the adversary. Despite the focus given, one could contemplate

an alternative definition of dA so that both functions are defined from the system’s

perspective. For example, we could define an alternative privacy function measuring

the degree of satisfaction experienced by the system when X = x and X̂ = x̂. It

turns out that the theoretical analysis presented in Sec. 3.4 could be readily adapted

to this case. However, we have preferred to emphasize the role of the adversary and

thus consider the perception that they have about their own error when estimating

the unknown.

In this line, we would also like to remark that a privacy risk R in lieu of P could

be defined for −dA(x, x̂(y)) instead of dA(x, x̂(y)). An analogous argument justifies

the use of utility instead of distortion.

Last but not least, we would also like to note that, in the special case when the

unknown variable X models the identity of a user, our measure of privacy may be

regarded, in fact, as a measure of anonymity.

3.3.4 Example

Next, we present a simple example that sheds some light on the formulation intro-

duced in the previous sections.

For the sake of simplicity, consider X ′ = X, that is, the system’s input is the

confidential information that needs to be protected. Suppose that X is a binary

r.v. with P{X = 0} = P{X = 1} = 1/2. In order to hinder privacy attackers in

their efforts to ascertain X, for each possible outcome x, the system will disclose a

perturbed version y′. Namely, with probability p the system will decide to reveal

the complementary value of x, whereas with probability 1 − p no perturbation will

be applied, i.e., y′ = x. Note that, in this example, the system’s decision rule is
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Figure 3.2: Representation of the trade-off curve between privacy and utility for the example provided
in Sec. 3.3.4.

completely determined by p, for which we conveniently impose the condition 0 6 p <

1/2.

At this point, we shall assume that the attacker only has access to the disclosed

information Y ′, and therefore the attacker’s input Y boils down to it. We anticipate

that, throughout this work, this supposition will be usual. In addition, we shall

consider the attacker’s distortion function to be the Hamming distance. However,

as commented in Sec. 3.2, this implies that the Bayes estimator matches the MAP

estimator. According to this observation, it is easy to demonstrate that the attacker’s

best decision is X̂ = Y. Therefore, the average privacy (3.4) becomes

Pavg = P{X 6= X̂} = P{X 6= Y } = P{X 6= Y ′} = p.

On the other hand, if we suppose that the system’s distortion function is also the

Hamming distance, from (3.5), it follows that

D = P{X ′ 6= Y ′} = P{X 6= Y ′} = p.

Based on these two results, we now proceed to describe the strategy that the

system would follow. To this end, we define the average utility U as 1−D. According

to this, the system would strive to maximize the average privacy with respect to p,

subject to the constraint U > u0. Fig. 3.2 illustrates this simple optimization problem

by showing the trade-off curve between privacy and utility. In this example, it is

straightforward to verify that the optimal value of average privacy is Pavgmax
= 1−u0,

for 1/2 < u0 6 1.
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Figure 3.3: The arguments that lead to the interpretation of several privacy metrics as particular
cases of our definition of privacy are conceptually organized in the above points. As can be observed,
these arguments clearly depend on the attacker’s distortion function, namely on the geometry of
this function (Hamming or non-Hamming) and on the knowledge the system has about it, i.e., it
is known or unknown to the system. Other parameters include the nature of the variables of our
framework and, obviously, the attacker’s strategy.

3.4 Theoretical Analysis

In this section we shall interpret several well-known privacy criteria as particular cases

of our more general definition of privacy. Specifically, we shall show that many of

the metrics examined in Chapter 2 are bijectively related to an estimation error and

thus equivalent to our privacy measure—using a metric or a bijection of this metric

is essentially the same, both in terms of comparison and optimization.

The arguments behind the interpretations of these metrics as a particularization

of our criterion are based on numerous concepts from the fields of information theory,

probability theory and BDT. For a comprehensive exposition of these arguments,

the underlying assumptions and concepts will be expounded in a systematic manner,

following the points sketched in Fig. 3.3. As mentioned in Sec. 3.3.2 and illustrated

by the first branch of the tree depicted in this figure, our starting point makes the

significant distinction between attacker’s distortion measures based on the Hamming

distance and the rest, according to whether we wish to capture a certain, gradual
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measure of distance between alphabet values beyond sheer symbol equality. It is

important to recall from Sec. 3.2 that in the case of a Hamming distortion measure,

expected distortion boils down to probability of error, yielding a different class of

estimation problems.

Bearing in mind the above remark, in Sec. 3.4.1 we shall contemplate the case

when the attacker’s distortion function is the Hamming distance, whereas in Sec. 3.4.2

we shall deal with the more general case in which dA can be any other distortion

function. In the special case of Hamming distance, we consider two alternatives

for the variables in Table 3.1: single-occurrence and multiple-occurrence data. The

former case considers the variables to be tuples of a small number of components, and

the latter case assumes that these variables are sequences of data. In the scenario of

single-occurrence data, we shall establish a connection between Hartley’s entropy and

our privacy metric, which will allow us to interpret k-anonymity, l-diversity and min-

entropy criteria as particular cases of our framework. The arguments that will enable

us to justify this connection stem from MAP estimation, BDT and the concept of

confidence set. On the other hand, when we consider multiple-occurrence data, we

shall use the asymptotic equipartition property (AEP) to argue that the Shannon

entropy, as a measure of privacy, is a characterization of the cardinality of a high-

confidence set of sequences.

In the more general case in which the attacker’s distortion function is not the

Hamming distance, we shall explore two possible scenarios. On the one hand, we shall

consider the case where this function is known to the system. Under the assumption

of a Bayes attacker’s strategy, we shall use BDT to justify the system’s best decision

rule. On the other hand, we shall contemplate the case in which the attacker’s

distortion function is unknown to the system. Specifically, this scenario will allow

us to connect our framework to several privacy criteria through the concept of total

variation, provided that the attacker uses MAP estimation.
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3.4.1 Hamming Distortion

In this section, we shall analyze the special case when the attacker’s distortion function

is the Hamming distance. In addition, we shall contemplate two cases for the variables

of our framework: single-occurrence and multiple-occurrence data.

Single Occurrence

This section considers the scenario in which the variables defined in Sec. 3.3.1 are

tuples of a relatively small number of components, including both categorical and

numerical data, defined on a finite alphabet. In order to establish a connection

between some of the most popular privacy metrics and our criterion, first we shall

introduce the concept of confidence set and briefly recall a riveting generalization of

Shannon’s entropy.

Consider an r.v. X taking on values in the alphabet X . A confidence set F with

confidence p is defined as a subset of X such that P{X ∈ F} = p. In the case

of continuous-valued random scalars, confidence sets commonly take the form of in-

tervals. In these terms, it is clear that a privacy attacker aimed at ascertaining X

will benefit the most from those confidence sets whose cardinality is reduced substan-

tially with respect to the original alphabet size, with high confidence. To connect

the concept of confidence set to our interpretation of privacy as an attacker’s esti-

mation error, consider an attacker model where the attacker only takes into account

the shape of the PMF of the unknown X to identify a confidence set F for some

desired confidence p, and beyond that, assumes all the included members equally

relevant. This last assumption may be interpreted as an investigation on a tractable

list of potential identities, carried out in parallel. MAP estimation within that set,

considering it uniformly distributed, leads to an estimation error of 1 − 1
|F | , that is,

a bijection of its cardinality.

In our interpretations, we further use the Rényi entropy, a family of functionals

widely used in information theory as a measure of uncertainty. Recall from Sec. 2.2
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that Rényi’s entropy of order α is defined as

Hα(X) =
1

1− α log
n∑
i=1

pX(xi)
α,

where pX is the PMF of an r.v. X that takes on values in the alphabet X =

{x1, . . . , xn}. Recall also that, in the special case when α = 0, Rényi’s entropy boils

down to Hartley’s entropy. Note that, when pX(x) > 0 for all x ∈ X , the Hartley

entropy becomes H0(X) = log n. Under this assumption, the Hartley entropy can be

understood as a confidence set with p = 100%. Lastly, H1(X) and H∞(X) denote the

Shannon entropy and min-entropy of the r.v. X, respectively.

We shall shortly interpret min-entropy, Shannon’s entropy and Hartley’s entropy

within our general framework of privacy as an attacker estimation error, when Ham-

ming distance is used as a distortion measure, first for single occurrences of a target

information, and later for multiple occurrences. For now, we could loosely consider

an attacker striving to ascertain the outcome of the finite-alphabet r.v. X, and the

effect of the dispersion of its PMF on such task. Conceptually, we could then re-

gard these three types of entropies simply as worst-case, average-case and best-case

measurements of privacy, respectively, on account of the fact that

H∞(X) 6 H1(X) 6 H0(X), (3.6)

with equality if, and only if, X is uniformly distributed. More specifically, the min-

entropy H∞(X) is the minimum of the surprisal or self-information − log pX(xi),

whereas the Shannon entropy H1(X) is a weighted average of such logarithms, and

finally, the Hartley entropy H0(X) optimistically measures the cardinality of the entire

set of possible values of X regardless of their likelihood.

Once we have put the Hartley, Shannon and min entropies in the context of our

framework, now we go on to describe a scenario that will allow us to relate our privacy

metric to an extensively-used criterion. Specifically, we focus on the important case

of SDC, where the data publisher plays the system’s role. In this scenario, a data

publisher wishes to release a microdata set and, before distributing it, the publisher

applies some algorithm [25,27,29–32] to enforce the k-anonymity requirement [23,24].

As mentioned in Sec. 2.4.1, the objective of a linking attack is to unveil the identity
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Identifier Key Attributes 
Confidential 

Attribute 

William 45 US Hepatitis B 

Emmanuel 42 French Hepatitis C 

Syme 47 Indian Hepatitis D 

Naoto 31 Japanese Viral Infection 

Katharine 30 US Heart Disease 

Julia 36 British Heart Disease 

Perturbed  
Key Attributes 

Confidential 
Attribute 

40 – 50  * Hepatitis B 

40 – 50  * Hepatitis C 

40 – 50  * Hepatitis D 

< 40 * Viral Infection 

< 40 * Heart Disease 

< 40 * Heart Disease 

X X0
Y = Y 0

ypXjY (xjy) = 1=k

two-columns version 

k-anonymity 

(a) Original data (b) Perturbed data 

Figure 3.4: A data publisher plans to release a 3-anonymized microdata set. To this end, the
publisher must enforce that, for a given tuple of key-attribute values in (b), the probability of
ascertaining the identifier value of the corresponding record in (a) must be at most 1/3.

of the individuals appearing in a released table by linking the records in this table to

any public data set including identifiers. Since k-anonymity is aimed at protecting

the data against this attack, in our scenario the attacker’s unknown X becomes

the user identity. The other variables shown in Table 3.2 are as follows: X ′ are

the key-attribute values, Y ′ are the perturbed key-attribute values, the attacker’s

observation Y is assumed to be Y ′, and finally, X̂ is an estimate of the identity of

a user. Although we consider Y = Y ′, bear in mind that our interpretation of k-

anonymity as an estimation error implicitly assumes that the adversary has access to

any public database containing identifier attributes. Fig. 3.4 illustrates our notation.

In order to protect the data set from identity disclosure, the algorithm must ensure

that, for any observation y consisting in a tuple of perturbed key-attribute values in

the released table, the identifier value of the corresponding record in the original table

cannot be ascertained beyond a subgroup of at least k records. As we shall see next,

this requirement will be reflected mathematically by assuming that the probability

distribution pX|Y (·|y) of the identifier value, conditioned on the observation y, is the

uniform distribution on a set of at least k individuals.

That said, our adversary model contemplates an attacker who uses a MAP esti-

mator, which, as shown in Sec. 3.2, is equivalent to the Bayes estimator. Under this
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model, given an observation y, the conditional privacy (3.2) becomes

P(y) = P{X 6= x̂(y)|y} = 1−max
x

pX|Y (x|y), (3.7)

which precisely is the MAP error ε
MAP

, conditioned on that observation y; in terms

of min-entropy, we may recast our metric as

P(y) = ε
MAP

= 1− 2−H∞(X|y),

which shows that the concept of min-entropy is intimately related to MAP decoding.

If we finally apply the aforementioned uniformity condition of pX|Y (·|y), and assume

that this PMF is the uniform distribution on a group of exactly k individuals, that

is, ui = 1/k for all i = 1, . . . , k, then

P(y) = 1− 1/k = 1− 2−H0(X|y),

which expresses the conditional privacy in terms of Hartley’s entropy. In a nutshell,

the k-anonymity criterion may be interpreted as a special case of our privacy measure,

determined by this Rényi’s entropy.

After examining this first interpretation, next we shall explore an enhancement of

k-anonymity. As argued in Sec. 3.2, this criterion does not protect against confidential

attribute disclosure. In an effort to address this limitation, several privacy metrics

were proposed. In the remainder of this section, we shall focus on one of these

approaches. In particular, we shall consider the l-diversity metric [27], which builds on

the k-anonymity principle and aims at overcoming the attribute disclosure problem.

As commented in Sec. 2.4.1, a microdata set satisfies l-diversity if, for each group

of records sharing a tuple of key-attribute values in the perturbed table, there are at

least l “well-represented” values for each confidential attribute. In our new scenario, a

data publisher, still playing the system’s role, applies an algorithm on the microdata

set to enforce this requirement. Since the aim of this criterion is to protect the data

against attribute disclosure, we consider that the attacker’s unknown X refers to

the confidential attribute. The other variables remain the same as in our previous

interpretation. Note, however, that we abandon the assumption that the attacker has

access to any public database with identifiers—the adversary is not aimed at linking
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Identifier Key Attributes 
Confidential 

Attribute 

Angela 41 US AIDS 

Claire 43 French AIDS 

Patrick 49 Irish Lung Cancer 

Andrea 40 Italian Lung Cancer 

Naoto 31 Japanese Viral Infection 

Katharine 30 US Heart Disease 

Julia 36 British Heart Disease 

George 35 US Viral Infection 

Perturbed  
Key Attributes 

Confidential 
Attribute 

40 – 50  * AIDS 

40 – 50  * AIDS 

40 – 50  * Lung Cancer 

40 – 50 * Lung Cancer 

< 40 * Viral Infection 

< 40 * Heart Disease 

< 40 * Heart Disease 

< 40 * Viral Infection 

X0
Y = Y 0

y

X

pXjY (xjy) = 1=l

two-columns version 

l-diversity 

(a) Original data (b) Perturbed data 

Figure 3.5: In this example, the 2-diversity principle is applied to a microdata set. In order to meet
this requirement, we assume that, for each group of records with the same tuple of perturbed key-
attribute values, the probability distribution of the confidential-attribute value in (b) is the uniform
distribution on a set of at least 2 values.

records between tables, but ascertaining the confidential-attribute value of a given

record in the released table.

Having said that, we shall make the assumption that the l-diversity requirement

is met by enforcing that, for a given tuple y of perturbed key-attribute values, the

probability distribution pX|Y (·|y) of the confidential attribute within the group of

records sharing this tuple is the uniform distribution on a set of at least l values.

This is depicted in Fig. 3.5. Note that this assumption entails that the data fulfill

both the distinct and entropy l-diversity principles described in Sec. 2.4.1. Lastly, we

shall suppose again that the attacker uses MAP estimator.

As mentioned before, under the premise of a MAP attacker, our measure of con-

ditional privacy boils down to the MAP error (3.7). If we also apply the assumption

above about the uniformity of pX|Y (·|y), and suppose that this distribution is uniform

on a group of l individuals, then the conditional privacy yields

P(y) = 1− 1/l = 1− 2−H0(X|y),

which expresses our privacy metric again in terms of Hartley’s entropy. In short,

the l-diversity criterion lends itself to be interpreted as a particular case of our more

general privacy measure.
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Multiple Occurrences

In this section, we shall consider the case when the variables shown in Table 3.1 are

sequences of categorical and numerical data but in a finite alphabet. Recall from

Sec. 2.2 that we use the notation Xk to denote a sequence X1, . . . , Xk.

The special case that we contemplate now could perfectly model the scenario

in which a user interacts with an LBS provider, through an intermediate system

protecting the user’s location privacy. In this scenario, a user would submit queries

along with their locations to the trusted system. An example would be the query

“Where is the nearest parking garage?”, accompanied by the geographic coordinates

of the user’s current location. As many approaches suggest in the literature of private

LBSs, the system would perturb the user coordinates and submit them to the LBS

provider. Concordantly, we may choose Euclidean distance as the natural attacker’s

distortion measure. Alternatively, if the attacker’s interest lies in whether the user

is at home, at work, shopping for groceries or at the movies, in order to profile their

behavior, or more simply, whether the user is at a given sensitive location or not,

then the appropriate model for the location space becomes discrete, and Hamming

distance is more suited.

In this context, the consideration of sequences of discrete r.v.’s in our notation

makes sense. Specifically, an attacker would endeavor to ascertain the sequence Xk

of k unknown locations visited by the user, from the sequence Y ′k of k perturbed

locations that the system would submit to the LBS. Put differently, the attacker’s

unknown would be the location data the user conveys to the system, i.e., Xk = X ′k,

and the information available to the adversary the perturbed version of this data,

that is, Y k = Y ′k.

Having motivated the case of sequences of data, in this section we shall establish

a connection between our metric and Shannon’s entropy as a measure of privacy.

But in order to emphasize this connection, first we briefly recall one of the pillars of

information theory: the AEP [76], which derives from the weak law of large numbers

and results in important consequences in this field.

Consider a sequence Xk of k independent, identically distributed (i.i.d.) r.v.’s,

drawn according to pX , with alphabet size n. Loosely speaking, the AEP states that
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among all possible nk sequences, there exists a typical subset T k
ε of sequences almost

certain to occur. More precisely, for any ε > 0, there exists a k sufficiently large

such that P{T k
ε } > 1 − ε, and |T k

ε | 6 2k(H1(X)+ε). A similar argument called joint

AEP [76] also holds for the i.i.d. sequences (Xk, Y k) of length k drawn according to∏k
i=1 pX Y (xi, yi). Another information-theoretic result is related to those sequences xk

that are jointly typical with a given typical sequence yk. Namely, the set of all these

sequences xk is referred to as the conditionally typical set T Xk|yk
ε and satisfies, on the

one hand, that P{T Xk|yk
ε } > 1− ε for large k, and on the other, that its cardinality

is bounded by Shannon’s conditional entropy, |T k
ε | 6 2k(H1(X|Y )+ε). Further, it turns

out that these conditionally typical sequences are equally likely, with probability

2−kH1(X|Y ), approximately in the exponent. While the most likely sequence may

in fact not belong to the typical set, the set of typical sequences encompasses a

sufficiently large number of sequences that amount to a probability arbitrarily close

to certainty.

Next, we proceed to interpret, under the perspective of our framework, the Shan-

non entropy as a measure of privacy. To this end, consider the scenario in which

a privacy attacker observes a typical Y k and strives to estimate the unknown Xk.

Conveniently, we assume Xk = X ′k and Y k = Y ′k, which models the LBS example

described before, provided that the attacker ignores any spatial-temporal constraint.

In other words, we model a scenario without memory and hence suppose that (Xi, Yi)

are i.i.d. drawn according to pX Y . We would like to stress that the consideration of

this simplified model is just for the purpose of providing a simple, clear example that

illustrates the application of our framework. Having said this, in the terms above we

may regard T Xk|yk
ε as a set of arbitrarily high confidence with cardinality 2kH1(X|Y ),

approximately in the exponent.

The upshot is that the Shannon (conditional) entropy of an unknown r.v. (given

an observed r.v.) is an approximate measure of the size of a high-confidence set, mea-

sure suitable for attacker models based on the estimation of sequences, rather than

individual samples. Moreover, within this confidence set, sequences are equally likely,

approximately in the exponent, concordantly with the interpretation of confidence-

set cardinality as a measure of privacy made in Sec. 3.4.1 on single occurrences. Even
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though for simplicity our argument focused on memoryless sequences, the Shannon-

McMillan-Breiman theorem is a generalization of the AEP to stationary ergodic se-

quences, in terms of entropy rates [126].

3.4.2 Non-Hamming Distortion

This section investigates the complementary case described in Sec. 3.4 in which the

attacker’s distortion function is not the Hamming distance. Particularly, in this sec-

tion we turn our attention to the scenario of SDC, and contemplate two possible

alternatives regarding the system’s knowledge on the function dA—first, when this

function is known to the data publisher, and secondly, when it is unknown. Under

the former assumption, the system would definitely use BDT to find the decision

rule pY ′|X′ which maximizes either the worst-case privacy (3.3) or the average pri-

vacy (3.4), and satisfies a constraint on average distortion. The latter assumption,

however, describes a more general and realistic scenario. The remainder of this sub-

section precisely interprets several privacy criteria under this assumption. The only

piece of information which is though known to the publisher is dmax = maxx,x̂ dA(x, x̂),

that is, the maximum value attained by said function.

Bearing in mind the above consideration, in our new scenario a privacy attacker

endeavors to guess the confidential-attribute value of a particular respondent in the

released table. Initially, the attacker has a prior belief given by pX , that is, the

distribution of that confidential-attribute value in the whole table. Later, the attacker

observes that the user belongs to a group of records sharing a tuple of perturbed key-

attribute values y, which is supposed to coincide with the system’s decision y′. Based

on this observation, the attacker updates their prior belief and obtains the posterior

distribution pX|Y (·|y). This situation is illustrated in Fig. 3.6. A fundamental question

that arises in this context is how much privacy the released table leaks as a result

of that observation. In the remainder of this section, we elaborate on this question

and provide an upper bound on the reduction in privacy incurred by the disclosure

of that information.
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Total Variation and t-Closeness

For notational simplicity, we occasionally rename the posterior and the prior distri-

butions pX|Y (·|y) and pX simply with the symbols p and q, respectively, but bear in

mind that p is a PMF of x parametrized by y. In addition, we shall assume that

the attacker adopts a MAP strategy. More precisely, x̂p and x̂q will denote the at-

tacker’s estimate when using the distributions p and q. Under these assumptions, the

reduction (prior minus posterior) in conditional privacy can be expressed as

∆P(y) = Ep dA(X, x̂q)− Ep dA(X, x̂p)

= Ep dA(X, x̂q)− Eq dA(X, x̂q) + Eq dA(X, x̂q)

− Eq dA(X, x̂p) + Eq dA(X, x̂p)− Ep dA(X, x̂p),

where Ep and Eq denotes that the expectation is taken over the posterior and the

prior distributions, respectively, as PMFs of x.

In this expression, the first two terms can be upper bounded by dmax

∑
x |px − qx|,

since
∑

x(px − qx) 6
∑

x |px − qx|. Clearly, this same bound applies to the last two

terms. On the other hand, the remaining terms Eq dA(X, x̂q)−Eq dA(X, x̂p) are upper

bounded by 0, since the error incurred by x̂q is smaller than or equal to that of x̂p.

In the end, we obtain that

∆P(y) 6 2 dmax

∑
x

|px − qx| .

At this point, we shall briefly review the concept of total variation. For this

purpose, consider P and Q to be two PMFs over X . In probability theory, the total

variation distance between P and Q is

TV(P ‖Q) = 1
2

∑
x∈X

|P (x)−Q(x)| .

Furthermore, recall that, in information theory, Pinsker’s inequality relates the total

variation distance with the KL divergence. Particularly, TV(P ‖Q) 6
√

2
2

√
D(P ‖Q).

Having stated this result, now the total variation distance permits writing the upper

bound on ∆P(y) in terms of the KL divergence:

∆P(y) 6 4 dmaxTV(p ‖ q) 6 2
√

2 dmax

√
D(p ‖ q),
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Identifier Key Attributes 
Confidential 

Attribute 

William 45 US AIDS 

Stephen 46 Danish Heart Disease 

Chloe 49 Irish Lung Cancer 

Jonas 42 German Viral Infection 

Jean 37 French AIDS 

Yasmin 39 Brazilian AIDS 

Ethan 34 US Viral Infection 

Oscar 38 Swedish AIDS 

X0
Y = Y 0

y

X

one-column version 

Perturbed  
Key Attributes 

Confidential 
Attribute 

40 – 50  * AIDS 

40 – 50  * Heart Disease 

40 – 50  * Lung Cancer 

40 – 50 * Viral Infection 

< 40 * AIDS 

< 40 * AIDS 

< 40 * Viral Infection 

< 40 * AIDS 

pXjY (¢jy)

pX

(a) Original data (b) Perturbed data 

Figure 3.6: At first, an attacker believes that the probability that a user appearing in (b) suffer
from AIDS is 1/2. However, after observing that the user’s record is one of the last four records,
this probability becomes 3/4.

where the last inequality follows from Pinsker’s inequality. Returning to the notation

of prior and posterior distributions,

∆P(y) 6 4 dmaxTV(pX|Y (·|y) ‖ pX)

6 2
√

2 dmax

√
D(pX|Y (·|y) ‖ pX). (3.8)

This upper bound allows to establish a connection between our privacy criterion

and t-closeness [29]. The latter criterion boils down to defining a maximum discrep-

ancy between the posterior and prior distributions,

t = max
y

D(pX|Y (·|y) ‖ pX).

Under this definition and on account of (3.8),

∆P(y) 6 2
√

2 dmax

√
t.

Therefore, t-closeness is essentially equivalent to bounding the decrease in conditional

privacy.

On a different note, we would like to make a comment on an issue of a purely

technical nature. Clearly, in light of inequality (3.8), the minimization of either the

total variation distance or the KL divergence leads to the minimization of an upper

bound on ∆P(y). However, the fact that the KL divergence imposes a worse upper
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bound suggests us considering it when the resulting mathematical model be more

tractable than the one built upon the total variation distance.

Mutual Information and Rate-Distortion Theory

The privacy criterion proposed in [32], called (average) privacy risk R, is the average-

case version of t-closeness. Formally, R is a conditional KL divergence, the average

discrepancy between the posterior and the prior distributions, which turns out to

coincide with the mutual information between the confidential data X and the ob-

servation Y :

R = EY D(pX|Y (·|Y ) ‖ pX)

= EY EX|Y

[
log

pX|Y (X|Y )

pX(X)

∣∣∣∣Y ]
= E log

pX|Y (X|Y )

pX(X)

= I(X;Y ).

Directly from their definition,R 6 t, meaning that t-closeness is a stricter measure

of privacy risk. Because the KL divergence is itself an average, R is clearly an average-

case privacy criterion, but t-closeness is technically a maximum of an expectation, a

hybrid between average case and worst case. The next subsection will comment on a

third, purely worst-case criterion.

Further, we conveniently rewrite inequality (3.8) as

1

8 d2
max

∆P(y)2 6 D(pX|Y (·|y) ‖ pX).

By averaging over all possible observation y, the right-hand side of this inequality

becomes the privacy risk R, which we showed to be equal to the mutual information.

This leads to a bound on the privacy reduction in terms of mutual information,

1

8 d2
max

E
[
∆P(Y )2

]
6 I(X;Y ).

Based on this observation, it is clear that the minimization of the mutual informa-

tion contributes to the minimization of an upper bound on ∆P(y). With this in mind,

we now consider the more general scenario in which Y ′ and Y need not necessarily
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coincide, and contemplate the case of a data publisher. Concretely, from the per-

spective of a publisher, we would choose a randomized perturbation rule pY ′|X′ with

the aim of minimizing the mutual information between X and Y , and consequently

protecting user privacy. Evidently, the publisher would also need to guarantee the

utility of the data to a certain extent, and thus impose a constraint on the average

distortion. In conclusion, the data publisher would strive to solve the optimization

problem

min
pY ′|X′

E dU(X′,Y ′)6D

I(X;Y ), (3.9)

which surprisingly bears a strong resemblance with the rate-distortion problem in the

field of information theory. Specifically, the above optimization problem is a general-

ization of a well-known, extensively studied information-theoretic problem with more

than half a century of maturity. Namely, the problem of lossy compression of source

data with a distortion criterion, first proposed by Shannon in 1959 [127].

The importance of this lies in the fact that some of the information-theoretic

results and methods for the rate-distortion problem can be extended to the prob-

lem (3.9). For example, in the special case when X = X ′ and Y = Y ′, our more

general problem boils down to Shannon’s rate-distortion and, interestingly, can be

computed with the Blahut-Arimoto algorithm [76].

Bear in mind that the very same metric, or conceptually equivalent variations

thereof, may in fact be interpreted under different perspectives. Recall, for instance,

that mutual information is the difference between an unconditional entropy and a con-

ditional entropy, effectively the posterior uncertainty modeled simply by the Shannon

entropy, normalized with respect to its prior correspondence. Under this perspective,

mutual information might also be connected to the branch of the tree in Fig. 3.3

leading to Shannon’s entropy.

δ-Disclosure and Differential Privacy

Finally, we quickly remark on the connection of δ-disclosure and ε-differential privacy

with our theoretical framework. δ-disclosure [30] is an even stricter privacy criterion

than t-closeness, and hence much stricter than that average privacy risk R or mutual
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information, discussed in the previous subsection. The definition of δ-disclosure may

be rewritten in terms of our notation as

δ = max
x,y

∣∣∣∣log
pX|Y (x|y)

pX(x)

∣∣∣∣ ,
and understood as a worst-case privacy criterion. In fact,

R 6 t 6 δ.

We mentioned in the background section that [31] analyzes the case of the random-

ized perturbation Y of a true answer X to a query in a PIR system, before returning

it to the user. Consider two databases d and d′ that differ only by one record, but

are subject to a common perturbation rule pY |X , and let pY and p′Y be the two prob-

ability distributions of perturbed answers induced. After a slight manipulation of

the definition given in the work cited, but faithfully to its spirit, we may say that a

randomized perturbation rule provides ε-differential privacy when

ε = max
y,d,d′

log
pY (y)

p′Y (y)
.

Even though it is clear that this formulation does not quite match the problem in

terms of prior and posterior distributions described thus far, this manipulation enables

us to still establish a loose relation with δ-disclosure, in the sense that the latter

privacy criterion is a slightly stricter measure of discrepancy between PMFs, also

based on a maximum (absolute) log ratio. We note, however, that although there is a

formal similarity between the metrics, there are substantial differences between them

in terms of their assumptions, objectives, models, and privacy guarantees.

3.5 Numerical Example

This section provides two simple albeit insightful examples that illustrate the measure-

ment of privacy as an attacker’s estimation error. Specifically, we quantify the level

of privacy provided, first, by a privacy-enhancing mechanism that perturbs location

information in the scenario of LBS, and secondly, by an anonymous-communication

protocol largely based on Crowds [68].



3.5 NUMERICAL EXAMPLE 79

3.5.1 Data Perturbation in Location-Based Services

Our first example contemplates a user who wishes to access an LBS provider. For in-

stance, this could be the case of a user who wants to find the closest Italian restaurant

to their current location. For this purpose, the user would inevitably have to submit

their GPS coordinates to the (untrusted) provider. To avoid revealing their exact

location, however, the user itself could perturb their location information by adding,

for example, Gaussian noise. Alternatively, we could consider a user delegating this

task to a (trusted) intermediary entity, as described in Sec. 3.4.1. In any case, data

perturbation would enhance user privacy in terms of location, although clearly at

the cost of data utility. Simply put, data-perturbative methods present the inherent

trade-off between data utility and privacy.
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Figure 3.7: A user looking for a nearby Italian restaurant accesses an LBS provider. The user
decides to perturb their actual location before querying the provider. In doing so, the user hinders
the provider itself and any attacker capable of capturing their query, in their efforts to compromise
user privacy in terms of location. In this example, we contemplate that the user is solely responsible
for protecting their private data. In terms of our notation, this allows us to regard the user as the
system. Notice that the user’s actual location is, on the one hand, the attacker’s unknown, and on
the other, the information that the user (system) takes as input to generate the location that will be
finally revealed. Thus we conclude that X = X ′. Then, according to some randomized perturbation
rule pY ′|X′ , the user discloses, for each location data x′, a perturbed version y′. This perturbed
location is submitted to the provider, which only has access to this information, i.e., Y = Y ′. Lastly,
based on this revealed information, the attacker uses a Bayes estimator x̂(y) to ascertain the user’s
actual location X.
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Under the former strategy, and in accordance with the notation defined in Sec. 3.3.1,

the user becomes the system—it is the user who is responsible for protecting their

location data. Playing the role of the system, the user decides then to perturb their

location data X on an individual basis for each query. In other words, we do not

contemplate the case of sequences of data Xk, as Sec. 3.4.1 does.

A key element of our framework is the attacker’s distortion function. In our

example we assume the squared error between the actual location x and the attacker’s

estimate x̂, that is, dA(x, x̂) = ‖x − x̂‖2. Unlike Hamming distance, note that the

squared error does quantify how much the estimate differs from the unknown. As for

the other variables of our model, we contemplate that the attacker’s input Y is directly

the location data perturbed by the user, Y ′, as illustrated in Fig. 3.7. Put differently,

the attacker, assumed to be the service provider, has no more information than that

disclosed by the user. Under all these assumptions, the average privacy (3.4) is

Pavg = E[‖X − X̂‖2],

that is, the mean squared error (MSE).

As a final remark, we would like to connect our privacy criterion with a metric

specifically conceived for the LBS scenario at hand [128]. In this cited work, the

authors propose a framework that contemplates different aspects of the adversary

model, captured by means of what they call certainty, accuracy and correctness. The

information to be protected by a trusted intermediary system are traces modeling the

locations visited by users over a period of time. The system accomplishes this task

by hiding certain locations, reducing the accuracy of such locations or adding noise.

As a result, the attacker observes a perturbed version of the traces and, together

with certain mobility profiles of these users, attempts to deduce some information of

interest X about the actual traces. In terms of our notation, the observed trajectories

and the mobility patterns constitute the attacker’s observation Y .

More accurately, given a particular observation y, the attacker strives to calculate

the posterior distribution pX|Y . However, since the adversary may have a limited

number of resources, they may have to content themselves with an estimate p̂X|Y .

The authors then use Shannon’s entropy to measure the uncertainty of X, and define
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accuracy as the discrepancy between pX|Y and p̂X|Y . Finally, they refer to location

privacy as correctness and measure it as

Ep̂X|Y [dS(X, xt)|y],

where xt is the true outcome of X, dS a distance function specified by the system,

and the expectation is taken over the estimate of the posterior distribution.

The most notable difference between [128] and the privacy criterion here proposed

is that the former metric limits its scope to the specific scenario of LBSs; whereas

in this thesis we attempt to provide a general overview. Besides, their proposal is a

measure of privacy in an average-case sense. Another important distinction between

the cited work and ours is that the former arrives to the conclusion that entropy and k -

anonymity are not appropriate metrics for quantifying privacy in the context of LBS.

Here, on the other hand, we do not argue against the use of entropy, k -anonymity and

any of the other privacy metrics examined in Sec. 3.4. In fact, we regard these metrics

as particular cases of the attacker’s estimation error under certain assumptions on

the adversary model, the attacker’s strategy and a number of different considerations

explored in that section.

3.5.2 Crowds-like Protocol for Anonymous Communications

In Chapter 2 we mentioned Chaum’s mixes as a building block to implement anony-

mous communications networks. A different approach to communication anonymity

is based on collaborative, P2P architectures. An example of collaborative approach

is Crowds [68], in which users form a “crowd” to provide anonymity for each other.

In Crowds, a user who wants to browse a Web site forwards the request to another

member of his crowd chosen uniformly at random. This crowd member decides with

probability p to send the request to the Web site, and with probability 1− p to send

it to another randomly chosen crowd member, who in turn repeats the process. For

the purpose of illustration, we consider a variation of the Crowds protocol. The main

difference with respect to the original Crowds is that we do not introduce a mandatory

initial forwarding step. We note that this variation provides worse anonymity than the

original protocol, while also reducing the cost (in terms of delay and bandwidth) with
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respect to Crowds. Further, we assume that the users participating in the protocol are

honest; i.e., we only consider the Web site receiving the request as possible adversary.

More formally, consider n users indexed by i = 1, . . . , n, wishing to communicate

with an untrusted server. In order to attain a certain degree of anonymity, each user

submits the message directly to said server with probability p ∈ (0, 1), and forwards

it to any of the other users, including themselves, with probability 1− p. In the case

of forwarding, the recipient performs exactly the same probabilistic decision until the

message arrives at the server. Fig. 3.8 shows the operation of this protocol.
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Figure 3.8: Anonymous-communication protocol inspired by Crowds. In our second numerical
example, we contemplate a scenario where users send messages to a common, untrusted server,
who aims at compromising sender anonymity. In response to this privacy threat, users decide to
adhere to a modification of the Crowds protocol, whose operation is as follows: each user flips a
biased coin and depending on the outcome chooses to submit the message to the server or else to
another user, who is asked to perform the same process. The probability that a user forward the
message to the server is denoted by p, whereas the probability of sending it to any other peer,
including themselves, is (1− p)/n.

In our protocol, we assume that the server attempts to guess the identity of the

author of a given message, represented by the r.v. X, knowing only the user who

last forwarded it, represented by the r.v. Y , consistently with the notation defined

in Sec. 3.3.1. The other variables of our framework are as follows. Since the set of

users involved in the protocol collaborate to frustrate the efforts of the server, they

are in fact the system. The information that then serves as input to this system is

simply the identity of the user who initiates the forwarding protocol, X. That is,

the attacker’s uncertainty and the system’s input coincide, X ′ = X. Then again, the

assumption that the server just knows the last sender in the forwarding chain leads

to Y = Y ′.
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Under this model, and under the assumption of a uniform message-generation

rate, that is, pX(x) = 1/n for all x, it can be proven that the conditional PMF of X

given Y = y is

pX|Y (x|y) =

{
p+ (1− p)/n , x = y

(1− p)/n , x 6= y
. (3.10)

Fig. 3.9 shows this conditional probability in the particular case when x = 1, i.e., the

probability that the originator of a message be user 1, conditioned to the observation

that the last sender is user y. Note that, because of the symmetry of our model, it

would be straightforward to derive a PMF analogous to the one plotted in this figure,

but for other originators of the message, namely x = 2, . . . , n.
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Figure 3.9: Probability that the original sender of a given message be the user 1, conditioned to the
observation that the last sender in the forwarding path is user y. From this figure, we observe the
PMF attains its maximum value when this last sender is precisely the user 1.

That said, assume that the attacker chooses Hamming distance as distortion func-

tion. Under this assumption, the conditional privacy (3.2) yields

P(y) = P{X 6= x̂(y)|y},

that is, the MAP error conditioned on the observation y. Because Hamming distance

implies, by virtue of (3.1), that Bayes estimation is equivalent to MAP estimation,

it follows that the attacker’s (best) decision rule is x̂(y) = y. Leveraging on this
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observation, we obtain that the privacy level provided by this variant of Crowds is

P(y) = ε
MAP

= 1− P{X = y|y} = (1− p)(1− 1/n),

from which it follows an entirely expected result—the lower the probability p of

forwarding a message directly to the server, the higher the privacy provided by the

protocol, but the higher the delay in the delivery of said message.

In the following, we consider the measurement of the privacy protection offered

by this protocol, in terms of the three Rényi’s entropies introduced in Sec. 3.4.1,

namely the min-entropy H∞(X|y), the Shannon entropy H1(X|y) and the Hartley

entropy H0(X|y) of the r.v. X, modeling the actual sender of a given message (the

privacy attacker’s target), given the observation of the user who last forwarded it, y.

Specifically, we connect the interpretations described in Sec. 3.4.1 to the example at

hand.

But first we would like to recall from Sec. 3.4.1 that H∞(X|y), H1(X|y) and

H0(X|y) may be considered, from the point of view of the user, as a worst-case,

average-case and best-case measurements of privacy, respectively, in the sense that

H∞(X|y) 6 H1(X|y) 6 H0(X|y),

owing to (3.6), with equality if and only if the conditional PMF of X given Y = y is

uniform. Note that a worst-case privacy metric from the point of view of the user is a

best-case measure from the standpoint of the attacker and vice versa. Revisiting the

interpretations given in that section, recall that the min-entropy H∞(X|y) is directly

connected with the maximum probability, in our case maxxi pX|Y (xi|y) = p+(1−p)/n,

on account of (3.10). More concretely, and in the context of our example, min-entropy

reflects the model in which a privacy attacker makes a single guess of the originator

of a message, specifically the most likely one, which corresponds to x = y.

At the other extreme, the Hartley entropy H0(X|y) is a possibilistic rather than

probabilistic measure, as it corresponds to the assumption that a privacy attacker

would not content themselves with discarding all but the most likely sender, but

consider instead all possible users. More accurately, measuring privacy as a Hartley’s
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entropy essentially boils down to the cardinality of the set of all possible originators

of a message, namely H0(X|y) = log n.

On a middle ground lies Shannon’s entropy, which was interpreted in Sec. 3.4.1

by means of the AEP, specifically in terms of the cardinality of the set of typical

sequences of i.i.d. samples of an r.v. Put in the context of our Crowds-like protocol,

however, Shannon’s entropy may be deemed as an average-case metric that considers

the entire PMF of X given Y = y, and not merely its maximum value or its support

set.

3.6 Guide for Designers of SDC and ACSs

The purpose of this section is to show the applicability of our framework to those

designers of SDC and ACSs who, wishing to quantify the level of protection offered

by their systems, do not want to delve into the mathematical details set forth in

Sec. 3.4. In order to assist such designers in the selection of the privacy metric

most appropriate for their requirements, this section revises the application scenarios

of SDC and anonymous communications, and classifies some of the metrics used in

these fields in terms of worst case, average case and best case, from the perspective

of the user.

Before proceeding any further, we would like to briefly recall the distinction pre-

cisely between worst-case, average-case and best-case measurements of privacy. To

this end, consider the scenario of ACSs in general and mixes in particular. In this

specific scenario, the knowledge of the privacy attacker may be modeled by a prob-

ability distribution on the possible senders of a given message. A clear example of

best-case privacy metric is Hartley’s entropy, which measures the degree of anonymity

attained by the mere cardinality of the set of candidate senders, or equivalently, by

the logarithm of such cardinality. Loosely speaking, Hartley’s entropy may be re-

garded as a best-case metric from the point of view of users (worst for adversaries),

in the sense that it represents a privacy attacker’s thorough effort in considering any

and all possibilities, regardless of their likelihood. In the special case of threshold
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pool mixes, however, the set of candidate output messages for a given input may be

infinite, rendering Hartley’s entropy inappropriate.

On the opposite extreme, min-entropy may be understood as the MAP estimation

error where the attacker simply guesses the most likely outcome. This information-

theoretic quantity may be construed as a worst-case metric, in the sense that the

attacker is concerned with the most vulnerable statistical link between senders and

messages. Finally, Shannon’s entropy takes into account the underlying probability

distribution in its entirety, between the extremes posed by the previous two metrics,

yielding a quantity bounded according to (3.6). For this reason, one may think of it

as an average-case metric.

Next, we elaborate on the distinction between Hamming and non-Hamming dis-

tortion functions, between whether these functions are known or unknown to the

system, and finally between single and multiple-occurrence data. The reason is that

the understanding of these concepts is fundamental for a system designer who, follow-

ing the arguments sketched in Fig. 3.3, wants to choose the suitable metrics for their

field of application. With this purpose, next we illustrate these concepts by means of

a couple of simple albeit insightful examples.

The first consideration a system designer should take into account when applying

our framework refers to the geometry of the attacker’s distortion function dA, namely

whether it is a Hamming or a non-Hamming function. To illustrate this key point,

consider a set of users in a social network. A Hamming function taking as inputs the

users u1 and u2 would model an attacker who contemplates only their identities when

comparing them, and ignores any other information such as the relationship between

them within the social network, their profile similarity or their common interests.

Another adversary, however, could represent said network by a graph, modeling users

and relationships among them as nodes and edges, respectively. Leveraging on this

graph, the attacker could use a non-Hamming function to compute the number of

hops separating these two users and, accordingly, lead to the conclusion that they

are, for example, close friends since dA(u1, u2) = 1.

The second consideration builds on the assumption of a non-Hamming attacker’s

distortion function. Under this premise, we contemplate two possible cases—when
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the function is known to the system and when not. The former case is illustrated,

for instance, in the context of LBSs—in this application scenario, an adversary will

probably use the Euclidean distance to measure how their estimated location differs

from the user’s actual location. The latter case, i.e., when the measure of distor-

tion used by the attacker is unknown to the system, would undoubtedly model a

more general and realistic scenario. As an example of this case, consider a system

perturbing the queries that a user wants to submit to a database, and an attacker

wishing to ascertain the actual queries of this user. Suppose that these queries are

one-word queries and that the perturbation mechanism replaces them with synonyms

or semantically-similar words. Under these assumptions, our attacker could opt for a

non-Hamming distortion function and measure the distance between the actual query

and the estimate as the number of edges in a given ontology graph. Although the

system could be aware of this fact, the specific ontology used by the attacker could

not be available to the system, and consequently the distortion function would remain

unknown.

Our last consideration is related to the nature of the variables of our framework,

summarized in Table 3.1. Specifically, we contemplate two possible cases—single

and multiple-occurrence data. The former case considers such variables to be tuples

of a small number of components, and the latter assumes that these variables are

sequences of data. An LBS attacker who observes the disclosed, possibly perturbed

location of a user and makes a single guess about their actual location is an example

of single-occurrence data. To illustrate the case of multi-occurrence data, consider

a set of users exchanging messages through a mix system. Recall that such systems

delay and reorder messages with the aim of concealing who is communicating with

whom. Among the multiple attacks these systems are vulnerable to, the statistical

disclosure attack [129] is a good example for our purposes of illustration, since it

assumes an adversary who observes a large number or sequence of messages coming

out of the mix, with the aim of tracing back their originators.

Having examined these key aspects of our framework, now we turn our attention,

first, to the application scenario of SDC, and secondly, to the case of ACSs. In the

former scenario, a data publisher aims at protecting the privacy of the individuals
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appearing in a microdata set. Depending on the privacy requirements, the publisher

may want to prevent an attacker from ascertaining the confidential-attribute value of

any respondent in the released table. Under this requirement, t-closeness and mutual

information appear as acceptable measures of privacy, since both criteria protect

against confidential attribute disclosure. Recall that the assumptions on which they

are based are a prior belief about the value of the confidential attribute in the table,

and a posterior belief of said value given by the observation that the user belongs

to a particular group of this table. Building on these premises, t-closeness may be

regarded as a worst-case measurement of privacy, in the sense that it identifies the

group of users whose distribution of the confidential attribute deviates the most from

the distribution of this same attribute in the entire table. Recall that a worst-case

measurement of privacy from the user’s perspective is, in fact, a best-case measure

from the attacker’s point of view and vice versa.

Although t-closeness overcomes the similarity and skewness attacks mentioned in

Sec. 2.4.1, its main deficiency is that no computational procedure has been given to

enforce said criterion. An alternative is the mutual information between the confiden-

tial attributes and the observation, an average-case version of t-closeness that leads to

a looser measure of privacy risk. In any of these two metrics, it is assumed the more

general case in which the attacker’s distortion function is not the Hamming distance.

Specifically, this assumption models an adversary who does not content themselves

with finding out whether the estimate and the unknown match, but wishes to quantify

how much they diverge.

Another distinct privacy requirement is that of identity disclosure, whereby a

publisher wishes to protect the released table against a linking attack. In this attack,

the adversary’s aim is to uncover the identity of the individuals in the released table

by linking the records in this table to a public data set including identifier attributes.

Under this requirement and under the assumption that the attacker regards each

respondent within a particular group as equally likely, k-anonymity may be deemed

as a best-case measure of privacy, determined by Hartley’s entropy.

In the scenario of ACSs, there exists a wide variety of approaches. Among them,

a popular anonymous-communication protocol is Crowds. Although in this section
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Table 3.4: Guide for designers of SDC and ACSs. This table classifies several privacy metrics
depending, first, on whether they are regarded as worst-case, average-case and best-case measures,
and secondly on their application domain.

Worst case Average case Best case

SDC t-closeness mutual information k-anonymity

ACSs min-entropy Shannon’s entropy Hartley’s entropy

we limit the discussion of the privacy provided by such systems to a variant of this

protocol, we would like to stress that the conclusions drawn here may be extended

to other anonymous systems. Having said this, recall that in the original Crowds

protocol, a system designer makes available to users a collaborative protocol that

helps them enhance the anonymity of the messages sent to a common, untrusted Web

server. The design parameters are the number of users participating in the protocol

and the probability of forwarding a message directly to the server.

In our variant of this protocol, however, we contemplate an attacker who strives

to guess the identity of the sender of a given message, based on the knowledge of the

last user in the forwarding path. Under this adversary model, we may regard min-

entropy, Shannon’s entropy or Hartley’s entropy as particular cases of our measure

of privacy, depending on the specific strategy of the attacker. For example, under

an adversary who uses MAP estimation and, accordingly, opts for the last sender,

min-entropy may be interpreted as a worst-case privacy metric. Alternatively, we

may assume an attacker who takes into account the entire probability distribution

of possible senders, and not only the most likely candidate. In this case, Shannon’s

entropy may be deemed as an average-case measure. Finally, suppose an attacker who

thoroughly examines all potential originators of the message without considering their

likelihood. Under this assumption, Hartley’s entropy may be regarded as a best-case

measurement of privacy. The discussion in this section is summarized in Table 3.4.

3.7 Conclusion

Numerous privacy metrics have been proposed in the literature. Most of these metrics

have been conceived for specific applications, adversary models, and privacy threats,
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and thus are difficult to generalize. Even for specific applications, we often find that

various privacy metrics are available. For example, to measure the anonymity pro-

vided by anonymous-communication networks, several flavors of entropy (Shannon,

Hartley, min-entropy) can be found in the literature, while no guidelines exist that

explain the relationship between the different proposals, or provide an understanding

of how to interpret or put in context the results provided by each of them. Also,

these proposals fail to justify the choice, often simply neglecting alternatives, say

min-entropy or any Rényi’s entropy.

In the scenario of SDC, a variety of approaches attempt to capture, to a greater

or lesser degree, the private information leaked as a result of the dissemination of mi-

crodata sets. In this spirit, k-anonymity is possibly the best-known privacy measure,

mainly due to its mathematical tractability. Later, numerous extensions and enhance-

ments were introduced with the aim of overcoming its limitations. While all these

metrics have provided further insight into our understanding of privacy, the research

community would benefit from a framework embracing those metrics and making it

possible to compare them, and to evaluate any privacy-protecting mechanism by the

same yardstick.

In this chapter, we propose a unifying view to choose and justify privacy measures

in a more systematic manner. Our approach starts with the definition and modeling

of the variables of a general framework. Then, we proceed with a mathematical

formulation of privacy, which essentially emerges from BDT. Specifically, we define

privacy as the estimation error incurred by an attacker. We first propose what we refer

to as conditional privacy, meaning that our measure is conditioned on an attacker’s

particular observation. Accordingly, we define the terms of average privacy and worst-

case privacy.

The formulation is then investigated theoretically. Namely, we interpret a num-

ber of well-known privacy criteria as particular cases of our more general metric. The

arguments behind these justifications are based on fundamental results related to the

fields of information theory, probability theory and BDT. More accurately, we in-

terpret our privacy criterion as k-anonymity and l-diversity principles by connecting
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them to Rényi’s entropy and MAP estimation. Under certain assumptions, a condi-

tional version of the AEP allows us to interpret Shannon’s entropy as an arbitrarily

high confidence set. Then, the total variation distance and Pinsker’s inequality jus-

tify t-closeness requirement and the criterion proposed in [32] as particular instances

of our measure of privacy. In the course of this interpretation, we find that our for-

mulation bears a strong resemblance with the rate-distortion problem in information

theory.

After our theoretical analysis, we provide some guidelines for those systems de-

signers of SDC and ACSs who do not wish to delve into mathematical details. A

couple of simple albeit insightful examples are also presented. Our first example

quantifies the level of privacy provided by a privacy-enhancing mechanism that per-

turbs location information in the scenario of LBS. Under certain assumptions on the

adversary model, our measure of privacy becomes the MSE. Then we turn our at-

tention to the scenario of ACSs and measure the degree of anonymity achieved by a

modification of the collaborative protocol Crowds. We contemplate different strate-

gies for the attacker and, accordingly, interpret min-entropy, Shannon’s entropy and

Hartley’s entropy as worst-case, average-case and best-case privacy metrics.

The establishment of connections between privacy metrics and concepts from the

field of information theory, and the formulation of these metrics as estimation errors

cast light on the understanding of the privacy properties associated with those metrics

and the evaluation of their applicability to specific applications. With this work, we

also show the riveting interplay between the field of information privacy on the one

hand, and on the other the fields of information theory and stochastic estimation,

while bridging the gap between the respective communities.

In closing, we hope that this unified perspective of privacy metrics, drawing upon

the principles of information theory and Bayesian estimation, is a helpful, illustrative

step towards the systematic modeling of privacy-preserving information systems.



Chapter 4

Measuring the Privacy of User

Profiles

4.1 Introduction

In Chapters 2 and 3, we established the critical importance of quantifying privacy in

order to assess, compare, improve and optimize privacy-protecting technologies. The

main contribution presented in Chapter 3 was precisely the definition of a general

framework where privacy was measured as an attacker’s estimation error. The ap-

plicability of our framework was demonstrated in the scenarios of SDC, ACSs and

LBS. In application scenarios involving user profiles, as it is the case of personalized

information systems, there are several proposals specifically conceived for measur-

ing privacy. The problem, however, is that these approaches are not appropriately

justified and are defined in an ad hoc manner for a few specific applications.

This chapter approaches the fundamental problem of proposing quantitative mea-

sures of the privacy of user profiles. We tackle the issue by providing a thorough

justification of KL divergence and Shannon’s entropy as measures of anonymity and

privacy. Our justification relies on fundamental principles from information theory

and statistics, thereby drawing intriguing links between said fields and information

privacy.

92
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We consider two adversary models. The first model assumes an attacker aimed at

targeting users who deviate from the average profile of interests; and the second one

contemplates an attacker whose objective is to classify a given user into a predefined

group of users. Under the former model, the use of divergence and entropy as mea-

sures of anonymity is justified by elaborating on Jaynes’ rationale behind entropy-

maximization methods and the method of types. Under the latter adversary model,

a riveting argument in favor of divergence as privacy criterion stems from hypothesis

testing and large deviation theory. The adversary model as well as the metrics defined

here will serve as a reference for the next chapters.

The results presented in this chapter are an extension of [46,50,130].

Chapter Outline

The rest of this chapter is organized as follows. Sec. 4.2 delves into the technical

literature of profiling and reviews some fundamental concepts related to it. Sec. 4.3

defines the adversary model used throughout this work. This includes the defini-

tion of an abstract model for representing user interests, our assumptions about the

scenario, and the specification of concrete objectives for the adversary. The use of

divergence and entropy as privacy and anonymity measures is justified in Secs. 4.4

and 4.5. Afterwards, Sec. 4.6 establishes a connection between our privacy criteria and

other proposals for measuring user privacy in the context of personalized information

systems. Finally, conclusions are drawn in Sec. 4.7.

4.2 User Profiling

In Sec. 2.1.2 we illustrated the privacy risks inherent in personalized information sys-

tems and emphasized the increasing pervasiveness of personalization technologies. As

shown in that section, this kind of technologies appear in a variety of applications in-

cluding personalized Web search and browsing, multimedia recommendation systems,

collaborative tagging or personalized news. In all these applications, the ability to

profile users is the cornerstone to provide a personalized service.
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Profiling, however, is not only present in personalized information systems, but

also plays a prominent role in a wide range of scenarios. As a matter of fact, before

computers became a part of people’s daily lives, detective and criminal investigators

constructed profiles of their offenders, psychiatrists built behavioral profiles of people

with some personality disorder, marketing researchers elaborated profiles of potential

clients, and recruiting companies profiled candidates for particular job vacancies [131].

Currently, such types of profiles are no longer handmade, and profiling spans many

other disciplines, from forensic medicine to immigration policy, from supply chain

management to actuarial consultancy [132].

In the coming subsections, we shall dive into the technical literature of profiling to

examine some fundamental concepts in the field. In the end, we shall recall a widely

accepted definition of this term. The purpose of all this is to comprehend the meaning

of profiling from a broad perspective, not limited to the context of personalization,

so that we can define an adversary model consistent with the literature of profiling.

4.2.1 Construction and Application of Profiles

Profiling practices and technologies are characterized by the use of algorithms that

collect and analyze data over a period of time; their ultimate objective is to ac-

quire knowledge in the form of statistical patterns or correlations between data [133].

When those patterns are employed to identify and represent people, they are called

profiles [132]. In the context of profiling, a profile may refer either to a person or to a

group of people. For the sake of simplicity, in our scenario of personalized information

systems we only contemplate the case of a single person.

In the literature, there exist several models that describe the technical process of

profiling, namely the semiotic model knowledge discovery in databases [134] and de

facto industry standard cross-industry standard process for data mining, CRISP-DM.

In essence, these models characterize profiling as a process that consists of a number

of phases. For instance, [134] defines profiling as an adaptive and dynamic process

where data are collected, prepared, mined and finally applied. Although the phases

in each model differ in the degree of sophistication, both models reduce the process of
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profiling to the construction of profiles, i.e., data collection, preparation and mining,

and the subsequent application of those profiles to people.

4.2.2 Individual and Group Profiling

Profiling can then be viewed as a type of knowledge that identifies and represents peo-

ple by means of the construction and application of profiles. The technical literature

of profiling [131,132] attributes two meanings to the term identify :

• the discovery of the individual characteristics of a person, also referred to as

individuation;

• and the categorization of a person as a specific type of person.

In other words, and according to the cited works, profiling refers both to the discrim-

ination of one person from all other persons, and to the identification of a person

as part of a certain group of persons. The application or usage of profiles to iden-

tify people in the sense of individuation or categorization motivates the distinction

between individual and group profiling.

Individual profiling is frequently used in the information systems that motivate

this thesis. Personalized information systems aim to ascertain the unique interests and

preferences of users, that is, their mission is to discover what distinguishes a particular

user from the general population of users. At the same time, personalization and many

other technologies also capitalize on group profiling. Typically, these technologies take

advantage of the fact that a user’s profile may coincide with another profile built from

a sheer volume of data belonging to a number of other people. In this latter kind of

profiling, profiles are applied to persons whose data were not used to generate those

profiles.

In the case of group profiling, there exists an important distinction between the

groups of people that profiles may represent. In particular, a group profile may refer

either to an existing community of people that consider themselves as a group, or to

a category of people that do not necessarily constitute a community but share certain

characteristics. An example of community could be a political party or a religious
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organization, while the group of Internet users that regularly query databases with

medical information could be deemed as a category.

4.2.3 Definition of Profiling

As the literature recognizes, profiling may seem to refer, in the first instance, to con-

cepts of a rather different nature but connected to each other in important ways.

After exploring such concepts, now we recall a widely accepted definition of profil-

ing [131,132,135,136]. Quoting [131,132], the term profiling is defined as

• the process of constructing profiles that identify and represent either a person

or a group of persons,

• and/or the application of profiles with the aim of

– individuating a person,

– or categorizing a person as a member of a specific group of persons.

The above definition illustrates the connection between the concepts of individ-

ual and group profiling on the one hand, and on the other, the construction and

application of profiles. As we shall see later in Sec. 4.3, the consideration of these

concepts will be key in the definition of our adversary model. In that section, the

assumptions about the privacy attacker will be consistent with the profiling practices

and the terminology reviewed here.

4.3 Adversary Model

In Secs. 2.1.3 and 2.1.4 we stressed the need for privacy metrics as the only way to

evaluate, compare and design privacy-protecting mechanisms. When measuring the

level of privacy provided by a PET, however, it is essential to specify the concrete

assumptions about the adversary, that is, its capabilities, properties or powers, as well

as the scenario where this attacker operates; this is known as the adversary model.

The importance of such a model lies in the fact that the level of privacy provided is
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measured with respect to it. In other words, if the assumptions change, so does the

metric.

The objective of this section is precisely to specify these assumptions. In Sec. 4.3.1

we describe the particularities of the scenario of personalized information systems

considered, and identify the potential privacy attackers contemplated in this scenario.

In the next subsections we analyze two additional, key aspects of our adversary model.

Specifically, Sec. 4.3.2 defines the user-profile model, that is, the model used by

the attacker to represent user interests and preferences. And afterwards, Sec. 4.3.3

examines an essential element of the adversary model, the objective of profiling itself.

As we shall see later, the objectives considered for the attacker will be in line with

the technical literature of profiling that we briefly reviewed in Sec. 4.2.

4.3.1 Scenario

In the use case described in Sec. 2.1.2, a company illegitimately gained a competitive

advantage from monitoring certain professional and personal activities of employees

and other individuals. The example given in that section highlighted the serious

privacy threats posed by personalized information systems.

These systems allow users to tag Web pages, post comments or rate information

items of any type, that is, they enable users to take a series of actions from which

these users expect to obtain some sort of benefit. The scenario considered in this

chapter assumes that users are identified from the standpoint of such systems. This

does not necessarily mean that personalized information systems have users’ real

names or other personally identifying information; it only implies that users’ actions

are monitored so that their profiles can be constructed and personalization can be

provided. User identification, in that sense, could be achieved, for example, by using

HTTP cookies. We would like to note that if users were neither logged in nor willing

to be tracked, they would definitely not receive any personalized service.

Clearly not all the actions taken by a user are equally sensitive. Further, the sensi-

tivity of such actions is context-dependent and subject to user perception. Resorting

to the example given in Sec. 2.1.2, tagging the Web page http://occupywallst.org

with “OWS” could be considered as a sensitive action for the protagonist of the story,

http://occupywallst.org


98 CHAPTER 4. MEASURING THE PRIVACY OF USER PROFILES

Jane Doe, given her aspirations for promotion. However, if this same tag was to be

posted by another user, it might not have any impact at all.

That individual tag would not lead an attacker to draw far-reaching conclusions

about her actual interests or political leaning and, in principle, the privacy of our

protagonist would not be seriously compromised. Tagging that Web page could be

regarded as expressing some sympathy for the Occupy Wall Street movement, but

would not be interpreted as if she had a deep interest in the topic. However, if

numerous tags were posted in this same direction, information providers could dispel

their initial doubts about her concerns, and obtain a precise snapshot of her real

interests, i.e., they could be able to build her profile and maybe conclude she is an

activist.

The construction of this profile is essential to enable personalization, but at the

very same time it raises serious privacy risks with regard to social sorting or segmen-

tation [137]. In this work we are concerned about the risk of profiling, which goes

hand in hand with the risk of reidentification(a). For this reason, in our scenario of

personalized information systems we assume that the set of potential privacy attack-

ers encompasses any entity capable of profiling users based on the information they

disclose when interacting with such systems. Clearly, this set includes the information

systems themselves, which may have personally identifying information about users,

and also comprises any attacker able to intercept the communications between users

and systems. Besides, since the information conveyed (e.g., ratings, tags, comments

or posts) is often publicly available to other users of those systems, any entity able

to collect this information is also taken into consideration in our adversary model.

Table 4.1 summarizes the assumptions about the scenario considered here.

(a)In the scenario considered in this work, we assume that users are identified by personalized infor-
mation systems. By “identified” we simply mean that users are tracked by those systems. However,
several actions taken by a certain user may eventually lead these systems, or any entity intercepting
the communications between the user and such systems, to find out the user’s real identity, provided
that it has not been voluntarily given by the user. We refer to this as reidentification.
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4.3.2 User-Profile Model

In the motivating scenario of this work, a user submits queries to a Web search engine,

clicks on news links in a personalized news recommendation system, and assigns tags

to resources on the Web, all according to their profile of interests. The information

revealed, i.e., queries, news clicked and tags, allows those systems to extract a profile

of interests or user profile, which is fundamental in the provision of personalized

services.

In the context of personalized information systems, user profiles are frequently

modeled as histograms. For example, collaborative tagging systems commonly repre-

sent profiles by using tag clouds, which, in essence, may be regarded as histograms.

Recall that a tag cloud is a visual depiction in which tags are weighted according to

their frequency of use. Those two possible representations for user profiles, tag clouds

and histograms, are, in fact, simultaneously used in popular tagging systems such as

BibSonomy (b), CiteULike (c), Delicious, LibraryThing (d) and SlideShare (e).

In the scenario of personalized recommendation systems, we also find examples

of profiles modeled as histograms, especially in content-based recommenders [138]

such as IMDb, Jinni (f) and Last.fm (g). Of particular interest is the case of Google

News, where news are classified into a predefined set of topic categories; and accord-

ingly, users are modeled by their distribution of clicks on news, i.e., as histograms of

relative frequencies of clicks within that set of categories [139]. In this same spirit,

recent privacy-protecting approaches in the scenario of recommendation systems also

propose using histograms of absolute frequencies for modeling user profiles [140,141].

Motivated by all these examples and inspired by other works in the field [89, 90,

95, 102, 107, 142], in this chapter we justify and interpret a privacy criterion under

the assumption that user profiles are modeled as PMFs, that is, as histograms of

relative frequencies of user data (e.g., queries, clicks, tags and ratings) within a set

(b)http://www.bibsonomy.org
(c)http://www.citeulike.org
(d)http://www.librarything.com
(e)http://slideshare.net
(f)http://www.jinni.com
(g)http://www.last.fm

http://www.bibsonomy.org
http://www.citeulike.org
http://www.librarything.com
http://slideshare.net
http://www.jinni.com
http://www.last.fm
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of categories of interest. Our user-profile model is, therefore, much in line with the

representations used in numerous tagging systems and personalized recommendation

systems. In addition to its extensive use, we would also like to emphasize its math-

ematical tractability. Other user-profile models include semantic networks, weighted

concepts and association rules [143]. Fig. 4.1 shows an example of the user profile

representation assumed in this work. This example could perfectly resemble the case

of Jane Doe described in Sec. 2.1.2. Fig. 4.2, on the other hand, depicts the profile

of a user as shown in Movielens.

Figure 4.1: User profile modeled as a tag cloud in a collaborative tagging system. The tags posted by
users are frequently depicted as tag clouds, not only in those tagging systems, but also in multimedia
recommendation systems such as Jinni.

An important ingredient of our profile model are the categories of interests em-

ployed to represent user preferences. In tagging systems these categories are usually

the tags themselves, and profiles are just a counter of the number of times each tag

has been posted. The main drawbacks of such profiles are that, first, they become

untractable when tagging activity is significant, and secondly, they do not allow easy

inspection of user interests. The categorization of user data may help in both regards.

A coarser representation of those data could make it easier to have a quick overview

of said preferences. Consider, as an example, a user posting the tags “nyfw” and

“jen kao”. Rather than using this information to model their interests, it could be

more convenient to have a higher level of abstraction that enables the attacker to

conclude, directly from the observation of their profile, that the user is interested in

fashion. The granularity level used to represent user preferences certainly will depend
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Figure 4.2: User profile modeled as a histogram of absolute frequencies of ratings within a set of
predefined movie genres. Many personalized information systems use this kind of representation, or
slight variations of this idea, to model user interests.

on the attacker’s capabilities. For instance, a rudimentary attacker will possibly have

to content themselves with a histogram of raw data such as tags or search queries. A

more sophisticated attacker, on the other hand, could cluster these tags into hierar-

chical tag categories. In a nutshell, the categorization of user data is an element to

be considered in the definition of our user-profile model and hence in the adversary

model.

Actual and Apparent Profiles

In view of the assumptions described in 4.3.2, our privacy attacker boils down to

an entity that aims to profile users by representing their interests in the form of

normalized histograms, on the basis of a given categorization. To achieve this aim,

the attacker may exploit any explicit and implicit information that users communicate

to information systems. To mitigate the risk of profiling, naturally users may adopt

any privacy-protecting mechanism.

Among the different approaches in the literature, this thesis focuses on those

mechanisms based on data perturbation. As mentioned in Sec. 2.3.1, the key strengths

of data perturbation are its simplicity in terms of infrastructure requirements and its
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genuine queries 

apparent user profile 

forged queries 

actual user profile 

search results 

Figure 4.3: Query forgery in personalized Web search. A user submits false queries, accompanied
with genuine queries, to perturb his actual profile of interests. By adopting query forgery, the
adversary, possibly the service provider itself, observes a distorted version of his profile. We refer to
this profile as the apparent user profile.

strong privacy guarantees, as users need not trust the information provider, nor the

network operator nor other peers.

Under the assumption of an untrusted model, and as a response to the privacy

threats described in Sec. 2.1.2, users therefore contemplate the possibility of unveiling

only some pieces of their private data, or slightly perturbed versions of it. In doing

so, users gain some privacy, although at the cost of certain loss in usability. Users

may consider, for example, the elimination of some sensitive tags or comments, and

the submission of false ratings and search queries. As a result of this, the attacker

observes a perturbed version of the genuine profile, also in the form of a relative

histogram, which does not reflect the actual interests of the user. In short, the

attacker believes that the observed behavior characterizes the actual user’s profile.

Thereafter, we shall refer to these two profiles as the actual user profile and the

apparent user profile. Fig. 4.3 shows an example of such profiles.

4.3.3 Attacker’s Objective

In Sec. 4.2 we analyzed various concepts related to profiling. Specifically, we showed

that profiling is defined based on the concepts of construction and application of

profiles on the one hand, and individuation and classification on the other. In this
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section we connect our adversary model with those concepts. Our aim is to define a

model in line with the literature of profiling.

Recall that, in this work, the set of potential privacy attackers comprises any entity

aimed at profiling users of personalized information systems. Bearing in mind the

terminology reviewed in Sec. 4.2, we shall refer to our adversary strictly as an entity

which constructs and applies profiles to identify and represent those users. Recall from

Sec. 4.2.2 that the term “identify” refers to either individuation or classification, and

that it has nothing to do with learning the real identity of a user or other personally

identifying information. Actually, in our scenario of personalized information systems

we contemplate that users may be completely identified by such systems.

In addition to define of our privacy attacker in those more technical terms, our ad-

versary model also captures the objective of profiling itself. In particular, we consider

the two forms of profiling described in Sec. 4.2.2, i.e., individual and group profiling,

and integrate them into our model as concrete objectives for the adversary. These

two objectives are interpreted as follows:

• On the one hand, we may consider the attacker strives to target users who

deviate from the average profile of interests. In accordance with Sec. 4.2.2,

we refer to this objective as individuation, meaning that the adversary aims at

discriminating a given user from the whole population of users, or said otherwise,

wishes to learn what distinguishes that user from the other users.

• On the other hand, we may assume that the attacker’s goal is to classify a user

into a predefined group of users. To conduct this classification, the attacker

contrasts the user’s profile with the profile representative of a particular group.

These two objectives, together with the assumptions about the scenario and

the user profile representation, constitute the adversary model upon which our pri-

vacy metric builds. Table 4.1 provides a summary of our adversary model. In

Secs. 4.4 and 4.5, we shall justify KL divergence and entropy as privacy criteria.

This justification will rely on two adversary models differing only in the attacker’s
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Table 4.1: Main conceptual highlights of the adversary model assumed in this work.

What scenario is assumed? We consider those information systems that provide users with profile-based
personalization. In this scenario we assume that users are identified by such
information systems. Accordingly, we contemplate users who may provide
these systems with their names or other personally identifying information
during the registration process. However, we also consider the possibility
that those users use pseudonyms, or are not logged into the system. In any
case, the only requirement is that users are disposed to be tracked by the
personalized information system they wish to interact with. Otherwise, per-
sonalized services cannot be provided.

Who can be the privacy at-
tacker?

Any entity able to profile users is taken into account. This includes service
providers and any entity capable of eavesdropping users’ data, e.g., ISPs,
proxies, switches, routers, firewalls, users of the same local area network,
system administrators and so on. Further, we also contemplate any other
entity which can collect publicly available users’ data.

How does the attacker model
user interests?

User profiles are modeled as histograms of relative frequencies of user data
across a predefined set of categories of interest. The categorization of those
data plays a fundamental role in the modeling of user interests.

What is the attacker after
when profiling users?

We contemplate two possible objectives for an attacker: individuation and
classification. The former objective reflects an attacker wishing to target
peculiar users, while the latter objective is associated with an adversary aimed
at identifying a given user as a member of a specific group of users.

objective. Depending on the objective chosen, we shall regard those information-

theoretic quantities as measures of privacy risk against individuation, or as measures

of privacy gain against classification.

4.4 Privacy Metric against Individuation

Next, we shall proceed with our first interpretation of KL divergence and Shannon’s

entropy as a privacy criterion. Both in this section and in Sec. 4.5, the information-

theoretic arguments and justifications in favor of our metric will be expounded in a

systematic manner, following the points sketched in Fig. 4.4. Henceforth, we shall

use the notation H(X) instead of H1(X) to refer to the Shannon entropy of an r.v. X.

In the section at hand, we shall interpret divergence and entropy under the as-

sumptions of the adversary model defined in Sec. 4.3, in the special case when the

attacker’s objective is to individuate a user in the sense of discriminating this user

from all other users; this interpretation corresponds to the first branch of the tree in

Fig. 4.4, which we term individuation. For that purpose, we shall adopt the perspec-

tive of Jaynes’ celebrated rationale on entropy maximization methods [144], which is
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based on the method of types [76, §11], a powerful technique in large deviation theory

whose fundamental results we also explore in this section.
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Figure 4.4: Summary of our interpretations of KL divergence and Shannon’s entropy as measures
of privacy. This figure illustrates, at a conceptual level, the assumptions upon which our privacy
criterion builds. First, we follow Jaynes’ rationale behind entropy-maximization methods to justify
divergence and entropy when the attacker’s goal is to individuate users. The knowledge of the
population’s distribution p determines whether the metric to be used is divergence or entropy.
Secondly, when the attacker aims at classifying a user as a member of a particular group, our
arguments in favor of divergence stem from hypothesis testing and the method of types. In the
special case when the group profile g is unknown to the user, they may wish to maximize the
divergence between the actual profile q and the perturbed, observed profile t, in order to avoid being
classified as they actually are.

The first part of this section, Sec. 4.4.1, tackles an important question. Suppose

we are faced with a problem, formulated in terms of a model, in which a probabil-

ity distribution plays a major role. In the event this distribution is unknown, we

wish to assume a feasible candidate. What is the most likely probability distribu-

tion? In other words, what is the “probability of a probability” distribution? We

shall see that a widespread answer to this question relies on choosing the distribu-

tion maximizing the Shannon entropy, or, if a reference distribution is available, the

distribution minimizing the KL divergence with respect to it, commonly subject to

feasibility constraints determined by the specific application at hand.
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Our review of the maximum-entropy method is crucial because it is unfortunately

not always known in the privacy community. As we shall see in the last part of this

section, Sec. 4.4.2, the key idea is to model a user profile as a probability distribu-

tion, as considered in Sec. 4.3.2, apply the maximum-entropy method to measure

the likelihood of a user profile either as its entropy or as its divergence with respect

to the population’s average profile, and finally take that likelihood as a measure of

anonymity.

4.4.1 Rationale behind the Maximum-Entropy Method

A wide variety of models across diverse fields have been explained on the basis of

the intriguing principle of entropy maximization. A classical example in physics

is the Maxwell-Boltzmann probability distribution p(v) of particle velocities V in a

gas [145,146] of known temperature. It turns out that p(v) is precisely the probability

distribution maximizing the entropy, subject to a constraint on the temperature,

equivalent to a constraint on the average kinetic energy, in turn equivalent to a

constraint on EV 2. Another well-known example, in the field of electrical engineering,

of the application of the maximum-entropy method, is Burg’s spectral estimation

method [147]. In this method, the power spectral density of a signal is regarded

as a probability distribution of power across frequency, only partly known. Burg

suggested filling in the unknown portion of the power spectral density by choosing

that maximizing the entropy, constrained on the partial knowledge available. More

concretely, in the discrete case, when the constraints consist in a given range of the

cross-correlation function, up to a time shift k, the solution turns out to be a kth order

Gauss-Markov process [76]. A third and more recent example, this time in the field of

natural language processing, is the use of log-linear models, which arise as the solution

to constrained maximum-entropy problems [148] in computational linguistics.

Having motivated the maximum-entropy method, we are ready to proceed to

describe Jaynes’ attempt to justify, or at least interpret it, by reviewing the method

of types of large deviation theory, a beautiful area lying at the intersection of statistics

and information theory. Let X1, . . . , Xk be a sequence of k i.i.d. drawings of an r.v.

uniformly distributed in the alphabet {1, . . . , n}. Let ki be the number of times
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symbol i = 1, . . . , n appears in a sequence of outcomes x1, . . . , xk, thus k =
∑

i ki.

The type t of a sequence of outcomes is the relative proportion of occurrences of each

symbol, that is, the empirical distribution t =
(
k1
k
, . . . , kn

k

)
, not necessarily uniform.

In other words, consider tossing an n-sided fair dice k times, and seeing exactly ki

times face i. In [144], Jaynes points out that

H(t) = H

(
k1

k
, . . . ,

kn
k

)
' 1

k
log

k!

k1! · · · kn!
for k � 1.

Loosely speaking, for large k, the size of a type class, that is, the number of possible

outcomes for a given type t (permutations with repeated elements), is approximately

2kH(t) in the exponent. The fundamental rationale in [144] for selecting the type t with

maximum entropy H(t) lies in the approximate equivalence between entropy maxi-

mization and the maximization of the number of possible outcomes corresponding to

a type. In a way, this justifies the infamous principle of insufficient reason, according

to which, one may expect an approximately equal relative frequency ki/k = 1/n for

each symbol i, as the uniform distribution maximizes the entropy. The principle of

entropy maximization is extended to include constraints also in [144].

Obviously, since all possible permutations count equally, the argument only works

for uniformly distributed drawings, which is somewhat circular. A more general

argument [76, §11], albeit entirely analogous, starts with a prior knowledge of an

arbitrary PMF p, not necessarily uniform, of such samples X1, . . . , Xk. Because

the empirical distribution or type T of an i.i.d. drawing is itself an r.v., we may

define its PMF pT (t) = P{T = t}; formally, the PMF of a random PMF. Using

indicator r.v.’s, it is straightforward to confirm the intuition that ET = p. The

general argument in question leads to approximating the probability pT (t) of a type

class, a fractional measure of its size, in terms of its relative entropy, specifically

2−kD(t ‖ p) in the exponent, i.e.,

D(t ‖ p) ' −1

k
log pT (t) for k � 1,

which encompasses the special case of entropy, by virtue of (2.1). Roughly speaking,

the likelihood of the empirical distribution t exponentially decreases with its KL

divergence with respect to the average, reference distribution p.
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In conclusion, the most likely PMF t is that minimizing its divergence with respect

to the reference distribution p. In the special case of uniform p = u, this is equivalent

to maximizing the entropy, on account of (2.1), possibly subject to constraints on t

that reflect its partial knowledge or a restricted set of feasible choices.

4.4.2 Measuring the Privacy of User Profiles

We proceed to justify, or at least interpret, KL divergence and Shannon’s entropy as

measures of the privacy of a user profile. Before we dive in, we must stress that the use

of entropy as a measure of privacy traces back to Shannon’s work in the fifties [116].

More recent studies [34,149] rescue the suitable applicability of the concept of entropy

as a measure of privacy, by proposing to measure the degree of anonymity observable

by an attacker as the entropy of the probability distribution of possible senders of a

given message. Sec. 2.4.2 provides further details on this.

In the context of this work, an intuitive justification in favor of entropy maximiza-

tion is that it boils down to making the apparent user profile as uniform as possible,

thereby hiding a user’s particular bias towards certain categories of interest. But a

much richer argumentation stems from Jaynes’ rationale behind entropy-maximiza-

tion methods [144, 150], more generally understood under the beautiful perspective

of the method of types and large deviation theory [76, §11], which we motivated and

reviewed in the previous subsection.

Under Jaynes’ rationale on entropy-maximization methods, the entropy of an

apparent user profile, modeled by a relative frequency histogram of categorized user

data (e.g., queries, ratings or tags), may be regarded as a measure of privacy, or

perhaps more accurately, anonymity. The leading idea is that the method of types

from information theory establishes an approximate monotonic relationship between

the likelihood of a PMF in a stochastic system and its entropy. Loosely speaking

and in our context, the higher the entropy of a profile, the more likely it is, and the

more users behave according to it. Under this interpretation, entropy is a measure of

anonymity, not in the sense that the user’s identity remains unknown, but only in the

sense that higher likelihood of an apparent profile, believed by an external observer to

be the actual profile, makes that profile more common, hopefully helping the user go
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unnoticed, less interesting to an attacker whose objective is to target peculiar users.

This is, of course, in the absence of a probability distribution model for the PMFs,

viewed abstractly as r.v.’s themselves; if available, that distribution of profiles would

be the measure of anonymity to be used, in the same sense of user-profile density

regarded above.

If an aggregated histogram of the population were available as a reference profile,

the extension of Jaynes’ argument to relative entropy would also give an acceptable

measure of anonymity. Recall from Sec. 2.2 that KL divergence is a measure of

discrepancy between probability distributions, which includes Shannon’s entropy as

the special case when the reference distribution is uniform. Conceptually, a lower KL

divergence hides discrepancies with respect to a reference profile, say the population’s,

and there also exists a monotonic relationship between the likelihood of a distribution

and its divergence with respect to the reference distribution of choice, which enables

us to deem KL divergence as a measure of anonymity in a sense entirely analogous

to the above mentioned.

Under this interpretation, the KL divergence is therefore interpreted as an (in-

verse) indicator of the commonness of similar profiles in said population. As such, we

should hasten to stress that the KL divergence is a measure of anonymity rather than

privacy, in the sense that the obfuscated information is the uniqueness of the profile

behind the online activity, rather than the actual profile itself. Indeed, a profile of

interests already matching the population’s would not require perturbation.

In conclusion, our justification of entropy and divergence as measures of anonymity

builds upon these two ideas:

• user-profile density may be regarded as a measure of anonymity.

• The probabilistic model describing the distribution of profiles is frequently un-

known to users. In the absence of this model, Jaynes’ rationale allows us to

interpret Shannon’s entropy and KL divergence as measures of user-profile den-

sity.

Fig. 4.5 illustrates these ideas by means of a simple but insightful example. The

figure in question shows a distribution of profiles in the probability simplex, in the
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Figure 4.5: A privacy attacker aims at distinguishing a particular user among the population of
users. Under Jaynes’ rationale, KL divergence may be regarded as a measure of user-profile density.
It is important to stress that the distribution of profiles here depicted is unknown to this particular
user; only the average is known. Accordingly, the user adopts some perturbative strategy whereby
the observed profile t gets close, in terms of divergence, to the average population’s distribution p. As
a result, the apparent profile becomes more common, getting lost in the crowd, and thus thwarting
the attacker’s intention.

case when profiles are modeled across n = 3 categories of interest, e.g., business,

technology and sports. Note, however, that the justification provided in this section

presumes that this information is not at the disposal of users. If available, users

would certainly use it as a measure of anonymity. In this figure, we also represent the

actual profile of a particular user, their apparent profile, and the average population’s

profile. Besides, we plot the contours of the divergence between a point in the simplex

and the reference distribution p, that is, D(·‖p). Bear in mind Jaynes’ rationale, this

particular user perturbs their actual profile in such a way that the resulting profile

approaches, in terms of KL divergence, the population’s profile. In doing so, the

apparent profile gets lost in the crowd, thus hindering privacy attackers in their

efforts to distinguish this user from other users.

Last but not least, we would like to emphasize that, under the assumptions this

justification relies on, i.e., an adversary aimed at discriminating a given user from
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the population of users, KL divergence is, in fact, a measure of privacy risk or, more

accurately, anonymity loss. This contrasts with the interpretation given in Sec. 4.5,

where the assumption of an attacker operating as a classifier leads us to consider KL

divergence as a measure of privacy gain.

4.5 Privacy Metric against Classification

In Sec. 4.4, we interpreted KL divergence and Shannon’s entropy as privacy criteria,

under the assumption that the attacker attempted to target users who deviated from

the average profile. In this section, we justify our metric under the premise that the

attacker strives to classify a particular user into a predefined group. Put differently,

the attacker’s objective boils down to a classification problem. The justification pro-

vided in this section corresponds to the branch called classification in the tree of

Fig. 4.4.

The use of KL divergence as a classifier is justified by its extensive application

in the fields of speech and image recognition, machine learning, data mining, and

in information security as well [151–157]. In recommender systems, we also find

numerous examples where KL divergence is used to classify users with similar char-

acteristics [158–160]. In this application scenario, divergence is a popular similarity

measure for comparing users and items. A more elaborated justification in favor of

KL divergence as a classifier, however, stems from hypothesis testing [76, §11] and

the method of types of large deviation theory. In the following, we shall interpret

our privacy metric as false positives and negatives when an attacker applies a binary

hypothesis test to find out whether a sequence of observed data (e.g., ratings, tags or

queries) belongs to a predefined group of users or not.

Let H be a binary r.v. representing two possible hypothesis about the distribution

of an r.v. X. Precisely, H = 1 with probability θ and H = 2 with probability

1 − θ, and X conditioned on H has PMF g when H = 1 and g′ when H = 2.

Let (Xj)
k
j=1 be k i.i.d. drawings of this reference r.v. X and let t denote the type

or empirical distribution of a k-tuple of their observed values (xj)
k
j=1. Recall that

the MAP estimate of a finite-alphabet r.v. is its most likely value. Also, recall from
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Sec. 2.2 that H(p‖q) denotes the cross entropy between two distributions p and q over

the same alphabet. It can be shown [76] that:

(i) The log-likelihood

−1

k
log P

{
(Xj)

k
j=1 = (xj)

k
j=1

∣∣∣H} =

{
H(t‖g) , ifH = 1.

H(t‖g′), ifH = 2.

(ii) The MAP estimate ĤMAP of the hypothesis H from the observed sequence (Xj)j
is determined by the Neyman-Pearson criterion, namely ĤMAP = 1 if, and only

if,

D(t‖g) 6 D(t‖g′) + γ, (4.1)

with γ = 1
k

log θ
1−θ , and ĤMAP = 2 otherwise.

Even if the prior probability θ is unknown or if the hypothesis is not modeled as an

r.v., for any γ ∈ R, criterion (ii) still optimizes the trade-off between the probabilities

of false positives and false negatives, in the sense that one of these errors is minimized

for a fixed value of the other. In short, γ parametrizes the trade-off curve in the error

plane.

Our interpretation contemplates the scenario where an attacker knows, or is able

to estimate, the distribution g representing a group into which a given user does not

want to be categorized. The attacker observes then a sequence of k i.i.d. data (e.g.,

tags) generated by this user. Based on the type t of this sequence, which we regard as

the user’s apparent profile, the adversary attempts to ascertain whether said user is a

member of that group. More accurately, the attacker considers the hypothesis testing

between two alternatives, namely whether the data have been drawn according to g,

hypothesis H1, or g′, hypothesis H2, where g′ may represent the complement of the

sensitive group at hand, or any other group. In this interpretation we assume that

the profiles belonging to a group are concentrated mainly around the representative

distribution of that group.

Define the acceptance region Ak as the set of sequences of observed data over

which the attacker decides to accept H1. Concordantly, consider the following two

probabilities of decision error:
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(a) the probability of a false negative αk = g(Āk), defined as the probability of

accepting H2 when H1 is true,

(b) and the probability of a false positive βk = g′(Ak), defined as the probability of

accepting H1 when H2 is true.

Above, Āk denotes the complement of Ak. g(Ak), for example, represents the prob-

ability of all data sequences in Ak, i.i.d. according to g, and similarly for g′(Āk).

Hence, αk is the probability that the attacker mistakenly classifies the user as not

belonging to the group, and βk the probability of the attacker incorrectly assuming

that the user does belong to it.

According to the preliminaries in this section, an intelligent attacker would per-

form a Neyman-Pearson test (4.1) to infer whether the user belongs in fact to the

group, in an optimal fashion, that is, minimizing the classification error αk for a given

error βk, or vice versa. In the event that a suitable representation g′ of the alternative

group is unavailable, or that a simpler approach is deemed preferable, the user shall

strive to counter such an intelligent attacker by merely maximizing the discrepancy

D(t‖g) between the observed profile t and the representation g of the sensitive group

to avoid.

Fig. 4.6 provides an example that illustrates our justification of divergence as a

measure of privacy against classification. Particularly, this figure plots a distribution

model for profiles in the simplex of probability, under the assumption that user profiles

are represented across n = 3 categories of interest, exactly as in Fig. 4.5. We also

depict the actual profile q of a particular user, their apparent profile t and the profile

g representative of a group into which this user does not want to be classified. The

contours correspond to the divergence D(·‖g) between a point in the simplex and the

group profile g. The figure in question also shows the region of the simplex that leads

the attacker to classify a user as belonging to this particular group.

Last but not least, we would like to stress that the justifications provided in this

section are clearly under the premise that the user knows the distribution g. An

alternative to the absence of this information is assuming g = q, that is, considering

the user as the group into which they do not want to be classified. Building on

this assumption, the user’s strategy consists in maximizing D(t‖q). Conceptually,
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Figure 4.6: A user distorts their actual profile q to counter an attacker who strives to classify this
user as belonging to a particular group. Under our interpretation of divergence through hypothesis
testing, the probability of being classified as a member of that group decreases as the observed profile
t moves away, in terms of divergence, from the profile g representative of said group.

this reflects the situation in which a user does not want the perturbed, observed

profile resemble their actual profile. As we shall see in the next section, Sec. 4.6, the

resulting privacy metric, i.e., the divergence between the apparent user profile and

the actual user profile, is much in line with other criteria in the literature that suggest

quantifying privacy by using some measure of similarity between these two profiles.

Fig. 4.4 illustrates the assumptions about the adversary model and the information-

theoretic arguments that we have followed to justify and interpret KL divergence and

Shannon’s entropy as privacy criteria.

4.6 Connection with Other Privacy Metrics

The aim of this section is twofold. First, we shall link KL divergence and Shannon’s

entropy to the privacy metrics for user profiles examined in Sec. 2.4.3. Secondly,

we shall interpret both information-theoretic quantities as an attacker’s estimation

error, thus tying the more general privacy criterion defined in Chapter 3 to the metrics

proposed in this chapter.
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In Sec. 2.4.3, we showed that most of the criteria for quantifying the privacy of

user profiles reduce to functions that take as inputs the actual user profile q and

the apparent user profile t. A simple classification consists in grouping these criteria

into similarity-based privacy measures and uncertainty-based privacy metrics. The

cosine similarity [96–101] and the weighted Euclidean distance [121] fall into the

former category. The latter category includes the Shannon entropy of the apparent

profile [90,91,107] and the mutual information between the distributions q and t [89,

102].

The arguments provided to justify both types of privacy metrics are frequently

presented as follows. In the case of similarity-based measures, it is assumed that

the greater the disparity between the profiles q and t, the lower the privacy risk.

In the case of uncertainty-based metrics, the justification consists merely in noting

that entropy is a measure of uncertainty and mutual information is a measure of

the reduction in uncertainty. While there is some intuition behind these criteria, the

fact is that they lack a rigorous justification, accompanied by solid and convincing

arguments. Besides, these metrics are often not defined in terms of an adversary

model that contemplates assumptions such as the attacker’s capabilities or objectives.

Ultimately, they are conceived specifically for assessing the effectiveness of concrete

privacy-preserving mechanisms.

In this chapter we propose KL divergence and Shannon’s entropy as privacy met-

rics, and justify and interpret them by leveraging on fundamental principles from

information theory and statistics. Particularly, under an adversary who aims at indi-

viduating users, we show that divergence and entropy may be regarded as measures

of user-profile density, or profile likelihood, and thus anonymity. Under an attacker

whose objective is to classify users, we interpret divergence as a measurement of pri-

vacy risk. Although our criteria and the state-of-the-art privacy metrics certainly

build upon different assumptions, we may establish a connection between the ad-

versary models considered in this work and those of the aforementioned metrics.

Specifically, we may interpret the similarity-based metrics in the special case when

the attacker’s goal is to classify a given user. If the distribution of the group into

which this user does not want to be classified is unavailable to them, the adversary
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Table 4.2: Relationship among the state-of-the-art metrics for user profiles, our adversary models
and the privacy criteria proposed in this work.

Attacker’s objective Knowledge about p, g Proposed criteria Related metrics

individuation
p known D(t ‖ p) -

p unknown H(t) [90,91,107]

classification
g known D(t ‖ g) -

g unknown D(t ‖ q) [89,96–102,121]

model defined in Sec. 4.3.3 would clearly fit with the assumptions of the similarity-

based criteria. We note that this adversary model could also be valid for the mu-

tual information between the actual and apparent profiles. Similarly, we may explain

the uncertainty-based metrics from the perspective of an attacker who wishes to tar-

get singular users, and under the assumption that the population’s distribution is

unknown to these users. Table 4.2 summarizes this discussion.

In the remainder of this section we shall link the metrics proposed in this chapter,

which are specific for measuring the privacy of user profiles, to the more general

privacy measure defined in Chapter 3. To this end, consider a medical search engine

(e.g., PubMed (h)) playing the role of an attacker. Our particular attacker is assumed

to have a database table including identifiers and user profiles associated with those

identifiers. The identifiers correspond to users registered with the search engine.

The profiles are supposed to be constructed by exploiting any explicit or implicit

information about users. For example, PubMed collects the words searched, the pages

visited, the data and time of these visits and the user’s Internet address. Fig. 4.7 (a)

shows this database table.

Suppose, at some point, that a registered user wishes to submit some queries and

prefers to do it without being logged in. The user thinks this may provide them

with a certain level of anonymity, although clearly at the cost of nonpersonalized

search results. If that level of protection were considered insufficient, the user could

in principle adopt a PET such as the submission of false queries. Having said this,

(h)http://www.ncbi.nlm.nih.gov/pubmed

http://www.ncbi.nlm.nih.gov/pubmed
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Identifier Actual user profile 
Profile 

frequency 

William 1 

Emmanuel 3 

Syme 3 

Naoto 3 

Katharine 1 

Julia 1 

X X0
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y

Perturbed user 
profile 
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(b)

Figure 4.7: An attacker attempts to disclose the identity of a user based on the observed profile y
(b). The user is registered with the search engine but uses the system without being logged in. We
suppose that the attacker has profiled every registered user on the basis of their search history. All
these profiles are stored in a database (a). To identify the user at hand, the adversary strives to
find a match between the observed profile and all profiles X ′ stored in this database. When the
frequency of the observed profile within the database is large enough, the attacker is likely to fail in
its bid to ascertain X.

in this example we assume the adversary knows that the user is registered with the

search engine and consequently attempts to ascertain their identity.

At this point we make a slight digression to put the variables of the framework of

Sec. 3.3.1 in the context of the example at hand. For this, recall that the attacker’s

unknown X is private data about a user which the adversary endeavors to unveil. In

this case, X becomes the identity of the user who wants to submit queries anony-

mously. The system’s input X ′ is the information that serves as input for the system

to make a decision. In our scenario we assume that the user plays the role of the

system, i.e., they are the solely responsible for protecting their privacy. Accordingly,

the variable X ′ represents the actual user profile and the system’s decision Y ′ is di-

rectly the perturbed version of this profile. On the other hand, we suppose that the

attacker’s observation reduces to the perturbed profile, that is, Y = Y ′. Note, how-

ever, that the adversary has the actual profile of the user in question, but does not

know which of the profiles stored in the database belongs to this particular user; the
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profile of this user was constructed while they were logged in. Finally, the attacker’s

decision X̂ is the estimate of the user’s identity.

Having contextualized the variables of the framework described in Chapter 3,

now we proceed to interpret Shannon’s entropy as an attacker’s estimation error.

Given a sequence of observed queries, modeled in our case as the type Y of these

queries, the attacker makes a decision X̂ on the identity of the originator X of said

sequence. This decision is made by comparing the observed profile with all profiles

stored in the search engine’s database. Recall that Jaynes’ rationale allows us to

regard the Shannon entropy of a type as a measure of its probability, and therefore

of its anonymity. Bearing this in mind, it follows that the higher the entropy of the

observed type, the greater the number of profiles in the database that may be linked

to this type, and consequently the greater the attacker’s error in estimating X. If the

population’s distribution p were available to the user, an entirely analogous argument

could be used to justify KL divergence as an estimation error. Fig. 4.7 illustrates the

example above.

4.7 Conclusion

Numerous PETs have been proposed to mitigate the privacy risk inherent in person-

alized information systems. Unfortunately, these technologies have not yet gained

wide adoption, mainly because, frequently, their effectiveness as well as their penal-

ties in terms of utility remain unclear. In this context, privacy metrics, together with

utility metrics, help pave the way for their adoption, as the only manner to evaluate,

compare, improve and optimize them.

The literature of privacy metrics in personalized information systems is still in

its infancy. There exist several criteria for measuring the privacy of user profiles

but these are merely ad hoc proposals for specific applications and, what is more

important, they are not duly justified.

To the best of our knowledge, our work is the first to rigorously justify a measure

of the privacy of user profiles. The proposed metric is KL divergence, an information-

theoretic quantity that we interpret under two distinct adversary models. First, we
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consider an attacker who strives to target users who deviate from the average profile

of interests; and secondly, we contemplate an attacker whose objective is to classify

a given user into a predefined group of users.

For the former model, the use of KL divergence is justified by elaborating on

Jaynes’ rationale behind entropy-maximization methods and the method of types of

large deviation theory. Under this interpretation, divergence is a measure of privacy

risk, or more accurately, anonymity loss. In essence, our justification builds on three

main principles. First, we model the profile of a user as a type or empirical distri-

bution. Secondly, through Jaynes’ rationale, the KL divergence between the user’s

profile and the population’s may be deemed as a measure of the probability of the

former profile. And thirdly, we consider that the probability of a profile may be a

suitable measure of its anonymity. Only under this interpretation, the uniform pro-

file is of particular interest since entropy may be justified as anonymity criterion in a

sense entirely analogous to that of divergence.

For the latter adversary model, our privacy criterion is supported by its extensive

use in fields such as speech and image recognition, machine learning, data mining and

information security. But a richer argument stems from hypothesis testing and the

method of types, which enable us to interpret KL divergence as false positives and

negatives. Under this perspective, divergence is a measure of privacy gain.

Lastly, we show that the KL divergence and Shannon’s entropy may be viewed, in

fact, as an attacker’s estimation error. This allows us to link the former information-

theoretic quantities, which are specific to user profiles, to the more general privacy

definition proposed in Chapter 3.

In a nutshell, in this chapter we have accomplished the following goals:

• Jaynes’ rationale for entropy maximization has been applied to other scientific

areas —for example spectral estimation— to both justify and interpret a variety

of models and algorithms —continuing with the example of spectral estimation,

Burg’s method. The application of the same celebrated rationale and its exten-

sion to relative entropy, now to the field of information privacy, is one of the

novel, exciting contributions of this chapter. An analogous application is made

for the method of hypothesis testing in the field of statistics.
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• By doing so, we argue in favor of the use of KL divergence and Shannon’s

entropy to measure profile privacy, along with conceptual insight into their

information-theoretic, statistical meaning.

• Further, we introduce completely new models tying up the notions of profiling

and profile classification with information theory.

• The value of these contributions stems from the fact that drawing a connection

between information theory and information privacy, at the level of privacy

metrics in mathematical modeling of privacy-enhancing mechanisms, opens the

door for further application of powerful, mature concepts from the former field to

the latter, and transitively, fields related to the former such as data compression

and convex optimization, as we illustrate here with concrete examples.



Part II

Data-Perturbative Mechanisms

and Privacy-Utility Trade-Off

121





Chapter 5

Tag Suppression in the Semantic

Web

5.1 Introduction

The World Wide Web constitutes the largest repository of information in the world.

Since its invention in the nineties, the form in which information is organized has

evolved substantially. At the beginning, Web content was classified in directories

belonging to different areas of interest, manually maintained by experts. These di-

rectories provided users with accurate information, but as the Web grew they rapidly

became unmanageable.

Although they are still available, they have been progressively dominated by the

current search engines based on Web crawlers, which explore new or updated content

in a methodic, automatic manner. However, even though search engines are able to

index a large amount of Web content, they may come back with irrelevant results

or fail when terms are not explicitly included in Web pages. A query containing the

keyword accommodation, for instance, would not retrieve pages with terms such as

hotel or apartment not including that keyword.

A wide range of personalization technologies has been gradually integrating into

these crawler-based search engines. Drawing upon profiling techniques, this new

123
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generation of search engines is able to capture users’ interests and provide them with

information tailored to their preferences. Although these systems may come back with

more accurate search results, they experience the same problem as the predecessor

search engines since they retrieve Web content based on term matching.

A new form of conceiving the Web, called the semantic Web [57], has emerged to

address this issue. The semantic Web, envisioned by Tim Berners-Lee, is expected

to provide Web content with a conceptual structure so that information can be in-

terpreted by machines. For this to become a reality, the semantic Web requires to

explicitly associate meaning with resources on the Web. A widely spread manner to

accomplish this is by means of semantic tagging.

One of the major benefits of associating concepts with Web pages is that machines

will start to gain some level of understanding of information expressed in natural

language, thus helping humans deal with information overload. When the semantic

Web goes live, intelligent software agents will be able to automatically book flights

for us, update our medical records at our request and provide us with personalized

answers to particular queries, without the hassle of exhaustive literal searches across

myriads of disorganized data [161].

In this scenario where information is processed on a conceptual basis, personaliza-

tion will definitely overcome the one-size-fits-all paradigm and provide individually

optimized access to information. In a nutshell, the semantic Web paints the most

appropriate environment for personalized information systems [162]. In the mean-

time, we can enjoy some instances, although limited in scope, of this new conception

of the Web, namely the collaborative tagging systems that have proliferated over the

last years. Some examples include BibSonomy, CiteULike, Delicious and Stumble-

Upon (a), where users add short, usually one-word descriptions to resources they find

on the Web.

Tagging systems are therefore the basis for the complete development of per-

sonalized information systems. Currently, numerous recommendation systems are

incorporating tagging services to enhance the quality of their recommendations. For

(a)http://www.stumbleupon.com

http://www.stumbleupon.com
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example, the movie recommendation system Movielens began as a traditional recom-

mender, using the ratings submitted by users as the source of information to generate

personalized recommendations. But recently it included collaborative tagging tech-

niques to enrich user profiling. In parallel, other systems that started as pure tagging

systems are now offering recommendation services to their users [163]. Examples of

these services include suggesting Web resources similar to those tagged previously, or

recommending users to a target user, given the fact that they have similar tag-based

profiles. In short, tagging is synonymous with personalization and vice versa.

Despite the many advantages the semantic Web is bringing to the Web community,

the continuous tagging activity prompts serious privacy concerns. The tags submitted

by users to semantic-Web servers could be used not only by these servers but also

by any privacy attacker capable of collecting this information, to extract an accurate

representation of user interests or user profiles [164, 165], leading these attackers to

infer sensitive information such as health-related issues, political leaning or income

level. This could be the case of the tagging systems mentioned above and many other

applications where tags are used to build user profiles, normally in the form of some

kind of histogram or tag cloud.

In this chapter we investigate a privacy-enhancing mechanism that has the purpose

of hindering privacy attackers in their efforts to profile users on the basis of the tags

they specify. In our approach, users inevitably reveal their personal preferences when

tagging resources on the Web. To avoid being accurately profiled, though, they may

wish to refrain from tagging some of those resources. In doing so, users protect

their privacy to a certain degree without having to trust the semantic-Web server nor

any other external entity. However, this is at the cost of some processing overhead

and, what is more important, the semantic loss incurred by suppressing tags; since

tagging is a means of classifying resources based on their content, those affected by

suppression could not, for example, be retrieved by a user searching for the tags they

have lost. Put another way, tag suppression poses a trade-off between privacy on the

one hand, and on the other the semantic functionality enabled by tagging, which we

also refer to as data utility in accordance with Sec. 2.1.4.
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Our first contribution is an architecture that describes, at a high level, the compo-

nents of a possible implementation of the tag-suppression technique. Our approach,

which relies on the assumptions of the untrusted model detailed in Sec. 2.3.1, would

be implemented as a software application installed on the user’s computer. The pur-

pose of this architecture is to assist users with the elimination of tags, in the presence

of an attacker whose aim is to individuate these users.

The theoretical analysis of the inherent trade-off between privacy and data utility

is our second contribution. Specifically, we present a mathematical formulation of

optimal tag suppression in the semantic Web. We measure privacy as Shannon’s

entropy of the user’s tag distribution after the suppression of certain tags, a privacy

metric that we thoroughly justified in Chapter 4. Accordingly, we formulate and solve

an optimization problem modeling the privacy-utility trade-off.

In addition, we experimentally evaluate the extent to which our technique con-

tributes to privacy protection in a real-world tagging application. Namely, we apply

tag suppression to BibSonomy, a popular tagging system for sharing bookmarks and

publications, and show, in a series of experiments, how our approach enables its users

to enhance their privacy. The work presented in this chapter builds on the adversary

model proposed in Chapter 4.

A major portion of this chapter was published in [47,51].

Chapter Outline

The rest of this chapter is organized as follows. Sec. 5.2 describes our privacy-enhanc-

ing mechanism and compares it to other approaches in the literature. Sec. 5.3 specifies

the privacy metric used in this chapter and the properties of our adversary model.

Sec. 5.4 presents the building blocks of the architecture and Sec. 5.5 introduces a for-

mulation of the optimal trade-off between privacy and data utility. Sec. 5.6 presents

a detailed theoretical analysis of the optimization problem characterizing the privacy-

utility trade-off. In addition, this section shows a simple but insightful example that

illustrates the formulation and theoretical analysis of the previous sections. Sec. 5.7

provides an experimental evaluation of our technique in BibSonomy. Conclusions are

drawn in Sec. 5.8.
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5.2 Privacy-Enhancing Mechanism

In the offline world, it is possible to eliminate those data that might compromise our

privacy, those which have become useless or that we just want to get rid of. It would

suffice, for example, to erase the information stored on a hard drive or to physically

destroy the storage device where data are kept. In the online world, however, the

user loses control of their data as they are managed and stored by other parties, e.g.,

cloud, Web and e-mail servers and other information systems. Consequently, it is

not that easy to delete user-generated data such as comments posted on blogs, tags

submitted to Web content or queries sent to Web search engines (b). Even though

these data could be removed from one of the above systems, it would be difficult to

ensure that the data have been completely eliminated, given the ease with which data

can be copied, distributed and shared with other parties. In other words, it is likely

that our online data remain stored somewhere on the Internet for a long time.

In this situation, prevention is better than cure. That is, it would be desirable that

certain data be eliminated on the user side, before these data be disseminated through

the Internet and become an issue. The mechanism proposed in this chapter follows

this philosophy. Particularly, our PET builds on the assumptions of the untrusted

model defined in Sec. 2.3.1, where users mistrust any external entity and therefore

strive to reveal as little private information as possible. Put differently, since users

just trust themselves, privacy protection takes places on their side.

More specifically, tag suppression is a data-perturbative mechanism that has the

purpose of preventing privacy attackers from accurately profiling users on the basis of

the tags they specify. Conceptually, our approach protects user privacy to a certain

extent, by dropping those tags that make a user profile show bias towards certain

categories of interest. From a practical perspective, our tag-suppression technique is

conceived to be implemented as a software application running on the users’ local

machine. The software implementation is responsible, on the one hand, for warning

the user when their privacy is being compromised, and on the other, for helping them

(b)Search engines routinely record users’ IP addresses, their search terms and the time when these
searches are made. For example, Google and Yahoo! store all this information for a period of 9 and
18 months respectively [166].
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decide which tags should be eliminated and which should not. Consequently, our ap-

proach guarantees user privacy to a certain degree without having to trust an external

entity, but at the cost of some local processing overhead and, more importantly, the

semantic loss incurred by suppressing tags.

5.2.1 Tag Suppression vs. Other Privacy-Protecting Techniques

In this section we compare tag suppression with other mechanisms that may help

users protect their privacy in the scenario of personalized information systems. Our

comparison is based on the classification used in Sec. 2.3.2, where we divided the

state of the art in PETs into five categories, namely basic anti-tracking mechanisms,

cryptography-based methods, TTP-based solutions, technologies relying on user col-

laboration and data-perturbative strategies. In this comparative analysis we shall

resort to the trust models described in Sec. 2.3.1.

A naive approach to provide anonymous tagging would be using some of the anti-

tracking mechanisms explored in Sec. 2.3.2. Disabling HTTP cookies or resorting to

more sophisticated anti-tracking software (e.g., DoNotTrackMe (c) and Ghostery (d))

may hinder privacy attackers in their efforts to track users and thus profile them. On

the one hand, this type of solutions may provide the highest level of privacy protection

against an adversary wishing to profile users. But on the other, since personalized

information systems cannot build user profiles, personalization is not possible. An

alternative would be rejecting third-party cookies and accepting only those cookies

issued by the personalized information system in question. The problem with this

approach is that users would not be protected against this information system. Lastly,

the fact that nearly all tagging systems require that users be logged in dismisses these

anti-tracking mechanisms as a practical solution for the scenario of resource tagging.

The cryptography-based methods upon which PIR builds allow a user to retrieve

an information item from a database without the owner of the database learning

which particular item has been retrieved. The application of these methods to the

specific scenario at hand, i.e., resource tagging, would not be straightforward as the

(c)https://www.abine.com/dntdetail.php
(d)http://www.ghostery.com

https://www.abine.com/dntdetail.php
http://www.ghostery.com
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database should store the tags associated with the retrieved items. In other scenarios

such as personalized Web search, PIR protocols are not an appropriate approach—the

database owner is unable to ascertain the items users are interested in, and conse-

quently profiling and therefore personalization are unfeasible. From the perspective

of a user who wants to protect their privacy against a personalized Web search en-

gine, PIR protocols are comparable, in terms of privacy and personalization, to the

encryption of the search queries submitted by this user. Although PIR protocols do

not require that users trust the database owner, they assume that the latter will col-

laborate in the execution of such protocols. Other important limitations that impede

the direct application of these cryptographic mechanisms to personalized information

systems are discussed in Sec. 2.3.2.

Another approach to provide anonymous tagging consists in a TTP forwarding

users’ tags to a personalized information system on their behalf. In adopting this

simple strategy, the system does not know the user ID, but only the identity of the

trusted entity. The problem with this strategy, however, is that personalized services

cannot be provided since the information provider sees the TTP as a single user. An

alternative is to use a TTP as a pseudonymizer. That is, the trusted entity gives each

user a pseudonym; and each time a user wishes to post a tag, the TTP sends this tag,

together with their pseudonym, to the service provider. While this alternative enables

personalization, it does not prevent the provider from profiling users and eventually

reidentify them (e). Besides, all solutions relying on trusted entities require that

users shift their trust from the service provider to these entities, possibly capable of

collecting tags from different systems, which ultimately might facilitate user profiling

via cross-referencing. However, even though users may be willing to assume such

a trusted model, those entities may fail in the protection of user data. The most

clear example is the AOL search data scandal [78] in 2006. More recent cases include

Sony’s security breach [167] and Evernote’s [168].

(e)Secs. 2.3.2 and 4.6 elaborate on the reasons why pseudonyms may fail to protect anonymity and
privacy.
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Another class of TTP-based approaches are ACSs [6–15]. In the context of se-

mantic tagging, anonymous communications may protect user privacy against the in-

termediary entities enabling the communications between tagging systems and their

users. As we described in Sec. 2.3.2, routing messages through mix systems makes

it more difficult for an attacker to track these messages. But while mixes may pro-

vide unlinkability to a certain extent, this is at the cost of delaying messages, which

affects the usability of these systems and hence imposes a cost on them. In other

words, mix systems pose a trade-off between anonymity and utility. In addition to

this trade-off, other drawbacks are the deployment of infrastructure and, more impor-

tantly, the assumption that users are disposed to trust mixes. However, even though

those systems were completely trustful, they could not prevent the recipient of those

messages, i.e., the tagging system, from profiling users. Finally, we would like to

highlight those systems relying on the principle of onion routing [13–15], which do

not delay or reorder messages. Exactly as in mix networks, here trust is distributed

among the onion routing nodes that collaborate in the forwarding protocol. These

systems reduce the delay inherent in mixes, but suffer from the same limitations in

terms of infrastructure and privacy protection.

There exist a myriad of alternatives based on user collaboration. One of the most

popular is Crowds [68], which contemplates that a group of users wanting to browse

the Web will collaborate to submit their requests. With this purpose, a user who

decides to send a request to a Web server, selects first a member of the group at

random and then forwards the request to it. When this member receives the request,

it flips a biased coin to determine whether to send the request to another member or

to submit it to the Web server. This process is repeated until the request is finally

relayed to the intended destination. As a result, the Web server and any of the

members forwarding the request cannot ascertain the identity of the true sender, that

is, the member who initiated the request.

The protocol described above builds on the assumptions of the semi-trusted model

defined in Sec. 2.3.1. This approach does not require the use of a TTP, but there are

still several shortcomings that hinder its applicability to tagging systems, and more
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generally, to personalized information systems. First, personalization is effective pro-

vided that all members of the group have similar profiles. Secondly, Crowds assumes

that a number of users will participate in the protocol. However, even though it

was possible, this solution could not protect user privacy against the collusion of all

participants. Finally, another important drawback is the additional traffic intrinsic

to this forwarding mechanism.

The above-mentioned shortcomings are, in fact, present in most of the PETs

that leverage on user collaboration [69, 70, 90, 91]. An attempt to overcome these

deficiencies is [89], which proposes a variation of the original Crowds protocol. The

operation of this approach is essentially the same as in Crowds. The main difference is

that users of this protocol are “friends” in some social network. This feature allows the

protocol to create groups of users with similar interests, which makes this protocol

suitable to be deployed in the scenario of personalized information systems. This

proposal, however, does not overcome the drawbacks of the original Crowds protocol,

in terms of traffic overhead and trustworthiness.

Unlike the traditional privacy-protecting mechanisms relying on access control

policies, which determine whether the access to certain private data is granted or

denied, data perturbation does not only contemplate these states “granted” and “de-

nied”, but also any other possibility between them. For example, the disclosure of

certain parts of those data, or a slight perturbation of this private information. This

kind of strategies permits users to preserve their privacy to a certain degree, although

at the cost of certain loss in data utility. Further, unlike other approaches to protect

user privacy, data perturbation may take place on the user side, without having to

trust other entities. In other words, data perturbation is in line with the assumptions

of our untrusted model.

In the scenario of personalized Web search, a widely used method to perturb

user profiles consists in accompanying original queries or query keywords with false

ones [95–103]. This conceptually-simple approach prevents privacy attackers from

profiling users accurately based on their query history, but certainly at the expense

of traffic overhead or redundancy. The main problem with query forgery is in the
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generation of those false queries, since they should be indistinguishable from the

genuine ones [104,169,170].

We could consider the application of this strategy to the scenario of tagging sys-

tems. A possible implementation of this tag forgery could be as follows: a user

wishing to tag the Web page www.mentalhelp.net with “depression” could use the

tag “sports” instead, to conceal their interest for this resource. On the one hand,

adding random tags may distort the actual profile of interests, which provides this

user with a certain level of privacy. But on the other, this strategy may have a far

greater impact on semantic functionality than suppression does, since resources are

assigned tags that do not describe, in principle, the actual content of such resources.

In other words, the use of this technique is wholly inappropriate in collaborative

tagging applications, where tags have the primary purpose of constructing meaning.

We would like to stress that the fact that forgery is not suitable for the tagging

scenario does not mean that its applicability is limited to the context of Web search

previously mentioned. Actually, forgery has shown to be appropriate for other appli-

cations such as PIR and recommendation systems. Precisely, later in Chapter 7 we

propose the simultaneous use of forgery and suppression as a promising approach to

privacy enhancement in personalized recommendation systems.

Another form of tag perturbation consists in replacing (specific) user tags with

(general) tag categories. In conceptual terms, and resorting to the example above,

the user would use the tag “health” instead of “depression”. In this manner, the user

would hide, to a certain extent, their genuine interest in that resource, but clearly at

the cost of some vagueness or inaccuracy in the description of that Web page.

Among these approaches, we consider tag suppression as a suitable strategy for

the enhancement of user privacy in the scenario of tagging systems, not only because

of its simplicity in terms of implementation costs, but also because of its lower impact

on semantic functionality. Lastly, we would like to emphasize the synergic effect of

our approach in combination with other strategies based on data perturbation.

To sum up, the proposed technique appears as a simple approach in terms of

infrastructure requirements, as users need not trust an external entity, the network
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operator nor other users. Our PET, which contributes to the principle of data mini-

mization (f), enables users to protect their privacy against the collusion of any passive

attackers, but at the cost of semantic loss incurred by suppressing tags. Precisely,

this privacy-utility trade-off also appears in ACSs and collaborative approaches. In

these two cases, the degradation in utility is the delay introduced by mixes and the

traffic overhead incurred by a forwarding strategy, respectively. Table 5.1 summarizes

the major conclusions of this section.

Finally, despite the fact that the proposed strategy and other privacy-protecting

mechanisms (such as those based on TTP or user collaboration) rely upon different

assumptions, we would like to emphasize that these alternatives are not mutually

exclusive and, more importantly, that users could benefit from the synergy of our

approach and other systems building on the trusted or semi-trusted models. As a

matter of fact, there are examples in the literature in which techniques assuming an

untrusted model may complement TTP-based approaches perfectly. One example of

this could be the use of dummy messages in combination with the traditional mix

networks proposed in [10].

(f)According to [171], the data-minimization principle means that a data controller, e.g., the tag-
ging server, should restrict the collection of personal data to what is strictly necessary to achieve its
purpose. Also, it implies that the controller should store the data only for as long as is necessary to
fulfil the purpose for which the information was collected.
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5.3 Adversary Model and Privacy Metric

In this chapter we assume the adversary model described in Chapter 4. Next we shall

briefly review the main features of this model, and put it in the particular context

of tagging systems. Afterwards, we shall specify the privacy metric used to evaluate

our tag-suppression technique.

In this scenario, we assume that users are logged into the tagging system. It

is only in this case that the system can profile users based on the tags they post

and therefore can provide them with personalized services. Accordingly, our set of

potential privacy attackers include, first, the tagging system, and secondly, the ISP

and any networking infrastructure capable of capturing the tags submitted by users.

Further, as tags are often publicly available to other users of the tagging system, we

consider any other entity able to collect this information.

On the other hand, we suppose that the attacker models user profiles as histograms

of relative frequencies of tags within a predefined set of categories of interest. As

mentioned in Chapter 4, histograms, or equivalently, tags clouds, are the two models

used by tagging systems to represent users’ tagging activity.

According to this user profile representation, we suppose that the privacy attacker

observes a perturbed version of this profile (i.e., the apparent profile), resulting from

the suppression of certain tags. Based on this observation, we assume that the at-

tacker is unable to discern whether the user is adhered to our tag-suppression tech-

nique or not, and thus this attacker cannot estimate the user’s tag-suppression rate.

We believe that this is a realistic assumption since, as we shall see later in Sec. 5.4,

the proposed tag suppression strategy is conceived to be implemented as a software

program running on the user’s local machine. We would like to emphasize that this

assumption must not be interpreted as security through obscurity, a principle that

capitalizes on secrecy of design or implementation to provide security. Our adversary

model does not pretend to hide the way tag suppression operates, but merely the fact

that it is being used, an information that is only available on the user’s side. This

assumption is in line with other works [95,102] that build on our untrusted model.
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Figure 5.1: This figure corresponds to Fig. 4.4. Here we highlight in red the assumptions about
the adversary model considered in this chapter. We assume, on the one hand, that our attacker
wishes to individuate users, and on other that the population’s tag distribution is not available to
those users. Under these assumptions, the Shannon entropy of a user profile may be considered as
a measure of anonymity gain.

The adversary model defined in Chapter 4 also contemplates the ultimate goal

of profiling. In this chapter we assume that the attacker aims to individuate users,

that is, its objective is to capture users whose interests deviate from the average

profile. Under this assumption and according to the arguments presented in Chap-

ter 4, Shannon’s entropy and KL divergence are measures of the privacy of a user

profile, or more precisely, of its anonymity. Since the population’s tag distribution is

frequently not at the disposal of users of tagging systems, we choose the entropy of

the apparent profile as privacy metric. Recall that, under Jaynes’ rationale behind

entropy-maximization methods, the entropy of profile is a measure of its probability.

In particular, the higher the entropy of a profile, the more likely it is, and the larger

the number of users who have this profile and thus behave similarly.

Another interpretation of entropy stems from the observation that a privacy at-

tacker will have actually gained some information about a user whenever their in-

terests are significantly concentrated on a subset of categories. In other words, a

user without any apparent interest in any category hides their preferences from an
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attacker. Fig. 5.1 illustrates the assumptions about the adversary model considered

in this section.

5.4 Architecture

In this section, we describe the functional components of a possible implementation

of our tag-suppression technique. The proposed architecture helps users decide which

tags should be suppressed and which should not. The fundamental purpose of our

PET, and therefore of this architecture, is to hinder privacy attackers in their efforts

to individuate users.

As anticipated in Sec. 5.2, our approach is devised to be implemented as a software

application installed on the user’s computer, for example, in the form of a Web browser

add-on. Our architecture builds on the untrusted model defined in Sec. 2.3.1, which

implies that users need not trust any external entity to protect their private data. We

only assume, however, that users trust this software, in terms of the data it collects

and its execution, exactly as they trust their own Web browser.

As we shall detail later, our approach triggers an alarm when user privacy is at

risk. Afterwards, it recommends users which particular tags should be avoided in

order to cope with such a threat. We would like to underline, though, that it is the

user who has the last word, as they may decide to follow this recommendation or not.

For this reason, we may view our approach as a recommendation system. Next, we

describe some general characteristics of the architecture, and subsequently examine

its internal components at a functional level.

Recall from Sec. 5.3 that we assume a passive attacker capable of ascertaining

the tags posted by users of a tagging system. Our adversary can therefore be the

system storing the tags posted by these users, or any attacker able to capture this

information. In addition, we may contemplate the definition of the profile of a user

tagging across several systems. In this case, we may also suppose that an attacker has

the ability to link several profiles across different tagging applications. For the sake

of simplicity, in this section we consider a user interacting with a single system. Our
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architecture, however, could be easily extended to the more general case in which a

user tagging activity spans a number of systems.

The proposed architecture gives some high-level specifications on how the profile of

a user could be locally obtained by a software application implementing our technique.

Our approach makes two assumptions about this user profile.

• First, when no perturbation is applied, we suppose that the profile computed on

the user’s side coincides with the profile built by the attacker. In other words,

the profiling techniques used by the software application and those employed

by the attacker lead to the same user profile. This means that the software

and the adversary use the same predefined set of categories of interest and the

same categorization algorithm, so that any tag posted by the user is classified

into the same category by both the software and the adversary. We believe this

is plausible assumption as long as the categorization process relies on a set of

standard and widespread categories of interest.

• Secondly, as in any personalized recommendation system, our approach needs

the user profile to start making recommendations about whether to eliminate a

particular tag or not. Simply put, we contemplate a training phase before the

proposed architecture starts working. Because an attacker might learn about

the user’s actual profile during this phase, we consider, as an alternative, that

the user explicitly expresses their interests.

In addition, the core component of our approach, the suppression strategy gen-

erator, assumes that the user profile remains stable over a long period of time.

If the user does not explicitly declare their profile, we suppose that this steady-

state condition is achieved after the training phase, once the user has tagged a

sufficiently large number of items. This assumption is in line with the so-called

long-term profiles which, in contrast to the short-term profiles, capture interests

that are not subject to frequent changes [143]. We acknowledge, however, that

a practical implementation of our technique should take into account that the

user’s tagging interests may vary significantly with time.
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Figure 5.2: Internal components of the proposed architecture.

Fig. 5.2 depicts the proposed architecture, which consists of a number of modules,

each of them performing a specific task. From a general perspective, this figure shows

a user interacting with a tagging system, essentially an entity that stores information

items (e.g., music, videos and Web pages) and tags associated with these items. Next,

we provide a functional description of the modules of this architecture.

Web browser. This module is essentially responsible for the communication

with the tagging system. Upon request of the user, it downloads information about

the items the user wants to tag, as well as the tags posted by other users of the

system. Afterwards, the retrieved data are delivered to the context analyzer, which

processes all this information. Last but not least, the Web browser is also in charge

of submitting the tags proposed by the user to the tagging system.

Context analyzer. This module is aimed to process the information retrieved

by the Web browser. The purpose is to help the category mapper module to decide

which category of the user profile should be updated. Said processing could be done

by using the vector space model [172], as normally done in information retrieval,
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to represent Web pages as tuples containing their most representative terms. For

example, the term frequency-inverse document frequency (TF-IDF) could be applied

to calculate the weights of each term appearing in the Web page that includes the item

to be tagged. Later, the context analyzer could take a number of the most weighted

terms of the tuple, and send them to the category mapper module. The selection of

these terms could be done according to these two possible alternatives: a user could

choose either a fixed number of terms, or those terms with weights above a threshold.

This selection poses a compromise between accuracy and computational overhead,

regardless the alternative chosen. The higher the resulting number of terms, the

higher the accuracy in the categorization of the tag, but the higher the computational

processing performed by the category mapper.

Category mapper. This component maps the tags submitted by the user into

a predefined set of categories. This set of categories could be obtained by querying

databases with this kind of information. For example, the Open Directory Project (g)

could be used for this end. In some cases, these categories are provided by the

tagging system, as it happens in YouTube. The categorization process performed by

this module uses both the tag proposed by the user and the contextual information

given by the context analyzer. The resulting categories are delivered to the modules

user profile constructor and privacy alarm generator.

User profile constructor. It is responsible for the estimation of the user profile.

Specifically, this module receives the categories corresponding to the tags submitted

by the user and, accordingly, updates their profile. As mentioned before, our architec-

ture assumes that, when estimating the histogram, the relative frequencies of activity

are sufficiently stable once the user has posted a significant number of tags. An as-

pect that a real implementation of this module should consider is the initialization

of the profile. An alternative could be initializing this profile to zero [142]. Another

approach building on the principle of maximum entropy would use the uniform dis-

tribution instead.

We would like to emphasize that this module is active even when the user explicitly

declares their profile. Since the profile specified by the user may not be an accurate

(g)http://www.dmoz.org

http://www.dmoz.org
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reflection of their online behavior, our architecture may decide, after the training

phase, to replace it with the profile implicitly inferred from their tagging activity.

Suppression strategy generator. This module is the core of the architecture

as it is directly responsible for the user privacy. First, this component is provided

with the user profile and a tag suppression rate σ, which is a parameter reflecting the

proportion of tags that the user is willing to suppress. Next, this module computes

the optimal tuple of suppressing tags s∗, which contains information about the tags

that should be suppressed. In particular, the component s∗i is the percentage of tags

that our architecture suggests eliminating in the category i. Finally, this tuple is

given to the privacy alarm generator module. Later in Sec. 5.5, we provide a more

detailed specification of this module by using a formulation of the trade-off between

privacy and tag-suppression rate, which will enable us to compute the tuple s∗.

Privacy alarm generator. The functionality of this module is to warn the user

when their privacy is being compromised. When the user submits a tag, this module

waits for the category mapper block to send the category corresponding to that tag.

Let i be the index of this category. The module afterwards receives the tuple s∗ and

proceeds as follows. With probability s∗i , a privacy alarm is generated to warn the

user. If the alarm is triggered, it is the user who must decide whether to eliminate

the tag or not. Otherwise, our approach is not aware of any privacy threat and then

sends the tag to the Web browser.

Having examined each individual component, we shall next describe how our ap-

proach would operate. For this, we may consider the case of a collaborative book-

marking system (e.g., Delicious), where users essentially tag Web pages. Fig. 5.3

illustrates this case. At the training phase, the user would browse the Web and sub-

mit tags to those pages of their interest (Fig. 5.3(a,b)). The contextual information

derived by the context analyzer would be used to transform those tags into categories,

and thus to construct the user profile.

The user profile would be used to calculate the tuple s∗. Then, at a certain

point, the user could receive a privacy alarm when trying to submit a tag that would

contribute to make the user profile significantly different from the uniform profile. If

this was the case, the user would have to decide whether to eliminate the tag or not.
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a)

b)

c)

Tagging system

Figure 5.3: A user retrieves a Web page and the tags submitted by the other users from a server (a).
Later, the user submits their own tags to that server (b). Afterwards, the user receives a privacy
alarm when trying to submit a new tag (c).

Finally, if this tag was suppressed, the user’s apparent profile would diverge from the

actual user profile (Fig. 5.3(c)).

5.5 Trade-Off between Privacy and Tag-Suppression Rate

In this section we present a formulation that will enable us to specify the main block

of the architecture proposed in Sec. 5.4, namely the suppression strategy generator.

We model the tags posted by a user as r.v.’s taking on values on a common

finite alphabet of categories or topics, namely the set {1, . . . , n} for some integer

n > 2. In our mathematical model, we assume these r.v.’s are i.i.d. This assumption

allows us to describe user profiles by means of the PMF according to which such

r.v.’s are distributed, which leads to an equivalent representation than that used in

tagging systems. Accordingly, we define q as the probability distribution of the tags

of a particular user and σ ∈ [0, 1) as a tag suppression rate, which is the ratio of

suppressed tags to total tags that the user is willing to eliminate. Concordantly, we

define the user’s apparent tag distribution t as q−s
1−σ for some suppression strategy

s = (s1, . . . , sn) satisfying 0 6 si 6 qi and
∑
si = σ for i = 1, . . . , n. Conceptually,

the user’s apparent tag distribution may be interpreted as the result of, on the one

hand, the suppression of certain tags from the actual user profile, that is, q − s,

and one the other, the subsequent normalization by 1
1−σ so that

∑
i ti = 1. The
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information about which tags should be suppressed is encoded in the tag suppression

strategy s. Namely, the component si is the relative frequency of tags that our

mechanism suggests eliminating in the category i.

Based on the assumptions made in Sec. 5.3, we use Shannon’s entropy [76] to

quantify user privacy. Specifically, our privacy metric is the entropy of the user’s

apparent tag distribution t, according to Sec. 4.4.1, a measure of the probability of

that distribution. Furthermore, the tag-suppression rate is our simplified measure of

any loss in semantic functionality or data utility due to suppression. Consistently

with both measures, we define the privacy-suppression function

P(σ) = max
s

06si6qi,∑
si=σ

H

(
q − s
1− σ

)
, (5.1)

which characterizes the optimal trade-off between privacy and data utility, and for-

mally expresses the intuitive reasoning behind tag suppression: the higher the tag-

suppression rate σ, the higher the entropy of the apparent distribution, the likelihood

of this distribution and thus the user privacy. We would like to stress that, in the con-

text of this formulation, tag suppression does not attempt to hide the user’s actual,

genuine profile of interests, but the fact that such profile can make this user unique.

In other words, we aim to perturb the user’s actual profile so that their interests

are more common, thus hindering an attacker in its efforts to individuate the user.

Accordingly, if a user had a profile q = u, perturbation would not be needed, yet the

exact profile would be disclosed.

For simplicity, we shall use natural logarithms throughout this chapter and refer to

loge as ln, particularly because all bases produce equivalent optimization objectives.

5.6 Theoretical Analysis

In this section, we shall analyze the fundamental properties of the privacy-suppres-

sion function (5.1) defined in Sec. 5.5, and present a closed-form solution to the

maximization problem. Our theoretical analysis only considers the case when all
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given probabilities are strictly positive:

qi > 0 for all i = 1, . . . , n. (5.2)

This assumption will be properly justified in Sec. 5.6.2. We shall suppose further,

now without loss of generality, that

q1 6 · · · 6 qn. (5.3)

Before proceeding with the mathematical analysis, it is immediate from the def-

inition of the privacy-suppression function that its initial value is P(0) = H(q). The

behavior of P(σ) for 0 < σ < 1 is characterized by the theorems presented in this

section. The notation used throughout this section is summarized in Table 5.2.

5.6.1 Monotonicity and Quasiconcavity

Our first theoretical characterization, namely Lemma 5.1, investigates two elementary

properties of the privacy-utility trade-off. The lemma in question shows that the

trade-off is nondecreasing and quasiconcave. The importance of these two properties

is that they confirm the evidence that an optimal tag suppression strategy will never

lead to a degradation in privacy protection. In other words, an increase in the tag-

suppression rate does not lower the entropy of the apparent profile.

Theorem 5.1. The privacy-suppression function P(σ) is nondecreasing and quasi-

concave.

Proof: First, let 0 6 σ < σ′ 6 1. Based on the solution s to the maximization

problem corresponding to P(σ), consider the tag suppression strategy s′ given by the

equation
q − s′
1− σ′ =

q − s
1− σ .

The feasibility of s′ may be checked, on the one hand, by observing that the constraints

0 6 s′i 6 qi are equivalent to 0 6 qi−s′i
1−σ′ 6

qi
1−σ′ for i = 1, . . . , n. According to the

implicit definition of s′, we may rewrite these constraints as 0 6 qi−si
1−σ 6

qi
1−σ′ . Given

that s is feasible, the left-hand inequality is satisfied. The right-hand inequality is
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also verified by simply noting that qi
1−σ <

qi
1−σ′ . On the other hand, it is immediate

to check that
∑

i s
′
i = σ.

Once we have confirmed that s′ is feasible, we now turn to prove the first part of

the lemma. Since the feasibility of s′ does not necessarily imply that s′ is a maximizer

of the problem corresponding to P(σ′), it follows that P(σ′) > H
(
q−s′
1−σ′

)
= P(σ), and

consequently, that the privacy-suppression function is nondecreasing.

Finally, the quasiconcavity of the privacy-suppression function is directly proved

by the fact that P(σ) is a nondecreasing function of σ. �

The quasiconcavity of the privacy-suppression function (5.1) guarantees its con-

tinuity on the interior of its domain, namely (0, 1), but it is fairly straightforward to

verify, directly from the definition of P(σ) and under the positivity assumption (5.2),

that continuity also holds at the interval endpoint 0.

5.6.2 Critical Suppression

The following theorem will confirm the intuition that there must exist a tag-suppression

rate beyond which critical privacy is achievable, in the sense that the privacy-sup-

pression function attains its maximum value, that is, P(σ) = lnn. Precisely, this

critical suppression is

σcrit = 1− n min
i
qi = 1− n q1,

according to the labeling assumption (5.3). From the above, it is interesting to note

that σcrit becomes worse (closer to one) with worse (smaller) ratio q1
u1

= n q1.

Theorem 5.2 (Critical Suppression). Let u be the uniform distribution on {1, . . . , n},
that is, ui = 1/n. For all σ ∈ [0, 1), if σ > σcrit, then P(σ) = H(u) = lnn. In addition,

the optimal tag suppression strategy is s∗ = q−u (1−σ), for which the user’s apparent

distribution and the uniform’s match. Conversely, if σ < σcrit, then P(σ) < lnn.

Proof: We consider only the nontrivial case when q 6= u, which implies that

q1 < 1/n and, consequently, σcrit > 0. To confirm this implication, assume q 6= u and

suppose now that q1 > 1/n. Taking into account the labeling assumption (5.3) and

the fact that q is a probability distribution in the sense that
∑

i qi = 1, we arrive at

the contradiction that q must be the uniform distribution. Given that q1 < 1/n, it
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Table 5.2: Description of the variables used in our notation.

Symbol Description

n number of categories of interest into which tags are classified

q the actual user profile is the genuine profile of interests

σ the tag-suppression rate is the percentage of tags that the user is
willing to suppress

s a suppression strategy is an n-tuple with the percentage of tags
that the user should eliminate in each category

t the apparent user profile is the perturbed profile, as observed from
the outside, resulting from the elimination of certain tags

u uniform profile across the n tag categories

H(t) user privacy is measured as the Shannon entropy of the apparent
user profile

P(σ) privacy-suppression function modeling the trade-off between pri-
vacy and utility, the latter being measured as the tag-suppression
rate

σcrit the critical suppression is the suppression rate beyond which the
privacy-suppression function attains its maximum value or critical
privacy Pcrit

immediately follows that σcrit > 0. The converse, that is, σcrit > 0 implies q 6= u, is

easily checked by noting that when q1 < 1/n, q cannot be, by definition, the uniform

distribution. On the other hand, the positivity assumption (5.2) ensures that σcrit < 1.

Once we have determined the interval of values in which σcrit is defined, we now

proceed to confirm the feasibility of s∗. It is clear from its form that
∑

i s
∗
i = σ, thus

it suffices to verify that 0 6 s∗i 6 qi. First, observe that the right-hand inequality is

satisfied for all i as σ < 1. Secondly, note that requiring that s∗i = qi − 1
n
(1− σ) > 0

for all i is equivalent to σ > 1− n qi, and finally to

σ > max
i

1− n qi = 1− n min
i
qi,

as assumed in the theorem. Interestingly, observe that the expression for the critical

suppression is independent of the privacy criterion assumed. To complete the first

part of the proof, it is immediate to check that the proposed s∗ maximizes the user

privacy, since the uniform distribution maximizes entropy.
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Figure 5.4: Conceptual plot of the privacy-suppression function.

Now it remains to prove that P(σ) < lnn when σ < σcrit. To this end, recall

that the KL divergence between the user’s apparent distribution and the uniform

distribution may be written as

D(t‖u) =
∑
i

ti ln
ti
ui

= lnn− H(t),

as argued in Sec. 2.2. But the information inequality [76] asserts that D(t‖u) > 0,

with equality if, and only if, t = u for all i. Hence, when σ < σcrit, the solution t to

the optimization problem corresponding to P(σ) satisfies that t 6= u, and therefore

P(σ) = H(t) < lnn. �

After routine manipulation, we may write the optimal solution at exactly the

critical suppression as

s∗i = qi − q1,

equal to zero if, and only if, q = u. Owing to the fact that we are dealing with relative

rather than absolute frequencies, it is not surprising that s∗1 = 0 at σ = σcrit. More

generally, by virtue of the labeling assumption (5.3), we observe that only the first

components of s∗ may vanish. Fig. 5.4 conceptually illustrates the results derived

from Lemma 5.1 and Theorem 5.2.

Before proceeding further with our theoretical analysis, we would like to remark

that our assumption about the strictly positiveness of q is conveniently made, albeit

not without loss of generality, to guarantee that the critical privacy Pcrit is attained

for a suppression σ < 1, as proved in Theorem 5.2.
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5.6.3 Closed-Form Solution

Our last theorem, Theorem 5.4, will provide a closed-form solution to the maximiza-

tion problem involved in the definition of the privacy-suppression function (5.1). This

solution will be obtained from a resource allocation lemma, namely Lemma 5.3, which

addresses an extension of the usual water filling problem. Even though Lemma 5.3

provides a parametric-form solution, fortunately, we shall be able to proceed towards

an explicit closed-form solution, albeit piecewise.

More specifically, this lemma considers the allocation of resources x1, . . . , xn min-

imizing the sum
∑

i fi(xi) of convex cost functions on the individual resources. Re-

sources are assumed to be nonnegative, upper bounded by positive thresholds bi, and

to amount to a total of
∑

i xi = θ, for some θ > 0. The well-known water-filling

problem [75, §5.5] may be regarded as a special case when resources are not upper

bounded and fi(xi) = − ln(αi + xi), for αi > 0.

Lemma 5.3 (Resource Allocation). For all i = 1, . . . , n, let fi : [0, bi] → R be twice

differentiable on [0, bi), with f ′′i > 0, and hence strictly convex. Additionally, assume

that lim
xi→b−i

f ′i(xi) = ∞. Because f ′′i > 0, f ′i is strictly increasing, and, interpreted as

a function from [0, bi) to f ′i([0, bi)), invertible. Denote the inverse by f ′i
−1. Consider

the following optimization problem in the variables x1, . . . , xn:

minimize
n∑
i=1

fi(xi)

subject to 0 6 xi 6 bi, for all i,

and
n∑
i=1

xi = θ, for some θ > 0.

(i) The solution to the problem exists, is unique and of the form x∗i = max
{

0, f ′i
−1(ν)

}
,

for some ν ∈ R such that
∑

i x
∗
i = θ.

(ii) Suppose further, albeit without loss of generality, that f ′n(0) 6 · · · 6 f ′1(0).

Then, either f ′i(0) < ν 6 f ′i−1(0) for i = 2, . . . , n, or f ′i(0) < ν for i = 1, and
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for the corresponding index i,

x∗j =

{
f ′j
−1(ν), j = i, . . . , n

0 , j = 1, . . . , i− 1
,

and
n∑
j=1

x∗j =
n∑
j=i

f ′j
−1

(ν) = θ.

Proof: The existence and uniqueness of the solution is a consequence of the

fact that we minimize a strictly convex function over a compact set. Systematic

application of the Karush-Kuhn-Tucker (KKT) conditions [75] leads to the Lagrangian

cost

L =
∑

fi(xi)−
∑

λixi +
∑

µi(xi − bi)− ν
(∑

xi − θ
)
,

which must satisfy ∂L
∂xi

= 0, and finally to the conditions

0 6 xi 6 bi,
∑

xi = θ (primal feasibility),

λi, µi > 0 (dual feasibility),

λixi = 0, µi(xi − bi) = 0 (complementary slackness),

f ′i(xi)− λi + µi − ν = 0 (dual optimality).

Since lim
xi→b−i

f ′i(xi) =∞, it follows from the dual optimality condition that xi < bi.

But then, the complementary slackness condition implies that µi = 0, and conse-

quently, we may rewrite the dual optimality condition as f ′i(xi) = λi + ν. By elimi-

nating the slack variables λi, we finally obtain the simplified condition f ′i(xi) > ν. In

addition, observe that since f ′i(xi) = λi + ν, the complementary slackness condition

implies that (f ′i(xi)− ν)xi = 0. In short, we may rewrite the dual optimality and the

complementary slackness conditions equivalently as

f ′i(xi) > ν (dual optimality),

(f ′i(xi)− ν)xi = 0 (complementary slackness).

Now, we proceed to directly solve these equations. To this end, recall that, since

f ′′i > 0, f ′i is strictly increasing. Consider, first, the case when f ′i(0) > ν, or equiv-

alently, f ′−1
i (ν) 6 0. Suppose that xi > 0, so that by complementary slackness,
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f ′i(xi) = ν 6 f ′i(0), contradicting the fact that f ′i is strictly increasing. Consequently,

xi = 0.

Consider now the opposite case, that is, when f ′i(0) < ν, or equivalently f ′−1
i (ν) >

0. In this case, the only conclusion consistent with the dual optimality condition

is xi > 0. But then, it follows from the complementary slackness condition that

f ′i(xi) = ν, or equivalently, xi = f ′−1
i (ν). This could be interpreted as a Pareto

equilibrium. Specifically, for all positive resource xi > 0, the marginal ratios of

improvements f ′i(xi) must all be the same. Otherwise, minor allocation adjustments

on the resources could improve the overall objective. In summary,

xi = max{0, f ′−1
i (ν)},

which proves claim (i) in the lemma.

In order to verify (ii), observe that whenever ν 6 f ′i−1(0) 6 · · · 6 f ′1(0) holds for

some i = 2, . . . , n, then f ′−1
i−1(ν), . . . , f ′−1

1 (ν) 6 0, and thus xi−1 = · · · = x1 = 0. Note

that the index i = n + 1 is not permitted, since the zero solution, that is, xi = 0 for

all i = 1, . . . , n, contradicts the primal feasibility condition
∑

i xi = θ. �

Next, we shall provide a closed-form solution for the privacy-suppression function.

However, before presenting the theorem in question, we shall introduce some notation.

Let Q̄i =
∑n

j=i+1 qj denote the complementary cumulative distribution function. In

addition, define

σi = Q̄i − qi(n− i),

for i = 1, . . . , n, and, conveniently, define σ0 = 1. Note that σn = 0, that σ1 =

1 − n q1 = σcrit, and consistently with Theorem 5.2, the solution in this theorem at

σ = σcrit becomes
qj−s∗j
1−σ = 1

n
, for j = 1, . . . , n. Further, define

q̃ =
(
q1, . . . , qi−1,

Q̄i−1

n−i+1
, . . . , Q̄i−1

n−i+1

)
,

s̃ =
(
0, . . . , 0, σ

n−i+1
, . . . , σ

n−i+1

)
,

a distribution in the probability simplex in Rn, and an n-tuple representing a tag

suppression strategy, respectively.
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Theorem 5.4. For any i = 2, . . . , n, σi 6 σi−1, with equality if, and only if, qi = qi−1.

For any i = 1, . . . , n and any σ ∈ [σi, σi−1], the optimal suppression strategy is

s∗j =

{
0 , j = 1, . . . , i− 1

qj − Q̄i−1−σ
n−i+1

, j = i, . . . , n
,

and, consequently, the corresponding optimal user’s apparent tag distribution is

t∗j =

{
qj

1−σ , j = 1, . . . , i− 1
Q̄i−1−σ

(1−σ)(n−i+1)
, j = i, . . . , n

Accordingly, the corresponding, maximum entropy yields the privacy-suppression func-

tion

P(σ) = H

(
q̃ − s̃
1− σ

)
.

Proof: From the definition of σi and under the labeling assumption (5.3), it is

immediate to check the monotonicity of these suppression thresholds.

Now, we proceed to prove the rest of the theorem for the nontrivial case σ ∈ (0, 1).

Using the definition of entropy, we may write the objective function in the (original)

optimization problem (5.1) as −H(t) =
∑

i ti ln ti, with ti = qi−si
1−σ , since the maxi-

mization of entropy is equivalent to the minimization of negative entropy. Recall that

s is optimal for the original problem if, and only if, s is optimal for the scaled problem.

After this convenient, straightforward transformation, the objective function exposes

the structure of the privacy-suppression optimization problem as a special case of

the resource allocation lemma, Lemma 5.3. Specifically, the functions fi(si) = ti ln ti

of si are twice differentiable on [0, qi), and satisfy f ′′i > 0 and lim
si→q−i

f ′i(si) = ∞.

Further, the equality constraint in (5.1) becomes
∑

i si = σ. In this special case,

f ′i(si) = − 1
1−σ

(
ln qi−si

1−σ + 1
)

and

f ′−1
i (ν) = qi − (1− σ) e−(1−σ)ν−1,

the solution for si when si > 0.

The labeling assumption (5.3) is equivalent to the assumption that f ′n(0) 6 · · · 6
f ′1(0) in the lemma, since f ′i(0) = − 1

1−σ

(
ln qi

1−σ + 1
)

is a strictly decreasing function



152 CHAPTER 5. TAG SUPPRESSION IN THE SEMANTIC WEB

of qi. From the second part of the lemma,

σ =
n∑
j=i

f ′j
−1

(ν) = Q̄i−1 − (n− i+ 1)(1− σ) e−(1−σ)ν−1,

and hence,

ν = − 1

1− σ

(
ln

Q̄i−1 − σ
(1− σ)(n− i+ 1)

+ 1

)
.

Now it suffices to substitute ν into f ′i(ν) in order to obtain the expression for the

nonzero optimal suppression strategy sj in the theorem. The optimal user’s apparent

tag distribution t is easily derived from this expression.

Next, we shall confirm the interval of values of σ in which it is defined. To this

end, observe that the condition f ′i(0) < ν in the lemma, is equivalent to

− 1

1− σ

(
ln

qi
1− σ + 1

)
< − 1

1− σ

(
ln

Q̄i−1 − σ
(1− σ)(n− i+ 1)

+ 1

)
,

and finally, after routine algebraic manipulation, to

σ > Q̄i − qi(n− i).

We could proceed to carry out an analogous analysis on the upper bound condition

ν 6 f ′i−1(0) of the lemma to find out the interval of values of σ in which the solution

is defined. However, we note that, because a unique solution will exist for each σ,

the intervals resulting from imposing f ′i(0) < ν 6 f ′i−1(0) must be contiguous and

nonoverlapping, hence, of the form (σi, σi−1]. Further, since P(σ) is continuous on

[0, 1), we may write the intervals as [σi, σi−1] in lieu of (σi, σi−1].

To complete the proof, we shall express the privacy-suppression function in terms

of the optimal user’s apparent tag distribution, that is, P(σ) = −∑n
j=1 tj ln tj. We

split the sum into two parts, namely,

−
i−1∑
j=1

qj
1− σ ln

qj
1− σ −

n∑
j=i

Q̄i−1 − σ
(1− σ)(n− i+ 1)

ln
Q̄i−1 − σ

(1− σ)(n− i+ 1)
,

where we observe that the terms in the second sum do not depend on j. From this

expression, it is straightforward to identify the terms of P(σ) as the entropy of the



5.6 THEORETICAL ANALYSIS 153

q t*

/n

Figure 5.5: A user’s tag distribution q and their corresponding apparent tag distribution t∗ after an
optimal suppression of tags.

distribution(
q1

1− σ , . . . ,
qi−1

1− σ ,
Q̄i−1 − σ

(1− σ)(n− i+ 1)
, . . . ,

Q̄i−1 − σ
(1− σ)(n− i+ 1)

)
,

precisely the distribution q̃−s̃
1−σ , given at the end of the theorem. �

The optimal tag suppression strategy in Theorem 5.4 is interpreted as follows. On

the one hand, only tags corresponding to the categories j = i, . . . , n are suppressed.

This is not surprising because, precisely, these are the categories with the highest

probabilities, or roughly speaking, with probabilities furthest away from the uniform

distribution. On the other, the optimal user’s apparent tag distribution within those

categories does not depend on j, and hence they all have the same probability. Fur-

ther, consistently with the fact that we are dealing with relative frequencies, the

components of the apparent distribution belonging to the categories j = 1, . . . , i− 1

are obtained by normalizing the genuine user distribution. Fig. 5.5 captures this in-

tuitive analysis by illustrating a simple example with n = 4 categories. Namely, this

figure shows a user with an actual profile q who is willing to accept a tag-suppression

rate σ ∈ [σ3, σ2], causing that a privacy attacker observe an optimal user’s apparent

profile t∗ significantly different from q, specially in those categories with the highest

ratio
qj
uj

=
qj

1/n
.
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A number of conclusions can be drawn from the results obtained in this last

theorem. The following two sections will be focused on the analysis of the behavior

of the privacy-suppression function at low suppression rates and high privacy.

5.6.4 Low-Suppression Case

This section investigates the privacy-suppression P(σ) in the case when σ ' 0.

Proposition 5.5 (Low Suppression). In the nontrivial case when q 6= u, there exists

a positive integer i with suppression thresholds satisfying 0 = σn = · · · = σi < σi−1.

For all σ ∈ [0, σi−1], the optimal tag suppression strategy s∗ contains n− i+1 nonzero

components, and the slope of the privacy-suppression function at the origin is P ′(0) =

H(q) + ln qn.

Proof: The hypothesis q 6= u implies that n > 1, and the existence of a positive

integer i enabling us to rewrite the labeling assumption (5.3) as

q1 6 · · · 6 qi−1 < qi = · · · = qn,

and to express qj as Q̄i−1

n−i+1
, for j = i, . . . , n. On account of Theorem 5.4,

0 = σn = · · · = σi < σi−1 6 · · · 6 σ1,

and for all σ ∈ [0, σi−1], we have that

P(σ) = H

(
q̃ − s̃
1− σ

)
.

It is routine to check that

P ′(0) = −
i−1∑
j=1

qj ln qj −
n∑
j=i

qj ln Q̄i−1

n−i+1
+ ln Q̄i−1

n−i+1
= −

n∑
j=1

qj ln qj + ln qn,

where the last equality follows from the fact that qi = · · · = qn, as shown at the

beginning of this proof. �

Now we define the relative increment factor

δ =
P ′(0)

P(0)
= 1 +

ln qn
H(q)

.
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The results from Proposition 5.5 allows us to approximate the privacy-suppression

function at σ ' 0 as

P(σ) ' H(q) + σ (H(q) + ln qn)

or, in terms of the relative increment,

P(σ)− H(q)

H(q)
' δ σ. (5.4)

In conceptual terms, qn characterizes the privacy gain at low suppression rates,

together with H(q), in contrast to the fact that the ratio q1
1/n

determines σcrit, the

minimum suppression rate for which the critical privacy is achievable, as defined in

Sec. 5.6.2. We mentioned in that section that q1 < 1/n in the nontrivial case when

q 6= u. An entirely analogous argument shows that qn > 1/n, with equality if, and only

if, q = u, since the opposite, that is, qi < 1/n, leads to a contradiction. This result

allows us to conclude that δ < 1, unless q = u, for which, unsurprisingly, δ becomes

zero. In other words, the relative privacy gain (5.4) is lower than the suppression

introduced. Namely, the privacy increment at low suppression rates becomes less

noticeable with smaller qn, for a fixed H(q).

5.6.5 High-Privacy Case

Next, we shall analyze the case when σ ' σcrit and consequently the privacy-suppres-

sion function attains its maximum value. To this end, consider the index i = 2 just

to check that, whenever σ ∈ [σ2, σcrit], for q 6= u,

P(σ) = H


(
q1,

1−q1
n−1 , . . . ,

1−q1
n−1

)
−
(

0, σ
n−1 , . . . ,

σ
n−1

)
1− σ

 < lnn.

In addition, we are implicitly assuming that q1 6= q2, so that, by virtue of Theorem 5.4,

σ2 < σcrit. Consequently, we skip an empty interval and may express the privacy-

suppression function as

P(σ) = − q1

1− σ ln
q1

1− σ −
1− q1 − σ

1− σ ln
1− q1 − σ

(1− σ)(n− 1)
.
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From this expression, it is routine to conclude that P ′(σcrit) = 0 and P ′′(σcrit) =

− 1
q21n

2(n−1)
, and finally,

P(σ) ' lnn+
1

2
P ′′(σcrit)(σ − σcrit)

2.

We would like to remark that the fact that P(σ) admits a quadratic approx-

imation for σ ' σcrit, with P ′(σcrit) = 0, may be determined directly from the

fundamental properties of Fisher information [76]. Recall that for a family of dis-

tributions fθ indexed by a scalar parameter θ, D(fθ‖fθ′) ' 1
2

I(θ′)(θ′ − θ)2, where

I(θ′) = E
(
∂
∂θ′

ln fθ′
)2

is Fisher information. Denote by t∗σ = q−s∗
1−σ the family of optimal

apparent tag distributions, indexed by the suppression rate. Theorem 5.2 guarantees

that t∗σcrit = u, thus we may write P(σ) = H(t∗σ) = lnn − D(t∗σ‖t∗σcrit). Under this

formulation, it is clear that the Fisher information associated with the suppression

rate is I(σcrit) = −P ′′(σcrit).

Lastly, we would like to note that the observation at the end of Sec. 5.6.2 that

s∗1 = 0 at σ = σcrit is consistent with the fact that σcrit is the endpoint of the interval

corresponding to the solution for s∗ with n− 1 nonzero components in Theorem 5.4.

5.6.6 Numerical Example

In this section, we show various numerical results for a simple but insightful example

that attempts to illustrate the formulation and the theoretical analysis presented in

Secs. 5.5 and 5.6. The evaluation of our privacy-enhancing mechanism in a real-world

application is presented later in Sec. 5.7.

In this practical example, we shall consider three categories and assume that

the user’s distribution is q = (0.100, 0.200, 0.700), thus fulfilling both the positivity

and the labeling assumptions (5.2,5.3). On account of Theorem 5.4, the suppression

thresholds are σ3 = 0, σ2 = 0.500 and σ1 = σcrit = 0.700. In addition, the initial

privacy value is P(0) ' 0.8018, which is the privacy level achieved by a user who is

not willing to accept the suppression of any tag. Furthermore, Sec. 5.6.4 and 5.6.5

allow us to characterize the behavior of the privacy-suppression function for σ = 0

and σ = σcrit. Concretely, the first and second order approximations are determined
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Figure 5.6: Optimal trade-off curve between privacy and suppression, and the corresponding ap-
proximations and suppression thresholds for q = (0.100, 0.200, 0.700).

by the quantities P ′(0) ' 0.4451 and P ′′(σcrit) ' −5.56. All these results are cap-

tured in Fig. 5.6, where the privacy-suppression function P(σ) is represented. The

optimization problem involved in the definition of this function has been computed

theoretically, by simply applying Theorem 5.4, and numerically (h).

After observing the behavior of the optimal trade-off curve between privacy and

suppression, now we turn to examine the optimal apparent tag distribution for a set of

suppression rates. To this end, the user’s distribution q, the optimal apparent distri-

bution t∗ and the uniform distribution u are represented in the probability simplices

shown in Fig. 5.7. In addition, the contours of the entropy H( · ) of a distribution

in the simplex are depicted. More interestingly, this figure also shows the region,

highlighted in dark blue, which corresponds to all the possible apparent tag distri-

butions, not necessarily optimal, for a given suppression rate. Namely, this feasible

region results from the intersection of the set
{
t = q−s

1−σ

∣∣ 0 6 si 6 qi,
∑

i si = σ
}
, and

the probability simplex.

We now turn our attention to Fig. 5.7(a), where a suppression σ ∈ [σ3, σ2]

has been selected to check that, according to the notation of Theorem 5.4, s∗ has

n − i + 1 = 1 nonzero components. Geometrically, this places the solution t∗, not

entirely unexpectedly, at one vertex in the feasible region. In addition, observe that a

(h)The numerical method chosen is the interior-point optimization algorithm [75] implemented by
the Matlab R2012b function fmincon.



158 CHAPTER 5. TAG SUPPRESSION IN THE SEMANTIC WEB

(100) (010)

(001)

u

q
t∗

(a) σ = 0.100, σ/σcrit ' 0.143,
P(σ) ' 0.8487, P(σ)/P(0) ' 1.0585,
s∗ = (0.000, 0.000, 0.100), t∗ '
(0.111, 0.222, 0.667).

(100) (010)

(001)

u

q

t∗

(b) σ = 0.550, σ/σcrit ' 0.786,
P(σ) ' 1.0688, P(σ)/P(0) ' 1.3330,
s∗ = (0.000, 0.025, 0.525), t∗ '
(0.222, 0.389, 0.389).

(100) (010)

(001)

u

q

t∗

(c) σ = 0.700, σ/σcrit = 1, P(σ) '
1.0986, P(σ)/P(0) ' 1.3702, s∗ =
(0.000, 0.100, 0.600), t∗ = u.

(100) (010)

(001)

u

q

t∗

(d) σ = 0.750, σ/σcrit ' 1.071, P(σ) '
1.0986, P(σ)/P(0) ' 1.3702, s∗ '
(0.017, 0.117, 0.617), t∗ = u.

Figure 5.7: Probability simplices showing u, q and t∗ for several interesting values of σ.

suppression of 10 % increases the user privacy to a 5.8 % of the original privacy H(q).

This confirms an interesting result obtained in Sec. 5.6.4, where we concluded that the

relative increment factor δ for low-suppression rates was lower than the suppression

introduced. In Fig. 5.7(b) the suppression rate is on the interval [σ2, σcrit], leading

to an optimal suppression strategy s∗ with n − i + 1 = 2 nonzero components. In

this case, the solution t∗ is placed on one edge of the feasible region. Additionally,

note that a suppression of 55 % increments the user privacy to a 33 % of its original

value. The case in which σ = σcrit and thus user privacy attains its maximum value

is depicted in Fig. 5.7(c). When this happens, s∗ still has n − i + 1 = 2 nonzero

components. Precisely, note that s∗3 = q3− q1 and s∗2 = q2− q1, which perfectly agree
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with the results obtained at the end of Sec. 5.6.2. Finally, the case when σ > σcrit,

which certainly does not make sense, is shown in Fig. 5.7(d). In this particular case,

s∗ has n− i+ 1 = 3 nonzero components and t∗ falls into the interior of the feasible

region.

5.7 Experimental Analysis

In this section, we analyze the extent to which our technique enables users to enhance

their privacy in a real-world tagging application. In this analysis we contemplate

the impact that the suppression of tags has on the semantic functionality of this

application, but tackle this in a simplified manner, by using a tractable measure of

data utility, namely the tag-suppression rate. More sophisticated metrics of any loss

in semantic functionality due to suppression will be explored later in Chapter 6.

We start, in Sec. 5.7.1, by examining the data set used to conduct the experimental

evaluation. To make user profiles tractable, Sec. 5.7.2 describes a methodology for

mapping tags into a small set of meaningful categories of interest. Finally, Sec. 5.7.3

presents the experimental results.

5.7.1 Data set

We applied the proposed technique to BibSonomy, a popular social bookmarking

and publication-sharing system. In particular, we experimented with the data set re-

trieved by the Knowledge & Data Engineering Group at the University of Kassel [173].

The data set in question comprises those bookmarks and publications tagged by ap-

proximately two thousand users. The information is organized in the form triples

(username, resource, tag), each one modeling the action of a user who associates a re-

source, being a bookmark or a publication, with a tag. Our data set contains 671 807

of these triples, which were posted from Jan. 1989 to Dec. 2007, and includes 1 921

users, 206 941 resources and 58 755 tags. It is worth mentioning that no preprocessing

was done, although usernames were anonymized.
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5.7.2 Tag Categorization

The representation of a user profile as a normalized histogram across these 58 755

tags is clearly an inappropriate approach for our experiments; not only because of

the intractability of the profile, but also because it makes it difficult to have a quick

overview of the user interests. For example, for users posting the tags “welfare”,

“Dubya” and “campaign” it would be preferable to have a higher level of abstraction

that enables us to conclude, directly from the inspection of their profiles, that they

are interested in politics. This level of abstraction is not only interesting for our

experimental evaluation, but also it represents what an attacker would eventually do

to capture user interests.

The categorization of tags therefore permits modeling user profiles in a tractable

manner, on the basis of a reduced set of meaningful categories of interest, consis-

tently with the representation assumed in Sec. 5.3. In this section we summarize the

methodology that we followed to categorize the tags of our data set. This catego-

rization process is described in more detail later in Chapter 6, where we focus on the

more practical and experimental aspects of our tag-suppression technique.

To accomplish this categorization, first we carried out some preprocessing to dis-

card those tags considered as spam. With this intention, we eliminated the tags with

a number of characters over 26, which in our data set represented the 99th percentile.

Furthermore, we got rid of those triples without tags. As a result of this preprocess-

ing, the number of triples became 665 052, and thus the number of users, resources

and tags reduced to 1 916, 206 697, and 50 900, respectively.

In what follows, the categorization process can be roughly conceptualized in three

steps. This process is in line with other works in the field [174,175].

(i) Computation and recording of simultaneous occurrence of two tags under a

common resource, in the form of a co-occurrence matrix. Tags may then be

modeled as numeric vectors of co-occurrences, obtained as columns or rows

within this matrix.
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(ii) Definition of a quantitative measure of semantic dissimilarity, namely the co-

sine distance, between tag vectors, under the principle that similar tags should

induce similar co-occurrence profiles.

(iii) Clustering of said tag vectors with the Lloyd’s algorithm, replacing all tags

within each cluster by a common representative tag, minimizing the average

semantic distance just defined.

The application of the first step allowed us to obtain a matrix of co-occurrences cij.

Then we filtered this matrix as we wanted to preserve just those tags with a sufficiently

high level of co-occurrence. For this reason, we dropped those tags satisfying
∑

j cij <

τ , for a certain threshold τ . We chose τ = 100 since we wished to retain at least 80%

of the triples. After this filtering process the number of users, resources, tags and

triples became 1 737, 190 478, 5 057 and 540 904, respectively.

Equipped with the cosine distance as a measure of dissimilarity, we proceeded to

apply Lloyd’s algorithm (i). The application of this clustering algorithm enabled us

to group the 5 057 tags into 5 categories, which gave us a granularity level sufficiently

aggregated as to avoid having user profiles with many empty categories. Subsequently,

the resulting categories were sorted in increasing order of popularity of their tags, with

the aim of satisfying the labeling assumption (5.3). Although this classification does

not necessarily imply that all user profiles meet this condition, in our experiments

we shall ultimately rearrange the categories of each individual profile to fulfil it.

Lastly, the tags in each category were ordered in decreasing order of proximity to the

centroid (j).
In a last stage, and on account of the positivity assumption (5.2), we eliminated

those users who did not tag across all categories. In addition, we dropped users with

an activity level lower than 50 tags, since it would have been difficult to calculate a

reliable estimate of their profiles with such a few tags. Accordingly, the number of

users, resources and triples became 209, 144 904 and 447 203, respectively.

(i)Lloyd’s algorithm [176], which is normally referred to as k-means in the computer science com-
munity, is a popular iterated algorithm for grouping data points into a set of k clusters. Sec. 6.5.2
provides further details on this algorithm.

(j)The complete results of this clustering are available to other researchers at http://sites.

google.com/site/javierparraarnau/publications.

http://sites.google.com/site/javierparraarnau/publications
http://sites.google.com/site/javierparraarnau/publications
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Figure 5.8: In this figure, we plot the actual user profile q of the particular user considered in
Sec. 5.7.3, who posted a total of 1 075 tags across all categories. Additionally, we plot the optimal
suppression strategy s∗ for σ = σcrit ' 0.7163, that is, the percentage of tags that the user should
refrain from tagging in each category in order to achieve the uniform profile.

5.7.3 Results

In this section, we examine the extent to which our technique contributes to privacy

preservation. For this purpose, first we explore how a particular user in our data set

benefits from the application of an optimal tag suppression strategy; and secondly,

we analyze the effect of this optimal suppression when the whole population of users

enhance their privacy by using a common tag-suppression rate.

As detailed in previous sections, tag suppression requires that a user specify a

rate indicating the fraction of tags they are disposed to eliminate. Based on this

suppression rate and the user profile across the n = 5 categories obtained in Sec. 5.7.2,

our approach solves the optimization problem (5.1). The result of this optimization

is a suppression strategy s∗, that is, an n-tuple containing the percentage of tags

that the user should eliminate in each category. In our first series of experiments, we

select a particular user in our data set (k) and compute this suppression strategy in

the special case when the user specifies σ = σcrit. Both the actual profile of the user

in question and the optimal strategy are plotted in Fig. 5.8, where it is shown one of

the theoretical results obtained in Sec. 5.6.2, namely the fact that s∗i = qi− q1 for any

category i. In addition, Fig. 5.9 illustrates the optimal trade-off curve between privacy

and suppression, which we calculated theoretically and numerically. The suppression

(k)This specific user is identified by the number 633 in [173].
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Figure 5.9: We plot the privacy-suppression function and the suppression thresholds for one partic-
ular user in our data set.

thresholds σi shown in this figure indicate the suppression rates beyond which the

components j = i, . . . , n of the apparent profile t have the same probability. This

effect is observed in Fig. 5.10, where we represent t precisely for these interesting

values of σ.

The second set of experiments contemplates a scenario where all users apply our

technique by using a common tag-suppression rate. Under this assumption, Fig. 5.12

shows the privacy protection achieved by these users in terms of percentile curves

(10th, 25th, 50th, 75th and 90th) of relative privacy gain. Noteworthy is the fact that

certain users obtain privacy gains between 100% and 235%, although, clearly, at

the cost of high suppression rates. Another eye-opening finding is the distribution

of the suppression thresholds σi plotted in Fig. 5.11. Recall that we also refer to

σ1 as the critical suppression σcrit. Particularly, we observe that 86.6% of users have

σ1 ∈ [0.9, 1), whereas the remaining percentage of users lie in the interval [0.7, 0.9). In

practice, this means that all users will require a high suppression rate for their profiles

to become completely uniform. Although this might be certainly controversial, this is

not a poor performance of our mechanism, but a consequence of the stringent privacy

requirement imposed by such uniformity. As a matter of fact, the distributions of σi,

for i = 2, 3, 4, indicate that the components tj with j = i, . . . , n may be uniform at
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(a) σ = σ4 ' 0.2214, H(t) ' 1.5228.
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(b) σ = σ3 ' 0.3126, H(t) ' 1.5475.
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(c) σ = σ2 ' 0.4633, H(t) ' 1.5772.
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(d) σ = σ1 ' 0.7163, H(t) ' 1.6094.

Figure 5.10: We represent the apparent profile t of a particular user in the special case when the
suppression rate coincides with the suppression thresholds σi, i = 1, . . . , 4. Recall that t is the
perturbed profile resulting from the elimination of tags and observed from the outside. At these
interesting values of suppression, we observe how the components of t corresponding to the categories
j = i, . . . , 5 are balanced. In the end, when the critical suppression σ1 is attained, t becomes u and
H(t) = ln 5 ' 1.6094. The actual profile of this specific user is depicted in Fig. 5.8.

a significantly lower cost. For example, 32.5% of users have 3 out of 5 components

evenly balanced for a suppression rate below 68%.

In closing, the results shown in this section illustrate how our mechanism perturbs

the user profile observed from the outside and how this perturbation enables users to

protect their privacy to a certain degree.

5.8 Conclusions

There exists a large number of proposals for privacy protection in the semantic Web.

Within these approaches, tag suppression arises as a simple strategy in terms of
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Figure 5.11: We plot the distribution of the suppression thresholds σi, for i = 1, . . . , 4. In the special
case when σ > σ1 = σcrit, the apparent user profile is the uniform profile across all categories.

infrastructure requirements, as users need not trust an external entity nor the net-

work operator. The fact that the proposed strategy builds on the assumptions of

the untrusted model does not prevent it from being used in combination with other

mechanisms, e.g., those based on TTP or user collaboration. Our technique, in fact,

may contribute to improve the effectiveness of these mechanisms. However, like other

approaches in the literature, our data-perturbative approach comes at the cost of

some processing overhead but more importantly at the expense of semantic loss in-

curred by suppressing tags. In other words, tag suppression poses an inherent trade-

off between privacy on the one hand, and data utility on the other.

Our first contribution is an architecture that outlines how our tag-suppression

technique could be implemented in practice. The proposed architecture helps users

refrain from proposing certain tags in order to hinder attackers in their efforts to

target peculiar users. The main component of our proposal is a module responsible

for obtaining an optimal tag suppression strategy. Our approach uses this information
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Figure 5.12: We consider the case when all users in our data set protect their privacy by using a
common tag-suppression rate. Built on this premise, we then plot some percentiles curves of privacy
gain against this common suppression rate.

to warn users when their privacy is being compromised and it is then for the users to

decide whether to eliminate those tags or not.

Our second contribution is a systematic, mathematical approach to the problem

of optimal tag suppression. On the one hand, we measure privacy as the entropy of

the user’s apparent tag distribution, after the suppression of some tags, and justify

it under an adversary whose objective is to individuate users. On the other hand,

we model any loss in semantic functionality as the tag-suppression rate, that is, the

fraction of tags a user consents to eliminate. This simplified measure of data utility

enables us to formulate the privacy-utility trade-off as a mathematically tractable

optimization problem.

In our model, we represent user tags as r.v.’s taking on values on a common finite

alphabet of categories or topics. This allows us to describe user profiles as PMFs, a

representation that is frequently used in popular tagging systems such as BibSonomy,

CiteULike and Delicious. The proposed model, however, is restricted to relative

frequencies, relevant against content-based attacks, but does not deal with differences

in the absolute frequencies, which certainly could be exploited by traffic analysis.

Further, we assume that the adversary is unable to know whether a particular user

is applying our PET. We consider this is a reasonable assumption as the elimination

of tags takes place on the user side.
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As a result of our theoretical analysis, we provide a closed-form solution for the

optimal tag suppression strategy and a privacy-suppression function modeling the

optimal trade-off curve. Our theoretical study first proves that the privacy-suppres-

sion function P(σ) is nondecreasing and quasiconcave. Subsequently, we show that,

under the positivity assumption (5.2), there exists a critical suppression σcrit < 1

beyond which the critical privacy is achievable. Specifically, this σcrit only depends

on the minimum ratio
qj
uj

of probabilities between the user’s tag distribution q and

the uniform distribution u. More interestingly, for a given suppression σ the suppres-

sion of tags only affects the categories j = i, . . . , n, precisely those with the highest

probabilities among all categories. Not unexpectedly, the number of categories ex-

posed to suppression, that is, n − i + 1, increases with σ. In the particular case

when σ = σcrit, only the category i = 1 remains unchanged. With regard to the

optimal user’s apparent distribution, the components of t∗ corresponding to the cat-

egories j = i, . . . , n have the same probability, whereas the probability of the other

components is obtained by normalizing the actual user distribution.

In addition, the privacy-suppression function is characterized at low suppression

rates and at high privacy. Specifically, we present a first-order Taylor approxima-

tion for σ ' 0 in the nontrivial case when q 6= u, from which we conclude that qn

determines, together with the initial privacy value, the privacy gain at low suppres-

sion. Also, we prove that this privacy gain is lower than the suppression introduced.

Besides, we provide a second-order approximation for σ ' σcrit, assuming that prob-

abilities qj are strictly increasing. Finally, the fact that P ′(σ) vanishes at σ = σcrit is

regarded as a property of the Fisher information.

Our theoretical analysis is then illustrated with a simple but insightful example.

But this is not until Sec. 5.7 where we provide an experimental evaluation of our

privacy-enhancing mechanism. In that section, we consider the use of tag suppression

in a real-world application and assess experimentally the extent to which our approach

could help users protect their privacy. Our experiments also evaluate the impact that

our PET would have on semantic functionality, but approach this in a simplified

manner, by using the tag-suppression rate as a measure of utility. The next chapter,

Chapter 6, is entirely devoted to investigate the impact on the semantic functionality
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of an enhanced collaborative tagging application, by using a more sophisticated utility

metric, in particular the percentages of tags that resources lose as a result of tag

suppression.



Chapter 6

Privacy-Preserving Enhanced

Collaborative Tagging

6.1 Introduction

Collaborative tagging is one of the most widespread and popular services available

online. First provided by social bookmarking sites only—e.g., Delicious, Digg and

StumbleUpon—, it is currently supported by nearly any type of social Web applica-

tion, and it is used to annotate any kind of online and offline resources, such as Web

pages, images, videos, movies, music, and even blog posts.

The main purpose of collaborative tagging is to classify resources based on user

feedback, expressed in the form of free-text labels, i.e., tags. The novelty of such an

approach to content or resource categorization has been seen, in recent years, as a

challenging research topic, in part because collaborative tagging provides the basis

for the semantic Web, a network that will connect online resources based on their

meanings, and not only on their uniform resource identifiers [177].

Although these days collaborative tagging is mainly used to support tag-based

resource discovery and browsing, it can also be exploited for other purposes. In

Chapter 5 we mentioned that semantic tagging is intimately related to personalization

and that many collaborative tagging systems have recently begun to offer personalized

169
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services. In these systems, the user’s tastes and interests are inferred implicitly, based

on the tags they submit.

This implicit form of profile construction is actually the most used way to model

user preferences. The problem with such approach, however, is that it requires users

to interact frequently enough so that their profiles become an accurate reflection of

their interests and the provider can then start to offer an effective personalized service.

This is known as the cold-start problem [178], and a solution to this is for personalized

information systems to allow users to explicitly express their preferences initially, for

example, in the form of content-filtering rules or categories of interest.

While these two forms of user profile construction, i.e., implicit and explicit, are

employed by current personalized information systems, no collaborative tagging ser-

vice enables its members to explicitly specify preferences. In order to achieve this

enhanced use, the current architecture of collaborative tagging services should be ex-

tended by including a policy layer. The aim of this layer would be to enforce user

preferences, intentionally denoting resources on the basis of the set of tags associated

with them, and, possibly, other parameters concerning their trustworthiness, e.g.,

the percentage of users who have added a given tag or the social relationships and

characteristics of those users. This is a new research topic, and, to the best of our

knowledge, the only work addressing this issue is reported in [179], where a multi-layer

policy-based collaborative tagging system is described.

The incorporation of this policy layer would provide users with enhanced Web ac-

cess functionalities like content filtering and discovery. The downside of these policy-

based collaborative tagging services is that they may exacerbate the risk of privacy.

First, because users explicitly communicate part of their interests. And secondly, be-

cause this explicit feedback does not preclude the collaborative tagging system from

profiling users based on their tags. Ultimately, the combination of explicit and im-

plicit data may lead this system to construct more precise profiles. In other words,

besides the support to policy enforcement, enhanced collaborative tagging would re-

quire another layer addressing privacy protection.

Although the collection of end users’ private information stored by social services,

like Facebook, is now recognized as a privacy threat [180, 181], it is worth noting
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that the public availability of user-generated data (as tags are) would allow even

a rudimentary attacker to profile users. Further, the huge number of users using

collaborative tagging services, and the fact that collaborative tagging is a service

supported virtually by any social online application, increase the risk of cross refer-

encing, thereby seriously compromising user privacy. Indeed, it could be possible to

correlate the account of a user with other accounts they may have at different services,

which would imply gaining far more accurate information about their profile.

Consequently, collaborative tagging would require the enforcement of mechanisms

that enable users to protect their privacy by allowing them to hide certain user-

generated contents (unless they desire otherwise), without making them useless for the

purposes they have been provided in a given online service. This means that privacy-

preserving mechanisms must not negatively affect the accuracy and effectiveness of

the service, e.g., tag-based browsing, filtering, or personalization.

In this chapter we make a first contribution in this direction by proposing an

architecture that incorporates two layers on support of enhanced and private collabo-

rative tagging. More specifically, the proposed architecture consists of a bookmarking

service and two additional services built on it. The former service enables users to

specify policies both to block undesired Web content and to denote resources of in-

terest. The latter implements tag suppression, a privacy-preserving technology that

we investigated in Chapter 5.

The combination of these two services allows us then to broaden the functionality

of collaborative tagging systems and, at the same time, to provide users with a mech-

anism to preserve their privacy when tagging. However, the fact that our PET comes

at the cost of data utility poses a trade-off between privacy on the one hand, and on

the other the effectiveness of the enhanced collaborative tagging services enabled by

said policy layer. Our second and main contribution is an extensive performance eval-

uation of this architecture, showing its effectiveness in terms of privacy guarantees,

data utility and filtering capabilities for two key scenarios, namely parental control

and resource recommendation.

The results presented in this chapter are an extension of [45].
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Chapter Outline

The remainder of this chapter is organized as follows. Sec. 6.2 examines the archi-

tecture of the proposed enhanced social tagging service. Sec. 6.3 describes how tag

suppression fits into this architecture. Sec. 6.4 introduces the two reference scenarios

on which our PET has been tested, whereas performance results are reported and

discussed in Sec. 6.5. Sec. 6.6 concludes this chapter.

6.2 Overview of the Proposed Approach

As we discussed in Sec. 6.1, social bookmarking services are among the most used

social services, and, thanks to their support to collaborative tagging, they can be

currently considered as the most valuable knowledge acquisition tools, as far as online

resources are concerned.

We also pointed out that collaborative tagging is not exploited to its full poten-

tial, since it is typically used just to support tag-based resource browsing and search,

despite the fact that, collaborative tagging systems can be easily enhanced without

modifying their core architecture, since they provide access to the collected informa-

tion via APIs, which can be easily exploited by external applications. One of the

reasons is that the size of the collected data sets is too big to allow the enforcement

of even simple mechanisms, concerning, e.g., personalization, content filtering and

quality assessment.

In addition, we commented that current collaborative tagging systems do not en-

able users to explicitly convey their preferences. As a matter of fact, the exploitation

of explicit relationships and user preferences has been studied only in [179], where

a multi-layer architecture is proposed integrating a basic social tagging service with

trust relationships and user preferences. One of the notable characteristics of such

framework is the support of a rule layer, which can be used to express and enforce

user preferences. Such preferences are coded into policies explicitly specifying the set

of trustworthy tags by denoting their creators in terms of their relationships and/or

characteristics. Also, they state which action must be performed by the system when
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Figure 6.1: Architecture of the proposed enhanced social tagging service.

accessing a resource associated with a given set of tags (mark it as trustworthy or

not, as un/safe, etc.).

Motivated by all this, in this chapter we describe an enhanced collaborative tag-

ging system which consists of a “traditional” bookmarking service, such as Delicious,

and two main additional services built on top of it (see Fig. 6.1). Such services address

two main issues. The former allows end users to specify policies which can be used

either to explicitly denote resources of interests or to enforce blocking conditions on

the browsed data. The latter features tag suppression, a PET that has the purpose

of hindering privacy attackers in their efforts to profile users. Such an architecture

is a specific implementation of the multi-layer framework mentioned before, with the

relevant difference that in [179] the privacy layer is missing. Lastly, we would also

like to emphasize that our approach is not limited to the specific bookmarking ap-

plication here contemplated, i.e., Delicious. That is, it could be built on top of any

social bookmarking system.

But which is the purpose of combining a policy layer with a privacy layer? As

discussed in Sec. 6.1, privacy is usually considered an issue for those social services

which collect end users’ sensible information (e.g., personal data, opinions, photos,

and videos). Social bookmarking services do not fall in this category, since they
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do not require the user to specify personal data (with the exception of the users’

name and e-mail) and they do not collect user-generated contents. Due to this,

social bookmarking services do not provide data protection mechanisms—even those

available, e.g., in Facebook, which are not enough to prevent the disclosure of private

data. As an example, Delicious allows registered users to flag a bookmark as public

(default option) or private. When a user marks a bookmark as private, this bookmark

and its associated tags are hidden to other users of Delicious. Note, however, that

even if a user flags all their bookmarks and tags as private, Delicious still records this

information.

Nevertheless, if tags were not sensible information per se, they could easily be

exploited to infer users’ personal information, such as personal interests, preferences

and opinions. This is even easier when it is possible to statistically analyze huge col-

lections of tags as those made publicly available by social bookmarking services, thus

obtaining accurate tag-based user profiles. In this field, privacy-preserving techniques

should guarantee privacy protection and, at the same time, the effectiveness of the

services enabled by the policy layer.

The problem here is not only to find the correct trade-off between these two

issues. In fact, since collaborative tagging is used to find/browse resources based

on the associated tags, suppressing tags might decrease accuracy, and increase the

number of false positives/negatives. Moreover, if tags are used for more sensible

purposes, e.g., parental control and quality assessment, this might have even worse

consequences. For these reasons, the support to privacy-preserving techniques is a key

requirement when we come to enhanced policy-based uses of collaborative tagging.

Actually, in such cases, users may tend to annotate resources by using tags which

can be re-used for specific purposes—e.g., parental control. Such tags are then even

more sensitive than the ones collected by traditional collaborative tagging services.

Our aim is to verify whether and how tag suppression can be effectively applied in

an enhanced collaborative tagging service such as the one illustrated in this chapter.

Next, we briefly review the assumptions upon which our tag-suppression tech-

nique builds, and then describe the reference scenarios we have used to carry out the

experimental evaluation.
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6.3 Tag Suppression at the Privacy Layer

In our scenario of enhanced collaborative tagging, users tag resources on the Web,

e.g., music, pictures, videos or bookmarks, according to their personal preferences.

Users therefore contribute to describe and classify those resources, but this is at the

expense of revealing their profile of interests. In order to avoid being precisely profiled

by the tagging system, or in general by any attacker able to collect the tags posted,

users may adopt a privacy-protecting technology based on data perturbation.

The data-perturbative technology considered in this chapter is tag suppression,

a conceptually-simple strategy that allows a user to refrain from tagging certain re-

sources in such a manner that the profile resulting from this perturbation does not

capture their interests so accurately. Our approach protects user privacy to a cer-

tain degree, but at the cost of the effectiveness of the enhanced collaborative tagging

system.

In this chapter we assume exactly the same adversary model and privacy metric

considered in Sec. 5.3. More specifically, we assume that users are logged into to

the tagging system, that user profiles are modeled as PMFs, and that the attacker

aims at individuating users in the sense regarded in Sec. 4.3.3. Further, we use

the Shannon entropy of the apparent user profile as a measure of privacy, or more

precisely, anonymity (a).

Our privacy layer therefore implements tag suppression. In practice, this means

that said layer will be responsible for choosing a suppression strategy s so that t maxi-

mizes H(t) for a given σ. Formally speaking, its aim will be to solve the multiobjective

optimization problem given by the privacy-suppression function (5.1),

P(σ) = max
s

06si6qi,∑
si=σ

H

(
q − s
1− σ

)
,

which characterizes the optimal trade-off between privacy and tag-suppression rate.

In Chapter 5 we found a closed-form solution to this problem, but the optimization

(a)Recall from Sec. 4.4 that Shannon’s entropy of a profile may be regarded as an inverse measure
of its uniqueness.



176 CHAPTER 6. PRIVACY-PRESERVING ENHANCED COLLABORATIVE TAGGING

was carried out for suppression rate as a measure of utility, which made the problem

mathematically tractable. In the remainder of this chapter, our objective is to assess

the loss in semantic functionality and accuracy by using more elaborate and mean-

ingful utility metrics. In particular, we shall evaluate the impact that tag suppression

has on the enhanced collaborative tagging system described in Sec. 6.2, in terms of

certain percentages regarding missing tags on bookmarks, on the one hand, and on

the other in terms of false positives and negatives.

According to Sec. 5.3, our formulation is built upon the premise that the popula-

tion’s tag distribution p is unknown to users, which leads us to assume p = u. Under

this assumption, entropy maximization is a special case of divergence minimization.

Note, however, that if p was available to users, it would be preferable to use KL di-

vergence as a measure of privacy risk. This is because divergence minimization may

reduce the degradation in utility compared to entropy maximization, which strives to

make the apparent profile close to the uniform distribution u, ignoring the fact that

certain categories may be more popular than others.

In the end, we recall an important result from our theoretical analysis of the

privacy-suppression function. Concretely, Sec. 5.6 showed that there exists a tag-

suppression rate beyond which this function achieves its maximum value or critical

privacy Pcrit. We referred to this rate as the critical suppression σcrit and proved that

σcrit = 1− n min
i
qi,

which implies that the critical suppression is never attained for σ < 1 provided that

q has at least one zero component. The importance of this result lies in the fact that

a user not tagging across all categories will not achieve an apparent user profile close

to u for any suppression rate. Put differently, no suppression strategy fulfilling the

constraints in (5.1) can lead to the uniform distribution whenever the genuine profile

vanishes at some components. This fundamental property about our tag-suppression

mechanism will be later used to justify some of the results shown in Sec. 6.5.
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6.4 Reference Scenarios

As most PETs, tag suppression must address two main issues: protecting user privacy

and granting that the perturbed data set can be effectively used. Specifically, we must

verify whether the semantic loss incurred by tag suppression in order to protect private

data can be acceptable. Clearly, the acceptable semantic loss threshold may highly

depend on the purpose for which social bookmarking is used. Depending on it, we

may require different levels of semantic accuracy, and we may have a higher or lower

error tolerance.

As an example, we can figure out two different scenarios, which are both exam-

ples of enhanced uses of social bookmarking, and share the notion of “user-defined

policy”, i.e., a tag-based intentional definition of resource classes, explicitly expressed

by users. Such classes, depending on the purpose for which policies are specified,

may denote an assessment of the quality, safety or relevance of tagged resources. In

the former scenario users specify policies in order to inform the bookmarking service

about the resources they consider relevant. Based on them, the social bookmarking

service regularly updates users, e.g., by using Web feeds, about the resources denoted

by the policies. It can be considered as a subscription service which makes use of

a recommendation system relying primarily on the explicit preferences expressed by

users. Note that this is in contrast to the traditional recommenders, where prefer-

ences are inferred implicitly from users’ past behavior. For example, content-based

recommenders suggest those resources whose profiles are similar to the profile of a

given user [182].

The latter scenario concerns parental control. Here policies denote which resources

are un/safe. Whenever a user requests access to a resource, such policies are then used

to determine whether access to that resource can be granted or should be denied. Note

that the parental-control scenario has very low tolerance of false negatives; we refer to

false negatives as those resources classified as safe, but that are actually unsafe. More

precisely, in this scenario, granting access to an unsafe resource is not acceptable at

all. By contrast, in the former scenario we can tolerate a higher threshold of false
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negatives, since recommending a not relevant resource would not compromise the

safety of users.

We introduce here the general definition of policy which can be applied to both

scenarios.

Definition 6.1 (Policy). A policy pol is a pair (CC , sign), where: 1) CC is a con-

junction of category constraints (cc1∧· · ·∧ccn), and 2) sign ∈ {+,−}. Each category

constraint is a triple (c, op, θ), where c is a tag category, θ ∈ [0, 1], and op is a com-

parison operator.

A category constraint intentionally denotes the set of resources associated with a

percentage of tags in the category c which is greater than (less than, equal to, etc.,

depending on op) the value denoted by θ. For example, category constraint (c, >, 0.5)

denotes those resources associated with a percentage of tags in category c which is

greater than 50%. On the other hand, the semantics of the sign component depends

on the scenario. More accurately, in the resource recommendation scenario it denotes

whether the resources matching the category constraint CC are relevant (+) or not

(−), whereas in the parental-control scenario it denotes whether they are safe (+) or

unsafe (−).

Since the support for both positive and negative policies may raise conflicts (i.e.,

we may have a resource covered by both positive and negative policies), a conflict

resolution mechanism must be enforced. The scientific literature provides several

examples of approaches which can be adopted. A comprehensive survey on this topic

is [183]. Here, for simplicity we adopt the one according to which negative policies

are prevailing, since this approach is the one giving stronger guarantees with regard

to the risk of accessing not appropriate contents. However, other conflict resolution

policies can be easily adopted as well.

Next, we provide examples of policies for the reference scenarios introduced above.

In the examples, we shall refer to some of the tag categories we have obtained from

our experimental data set (see Sec. 6.5 for more details). For brevity, in this section

we shall denote the relevant tag categories by c1, . . . , cn. Also, for simplicity and

clarity, in the examples we shall keep using the policy formal notation introduced in

Definition 6.1. We would like to note, however, that such notation, describing how
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policies are actually implemented in the system, is supposed to be made transparent

in the front end both to improve usability and to help users specify policies reflecting

as much as possible their intentions. Several strategies can be devised for this purpose,

e.g., the use of textual labels instead of numeric values and comparison operators.

Nevertheless, a discussion on such issues is out of the scope of this work.

Example 6.2 (Policies for resource recommendation). Suppose that Carol (C) is

interested in literature, but not in resources concerning science fiction. C realizes

that the relevant tag categories are c1 (“books”) and c2 (“literary criticism”), and she

decides that the resources she is interested in are those associated with not less than

40% of the tags in either c1 or c2. In contrast, C finds out that the tag category which

corresponds to the resources she is not interested in is c3 (“science fiction, fantasy”),

and she decides to discard all the resources associated with not less than 20% of the

tags in c3. Consequently, C specifies the following policies:

• pol1 = ({(c1,≥, 0.4)},+),

• pol2 = ({(c2,≥, 0.4)},+),

• pol3 = ({(c3,≥, 0.2)},−).

Suppose now that there exists a resource R1, which satisfies content constraints

(c1,≥, 0.4), (c2,≥, 0.4), and (c3,≥, 0.2). In such a case, we have a conflict, since all

policies pol1, pol2, and pol3 apply. According to our conflict resolution mechanism,

policy pol3 prevails over policies pol1 and pol2, since the latter are positive policies.

Consequently, resource R1 is marked as irrelevant to C.

Example 6.3 (Policies for parental control). Suppose that Alice (A) would like to

enable a Web filter for her son Bob (B) by granting him access only to contents

specifically tailored for children. By checking the available tag categories, she real-

izes that the suitable one is c4, “entertainment for children.” She then decides that

resources suitable to children are those associated with not less than 60% of the tags

from category c4. Moreover, just to be sure that no harmful content is accessed, she

also would like to prevent access to “entertainment” resources which may include any

content for adults. In order to achieve this, A specifies the following policies:
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• pol4 = ({(c4,≥, 0.6)},+);

• pol5 = ({(c5,≥, 0.1)},−), where c5 is the tag category corresponding to “enter-

tainment for adults.”

Suppose now that B requests access to a resource R2, which satisfies both content

constraints (c1,≥, 0.6) and (c2,≥, 0.1). In such a case, we have a conflict, since both

policies pol4 and pol5 apply. According to our conflict resolution mechanism, policy

pol5 prevails over pol4, since pol5 is a negative policy. Consequently, Bob is denied

access to resource R2.

In the following section, we report the results of a series of experiments which have

been carried on for the parental-control scenario. The reason of this choice is that

such scenario is the most demanding as far as error tolerance is concerned. Therefore,

if good results are obtained for this more demanding scenario they can be extended

to the other one as well.

6.5 Experimental Analysis

In this section, we delve into the impact that tag suppression may have on the collab-

orative tagging system proposed in Sec. 6.2, which exploits the bookmarking applica-

tion Delicious to provide enhanced services. With this aim, Sec. 6.5.1 first examines

the data set that we used to conduct the experimental evaluation. To make user

profiles tractable, Sec. 6.5.2 describes the methodology that we followed for mapping

tags into a small set of meaningful categories of interest. Finally, Sec. 6.5.3 shows a

comprehensive analysis of the degradation in data utility and accuracy, incurred by

the application of our privacy-protecting technique.

6.5.1 Data Set

In our experiments, we used the Delicious data set retrieved by the Distributed Ar-

tificial Intelligence Laboratory (DAI-Labor), at Technische Universität Berlin [184].

This data set contains those bookmarks and tags marked as public by approximately

950 000 users. It consists of triples (username, bookmark, tag), each one representing
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the action of a user associating a bookmark with a tag. The data set includes 420

millions of these triples, posted from Sep. 2003 to Dec. 2007.

The data set that we considered in our analysis is a subset of the entire data set

described above. Concretely, we selected out a subset covering approximately one

year and including 1 241 029 triples. We decided to choose this subset because, on the

one hand, it spanned a significant period of time, and, on the other, it did not involve

the processing of millions of triples that would overload our experiments. Our data

subset therefore contains 9 588 users, 390 008 resources and 59 505 tags.

6.5.2 Tag Categorization and Methodology

As we commented in Sec. 5.7.2, modeling a user profile as a normalized histogram

across these 59 505 tags would be certainly unfeasible from various practical perspec-

tives, mainly concerning the unavailability of data to reliably, accurately measure

interests across such fine-grained categorization, and, should the data be available,

its overwhelming computational intractability. Further, in our experiments but also

in data mining procedures, a coarser categorization makes it easier to have a quick

overview of the user interests.

Motivated by this, we categorize the tags in our data set into a coarser represen-

tation with just a few high-level tag categories. We have followed the same method-

ology used in Sec. 5.7.2, where we clustered the tags of a data set from BibSonomy

into 5 categories. Specifically, we have used Lloyd’s algorithm [176] to group tags

into 20 categories; and then, for each of those categories, we have clustered its tags

into 10 subcategories. The next subsection provides a complete description of such

methodology, which we sketched out in Sec. 5.7.2. Right after this, we describe the

aforementioned Lloyd’s algorithm.

Methodology

In Sec. 5.7.2 we summarized the tag categorization process in three steps, namely the

computation of a co-occurrence matrix, the definition of a similarity metric between
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tags, and the application of Lloyd’s algorithm. Next, we proceed to describe these

three steps in detail.

Exactly as in Chapter 5, we first filtered out those tags considered as spam. For

this purpose, we collected some statistics about the number of characters contained

by tags. After observing that 98% of tags had less than 23 characters, we dropped

those tags with a number of characters over 22. In addition, we eliminated those

posts with more than 50 tags, as they are usually spam [174]. Additionally, posts

with no tags were not considered. After this simple preprocessing, the number of

triples reduced to 1 149 895, and, consequently, the number of users, bookmarks and

tags to 9 207, 349 658 and 54 024, respectively.

In a second stage, we aimed at identifying clusters or groups of semantically

similar tags. As frequently done in the literature, we performed a clustering analysis

based on the co-occurrence between tags, that is, the number of times each pair

of tags simultaneously appears in a same bookmark. Specifically, we modeled the

relationships among tags as a matrix of co-occurrences cij, where each entry with

i 6= j corresponds to the co-occurrence between tags i and j, and each entry in the

diagonal is a self-occurrence, i.e., the absolute frequency of appearance of a tag. Note

that, clearly, this is a symmetric matrix and that each row (column) describes one tag

in terms of the semantic similarity to the other tags. Repeated tagging is taken into

consideration. For example, if a given resource is tagged with tag i 10 times, and with

tag j 5 times, we increase the self-occurrence counter cii of the first by 10, the self-

occurrence counter cjj of the second by 5, and the co-occurrence counter cij of these

two tags by 5, ignoring the transposed position cji in a practical implementation of

the procedure (i < j).

In an attempt to concentrate on the significant relationships among these tags, we

eliminated those rows satisfying
∑

j cij < τ , for a certain threshold τ . Similarly, we

dropped those columns fulfilling an equivalent condition. In this regard, observe that,

the higher the threshold, the lower the number of resulting tags, and thus the lower

the number of triples containing those tags. Since we aimed at preserving at least 80%

of the triples, and at the same time, we required the resulting tags to have a strong co-

occurrence, we chose τ = 95. In doing so, we obtained a reduced co-occurrence matrix
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with dimension 5 999 tags. In conclusion, after this filtering process the number of

triples, users and bookmarks became 985 273, 8 882, and 310 923, respectively.

Once we filtered the co-occurrence matrix, we proceeded to use a well-known

clustering algorithm to create a two-level hierarchy of categories. But before applying

this algorithm, we first required to specify a measure of similarity among tags. Recall

that we modeled tags as rows and columns of a matrix, that is, vectors. As often done

in the literature, we employed the cosine metric [185], a simple and robust measure of

similarity between vectors. More precisely, two tags are represented numerically by

column (or row) vectors x and y of the co-occurrence matrix, with 5 999 entries. Let

x̄ = x/‖x‖ denote the Euclidean normalization of x, and similarly for y. The cosine

distance is defined as

d(x, y) = 1− 〈x̄, ȳ〉 = 1− 〈x, y〉‖x‖‖y‖ = ‖x̄− ȳ‖2;

strictly speaking, the square of their Euclidean distance, after normalization. Note

that d(x, y) = 0 if, and only if, x̄ = ȳ, meaning that the normalized co-occurrence

profile of tags x and y is identical, to be expected, approximately, for complete syn-

onyms.

Equipped with this measure of dissimilarity, we applied Lloyd’s algorithm [176],

a popular iterated algorithm for grouping data points into a set of k clusters. As a

result, we grouped the 5 999 tags into 20 categories. Afterwards, for each of those

categories, we turned to apply the same algorithm to get 10 subcategories. The

process yielded a total of 200 subcategories, which provided us with a granularity

level thin enough as to define precise filtering policies, and sufficiently aggregated as

to avoid noisy behaviors. The resulting categories were classified in decreasing order

of popularity of their tags. Then, tags in each subcategory were sorted in decreasing

order of proximity to the centroid. As an illustrating example, Fig. 6.2 represents two

of the subcategories corresponding to the top-level tag category “entertainment”. The

complete results of our clustering, that is, the list of all tags belonging to each of the

200 subcategories, is directly downloadable at http://hdl.handle.net/2117/16623.

http://hdl.handle.net/2117/16623
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toys, origami, geometry, 
crafts, papercraft, 
drawings, plastic, 

folding, quirky, knots, 
kids, lego, bikes. 

porn, sex, adult, pr0n, 
homosexual, erotica, 

nsfw, girls, erotic, 
adamhill, brkchrmr, 

deusx, women, male. 

Children Adults 

Figure 6.2: According to our hierarchical clustering, each category is composed of 10 subcategories.
In this example, we represent two subcategories belonging to the “entertainment” category. In
particular, we show the tags falling into the subcategory 62 “entertainment for children” and 68
“entertainment for adults”, which are used in the specification of policies for the parental-control
scenario described in Sec. 6.4. The two examples of subcategories shown here also illustrate a key
result of the categorization process—tags in each subcategory are sorted in decreasing order of
proximity to the centroid, which in practice means that those tags at the top of the list are the most
representative tags of the subcategory they belong to.

As a result of our categorization process, the first tag in each subcategory, i.e.,

the closest tag to the centroid, is considered to be the most representative tag of its

subcategory. This tag could be used as the reconstruction value of its corresponding

subcategory. For example, when a user assigned the tag “nsfw” to a resource (see

Fig. 6.2), we could replace automatically this tag with the tag “porn”. An alter-

native would consist in replacing this tag with a descriptor that could be manually

assigned to the subcategory the tag belongs to. For instance, instead of considering

the tag “porn” as a reconstruction value, we could use the descriptor “entertainment

for adults”. In our experiments, we opted for the former approach—first, because of

its straightforward implementation, and secondly, because it only affects how subcat-

egories are named.

Lloyd’s Algorithm

This subsection provides a brief description of Lloyd’s algorithm [176], the clustering

algorithm that we used in the previous subsection to categorize tags into high-level

tag categories.

Assume that we are given a data set {x1, . . . , xn} composed of n points in Rd, and

that we wish to partition this data set into k disjoint, non-empty subsets or clusters.
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Specifically, suppose that our aim is to find out how these points should be assigned

to said clusters so as to minimize a measure of distortion D. Intuitively, we may

interpret a cluster as a set of data points where the distances among these points are

relatively small, compared with the distances to those which do not belong to the

cluster. Let cj for j = 1, . . . , k be the centroids of such clusters. Define the indicator

variables γij for j = 1, . . . , k, denoting whether a point xi is assigned to the cluster

j, that is,

γij =

{
1, xi ∈ cluster j

0, xi /∈ cluster j
.

According to this notation, assume the following measure of distortion,

D =
n∑
i=1

k∑
j=1

γij‖xi − cj‖2,

i.e., the sum of squared Euclidean distances from each point to its assigned cen-

troid. Under this assumption, Lloyd’s algorithm is a heuristic for solving the afore-

mentioned clustering problem, specifically for finding those values of {γij} and {cj}
minimizing D.

The algorithm in question starts with an initial set of k centroids. These centroids

may be chosen simply at random from the data set. Other initialization methods are

described in [186,187]. After this initialization, Lloyd’s algorithm follows an iterative

procedure. At each iteration, it carries out these two steps:

• Assignment of clusters. In this first step, the algorithm holds the centroids fixed

and finds those assignments {γij} that minimize D. It can be shown that the

optimal {γij}∗ consists in assigning each point to the cluster with the nearest

centroid in Euclidean distance.

• Update of centroids. In this second step, the algorithm holds the assignments

fixed and minimizes distortion with respect to {cj}. Similarly, it can be proved

that the optimal centroids are

cj =

∑n
i=1 γijxi∑n
i=1 γij

,
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that is, the average of the points assigned to their clusters.

The algorithm proceeds by alternating between these two steps until the assignments

do not change. When this happens, the algorithm is said to converge.

6.5.3 Results

This section presents a number of experimental results that will allow us to evaluate

the proposed enhanced collaborative tagging service in terms of privacy protection,

utility loss and filtering accuracy. Specifically, Sec. 6.5.3 analyzes the privacy gain as

a result of the application of our tag-suppression technique, Sec. 6.5.3 evaluates the

utility loss, whereas Sec. 6.5.3 provides insight into the loss in filtering accuracy for

the parental-control scenario.

Privacy

In our architecture, a user specifies a suppression rate indicating the fraction of tags

they are disposed to eliminate. Based on this suppression rate and the user profile

across the n = 200 subcategories, our approach computes the optimal tag suppression

strategy s directly from Theorem 5.4. Recall that s is an n-tuple containing the

percentage of tags that a user should eliminate in each subcategory.

In Sec. 6.3 we mentioned that the critical suppression beyond which critical privacy

is attained is given by σcrit = 1− n mini qi. A consequence of this fact is that, in the

case when a user does not tag across all subcategories, the critical privacy Pcrit = lnn

is not achieved for any σ < 1. This is precisely what happens in our data set, that is,

no user has tagged across all subcategories, which in practice means that these users

will not get an apparent user profile close to u. However, without loss of generality

we may consider the subset of subcategories that have been tagged by a particular

user. Note that this is consistent with the theoretical analysis presented in Chapter 5,

where we assumed that the components of q are strictly positive. We denote these

categories as the active subcategories of that user, and the cardinality of this subset as

nact. In terms of these subcategories, we may assume the existence of an equivalent

critical suppression σ′crit and an equivalent critical privacy P ′crit, in the sense that,
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(a) σ = 0.00, H(t) ' 3.4834.
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(b) σ = 0.25, H(t) ' 3.6863.
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(c) σ = 0.50, H(t) ' 3.8123.
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(d) σ = 0.75, H(t) ' 3.8918.

Figure 6.3: We represent the apparent profile of a particular user, that is, the perturbed profile
resulting from the suppression of tags and observed from the outside. We only show the active
subcategories of this profile, i.e., those subcategories tagged by the user. In this particular case, the
user posted 190 tags belonging to 49 subcategories. As expected, we observe that as σ increases, t
approaches u and H(t) tends to ln 49 ' 3.8918. When there is no suppression, the apparent profile
is plotted in gray to emphasize that this profile is actually the genuine profile. This is consistent
with Fig. 6.5.

beyond this suppression rate, t becomes the uniform distribution across the active

subcategories and P ′crit = H(t) = lnnact. This interesting property is illustrated in

Fig. 6.3, where we plot the apparent profile of a specific user (b).

The figure in question shows the user’s apparent profile just for the active subcat-

egories. For convenience, we rearranged these subcategories and indexed them from

1 to 49. Clearly, when no suppression is applied, the apparent profile is in fact the

actual user profile q. On the other hand, when σ = 0.25 we observe that the sub-

categories affected by suppression are those with a percentage of tags furthest away

(b)This particular user is identified by the string 674f779ba3b445937fd9876054a6e in [184].



188 CHAPTER 6. PRIVACY-PRESERVING ENHANCED COLLABORATIVE TAGGING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3.47

3.53

3.59

3.65

3.71

3.77

3.83

3.89

3.95

4

σ

P
[n
at
]

lnnact

σcrit � 0.74

Figure 6.4: Our PET poses a trade-off between privacy and tag-suppression rate. This is illustrated
here, where we plot function (5.1) for the particular user considered in Sec. 6.5.3. Further, we
observe that when σ > σ′crit ≈ 0.74, the function achieves its maximum value P ′crit, which is given
by the number of active subcategories nact.

from u. In the special case when the user consents to eliminate a fraction of tags

σ > σ′crit ≈ 0.74, t becomes the uniform distribution across the active subcategories

and hence H(t) attains its maximum value, ln 49. This effect is also highlighted in

Fig. 6.4, where we represent the trade-off between privacy and tag-suppression rate

for this particular user. In short, the results shown in these two figures confirm the

existence of an (equivalent) critical-suppression rate beyond which the privacy-sup-

pression function achieves its maximum value. Also, we observe that the trade-off is

concave.

In addition, we plot in Fig. 6.5 an example of suppression strategy in the case

when σ = σ′crit. In this figure, we superimpose the optimal suppression strategy on

the genuine user profile q, in order to reflect the proportion of tags that the user

should eliminate from each subcategory of q to become the uniform distribution.

Lastly, Fig. 6.6 shows the privacy protection that users of the proposed collabora-

tive tagging application achieve as a result of the suppression of tags. More accurately,

we consider the case when all users in our data set have adhered to tag suppression

and use the same suppression rate. Under these assumptions, we plot the percentile

curves (10th, 50th and 90th) of relative privacy gain. We observe an important differ-

ence between these results and those obtained for BibSonomy in Sec. 5.7.3. As shown
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Figure 6.5: In this figure, we represent the genuine user profile q of the particular user considered
in Sec. 6.5.3. In addition, we plot the suppression strategy s solving the optimization problem (5.1)
in the special case when σ = σ′crit ≈ 0.74.

in Fig. 5.12, the relative privacy gain is much greater in this latter application. For

example, in the limit when σ approaches 1, the 90th percentile of relative privacy gain

is five times greater than that for Delicious. The reason for this is due to the fact

that we removed those users of BibSonomy who had not tagged across all categories

and who did not have a significant tagging activity. This filtering has not been done

in the case of Delicious, as we have preferred to evaluate our approach in a scenario

with an important number of users (c).

To sum up, the experimental results presented in this section show how tag sup-

pression contributes to privacy protection in our enhance collaborative tagging service.

Data Utility

As we have just seen, our approach helps users protect their privacy. Nevertheless,

as in any perturbative mechanism, this protection comes at the expense of a loss in

data utility. In this section, we assess quantitatively the degradation in data utility

caused by our privacy-protecting mechanism.

In Chapter 5, we used a simplified measure of loss in data utility, the tag-

suppression rate, which allowed us to formulate the optimal privacy-utility trade-off

(c)In Sec. 5.7.3 we used 209 users of BibSonomy to evaluate the privacy protection provided by
tag suppression. The experiments conducted in Sec. 6.5.3 for Delicious involve 8 882 users.
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Figure 6.6: Percentiles curves of relative privacy gain in the special case when all users in our data
set apply tag suppression and use the same suppression rate.

in a mathematically tractable manner. In this section, we evaluate the impact that

suppression has on utility by considering a more sophisticated albeit computationally-

feasible metric—the percentage of tags that each bookmark loses as a result of the

elimination of tags. To highlight that tags make bookmarks meaningful, throughout

this section we shall refer to this loss in data utility as semantic loss. Occasionally,

we shall also refer to it as utility loss.

In our experiments, the set of tags that users assign to a particular bookmark is

referred to as the bookmark profile and is modeled exactly as we do with user profiles,

that is, as a normalized histogram of these tags across the n = 200 subcategories

mentioned in Sec. 6.5.2. In addition to this characterization, we contemplate a frac-

tion Σ of the user population suppressing tags with a common suppression rate, and

assume that the remaining users do not eliminate their tags.

In order to calculate the utility loss experienced by every bookmark in our data

set, we first computed the optimal suppression strategy for every user suppressing

tags. Afterwards, the resulting suppression strategies were applied to the specific

bookmarks tagged by these users. Next, we briefly describe how our tag suppression

algorithm subtracts tags from these bookmarks.

Given a user and a tag-suppression rate, we use Theorem 5.4 to calculate s. Let α

be the total number of tags posted by this user. Accordingly, αsi is the absolute
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Figure 6.7: We plot the average loss in semantic functionality as a function of the tag-suppression
rate. As expected, we observe that, regardless of the fraction of users eliminating tags, the semantic
loss exhibits a linear behaviour with the suppression rate.

number of tags that the user should eliminate in the category i. Note that this

number may not be an integer. Denote by Si = {b1, . . . , bm} the set of bookmarks to

which the user assigned tags corresponding to the category i, and denote by β1, . . . , βm

the number of tags that the user associated with each of these bookmarks. Then,

for each bj ∈ Si, our algorithm eliminates αsi
βj∑m

k=1 βk
tags from the ith component of

the histogram of absolute frequencies of this bookmark. This process is repeated for

each category and for each user. To illustrate how it operates, consider a user who

must eliminate αsi = 1.5 tags from one particular category. Suppose that the user’s

bookmarks belonging to this category are b1, b2 and b3. Also, assume that the user

assigned 1 tag to b1, 1 tag to b3, and 2 tags to b2. According to all this, our algorithm

would eliminate 1.5
4

= 0.375 tags from each b1 and b3, and 1.5
2

= 0.750 tags from b2.

Having described how we computed the utility loss, next we show the results

obtained in our experiments. Fig. 6.7 represents the semantic loss averaged for all

bookmarks. Unsurprisingly, the results indicate that the average semantic loss is

roughly linear with the common suppression rate. Specifically, we appreciate that

such measure of utility is given approximately by the multiplication of σ and Σ.

Fig. 6.8 provides more extensive results with regard to semantic loss, but in the form

of histograms of relative frequencies. In particular, this figure depicts the percentage

of bookmarks affected by a given semantic loss, for σ = 0.25, 0.50, 0.75, 0.99 and the



192 CHAPTER 6. PRIVACY-PRESERVING ENHANCED COLLABORATIVE TAGGING

0 4 20 40 60 80 100
0  

20 

40 

60 

80 

100

Semantic loss [%]

B
o
o
k
m
a
rk
s
[%
]

(a) σ = 0.25.
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(b) σ = 0.50.
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(c) σ = 0.75.
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(d) σ = 0.99.

Figure 6.8: Loss in semantic functionality in the case when all users apply tag suppression.

worst-case scenario where all users are adhered to tag suppression, i.e., Σ = 1. For

σ = 0.25, we observe that around 24% of resources experienced a reduction in their

number of tags less than or equal to 4%. For a suppression rate of 0.75, we note that

most of resources lost 68-100% of their tags. Not entirely unexpectedly, when users

eliminated almost all their tags, we observe that nearly all bookmarks were affected

by a semantic loss between 96% and 100%.

Additionally, Fig. 6.9 plots the curves of semantic loss for different values of Σ.

More accurately, we depict a curve for the fraction of bookmarks with at least a 10%

loss in the number of tags with respect to the case without suppression, and similarly

for 20%, 30%, . . . , 100%, where 100% refers to completely untagged bookmarks. For

any Σ, we note that there is bijective relation between the semantic loss and the

tag-suppression rate. Also, we see that, as σ increases, the evolution of the curves is
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(b) Σ = 0.40.
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(c) Σ = 0.70.
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(d) Σ = 1.

Figure 6.9: Curves of semantic loss showing the percentages of bookmarks that experienced, at least,
a 10, 20%, . . . , 100% loss in the number of tags, for distinct fractions of the population suppressing
tags Σ. The 100% curve of semantic loss refers to those bookmarks that lost all their tags.

rather similar. For example, in the limit when σ approaches 1, we observe that the

range of values taken by the percentage curves falls around Σ.

All these results have shown the degradation in data utility in terms of percentages

of tags that bookmarks lose. Our next experimental results, on the other hand,

show which categories of interest are primarily affected by suppression. In particular,

Fig. 6.10 illustrates how tag suppression impacts on each of the 20 high-level categories

found in Sec. 6.5.2. This figure represents the content profile of Delicious, which

we computed as the aggregated profile of all bookmarks. We note that this profile

corresponds to the population’s tag distribution, resulting from the aggregation of the

profiles of all users. This is the reason why we refer to this profile as p. The modified

version of this histogram due to suppression is denoted by p′. Two remarks are in

order. First, the categories most affected by suppression are those with the highest
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(a) σ = 0.25.
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(b) σ = 0.50.
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(c) σ = 0.75.
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(d) σ = 0.99.

Figure 6.10: The overall profile of Delicious is shown as the aggregated profile of all bookmarks
across the categories obtained in Sec. 6.5.2. We denote this profile as p. In this figure, we consider
the case when Σ = 1. As a consequence of suppression, the profile p results in the modified profile p′.

percentage of tags. This is the case of the first three categories, which, according to

the categorization conducted in Sec. 6.5.2, seem to refer to “software”, “Web” and

“programming”. Secondly, owing to the fact that we are dealing with relative rather

than absolute frequencies, we observe an increase in the frequency of tags of those

categories with the lowest percentage in p. This is what happens, for example, to

the categories 15 and 16, which we refer to as “shopping and travel” and “film and

television”, respectively.

In summary, this section has examined the extent to which the application of tag

suppression affects data utility, in terms of percentages of missing tags on bookmarks,

depending on the fraction of users suppressing tags and a common suppression rate.
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In addition, we have shown which content of the underlying bookmarking service is

most affected by suppression.

Accuracy in Content Filtering

In this section, we quantitatively evaluate the degradation in the classification of

Web content due to the suppression of tags. Specifically, this section measures the

loss in accuracy in the parental-control scenario described in Sec. 6.4. Throughout

this section, we shall resort to the example of Web filter referred to as “Example 2”,

which classifies resources on the Web into two states, “granted” or “denied”.

Recall that our Web filter first retrieves the profile of the Web page to be accessed,

which we model as a normalized histogram of tags across the set of subcategories de-

scribed in Sec. 6.5.2, and secondly checks whether certain subcategories of this profile

exceed a particular threshold. The subcategories of our example are “entertainment

for children” and “entertainment for adults”, identified, after the categorization pro-

cess, as the subcategories 62 and 68, respectively (d). The threshold values for these

subcategories are θ62 = 60% and θ68 = 10%. That said, suppose w is the profile of a

Web page and that w62 and w68 are the components of this profile, corresponding to

the aforementioned subcategories. According to Sec. 6.4, the operation of the filter

is as follows: if w68 < θ68 and w62 > θ62, then that resource is classified as granted;

otherwise the access to the Web page is denied.

Having reviewed how the parental-control filter works, in this series of experiments

we shall assume that this filter is installed by default in the users’ Web browser. In

other words, we shall suppose that all users specify the same policies for parental

control, which may describe a fairly realistic scenario, as most users do not change

default settings [188]. Moreover, we shall assume that the filter works perfectly when

tag suppression is not applied. When users skip tagging some resources, however,

this filter may classify them incorrectly. In this regard, we shall refer to the initial

state and the final state of a resource as the states before and after the suppression

of tags, respectively.

(d)The list with the 200 subcategories resulting from our hierarchical clustering may be downloaded
at http://hdl.handle.net/2117/16623.

http://hdl.handle.net/2117/16623


196 CHAPTER 6. PRIVACY-PRESERVING ENHANCED COLLABORATIVE TAGGING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

σ

N
um

be
r o

f f
al

se
 p

os
iti

ve
s

Filter 1
Filter 2
Filter 3

Figure 6.11: A false positive represents a resource that changes from the initial state granted to the
final state denied, due to the suppression of tags. In this figure, we observe that the most permissive
filter (filter 3) exhibits much more false positives than the other two filters.

In order to quantify the loss in the accuracy of this filter, we contemplate the fol-

lowing measures of utility: the number of false negatives and false positives, precision

and recall. In our scenario, a false negative is defined as a resource that changes from

the initial state denied to the final state granted, as a consequence of tag suppression.

To illustrate this case, consider Alice enables our Web filter for her son Bob. Suppose

that, at some point, Bob wishes to access a Web page with profile w, and components

w62 = 50% and w68 = 10%. According to the operation of the filter, the access to this

resource would be blocked. Nevertheless, after the suppression of tags by other users,

it could be possible that this Web page experienced a reduction in the percentage of

tags such that w68 < θ68. Due to the fact that we are dealing with relative frequen-

cies, this reduction could cause that w62 > θ62, and therefore Bob would be able to

access said resource. Should this be the case, we would classify this Web page as a

false negative.

Having described the case of a false negative, next we contemplate the other three

possible combinations for the initial and final states. Specifically, we define a true

negative as a resource whose access is granted before and after the suppression of tags.

Similarly, a false positive denotes a resource passing from the initial state granted to
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the final state denied. And finally, a true positive corresponds to a resource that is

blocked before and after tag suppression.

Note that all bookmarks in our data set belong to one of these four cases—every

resource is classified as denied or granted before (initial state) and after (final state)

our technique is applied, which means they necessarily fall into one of the cases

mentioned above. However, among these cases, false negatives are clearly the most

sensitive in the scenario of parental control, as described in our example. On the

other hand, false positives are less critical, even if important, since they represent

resources that should be granted but are blocked due to tag suppression. Thus, false

positives could be considered as an availability problem rather than a disclosure of

potentially dangerous content.

We shall refer to fn, tn, fp, and tp as the number of false negatives, true negatives,

false positives and true positives. According to this notation, precision may be defined

as tp
tp+fp

and recall as tp
tp+fn

. These two measures may be interpreted in probabilistic

terms—precision may be regarded as the probability that a resource with final state

denied has been classified correctly; and recall as the probability that a resource is

classified correctly, given that its initial state is denied. Seen from another perspective,

in the context of a medical test used to identify a disease, precision and recall are

interpreted as follows. Let D be the event “the patient is ill” and T be the event “the

test is positive”. Precision is defined accordingly as P(D|T ) and recall as P(T |D).

The experimental results are shown in Figs. 6.11, 6.12, 6.13 and 6.14, in the special

case when all users eliminate tags, i.e., Σ = 1. In these figures, we test the Web

filter described at the beginning of this section, specified more formally in Sec. 6.4.

However, in order to enrich our analysis, we also include two slight variations of this

(original) filter. Particularly, we contemplate different values for the thresholds θ62

and θ68. Accordingly, in our experiments we refer to the original filter as filter 2. A

more restrictive version of this filter is filter 1, whereas filter 3 is more permissive.

Next, we summarize the set of filters used in our evaluation:

• filter 1, with θ62 = 75% and θ68 = 5%,

• filter 2, with θ62 = 60% and θ68 = 10%,
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Figure 6.12: A false negative refers to a Web resource whose access is denied before tag suppression,
but after the elimination of tags, the access to this resource is granted.

• filter 3, with θ62 = 45% and θ68 = 15%.

Fig. 6.11 shows the number of false positives. As can be observed, the maximum

number of cases is around 120 for the least restrictive filter. Since the total number

of resources is 310 923, the number of false positives only represents 0.04% of all

cases. The differences in terms of false positives between filter 3 on the one hand,

and filters 1 and 2 on the other, are due to the nature of the resources granted

by those filters. In particular, before the suppression of tags, 99% of the resources

classified as granted by filter 1 have a distribution of tags such that all tags are

concentrated on the subcategory “entertainment for children”. In other words, the

profile of each of those Web pages has only one positive component, namely the

component 62. As a consequence of this fact, the profile of those resources will remain

exactly the same no matter which suppression rate is applied. Recall that profiles are

relative histograms of tags and that our suppression approach simply subtracts tags

from positive components. Therefore, after the suppression of tags, almost none of

those resources will be blocked and, consequently, they will not be considered as false

positives. This is the reason why the number of false positives is so low in the case

of filter 3.

The above reasoning also applies to filter 2, where, before tag suppression, 94%

of the resources granted have a profile with 100% of their tags in the subcategory 62.
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Figure 6.13: Precision may be interpreted as the probability that a resource has been classified
correctly, given the fact that it was considered denied after the suppression of tags. Whilst at first
glance it may seem that there is a great difference, in terms of precision, between filters 1 and 2 on
the one hand, and filter 3 on the other, it should be noted that suppression has a negligible effect
on the precision of any of the three filters.

But this is not the case of filter 3—this particular distribution of tags is only observed

in 54% of the resources classified as granted. As a result, we notice a greater number

of resources blocked after the suppression of tags, and therefore, a larger number of

false positives, as shown in Fig. 6.11.

The number of false negatives is plotted in Fig. 6.12. Here we observe that the

maximum number of cases is around 340, which accounts for 0.11% of all cases. In

Fig. 6.13 we appreciate that precision is practically unaffected by the suppression of

tags. The differences between filter 3 on the one hand, and filters 1 and 2 on the

other, are essentially due to the larger number of false positives observed in filter 3,

an effect that we examined above. Similarly, Fig. 6.14 shows that recall is reduced

only by a 0.11% in the worst-case scenario, corresponding to filter 2.

In summary, these results indicate that tag suppression does not have a significant

impact on the accuracy of a parental-control filter. Further, because the scenario of

resource recommendation described in Sec. 6.4 is more tolerant to false negatives than

the scenario analyzed in these experiments, we may extend the above results to the

former scenario and then assert that our technique would have a similar impact on

the accuracy of the recommendations.
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Figure 6.14: Recall lends itself to be interpreted in probabilistic terms. In particular, it may be
regarded as the probability that a resource with initial state denied has been classified correctly. In
this figure, we observe how tag suppression decreases this probability, but only to an insignificant
extent.

In closing, we would like to emphasize the suitability of the tag-suppression rate as

a measure of utility in our formulation of the trade-off; not only because the suppres-

sion rate allows us to model this trade-off as a mathematically tractable optimization

problem, as we have shown in Chapter 5; but also because it is bijectively related

to more elaborate utility metrics, as observed in Fig. 6.9 for the percentage of tags

that bookmarks lose, and in Figs. 6.13 and 6.14 for precision and recall in a parental-

control application.

6.6 Conclusions

Collaborative tagging is currently an extremely popular online service. Although it

is basically used to support resource search and browsing, its potential is still to be

exploited. Recently, some of the most popular collaborative tagging systems have

come to understand the real value of tagging, and have started offering new services

where personalization comes in.

At the heart of these services is the ability to profile users based on their tags. The

flaw of this implicit form of user profile construction, however, is that the effectiveness

of these services strongly depends on whether tagging systems have collected a large
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amount of tags. This is the same problem arising in recommendation systems, i.e.,

the cold-start problem, and an alternative to this is that users explicitly provide

their preferences. While this option is available in many personalized information

systems, the fact is that it is not supported by any collaborative tagging system.

Consequently, in order to exploit the potential of collaborative tagging, it would be

necessary to extend the architecture of current tagging services to include a policy

layer that supports the enforcement of user preferences.

On the other hand, as collaborative tagging has been gaining popularity, it has be-

come more evident the need for privacy protection; not only because tags are sensitive

information per se, but also because of the risk of cross-referencing. Besides, the fact

that users can explicitly communicate their preferences to these enhanced collabora-

tive tagging systems may facilitate the task of profiling. In a nutshell, collaborative

tagging would also benefit from a layer helping users protect their privacy.

Motivated by all this, our first contribution is an architecture including two new

layers on support of enhanced and private collaborative tagging. In particular, our

architecture is composed of a bookmarking application and two additional services

built on it. The former service is provided by a policy layer that permits users denoting

resources of interests and specifying block conditions on the browsed data. The latter

service is provided by the PET examined in Chapter 5, i.e., tag suppression.

Integrating these two layers enables us, first, to boost the services currently offered

by collaborative tagging systems, and secondly, to thwart privacy attackers from

profiling users. The problem of combining both services, however, is that the latter

layer comes at the cost of data utility, which ultimately may impact the effectiveness

of the enhanced collaborative tagging services enabled by the former layer. Our

second and main contribution is precisely a thorough experimental analysis assessing

the extent to which tag suppression, on the one hand, may contribute to privacy

protection, and on the other it may negatively affect the functionality of two enhanced

collaborative tagging services. Among other results, our empirical evaluation shows

that tag suppression has a relatively small impact on the functionality of a parental-

control application. We interpret this result as a consequence of the reduced number

of active subcategories of bookmarks and our model of bookmark profile.



Chapter 7

Forgery and Suppression of Ratings

in Recommendation Systems

7.1 Introduction

A personalized recommendation system (a) may be regarded as a type of information-

filtering system that suggests information items users may be interested in. Examples

of such systems include recommending music at Last.fm and Pandora Radio, movies

by MovieLens and Netflix, and books and other products at Amazon.

As any personalized information system, recommenders capitalize on the creation

of profiles to provide users with targeted information. On the one hand, such profiles

may be explicitly declared by users. This is the case of the enhanced collaborative

tagging application examined in Chapter 6. On the other hand, users’ preferences

may be implicitly inferred by the system based on their past activity and behavior.

This is the most common form of profile construction, as typically users are reticent

to voluntarily disclose their profile of interests.

In this latter kind of recommenders, a distinction is frequently made between

explicit and implicit forms of data collection. The most popular form of explicit

data collection is that users communicate their preferences by rating items. Such is

(a)For the sake of brevity, we shall often refer to personalized recommendation systems simply as
recommendation systems or recommenders.

202
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the case of many of the applications mentioned above, where users assign ratings to

songs, movies or news they have already listened, watched or read. Other strategies

to capture users’ interests include asking them to sort a number of items by order

of predilection, or suggesting that they mark the items they like. By contrast, rec-

ommendation systems may collect data from users without requiring them to rate

information items. These practices comprise observing the items clicked by users

in an online store, analyzing the time it takes users to examine an item, or simply

keeping a record of the purchased items.

The prolonged collection of these personal data allows the system to build a profile

of interests. With this invaluable source of information, the recommendation system

applies some technique [163, 189] to generate a prediction of users’ preferences for

those items they have not yet considered. For example, Movielens and Digg use

collaborative-filtering techniques to predict the rating that a user would give to a

movie and to create a personalized list of recommended news, respectively.

Despite the many advantages recommendation systems are bringing to users, the

information collected, processed and stored by these systems poses serious privacy

risks. Such risks were carefully examined in Sec. 2.1.2 from a more general perspec-

tive, not limited to the particular case of recommenders. In response to the privacy

concerns prompted by these information systems, it is not surprising that some users

are reticent to reveal their interests. In fact, [190] reports that the 24% of Internet

users surveyed provided false information in order to avoid giving private information

to a Web site. Alternatively, another study [191] finds that 95% of the respondents

refused, at some point, to provide personal information when requested by a Web

site. In closing, these studies seem to indicate that submitting false information and

refusing to give private information are strategies accepted by users concerned with

their privacy.

In this chapter we approach the problem of protecting user privacy in those rec-

ommendation systems that profile users on the basis of the items they rate. Given the

willingness of users to provide fake information and elude disclosing private data, we

investigate a PET that simultaneously combines these two forms of data perturba-

tion, namely the forgery and the suppression of ratings. Concordantly, in our scenario
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a user rates those items they have an opinion on. But to prevent a privacy attacker

from getting an accurate estimate of their profile, the user may want to refrain from

rating some of those items and/or rate items that do not reflect their actual prefer-

ences. Our data-perturbative approach thus protects user privacy to a certain extent,

and does not require the user to trust the recommendation system, nor the network

operator nor any other external entity. The flip side, however, is that it comes at the

cost of data utility, namely a degradation of the quality of the recommendation. In

simple terms, the proposed PET poses a trade-off between privacy and utility.

The first contribution of this chapter is an architecture that describes the con-

ceptual design and fundamental operational structure of a practical implementation

of our PET. As in Chapter 5, our data-perturbative technique is intended to be im-

plemented as a software-based service, e.g., a Web browser plug-in. The proposed

architecture specifies how such software should operate. The ultimate aim of this

architecture is to help users decide which ratings should be forged and which ones

should be suppressed.

The theoretical analysis of the trade-off between the contrasting aspects of pri-

vacy and utility is the second and main contribution of this chapter. We tackle

the issue in a systematic fashion, drawing upon the methodology of multiobjective

optimization. Before proceeding, though, we adopt a quantifiable measure of user

privacy—the KL divergence between the probability distribution of the user’s items

and the population’s distribution, a criterion that we proposed in Chapter 4 and justi-

fied by leveraging on the rationale behind entropy-maximization methods. Equipped

with a measure of both privacy and utility, we formulate an optimization problem

modeling the trade-off between privacy on the one hand, and on the other forgery

rate and suppression rate as utility metrics. Our extensive theoretical analysis finds

a closed-form solution to the problem of optimal forgery and suppression of ratings,

and characterizes the optimal trade-off surface between the aspects of privacy and

utility.

Further, we provide an empirical evaluation of our data-perturbative approach.

Specifically, we apply the forgery and the suppression of ratings to the popular movie

recommendation system Movielens, and show how these two strategies may preserve
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the privacy of its users. As we did in Chapter 5, the work presented here is also based

on the adversary model defined in Chapter 4.

The work presented in this chapter is an extension of [49, 52,192].

Chapter Outline

The remainder of this chapter is organized as follows. Sec. 7.2 introduces our PET.

Sec. 7.3 defines the privacy criterion used in this chapter and specifies the assump-

tions about the adversary’s capabilities. Sec. 7.4 presents an architecture describing

a possible implementation of our privacy-protecting technology. Sec. 7.5 formulates

the optimal trade-off between privacy and utility. Sec. 7.6 provides a theoretical anal-

ysis of the optimization problem characterizing this trade-off. Sec. 7.7 evaluates our

privacy-protecting mechanism in a real recommendation system. Finally, conclusions

are drawn in Sec. 7.8.

7.2 Privacy-Enhancing Mechanism

The privacy-enhancing mechanism investigated in this chapter combines two strate-

gies based on data perturbation. On the one hand, the elimination of user data, a

technique that we proposed and examined in depth in the context of semantic tagging;

and on the other hand, the release of false information, a mechanism widely used not

only in personalized information systems but also in anonymous communications and

PIR.

In Sec. 5.2 we mentioned that refraining from sending sensitive, private informa-

tion avoids potential privacy breaches and constitutes a great step forward in terms

of the data-minimization principle. The submission of false data is a conceptually

different approach to privacy protection. Actually, it can be viewed as the opposite

strategy to suppression or the retention of user’s genuine data. In Chapter 5 we dis-

carded forgery as a privacy-enhancing mechanism for resource tagging, and deemed

suppression a more fitting approach. The reason given was that forgery could lead

to further degradation in semantic functionality, as tags aim at tying meaning up

with resources; consider, for example, tagging a Web page about mental health with
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the tag “car” (b). In this chapter we rescue the suitable applicability of forgery to

the scenario of recommendation systems, since ratings do not classify resources but

merely assess their relevance.

The synergy of these two strategies, forgery and suppression, appears as a promis-

ing paradigm in the context of recommender systems. When users are adhered to this

combined technique, they may submit ratings of items that do not reflect their actual

preferences, and/or skip rating some items of their interest. This is what we refer to

as the forgery and the suppression of ratings, respectively. Our PET thus enhances

user privacy to a certain extent since the perturbed profile, as observed from the

outside, no longer captures the precise and actual interests of the user in question (c).

In addition, the perturbative nature of our mechanism facilitates its implementation

as a software program operating on the user’s computer. This implies that users need

not trust the recommendation system, nor the network operator nor any external

entity.

In Sec. 5.2.1 we provided a thorough comparative analysis between tag suppression

and the state of the art in PETs. The analysis carried out for suppression in that

section can be directly extrapolated to the scenario of recommendation systems, in

the more general case when suppression is combined with forgery. Next, we extend

such analysis to include a couple of data-perturbative approaches specifically designed

for the application of recommender systems.

In the context at hand, a common approach to privacy preservation consists in

adding random values to ratings. An archetypical example is [94, 110]. In these

works, the perturbation takes place on the users’ side and affects only those items

which users have previously rated. Once the ratings are modified, they are sent to the

recommendation system, which calculates a weighted average of the ratings submitted

(b)In general, a particular data-perturbative mechanism will not be appropriate for all types of
applications and contexts. There will be applications allowing only suppression, and others a combi-
nation of several mechanisms, for example. Essentially, this will depend on the type of information
to be perturbed and the impact of such perturbation on system functionality and data utility.

(c)In fact, the purpose of our approach will not be to hide the actual profile of interests, but
to make the perturbed profile more ordinary, less intriguing to an adversary who aims to target
singular users. In other words, we shall assume the adversary model described in Sec. 4.3.3, where
the attacker’s objective is to individuate users. We shall explain it later in Sec. 7.3.
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by all users. This information is then sent back to users, who ultimately use it to

compute predictions about the unrated items. There are two important differences

between this approach and ours. First, we send false ratings only to those items users

have not rated yet. Secondly, and more importantly, concealing the actual ratings

does not preclude a privacy attacker from profiling users on the basis of the items

they rate. Put differently, the cited works overlook the fact that rating an item may

be more sensitive than the particular score given.

7.3 Adversary Model and Privacy Metric

In this section we shall first specify our assumptions about the attacker. Based on

these assumptions, we shall then define a privacy criterion which, later, will enable

us to evaluate and subsequently optimize the privacy-enhancing mechanism proposed

in Sec. 7.2. In essence, we shall assume the same adversary model described in

Chapter 5. The main difference is that we shall suppose that users know or are able

to estimate the population’s item distribution. Next, we describe our assumptions

about the adversary considered in this chapter.

We suppose that users are identified to the recommendation system. Recall from

Sec. 4.3.1 that, by identified, we mean that users’ activity is monitored by the system.

This monitoring could be accomplished, for example, if users are logged into the

recommender. On the other hand, our set of potential privacy attackers comprises any

entity that can profile users based on their ratings. In other words, we contemplate

an attacker who learns about the interests of users from the ratings they assign to

information items. Our attacker may therefore be the recommender itself, but also

the network operator and any passive eavesdropper.

In Sec. 4.3.2 we commented that user profiles are frequently modeled as histograms

of user-generated data. In particular, we showed how numerous recommendation sys-

tems make use of this kind of representation. Examples of these systems include

BibSonomy, Delicious, IMDb, Movielens and Pandora Radio. According to these

examples, and consistently with the user-profile model considered in Chapter 5, we
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Figure 7.1: The profile of a user is modeled in Movielens as a histogram of absolute frequencies of
ratings within a set of movie genres (bottom). Based on this profile, the recommender predicts the
rating that the user would probably give to a movie (top). After having watched the movie, the user
rates it and their profile is updated.

assume that our adversary models user interests by using histograms. More specifi-

cally, we consider a tractable model of user profile as a PMF, that is, a normalized

histogram of ratings within a predefined set of categories of interest. We would like

to remark that, under this model, user profiles do not capture the particular scores

given to items, but what we consider to be more sensitive: the categories these items

belong to. This corresponds to the case of Movielens, which we illustrate in Fig. 7.1.

In this figure, we represent a user assigning two stars to a movie, meaning that they

consider it to be “fairly bad”. The recommender, however, updates their profile based

only on the categories this movie belongs to.

In this chapter, users resort to our privacy-enhancing mechanism to prevent an

attacker from constructing a precise characterization of their profiles. By adopting the

forgery and the suppression of ratings, our attacker actually sees a perturbed version

of the genuine profile of interests. In our adversary model, we assume that the attacker

believes that the observed, perturbed profile is the actual one. Put another way, our

adversary is unable to know if a particular user is using our mechanism. In Sec. 5.3
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we argued that this assumption must not be considered as security through obscurity.

The reason is that our data-perturbative mechanism is conceived to be implemented

as a software program running on the user’s local machine. As our approach operates

on the user’s side, it seems reasonable to assume that an external attacker cannot

ascertain whether this software is running or not on the user’s computer.

Unlike in previous chapters, here we contemplate that users are able to estimate

the population’s item distribution. In practice, this is an information that a software

program could retrieve from the recommender. For example, Movielens provides users

with the average rating assigned to each item, and IMDb shows the population’s

rating distribution of each item. However, if this information was not available at

the recommender, an alternative might be querying other recommendation systems

or using information services such as the Google Display Network Ad Planner (d).

This latter contains data about the distribution of user interests.

As in our tag-suppression mechanism, we suppose that the attacker’s intention is to

individuate users, that is, its goal is to find users who deviate from the average profile

of interests. In view of the above, in this chapter we measure privacy risk, or more

accurately, anonymity loss, as the KL divergence between the user’s apparent item

distribution and the population’s item distribution. According to the arguments given

in Sec. 4.4, our privacy criterion may be construed as a measure of the probability

of the apparent profile. More precisely, the lower the discrepancy, in terms of KL

divergence, between this profile and the population’s distribution, the higher the

likelihood of the apparent profile, and the greater the number of users who behave

according to it. The assumptions made in this section are summarized in Fig. 7.2.

7.4 Architecture

In this section we define the major components of an architecture implementing our

data-perturbative technique. The proposed architecture provides high-level functional

aspects so that our PET can be implemented as a software tool installed on the user’s

(d)https://www.google.com/adplanner

https://www.google.com/adplanner
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Figure 7.2: Summary of the main assumptions of our adversary model. Exactly as in Chapter 5, we
contemplate an attacker who aims to individuate users. In this chapter, however, we assume that
the population’s item distribution is known to users. Under these assumptions, the KL divergence
between the user’s apparent profile and the population’s distribution may be regarded as a measure
of privacy, or more precisely, anonymity.

computer. We would like to stress that the description provided in this section does

not pretend to serve as an exhaustive guide for programming such tool.

Our approach builds on the same assumptions than those of the architecture

proposed in Sec. 5.4. For the sake of completeness, next we go through them briefly.

• First, we suppose that users trust the software implementation of our PET.

• Secondly, the proposed approach operates as a recommendation system, in the

sense that it suggests which items should be forged and which ones should be

suppressed. The software implementing our mechanism requires user permission

to proceed with the forgery and the suppression of ratings.

• Also, we assume that the software implementation and the adversary use the

same set of categories to model user interests. Further, we suppose that each

information item is categorized in the same way by both the software and the

attacker. In other words, when users neither forge nor eliminate ratings, the

profile computed locally on their side matches the profile built by the attacker.
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We believe this is a reasonable assumption as the categorization of items is

frequently available to users of recommenders. This is the case, for example, of

the movie recommendation systems IMDb, Jinni, Movielens and Netflix.

• In addition, our approach requires the user profile to start working. For this

reason, we consider a training period before it can begin recommending which

items should be forged and eliminated. The duration of this training phase will

depend on the user’s rating activity. Since the user’s profile might be exposed

during this phase, the user could alternatively declare their interests at the

beginning. In this manner, ratings perturbation could be applied from the first

moment. If it was the case, the declared profile would be replaced after the

training phase by the profile estimated implicitly from tagging activity. The

reason is that the former profile might not be a precise representation of the

user’s interests.

• Finally, we assume that, when estimating the user profile, the components of

the relative histogram remain stable after the training phase. We recognize that

this assumption may be an over-simplification, since user interests might vary

considerably over time.

Having examined the assumptions about our architecture, next we make a dis-

tinction based on the user’s knowledge about items. Hereafter we shall refer to the

user’s known items as those items they have an opinion on. In the case of the movie

recommendation system IMDb, for example, the known items of a particular user

would be those movies the user has already watched. Analogously, we shall refer to

the user’s unknown items as those items the user is not in the position to rate. For

instance, this could be the case of a movie the user is not aware of or a movie the

user has heard about, but has not watched yet.

This distinction allows us to specify more precisely the operation of our architec-

ture. Namely, our approach makes use of the submission of ratings of unknown items

and the suppression of ratings of known items. For the sake of brevity, we shall refer

to these techniques simply as the forgery and suppression of ratings, respectively.

Having said this, we would like to stress that the fact that forgery only applies to
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unknown items is basically because users may be reluctant to assign false ratings to

known items. Despite the above, our approach could also give the user the option to

forge ratings of known items. However, for brevity, in this section we describe only

the case where forgery applies just to unknown items. Next, we provide a high-level

description of each of the components of the proposed architecture.

Communication manager. This module is in charge of interacting with the

recommendation system. Specifically, it downloads information about the items the

user finds when browsing the recommender’s Web site. This information may include

a description about the items, the ratings that other users assigned to them, and

the categories of interest these items belong to. In Amazon, for instance, all this

information is available to users. However, since this is not always the case, our

approach incorporates modules intended to retrieve the population’s ratings and to

categorize all the items that the user explores.

On the other hand, this module receives the ratings of unknown items suggested

by the forgery alarm generator and the ratings of known items sent by the suppression

alarm generator. Afterwards, the module submits these ratings to the recommenda-

tion system.

Category extractor. This component is responsible for obtaining the categories

the items belong to. To this end, the module uses the information provided by the

communication manager. Should this information not be enough, the module will

have to get additional data by searching the Web or by querying an information

provider. Afterwards, the categorization of these items is carried out by using the

vector space model and the TF-IDF weights, similarly as in Sec. 5.4. In a last stage,

this module sends the items and their corresponding categories to the known/unknown

item classifier.

Known/unknown item classifier. This module requires the active involvement

of the user. Namely, it shows the user the items categorized by the category extractor

module, and then asks the user to classify them as known or unknown. Evidently, this

module will have previously checked whether these items have already been rated by

the user. Should this be the case, the rated items would not be shown to the user, since

these items would be classified as known items. For this purpose, the module keeps



7.4 ARCHITECTURE 213

Recommender 

Known / unknown 
item classifier 

User profile 
constructor 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAA 

q

s¤ r¤

... 

Forgery 
alarm gen. 

Suppression 
alarm gen. 

Forgery and suppression 
generator 

 uncategorized item 
 categorized item 

 unknown item 
 item rated  

 known item 

Information 
provider 

x2 

¾
½

User side Network side 

! 

! 

Population  
profile constr. 

Communication 
manager 

Category 
extractor 

Figure 7.3: Block diagram of the proposed architecture.

a record of all the items that the user rates. Once these items have been classified as

known or unknown, they are sent to the forgery alarm generator and the suppression

alarm generator, respectively. In addition, the known items are submitted to the user

profile constructor.

User profile constructor. This module is in charge of obtaining the user profile.

To this end, the module is provided with the user’s known items, i.e., those items

capturing their preferences. Based on these items, it generates the user profile as

described in Sec. 7.3. As mentioned at the beginning of this section, we assume

that the relative frequencies of activity stabilize after the user has rated a large

number of known items. Analogously to the architecture presented in Sec. 5.4, we also

contemplate the possibility that the user explicitly specifies their profile to prevent

an attacker from profile them during the training phase.

Population profile constructor. This module is responsible for the estimation

of the population’s item distribution. For this purpose, the module relies on the items
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retrieved by the communication manager. As commented in Sec. 7.3, many recom-

mendation system provides the categories their items belong to as well as detailed

statistics about the ratings assigned by users. If this information were not enough

to build the population’s profile, this module could resort to other recommender or

databases containing this kind of information.

Forgery and suppression generator. This block is the centerpiece of the

architecture. First, the block is provided with the user profile and the population’s

distribution. In addition, the user specifies a forgery rate ρ and a suppression rate σ.

The former is the fraction of ratings of unknown items that the user is willing to

submit. The latter is the relative frequency of ratings of known items that the user

is disposed to eliminate. Having specified these two rates, the module computes

the optimal tuples of forgery r∗ and suppression s∗, which indicate the fraction of

ratings that should be forged and suppressed, respectively. More accurately, the

component r∗i is the percentage of ratings of unknown items that our architecture

suggests submitting in the category i ∈ N+. The component s∗i is defined analogously

for suppression.

In the end, these two tuples are sent to the forgery alarm generator and the

suppression alarm generator, respectively. Later in Sec. 7.5, we shall provide a more

detailed specification of this module by using a formulation of the trade-off among

privacy, forgery rate and suppression rate, which will enable us to compute the tuples

r∗ and s∗.

Suppression alarm generator. This module is responsible for warning the user

when their privacy is at risk. Concretely, this module receives the tuple s∗ and stores

the known items provided by the known/unknown item classifier. These items are

kept in an array. When the user decides to assign a rating to one of these items,

the selected item is removed from such array. The user then rates this item, and

the module proceeds as follows. Suppose that the item in question belongs to the

category i. According to this, and exactly as in Sec. 5.4, the module generates an

alarm with probability s∗i . If the alarm is eventually triggered, the user must choose

either to drop the rating or to send it to the recommender through the communication
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manager module. If the alarm is not triggered, the rating is forwarded directly to the

latter module.

Forgery alarm generator. Our approach also relies on the forgery of ratings.

Specifically, this module selects, on the one hand, which unknown items should be

forged, and on the other hand, which particular ratings should be assigned to these

unknown items. With regard to the ratings to be given to the items, we follow a

method similar to the one pointed out in [85]. Namely, our approach assigns each

unknown item a random rating, drawn according to the distribution of the other

users’ ratings to that item. Alternatively, we could also contemplate the distribution

of ratings of a user with similar preferences, or the distribution of ratings across all

items. In order to obtain this information, the module will have to query information

providers or explore other recommenders. In the case of Amazon, for example, this

is not necessary since users are provided with the population’s ratings.

In parallel, the module receives unknown items and stores them in an array. After

getting the tuple r∗, the module proceeds as follows. Every time the user decides to

assign a rating to a known item, regardless of whether this rating is finally submitted

to the recommender or it is eliminated, the module chooses, at random, unknown

items from the array. This selection is done according to the percentages specified

by r∗. Specifically, the probability that an item corresponding to the category i be

chosen is r∗i . Once the module has chosen one item, our architecture encourages the

user to submit it to the recommender. However, it is the user who finally decides

whether to send this rating or not. If the user accepts the recommendation, then

the rating is sent to the communication manager module, and the unknown item is

removed from the array.

After having explored each of the modules of the architecture, now we shall de-

scribe how it would work. Initially, the user would browse the recommendation sys-

tem’s Web site and would find some items. In order for the user to obtain future

recommendations from the system, they would have to rate some of those items. Be-

fore proceeding, though, our approach would retrieve information about the items

and extract the categories they belong to. Afterwards, the user would be asked to



216 CHAPTER 7. FORGERY AND SUPPRESSION OF RATINGS IN RECOM. SYST.

classify the items as known or unknown. The known items would allow the proposed

architecture to build the user profile during the training phase.

After this phase, our approach would compute the tuples r∗ and s∗. When trying

to rate some of the known items, the user could receive two types of alarms. In

particular, our architecture could suggest that the user refrain from rating some of

those known items and could also recommend submitting a random rating to one or

more of the unknown items. In any case, it would be up to the user to decide whether

to eliminate and forge such ratings.

7.5 Trade-Off among Privacy, Forgery and Suppression

Our data-perturbative mechanism allows users to enhance their privacy to a certain

extent, since the resulting profile, as observed from the outside, appears to be much

more ordinary, and therefore less valuable to an attacker aimed at targeting singular

users. The price to be paid, however, is a loss in data utility, in particular in the

accuracy of the recommender’s predictions.

Next, we present a formulation of the optimal trade-off between the contrasting

aspects of privacy and utility. For the sake of tractability, we consider as utility

metrics the forgery rate and the suppression rate. We would like to remark that the

study of more sophisticated metrics of any loss in the accuracy of the recommendations

due to ratings perturbation is an open problem.

The consideration of those two rates as simplified utility measures enables us to

formulate the privacy-utility trade-off by means of a mathematically tractable model.

Specifically, in this section we shall be able to formulate the problem of choosing a

forgery strategy and a suppression strategy as a multiobjective optimization problem

that takes into account privacy, forgery rate and suppression rate. As we shall show

next, this formulation will enable us to go into the details of one of the functional

blocks of the proposed architecture.

We begin by formalizing some of the concepts that we introduced in previous

sections. Specifically, we model the known items of a user as a sequence of i.i.d.

r.v.’s taking on values in a common finite alphabet of categories, in particular the set
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{1, . . . , n} for some integer n > 2. Concordantly, we represent the profile of a user as

the common PMF of such r.v.’s, q = (q1, . . . , qn), conceptually a histogram of relative

frequencies of items within that set of categories.

When users adhere to the forgery and the suppression of ratings, they specify a

forgery rate ρ ∈ [0,∞) and a suppression rate σ ∈ [0, 1). The former is the ratio

of forged ratings to total genuine ratings that a user consents to submit. The latter

ratio is the fraction of genuine ratings that the user agrees to eliminate. Note that,

in our approach, the number of false ratings submitted by the user can exceed the

number of genuine ratings, that is, ρ can be greater than 1. Nevertheless, the number

of suppressed ratings is always lower than the number of genuine ratings.

By forging and suppressing ratings, the actual profile of interests q is then per-

ceived from the outside as the apparent PMF t = q+r−s
1+ρ−σ , according to a forgery

strategy r = (r1, . . . , rn) and a suppression strategy s = (s1, . . . , sn). Such strategies

represent the proportion of ratings that the user should forge and eliminate in each

of the n categories. Naturally, these strategies must satisfy, on the one hand, that

ri > 0, si > 0 and qi + ri− si > 0 for i = 1, . . . , n, and on the other, that
∑n

i=1 ri = ρ

and
∑n

i=1 si = σ. In conclusion, the apparent profile is the result of the addition

and the substraction of certain items to/from the actual profile, and the posterior

normalization by 1
1+ρ−σ so that

∑n
i=1 ti = 1.

According to the adversary model and privacy metric assumed in Sec. 7.3, we

define initial privacy risk as the KL divergence [76] between the user’s genuine profile

and the population’s item distribution p, that is,

R0 = D(q ‖ p).

Similarly, we define (final) privacy risk R as the KL divergence between the user’s

apparent profile and the population’s distribution,

R = D(t ‖ p) = D

(
q + r − s
1 + ρ− σ

∥∥∥∥ p) .



218 CHAPTER 7. FORGERY AND SUPPRESSION OF RATINGS IN RECOM. SYST.

Under the assumption that the population of users is large enough to neglect

the impact of the choice of r and s on p, we define the privacy-forgery-suppression

function

R(ρ, σ) = min
r,s

ri>0, si>0,
qi+ri−si>0,∑
ri=ρ,

∑
si=σ

D

(
q + r − s
1 + ρ− σ

∥∥∥∥ p) , (7.1)

which characterizes the optimal trade-off among privacy, forgery rate and suppression

rate, and allows us to formally specify the module forgery and suppression generator

described in Sec. 7.4. More accurately, this functional block will be in charge of

solving the optimization problem inherent in the definition of function (7.1).

Lastly, we would like to emphasize that, in our mathematical formulation, the

KL divergence is more precisely regarded as a measure of anonymity, rather than

privacy. Specifically, in Sec. 4.4 we interpreted the KL divergence as an indicator

of the uniqueness of a profile within a population. Under this interpretation, the

objective of our data-perturbative approach is not to conceal the user’s actual profile,

but to make the observed profile as common as possible. Table 7.1 summarizes the

notation introduced in this section.

7.6 Theoretical Analysis

This section is entirely devoted to the theoretical analysis of the privacy-forgery-

suppression function (7.1) defined in Sec. 7.5. In our attempt to characterize the

trade-off among privacy risk, forgery rate and suppression rate, we shall present a

closed-form solution to the optimization problem inherent in the definition of this

function. Afterwards, we shall analyze some fundamental properties of said trade-off.

For the sake of brevity, our theoretical analysis only contemplates the case when all

given probabilities are strictly positive:

qi, pi > 0 for all i = 1, . . . , n. (7.2)
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Table 7.1: Description of the variables used in our notation.

Symbol Description

n number of interest categories into which information items are
classified

q the actual user profile is the genuine profile of interests

ρ, σ the rating-forgery rate and the rating-suppression rate are the per-
centages of ratings the user is willing to forge and suppress, re-
spectively

r, s a forgery strategy and a suppression strategy are two n-tuples con-
taining the percentage of ratings the user should forge and elimi-
nate, respectively, in each category

t the apparent user profile is the perturbed profile, resulting from
the forgery and the suppression of certain ratings

p population’s item distribution

D(t ‖ p) (final) privacy risk is measured as the KL divergence between the
user’s apparent distribution and the population’s distribution

R(ρ, σ) function modeling the trade-off among privacy risk, forgery rate
and suppression rate

The general case can easily be dealt with, occasionally via continuity arguments.

Additionally, we suppose without loss of generality that

q1

p1

6 · · · 6 qn
pn
. (7.3)

Before diving into the mathematical analysis, it is immediate from the definition

of the privacy-forgery-suppression function that its initial value is R(0, 0) = D(q ‖ p).
The characterization of the optimal trade-off surface modeled by R(ρ, σ) at any other

values of ρ and σ is the focus of this section.

7.6.1 Closed-Form Solution

Our first theorem, Theorem 7.3, will present a closed-form solution to the minimiza-

tion problem involved in the definition of function (7.1). The solution will be derived

from Lemma 7.1, which addresses a resource allocation problem. This a theoretical

problem encountered in many fields, from load distribution and production planning
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to communication networks, computer scheduling and portfolio selection [193]. Al-

though this lemma provides a parametric-form solution, we shall be able to proceed

towards an explicit closed-form solution, albeit piecewise.

Lemma 7.1 (Resource Allocation). For all k = 1, . . . , n, let fk be a real-valued func-

tion on {(xk, yk) ∈ R2 : κk + xk − yk > 0}, twice differentiable in the interior of

its domain. Assume that ∂fk
∂xk

= −∂fk
∂yk

, that ∂2fk
∂x2k

= ∂2fk
∂y2k

> 0 and that the Hessian

H(fk) is positive semidefinite. Define hk = ∂fk
∂xk

. Because ∂hk
∂xk

> 0 and ∂hk
∂yk

< 0,

it follows that hk is strictly increasing in xk and strictly decreasing in yk. Conse-

quently, for a fixed yk, hk(xk, yk) is an invertible function of xk. Denote by h−1
k the

inverse of hk(xk, 0). Suppose further that hk(xk, yk) = hk(xk − yk, 0) and finally that

lim
xk↓yk−κk

hk(xk, yk) = −∞. Now consider the following optimization problem in the

variables x1, . . . , xn and y1, . . . , yn:

minimize
n∑
k=1

fk(xk, yk)

subject to xk, yk > 0,

κk + xk − yk > 0 for k = 1, . . . , n,

and
n∑
k=1

xk = η,
n∑
k=1

yk = θ for some η, θ > 0.

(i) The solution to the problem (x∗k, y
∗
k) depends on two real numbers ψ, ω that

satisfy the equality constraints
∑

k x
∗
k = η and

∑
k y
∗
k = θ. The solution exists

provided that ψ 6 ω. If ψ < ω, then the solution is unique and yields

(x∗k, y
∗
k) = (max

{
0, h−1

k (ψ)
}
,max

{
0,−h−1

k (ω)
}

).

If ψ = ω, then there exists an infinite number of solutions of the form (x∗k +

αk, y
∗
k+αk) for all αk ∈ R+ meeting the two aforementioned equality constraints.

Without loss of generality, suppose that h1(0, 0) 6 · · · 6 hn(0, 0).

(ii) For ψ < ω, consider the following cases:
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(a) hi(0, 0) < ψ 6 hi+1(0, 0) for some i = 1, . . . , j − 1 and hj−1(0, 0) 6 ω <

hj(0, 0) for some j = 2, . . . , n.

(b) hj−1(0, 0) 6 ω for j = n+ 1 and, either hi(0, 0) < ψ 6 hi+1(0, 0) for some

i = 1, . . . , n− 1 or hi(0, 0) < ψ for i = n.

(c) ψ 6 hi+1(0, 0) for i = 0 and, either hj−1(0, 0) 6 ω < hj(0, 0) for some

j = 2, . . . , n or ω < hj(0, 0) for j = 1.

(d) hj−1(0, 0) 6 ω for j = n+ 1 and ψ 6 hi+1(0, 0) for i = 0.

In each case, and for the corresponding indexes i and j,

x∗k =

{
h−1
k (ψ) , k = 1, . . . , i

0 , k = i+ 1, . . . , n
,

y∗k =

{
0 , k = 1, . . . , j − 1

−h−1
k (ω) , k = j, . . . , n

.

(iii) For ψ = ω, consider the following cases:

(a) either hi(0, 0) < ψ < hj(0, 0) for some j = 2, . . . , n and i = j − 1, or

hi(0, 0) < ψ = hi+1(0, 0) = · · · = hj−1(0, 0) < hj(0, 0) for some i =

1, . . . , j − 2 and some j = 3, . . . , n.

(b) for j = n + 1, either hi(0, 0) < hi+1(0, 0) = · · · = hj−1(0, 0) = ω for some

i = 1, . . . , j − 2 or hj−1(0, 0) < ω with i = n.

(c) for i = 0, either ψ = hi+1(0, 0) = · · · = hj−1(0, 0) < hj(0, 0) for some

j = 2, . . . , n or ψ < hi+1(0, 0) with j = 1.

In each case, and for the corresponding indexes i and j,

x∗k =

{
h−1
k (ψ) + αk , k = 1, . . . , i

αk , k = i+ 1, . . . , n
,

y∗k =

{
αk , k = 1, . . . , j − 1

−h−1
k (ω) + αk , k = j, . . . , n

.

Proof: The proof of statement (i) consists of two steps. In the first step, we show

that the optimization problem stated in the lemma is convex; then we apply KKT
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conditions to said problem, and finally reformulate these conditions into a reduced

number of equations. The bulk of this proof comes later, in the second step, where we

proceed to solve the system of equations for the two cases considered in the lemma,

ψ < ω and ψ = ω. Lastly, statements (ii) and (iii) follow from (i).

To see that the problem is convex, simply observe that the objective function is

convex on account of H(fk) � 0, and that the inequality and equality constraint

functions are affine. Since the objective and constraint functions are also differen-

tiable and Slater’s constraint qualification holds, KKT conditions are necessary and

sufficient conditions for optimality [75]. Systematic application of these optimality

conditions leads to the Lagrangian cost,

L =
∑

fk(xk, yk)−
∑

λkxk −
∑

µkyk

+
∑

νk(yk − κk − xk)− ψ
(∑

xk − η
)

+ ω
(∑

yk − θ
)
,

and finally to the conditions

xk > 0, yk > 0, κk + xk − yk > 0,∑
xk = η,

∑
yk = θ, (primal feasibility)

λk > 0, µk > 0, νk > 0, (dual feasibility)

λk xk = 0, µk yk = 0,

νk (yk − κk − xk) = 0, (complementary slackness)

∂L
∂xk

= hk(xk, yk)− λk − νk − ψ = 0,
∂L
∂yk

= hk(xk, yk) + µk − νk − ω = 0, (dual optimality).

Because lim
xk↓yk−κk

hk(xk, yk) = −∞, it follows from the dual optimality conditions

that κk + xk − yk > 0, which implies, by complementary slackness, that νk = 0.

Subsequently, we may rewrite the dual optimality conditions as λk = hk(xk, yk) −
ψ and µk = ω − hk(xk, yk). By eliminating the slack variables λk, µk, we obtain

the simplified conditions hk(xk, yk) > ψ and hk(xk, yk) 6 ω. Lastly, we substitute

the above expressions of λk and µk into the complementary slackness conditions, so

that we can formulate the dual optimality and complementary slackness conditions
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equivalently as

hk(xk, yk) > ψ, (7.4)

hk(xk, yk) 6 ω, (7.5)

(hk(xk, yk)− ψ)xk = 0, (7.6)

(hk(xk, yk)− ω) yk = 0. (7.7)

In the following, we shall proceed to solve these equations which, together with

the primal and dual feasibility conditions, are necessary and sufficient conditions for

optimality. To this end, first note that, if ψ > ω, then there exists no (xk, yk) that

satisfies equations (7.4) and (7.5) at the same time, and consequently, as stated in

part (i) of the lemma, there is no solution. Concordantly, next we shall study the

case when ψ < ω; afterwards we shall tackle the other case when ψ = ω.

Before plunging into the analysis of the former case, recall that the function hk

is strictly increasing in xk and strictly decreasing in yk. Having said this, observe

that, under the assumption ψ < ω, the variables xk and yk cannot be positive simul-

taneously by virtue of equations (7.6) and (7.7). Bearing this in mind, consider these

three possibilities for each k: hk(0, 0) < ψ, ψ 6 hk(0, 0) 6 ω and ω < hk(0, 0).

When hk(0, 0) < ψ, the only conclusion consistent with (7.4) and with the fact

that hk is strictly increasing in xk is that xk > 0. Since xk must be positive, the

complementary slackness condition (7.6) implies that hk(xk, yk) = ψ and, because

of (7.7), that yk = 0. As a result, xk must satisfy hk(xk, 0) = ψ, or equivalently,

xk = h−1
k (ψ). Next, we show that the solution (xk, 0) is unique. For this purpose,

suppose that yk > 0 and, in consequence, that xk = 0. It follows from (7.7), however,

that hk(0, yk) = ω, which contradicts the fact that hk is a strictly decreasing function

of yk. In the end, we verify that xk = yk = 0 does not satisfy (7.4) and thus prove

that (xk, yk) = (h−1
k (ψ), 0) is the unique minimizer of the objective function when

hk(0, 0) < ψ.

Now consider the case when ψ 6 hk(0, 0) 6 ω. First, suppose that xk > 0, and

therefore that yk = 0. By complementary slackness, it follows that hk(xk, 0) = ψ,

which is not consistent with the fact that hk is strictly increasing in xk. Consequently,
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xk cannot be positive. Secondly, assume that xk is zero and yk positive. Under this

assumption, equation (7.7) implies that hk(0, yk) = ω, a contradiction since hk is a

strictly decreasing function of yk. Accordingly, yk cannot be positive either. Finally,

check that xk = yk = 0 satisfies the optimality conditions and hence it is the unique

solution.

The last possibility corresponds to the case when ω < hk(0, 0). Note that, in this

case, the only conclusion consistent with (7.5) and with the fact that hk is strictly

decreasing in yk is that yk > 0. Thus, because of (7.7), yk must satisfy hk(0, yk) =

ω. Recalling from the lemma that hk(xk, yk) = hk(xk − yk, 0), we may express the

condition hk(0, yk) = ω equivalently as yk = −h−1
k (ω). Lastly, we check that this

solution is unique in the case under study. To this end, note that a solution such

that xk > 0 and yk = 0 contradicts the fact that hk is strictly increasing in xk. As a

result, xk cannot be positive. Finally, we confirm that equation (7.5) does not hold for

xk = yk = 0 and therefore prove that (xk, yk) = (0,−h−1
k (ω)) is the unique solution

when ω < hk(0, 0).

In summary, xk = h−1
k (ψ) if hk(0, 0) < ψ, or equivalently, h−1

k (ψ) > 0; otherwise

xk = 0. Further, yk = −h−1
k (ω) if hk(0, 0) > ω, or equivalently, h−1

k (ω) < 0; otherwise

yk = 0. Accordingly, we may write the solution compactly as

(xk, yk) = (max
{

0, h−1
k (ψ)

}
,max

{
0,−h−1

k (ω)
}

),

where ψ, ω must satisfy the primal equality constraints
∑

k xk = η and
∑

k yk = θ.

Having examined the case when ψ < ω, next we proceed to solve the optimality

conditions at hand for ψ = ω. Observe that, in this new case, (7.4) and (7.5) transform

into the equation

hk(xk, yk) = ψ. (7.8)

Moreover, note that any pair (xk, yk) satisfying (7.8) also meets the complementary

slackness conditions (7.6) and (7.7). However, notice that this does not mean that

all those pairs are optimal. To elaborate on this point, consider the following three

possibilities for each k: hk(0, 0) < ψ, hk(0, 0) = ψ and ψ < hk(0, 0).
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In the case when hk(0, 0) < ψ, the only condition consistent with (7.8) and with

the fact that hk is strictly increasing in xk is that xk > 0. From the lemma, it is

immediate that ∂hk
∂xk

= −∂hk
∂yk

, which implies that xk must also be greater than yk.

Hence, the set of solutions is

{(xk, yk) : hk(xk, yk) = ψ, xk > yk},

where every pair in this set must also fulfill the primal equality conditions. Let x′k

satisfy hk(x
′
k, 0) = ψ, or equivalently, x′k = h−1

k (ψ). Then, because hk(x
′
k+αk, αk) = ψ

for any α > 0, this set may be recast equivalently as

{(xk, yk) : xk = x′k + αk, yk = αk}.

For the two remaining cases, i.e., hk(0, 0) = ψ and ψ < hk(0, 0), the set of solutions

is obtained in a completely analogous way as above. In the former case, the pairs

(xk, yk) must satisfy xk = yk, and the set of solutions may be expressed as

{(xk, yk) : xk = αk, yk = αk}.

In the latter case, it follows that yk > xk and, consequently, that the set of solutions

is

{(xk, yk) : xk = αk, yk = y′k + αk},

where y′k must satisfy hk(0, y
′
k) = ψ.

To sum up, the case ψ = ω leads to the following solutions: xk = h−1
k (ψ) + αk

if hk(0, 0) < ψ, or equivalently, h−1
k (ψ) > 0; otherwise xk = αk. In addition, yk =

−h−1
k (ω) + αk if hk(0, 0) > ω, or equivalently, h−1

k (ω) < 0; otherwise yk = αk.

Accordingly, the solutions (xk, yk) yield

(max
{

0, h−1
k (ψ)

}
+ αk,max

{
0,−h−1

k (ω)
}

+ αk), (7.9)

for some ψ, ω and nonnegative sequence α1, . . . , αn such that
∑

k xk = η and
∑

k yk =

θ. Note that, although ψ = ω, we intentionally write ω instead of ψ to highlight that
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the solutions for ψ < ω and for ψ = ω just differ in the term αk, as we claimed in

part (i) of the lemma.

To complete the proof of statement (i), it suffices to show that the number of

solutions is infinite when ψ = ω. To this end, simply observe that there exists an

infinite number of sequences α1, . . . , αn such that

∑
k

xk =
∑
k

h−1
k (ψ) +

∑
k

αk = η and

∑
k

yk = −
∑
k

h−1
k (ψ) +

∑
k

αk = θ,

which results in an infinite number of solutions of the form given in (7.9).

Now we proceed to prove (ii), which is an immediate consequence of (i). For

this purpose, observe that if ψ 6 hi+1(0, 0) 6 · · · 6 hn(0, 0) holds for some i =

0, . . . , n − 1, then h−1
i+1(ψ), . . . , h−1

n (ψ) 6 0, and accordingly xi+1 = · · · = xn = 0.

Similarly, if h1(0, 0) 6 · · · 6 hj−1(0, 0) 6 ω is satisfied for some j = 2, . . . , n+ 1, then

h−1
1 (ω), . . . , h−1

j−1(ω) > 0, and thus y1 = · · · = yj−1 = 0.

Note that the particular case when the index i ranges from 1 to j−1 and the index

j goes from 2 to n is the case described in (ii) (a), which corresponds to η, θ > 0.

Further, observe that the case assumed in (ii) (b), i.e., when j = n + 1, implies that

θ = 0. Here, the index i starts at 1, therefore excluding η = 0, and ends at n,

including the possibility that xi > 0 for all i. In part (ii) (c), we consider i = 0, which

is equivalent to the condition η = 0. In this case, the index j starts at 1, permitting

yj > 0 for all j, and ends at n, avoiding θ = 0. Finally, the case described in (ii) (d),

namely when j = n+ 1 and i = 0, is precisely the trivial case x = y = 0.

To verify statement (iii), we proceed analogously by noting that if ψ = hi+1(0, 0) =

· · · = hj−1(0, 0) holds for some i = 1, . . . , j−2 and some j = 3, . . . , n, then h−1
i+1(ψ) =

· · · = h−1
j−1(ψ) = 0, and consequently xk = yk = αk for k = i+ 1, . . . , j − 1. �

The previous lemma presented the solution to a resource allocation problem that

minimizes a rather general but convex objective function, subject to affine constraints.

Our next theorem, Theorem 7.3, applies the results of this lemma to the special case

of the objective function of problem (7.1). In doing so, we shall confirm the intuition
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that there must exist a set of ordered pairs (ρ, σ) where the privacy risk vanishes and

another set where it does not. We shall refer to the former set as the critical-privacy

region and formally define it as

C = {(ρ, σ) : R(ρ, σ) = 0}.

The latter set will be the complementary set C̄ and we shall refer to it as the

noncritical-privacy region.

Before proceeding with Theorem 7.3, first we shall introduce what we term forgery

and suppression thresholds, two sequences of rates that will play a fundamental role in

the characterization of the solution to the minimization problem defining the privacy-

forgery-suppression function. Secondly, we shall investigate certain properties of these

thresholds in Proposition 7.2. And thereafter, we shall introduce some definitions that

will facilitate the exposition of the aforementioned theorem.

Let Qi =
∑i

k=1 qk and Pi =
∑i

k=1 pk be the cumulative distribution functions cor-

responding to q and p. Denote by Q̄i =
∑n

k=i qk and P̄i =
∑n

k=i pk the complementary

cumulative distribution functions of q and p. Define the forgery thresholds ρi as

ρi =


Pi

qi
pi
−Qi , i = 1, . . . , j − 1

Pj−1

P̄j
(Q̄j − σ)−Qj−1, i = j

∞ , i = j + 1

,

for j = 2, . . . , n. Additionally, define the suppression thresholds σj as

σj = Q̄j − P̄j
qj
pj

for j = 1, . . . , n, and σ0 = 1. Observe that ρ1 = σn = 0 and that the forgery

threshold ρj is a linear function of σ. We shall refer to this latter threshold as the

critical forgery-suppression threshold and denote it also by ρcrit(σ). The reason is

that said threshold will determine the boundary of the critical-privacy region, as we

shall see later. The following result, Proposition 7.2, characterizes the monotonicity

of the forgery and the suppression thresholds.
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Proposition 7.2 (Monotonicity of Thresholds).

(i) For j = 3, . . . , n and i = 1, . . . , j − 2, the forgery thresholds satisfy ρi 6 ρi+1,

with equality if, and only if, qi
pi

= qi+1

pi+1
.

(ii) For j = 2, . . . , n, the suppression thresholds satisfy σj 6 σj−1, with equality if,

and only if,
qj
pj

=
qj−1

pj−1
.

(iii) Further, for any j = 2, . . . , n and any σ ∈ (σj, σj−1], the critical forgery-sup-

pression threshold satisfies ρj(σ) > ρj−1, with equality if, and only if, σ = σj−1.

Proof: The first statement can be shown from the definition of the forgery thresh-

olds by routine algebraic manipulation and under the labeling assumption (7.3). To

this end, it is helpful to note that

Pi
qi+1

pi+1

−Qi = Pi+1
qi+1

pi+1

−Qi+1.

The second statement can be shown analogously, observing that

Q̄j − P̄j
qj−1

pj−1

= Q̄j−1 − P̄j−1
qj−1

pj−1

.

For the last statement, use the definitions of the forgery and the suppression thresh-

olds to note that the condition ρj(σ) > ρj−1 is equivalent to σ 6 σj−1. �

Prior to investigate a closed-form solution to the problem (7.1), we introduce some

definitions for ease of presentation. For i = 1, . . . , j − 1 and j = 2, . . . , n, define

q̃ =
(
Qi , qi+1 , . . . , qj−1 , Q̄j

)
,

r̃ =
(
ρ , 0 , . . . , 0 , 0

)
,

s̃ =
(

0 , 0 , . . . , 0 , σ
)
,

p̃ =
(
Pi , pi+1 , . . . , pj−1 , P̄j

)
,

where q̃ and p̃ are distributions in the probability simplex of j − i + 1 dimensions,

and r̃ and s̃ are tuples of the same dimension that represent a forgery strategy and a

suppression strategy, respectively. Particularly, note that the indexes i = 1 and j = n

lead to q̃ = q and p̃ = p.
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Theorem 7.3. Let ∂C be the boundary of C , and cl C̄ the closure of C̄ .

(i) ∂C ⊂ C and

∂C = {(ρ, σ) : ρ = ρj(σ), σ ∈ [σj, σj−1], for j = 2, . . . , n}.

(ii) For any (ρ, σ) ∈ cl C̄ , either ρ ∈ [ρi, ρi+1] for i = 1 or ρ ∈ (ρi, ρi+1] for some

i = 2, . . . , j − 1, and either σ ∈ [σj, σj−1] for j = n or σ ∈ (σj, σj−1] for some

j = 2, . . . , n − 1. Then, for the corresponding indexes i, j, the optimal forgery

and suppression strategies are

r∗k =

{
pk
Pi

(Qi + ρ)− qk , k = 1, . . . , i

0 , k = i+ 1, . . . , n
,

s∗k =

{
0 , k = 1, . . . , j − 1

qk − pk
P̄j

(Q̄j − σ), k = j, . . . , n
,

and the corresponding, minimum KL divergence yields the privacy-forgery-sup-

pression function

R(ρ, σ) = D

(
q̃ + r̃ − s̃
1 + ρ− σ

∥∥∥∥ p̃) .
Proof: The proof is structured as follows. We begin by showing that the op-

timization problem (7.1) may be construed as a particular case of that stated in

Lemma 7.1. Accordingly, we apply this lemma, namely the cases (ii) and (iii), to

obtain the optimal forgery and suppression strategies. The application of the former

case allows us to derive the solution for (ρ, σ) ∈ C̄ . The latter case enables us, first,

to confirm that this solution is also valid on ∂C̄ , and secondly, to prove statement (i).

Lastly, we complete the proof of (ii) by expressing function (7.1) in terms of the

optimal apparent distribution.

Use the definition of KL divergence to write the objective function of the optimiza-

tion problem as D(t ‖ p) =
∑

k tk log tk
pk

, with t = q+r−s
1+ρ−σ . Observe that the functions

fk(rk, sk) = tk log tk
pk

are twice differentiable on {(rk, sk) : qk + rk − sk > 0}. Denote
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by hk the derivative of fk with respect to rk,

hk(rk, sk) =
1

1 + ρ− σ

(
log

qk + rk − sk
(1 + ρ− σ)pk

+ 1

)
. (7.10)

Then, note that the functions fk and hk satisfy the assumptions of Lemma 7.1, and

that the inequality and equality constraints of function (7.1) coincide with those in

the lemma. This exposes the structure of the optimization problem as a special case

of the resource allocation lemma.

Before proceeding any further, notice from (7.10) that hk(rk, 0) is a strictly in-

creasing function of rk and hence invertible. Note also that, according to the lemma,

the solutions are completely determined by the inverse of this function, which is

denoted by h−1
k and yields

h−1
k (φ) = pk(1 + ρ− σ)2(1+ρ−σ)φ−1 − qk.

Finally, observe that the assumption h1(0, 0) 6 · · · 6 hn(0, 0) in the lemma is equiv-

alent to the labeling assumption (7.3), as hk(0, 0) is a strictly increasing function

of qk
pk

.

Next we apply Lemma 7.1 (ii), where it is assumed the condition ψ < ω. We start

with case (ii) (a). On account of part (i) of the lemma, the optimal forgery strategy

must satisfy

ρ =
i∑

k=1

h−1
k (ψ) = Pi(1 + ρ− σ)2(1+ρ−σ)ψ−1 −Qi,

or equivalently,

ψ =
1

1 + ρ− σ

(
log

Qi + ρ

(1 + ρ− σ)Pi
+ 1

)
.

Analogously for the suppression strategy,

σ = −
n∑
k=j

h−1
k (ω) = Q̄j − P̄j(1 + ρ− σ)2(1+ρ−σ)ω−1,
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and therefore

ω =
1

1 + ρ− σ

(
log

Q̄j − σ
(1 + ρ− σ)P̄j

+ 1

)
.

Then it suffices to substitute the expressions of ψ and ω into the function h−1
k , to

obtain the nonzero optimal solutions claimed in assertion (ii) of the theorem.

Now we proceed to confirm the interval of values of ρ and σ where these solutions

are defined. In the case under study, ψ and ω satisfy hi(0, 0) < ψ 6 hi+1(0, 0) for

some i = 1, . . . , j − 1 and hj−1(0, 0) 6 ω < hj(0, 0) for some j = 2, . . . , n. We split

the discussion into two cases, namely i < j − 1 and i = j − 1.

Assume the former case. Observe that the condition hi(0, 0) < ψ is equivalent to

1

1 + ρ− σ

(
log

qi
(1 + ρ− σ)pi

+ 1

)
<

1

1 + ρ− σ

(
log

Qi + ρ

(1 + ρ− σ)Pi
+ 1

)
and finally, after routine algebraic manipulation, to

ρ > Pi
qi
pi
−Qi.

Similarly, the upper-bound condition ψ 6 hi+1(0, 0) leads to

ρ 6 Pi
qi+1

pi+1

−Qi.

Hence, the intervals resulting from imposing hi(0, 0) < ψ 6 hi+1(0, 0) are of the form

(ρi, ρi+1]. The monotonicity of the thresholds ρi, demonstrated in Proposition 7.2,

guarantees that these intervals are contiguous and nonoverlapping. In an analogous

manner, it can be shown that the condition hj−1(0, 0) 6 ω < hj(0, 0) leads to intervals

of the form (σj, σj−1], also contiguous and nonoverlapping by virtue of Proposition 7.2.

Now assume the latter case, where hi(0, 0) < ψ < ω < hj(0, 0) with i = j− 1. On

the one hand, the assumption hj−1(0, 0) < ψ is, as shown above, equivalent to the

condition ρ > ρj−1. On the other hand, straightforward manipulation allows us to

write the inequality ψ < ω as

ρ <
Pj−1

P̄j
(Q̄j − σ)−Qj−1.



232 CHAPTER 7. FORGERY AND SUPPRESSION OF RATINGS IN RECOM. SYST.

Combining these two bounds on ψ, we obtain the interval (ρj−1, ρcrit(σ)). With this

last interval, we complete the range of validity of the solution for the case (ii) (a) in

the lemma. Ultimately, it is easy to verify that, in those intervals of ρ and σ, the

optimal apparent profile t = q+r−s
1+ρ−σ does not coincide with the population’s profile p.

In consequence, D(t ‖ p) > 0.

Next, we turn to case (ii) (b) of the lemma. Here, the assumption hn(0, 0) 6 ω

leads to σ = 0, or equivalently, to the solution s = 0. Note that, precisely, this

is the solution given in the theorem for σ = σj with j = n. On the other hand,

the application of the condition
∑i

k=1 rk = ρ results in the same optimal forgery

strategy obtained in case (ii) (a). Proceeding analogously as in this case, from the

assumptions on ψ we derive the intervals of values of ρ where the solution is defined:

(ρi, ρi+1] for i = 1, . . . , n− 1 and (ρi, ρi+1) for i = n. Given these intervals, it is then

straightforward to check that R(ρ, 0) = 0 if, and only if, ρ > ρn. This provides us

with the pairs (ρ, 0) that belong to cl C̄ .

In case (ii) (c), the condition ψ 6 h1(0, 0) means that ρ = 0, or equivalently,

r = 0. Observe that this is the solution stated in the theorem for ρ = ρi with

i = 1. Then again, the condition
∑n

k=j sk = σ leads to the same optimal suppression

strategy found in case (ii) (a). From the assumptions in the lemma on ω, we obtain

the intervals (σj, σj−1] for j = 2, . . . , n and (σj, σj−1) for j = 1. Then, we verify that

R(0, σ) = 0 if, and only if, σ > σ1, from which it follows the pairs (0, σ) that belong

to cl C̄ .

Finally, the case (ii) (d) in the lemma, in which hn(0, 0) 6 ω and ψ 6 h1(0, 0),

corresponds to the trivial case σ = σj for j = n and ρ = ρi for i = 1, that is, the

solution r = s = 0.

After having applied Lemma 7.1 (ii) to function (7.1), now we proceed with

case (iii) (a). In applying it, we shall show that the solution claimed in the theo-

rem is also valid for the extreme values of the intervals in case (ii) (a), specifically

the set

{(ρ, σ) : ρ = ρcrit(σ), σ ∈ (σj, σj−1] for j = 3, . . . , n, and σ ∈ (σj, σj−1) for j = 2}.
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Assume the case (iii) (a) in which hi(0, 0) < ψ = ω < hj(0, 0) for some j = 2, . . . , n

and i = j − 1. Under this assumption, the equality constraint
∑i

k=1 rk = ρ in the

lemma is equivalent, after simple algebraic manipulation, to

ψ =
1

1 + ρ− σ

(
log

Qj−1 + ρ− ζ
(1 + ρ− σ)Pj−1

+ 1

)
, (7.11)

where we define ζ =
∑n

k=1 αk. Similarly, the equality constraint
∑n

k=j sk = σ becomes

ω =
1

1 + ρ− σ

(
log

Q̄j − σ + ζ

(1 + ρ− σ)P̄j
+ 1

)
.

But ψ = ω, therefore
Qj−1 + ρ− ζ

Pj−1

=
Q̄j − σ + ζ

P̄j
,

or equivalently,

ρ = ρcrit(σ) +
ζ

P̄j
.

In short, the assumption ψ = ω imposes the condition (ρ, σ) � (ρcrit(σ), σ) for some

nonnegative sequence α1, . . . , αn satisfying the above equality. Next we examine, for

a given σ, these two possibilities, ρ = ρcrit(σ) and ρ > ρcrit(σ).

Consider the former possibility and observe that ρ = ρcrit(σ) if, and only if, αk = 0

for k = 1, . . . , n. According to the lemma, the nonzero optimal solutions yield

rk = h−1
k (ψ) = pk

Qj−1 + ρcrit(σ)

Pj−1

− qk

= pk(1 + ρcrit(σ)− σ)− qk

for k = 1, . . . , j − 1, and

sk = −h−1
k (ψ) = qk − pk(1 + ρcrit(σ)− σ)

for k = j, . . . , n, that is, the solutions obtained after applying case (ii) (a), but

evaluated at ρ = ρcrit(σ). From these expression for r and s, it is immediate to verify

then that t = p and thus R(ρ, σ) = 0.
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population’s profile p
actual user profile q optimal apparent profile t*

optimal forgery 
strategy r*

optimal suppression 
strategy s*

population’s profile p

Figure 7.4: A user’s item distribution is perturbed according to two optimal forgery and suppression
strategies, in order for the resulting profile to minimize the KL divergence with respect to the
population’s distribution.

Now we assume the latter possibility, i.e., (ρ, σ) � (ρcrit(σ), σ), to show that the

privacy-risk function also vanishes for these values of ρ and σ. On account of part

(iii) (a) of the lemma and (7.11), we derive the optimal forgery and suppression

strategies

rk = pk(1 + ρcrit(σ)− σ) +
pk ζ

P̄j
− qk + αk

and sk = αk for k = 1, . . . , j − 1, and

sk = qk − pk(1 + ρcrit(σ)− σ)− pk ζ

P̄j
+ αk

and rk = αk for k = j, . . . , n. Then, we substitute r and s back into the apparent

profile t and check that D(t ‖ p) = 0. In doing so, we determine the pairs (ρ, σ) � 0

that belong to cl C̄ , and finally obtain the expression for the boundary of the critical-

privacy region claimed in statement (i) of the theorem.

To conclude the proof, it remains only to write the privacy-risk function R(ρ, σ) =∑n
k=1 tk log tk

pk
in terms of the optimal apparent distribution. With this aim, we split

the summation into three parts. The first part, corresponding to tk = pk(Qi+ρ)
Pi(1+ρ−σ)

, is

i∑
k=1

tk log
tk
pk

=
Qi + ρ

1 + ρ− σ log
Qi + ρ

(1 + ρ− σ)Pi
,
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where we leverage on the fact that tk
pk

does not depend on k. The second part of the

sum, corresponding to tk = qk
1+ρ−σ , yields

j−1∑
k=i+1

tk log
tk
pk

=

j−1∑
k=i+1

qk
1 + ρ− σ log

qk
(1 + ρ− σ)pk

.

The last part, corresponding to tk =
pk(Q̄j−σ)

P̄j(1+ρ−σ)
, is

n∑
k=j

tk log
tk
pk

=
Q̄j − σ

1 + ρ− σ log
Q̄j − σ

(1 + ρ− σ)P̄j
,

where we also note that tk
pk

does not depend on k either. Now, it is straightforward

to identify the terms of R(ρ, σ) as the KL divergence between the distributions(
Qi + ρ

1 + ρ− σ ,
qi+1

1 + ρ− σ , . . . ,
qj−1

1 + ρ− σ ,
Q̄j − σ

1 + ρ− σ

)
and (

Pi, pi+1, . . . , pj−1, P̄j
)
,

precisely the distributions stated in the theorem. �

In light of Theorem 7.3, we would like to remark the intuitive principle that both

the optimal forgery and suppression strategies follow. On the one hand, the forgery

strategy suggests adding ratings to those categories with a low ratio qk
pk

, that is, to

those in which the user’s interest is considerably lower than the population’s. On

the other hand, the suppression strategy recommends eliminating ratings from those

categories where the ratio qk
pk

is high, i.e., where the interest of the user exceeds that of

the population. Further, we would like to highlight that the solution provided in the

theorem is confined to the closure of the noncritical-privacy region. The reason is that

the interior of the critical-privacy region is of no interest—the privacy risk attains its

minimum value at the boundary of C̄ and therefore any (ρ, σ) � (ρcrit(σ), σ) cannot

lower said privacy risk.
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Another straightforward consequence of Theorem 7.3 is the role of the forgery and

the suppression thresholds. In particular, we identify ρi as the forgery rate beyond

which the components of rk for k = 1, . . . , i become positive. A similar reasoning

applies to σj, which indicates the suppression rate beyond which the components of

sk for k = j, . . . , n are positive. In a nutshell, these thresholds determine the number

of nonzero components of the optimal strategies.

Also, from this theorem we deduce that the perturbation of the user profile does

not only affect those categories where either rk > 0 or sk > 0. In fact, since we

are dealing with relative frequencies, the components of the apparent distribution tk

belonging to the categories k = i + 1, . . . , j − 1 are normalized by 1
1+ρ−σ . Fig. 7.4

illustrates these three conclusions by means of a simple example with n = 5 categories

of interest.

In this example we consider a user who is disposed to submit a percentage of

false ratings ρ ∈ (ρ2, ρ3], and to refrain from sending a fraction of genuine ratings

σ ∈ (σ4, σ3]. Given these rates, the optimal forgery strategy recommends that the

user forge ratings belonging to the categories 1 and 2, where clearly there is a lack

of interest, compared to the reference distribution. On the contrary, the suppression

strategy specifies that the user eliminate ratings from the categories 4 and 5, that

is, from those categories where they show too much interest, again compared to

the population’s profile. In adopting these two strategies, the apparent user profile

approaches the population’s distribution, especially in those components where the

ratio qk
pk

deviates significantly from 1. Finally, the component of the apparent profile

t3, which is not directly affected by the forgery and the suppression strategies, gets

closer to p3 as a result of the aforementioned normalization.

In the following subsections, we shall analyze a number of important consequences

of Theorem 7.3.

7.6.2 Orthogonality, Continuity and Proportionality

In this subsection we study some interesting properties of the closed-form solution

obtained in Sec. 7.6.1. Specifically, we investigate the orthogonality and continuity of

the optimal forgery and suppression strategies, and then establish a proportionality
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relationship between the optimal apparent user profile and the population’s distribu-

tion.

Corollary 7.4 (Orthogonality and Continuity).

(i) For any (ρ, σ) ∈ cl C̄ , the optimal forgery and suppression strategies satisfy

r∗k s
∗
k = 0 for k = 1, . . . , n.

(ii) The components of r∗ and s∗, interpreted as functions of ρ and σ respectively,

are continuous on cl C̄ .

Proof: The proof of (i) is trivial from Theorem 7.3. To prove statement (ii) we

also resort to this theorem. According to it, each component r∗k may be regarded as a

piecewise function of ρ defined on the contiguous, nonoverlapping intervals [ρi, ρi+1]

for i = 1 and (ρi, ρi+1] for i = 2, . . . , j − 1. A direct verification shows that, for any

k = j, . . . , n, the component r∗k is identically zero on the whole interval [ρ1, ρj] and

hence continuous. For any k = 1, . . . , j − 1, we immediately check the continuity of

r∗k on the interior of each of the intervals parameterized by i. Now we examine the

endpoints of such intervals. The continuity at the extreme points ρ1 and ρj is verified

straightforwardly as the intervals are closed at these points. Then, we check that the

limit at the remaining endpoints ρi exists, since

lim
ρ→ρ−i

r∗k(ρ) =
pk
Pi−1

(Qi−1 + ρi)− qk

=
pk
Pi

(Qi + ρi)− qk = lim
ρ→ρ+i

r∗k(ρ),

for i = 2, . . . , j− 1. Because each limit coincides with the corresponding value r∗k(ρi),

we prove the continuity of the components r1, . . . , rj−1. The proof of the continuity

of the components of s∗ is analogous to that of r∗. �

The orthogonality of the optimal forgery and suppression strategies, in the sense

indicated by Corollary 7.4 (i), conforms to intuition—it would not make any sense to

submit false ratings to items of a particular category and, at the same time, eliminate

genuine ratings from this category. This intuitive result is illustrated in Fig. 7.4. The

second part of Corollary 7.4 is applied to show our next result, Proposition 7.5.
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Proposition 7.5 (Proportionality). Define the piecewise functions φ(ρ, σ) = Qi+ρ
(1+ρ−σ)Pi

and χ(ρ, σ) =
Q̄j−σ

(1+ρ−σ)P̄j
on the intervals [σj, σj−1] for j = 2, . . . , n and [ρi, ρi+1] for

i = 1, . . . , j − 1.

(i) For any j = 2, . . . , n and i = 1, . . . , j − 1, and for any σ ∈ [σj, σj−1] and

ρ ∈ [ρi, ρi+1], the optimal apparent profile t∗ and the population’s distribution p

satisfy
t∗1
p1

= · · · = t∗i
pi

= φ(ρ, σ),

t∗j
pj

= · · · = t∗n
pn

= χ(ρ, σ),

and

φ(ρ, σ) 6
t∗i+1

pi+1

6 · · · 6 t∗j−1

pj−1

6 χ(ρ, σ).

(ii) The function φ is continuous and strictly increasing in each of its arguments,

and satisfies φ(ρ, σ) 6 1, with equality if, and only if, (ρ, σ) = (ρj(σ), σ).

(iii) The function χ is continuous and strictly decreasing in each of its arguments,

and satisfies χ(ρ, σ) > 1, with equality if, and only if, (ρ, σ) = (ρj(σ), σ).

Proof: The continuity of the components of t∗ on cl C̄ follows from Corol-

lary 7.4 (ii). This allows us to write the intervals in Theorem 7.3 as [ρi, ρi+1] and

[σj, σj−1], in lieu of (ρi, ρi+1] and (σj, σj−1], respectively. From the expressions of r∗k

and s∗k in the theorem, it is immediate to identify the ratios
t∗k
pk

as either φ(ρ, σ) or

χ(ρ, σ). The inner inequalities in statement (i) of this proposition also follow im-

mediately from the labeling assumption (7.3). Direct manipulation shows that the

outer inequalities
t∗i
pi
6

t∗i+1

pi+1
and

t∗j−1

pj−1
6

t∗j
pj

are equivalent to ρ 6 ρi+1 and σ 6 σj−1,

respectively. This proves (i).

Next, we proceed to demonstrate the strict monotonicity of φ. A simple calculation

shows that
∂φ

∂ρ
=

Q̄i+1 − σ
(1 + ρ− σ)2Pi

.

To prove that ∂φ
∂ρ
> 0, it is sufficient to verify that Q̄j > σj−1, or equivalently, that

P̄j
qj−1

pj−1
> 0. Then, by the positivity assumption (7.2), we immediately see that this
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 t*  /p 
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Figure 7.5: Proportionality relationship between the optimal user’s apparent item distribution and

the population’s profile. In this figure we show the ratios
t∗k
pk

of the example illustrated in Fig. 7.4,

where the number of categories is n = 5, ρ ∈ [ρ2, ρ3] and σ ∈ [σ4, σ3].

latter inequality holds for any j = 2, . . . , n. The strict monotonicity of φ in σ also

follows from assumption (7.2).

To complete (ii), we write the condition φ(ρ, σ) 6 1 as

ρ 6
(1− σ)Pi −Qi

P̄i+1

.

A routine computation shows that the equality holds for ρj(σ) and any σ ∈ [σj, σj−1]

with j = 2, . . . , n. Therefore, for any fixed σ, the inequality holds strictly for any

other ρ. The converse, that is, φ(ρ, σ) = 1 implies (ρ, σ) = (ρj(σ), σ), is immediate

from the strict monotonicity of φ. The proof of statement (iii) proceeds along the

same lines of that of (ii) and is omitted. �

Our previous result tells us how perturbation operates. According to Proposi-

tion 7.5, the optimal strategies perturb the user profile in such a manner that, in

those categories with the lowest and highest ratios qk
pk

, the apparent profile becomes

proportional to the population’s distribution. More precisely, the common ratio
t∗k
pk

in-

creases with both ρ and σ in those categories affected by forgery, that is, k = 1, . . . , i.

Exactly the opposite happens in those categories affected by suppression, where the

common ratio
t∗j
pj

decreases with both rates. This tendency continues until ρ = ρcrit(σ),

at which point t∗ = p. Fig. 7.5 illustrates this proportionality property in the case of

the example depicted in Fig. 7.4.
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7.6.3 Critical-Privacy Region

One of the results of Theorem 7.3 is that the boundary of the critical-privacy region is

determined by the critical forgery-suppression threshold ρj(σ), which we also denote

by ρcrit(σ) to highlight this fact. The following proposition leverages on this result and

characterizes said region. In particular, Proposition 7.6 first examines some properties

of this threshold and then investigates the convexity of the critical-privacy region.

Proposition 7.6 (Convexity of the Critical-Privacy Region).

(i) ρj is a convex, piecewise linear function of σ ∈ [σj, σj−1] for j = 2, . . . , n.

(ii) C is convex.

Proof: From Theorem 7.3, it is routine to check the continuity of ρj on [σn, σ1].

To show its convexity, we conveniently write this function as ρj(σ) = mj σ+bj, where

mj = −Pj−1

P̄j
and bj =

Pj−1−Qj−1

P̄j
. Next, we prove that the slopes satisfy mj < mj−1

for all j = 3, . . . , n. We proceed by contradiction, assuming that mj > mj−1. Note

that this inequality is equivalent to Pj−1P̄j−1 6 P̄j − P̄jP̄j−1 and, after algebraic

simplification, to pj−1 6 0. This contradicts the positivity assumption (7.2), which, in

turn, implies that mj < 0 for all j = 2, . . . , n. Therefore, since ρj is a piecewise linear

function defined by the strictly increasing sequence of negative slopes {mn, . . . ,m2},
we can conclude that ρj is convex. This proves statement (i). The second statement

follows from the first one. As ρj is convex, so is its epigraph, i.e., the critical-privacy

region. �

The conclusions drawn from Proposition 7.6 are illustrated in Fig. 7.6. In this

figure we represent the critical and noncritical-privacy regions for n = 5 categories of

interest; the distributions q and p assumed in this conceptual example are different

from those considered in Figs. 7.4 and 7.5. That said, the figure in question shows

a straightforward consequence of our previous proposition—the noncritical-privacy

region is nonconvex.

In this illustrative example, the sequences of forgery thresholds {ρ1 . . . , ρ5} and

suppression thresholds {σ5, . . . , σ1} are strictly increasing. By Proposition 7.2, we

can conclude then that the inequalities of the labeling assumption (7.3) hold strictly.

Related to these thresholds is also the number of nonzero components of the optimal
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Figure 7.6: Conceptual plot of the critical and noncritical privacy regions for n = 5 categories.

strategies, as follows from Theorem 7.3. Fig. 7.6 shows the sets of pairs (ρ, σ) where

the number of nonzero components of r∗ and s∗ is fixed. Thus, in the triangular area

shown darker, corresponding to the Cartesian product of the intervals [ρ3, ρ4] and

[σ4, σ3], the solutions r∗ and s∗ have i = 3 and n − j + 1 = 2 nonzero components,

respectively.

7.6.4 Case of Low Forgery and Suppression

This subsection characterizes the privacy-forgery-suppression function in the special

case when ρ, σ ' 0.

Proposition 7.7 (Low Rates of Forgery and Suppression). Assume the nontrivial

case in which q 6= p. Then, there exist two indexes i, j such that 0 = ρ1 = · · · =

ρi < ρi+1 and 0 = σn = · · · = σj < σj−1. For any ρ ∈ [0, ρi+1] and σ ∈ [0, σj−1], the

number of nonzero components of the optimal forgery and suppression strategies is i

and n − j + 1, respectively. Further, the gradient of the privacy-forgery-suppression

function at the origin is

∇R(0, 0) =

(
∂R(0,0)
∂ρ

∂R(0,0)
∂σ

)
=

(
log q1

p1
−D(q ‖ p)

D(q ‖ p)− log qn
pn

)
.

Proof: The existence of the indexes i and j is guaranteed by the assumption that

q 6= p. The number of nonzero components of r∗ and s∗ is trivial from Theorem 7.3.
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In view of this theorem, for any ρ ∈ [0, ρi+1] and σ ∈ [0, σj−1], we have

R(ρ, σ) = D

(
q̃ + ρ(1, 0, . . . , 0)− σ(0, . . . , 0, 1)

1 + ρ− σ

∥∥∥∥ p̃) .
The continuity of the components of r∗ and s∗ proven in Corollary 7.4 (ii) ensures

the continuity of the privacy-forgery-suppression function on C̄ . It is routine to check

its differentiability in this region and to obtain its derivative with respect to σ at the

origin,

∂R(0, 0)

∂σ
= Qi log

Qi P̄j
Pi Q̄j

+

j−1∑
k=i+1

qk log
P̄j qk
Q̄j pk

.

On account of Proposition 7.2, the conditions ρ1 = · · · = ρi and σj = · · · = σn imply

q1

p1

= · · · = qi
pi

=
Qi

Pi

and
qj
pj

= · · · = qn
pn

=
Q̄j

P̄j
.

Therefore,

∂R(0, 0)

∂σ
=

j−1∑
k=1

qk log
qk
pk
−Qj−1 log

qn
pn

= D(q ‖ p)− log
qn
pn
.

The derivative of R with respect to ρ at ρ = σ = 0 follows analogously. �

Next, we shall derive an expression for the relative decrement of the privacy-risk

function at ρ, σ ' 0. To this end, define the forgery relative decrement factor

δρ = −
∂R(0,0)
∂ρ

R(0, 0)
= 1−

log q1
p1

D(q ‖ p) ,

and the suppression relative decrement factor

δσ = −
∂R(0,0)
∂σ

R(0, 0)
=

log qn
pn

D(q ‖ p) − 1.
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By dint of Proposition 7.7, the first-order Taylor approximation of function (7.1)

around ρ = σ = 0 yields

R(ρ, σ) ' D(q ‖ p) + ρ

(
log

q1

p1

−D(q ‖ p)
)

+ σ

(
D(q ‖ p)− log

qn
pn

)
,

or more compactly, in terms of the decrement factors,

D(q ‖ p)−R(ρ, σ)

D(q ‖ p) ' δρ ρ+ δσ σ.

In words, the minimum and maximum ratios qk
pk

characterize the relative reduction

in privacy risk. The following result, Proposition 7.8, establishes a bound on these

relative decrement factors.

Proposition 7.8 (Relative Decrement Factors). In the nontrivial case when q 6= p,

the relative decrement factors satisfy δρ > 1 and δσ > 0.

Proof: Observe that the statement δρ > 1 is equivalent to the condition q1 < p1.

We prove this by contradiction. Suppose that q1 > p1. By the labeling assump-

tion (7.3), it follows that qk > pk for all k, which leads to the contradiction that

1 =
∑
qk >

∑
pk = 1. Now assume that q1 = p1. Since q 6= p, there must exist an

index i such that
q1

p1

= · · · = qi−1

pi−1

<
qi
pi
6 · · · 6 qn

pn
.

But this implies that

1−
i−1∑
k=1

qk =
n∑
k=i

qk >

n∑
k=i

pk = 1−
i−1∑
k=1

qk,

a contradiction. This proves the first part of the proposition.

For the second part, note that the statement δσ > 0 is equivalent to

q1 log
q1

p1

+ · · ·+ qn log
qn
pn

< log
qn
pn
,
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and, after algebraic manipulation, to

q1 log
q1

p1

pn
qn

+ · · ·+ qn−1 log
qn−1

pn−1

pn
qn

< 0.

The positivity and labeling assumptions (7.2), (7.3) ensure that all terms in the sum

are nonpositive. However, the additional assumption q 6= p implies that q1
p1
< qn

pn
,

which in turn implies that the first term is negative and so is, consequently, the entire

summation. �

Conceptually, the bound on δρ tells us that the relative decrement in privacy risk

is greater than the forgery rate introduced. This is under the assumption that q 6= p

and at low rates of forgery and suppression. The bound on δσ, however, is looser than

the previous one and just ensures that an increase in the suppression rate always

leads to a decrease in privacy risk, as one would expect.

7.6.5 Pure Strategies

In the previous subsections we investigated the forgery and the suppression of ratings

as a mixed strategy that users may adopt to enhance their privacy. In this subsection

we contemplate the case in which users may be reluctant to use these two mechanisms

in conjunction; and as a consequence, they may opt for a pure strategy consisting

in the application of either forgery or suppression. In this case, it would be useful

to determine which is the most appropriate technique in terms of the privacy-utility

trade-off posed. Our next result, Corollary 7.9, provides some insight on this, under

the assumption that, from the user’s perspective, the impact on utility due to forgery

is equivalent to that caused by the effect of suppression.

Before showing this result, observe from Theorem 7.3 that ρn = qn
pn
− 1 is the

minimum forgery rate such thatR(ρ, 0) = 0. Analogously, σ1 = 1− q1
p1

is the minimum

suppression rate satisfying R(0, σ) = 0. In other words, ρn and σ1 are the critical

rates of the pure forgery and suppression strategies, respectively. Further, note that

σ1 < σ0 = 1, on account of the positivity assumption (7.2). However, ρn > 1 if, and

only if, qn
pn
> 2.

Corollary 7.9 (Pure Strategies). Consider the nontrivial case when q 6= p.
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(i) The critical rates of the pure forgery and suppression strategies satisfy ρn < σ1

if, and only if,
q1/p1 + qn/pn

2
< 1.

(ii) The forgery and the suppression relative decrement factors satisfy δρ > δσ if,

and only if, √
q1

p1

qn
pn

< 2D(q ‖ p).

Proof: Both statements are immediate from the definitions of ρn and σ1 on the

one hand, and δρ and δσ on the other. �

In conceptual terms, the condition ρn < σ1 means that the pure forgery strategy is

the most appropriate mechanism in terms of causing the minimum distortion to attain

the critical-privacy region. On the other hand, the condition δρ > δσ implies that,

at low rates, the pure forgery strategy offers better privacy protection than the pure

suppression strategy does. Therefore, the conclusion that follows from Corollary 7.9

is that, together with the quantity D(q ‖ p), the arithmetic and geometric mean of

the ratios q1
p1

and qn
pn

determine which strategy to choose.

Another interesting remark is the duality of these two ratios q1
p1

and qn
pn

. The former

characterizes the minimum rate for the pure suppression strategy to reach the critical-

privacy region and, at the same time, it establishes the privacy gain at low forgery

rates. Conversely, the latter ratio defines the critical rate of the pure forgery strategy

and determines the relative decrement in privacy risk at low suppression rates.

Lastly, we would like to establish a connection between our work and that of [95],

where the pure forgery strategy is investigated in the context of information retrieval.

In the cited work, the optimal trade-off between privacy risk and query redundancy

is modeled by the function

R(ρ′) = min
r′

D((1− ρ′)q + ρ′ r′ ‖ p),

where ρ′ is the ratio of forged queries to total number of queries, and r′ is the dis-

tribution of the user’s forged queries. Accordingly, it can be shown that ρ′ = ρ
1+ρ

and that R(ρ, 0) = 1
ln 2
R(ρ′). Similarly, we may formulate the problem of optimal
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Figure 7.7: Contour lines of the privacy-forgery-suppression function, the corresponding forgery and
suppression thresholds, and the critical and noncritical privacy regions.

tag suppression as a particular case of the optimization problem investigated in this

chapter. Under the assumption that the population’s profile is uniform, it can be

proven that R(0, σ) = log n − 1
ln 2
P(σ). In short, our formulation of the problem of

optimal forgery and suppression of ratings encompasses, as particular cases, the pure

forgery case of [95] and the pure suppression problem examined in Chapter 5.

7.6.6 Numerical Example

This subsection presents a numerical example that illustrates the theoretical anal-

ysis conducted in the previous subsections. Later in Sec. 7.7 we shall evaluate the

effectiveness of our approach in a real scenario, namely in the movie recommendation

system Movielens.

In this example we assume n = 3 categories of interests. Although the example

shown here is synthetic, these three categories could very well represent interests

across topics such as technology, sports and beauty. Accordingly, we suppose that
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the user’s item distribution is

q = (0.130, 0.440, 0.430),

and the population’s,

p = (0.380, 0.390, 0.230).

Note that these distributions satisfy the positivity and labeling assumptions (7.2), (7.3).

From Sec. 7.6.1, we easily obtain the forgery thresholds ρ1 = 0, ρ2 ' 0.299 and

ρ3 ' 0.870 on the one hand, and on the other the suppression thresholds σ3 = 0,

σ2 ' 0.171 and σ1 ' 0.658. The thresholds ρ3 and σ1 are the critical rates of the pure

strategies. If we are to reach the critical-privacy region and do not have any preference

for either forgery or suppression, the fact that ρ3 > σ1 leads us to opt for suppression

as pure strategy. However, the geometric mean of q1
p1

and q3
p3

is approximately 0.799,

which is lower than 2D(q ‖ p) ' 1.20. On account of Corollary 7.9, this means that

the pure forgery strategy contributes to a greater reduction in privacy risk at low

rates than suppression does. In fact, the gradient of the privacy-forgery-suppression

function at the origin is ∇R(0, 0)T ' (−1.81,−0.639), by virtue of Proposition 7.7.

Fig. 7.7 shows the contour lines of this function, computed analytically from The-

orem 7.3 and numerically (e). The region plotted in gray shades corresponds to the

noncritical-privacy region C̄ . The initial privacy risk is R(0, 0) ' 0.263. The white

area represents the critical-privacy region C , where the apparent user profile coincides

with the population’s distribution and thus the privacy risk vanishes. In accordance

with Proposition 7.6, we observe that the critical forgery-suppression threshold ρcrit(σ)

is convex and so is C .

Another interesting observation arising from Fig. 7.7 is the synergistic effect of

combining forgery and suppression. Just as an example, in the case when ρ = ρ2

and σ = σ2, we note that R(ρ, σ) is lower than R(ρ + σ, 0) and R(0, ρ + σ). Put

differently, forgery and suppression provide better privacy for the same total rate than

just forgery or suppression alone. This is true for this particular example, but it is

(e)The numerical method chosen is the interior-point algorithm [75, 194–196] implemented by the
Matlab R2012b function fmincon.
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(a) ρ = 0.050, σ = 0.100, ρ/ρcrit(σ) '
0.093, R(ρ, σ) ' 0.131, R(ρ, σ)/R0 '
0.498, r∗ = (0.050, 0, 0), s∗ =
(0, 0, 0.100), t∗ ' (0.189, 0.463, 0.347).
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(b) ρ = 0.100, σ = 0.200,
ρ/ρcrit(σ) ' 0.356, R(ρ, σ) '
0.050, R(ρ, σ)/R0 ' 0.190,
r∗ = (0.100, 0, 0), s∗ ' (0, 0.019, 0.181),
t∗ ' (0.256, 0.468, 0.276).
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(c) ρ ' 0.219, σ = 0.300, ρ/ρcrit(σ) =
1, R(ρ, σ) = 0, R(ρ, σ)/R0 = 0, r∗ '
(0.219, 0, 0), s∗ ' (0, 0.081, 0.219), t∗ =
p.

q

t∗ p
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(001)

(d) ρ = 0.300, σ = 0.300, ρ/ρcrit(σ) '
1.368, R(ρ, σ) = 0, R(ρ, σ)/R0 =
0, r∗ ' (0.260, 0.021, 0.019), s∗ =
(0.010, 0.071, 0.219), t∗ = p.

Figure 7.8: Probability simplices showing, for several interesting values of ρ and σ, the user’s actual
profile q = (0.130, 0.440, 0.430), the population’s distribution p = (0.380, 0.390, 0.230), the optimal
apparent distribution t∗ and the set of feasible apparent distributions.

not a general rule. What is always true, however, is that the mixed strategy cannot

be worse than the pure strategies. This is because the feasible set of the problem

minimizing R(ρ, σ) subject to the constraint ρ + σ = τ includes the extreme values

ρ = τ and σ = τ , that is, the cases corresponding to the pure strategies.

Next, we examine the optimal apparent item distribution for different values of

ρ and σ. For this purpose, the user’s genuine distribution q, the population’s dis-

tribution p and the optimal apparent distribution t∗ are depicted in the probability
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simplices shown in Fig. 7.8. In each simplex, we also represent the contour lines of the

KL divergence D(· ‖ p) between every distribution in the simplex and p. Further, we

plot the set of feasible apparent user distributions, not necessarily optimal, for four

different combinations of ρ and σ; in any of these cases, the set takes the form of a

hexagon. Having said this, now we turn our attention to Fig. 7.8(a). In this case, the

optimal forgery and suppression strategies have i = n−j+1 = 1 nonzero component,

since ρ ∈ [0, ρ2] and σ ∈ [0, σ2]. This places the solution t∗ at one vertex of the

hexagon. A remarkable fact is that, for these rates, the privacy risk is approximately

halved. In the end, consistently with Proposition 7.8, the forgery and the suppression

relative decrement factors are δρ ' 6.87 > 1 and δσ ' 2.42 > 0.

In the case shown in Fig. 7.8(b), r∗ still has i = 1 nonzero components, while s∗

contains n − j + 1 = 2 nonzero components. Geometrically, the optimal apparent

distribution lies at one edge of the feasible region. This lowers privacy risk to a 19% of

its initial value. The case in which (ρ, σ) = (ρcrit(σ), σ) is depicted in Fig. 7.8(c). Here,

the number of nonzero components of r∗ and s∗ remains the same as in the previous

case, but the privacy risk becomes zero. The last case, illustrated in Fig. 7.8(d), does

not have any practical application, as R(ρ, σ) = 0 for any (ρ, σ) ∈ ∂C . In this figure

we can observe that the solution t∗ is placed in the interior of the hexagon, and that

the orthogonality principle of the strategies r∗ and s∗ stated in Corollary 7.4 is not

satisfied.

7.7 Experimental Analysis

In this section we evaluate the extent to which the forgery and the suppression of

ratings could enhance user privacy in a real-world personalized recommendation sys-

tem. The system chosen to conduct this evaluation is Movielens, a popular movie

recommender developed by the GroupLens Research Lab [197] at the University of

Minnesota. As many other recommenders, Movielens allows users to both rate and

tag movies according to their preferences. These preferences are then exploited by

the recommender to suggest movies that users have not watched yet. The algorithms
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used by Movielens to generate these recommendations are based on collaborative-

filtering techniques.

7.7.1 Data set

The data set that we used to assess our data-perturbative mechanism is the Movielens

10M data set [198], which contains 10 000 054 ratings and 95 580 tags. The ratings

and tags included in this data set were assigned to 10 681 movies by 71 567 users. In

our series of experiments we only contemplate the ratings posted by users, i.e., tags

are not taken into account in the characterization of users’ interests. This is because it

simplifies the modeling of user profiles, and because this chapter concentrates on the

perturbation of ratings, rather than tags; a more sophisticated model of user profile

would undoubtedly enrich this ratings-based profile with such semantic annotations.

The data set in question is organized in the form of quadruples (username, movie,

rating, time), each one representing the action of a user rating a movie at a certain

time. In fact, [197] replaced usernames were with numbers in an attempt to anonymize

the data set. This is similar to the way user identifiers were processed in the data

set used in Chapter 5. In that case, usernames were anonymized by applying a hash

function. We would like to stress that such anonymization may not be sufficient to

guarantee user privacy. As mentioned in Sec. 7.1, inferences about a user’s movie

rating history may be far more conclusive when cross-referencing several pieces of

data from multiple sources [64].

For our purposes of experimentation, we just needed the data fields username and

movie, together with the categories each movie belongs to. Movielens contemplates

n = 19 categories or movies genres, listed in alphabetical order as follows: action,

adventure, animation, children’s, comedy, crime, documentary, drama, fantasy, film-

noir, horror, IMAX, musical, mystery, romance, sci-fi, thriller, war and western. As

we shall see later in Sec. 7.7.2, for each particular user, we shall have to rearrange

those categories in such a way that the labeling assumption (7.3) is satisfied.
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In our data set, all users rated, at least, 20 movies. This was the minimum

number of ratings for the recommender to start working (f). After the elimination

of those users who exclusively tagged movies, the total number of users reduced to

69 878. Then, we used simple random sampling to select 10% of this group of users.

After that sampling, we found that only 4 099 of these users satisfied the positivity

assumption (7.2). Since the resulting group represents a relatively small fraction of

the total number of users, we can assume that the application of our technique will

have a negligible effect on the population’s profile p, as supposed in Sec. 7.5.

7.7.2 Results

In this subsection we examine how the forgery and the suppression of ratings may

help users of Movielens to enhance their privacy. With this aim, first, we analyze the

effect of the perturbation of ratings on the privacy protection of a particular user from

our data set. Secondly, we consider the entire set of 4 099 users and assess the relative

reduction in privacy risk when these users apply the same forgery and suppression

rates. Lastly, we investigate the forgery and the suppression strategies separately,

and draw some conclusions about these two pure strategies.

To conduct our first experiments, we choose a particular user from our data set (g).

Before perturbing the movie rating history of this user, it is necessary that the com-

ponents of the user’s profile q and the population’s distribution p be rearranged to

satisfy the labeling assumption (7.3). Table 7.2 shows how the movie categories have

been sorted and then indexed from 1 to n, to fulfill the assumption above. We would

like to note that the index provided in this table does not have to coincide with the

index of other users in our data set.

Fig. 7.9(a) depicts the user profile and the population profile, the latter being

computed by averaging across the 69 878 users. From this figure we note that the

user’s interest far exceeds the population’s in categories such as musical, romance,

(f)Nowadays, the algorithm implemented by Movielens requires only 15 ratings to start generating
predictions.

(g)The user considered in this first series of experiments is identified by the number 3301 in [198].
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Table 7.2: Category index of the particular user examined in our experiments. The categories of
Movielens have been sorted and indexed in order to satisfy the labeling assumption (7.3).

Index Category name Index Category name Index Category name

1 animation 7 sci-fi 13 war
2 action 8 comedy 14 mystery
3 film-noir 9 thriller 15 musical
4 children’s 10 fantasy 16 romance
5 adventure 11 horror 17 IMAX
6 crime 12 western 18 drama

19 documentary

IMAX, drama and documentary. More precisely, the ratios qk
pk

yield

(
qk
pk

)
k=15,...,19

' (1.300, 1.306, 1.451, 1.728, 2.292).

In this figure, we also observe that the user’s interest and the population’s in the

category 17 are nearly zero, namely q17 ' 0.0005 and p17 ' 0.0003.

On the other hand, Fig. 7.9(a) indicates that the user shows little interest, com-

pared to the population’s preferences, in categories such as animation, action, film-

noir or children’s, to name just a few. Specifically, the first six smallest ratios qk
pk

yield

(
qk
pk

)
k=1,...,6

' (0.444, 0.599, 0.651, 0.691, 0.705, 0.714).

Figs. 7.9(b) and 7.9(c) show the optimal forgery and suppression strategies that

this particular user should apply, in the case when σ = 0.150 and ρcrit(σ) ' 0.180. The

solutions plotted in these figures are consistent with our two previous observations:

the optimal forgery strategy recommends that the user submit false ratings to movies

falling into the categories where the ratio qk
pk

is low; and the optimal suppression

strategy suggests that the user refrain from rating movies belonging to categories

where the ratio qk
pk

is high. Just as an example, the fact that s∗17 ' 0.0001 means that

the user at hand should eliminate one in five ratings to movies classified as IMAX.

The optimal trade-off surface among privacy, forgery rate and suppression rate

is represented in Fig. 7.10. In this figure we plot the contour levels of the function

R(ρ, σ), which we computed theoretically. The initial privacy risk is R(0, 0) ' 0.101
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Figure 7.9: In this figure we represent (a) the item distribution q of a particular user as well as the
population’s item distribution p. In addition, we plot (b) the optimal forgery strategy r∗ and (c) the
optimal suppression strategy s∗ that the user in question should adopt when they specify σ = 0.150
and ρ = ρcrit(σ) ' 0.180.

and the arithmetic mean between the ratios q1
p1

and q19
p19

yields approximately 1.37.

Since the mean is higher than 1, Corollary 7.9 tells us that the user should opt for

suppression as pure strategy, in lieu of forgery. This is under the assumption that

they wish to achieve the minimum privacy risk and do not have any preference for any

of the pure strategies. Nevertheless, the fact that δρ ' 12.6 > δσ ' 10.9 leads us to

choose forgery as pure strategy for ρ, σ ' 0. When both strategies are combined, we

note that a forgery and suppression rate of just 0.1% leads to a reduction in privacy

risk of 2.35%, on account of the first-order Taylor approximation derived in Sec. 7.6.4.
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Figure 7.10: Optimal trade-off surface among privacy, forgery rate and suppression rate for one
particular user of Movielens. The four points shown in this figure correspond to the pairs of values
(ρ, σ) that we used to show the proportionality relationship between t∗ and p in Fig. 7.11.

As in Sec. 7.6.6, we also observe the synergistic effect of forgery and suppression.

For example, for a total rate τ = ρ+ σ = 0.3, the pure forgery and the pure suppres-

sion strategies reduce privacy risk by R(τ, 0)/R0 ' 0.166 and R(0, τ)/R0 ' 0.048,

respectively, whereas the optimal strategy for simultaneous forgery and suppression

removes any privacy risk. In Fig. 7.10, we depict the set of pairs (ρ, σ) such that

ρ + σ = 0.3 and note that, for example, for (ρ, σ) = (0.1, 0.2), the critical-privacy

region is attained. Simply put, the combined use of these two perturbation techniques

may result in a synergy that can help users protect their privacy more efficiently.

In Fig. 7.10 we have also plotted 4 points, which correspond to the following pairs

of values (ρ, σ): (0.03, 0.04), (0.06, 0.08), (0.11, 0.12) and (0.18, 0.15). For each of

these pairs, we have represented the quotient
t∗k
pk

in Fig. 7.11. The aim is to show how

the optimal apparent profile becomes proportional to the population’s distribution,

as the user approaches the critical-privacy region. Fig. 7.11(a) considers the first

pair of values. Here, ρ and σ fall into the intervals [ρ6, ρ7] and [σ18, σ17], respectively.
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Consistently with Proposition 7.5, we check that
t∗1
p1

= · · · = t∗6
p6
' 0.756 6 1 and that

t∗18
p18

=
t∗19
p19
' 1.52 > 1.

In Fig. 7.11(b) we double the rates of forgery and suppression. On the one hand,

this leads to
t∗1
p1

= · · · =
t∗7
p7

. On the other, the fact that σ ∈ [σ15, σ14] implies that
t∗15
p15

= · · · = t∗19
p19

. It is also interesting to note that, for these relatively small values of

ρ and σ, the final privacy risk is 26% of the initial value D(q ‖ p).
As ρ and σ increase, so does the function φ. The contrary happens with the

function χ, which decreases with both rates. In Fig. 7.11(c), for example, the propor-

tionality relationship between t∗ and p holds for all except 4 categories. The last pair

(ρ, σ) ' (0.18, 0.15) lies at the boundary of C , as shown in Fig. 7.10. This implies

that t∗

p
= 1 and therefore that R(ρ, σ) = 0, as captured in Fig. 7.11(d).

Having examined the case of a specific user, in our next series of experiments we

evaluate the level of privacy protection that users can achieve if they are disposed

to forge and eliminate a fraction of their ratings. For simplicity, we suppose that all

users satisfying the positivity assumption (7.2) apply a common forgery rate and a

common suppression rate. Fig. 7.12 depicts the contours of the 10th, 50th and 90th

percentile surfaces of relative reduction in privacy risk, for different values of ρ and σ.

Two conclusions can be drawn from this figure.

• First, for relatively small values of ρ and σ (lower than 15%), a vast majority

of users lowered privacy risk significantly. In quantitative terms, we observe in

Fig. 7.12(a) that, for ρ = σ = 0.05, the 90% of users adhered to our technique

obtained a reduction in privacy risk greater than 52.4%. For those same rates of

forgery and suppression, the 50th and 90th percentiles are 73.9% and 94.8%. For

higher rates, e.g., ρ = σ = 0.13, Fig. 7.12(b) shows that half of users experienced

a reduction in privacy risk equal to 100%.

• Secondly, the three percentile surfaces exhibit a certain symmetry with respect

to the line ρ = σ. If this symmetry were exact, the exchange of the rates of

forgery and suppression would not have any impact on the resulting privacy

protection achieved. However, we note that this is not the case. For example,

Fig. 7.12(a) shows a lower reduction in privacy risk for ρ < σ, particularly
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(b) ρ = 0.06, ρ ∈ [ρ7, ρ8], σ = 0.08, σ ∈
[σ15, σ14], ρ/ρcrit(σ) ' 0.164, R(ρ, σ) ' 0.026,
R(ρ, σ)/R0 ' 0.259.
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(c) ρ = 0.11, ρ ∈ [ρ10, ρ11], σ = 0.12, σ ∈
[σ15, σ14], ρ/ρcrit(σ) ' 0.434, R(ρ, σ) ' 0.006,
R(ρ, σ)/R0 ' 0.061.
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(d) ρ ' 0.180, ρ ∈ [ρ12, ρ13], σ = 0.15,
σ ∈ [σ13, σ12], ρ/ρcrit(σ) = 1, R(ρ, σ) = 0,
R(ρ, σ)/R0 = 0.

Figure 7.11: Proportionality relationship between, on the one hand, the optimal apparent item
distribution t∗ of the user identified as 3301 in our data set, and on the other, the population’s item
distribution p.

accentuated when σ ' 0. The reason for this may be found in the fact that, for

most users, ρn is greater than σ1. We shall elaborate more on this later when

we consider forgery and suppression as pure strategies.

Next, we analyze the privacy protection provided by our technique for ρ, σ '
0. In the theoretical analysis conducted in Sec. 7.6.4 we derived an expression for

the relative reduction in privacy risk at low rates. Particularly, said expression was

in terms of two factors, namely δρ and δσ. In Fig. 7.13 we show the probability

distribution of these factors. Consistently with Proposition 7.8, their minimum values

are δρ ' 3.12 > 1 and δσ ' 2.30 > 0. The maximum values attained by these forgery
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Figure 7.12: We assume that the 4 099 users satisfying the positivity assumption (7.2) protect their
privacy by using a common forgery rate and a common suppression rate. Under this assumption, we
plot some percentiles surfaces of relative reduction in privacy risk, against these two common rates.

and suppression factors are approximately 324.98 and 266.13. On the other hand, in

favor of suppression is the fact that the percentage of users with δρ > 30 is lower than

the percentage of users with δσ > 30. More precisely, these percentages yield 26.8%

and 33.1%, respectively. In the end, an eye-opening finding is that δρ > δσ in 43.45%
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of users, which suggests introducing a suppression rate higher than that of forgery,

at least at low rates.
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Figure 7.13: Probability distribution of the relative decrement factors of forgery and suppression.

After analyzing the forgery and the suppression of ratings as a mixed strategy,

our last experimental results contemplate the application of forgery and suppression

as pure strategies. In Fig. 7.14 we illustrate the probability distribution of the critical

rates ρn and σ1. The critical-forgery rate ranges approximately from 0.171 to 54.18,

and its average is 3.45. The critical-suppression rate, on the other hand, goes from

0.153 to 0.963, and its average is 0.632. These figures indicate that, on average, a

user will have either to refrain from rating an item six out of ten times, or submit

nearly 3.45 false ratings per each original rating. This is, of course, when the user

wishes to reach the critical-privacy region. Bearing these figures in mind, it is not

surprising then that 95.3% of the users in our data set would opt for suppression as

pure strategy, as it comes at the cost of a lower impact on utility.

7.8 Conclusions

In the literature of recommendation systems there exists a variety of approaches aimed

at protecting user privacy. Among these approaches, the combined use of the forgery

and the suppression of ratings emerges as a technique to hinder privacy attackers in

their efforts to target peculiar users based on the items rated by these users. Our

technique enhances users’ privacy to a certain degree by blending their profiles into

the crowd. Besides, it does not require users to trust neither the recommender nor the
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Figure 7.14: Probability distribution of the critical-forgery rate and the critical-suppression rate.

network operator, it is simple in terms of infrastructure requirements, and it can be

used in combination with other approaches such as anonymous communications and

user collaboration. However, as any data-perturbative mechanism, our PET comes at

the expense of a loss in data utility, in particular a degradation of the quality of the

recommender’s predictions. The overall objective of this chapter is to engineer our

mechanism to attain the optimal trade-off between privacy and utility, in the sense

of maximizing privacy for an acceptable level of utility.

Our first contribution is an architecture that specifies, at a functional level, how

our approach could be implemented as software. The purpose of this architecture

is to help users determine which ratings should be made and which ones should be

avoided. The core of our approach is a block that calculates the optimal forgery and

suppression strategies, two tuples containing the percentage of items that should be

forged and eliminated in each category. With these tuples, the proposed architecture

warns the user when their profile deviates significantly from the population’s item

distribution.

The second contribution of this chapter is to investigate mathematically the afore-

mentioned trade-off. With this aim, first we propose a quantitative measure of both

privacy and utility. We quantify privacy risk as the KL divergence between the user’s

item distribution and the population’s, and measure utility as the fraction of ratings

the user is willing to forge and suppress. With these two quantities, we formulate

a multiobjective optimization problem characterizing the trade-off between privacy

risk on the one hand, and on the other forgery rate and suppression rate.
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Our theoretical analysis provides a closed-form solution to this problem and char-

acterizes the optimal trade-off surface between privacy and utility. The solution is

confined to the closure of the noncritical-privacy region. The interior of the critical-

privacy region is of no interest as the privacy risk attains its minimum value at the

boundary of C̄ . In the region of interest, our analysis finds that the optimal forgery

and suppression strategies are orthogonal. In addition, these two strategies follow

an intuitive principle. The forgery strategy recommends adding ratings to those cat-

egories where the user’s interest is lower than the population’s. The suppression

strategy suggests eliminating those ratings belonging to the categories where the user

shows too much interest compared to the reference distribution.

Our theoretical study also examines how these optimal strategies perturb user

profiles. It is interesting to observe that the optimal apparent profile becomes pro-

portional to the population’s distribution in those categories with the lowest and

highest ratios qk
pk

. Our analysis also includes the study of the convexity of C and

the characterization of R at low rates of forgery and suppression. More accurately,

we provide a first-order Taylor approximation of the privacy-utility trade-off func-

tion, from which we conclude that the ratios q1
p1

and qn
pn

determine, together with the

quantity D(q ‖ p), the privacy risk at low rates. An eye-opening fact is that, for low

perturbation rates, the relative decrement in privacy risk is greater than the forgery

rate introduced.

Further, we consider the special case when forgery and suppression are not used

in combination. Under this consideration, we investigate which one is the most ap-

propriate technique, first, in terms of causing the minimum distortion to reach the

critical-privacy region, and secondly, in terms of offering better privacy protection at

low rates. Our findings show that the arithmetic and geometric mean of the maxi-

mum and minimum ratios qk
pk

play a fundamental role in deciding the best technique

to use. Afterwards, our formulation and theoretical analysis are illustrated with a

numerical example.

In the end, the last section is devoted to the experimental evaluation of our data-

perturbative mechanism in a real-world personalized recommendation system. In

particular, we examine how the application of the forgery and the suppression of
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ratings may preserve user privacy in Movielens. Among other results, we find that

half of the users mitigate any privacy risk for forgery and suppression rates of just 13%.

We also check that the mixed forgery and suppression strategy may provide better

privacy protection for the same total rate than the pure forgery and suppression

strategies. Further, the probability distributions of the relative decrement factors

indicate that, at low rates, forgery provides a higher reduction in privacy risk than

suppression does. By contrast, we observe that the suppression relative decrement

factor is greater than that of forgery in 43.45% of users. Lastly, we consider the case

when users opt for either forgery or suppression; and find that the latter is the best

strategy to use in 95.3% of users who wish to vanish privacy risk while causing the

minimum distortion.



Chapter 8

Conclusions and Future Work

In recent times we are witnessing the emergence of a new generation of information

systems that adapt their functionalities to meet the unique needs of each individual.

Personalization is revolutionizing the manner we access information but, at the same

time, it is raising new privacy concerns with respect to user profiling.

The literature abounds with PETs aimed at safeguarding user privacy in a di-

verse range of applications, including among others the fields of SDC and anonymous

communications. A wide variety of metrics have been proposed to assess the extent

to which these general-purpose PETs may contribute to privacy enhancement. How-

ever, privacy researchers and users community lack a general framework that enables

them to measure and compare the effectiveness of such technologies under a common

perspective; frequently, the evaluation of a technology is done by using ad hoc metrics

and adversary models specific to the application for which it has been conceived. In

the particular context of personalized information systems, there are a few proposals

for quantifying the privacy of user profiles, and those existing are not justified or fail

to justify the choice.

The first part of this thesis tackles the issue of measuring user privacy. First,

we propose a unifying view to compare and choose state-of-the-art privacy metrics

in a systematic, rigorous manner. Secondly, we examine two information-theoretic

quantities as privacy criteria in the context of personalized information systems.

262
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The second part of this dissertation proposes data-perturbative privacy-protecting

mechanisms for the applications of collaborative tagging and personalized recom-

mendation systems. Equipped with quantitative measures of privacy and utility, we

investigate the optimal privacy-utility trade-off posed by such mechanisms.

The remainder of this chapter summarizes the main results from our research and

identifies some future research lines.

8.1 Conclusions

This section is organized according to the two parts this dissertation has been struc-

tured.

8.1.1 Privacy Metrics

We have presented a theoretical framework that permits comparing and interpreting

privacy metrics from diverse fields of information privacy. Our framework provides

a unifying view of privacy by measuring it as the estimation error of an adversary

whose purpose is to unveil the private information that a system wishes to protect.

We have shown that a large number of privacy metrics from SDC, ACSs and LBSs

are related to this estimation error. In particular, we have proven that there is a

bijective relation between most of these metrics and our more general view of privacy,

which implies that all these criteria are equivalent both in terms of comparison and

optimization.

In our interpretations of such criteria as estimation errors, we have allowed for

the geometry of the attacker’s distortion function, the system’s knowledge about this

function and the nature of the private information to be protected. The arguments

expounded in these interpretations build upon numerous concepts from information

theory and BDT. For example, k-anonymity and l-diversity are connected to an es-

timation error through Rényi’s entropy and MAP estimation. This is in the special

case when the attacker’s distortion function is the Hamming distance and users’ pri-

vate information are single-occurrence data. In the case of multiple-occurrence data,
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fundamental results from AEP enable us to regard Shannon’s conditional entropy as

a measure of the cardinality of a high-confidence set.

When we consider non-Hamming distortion functions and assume that this func-

tion is known to the system, the total variation distance and Pinsker’s inequality allow

us to interpret t-closeness and mutual information as upper bounds on the reduction

of the Bayes conditional risk. A greater upper bound on this risk is given by the

δ-disclosure requirement, which may be deemed as a stricter privacy measure than

mutual information and t-closeness. Another interesting result is the connection be-

tween our formulation of the privacy-utility trade-off and the rate-distortion problem,

a well-known and extensively studied optimization problem appearing in information

theory.

We have illustrated the applicability of our framework in the contexts of LBSs and

ACSs by means of two numerical examples. In LBSs, we consider the squared error

distance as the attacker’s distortion function, and assume this information is available

to the system. Under these assumptions, we show that the attacker’s estimation error

boils down to the MSE. An anonymous-communication protocol inspired by Crowds

is then evaluated. Adopting the Hamming distance, we interpret Shannon’s, Hartley’s

and min- entropy as particular cases of the MAP error.

A comprehensive guide is provided for those designers of SDC and ACSs who want

to skip the mathematical details of our framework and wish to know which particular

metric is the most suitable for their privacy requirements. The theoretical analysis,

together with these guidelines, constitute a systematic approach to the problem of

measuring user privacy and evaluating PETs.

We have also tackled the issue of quantifying privacy in those applications where

user profiles are involved. Specifically, we have proposed and justified KL divergence

and Shannon’s entropy as measures of user privacy in personalized information sys-

tems.

Our justifications build on two adversary models defined according to the technical

literature of profiling. In both models the attacker strives to profile users of those

systems. The difference is in the ultimate objective of profiling. In the former model,

the adversary is interested in finding users who deviate significantly from the average
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profile of the population. In the latter model, the attacker aims at classifying users

into certain groups of people or collectives.

Under the objective of individuation, Jaynes’ argument behind entropy-maximiza-

tion methods permits interpreting the KL divergence between the user’s apparent

profile and the population’s profile as a measure of anonymity. Our criterion is a

measure of anonymity not in the sense that the user’s identity remains hidden, but

in the sense that the lower the divergence between these two profiles, the higher the

probability of the apparent profile, and therefore the larger the population of users in

which the user’s interests are blended. In a nutshell, the KL divergence is an (inverse)

indicator of the commonness of the apparent profile in said population. If the popu-

lation’s distribution is not available, Shannon’s entropy of the apparent profile is of

special interest as it may be regarded as an anonymity criterion in a sense analogous

to that of divergence. These two interpretations are based on the realistic assumption

that a probabilistic model of profiles is not at the disposal of users.

Under the objective of classification, we propose measuring privacy as the diver-

gence between the apparent profile and the profile of the group into which the user

does not want to be classified. Our justification leverages on hypothesis testing and

the Neyman-Pearson lemma. When a suitable representation of the group profile is

not available or simply it is unknown, the maximization of the divergence between

the perturbed, observed profile and the actual one describes the situation where the

user wants the former profile to resemble as little as possible the genuine profile. This

is in contrast to our previous interpretation of divergence as a measure of user-profile

density: a profile already matching the population’s distribution would not need any

perturbation.

Further, we have presented a comparative analysis between our privacy metrics

and other proposals measuring the privacy risks in personalized information systems.

Our systematic classification of metrics shows that most of them may be described

in terms of the classifier adversary model, and under the assumption that the group

profile is unknown. Lastly, we interpret KL divergence and Shannon’s entropy as

an attacker’s estimation error, which demonstrates the generality of the proposed

theoretical framework.
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8.1.2 Data-Perturbative Mechanisms and Privacy-Utility Trade-Off

We have proposed a data-perturbative method aimed at protecting user privacy in the

semantic Web. Specifically, our tag-suppression strategy has the purpose of hindering

a privacy attacker in its efforts to individuate users based on their tagging activity.

The proposed strategy may be used in combination with other PETs, can be

implemented on the user’s computer and does not require users to trust any external

entity. We have presented a modular architecture describing how our approach could

be implemented in practice.

Our model measures user privacy as Shannon’s entropy of the apparent profile,

and utility as the tag-suppression rate. With these quantitative measures of privacy

and utility, we optimize the tag-suppression mechanism in terms of its privacy-utility

trade-off. This trade-off is formulated as a multiobjective optimization problem,

which turns to be a resource allocation problem.

We have found a closed-form solution and characterized the optimal trade-off.

Among other results, we have shown that there exists a critical tag-suppression rate

beyond which the apparent profile becomes the uniform distribution and privacy is

therefore maximized. The optimal suppression strategy follows the intuitive principle

of eliminating the tags from those categories where the user has shown too much

interest in.

Further, we have analyzed the cases of low-suppression rate and high privacy. Our

analysis demonstrates that the entropy of the user’s actual profile, together with the

maximum value of such profile, characterize the relative privacy gain at low rates.

This is in contrast to the fact that the critical tag-suppression rate is determined by

the minimum value of this profile. For suppression rates approaching this critical

rate, we have found that the second-order Taylor approximation of the privacy-utility

trade-off function is given by the Fisher information.

Experimental results in the collaborative tagging service BibSonomy show how

our tag-suppression technique may contribute to privacy protection. These results

indicate that users would need high suppression rates to attain the maximum privacy

level. The distributions of suppression thresholds suggest, however, that smaller

suppression rates would lead to significant gains in privacy.
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In addition, we have proposed an architecture that extends the functionalities

of the current collaborative tagging systems, by incorporating two additional layers

placed on top of a social bookmarking application such as Delicious. The policy layer

allows users to specify their preferences explicitly. The privacy layer implements our

optimized tag-suppression mechanism.

On the one hand, we have examined how tag suppression enhances the privacy of

the users of Delicious. On the other, we have investigated the influence of this privacy

layer, first, on the semantic functionality of the underlying bookmarking application,

and secondly, on two services enabled by the policy layer. These two services provide

resource recommendations and content-filtering capabilities.

To conduct our experimental analysis, we have employed a more elaborate util-

ity measure than the simplified but mathematically tractable tag-suppression rate,

namely, the percentages of tags that each bookmark loses due to suppression. To as-

sess the impact of suppression on the aforementioned content-filtering application, we

have measured the number of false negatives and false positives, precision and recall.

Our empirical evaluation indicates that the effect of tag suppression on the accuracy

of a parental-control filter is relatively small. For example, recall exhibits a reduction

by 0.11% when all users eliminate almost all their tags. This and further results are

explained by the fact that the PMFs of a large number of resources concentrate a

substantial amount of their masses in a reduced set of subcategories.

In the enthralling application of personalized recommendation systems, we have

proposed a PET that simultaneously combines two data-perturbative strategies—the

forgery and the suppression of ratings. Our mechanism builds on the same adversary

model than that of tag suppression and thus aims at thwarting a privacy attacker in

its efforts to individuate users based on the items rated.

Under this objective, and assuming that the population’s item distribution is

known, we measure privacy as the KL divergence between the user’s perturbed profile

and the population’s profile. We also quantify the degradation in the quality of the

recommendations due to perturbation, but use a simplified measure of utility —the

forgery and the suppression rates— which allows us to formulate the privacy-utility

trade-off by means of a mathematically tractable model.
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Endowed with quantitative privacy and utility metrics, we design the proposed

PET to achieve the optimal privacy-utility trade-off in the sense of maximizing pri-

vacy for a desired level of utility. The trade-off posed by our PET is modeled as

a multiobjective optimization problem. We provide a closed-form solution to said

problem.

Our mathematical analysis characterizes the optimal trade-off surface and ex-

presses it in terms of a divergence between two distributions. We show that there

exists a critical-privacy region where the privacy risk vanishes and another region

where it does not. The optimal forgery and suppression strategies are confined to

this latter region, which we prove to be nonconvex. Such strategies conform to intu-

ition as they suggest forging ratings where the user has little interest and recommend

eliminating ratings where the user shows too much interest, compared to the popu-

lation’s distribution.

We demonstrate that the solution is determined by a sequence of forgery and

suppression thresholds, which specify the number of nonzero components of the op-

timal strategies. Further, we verify that the user’s genuine profile is perturbed in

such a manner that the apparent profile progressively becomes proportional to the

population’s distribution.

We explore the behavior of the function modeling the trade-off at low rates of

forgery and suppression. To this end, we derive its first-order Taylor approximation

at the origin and show that the relative decrement in privacy risk depends, on the

one hand, on the initial privacy level, and on the other, on the minimum and the

maximum ratio between the user’s profile and the population’s. Also, we prove that

the reduction in privacy risk due to forgery is greater than the loss in utility.

In addition, we consider the case when users must opt for either forgery or sup-

pression. We find that the arithmetic and geometric mean of the aforementioned

minimum and maximum ratios determine the choice for low perturbation rates and

when users want to attain the critical-privacy region. Our theoretical analysis for

simultaneous forgery and suppression shows consistency with the results obtained for

tag suppression.
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Experimental results in the movie recommendation system Movielens show that,

for relatively small rates of forgery and suppression, an important number of users

obtain significant gains in privacy. For example, forgery and suppression rates of 13%

lead half of the users to reach the critical-privacy region. Moreover, we observe that

the mixed strategy may provide stronger privacy protection for the same total rate

than the pure strategies. Another finding is that the minimum relative decrement

factor of suppression is approximately 2.30, which means that, for low rates, the

reduction in privacy risk is greater than the suppression rate introduced. Finally, our

empirical analysis shows that, in 95.3% of cases, the pure suppression strategy reaches

the critical-privacy region with a lower distortion than the pure forgery strategy does.

8.2 Future Work

In this section we explore possible improvements and open research directions based

on ideas and results provided in this dissertation.

• User-profile model. In Sec. 4.3.2 we specified the model of user profile used

both in Chapter 4 and in the second part of this dissertation. The model in

question constitutes the profile of user interests that an attacker would create.

Such model is defined based on (1) the information exploited by the attacker to

profile users, and (2) the type of representation used to model the user interests.

Our model of user profile as a PMF is a first-approximation, mathematically-

tractable model. The proposed model captures the information provided ex-

plicitly by the user, and computes a histogram of relative frequencies of such

information, classified according to a set of categories of interest. This model,

however, does not consider a range of other factors that an attacker would

possibly use to better characterize such interests.

One of these factors is the user activity, that is, the total number of tags,

ratings and any other data conveyed to the personalized information system in

question. User activity would allow an attacker to estimate user interests in

absolute terms, rather than relative, and therefore gain further knowledge on

user preferences.
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Moreover, our model considers just the information users communicate explic-

itly. In practice, a privacy attacker would enrich user profiles with implicit

information such as the time it takes users to examine an item or the items

purchased. Also, the adversary could leverage on the time of the day when the

explicit information is submitted, or capitalize on the profiles of those users

with whom social relationships are known to said attacker.

Our model of profile implicitly assumes that the user-generated data are statis-

tically independent. Specifically, we assume that each user generates a sequence

of actions (e.g., tags or ratings) and that these actions are modeled as i.i.d. r.v.’s

distributed according to the user’s profile. However, it is clear that there will

exist some statistical dependence between those r.v.’s, and that a sophisticated

attacker could exploit this fact. For example, the adversary could model such

sequence of actions by assuming a stationary random process with memory.

In short, a promising future line of research would be studying user-profile

models which take into consideration the aspects mentioned above. Tightly

related to these models is undoubtedly the investigation of privacy metrics for

these profiles as well as mechanisms designed for their protection.

• Experimental validation of privacy metrics. In Sec. 4.4 we gave a first,

preliminary step towards the quantification of the privacy of user profiles. Par-

ticularly, we investigated Jaynes’ rationale behind entropy-maximization meth-

ods to justify KL divergence and Shannon’s entropy as metrics of profile privacy.

Through Jaynes’ argument we interpreted both information-theoretic quantities

as measures of the relative frequency of a user profile. Concretely, our conjec-

ture was that the probability pT (t) of a PMF t modeling the profile of a user

was related to its divergence with respect to the average profile p.

Although Jaynes’ rationale provides a solid mathematical justification in favor

of divergence, a line for further research could be to experimentally validate if

our model is a good approximation, in the sense that minimizing D(t ‖ p) is a

good criterion when we wish to maximize user anonymity, measured as pT (t).
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• Adversary model. One of the suppositions of our adversary model is that the

attacker assumes the observed, perturbed profile is the user’s genuine profile.

Said otherwise, our attacker is unable to discern whether a particular user is

applying some data-perturbative mechanism to protect their privacy. As ex-

plained in Secs. 5.4 and 7.4, we based this assumption on the fact that such

mechanisms may be implemented as software running on users’ machines.

Although we limited the scope of our work to this adversary model, we recog-

nize that sophisticated attackers might exploit certain information such as user

activity to ascertain whether a user is applying some perturbative strategy, and

ultimately to guess their actual profile. For example, consider an adversary who

attempts to estimate the tag-suppression rate of a user on the basis of observed

differences in tagging activity; and according to this rate, the attacker strives to

reverse the perturbation introduced by the privacy-utility optimized mechanism

proposed in Chapter 5.

• Practical implementation of our data-perturbative mechanisms. In

Secs. 5.4 and 7.4, we proposed two architectures describing how our data-

perturbative mechanisms could be implemented as software. One was for tag

suppression, and the other for the combination of the forgery and the suppres-

sion of ratings. In those sections, we provided a functional description of the

internal components of such architectures. We did not explore, however, some

crucial aspects that a successful implementation should take into account.

Among other aspects, future research should delve further into the modules

that estimate both the actual user profile and the population’s distribution. In

particular, it would be necessary to investigate computationally-efficient catego-

rization algorithms that can be executed on the user’s machine, without the need

to access any external database such as the Open Directory Project. Another

aspect that a practical implementation should consider is the initialization of

the profile and the fact that this profile may vary substantially over time. The

assumption of dynamic user profiles undoubtedly calls for new mathematical

models.
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• Evaluation of the impact of perturbation on recommendation systems.

In Chapter 7 we proposed the rating-forgery rate and the rating-suppression rate

as measures of utility loss in the context of recommender systems. These two

measures enabled us to model the trade-off between privacy and utility as a

mathematically-tractable optimization problem which we later solved.

While these metrics are suitable for our mathematical modeling, it would be

interesting to measure the impact that forgery and suppression actually have

on the accuracy of the predictions generated by the recommender system. In

other words, a possible line of future research would be the exploration of more

sophisticated but computationally-feasible utility metrics.

• Other data-perturbative strategies. The second part of this dissertation in-

vestigates mechanisms that perturb users’ information to enhance their privacy

in the context of personalized information systems. Our analysis contemplates

two mechanisms, namely, the suppression of tags in the semantic Web and the

combination of the forgery and the suppression of ratings in personalized rec-

ommendation systems.

As commented in Sec. 7.2, some perturbative mechanisms may be suitable for

certain applications but not for others. For instance, the simultaneous use of

forgery and suppression is a good strategy when the information to be per-

turbed are ratings, but it could not be the case in personalized video-streaming

services such as YouTube, where user profiles are created from the history of

watched videos. Playing videos the user is not actually interested in might use

up their bandwidth and consequently degrade the quality of other Web services.

By contrast, users may be reticent to suppression, in the sense of refusing to

play those videos they wish to watch. Likewise, suppression is an appropriate

strategy for tagging applications but not for Web search.

The set of personalized information systems is very diverse and, for this reason,

it would be desirable to investigate mechanisms with a broader scope of appli-

cation. One of these mechanisms could be generalization, a data-perturbative
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strategy whereby specific terms are transformed into more general terms. Con-

ceptually, consider a user replacing the tag “depression” with “health”. General-

ization could be used not only in tagging applications but also in other contexts

such as Web search. One direction for future work would be to study theoreti-

cally and experimentally the privacy-utility trade-off posed by such mechanism.

• Message deferral against profiling based on time. In Chapters 5, 6 and 7,

we investigated data-perturbative mechanisms that protect user privacy against

a class of adversaries who, first, analyzes the content of the information users

sent to personalized information systems, then classifies this information into a

given set of interest categories, and ultimately profiles them according to such

interests.

As a future research line, we could consider privacy attackers who, instead of

profiling users based on their interests, exploit the time instants when users

communicate with information providers. In other words, we could explore

adversaries who profile users based on the time when they submit tags, ratings,

messages, queries, etc.

Although this kind of profiling clearly could be conducted on all sorts of infor-

mation systems, we believe that online social networking services and microblog-

ging services such as Twitter and Facebook are more prone to such attacks. In

this kind of personalized information systems, it could be more burdensome for

an attacker to analyze the content of users’ messages, in which, in addition to

text (a), users often include images and videos. Since processing all these data

and mapping them into interest categories could require certain computational

effort (b), the attacker could take advantage of timing information. Fig. 8.1

shows an example of user profile based on time.

(a)Twitter messages, also known as tweets, are limited to 140 characters. Facebook does not impose
any limitation on message length.
(b)This is in contrast to other information systems where user data (e.g., tags, queries or ratings)

are simpler to process
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Source: http://xefer.com/twitter 

Figure 8.1: Profile of a Twitter user by hours and days of the week, as retrieved from http:

//xefer.com/twitter.

In this situation, the deferral or delay of messages appears a simple PET that

could help users protect their privacy against such profiling attack. The pro-

posed data-perturbative mechanism would allow users to delay the submission

of certain messages by storing them locally and afterwards sending them to

the information system in question. On the one hand, this would enable users

to enhance their privacy to a certain extent, but on the other, the utility of

the microblogging and social networking services mentioned above would be af-

fected. For instance, consider a user posting a tweet to confirm a meeting this

evening. If this tweet was delayed, the confirmation could not arrive on time

and, if so, the information-exchange functionality would be useless. In short,

delaying messages poses a trade-off between privacy and utility.

Our model of user profile would be similar to that presented in Sec. 7.5. We

could represent the messages of a user as a sequence of i.i.d. r.v.’s taking on

values in an alphabet of n > 2 time periods. The set of time periods could be,

for example, the hours of a day or a week, or the days of a month. Consistently

with the notation used in the second part of this thesis, q would denote the

actual user profile and p the population’s distribution, conceptually, histograms

of relative frequencies of messages over those time periods.

http://xefer.com/twitter.
http://xefer.com/twitter.
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A user adhered to this technique would first specify a message-deferral rate

ϕ ∈ [0, 1), that is, the ratio of messages to total number of messages that

they would be willing to delay. When delaying messages, q would be seen

from the outside as the apparent profile t = q − s + r, according to some

storing strategy s and some forwarding strategy r. The former represents the

percentage of messages that the user should temporarily store on a buffer at

each time instant, and the latter the fraction of messages to total number of

messages that should be output from the buffer at each time period. These

strategies obviously must satisfy ri, si > 0, qi − si + ri > 0 for i = 1, . . . , n,

and
∑

i ri =
∑

i si = ϕ.

Assuming that p is available to users and that the attacker attempts to individ-

uate them, we could measure privacy risk as the KL divergence between t and p.

Our utility metric could be, on the other hand, the rate of messages delayed ϕ.

Considering these two metrics, the formulation of the optimal privacy-utility

trade-off turns to be a particular case of that for the forgery and the suppres-

sion of ratings (7.1), namely the case when ρ = σ = ϕ.

The trade-off between privacy and message-deferral rate is therefore character-

ized by the theoretical analysis presented in Sec. 7.6. However, it would be

interesting and even necessary to investigate more elaborate utility measures

such as the expected delay or the capacity of the buffer, and study how these

metrics are related to each other. During my research stay at NEC Laboratories

Europe, we have already started exploring the relationship among these metrics

and have obtained some preliminary research results, to be published shortly.





Acronyms

ACS anonymous-communication system

AEP asymptotic equipartition property

BDT Bayes decision theory

HTTP hypertext transfer protocol

IP address Internet protocol address

ISP Internet service provider

KKT conditions Karush-Kuhn-Tucker conditions

KL divergence Kullback-Leibler divergence

LBS location-based service

MSE mean squared error

P2P peer to peer

PET privacy-enhancing technology

PIR private information retrieval

PMF probability mass function

SDC statistical disclosure control

SME small and medium enterprise

TF-IDF term frequency-inverse document frequency

TTP trusted third party
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and E. P. J. Forné, “A collaborative protocol for anonymous reporting in

vehicular ad hoc networks,” Comput. Stand. & Interf., 2013, to appear.

[Online]. Available: http://dx.doi.org/10.1016/j.csi.2013.06.001
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