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Abstract 
 
 

Fluctuations in perceptual decisions emerge when our brain 
confronts with ambiguous sensory stimuli. For instance, our 
perception alternates between two conflicting images when 
presented dichoptically to our eyes, allowing a dissociation of the 
sensory stimulation from the conscious visual perception, and 
therefore providing a gateway to consciousness. How does the brain 
work when it deals with such ambiguous sensory stimuli? We 
addressed this question theoretically by employing a biophysically 
realistic attractor network, by consistently reducing it to a four- 
variable rate- based model, and by extracting analytical expressions 
for second- order statistics. We considered human behavioral and 
macaque neurophysiological data collected when subjects were 
confronting with such ambiguities. Our results show the relevance 
of neuronal adaptation in perceptual decision making, as well as 
that it contributes to the speed- accuracy trade- off. Furthermore, 
our findings affirm that both noise and neural adaptation operate in 
balance during the fluctuating states of visual awareness and 
suggest that while adaptation in inhibition is not relevant for the 
perceptual alternations, it contributes to the brain dynamics at rest. 
Finally, we explain the observed neuronal noise- decorrelation 
during visual consciousness and provide insights on the long- 
standing question: where in the brain rivalry is resolved. 
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Resum 
 
 

Les fluctuacions en les decisions perceptives sorgeixen quan el nostre 
cervell s'enfronta a estímuls sensorials ambigus. Per exemple, la 
nostra percepció alterna entre dues imatges contradictòries quan es 
presenten de forma dicòptica als nostres ulls, cosa que permet una 
dissociació de l'estimulació sensorial de la percepció visual 
conscient, i per tant proporciona una porta d'entrada a la 
consciència. Com funciona el cervell quan es tracta d'aquest tipus 
d'estímuls sensorials ambigus? Hem tractat aquesta qüestió de forma 
teòrica mitjançant l'ús d'una xarxa d'atractors biofísicament 
realista, reduint-la de forma consistent a un model de quatre 
variables basat en la freqüència, i extraient expressions analítiques 
pels estadístics de segon ordre. Hem emprat dades neurofisiològiques 
de comportament d'humans i macacos recollides quan els subjectes 
s'enfrontaven a aquest tipus d'ambigüitats. Els nostres resultats 
mostren la importància de l'adaptació neuronal en la presa de 
decisions perceptives i mostren la seva contribució a l'equilibri 
velocitat-precisió. D'altra banda, els nostres resultats confirmen que 
tant el soroll com l'adaptació neural operen en equilibri durant els 
estats fluctuants de consciència visual i suggereixen que, si bé 
l'adaptació en la inhibició no és rellevant per a les alternances de 
percepció, contribueix a la dinàmica del cervell en repòs. Finalment, 
expliquem la decorrelació del soroll neuronal observada durant la 
consciència visual i proporcionem noves idees en relació a l’antiga 
qüestió de en quin lloc del cervell es resol la rivalitat visual. 
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CHAPTER 1 
 

Introduction 
 

  
ἔτι δὲ καὶ πολλοῖς τῶν ἄλλων ζῴων τἀναντία  

[περὶ τῶν αὐτῶν] φαίνεσθαι καὶ ἡμῖν,  

καὶ αὐτῷ δὲ ἑκάστῳ πρὸς αὑτὸν  

οὐ ταὐτὰ κατὰ τὴν αἴσθησιν ἀεὶ δοκεῖν.  

ποῖα οὖν τούτων ἀληθῆ ἢ ψευδῆ, ἄδηλον:  

οὐθὲν γὰρ μᾶλλον τάδε ἢ τάδε ἀληθῆ,  

ἀλλ' ὁμοίως. διὸ Δημόκριτός  

γέ φησιν ἤτοι ο ὐθὲν εἶναι ἀληθὲς  

ἢ ἡμῖν γ' ἄδηλον.  

Αριστοτέλης, Μεταφυσικά  Γ.1009β 1 

 

 

 

 

The ultimate, still unanswered, human query is the nature of 
consciousness. Until relatively recently, consciousness was a “forbidden” 
word in science. How could we study subjectivity objectively? This was 
the main obstacle, since objectivation is a “pillar” of science, although 
debatable (Schrödinger 1967). The bridge to this gap came, in the second 
half of 19th century, from Franz Brentano who suggested three different 
forms of consciousness: the consciousness of a primary object (e.g. a 
human face) presented, for example in an act of seeing, the conscious 
experience of this act (which represents a secondary object) and the 
consciousness of the first order mental act (e.g. that we are conscious of 
the fact that we see a face) (adapted from Panagiotaropoulos & 
Logothetis 2013). We could, therefore, study with rigorous scientific 

                                                 
1 And further they say that many of the animals as well get from the same things 
impressions which are contrary to ours, and that the individual himself does not 
always think the same in matters of sense-perception. Thus it is uncertain which 
of these impressions are true or false; for one kind is no more true than another, 
but equally so. And hence Democritus says that either there is no truth or we 
cannot discover it. Aristotle, Metaphysics 4.1009b. (Taylor 1999) 
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techniques, at least the first form of consciousness. The most prominent 
way was, and still is, to study phases of perceptual dominance and 
suppression of an unchangeable sensory stimulus, usually visual. While, 
many behavioural studies were held, almost a century later the first 
experimental study of neural correlates of subjective visual perception 
was presented (Logothetis & Schall 1989), and a year later this 
methodological approach was supported by Crick and Koch (Crick & 
Koch 1990). 

Successive phases of perceptual dominance and suppression of an 
unchanged sensory stimulus form the so called multistable perception 
(MP). In the current thesis we study its underlying neural mechanisms, via 
theoretical / computational investigation driven by different types of 
experimental data, employing numerical and analytical tools, models 
based on known neuronal properties.  

In the following paragraphs of this chapter, we introduce multistable 
perception (§1.1), along with its most common, and the ones we consider 
in the current thesis, experimental paradigms (§1.2), as well as outcomes 
from macroscopic (§1.3), mesoscopic and microscopic studies (§1.4). 
Finally, the outline of the current thesis is presented (§1.5). 

1.1   Multistable perception 

Multistable perception is thought to be a gateway to visual consciousness 
because it dissociates perception from sensory stimulus. The first signs 
that humans were aware of this phenomenon have been found in art from 
the classical period in ancient Greece (Figure 1.1A). Reappeared in 
Renaissance (Figure 1.1B), and later (Figures 1.1C,D). 

Here, we focus in one paradigm of multistable perception: Perceptual 
bistability (or else bistable perception (BP)). Perceptual bistability 
emerges when an ambiguous stimulus, usually visual, under continuous 
constant stimulation is perceived as the alternation of two mutually 
exclusive perceptual states. While this perceptual phenomenon can 
emerge with ambiguous figures (Figures 1.1, 1.2) it can also arise when 
each eye is presented with a different image (Figure 1.3). The latter is 
called Binocular Rivalry (BR) and was first mentioned by della Porta 
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(1593), supported later by Le Clerc’s observations (1712), but the first 
clearest early description of BR came from Du Tour (1761) (Wade 1998). 
However, the first systematic study was made by Sir Charles Wheatstone 
(Wheatstone 1838) using the, invented by him, mirror stereoscope (For 
reviews see Logothetis 1998, 1999, 2006; Blake & Logothetis 2002; 

Sterzer et al. 2009; Panagiotaropoulos & Logothetis 2013; 
Panagiotaropoulos et al. 2014 and for a full BR bibliography up to 2001 
see the one provided online by O’Shea2). 

 
Figure 1.1 Ambiguous figures in Art 
A. The Greek key. A decorative repeated motif appeared in many arquitectural 
friezes and in bands on the pottery of ancient Greece from Geometric Period 
onwards. It can be perceived as either a series of white waves or black hanging 
tentacles B. The Virgin and Child with St. Anne - Leonardo Da Vinci, ~1508. The 
garment of the Virgin can also be perceived as a vulture C. Slave Market with the 
Disappearing Bust of Voltaire - Salvador Dalí, 1940. The face of Voltaire can 
also be perceived as a gathering of people D. Old age, Adolescence, Infancy (The 
Three Ages) - Salvador Dalí, 1940. The faces of the old, the adolescent and the 
infant can also be perceived as complex scenes. (Adapted from 
Panagiotaropoulos & Logothetis 2013 (A,B)) 

1.2   Experimental paradigms 

Ambiguous figures, since the ancient and old times (Figure 1.1), have 
been a common way to induce perceptual conflict. Some of the most 

                                                 
2 sites.google.com/site/oshearobertp/publications/binocular-rivalry-bibliography 
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famous examples are presented in Figure 1.2A-E. When one views each 
of these images, although the visual sensory stimulus he receives remains 
unchanged, his perception alternates between its two conflicting 
interpretations. We find such visual stimuli in many studies of multistable 
perception. Another way to induce such perceptual alternations is by 
superimposing patterns of dissimilar colour and orientation, known as 
monocular rivalry (Andrews & Purves 1997) (Figure 1.2F,G). In addition, 
ambiguous stimuli can also be constructed with the structure- from motion 
imaging technique, where three- dimensional randomly speckled rotating 
objects are orthographically projected provoking subjective changes in the 
direction of rotation upon reversal or illusionary depth (Wallach et al. 
1953) (Figure 1.2H), as well as with moving plaids (Hupé & Rubin 2003) 
(Figure 1.2I), among others.  

 

Figure 1.2 Ambiguous figures, monocular rivalry &structure- from- motion 
A. Rubin’s face - vase figure (Rubin 1984) B. The Necker Cube (Necker 1832). 
C. Old lady - young woman (Boring 1930) D. The Indian - Eskimo E. The duck - 
rabbit (adapted by Weisstein, from the Wolfram MathWorld) F.G Monocular 
rivalry (MR) figures (adapted from Maier 2004 (F), and Blake & Logothetis 
2002 (G) H. Structure- from- motion (SFM): The rotating sphere (RS) (adapted 
from Maier et al. 2003) I. Moving plaids (adapted from Rubin & Hupé 2005)   

The most extensively studied, though, psychophysical paradigm that 
generates perceptual alternations is Binocular rivalry. BR occurs when 
incompatible images are dichoptically presented simultaneously and 
independently to the two eyes, such as vertical stripes to one eye and 
horizontal stripes to the other (Figure 1.3). Stereomatching fails (Blake & 
Boothroyd 1985) and the observer perceives only one of the two images at 
a time while the other is suppressed from awareness (Levelt 1968; Blake 
1989, 2001; Blake & Logothetis 2002). Perception, therefore, alternates 
between the two visual patterns allowing a dissociation of sensory 
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stimulation from conscious visual perception. There have been various 
visual stimuli used in BR, from sinusoidal gratings of different 
orientations (Lee & Blake 1999), images of a face and a house (Tong et 
al. 1998), as well as geometrical patterns and images of animate objects 
(Sheinberg & Logothetis 1997), among others.   

Visual stimuli in BR can be presented in different ways: e.g. with goggles 
of different colours (Figure 1.3A), acting as colour filters; with prism 
goggles (Figure 1.3B) or with mirror stereoscope (Figure 1.3C) (Carmel 

et al. 2010a). Since the invention of the stereoscope by Sir Charles 
Wheatstone (1838), and his first systematic description of the 
phenomenon, there has been a plethora of both experimental and 
theoretical studies. In the current thesis, in one of our studies we 
considered human behavioural data obtained during BR, employing the 
mirror stereoscope, in order to study the underlying mechanism of PB 
(Chapter 3). 

  
Figure 1.3 Binocular rivalry 
A. Red green goggles B. prism goggles C. mirror stereoscope. (Adapted from 
Carmel et al. 2010a) 

Reversals in perception can not only be generated spontaneously, but they 
can also be externally induced. A way to control which of the two 
conflicting perceptions will arise first to awareness, is Binocular Flash 
Suppression (BFS) (Wolfe 1984; Sheinberg & Logothetis 1997; Kreiman 
et al. 2002; Keliris et al. 2010; Panagiotaropoulos et al. 2012) (Figure 
1.4A). In BFS subjects are presented with one image to one eye and after 
a short time period (of the order of a second) a conflicting image is 
flashed to the collateral eye. Subjects perceive the new image until it is 
suppressed and the previous image arises to awareness, i.e. a perceptual 
reversal occurs. BFS is a common way to find neural correlates of visual 
awareness when compared to physical alternation (PA), where the same 
perception emerges without visual competition (Keliris et al. 2010; 
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Panagiotaropoulos et al. 2012) (Figure 1.4B). In the current thesis, in one 
of our studies, we consider electrophysiological data from macaque later 
Prefrontal Cortex (LPFC) obtained during BFS and PA, in order to study 
the underlying mechanisms of the differences of the noise-correlations of 
neurons in the dominant and suppressed state in BFS, compared to PA 
(Chapter 5). 

An other way to study perceptual suppression is the Generalized Flash 
Suppression (GFS) (Wilke et al. 2003, 2009; Tsuchiya & Koch 2005) 
(Figures 1.4C,D). In GFS, a salient target stimulus is perceptual 
suppressed due to a sudden presentation of a surrounding pattern. In 
addition, when a moving pattern, e.g. a RS, is superimposed on high-
contrast stationary or slowly moving stimuli, the latter disappear and 
reappear alternately for periods of several seconds, a “visual 
disappearance” phenomenon known as motion induced- blindness (MIB) 
(Bonneh et al. 2001) (Figure 1.4E).  

 
Figure 1.4 Binocular flash suppression, physical alternation, generalized 
flash suppression & motion induced- blindness 
A. Binocular Flash Suppression (BFS) B. Physical Alternation (PA) (Adapted 
from Panagiotaropoulos & Logothetis 2013 (A,B)) C. D. Generalized Flash 
Suppression (GFS)(adapted from Wilke et al. 2009 (A) and Carmel et al. 2010a 
(B)) E. motion induced- blindness (MIB) (adapted from Leopold et al. 2002) 

A similar to BFS experimental paradigm, yet not the same, is the so called 
adaptation- related aftereffects. It is known that prolonged exposure of a 
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complex stimulus, e.g. an image of a face, biases perceptual decisions 
toward non- adapted dissimilar stimuli (Leopold et al. 2001; Webster et 

al. 2004). In a recent study, a similar procedure was followed having as 
test stimuli ambiguous face/hand composite stimuli (Cziraki et al. 2010) 
(Figure 1.5).  The behavioral data of this study showed that adaptation to a 
face or hand stimulus biased the categorization of subsequent ambiguous 
face/hand composite stimuli toward the opposite category. In the current 
thesis, in one of our studies, we consider human behavioural data from 
this experiment, in order to study the neuronal adaptation effects in 
perceptual decisions (Chapter 4). 

 

Figure 1.5 High-level adaptation-related aftereffects with ambiguous stimuli 
A high contrast face, or hand, or their Fourier phase randomized version, is used 
as adaptor, while test stimuli are composite images of faces and hands other than 
adaptors. (Adapted from Cziraki et al. 2010) 

A striking experimental finding, in the context of MP, is the freeze of 
perception in one of the two images in BR, or perceptual interpretations of 
an ambiguous stimulus, when the visual input is provided intermittently in 
time (Orbach et al. 1963a, 1963b, 1966; Leopold et al. 2002) (Figure 
1.6). 

 
Figure 1.6 Intermittent presentation 
Up. Stimuli are presented either continuously (left), or intermittently (right) in 
time (adapted from Maier et al. 2003) Down. Behavioral reports over the 
perceived direction of rotation of a RS (adapted from Leopold et al. 2002) 
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So far we have focused on BP emerging with visual stimuli. Nevertheless, 
it has been shown that BP is not the only manifestation of MP. Depending 
on the stimuli, tristable perception (TP) can also emerge (Naber et al. 
2010; Wallis & Rigelhan 2013) (Figure 1.7A-D). In addition, PB does not 
only emerge with visual stimuli. It has been shown that auditory (Warren 

& Gregory 1958; Van Noorden 1975; Pressnitzer & Hupé 2006; Sterzer 
et al. 2009) (Figure 1.8E), as well as tactile (Carter et al. 2008; Sterzer et 
al. 2009) (Figure 1.8F), olfactory (Zhou & Chen 2009) (Figure 1.7G), and 
verbal (Warren & Gregory 1958) (Figure 1.7H) rivalry may occur.  

 

Figure 1.7 Tristable perception, auditory, tactile, olfactory & verbal rivalry 
A - D. Tristable perception (TB) (adapted from Wallis & Rigelhan 2013 (A,B) 
and Naber et al. 2010 (C,D)) D. Auditory rivalry (AR) (adapted from Sterzer et 
al. 2009) E. Tactile rivalry (TR). The tactile stimulus is similar to the visual 
stimulus: quartet dots (QD, down) (adapted from Carter et al. 2008) F. Olfactory 
rivalry (OR) (adapted from Zhou & Chen 2009) H. verbal rivalry 

We have introduced MP and the basic experimental paradigms which 
allow its rigorous scientific study. We proceed with well known 
experimental findings, using various techniques, from macroscopic to 
microscopic, which have shed some light towards the answer of the 
initially presented query. 

1.3    Temporal dynamics of multistable perception 

The term psychophysics refers to the macroscopic experimental way to 
extract information from human and/or animal behaviour. It has been the 
initial and traditional way for studying MP. As technological advances 
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were held, mesoscopic and microscopic experimental techniques appeared 
and scientists were able to contribute in extracting information related to 
the neural correlates of subjective perception. Here, we focus on the main 
measures and results obtained via psychophysics. 

When observers are presented continuously in time with ambiguous 
figures, or two conflicting images dichoptically, they experience 
perceptual alternations and they are asked, by the experimentalist, to 
report them. The durations of successive phases of dominance and 
suppression are thus recorded. A typical characteristic of these durations 
is their non-chaotic (Lehky 1995) stochastic behaviour (Fox & Hermann 

1967; Borsellino et al. 1972; Walker 1975). However, nonzero serial 
correlations have also been reported (van Ee 2009). In addition, 
cumulative history effects (Pastukhov & Braun 2011), as well as 
stochastic resonance (Gammaitoni et al. 1998) has also been shown to be 
present in BP (Kim et al. 2006, Garcia-Rodriguez 2012). 

Distribution of time dominances 

One of the most common characteristics of the dominance durations, 
regardless the kind of ambiguous stimulation (in BP), is the shape of their 
distribution, which is unimodal, right skewed with a long tail (Figure 1.8). 
Traditionally the distribution of time dominances is fitted by a gamma 
function (Fox & Hermann 1967; Levelt 1967; Logothetis et al. 1996; 
Kovacs et al. 1996; Rubin & Hupé 2004), but log-normal distribution 
(Lehky 1995) and Weibull function (Zhou et al. 2004) have also been 
used to fit it.  

Along with the distribution of time dominances, the coefficient of 
variation ranges also in a small range of parameters, usually between 0.4 
and 0.6 (Shpiro et al. 2009). It has been shown that the standard deviation 
and the mean of the dominance durations are related by a factor 2 in 
average (Levelt 1967; Walker 1975), and that the parameters of the 
gamma distribution can be expressed as a function of the mean dominance 
durations (Borsellino et al. 1972; Walker 1975) or be equal upon 
normalization by the mean dominance duration (Levelt 1967). The 
distribution of dominance times has been one of the main experimental 
evidences used to validate theoretical approaches (Chapter 3). 
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Apart from the distribution of dominance durations to describe the 
temporal dynamics of the perceptual alternations, the distribution of the 
reversal rates have also been reported (Brascamp et al. 2005), and fitted 
by beta’ distribution (a two-parameter distribution related to the gamma 
distribution, and similar in shape). 

 
Figure 1.8 Distribution of dominance durations 
A. Stimulation protocol: two orthogonal sinusoidal gratings are presented 
dichoptically to subjects, continuously in time B. Distribution of dominance 
durations, fitted by a gamma function. (Adapted from Logothetis et al. 1996)  

Successive phases of perceptual dominance and suppression can be 
interrupted by periods of -complete or partial (piecemeal transitions, 
Bossink et al. 1993)- merged perception of the two conflicting percept, 
depending on the the rival stimuli. Finally, these transitions periods could 
be followed by return to the previous perceptual dominance (return or 
failed transitions Mueller & Blake 1989; Brascamp et al. 2006).   

Levelt’s propositions 

An additional set of experimental evidences, widely used to test 
theoretical approaches (Chapters 3), have been provided in four 
propositions by Levelt (Levelt 1968), and verified experimentally multiple 
times. Levelt’s four propositions denote how stimulus parameters affect 
the duration of perception of the two conflicting images. Levelt’s second 
proposition has been recently revised (Brascamp et al. 2006), and all four 
of them are the followings (adapted from Klink et al. 2008b): 

1. Increasing the stimulus strength of one perceptual interpretation 
of a bistable stimulus increases the predominance of this 
perceptual interpretation 
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2. (Revised) Manipulations of stimulus strength of one perceptual 
interpretation of a bistable stimulus will mainly influence the 
average dominance duration of the perceptual interpretation 
corresponding to the strongest stimulus 

3. Manipulating the stimulus strength of one perceptual 
interpretation of a bistable stimulus will influence the average 
rivalry reversal rate 

4. Increasing the general stimulus strength of a bistable stimulus 
will increase the average rivalry reversal rate 

Levelt´s four propositions have been validated for ambiguous figures as 
well as for conflicting images in BR (Klink et al. 2008b; Moreno-Bote et 
al. 2010). In addition, it has been shown that alternation rate in BP is 
maximal at and symmetric around equi-dominance (Moreno-Bote et al. 
2010). 

Psychophysical studies apart from revealing the temporal dynamics they 
can give insights on the underlying neural mechanisms mediating MP. 
Since the beginnings of MP studies the dominant theory suggests that two 
neural assemblies that compete in time for perceptual dominance are 
responsible for the successive phases of perceptual dominance and 
suppression. In the framework of this theory, nevertheless, there has been 
a long- standing debate on whether this competition is resolved in the 
primary, sensory, visual cortex and therefore is held between monocular 
neurons or is held between binocular neurons, i.e. neurons that encode the 
neural representation of the stimuli. The answer to this question has been 
vacillated between the two alternatives as new experimental findings were 
reported. Initial psychophysical experiments favoured the interocular 
competition, i.e. competition between monocular neurons (Blake et al. 
1979, 1980; Blake 1989, Blake & fox 1974; Blake & Lema 1978). Other 
studies though favoured the second explanation (Diaz-Caneja 1928; 

Weitzman 1963; Whittle 1968; Wong & Weisstein 1982; Logothetis et al. 
1996; Kovács et al. 1996; Treue 1997). Nowadays, all experimental 
evidences, combining various experimental techniques, suggest that what 
compete in MP are neural representations of the stimuli, not necessarily 
bound to monocular input.  

In the following paragraph we summarize the experimental mesoscopic 
and microscopic evidences related to the neural correlates of subjective 
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visual perception. For more details we refer to the recent thorough reviews 
by Panagiotaropoulos & Logothetis (2013), and Panagiotaropoulos et 

al. (2014).  

1.4   Neural correlates of subjective visual perception 

As we pointed out in the begining of this introductory chapter, the current 
way to approach the problem of subjective visual perception -or else 
visual awareness, or else visual consciousness- is to find the neural 
mechanisms that take place in the brain and give rise to the observed 
behaviour exhibited by humans and non-human primates during 
phenomena of perceptual dominance and perceptual suppression. Two of 
the main questions, therefore, are:  

1. What are the computations performed by the neurons engaged in 
such phenomena, and  

2. Where in the brain these phenomena are manifested?  

These questions are not independent, since the answer of the first question 
is dependent on the answer of the second question. In order to answer 
them, both experimental techniques -psychophysics, magnetic resonance 
imaging (MRI), positron emission tomography (PET), functional 
magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), 
electroencephalography (EEG), magnetoencephalography (MEG), 
transcranial magnetic stimulation (TMS), electrocorticography (ECoG), 
deep brain stimulation (DBS), neuroelectrophysiology (intracortical 
extracellular single-cell recordings)-, as well as theoretical approaches 
based on experimental evidences can be employed in order to provide 
insights towards answering these questions.  

While macroscopic (physchophysics), as well as mesoscopic non- 
invasive (MRI, PET, fMRI, DTI, EEG, MEG, TMS) experimental 
techniques can be applied to both human and non-human primates, it is 
not always easy to employ mesoscopic and microscopic invasive (ECoG, 
DBS, single-cell recordings) techniques to humans. This problem has 
been overcome by finding that non-human primates exhibit similar 
behaviour with human-primates and that their visual system (Figure 
1.10A) is evolutionary similar to that of human-primates (Figure 
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1.10B,C). Nevertheless, single-neuron recordings in humans have also 
been performed in epileptic human patients in the context of MP 
(Kreiman et al. 2002) and a clearer comparison between humans and non-
human primates has been possible. 

Under ambiguous conditions, the subjective perceptual dominance of a 
visual stimulus is conceptualized to be physiologically supported by an 
assembly of neurons with similar stimulus preference that dominates over 
a competing, perceptually suppressed, population through the dominance 
of its averaged firing rate (Crick & Koch 2003; Logothetis 1998). Indeed, 
neurophysiological findings in studies combining rivalrous stimulation 
with extracellular recordings in monkeys and humans suggest that 
perceptual competition involves two rivaling stimuli representations 
embedded in two distinct neuronal assemblies that are tuned to each visual 
pattern and battle for activity dominance (Gail et al. 2004; Keliris et al. 

2010; Kreiman et al. 2002; Leopold & Logothetis 1996; Logothetis & 
Schall 1989; Panagiotaropoulos et al. 2012; Sheinberg & Logothetis 
1997) (Figure 1.9).  

 
Figure 1.9 Single-cell recordings during rivalry 
A. Up: Monkey trained to report, via a lever, its dominant perception. Down. 
Activity recorded from a single cell correlated with the animal’s perceptual 
reports (adapted from Blake & Logothetis 2002) B. Activity of a single cell 
correlated with the animal’s perceptual reports in four observation periods 
(adapted from Leopold & Logothetis 1999)  

Where in the brain rivalry is resolved? 

Nowadays, it is widely known that neural correlates of subjective visual 
perception can be detected in multiple sites across the visual cortical 
hierarchy; from primary visual (V1) to the lateral prefrontal cortex 
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(LPFC). Nevertheless, they are more likely to reflect the outcome of 
visual competition, and thus the content of conscious visual perception, in 
the higher-order association cortical areas (the temporal and prefrontal 
cortex (Leopold 2012; Panagiotaropoulos et al. 2012; Sheinberg & 

Logothetis 1997) and thalamic nuclei; the pulvinar (Wilke et al. 2009).  

As we enter higher areas in visual hierarchy the percentage of neurons 
activated in agreement with the reported perception increases (Figure 
1.10B). More specifically, extracellular electrophysiological recordings in 
the non-human primate brain, have shown that in early visual processing 
stages V1 and V2 only 14% of multi-unit spiking activity (MUA) and 20-
25% of single-unit activity (SUA) are perceptual modulated during 
rivalrous perception (Leopold & Logothetis 1999; Grunewald et al. 2002; 

Gail et al. 2004; Keliris et al. 2010), while they were not modulated 
during GFS (Wilke et al. 2006; Maier et al. 2008) or MIB (Libedinsky et 

al. 2009). In hierarchically intermediate cortical areas V4 and middle 
temporal (MT or else V5) 25-40% of the recorded neurons were 
perceptual modulated during BR, BFS, SFM (Logothetis & Schall 1989; 

Leopold & Logothetis 1996; Bradley et al. 1998; Dodd et al. 2001; Maier 
et al. 2007). Further in the visual processing hierarchy, in the superior 
temporal sulcus (STS) and in the inferior temporal (IT), 90% of the 
recorded neurons were perceptually modulated during BR, BFS 
(Sheinberg & Logothetis 1997), while in the human medial temporal lobe 
(MTL) ~70% are perceptually modulated during BFS (Kreiman et al. 
2002). Finally, in the lateral prefrontal cortex (LPFC) ~60-90% of SUA 
and ~75-95% of MUA reflect the perceptual dominance and suppression 
in BFS (Panagiotaropoulos et al. 2012). In addition, 40% of the recorded 
sites in the ventral pulvinar and 60% of the recorded sites in the dorsal 
pulvinar reflect perceptual suppression. In summary, prefrontal, temporal 
areas and the pulvinar reflect much more robustly perceptual dominance 
and suppression. Therefore, a cortico - thalamocortical network is 
suggested to represent the content of subjective visual perception 
(Panagiotaropoulos et al. 2014) (Figure 1.10C). 

On the other hand, fMRI studies have shown different results regarding 
the neural correlates of subjective visual perception. In contrast to 
electrophysiological findings, they have shown significant perceptual 
modulation of the blood-oxygen-level dependent (BOLD) signal in LGN 



 

 15

and VI during BR (Polonsky et al. 2000; Tong & Engel 2001; Lee & 

Blake 2002; Haynes & Rees 2005; Heynes et al. 2005; Lee et al. 2007; 
Wang et al. 2013). The reason of this discrepancy could be that the BOLD 
signal reflects changes in relative concentration of the oxygenated and 
deoxygenated blood that depend more on the local field potentials (LFP’s) 
than neuronal discharges (Logothetis et al. 2001; Logothetis 2002, 2003; 

Logothetis & Wandell 2004; Goense & Logothetis 2008) and LFP’s are 
thought to reflect synaptic input (Mitzdorf et al. 1999; Logothetis 2003) 
which is different than the spiking activity (measured with single-cell 
recordings). Nevertheless, fMRI studies have also shown higher cortical 
areas to be perceptually modulated during BR (Lumer et al. 1998; Sterzer 

et al. 2002; Sterzer & Kleinschmidt 2007; Knapen et al. 2011; 
Zaretskaya et al. 2010; Wang et al. 2013). Therefore, also fMRI studies 
suggest that early visual processing areas are not sufficient for visual 
awareness, supporting the pattern competition theory, as well as that 
interaction between multiple sites across the visual hierarchy are present 
(Wang et al. 2013). 

 

Figure 1.10 Human & non-human primate brain  
A. Human brain (Adapted from Logothetis 1999) B. Macaque brain (adapted 
from Leopold & Logothetis 1999) C. Suggested cortico-thalamic network based 
on experimental evidences. The pulvinar is depicted on the surface of the cortex 
for illustration purposes (adapted from Panagiotaropoulos & Logothetis 2013) 

Finally, together with single-cell recordings and fMRI studies, EEG, MEG 
and TMS studies suggest global functional networks engaged in 
subjective visual perception in MP (Tononi et al. 1998; Srinivasan et al. 

1999; Cosmelli et al. 2004; Doesburg et al. 2009; Gaillard et al. 2009; 

Carmel et al. 2010b; Kanai et al. 2010; Zaretskaya et al. 2010; Hipp et 
al. 2011).  



 

 16

1.5   Outline of the thesis 

All the previously presented experimental evidences have shed some light 
to the problem of visual awareness. In addition, theoretical approaches, 
based on known experimental evidences, have also contributed in the 
understanding of the underlying mechanisms during MP. In the current 
thesis, after a brief review of the theoretical approaches for perceptual 
mutlistability (§2.1), we study the underlying neural mechanism that 
generate the spontaneous alternations in BR (Chapter 3), employing a 
biophysically realistic spiking network (§2.2) and its consistently derived 
base-rate model (§2.3). Furthermore, we employ biophysically realistic 
networks, as well as we derive analytical expressions for the second- order 
statistics (§2.4), to study recent experimental evidences of noise 
decorralation during visual consciousness (Chapter 5). In addition, we 
study the effects of neuronal adaptation on perceptual decision making 
when the sensory stimuli are ambiguous in an adaptation- related 
aftereffects paradigm (Chapter 4). Finally, the current thesis ends with a 
general discussion. 
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CHAPTER 2 

 
 
Theoretical basis  
of Multistable Perception3 

 
 
 
 

2.1   Introduction  

In the beginning of MP’s studies, two alternative views were in debate. 
The first was that perceptual alternations are caused by shifts in attention 
under conscious control (Hermann von Helmhotz, William James, Sir 
Charles Sherrington) and the second that perceptual rivalry is caused at 
the low levels of the visual hierarchy, e.g. due to retinal adaptation (Ewald 
Hering) (Lehky 1988; Blake & Logothetis 2002). The first view was 
initially expressed with an attentional theory of rivalry (Walker 1978), 
while the second with an oscillator based on cross-inhibition in the 
primary visual cortex (Fox & Rasche 1969, Lehky 1988). Nowadays, and 
after a plethora of experimental studies, both views are merged together 
since it is well known that rivalry emerges across multiple sites 
throughout the visual hierarchy. 

                                                 
3 Some theoretical approaches presented in this chapter are published: P. 
Theodoni, T. I. Panagiotaropoulos*, V. Kapoor*, N. K. Logothetis, and G. Deco, 
(2011), Cortical Microcircuit Dynamics mediating Binocular Rivalry: the role of 
adaptation in inhibition, Frontiers in Human Nueroscience, 5, 145, 1-19 & P. 
Theodoni, G. Kovács, M. W. Greenlee, and G. Deco (2011), Neuronal Adaptation 
Effects in Decision Making, The Journal of Neuroscience 31, 1, 234-246, and 
others are in preparation for submission: T. I. Panagiotaropoulos*, P. Theodoni*, 
V. Kapoor*, G. Deco, and N. K. Logothetis (2014), Decorrelated noise in 
dominant prefrontal microcircuits during visual consciousness. (*equal 
contribution) 
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Since the invention of the stereoscope by Sir Charles Wheatstone (1838), 
BR is the most extensively studied paradigm of MP, both experimentally 
and theoretically. The beauty in BR is the capacity of the phenomenon to 
offer insights into conscious perception, rather than on the earlier notion 
that rivalry is strictly a “binocular phenomenon” which optimizes unified 
stereoscopic vision and is utterly unrelated to other multistable perceptual 
phenomena. When a subject is dichoptically presented with two 
conflicting images, only one image is perceived at a time while the other 
is suppressed from awareness (Chapter 1). 

Theoretical studies are mostly based on competition models consisting of 
two selective neuronal populations whose activity encodes one of the two 
conflicting images in BR (or perceptual interpretation of an ambiguous 
figure). Most theoretical approaches so far are based on abstract rate 
models. Abstract refers to non- biologically plausible, and rate to the main 
variable of the system of equations which is the mean firing rates of each 
neural population. Few studies have considered biologically inspired 
spiking networks (Laing & Chow 2002; Moreno-Bote 2007; Chapters 3, 
5), as well as consistent derivations of them to a rate model (Laing et al. 

2010, Chapter 3). Rate models that have been studied in the context of 
MP, can be divided into two big categories: Single- stage rate models 
(Fox & Rasche 1969, Sugie 1982; Wolfe 1986; Cogan 1987; Lehky 

1988; Blake 1989; Mueller 1990; Lumer 1998; Kalarickal & Marshall 

2000; Lago-Fernandez & Deco 2002; Laing & Chow 2002; Stollenwerk 
& Bode 2003; Moldakarimov et al. 2005; Kim et al. 2006; Wilson 2007; 

Shpiro et al. 2007; Curtu et al. 2008; Shpiro et al. 2009; van Ee 2009; 
Curtu 2010; Moreno-Bote 2010; Seely & Chow 2011; Pastukhov et al. 
2013) and multi- stage rate models (Matsuoka 1984; Lumer 1998; Dayan 

1998; Nguyen et al. 2001; Wilson 2003; Freeman 2005; Grossberg et al. 
2008; Lehky 2011; Said & Heeger 2013). Most of the rate models are 
single- stage, which means that correspond to one area in the brain. 
Nevertheless, the widespread activity of cortical areas involved in 
multistable perception makes apparent the need of multi- stage, 
hierarchical, models (Blake & Logothetis 2002; Wang et al. 2013).  

These rate- based models are mainly characterized by cross-inhibition, 
which generates competition (Seely & Chow 2011), between two neuronal 
populations that encode e.g. each conflicting image in BR, with main 
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component a slow fatiguing process that produces oscillations (Lehky 

1988; Lago-Fernández & Deco 2002; Laing & Chow 2002; Wilson 
2003, Shpiro et al. 2007). Cross-inhibition leads to the suppression of one 
of the two images, while a fatiguing process, such as spike-frequency 
adaptation, or synaptic depression, eventually weakens inhibition, and 
causes the previously suppressed neuronal population to win the 
competition. This mechanism generates anti- phase oscillations of the 
mean firing rates of the two neuronal populations believed to represent 
perceptual alternations between the two conflicting visual patterns. 
Alternatively, alternations in perception have also been represented as 
switches between two attractors due to noise in noise- driven attractor 
models (Salinas 2003; Freeman 2005; Kim et al. 2006; Moreno-Bote et 

al. 2007). Shpiro et al. (2009) implemented both noise and adaptation 
mechanisms in a common theoretical framework, and showed that both 
mechanisms operate in balance during perceptual bistability. In addition, 
similar result has been shown taking into account cumulative history 
effects (Pastukhov et al. 2013), as well as in order to explain the pattern 
of neural discharges observed in the macaque prefrontal cortex during 
rivalrous stimulation (Panagiotaropoulos et al. 2013), while it was 
recently proposed that noisy adaptation signals could represent one of the 
physiological mechanisms resulting in BR dynamics (van Ee 2009; Alais 
et al. 2012). In Chapter 3, we affirm that noise and adaptation operate in 
balance during BP by employing a biophysically realistic one- stage 
spiking network, as well as its consistently derived rate model, and by 
considering human behavioural data.  

Interestingly, many studies with various theoretical approaches -such as 
neural fields (Hock et al. 2003; Wilson 2009; Kilpatrick & Bressloff 

2010; Bressloff & Webber 2011; Diekman et al. 2012; Rankin et al. 
2013), synergetics (Ditzinger & Haken 1989, 1990, 1995, 1997), as well 
as solitons (Loxley & Robinson 2007, 2009), Ising model (Riani & 

Simonotto 1995) Bayesian (Bialek & DeWeese 1995; Mamassian et al. 

2002; Hohwy et al. 2008; van Ee et al. 2003; Wilson 2009; Moreno-Bote 
et al. 2011), in the framework of energy well models (Moreno-Bote et al. 

2007, 2010, 2011), and quantum formalism (Atmanspacher et al. 2004; 
Manousakis 2009, 2012), statistics (van der Ven et al. 2005), chaotic 
attractor (Fürstenau 2004), winnerless competition (Ashwin & Lavric 
2010)- have been held. Apparently, there is a plethora of theoretical 
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studies and approaches on MP, and it would be interesting to see a 
thorough review on them, currently missing from the literature. 

In the current thesis, we employed a biologically plausible spiking 
network to study BR, BFS and perceptual decision making (§2.2, Chapter 
3, 4, 5). We also consistently derived a rate model from the biologically 
inspired network to study the underlying neural mechanisms of BP 
(§2.3.2, Chapter 3). Finally, expanding the consistently derived rate model 
to two populations, we extracted analytical expressions for second- order 
statistics (means, variances, cross-correlations) to study the observed 
neural noise- decorrelation in BFS (§2.3.4, Chapter 5). 

2.2   Biophysically plausible spiking model 

Model description  

The biophysically realistic spiking model with integrate- and- fire neurons 
that we employ in the current thesis, was first introduced for working 
memory (Brunel & Wang 2001), later for decision making (Wang 2002), 
and attention (Deco et al. 2005). Implementing into the model firing- rate 
adaptation mechanism (Liu & Wang 2001) has also been employed for 
adaptation- related aftereffects (Chapter 4) and perceptual bistability 
(Moreno-Bote et al. 2007; Chapter 3). It is attractor- based (Amit 1995) 
and implements competition and cooperation mechanisms among neurons 
belonging to two neural groups of pyramidal cells that encode the two 
conflicting percepts (in a binary decision- making task) or percepts of two 
dissimilar images of an ambiguous stimulus (in a visual perceptual 
bistability situation). The essential aspects and components of the model 
are presented in a compact way in Tables 2.1 - 2.6 (as proposed by 
Nordlie et al. 2009), and they are described below. Cooperation 
mechanisms arise from high recurrent connectivity among neurons 
belonging to the same neuronal population. Competition between two 
selective neuronal populations is mediated by a feedback inhibition from 
interneurons in the network.  
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Model composition 

The network is divided into different populations (Figure 2.1) where 
neurons belonging to one particular population share the same statistical 
properties and single- cell parameters, as well as inputs and connectivity. 
There is a total number of neurons, N, where NE = 0.8N are excitatory 
pyramidal cells and NI = 0.2N are inhibitory interneurons, consistent with 
the neurophysiologically observed proportion of 80% pyramidal cells 
versus 20% interneurons (Abeles 1991). The inhibitory neurons form one 
population to which we will refer as pool I. The excitatory neurons form 
three distinct populations. Populations 1 and 2 consist of neurons selective 
to one or the other conflicting images in BR. The third population (labeled 
as ns) comprises neurons that are non- selective to the stimulus features. 
Non- selective neurons are included for biophysical realism and 
computationally to increase the stability of the network at the spontaneous 
state; they do not play a particular role in the decision process per se. The 
union of these three excitatory populations of neurons is named pool E. 
Each of the two selective pools consists of fNE neurons. The non-selective 
one consists of (1 - 2f )NE.  

 

Figure 2.1 Architecture of the biophysically plausible spiking network 
The sizes of neuronal populations are proportional to their number of neurons 
(NE = N1 + N2 + Nns = 4NI, Nns = 0.7NE, and N1 = N2 = 0.15NE, when f = 0.15). 
There are four neuronal populations: one inhibitory (orange, I), one excitatory 
comprised of non- selective neurons (gray, ns), and two excitatory populations 
(red, 1 and blue, 2) within which neurons have similar stimulus selectivity. 
Arrows denote excitatory connections; lines ending to circles, inhibitory 
connections whereas lines ending to squares, after hyperpolarizing currents with 
peak conductance gahp. All neurons receive background input and selective 
populations receive an additional external stimulus λ1, λ2. 
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Connectivity  

The connectivity architecture of the network can be seen graphically in 
Figure 2.1. The connections of the neurons and their strengths between 
and within the populations are determined by dimensionless weights wj, 
corresponding to the synaptic efficacies. Within the selective neuronal 
populations, 1 and 2, excitatory synapses are potentiated by a factor wj ≡ 
w+ ≥ 1 according to the “Hebbian” rule, according to which cells that fire 
together are strongly connected. In the text we refer to this factor as 
recurrent connectivity. Excitatory synapses between the two selective 
neuronal populations, and excitatory synapses between the non-selective 
to each selective population are modified by wj ≡ w- = 1 - f(w+-1)/(1-f) < 
1, so that the spontaneous activity of all excitatory cells is at the same 
level (Amit & Brunel 1997). The remaining connections are all set to wj = 
1. There is all- to- all connectivity, meaning that each neuron in the 
network receives NE excitatory and NI inhibitory synaptic contacts. Within 
each population we assume homogeneity of connections for simplicity. 
The introduction of inhomogeneities (e.g. sparse random connectivity) 
does not affect the attractor landscape of the dynamics but only increases 
the noise (finite-size effects, see Mattia & Del Giudice 2002).  

Dynamics of neurons, synapses and channels  

All neurons in the network are modeled as being leaky integrate- and- fire 
neurons. Integrate- and- fire (IF) neurons are point- like elements, 
meaning that the whole neural membrane is taken as equipotential. Its 
dynamical state is described by a single variable, the instantaneous value 
of its membrane potential, V(t). Under normal conditions, the potential 
inside the cell is lower than the potential outside, which is zero by 
convention. Membrane voltage changes are due to different ionic 
concentrations found on both sides of the membrane. Synaptic inputs to an 
IF neuron are basically described by a capacitor, Cm, connected in parallel 
with a resistor, Rm. The capacitor corresponds to the membrane 
capacitance and the resistor to the membrane conductance through which 
currents are injected into the neuron by its synapses (Isyn). In addition, a 
spike- frequency adapting mechanism is taken into account, which has 
been observed experimentally (Madison & Nicolle 1984). It is 
implemented in the network by including a slow Ca2+- activated K+ 
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current, IAHP, into the dynamical equation of the membrane potential of 
each neuron. This afterhyperpolarization current IAHP is given by the 
following equation: 

( ) ( ) ( )( )AHP AHP KCaI t g t V t V= − −                         (2.1)
 

where VK = -80 mV is the reversal potential of potassium channels. The 
gating variable Ca, emulating the cytoplasmic Ca2+ concentration, is 
initially set to 0 and between spikes is modeled as a leaky integrator with 
a decay time constant τCa (Liu & Wang 2001). The gAHPCa is the effective 
K+ conductance and the gahp defines the level of neuronal adaptation or 
adaptation strength. Hence, the dynamics of the subthreshold membrane 
potential of each neuron, excitatory (E) or inhibitory (I), in the network is 
given by the following system of equations: 

( ) ( )( ) ( ) ( )m m L syn AHPC
dV t

g V t V I t I t
dt

= − − − +                 (2.2)
 

( ) ( )
i

iCa

Ca Ca
ρ δ( )

d t t
t t

dt τ
= − + −∑

                            
(2.3) 

where Cm = 0.5 nF for excitatory neurons and Cm = 0.2 nF for inhibitory, 
gm = 1/Rm is the membrane leak conductance with the values gm = 25 nS 

for pyramidal cells and gm = 20 nS for interneurons, VL = -70 mV is the 
resting potential, Isyn is the synaptic current entering the neuron, and sum 

over i is sum over spikes of the same neuron up to time t. 

When the membrane potential of an excitatory or inhibitory neuron 

reaches a certain threshold, Vthr ≡ θ = -50 mV, a spike is emitted and 
transmitted to other neurons. In addition, the membrane potential is reset 

to Vreset = -55 mV after a refractory time, τref = 2 ms for excitatory neurons 
and τref = 1 ms for inhibitory ones, during which the neuron is unable to 
produce further spikes. In addition, the cytoplasmic Ca2+ concentration 

increases by a small amount, ρ (Liu & Wang 2001). Therefore, if V(t) = 
Vthr, a spike is emitted and 

reset

Ca Ca ρ

V V→
→ +

                                           (2.4) 
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The default values of the fixed parameters used in the simulations are 
displayed in Table 2.5, and they are equal to the ones used in the network 
introduced by Brunel and Wang (2001). 

Ion channels are modeled as having three types of receptors mediating the 
synaptic currents flowing into them: AMPA and NMDA glutamatergic 
and GABAA GABAergic receptors. The total synaptic current of a neuron 
is given by the sum of the recurrent EPSCs, mediated by slow NMDA and 
fast AMPA receptors (INMDA and IAMPA, respectively), and the IPSCs, 
mediated by GABAA receptors (IGABA). External cells contribute to the 
current through AMPA receptors (IAMPA,ext). External EPSCs were 
mediated exclusively by AMPA receptors to keep the external stimulus as 
simple as possible. Recurrent EPSCs include NMDA receptors because it 
is helpful to maintain the system in an asynchronous state. Hence, the total 
synaptic current is given by Isyn(t) = IAMPA,ext(t) + IAMPA(t) + INMDA(t)  + 
IGABA(t), where: 

( )( ) ( )
ext

AMPA,ext
AMPA,ext AMPA,ext E

1

N

j
j

I g V t V S t
=

= − ∑                                      (2.5) 

( )( ) ( )
E

AMPA
AMPA AMPA E

1

N

j j
j

I g V t V w S t
=

= − ∑
                                        

     (2.6) 

( )( )
( ) ( )

E
NMDA E NMDA

NMDA
11 γ

N

j jV t
j

g V t V
I w S t

e β−
=

−
=

+
∑

                                      
     (2.7) 

( )( ) ( )
I

GABA
GABA GABA I

1

N

j
j

I g V t V S t
=

= − ∑                                                    (2.8) 

where sums over j are over presynaptic neurons. The reversal potentials 
for excitatory post synaptic current (EPSCs) are VE = 0 mV and for 
inhibitory ones (IPSCs) VI = -70 mV. The dimensionless parameters wj of 
the excitatory connections are the synaptic weights. The peak 
conductances for excitatory synapses are gAMPA,ext = 2.08 nS, gAMPA,rec = 
104/N nS,  gNMDA,rec = 370/N nS, and gGABA = 1250/N nS, where N is the 
total number of neurons in the network and divides the recurrent 
conductances to keep the mean recurrent input constant if N is varied in 
the network. The peak conductances for inhibitory synapses are gAMPA,ext = 
1.62 nS, gAMPA,rec = 81/N nS, gNMDA,rec = 258/N nS, and gGABA = 973/N nS. 
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The NMDA currents are voltage-dependent and they are modulated by 
extracellular magnesium concentration [Mg2+] = 1 mM, with parameters γ 
= [Mg2+]/(3.57 mM) and β = 0.062 (mV)-1. The functions Sj(t) are the 
synaptic gating variables, representing the fractions of open channels of 
neurons and they are given by the following: 

( ) ( ) ( )
AMPA,ext AMPA,ext

AMPA

j j k
j

k

dS t S t
t t

dt
δ

τ
= − + −∑                                           (2.9) 

( ) ( ) ( )
AMPA AMPA

AMPA

j j k
j

k

dS t S t
t t

dt
δ

τ
= − + −∑                                                (2.10) 

( ) ( ) ( ) ( )( )
NMDA NMDA

NMDA

NMDA

1j j
j j

dS t S t
x t S t

dt
α

τ ↓

= − + −
                             

 (2.11) 

( ) ( ) ( )
NMDA

j j k
j

k

dx t x t
t t

dt
δ

τ ↑

= − + −∑                                                          (2.12) 

( ) ( ) ( )
GABA GABA

GABA

j j k
j

k

dS t S t
t t

dt
δ

τ
= − + −∑                                                (2.13) 

where sums over k are over spikes emitted by the presynaptic neuron j at 
time tk

j, , a = 0.5 ms-1 and δ(t) is the Dirac delta function. The rise time for 
the NMDA synapses is τNMDA↑ = 2 ms. The rise times of both AMPA and 
GABA synaptic currents are neglected because they are extremely short 
(< 1 ms). The decay time for AMPA synapses is τAMPA = 2 ms, for NMDA 
synapses is τNMDA↓ = 100 ms, and for GABA synapses is τGABA = 10 ms. 

 

Table 2.1 Tabular description of the spiking model: summary 
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Table 2.2 Tabular description of the spiking model: population 

 
Table 2.3 Tabular description of the spiking model: connectivity 

 

Table 2.4 Tabular description of the spiking model: neurons & synapses 
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Table 2.5 Default values of the fixed parameters of the spiking model 

 

Table 2.6 Default values of the free parameters of the spiking model 

Inputs and outputs 

Each neuron in the network receives a background input Eext. In order to 
simulate the background input, each neuron in the network receives input 
through Cext = 800 excitatory connections, each one receiving an 
uncorrelated Poisson spike train with rate 3 Hz.  Hence, the excitatory and 
the inhibitory neurons of the network receive an independent Poisson train 
of spikes with rate vext = 2.4 kHz. In addition, to simulate the sensory 
stimulus, the neurons within the two selective populations receive an 
additional Poisson spike train with invariant time rates λ1 and λ2, which 
define the stimuli strength, respectively. Therefore, the total input that 
each neuron of the selective pools receives is v1,2 = vext + λ1,2. Output of 
the model is the mean spike activity of the neuronal populations of the 
network, as are raster plots and firing rates.  

Simulations 

To integrate the system of coupled differential equations that describe the 
dynamics of all cells and synapses, we used a second order Runge–Kutta 
routine (Press et al. 2007) with time step of 0.02 ms. In each trial, the 
mean firing rate of each neuronal population was calculated by dividing 
the number of spikes emitted in a 50ms window by its number of neurons 
and by the window size. The time window was sliding with a time step of 
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5 ms. The spiking neural model was programmed with C++ programming 
initially by Marco Loh, Daniel Martí, Gustavo Deco and extended 
adequately to the needs of the current thesis by the author of this thesis. 
For analyzing the outputs of the spiking simulations, scripts in Matlab 
R2007b were written and used. 

2.3   Consistently derived rate model 

Here, we consistently derive a four-variable reduced rate model from the 
previously described biophysically plausible spiking network (§2.2, 
Figures 2.1, 2.2A), following the simplified mean field approach of Wong 

and Wang (2006). This approach is based on the mean field 
approximation derived by Brunel and Wang (Brunel & Wang, 2001) 
which analyses networks of neurons that have conductance- based 
synaptic inputs when the network of integrate and fire neurons is in a 
stationary state. In the mean field approximation, it is considered the 
diffusion approximation according to which the sums of the synaptic 
gating variables (Equations 2.5 - 2.8) are replaced by a DC component 
and a fluctuation term. Moreover, due to the different synaptic time 
constants, the only noise term that remains is that of the external synaptic 
gating variable which is considered as Gaussian.  

 
Figure 2.2 Consistently derived rate model 
(A) Biophysically plausible spiking network, same as in Figure 2.1 (B) Assuming 
that the mean firing rate of the non- selective neuronal population is constant, the 
network is reduced into three neuronal populations: two excitatory (1, 2), and 
one inhibitory (I). (C) Four- variable reduced rate model of two populations with 
recurrent excitation, cross- inhibition, and neuronal adaptation. 
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Using this approach, the original network of thousands of spiking neurons 
can be reduced into a set of coupled self- consistent non- linear equations. 
This describes the average firing rate of each neuronal population as a 
function of the average input current, which in turn is a function of its 
average firing rate. This mean field approximation has been extended for 
spiking networks including Ca2+- activated K+ hyperpolarizing currents 
(Deco & Rolls 2005), such as the one described in the previous paragraph 
(§2.2). Here, we extend the two-variable reduced model of Wong and 

Wang (2006) by considering this spike-frequency adaptation mechanism 
in neurons. 

The transfer function of a LIF neuron receiving a noisy input, Itotal, is 
given y the first-passage time formula (Renart et al. 2003): 

thr

2

reset

V

s
1

total ref m
V

s

( ) [τ τ π (1 ( ))d ]

ss

ss

V

u

V

r I e erf u uφ

−

−

−

= = + +∫         (2.14) 

Where s is the amplitude of the fluctuations of the synaptic input, i.e. of 
the noise, Vss = (VL + Itotal/g

E,I
m), and erf(u) is the error function. The 

remaining parameters have been defined in the description of the spiking 
network in the previous paragraph (§2.2). In the simplified mean field 
approach, it is assumed that the driving force of the synaptic currents is 
constant and that the variance of the membrane potential does not vary 
significantly and it can be considered fixed as constant. Furthermore, 
instead of using Equation 2.14, the input-output function of Abbott and 
Chance (Abbott & Chance 2005) is considered: 

( ) ( )total

total
total g c I

c I
, E, I

1 i i i

i i
I

I
I i

e
φ − −

−
= =

−
                     (2.15) 

where ci (cE = 310 (Hz/nA) for excitatory neurons, cI = 615 (Hz/nA) for 
inhibitory neurons) is the gain factor, gi (gE = 0.16 s for excitatory 
neurons, gI = 0.087 s for inhibitory neurons) is a noise factor determining 
the shape of the “curvature” of φ, and Ii/ci (IE = 125 Hz, II = 177 Hz) is the 
threshold current when φ acts as a linear/threshold function for high gi. 
The values of these parameters are calculated after fitting Equation 2.15 to 
the first-passage time formula (Equation 2.14) of a LIF excitatory (E) and 
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of an inhibitory (I) neuron, which receives AMPA receptor-mediated 
external Gaussian noise (Wong & Wang, 2006). 

The initial spiking network can be reduced in this way into a system with 
11 + 4 variables, where the 11 are the mean firing rates of the four 
neuronal populations with their average synaptic gating variables. The 
remaining 4 are the average cytoplasmic Ca2+ concentration gating 
variables of the neuronal populations. While, by solving the mean field 
equations, one can only determine the fixed points of the system i.e. the 
stationary firing rates of the four neuronal populations describing the 
firing rates by the Wilson-Cowan type equations (Wilson & Cowan 1973) 
with time constant τr = 2 ms, one can calculate their temporal dynamics. 
Then, the system of the 11 + 4 variables is given by the following 
equations:   

r total,τ φ( )i
i i

dr
r I

dt
= − +                                                                            (2.16) 

I
r I total,Iτ φ( )

dr
r I

dt
= − +                                                                           (2.17) 

ampa ampa

ampaτ
i i

i

dS S
r

dt
= − + %                                                                              (2.18) 

( )
nmda nmda

nmda

nmda

1 (ψ )
τ

i i
i i

dS S
S F

dt
= − + −                                                     (2.19) 

gaba gaba
I I

I
gabaτ

dS S
r

dt
= − + %                                                                               (2.20) 

Ca

Ca Ca
ρ

τ
i i

i

d
r

dt
= − + %                                                                                (2.21) 

I I
I

Ca

Ca Ca
ρ

τ

d
r

dt
= − + %                                                                                (2.22) 

Where, i = 1, 2, ns accounts for the two selective and the non- selective to 
stimulus features excitatory neuronal populations, and I accounts for the 

inhibitory neuronal population. In Equations 2.16 and 2.17, ri and rI 
(expressed in Hz) are the presynaptic mean firing rate of the excitatory 

and inhibitory populations respectively.  In Equations 2.18, 2.20 – 2.22, rhi 
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= ri/1000 and rhI = rI/1000, in order to be consistent with the units since the 
time constants are expressed in ms. Sampa

i, Snmda
i and Sgaba

I stand for the 
average synaptic gating variables of the AMPA, NMDA and GABA 
receptors respectively, and τampa, τnmda, τgaba, for their corresponding decay 
time constants. Cai and CaI stand for the cytoplasmic Ca2+ concentration 
gating variable of the three excitatory (i = 1, 2, ns), and the one inhibitory 
(I) population respectively. ψi = γτnmda rhi/(1 + γτnmda rhi ) is the steady state 
of Snmda

i, γ = 0.641 and F(ψi) = ψi/(τnmda(1 - ψi )) = γrhi (Brunel & Wang 

2001; Wong & Wang 2006).  

Furthermore, the model can be reduced to a 4- variable system if we:       
1. assume constant activity of the non- selective neurons, 2. consider only 
the slow dynamics of NMDA gating variable and of the Ca2+- activated K+ 
channels, 3. linearize the input- output relation of the interneurons, and 4. 
consider the Ca2+ concentration gating variable of inhibitory interneurons 
constant. We will discuss this in more details in the following sections.   

Constant activity of non- selective excitatory neurons 

When there is no adaptation in the network (gahp = 0 nS), the firing rate of 
the non selective neurons does not change much under different 
conditions. This allows us to assume that they fire at a constant rate of 2 
Hz, as in Wong and Wang (2006). We further assume the same when 
there is neuronal adaptation in the network (gahp ≠ 0 nS) in order for our 
four variable reduced model to coincide with the two-variable reduced of 
Wong and Wang (2006) at gahp = 0 nS. Implementing spike- frequency 
adaptation to all excitatory and inhibitory neurons, the mean firing rate of 
the non selective population increases as a function of the level of 
neuronal adaptation (Figure 2.3). The mean firing rate was calculated by 
averaging the last 5 s of each 10 s- trial. and by averaging over 100 trials. 
In Figure 2.3A, we show this dependence at different recurrent 
connectivities for an additional external stimulus to neurons belonging to 
the two selective populations of 40 Hz (a stimulus strength used in the 
simulations in Chapter 3). We see that, for a given stimulus, recurrent 
connectivity does not change much the mean firing rate of the non- 
selective population as a function of the level of adaptation strength. This 
result stands for different stimuli (not shown here).  
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Figure 2.3 Mean firing rate of the non- selective population 
(A) Average firing rate of the non- selective neuronal population as a function of 
the level of adaptation at different recurrent connectivities  for external input λ1 = 
λ2 = 40 Hz. (B) Average firing rate of the non- selective neuronal population as a 
function of the level of neuronal adaptation at different external stimuli for 
recurrent connectivity w+ =1.68. 

In Figure 2.3B, we show the mean firing rate of the non selective 
population as a function of the level of adaptation at different external 
inputs for a recurrent connectivity of w+ = 1.68 (the recurrent connectivity 
used in the simulations in Chapter 3). It is apparent that there is an 
increase, both as a function of level of neuronal adaptation for a given 
stimulus, and as a function of stimulus for a given neuronal adaptation. 
Nevertheless, for simplicity we decided to neglect this increase and 
considered that the mean firing rate of the non selective population is 
constant at 2 Hz for all conditions (i.e. also when there is neuronal 
adaptation in the network). As a consequence of this assumption, we 
further neglected the extra inhibition on the selective populations evoked 
through the interneurons. Nevertheless, as we show in Figures 3.2C, 3.2D, 
3.5C, and 3.5D, that the adopted assumptions do not change the results 
much. By assuming that the mean firing rate of the non- selective 
population is constant, the system is reduced to three neuronal populations 
as it is shown in Figure 2.2B. 

Slow dynamics of NMDA gating variable and cytoplasmic Ca2+ 

concentration 

The membrane time constant of LIF neurons can be neglected since they 
respond instantaneously to a stimulus (Brunel et al. 2001; Fourcaud & 

Brunel 2002). In addition, the fast dynamics of the synaptic gating 
variables of AMPA and GABAA receptors, compared to the slow synaptic 
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gating variable of NMDA receptors, may also be neglected as they reach 
their steady states much faster. Their average values can thus be written as 
proportional to the mean firing rate of presynaptic cells (Brunel & Wang 
2001; Wong & Wang 2006). In this work, we also consider the slow 
dynamics of the cytoplasmic Ca2+ concentration that cannot be neglected. 
Therefore, Equations 2.19, 2.21 and 2.22 remain as they were, while 
Equations 2.16-2.18 and 2.20 become: 

total,( )i ir Iφ=                                             (2.23) 

I total,I( )r Iφ=                                            (2.24) 

ampa
ampa( ) τ ( )i iS t r t= %                                       (2.25) 

gaba
I gaba I( ) τ ( )S t r t= %                                       (2.26) 

where i = 1, 2. The total currents in the selective populations (1, 2) and in 
the inhibitory (I), resulting from the simplified mean field approach, are 
given by the following equations: 
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(2.27) 
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total,I syn,I ahp,I ampa,ext,I ampa,I nmda,I gaba,I ahp,II I I I I I I I= + = + + + +                                                                                                                                
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                      (2.29) 

Where geff,E,I
nmda = gE,I

nmda/(1 + γe-β<VE,I>), E stands for excitatory, I for 
inhibitory, and S1, S2 are the average synaptic gating variables of the 
NMDA receptors of the two selective populations. To the external 
excitatory input currents to the two selective populations, Iampa,ext,1, 

Iampa,ext,2, we included the contribution of the external stimuli  λ1 = λ1/1000 
(1/ms) and λ2 = λ2/1000 (1/ms) respectively. gahp = gahp/1000 (µS), and the 
values of the fixed averaged membrane potentials for the excitatory and 
inhibitory neurons are <VE> = -53.4 mV, <VI> = -52.1 mV respectively, 

the same as the ones considered in Wong and Wang (2006).  

Linearization of the input-output relation of interneurons 

The mean firing rate of the inhibitory neurons lies in the range of 8 - 15 
Hz when there is no spike- frequency adaptation encoded in the neurons 

of the network. However when spike- frequency adaptation in all neurons 
in the network, the mean firing rate of the inhibitory neurons increases 
slightly and up to 20 Hz. Within the range 8 - 20 Hz, the single- cell input- 
output relation is still almost linear (Figure 2.4) and is fitted by: 

( ) ( )I total,I I total,I I 0
I2

1
c I

g
r I I rφ= = − +                        (2.30) 

where g12 = 1.7876, and r0 = 11.3721 Hz. cI = 615 (Hz/nA) and II = 177 
Hz are the same as in Equation 2.15. By substituting Itotal,I (Equation 2.29) 
in Equation 2.30 we find: 
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where η = 1 + (cI/g12)g
I
gaba(<VI> - VI)τgabaCI/1000. Finally, by substituting 

rI (Equation 2.31) in the expressions of Itotal,1(t), Itotal,2(t) (Equations 2.27 
and 2.28), the system is reduced to two populations (Figure 2.2C).   

 

Figure 2.4 Input – output function of an interneuron  
The line is plot of the first- passage time formula of a LIF model with σ = 4.2 
(Equation 2.14), while the circles correspond to the fit of Equation 2.15. In the 
inset, a close up is drawn (solid line) and the line an approximation using 
Equation 2.30 (dashed line). 

Ca2+ concentration of interneurons as a function of the level of 
neuronal adaptation 

If we consider spike- frequency adaptation to the inhibitory interneurons, 
the model consists of five variables, two average synaptic gating 
variables, S1,2, of the selective populations, two average Ca2+ 
concentration gating variables of the selective populations, Ca1,2, and one 
of the inhibitory population, CaI. In order to further reduce the system of 
equations, we assume that the Ca2+ concentration of the inhibitory 
population is constant in time at different levels of neuronal adaptation, 
since it changes only by a modest amount. The dependence of CaI on the 
level of neuronal adaptation is found by simulating the full biophysically 
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plausible network, as we did in section Constant activity of non- selective 
excitatory neurons for the mean firing rate of the non- selective 
population. More specifically, the CaI was calculated by averaging the last 
5 s of each 10 s- trial, and then by averaging over 100 trials. In Figure 
2.5A, we present CaI  as a function of the level of neuronal adaptation at 
different recurrent connectivities for an additional external stimulus to 
both selective populations of 40 Hz (a stimulus strength used in the 
simulations in Chapter 3). In Figure 2.5B, we present CaI as a function of 
the level of neuronal at different external inputs for a recurrent 
connectivity of w+ = 1.68 (the recurrent connectivity used in the 
simulations in Chapter 3). After fitting a quadratic function to the plot CaI 
= f(gahp) for recurrent connectivity w+ = 1.68, and without external 
stimulus (black line in Figure 2.5B), we find: 

5 2 4
I gahp ahpCa 2.1 10 g 8.4 10 g 0.025− −= × + × +              (2.32) 

In Figures 2.5A and 2.5B, it is apparent that the shape of this function 
does not change significantly under different conditions, but it is shifted to 
higher values at higher stimuli. Nevertheless, for simplicity, we neglected 
this increase and we considered Equation 2.32 approximated by the value 
0.025 for all gAHP, i.e. CaI = 0.025 for all conditions. The consequence of 
this assumption is that we consider higher inhibition to the selective 
populations. However in Figures 3.2C, 3.2D, 3.5C, and 3.5D where we 
compare the reduced model with the spiking model, we show that both 
models behave similarly. 

 

Figure 2.5 Mean gating variable CaI 
(A) Average gating variable CaI emulating the Ca2+ concentration of the 
inhibitory population as a function of the level of  adaptation at different 
recurrent connectivities for external stimulus λ1 = λ2 = 40 Hz. (B) The average 
gating variable CaI as a function of the level of  neuronal adaptation at different 
external stimuli for recurrent connectivity w+ =1.68. 
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Reduced four-variable model 

As described in the previous sections, we consistently reduced a full 
biophysically plausible spiking network, with spike-frequency adaptation 
mechanism implemented, to a four-variable reduced rate model (Figure 
2.2C). The dynamical equations characterizing this system are: 

( ) ( )E E total,1 E

E total,1 E
1 total,1 g c I

c I

1
I

I
r I

e
φ

− −

−
= =

−
                                                           (2.33) 

( ) ( )E E total,2 E

E total,2 E
2 total,2 g c I

c I

1
I

I
r I

e
φ

− −

−
= =

−
                                                           (2.34) 

( )1 1
1 1

nmda

1 γ
τ

dS S
S r

dt
= − + − %                                                                    (2.35) 

( )2 2
2 2

nmda

1 γ
τ

dS S
S r

dt
= − + − %                                                                    (2.36) 

 

1 1
1

Ca

Ca Ca
ρ

τ

d
r

dt
= − + %                                                                             (2.37) 

2 2
2

Ca

Ca Ca
ρ

τ

d
r

dt
= − + %                                                                             (2.38) 

The total inward currents to the populations are given by   

total,1 N,11 1 N,12 2 A,11 1 A,12 2 1 I

0 stim,1 noise,1

λCa κCaI J S J S J r J r

I I I

= − + − − +
+ + +

                   (2.39) 

total,2 N,22 2 N,21 1 A,22 2 A,21 1 2 I

0 stim,2 noise,2

λCa κCaI J S J S J r J r

I I I

= − + − − +
+ + +

                   (2.40) 

where 

( ) gabaE ,II
N,11 gaba E I I nmda I E

I2

,E
nmda E E

τ c
V C C

1000 ηg

C

eff

eff

J g V g V f

g V f w+

= −

−
                            (2.41) 

N,22 N,11J J=                                                                                           (2.42) 
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( )

,E
N,12 nmda E E

gabaE ,II
gaba E I I nmda I E

I2

C

τ c
V C C

1000 ηg

eff

eff

J g V f w

g V g V f

−=

− −
                          (2.43)                    

N,21 N,12J J=                                                                                           (2.44) 

( ) gaba ampaE II
A,11 gaba E I I ampa I E

I2

ampaE
ampa E E

τ τc
V C C

1000 ηg 1000

τ
C

1000

J g V g V f

g V f w+

= −

−
                    (2.45) 

A,22 A,11J J=                                                                                           (2.46) 

( )

ampaE
A,12 ampa E E

gaba ampaE II
gaba E I I ampa I E

I2

τ
C

1000
τ τc

V C C
1000 ηg 1000

J g V f w

g V g V f

−=

− −
                 (2.47) 

A,21 A,12J J=                                                                                           (2.48) 

ahpλ λ g′= % ,     where ( )E Kλ VV′ = −                                                   (2.49) 

ahpκ κ g′= % ,  ( ) ( )gabaE I
gaba E I I I K

I2

τ c
κ V C V

1000 ηg
g V V′ = − −                  (2.50) 

( )
0 ext ns ns

gabaE 0I
gaba E I I

I2

ψ

τ rI
V C

1000 ηg η

I l r m r n

g V

= ⋅ + ⋅ + ⋅

 
+ − − 

 

                                          (2.51) 

( ) gaba ampaE II
gaba E I I ampa,ext I ext

I2

ampaE
ampa,ext E ext

τ τc
V C C

1000 ηg 1000

τ
C

1000

l g V g V

g V

= −

−
                        (2.52) 

( ) ( )

( )

gaba ampaE II
gaba E I I ampa I E

I2

ampaE
ampa E E

τ τc
V C 1 2 C

1000 ηg 1000

τ
1 2 C

1000

m g V g V f

g V f w−

= − −

− −
              (2.53) 
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( ) ( )

( )

gabaE ,II
gaba E I I nmda I E

I2

,E
nmda E E

τ c
V C 1 2 C

1000 ηg

1 2 C

eff

eff

n g V g V f

g V f w−

= − −

− −
                     (2.54) 

ampaE
stim,1 A,ext 1 ampa,ext E 1

τ
λ λ

1000
I J g V= ⋅ = −                                               (2.55) 

ampaE
stim,2 A,ext 2 ampa,ext E 2

τ
λ λ

1000
I J g V= ⋅ = −                                              (2.56) 

( ) gabaII
gaba I I I

I2

τc
η 1 V C

g 1000
g V= + −                                                       (2.57) 

E,I

E,I
,E,I nmda

nmda 0.062
1 3.57

eff

V

g
g

e
−

=
+

                                                                   (2.58) 

nmda ns
ns

nmda ns

γ τ 1000
ψ

1 γ τ 1000

r

r
=

+
                                                                       (2.59) 

where N is the total number of neurons in the spiking network, CE = 0.8N, 
CI = 0.2N are the numbers of the excitatory (E) and inhibitory (I) neurons, 
Cext = 800 is the external excitatory connections, and f = 0.15. The rest of 
the parameters are: cE = 310 (Hz/nA), gE = 0.16 s, IE =125 Hz, cI = 615 
Hz/nA, II = 177 Hz, γ = 0.641, τnmda = 100 ms, τCa = 600 ms, α = 0.005, 
<VE> = -53.4 mV, <VI> = -52.1 mV, VI = -70 mV, VK = -80 mV, rext = 3 
Hz, rns = 2 Hz, τampa = 2 ms, τgaba = 10 ms, g12 = 1.7876, r0 = 11.3721 Hz, 
gext,E

ampa = 0.0021 µS, gE
ampa = 0.1/N (µS), gE

nmda = 0.3/N (µS), gE
gaba = 

1.3/N (µS), gext,I
ampa = 0.00162 µS, gI

ampa = 0.086/N (µS), gI
nmda = 0.258/N 

(µS), gI
gaba = 1/N (µS), gahp = gahp/1000 (µS), and CaI = 0.025. In e.g. 

Chapter 3, we used w+ = 1.68 (w- = 0.88) while gahp (nS) defines the level 
of neuronal adaptation, one of the parameters that we mainly vary.   

Noise, Inoise,i where i = 1, 2 stands for neuronal population 1 and 2, is 
modeled as white noise, filtered by the fast time constant of AMPA 
synapses, and described by an Ornestein-Uhlenbeck process (Uhlenbeck 

& Ornstein 1930) 

noise, 2
ampa noise, ampa noise

( )
( ) η(t)i

i

dI t
I t

dt
τ τ σ= − +                 (2.60) 
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where η(t) is a Gaussian white noise with zero mean and unit variance and 
σ2

noise is the variance of the noise. Here, n ≡ σnoise defines the level of 
noise, and is the other parameter that we mainly varied.  

Effective transfer function 

It is not trivial to solve Equations 2.33 - 2.40 since the mean firing rates 
are given by their inputs through the transfer function (Equations 2.33 and 
2.34), and the inputs are themselves dependent on the mean firing rates 
(Equations 2.39 and 2.40). To overcome this difficulty of self- consistency 
calculations, we found (as in Wong & Wang 2006), an effective transfer 
function Λ(Itotal). We start by defining four variables: 

1 N,11 1 N,12 2 0 stim,1x J S J S I I= − + +                                              (2.61) 

2 N,22 2 N,21 1 0 stim,2x J S J S I I= − + +                                                     (2.62) 

3 1 IλCa κCax = −                                                                               (2.63) 

4 2 IλCa κCax = −                                                                                  (2.64) 

Then, according to Equations 2.39 and 2.40, in the noise-free case, 
Equations 2.33 and 2.34 can be written as: 

( )E E 1 3 A,11 1 A,12 2 E

E 1 3 A,11 1 A,12 2 E
1 ( )

( )
0

1
g c x x J r J r I

c x x J r J r I
r

e
− − + − −

− + − −
− =

−
                                             (2.65) 

( )E E 2 4 A,22 2 A,21 1 E

E 2 4 A,22 2 A,21 1 E
2 ( )

( )
0

1
g c x x J r J r I

c x x J r J r I
r

e
− − + − −

− + − −
− =

−
                                            (2.66) 

Equations 2.65 and 2.66 define a system which we can numerically solve 
for different sets of the variables x1, x2, x3 and x4. We then fit r1 and r2 
with an equivalent transfer function, which depends on the new variables: 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )A,11 A,11 1 A A,12 2 4 A,11 3 A,11

1 1 1 2 3 4

A,11 1 A A,12 2 4 A,11 3 A,11

,

, , ,

,

1
d J a J x f J x x e J x b J

r x x x x

a J x f J x x e J x b J

e
− − − − −

= Λ

− − − −
=

−

                   (2.67) 
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( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )A,22 A,22 2 A A,21 1 3 A,22 4 A,22

2 2 1 2 3 4

A,22 2 A A,21 1 3 A,22 4 A,22

,

, , ,

,

1
d J a J x f J x x e J x b J

r x x x x

a J x f J x x e J x b J

e
− − − − −

= Λ

− − − −
=

−

                  (2.68) 

where JA,11 = JA,22, JA,12 = JA,21 and 

A,11239400 270 (Hz/nA)a J= ⋅ +                                               (2.69) 

  A,1197000 108 (Hz)b J= ⋅ +                                                     (2.70) 

  A,1130 0.154 (s)d J= − ⋅ +                                                           (2.71) 

A,11301000 270 (Hz/nA)e J= ⋅ +                                                        (2.72) 

( )A ,12 A,12( , ) 276 106 ( 0.4) (Hz)Af J y J y yθ= − + −                              (2.73) 

where θ(x) is the Heaviside function. Note that the parameters a, b, d and 
the function fA are the same as in the two-variable reduced model of 

Wong and Wang (2006, supplementary information D) where there is no 
spike- frequency adaptation in the neurons (x3 = x4 = 0). In that case, our 

four- variable reduced model coincides with the two- variable reduced 
model of Wong and Wang (2006). In order to also consider spike- 

frequency adaptation, we included parameter e, which we approximated 
as linearly dependent on JA,11 with parameters chosen to fit the numerical 

solutions. In Figure 2.6A, the average firing rate of population 1 is plotted 
as a function of x1 by numerically solving Equation 2.65 (line), and by 

fitting Equation 2.67 (circles). In Figure 2.6B the average firing rate of 
population 1 is plotted as a function of x1 for different couplings through 

AMPA synapses (from right to left: JA,11 = JA,22 = 0, 0.0005, 0.001, 0.0025 
nA). As the couplings JA,11, JA,22 increase, the gain of the effective transfer 

function also does. The effective transfer functions Λ1, Λ2 do not change 
no matter how the network parameters (recurrent connectivities, synaptic 

conductances, stimulus strength) change. Finally, our four-variable 
reduced rate model is given by Equations 2.67, 2.68, 2.61 - 2.64, 2.35 - 

2.38 and 2.60. The noise terms Inoise,1, Inoise,2 were included in the variables 
x1, x2 respectively. 
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Figure 2.6 Input-output function of one selective population 
(A) The line is numerical solution of Equation 2.65 and the circles are fit of the 
effective transfer function Equation 2.67.  (B) Numerical solutions (lines) and fits 
(circles) as in A for different couplings through AMPA synapses: from right to 
left JA,11 = JA,22 = 0, 0.0005, 0.001, 0.0015 nA/Hz. 

2.4 Analytical expressions for second- order statistics 

Single neuron discharges in association cortices represent reliably the 
content of visual consciousness. However, it is unknown if emergent 
functional ensemble properties like the structure of interneuronal firing 
correlations constrain the population coding accuracy during subjective 
perception. In Chapter 5 we study the observed decorraled discharges 
during subjective perceptual dominance of a preferred stimulus, in the 
macaque LPFC, compared to significantly correlated fluctuations in the 
same population during perception of the same pattern without 
competition.  Theoretically, the most adequate model to employ in order 
to study second- order statistics is a spiking network model. Nevertheless, 
it can sometimes be computationally expensive to employ a large scale 
network when it comes to parameter search in order to investigate the 
different dynamical regimes of the network. The mean field reduction, 
presented previously, is not an appropriate alternative candidate, because 
the activity of the whole population is described by one variable; its mean 
firing rate.  

We overcome this obstacle by expanding the mean field reduction, 
considering N neurons, in each population, modeled as dynamic mean- 
field based rate models. We then can use the augmented method of 
moments (Hasegawa 2003a, 2033b, 2004a, 2004b, 2008, 2009; Deco & 

Marti 2007a, 2007b; Martinez-Cancino & Sotero 2011; Ponce-Alvarez 
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et al., 2013). The augmented method of moments provides an analytical 
way to calculate the first three moments of a system of stochastic 
equations: the mean firing rate, µ, of each neuronal ensemble, the 
averaged firing rate fluctuations, γ, of each population and the average 
covariance between pairs of neurons, within each population or across 
populations.  

Here, we extend this method to two populations of N neurons each, 
modeled as dynamic mean- field based rate models, with spike- frequency 
adaptation (Figure 2.7); neural population E1, where neurons are selective 
to one visual stimulus and neural population E2, where neurons are 
selective to a different visual stimulus. There is all- to- all connectivity 
and neurons within each ensemble are connected with self- excitation w+ 
(arrows), between ensembles with cross- inhibition w- (dashed lines 
ending to circles) and have spike-frequency adapting mechanism based on 
Ca2+-activated K+ hyperpolarizing currents (lines ending to circles, 
where gAHP is the level of neural adaptation). Each neuron is modeled 
according to the consistent derivation, presented previously (§2.3), from 
the biophysically realistic network, presented previously (§2.2). Here, we 
do not consider AMPA synapses, for simplicity. Each neuron receives a 
background input, and an external input which represents the presentation 
of a visual stimulus (λ1 (or λ2) in Figure 2.7, where β1 (or β2) is the level of 
noise) 

 

Figure 2.7 Augmented method of moments: Network description 
Network of two neural ensembles with self- excitation w+ (arrows) and cross 
inhibition w- (dashed lines ending to circles) and neuronal adaptation gAHP (lines 
ending to circles). Each ensemble is consisted of N neurons selective to the same 
stimulus.  
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Dynamics of neuron i in a given ensemble m, is described by  

( ) ( )( ) ( )
1 ( ) γ ξ

m m
m mki ki
ki i i

k

dx t x t
x t u

dt τ
= − + − Φ +                                           (2.74) 

( )( ) ( )
ρ

m m
mli li
i

l

dx t x t
u

dt τ
= − + Φ                                                                  (2.75)                                              

where i = 1, …, N, m = E1, E2, xm
kl is the synaptic gating variable 

(fraction of open channels) of the neuron i in the ensemble m and it is 
analogous to the firing rate. xm

li is the the gating variable emulating the 
cytoplasmic Ca2+ concentration in neuron i of the ensemble m. ξi denotes 
additive independent Gaussian white noise source which satisfies < ξi(t) > 
= 0 and < ξi(t)ξj(t´) > = β2δ(t – t´)δij, where we define β as the level of 
noise. τ = 2 ms, is the decay time constant of AMPA mediated synaptic 
currents and γ = 6.41×10-4. Φ, is the gain function given by 

( )
( )1

m
i

m
m i
i g cu d

cu d
u

e− −

−Φ =
−

                                                                         (2.76) 

where c = 310 Hz/nA, d = 125 Hz, g = 0.16 s and the input to neural 
population i is 

 
m nN N

m m n m
i kj kj lj

j jm n

w w
u x x x I

N N
λ+ −= − − +∑ ∑                                                   (2.77) 

where  I = I0 + JA,extλ, I0 is the background input, λ is the external input 
and JA,ext = 0.0025. 

Given the local variables xm
pi (p = k, l and  m = 1, 2) we define global 

variables for each assembly m as 

 
1

( ) ( )m m
p pi

i

X t x t
N

= ∑                                                                              (2.78) 

their means, variances and covariances are 

 
1

( ) ( ) ( )m m m
p p pitrials trials

im

t X t x t
N

µ = = ∑                                             (2.79) 

 
1

( ) ( ) ( )m m m
kl ki li trials

im

t x t x t
N

γ δ δ= ∑                                                       (2.80) 
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1

( ) ( ) ( ) ( ) ( )mn m n m n
kl k l ki ljt trials

i jm n

t X t X t x t x t
N N

ρ δ δ δ δ= = ∑∑           
  

(2.81) 

where ( ) ( ) ( )m m m
p p pX t X t tδ µ= −

 and ( ) ( ) ( )m m m
pi pi px t x t tδ µ= − .  

Assuming that the noise intensity β is small, we express Equation 2.74 in 
a Taylor expansion of δxm

ki, and Equation 2.75 of δxm
li, as 

 ( )* ξ
m nm N Nmk mk mk

mk m n m mki
m kj kj li im n m

j jkj kj li

dx f f f
f u x x x

dt x x x
δ δ δ∂ ∂ ∂= + + + +

∂ ∂ ∂∑ ∑           (2.82) 

 ( )*
m nm N Nml ml ml

ml m n mli
m kj kj lim n m

j jkj kj li

dx f f f
f u x x x

dt x x x
δ δ δ∂ ∂ ∂= + + +

∂ ∂ ∂∑ ∑                    (2.83) 

where   

* m n m
m mm k mn k lu w w Iµ µ λµ= − − +                                                            (2.84) 

The differential equations (DEs) for the two first order moments are  

( )*1 m
mm N
pip mp

m
im

d xd
f u

dt N dt

µ
= =∑                                                        (2.85) 

where p = k, l. From equations 2.82, 2.85 and 2.83, 2.85 we get DEs for 
dδxm

ki and for dδxm
li as 

ξ
m n

m m m
ki ki k

N Nmk mk mk
m n m m
kj kj li kim n m

j jkj kj li

d x dx d

dt dt dt

f f f
x x x

x x x

δ µ

δ δ δ

= −

∂ ∂ ∂= + + +
∂ ∂ ∂∑ ∑                         

(2.86) 

m n

m m m
li li l

N Nml ml ml
m n m
kj kj lim n m

j jkj kj li

d x dx d

dt dt dt

f f f
x x x

x x x

δ µ

δ δ δ

= −

∂ ∂ ∂= + +
∂ ∂ ∂∑ ∑

                                 (2.87) 

From Equations 2.80, 2.86, and 2.87, we get DEs for dγm
kl/dt as 



 

 46

( )

( )

, , ,
, ,

,
, ,

, ,

, , ,
,

1 1m mm m mN N
m mkl ki li
li ki

i im m

mki mki
m mm m
k l l m k l l k l lm m

k l i k l j

mki mki
p m m m

p m k l l l k lp m m
k l j l k i

mli mli
m mm m
k k l m k k l k k lm

k l i

d d x d x
x x

dt N dt N dt

f f
N

x x

f f
N

x x

f f
N

x

γ δ δδ δ

γ ρ γ

ρ γ

γ ρ γ

≠ ≠ ≠
≠ ≠

≠
≠ ≠ ≠≠

≠ ≠

≠ ≠ ≠
≠

= +

∂ ∂= + −
∂ ∂

∂ ∂+ +
∂ ∂

∂ ∂+ + −
∂ ∂

∑ ∑

,

, 2
, , ,

, ,

m
k l j

mli mli
m p m m

p m k k l k l k k l lp m m
k l j l k i

x

f f
N

x x
ρ γ δ β

≠

≠
≠ ≠ ≠ ≠≠

≠ ≠

∂ ∂+ + +
∂ ∂

                           

(2.88) 

From Equations 2.81, 2.86, and 2.87, we get DEs for dρmm
kl/dt as 

( )

( )

2

, ,
, ,

,
, ,

, ,

, ,
,

1 1

1

1

m n m nmn m nN N N N
n mkl ki li
li ki

i j i jm n

mki mki
mn mn
k l l m k l lm m

k l i k l j

mki mki
p m n mn

p m k l l k l lp m m
k l j l k i

nli nl
mn mn
k k l n k k ln

k l i

d d x d x
x x

dt N N dt N dt

f f
N

x x

f f
N

x x

f f
N

x

ρ δ δδ δ

ρ ρ

ρ ρ

ρ ρ

≠ ≠
≠ ≠

≠
≠ ≠ ≠≠

≠ ≠

≠ ≠
≠

= +

∂ ∂= + −
∂ ∂

∂ ∂+ +
∂ ∂

∂ ∂+ + −
∂

∑∑ ∑∑

,

2
,

, , ,
, ,

i

n
k l j

nli nli
m p n mn mn

p n k k l k l k k l lp m n
k l j l k i m

x

f f
N

x x N

βρ ρ δ

≠

≠
≠ ≠ ≠ ≠≠

≠ ≠

∂

∂ ∂+ + +
∂ ∂

               (2.89) 

Equations 2.84, 2.85, 2.88 and 2.89 is a system of 29 coupled equations; 
2.84, four equations for means (µm

1, µm
2, µn

1, µn
2), eight equations for 

variances (γm
11, γ

m
12, γ

m
22, γ

m
21, γ

n
11, γ

n
12, γ

n
22, γ

n
21) and sixteen equations for 

covariances  (ρmm
11, ρ

mm
12, ρ

mm
22, ρ

mm
21, ρ

nn
11, ρ

nn
12, ρ

nn
22, ρ

nn
21, ρ

mn
11, ρ

mn
12, 

ρmn
22, ρ

mn
21, ρ

nm
11, ρ

nm
12, ρ

nm
22, ρ

nm
21).  

Finally, the correlated variability of the neural activity inside an ensemble, 
m, is given by (Hasegawa 2004b, 2009; Ponce-Alvarez et al. 2013) 

1
( )

1

mm m
m kk kk
kk

N
S t

N

ρ γ −
=

−
                                (2.90) 
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which is 0 for completely asynchronous state and 1 for completely 
synchronous state.  

In Chapter 5, we employ the augmented method of moments also for the 
network without cross- inhibition, w- = 0. In this case Equations 2.74 - 
2.76 are the same but Equation 2.77 becomes  

0

mN
m m m
i kj lj

jm

w
u x x I

N
λ+= − +∑                                                               (2.91)

 
 

where m = E1 (or E2). The DEs for means, variances and covariances of 
each neural population are 

( )*
m
p mp

m

d
f u

dt

µ
=                                                                                   (2.92)    

where p = k, l and  

 * m m
m mm k lu w Iµ λµ= − +                                                                        (2.93) 

( )

( )

, , ,
, ,

, , , ,
, , ,

2
, ,

,

m mki mki
m mm mkl
k l l m k l l k l lm m

k l i k l j

mki mli mli
m m mm m
l k l k k l m k k l k k lm m m

l k i k l i k l j

mli
m
k l k k l lm

l k i

d f f
N

dt x x

f f f
N

x x x

f

x

γ γ ρ γ

γ γ ρ γ

γ δ β

≠ ≠ ≠
≠ ≠

≠ ≠ ≠ ≠
≠ ≠ ≠

≠ ≠
≠

∂ ∂= + −
∂ ∂

∂ ∂ ∂+ + + −
∂ ∂ ∂

∂+ +
∂

          

 

(2.94) 

( )

( )

, , ,
, , ,

, , ,
, , ,

2

,

1

1

mm mki mki mki
mm mm mmkl
k l l m k l l k l lm m m

k l i k l j l k i

mli mli mli
mm mm mm
k k l m k k l k l km m m

k l i k l j l k i

mm
k l l

m

d f f f
N

dt x x x

f f f
N

x x x

N

ρ ρ ρ ρ

ρ ρ ρ

βδ

≠ ≠ ≠
≠ ≠ ≠

≠ ≠ ≠
≠ ≠ ≠

≠

∂ ∂ ∂= + − +
∂ ∂ ∂

∂ ∂ ∂+ + − +
∂ ∂ ∂

+

             

(2.95) 

Equations 2.92 - 2.95 is a system of eleven equations for each population; 
2.93, two equations for means (µm

1, µm
2), four equations for variances 

(γm
11,  γm

12, γm
22, γm

21) and four equations for covariances  (ρmm
11, ρmm

12, 
ρmm

22, ρ
mm

21).  
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Equations 2.85, 2.88 and 2.89 are written in a highly compact way. For 
simplification, when w- ≠ 0, and m = E1 ≡ a, they are presented in Figures 
2.8 - 2.11.  

 
Figure 2.8 Input and transfer function 

 
Figure 2.9 Mean firing rate and adaptation 

 
Figure 2.10 Mean firing rate and adaptation variances 
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Figure 2.11 Mean covariance between pairs of neurons within and across 

ensembles for the activity and the adaptation variables 
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For m = E2 ≡ b the system of equations 2.84, 2.85, 2.88, 2.89 are the same 
as in Figures 2.8 - 2.11 replacing where a with b, and where b with a. 
When w- = 0 the system of equation 2.92 – 2.95, for m = E1 ≡ a, are the 
same as in Figures 2.8 - 2.11 for wab = wba = 0, and for m = E2 ≡ b, are the 
same as in Figures 2.8 - 2.11 for wab = wba = 0 and replacing where a with 
b and where b with a. 

Finally, we followed a simple stimulation protocol were only one neural 
ensemble is stimulated (e.g. red, Figure 2.7) and we computed the mean 
correlated variability over one second, via both directly simulating the 
stochastic equations, and solving the analytically derived equations with 
the method of moments, in order to validate the correctness of the derived 
analytical equations.  

More specifically, the stimulation protocol we used was 

E1 0 0

E2 0 0

( ) I β ( )
for 0 300ms

( ) I β ( )

v t g t
t

v t g t

= + ⋅ 
≤ <= + ⋅            

(2.96)
         

E1 0

E2 0 0

( ) I λ β ( )
for 300 1300ms

( ) I β ( )

v t g t
t

v t g t

′= + + ⋅ 
≤ ≤= + ⋅          

(2.97)
      

 

The parameters we used were: N = 20, gAHP = 22 nS, I0 = 0.1915, λ´ = 
JA,extλ, JA,ext = 0.0025, λ = 90 Hz, β0 = β = 9×10-10, w+ = 0.161 and w- = 
0.45  for the network with competition, w- = 0 for the network without 
competition. We calculated the mean correlated variability of pool E1 
over the time interval 300 ≤ t ≤ 1300 ms, employing both networks 
(Equations 2.84, 2.85, 2.88, 2.89, 2.90 for the network with competition 
and Equations 2.90, 2.92 - 2.95 for the network without competition). 
Varying one of the parameters, while keeping the rest of the parameters 
constant, we plot the correlated variability (Figure 2.12, lines). We then 
simulated directly the systems of stochastic equations (Equations 2.74-
2.77 for the network with competition and Equations 2.74-2.76, 2.91 for 
the network without competition) using the Euler’s method with time step 
0.1 ms, and computed the mean pair-wise correlation (Equation 2.90) of 
pool E1 over the time interval 300 ≤ t ≤ 1300 ms, using the same 
parameters as previously and added them in the plots (Figure 2.12, black 
dots correspond to 100 trials and green dots correspond to 200 trials).  
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Figure 2.12 Comparison of analytical results with direct simulations 
Left: Network with competition Right: Network without competition A. 
Correlated variability as a function of the stimulus λ B. Correlated variability as 
a function of noise intensity β C. Correlated variability as a function of neuronal 
adaptation gAHP. D. Correlated variability as a function of number of neurons N. 
Black points are simulated results from the full networks, means over 100 trials, 
respectively and green points are simulated results from the full networks, means 
over 200 trials, respectively. 

Note that in Figure 2.12B the noise intensity β is large which may seem 
contradictory to the initial assumption that noise should be small in order 
to apply the augmented method of moments to our system of stochastic 
equations. Actually, the values of β shown in Figure 2.12B are the ones 
used when solving the analytical expression of the correlated variability, 
while when we simulated directly the system of the stochastic equations 
the correspondend values of β were the same as the ones shown in Figure 
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2.12B multiplied by a factor of 10-10, consistently with our assumption. In 
addition, the results obtained by solving the analytical equation for the 
correlated variability do not change when all noises are multiplied by the 
same factor. In Figure 2.12 we show that the analytically derived 
equations for second- order statistics are correct since they give same 
results as the direct simulations of the system of stochastic equations.  

Note that how second- order statistics change by stimulus strength (as for 
example we see in Figure 2.12A) depends on network dynamical state 
(Ponce-Alvarez et al. 2013). Finally, our analytical expressions presented 
in this paragraph provide a useful tool for studying second- order statistics 
not only in BP, but also in other phenomena of binary perceptual decision 
making where neural adaptation is relevant, or not. 
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CHAPTER 3 

 
 
Microcircuit dynamics mediating  
Binocular Rivalry4 
 
 
 
 

 

3.1 Introduction 

Most of the computational models proposed to account for BR are rate-
based models.  Biophysically plausible spiking networks have also been 
put forward (Moreno-Bote et al. 2007; Laing & Chow, 2002), as well as 
reduced rate models (Laing et al. 2010). Nevertheless, the reduced models 
presented in Laing et al. (2010) for BR were derived heuristically from 
the spiking network of Laing and Chow (2002). Here, we present, 
instead, a four-variable reduced model consistently derived from a spiking 
neuronal network (Deco & Rolls 2005; Moreno-Bote et al. 2007) with 
biophysically realistic AMPA, NMDA and GABA receptor-mediated 
synaptic dynamics, as well as spike-frequency adaptation mechanisms 
based on Ca2+- activated K+ after- hyperpolarization currents (Wang 1998; 
Liu & Wang 2001), using mean field techniques (Brunel & Wang 2001; 
Deco & Rolls 2005; Wong & Wang, 2006). Here, we further reduce the 
extended mean- field model (Deco & Rolls 2005) of Brunel and Wang 
(2001) by using a simplified mean field approach introduced by Wong 

                                                 
4
 Main results presented here were published in: P. Theodoni, T. I. 

Panagiotaropoulos*, V. Kapoor*, N. K. Logothetis, and G. Deco (2011), Cortical 
Microcircuit Dynamics mediating Binocular Rivalry: the role of adaptation in 
inhibition, Frontiers in Human Nueroscience, 5, 145, 1-19. (*equal contribution) 
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and Wang (2006). We thus reduced the original full spiking network of 
thousands of neurons to a four- variable rate- like model of two neuronal 
populations each one encoding one of two competing percepts in BR.  

Both the spiking network and our four- variable reduced network consider 
noise and adaptation mechanisms. Our goal was to find out which of them 
is responsible for the perceptual alternations in BR. We based our study 
on behavioral data collected from human subjects experiencing BR 
between orthogonal sinusoidal gratings, which were presented 
continuously in time. The experimental data used to constrain our model 
consisted of dominance durations of both percepts, coefficients of 
variation, and parameters of gamma distribution fits to the distribution of 
dominance durations. When varying the strength of neuronal adaptation in 
the absence of noise, different dynamical regimes appear. At low levels of 
neuronal adaptation the system resides in a bistability regime where 
switches could happen only due to noise. As adaptation strength is 
increased, perceptual alternations are possible without noise because the 
system has entered an oscillatory regime. The transition regime separating 
the bistability from the oscillatory regime is through a regime of 
coexistence of stable and unstable limit cycles. By emulating the 
experimental paradigm for different adaptation strengths and levels of 
noise, we searched for parameters where our model would replicate the 
experimental data. In addition, we tested two extreme conditions where all 
inhibitory interneurons in the original spiking network are adapted or not. 
We found that, in order to account for the experimental data, and in both 
conditions, the system operates in the bistability regime near the boundary 
between noise- driven switches and adaptation- driven oscillations. In 
addition we show that in this case the model also satisfies Levelt’s second 
revised and fourth propositions. 

Interestingly, spike- frequency adaptation of interneurons, apart from 
decreasing the overall adaptation necessary for the bifurcation to occur 
when the same stimulus is applied, also influences the system behavior in 
the absence of a stimulus. When interneurons are not adapted, the two 
neuronal populations fire asynchronously and at low rates in the 
spontaneous state. On the contrary, adapted inhibitory interneurons lead 
the two neuronal populations to a higher firing and oscillatory activity in 
the absence of stimulus.  
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3.2 Methods 

In the followings, we describe the experimental protocol and results 
(§3.2.1), designed and obtained by Theofanis I. Panagiotaropoulos, Vishal 
Kapoor and Nikos K. Logothetis at the Max Plank Institute, Biological 
Cybernetics in Tübingen. Then, we describe the networks we employed 
(§3.2.2). 

3.2.1 Experimental paradigm & results 

During the psychophysical experiment, subjects were presented with 
flickering (at 18 Hz) orthogonal sinusoidal gratings to the two eyes. The 
gratings (spatial frequency 2.5 cycles per degree, contrast 20%) were 
foveally presented on independently linearized monitors facing each other 
(resolution 1024 x 768 at 72 Hz). The subjects viewed the gratings 
through a set of angled front-surfaced silver-coated mirrors in a black 
shielded setup (viewing distance: 118 cm). Typically, subjects underwent 
5 - 10 observation periods. Each observation period consisted of a 
rivalrous stimulation that lasted 100 seconds, with an interval of about 20 
seconds between each observation period. During the rivalry period, 
subjects responded by pressing buttons to report the perceived orientation 
of the grating or released the buttons when a piecemeal pattern was 
perceived. Sometimes, multiple datasets were collected on different days 
from the same subject. From the data collected in each observation period, 
we calculated the mean dominance time, the coefficient of variation and 
gamma’s distribution parameters λ and r after fitting to the distribution of 
dominance periods: 

r
r 1 λλ

( )
(r)

xf x x e− −=
Γ

,    r 1

0
(r) tt e dt

∞ − −Γ = ∫                    (3.1) 

Where, r is positive real number. Then, for each subject we averaged over 
all its observation periods. Mean time dominances (Td) ranged between 

2.01 and 3.56 s. Coefficient of variations (CV) ranged between 0.418 and 
0.704 and the gamma parameter r ranged between 2.251 and 5.446. The 

range of these values is what we took into account to constrain our model. 
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3.2.2 Model description 

The biophysically inspired spiking model that we employ in this chapter 
has been described in Chapter 2 (§2.2). In the simulations in the Results, 
the recurrent connectivity weight used was w+ = 1.68, and, hence, from 
Equations 2.41 - 2.59, we find λ΄ = 26.6 mV, κ΄ = 31.11 mV, I0 = 0.3553 
nA, JA,11 = JA,22 = 9.5402×10-4 nA/Hz, JA,12 = JA,21 = 7.1258×10-5 nA/Hz, 
JN,11 = JN,22 = 0.1497 nA, JN,12 = JN,21 = 0.0276 nA and JA,ext = 2.2428×10-4 
nA/Hz. The only parameter that we slightly changed is the external 
background input I0 i.e. we used I0 = 0.3536 nA in order to amplify the 
basin of attraction of the two unstable fixed points in the absence of 
stimulus and zero neuronal adaptation strength. 

The mean firing rate of each competing population was calculated by 
averaging r1 (or r2) over a time window of 50 ms, which was sliding every 
5 ms. For the numerical integration of the differential equations, we used 
the Euler method with a time step of 0.5 ms. The analysis of the output of 
the simulations is described in the Results. For the spiking simulations, we 
used C++ programming, for the four- variable reduced model simulations 
MATLAB, and for the bifurcation diagrams XPPAUT (Ermentrout 
1990).  

3.3 Results 

In a recent study, and in order to reproduce experimental data of 
perceptual bistability, both noise and adaptation mechanisms were 
implemented in a common framework. It was shown that the working 
point of the model is at the edge of the bifurcation where the system 
transits from noise- driven switches to adaptation- driven oscillations 
(Shpiro et al. 2009). Here, we come to the same conclusion with our 
biologically realistic reduced rate model, and we study the effect of 
adaptation in inhibition.  

We started by considering spike- frequency adaptation to all neurons, 
excitatory pyramidal and inhibitory interneurons. We found that the model 
replicates the experimental data in a parametric region, where both noise 
and neuronal adaptation contribute almost in balance. Then, we tested the 
same for the case where there is no spike- frequency adaptation to the 
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inhibitory interneurons of the network. Our results show that the system 
still operates near the bifurcation. However, when interneurons are not 
adapted, a stronger level of adaptation to the excitatory neurons is 
necessary for the bifurcation to occur. Furthermore, adaptation of 
interneurons has a striking effect on the spontaneous state in the absence 
of stimulus. We found that in the absence of stimulus, if interneurons are 
adapted, the system transits to an oscillatory regime, while if interneurons 
are not adapted, it does not. Finally, for the parameters for which the 
model replicates the experimental data we show that it reproduces 
Levelt’s fourth and second revised proposition. 

3.3.1 Spike- frequency adaptation to all neurons of the network 

a) Bifurcation diagrams 

In the original biologically realistic spiking neuronal network presented in 
the methods, all excitatory pyramidal neurons and inhibitory interneurons 
include spike- frequency adaptation. The reduction to the four- variable 
rate model was derived considering this condition. In Figures 3.1A and 
3.1B, we show the bifurcation diagrams where the steady states of the 
average synaptic gating variable of one of the two neuronal populations 
are plotted, in the noise- free case, as a function of the level of spike- 
frequency adaptation, in the absence of stimulus and upon stimulus 
respectively. The same bifurcation diagrams stand for the other neuronal 
population due to symmetry in the network. Equations 2.39 and 2.40 
indicate that when interneurons include spike-frequency adaptation, there 
is an additional input to the selective populations due to the term: 

( ) ( )gabaE I
I gaba E I I I K ahp I

I2

τ c
κCa V C V Ca

1000 ηg
g V V g= − − %       (3.2) 

In the absence of external stimulus via a supercritical Hopf- bifurcation, 

this additional input brings the system to a transition (at gahp = 11.2 nS) 
from a stable low firing rate regime to an oscillatory one. At a higher level 

of adaptation (gahp = 52.5 nS) the system returns to a new steady state of 
higher firing rate via another supercritical Hopf- bifurcation. At low levels 

of adaptation the steady state coexists with two stable and two unstable 
steady states which disappear in a fold bifurcation at gahp = 1.4 nS (not 

shown). In the bifurcation diagrams, stable steady states are represented 
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by thick lines, and unstable ones by thin lines. The branched curves of 
circles show the maximum and the minimum oscillation amplitudes of one 
of the two selective populations when circles are filled. Open circles 
correspond to unstable oscillations.  

In Figures 3.1C and 3.1D, the nullclines dS1(t)/dt = 0, dS2(t)/dt = 0 (whose 
intersections are the steady states of the system) are plotted in the (S1,S2) 
phase - space of the model, for zero spike- frequency adaptation (gahp = 0 
nS). When neurons do not include spike- frequency adaptation, the phase- 
spaces of the model resemble the one of the two- variable reduced model 
(Wong & Wang 2006).  

 
Figure 3.1 Spike – frequency adaptation to all neurons of the network.  
A. Bifurcation diagram in the absence of stimulus. Stable steady states are 
represented by thick lines while unstable ones by thin lines.  Filled circles are the 
maximum and the minimum amplitudes of stable oscillations. Open circles 
correspond to unstable oscillations. B. Bifurcation diagram in the presence of 
stimulus λ1 = λ2 = 40 Hz. C. (S1, S2) phase - space in the absence of neuronal 
adaptation and in the absence of stimulus. The nullclines of the synaptic gating 
variables S1 and S2 are the green and orange lines respectively, and their 
intersections define the stable and unstable steady states. D. (S1, S2) phase- space 
in the absence of neuronal adaptation but in the presence of stimulus.  

In the absence of stimulus, there are five fixed points (three stable and two 
unstable) and the system lies in the lower left fixed point where neurons 
fire at the same low rates (Figure 3.1C). When external stimulus is applied 
to both populations, the phase- space and the bifurcation diagram (at gahp = 
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0 nS) reconfigure (Figure 3.1D). The input here is λ1 = λ2 = 40 Hz. The 
two asymmetrical attractors are separated by an unstable steady state 
(saddle node), and the system is in a bistability regime. In Figure 3.1B, as 
the level of adaptation increases, the system first transits to a regime of 
coexistence of stable and unstable limit cycles (Curtu 2010) at gahp = 7.7 
nS and later to a stable one via two subcritical Hopf- bifurcations at gahp = 
7.8 nS. Finally, at gahp = 44.5 nS, the system transits to a stable steady 
state via a supercritical Hopf- bifurcation.  

b) Replicating experimental data 

Keeping in mind the bifurcation diagrams, we simulated our reduced four- 
variable rate model by applying the same stimulation protocol as in the 
experiment. The input to both populations was λ1 = λ2 = 40 Hz. For each 
level of neuronal adaptation i.e. peak conductance of the Ca2+- activated 
K+ channels, gahp, we applied this stimulus for 100 s. We then calculated 
the mean time dominance of the two percepts, and the coefficient of 
variation. After fitting the distribution of time dominances to a gamma 
distribution, we calculated the parameter r (Equation 3.1). In order to 
mimic the experimental protocol that each subject underwent, for each 
gahp, we performed 10 such trails, and computed the average values of 
mean time dominance, the coefficient of variation and the r parameter 
from the gamma distribution fit over these trials. Finally, we did the same 
with different levels of noise. One dominance period was defined as the 
time starting when the difference in the firing rates of the two populations 
was 5 Hz and ended when it became zero. In Figure 3.2A, we present the 
mean time dominance, and the coefficient of variation for five levels of 
noise as a function of neuronal adaptation, gahp. In Figure 3.2B, the r  
parameter from the gamma distribution fit is plotted as a function of level 
of neuronal adaptation and for the same levels of noise. The horizontal 
lines denote the range that the experimental data define. Vertical lines in 
Figures 3.2A and 3.2B are drawn at the bifurcation points where the 
system transits from a bistable dynamical regime to an oscillatory one, as 
presented in the corresponding bifurcation diagram (Figure 3.1B). We are 
looking for the level of noise and of adaptation at which the model results 
reside in the range of values defined by the experimental data. The green 
big circle denotes such levels (gahp = 6.2 nS, n = 0.016), and in Figure 
3.2C, we plot the mean firing rates of both populations at these levels in 
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the absence (black and green plots) and upon (blue and red plots) 
stimulus. For these parameters, the mean time dominance is Td = 3.24 s, 
the coefficient of variation is CV = 0.457, and r = 2.841. 

 

Figure 3.2 Spike- frequency adaptation to all neurons of the network:  
Replicating the experimental data (1) 
A. Mean time dominance and  coefficient of variation as a function of neuronal 
adaptation for different  levels of noise (blue: n = 0.01, red: n = 0.014, green: n 
= 0.016, magenta: n = 0.018 and celestial: n = 0.019) for λ1 = λ2 = 40 Hz. B. 
Parameter r of gamma distribution fit to the distribution of dominance times as a 
function of neuronal  adaptation for the same noise levels as in (A). In both (A, 
B),  horizontal lines denote the range that the experimental data define. Vertical 
lines  are drawn at the bifurcation points where the system transits from a 
bistable dynamical regime to a regime of coexistence of stable and unstable limit 
cycles and to an oscillatory regime. Green big circles at the levels gAHP = 6.2 nS, 
n = 0.016 indicate a case where the model replicates the experimental data. We 
find that the model replicates  the experimental data in the noise- driven regime 
and close to the bifurcation. C.  The mean firing rate of the selective populations 
for gahp = 6.2 nS and  n = 0.016 in the absence of stimulus (black and green 
plots) and upon stimulus (blue and red plots). D.  The mean firing rate of the  
selective neuronal populations by simulating the spiking network (with N  = 500 
neurons) with the same parameters as the ones used simulating the reduced 
model (C). Thin lines are plots from a trial and thick lines are the same after 
smoothing. We see that both models exhibit similar behavior in  both the presence 
(blue and red plots) and absence (black and green plots) of the  stimulus. 
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From our results, it is apparent that both noise and adaptation are the 
driving forces for the alternations in BR. The working point of our model 
is in the bistability regime and close to the bifurcation towards the 
oscillatory. Noise and adaptation contribute almost in balance to the 
perceptual alternations. At this point, we should note that the level of 
noise necessary for the model to replicate the experimental data is high 
enough to drive the system into the oscillatory regime (Figure 3.1A) in the 
absence of stimulus as one can see in Figure 3.2C (black and green plots).  

Moreover, in Figure 3.2D, we plot the mean firing rates of the selective 
neuronal populations as we compute them by simulating the spiking 
network with N = 500 total neurons, and with the same parameters we 
used to plot Figure 3.2C. Thin red and blue plots correspond to the 
activity of the selective populations upon stimulus, and thin black and 
gray plots to their activity in the absence of stimulus, while thick plots are 
the corresponding activity after smoothing with a time window of 500 ms 
(sliding every 50 ms). We see that both the spiking and the reduced model 
exhibit similar behavior in the presence, as well as in the absence, of the 
stimulus. This means that the approximations we considered for the 
derivation of our four-variable reduced rate model (§2.3) are accurate. In 
addition, for these parameters, we ran 10 trials of 100 s- stimulation. From 
the smoothed mean firing rates, we computed the average mean time 
dominance, coefficient of variation and r  parameter from the gamma 
distribution fit to the distribution of the time dominances at each of the 10 
trials, as we did with the reduced model. We found mean time dominance 
Td = 2.82 s, mean coefficient of variation CV = 0.582 and r = 3.137. 
These values reside in the range defined by the experimental data, 
similarly as we found with the reduced model. Finally we computed the 
bifurcation point, where the model transits to the mix-mode oscillatory 
regime, employing the spiking network. The total number of neurons used 
was N = 20000 in order to decrease the noise in the network as much as 
possible. The bifurcation point is at gahp,bif,spiking = 6 nS, close to the 
bifurcation point found with the reduced model (gahp,bif,reduced = 7.7 nS). 
The gahp,bif,reduced is higher than the gahp,bif,spiking due to the assumptions 
adopted in the Methods but mostly to the advantage of the reduced model 
to eliminate noise which cannot be done in the spiking network. 
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Furthermore, we tested the effect of increasing the external stimulus 
strength (λ1 = λ2 = 50 Hz) which would correspond to an increase of the 
stimulus contrast in the experiment. The rest of the parameters were the 
same as before, as well as the stimulation protocol and analysis.  

 

Figure 3.3 Spike- frequency adaptation to all neurons of the network:  
Replicating the experimental data (2) 
A. Mean time dominance and coefficient of variation as a function  of neuronal 
adaptation for different levels of noise (blue: n = 0.01, red: n = 0.014 and green: 
n = 0.016) for λ1 = λ2 = 40 Hz (thin lines) and λ1 = λ2 = 50 Hz (thick lines). B. 
Parameter r of gamma distribution fit to the distribution  of dominance times as a 
function of neuronal adaptation for the same levels of noise as in (A).  In both (A, 
B), horizontal lines denote the range  that the experimental data define. Vertical 
lines are drawn at the bifurcation points where the system transits from a bistable 
dynamical regime to a regime of coexistence of stable and unstable limit cycles 
and to an oscillatory regime. Red big circles at gahp = 5.4 nS,  n = 0.014 
indicate a case for which the model replicates the experimental data. 

In Figures 8A and 8B (thick lines), we present the results for the same 
levels of noise, as in Figures 3.2A and 3.2B. We also plot the results for λ1 
= λ2 = 40 Hz (thin lines) for comparison. Levelt’s fourth proposition 
indicates that increasing the stimulus contrast results in an increase of the 
average rivalry reversal rate (Levelt, 1968), which corresponds to a 
decrease in the average dominance duration. This is apparent in Figure 
3.3A for all levels of neuronal adaptation and of noise. In addition, by 
increasing the strength of the external stimulation, the bifurcation points 
(vertical lines) shift to lower values, while the regime of coexistence of 
stable and unstable limit cycles narrows. Nevertheless, the model’s results 
(Td =2.49 s, CV = 0.457 and r = 2.825) reside again in the ranges defined 
by the experimental data, while working in the bistable regime (big red 
circle: gahp = 5.4 nS, n = 0.014) and close to the bifurcation point 
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gahp,bif,reduced = 5.8 nS. Once more, for the same parameters, we simulated 
the spiking network (with N = 1000 neurons), and found Td = 3.298 s, CV 
= 0.462 and r = 3.975. These values are close to the ones computed with 
the reduced model and inside the range of the experimental data. The 
bifurcation point as calculated by simulating the spiking network with N = 
20000 total neurons, is at gahp,bif,spiking = 4.3 nS. 

3.3.2 Spike- frequency adaptation only to excitatory pyramidal 
neurons of the network 

a) Bifurcation diagrams 

We removed neuronal adaptation from interneurons by setting κ = 0 in 
Equations 2.63 and 2.64. The rest of the parameters of the model 
remained the same. We note that when interneurons are not adapted, the 
mean firing rate of the non- selective population and the mean firing rate 
of the inhibitory population decrease for higher adaptation strengths. 
Here, we again assume that the mean firing rate of the non- selective 
population is constant in all conditions, as we had assumed in the case of 
adapted interneurons (§2.3: Constant activity of non-selective excitatory 
neurons). In addition, and for simplicity, we kept the same parameters of 
the linearization of the input-output formula (Equation 2.30) as in the case 
of adapted interneurons. In the following we show that these assumptions 
do not change the results much.  

In Figure 3.4, we present the bifurcation diagram of one of the two 
neuronal populations in the absence and in the presence of an external 
stimulus employing our four- variable reduced rate model. The same 
bifurcation diagrams also stand for the other population due to symmetry. 
While in the presence of a stimulus, the bifurcation diagram (Figure 3.4B) 
is qualitatively similar as in the case where we included spike-frequency 
in interneurons (Figure 3.1B), the bifurcation diagram is qualitatively 
different in the absence of external stimulus (Figure 3.4A compared to 
Figure 3.1A). Here, there is no additional input (Equations 2.39, 2.40) to 
the excitatory populations and the system remains in a stable steady state 
of low firing rate which decreases as level of neuronal adaptation 
increases (Figure 3.4A). We note that, as in the case where all neurons are 
adapted, at low levels of adaptation the steady state coexists with two 
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stable and two unstable steady states which disappear in a fold bifurcation 
at gahp = 0.36 nS (not shown). 

In Figure 3.4B, stable steady states are represented by thick lines, and 
unstable ones by thin lines. Filled circles correspond to the maximum and 
minimum values of stable oscillations, while open circles correspond to 
unstable oscillations. Upon stimulus presentation, λ1 = λ2 = 50 Hz, and at 
gahp = 0, the system transits from a stable steady state of low firing rate to 
a winner- take- all regime, where one of the populations fires at high rate 
while the other fires at low rate. The system reaches the attractor and lies 
in a bistability regime. Without noise, the system would remain in this 
attractor, being unable to transit to its anti- symmetrical (i.e. switches in 
perception are not possible).  

 
Figure 3.4 Spike- frequency adaptation only to the excitatory pyramidal 
neurons of the network  
A. Bifurcation diagram in the absence of stimulus, stable steady states are 
represented by thick lines while unstable ones by thin  lines. Filled circles are the 
maximum and the minimum amplitudes of  stable oscillations. Open circles 
correspond to unstable oscillations. B. Bifurcation  diagram in the presence of 
stimulus λ1 = λ2 = 50 Hz. 

As adaptation increases, the basin of attraction decreases, and switches are 
more likely to occur upon noise introduction. Nevertheless, higher levels 
of adaptation drive the system into an oscillatory regime where, even in 
the absence of noise, alternations from one percept to the other are 
inevitable. More specifically, starting at high values of gahp, the system 
lies in a stable steady state where both populations fire at low firing rate. 
As gahp decreases, the system transits to a stable oscillatory regime via a 
supercritical Hopf- bifurcation at gahp = 14.2 nS. At gahp = 9,96 nS, the 
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system transits into a regime of coexistence of stable and unstable limit 
cycles (Curtu, 2010) via two subcritical Hopf- bifurcations. The unstable 
limit cycle and the stable limit cycle annihilate at gahp = 9.57 nS, via a 
double saddle-node of limit cycles bifurcation, and the system transits to 
the bistability regime where two anti-symmetric attractors are separated 
by a saddle node fixed point. At gahp = 11.2 nS, the trajectories of the three 
unstable fixed points coalesce into an unstable fixed point via a subcritical 
pitch- fork bifurcation. This cumbersome dynamics of the regime of 
coexistence of stable and unstable limit cycles, although very interesting, 
is beyond the scope of the present study. The dynamics of our model has 
similar characteristics as described in (Shpiro et al. 2007; Curtu et al. 
2008; Curtu 2010). A point to note is that, in our case, we also have 
recurrent excitation resulting in an asymmetry between regimes of release 
and escape mechanisms with the release regime being small due to the 
recurrent connectivity in the network (Shpiro et al. 2007; Seely & Chow 
2011). 

b) Replicating experimental data 

We saw previously that when inhibitory interneurons are adapted, both 
noise and adaptation are responsible, almost in balance, for the perceptual 
alternations. Here, we follow the same stimulation protocol and analysis, 
as in §3.3.1, for the case where inhibitory interneurons are not adapted. 
With the bifurcation diagram (Figure 3.4B) in mind, we applied the same 
fixed external stimulus to both populations, λ1 = λ2 = 50 Hz. We then 
computed the mean time dominance, the coefficient of variation and the r- 
parameter of the gamma distributions fit to the distributions of dominance 
times, as a function of neuronal adaptation, at different levels of 
adaptation and of noise. The rest of the parameters are the same except for 
the exclusion of spike- frequency adaptation from interneurons by setting 
κ = 0 in Equations 2.63 and 2.64. The results are presented in Figure 3.5. 
Different lines correspond to different noise levels. Horizontal lines 
denote the range that the experimental data define. Vertical lines are 
drawn at the bifurcation points which define the different dynamical 
regimes. 

In Figures 3.5A and 3.5B, big blue (gahp = 9.7 nS, n = 0.01), red (gahp = 9 
nS, n = 0.014), green (gahp = 8.8 nS, n = 0.016), and celestial (gahp = 8.2 
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nS, n = 0.019) circles are sets of parameters for which all three mean time 
dominance, coefficient of variation, and r- parameter reside in the range 
defined by the experimental data. We find that, in all these cases, the 
model is in the bistability regime and near to the bifurcation point. We 
note that it is also possible that for a given noise-level (n = 0.01, blue big 
circle), experimental data are replicated inside the regime of coexistence 
of stable and unstable limit cycles. In Figure 3.5C, we plot the mean firing 
rates of the two neuronal populations when level of noise is n = 0.014, and 
adaptation strength is gahp = 9 nS (red big circle in Figures 3.5A and 3.5B) 
in two conditions: in the absence of stimulus (black and green plots) and 
upon stimulus (blue and red plots). We see that when interneurons are not 
adapted neuronal populations fire at low rates and in an asynchronous 
state in the absence of stimulus.  

Moreover, in Figure 3.5D, we plot the mean firing rates of the two 
selective neuronal populations, as we compute them by simulating the 
spiking network with N = 500 total neurons, and with the same parameters 
we used to plot Figure 3.5C. As in the case where we considered adapted 
inhibitory interneurons (Figures 3.2C and 3.2D), both models behave 
similarly in the presence and in the absence of the stimulus, indicating that 
the assumptions adopted for the reduction are accurate. In addition, we 
computed the mean time dominance, the coefficient of variation and the r- 
parameter from the gamma distribution fit to the distribution of the time 
dominances simulating the spiking network (as we did in §3.3.1). We 
found that the results were in the range defined by the experimental data. 
More specifically, we found Td = 2.64 ms, CV = 0.463 and r = 5.147, 
similar to the ones we attained with the reduced model for the same 
parameters (Td = 3.29 ms, CV = 0.581 and r = 4.992). Finally, we 
computed the bifurcation point by simulating the spiking network with N 
= 20000 neurons, and we found that the bifurcation point is at gahp,bif,spiking 
= 8.3 nS, close to the bifurcation point we observed with the reduced 
model (gahp,bif,reduced = 9.57 nS). As in the case where inhibitory 
interneurons are also adapted, the gahp,bif,reduced is higher than the 
gahp,bif,spiking. This is a consequence of the assumptions adopted for the 
derivation of the reduced model, as well as of the noise in the spiking 
network which cannot be totally eliminated. 
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Figure 3.5 Spike- frequency adaptation only to the excitatory pyramidal 
neurons of the network: Replicating the experimental data 
A. Mean time dominance and coefficient of variation as a function of neuronal 
adaptation for different levels of noise (blue: n = 0.01, red: n = 0.014, green:  n 
= 0.016, and celestial: n = 0.019) for λ1 = λ2 = 50 Hz. B. Parameter r of gamma 
distribution fit to the distribution of dominance times as a function of neuronal 
adaptation for the same levels of noise as in (A). In both (A, B), horizontal lines 
denote the range that the experimental data define. Vertical lines are drawn at 
the bifurcation points where the system transits from a bistable dynamical regime 
to a regime of coexistence of stable and unstable limit cycles and to an oscillatory 
regime.  Blue, red, green, and celestial big circles at gahp = 9.7 nS, gahp = 9nS, 
gahp = 8.8 nS, and gahp = 8.2 nS, respectively indicate sets of parameters for 
which the model replicates the experimental data. We find that the model 
operates in the bistability regime close to the bifurcation as well as in the regime 
of coexistence of stable and unstable limit cycles (blue big circle). C. The mean 
firing rate of the populations for gahp = 9 nS and n = 0.014 in the absence of 
stimulus (black and green plots) and upon stimulus (blue and red plots). D. The 
mean firing rate of the selective neuronal populations by simulating the spiking 
network (with N = 500 neurons) with the same parameters as the ones used in 
(C). Thin lines are plots from a trial, and thick lines are the same after 
smoothing. We see that both models exhibit similar behavior in both the presence 
(blue and red plots) and in the absence (black and green) of the stimulus.  

Furthermore, in Figure 3.6, we plot the mean Td and the coefficient of 
variation for the two extreme cases, i.e. all interneurons are all (gray lines) 
or none (black lines) adapted. We plot the results from the simulations 
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where in both cases the stimulus strength is λ1 = λ2 = 50 Hz and the level 
of noise is n = 0.014. We see that by removing spike- frequency 
adaptation mechanism from interneurons, mean dominance duration and 
its coefficient of variation increase for the same level of neuronal 
adaptation to the excitatory neurons. The bifurcation points, where the 
model transits from noise- driven switches to adaptation driven 
oscillations, shifts to higher values of gahp. At the same time, the level of 
adaptation for which the model replicates the experimental data also 
increases but resides in both cases within the bistability regime and close 
to the bifurcation.  

 

Figure 3.6 Mean time dominance and coefficient of variation as a function of 
neuronal adaptation  
Mean time dominance and coefficient of variation as a function of neuronal 
adaptation for level of noise n = 0.014, when inhibitory interneurons are adapted 
(gray lines) and when they are not adapted (black lines) for stimulus strength λ1 
= λ2 = 50 Hz. Gray and  black vertical lines de fine the bifurcation points when 
inhibitory interneurons  are adapted and when they are not, respectively. 

3.3.3 Levelt’s second revised and fourth proposition 

Levelt’s four propositions in BR (Levelt 1968) exemplify how stimulus 
parameters affect the duration of perception of two conflicting images. 
These propositions define additional constrains to computational models 
candidates to explain BR. Most of the times, computational models were 
tested with Levelt’s second and fourth proposition. Recently, Levelt’s 
second proposition has been revised (Brascamp et al. 2006) and states 
that, when the contrast of one image changes the average dominance 
duration of the image with higher contrast is mainly affected. Levelt’s 
fourth proposition states that when the contrast of both images increases, 
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the average rivalry reversal rate increases, meaning that the mean time 
dominance of both images decreases.   

Here, we tested Levelt’s second revised proposition for four sets of noise 
and neuronal adaptation levels (big blue, red, green and celestial circles in 
Figures 3.5A and 3.5B) for which the model’s results reside in the ranges 
defined by the experimental data, when inhibitory interneurons are not 
adapted. The results are shown in Figures 3.7A - 3.7C. In the insets, we 
tested the same for the case where inhibitory interneurons are adapted 
with the same level of noise and stimulus strength (big red circle, Figures 
3.3A and 3.3B), as when they are not adapted. We first applied equal 
stimulus for 100 s to both populations of low strength, λ1 = λ2 = 45 Hz. 
We then computed the mean dominance durations of each population and 
we averaged over 10 such trials. Then, we kept the stimulus to one of the 
populations fixed, λ1 = 45 Hz, and we increased the other. The results are 
shown in Figure 3.7A. In Figure 3.7B, we applied equal stimulus of 
intermediate strength to both populations, λ1 = λ2 = 47.5 Hz, and we 
computed the mean time dominance as previously. Then, we kept the 
stimulus to one population fixed, λ1 = 47.5 Hz, and we manipulated the 
other. Finally, we applied equal stimulus of high strength to both 
populations, λ1 = λ2 = 50 Hz, and computed the mean dominance periods. 
Then, we kept the stimulus to one of the populations fixed at this high 
level, λ1 = 50 Hz, while we decreased the other (Figure 3.7C). In Figures 
3.7A - 3.7C, the dashed lines are plots of the mean time dominance of the 
population receiving fixed stimulus (λ1) while solid lines are plots of the 
mean time dominance of the population receiving variable stimulus (λ2). 
Vertical lines denote the stimulus strength when it is equal to both 
populations. We see that Levelt’s second revised proposition is satisfied 
by all four levels of neuronal adaptation and noise for which our model 
replicates the experimental data when inhibitory interneurons are not 
adapted as well as when they are (insets in Figures 3.7A - 3.7C). We 
should mention though that from Moreno-Bote et. al (2010), we know 
that alternation rate is higher and symmetric around equi-dominance, i.e. 
when external stimulus is equal to both neuronal populations. This would 
be an additional constrain for the model. In Figure 3.7B, we see that this is 
not always the case. Nevertheless, in the study by Moreno-Bote et al. 

(2010), it is shown that models best replicate this result when normalized 
stimuli are applied, which is not the case here.  
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Figure 3.7 Levelt´s propositions 
A - C. Mean time dominance of one of the two neuronal  populations of the model 
receiving fixed stimulus λ1 (dashed lines) and of the  neuronal population 
receiving variable stimulus λ2 (solid line), as a function of  the variable external 
stimulus λ2, for the four noise-  adaptation points for  which the model replicates 
the experimental data when interneurons are not adapted  (big circles in Figures 
3.5A, 3.5B). Arrows denote the starting point where both populations receive the 
same stimulus, λ1 = λ2. In the insets the same are plotted for the case where 
inhibitory interneurons are adapted (red big circle in Figures 3.3A, 3.3B). A: 
when λ1 = 45 Hz, B: when λ1 = 47.5 Hz and C: when λ1 = 50 Hz. D. Mean time 
dominance of both populations for different stimulus strengths when inhibitory 
interneurons are not adapted and n = 0.014. 

In §3.3.1, we tested Levelt’s fourth proposition for two different stimulus 
strengths in the case where inhibitory interneurons are adapted. Here, we 
test Levelt’s fourth proposition for the case where inhibitory interneurons 
are not adapted for applied stimulus strengths λ1 = λ2 = 45, 50, 55, 60 Hz 
(Figure 3.7D). Each stimulation lasted 100 s, and at each trial we 
computed the mean dominance durations of both populations. Finally, we 
averaged over 10 trials. The level of noise was n = 0.014. In Figure 3.7D 
we see that as stimulus strength increases mean dominance duration 
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decreases. Thus our model accounts for Levelt’s fourth proposition. Note 
that this decrease is more prominent at low levels of neuronal adaptation 
and at higher levels of neuronal adaptation mean time dominance is 
similar across different stimulus strengths.   

3.4 Discussion 

In this chapter, we present a theoretical approach which could provide 
novel insights into the microcircuit dynamics responsible for multistable 
perception. We consistently derived a four- variable reduced rate model 
from a biologically plausible spiking neuronal network, and we tested it 
considering experimental behavioral data of BR. We calculated the mean 
dominance duration of the percepts, the coefficient of variation, and the 
parameters of the gamma distribution fit to the distribution of dominance 
durations. We emulated the experiment by simulating our reduced model 
for different sets of noise and neuronal adaptation levels, and we looked 
for the optimal ones for which the model replicates the experimental data. 
In the noise- free condition, the range of adaptation strength defines 
different dynamical regimes where our model can operate. There is a 
bistability regime, where switches can only arise due to the 
implementation of noise. There is a regime of coexistence of stable and 
unstable limit cycles which is the transition regime of the model from the 
bistability to the oscillatory regime. Finally, there is an adaptation- driven 
oscillatory regime where alternations can happen even without noise. By 
testing different levels of noise and adaptation strengths, we came to the 
same conclusion as Shpiro et al. (2009). In order to satisfy the 
experimental data, the system must operate in the noise- driven regime 
close to the boundary with the adaptation driven regime. Thus, both 
mechanisms are responsible in balance for the perceptual alternations.    

It is not the first time that a reduced spiking model is used to explain BR. 
Laing et al. (2010) recently presented reduced rate- like models derived 
from a fine scale spiking model consisting of two populations, one 
excitatory and one inhibitory, of Hodgkin - Huxley type neurons (Laing & 
Chow 2002). Neurons are orientation selective, include both spike- 
frequency adaptation and synaptic depression, and each population can be 
thought of as lying on a ring. Nevertheless, their reduction is not derived 
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consistently from the spiking network. Instead it is based on both intuition 
based on observations of the spiking network, and on data- mining tools to 
select appropriate variables. By processing the results of simulations, the 
authors determined functions that govern the dynamics of these variables. 
Our reduced model, on the other hand, is consistently derived from a 
spiking network using mean field techniques. In addition, we studied the 
underlying mechanism responsible for perceptual alternations as Shpiro 
et al. (2009), and we extended the results by studying the effect of 
adapting inhibitory interneurons.  

The biophysically realistic spiking network, from which we derived the 
reduced model, has been previously studied for perceptual bistability 
(Moreno et al. 2007). Their spiking network is very similar to ours, but 
the main difference is that they only include spike- frequency adaptation 
to excitatory pyramidal cells. Their interesting results show the effect of 
noise and stimulus strength in the behavior of the network. The novelty of 
our work is that we implemented a four- variable reduced rate- like model 
which we derived consistently from a similar biophysically realistic 
spiking network of thousands of neurons using mean field techniques. 
More specifically, we performed a further reduction of the extended mean 
field model (Deco & Rolls 2005). This helps us understand the dynamics 
of the full original spiking network, which in turn can provide us with 
numerous data such as realistic synaptic dynamics, spiking time series, 
local field potentials, etc.  

Moreover, we were able to study two extreme cases by including spike-  
frequency adaptation in all or in none of the network’s inhibitory 
interneurons. Interestingly, we found that, in both cases, our model 
replicates the experimental data in the boundary between noise and 
adaptation. We thus conclude that spike- frequency adaptation of 
inhibitory interneurons is not relevant to the cause of perceptual 
alternations observed in BR. However, we demonstrate that adaptation of 
interneurons has an effect on the parametric space where the bifurcation is 
observed. When interneurons are not adapted, stronger adaptation is 
necessary in the remaining components of the network to induce a 
bifurcation. As a result, more adaptation is necessary to obtain the optimal 
working point of the system. 
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Additionally, we found that spike- frequency adaptation in interneurons 
generates different types of spontaneous dynamics. When the interneurons 
in the spiking network are not adapted, the selective neuronal populations 
fire asynchronously and at low rates during the spontaneous state. On the 
other hand, when interneurons are adapted, the model exhibits an 
oscillatory regime even during the spontaneous state. This type of 
oscillatory regime has been reported in an attractor memory network 
(Lundqvist et al., 2010).  Here, for the set of parameters for which the 
model replicates the experimental data, noise is high enough to drive the 
system into the oscillatory regime in the absence of stimulus, when 
interneurons are adapted.  

Furthermore, adapted inhibitory interneurons affect the reaction time at 
the onset of a stimulus. In Chapter 4, we show that neuronal adaptation 
accelerates decisions in an adaptation- related aftereffects decision making 
paradigm. The spiking model studied in that work is similar to the one 
presented here (when all inhibitory interneurons are adapted). From our 
four- variable reduced model, we found that when interneurons include 
spike- frequency adaptation, an additional input to both selective 
populations is implemented which increases with adaptation strength. This 
results in a faster ramping activity at higher adaptation strengths, which in 
turn leads to faster reaction times at the onset of a stimulus. We expect 
that when interneurons are not adapted, we would have the opposite 
effect.  

We would like to note that we examined two extreme conditions. Either 
all the inhibitory interneurons of the network are adapted or none of them. 
Nevertheless, for example in the prefrontal cortex, where neuronal activity 
follows phenomenal perception (Panagiotaropoulos et al. 2012), we 
know that there are three types of interneurons. Half of them are dendritic-
targeting, and the others are divided into interneurons targeting, and 
perisoma targeting (Conde et al. 1994; Gabbott et al. 1996). Perisoma 
targeting interneurons do not include spike- frequency adaptation while 
the rest do include (Wang et. al 2004). In our network neurons are not 
considered as multi- compartmental, and we cannot distinguish the 
inhibitory interneurons among these three types. Nevertheless, a more 
biophysically plausible condition would be to consider a percentage of 
adapted inhibitory interneurons. 
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Levelt’s propositions show how mean dominance durations are affected as 
a function of stimulus strength to both or to one eye. They refer to BR but 
it has been shown that there is a general validity in other paradigms of 
visual rivalry, revealing common computational mechanisms (Klink et al. 

2008b). Levelt’s propositions, especially the second and the fourth, have 
been a usual constrain for computational models of BR (Wilson 2007; 

Laing & Chow 2002; Moreno-Bote et al. 2007; Brascamp et al. 2006; 
Moreno-Bote et al. 2010; Seely & Chow 2011). Here, we tested Levelt’s 
fourth proposition in both conditions, where interneurons are all or none 
adapted. In both conditions, we found that the reduced model satisfies this 
law. In addition we tested Levelt’s second revised proposition (Brascamp 
et al. 2006), and found that the model also satisfies this law. We would 
like to mention that our study was not in full accordance with the recent 
study of Moreno-Bote et al. (2010). They showed that competition 
models like ours better reproduce experimental findings based on Levelt’s 
revised second proposition when the stimuli applied to the populations are 
normalized, which was not the case in the present work. 

In addition, we note that, in this study, we did not check for serial 
correlations in percept durations. Interestingly, non- zero serial 
correlations were reported recently in both BR and structure- from motion 
ambiguity paradigms (van Ee 2009). Experimental findings in their work 
were replicated by implementing noise in adaptation of percept- related 
neurons. It would be interesting to see whether our reduced model can 
reproduce such serial correlations, and in what conditions. Furthermore, 
an open and interesting question is the freezing of perception during 
intermittent presentation of ambiguous stimuli (Orbach et al. 1963a, 

1963b, 1966; Leopold et al. 2002; Maier et al. 2003). Using a reduced 
model consistently derived from a biologically realistic spiking network 
one could study the underlying dynamics, and may unravel mechanisms 
underlying such a phenomenon.   
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CHAPTER 4 

 
Neuronal Adaptation effects  
in Decision- Making5 

CIS 

ION-MAKING        

 

 

4.1 Introduction 

Perceptual decision making is a relevant process in daily life and, during 
the last few decades, there has been an increased interest in understanding 
its underlying neural mechanisms (Shadlen & Newsome 1996; Kim & 

Shadlen 1999; Wang 2002, 2008; Smith & Ratcliff 2004; Deco & Rolls 
2006; Gold & Shadlen 2007; Deco et al. 2009; Wang 2012). Several 
theoretical models have been proposed and used, such as diffusion models 
(Smith & Ratcliff 2004) and neuronal models (Wang 2002; Deco & Rolls 
2006; Wong & Wang 2006; Deco et al. 2009). From these studies, we 
learn that, in multistable systems, decisions are taken due to noise- driven 
transitions between attractor states, where noise arises from the random 
spiking of the neurons. 

In this chapter, we study a categorical decision process where an 
ambiguous target stimulus appears with a temporal delay after the 
presentation of an adaptor stimulus. To this purpose, we consider 
behavioral data from a high- level, adaptation- related aftereffects 
experiment (Cziraki et al. 2010). The behavioral data show that prolonged 
adaptation to a complex stimulus leads to category- specific aftereffects 
during the presentation of ambiguous stimulus composites. Hypothesizing 

                                                 
5
 Main results presentated here were published in: P. Theodoni, G. Kovács, M. W. 

Greenlee, and G. Deco, “Neuronal Adaptation Effects in Decision Making”, 
2011, The Journal of Neuroscience 31(1): 234-246 
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that neuronal adaptation is relevant for the perceptual judgment, we 
studied the interaction between noise and neuronal adaptation in this 
perceptual decision making paradigm. Neuronal adaptation implemented 
by spike- frequency adaptation reduces the activity of the dominant 
neuronal population, selective to the adaptor stimulus, leading the 
nonadapted neuronal population to win the competition when the 
ambiguous stimulus appears. In contrast, noise- driven fluctuations in the 
firing rates of the neuronal populations could lead to a switch from one 
percept to the other. We consider both mechanisms within the same 
theoretical framework using a spiking neuronal model. We show that 
neuronal adaptation is the main driving force for the transition from the 
adaptor category to the novel, opposite category, indicating that the 
working point of the system is in the oscillatory regime. We thus predict 
that, if the target ambiguous composite stimulus is presented previously, it 
will lead to oscillation in perception between the two dissimilar 
categories. Preliminary experimental evidence confirms our prediction. 

Furthermore, we consider, for the first time, the effects of neuronal 
adaptation in perceptual decision making. To this purpose, we mimic a 
perceptual task where the same ambiguous composite stimulus (Cziraki et 
al. 2010) appears with and without a preceding adaptor. We simulate this 
task for different levels of sensory evidence in favor of one of the two 
dissimilar images and for different levels of neuronal adaptation. We 
show that, at each level of sensory evidence, neuronal adaptation 
accelerates the decision process. 

4.2 Methods 

In the followings, we describe the experimental protocol and results 
(§4.2.1), designed and obtained by Csaba Cziraki, Mark W. Greenlee, and 
Gyula Kovács at the University of Regensburg, published in Cziraki et 
al. (2010). Then, we describe the network we employ (§4.2.2), the 
stimulations protocols and analysis we used (§4.2.3). 

4.2.1 Experimental paradigm & results 

In the Cziraki et al. (2010) study of high- level adaptation- related 
aftereffects, 13 humans (8 females) were presented with an adaptor 
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stimulus consisting of a high- contrast female face (face adaptation), a 
female hand (hand adaptation), or a Fourier randomized version (control 
condition) for 5 s. After a 200 ms gap (blank screen), an ambiguous, noisy 
stimulus composite, constructed from an overlapping human face and 
hand with varying Fourier phase coherences, was shown for 200 ms. 
Finally, subjects reported which image they perceived (Figure 4.1A).  

 
Figure 4.1 Experimental design and behavioral results of the high- level 
adaptation- related aftereffects task 
A. Experimental design: Subjects were presented with an adaptor stimulus (face 
or hand adaptation) for 5 s and, after a 200 ms gap (blank screen), with a test 
stimulus (ambiguous composite image of a face and a hand other than the 
adaptors) for 200 ms. Subjects reported which image (face or hand) they 
perceived. B. Behavioral results: Mean ratio of face responses after face, hand, 
and control (composite image of face and hand) adaptation for ambiguous 
face/hand composite test stimuli. (Adapted from Cziraki et al. 2010) 

The experimental data indicated that prolonged exposure to complex 
stimuli, e.g., adaptation to a face or a hand stimulus, biases perceptual 
decisions toward the nonadapted, dissimilar stimulus category. The 
simultaneously observed functional magnetic resonance imaging 
adaptation (fMRIa) effects in the face- sensitive fusiform face area (FFA) 
and in the body- sensitive extrastriate body area (EBA) were sorted 
according to the subject’s behavioral responses. The fMRIa data indicated 
that adaptation to the preferred complex stimulus of the given area led to 
larger signal reduction on trials when it biased category decisions 
behaviorally than on trials when it was not effective. Figure 4.1B shows 
the percentage of trials endorsed as faces for ambiguous face/hand 
composite test stimuli after face, hand, and control (composite image of 
face and hand) adaptation. In a control condition, the ambiguous target 
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stimuli were judged 49% as faces and the remaining times as hands, 
whereas more trials were judged as faces after hand adaptation (73%). The 
opposite is true after face adaptation (27%) (Figure 4.1B). This shows that 
prolonged adaptation to a complex stimulus leads to category-specific 
aftereffects during the perception of ambiguous stimulus composites. 
fMRI measurements in the areas of interest (FFA and EBA) (Cziraki et al. 

2010) supported the behavioral data.  

4.2.2 Model description 

In our model (§2.2), the competing neuronal populations are a hand 
selective neuronal population corresponding to the high- level body 
sensitive cortical area EBA (Downing et al. 2001) and a face- selective 
one corresponding to the fusiform face- sensitive cortical area FFA 
(Kanwisher et al. 1997). 

The inhibitory neurons form one population to which we will refer as pool 
I. The excitatory neurons form three distinct populations. Two of them 
consist of neurons that encode one or the other complex image. Hence, 
there is a pool H with neurons, which are selective to the hand images. 
This neuronal population represents the body - sensitive EBA. There is 
also a pool F with neurons selective to the face images. This neuronal 
population represents the face - sensitive FFA. 

However, we should not necessarily assume that the selective neuronal 
pools correspond to the cortical areas FFA and EBA. In fact, the process 
studied with our model could happen in another brain region and then 
project the result to the FFA and EBA so that top - down interaction 
effects could also account for Cziraki et al.’s (2010) findings. 

In addition, to represent the sensory stimulus, meaning presentation of the 
hand and/or face stimuli, the neurons belonging to the two selective 
populations (H and F) receive an additional Poisson spike train with 
invariant time rates λH and λF, respectively. Input λH corresponds to 
activation of the neurons of the cortical area EBA due to presentation of 
the hand image and λF corresponds to activation of the neurons of the 
cortical area FFA due to presentation of the face image. Therefore, the 
total input that each neuron of the selective pools receives is vH,F = vext + 
λH,F. To simulate the presentation of the ambiguous composite image of a 
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hand and a face, the same external input is applied to the two selective 

neuronal populations: λH = λF ≡ λ ↔ vH = vF. Throughout this work, λ = 
50 Hz unless otherwise stated. To simulate the adaptor stimulus, we add 

an external input to one of the selective pools, e.g., for H pool: λH = 

λadaptor, whereas the competitive one receives only background input vext. 
Throughout this study, λadaptor = 200 Hz unless otherwise stated. We 

followed various stimulation protocols, which are described in detail 
below.  

4.2.3 Stimulation protocols  

A: bifurcation diagrams 

The spiking model used in this chapter exhibits distinct regimes 
depending on the free parameters. To gain intuition about how the system 
transits from one regime to the other, we calculated the firing rate of one 
selective population first as a function of neuronal adaptation and later as 
a function of external stimulus. For this purpose, we simulated a task 
where an ambiguous stimulus [like Cziraki et al.’s 2010 ambiguous 
composite image of a hand and a face] is presented continuously in time. 
Here the number of total neurons of the network is 4000 to eliminate the 
noise of the system. In this model, noise cannot be explicitly excluded 
since it arises from the finite number of neurons in the network. 
Therefore, we performed the same simulation, increasing the total number 
neurons with a 500 neurons step and in the range of 500 ≤ N ≤ 4500, each 
time defining the bifurcation point, gbif. We saw that for N > 3000, the 
value of gbif  did not change > 1%.The neurons of selective pools H and F, 
for this task, receive a Poisson spike train with an invariant firing rate of: 
vH = vF = vext + 0 Hz for 0 ≤ t ≤ 500 ms and vH = vF = vext + λ Hz for 500 ≤ 
t ≤ 10,000 ms.  

We performed this simulation for different levels of adaptation 
corresponding to the conductance gAHP, ranging from 0 to gAHP,max = 12 nS 
for w+ = 1.65 and λ = 50 Hz, to show how the system transits from 
bistability to an oscillatory regime. In addition, we simulated the same 
task for different levels of external stimulus λ  (neuronal adaptation 
gAHP,max = 10 nS and recurrent connectivity w+ = 1.65) to show how the 

system transits from a spontaneous state to an oscillatory regime. 
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Spontaneous state is defined as the state when the firing rates of both 
selective pools are < 10 Hz. The parameter space of w+ and gAHP for which 
the system remains in the spontaneous state in the absence of external 
input (Figure 4.3) is described in detail in Parameter range of w+ and 
gAHP, below. This parameter space also describes the dependence of the 
upper limit of the level of neuronal adaptation, gAHP,max, on the recurrent 
synaptic weight, w+, of the selective populations. 

B: replication of the experiment 

To replicate the experimental design under discussion, during the first 500 

ms the external input to both pools is λH = λF = 0 Hz, representing the 

absence of competing stimuli in the first stage of the experimental task. 
During this period, the network exhibits spontaneous activity of 3 Hz for 
excitatory pools and 9 Hz for the inhibitory pool. For the next 4500 ms, 
which is the period of presentation of adaptor stimulus, we set the value of 
external stimulus to the pool corresponding to the hand image equal to λH 
= λadaptor = 200 Hz and set the external input to pool F as λF = 0 Hz. Then 

both external inputs are set to 0Hz (λH = λF ≡ λ = 0 Hz) for a period of 

200 ms and to 50 Hz for the last 200 ms of the cue (λH = λF ≡ λ = 05 Hz), 

which corresponds to the presentation of the ambiguous composite image 
of a hand and a face. Summarizing the stimulation protocol in this case 
(Figure 4.2) is as follows: 
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The total number of neurons of the network is 2000 to take into account 
the noise of the network. The recurrent synaptic connectivity is w+ = 1.65. 
We performed 100 trials and calculated the mean ratio of face and hand 
responses after hand adaptation in the EBA for each value of the level of 
adaptation, gAHP. We did the same for 10 series of 100 trials and 
calculated the mean percentage performance at each. We averaged over 
the 10 series and calculated the standard deviations (SDs). A face 
response occurs when the firing rate of selective pool F at t = 5400 ms is > 
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10 Hz (because spontaneous state is typically below this value) and 
surpasses the firing rate of selective pool H at the same time by at least 5 
Hz. Hand responses were defined as non- face responses, i.e., total 
number of trials minus number of face responses. 

 
Figure 4.2 Stimulation protocol: adaptation- related aftereffects 
During the first 500 ms, the external input to both pools is λH = λF = 0 Hz to 
represent the absence of competing stimuli in the first stage of the psychophysical 
task. During this period, the network exhibits spontaneous activity (3 Hz for the 
excitatory pools and 9 Hz for the inhibitory pools). For the next 4500 ms, we set 
the value of the external stimulus to the pool corresponding to the hand stimulus 
equal to λH = 200 Hz and λF = 0 Hz, corresponding to the hand adaptation 
process. For a period of 200 ms, both external stimuli are set to zero, λH = λF = 0 
Hz, which corresponds to the post- adaptation blank period used by Cziraki et al. 
(2010). For the last 200 ms, both are set to 50 Hz, λH = λF = 50 Hz, which 
corresponds to the presentation of the ambiguous test stimulus (composite image 
of a hand and a face). The colored circles represent the different neural 
populations. 

C: decision making, reaction time 

In this part of our study, we examined the effects of neuronal adaptation in 
a binary decision- making task. To this purpose, we simulated an 
experiment similar to Cziraki et al. (2010) with and without a preceding 
adaptor. The proposed experiment corresponds to the presentation of an 
ambiguous composite image of a hand and face that is gradually changed 
over trials to one of the two interpretations by increasing the contrast of 
one image (e.g., the face) in different blocks of trials. We simulated this 
by introducing a bias between the external inputs to selective pools H and 
F by increasing the level of sensory evidence to pool F and decreasing it 
to pool H at each set of simulations. Decision- making, without adaptor, is 
shown as:  
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We refer to this stimulation protocol as decision making without adaptor 
because there is no stimulation of one selective pool preceding the 
decision- making task. We also examined the model with an adaptor 
stimulus preceding the target [i.e., where pool H is stimulated initially as 
in Cziraki et al.’s (2010) experiment]. Decision- making, with adaptor, is 
shown as: 
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We performed 1000 simulations for the decision- making task without 
adaptor, and 100 simulations for the decision- making task with adaptor. 
In both cases, we calculated the mean firing rates of both selective 
populations, the mean time needed for pool F to win the competition with 
pool H, and the percentage of correct performance on correct trials (when 

pool F won pool H) as a function of ∆I, where ∆I  = 2 ∆λ. In addition, we 

performed the same simulations varying the level of adaptation. In the 
decision- making task without a preceding adaptor, neuronal adaptation is 
varied within the range 0 ≤ gAHP ≤ 12 nS, whereas w+ = 1.65 and λ = 50 
Hz. In the decision- making task with a preceding adaptor, we studied 
three different levels of neuronal adaptation, where for each level the 
remaining free parameters were the same as those used in the model 

coinciding with the Cziraki et al. (2010) experiment (w+ = 1.65, λ = 50 

Hz, λadaptor = 300 Hz for gAHP = 9 nS, λadaptor = 200 Hz for gAHP = 10 nS, 

and λadaptor = 160 Hz for gAHP = 11 nS). When the system is in the bistable 

region, a correct trial is defined as the trial in which the firing rate of pool 
F is > 10 Hz and surpasses the mean firing rate of pool H by at least 5 Hz. 
In this case, the network eventually falls into the attractor that represents 
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percept of the face image. When the system is in the oscillatory region, a 
correct trial is defined as the trial in which the firing rate of pool F is > 10 
Hz and surpasses first the firing rate of pool H by at least 5 Hz. Decision 
times are defined as the times for which these criteria are first fulfilled 
minus the onset time of 3000 ms in the without adaptor case and minus 
the first 5200 ms in the with-adaptor case. When the system is in the 
bistable region, the firing rates are defined as the maximum value of the 
winning population’s neural activity and minimum value of the losing 
population’s neural activity, averaged over correct trials for each level of 
adaptation and sensory evidence. When the system is in the oscillatory 
region, the firing rates are the maxima and the minima of the neural 
activity of the winning and losing population, respectively, in the period 
that the first win occurs, averaged over correct trials for each level of 
adaptation and sensory evidence. 

D: prediction, time dominance, CV 

In this part, the time dominance and its coefficient of variation (CV) were 
examined after various levels of neuronal adaptation. This study presents 
an experimental prediction that can be tested to verify our findings. For 
this purpose, we calculated the mean time dominance of the percept of the 
hand and face images when an ambiguous composite image of both is 
presented for 5 min to subjects. We simulated this proposed experiment, 
having the same parameters for which the model coincides with the 
Cziraki et al. (2010) experiment, and defined the expected mean 
dominance time of perceiving the images and its coefficient of variation. 
The stimulation protocol is then given by vH = vF = vext for 0 ≤ t ≤ 500 ms 
and vH = vF = vext + λ for 500 ≤ t ≤ 300,000 ms, where λ = 50 Hz. 

We did the same for other values of λ (λ = 30 Hz and 40 Hz) for which the 
model coincided with the behavioral data of Cziraki et al. (2010) for 
same recurrent connectivity w+ = 1.65. The mean dominance time is 
defined as the mean of periods of time starting when the firing rate of the 
winning neural population is < 10 Hz and surpasses the firing rate of the 
losing one by at least 5 Hz, until the difference between them becomes < 5 
Hz. The result arises from one trial that we run for 5 min. We repeat this 
protocol for different levels of adaptation, gAHP, and we concentrate our 
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interest in its values for which the model coincides with Cziraki et al.’s 
(2010) experiment. 

Parameter range of w+ and gAHP 

To define the parameter space of recurrent connectivity weights w+ and 
afterhyperpolarization conductance gAHP, we investigated the behavior of 
the network when zero additional external input is given to its neuronal 
selective populations. In this case, neurons receive only background input 
and the firing rate of the neuronal populations should stay at low levels by 
increasing level of adaptation. The constraint taken into account was that 
the network should remain in a spontaneous state, defined as the state 
when mean firing rates of neuronal pools do not surpass the threshold of 
10 Hz. The resulting parameter space is shown in Figure 4.3. 

 
Figure 4.3 Dynamical regimes in the gAHP - w+ space, in the absence of 
external stimulus 
Parameter space of recurrent connectivity w+ weights and afterhyperpolarization 
conductance gAHP when no additional external input is given to the selective 
neuronal populations of the network, except the background input, with the 
constraint that the network should stay in the spontaneous state. The parameter 
space is separated into two regions by the thick line. The shaded region shows 
where the network remains in the spontaneous state (S) and the unshaded area 
shows where it does not. The thin line divides the parameter space in two smaller 
regions. The excitation region (E), where both pools are excited and no decisions 
can be taken, and the bistability (B)/oscillatory (O) region where recurrent 
connectivity is big enough that low levels of adaptation excite the network to 
decisions or oscillatory states, even without additional external input. These 
regions are not acceptable and thus these values were not taken into account in 
the parameter search. 
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4.3 Results 

We present a biologically inspired neural model of leaky integrate- and- 
fire neurons with spike- frequency adapting mechanism implemented to 
investigate the role of neuronal adaptation in decision making. We start 
our theoretical/computational investigation with the examination of and 
comparison with the behavioral data of a high- level, adaptation- related 
aftereffects experiment (Cziraki et al. 2010) to understand the driving 
force of the perceptual decision process. Adaptation- related aftereffects 
refer to the impact of the previous presentation of the adaptor stimulus on 
the perceptual decision related to a subsequently presented stimulus. The 
experimental data show that prolonged exposure to complex high- level 
stimuli, such as faces or hands, biases the perceptual decisions of a 
subsequent ambiguous face - hand composite stimulus away from the 
adaptor category, indicating that adaptation exists at a high- level of the 
visual processing hierarchy. Here, we hypothesize that neural frequency 
adaptation underlies this adaptation-related aftereffect. Even more, our 
simulation results support the hypothesis that neural frequency adaptation 
in this task is large enough so that the dynamical working regime of the 
network is in the oscillatory regime, indicating that the underlying model 
is not just a bistable model, as usual in the decision- making modeling 
literature. 

We propose the hypothesis that the mechanism underlying the decision 
process in the adaptation- related aftereffect experiments should also be 
relevant and generally observable during decision making without any 
initial adaptor. For this purpose, we simulated a typical binary decision-
making experiment without previous adaptor stimulus, using the same 
parameters for which the model coincides with the experimental data of 
Cziraki et al. (2010). We found that decision times are shorter for higher 
levels of neuronal adaptation, a finding that corresponds to the behavioral 
findings of the original study. We therefore conclude that a high level of 
neural adaptation in the network leads to a more efficient performance by 
accelerating the decision. In addition, we found that if an adaptor precedes 
the presentation of the composite-target stimulus, decision times are even 
shorter. Our results are consistent with an ecological relevance of 
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adaptation for the prompt reactions, when a sudden change occurs in the 
environment to which a subject is adapted. 

We considered two scenarios to understand the mechanism underlying the 
decision process in the adaptation- related aftereffect experiment (Cziraki 

et al., 2010). One is noise- driven switch due to probabilistic spiking times 
of neurons and the other is adaptation- driven transition arising from 
spike-frequency adaptation due to afterhyperpolarizing (AHP) Ca2+- 
activated K+ currents. Both noise and adaptation mechanisms are 
implemented in the neuronal network. With increasing level of adaptation 
(AHP conductance), the network shifts from a noise- driven to an 
adaptation- driven modus when both neuronal selective populations are 
stimulated. Our initial goal is to learn which of the two mechanisms is the 
main driving force responsible for the perceptual switch from one percept 
(adaptor stimulus) to the novel percept, when the ambiguous stimulus is 
presented at cue’s end of the high- level adaptation- related aftereffects 
task. 

Within the theoretical framework of the network that we use, each of the 
two competing percepts of the ambiguous stimulus can be viewed as a 
stable state of the neuronal dynamics (i.e., an attractor) (Figure 4.4A, 
where percept A represents the percept of hand and percept B represent 
the percept of face). Noise in our model is considered to be the source of 
Poisson spikes inputs amplified by the fact that the network has a limited 
number of neurons. Fluctuations arise in its time course and in the 
system’s outcome on each trial. Due to the finite size effect, noise plays a 
crucial role in decision-making tasks by destabilizing the network’s stable 
states, leading to the transition to other state (Figure 4.4A, percept B). The 
escape from one basin of attraction to the other could be described as a 
Kramers’ escape problem, which is applied in many problems in physics 
and which deals with noise-activated escape (Kramers, 1940). The 
mechanisms of spike- frequency adaptation is thought to be related to a 
slow Ca2+- activated K+ current, called afterhyperpolarization current 
(IAHP) because it changes after hyperpolarization of each spike. It is 
implemented in the network by adding an IAHP current into the dynamical 
equation of the neuronal membrane potential, resulting in a gradual 
decrease of the firing rate of the dominant neuronal population. This effect 
is shown schematically in Figure 4.4B. Higher levels of neuronal 
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adaptation result in destabilizing the initially stable states (percepts A and 
B) leading eventually to an oscillation between the two different network 
states. The adaptation mechanism may coexist with the noise but when 
adaptation is high, noise contributes only to the randomness of the 
oscillations due to the fluctuations arising from the finite- size effect, 
whereas when there is no adaptation, noise is the underlying mechanism. 

 
Figure 4.4 Schematic representation of noise- driven and adaptation- driven 
landscapes 
A, B. Adaptation- related aftereffect A. Transition between the two different 
percepts of an ambiguous stimulus is viewed as noise- driven transition between 
two basins of attractors of the neural network. B. Adaptation- driven, noise-
sensitive fluctuations lead to oscillations. C, D. Decision- making C. Noise- 
driven decision taken in a typical decision- making task of two choices. D. Same 
procedure, but with adaptation implemented in the network, resulting in 
shallower basins of attractors. 

Figures 4.4A and 4.4B correspond to the model with an adaptor stimulus 
preceding one of the target stimuli (for instance, A). In this case, there are 
only the two stable states in the system corresponding to each percept with 
shallower basin of the attractor corresponding to the category of the 
adaptor (i.e., A). In Figures 4.4C and 4.4D, a typical binary decision-
making task is captured schematically. In this case, there is no adaptor 
stimulus presented prior the target. The system is initially in its 
spontaneous state. When both selective pools, corresponding to the two 
interpretations (or conflicting percepts of an ambiguous stimulus), are 
simultaneously stimulated, the competition between them leads eventually 
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to one of them winning. In Figure 4.4C, the decision is taken due to noise 
in the network. In Figure 4.4D, the same is shown but with adaptation 
added to the system, resulting in shallower basins of attractors for both 
selective pools. 

4.3.1 Model analysis: bifurcation diagrams  

When the model replicates the presentation of an ambiguous stimulus, 
noise- driven fluctuations lead to switches between the two competitive 
interpretations of an ambiguous stimulus and adaptation- driven 
fluctuations lead to oscillations of the system, depending on the 
magnitude of the afterhyperpolarization conductance (level of adaptation). 
To define the underlying driving mechanism of decision making during 
adaptation- related aftereffects, we first examined the bifurcation diagram 
of the system in the noise- free model (when N is large). The bifurcation 
diagram (Figure 4.5) displays the behavior of the mean firing rate of one 
of the two selective populations (for instance, the H pool) as a function of 
the level of adaptation in the network. We distinguish two regimes, the 
bistable regime, in which transitions from one percept to the other are 
noise- driven, and the oscillatory regime, in which transitions are 
adaptation- driven. The bifurcation point is where the model passes from 
one regime to the other.  

Therefore, after determining the parameter space for w+ and gAHP for 
which the system remains in the spontaneous state in the absence of 
external input (Figure 4.3), we followed stimulation protocol A (§4.2.3). 
This parameter space also constrains the upper limit of the level of 
adaptation. In Figure 4.5, two regions are delineated by the bifurcation 
point gbif = 3.35 nS. Before the bifurcation point, the mean firing rate of 
the dominant perceived population at the end of the task, t = 10,000 ms, is 
plotted (circles). After the bifurcation, bistability vanishes and an 
oscillatory regime appears. The maximum (upward- pointing triangles) 
and minimum (downward- pointing triangles) values of the mean firing 
rate of pool H are plotted. The maxima and minima are obtained after 
smoothing the firing rate of the population in a 500 ms period, using 50 
ms sliding windows. In the noise- free model, or, to be more precise, in 
the model of low noise such that does not change significantly the result, 
and in the bistable regime, the system cannot escape from the stable state 
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and therefore cannot switch from one state to the other. In contrast, in the 
oscillatory regime, there are no stable states at all. Transitions from one 
state to the other arise in a periodic rhythm depending on the level of 
adaptation. When the number of active neurons is small, finite- sized 
noise effects are relevant and therefore switches in the bistable regime are 
possible, becoming gradually more probable as approaching the 
bifurcation point. In the oscillatory region, noise induces randomness in 
the frequency of the oscillations. 

 
Figure 4.5 Bifurcation diagram as a function of the level of neuronal 
adaptation 
Bifurcation diagram for the noise- free model (N = 4000 neurons) as a function 
of level of adaptation. The system passes from bistability to an oscillatory regime 
at the bifurcation point gbif = 3.35 nS. Center graph, left: The firing rate of the 
dominant population at the end of the simulation is plotted for each gAHP (circles). 
Center graph, right: The mean maximum (upward- pointing triangles) and 
minimum (downward- pointing triangles) values of the same population’s 
oscillatory activity are plotted. The lines are fits of the spiking simulations. Small 
graphs: The mean firing rates of pools F (blue) and H (red) are plotted as a 
function of time for gAHP = 0, gbif, 8, and 11 nS. 

In addition, we performed simulations for different levels of external 
stimulus λ, to show how the system transits from a spontaneous state to an 
oscillatory regime. Recurrent connectivity was w+ = 1.65 and neuronal 
adaptation was gAHP = 10 nS. In Figure 4.6, two regions are delineated by 
the bifurcation point λbif = 5 Hz. In the spontaneous regime, the mean 
firing rate of one selective population is plotted (circles). In the oscillatory 
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regime, the maximum (upward- pointing triangles) and minimum 
(downward- pointing triangles) values of the first winning population’s 
firing rate are plotted. 

 

 
Figure 4.6 Bifurcation diagram as a function of the external stimulus 
Bifurcation diagram for the noise- free model (N = 4000 neurons) as a function 
of external stimulus. The level of neural adaptation is gexp = gAHP = 10 nS. The 
system passes from a spontaneous state (S) to an oscillatory regime (O) when λ = 
λbif = 5 Hz. Left, Mean firing rate of one selective population (circles). Right, 
Maximum (upward- pointing triangles) and minimum (downward- pointing 
triangles) values of the first winning population’s firing rate. 

4.3.2 Simulations in comparison with psychophysical data 

Our next step was to find the level of adaptation for which the modeling 
results from the spiking- neuron simulations coincide with the behavioral 
data (Figure 4.1B). To replicate Cziraki et al.’s (2010) experiment, we 
used an attractor network of leaky integrate- and- firing neurons with 
spike- frequency adaptation implemented using stimulation protocol B 
(§4.2.3). In our model, two selective pools are thought to represent 
populations of neurons in high- level cortical areas FFA and EBA. Having 
the bifurcation diagram (Figure 4.5) as a reference, we calculated the 
mean ratio of face and hand responses after hand adaptation in EBA for 
different values of level of adaptation gAHP. Switch in this case is the 
percept of the novel image when both stimuli are presented to the subject 
via their composite ambiguous image after adaptation. The result is 
demonstrated in Figure 4.7A. More trials were judged as faces after hand 
adaptation, with mean percentage being 73% when the level of adaptation 
is gexp = gAHP = 10 nS. Since gexp > gbif, we conclude that the working point 
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of the network is in the oscillatory regime. The mean ratio of face 
responses after hand adaptation is equivalent to hand responses after face 
adaptation since our network is symmetric.  

 

Figure 4.7 Replicating the experimental data 
A. Simulations mimicking high- level, adaptation- related aftereffects experiment 
(Cziraki et al. 2010). Mean ratio of face responses after hand adaptation in the 
EBA as a function of the level of adaptation averaged over 10 series of 100 trials. 
The model coincides with the behavioral data when gexp ≡ gAHP = 10 nS > gbif, 
meaning that the working point of the system is in the oscillatory regime. The 
error bars are SDs. B, Raster histogram. Spiking times of 10 neurons from each 
of the four neural populations of the network (I, Ens, H, and F) in one trial in 
which the model coincides with the experiment, gexp, when pool F wins the 
competition at 5200 ≤ t ≤ 5400. C, Time course of the mean firing rate of all four 
populations of neurons in one trial in which the model coincides with the 
experiment, gexp, when pool F wins the competition at 5200 ≤  t ≤ 5400. D, Zoom 
in of Figure 4.7C for 5200 ≤ t ≤ 5400. 

The rastergram (Fig. 4.7B) shows the spiking times of 10 neurons from 
each of the four neural populations during one trial when the results of the 
model coincided with that of the behavioral data, gexp. Interestingly, this 
level of adaptation is close to the value gAHP = 7.5 nS used in Liu and 
Wang (2001) and Deco and Rolls (2005), where the same parameters of 
[Ca2+] dynamics were used to study the dynamics of one IF neuron (Liu & 
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Wang 2001) and a network of spiking neurons (Deco & Rolls 2005). In 
Figure 4.7C, the time course of the mean firing rates is plotted for all four 
neuronal populations on one trial in which pool F wins the competition at 
5200 ≤ t ≤ 5400 ms. The system initially reaches a stable state and then, 
when both pools are stimulated, competition will eventually lead to 
oscillations due to high level of neuronal adaptation. We thus predict that 
if the target ambiguous composite stimulus is persistently presented, in 
time subjects will experience rivalry, revealed as an oscillation in 
perception from one type to the other. 

4.3.3 Parameter search supporting the results 

The results demonstrated in Figure 4.7 arise from a specific set of the 
three main free parameters: w+ = 1.65, λadaptor = 200 Hz, and λ = 50 Hz. 
This set is only one example from a variety of parameter sets for which 
the results of the spiking simulations coincide with the behavioral data. It 
was found after performing an analytical parameter search while keeping 
the total number of neurons in the network constant and equal to N = 2000 
neurons. The range of values of recurrent connectivity weight w+ was 1.6 
≤ w+ ≤ 1.8, defined by both the region for which there can be decision 
states when stimulus is applied to selective pools (Martí et al. 2008) and 
the region where the network remains at the spontaneous state when no 
additional external stimulus is applied to the selective pools determining, 
in parallel, the upper limit of level of adaptation, gAHP (Figure 4.3). The 
range of external input to the two selective pools H and F in the second 
part of stimulation protocol B was 10 ≤ λ ≤ 60 Hz, defined by the 
constraint that decision states and/or oscillations exist depending on 
adaptation, gAHP. As for λadaptor, the range of values was λ ≤ λadaptor ≤ 60 Hz. 
The adaptor was a high- contrast hand or face and the test stimulus was a 
composite image of a hand and a face different from the adaptors and of 
lower contrast. In our simulations, we started from the point where both 
the adaptor and the test stimuli are equally excited by λ and λadaptor, 
respectively. We continued by studying the response of the system by 
manipulating the λadaptor. We chose a frequency of 60 Hz as an upper limit, 
but afterward examined the effect of an increase in the adaptor’s stimulus 
amplitude.  
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From the parameter search, with the above- defined constraints, we found 
that the model coincides with the behavioral results for 1.6 ≤ w+ ≤ 1.65 
and, whenever this happened for different test stimuli λ and adaptor 
stimuli λadaptor, the underlying mechanism was adaptation- driven. By 
varying input λ, the bifurcation point changes for a given value of the w+. 
From the cases for which the model coincides with the experiment, we 
found that by increasing λ while keeping w+ and λadaptor constant, the gexp 
decreases but so does also gbif, although the difference gexp - gbif remains 
constant with gexp being always in the oscillatory region (gexp >> gbif). By 
increasing w+ while keeping λ and λadaptor constant, the gbif increases but so 
does gexp. Again, the difference gexp - gbif remains constant with gexp being 
always in the oscillatory region. We also investigated the effect of 
increasing noise by decreasing the number of total neurons in the network, 
resulting in stronger, finite- sized noise. For fewer neurons in the network, 
gbif is constant and gexp is smaller; thus, the difference gexp - gbif decreases, 
meaning that the role of noise increases. However, noise never becomes 
the main driving force. The working point of the system remains gexp in 
the oscillatory regime. 

 

Figure 4.8 Parameter search 
A. Value of the adaptation parameter for which the results of the model coincide 
with the experimental behavioral data, gexp, as a function of the initial external 
input,λadaptor, to the neuronal pool H. The total number of neurons in the network 
is 2000 and recurrent connectivity is w+ = 1.65. The stimulus to both pools, F 
and H, during the last 200 ms of the cue, representing the presentation of the 
ambiguous stimulus, is λ = 50 Hz. The gexp never reaches the bifurcation point gbif 
= 3.35 nS even for extreme values of λadaptor B. The ratio of face responses after 
hand adaptation is plotted for different levels of adaptation, gAHP, as a function of 
the initial input, λadaptor. 
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Finally, we studied the effect of the adaptor’s stimulus strength (λadaptor). 
We saw that by increasing λadaptor while keeping constant w+, λ, and N, the 
difference gexp - gbif gradually decreased. Since the upper limit of λadaptor 
was selectively chosen without any specific constraint, this decrease 
would probably lead to gexp ≤ gbif, which means that the decision making is 
driven by noise. Hence, Figure 4.8A shows the decrease of gexp as a 
function of adaptor stimulus, λadaptor, with all other parameters equal to the 
ones used for Figure 4.7. We can clearly see that the gexp never reaches the 
bifurcation point gbif = 3.35 nS even for extreme values of λadaptor. In 
Figure 4.8B, the same point is demonstrated. The percentage performance 
of face responses after hand adaptation is plotted for different levels of 
adaptation as a function of the initial external input to pool H, λadaptor. 
From the previous discussion and this last study, we can be sure that in 
this high level, adaptation- related aftereffects experiment, the underlying 
mechanism of the decision- making process when the composite 
ambiguous image is presented at the end of the cue is adaptation- driven 
and the working point of the system is in the oscillatory regime.  

4.3.4 Decision making and decision certainty 

Decision making in binary choices has been studied extensively, both 
experimentally and theoretically, to understand its underlying 
mechanisms. Lately, there has been an increased interest in the confidence 
in decisions and it has been seen that reaction times of the decisions are 
shorter on easy than on difficult trials (Kim & Shadlen 1999). In addition, 
it has been shown that when the input to the selective- neuron pool of the 
network in the adaptation- free model is increased, decision times are also 
shorter for high- input versus for low- input situations (Martí et al. 2008). 
Nevertheless, the effect of the firing-rate adaptation mechanism in 
decision- making processes has not yet been studied. Next, we studied this 
effect by using the same spiking network with the same parameters as we 
used to define the underlying mechanism in the high-level adaptation-
related aftereffects task of Cziraki et al. (2010).  

We followed stimulation protocol C (§4.2.3) for different levels of 
adaptation. We began our study without having any adaptor in the task, 
meaning that the experimental task was to present an ambiguous face–
hand composite stimulus (Cziraki et al. 2010) that changes over trials to 
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either the face or the hand image, therefore increasing sensory evidence 
available about one of the interpretations of the stimulus and decreasing 
its ambiguity. Psychophysically, the measure would be the ratio of trials 
endorsed as faces. Neurophysiologically, it would be the neural activity of 
the cortical areas EBA and FFA and the decision times (i.e., the times 
needed for perceiving the stimulus as hand or face) as a function of the 
level of sensory evidence (i.e., the increase of the amount of the sensory 
evidence of one interpretation of the composite image). We simulated this 
task by externally increasing the input to neurons of selective population F 
by ∆λ while simultaneously decreasing the external input to neurons of 
selective populations H by ∆λ over trials. We calculated the mean firing 
rate of both pools as a function of the total external input to the network, 
∆I, averaged on correct trials from 1000 simulations. The total external 
input ∆I is the difference in spikes per second summed across all synapses 
to each neuron between the external input λ + ∆λ to pool F and λ - ∆λ to 
pool H. Correct trials are defined as the trials when the mean firing rate of 
pool F surpasses first and adequately the mean firing rate of pool H 
(§4.2.3, C). Then we ran 1000 trials for different levels of adaptation, 0 ≤ 
gAHP ≤ 12.  

Figure 4.9A shows the neural activity (mean firing rate ± 1⁄2 × SD) of 
pools F (solid lines) and H (dashed lines) on correct trials. In Figure 4.9B, 
the percentage performance ± 1⁄2 × estimated error over 1000 trials 
(estimated error = sqrt(performance/1000)) for different levels of 
adaptation is plotted. Figure 4.9C shows the mean decision times for 
different levels of adaptation ± 1⁄2 × SD on correct trials and the activities 
of the neuronal population in one single trial in the most difficult decision 
case (∆I = 0) and in the most easy one (∆I = 60) without adaptation (gAHP 
= 0 nS) and for the level of adaptation for which the model coincides with 
Cziraki et al.’s (2010) experiment (gAHP ≡ gexp = 10 nS). 

The first important conclusion from Figure 4.9 is that all levels of 
adaptation show the same behavior as a function of the level of sensory 
evidence: Neural activity of the F pool increases monotonically as a 
function of level of sensory evidence and its variability decreases. The 
variability in the firing rates is higher in difficult trials, reflecting that the 
system is noisier since there is less available sensory evidence. The 
difference between the neural activity of the winning and the losing neural 
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population increases with the level of sensory evidence, reflecting the 
increase in certainty as the task gets easier. In difficult trials, low certainty 
in the decision is also reflected in the performance. The percentage of 
correct choices, which starts from chance level (50%) showing the 
ambiguity of the stimulus when there is equal level of sensory evidence 
applied to the selective neuronal populations, increases as the task gets 
easier (Figure 4.9B). The performance increases monotonically as a 
function of the level of sensory evidence.  

Second and more interestingly, we observed that, for higher levels of 
adaptation, the decision times are shorter for all the range of ∆I (Figure 
4.9C). Furthermore, the variability in decision times caused by the random 
spiking of the neurons in the network is high in difficult decision cases 
and decreases as certainty increases. The activity of the winning neuronal 
population is decreasing as adaptation increases and the activity of the 
losing population increases, indicating that the certainty decreases but 
decision times are smaller. In addition, the rate of increase of the 
performance curve depends on the level of adaptation. In conclusion, 
these results show that adaptation in the context of decision making could 
serve to the speed- accuracy trade- off.  

Our findings show that neuronal adaptation in the firing rate of the 
competitive neuronal population lead to faster discrimination among 
them. After calculating the balance of the excitation-inhibition of the 
selective populations, we found that higher levels of neural adaptation 
lead the system to become more imbalanced, resulting in shorter decision 
times. This result can also be explained schematically if we consider the 
representation of the two percepts seen as basins of attractors in a bistable 
system (Figure 4.4). In the network, noise arising from the probabilistic 
spiking times exists with and without neural adaptation. If there is no 
adaptation in the system, then a certain time is needed for the system to 
move from one state to the other. When adaptation is added into the 
system having the same level of noise, there is a higher probability that 
the system will move from one state to the other because the basin of 
attraction of the dominant perceptual state is becoming shallower in 
parallel and the other interpretation can win the competition earlier.  
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Figure 4.9 Decision making without preceding adaptor 
Decision making without an adaptor preceding the decision- making task, for 
different levels of adaptation A. Mean firing rates of the winning pool (solid 
lines) and of the loosing pool (dashed lines) averaged on correct trials over 1000 
simulations. B. Percentage of correct trials as a function of the level of sensory 
evidence. C. Decision times when the selective neuronal pool receiving increased 
level of sensory evidence wins competition, averaged over correct trials. Bottom 
left, Mean firing rate of all pools in the adaptation-free and in high- level 
adaptation case, both in a single trial of the most difficult case for decision 
making (∆Ι = 0 Hz). Bottom right, The same plots from one single trial for the 
easiest case (∆Ι = 60 Hz). 
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Higher levels of neural adaptation lead to even shallower basins of the 
dominant attractor and the transition is even faster. When one neuron 
receives a Poisson spike train input, its firing rate decreases with 
increasing adaptation, which also increases the variability of its output 
spike trains (Liu and Wang, 2001). In a neural network, this output spike 
train with higher variability when adaptation is implemented is an 
additional noise into the postsynaptic neurons, resulting in an increase in 
the noise and eventually to a faster transition. 

 

Figure 4.10 Decision making with and without preceding adaptor 
Decision making with (dashed lines) and without (solid lines) an adaptor 
preceding the decision- making task, for different values of neural adaptation 
around the gexp value. With adaptor, the behavior is the same as without adaptor, 
but decision times are faster. 

Next, we applied the same adaptor stimuli to the current system as in 
Cziraki et al.’s (2010) experiment (§4.2.3, C). We were interested in the 
effect of adaptation on the decision times. Figure 4.10 shows decision 
times for the adapted (dashed lines) and unadapted (solid lines) conditions 
for various levels of adaptations (gexp - 1 ≤ gAHP ≤ gexp + 1). For the 
adapted case, the behavior is the same as in the unadapted case. Decision 
times decrease analogous to the level of sensory evidence for all levels of 
adaptation, with a smaller slope than in the unadapted case. In addition, 
decision times decrease as magnitude of adaptation increases. 
Interestingly, although Figure 4.10 shows that when a subject is adapted 
to a perceptual interpretation of an ambiguous composite stimulus, the 
percept of the other interpretation occurs faster (∆I = 0) than when there is 
no adaptor. From an ecological point of view, it is extremely important to 
be able to react as fast as possible to a sudden change in the environment. 
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As we increase the magnitude of adaptation over trials, a novel percept (in 
this case, the opposite interpretation of the target stimulus) is more likely 
to occur. Our results suggest that it also happens faster. It is also logical 
from a theoretical point of view since the activity of the adapted neuronal 
population is suppressed and it is easier for the competitive neuronal 
population to win the competition, leading to faster reaction times.  

4.4 Discussion 

In this chapter, we investigated the role of the spike- frequency adaptation 
in the context of decision making. We used a biophysically realistic 
competition model of decision making with an implemented spike- 
frequency adaptation mechanism. Decision making and its underlying 
mechanisms is a common field of interest among neuroscientists during 
the last few decades but the role of neural adaptation in this context is still 
unknown. Our work addresses some fundamental aspects of adaptation 
effects in decision making.  

We began our study by considering behavioral data from a high- level 
adaptation- related aftereffects experiment (Cziraki et al. 2010). In this 
experiment, it was shown that prolonged adaptation to a complex stimulus 
(e.g. an image of a hand) leads to category- specific aftereffects during the 
perception of ambiguous stimulus composites (a composite image of a 
hand and a face). From a theoretical point of view, we studied the 
dynamics of the perceptual switch from the adaptor category to the novel, 
opposite category by comparing two scenarios: noise- and adaptation-
driven transition. When an ambiguous stimulus is presented, noise- driven 
fluctuations lead to switches from one percept to the other. These 
fluctuations arise in the network due to the probabilistic spike time of the 
neurons amplified by finite- sized effects. Adaptation- driven transitions, 
on the other hand, lead to oscillations between the two different percepts, 
with random frequency while noise- driven fluctuations still exists in the 
network. We investigated the dynamical regime for which the competition 
model is consistent with the behavioral data. The behavioral result and our 
detailed parameter study, in the accepted parameter space, constrain the 
adaptation- driven regime to be the working point of the network. 
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Since we find that spike- frequency adaptation is the underlying 
mechanism in high- level, decision- making tasks like the high- level, 
adaptation- related aftereffects, we extended our study to typical binary 
decision- making tasks. We simulated an experiment of decision making 
where an ambiguous figure, like the one presented in Cziraki et al. 
(2010), is presented to subjects. In this experiment, the contrast of one of 
the two competing percepts is increased over different sets of trials. 
Simulating this experiment for different levels of adaptation, we found 
that when neuronal adaptation is high, decision becomes faster while the 
rate of increase of the performance curve decreases, indicating the role of 
neuronal adaptation in the speed- accuracy trade- off. With increasing 
levels of neural adaptation, the balance between excitatory and inhibitory 
currents received at the synapses of the selective populations decreases, 
resulting in shorter decision times. In addition, when an adaptor precedes 
the decision making task, decision is even faster for the same level of 
adaptation. The output of the spiking model we use could be tested in 
psychophysical and neurophysiological experiments. Our results are also 
consistent with an ecological point of view, since it is important to be able 
to react quickly when new environmental information is presented. 

Finally, we integrate our work by presenting testable predictions via 
experimental tasks that may verify our findings. For the decision- making 
task presented above, an increase in the reaction times should be observed 
if the Ca2+- activated K+ channels can be gradually blocked. We also 
propose another task. The composite ambiguous figure of a hand and a 
face (Cziraki et al. 2010) is presented to subjects continuously for 5 min 
and the psychophysically mean time dominance and coefficient of 
variation are measured. We mimic this task by having the same 
parameters as those in Cziraki et al. (2010). We calculate the mean 
dominance time of perceiving the hand or the face and its coefficient of 
variation (§4.2.3, D). The result is shown in Figure 4.11. In Figure 4.11, 
the green line corresponds to λ = 50 Hz, which is the external stimulus 
mainly used in this chapter, but calculations were also performed for λ = 
30 Hz and λ = 40 Hz (with same recurrent connectivity), for which the 
model coincided with the behavioral data of Cziraki et al.’s (2010) 
experiment. Hence, psychophysically, we expect to measure a mean 
dominance time, <T>, approximately in the range of 2 ≤ <T> ≤ 6 s and its 
coefficient of variation in the range of 0.5 ≤ CV ≤ 1. We therefore 
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conclude that the ambiguous composite stimulus is indeed a rivalrous 
stimulus. Preliminary experimental data further confirm our prediction. 
The same ambiguous composite stimulus was presented for 30 s and 
subjects (n = 3) were asked to report which image they perceived by 
pressing a button. Subjects experienced alternations in their perception 
with a mean time dominance of Texp = 4.5 sec and coefficient of variation 
CV = 0.52. Naturally, more subjects are needed to be quantitatively more 
precise but qualitatively we can conclude that the composite stimulus of 
our study is indeed rivalrous, since the experimental time dominance and 
coefficient of variation is within the typical range of rivalrous figures 
(Levelt 1968). This result is also in line with previous experiments where 
adaptation led to unambiguous percepts of such ambiguous stimuli as the 
Necker cube (Long & Moran 2007). In this study, previous exposure to 
an unambiguous version of the Necker cube for several minutes produced 
an immediate bias to perceive the ambiguous figure in the opposite 
configuration and led to decreased number of reversals. We note that the 
experimental data are also within the predicted range by our study. We 
therefore conclude that our hypotheses that neuronal adaptation should be 
relevant in Cziraki et al.’s (2010) experiment, which led to the 
conclusion that our model can account for modeling perceptual bistability.  

Perceptual bistability emerges when an ambiguous stimulus with two 
mutually exclusive interpretations is perceived as the frequent alternation 
of these states during long- term stimulus presentation. This visual 
phenomenon arises in many domains of perception, such as ambiguous 
figures as the well known face- vase stimulus, the Necker cube, or 
monocular rivalry, but the most extensively studied domain is binocular 
rivalry (for review, see Blake & Logothetis 2002). Neurodynamical 
models proposed for binocular rivalry are based on a competition between 
two populations of excitatory neurons whose activities encode the two 
conflicting percepts. This competition is mediated through inhibitory 
neurons that lead the dominant neuronal population to suppress the 
activity of the competitive one, such that at a given time only one has high 
activity corresponding to one of the interpretations.  

Moreover, theoretical studies show that random alternations in perception 
in such tasks can be achieved by two mechanisms: adaptation- driven and 
noise- driven transitions. Neuronal adaptation implemented by spike-
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frequency adaptation and/or synaptic depression results in reducing the 
activity of the dominant neuronal population or in weakening the 
inhibition between the two populations of neurons, leading the nonadapted 
population to win the competition. In this case, even in the absence of 
noise, adaptation generates alternations between the competing percepts 
with perfect periodicity, the reason these models are called oscillator 
models (Lehky 1988; Lago-Fernández & Deco 2002; Laing & Chow 
2002; Shpiro et al. 2007). In contrast, noise- driven fluctuations in the 
firing rates of the neuronal populations in a bistable attractor network lead 
to random switches between two stable attractors representing the two 
dissimilar percepts (Salinas 2003; Freeman 2005; Kim et al. 2006; 
Moreno-Bote et al. 2007). In these models, called noise driven attractor 
models, a switch in perception cannot exist without noise. Both 
mechanisms have recently been studied jointly in a common neuronal 
competition- rate model (Shpiro et al. 2009). Shpiro et al. (2009) show 
that the working point of the models, considering both noise- driven and 
adaptation- driven mechanisms, should be at the edge of the bifurcation.  

 
Figure 4.11 Mean dominance time and coefficient of variation for different 
levels of adaptation 
Mean dominance time and coefficient of variation for different levels of 
adaptation when the ambiguous composite figure of the hand and the face is 
presented, having the same parameters as the ones coinciding with the behavioral 
data from Cziraki et al.’s (2010) experiment. 

In this chapter, we considered both mechanisms within the same 
theoretical framework, using a spiking neuronal model to study the 
underlying mechanism in a high- level adaptation- related aftereffects task 
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(Cziraki et al. 2010). We found that neuronal adaptation is high enough 
that the working point of the system is in the oscillatory regime. We 
therefore predict that if the target stimulus is presented continuously, 
subject will experience rivalry with the predicted time dominance and 
coefficient of variation. Preliminary experimental results confirm our 
prediction. Although these preliminary data are enough to qualitatively 
confirm our hypothesis, we understand that more subjects should be tested 
to provide more precise quantitatively results. The predicted dominance 
time calculated is inside the range of typical dominance times measured 
experimentally when rivalry figures are presented to subjects, but the 
predicted coefficient of variation can be larger than the upper bound of the 
typical range (Levelt 1968). 

In conclusion, our study links, for the first time, neural processes and 
high- level, adaptation- related aftereffects. Using a spiking neural 
network, including neuronal adaptation mechanism by the slow Ca2+-
activated K+ current, we found that neuronal adaptation is the main 
driving force in such high- level visual phenomena in humans. 
Furthermore, we have investigated the effect of this mechanism in typical 
binary decision-making task and found that neuronal adaptation leads to 
faster decisions, contributing to a speed- accuracy trade- off. 
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CHAPTER 5 

 
 
Noise- decorrelation   
during Visual Consciousness6 
 
 
 

 

 

 

5.1 Introduction 

How neurons encode information and perform computations? This is one 
of the major questions in neuroscience. Until recently the firing activity of 
neurons has been the main correspondent to information coding of 
neurons. When researchers found that there is information encoded also in 
the spike count correlations of pairs of neurons, the interest of the 
scientific community in the correlated variability has been increased and it 
is still increasing. Several review articles in this context have been 
published (Salinas & Sejnowski 2001; Averbeck et al. 2006; Quiroga & 
Panzeri 2009; Cohen & Kohn 2011), and there is a plethora of studies in 
this scheme, both experimental and theoretical. 

Intrinsic noise can be detected in the fluctuation of neuronal discharge 
responses to repeated presentations of the same stimulus (Tolhurst et al. 
1983). The total amount of noise, or noise entropy, in a neuronal ensemble 
is captured in the covariance matrix where both individual and 
interneuronal, correlated, fluctuations are described (Averbeck & Lee 

                                                 
6 Main results presented in this chapter are in preparation for submission: T. I. 
Panagiotaropoulos*, P. Theodoni*, V. Kapoor*, G. Deco, and N. K. Logothetis 
(2014), Decorrelated noise in dominant prefrontal microcircuits during visual 
consciousness. (*equal contribution) 
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2006; Ecker et al. 2011). The latter component of noise is commonly 
called "noise correlation" and its impact on neuronal information 
processing has been studied extensively in both elementary and higher-
order processes like stimulus drive (Aertsen et al. 1989; Ahissar et al. 

1992; Kohn & Smith 2005), neuronal adaptation (Gutnisky & Dragoi 
2008; Adibi et al. 2013), perceptual discrimination (Romo et al. 2003; Liu 

et al. 2013a, 2013b), attention (Cohen & Maunsell 2009; Mitchell et al. 
2009; Herrero et al. 2013; Poort & Roelfsema 2009), perceptual and 
associative learning (Ahissar et al. 1992; Gutnisky & Dragoi 2008; 
Komiyama et al. 2010; Gu et al. 2011; Jeanne et al. 2013) and behavioral 
context (Cohen et al. 2008; Poulet & Petersen 2008; Vaadia et al. 1995). 
In these studies noise correlations were shown to be detrimental, 
beneficial or irrelevant to the fidelity of population codes, depending on 
their magnitude, structure and the assumptions employed by decoding 
algorithms. In general, in a so-called limited-range and stimulus-
dependent correlation structure, where more similarly tuned neurons are 
more correlated and a preferred stimulus results in higher noise compared 
to a non preferred, correlated noise is detrimental for population coding, 
since pooling neuronal responses is unable to average out common noise 
fluctuations. On the other hand, opposite tuning renders correlations 
beneficial (Averbeck et al. 2006; Romo et al, 2003; Abbot & Dayan 
1999). 

Under ambiguous conditions, two assemblies of neurons, with different 
stimulus preferences, compete for perceptual dominance (§1.4). Until 
now, these neurons were studied in isolation and their averaged firing rate 
during perceptual dominance and suppression was compared to the 
respective average rate during perception without any underlying 
competition to infer the relative contribution of a given cortical area in 
conscious perception. However, due to the probabilistic, noisy nature of 
neuronal firing, statistical features like the magnitude and structure of 
individual and shared discharge variability, within and between the 
competing neuronal pools, could influence their information capacity 
(Abbot & Dayan 1999; Averbeck et al. 2006; Sompolinsky et al. 2001; 

Wilke & Eurich 2002; Zohary et al. 1994; Cafaro & Rieke 2010). 

Therefore, determining the effect of perceptual dominance and 
suppression on intrinsic neuronal noise could evaluate the fidelity of 
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conscious representations in cortical microcircuits, particularly in 
association areas (Crick & Koch 1995, 1998; Panagiotaropoulos et al. 

2014). 

In this chapter, we consider neurophysiological data collected during the 
study of the effect of perceptual dominance and suppression achieved 
through binocular flash suppression (BFS) on intrinsic noise measured in 
the pair-wise interneuronal correlations and individual variability in the 
macaque lateral prefrontal cortex (LPFC). The data show that during the 
perceptual dominance of a preferred stimulus the dominant population 
settled in a decorrelated state compared to monocular visual stimulation, 
that is when the same population encoded the same stimulus without any 
underlying competition. In striking contrast, no differences in noise 
correlation were found between perceptual suppression and the physical 
absence of the preferred stimulus. Most interestingly, correlated noise 
between neurons with opposite stimulus preference remained unaffected 
by visual rivalry, suggesting that the dynamic changes in LPFC functional 
connectivity occur selectively in the cortical microcircuit signaling 
perceptual dominance. We employed a biophysically realistic spiking 
network of two neural populations with and without cross- inhibition. We 
found, contrary to our intuition, that competition is not relevant to the 
noise- correlation reduction during rivalrous visual stimulation. Instead, 
the noise- correlation reduction is due to stimulus and noise modulation 
coming from preceding stages of processing. A plausible scenario is that 
competition is resolved in a previous stage, like IT, and neurons in LPFC 
are driven by IT’s output. 

5.2 Methods 

In the followings, we describe the experimental protocol and results 
(§5.2.1), designed and obtained by Theofanis I. Panagiotaropoulos, Vishal 
Kapoor and Nikos. K. Logothetis at the Max Plank Institute, Biological 
Cybernetics in Tübingen. Then, we describe the networks we employed 
(§5.2.2), the stimulation protocols, the simulations and the analysis we 
used (§5.2.3).  
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5.2.1 Experimental paradigm & results 

The dominant and suppressed states of LPFC neurons were dissected, 
during visual consciousness by combining BFS, a well-controlled variant 
of BR stimulation that dissociates subjective perception from sensory 
stimulation (Wolfe 1984; Sheinberg & Logothetis 1997; Kreiman et al. 

2002; Keliris et al. 2010; Panagiotaropoulos et al. 2012), with 
extracellular tetrode recordings in awake, behaving macaques. The effects 
of subjective perceptual dominance and suppression of a preferred 
stimulus on intrinsic noise during BFS were compared to the effects of 
similar perceptual states during monocular physical alternation (PA) of 
the same stimuli, that didn't involve visual rivalry and therefore lacked 
any subjective component. 

A schematic description of BFS and monocular PA trials is depicted in 
Figure 5.1. In PA (Figure 5.1A), each trial starts with the presentation of a 
fixation spot in both eyes that is binocularly fused and remains on until 
the end of the trial. After 300ms of stimulus-free fixation (t = 0 - 300 ms) 
a polar checkerboard is presented in one eye for 1000 ms (t = 301 - 1300 
ms) and then removed and followed by the presentation of a monkey face 
stimulus for 1000 ms (t = 1301 - 2300 ms) in the contralateral eye. In half 
of the PA trials the order of stimulus presentation is reversed and the 
checkerboard follows visual stimulation with a face. In both PA 
conditions visual perception has a purely sensory component, in the sense 
that a unique pattern stimulates the visual system during each trial phase. 
In BFS trials (Figure 5.1B), one second following the first stimulus onset 
(i.e. at t = 1301 ms), the same disparate visual patterns -as in PA- are 
flashed to the corresponding part of the contralateral eye. The flashed 
stimuli remain on for 1000 ms (t = 1301 - 2300 ms), robustly suppressing 
the perception of the contra laterally presented visual patterns which are 
still physically present. As a result of this manipulation, in BFS trials a 
visual competition period dissociating sensory stimulation from subjective 
perception is externally induced for the last 1000 milliseconds (Wolfe 

1984; Sheinberg & Logothetis 1997; Keliris et al. 2010; 
Panagiotaropoulos et al. 2012). During this period the newly presented 
pattern is perceptually dominant while the initially presented stimulus 
becomes perceptually suppressed. At the end of each trial and following a 
brief stimulus free fixation period (100 - 300 ms) a drop of juice was used 
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as a reward. 

 

Figure 5.1 Experimental design 
A. Physical Alternation (PA) B. Binocular Flash Suppression (BFS). In 
both PA and BFS it is shown a checkerboard to face trial. Nevertheless, 
face to checkerboard trials were mixed with checkerboard to face trials, 
so that the monkey does not obtain a rule. 

The experiments were performed on three adult rhesus monkeys (macaca 
mulatta). The recording site was the inferior convexity of the prefrontal 
cortex (Figure 5.2). This area contains face selective cells (Ó Scalaidhe et 

al. 1997) and in humans the inferior frontal cortex shows neural correlates 
during binocular rivalry (Lumer et al. 1998; Lumer & Rees 1999).  

 

Figure 5.2 Recording site: Inferior convexity of prefrontal cortex  
A. 3D sketch of a monkey’s scalp showing the position of the recording chamber 
over the inferior convexity of prefrontal cortex B. Drawing of a monkey’s brain, 
showing the recording sites (black dot) C. Sketch of a monkey’s brain slice 
showing the recoding sites (inferior convexity of prefrontal cortex). (Figure 
obtained personally from Theofanis I. Panagiotaropoulos). 
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Simultaneously recorded pairs of neurons in two different pools were 
assigned depending on the stimulus preference index of the recorded 
units. The first pool comprised pairs of neurons where both units had a 
similar stimulus preference during both PA and BFS and the second order 
statistics of this population was tracked during a) monocular perception of 
the preferred stimulus in PA, b) monocular perception of the non-
preferred stimulus during the physical absence of the preferred one in PA, 
c) subjective perceptual dominance of the preferred stimulus in BFS and 
d) perception of the non-preferred stimulus inducing perceptual 
suppression of the preferred one in BFS. The second pool comprised pairs 
of neurons where the two units had opposite stimulus preference during 
PA and maintained this opposite preference during BFS and compared 
their statistics during PA and BFS to examine the effect of visual 
competition. 

The pair-wise spike count correlation coefficient (or else correlated 
variability) during t = 1301 – 2300 ms was computed similar to Bair et al. 
(2001). Specifically, for each pair of simultaneously recorded neurons 
consisted of units i and j and for each of the four conditions separately, the 
total number of spike counts across all trials was first normalized, by 
converting them into z-scores and then for each pair the Pearson 
correlation coefficient was computed for the two vectors. In addition, for 
each neuron and for each condition separately the individual variability 
across trials during t = 1301 - 2300 ms was estimated, by computing the 
Fano factor. 

The experimental data show a decrease in correlated variability across 
pairs of neurons sharing similar stimulus preferences, when their preferred 
stimulus is perceived during rivalrous visual stimulations, compared to the 
magnitude of correlation when the same stimulus is perceived without 
competition (Figure 5.3B).  

Here, we focus on the mean firing rates, correlated variability and Fano 
factor of the dominant and suppressed populations during the last second 
of the PA and BFS trials: The mean firing rate of the dominant population 
in BFS is slightly smaller than in PA. The mean firing rate of the 
suppressed population is similar to the mean firing rate of the suppressed 
population in PA (Figure 5.3A). The correlated variability of the dominant 
population in PA is 0.1 and decreases to 0.05 in BFS. The correlated 
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variability of the suppressed population in PA is 0.05 and remains 0.05 in 
BFS (Figure 5.3B). The Fano factor of the dominant population and of the 
suppressed is not different in BFS compared to PA. 

 
Figure 5.3 Experimental results 
A. Mean firing rates of the finally suppressed (red) neural assembly and of the 
finally dominant (blue) neural assembly, during the last second of PA and BFS 
(figure obtained personally from Theofanis I. Panagiotaropoulos) B. Pair- wise 
correlated variability of the suppressed neural assembly and of the dominant, 
during the last second of PA and BFS. We call the neuronal population that is 
suppressed in BFS, also suppressed in PA, for the sake of convenience. The same 
stands for the dominant population in BFS. Here we write “suppressed” and 
“dominant” just to emphasize it. 

5.2.2 Model description 

We considered two biophysically realistic networks with different 
architectures. One network is consisted of three neuronal populations (two 
excitatory and one inhibitory, Figure 5.4A), and the other network is 
consisted of two neuronal populations (one excitatory and one inhibitory, 
Figure 5.4B). The first network is characterized by cross-inhibition, and 
hence competition, between the two excitatory neuronal populations. 
Details of the network are presented in Chapter 2 (§2.2). Here we do not 
include a non- selective neuronal population, in order to better compare 
this network with the network without cross- inhibition in terms of the 
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effect of the competition. One of the excitatory neuronal populations, E1, 
is consisted of neurons selective to one of the images in PA and BFS, e.g. 
the face image, and the other excitatory neuronal population, E2, is 
consisted of neurons selective to the other image in PA and BFS, i.e. the 
polar image. The second network is similar to the first one, with the 
difference that there is not cross- inhibition, and hence competition, since 
there is only one excitatory neuronal population. We consider two such 
networks (without competition) for convenience in the description of our 
results. 

 
Figure 5.4 Biophysιcally realistic spiking networks 
A. Network with competition: Two excitatory neuronal populations, E1and E2, 
with self- excitation (arrows), neuronal adaptation (dashed lines), connected with 
each other (arrows) and with an inhibitory population, I.  B. Network without 
competition: One excitatory population, E1 or E2, with self- excitation (arrows), 
neuronal adaptation (dashed lines), connected with an inhibitory population, I. 

Model input and output 

All excitatory neurons receive background input, through Cext = 800 
excitatory connections, each one receiving an independent Poisson spike 
train with rate λext = 3 Hz, and noise βext · g(t), where g is being drawing, 
at each time step, from a Gaussian distribution with mean 0 and standard 
deviation 1, and βext is the so called background input noise. The 
presentation of an image in the experiment is simulated by additional to 
the background input Poison spike train of rate λ, and total input noise β, 
to the excitatory neurons. Inhibitory neurons in all times and all conditions 
receive background input, through Cext = 800 excitatory connections , each 
one receiving an independent Poisson spike train with rate λext = 3 Hz. 
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5.2.3 Stimulation protocols 

Physical alternation (PA) 

The first 300 ms all excitatory neurons receive only background input. In 
the following 1000 ms, neurons of one of the selective populations, E1, 
receive additional external input of rate λ and total input noise β, while 
neurons of E2 receive only background input. The last 1000 ms, neurons 
of E2 receive additional external input of rate λ and total input noise β, 
while neurons of E1 receive only background input (Figure 5.5, PA). In 
Summary, the inputs to the selective populations, νE1 and νE2, are given by 
the following equations: 

               

E1 ext ext

E2 ext ext

( ) λ β ( )
for 0 300ms

( ) λ β ( )

v t g t
t

v t g t

= + ⋅ 
≤ ≤= + ⋅ 

          (5.1) 

E1 ext
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( ) λ λ β ( )
for 300 1300ms

( ) λ β ( )

v t g t
t

v t g t

= + + ⋅ 
< ≤= + ⋅ 

         (5.2) 

 

E1 ext ext

E2 ext

( ) λ β ( )
for 1300 2300ms

( ) λ λ β ( )

v t g t
t

v t g t

= + ⋅ 
< ≤= + + ⋅ 

         (5.3) 

Considering two networks without cross-inhibition -one where the 
excitatory population (E1) consists of neurons selective to one of the 
images, e.g. face image, and another where the excitatory population (E2) 
consists of neurons selective to the other image, i.e. polar image- we 
follow the same stimulation protocol as previously (Equations 5.1 - 5.3).  

Binocular Flash Suppression (BFS) 

The first 300 ms all excitatory neurons receive only background input. For 
the next 1000 ms, neurons of one of the selective populations (E1) receive 
additional external input of rate λ and noise β. The last 1000 ms, neurons 
of the same selective population receive additional external input of rate 
λ1 and noise β1 while of the other selective population (E2) receive 
additional external input of rate λ2 and noise β2 (Figure 5.5, BFS). In 
Summary, the inputs to the selective populations, νΕ1 and νΕ2, are given by 
the following equations: 
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E1 ext ext

E2 ext ext

( ) λ β ( )
for 0 300ms

( ) λ β ( )

v t g t
t

v t g t

= + ⋅ 
≤ ≤= + ⋅ 

         (5.4) 

E1 ext
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( ) λ β ( )

v t g t
t
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       (5.5)             
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( ) λ λ β ( )
for 1300 2300ms

( ) λ λ β ( )

v t g t
t

v t g t

= + + ⋅ 
< ≤= + + ⋅ 

       (5.6) 

Considering two networks without cross-inhibition -one where the 
excitatory population (E1) consists of neurons selective to one of the 
images, e.g. face image, and another where excitatory population (E2) 
consists of neurons selective to the other image, i.e. polar image- we 
follow the same stimulation protocol as previously (Equations 5.4 - 5.6).  

 
Figure 5.5 Stimulation protocol: PA & BFS 
Physical Alternation (PA): at time 300 ms stimulus of strength λ and variability β 
is applied to population E1 and at 1300 ms stimulus of same strength and 
variability is applied to population E2. Binocular Flash Suppression (BFS): at 
time 300 ms stimulus of strength λ and variability β is applied to population E1 
and at 1300 ms stimulus of strength λ1 and variability β1 is applied to population 
E1, while stimulus of strength λ2 and variability β2 is applied to population E2. 
The connection between the excitatory populations E1, E2 is drawn with dashed 
lines, representing its existence, network with competition (Figure 5.4A) or not, 
network without competition (Figure 5.4B). The colors of the neuronal ensembles 
in the last second of the stimulation protocol correspond to the colors used 
throughout the presentation of the results. 

 



 

 115

Parameters for which the networks replicate the experimental data 

In both networks the parameters are the same, for the sake of comparison, 
and the values of the main parameters are presented in Chapter 2 (Tables 
2.2, 2.5, 2.6). The rest of the parameters here are: N = 500, w+ = 1, wI = 2, 
gAHP = 30 nS, ρ = 0.1, τCa = 2000. The total number of neurons is the same 
in both networks, thus in the network without cross-inhibition the 
excitatory population is double in size (NE = 400 neurons, f = 1) compared 
with each excitatory population in the network with cross-inhibition (NE1,2 
= 200 neurons, f = 0.5).  

The network with cross-inhibition replicates the experimental data in PA 
and BFS when βext = 2.5×10-4, λ = 480 Hz, β = 1×10-4, λ1 = 160 Hz, β1 = 
1.1×10-4 and λ2 = 460 Hz, β2 = 1×10-5. The network without cross-
inhibition replicates the experimental data in PA and BFS when βext = 
3.5×10-4, λ = 360 Hz, β = 1×10-4, λ1 = 160 Hz, β1 = 1.5×10-4 and λ2 = 340 
Hz, β2 = 5.5×10-5. The rest of the parameters are the same in both 
networks. The only difference is the number of the excitatory neurons in 
each population.  

Analysis 

Mean firing rate: In each trial, the mean firing rate of each neuronal 
population was calculated by dividing the number of spikes emitted in a 
50ms window by its number of neurons and by the window size. The time 
window was sliding with a time step of 5 ms.   

Noise-correlations: We recorded the spike timings of 200 neurons across 
100 trials from each excitatory neuronal population of the network with 
cross-inhibition, and 400 neurons across 100 trials from the excitatory 
neuronal population of the network without cross-inhibition, in each 
condition (PA, BFS). Selecting randomly 50 neurons from them, we 
computed their spike counts during the time interval 1300 < t ≤ 2300, in 
each of the 100 trials. After converting them into z-scores, we computed 
the Pearson correlation coefficient for all pairs of the 50 neurons, as done 
experimentally. We followed the same procedure 100 times and finally 
computed the mean correlation coefficient. 

Excitatory-inhibitory balance: In each trial, every 1ms, for each excitatory 
population, we recorded the mean synaptic currents over all its neurons. 
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After summing them, we calculated the mean of over the time, where we 
add 450 pA (Brunel & Wang 2001), and finally we averaged over 100 
trials,  

Balance = AMPA,extI AMPAI+ NMDAI+ GABA 1300 2300 100 trials
450

t
I

≤ ≤
+ + . 

Mean and standard deviation of the voltage: At every time step (0.02 ms), 
during the time interval 1300 < t ≤ 2300 ms, we recorded the voltage of 50 
neurons from each excitatory neuronal population, in each condition. We 
then calculated the mean voltage of each neuron across 500 trials, then we 
computed the mean voltage, for each neuron, over time and finally the 
mean voltage across neurons.  

5.3 Results 

Contrary to our intuition, we find that competition is not the reason for the 
noise- correlation reduction during rivalrous visual stimulations. Instead, 
the most plausible scenario is that competition is resolved in a previous 
stage, like IT and neurons in IPFC are driven by IT’s output. 

5.3.1 A mechanistic analysis underlying the experimental noise- 

correlations  

The experimentally observed ecorrelated discharges during rivalrous 
visual stimulation compared to the strength of correlated fluctuations in 
the same population during perception without competition, as well as the 
unchanged noise-correlations in the suppressed population in BFS 
compared to the noise correlations in the same population during the 
absence of external stimulus, provide a challenge for current theoretical 
approaches to explain these experimental evidences. Here, we present a 
tentative theoretical explanation for the noise-correlation in the 
populations of interest.  

We consider a network with mutual inhibition between two selective 
populations because it is well known as a mechanism, together with spike-
frequency adaptation, that gives rise to successive phases of perceptual 
dominance and suppression in BR (Chapter 3), as well as to controlled 
perceptual suppression in BFS (Panagiotaropoulos et al. 2013) and in 
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adaptation- related afterrefects (Chapter 4).  Therefore, our initial 
hypothesis was that cross-inhibition between the two neuronal ensembles 
that encode each visual stimulus would be responsible for the noise-
correlation decrease in BFS compared to PA. To test this hypothesis, we 
considered a biophysically realistic spiking network comprised of two 
selective excitatory neural populations, each one encoding one of the 
visual stimuli, exhibiting competition through an inhibitory population 
(Figure 5.4A). We also considered a network of two selective excitatory 
neural populations without cross-inhibition (Figure 5.4B), in order to 
compare the with vs. without competition conditions.   

The network with competition, for a set of parameters, accounts for the 
experimental trial by trial spike count correlations and mean firing rates of 
the neuronal populations in PA (Figure 5.7A, PA). Simulating, then, BFS, 
without any stimulus or noise modulation of the incoming input (Figure 
5.5, BFS, where λ1 = λ2 = λ, β1 = β2 = β), we find that both noise-
correlation of the dominant and of the suppressed neural population 
increases (Figure 5.6A). Calculating the excitatory-inhibitory balance at 
the synapses of the neurons we find that this is due to higher excitatory 
currents (Figure 5.6B), due to the external stimulus to the suppressed 
population. Therefore, just competition is not enough for the model to 
account for the experimental data. 

 
Figure 5.6 Competition increases noise- correlations 
A. Correlated variability of the dominant population in PA (blue), BFS (cyan) 
and of the suppressed population in PA (red), BFS (magenta) in the case where λ1 
= λ2 = λ, β1 = β2 = β (Figure 5.5, BFS). C. Excitatory-inhibitory synaptic balance 
of the dominant neurons in PA (blue), BFS (cyan) and of the suppressed neurons 
in PA (red), BFS (magenta) in the same case as in A. 

Modulating the strength and the variability of the input to the neuronal 
ensembles in BFS, the network with competition, successfully accounts 
for the experimental trial by trial spike count correlations both in PA and 
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BFS (Figure 5.7), as well as the experimental mean firing rates of the 
conflicting neuronal ensembles (Figure 5.8A). Nevertheless, the network 
without competition, with similar input modulations, can also account for 
the experimental data (Figures 5.7B, 5.8B). Therefore, our results allow us 
to speculate that competition is not the driving force for the noise-
correlation decrease of the dominant population in BFS, nor for the 
insignificant differences in noise- correlation between PA and BFS of the 
suppressed population. Rather, strength and noise modulations of the 
incoming input from previous processing stages are responsible for the 
decorrelation during visual consciousness. 

 
Figure 5.7 Correlated variability in PA & BFS 
A. Experimental Trial by trial spike count correlations (correlated variability) in 
PA and BFS for the suppressed and dominant neural population (black bars). 
Blue and red bars are theoretical correlated variability for the dominant and 
suppressed population respectively, in PA. Cyan and magenta bars are the 
theoretical correlated variability for the dominant and suppressed neural 
population respectively, in BFS B. Correlated variability as in A for the network 
without cross-inhibition 

 
Figure 5.8 Mean firing rates in PA & BFS 
A. Mean firing rate of the dominant population in PA (blue), BFS (cyan) and of 
the suppressed population in PA (red), BFS (magenta) for the parameters for 
which the network with cross-inhibition replicates the trial by trial spike count 
correlations B. Mean firing rate as in A for the network without cross-inhibition 

Furthermore, employing the network with competition, (as well as the 
network without competition), and using the same parameters for which 
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accounts for the experimental data, we stimulated both populations for 
longer period of time and found that no alternations occur (Figure 5.9). It 
is known that alternations are maintained in binocular rivalry following a 
period of forced dominance (Blake et al. 1990), as well as following BFS 
in LPFC (Panagiotaropoulos et al. 2012). Therefore, under stimuli- 
driven conditions, in order for alternations to occur, our theoretical 
framework suggests that LPFC should be driven by previous processing 
stages. Given that neurons of the same selectivity in LPFC are strongly 
anatomically connected with neurons of the same selectivity in IT, our 
results suggest that IT’s output is a plausible candidate for driving rivalry 
and BFS in LPFC. Nevertheless, we cannot exclude that spontaneous 
alternations in the BFS followed by BR condition, could be generated by 
spatiotemporal patterns of the background input in PFC. 

 
Figure 5.9 BFS followed by BR 
A. For the parameters for which the network with cross-inhibitions replicates the 
experimental correlated variability, a one trial of BFS followed by long constant 
stimulation of both populations B. The same as in A for the network without 
cross-inhibition 

5.3.2 What provokes the noise- correlation reduction in BFS of 

the dominant neural ensemble?  

The noise- correlation of the dominant population decreases in BFS due to 
smaller fluctuation of the incoming stimulus rate. Calculating the mean 
and the standard deviation of the membrane potential of the dominant 
neurons, we find that decrease of input fluctuations results in reduction of 
the sub- threshold membrane potential fluctuation, while its mean does 
not change. Thus, the probability for the membrane potential to reach the 
spiking threshold is smaller, leading to a reduction of noise- correlation. 
The same stands for the network without competition.  
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In Figure 5.10 we plot the correlated variability of the dominant neurons 
(cyan lines), in BFS, as a function of stimulus strength λ for different 
noises β΄. In Figures 5.10A, 5.10B, we consider the network with 
competition and in Figure 5.10C, the network without competition. In 
Figures 5.10A, 5.10B, we plot also the correlated variability of the 
suppressed neurons (magenta lines) in order to show its dependence on 
the stimulus strength to the dominant population. We do not show the 
same for the network without competition (Figure 5.10C), because the two 
populations are independent.  

 

Figure 5.10 Decrease of input noise to the dominant population (β΄ < β)  
A. Network with competition Up: Stimulation protocol. Middle: Correlated 
variability of the dominant population (cyan lines), and suppressed population 
(magenta lines), as a function of the input strength to the dominant population, λ. 
Down: Excitatory-inhibitory balance at the synapses of the dominant neurons 
(cyan lines) and suppressed neurons (magenta lines), as a function of the input 
strength to the dominant population, λ. Solid lines correspond to β´= 10-4 and 
dashed lines to β´= 1×10-5, while β = 10-4. B. Network with competition as in A, 
with different input strength to the suppressed population. C. Network without 
competition Up: Stimulation protocol. Middle: Correlated variability of the 
dominant population (cyan lines), as a function of the input strength to the 
dominant population, λ. Down: Excitatory-inhibitory balance at the synapses of 
the dominant neurons (cyan lines), as a function of the input strength to the 
dominant population, λ. Solid lines correspond to β´= 10-4 and dashed lines to 
β´= 5×10-5, while β = 10-4. 
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Considering only input modulation in BFS, both networks cannot account 
for the experimental data of the dominant neural population. For smaller 
stimulus strength to the dominant population, noise-correlation decreases 
(Figures 5.10), but stimulus is so small that the mean firing rate of the 
dominant population in BFS is much smaller than in PA which is against 
the experimental findings. As a result, competition with only input 
strength modulation cannot account for the experimental results. Only 
noise modulation is enough to account for the trial by trial spike count 
correlations of the dominant population (Figure 5.10). Small stimulus 
decrease though is needed in order to account for the slightly smaller 
mean firing rate of the dominant population in BFS than PA, as found 
experimentally.  

The Fano factor of the dominant neurons in BFS has been found to be not 
significantly different than the Fano factor of the dominant neurons in PA. 
This is because the mean firing rate of the dominant neurons in BFS 
slightly decreases and so does their variance. Decrease of the stimulus to 
the dominant population in BFS increases the Fano factor of the neurons, 
and decrease of the input noise to the dominant population decreases the 
Fano factor of the neurons. Both actions result in keeping the Fano factor 
of the dominant neurons in BFS similar as in PA. 

5.3.3 What provokes the noise- correlation stability in BFS of 

the suppressed neural ensemble?  

The noise- correlation of the suppressed neurons in BFS remains at the 
same level compared to PA, due to both stimulus decrease and noise 
increase coming from a preceding processing stage. Considering the 
network with competition and without any stimulus or noise modulation, 
the noise correlation of the suppressed population is higher in BFS than in 
PA (Figure 5.6). Decreasing the stimulus strength, noise correlation 
decreases, but the stimulus for which the experimental data are replicated 
is high leading to higher mean firing rate of the suppressed population in 
BFS compared to PA, contrary to the experimental data. Increasing the 
fluctuation of the incoming rate to the suppressed population, noise 
correlation increases, thus smaller stimulus strength to the suppressed 
population is needed in order for the network to account for experimental 
data.  
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Figure 5.11 Increase of input noise to the suppressed population (β΄ > β)  
A. Network with competition Up: Stimulation protocol Middle: Correlated 
variability of suppressed neurons in BFS as a function of stimulus strength, λ, 
when the fluctuation of the incoming input β΄ is 10-4 (solid magenta line), 1.1×1-4 
(dotted magenta line) and 1.5×10-4 (dashed magenta line), while in all conditions 
β = 10-4. The correlated variabilities of the dominant neurons in these conditions 
are the cyan solid, dotted and dashed line respectively. Down: Excitatory-
inhibitory synaptic balance at the synapses of the suppressed neurons as a 
function of stimulus strength, λ, when β΄ = 10-4 (solid magenta line), β΄ = 1.1×10-

4 (dotted magenta line) and β΄ = 1.5×10-4 (dashed magenta line), while in all 
conditions β = 10-4. The excitatory-inhibitory synaptic balances of the dominant 
neurons in these conditions are the cyan solid line, dotted, and dashed, 
respectively. B. Network without competition Up: Stimulation protocol Middle: 
Correlated variability of suppressed neurons in BFS as a function of stimulus 
strength, λ, when the fluctuation of the incoming input β΄ is 1×10-4 (solid magenta 
line), and 1.5×10-4 (dashed magenta line). Down: Excitatory-inhibitory synaptic 
balance of the suppressed neurons as a function of stimulus strength, λ, when β΄ 
= 10-4 (solid magenta line) and when β΄ = 1.5×10-4 (dashed magenta line), while 
in both conditions β = 10-4. 

Therefore, both modulations to the input rate and to the noise of the input 
rate are responsible for the non- significant differences of the trial by trial 
spike count correlation of the suppressed population in BFS compared to 
PA. The same stands for the network without competition (Figure 5.11). 
Calculating the mean and the standard deviation of the membrane 
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potential of the suppressed neurons we find that in BFS the mean voltage 
increases but the standard deviation decreases, compared to PA, and this 
is why the noise- correlations do not change significantly. 

In Figure 5.11 we plot the correlated variability of the suppressed neurons 
(magenta lines), in BFS, as a function of stimulus strength λ for different 
noises β΄. In Figure 5.11A we consider the network with competition and 
in Figure 5.11B, the network without competition. In Figure 5.11A we 
plot also the correlated variability of the dominant neurons (magenta 
lines) in order to show its dependence on the stimulus strength to the 
suppressed population. We do not show the same for the network without 
competition (Figure 5.11B), because the two populations are independent. 

The Fano factor of the suppressed neurons in BFS is found to be not 
significantly different compared to PA. This is because the mean firing 
rate of the suppressed neurons slightly increases and so does their 
variance. The input to the suppressed population in BFS decreases the 
Fano factor of the suppressed neurons, compared to PA where there is no 
external stimulus. By increasing, though, the noise of the input rate, the 
Fano factor of the suppressed neurons in BFS increases and approaches 
the value of their Fano factor in PA. 

5.3.4 Analysis with the moments method 

Using the augmented method of moments presented in Chapter 2 (§2.4), 
we simulated PA and BFS (Figure 5.12) and replicated the experimental 
correlated variability, employing both networks, with and without 
competition. We, hence, conclude that competition is not the driving force 
for the noise- correlation reduction during rivalrous visual stimulations. 
Instead, the noise- correlation reduction is due to stimulus and noise 
modulation coming from previous stages. Therefore, we conclude the 
same result that we found by employing the biophysically realistic 
networks. The most plausible scenario is that competition is resolved in a 
previous stage, like IT, and neurons in LPFC are driven by IT’s output. 
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Figure 5.12 Stimulation protocol 
Network of two neural ensembles with self-excitation w+ (arrows) and cross 
inhibition w- (dashed lines ending to circles) and neuronal adaptation gAHP (lines 
ending to circles). Each pool is consisted of N neurons selective to the same 
stimulus. During the first second only one pool is stimulated (e.g. red) by λ. 
During the 2nd second, in PA, neurons of the other pool (blue) receive external 
input λ, while in BFS, neurons of pools receive external stimuli, red pool is 
stimulated by λ1, and blue by λ2. β0, β0´, β´, β, β1, β2 

are the noises of the 
background and the corresponding inputs. The colors of the neurons during the 
last second of stimulation in PA and BFS are different just to correspond to the 
colors used throughout the results. 

We solved the system of the DEs (§2.4) with Euler method, and time step 
dt = 0.1 ms. Noise intensities β0, β, β0´, β´, β1 and β2 in the followings are 
integers for simplicity, since results do not change when all are multiplied 
by the same factor. In the direct simulations of the system of stochastic 
equations we multiplied all by 10-9, and as we see in Figure 2.12, the 
results do not change. 

More specifically, we first consider the case when there is not cross 
inhibition between the two neuronal ensembles (w- = 0), i.e. when there is 
not competition.  We simulated PA for a given level of adaptation, gAHP, 
and stimulus strength, λ, and found the region in the β0΄- β space where 
the correlated variability of both ensembles is similar to the experimental 
data (Figure 5.13A). Then, for a set of noise intensities taken from this 
region we found the region in the gAHP - λ space where the simulated 
correlated variability of both ensembles is similar to the experimental data 
(Figure 5.13B).  



 

 125

 

Figure 5.13 Network without competition  
A. Correlated variability of the suppressed (red) and dominant (blue) population 
in PA as a function of the noise intensities β0´, β´, for a given level of adaptation 
(gAHP = 22 nS) and stimulus strength (λ = 90 Hz) B. Correlated variability of the 
suppressed (red) and dominant (blue) population in PA as a function of the level 
of adaptation gAHP and stimulus strength λ, for a set of noise intensities taken 
from A (β0´ = β´ = 9) C. Correlated variability of the suppressed (magenta) and 
dominant (cyan) population in BFS as a function of the level of noise intensities 
β1, β2, for a given set of stimuli (λ = 90 Hz, λ1 = 49 Hz, λ2 = 90 Hz) D. Correlated 
variability of the suppressed (magenta) and dominant (cyan) population in BFS 
as a function of the stimuli λ1, λ2, for a set of noise intensities taken from C (β1 = 
11, β2 = 90) E. Mean firing rate of the two ensembles in PA and BFS for gAHP = 
22 nS, λ = 90 Hz, β0´ = β´ = 9, λ1 = 49 Hz, λ2 = 90, β1 = 11, and β2 = 90            
G. Correlated variabilities in PA and BFS for same parameters as in E G. BFS 
followed by BR keeping the same parameters as in E. 

Then, for a set of a level of adaptation gAHP and stimulus strength, λ,  from 
this region, and for a given set of λ1, λ2, we simulated BFS and found the 
region in the β1 - β2 space where the simulated correlated variability of 
both ensembles is similar to the experimental ones (Figure 5.13C). 
Finally, for a set of β1, β2 from this region, we find the region in the λ1 - λ2 
space where the simulated correlated variability of both ensembles in BFS 
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is similar to the experimental ones (Figure 5.13D). From this region some 
sets of λ1, λ2 should be excluded because the firing rate of the ensembles 
are not similar to the experimental, when λ1 > λ2 and λ2 < 87 Hz. For a set 
of λ1, λ2 from the final region in the λ1 - λ2 space, we plot the mean firing 
rates in PA and BFS (Figure 5.13E) and the correlated variabilities 
together with the experimental ones (Figure 5.13F). In addition, as 
expected, when we stimulate both pools for longer period of time, no 
alternations are observed, since there is no competition (Figure 5.13G). 

We find that only with competition, i.e. when λ1 = λ2 = λ and β1 = β2 = β´ 
= β0´, the experimental results in BFS are not satisfied (Figure 5.14), 
meaning, that competition is not enough in order to replicate the 
experimental data. Manipulating also the noise intensities, still it is not 
possible to replicate the experimental data.  

 
Figure 5.14 The effect of competition to noise- correlations  
Correlated variability of the dominant population in PA (blue), BFS (cyan) and of 
the suppressed population in PA (red), BFS (magenta) in the case when λ1 = λ2 = 
λ = 90 Hz and β1 = β2 = β´ = β0´ = 9. 

We follow the same procedure employing the network with competition 
(w- ≠ 0, Figure 5.15). For the parameters for which we replicate the 
experimental data, if we stimulated both pools for longer period of time 
we find no alternations, even in the case when there is competition in the 
network (Figure 5.15G), as we found with the biophysically realistic 
spiking network (Figures 5.9A). Therefore our results suggest that 
competition is not resolved in LPFC, rather neurons in LPFC are driven 
by previous procession stages. 
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Figure 5.15 Network with competition 
A. Correlated variability of the suppressed (red) and dominant (blue) population 
in PA as a function of the noise intensities β0´, β´, for a given level of adaptation 
(gAHP = 2 nS) and stimulus strength (λ = 90 Hz) B. Correlated variability of the 
suppressed (red) and dominant (blue) population in PA as a function of the level 
of adaptation gAHP and stimulus strength λ, for a set of noise intensities taken 
from A (β0´ = β´ = 9) C. Correlated variability of the suppressed (magenta) and 
dominant (cyan) population in BFS as a function of the level of noise intensities 
β1, β2, for a given set of stimuli (λ = 90 Hz, λ1 = 60 Hz, λ2 = 90 Hz) D. Correlated 
variability of the suppressed (magenta) and dominant (cyan) population in BFS 
as a function of the stimuli λ1, λ2, for a set of noise intensities taken from C (β1 = 
11, β2 = 40) E. Mean firing rate of the two ensembles in PA and BFS for gAHP = 2 
nS, λ = 90 Hz, β0´ = β´ = 9, λ1 = 60 Hz, λ2 = 90 Hz, β1 = 11, β2 = 40                   
G. Correlated variabilities in PA and BFS for same parameters as in E G. BFS 
followed by BR keeping the same parameters as in E. 

Our study suggests that LPFC is driven by previous processing stages 
because of the stimulus manipulation needed in order to account for the 
experimental results, but also because, as we show, if we stimulate longer 
both pools there are no alternations of their firing rates. This is expected 
for the network without competition but it is not trivial for the network 
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with competition. In Figures 5.15E - 5.15G we present the results of one 
set of λ1, λ2. Nevertheless, higher λ1 lead to alternations (Figure 5.16). We 
calculated the correlated variability of both ensembles, in BFS, for 
different values of λ2, especially near the bifurcation. We find that the 
experimental data are not satisfied in the oscillatory regime.  

 

Figure 5.16 Near the bifurcation  
A. Mean firing rate of the two ensembles for λ1 = 83 and λ2 = 90 Hz. B. Same as 
A for λ1 = 84. C. Same as A for λ1 = 85. D. Same as A for λ1 = 87. E. Same as A 
for λ1 = 96 Hz F. Same as A for λ1 = 97 Hz.  

This result comes from a given set of gAHP, λ, taken from Figure 5.15B. 
Therefore, for the sake of robustness, we calculated the correlated 
variability at the bifurcation points for all sets of gAHP, λ that replicate the 
PA data (Figure 5.17). For these values we then computed the correlated 
variability as a function of β1, β2, and found if and when the model 
replicates the BFS data. There are some cases when the model with 
competition can replicate the experimental trial by trial spike count 
correlations in the oscillatory regime, i.e. right after the bifurcation, 
(circles, Figure 5.17). Nevertheless, the firing rate of the dominant 
population in BFS when the model is in the oscillatory regime, it is not 
similar to PA (Figure 5.17 smaller panels). As λ1 increases the difference 
of the firing rate of the dominant pool in BFS compared to PA is 
increasing. We therefore, conclude that both the spiking and the rate 
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model operate in the non-oscillatory regime, in order to replicate the 
experimental data. 

 

Figure 5.17 Bifurcation points  
Bifurcation points λ1, λ = λ2, gAHP for which the system in BFS followed by long 
stimulation the system transits to oscillatory regime. Orange points correspond to 
gAHP = 18 nS, gray to gAHP = 19 nS, black to gAHP = 20 nS, green to gAHP = 21 nS, 
purple to gAHP =22 nS and yellow to gAHP =23 nS. The λ, gAHP values are taken 
from Figure 5.14B (red and blue regions). Circles correspond to the bifurcation 
points for which the system replicates the experimental data in BFS, varying the 
noise intensities β1, β2. In smaller panels we draw the firing rate of the neuronal 
ensembles in PA (blue, red) and BFS (cyan, magenta) for λ = λ2. Qualitatively 
similar is the behavior for the rest of λ1, λ = λ2, gAHP points. 

5.4 Discussion 

Although single unit recordings indicate that neurons in association 
cortical areas represent explicitly the content of visual consciousness 
(Panagiotaropoulos et al. 2012; Sheinberg & Logothetis 1997), it is 
unknown how features of neuronal ensemble interactions influence the 
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fidelity of these representations. Specifically, the direct relationship 
between correlated neuronal interactions and information encoding 
(Zohary et al. 1994; Abbot & Dayan 1999; Averbeck et al. 2006) makes 
necessary the study of correlations during subjective visual perception. To 
address this issue in the macaque LPFC, we tracked the responses of 
simultaneously recorded neuronal pairs with similar stimulus preference 
during the perceptual dominance or suppression of their preferred visual 
pattern under conditions of visual rivalry. Within this population and 
during subjective visual perception of a preferred stimulus, pair-wise 
noise correlations were found to be close to zero compared to the weak 
but significant correlated variability when the same visual pattern was 
perceived without competition. No differences in correlated variability 
were observed when the preferred stimulus was rendered invisible through 
perceptual suppression compared to its physical absence. Furthermore, 
pair-wise correlations between neurons of opposite preference were not 
modulated by visual competition. These findings provide the first insights 
into the functional interactions of neuronal ensembles mediating visual 
consciousness. 

The experimental results indicate a dramatic alteration in the noise 
correlation structure of prefrontal microcircuits during subjective visual 
perception compared to the structure observed when perception occurred 
without visual competition and therefore without significant subjective 
factor. Specifically, under conditions of stimulus perception without any 
visual competition, noise correlations have a limited-range and stimulus-
dependent structure. In a limited-range structure, neurons that are more 
similarly tuned are also more correlated (regardless of the stimulus used) 
while a stimulus-dependent structure implies stronger correlations for 
similarly tuned neurons when a preferred stimulus is presented. This is 
indeed what it is observed in the LPFC during purely sensory perception 
since noise correlations were stronger for neurons with similar tuning 
when the correlation values for preferred and non-preferred stimuli were 
combined compared to the correlations for pairs of neurons with opposite 
stimulus preference. In addition during PA a stimulus-dependent structure 
was also observed since pairs of neurons with similar stimulus preference 
where more correlated during perception of a preferred stimulus compared 
to the perception of a non-preferred. 
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During BFS, the limited-range and stimulus-dependent structure is not 
observed due to an asymmetric reduction of correlations observed 
specifically during the perceptual dominance of the preferred pattern. As a 
result both the limited-range and stimulus-dependent structure of 
correlations are lost.  

Two recently published studies demonstrated a decrease in correlated 
variability across pairs of simultaneously recorded neurons in macaque 
area V4 as a result of attention (Cohen & Maunsell 2009; Mitchell et al. 

2009). It was further estimated that the beneficial effect of the 
decorrelation on the signal to noise ratio of a pooled response was much 
larger than the respective effect of a concomitant decrease in individual 
variability, as assessed by the Fano factor, or an increase in the population 
mean firing rate. The experimental data demostrate that perceptual 
dominance of a preferred stimulus under conditions of BFS is 
accompanied by a very similar decrease in correlated variability compared 
to purely sensory stimulation. No difference in the mean firing rate or in 
the individual response variability was found when compared BFS to 
sensory stimulation. Therefore an enhanced signal to noise ratio is 
observed only at the population level as a result of decorrelated 
discharges. The striking similarity of decorrelation provides a link 
associating directly the computational processes emerging through 
population coding in visual awareness to those of selective attention. In 
that case, prefrontal microcircuits facilitate subjective visual perception 
most likely by exploiting the same computational strategies employed in 
selective attention in area V4. Active decorrelation of interneuronal 
discharges might thus constitute a broadly used strategy in the cortex that 
effectively gives rise to selection processes by increasing the signal to 
noise ratio and encoding capacity of a given population under conditions 
of visual competition.  

There was no external manipulation ("cueing") of attention in one of the 
two experimental conditions. In both sensory and perceptual trials an 
identical, incoming stimulus is either replacing or perceptually 
suppressing, respectively, the same, disparate, visual pattern. Thus, any 
observed changes in the correlated state of the network should be ascribed 
to the impact of visual competition between disparate patterns on the 
network per se and not to any differences in exogenous attention levels. In 
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support of this argument, these experimental results are not completely 
identical to those reported during attention tasks.  

The perceptually modulated neurons during BR are distributed from V1 to 
PFC, nonetheless where competition is resolved is still unknown. 
Employing two biophysically realistic spiking networks, with and without 
competition, we replicated the experimental correlation coefficients, and 
found that perceptually modulated neurons in LPFC are driven by 
previous processing stages, e.g. IT. Our results exclude LPFC from having 
an active role in the disambiguation of the conflicting percepts in BR. To 
our knowledge, this is the first time that a theoretical study suggests where 
in the cortical pathways mechanisms are resolved. We conclude the same 
by calculating analytically the correlation coefficients using the 
augmented method of moments. 

Furthermore, we found which mechanisms provoke the intriguing 
decrease of the correlated variability of the dominant neurons in BFS 
compared to PHA, as well as the constancy of the correlated variability of 
the suppressed neurons in BFS compared to PHA. More specifically, we 
concluded that the dominant neurons in BFS receive smaller input noise 
from previous stages, compared to the input noise they receive in PHA. 
The steadiness of the correlated variability of the suppressed neurons, on 
the other hand, is due to the smaller input and higher noise input the 
suppressed neurons receive in BFS compared to PHA. Our results provide 
also a prediction about the variability of the incoming input to LPFC 
during BFS compared to PHA. For example, recording simultaneously 
from IT and LPFC during BFS and PHA, we expect that the variability of 
mean firing rates of the dominant neurons in IT is smaller in BFS 
compared to PHA. 

In conclusion, it is the first time that a noise- correlation study has been 
conducted in the context of visual consciousness. We employed a 
biophysically inspired cortical network to understand the underlying 
mechanism of this decorrelation. The main conclusion of our study is that 
neurons in IPFC are driven by preceding processing stages, like IT. Then 
we show that competition is not relevant for the correlation decrease and 
we explain why. Finally we show the mechanism for the correlation 
decrease of the dominant population and the stability of the suppressed 
population. 
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General 
Discussion 
 

 
Three passions, 

 simple but overwhelmingly strong,  

have governed my life; 

 the longing for love,  

the search for knowledge, and  

unbearable pity for the suffering of mankind. 

These passions, like great winds, have blown me hither and thither, in a wayward 

course, over a deep ocean of anguish, reaching to the very verge of despair 

Bertrand Russell 

 

When a subject is dichoptically presented with two conflicting images, 
only one image is perceived at a time while the other is suppressed from 
awareness; a paradigm of multistable perception, known as Binocular 
Rivalry (BR). Perception, therefore, alternates between the two visual 
patterns allowing a dissociation of sensory stimulation from conscious 
visual perception. From theoretical point of view, most of the 
computational models proposed to account for BR are rate- like models. It 
was, nevertheless, apparent the need of employing biophysically plausible 
neuronal network models.  

Competition models based on cross-inhibition and adaptation have shown 
that noise is a crucial force for rivalry, and operates in balance with 
adaptation (Shpiro et al. 2009). In particular, noise- driven transitions and 
adaptation- driven oscillations define two dynamical regimes and the 
system explains the observed alternations in perception when it operates 
near their boundary. In order to gain insights into the microcircuit 
dynamics mediating spontaneous perceptual alternations, we used a 
reduced recurrent attractor- based biophysically realistic spiking network, 
well known for working memory, attention, and decision making, where a 
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spike-frequency adaptation mechanism is implemented (§2.2) to account 
for perceptual bistability. We then derived a consistently reduced four-
variable population rate model using mean- field techniques (§2.3), and 
we tested it on BR data collected from human subjects (Chapter 3). Our 
model accounts for experimental data parameters such as mean time 
dominance, coefficient of variation, and gamma distribution fit. In 
addition, we show that our model operates near the bifurcation that 
separates the noise- driven transitions regime from the adaptation- driven 
oscillations regime, and agrees with Levelt’s second revised and fourth 
propositions. These results demonstrate for the first time that a consistent 
reduction of a biophysically realistic spiking network of leaky integrate- 
and- fire neurons with spike- frequency adaptation could account for BR. 
Moreover, we demonstrate that BR can be explained only through the 
dynamics of competing neuronal pools, without taking into account the 
adaptation of inhibitory interneurons. However, the adaptation of 
interneurons affects the optimal parametric space of the system by 
decreasing the overall adaptation necessary for the bifurcation to occur, 
and introduces oscillations in the spontaneous state. 

Furthermore, we considered recent experimental data from the macaque 
lateral Prefrontal Cortex collected during Binocular Flash Suppression, a 
paradigm of externally induced perceptual alternation. They show a 
decrease in correlated variability across pairs of neurons sharing similar 
stimulus preferences when their preferred stimulus is perceived during 
rivalrous visual stimulation compared to the magnitude of correlation 
when the same stimulus is perceived without competition. We employed a 
biophysically realistic spiking network (§2.2), as well as we extracted 
analytical expression for second-order statistics (§2.4), in order to explain 
these intriguing experimental evidences regarding population coding of 
visual consciousness (Chapter 5). Our results suggest that the source of 
noise- decorrelation during visual consciousness is not due to the 
dynamics of local competition between antagonistic ensembles but rather 
due to stimulus and noise modulations in preceding processing stages. 

Finally, there has been an increased interest on the neural mechanisms 
underlying perceptual decision making. However, the effect of neuronal 
adaptation in this context had not been studied. We, therefore, 
investigated how neural adaptation can bias perceptual decisions. For this 
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purpose, we considered behavioral data of an experiment on high- level 
adaptation- related aftereffects in a perceptual decision task with 
ambiguous stimuli on humans (Chapter 4). To understand the driving 
force behind the perceptual decision process, a biologically inspired 
cortical network model was used (§2.2). Two theoretical scenarios arose 
for explaining the perceptual switch from the category of the adaptor 
stimulus to the opposite, nonadapted one. One is noise- driven transition 
due to the probabilistic spike times of neurons and the other is adaptation-
driven transition due to afterhyperpolarization currents. With increasing 
levels of neural adaptation, the system shifts from a noise- driven to an 
adaptation- driven modus. The behavioral results show that the underlying 
model is not just a bistable model, as usual in the decision- making 
modeling literature, but that neuronal adaptation is high and therefore the 
working point of the model is in the oscillatory regime. Using the same 
model parameters, we studied the effect of neural adaptation in a 
perceptual decision- making task where the same ambiguous stimulus was 
presented with and without a preceding adaptor stimulus. We find that for 
different levels of sensory evidence favoring one of the two interpretations 
of the ambiguous stimulus, higher levels of neural adaptation lead to 
quicker decisions contributing to a speed- accuracy trade- off. 

- Why “fluctuations in perceptual decisions”?  

Perceptual decision making denotes the perceptual choice of a subject due 
to the temporal accumulation of sensory evidence. The most extensively 
studied paradigm is the two- alternative forced- choice experiment. In 
such an experiment a subject is asked to discriminate between two 
alternative sensory visual stimuli, as in the random- dots motion 
discrimination task (Newsome et al. 1989; Britten et al. 1992; Shadlen & 
Newsome 2001; Roitman & Shadlen 2002; Palmer et al. 2005), or 
between two alternative tactile stimuli, as in the vibrotactile frequency 
discrimination task (Romo et al. 2000; Romo & Salinas 2003) (for 
reviews see Opris & Bruce 2005; Gold & Shadlen 2007; Wang 2012).  

Multistable perception has often been compared to cognitive processes 
such as attention and decision making (Leopold & Logothetis 1999, 

Stoner et al. 2005). But it is only recently, that attempts have been made 
in order to study how these phenomena might be related (Braun & Mattia 

2010; Kalisvaart et. al 2011) within a common theoretical framework. As 
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we see in the current thesis, recurrent attractor networks seem to be a 
plausible candidate.  

- But, are there attractors in the brain?  

Up to date, almost all evidences in favor of attractors in the brain come 
from theoretical studies that replicate experimental evidences. While this 
is convincing enough, they become even more convincing when they 
further provide predictions which are later validated by experiments. 
There is a large literature in this direction, mostly from studies related to 
perceptual decision making and working memory. Interestingly, there is 
one purely experimental study that provides indirect evidence of attractor 
dynamics in the brain, specifically in the hippocampal representation of 
the local environment (Wills et al. 2005). But is there a way to 
experimentally test the existence of attractors in multistable perception? 
The approach we follow, suggest that cross-inhibition between neural 
populations each comprised of neurons selective to e.g. one of the images 
in BR, along with a slow fatiguing process, e.g. neural adaptation, explain 
the perceptual alternations, when noise operates in balance with neural 
adaptation. The working point of the model is in the bistability regime, 
very close to the bifurcation that separates it from oscillatory dynamical 
regime. Is there a way to test this experimentally? Our theoretical 
approach suggests that if noise in the brain decreases or if the level of 
neural adaptation decreases, the observer would experience perceptual 
stabilization. While the manipulation of the level of neural adaptation 
could be possible via pharmacological application, naturally a question 
arises: is there a way to manipulate the noise in the brain? Interestingly, it 
has been shown that reversal rates can be slowed down via meditation 
(Carter et al. 2005). Perhaps, speculatively we could assume that 
meditation could result in decreasing the intrinsic noise, and this could be 
an indirect evidence of attractors in the brain. 

- What about attention?  

A common neural mechanism has been suggested to underlie stimulus 
selection processes leading to both subjective visual perception and 
selective attention (James 1890; Posner 1994). The visual system is 
resolving both problems by selecting a unique interpretation of a bistable 
visual pattern or a specific feature of a visual scene to be further processed 
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and reach awareness while suppressing competing stimuli or ignoring 
potential distracters, respectively, in the visual environment. Indeed, 
elegant psychophysics studies have previously shown significant 
interactions between attention and binocular rivalry (Lack 1978; Meng & 

Tong 2004; van Ee et al. 2005; Mitchell et al. 2004; Chong et al. 2005; 
Chong & Blake 2006; Hancock & Andrews 2007). Most interestingly, 
attentional selection of one stimulus was found to bias its predominance 
over the rivaling stimulus during spontaneous binocular rivalry (Mitchell 

et al. 2004). Such a modulatory role of attention in perceptual dominance 
provides direct evidence that at least a part of the neural mechanisms 
mediating selective processes in attention might interact with, or even be 
similar to, the mechanisms mediating visual awareness ( Leopold and 

Logothetis 1999; Sasaki & Gyoba 2002; Ooi et al. 1999, Mitchel et al, 
2004; Stoner et al. 2005).  

- Is adaptation really important? 

In the current thesis we show that an adapting reciprocal inhibtion model, 
with both noise and adaptation operating in balance, can explain the 
behavior in BP (Chapter 3), affirming a previous study (Shpiro et al. 

2009), as well as that neural adaptation is relevant in a category of 
decision- making paradigms (Chapter 4). In addition, it has been 
suggested that noise and adaptation operate in balance in order to account 
cumulative history effects in BP (Pastukhov et al. 2013). Furthermore, it 
has been suggested that adaptation plays crucial role in explaining the 
freeze of perception under intermittent presentation (Noest et al. 2007; 

Brascamp et al. 2008). The effect of cross-inhibition in BR has been 
observed experimentally by showing that gaba shapes the dynamics of 
bistable perception (van Loo et al. 103). However, experiments have 
shown evidences both in favor and against the relevance of neural 
adaptation in BP (Hupé & Rubin 2003; Rubin & Hupé 2005; 
Mamassian & Goutcher 2005; van Ee 2009; Alais 2012), which along 
with theoretical approaches for BP different to the adapting reciprocal 
inhibition model (§2.1) renders the question still open.   

- So, what’s next? 

There is an increasing interest in studying multistable perception when 
multiple sensori stimuli are integrated (see the special issue Schwartz et 
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al. 2012). This means, that while a subject experiences e.g. visual rivalry 
an event of a different modality occurs in the dominance or the suppressed 
perceptual phase. Furthermore, one can experience perceptual alternations 
between more than two interpretations of an ambiguous stimulus (Figure 
1.7). There are not yet many theoretical studies to explain this 
phenomenon (Huguet et al. 2012). It would be interesting to see how e.g. 
cross-inhibition models can account for the increasing experimental 
evidences in this context. In addition, perceptual multistability emerges 
across different modalities: visual, auditory, tactile, olfactory, and verbal 
(Figure 1.7). There is an increasing interest in studying the similarities and 
discrepancies in the temporal dynamics of MP between different 
modalities. It would be interesting to see what happens when two or more 
different rivalry modalities are emerging simultaneously, and how the 
results can be explained theoretically. All these new experimental 
paradigms and evidences challenge theoretical approaches that so far have 
been restricted only to bistable visual rivalry. Of course, here, the need of 
multistage networks, as we discussed previously, is even more apparent.  

Furthermore, when subjects are presented with an ambiguous figure 
intermittently in time their perception freezes in one of its interpretations 
(Figures 1.6) (Orbach et al. 1963a, 1963b, 1966; Leopold et al 2002; 

Maier et al. 2003; for review see Pearson & Brascamp 2008). Following 
the initial studies, more psychophysical experiments (Chen & He 2004; 

Pearson & Clifford 2004; Zheng & Ukai 2006; Noest et al. 2007; 
Brascamp et al. 2008; Klink et al. 2008b; Pastukhov & Braun 2008; 
Brascamp et al. 2009; Klink et al. 2009; Kang & Shevell 2011; 
Manousakis 2012; de Jong et al. 2012; Zheng & Ukai 2013; Murphy et 
al. 2014) have been held in this context, as well as several EEG 
(Kornmeier & Bach 2005; Kornmeier et al. 2007; Sterzer & Rees 2008; 
Britz et al. 2009; Pitts & Britz 2011), fMRI (Wang et al. 2013), and 
electrophysiological studies (Maier et al. 2002; Tsuchiya et al. 2008; 

Tsuchiya et al. 2009; Klink et al. 2012). This intriguing phenomenon 
arises interesting questions from theoretical point of view, and several 
theoretical approaches have been considered (Noest et al. 2007; Wilson 

2007; Brascamp et al. 2008; Klink et al. 2008; Pastukhov & Braun 
2008; Brascamp et al. 2009; Gigante et al. 2009; Klink et al. 2009; 

Manousakis 2009; Manousakis 2012; Noest & van Wezel 2012; 
Woldman 2012). 
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The most extensively studied so far model to account for the perceptual 
repetitions, is Noest’s model (Noest et al. 2007). It is based on cross-
inhibition and slow shunting adaptation with a near-threshold facilitatory 
effect (Noest et al. 2007; Brascamp et al. 2008; Klink et al. 2008; 

Pastukhov & Braun 2008; Brascamp et al. 2009; Noest & van Wezel 
2012). It distinguishes percept-choices at the onset of the presentation 
after the blank period from the percept-switching in continuous 
presentation. Shunting adaptation is the main mechanism that gives rise to 
the perceptual repetitions under intermittent presentation. Nevertheless, let 
us make a hypothetical simple experiment: a subject is presented 
intermittently with an ambiguous figure for some period until a 
continuous presentation starts and lasts for e.g. 5 minutes. The subject, as 
we expect, will experience percept-choices during the intermittent 
presentation, followed by percept-switches during the continuous 
presentation. How Noest’s model would then change in order to account 
for the experimental evidences during continuous presentation? 
Interestingly, this question has not only not been studied yet, but neither 
discussed. In continuous presentation, a two-population model with cross-
inhibition and a slow fatiguing process, e.g. spike-frequency adaptation, 
can account for the experimental evidences near the bifurcation that 
separates bistabilty from oscillatory regime (Shpiro et al. 2009; Chapter 
3). Shouldn’t there be a common theoretical framework that accounts for 
the previously described hypothetical experiment? It has been shown that 
periods of disambiguation between long continuous presentations of 
ambiguous stimuli do not affect the temporal dynamics of MP (Blake et 
al. 1990). We have no reason to expect that periods of intermittent 
presentations between long continuous presentations would alter the 
temporal dynamics of MP, but of course, this is only a speculation, and 
the experiment should be performed in order to test it. In any case, we 
think that a common theoretical framework with adequate, 
neurophysiologically plausible, modulations, if needed, should account for 
the experimental evidences of such an experiment.  In addition, perceptual 
stabilization increases with increasing blank periods and for some subjects 
it can reach up to 10 minutes for long blank periods (Leopold et al. 2002). 
None of the models studied so far have convincingly shown that can 
account for this remarkable phenomenon. Neurophysiological findings 
have shown that differences in firing rate related to the perceptual 
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interpretation (disambiguation) happen faster when a macaque is 
experiencing perceptual stabilization (Tsuchiya et al. 2009; Maier A., 
personal communication). This could be an additional constrain to models 
together with other neurophysiological findings in this context (Maier et 

al. 2002; Tsuchiya et al. 2008; Klink et al. 2012). It would be interesting 
to see whether and how a biophysically plausible network can account for 
this intriguing phenomenon and how it should change in order to account 
for the experimental evidence of the previously described experiment: 
intermittent periods of presentation between long continuous 
presentations.  

Regarding all experimental evindences, from macroscopic to microscopic, 
apparently there is need of a multi- stage neural network. In that, both top-
down and bottom-up interactions should be taken into account (Wang et 
al. 2013). Such a hierarchical network needs to be biophysically realistic 
in order to be as more directly as possible related to microscopic 
evidences. Nevertheless, consistent derivations of rate-based models and 
analytical derivations of second-order statistics would again be necessary 
due to computational expensiveness. In addition, a thorough review of all 
theoretical approaches used, so far, to explain experimental evidences in 
MP is needed. 

Finally, living in a socially interactive environment, our decisions are 
often influenced by the decisions of others, as for instance in the Asch 
conformity experiment. Traditionally, a framework to study social 
decision making is behavioral game theory. 

- Wait, did you just say social decision making? 

Perhaps, in a first glance, this appears irrelevant to the subject of the 
current thesis. Nevertheless, it is closely related to perceptual decision 
making, and as we discussed previously, perceptual decision making is 
not much different to subjective visual perception. Therefore, we could 
consider it as a possible extention of our studies. 

Behavioral game theory is about predicting how agents behave when they 
are engaged in interactive processes (Camerer 2003). At the same time 
neurobiological studies focus on revealing the underlying brain 
mechanisms involved in this context and together with behavioral game 
theory form the rapidly progressing field of neuroeconomics (Glimcher et 
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al. 2008). Depending on the experimental paradigm, competition and 
cooperation mechanisms emerge such as, for instance, in the prisoner’s 
dilemma (Rapoport & Chammah 1965; Axelrod 1984). During this game 
it is supposed that two individuals have been arrested for a crime. They 
are given the possibility to choose between defection (provide testimony 
against the other) or cooperation (keep silent). Each agent receives higher 
payoff when he chooses defection regardless of what the other player 
chooses. This denotes defection as the optimal strategy i.e. the Nash 
equilibrium for this game. Nevertheless, mutual cooperation leads to 
higher payoff for both agents, hence the dilemma. In the one-shot version 
of the game, players most of the times choose mutual defection 
highlighting a behavior which is driven by self-interest. On the contrary, 
when the game is played repeatedly, behavior deviates from the Nash 
equilibrium and mutual cooperation often occurs, corresponding to a more 
altruistic behavior (Lee 2008; Cooper et al. 1996). What are the 
underlying mechanisms of the mutual cooperative behavior observed 
during the iterated version of this game? To this purpose we could 
consider two decision-making networks (Figure A) and apply 
reinforcement learning algorithms. So far, theoretical models of 
reinforcement learning and a biophysically realistic spiking network have 
been studied by testing different strategies adopted by one or both of the 
agents (Soltani et al. 2006). It would be interesting to model both agents 
at the same time and let their behavior arise just from the learning 
dynamics of both of them. Furthermore one could extend the 
reinforcement learning algorithm by considering the hypothetical payoffs 
or fictive rewards (Lee 2008; Abe & Lee 2011). 

In a recent study (Soltani et al. 2006) it has been shown that a biologically 
plausible model of decision making with plastic synapses, following a 
reward- dependent stochastic Hebbian learning rule, can reproduce 
behavioral data from a matching pennies game where monkeys are 
competing against a computer. In addition, the authors show that their 
model constitutes a biophysical implementation of reinforcement learning 
with the value functions of alternative actions and the learning rates 
encoded at the plastic synapses of the input neurons to the network. 
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Figure A. Modeling social decision making 
Two cortical microcircuit networks, for social decision making, each 
corresponding to each agent engaged in a game, e.g. the prisoner’s dilemma. 
Black circles denote neuronal populations selective to defection and gray circles 
denote neuronal populations selective to cooperation. 

For instance, we could initially consider two simple rate models with 
winner-take-all dynamics, where each network corresponds to one of the 
agents (Figure A) and be consisted of two interconnected units supposed 
to represent populations of neurons selective to one of the two choices: 
cooperation (gray circles) or defection (black circles). The inputs to both 
populations are equal and constant and what is altered after each trial is 
the synaptic strength between the input neurons and the network neurons. 
This modulation results in changing the effective input to the populations 
of the agents. Finally we could expand the payoffs to decision makers to 
incorporate agents’ aversion to inequality (Lee 2008; Fehr and Camerer 
2007; Tricomi et al. 2010). The subjective payoff of an agent for a 
specific choice is quantified by its utility function, which is a function of 
his own payoff and of the payoff differences between the two agents. In 
this case an agent suffers from disadvantageous inequalities with a factor 
a (envy), and from advantageous inequalities with a factor b (compassion) 
and the payoffs are modified accordingly. By changing these factors two 
Nash equilibria will emerge: mutual defection and mutual cooperation. 
Interestingly, this could render the model consistent with recent 
experimental evidences that show that mutual cooperation should be a 
possible equilibrium action in order to observe mutual cooperation (Dal 
Bo & Frechette 2011).  

It would be, therefore, interesting to study social decision making by 
modeling at the same time both agents, using a double biophysically 



 

 143

realistic decision making network and applying reinforcement learning 
algorithms to both of them, letting their behavior arise from the learning 
dynamics of both of them. Nowadays there is an increasing interest in the 
field of neuroeconomics and researchers are focused on understanding the 
underlying brain mechanisms governing social interactions. Furthermore, 
new experimental techniques like fMRI and EEG hyperscanning as well 
as multi-dimensional recording have appeared. Neural correlates during 
cooperation and in particular during the prisoner’s dilemma were found in 
ventral striatum (Lee 2008; Fehr & Camerer 2007) as well as in medial 
prefrontal cortex (Babilobi et al. 2007). Neural evidence for inequality-
averse social preferences has been found in ventral striatum and 
ventromedial prefrontal cortex (Tricomi et al. 2010). Activity in striatum 
has been found to be influenced by both real and fictive reward prediction 
errors (Lee 2008) and activity in orbital and dorsolateral prefrontal cortex 
has been found to code actual and hypothetical outcomes (Abe & Lee 
2011). There is rich information and a plethora of ongoing studies and the 
need for theoretical studies in this direction is apparent.  

- So, what do we learn from all these? 

In conclusion, in the current thesis, we show that a biophysically realistic 
attractor-based recurrent network, that was initially employed to account 
for working memory (Brunel & Wang 2001), decision making (Wang 
2002), and attention (Deco & Rolls 2005), can account also for 
adaptation-related aftereffects in perceptual decisions, as well as for 
multistable perception. The ability of a similar theoretical approach to 
produce these different, but related, cognitive phenomena indicates that 
they could have similar underlying neural mechanisms, and a common 
theoretical framework for the brain could probably be possible. 
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List of Abbreviations  
 
 

AHP - after hyper polarization 
AMPA - α amino 3 hydroxy 5 methyl 4 isoazoleproprionic acid 
AR - auditory rivalry 
BFS - binocular flash suppression 
BIF - bifurcation 
BOLD - blood oxygen level dependent 
BR - binocular rivalry 
CV - coefficient of variation 
DBS - deep brain stimulation 
DTI - diffusion tensor imaging 
ECoG - electrocorticography 
EEG - electroencephalography 
EPSC - excitatory post synaptic current 
fMRI - functional magnetic resonance imaging 
GABA - γ aminobutyric acid 
GFS - generalized flash suppression 
icPFC - inferior convexity of prefrontal cortex 
IF - integrate and fire  
IPSC - inhibitory post synaptic current 
IT - inferior temporal cortex 
LFP - local field potential 
LGN - lateral geniculate nucleus 
LIF – leaky integrate and fire 
LPFC - lateral prefrontal cortex 
MEG - magnetoencephalography 
MIB - motion induced blindness 
MP - multistable perception 
MR - monocular rivalry 
MRI - magnetic resonance imaging 
MT - middle temporal 
MTL - medial temporal lobe 
MUA - multi unit activity 
NMDA - N methyl D aspartate acid 
OR - olfactory rivalry 
PA - physical alternation 
PFC - prefrontal cortex 
PET - positron emission tomography 
RS - rotating sphere 
QD - quartet dots 
SD - standard deviation 
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SFM - structure from motion 
STS - superior temporal sulcus 
SUA - single unit activity 
TB - tristable perception 
Td - mean time dominance 
TMS - transcranial magnetic stimulation 
TR - tactile rivalry 
V1 - primary visual cortex 
V4 - intermidiate cortical visual area    
V5 - middle temporal (MT)       
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.. θες ν' αγγίξεις την αλήθεια,  
για βγες απ' όξω απ' τη συνήθεια .. 

Νικόλας Άσιµος 7 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
7 “.. if it’s the truth you want to touch, it’s the habit you’ll have to scratch ..”   
Nikolas Asimos 
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burn. 
fires in your eyes. 
gates of your mind, mirrors of your sight. 


