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Introduction

Understanding the behavior of matter under extreme conditions of density and tem-
perature has been a matter of debate over the last years in order to gain insight into
fundamental aspects of the strong interaction, such as the partial restoration of chiral
symmetry [Bro02, Mos99, Wam02], as well as a variety of astrophysical phenomena, e.g,
the dynamical evolution of supernovas and the composition of neutron stars [Hei00].
The experimental programs at SIS-GSI, SPS-CERN, RHIC-BNL and the forthcom-
ing operation of LHC [Exp00s] are being developed to clarify the present situation,

providing information about the properties of hadrons in hot and dense matter.

A particular effort has been invested in understanding the properties of antikaons
due to the direct implications they have in astrophysical phenomena, especially after
the speculation of the possible existence of an antikaon condensed phase [Kap86]. If

the K~ meson develops sufficient attraction in dense matter it could be energetically



2 Introduction

more favorable, after a certain critical density, to neutralize the positive charge of
protons with antikaons rather than with electrons. Then, a condensed fraction of K~
would appear softening the equation-of-state and producing, among other phenomena,
a substantial reduction of the maximum mass that neutron stars could sustain (see

updated references in Ref. [Ram01b] and [Bro94, Li97]).

The study of exotic atoms such as kaonic atoms, in which an electron is replaced
by a negatively charged antikaon, can also provide complementary information about
the interaction of an antikaon with nuclear matter. There have been some attempts to
extract the antikaon-nucleus potential from best-fit analysis of kaonic-atom data and
some solutions, which use a phenomenological potential that includes an additional non-
linear density dependent term, seem to be in agreement with very strongly attractive
well depths of the order of —200 MeV at normal nuclear matter density [Fri94]. A
hybrid model that combines a relativistic mean-field approach in the nuclear interior
and a phenomenological density dependent potential at the surface that is fitted to
K~ atomic data also favors a strongly attractive K~ potential of depth —180 MeV
[Fri99al. However, self-consistent calculations based on chiral lagrangians [Lut98a,
Lut98b, Ram00, Scha00] or meson-exchange potentials [Tol01a] only predict moderate
attractive depths of —50 to —80 MeV. In addition, studies of kaonic atoms using the
chiral KN amplitudes of Ref. [Ose98] show that it is indeed possible to find a reasonable
reproduction of the data with a relatively shallow antikaon-nucleus potential [Hir00],
albeit adding an additional moderate phenomenological piece [Bac00]. This has been
recently corroborated by a calculation [Cie01], where a good fit to both scattering K~ p
data and kaonic-atom data only required to modify slightly the parameters of the chiral
meson-baryon interaction model of Ref. [Kai95]. With the aim of disentangling between

different optical potentials [Bac00, Fri94, Fri99b, Ram00], some of them fitted to kaonic
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atoms, a recent work [Gar02] has been performed in which the available K ~-nucleus
scattering data for '2C, *°Ca and 2°8Pb is compared to the theoretical predictions
coming from these potentials. The lesson learned from all these works is that kaonic
atom data do not really provide a suitable constraint on the antikaon-nucleus potential

at normal nuclear matter density.

Heavy-ion collisions at energies around 1 — 2 AGeV also offer the possibility of
studying experimentally the properties of a dense and hot nuclear system [Oes02, Sen01,
Stu02]. In particular, a considerable amount of information about strange particles
like antikaons is available. In order to analyze the experimental data, two approaches
are commonly followed, namely, transport models that study the evolution and the
dynamics of the heavy-ion collision or statistical models that, assuming thermal and

chemical equilibrium, account for the particle multiplicities.

Transport models trying to analyze heavy-ion collision data [Bra97, Cas03, Cas97,
Eff99, Fuc01, Har98, Ko87, Sib98, Tei97] need to implement the modified properties of
the hadrons in the medium where they are produced. They have shown, for instance,
that the multiplicity distributions of kaons and antikaons are much better reproduced
if in-medium masses rather than bare ones are used [Cas99, Li98]. Production and
propagation of kaons and antikaons have been investigated with the Kaon Spectrometer
(KaoS) of the SIS heavy-ion synchrotron at GSI (Darmstadt). The experiments have
been performed with Au+Au, Ni+Ni, C+C at energies between 0.6 and 2.0 AGeV
[Ahn97, Bes97, Cro00, Kao90s, Men00, Mis94, Rit95, Shi98, Stu01]. One surprising
observation in C+C and Ni+Ni collisions [Ka0o90s, Men00] is that, as a function of
the energy difference /s — \/s,;,, where /s, is the minimum energy to produce the

particle (2.5 GeV for K via pp — AK"p and 2.9 GeV for K~ via pp — ppK K™),
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the number of K~ balanced the number of KT for equivalent energies in spite of
the fact that in pp collisions the production cross-sections close to threshold are 2-
3 orders of magnitude different. This has been interpreted to be a manifestation of
the enhancement of the K+ mass and the reduction of the K~ one in the nuclear
medium, which in turn influences the corresponding production thresholds [Bra97,
Cas03, Cas97, Cas99, Li97, Li98, Sib98], although a complementary explanation in
terms of in-medium enhanced 7% — K~ p production has also been suggested [Scha00].
Another interesting observation is that at incident energies of 1.8 and 1.93 AGeV,
the K~ and K multiplicities have the same impact parameter dependence [Kao90s,
Men00]. Equal centrality dependence for K+ and K~ and, hence, independence of
centrality for the K~ /K™ ratio is also been observed in Au+Au and Pb+PDb reactions
between 1.5 AGeV and RHIC energies [Ahl90s, Dun00, For02, Har01, Men00, Ogi0O1].
This independence of centrality is astonishing, since at low energies one expects that as
centrality increases —and with it the participating system size and the density proved—
the K~ /K™ ratio should also increase due to the increased reduction of the K~ mass
together with the enhancement of the K™ mass. In fact, the independence of the
K~ /KT ratio on centrality has often been advocated as signaling the lack of in-medium
effects. A recent interesting interpretation of this phenomenon is given in Ref. [Har03],
where it is shown that the K~ are predominantly produced via 7Y collisions (Y = A, X)
and, hence, the K~ multiplicity is strongly correlated with the K+ one, since kaons

and hyperons are mainly produced together via the reaction NN — KY N.

Although transport model calculations show that strangeness equilibration requires
times of the order of 40 — 80 fm/c [Bra00, Koc86], surprisingly thermal or statistical
models, which assume thermal and chemical equilibrium and common freeze-out pa-

rameters for all particles, are quite successful in describing particle yields including
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strange particles [Cle00, Cle98a, Cle98b, Cle99a, Cle99b, Cle99c|. The kaon and an-
tikaon yields in the statistical models are based on free masses and no medium effects
are needed to describe the enhanced in-medium K~ /K™ ratio or its independence with
centrality. The increased value of the K~ /K™ ratio is simply obtained by choosing a
particular set of parameters at freeze-out, the baryonic chemical potential ug =~ 720
MeV and the temperature 7'~ 70 MeV, which also reproduce a variety of particle ra-
tios [Cle00, Cle99c]. On the other hand, centrality independence of the K~ /K™ ratio
is automatically obtained in statistical models within the canonical or grand-canonical
schemes because the terms depending on the system size drop out [Cle00]. However,
including medium effects may lead to more realistic scenarios, as shown by Brown et al.
in Ref. [Bro0Ola, Bro0O1b], where using the reduced in-medium K~ mass in the statistical
model would force, in order to reproduce the experimental value of the K~ /K ratio,
a larger value of the chemical potential and hence a larger and more plausible baryonic
density for strangeness production. In addition, Brown et al. introduce the concept of
“broad-band equilibration” according to which the K~ mesons and the hyperons are
produced in an essentially constant ratio independent of density, hence explaining also

the centrality independence of the K~ /K™ ratio but including medium effects.

All these previous scenarios, namely, neutron stars, kaonic atoms and heavy-ion
collisions, show that the antikaon properties in the medium are, at present, object of
an intense debate. Although it is commonly accepted that the antikaons should feel
an attractive interaction when they are embedded in a nuclear environment, the size

of this attraction is not clearly determined yet.

The effort done to clarify the situation from the theoretical point of view, going

beyond pure phenomenology, have mainly followed two different strategies. One line
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of approach is the mean-field models, built within the framework of chiral Lagrangians
[Lee94, Lee95, Lee96, Li97, Mao99] or based on the relativistic Walecka model which
are extended to incorporate strangeness in the form of hyperons or kaons [Scha97] or by
using explicitly the quark degrees of freedom [Tsu98]. The other type of approach aims
at obtaining the in-medium KN interaction microscopically [Alb76, Koc94, Lut98a,
Ram00, Scha00, Sta87, Tol01la, Waa96a, Waa96b, Waa97] by incorporating the medium
modifications in the KN amplitude, using chiral-based KNV interaction models [Gar03,
Kai95, Kai97, Koc94, O1101, Ose98] or meson-exchange potentials [Mul90]. In fact, the
dynamics of the KN interaction is particularly rich due to the presence of an isospin
zero resonance, the A(1405), which lies only 27 MeV below the KN threshold. This
resonance is generated dynamically from a 7T-matrix scattering equation in coupled
channels using a suitable meson-baryon potential. The coupling between the KN and
7Y (Y = A, Y) channels is essential to get the right dynamical behavior in free space.
As a result of the existence of this resonance, the isospin averaged KN scattering
amplitude is in fact repulsive. It was soon pointed out, however, that in the medium
the Pauli blocking on nucleon states moves the resonance to higher energies and the
in-medium amplitude becomes attractive [Koc94, Waa96a, Waa96b, Waa97|. This
particular (resonant-like) energy dependence of the KN interaction at subthreshold
energies requires an especially careful treatment of all in-medium effects. In fact, when
the attraction felt by the antikaon is self-consistently incorporated in the calculation
[Lut98a, Lut98b, Ram00, Scha00] it compensates partly the effects induced by Pauli
blocking and the A resonance gets broader and moves back to lower energies, around
its free space location. Moreover, since an extremely important ingredient to generate
the A resonance is the coupling of the KN system to the 7% one, the modification of

the pion properties has also shown to be relevant Ref. [Ram00]|, with the result that
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the resonance width increases further more and the peak shifts upwards to an energy
slightly above the free space one. Nevertheless, most works until now have ignored
this contribution [Lut98a, Scha00, Tol0la, Cie01]. On the other hand, since antikaons
are produced at finite density and finite momentum in heavy-ion collisions, the chiral
models have recently incorporated the partial waves beyond the L = 0 component of the
antikaon-nucleon scattering amplitude both in free space[Car00, Jid02, Lut02a] and in
the nuclear medium [Kol02, Lut02b]. The complete scenario taking into account finite
density, finite momentum and finite temperature has been addressed in Refs. [Scha00,

Tol02].

The purpose of this thesis is to present a proper self-consistent calculation of the
antikaon properties in dense and hot matter in order to explore the typical conditions
found in heavy-ion collisions at GSI, studying the posssible implications that the in-
clusion of the in-medium effects at finite temperature on the antikaon optical potential

would have on the K~ /K™ ratio. The outlook of this thesis is the following:

Chapter 1 presents the scattering theory for the KN system. The coupled-channel
Bethe-Salpeter equation is solved taking, as a bare meson-baryon interaction, the
meson-exchange potential of the Jiilich group [Mul90]. The predictions for some KN
scattering observables, such as the K ~p cross sections, the s-wave scattering amplitudes

and several branching ratios at KN threshold are also given.

With regard to the in-medium properties of the K meson in symmetric nuclear
matter, the Brueckner-Hartree-Fock approximation for the in-medium KN interaction
or G-matrix is presented in Chapter 2. Two self-consistent schemes are discussed and
the momentum dependence of the K optical potential together with the effect of higher

partial waves of the KN interaction, beyond the L = 0 component, are also carefully
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considered due to the fact that antikaons are produced at finite momentum in heavy-ion

collisions.

Since heavy-ion collisions produce not only dense but also hot matter, the antikaon
optical potential at finite temperature is studied in Chapter 3. The aim is to inves-
tigate the influence of temperature on the behavior of the antikaon potential for the

experimental conditions at GSI.

Finally, Chapter 4 considers the K~ /K™ ratio in the framework of thermal models
including the in-medium properties at finite temperature of the hadrons involved and
paying particular attention to the antikaons. Different approaches for the K~ self-
energy are taken into account so as to analyze the effects on the determination of this

ratio.

The main conclusions of this work are summarized and exposed at the end of the

manuscript.



Chapter 1

Scattering observables of the

K N interaction

This chapter is devoted to present the scattering theory for the KN system. Section
1.1 reviews the meson-baryon interaction introducing the Bethe-Salpeter equation and
some observables obtained from meson-baryon scattering. In Section 1.2, the KN
interaction is presented. The previous knowledge of the Bethe-Salpeter equation and
its three dimensional reduction, the Lippman-Schwinger equation, is applied for the
Jiilich K N meson-exchange potential in coupled channels [Mul90]. Finally, in the last
section, the results obtained within this framework for the A(1405) resonance, the K~ p
elastic and inelastic cross sections, the s-wave scattering amplitudes and some threshold

ratios are shown.



10 Scattering observables of the KN interaction

1.1 The meson-baryon interaction

Quantum Chromodynamics (QCD) is the fundamental theory of strong interactions.
Therefore, the hadron-hadron interaction (V}4) is in principle completely determined by
the underlying quark-gluon dynamics. However, due to our present lack of knowledge
about how to treat the non-perturbative character of QCD in the low energy regime
and, especially, because of the problem of the confinement mechanism, we are far away

from a quantitative understanding of the hadron-hadron force from this perspective.

In order to overcome this problem, phenomenological approaches to Vy, are used,
in which the experimental data are fitted. From a theoretical point of view, the in-
tractability of low energy QCD is usually circumvented by introducing ‘QCD inspired
models’, in which the relevant degrees of freedom are hadrons. One of these models is
the effective chiral lagrangian formalism , which has proved to be successful in explain-
ing the properties of the meson-meson interaction at low energies [Gas85, Mei93, Pic95],
being also an excellent tool to study low energy properties of the meson-baryon interac-
tion when the interaction is weak [Ber95, Eck95]. In this case, an expansion in powers
of the typical momenta involved in the process is fully justified. A more sophisticated
chiral scheme arises when resonances show up. For this problem, one needs a non-
perturbative chiral scheme (see, for instance, [Gar03, Kai95, Oll101, Ose98] for KN

scattering).

Another approach to the hadron-hadron interaction is the meson-exchange models
(see, for example, Refs. [Nag73, Mac87] for nucleon-nucleon interaction). There is a
solid theoretical background and a strong phenomenological evidence for this meson pic-

ture of the nuclear force. The overwhelming part of the strong force can be constructed
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in terms of meson-meson-meson and baryon-meson-baryon vertices, which represent a
natural and effective description of complicated multi-quark reactions. Hadron masses,
coupling constants and vertex-form factors are then left to be ultimately explained by

QCD. This last scheme will be the one followed in our study of the KN interaction.

1.1.1 The meson-baryon Bethe-Salpeter equation

In order to obtain the meson-baryon amplitude, the Bethe-Salpeter equation is used
as the starting-point. The covariant Bethe-Salpeter equation in momentum space,
supressing spin and isospin labels for simplicity, takes the following form (see, for

example, Ref. [Itz80]):

T, (ks ks P) =Vij(ki,kj;P)-i-iZ/%Vu(ki,kl;P) Di(ki, P) Dk, PYTr; (ks ks P)
l (1.1)

where k;, k; are the initial and final relative four-momenta, respectively, and k; the

intermediate meson four-momentum whereas P is the total four-momentum of the

system. The relativistic baryon (meson) propagator D g (ki, P) reads

1 1

Dg(k;, P) = Dy, (ky, P) = —5—5——
sk, F) (P— k) — My + i€’ ki, P) k} —m? + ie

, (1.2)

with M; and m; being, respectively, the masses of the baryon and the meson in the
intermediate channel [. The invariant amplitude for the two-particle scattering process
is represented by 7T, commonly called T-matrix, and V is the meson-baryon potential
that, in a meson-exchange framework or using chiral effective lagrangians, results from

the sum of all two-particle irreducible diagrams. Usually one works in the center-of-
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mass frame with P = (/s,0) where k; transforms into the relative four-momentum.

This four-dimensional integral equation turns out to be tedious to solve. Then,
it is usually replaced by three-dimensional reductions, more practical for numerical
purposes. Moreover, one more simplification will be used: only the positive energy
component of the baryon propagator is kept, because we are only concerned with the

positive solutions to the energy. Explicitly

1 M Uty

(P—H) — M +ic - Ez(la) N —El(/;l)-i-k , (1.3)

where M and E;(k;) are the mass and energy of the baryon, respectively, and u; is
a Dirac spinor. It is convenient to split the meson propagator into the particle and

antiparticle contributions

1 1 1 N 1 (1.4)
ki —m? +ie 2k} \ kO — wy(ky) +ie kO +wi(ky) —ie) '

where m and wl(lgl) are the mass and energy of the meson, respectively. Introducing

Eq. (1.3) and Eq. (1.4) in Eq. (1.1), and defining

T = 4 Tiju; , (1.5)

one obtains the Lippman-Schwinger equation (LS) by integrating out the time compo-

nent & (see Ref. [Lee98])

+zl:/(d k, Mi L Valki, ki;+/5) le(klal;?j;\/'g) _ (1.6)
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In this last expression we have used k? = m? to eliminate the dependence on the time

component of the four-momenta.

1 [ M 1~ [ M 1
T = \/ E,(F) \/ 2%-(/51-)%\/ 5,5 \/ sk .

we are able to absorbe the energy/mass factors within the T-matrix. Therefore, the

Defining

LS equation reads

>z 7 _' i k’uka TE,E?
Ty (e, B33 /3) = Vig (s By +Z/d3 Valk ki v5) Tyl ks v5) g
\/_ — El(kl) — wl(kl) + i€

This is the expression of the LS equation that is used for the KN system when using the

Jiilich K N meson-exchange potential [Mul90], in which the definition of V;;(k;, Ej; NGO

consistently contains these energy/mass factors.

The relation between the experimental measurements (cross sections and scattering
amplitudes) and the meson-baryon T-matrix obtained from the solution of the LS
equation will be established in the next section. However, we are showing first how to

solve the LS in the partial wave basis.

1.1.1.1 Partial wave decomposition

In order to solve the Bethe-Salpeter equation or its three-dimensional reduction, the
Lippman-Schwinger equation, for a two particle system, one usually works in the partial
wave basis. The physical basis |(Plpz)E1E2$1820102t1t27’17’2>, where P, /;, s, 0, t, T

indicate the type of particle, the three-momentum vector, the spin, the third component
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of spin, the isospin and its third component, respectively, has to be rewritten in terms of
its partial wave decomposition |(PyPs) PkLSJMIM;), i.e, in terms of the total centre-
of-mass momentum 13, the modulus of the relative momentum £k, the total orbital
angular momentum L, the total spin S, the total angular momentum .J, the third
component M of the angular momentum, the total isospin I and the third compoment

of isospin M;. Therefore, all the terms in the Lippman-Schwinger equation
1
T:V—l—VET, (1.9)

have to be expressed in this new basis. We will restrict ourselves to the meson-baryon

case in which P; is a meson (M) and P, turns out to be a baryon (B).

The meson-baryon potential V' in the meson-exchange framework is commonly given
in the partial wave basis due to the invariance properties of the interaction. In fact,
this is one of the reasons to solve the Lippman-Schwinger equation in the partial wave
basis. Translational and rotational invariance together with the isospin symmetry
characteristic of the strong interaction allow one to write

(MyB,)P'K'L'S'J' M'I' M|V |(My By) PELSTMIM;p) = 655,675 6asnsr X

8110y ((M1By) PK'L'S' IMIM; |V |(M2Be) PkLSTMIM;) . (1.10)

The possible difficulties come of expressing the propagator 1/FE in partial wave de-
composition, especially when the medium effects are included. In this subsection we
present the explicit derivation of the transformation from the physical basis to the
partial wave basis. The necessary changes or approximations required for the inclusion

of the medium effects will be described in the next chapter.
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The propagator for a meson-baryon interaction is diagonal in the physical basis and

can be written as

— — - = 1 - —
DMB(kl,kg) = <(MB)k1k281820'10'2t1t27'17'2| E |(MB)k1k281820'10'2t1t27'17'2> s
1

Dup(ki, k2) =
Q— /B2 +m2 — [+ m3 + e

: (1.11)

where Q is the starting energy with /s = v Q2 — P2 For the scattering process in

the center-of-mass frame, 2 is equal to /s.

In order to express the propagator in the partial wave basis, the transformation

between bases is used. First, we decouple the spin and isospin via

‘SMS> Z (81820'10'2‘SMS) |O'10'2>

g102

|\IM) = Z (titomime|IMy) |Ti72) - (1.12)

T1T2

Afterwards, l;l = EM and EQ = EB are expressed in terms of the center of mass mo-

mentum P and the relative one k

muy +mp
- - 6 — - — 1 —
kg =—k+ ——P, =k+——P, 1.13
B 1+¢ M 1+ (1.13)

with £ = mp/mys and one makes use of

(kLM = / dk Yy, (k) |K) (1.14)
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where the unit vector & is defined as k = k/|k|.

Finally we decouple the total angular momentum J

ILSTM) = > (LM,SMg|JM) |LM.SMs) .

My Mg

The coupled basis is then expressed in terms of the physical basis as

(MB)PELSIMIM) = Y / dk Yiar, (k) (818201055 My)

M1, Mg

X(tltleTQ|IM])(LMLSM5|JM) |(MB)ﬁE81820102t1t2T172> y
or inversely

‘(MB)PkSlng'letthTng Z YLML 81820’10’2|SM5')

LMpSMg
JMIM;

X(t1t2T1T2|IM[)(LMLSM5|JM) |(MB)P7€LSJM]M[> y
where the inverse relations have been used

|O'10'2> = Z (81820'10'2|SM5) |SM5> y

TiT2) = Z (tatamime|IMy) |IMy) ,
IM;
‘k> - Z YEML |kLML>:
LMy

ILMSMg) = Y (LMpSMs|JM) [LSJM) .
JM

(1.15)

(1.16)

(1.17)

(1.18)
(1.19)

(1.20)
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Using Eq.(1.11) and (1.16), we can write the propagator in partial wave basis as

((MB)PEL'S'J' M'I' M} % |(MB)PKLSJMIM;) =

Z (81820'10'2‘SMS)(81820’10’2|SIMé-)(t1t2T1T2|IMI) (tthTlTQ‘I’MII-)

1027172

Mg Mg MM},

x (LSM;p Mg|JM)(L'S' M. M| J'M') / dk Y0 (k) Darp(k, &, P) Yiar, (K).21)

In this equation, the diagonal property of the propagator in the physical basis has been

employed.

Restricting ourselves to the Lippman-Schwinger equation, without including any
medium effects, it is easily seen that the propagator is independent of spin and isospin.

Therefore, using the orthogonality property

Z (j1j2m1m2|jm) (j1j2m1m2\j'm') = 5jj'5mm' ) (1-22)

mi1ma2

for spin and isospin, the sum over oy, 09 and 7, 75 can be performed obtaining

((MB)PkEL'SJ' M'IM;| % |(MB)PELSJMIM;) =

> (LSMpMs|TM)(L'SMyMs|.J'M') / dk Y7ipp, (k) Dagp(k, &, P) Yiar, (k)1.23)

MsMp M},

Up to here the formalism has been written in a way that will be convenient for
introducing the medium effects in the next chapter. In free space, the invariance of
the amplitude allows one to perform the calculation in the center-of-mass frame where
the propagator Dy;p does not depend on the angle and, hence, the integral of the

solid angle in Eq. (1.23) can be calculated straightforwardly. The integral over ¢ of
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the spherical harmonics gives a 0y, factor, allowing to sum over M and, hence,
M = M'= My + Mg. On the other hand, §;;, appears if we perform the integral over
the angle 6. Then, the ) msar,, Can be done using again the orthogonality property of
Eq. (1.22), finally observing that the propagator is diagonal in both basis. Therefore,

the Lippman-Schwinger equation in the partial wave basis can be written as

((MyBy)PE'L'S' JMIM;|T|(MyBy) PkLSJTMIM;) =
((MyBy)PK'L'S' JMIM;|V|(MyBy)PkLSJMIM;) +

> / dk" k" (MyB,)PK'L'S' JMIM,; |V |(M3Bs) Pk" L"S" JMI1M;)
M3Bs3 L' S"
1

X = =
Q — Ep,(k", P) — wn (K", P) + i€
x ((M3Bs) PE"L"S" JMI1M;|T|(MyBy) PkLSJMIM;) . (1.24)

where in this case P is taken to zero.

1.1.2 The S-matrix: cross section and s-wave scattering am-

plitudes

In this section the S-matriz (or collision operator) is studied. It contains the complete
information about all collision processes, relating the dynamical content of the Bethe-

Salpeter equation with the measurable parameters, like the experimental cross sections.

In a collision process (see Ref. [Man84, 1tz80]), we define a state vector |®(—o0)) =
i) as an initial state, long before the scattering occurs (t; = —o0). It specifies a definite
number of particles with definite properties and far apart from each other so that they

don’t interact. In the scattering process, the particles will come close together, collide
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and fly apart again. Then, at ¢ = oo, long after the scattering is over and all particles
are far apart again, we can define |®(c0)) into which the initial state evolves. The

S-matrix relates |®(—o0)) with |®(c0)) and is defined by
|[®(00)) = 5|@(—00)) = Sli) . (1.25)

A collision can lead to many different final states |f), and all these possibilities are
contained within |®(00)). The transition probability that after the collision the system
is the state |f) is given by

[{fl@(c0))]* (1.26)

and the corresponding amplitude is
(fl@(00)) = (fISli) = Sif , (1.27)
where S;; is a unitary matrix which can be defined as [Itz80]
Sir = 6ir — i(2m)* 6N (P, — Pp) Ty , (1.28)

where 7, f denote the initial and final state, P is the total four-momentum of the system,

and T, is the scattering T-amplitude that contains the information on the interactions.

This amplitude (7;;) and the invariant amplitude defined by the Bethe-Salpeter equa-
tion and calculated in the three-dimensional approach or Lippman-Schwinger equation

(T;y) are related as follows

R N TS

fermions bosons
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where the normalization factors coming from the fermion/boson fields are factorized
out, being m and E the mass/energy of the baryons and w the energy of mesons, re-
spectively, while V' is the volume of the system. Following Ref. [Man84], the probability

for the transition over the whole space-time will be

S = Corr - r? TT () T () P 130)

fermions bosons

To derive the cross section, it is useful to take the time (¢) and volume (V') finite. In

this case
Vit

(2m)*

and, therefore, the transition probability per unit time w; is

6Py — P))? = 6Y(P; — P) (1.31)

o= B2 _vensom-r) T () T1 (o) Bk 03

fermions bosons

Eq. (1.32) is the transition rate to a definite final state. To obtain transitions to a
specific group of final states with momenta between Ef and k I +dlgf, we must multiply

w; by the number of the states in this interval

Vd3k
11 . (1.33)
(2m)?
f
The differential cross section is defined as the transition rate into this group of final
states for one scattering centre and unit incident flux. The volume V that we are
considering contains one scattering centre, and the incident flux is v,e/V, where v,

is the relative velocity of the colliding particles. Therefore, the differential decay rate
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for two-particle scattering becomes

~ V Vdk; 4 1 1 Bk~
do;f = wp— om)tot — P)— 2M, ———|T;¢|*,
7if wtvrel 1;[ (271')3 ( Tr) ( )Urel 2e12¢9 ];[( l) 1;[ ( ) f| f‘
(1.34)
being €; and €5 the energies of the initial colliding particles. The product over M stays

for the fermions in the initial/final state and e is the energy of the final states.

In many experiments, the colliding particles are unpolarized and the polarizations
of the final-state particles are not detected. Therefore, we will sum over all final states

compatible with the initial conditions and average over the initial states

dO'if = iz d&zf
i f

= 1
zi: T (25 + 1) (28, + 1) (1.35)

with s1, so being the spin of the initial particles.

Considering now the case of two colliding particles (1,2) going to a two-particle

final state (3,4), and working in the center-of-mass frame, the relative velocity is v =
PYe

8182
It can also be shown that [Mui65]

with /s = &1 + &3, and k the modulus of the momentum of the initial particles.

!

k
Z d3p3 d3p4 5(4) P Pf Zng €3 &4 7 s (136)

where the sum « is over the remaining final states, &’ is the modulus of the momentum
of the final two particles in the center-of-mass frame and d$2 = d)3 = m — df)4 is the

solid angle. Using all these ingredients, the final expression for the differential cross
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section in the case of meson-baryon scattering is

dO'Z'f 1 1M M; k' & =~ 9

or, using Eq.(1.7), it can be rewritten as

dO’i E1w2E3w4 k' —
oy = @) TR S Y O T (1.38)

which will be the expression used in the next section for the KN interaction. Then,

the total cross section in the center-of-mass frame is given by

do;
aifz/dQ ;Qf. (1.39)

In Eq. (1.38), the T-matrix elements are expressed in the physical basis. Having
obtained previously the T-matrix elements in the coupled basis as shown in Eq. (1.24),
Eq. (1.17) should be used to express the physical basis in terms of coupled one. Re-
stricting ourselves to the case of a meson of spin zero and a baryon of spin 1/2, one

can write

(ﬁE’s’ =10t tyr | T |13ES =1lotitymim) = Z Z YL/MIL(I;\') YL*ML(E)
JLL'T MMM},
x (L tym I (1] +75)) (tyte T 7| (71 + 72)) (L' M} %o'|JM) (L My, %U‘JM)

X (PKL'YIMI(r,+7)| T |PkLYIMI (1 +7)), (1.40)

where the initial and final states have § =S’ = ¢’ = s =1/2, with third components

Mg(M%) = o(o') and where the third component of isospin is My = 7{ + 7, = 7, + To.
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Taking k along z-axis

. o~ [2L+1
Y, (k) = gy Onmy 0 (1.41)

it implies that M = o and M, = o — ¢o'. Therefore, the expression reduces to

. L 2L+ 1 _
(PR = Lo tityrl | T |PRs=lotityrim) =3 4/ 4: Yi oo (F7)
JLI

X (tyty T ol (11 +73)) (titemi /I (11 + 7)) (Lo — a'%0'|Ja) (L0%0|Ja)

X(PKLLJoI(rl+m)|T|PkLLJoI(n+m)), (1.42)

with L = L' since the two angular momentum values compatible with a given J,

L = J £+ 1/2, cannot be connected by the interaction due to parity conservation.

To facilitate the comparison with the physical observables, it is convenient to in-
troduce the partial wave scattering amplitudes and relate them to the 7T-matrix just

derived.

Let us first start with the scattering of one particle in the presence of a non-
relativistic potential to introduce the concept of scattering amplitude and generalize it
afterwards for the relativistic scattering of two particles, which is the problem we are

interested in.

Note that only for spinless particles and in the non-relativistic case, this problem

reduces to the simple one of potential scattering. Following Ref. [Joa75], the stationary

scattering wave function, \Ilg) (7), of a non-relativistic spinless particle of mass m

scattered by a potential V' (r) can be obtained by solving the corresponding Schrédinger

1

equation. Assuming that the potential tends to zero faster than r~—" as r — oo, the
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Figure 1.1: Illustration of the coordinates used in the test. Taken from Ref. [Joa75].

solution satisfies the asymptotic boundary condition

v(7), 5 A (exp(iEF) + f(k, 0, ¢) (1.43)

exp(ikr)
" .
This solution is a superposition of a plane wave of wave vector k and an outgoing
spherical wave with an amplitude depending on € and ¢ and inversely proportional to

r. The meaning of this amplitude will come clear in the following.

Let us again calculate the differential cross section do;f/d2. Defined as the number
of particles emitted per unit time and unit incident flux within the solid angle df) in
the direction €2(6, ¢) [see Fig. 1.1], it is equal to the outgoing flux of particles scattered
through the spherical surface 72 d§2 (for r — oc), divided by the incident flux. It can

be seen that [Joa75]

do; j
i1 40 = Y91l,2 40— £(k,0, )22 | (1.44)
df} 1Jil
where the incident and outgoing fluxes are calculated according to j ~ Re{U* (7 )/ ¥ (7)},
using first and second terms of Eq. (1.43), respectively. Therefore, the f(k, 6, ¢) ampli-

tude is called scattering amplitude. This relation between the asymptotic behaviour of
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the wave function ‘Ilg) (7") and the differential cross section is of fundamental impor-
tance since it links our theoretical knowledge, contained in ‘Ilgr) (7), to the experimental

quantity do, s /dS2.

Using the asymptotic form of the scattering wave function \Ilf;) (7), introduced
previously, and matching coefficients with its partial wave representation (following

Ref. [JoaT75]), we obtain the scattering amplitude as

o0

f(k,0) = %Z (20 + 1) exp(i6;(k))sin(&(k)) Py(cosh) , (1.45)

=0

where the dependence on ¢ has disappeared, and the Legendre polynomials and the
phase shift §;(k) concept have been introduced. The phase shift 6;(k) displays the

influence of the interaction. We may also write Eq. (1.45) in the form

f(k,0) = i (20 + 1) ay(k) Pi(cost) = 4 i Z ai(k) Vi (K (B) ,  (1.46)
=0 =0 m=—1

where for the last equality we have used the addition theorem of the spherical harmonics

+
Py(cosh) = Z m(EVYE(K)  cosO=F-K . (1.47)

Then, the partial wave scattering amplitudes a; are such that

aulk) = %exp(iél(k)) sin(6,(k)) - (1.48)

Thus the knowledge of the phase shifts enables one to obtain the scattering amplitude.

In analogy with this simple case of potential scattering, it is convenient to intro-
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duce the scattering amplitude f;; for the non-relavistic or relativistic scattering of two

particles according to

dO'Z' ]{3’

where k and k' were defined previously as the modulus of the momentum of the initial
and final state, respectively, in the center-of-mass frame. As a consequence, from

Eq. (1.38) we can relate the scattering amplitude f;r with the two-body 7-matrix as

BBy \? .,
i = an (BB gy e, (1.50)

being ¢ an arbitrary phase. The choice ¢ = 7 is generally adopted, hence f;; oc —T;;.

In order to introduce the partial wave scattering amplitudes a;, we should decom-
pose Tj; in partial waves and, for simplicity, we explicitly treat the case of central
interactions. Before performing the decomposition, we can still make one more simpli-
fication because we are only concerned with a; coming from the elastic scattering of a

meson and a baryon, so Eq. (1.50) reduces to

s B w

fiy = —(2m) s Ty, (1.51)

with E and w being the energy of the baryon and meson, respectively.

The elastic T-matrix element 7; f(k,E & ) (omitting spin and isospin indices for

simplicity) can be written in partial waves as

Tk k%) =D > Tik)Yim (k") Yira () (1.52)
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and, therefore, a; as
yEwly
Vs 4m’

a; = —(2m) (1.53)

according to Egs. (1.46), (1.51) and (1.52).

This result is easily generalized to the case of non-central forces which mix states
of different orbital angular momentum, while the total angular momentum J is a
conserved quantity. In this case, one works in the |LSJM) basis and performs the
partial wave expansion through the generalized spherical harmonics to get

EwT/
ais = _(QW)Z%LIL; .

(1.54)

The method of partial waves is most useful when only a small number of partial
waves contribute to the scattering, situation that arises out at low incident energies if
we are not taken into account the possibility of resonance phenomena. Therefore, for
the low energy case, only the L = 0 component survives and the previous relation of

Eq. (1.53) is usually studied for the s-wave case, i.e,

E wT;_wave
As—wave = _(27‘—)2% A >

(1.55)

and, up to a sign convention, this quantity is usually referred to as scattering length .

1.2 The KN interaction

The study of the meson-baryon amplitude for the KN system presented in this section

starts from the introduction of the main features of the Jiilich KN potential in the



28 Scattering observables of the KN interaction

meson-exchange framework [Mul90]. Afterwards, the KN Lippman-Schwinger equa-

tion will be solved numerically paying attention to its coupled channel structure.

1.2.1 The Jiilich KN meson-exchange potential

A succesful interpretation of the experimental data and the reliability of predictions
in kaon physics requires the precise knowledge of the interaction mechanism of an-
tikaons with nuclei. Since each theoretical model for the antikaon-nucleus interaction
starts from the free antikaon-nucleon interaction adding, in a second step, medium

corrections, a precise knowledge of the interaction in free space is absolutely essential.

Existing work on the KN system have constructed potentials with a certain number
of free parameters determined by a fit to empirical data (see Ref. [Hen80, Brw84, Sch87,
Sie88]) or parametrized the T-matrix directly (see Ref. [Kim65, Mar76, Mar81, Mar69,
Dal82]). However, the poor quality of the existing KN data make very difficult a
reliable interpretation of such data. More and better data would be extremely helpful,
but instead of concentrating on the KN system only, a promising and theoretically
appealing alternative would be to describe many different hadronic reactions using
the same underlying picture and using the same calculational scheme as consistently
as possible. This is the program pursued by the Jiilich group. The idea is to start
from the Bonn meson exchange NN interaction and apply the same scheme to other

hadronic processes, like the KN interaction

The Bonn group [Mac87, Mac89] constructed a meson-exchange model of the NN
interaction based on suitable meson-nucleon-nucleon and meson-nucleon-delta vertices.

In addition to the one-boson exchange (OBE), it contains explicit 27-exchange contri-
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butions to be consistent with results from dispersion theory and 7p-exchange diagrams

to fit the NN data. In such a way, the fictitious o-exchange is avoided.

The same philosophy is applied to the KN Jiilich potential, starting from the
same framework, meson-exchange, and using, as closely as possible, the same methods
applied in the construction of the Bonn potential for NN. Furthermore, consistency
with the KN system, previously obtained in Ref. [But90], is required, due to G-parity.
Therefore, a field-theoretical interaction hamiltonian is constructed containing, apart
from meson-nucleon-nucleon and meson-delta-nucleon couplings, additional K K-meson
and K K*-meson vertices. Therefore, the lagrangians that appear for the K N meson-
exchange potential have the following structure. Let B, D denote the octet (J* = 1/27)
and the decuplet (J¥ = 3/27) baryons, respectively, and S, P, V be scalar, pseudoscalar

and vector mesons, respectively. Then, the lagrangians involving baryons read

Lsps = gpas &BwB bs

Lpppr = JBBP 77537:'75¢B ¢P ,

LBDP - g;}/ﬂ (de,uwB + /l;Bpr.) auqsp ;

Loy = T2 i, b — Bs7 utbn) (946, — 06%)
BV = " Y Yu¥eB BY Tu¥b. v v) o

v
fBBV

Adm,

Lspvy = gnav QEB’YNwB </5’$ + (lZ}Bo-[uJ{l/]B (auqﬁlxjf - al/¢l‘ﬁ) )

(1.56)

while those involving only mesons are given by

Lops = GrpsMp Op Op Ps ,

Lepy = gppv O au Op ¢Ié )
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Lyyp = g;;LVP [ Euvrd o ¢I\j/ o QS?/ Op - (1-57)

14

Furthermore, the KN interaction, in consistency with the KN one, takes into
account the effect of further channels (NK*, AK*, AK) by adding corresponding
fourth-order terms to the KN — KN part of the potential. The difference between
the interaction of kaons and antikaons with the nucleons comes from the coupled-
channel structure of the KN system. Already at the KN threshold, we have a system
of three coupled channels: KN, 7A and 7X. This coupled-channel potential introduces
additional degrees of freedom without any constraints from G-parity. Their respective
parameters, unless fixed by previous studies, have to be adjusted in the fitting proce-
dure. The diagrams present in the Jiilich K N meson-exchange potential are shown in

Fig. 1.2.

The form factors that describe the extended hadron structure are suitably parametrized
for baryon-meson-baryon vertices [Mac87, Mac89)]

. A2 —m2\"™
F,(3.%) = (W) , (1.58)

where A,, ¢, and m, are the cutoff, momentum and mass in the vertex, respectively,

and n, =1 for NN and NA vertices while n, = 2 for the NAp one.

The additional form factors which appear at the meson-meson-meson vertices are
also parametrized according to the same vertex structure (see Ref. [But90, Mul90]).
The only exception constitutes the pole contributions where a baryon is exchanged. In

order to avoid problems of convergence and singularities, a slightly different prescription
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Figure 1.2: All contributions to the potential. Taken from Ref. [Mul90].

is taken (see Ref. [Mul90])
A%+ m;
Fy(@?) = L ——T 1.59

Finally, corrections due to the Coulomb interaction are also considered.

1.2.2 The coupled KN Lippman-Schwinger equation

In this section we outline how the KN Lippman-Schwinger equation is solved numeri-

cally in a coupled channel framework, paying attention to the partial wave decompo-
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sition and discussing how to treat the Lippman-Schwinger propagator singularities.

The K N scattering amplitude is obtained from the bare K N interaction derived in
the meson-exchange framework, described in the previous section [Mul90]. As it was
explained, the bare interaction allows for the transition from the KN to other channels,
like 73 or mA, because the strong interaction connects states in which strangeness is
conserved (S = —1). Therefore, we are confronted with a coupled channel problem.
The coupling to other S = —1 meson-baryon states at higher energy, such as nA, n¥
and K=, not considered in the Jiilich parametrization, can be thought to be embedded
in the parameters of the model such as the coupling constants or the form-factor cutt-
offs. The resultant meson-baryon (MB) T-matrices can be grouped in a matrix notation
according to the isospin quantum number, where each box corresponds to one channel.
The KN channel can have isospin I = 0 or I = 1. In the first case, it can only couple

to the 73 channel and the corresponding matrix has the following structure

Tansikn Trsogn
Tf( N—7% Trs s
while for I = 1 it can couple to both the 73 and wA channels
Tensikn Trsoikn Trasin

Tf(N—HrE TWEHWE T7I'A4)7TE

TI_(N—nrA T7rE—>7TA T7rA—>7rA

Keeping this structure in mind, each box ( KN <+ KN, KN <> wA, KN + 7%,
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78 <> 8, A > A, ¥ <> A ) of the T-matrix is formally given by

(M\B, | T(Q) | MyBy) = (M, By | V(v/s) | MyBy)

+ Y (ML By | V(VE) | MBs) !

M Bs Q—EMS —EBS+ZT]

(M3B; | T(Q) | MaBs) . (1.60)

In Eq. (1.60), M; and B; represent the possible mesons (K, 7) and baryons (N, A,
Y)), respectively, and their corresponding quantum numbers such as spin, isospin,

strangeness, and linear momentum. The starting energy {2 can be calculated according

to /s = V2 — P2, In the center-of-mass frame, Q0 = /5.

In order to solve the T-matrix numerically, we use the partial wave decomposition
of Eq. (1.24). The total angular momentum J, its third component M, the isospin [
and its third component M; are conserved, as it is expected for strong interactions. On
the other hand, the orbital angular momentum for an interacting system of a meson
of s = 0 and baryon of s = 1/2 turns out to be a conserved quantity because of parity

conservation.

Therefore, for a given starting energy 2 and working in the center-of-mass frame
(P = 0), each meson-baryon (k', k) matrix element inside one box can be written [see

Eq. (1.24)]

((My By)K' LI MIM;|T|(MyBy)k L1 JMIM;) =
((My B)K' L TMIM;|V|(MyBy)kLETMIM;) +

3 / dk"K" (M, By)K LY JMIM;|V|(MsBs)k" L1 MIM;)
M3Bs

1
“Q = Epy (k") — war, (k") + ie

x ((MsBs)k"LLJMIM;|T|(MyBy)kLLJMIM,) . (1.61)
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In order to perform the integral over the relative momentum £”, we use the relations

1 1
T+ie PE ~ ind(z)
S(flx) = Y @) 6(z — ;) , (1.62)
from f(]a:)

to simplify the integral

/dkk2Q—E(k) —w(k) +ie
)

Q—FEk)—w
P/dk k2Q — Ejz;()k)_ O m%wj\/(k) , (1.63)

where N (k) stands for the product (V') x (T), and k is the momentum for which the
intermediate system M3Bj3 is on the mass shell. Afterwards, we discretize the principal

part having for each (%', k) element inside a box the following equation

((My By)k'LLJMIM;|T|(MyBy)kLL I MIM;) =

((MyBy)k'LLTMIM;|V|(MyBy)k L TMIM;) +

1
kIIQWn
Z Z " Q- EBa(k;{) - st(kZ)

M3Bs n

x (M By)k' LY TMIM;|V|(M;Bs)k! L1 JMIM;)

((M3B3)k!' LY JMIM;|T|(MyB,)kLL JMIM;)

Cimhag, gy B (s, 5, )Qst (kas,,)

x (M By)k'LL TMIM; |V |(M;Bs)k sy, LLJMIM;)

(M3 Bs) kg, L1 JMIM; |T|(MyBy)kLLJMIM;) (1.64)
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where the points of the mesh (k,) and their corresponding weights (W,,) are defined

by a logarithmic mapping

2
1—x2 ’

) , W.=C (1.65)

_xn

where z,, are Gaussian points chosen from 0 to 1 and v,, are their corresponding weights.
Note that formally the range of the mesh points goes from 0 to co. The value of the
arbitrary constant C' is chosen to optimize the numerical integration. In practice, we

fit a maximum momentum value k., dictated by the range in momentum space of

the meson-baryon interaction and define C' = kyq,/ In ( ) being z, the last point

of the Gaussian mesh.

Defining B(k!)MsBs as

kAW,
n__ T f <N
Q= B, (k) — way (k) e
B(k!)MsBs ¢ , (1.66)
_ Ex. (k k
—imk sy By Bg(kMng)Qst (ks ,) forn=N+1,
\

we can write Eq.(1.64) as

((MyB))PK' L1 JMIM;|T|(MyBy) PELETMIM;) =

((MyB,)PK'LLIMIM; |V |(MyBs) PkLL JMIM;) +

n=N+1

> Y Bk, P)MsPs x ((MyBy)PK' L JMIM;|V|(M;Bs) Pk L1 JMIM;)
M3Bg n=1
x (M3 Bs) Pk LLIMIM;|T|(MyBy) PkLLIMIM;) . (1.67)

where P = 0.
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Then, we can construct the NgyNyps X NgyNas (NgyNasNea X NgnNesNaa)

matrix for I =0 (I =1).

The dimension is determined by an off-shell finite momentum mesh with Nz, N;»
or N,;x components. In case that the pole in the Lippman-Schwinger propagator for
the KN, 73 or 7A intermediate channel is achieved for a given energy parameter €,
an extra row and column are introduced in the corresponding box and the sum will

[ MsBs

run to N + 1, being ky37° = ky,p, as one can easily seen in the previous expressions

[Egs. (1.64) and (1.66)].

In order to solve the T-matrix, we use the inversion method that in compact nota-

tion reads

1
T = =T
V+VE

1
1-V =) T=
(- vE) =y

T = <1 -V %) B V. (1.68)

Finally, let us make some remarks about the singular propagator of the Lippman-
Schwinger equation and the solution of possible numerical instabilities. In order to
properly treat numerically the poles which may appear in the propagator when the
starting energy (2 is larger than the minimum energy of the intermediate states, it is

common to substract numerically and add analytically the integral

k E(E) w(k) (k;|V k) (&IT|ks) ’P/dk: OPIC (Q’iE(k)_w(k)) . (1.69)

which has the same behaviour as the integral of the propagator around the pole.



1.3 Free space scattering observables 37

Spin and isospin indices have been omitted for simplicity. Consequently, B(k!)Ms2B:

of Eq.(1.66) will contain two more terms for n = N + 1

( k. 2W,
Q- EBs (k;{) - wMa(kZ)

forn < N,

B(kn)"™™ 4

]%M;;BB EB:; (]EMsBa) W (l_ﬁMsBs)

1 Q T

—IMsBs L —Ip | ——— —1| —i= | f =N+1

K><( p +Qn e —p— ‘ ZQ) orn + 1,
with T}53 equals to
N
Wag
[ MsBs — "" : (1.70)
! n; Ep,(qn) wiy(4n) (2 — Epy(gn) — Wity (4n))

An alternative and often complementary way of cancelling the instabilities is to

choose a mesh symmetrically around the position of the pole.

1.3 Free space scattering observables

In this last section we present the results obtained by solving the KN interaction or
T-matrix, using the KN Jiilich potential derived in the meson-exchange framework
[Mul90]. In particular, we will show the A(1405) mass spectrum and the total cross
sections for K~ p — K p, K%, 7°A, 7°%° 7+¥~, 7~ X+, comparing them to the exper-
imental results. At the end, we will make some comments about the short-commings of
the KN Jiilich potential that arise when the s-wave scattering amplitudes and various

threshold ratios are compared to their experimental values.
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1.3.1 The A(1405) resonance

We start by commenting on the free space observables like the A(1405) mass spectrum.
The dynamics of the KN interaction is particularly rich due to the presence of the
strange resonance A(1405), which has isospin 0 and J¥ = (1/2)” and lies only 27 MeV
below the KN threshold. There is still debate whether this state has to be interpreted
either as a genuine 3-quark resonance or as a quasibound K N state. This resonance is
observed in the mass distribution of 7% in reactions such as 7~p — KXx [Tho73] and

K~p — ¥*(1660), ©*(1660) — A(1405)7", A(1405) — S [Hem85).

In order to obtain the mass distribution [Fla76], one has to recover the expression
of the total cross section for a reaction process of two initial particles going to a three
particle final state so as to study a reaction of the type 77p — KX=w. According to

Eq.(1.34) and integrating the final momenta, the cross section for this system reads

i _ (2n)" / d*ps / dpr() / dpgmy 1 1
p—KEm (27)3 (2m)3 (2m)? By 2wn(y) 2wk

LM 1
Urel Ep Qwﬁ(i)

(px + Ps + Pr(p) — Pr(i) — Pp) | Trposicsal” - (1.71)

In this last equation, 1/(2w) and M/FE are the normalization factors for the meson
(m,K) and baryon (p,Y) fields, v, is the relative velocity of the colliding particles, and
the four-momentum conservation shows up in the delta function 6 (px + px, + Pr(f) —

Pr(i) — Pp)- The Try k5. can be evaluated as

Tﬂ'p—)KEﬂ =Clhs snx = C,T7?E_)7r2 ) (172)

where it is assumed that the main contribution to 7%, ks, comes from the isospin zero
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component of the on-shell T-matrix for the 73 — 73 channel. Introducing

/dma 2my, (5(mi — (ps +p,,(f))2) (1.73)

in Eq.(1.71), where m,, is the invariant mass of the Y7 system, and defining

—

P =ps +prpy; 20 =Ds — Dr(p) (1.74)

we can write o, ,xy, = 0 as

3 3 3
amC'(2ﬂ)4/dma2ma/dP/dp/de@ ! ! 1% !
(2m)3 ) (2m)3 ) (27m)3 By, 2wa(y) 2wk Vret Ep 2wa(i)

x 0 (px + Ps + Pa(y) — Pagiy — Pp) 6(m2 — (B + wa))? + P?) [T psl* - (1.75)

Performing [ d®pg, it follows that

2m)* 6 (K + Ps + Pa(s) — Priiy — Pp) = 27) (V5 — (Bs +wa(p)) —wi),  (1.76)

with /s = Ep + wr(). If we now use §(v/s — (Es + wa(y)) — wk) for writing d(m?2 —
(v/5 — wi)? + P?), we have for the mass distribution do/dm,

doNC,Qm/d?’P/dsp@l 1 1m, 1
dmg *J] (2m)3 ) (27)3 Es 2w (p) 2wk Vrer Ep 2wrg)

x(2m) 8(v/5 = (Bs + wn(p) — wi) 6(m — (V5 = wi)” + P?) [T x| - (L77)

Finally, the integral over P and p will be performed, taking into account the possible

dependences in P or p. Assuming that we are sitting in the 7p center-of-mass frame



40 Scattering observables of the KN interaction

and using §(m2 — (v/s — wi(P))? + P?), [ dP will give

do C, 1 1 ‘pﬂ‘ / d3p my 1
~C ——F—F Mgy =
dma 272 2\/§ (27T)3 EE 2wﬁ(f)

L 1 (on) 6(v5 = (Ex + waip) — wxc(P) [T s, (178)

Upel Ep 2wvr(i)

where we have shown explicitly the dependence of wg in P. The three particle final

’ of invariant mass m, that moves with a

state can be interpreted as a “m particle’
momentum P and a kaon that moves with —P, being /s the invariant center-of-mass

energy. Therefore
A2 (s, mic, m2)

2y/s

Because of Lorentz invariance, we can evaluate the integral [ d®p in the frame where

|P| = (1.79)

the 7% system is at rest, i.e, Fx,(Pem), Wr(Pem). Therefore, one gets

do
dmy,

X /\%(81 m%(a mi)|T792—>7rE‘2pcm ) (1'80)

as we perform the integral over p. This expression shows that the mass distribution of

the X system can be calculated as

do

dmeg X |T7(r)2—>7r2|2pcm ) (1.81)

. . 1 . .
because the “triangle function” A2 (s, m%,m2) is a very smooth function of m?2.

The study of the mass distribution of 73 state according to [Fla76] reflects the
A(1405) resonance. The A(1405) appears dynamically in our calculation without read-
justing any parameter of the Jiilich potential. In Fig. 1.3 we show the A(1405) mass

spectrum, calculated with the L = 0 and I = 0 component of T, _,,x (solid line) and
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A Mass spectrum (arb.units)
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Figure 1.3: A(1405) mass spectrum. The experimental histogram [Hem85] is compared
to the invariant mass distribution |Tys—x|?pem (solid line) and |Tx y_, 5 |*Pem (long-dashed
line).

also using the Tgy_.» amplitude (long-dashed line) since it can also contribute to

generate the final 73 mass distribution.

Comparing to the experimental A(1405) spectrum, also displayed in Fig. 1.3, it
appears that the Jiilich KN model will build up the resonance from a linear combi-
nation of both T;x_,,x and Tzy_,x amplitudes. We note, however, that there is a
discrepancy between the A(1405) mass spectrum displayed in the KN Jiilich potential
reference [Mul90] and the one shown here, since the Tys .5 amplitude alone seems to
reproduce the A(1405) mass spectrum in the previous reference. This discrepancy may
come from differences between the Jiilich potential reported in the original reference

and the one used in this thesis.
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1.3.2 The K p elastic and inelastic cross sections

The theoretical predictions of the Jiilich KN interaction for the K ~p scattering cross
sections, defined in Egs. (1.38) and (1.39), can also be compared to data. We pay
attention to the cross sections for K~ p — K~ p, K'n, 7°A, 7°%0 77X~ 7= 2T at low
energies for the K~ laboratory momenta between 50 and 200 MeV /c. This momentum

range is largely dominated by the L = 0 partial wave.

Due to the fact that we have been using the isospin formalism in which 7, K, N, %
stand for (7%, 7% 77), (K° K~), (p,n) and (3F,%% ¥7), respectively, we shall con-

struct the physical amplitudes from the isospin states |I Mj) as

K p)=— )+ )

L0
o
\f|0 ;0)

|m0%0) = \[\2 0) \[‘0 ,0)

Lo
"
|Kn) = |1 0) +

1
|7T_E+> ‘2 0) —‘la()) - —‘O: 0>
f NEARRARVE
1 1
7ty ) = ——=12,0) — —=[1,0) — —|0, 0
7T \/él ) \/§| ) \/§| )
[mA) =11,0) (1.82)
where we use the phase convention |7%) = —|1,1),|K~) = —[1/2,-1/2) and |X") =

—|1,1), consistent with the structure of the octet of 1/2% baryons.
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Therefore,
=1 |
Tk-psk-p = §TI§'N—>I_(N + §TI?N—>I?N
Ty psgon = _%Tli'}l—)KN + %TII&\?—MKN
TK‘p—)ﬂ'OEO = _\/LETII:(;\?—)WE
Tk-posa—s+ = _% KN s — %TII;VO—WE

1 =1

1, -
TK—p—m+2— = ETKNHWE - %T}(}?—)Wz
1, .,
Tx-psron = —%T}(}l_m A (1.83)

In Figs. 1.4, 1.5 and 1.6, we display the obtained total cross sections for the
different physical states as a function of the K~ momentum in the laboratory frame,
comparing them with the available low-energy scattering data [Hum62, Sak65, Kim65,
Kim66, Kit66, Cib82, Eva83]. In those figures, the dashed line corresponds to only use
the s-wave component of the T-matrix in the cross sections, while the solid one includes
higher partial waves up to L = 5. In particular, the elastic cross-section K~ p — K™ p
and the inelastic process K~p — K°n are shown in Fig. 1.4. The cusp that appears in
the K~p — K~ p cross section for pj,p below 100 MeV /¢ corresponds to the opening
of the K%n channel. However, the use of the average masses for K, N, 7 and ¥ in the
evaluation of the amplitudes using the isospin basis makes the cusp show up below the

physical value pjp ~ 90 MeV/c.

With regard to the effect of higher partial waves, one can see that at low momentum
(below 100 MeV/c), the L < 5 and L = 0 lines fall on the same curve. This is an

expected behaviour because the L = 0 component or s-wave is the most important
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Figure 1.4: K—p — K p and K~p — K% cross sections as a function of the K~ momen-
tum in the laboratory frame. Experimental data taken from [Hum62, Sak65, Kim65, Kim66,
Kit66, Cib82, Eva83].

contribution to the scattering processes at low energies. The effect of partial waves
beyond s-wave lies around 5 mb for pj,p, = 200 MeV /c for all the reaction processes. As
expected, the higher the momentum is, the bigger the difference is between the solid

and dashed lines.

The agreement with the total elastic and inelastic K p scattering cross section
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Figure 1.5: K p — 77X~ and K p — 7~ X" cross sections as a function of the K~

momentum in the laboratory frame. Experimental data taken from [Hum62, Sak65, Kim65,
Kim66, Kit66, Cib82, Eva83].

data is quite satisfactory. Nevertheless, the calculation tends to overestimate the ex-
perimental values, especially for the K~ p — 7°A system (lower panel of Fig. 1.6). This
channel couples only to I = 1 and, as a consequence, this could be an indication that
the Jiilich KN potential could have some deficiencies for I = 1. The I = 0 component

of the cross sections seems to present a better agreement with the data if we look at
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Figure 1.6: K p — 7°%° and K=p — 7%A% cross sections as a function of the K~
momentum in the laboratory frame. Experimental data taken from [Hum62, Sak65, Kim65,
Kim66, Kit66, Cib82, Eva83].

the upper panel of the same figure. Here it is displayed the K—p — 7°%9 cross section
which only couples to I = 0. The scattering amplitudes at threshold could be a helpful
tool for investigating the different isospin components of 7T-matrix at low energies. The
s-wave scattering amplitudes will be studied in the next section together with some

experimental ratios.
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1.3.3 The s-wave KN scattering amplitudes and threshold ra-

tios

An important check of any KN interaction in s-wave is provided by the isospin scat-

tering amplitudes [Mar81]

a’=® = —1.70+40.68 fm

7' = 0.37+40.60 fm ,

and a few rather accurate branching ratios at threshold [Hum62, Sak65, Tov71, Now78|:

'K p—7ntE7)
= - 2. :l: . 4
7 I'(K—p— 7 Xt) 56+0.0

['(K~p — charged particles)
c = = 0.664 = 0.011
R ['(K—p — all)
['(K p— 7°A)
R, = =0.189 £ 0.015 .
['(K—p — all neutral states)

The results obtained from the Jiilich KN potential at the K p threshold energy of

1431.95 MeV are

o= = —1.71 +41.28 fm

a’=! = 1.07440.71 fm ,
v = b.778

R. = 0.600

R, = 0.447.
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These results are a reflection of the deficiencies present in the . = 0 component of
this KN interaction. The a’=' component is overestimated and the ratios are not in
agreement with the experimental ones. In addition, while a relevant contribution to
the L = 1 component of the Jillich KN interaction comes from the A and ¥ pole
diagrams, the role of the ¥*(1385), which is closer to the KN threshold, has not been

included.

In spite of the shortcomings of the Jiilich KN interaction, one can still explore the
importance of the various partial waves when in-medium K effects are introduced. The
aim of the next chapter is devoted to this end. However, one has to keep in mind that a
more accurate K N interaction in all partial waves is needed. It would be interesting to
include the s-wave scattering amplitudes and threshold branching ratios in the fitting
procedure of the Jiilich interaction, since they are very sensitive to the parameters of
the model. A small fine tunning of the parameters of the present Jiilich K N interaction
would probably improve dramatically the agreement with all low energy data. This

effort, however, goes beyond the purpose of the present work.



Chapter 2

Medium effects on the KN

interaction

In this chapter we study the interaction of the K meson embedded in symmetric nu-
clear matter using the meson-exchange Jiilich KN interaction [Mul90] described in
the previous chapter. This chapter is organized as follows. Section 2.1 is devoted to
introduce the in-medium KN interaction as the starting-point for determining the K
self-energy in Section 2.2. In Section 2.3, two self-consistent schemes to construct the
K self-energy are presented. The effect of higher partial waves of the KN interac-
tion, beyond L = 0, and the momentum dependence of the K self-energy are studied.
Finally, in Section 2.4 we focus our attention on the influence of the in-medium pion

properties on the K self-energy.

49
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2.1 The properties of K in the nuclear medium

In this section the dynamics of the K N interaction in the medium is carefully considered
which in turn determines the most adequate way to obtain the optical potential felt by

a K meson embedded in nuclear matter.

The K optical potential is evaluated for nuclear symmetric matter by means of the

integral
>k
(27)?

which stands for the sum of the in-medium K N interaction Tz, over the Fermi sea of

n(Ea p) TI_(N(kI_(aEa P) ’ (21)

Ug(kg,p) =v /

nucleons n(E, p), being v the spin-isospin degeneracy factor of nuclear symmetric mat-
ter. Therefore the main concern is to decide the most realistic manner of introducing

medium effects on the KN interaction.

The KN amplitude at low energies is dominated by the A(1405) resonance, which
in the approaches of Refs. [Kai95, Ose98] is interpreted as an isospin I = 0 quasi-bound
K~p state. The A(1405) resonance is slightly below the K~p threshold leading to a
repulsive K ~p amplitude in free space. The first step towards determining the K optical
potential would be to identify the KN amplitude in the medium with the scattering
matrix Tz including medium effects afterwards. Actually, theoretical evaluations of
the potential felt by a particle in a nucleus usually start from the low-density theorem
or impulse approximation [Dov71l, Huf72, Huf75] that would consider the interaction of
a K meson in medium to have the form T zyp, being Tz the elementary scattering
amplitude of the antikaon with the nucleons averaged over isospin and the Fermi motion
of the nucleons. This approach would lead to a repulsive K optical potential due to

the presence of the resonance.
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However, kaonic data suggest that, even at a small fraction of the normal nuclear
matter density, the K~ feels a strongly attractive potential. This implies a rapid
transition from a repulsive KN interaction to an attractive one as density increases
and, therefore, a microscopic study of the K properties in the medium cannot be done
in terms of the simple T zyp approximation. It is necessary to consider the density

dependence of the in-medium KN interaction.

One source of density dependence comes from the Pauli principle, which prevents
the scattering to intermediate nucleon states below the Fermi momentum. This effect
was proved to be very important in [Koc94, Waa96a, Waa96b, Waa97]. Indeed, forcing
the intermediate nucleon states to be on top of a Fermi sea costs more energy, and the
net effect is a shift to higher energies of the A(1405) resonance. This shift produces the
expected attractive K optical potential already seen at very small densities. However,
if the K optical potential acquires a negative value because of the Pauli effects, then it
costs less energy to produce the A(1405) resonance, hence producing a shift of the KN
amplitude towards lower energies. A self-consistent evaluation becomes then necessary
as shown in [Lut98a, Lut98b], where it was found that the consideration of the K
self-energy together with the Pauli blocking on the nucleons left the position of the

A(1405) resonance basically unchanged.

In this thesis we incorporate microscopically all the previous medium effects on the
calculation of the K optical potential by building the in-medium KN interaction in a

Brueckner-type many-body theory, as it was done long time ago to study kaonic atoms

[ALb76].
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Figure 2.1: Tllustration of the summation of the infinite sequence of ladder diagrams to
obtain the G-matrix (diagram on the right-hand side). Taken from [Vid00].

2.1.1 The Brueckner-Hartree-Fock approach for the KN in-

teraction

We start by presenting the basic ideas that lie behind the Brueckner-Goldstone theory
for nuclear matter [Bru50s, Day67, Gol57] in order to apply them to the in-medium

K N interaction.

This theory for nuclear matter is based on the principle that, equivalent to the
treatment of nucleon-nucleon scattering, each matrix element of V' should be substi-
tuted by an infinite series which takes into account the two-body interaction to all

orders called reaction matriz or G-matriz.

Fig. 2.1 displays the infinite sequence of ladder diagrams. The summation of the
sequence, starting from an antisymmetric nucleon-nucleon state | N;N;) lying below the

Fermi level F', which evolves towards the same final two-body state, reads

N N){(NiN,
—Z NN|(V+VZ INeNNEN o,
i,j<F hor CiTE Tk T &

NN (NN, Ny Np )N N,
Vz|kz><kz\vz| ) ‘V
€iTEj—Ek— € €iTEj —Em—En

+ ) INNY A, (2.2)

k,I>F m,n>F

where ¢ is the nucleon energy. This previous summation defines the reaction matrix
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O

Figure 2.2: The Brueckner-Hartree-Fock approach for the nucleon optical potential.

G(w) as

¢ V+V © V ¢ V+..., (2.3)

G(W):V+VW—H0 LL)—H() UJ—HO .

where w = ¢; + ¢ is the “starting energy” and

Q Z |NPNQ><NPNQ|

Ww—Ep—&q

= 24
— , (24)

p,q>F

with () being the Pauli operator that anhilates a two-nucleon state unless both nucleons
are above the Fermi sea whereas w — Hj is the energy difference between the initial and

intermediate state. The expansion of Eq. (2.3) is equivalent to the integral equation

Q
w—H()

Gw)=V+V Gw), (2.5)

which is known as the Bethe-Goldstone equation. For values of w larger than the
sum of the energies of the intermediate states, the propagator of the Bethe-Goldstone
equation may become singular and then, it is necessary to add a quantity 7 in the

energy denominator to properly treat the propagator.

The next step is to perform a perturbative series in terms of G, the so-called
Brueckner-(Bethe)-Goldstone expansion or hole-line erpansion (see Ref.[Raj60s]), in
order to compute the energy of the nuclear system, or to obtain the potential felt by a

nucleon in the presence of a Fermi sea of nucleons.
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The leading term of this perturbation series is the Brueckner-Hartree-Fock approz-
imation (BHF) (see Fig.2.2), due to its analogy with the Hartree-Fock (HF) approxi-
mation. In this approach, the potential felt by a nucleon inside a Fermi sea of nucleons

can be calculated according to

U™ = Red (NiN;|G(w = g; +&;)|NiN;)a - (2.6)

J<F
The difference with respect to the HF approach arises out because the matrix elements
V' are substituted by the reaction matrix G, understood as an effective interaction

between two particles in |N;) and |N;) states.

In analogy with the nuclear matter problem, the G-matrix turns out to be the
in-medium KN interaction and, therefore, we can write the K optical potential in
correspondence with the Brueckner-Hartree-Fock approximation for the nucleon optical

potential as

Uk = Y (EN,|Gw)|KN;) . (2.7)

J<F
where the two body state stands for an antikaon K and a nucleon N. More explicitly,

the former equation reads:

Ulkgop =v [ (;% n(R,p) Gk, Frp) | (2.8

which is the expression introduced at the beginning of the section.
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2.2 In-medium KN interaction and the K self-energy

In this section we present the formalism to obtain the self-energy of a K meson embed-
ded in infinite symmetric nuclear matter. This self-energy accounts for the interaction
of the K meson with the nucleons and its calculation requires the knowledge of the
in-medium KN interaction, which is described by a G-matrix. The medium effects
incorporated in this G-matrix include the Pauli blocking on the nucleons in the inter-
mediate states as well as the dressing of the K meson and the different baryons. We
explore different ways of dressing the KN intermediate state in solving the G-matrix,
which define the type of self-consistency of the calculation giving rise to the different

approaches discussed in the results’ section.

2.2.1 In-medium KN interaction

The KN amplitude in the nuclear medium or G-matrix is obtained from the bare
KN interaction derived in the meson exchange framework [Mul90], according to the
same procedure followed in the derivation of the T-matrix. As it was seen in Sec.
1.2.2, we are confronted with a coupled channel problem as the bare interaction allows
transitions from the KN channel to the 7% and wA channels, conserving strangeness
S = —1. This coupled structure is solved by building meson-baryon matrices according
to isospin I =0
Grgnogn GrsoskN

GI_(N—HTE GwE—mE
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or] =1

Genoskn Grsoikn Graskn
GRN—)T('Z GﬂE—HrZ GﬂA—HrZ

GKN—MTA GWE—HrA G7TA—>71’A

As it was done previously for the T-matrix, we solve the G-matrix equation by first
doing a partial wave decomposition. In the Sec. 1.1.1.1 of Chapter 1, it was shown that
the propagator of the 7T-matrix equation is diagonal either in the physical basis or in
the partial wave one and, therefore, the partial wave decomposition of the 7T-matrix
turns out to be very simple [see Eq. (1.24)].

Nevertheless, complications can arise when the medium effects are implemented.

=

The propagator in the G-matrix equation, D¢ (k, ﬂ) = Q(E, ]3) /E(w, E, ]3), contains
the information on the medium. The quantity Q(E, P') stands for the Pauli operator,
permitting only intermediate nucleon states compatible with the Pauli principle. The
Pauli operator together with the dressing of the intermediate states in the energy
denominator F(w, k, ]3) are the two sources of medium effects. In this chapter, we are
interested in symmetric nuclear matter and, therefore, the isospin/spin symmetry is
fulfilled, still allowing us to write the propagator according to Eq. (1.23). Moreover,
in order to simplify the numerical calculation of the G-matrix, it has become a usual

technique to perform an angle average of the propagator.

—

The idea is to replace D7¢d(k, P) = Q(k, P)/E(w, k, P) by a function D™ (k, P) =
Q(k, P)/E(w, k, P) independent of the angle between P and k. As a consequence, the

integral over the spherical harmonics in Eq. (1.23) gives 01/, da, ar;, and we obtain a
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similar expression to Eq. (1.24) for the G-matrix equation

(M By); k|G (P Q)[(M2Bo)s k) = ((MyBy1); K |[VE (V5)| (Mo By); )
+ Z /k”Qdk‘”«MlBl);kl|VLJI(\/§)‘(Mng);k‘”)

QMng (k”’ P)
0-— \/M§3 + k2 - \/M]%h + k2, — Up,(K3,) — Ungy (K2,) + e
X ((MsBs); k"|GM1 (P, Q)|(MaBy); k) (2.9)

X

where the variables k, k', k" and L denote relative momenta and orbital momentum,
respectively, while P is the center-of-mass momentum. The starting energy €2 is related
to the invariant center-of-mass energy by means of \/s = vV Q2 — P2. The functions %
and l;;?\:[ are, respectively, the square of the momentum of the baryon and that of the
meson in the intermediate states, averaged over the angle between the total momentum

P and the relative momentum £” (see the definitions in appendix A)

. 2

K2 (K" P) = k"4 (ﬁ) P?, 2.10
(k. ) e 210

. 2

K2 (K" P) = k"4 (7””” > p? . 9211
(k. P) i 1)

The angle average of the Pauli operator, §M3 B, (K", P), is shown explicitly in Ap-

pendix A and differs from unity only in the case of the KN channel.

The total angular momentum and isospin are denoted by J and I, respectively.
For each J, two values of orbital angular momentum, L = J+1/2 and L = J — 1/2,
are allowed. However, due to parity conservation, the interaction can not mix these

two states and, as a consequence, the orbital angular momentum is also a conserved
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quantity, as already seen for the T-matrix.

The former equation for the G-matrix has to be considered together with a pre-
scription for the single-particle energies of all the mesons and baryons participating in

the reaction and in the intermediate states. These energies can be written as

By (k) = \/k* + M3, gy + Ui (B, B3, 5) (2.12)

where Uy, (p;) is the single-particle potential of each meson (baryon) calculated at the

real quasiparticle energy Eﬁ, (Bi)’ obtained by solving the following equation

Eqp

As a first approach, we have considered the single-particle potential for the K
meson and all baryons. Although the dressing of pions plays a crucial role in the
determination of the in-medium KN interaction, we first study the main features of

the KN interaction in the nuclear medium without dressing them. We consider in

detail the dressing of pions afterwards.

For the A and ¥ hyperons we use the simplified form

Urs(p) = —302 | (2.14)

Po

where pq is the saturation nuclear matter density while for nucleons we take the density
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p (fm™3) | a (MeV) B (MeV) A (fm™)
0.1 4.76 —62.3 2.86
0.15 12.9 —82.5 2.63
0.2 27.7 —-102 2.61
0.3 72.8 —138 3.07
0.4 176 —211 4.31
0.5 332 —311 6.00

Table 2.1: Parameters for the nucleon single particle potential of Eq. (2.15).

dependent parametrization [Wir8§]

B(p) .
e

that was fitted to the single-particle potentials obtained from variational calculations

Un(p, k) = a(p) + (2.15)

using realistic NN interactions. The density-dependent real parameters «(p), 5(p) and
A(p) are shown in Table 2.1. The zero momentum nucleon potential at p = p, amounts

to —70 MeV.

In the Brueckner-Hartree-Fock approach, the K single-particle potential is schemat-

ically given by

Ug(k,E®) =Y (KN | Ggnoxn(Q=EF + E®) | KN) , (2.16)

N<F

where the summation over nucleon states is limited by the nucleon Fermi momentum.

The explicit calculation of Uz will be discussed in the next subsection.

At the required K energies, the G-matrix in the above equation becomes complex

due to the possibility of KN decaying into the 73, A channels. As a consequence,
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the potential Uy is also a complex quantity. However, the influence of the medium on
the G-matrix is studied by considering different approaches that have been used in the
literature: (a) the real quasiparticle energy defined in Eq. (2.13) and (b) the complex
E% defined in Eq. (2.12) which also contains the imaginary part of Uz calculated at

ap
Ek-

At this point and before entering into the explicit calculation of the K single-
particle energy, we should make some remarks about the numerical instabilities that
may appear in the function D 7¢ when the energy parameter €2 is large enough to
put on the mass shell the intermediate states, as we did for the Lippman-Schwinger

equation. For the G-matrix, the integral over D¢ in a schematic form reads

[ (K VK" Q) (k'|GIk)
Q- EB(]{I”) - wM(k”) - UB(ICH) — UM(ICH) + i€ ’

(2.17)

keeping only the momentum dependence which is relevant for determining appropiately
the solution to the instabilities and with ez (Ug) being the free spectrum (optical po-
tential or single-particle potential) of baryons, and wy; (Uys) the free spectrum (optical

potential) of mesons, respectively.

For the ¥ and 7A intermediate states, it is easily seen that using the density
parametrization for A and 3 described in Eq. (2.14) and fixing U, = 0, we can redefine
2 as 2 — U »(p) obtaining an expression that has the same kind of behaviour around
the pole structure as Eq. (1.69). Therefore, the singular propagator is treated in the

same way as done before for the T-matrix.

However, complications show up for the KN state, depending on the approach

used. If we take the complex Ug, no singularities appear on the real (2-axis and the
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integral is well-behaved in general. However, we need to reformulate the solution to

the singular propagator when only the real part of Ug is kept.

In this case, the delta function in Eq. (2.17) is written as

kx _
—imk"25(Q — en (k") — wi (k") = Un(E") = U (k")) = —in =5 (k" — kgn)
Ckzn)
. en(krn) +wrlbry) 1 dUN(k”)) 1 dUg (k”))
Clkgy) = _ _ (2.18
(ki) = 8N(kKN)WK( N) +kK’N dk" IEKN+kR’N dk" RN ( )

Therefore, once the integral is performed, one realizes that the imaginary contribution
to Eq. (2.9) is located in the N + 1th column and row of the KN box. To overcome the
singularity and similarly to what was done for the T-matrix, one should add analytically

and substract numerically the following expression in the N + 1th column/row

kKNgN(kKN)wK(kKNMk |V|kKN> QKN l_f ~) <k1‘(N|G|k>
< lim E —en(k") — wK(k’ )
k—kry S —en (k") — wg (k") — Un (k") — Ug (k")

xP/dk" K
en(K"wg (k") (E — en (k") — wg (k"))

: (2.19)

with F = en(kzn) + wi(kgy). This expression has the same behaviour around the

KN pole as Eq. (2.17).

Therefore, in order to solve numerically the G-matrix similarly to Eq. (1.67), we

substitute B(k”)MsBs of Eqgs. (1.66) and (1.70) by B(k")M3B3  defined as follows. For

med
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the 73 and wA intermediate states, we have

{ "
E2W,,

f <N
Q — ey (k1) — we (k) — Uy (p) o=
Bk, 4
1 QO _ _ _
<_F3Y + Q In e 1 ‘ - Z%) kry ey (kny) we(kry) forn=N+1,
\ Y s

with Y denoting the hyperons (A or ¥), © = Q — Uy (p) and I'T" being

N

7Y WnQn
O =2 ) o) @ er@) =@ (2:20)

For the KN intermediate state, there are two possibilities. If we include the imag-

inary part in Ug, then no extra column/row is needed and

kl/2 W _I—(N(k”)
B(k" n < N (2.21
( )med Q—en(k") —wr (k") — Un (k') — ReUg (k") — i ImUg (k") n< N )
On the other hand, if InUz =0
( kW Qg (k)

Q—en(k") —wg (k") — Uy (k") — ReUg (k)

B(k”)med < _ o _
kin en(kin) we(ken)Qrn(kin)
y (—FRN LT x en(kgn) wi (ER'N)I E
; _

E my +mg

™

C(krn)

n

_1‘_2-

\

forn < N,

) forn=N+1,
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with XN being

_ W q
MEN — v« nen ,
: Z (@) or @) (2 = en(an) — o ()

and

. E —en(k') - wi (k")
T= 1 '
ke O — e (k) —wr (k) = Un (k") = Ug (")

(2.22)

2.2.2 K single-particle energy

By using the partial wave decomposition of the G-matrix, the Brueckner-Hartree-Fock
approximation to the single-particle potential of a K meson embedded in a Fermi sea

of nucleons [Eq. (2.16)] becomes (see Appendix B)

kma.a:

Ug kg, E®(kg)) = %Z(2J+1)(2I+1)(1+§)3/ k2dk f(k, ki)

LJI 0

<((RN); KM (P7, B2 (k) + BR(B3)(RN): Ky, (2.23)

where the weight function f(k, k%) is given by (see Appendix C),

f

kr—8ki
1 for k < e
[k ki) =1 0 for [€kg — (1 + &)k| > kp, (2.24)

kp® — [Eki — (1 + EE]
\ AE(1+ &k

otherwise,

with & = —" and kp the Fermi momentum. The magnitude of the relative momentum
mg

k is constrained by
_ kr+ kg

kmaz = 2.25
1+¢ (2.25)
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This weight function corresponds to the analytical integral over the angle between
the external K momentum in the lab system, kg, and the KN relative momentum,
k. This integral can be performed analytically after having eliminated the angular
dependence of the G-matrix by using angle averages P2 and E for the center-of-mass

and nucleon momenta, respectively (see appendix D for details).

After self-consistency for the on-shell value Uz (kx, Eg—f) is achieved, one can obtain

the complete energy dependence of the self-energy Iz (kz,w),

HI_((kI_(a w) =2 \/ k%’( + m%’( Uf((kf(a w) ) (226)

by replacing E?-f in Eq. (2.23) by w. This self-energy can then be used to determine

the K single-particle propagator in the medium,

1
DI_((kI_(aw) = ’ (227)
w? — k% —m% — 2, /k% + m3Ug (kg,w)
and the corresponding spectral density
1
Sf((k'j(,(,c)) = ——Ime((k[(,w) . (2.28)
T

In the two schemes discussed here, only the value of Ui at the quasiparticle energy
w = E is determined self-consistently. This amounts to take, in the subsequent

iterations leading to self-consistency, the so-called “quasiparticle” approximation to



2.2 In-medium KN interaction and the K self-energy 65

the K propagator

1
D (g, w) = , (2.29)
w? — k% —m% — 24 /k% + m%Ug (kg, EY)
which gives rise to a simplified spectral strength
S?—f(k[{,&)) = (2.30)

1 24/k% +m2ImUg(kg, EY)

T w2 — k2 —m2 —2,/k2 + m2Re Ug(kg, B®) |2 + | 2,/k2 + m2Im Ug (kg, EZ) 2

The location and width of the peak in this distribution are determined, respectively,

by the real and imaginary parts of Uz (kg, EY).

We note that if only the real part of the Ug is retained in the self-consistent scheme,
as done for instance in Ref. [Aka02], the K spectral distribution reduces to a é-function
at the quasiparticle energy. This is what we refer as the approach (a), while the
approach (b) considers a spectral function of the type (2.30) built up with the full
complex optical potential at the quasiparticle energy. Although this last scheme still
represents a simplification with respect to the more sophisticate scheme followed in
Refs. [Ram00, Lut98a], where the full energy dependence of the K self-energy is self-
consistently determined, hence the K propagator is that of Eq. (2.27), the approxi-
mation of Eq. (2.29) is sufficiently good for the studies that are carried out in this
chapter. Moreover, once self-consistency is achieved for the quasiparticle energy, one
can calculate Uz (kz,w) as a function of w and derive, through Egs. (2.27) and (2.28),

the fine details of the actual strength distribution of the K meson.



66 Medium effects on the KN interaction

2.3 In-medium results for the KN system

We start this section by discussing the most characteristic modification of the KN
amplitude, which is obtained when the Pauli blocking on the intermediate nucleons
is incorporated. The real and imaginary parts of the resulting in-medium KN am-
plitudes for a total momentum | kz + ky |= 0 are shown in Fig. 2.3 as functions of
the invariant center-of-mass energy, for three different densities: p = 0 (dotted lines),
p = po/2 (dot-dashed lines), and p = py (solid lines), with py = 0.17 fm~3 being the
saturation density of nuclear matter. We clearly see, as noticed already by all ear-
lier microscopic calculations, the repulsive effect on the resonance produced by having
moved the threshold of intermediate allowed K N states to higher energies, as a result

of Pauli blocking acting on the nucleon.

Clearly, this shift of the resonance changes the KN scattering amplitude at thresh-
old (~ 1432 MeV) from being repulsive in free space to being attractive in the medium.
Since this effect is intimately connected with the strong energy dependence of the K N
amplitude, important changes can be expected from a self-consistent incorporation of
the K properties on the K N G-matrix, as already noted by Lutz [Lut98a] and con-
firmed in Ref. [Ram00).

This type of self-consistent calculations are also common in Brueckner-Hartree-Fock
studies of the NN interaction, where it is costumary to take the nucleon single-particle
energies as real quantities. This amounts to disregard the imaginary part of the in-
medium NN amplitude in the calculation of the single-particle energy for nucleons
above the Fermi momentum. We have attempted a similar type of approximate scheme

for the K meson, the so-called approach (a), although in this case the KN amplitude



2.3 In-medium results for the KN system 67

120

100 + — 8

—Re G—-matrix (MeV frﬁ)
N
o

| | |
o o H
o O O

-100
160

140

—=Im G-matrix (MeV fm3)
= B

[o)] (o) o N

o o o o

N
o

20

0 l— A N T L
1300 1350 1400 1450 1500 1550
172

s “(MeV)

Figure 2.3: Real and imaginary parts of the K N amplitude in the I = 0, L = 0 channel as
functions of the center-of-mass energy at total momentum |kz + kx| = 0 for various densities.

is already complex at threshold due to the wA, 7X channels. In this simplified self-
consistent scheme, only the real part of the K potential is retained in the solution of
the G-matrix, i.e. the K energy appearing in the energy denominator of the G-matrix

equation (2.9) is taken to be the real quasiparticle energy of Eq. (2.13).

Once self-consistency is achieved, we use Eq. (2.23) to calculate both real and
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Figure 2.4: Real and imaginary parts of the K optical potential at p = py as functions
of the antikaon momentum. These results are obtained when only the real part of the K
potential is determined self-consistently.

imaginary parts of the K potential, which are displayed in Fig. 2.4 as functions of the
antikaon momentum, for normal nuclear matter density p = py. We explicitly show
the separate contribution of the various partial waves of the KN interaction. At zero

momentum the real part of the K potential is about —100 MeV and the partial waves
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higher than the L = 0 component give a negligible contribution. Both the real and
imaginary parts of the potential show some structure between 200 MeV/c and 400
MeV /c. This is connected to the behavior of the in-medium K N amplitude which, in
this simplified self-consistent scheme, still retains the resonant-like shape at p = pp.
We observe that the high partial waves start being non-negligible for momenta larger
than 200 MeV/c. It is interesting to focus our attention on the imaginary part of the
K potential which at low momentum is rather small. This is due to the supressed
coupling to intermediate 73 states as a result of the strong attraction felt by the
antikaon combined with the attraction of around —70 MeV felt by the nucleon. The
in-medium KN system then explores energies below those available for 7% excitations
and the antikaon width becomes extremely small. In this low momentum region the
imaginary part of the K potential is essentially due to the coupling to A states in
the relatively weak I = 1 channel. As seen in the figure, for the 73 channel to start
giving a contribution to the imaginary part, it is necessary to provide the K with a finite
momentum (around 200 MeV /c), such that the condition E¥ +E% > m; +ms +Us ~

1300 MeV can be fulfilled.

The substantial attraction obtained for the K optical potential combined with the
extremely small imaginary component of the K optical potential might induce to think
that the chances of producing very narrow, hence observable, deeply bound K-nucleus
states are quite high. If these results were confirmed by more sophisticated treatments
of the in-medium effects, an experimental search for these states should be indeed
encouraged. However, as we will show in the following, the use of a more realistic

self-consistent scheme wears this finding off.

Our second method consists of determining the complete complex K single-particle
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Figure 2.5: Real and imaginary parts of the K N amplitude in the I = 0, L = 0 channel as
functions of the center-of-mass energy at total momentum |kz + kx| = 0 for various densities,
as obtained from a self-consistent calculation with a complex K optical potential.

energy given in Eq. (2.12) self-consistently. That means that the antikaons in the inter-
mediate states of the G-matrix equation are dressed with the so-called “quasiparticle”
spectral density given in Eq. (2.30), which has a width proportional to the imaginary

part of the optical potential at the quasiparticle peak.
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We first show in Fig. 2.5 the effect of dressing the antikaon with a complex self-
energy on the in-medium K N amplitude for a center-of-mass momentum | ky+kz |= 0.
We represent the on-shell amplitudes using the in-medium energy-momentum relation
Q= EY(kn)+EE(kg). In fact, with respect to the results of Fig. 2.3, we have included
here the mean field potential for the baryons, which produces an attractive shift in the
amplitudes, plus the effect of the antikaon optical potential, which produces a further
attraction and a widening in the energy distribution, the latter due to the K strength
being spread out over energy. We note that, considering Pauli blocking that forces
kn > kp together with the in-medium attraction for antikaons and nucleons, the new
KN threshold at py drops down to about 1422 MeV. Comparing with the results shown
in Fig. 2.3, we observe that the resonance peak appears at a lower energy, below the
corresponding in-medium K N threshold. The resonance gets wider and dilutes much
earlier with increasing density. These effects are in qualitative agreement with those

obtained with the self-consistent approaches of Refs. [Ram00, Lut98al.

Our results for the antikaon potential at p = py obtained with this complete self-
consistent scheme are shown in Fig. 2.6. The real part of the K potential at zero
momentum increases to —87 MeV. This attraction is similar to what is found by other
self-consistent calculations [Ram00, Lut98a] for the optical potential at the quasipar-
ticle energy, E%. In Ref. [Lut98a] the peak in the kz = 0 spectral function for normal
nuclear matter density appears at an energy —380 MeV, which is the quasiparticle
energy at zero momentum, usually identified as the effective K mass, m’,. The non-
relativistic potential is then (m%? — m%)/2mg ~ —100 MeV. Similarly, the results of
Ref. [RamO00| for dressed antikaons but free pions, as done in this chapter up to now

and in Ref. [Lut98a], provide an optical potential at the quasiparticle energy of —70

MeV. However, the potential relevant for the study of kaonic atoms must be taken at
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Figure 2.6: Same as Fig. 2.4 but obtained from a self-consistent scheme which uses the
complex K optical potential.

the antikaon mass, w = mg, and, due to the strong energy dependence of the KN
amplitude, the value can differ substantially from that taken at the quasiparticle en-
ergy. In the model of Ref. [Lut98a] it amounts to only —35 MeV, as can be inferred
from the scattering length shown in [Lut98b|. The corresponding value for the model

of Ref. [Ram00] is —45 MeV and in the present work we obtain a more moderate de-
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crease in the attraction, from —87 MeV at the quasiparticle energy to —73 MeV at
the antikaon mass. The different size of the reduction with respect to the value at the
quasiparticle energy obtained with the various KN interaction models is a reflection

of differences in the position and width of the in-medium A(1405) resonance.

It is worth noticing that the new self-consistent scheme has produced a drastically
different imaginary part, as can be seen by comparing the results of Fig. 2.6 with those
of Fig. 2.4. The small value of —3 MeV at zero momentum obtained using the simplified
scheme turns out to be now around —25 MeV, hence making the observation of bound
K nuclear states more difficult. This is a consequence of the fact that the in-medium
KN amplitude becomes smoother and wider when the K energies are complex. Since
the K spectral density develops a width and, in turn, the K feels a reduced attraction,
the KN states can couple more easily to the 7% states than in the simplified self-
consistent scheme. From these results one must conclude that any approach claiming
for narrow bound K nuclear states [Aka02] must be looked at with caution, because the

self-consistent scheme affects enormously the predicted K properties in the medium.

The effect of including the higher partial waves of the K N interaction is also shown
in Fig. 2.6. We observe that at zero K momentum there is already some contribu-
tion of partial waves higher than L = 0 due to the fact that the K meson interacts
with nucleons that occupy states up to the Fermi momentum, giving rise to finite KN
relative momenta of up to around 90 MeV/c. Clearly, the effect of the higher partial
waves increases with increasing the K momentum, flattening out the real part of the
optical potential and producing more structure to the imaginary part. At a K mo-
mentum around 500 MeV/c, the inclusion of higher partial waves makes the real part

more attractive, from —28 MeV to —52 MeV, and practically doubles the size of the
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imaginary part. Note that the effect of high partial waves is repulsive at low momenta
and attractive at high momenta, while in the simplified self-consistent scheme reported
in Fig. 2.4 it was always repulsive. This is due to the fact that the fully self-consistent
scheme gives rise to a less attractive K potential, thus exploring larger energy values
of the KN amplitudes. At a K momentum of around 250 MeV /c one already feels the
change of sign of the isospin averaged L = 1 KN amplitude, which turns from being
repulsive to being attractive at around 1500 MeV. In the simplified scheme one must
compensate the additional attraction of the K with kinetic energy, hence the change
of sign does not happen until a larger momentum, just above 500 MeV/c as can be

appreciated from Fig. 2.4.

In Fig. 2.7 we represent the real and the imaginary part of Uy for different densities,
obtained with the scheme that considers the complex potential for the antikaon. As
we increase the density we obtain a more attractive potential due to two facts. On one
hand, as discussed previously, the KN in-medium amplitude becomes more attractive
at higher densities. On the other hand, the K potential is built up from summing this
attractive two-body KN interaction over more KN pairs. The momentum dependence
is moderate for the real part. In contrast, the imaginary part for densities around the
saturation density and beyond shows more structure. This momentum dependence
is smoother than that obtained in Ref. [Sib98] from a phenomenological model using
the information of the vacuum K N amplitudes, where the antikaon optical potential
at normal nuclear matter density py increases from —140 MeV at zero momentum to

around —50 MeV at high momenta.

Starting from the self-consistent K optical potential shown in Fig. 2.6 and repro-

duced by the solid line in Fig. 2.7, we perform two different tests in order to check some



2.3 In-medium results

for the KN system

75

—125:111111111 e st e s HHH{H’

S

()

<

5

-}

[6)

xx
-100 |

S

()

=3

<

-}

£

= -100
-125 |
-150 -

500

L ——- p=0.2%, RN L
-~ p=0sp, IR ]
[ — P70y
---- p=15p, ]
0 100 200 300 400
k. (MeV/c)

Figure 2.7: Real and imaginary parts of the K optical potential as functions of the antikaon
momentum for various densities.

of the approximations used in the literature. First, we compute the optical potential

neglecting the nucleon recoil corrections, as done in Ref. [Scha00]. This amounts to

calculate the K potential at momentum kg from a Gp type expression, with G being

the in-medium K N interaction between a K of momentum kz and a nucleon of zero
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momentum. The expression for the Uy in this approach reads

Urlke) = =S BLEVCIED e G k= —2a k), (231)

2 mpy+mg my+mg
LJI

where my and mj are the masses of the nucleon and antikaon, respectively.

The results are displayed by the dashed lines in Fig. 2.8. While the real part
is barely affected by this simplified approximation, the imaginary part shows some
non-negligible differences at low momenta. Secondly, we have neglected, in addition,
the nucleon single-particle potential, which has been claimed to be unimportant in
Ref. [Scha00]. Note that in this latter reference a small imaginary part of around 10
MeV for the nucleon optical potential is used, but the real part is set to zero. The
results are shown by the dotted line. The differences with the dashed line are quite
appreciable at low momenta, both for the real and imaginary parts of the K optical

potential.

Finally, once self-consistency is reached, we calculate the full energy dependence
of the K self-energy which defines the in-medium K single-particle propagator and
its spectral density through Eqs. (2.27) and (2.28). The spectral density at zero mo-
mentum is shown in Fig. 2.9 for several densities. As density increases the peak of
the K pole moves towards lower energies since the K optical potential becomes more
attractive. The in-medium A(1405) resonance gets wider and, although not signaled
by any clear peak in the figure, its presence can be indirectly noticed from examining
the K spectral density on the right hand side of the quasiparticle peak, which falls off

more slowly than that on the left hand side.

We also notice some structure of the spectral function to the left of the quasipar-
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ticle peak at energies of the K of around 320 — 360 MeV, the origin of which can be

traced back to the ¥ pole diagram of the KN Jiilich interaction in the L =1, I =1

channel that appears as a singularity in the free KN scattering amplitude at an en-

ergy /s = 1230 MeV, about 200 MeV below the KN threshold. This peak in the K
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Figure 2.9: K spectral density at kz = 0 as a function of energy for various densities.

spectral function is therefore indicating the physical excitation of ¥-hole states in the
nuclear medium with antikaon quantum numbers. If the P-wave Jilich interaction had
contained the ¥*(1385) pole diagram, one would find similar structures due to ¥*-hole
excitations. The dotted line shows the spectral density at p = py but keeping only the
L = 0 component of the KN interaction. In agreement with the behavior of the optical
potential at zero momentum, we observe that the location of the quasiparticle peak

only moves a few MeV, while the width (height) gets reduced (increased) by about
30%.
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2.4 Pions in nuclear matter

In this section we study the influence of the in-medium pion properties on the K self-
energy. When a pion propagates in nuclear matter, it scatters with the surrounding
nucleons and the basic first order response of the medium is the excitation of a particle-
hole pair. In the region of intermediate energies (7, = 0 — 300 MeV), delta-hole
excitation also takes place due to the excitation of internal degrees of freedom of the
nucleon. These are the first medium corrections in the perturbative expansion of the
pion propagator in nuclear matter. In the following, we give a brief description of these
medium corrections following the developments and notation of Refs. [Cab01, Ose82b,

Fet71, Eri8s).

In order to obtain the pion self-energy in symmetric nuclear matter and, therefore,
the pion propagator to be inserted in the calculation of the K self-energy, we should
compute the particle-hole and delta-hole excitations. For the particle-hole excitation,

the Yukawa Hamiltonian is taken for the 7NN interaction vertex
Hony =190y (2)7576(2) Uy (@) (2.32)
where ¢ is the 7NN strong coupling constant. Its non-relativistic reduction reads

H7rNN ~ 7{1—N0i8i¢/\($)7'/\ ; (233)

™

where fy/m; = g/2mpy, with my the nucleon mass. The quantities fy and m, are
the nucleon coupling constant and the pion mass, respectively, while o and 7 are the

spin Pauli matrices and the % isospin operator, respectively. In momentum space, this
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leads to the factor ;—NECFT/\ for each T NN vertex with an incoming pion of momentum
¢- For an outgoing pion, a minus sign arises. Therefore, using Feynman rules, the first
order irreducible pion self-energy coming from particle-hole excitation th((j', q°) can

be calculated:

' . , d4k 2 . . . g . e —
—iII"(q, ¢ )™ =(—”/ (23 (il) 3(=q)aqr ™ iGO (k, kK*)iG° (k + 7, k° + ¢°) (2.34)

where G°(k, k°) is the nucleon propagator. A sum over intermediate spin and isospin
states must be understood in the following. The sum over protons and neutrons gives

a factor 26*, while for the spin sum we use the property

> (myloigs|m,) (ml|ojq5lms) = 26,05 = 247 . (2.35)

!
L PR A

Using the expression of the nucleon propagator, we can write

[ A 1 — n(k) n(k)
/ (2m)* { k0 — Ex(K) +in T En(k) - m}
7)

K +q0 — Ex(k+§) +in K +q° — Ey(k+q) — in

}(2.36)

where n(k) is the Fermi distribution for nucleons. The integration over ° can be done
analytically and only the crossed products of terms from the first and second brackets

of Eq. (2.36) contribute.
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Figure 2.10: Direct and crossed particle-hole (left figures) and delta-hole (right figures)
diagrams.

Therefore, one is left with

I

™

2
(3, q°) = ( ) PUn (@) | (2.37)

where Uy (7, ¢°) is the Lindhard function for the particle-hole excitation, which reads

Un(7,¢°) = (2.38)
, / k| 0(kp — |ED[1 — 0(kp — |k + )] L Okr = Ik + @)1 — 0(kr — |E])]
N (271')3 =

¢+ Ex(k) = En(F+q) +in  —¢° — Ex(k) + Ex(k+ ) +in
where we have used that the nucleon Fermi distribution n(k) at T = 0 is equal to

the A(kp — |k|) and vy = 4. An analytical expression for Eq. (2.38) can be found
in Refs. [Fet71, Ose90]. This result for H{)’h(q", q°) can be quoted as the contribution
of the two diagrams on the left-hand side of Fig. 2.10, which are called direct and
crossed terms, or forward and backward propagating bubbles, respectively. The arrows
indicate the particle and hole character of the nucleonic line, with the convention that
up heading arrows stand for particles and down heading arrow for holes. Opening
the hole line on the left-hand side diagrams of Fig. 2.10, we find two diagrams that

contribute to 7NV scattering and, therefore, the pion self-energy can be understood as
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an integral of the 7N scattering matrix over the occupied states of the Fermi sea.

In the region of intermediate energies (7, = 0—300 MeV), delta-hole excitations can
occur (A(1232)Ps3, I(JF) =3 (%+> , Ma = 1232 MeV) and they must be included as
an additional medium correction to the particle-hole one. The 7 NA vertex is obtained

from the effective phenomenological Hamiltonian (in a non-relativistic approach)

fA

™

Hﬂ'NA = Sﬁ@’\(:v)T)‘ + h.c. y (239)

where S;, T* are the % — % spin, isospin transition operators defined by means of the

Wigner-Eckart theorem as

(GMLISE [3ma) = O (3,1, 3 my, v, M) GIIS*1L) - (2.40)

1
2
In order to compute the sum over spin and isospin we make use of the relation

2
ZSZ-\MS)(MS|S;’ =3

M,

1
5ij - gl €ijk Ok - (241)

The coupling constant fX, obtained from fits to scattering data, is J{—ﬁ =2.13.

In a similar way to the particle-hole case, the contribution of the delta-hole excita-
tion to the pion self-energy is given by two diagrams [see the two diagrams on the r.h.s

of Fig. 2.10] corresponding to the two terms in Eq. (2.39), and the T15*(g, ¢° ) reads

2
3" (7,¢°) = (f—N> U ¢ ) (2.42)

™
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where Ux (7, ¢q°) is the A-hole Lindhard function

Un(T ¢°) =

”A/ (%

« \ 2
with va = % (;—2) . In Eq. (2.43) the non-relativistic reduction of the A propagator

0(kr — |K|) N 0(kr — |k + 7))
q°+EN(E) —EA(E+(7) —i—z’r(%qo) —q°+EN(E+(7) — EA(

has been used and I' is the energy dependent decay width of the A into 7N which,
using the approximations done in Ref. [Ose90], is taken to depend only on the external

variables of the pion. The analytical result is given in this same reference.

The expression for the first-order irreducible pion self-energy finally reads

o(7,¢°) = (7{1—N> U, q°) (2.44)

u(q_:qo) :uN(q—"qo)_‘_uA((T’qo) ;

where U(q,¢°) is the sum of 1p — 1k and 1A — 1A Lindhard functions. We also include
in the pion self-energy the coupling to 2p — 2h excitations, following the phase-space

approach of Ref. [Ram94].

Once 1p — 1h (2p — 2h) and 1A — 1h excitations are computed, form-factors and
short-range correlations are introduced. One pion exchange (OPE) provides a good
description of the nucleon-nucleon interaction for long distances, but this is not the only
ingredient. At shorter distances other effects must be considered, such as correlated
and uncorrelated two pion exchange and the exchange of heavier mesons. Therefore,

short range spin-isospin correlations have to be taken into account.
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Figure 2.11: Sum of diagrams which contribute to the pion self-energy, taken from
Ref. [Cab01]. The wiggly line stands for the Landau-Migdal parameter ¢'.

Its contribution is mimicked with an effective OPE interaction

™

2
Vore(q) = Vorr + <f—N> §'0109T1 T2 (2.45)

called minimal correlation. The ¢’ is the Landau-Migdal parameter taken from the
particle-hole interaction described in Ref. [Ose82a], which includes m and p exchange

modulated by the effect of nuclear short-range correlations.

As a consequence, the pion self-energy must be recalculated including these short-
range correlations, summing the diagrams of Fig. 2.11 which contribute to the irre-

ducible pion self-energy. The same procedure is applied for the A-nucleon interaction.

The final expression for the pion self-energy reads

Uq,q") = Un@ ) +Ux(T ), (2.46)
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where F(q,q°) is the form factor,

o A2 — m?2 2
Fag) = <A2—(q°2—«72>)

A = 1200 MeV . (2.47)

The pion self-energy also includes a s-wave piece

My
I(p)s = —4m (1+—) bo p, (2.48)
my
with by = =002% taken from the parameterization of Ref. [Sek83] , which is equivalent

to the results of Ref. [Mei89].

Therefore, the total pion self-energy reads

I1:(7,¢°) = II(p)s + II(7, ¢°) - (2.49)

The pion propagator can be obtained using the Dyson-Schwinger summation from
the pion self-energy, as it was done for the K propagator. Redefining k= gand w = ¢°,

the pion propagator reads

1
w? — k2 —m2 — I, (kr,w)

Dw(kvraw) = (250)

As in the case of the K meson, we can define a pion optical potential, Uy (ky,w), from

the complete 7 self-energy. We use

Ur(kryw) = V2 +m2 4+ T, (kr,w) — k2 +m2 | (2.51)
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which ensures that, when inserted in the G-matrix equation, one is using a quasiparticle
approximation to the spectral function, with the peak located at the right quasiparticle
energy defined by

(E®(k))* = k* + m2 + Rell, (k, E®) . (2.52)

Due to the small mass of the pion, it has not been possible to use the same relation

as for the K meson, namely, Iz (kg,w) = 2y/k% + m%iUg(kg,w), obtained by only

retaining the first term in the expansion of the first square root of Eq. (2.51).

The pion single-particle energy to be used in the solution of the G-matrix of Eq. (2.9)
is

Eo(k) = /K2 + m2 + Uy(k, E®) . (2.53)

The consequences of dressing the pions in the calculation of the K self-energy were
already reported in Ref. [Ram00, RamOlal], where it was shown that the results for
the K self-energy change substantially when pions are dressed with respect to the case
when only free pions are included in the intermediate states of the K N Bethe-Goldstone

equation.

Figs. 2.12 and 2.13 show clearly the importance of including the in-medium prop-
erties of pions in the calculation of the K self-energy. Fig. 2.12 displays the real and
imaginary parts of the K optical potential as functions of the K momentum for two
approaches: including the medium effects on the pion properties (solid lines) or disre-
garding them (long-dashed lines). When pions are dressed, the real part of the antikaon
potential becomes less attractive increasing up to —60 MeV at kx = 0 MeV/c, and
the imaginary part loses structure significantly. Fig. 2.13 shows the real and imaginary

parts of the s-wave KN G-matrix as functions of the invariant center-of-mass energy
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Figure 2.12: Real and imaginary parts of Uz at p = 0.17 fm=3 as functions of the antikaon
momentum with or without including the dressing of pions.

for I = 0 and I = 1. Tt is shown that the previous behaviour for the K self-energy
when pions are dressed is a direct consequence of the energy dependence of the KN
effective interaction for I = 0, which is the main contribution to the L = 0 compo-
nent because of the A(1405) resonant structure. Note that, due to the less attractive
antikaon potential, one explores this interaction at higher energies, further away from

the resonant structure.

It is especially interesting to observe the structure in the I = 0 amplitude appearing
below the 7% threshold, a region in energy not explored in previous works [Lut98a,

Ram00, Tol0la]. It appears that the resonance in the medium, previously identified
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Figure 2.13: Real and imaginary parts of the KN amplitude in the I = 0 L = 0 channel
(left panels) and the I = 1, L = 0 channel (right panels) at p = 0.17 fm 3 as functions of
the center-of-mass energy at total momentum |k &tk kx| = 0 with or without including the
dressing of pions.

with the bump in the imaginary part around 1400 MeV, might be more appropriately
identified with the more pronounced peak appearing around 1300 MeV. Whether this
is a new resonance (an additional pole in the complex plane) or just a reflection of the
same one but distorted by the presence of a cusp at the 7% threshold is something that
deserves further study. It is also surprising to note that when pions are not dressed this
double structure disappears. At the moment, we can only say that there is an enhanced
probability of finding a state with A-like quantum numbers around 1300 MeV. We note
that this structure would have been signaled by a pole in the real axis if neither the
pions nor the antikaons would have been dressed, since in this case there would not

have been allowed states to decay to. In the self-consistent many-body approach used
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here, the states to which this peaked structure can decay are of the type 7(ph)X or
K(Ahm)N, where in parentheses we have denoted an example for the component of

the 7 and K mesons that could show up at energies below the 73 threshold.

We note that in preparation to the finite temperature and higher density regimes
explored in the following chapters, the results presented in this section contain some
modifications on the properties of the baryons with respect to those used in Sec. 2.2.
First, we have introduced slight modifications in the single-particle potential of the A

and X hyperons, following the parameterization of Ref. [Bal97],

Upx(p) = —340p + 1087.50% , (2.54)

which is more appropriate for higher densities than the simple parameterization, linear

in p, used previously.

On the other hand, for nucleons, we have used a relativistic ¢ — w model, where
the scalar and vector coupling constants, g, and g, respectively, are density dependent,
[Mac89]. This is a simple way to mimic results from Dirac-Brueckner-Hartree-Fock
calculations and can be easily extended to the finite temperature case in the next
chapter. Further details about the 0 — w model for nucleons will be given in the

following chapter.



Chapter 3

The KN interaction in hot and

dense matter

The aim of this chapter is to study the properties of the K meson in hot and dense
matter. The calculation of the single-particle potential of the antikaon in symmetric
nuclear matter at 7' = 0 is extended to the finite temperature case. The inclusion of
temperature affects the Pauli blocking of the nucleons in the intermediate states, as
well as the dressing of mesons and baryons. In particular, we pay attention to the
temperature modifications on the pion self-energy. The present chapter is organized
as follows: Sec. 3.1 is devoted to the treatment of the temperature effects while our

results are presented and discussed in Sec. 3.2.

90
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3.1 Finite temperature effects on the KN interac-

tion

In the previous chapter, the KN interaction in the nuclear medium (G-matrix) at
T = 0 was derived from a meson-baryon bare interaction built in the meson exchange
framework [Mul90]. As it was shown there, one is facing a coupled-channel problem
as the bare interaction permits transitions from the KN channel to the 7¥ and 7A
ones, all having strangeness S = —1. In a schematic notation, each G-matrix fulfills

the coupled channel equation

(MiB, | G(Q) | MyBy) = (MyBy | V(V/s) | MyBy)

+ (B, | V(VB) | MyBy) 58— (01, | G(O) | MyBy) , (31
M3 B3 M3 By T U]

where ) is the so-called starting energy, given in the lab frame, and /s is the invariant
center-of-mass energy. In Eq. (3.1), M; and B; represent, respectively, the possible
mesons (K, 7) and baryons (N, A, ), and their corresponding quantum numbers,
such as coupled spin and isospin, and linear momentum. The function @z, stands
for the Pauli operator preventing the nucleons in the intermediate states from occupying
already filled ones. The coupled-channel equation is solved by means of a partial wave

decomposition and working in isospin basis.

As it was done previously, the prescription for the single-particle energies of all

the mesons and baryons participating in the reaction and in the intermediate states is

EMi(Bi)(k) Y k? + m?\/[i(Bi) + UMi(Bi)(k’ E?\Z-(Bi)) J (3.2)

written as
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where Upy,(p,) is the single-particle potential of each meson (baryon) calculated at the

real quasi-particle energy E%’i (Bi)" For baryons, this quasi-particle energy is given by

E? (k) = +/k? + m% + Ug, (k) , (3.3)
Bz Bz 1

while, for mesons, it is obtained by solving the following equation
(B, (k) = K + miy, + Relly, (k, B7) (3.4)

where 11, is the meson self-energy. The relation between IIy;, and U, is given in

Eq. (2.26) for the antikaon and in Eq. (2.51) for the lighter pion.

The introduction of temperature in the calculation of the G-matrix affects the
Pauli blocking of the intermediate nucleon states as well as the dressing of mesons and
baryons present in the intermediate states. The G-matrix equation at finite 7" reads

formally as in Eq. (3.1), but replacing

Qus — Qua(T)
G) — G(O,T)

EM ,EB — EM(T) ,EB(T) s

where the density and other dependences of these quantities have been omitted for

simplicity.
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3.1.1 The Pauli blocking at finite temperature

The function Q5 (T) or Pauli blocking is unity for meson-hyperon states while, for KN
states, follows the law 1 — n(ky,T'), where n(ky,T) is the nucleon Fermi distribution

at the corresponding temperature

1
n(ky,T) = EN(kN,T)W) . (3.5)

1+e( T

The nucleonic spectrum at finite 7', Ey(ky,T), is obtained following a ¢ — w model
that will be described in Sec. 3.1.2 and p is the chemical potential obtained by imposing

the normalization property

14

P o / Ehiy 0k, T) | (3.6)

at each density p, where v = 4 is the spin-isospin degeneracy factor of symmetric

nuclear matter.

As in the T = 0 case, we perform an angle average of the Pauli operator Qzn(T), a
strategy which facilitates the solution of the G-matrix equation in a partial wave basis.
We first define P and k as the total and relative momenta of the K N pair, respectively,
allowing us to rewrite the nucleon and antikaon momenta in the laboratory system,
ky and kg [see Eqs. (A.1) and (A.2)]. In terms of the total and relative momenta,
the Pauli operator Qzy(kn,T) reads Qz (| L‘i—gﬁ —k |,T) , which explicitly shows
the dependence on the angle between P and k. This dependence is eliminated in the

G-matrix equation by replacing QQzy by its angle average

I - 1 et4ef
QKN(k:P:T):§A df sinf QI_(N(kapaT):% lnma

(3.7)
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with
€
PR 5Vl
T 2mNT
k&P
B = ——— 3.8
T(1+§) my ’ ( )

being my the mass of the nucleon and £ = my/mg.

3.1.2 Mesons and baryons at finite temperature

e Antikaon

Temperature also affects the properties of the particles involved in the process.

The K optical potential at a given temperature is calculated according to

Ug (g, B2, T) = / Py nlkn, T) (KN | Ginoion(Q = E® + EZ.T) | KN)(3.9)

This expression is equivalent to Eq. (2.16) but introducing the Fermi distribution
for a given temperature. Once more, a self-consistent procedure for Ug is re-
quired. More explicitly, using the partial wave components of the G-matrix and

similarly to the "= 0 case [see Eq. (2.23)], we obtain

Ug(kg, E2,T) = % > @I+ 1)RI+1) /n(kN,T) k% dky  (3.10)

L,J,T

x((EN); k|G*" (P, EE (ki) + EY (kn), T)|(KN); k) |

where &k and P are the relative and center-of-mass momentum, respectively, av-

eraged over the angle between the external K momentum in the lab system, k %
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and the internal momentum of the nucleon, k N-

The K self-energy is obtained from the optical potential through the relation

Hf((kf(:waT) =2 \/ k%’( +m%{ Uf((kf(:waT) ) (311)

and, straightforwardly, the K propagator reads

1
Dg(kg,w,T)= , 3.12
r(kk ) w?— k% —my —lg(kg,w,T) (3.12)
being defined the corresponding spectral density as
1
Sglkg,w,T) = —=ImDg(kg,w,T) . (3.13)
7

We note that, as in the T" = 0 case, our self-consistent procedure amounts to
replace in the K propagator the energy dependent self-energy, g (kg,w,T), by
that evaluated at the quasiparticle energy, Iz (kz,w = E¥(kg),T). This is
what we refer to as the quasi-particle self-consistent approach, which retains the

position and the width of the peak of the K spectral function at each iteration.

e Pion

We also have to pay attention to the temperature effects on the properties of
the other hadrons participating in the process. One has to be especially careful
with the pion, since its small mass makes it very sensitive to variations in its

properties.

As mentioned in the previous chapter, the pion self-energy at 7" = 0 has been

obtained following a model that includes the coupling to 1p — 1h, 1A — 1h and
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2p — 2h excitations [see Sec. 2.4]. For the finite temperature case, the 1p — 1h

and 1A — 1h Lindhard functions are modified accordingly.

The effect of temperature in the pion self-energy comes from the modification of
the Fermi sea. At a given temperature, nucleons are distributed following the

corresponding Fermi distribution. Then, U(q, ¢°) of Eq. (2.46) transforms into

UG ¢, T) =Un(7,¢",T) + Ux(7, ¢, T) , (3.14)

(3.15)
n(k + ¢ T)[1 - n(k,T)]

—¢° — Ex(k) + Ex(k+ @) +in

and
Un(7,¢°,T) = (3.16)
, / Pk n(k,T) N n(k+q,T)
A g g T fd = - )
(@r)* [0+ B (k) = Ea(k+@) + 52 ¢ + En(k +) = Ea(k) + 5255

where the step function @ for nucleons has been replaced by the distribution

n(E, T) at the corresponding temperature, and vy and v are

Z/N:4,

9

Un = E(JC—Z)Z, JA 913
In

I

(3.17)

The imaginary part of Uy (g, ¢°, T) at finite temperature can be obtained analyt-
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ically

Uy (7,¢",T) = ImUy(d,¢°,T) +ImUy(q.¢°, T)
0

= ImUY(7,¢"7T) (1+eiq*) ,
T

3 m4T .  1—np",T) q°
I 7. T) = —= | ’ tanh | — 3.18
=2 =2
m q - my q
pr=—"+ , P = ¢ - ,
q 2mpy q 2my

where ImUP (7, ¢°,T) and ImUS (7, q°, T) are the imaginary parts of the direct
and crossed contributions (first and second terms on the r.h.s. of Eq. (3.15),

respectively).

The real part of Uy(q,q°, T) is obtained via the dispersion relation

1 I Dig W' T 1 I Cqguw.T
ReuN(q—" qO,T) _ ——P/dw' muN (q;w s ) B —P/dwl muN(q,w ) ) (319)
m ¢ — m —¢" 4w

or, in a more compact form,

ImUy (", T) tanh ()
qO —w' :

1
Reldy(7.",T) = — P / du (3.20)

Egs. (3.18) and (3.20) define the nucleon Lindhard function at finite 7.

As mentioned in the appendix of Ref. [Ose90], the 1A — 1A Lindhard function at
T =0, Ua(7,q°), can be derived analytically by neglecting the difference of k2
terms in

k? 7 kG

Enx(k)— Ea(k+q) = e " B " am T TN T ma (3.21)
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and assuming that the A width only depends on the external variables. We
perform the same approximations at finite 7. Redefining k+ q— —k in the
second term on the r.h.s of Eq. (3.16), such that it becomes the same as the first

one but changing ¢° — —¢°, we finally arrive at

o 2 *\?m
UA(Q,QO,T) = 3 (—A> q??,p/dkkn(k,T)

F
2t +1 z7+1
| .22
BEDeE)] e
s _ maf o @ . I'(x¢",q)
S qk( 1 2ma (ma = my) +1 2

The expression for the pion p-wave self-energy at finite temperature reads

2 —
. . R AU
M@ 1) = Fad) (D) ¢ ) (3.23)
Mg 1- (m_]\:r)2g’u(Q7q07T)
U7 = Un(qq¢",T)+Us(q,¢",T) ,
where F(q,q") is the form factor,
A2 — m2 2
F(a 0 — s
@ = (@)
A = 1200 MeV | (3.24)

and ¢’ is the Landau-Migdal parameter described in Ref. [Ose82a]. Eq. (3.23)
is equivalent to Eqs. (2.46) obtained at 7' = 0. The total pion self-energy also

includes a s-wave piece, as it was done for 7' = 0 [see Eqgs. (2.48) and (2.49)].

As for the T' = 0 case, we can define a pion optical potential, Uy, (kr,w,T), from
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the complete 7 self-energy using the relation

Up(bp,w,T) = \/E2 +m2 + T (kp,w,T) — \/E2 +m2 | (3.25)

where we have redefined w = ¢° and EW = ¢. The spectral density for 7 is
calculated from Egs. (3.12) and (3.13), by replacing the K properties for those

of the .

e Nucleon

In the case of nucleons, we have introduced temperature effects following the
Walecka o0 — w model [Ser86], using the density dependent scalar g, and vec-
tor g, coupling constants at 7 = 0 given in Ref. [Mac89], which mimic Dirac-
Brueckner-Hartree-Fock results. In this model, the interaction between nucleons
is considered as the result of the exchange of attractive scalar (o) and repul-
sive vector (w) bosons. The Lagrangian density built using this model leads to
a series of coupled equations that are solved in a mean-field approximation in
nuclear symmetric matter using the Hartree approximation. Solving the meson-
field equations in this approach, the vector field 3° turns out to be associated to
the baryonic nuclear density p = (UW) of the system while the scalar field ¥* is

related to the so-called scalar density ps = (W)

2 2
g’U S gS

EOZ_(;) Ps E:_(m_> Ps
v

The quantities m, and m, are the masses of the w and ¢ bosons, respectively, v
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is the spin-isospin degeneracy factor of nuclear symmetric matter and ¥ is the
nucleon field. The solution of the Dirac equation for nucleons with the scalar and

vector fields calculated in this approach gives the following set of relations

m* = my+ X%,

Ex(k) = E'(k) -,

E*(k) = \/k% +m?, (3.27)

where m* and Ey(k) are the Dirac effective mass and the energy spectrum for
nucleons, respectively. It is seen that once the Dirac equation is solved, the scalar

density ps can be obtained straightforwardly

ps = ok /0 3k B0 (3.28)

In order to obtain the effective mass m*, a self-consistent process is needed. Using
the expressions for the effective mass m*, the scalar field ¥° and the scalar density

ps, one sees that m* can be calculated self-consistently according to

2 kp *
* _ & v 3 m
= <m> @)y / TR
2
Js vm* . . kr + E*
= my— (5) T (kFEF — (m*)%n (u) ) . (3.29)

m

The determination of m* allows us to calculate the quantities that describe the

system, such as energy and pressure.

When temperature effects are introduced, a new parameter, the baryonic chemical

potentical p appears. The baryonic chemical potential, u, the effective mass,
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m*(T), and the vector potential, 3°(T'), should be obtained simultaneously fixing
the temperature and the density. The value of p is defined via the baryonic
density, p, [see Egs. (3.5) and (3.6)], where En(ky,T) is the nucleonic energy

spectrum at finite temperature

En(ky,T) = \/k% +m*(T)2 — (T , (3.30)

and X°(T) and m*(T) are defined as

m*(T)
K%+ m*(T)?

m*(T) = m— <£>2(”—)3 / Py (k. T) . (3.31)
These expressions are equivalent to Egs. (3.26), (3.27) ,(3.28) and (3.29) for the
T = 0 case. One clearly sees that, given g,, g, and a fixed p, X°(T) is easily
obtained. On the other hand, a simultaneous solution of p and m*(T) is now
needed to determine the nucleonic spectrum. We note that the antiparticle con-
tribution to the density p has been proven to be negligible, so it is not considered

here.

e Hyperons ¥ and A

For the hyperons ¥ and A, we have not considered changes in their properties
induced by the use of a given temperature. We have checked, in a schematic
Skyrme-Hartree-Fock calculation, that the changes due to the temperature ef-
fects are small within the temperature range explored in this work. Hence, the
parametrization of the hyperon optical potential in terms of density of Eq. (2.54)

is kept.
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Figure 3.1: Nucleon energy spectrum and nucleon potential at p = 0.17 fm~2 as function
of the nucleon momentum for different temperatures.

3.2 Finite temperature results for the K optical po-
tential
The starting-point of this section is the study of the effect of the temperature on the

nucleon spectrum and the pion self-energy, both of them crucial ingredients for the

calculation of Uz. In Fig. 3.1, the nucleon spectrum and the nucleon potential, defined
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Figure 3.2: Spectral density of the pion at p = 0.17 fm™3 as a function of energy for
kr =200 MeV /c and k; = 400 MeV /c, and for T'= 0 MeV and 7' = 70 MeV.

as Uy = En— \/m , are given as functions of the nucleon momentum for various
temperatures at the nuclear saturation density po = 0.17 fm™®. The lowest curves in
both graphs correspond to 7" = 0 and, as the value of the temperature increases up to
T =70 MeV (solid lines), the attractive potential gets reduced from around —80 MeV
to —40 MeV at ky = 0. Consequently, the energy spectrum for ky = 0 goes from
860 MeV to 900 MeV. A similar trend is observed for higher values of the nucleon

momentum. This behavior is well known for the ¢ — w models, as it is reported in

Ref. [Ser86].

The next two figures give us information about the pion self-energy and how it
is modified by temperature. Figure 3.2 displays the spectral density of the pion as a

function of energy at nuclear saturation density, po = 0.17 fm™®, for two pion momenta,
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kr = 200,400 MeV, and two different temperatures, 7 = 0 MeV (dotted lines) and
T =70 MeV (solid lines). At 7' = 0, the structure of the 1p — 1h excitations can be
seen very clearly on the left side of the quasiparticle peak. This structure smooths
out as temperature increases. The effect of 1A — 1h excitations is more difficult to
be identified for these two momenta. It is only somewhat appreciated at 7' = 0 by a
slower fall of the spectral function to the right of the quasiparticle peak. The effect of
temperature is to move the quasiparticle peak slightly away from the 7" = 0 position

towards lower energies, making it noticeably wider.

In Fig. 3.3 we show the pion optical potential as defined in Egs. (2.51) and (3.25).
The real and imaginary parts of the pion optical potential at nuclear saturation density
are displayed as functions of the pion momentum, k,, for different temperatures. The
dotted lines correspond to T' = 0, and the results for the highest temperature studied,
T = 70 MeV, are represented by the solid ones. In the region of pion momenta
explored here, the imaginary part shows a stronger dependence on the temperature
than the real part, which is practically T-independent. Note that the quasiparticle
energy, which defines the position of the quasiparticle peak in the spectral function, is
determined through the real part of the pion self-energy [see Eq. (3.4)], and it is not
directly obtained from Re U,, where U, is given in Eq. (2.51) and (3.25). This explains
that, while Re U, at k, = 400 MeV is practically the same for T'= 0 and 70 MeV, the
location of the peak differs more markedly. Similarly, the width (or height) of the peak
for the different temperatures cannot be directly calculated from Im U,, but has to be

obtained from ImII, at the quasiparticle energy.

Once the pion self-energy is introduced in the calculation of the K optical po-

tential, its effects can be studied by comparing the results obtained by dressing only
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Figure 3.3: Real and imaginary parts of U, at p = 0.17 fm 3 as functions of the pion
momentum for various temperatures.

the K mesons with those in which not only the K mesons but also the pions in the

intermediate meson-baryon states are dressed.

In Fig. 3.4, the real and imaginary parts of the K optical potential at nuclear
saturation density are shown as functions of the antikaon momentum, k%, for different
temperatures. On the left panels, only the K mesons have been dressed, while the
results on the right panels incorporate, in addition, the dressing of the pions. Dotted

lines correspond to 7" = 0 and solid lines to 7" = 70 MeV. At T'= 0 we find the same
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Figure 3.4: Real and imaginary parts of Uz at p = 0.17 fm 3 as functions of the antikaon
momentum for several temperatures, dressing only K (left panels) and dressing both K and
7 (right panels).

qualitative effects from dressing the pions as those found by the chiral model [Ram00)]

shown in Ref. [Ram0la] [see comments in Sec. 2.4].

When temperature increases, we can see on the right panels of Fig. 3.4 that the
optical potential loses attraction and absorptive power, although the effect is moderate.
The reason is obvious: as it can be seen from Eq. (3.9), and assuming a weak depen-
dence of the effective interaction Gz on temperature, at a finite 7" one is averaging

over higher momentum states, where this interaction is weaker. Nevertheless, at suffi-
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Figure 3.5: Real and imaginary parts of the KN amplitude in the I = 0, L = 0 channel
(left panels) and the I =1, L = 0 channel (right panels) at p = 0.17 fm 3 as functions of the
center-of-mass energy at total momentum |kz + kn| =0 for T = 0 MeV and T = 70 MeV.

cient high T [see the 70 MeV results on the right panels of Fig. 3.4], one starts to gain
some attraction and absorption. Evidently, this is a consequence of the T-dependence
of the effective interaction. To visualize this additional dependence on 7', we show in
Fig. 3.5, the KN amplitude for the channels L =0, ] =0 and L = 0, I = 1, at zero
center-of-mass momentum, for two different temperatures, T = 0 (dotted lines) and
T =70 MeV (solid lines). The general trends of the KN amplitude at these two tem-
peratures are similar but there are small differences that explain the behavior observed
in the previous figure for the K optical potential. Indeed, the KN amplitudes involved
in the construction of the K optical potential correspond to energies above 1300 MeV
and, in that region, the magnitude of the real part of the amplitudes at 7" = 70 MeV

is larger than the 7" = 0 one, thereby compensating the loss of attraction induced by
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Figure 3.6: Partial wave contributions to the real and imaginary parts of the K optical
potential at p = 0.17 fm~2 as functions of the antikaon momentum for 7" = 70 MeV.

the higher relative momentum components present in the K optical potential at finite
T. The structure in the I = 0 amplitude below the 7Y threshold, already commented

in Sec. 2.4, is still present even when temperature effects are included.

We have also studied the contributions of angular momentum components larger
than L = 0 to the antikaon optical potential, as we did for the T = 0 case in Chapter
2. In Fig. 3.6 we display the contribution of the different partial waves to the real

and imaginary parts of the K optical potential at nuclear saturation density and a
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Figure 3.7: Real and imaginary parts of the K optical potential as functions of the tem-
perature for different densities.

temperature of 7" = 70 MeV. We observe that adding the higher partial waves to

the L = 0 contribution up to L = 4 produces significant changes. The momentum

dependence of the K optical potential becomes smoother, the real part becomes more

attractive, and the imaginary part increases by about 25% at kz = 0 and by 50% at

momenta around 500 MeV /c.

In Fig. 3.7 we plot the real and imaginary parts of Uz as functions of temperature

for different densities. It is interesting to observe that Uz depends very weakly on

temperature and stays attractive over the whole range of temperatures explored. This
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Figure 3.8: Real and imaginary parts of the K optical potential as functions of the tem-
perature for different densities only including the Pauli blocking on the nucleons

is qualitatively different from the results shown in Fig. 2 of Ref. [Scha00], where the
potential becomes repulsive at a finite temperature of 7" = 30 MeV for p = py,. We
note that, although in that work a self-consistent scheme was also applied, the only
source of medium effects in their Fig. 2 was the Pauli blocking of the nucleons in
the intermediate states. If only the Pauli blocking is considered, Fig. 3.7 transforms
into Fig. 3.8. In this figure, the temperature dependence is not as smooth as seen
before in Fig. 3.7 and the potential is still attractive even for p = 2py in the range

of temperatures studied. Furthermore, it is observed a tendency to remain attractive
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Figure 3.9: Real and imaginary parts of the K optical potential as functions of the K
momentum for 7' = 10 MeV and T = 70 MeV at p = py with only Pauli blocking effects,
including the L = 0, I = 0 component separately.

even when the temperature increases. In Ref. [Scha00], the transition from attraction
at T' = 0 to repulsion at finite 7" is explained by means of the weakened Pauli blocking
effects associated to a thermal smearing of the Fermi surface, such that eventually one
is recovering the p = 0 repulsive behavior. To investigate this effect, we plot in Fig. 3.9,
the real and imaginary parts of the antikaon optical potential at p = py for 7" = 10
MeV (thin lines) and T' = 70 MeV (thick lines) as functions of the antikaon momentum,
showing explicitly the L = 0, I = 0 component for those temperatures (dashed lines).

We indeed see that the Pauli effects are weaker as temperature increases since for the
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L =0, I =0 component of the interaction, the K optical potential at £ = 0 changes
from being attractive at 7= 10 MeV (thin dashed line) to being repulsive at 7' = 70
MeV (thick dashed line) because of recovering the repulsive behaviour of the A(1405)
resonance at p = 0. However, the features of the complete Jiilich KN interaction
contained in the solid lines make the antikaon optical potential remain attractive for
the temperatures and momenta explored, even if only Pauli blocking medium effects

have been considered.

The results shown in Fig. 3.7 demonstrate that self-consistency effects have a
tremendous influence on the behavior of the K optical potential with temperature.
In particular, for temperatures as high as 70 MeV, the real part of Ug (kg = 0) at po
is very similar to that at 7" = 0, having lost only about 10 MeV of attraction. The
attraction found here for the K optical potential at finite p and T, together with en-
hanced in-medium K~ production cross sections [Ohn97, Scha00], may help to explain

the enhanced K~ /K™ ratio measured at GSI by the KaoS collaboration [Kao90s].

Finally, in Fig. 3.10 we present the K spectral function as a function of energy for
two momentum values, kz = 0 and 400 MeV/c, at T = 0 (dotted lines) and T = 70
MeV (solid lines). The structures observed on the left hand side of the peaks, especially
visible for the 7' = 0 spectral functions, are due to the excitation of hyperon-hole states
with K quantum numbers that are present when the L = 1 components of the KN
interaction are incorporated. We note, however, that the highest peak observed in
the T = 0 spectral function for kz = 0 corresponds to the enhancement observed in
the ] = 0 KN amplitude below the 7% threshold. The inclusion of a finite 7" washes
most of these structures out, and the resulting spectral functions show basically a

single pronounced peak. Note that the spectral function at p = py for 7" = 0 in
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Figure 3.10: Spectral density of the antikaon at p = 0.17 fm~2 as a function of energy for
antikaon momenta kz = 0 and kz = 400 MeV/c and for 7= 0 MeV and 7' = 70 MeV.

Fig. 3.10 differs from the spectral function of Fig. 2.9 under the same conditions. This
is due to the inclusion of the pion dressing in the K self-energy and, therefore, denotes
the importance of considering the pion properties with the corresponding in-medium

modifications.



Chapter 4

K~ /K™ ratio at GSI in hot and

dense matter

In this chapter the K~ /K™ ratio produced in heavy-ion collisions at GSI energies
is studied including the in-medium properties at finite temperature of the hadrons
involved. Particular attention is paid to the in-medium properties of the antikaons,
which determine the chemical potential and temperature at freeze-out conditions for a
given experimental K~ /K™ value. The chapter is organized in the following way: the
experimental ratio K~ /K™ is presented in Sec. 4.1 while thermal models are introduced
in Sec. 4.2 in order to define the K~ /K™ ratio in the context of these statistical models.
Sec. 4.3 is dedicated to include the antikaon self-energy at finite temperature in the
calculation of the K~ /K™ ratio. The discussion of the effects of dressing the K~ meson

on this ratio is left for Sec. 4.4.

114
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4.1 The experimental K~ /K™ ratio at GSI

Heavy-ion collisions at energies around 1 — 2 AGeV offer the possibility of studying
experimentally the properties of hadrons in a dense and hot nuclear system [Oes02,
Sen01, Stu02]. In particular, a considerable amount of information about antikaons is
available. Within the different experimental programs developed, the Kaon Spectrom-
eter (KaoS) of the SIS heavy-ion synchrotron at GSI (Darmstadt) has investigated the
production and propagation of kaons and antikaons under extreme conditions of den-
sity, around 2-3 nuclear saturation density, and temperature, with values of the order
of T = 70 MeV. The experiments have been performed with Au+Au, Ni+Ni, C+C
at energies between 0.6 and 2.0 AGeV [Ahn97, Bes97, Cro00, Kao90s, Men00, Mis94,
Rit95, Shi98, Stu01].

One astonishing observation in C+C and Ni+Ni collisions [Kao90s, Men00] is that,
as a function of the energy difference /s — /s, where /s, is the minimum energy
to produce the particle (2.5 GeV for KT via pp — AK*p and 2.9 GeV for K~ via
pp — ppK~K*), the number of K~ balanced the number of K* for equivalent en-
ergies in spite of the fact that in pp collisions the production cross-sections close to
threshold are 2-3 orders of magnitude different. This observation could be explained in
terms of an attractive optical potential for K~ meson, although another complemen-
tary explanation in terms of an increased production of K~ meson through the 7Y

collisions has also been advocated [Scha00].

On the other hand, equal centrality dependence for K™ and K~ and, hence, inde-
pendence of centrality for the K~ /K™ ratio is also been observed in Au+Au and Pb+Pb

reactions between 1.5 AGeV and RHIC energies [Ahl90s, Dun00, For02, Har01, Men00,
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Ogi01]. The centrality independence of the K~ /K™ ratio has often been considered as
signaling the lack of in-medium effects. However, Brown et al. [BroOla, Bro0O1b] intro-
duced the concept of “broad-band equilibration” according to which the K~ mesons
and the hyperons are produced in an essentially constant ratio independent of density.
The idea is that the increase in density and hence, the baryonic chemical potential, is
compensated by the attraction felt by the antikaon. Therefore, the centrality indepen-

dence of the K~ /K™ ratio could also be explained including in-medium effects.

In summary, there is a strong debate about how in-medium effects come into play
on the production and propagation of antikaons in heavy-ion collisions, especially at
energies of GSI. This chapter is devoted to study the influence of the different ways of
dressing the antikaons on the experimental K~ /K™ ratio, the value of which is 0.031+
0.005 for Ni+Ni collisions at GSI [Men00], with the aim of bringing new insight into

this problem.

4.2 Thermal Models: the K~ /K™ ratio

In this section we present a brief description of the thermal models to account for
strangeness production in heavy-ion collisions. The basic hypothesis is to assume that
the relative abundance of kaons and antikaons in the final state of relativistic nucleus-
nucleus collisions is determined by imposing thermal and chemical equilibrium, al-
though only chemical equilibrium is fully justified [Cle98a, Cle99a, Cle98b, Cle99b,
Cle99c¢, Cle00, Hag85]. The fact that the number of strange particles in the final state is
small requires a strict treatment of the strangeness conservation and, for this quantum

number, one has to work in the canonical scheme. Other conservation laws must also
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be imposed, like baryon number and electric charge conservation. Since the number
of baryons and charged particles is large, they can be treated in the grand-canonical
ensemble. In this way, the conservation laws associated to these other quantum num-
bers are satisfied on average, allowing for fluctuations around the corresponding mean

values.

To restrict the ensemble according to the exact strangeness conservation law, as
done in Refs. [Cle98a, Cle99a, Cle98b, Cle99b, Cle99c, Cle00], one has to project the
grand-canonical partition function, Z (T, V, Ag, As, Ag), onto a fixed value of strangeness

S,
1 2 . -
Zs(T,V, A, \g) = 2_/ do e Z(T,V, Ap, As, A\q) (4.1)
™ Jo

where Ag, Ag, Ag are the baryon, strangeness and charge fugacities, respectively, and
where \g stands explicitly for Ag = €**. The exact treatment of the strangeness in
statistical mechanics by projecting the partition function onto the desired value of
strangeness comes from the application of group theoretical methods (see references

[Mul85, Red80s]).

Only particles with S = 0, £1 are included in the grand-canonical partition func-
tion because, in the range of energies achieved at GSI, they are produced with a higher
probability than particles with S = 42, +3. The grand-canonical partition function is
calculated assuming an independent particle behavior and the Boltzmann approxima-
tion for the one-particle partition function of the different particle species. In princi-
ple, one deals with a dilute system, so the independent particle model seems justified.

However, medium effects on the particle properties can be relevant. As mentioned
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previously, the aim of this paper is to study how the dressing of the hadrons present
in the gas, especially the antikaons, affects the observables such as the ratio of kaon
and antikaon particle multiplicities, in particular for the conditions of the heavy-ion

collisions at SIS/GSI energies.

Within the approximations mentioned above, the grand-canonical partition function

reads as follows,

Z(T, VY, )\B, )\5, )\Q) - eXp(NS:() + N5:_16_i¢ + NS:16i¢) 5 (42)

where Ng—g 11 is the sum over one-particle partition functions of all particles and

resonances with strangeness S = 0, 41,

No—os1 = > Zp+> Zi,+ > Zny (4.3)
Bi Mj Rk

d3k —EB;, kB, QB

leg = UpB; V / W e TB 6% e QTB s (44)

¢ ‘s

d3k, —Ep. BQ(M;)

Zjl\/lj = gm; V / (2r) O

1 d?’k m+20 k2+s ViZts 1 mI pB(Rg) bQ(Rg)
ZRk = gr, V ;(S—mQ)Z—I—mQFQ (e T ) e T .

The expressions Z}gi and Z}V[j of Eq. (4.4) indicate the one-particle partition function
for baryons and mesons respectively, while lezk is the one-particle partition function
associated to a baryonic or mesonic resonance. In this latter case, however, the factor

(Ry) . . i
e "7 would not be present. Notice that the resonance is described by means of a

Breit-Wigner parameterization. The quantity V is the interacting volume of the system,
9B, gu and gg are the spin-isospin degeneracy factors and pup and pg are the baryonic

and charge chemical potentials of the system. For Ni+Ni system at SIS energies, g
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can be omitted because it is associated to the isospin-asymmetry of the system and, in
this case, the deviation from the isospin-symmetric case is only 4% (see Ref. [Cle98b]).
On the other hand, up will be fixed to the nucleonic chemical potential, yy, because
the abundance of nucleons is larger than the one for the other baryons produced. The
energies Eg, Ey, refer to the in-medium single-particle energies of the hadrons present

in the system at a given temperature.

Following Ref. [Cle98b], the canonical partition function for total strangeness S = 0
is

1 2T . .
ZS:O(T, ‘/, )\B) = % / dd) exp(N5:0 + NS:_le_Z¢ + N5:1€Z¢) . (45)
0

In that work, as well as in Ref. [Cle99b], the small and large volume limits of
the particle abundances were studied. These limits were performed to show that the
canonical treatment of strangeness for obtaining the particle abundances gives com-
pletely different results in comparison to the grand-canonical scheme, demonstrating
at the same time that, for the volume considered, the canonical scheme is the appro-
priate one. The aim of going through these limits again in the following is to remind
the reader that, for the specific case of the ratio K~/K™*, the result is independent
of the size of the system and is the same for both the canonical and grand-canonical

treatments.

According to statistical mechanics, to compute the number of kaons and antikaons

[Hag85] one has to differentiate the partition function with respect to the particle
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fugacity

Ng-(x+) = (/\K—(K+) In ZS—O(/\K—(K+))) . (4.6)

Ag—(x+)=1

OA k- (K+)

Expanding Zs_, in the small volume limit, Ny - and Ng+ are given by
d*k -F
NK+ = gK+V/ ﬁe 7{<+ X

d3k —-Ep, (S_—1)+/"B 3k ~Pu (5_71)
{Zgz / +Zgg /W +ZZRk(5 } 5

d3k 5y
NK— = gK—V/(QW)?,@ T X

d3k EMZ(S +1)
{Zgjv/ (27T) + ZZRk(S +1)} : (4.7)
J

and the ratio reads

Ng- K- Z_ Zypr + lel/[,S:—l—l
NK+ B K+ B Z}(+ Z}(- + )\B ZE’S:—I + Z&,S:—l

: (4.8)

where we have substituted the explicit expression for the K~ (K ™) partition function
by the schematic notation Z; _(Zj) and where Zg g_.,(Z}; g—1,) is the sum of one-
particle partition functions for baryons (mesons) with S = +1.

_2up .
= € T 1S neg-

Slfse]

Antibaryons have not been considered here because the ratio
ligibly small at GSI/SIS colliding energies, where B and B represent the number of
baryons and antibaryons, respectively. The expression for Ng+ (Ng-) indicates that
the number of KT (K~) has to be balanced with all particles and resonances with
S = —1(S = 1). It can be observed in Eq. (4.8) that the ratio K~ /K* for small

volume in the canonical ensemble does not depend on the volume because it cancels
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out exactly.

At the other extreme, i.e. in the thermodynamic limit (large volumes), since it is
known that the canonical treatment is equivalent to the grand canonical one, one can

compute the ratio explicitly from the grand-canonical partition function Z(T, V, Ag, As),

1 1

_ 1
InZ(T,V, A\, As) = AsZpc+ + )\—Z}(_ + ABA—Z}Q,S:_1 + AsZyyg-q1 + 3 Zyr5——1, (4.9)
5 5 5
Then, by imposing strangeness conservation on average,
0 _
one can easily obtain Ag,
AZ — Z}(_ + AB Z%?,S:—l + ZJIW,S:—I (4 11)
* Z}("r + le\/I,S:-‘rl
Therefore, from
(Ng+) = As Zgew
1
(V=) = 5 Zi- (4.12)
one obtains the ratio
K- ZL Zyer + Zyy g
= 2K Kt _ “M,5=+ (4.13)

K+ Z11(+ Z}(, + A ZJIB,S:A + Zzlvf,s:q '

The condition (S) = 0 dealing with strange particles of S = 0,£1 makes the ratio be

independent of the volume.
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Although the expression obtained is the same as that from the canonical ensemble
in the small volume limit, the proof that the ratio K~ /K™ is independent of the volume

has to be obtained from a general intermediate size situation.

This was shown to be the case in Ref. [Cle99¢|. The idea is to expand Zg—o(7, V, Ag)
of Eq. (4.5) in power series

1 [ T . :
Zs—o(T,V,\g) = ZO%/O dqbz Z po N3, Ni__; exp(im@) exp(—ing),(4.14)

m=0 n=0

where Zj is the partition function that includes all particles and resonances with S = 0.

Performing the integral over ¢, we obtain

=1
Zso(T,V,dp) = 2o 5 (Ns=1 Ns—1)", (4.15)

n=0
where one can recognize the modified Bessel function Iy(z;) in the form of a series
expansion, i.e., Zs—o(T,V, Ag) = Zolo(x1) with z; = 24/Ng_1Ns—_;. Using Eq. (4.6),

the number of kaons and antikaons is given by

Nes — Zl Ng—_1 I1(~T1)
K K+\/NS:1NS—1 10(551) ’
Ng_ I
Ne- = ZL_ s=t hle) (4.16)

V/Ns=1Ng—_1 Ip(z1) ’

so the computed Ng-/Ng+ = K~ /K™ ratio gives precisely the same expression as
those given here for small [Eq.(4.8)] and large [Eq.(4.13)] volumes. Therefore, as noted
in Ref. [Cle99b], the K~ /K™ ratio is independent of the volume and, consequently,

independent on whether it is calculated in the canonical or grand-canonical schemes.
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4.3 The influence of the K~ self-energy on the ratio

In this section we study how the in-medium modifications of the properties of the
hadrons at finite temperature affect the value of the K~ /K™ ratio, focusing our atten-
tion on the properties of the antikaons in hot and dense matter. For consistency with
previous papers, we prefer to compute the inverse ratio K*/K~. As it was mentioned
before, the number of K~ (K ™) has to be balanced by particles and resonances with
S = +1(S = —1) in order to conserve strangeness exactly. For balancing the number of
K™, the main contribution in the S = —1 sector comes from the A and X hyperons and,
in a smaller proportion, from the K~ mesons. In addition, the effect of the X*(1385)
resonance is also considered because it is comparable to that of the K~ mesons. On
the other hand, the number of K~ is only balanced by the presence of K. Then, we
can write the K /K~ ratio as,
Kt Zp (Zy 4 Z) + Zs + Zs:.) Zy+ Zs + Z

=1 4.17
K- 7L 7L, L7 N (4.17)

where the Z’s indicate the different one-particle partition functions for K=, K, A, ¥
and ¥*, and, for baryons, they now contain the corresponding fugacity. It is clear from
Eq. (4.17) that the relative abundance of A, ¥ and ¥* baryons with respect to that of

K~ mesons determines the value of the ratio.

In order to introduce the in-medium and temperature effects, the particles involved
in the calculation of the ratio are dressed according to their properties in the hot and

dense medium in which they are embedded. For the A and ¥ hyperons, the partition
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function

Pkpy —Fazten
T

(2m)3 !

ZA,E = gA’gV/ (4.18)

is built using a mean-field dispersion relation for the single-particle energies

LINSERY k3 s +mis+Uss(p) - (4.19)

For Uy (p), we take the parameterization of Ref. [Bal97], Ux(p) = —340p + 1087.5p°.
For Us(p), we take a repulsive potential, Us(p) = 30p/po, extracted from analysis
of Y-atoms and Y-nucleus scattering [Mar95, Daw99], where py = 0.17 fm=3 is the
saturation density of symmetric nuclear matter. A repulsive ¥ potential is compatible
with the absence of any bound state or narrow peaks in the continuum in a recent

Y-hypernuclear search done at BNL [Bar99].

On the other hand, the ¥*(1385) resonance is described by a Breit-Wigner shape,

3L, mygx 420 —v/kEets ] I
s s gz*V/ &/ dse T = sz —— e T (4.20)
with my- = 1385 MeV and I' = 37 MeV.
In the case of K+ we take
d3k -E
L+ = 9K+V/ 2 K;G 7 ) (4.21)

)
Ex+ = \/ k%{+ + m%{-#— + UK+(IO) ) (4-22)

where Ug+(p) = 32p/py is obtained from a tp approximation, as discussed in Refs.[Kai95,
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Ose01].

A particular effort has been invested in studying the antikaon properties in the
medium since the KN has a particularly rich structure due to the presence of the
A(1405) resonance [Lut98a, Ram00, Scha00, Tol01a]. The antikaon optical potential in
hot and dense nuclear matter has recently been obtained [Tol02] within the framework
of a coupled-channel self-consistent calculation taking, as bare meson-baryon interac-
tion, the meson-exchange potential of the Jiilich group [Mul90]. In order to understand
the influence of the in-medium antikaon properties on the K* /K~ ratio, two different

prescriptions for the single-particle energy of the antikaons have been considered.

First, it has been used the so-called on-shell or mean-field approximation to the

antikaon single-particle energy. The antikaon partition function in this approach reads

d3kK— )
Zg- = gK_V/We Ty,

Ex- = ’\/ki(— +m%(— +UK*(kK*:EK*7p7T) ) (423)

where U (kx—, Ex-, p,T) is the K~ single-particle potential in the Brueckner-Hartree-

Fock approach given by

Ug-(kx-, Ex-,p,T) = Re/ d*k n(k, T){KN | Ggn_an(Q=Exy + Eg,T) | KN) ,

(4.24)
which is built from a self-consistent effective KN interaction in nuclear symmetric
matter, averaging over the occupied nucleonic states according to the Fermi distribution

at a given temperature, n(k,T).

The second approach incorporates the complete energy-and-momentum dependent
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K~ self-energy

HK—(kK—,UJ,IO, T) =2 \/ki{_ —|-m%( UK— (kK—,(JJ,,O, T) y (425)

via the corresponding K spectral density

Sk-(krx-,w,p,T) = —%ImDK_ (kx-,w,p,T) , (4.26)
where
D (b0, T) = (g _IHK_ renre SRECEY
stands for the K~ propagator. In this case, the K~ partition function reads
Zg- = gK—V/ %/ds Sk (kx—,vs,p,T) et (4.28)

where s = w?.

We note, however, that only the s-wave contribution of the Jiilich KN interaction
has been kept. The reason is that the KN potential presents some short-comings in
the L = 1 partial wave, which manifest especially in the low energy region of the
K~ self-energy, as already pointed out in Chapter 1. Specifically, the A and > poles
of the KN T-matrix come out by about 100 MeV lower than the physical values
and, consequently, the corresponding strength in the antikaon spectral function due
to hyperon-hole excitations appears at too low energies, a region very important for
the calculation we are conducting here. In addition, the role of the ¥*(1385) pole,
which lies below the KN threshold, is not included in the Jiilich KN interaction. In

order to overcome these problems, we have added to our s-wave K~ self-energy the
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p-wave contribution as calculated in Ref. [Ose01]. In this model, the p-wave self-energy
comes from the coupling of the K~ meson to hyperon-hole (Y N!) excitations, where

Y stands for A, ¥ and ¥*. In symmetric nuclear matter at 7' = 0, this self-energy is

—wave (7} I r9rNa\? 7 7
HZ;(* (k,w,p) = 5( 2M> ka/% Z/{A(kaw:p)
3 (9rNs\? 72 42 7
+ 5 (TR R U (R w,p)
1 9rns\2 72 42 7
+ 2( o ) K212, Us- (K, w, p) (4.29)

The quantities ggna, 9rns and ggys+ are the KNA, KNY. and KNX* coupling
constants, while fx, fx, fs« are the A, X, ¥* relativistic recoil vertex corrections and
Up, Us, Us~ the Lindhard functions at 7" = 0. Following Ref.[Ose01], the Lindhard

function for Y = A, ¥ or ¥* is obtained from

Bk 0(kr — k)
277—)3CU+EN(E) —Ey(E+Ey)+i77

Uy (R, p) = vy / : (4.30)

where vy contains the sum over spin-isospin degrees of freedom in symmetric nuclear

matter. The final expression for 7' = 0, given in Ref.[Ose90, Ose01], is

Uy(Ey,w,p) = ReUy(Ey,w,p)+iImUy(Ey,w,p),

= 1 1
Rely (ky,w,p) = §p my {z+—(1—22)ln|z+ |},

2 kykp 2 ‘Z - 1|
g 3 my 9
ImUy (ky,w,p) = —=mp {1=290(1—2])} , (4.31)
4 "kykp
with
my Ey2
_ _ — — 4.32
& kykr {w 2my (my mN)} ’ (4.32)

where my and my are the masses of the hyperon and nucleon, respectively. Actually,
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Eq. (4.30) can be obtained from Eq. (2.43) by ignoring, due to strangeness conser-
vation, the crossed-term contribution and making the width I' = 0 not only in the
case of the stable A and X hyperons but also, for simplicity, in the case of the ¥*
hyperon. Moreover, the spin-isospin degeneracy factor in Eq. (2.43) has to be changed

accordingly.

The relevance of this low energy region makes advisable to extend this p-wave
contribution to finite temperature. In this case, the function 8(kr — k) in Eq. (4.30)

should be substituted by the corresponding Fermi distribution, n(k,T") and one obtains

Z/{Y(]_C'y,u),p,T) = ReuY(EY:w7p7T)+iImuY(EY:w7p7T)7

- 3 my [z + 1
— 7 = 3 dk k n(k,T) 1
elUy (ky,w,p,T) 2 kyk})’;/ n(k,T) n|Z—1| ’
) 3 my =
I oo 3 Y 4.33
mUy (ky,w, p, T) o TPIMN ky k3 nl—n(km)’ 3

with

(4.34)

This expression can also be directly obtained from the the A Lindhard function at
finite temperature of Eq. (3.22), taking the width ' zero, which allows to obtain the
imaginary part of Uy analytically. The crossed term is again ignored due to strangeness
conservation and the spin-isospin degeneracy factors and coupling constants need to
be accomodated to the notation used in Eq. (4.29), which amounts to replace 2f1 /3 fn
in Eq. (3.22) by 3/2.
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Figure 4.1: K* /K™ ratio as a function of the density for T' = 50 MeV (left panel) and T =
80 MeV (right panel) calculated in different approaches: the free Fermi gas (dot-dashed line),
on-shell self-energies (dotted line), on-shell self-energies with p from a free (non-interacting)
Fermi gas (thin dotted line), dressing the K~ with its single particle spectral function, with
the L = 0 contribution (long-dashed line) and taking into account the additional L = 1
partial wave (solid line).

4.4 Results for the K~ /K™ ratio

In this section we discuss the effects of dressing the K~ mesons in hot and dense nuclear
matter on the K~ /K™ ratio around the value K~ /K™ = 0.031 &+ 0.005 [Men00] found
in Ni+Ni collisions at an energy of 1.93 AGeV. A preliminary study was already
reported in Ref. [Tol01b]. As previously mentioned, we prefer to discuss the results for

the inverted ratio Kt /K~ = 30.

The K /K~ ratio is shown in Fig. 4.1 as a function of density at two given tem-

peratures, T= 50 and 80 MeV, calculated for the three ways of dressing the K~: free
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(dot-dashed lines), the on-shell or mean-field approximation of Eqgs. (4.23) and (4.24)
(dotted lines), and using the K spectral density including s-wave (long-dashed lines)
or both s-wave and p-wave contributions (solid lines). The two chosen temperatures
roughly delimit the range of temperatures which have been claimed to reproduce, in
the framework of the thermal model, not only the K™ /K™ ratio but also all the other

particle ratios involved in the Ni+Ni collisions at SIS energies [Cle98b, Cle99b].

Since the baryonic chemical potential up grows with density, the factor e#s/T in
the partition functions of Eqgs. (4.18), (4.20) allows one to understand why the ratio
increases so strongly with density in the free gas approximation (dot-dashed lines).
The same is true when the particles are dressed. In this case, however, the K~ feels an
increasing attraction with density which tends to compensate the variation of up and
the curves bend down after the initial increase. This effect is particularly notorious
when the full K~ spectral density is used. The results are in qualitative agreement with
the “broad-band equilibration” notion introduced by Brown et al. [BroOla, Bro0O1b],
which was established, in the context of a mean-field picture, through a compensation
between the increased attraction of the mean-field K~ potential as density grows with
the increase in the baryon chemical potential ug. However, in this present model,
the dotted lines in Fig. 4.1 show that the gain in binding energy in the on-shell ap-
proximation for K~ (thick dotted line in Fig. 4.1) when the density grows does not
completely compensate the increase of ug, as was the case in Ref. [Bro0Ola, Bro01b).
To illustrate this fact we note that the variation of the K~ single particle energy at
zero momentum at 7" = 70 MeV changes in our model from 434 MeV to 375 MeV when
the density grows from 1.2py to 2.1p, while up changes from 873 MeV to 962 MeV.
Therefore the relevant quantity to understand the behaviour of the K+ /K~ ratio with

density in the on-shell approximation, i.e. the sum of up and Ex- (see Eq. (6) of
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Ref. [BroOla, Bro0O1b]), suffers in our model a variation of about 30 MeV. On the other
hand, the model of Ref.[BroOla, BroO1lb] assumed a slower variation of pp, from 860
MeV to 905 MeV, which was almost cancelled by the change of Fx— from 380 MeV to

332 MeV, giving therefore a practically density independent ratio.

The results displayed in Fig. 4.1 show that the “broad-band equilibration” only
shows up clearly when the full spectral function is used (solid line in Fig. 4.1). After
an increase at low densities, the K+ /K~ ratio remains constant at intermediate and
high densities. The use of the spectral density implicitly amounts to an additional gain
in binding energy for the antikaons and, as density increases, it compensates rather

well the variation of upg.

To understand the origin of this additional effective attraction when the full spectral
density is used, we show in Fig. 4.2 the two functions that contribute to the integral
over the energy in the definition of the K~ partition function [Eq.(4.28)], namely the
Boltzmann factor e vV*/T and the K~ spectral function including L = 0 (long-dashed
line) and L = 0 + 1 (solid line) components of the KN interaction for a momentum
g = 500 MeV at p = 0.17 fm~3 and T= 80 MeV. As it is clearly seen in the figure, the
overlap of the Boltzmann factor with the quasi-particle peak of the K~ spectral function
is small for this momentum. It is precisely the overlap with the strength in the low
energy region that acts as a source of attraction in the contribution to the K~ partition
function. This effect is particularly pronounced when the p-waves are included, due to
the additional low-energy components in the spectral function coming from the coupling
of the K~ meson to hyperon-hole (Y N~1) excitations, where Y stands for A, 3 and X*.
Assigning these low energy components to real antikaons in the medium is not clear,

since one should interpret them as representing the production of hyperons through
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Figure 4.2: The Boltzmann factor (dotted line) and the K~ spectral function, including
s-wave (long-dashed line) or s- and p-wave (solid line) components of the KN interaction, as
functions of the energy, for a momentum ¢ = 500 MeV at saturation density and temperature
T = 80 MeV.

KN — Y conversion. While this is certainly true, it may also happen that, once these
additional hyperons are present in the system, they can subsequently interact with fast
non-strange particles (pions, nucleons) to create new antikaons. A clean interpretation
on what fraction of the low energy strength will emerge as antikaons at freeze-out is
certainly an interesting question and its investigation will be left here for forthcoming

work.

Once the integral over the energy is performed, the determination of the K~ parti-
tion function still requires an integral over the momentum. The integrand as a function
of momentum is plotted in Fig. 4.3 for the same density and temperature than in the

previous figure. As expected, the integrand is larger when the full spectral density
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Figure 4.3: The integrand which defines the K~ partition function [Eq. (4.28)] as a function
of momentum, at saturation density and 7' = 80 MeV, for different approaches: on-shell
prescription (dotted line), using the K~ spectral function with the L = 0 components of the
KN interaction (long-dashed line) and including also the L = 1 partial waves (solid line).

is considered. Therefore, the K~ partition function is enhanced making the K+ /K~
ratio smaller than in the on-shell approximation as well as in the case where only the
L = 0 contributions to the spectral density are used. Notice the behaviour at large
q, which decays very quickly in the on-shell approximation but has a long tail for the
L = 0+ 1 spectral density originated from the coupling of the K~ meson to Y N1

configurations.

Another aspect that we want to consider is how the dressing of the ¥ hyperon
affects the value of the ratio. In Fig. 4.4 the value of the K /K~ ratio at T = 50
MeV is shown as a function of density for different situations. In all calculations

displayed in the figure, the partition function associated to K~ has been obtained
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Figure 4.4: The K*/K™ ratio as a function of density at T=50 MeV. The dotted line
shows the results when only the A hyperons are considered in the determination of the ratio.
The dashed (dot-dashed) line includes also the contribution of the ¥ hyperon dressed with
an attractive (repulsive) mean-field potential. The solid line includes the effect of the %*
resonance.

using the full K~ spectral density. The dotted line corresponds to the case where only
the A hyperons, dressed with the attractive mean-field potential given in the previous
section, are included to balance strangeness. When the ¥ hyperon is incorporated with
a moderately attractive potential of the type Us = —30p/py MeV, the K+ /K™~ ratio
is enhanced substantially (dashed line). This enhancement is more moderate when
one uses the repulsive potential Us = +30p/py instead (dot-dashed line). Finally, the
additional contribution of the ¥* resonance produces only a small increase of the ratio
(solid line) due to its higher mass. We have checked that heavier strange baryonic or
mesonic resonances do not produce visible changes in our results. Notice also that,

although the ratios obtained with both prescriptions for the mean-field potential of the



4.4 Results for the K~ /K™ ratio 135

100 FE A T R L
‘ / - ]
90 - I -
E | Ve 1
£ ! - - ]
E [ 7 s E
80 g // // —-— freegas ]
g I on shell approach ]
70 [ 17 — — - L=0 spectral density :
o~ E '/ —_— = i ]
s : // L=0+1 spectral density
s 60¢F Al 3
= ; /
50 ¢ 7
F /
F /1
i / |
40 § /7
g 7
30 © g E
F /
E / ]
20 - L L L | L L L L | L L L L | L L L L | L L L L | L L L P
650 700 750 800 850 900 950

Hg (MeV)

Figure 4.5: Relation between the temperature and the baryochemical potential of hadronic
matter produced in heavy-ion collisions for fixed K+ /K~ ratio of 30, calculated within dif-
ferent approaches as discussed in the text.

>} meson differ appreciably, the present uncertainties in the ratio would not permit to

discriminate between them.

In the framework of the statistical model, one obtains a relation between the tem-
perature and the chemical potential of the hadronic matter produced in the heavy-ion
collisions by fixing the value of the K~ /K™ ratio which was measured for Ni+Ni col-
lisions at GSI to be on the average K~ /K™ = 0.031 £ 0.005 [Men00]. We compare
our results with a corresponding inverse ratio of K*/K~ = 30 in the following. The
temperatures and chemical potentials compatible with that ratio are shown in Fig. 4.5
for different approaches. The dot-dashed line stands for a free gas of hadrons, simi-
lar to the calculations reported in Refs. [Cle98b, Cle99b|. The dotted line shows the

T (1) curve obtained with the on-shell or mean-field approximation [see Eqgs.(4.23) and
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(4.24)], while the dashed and solid lines correspond to the inclusion of the off-shell
properties of the K~ self-energy by using its spectral density [Eqs. (4.25),(4.26) and

(4.28)], including L = 0 or L = 0 + 1 components, respectively.

In the free gas limit, the temperatures compatible with a ratio K™ /K~ = 30 imply
a narrow range of values for the baryonic chemical potentials, namely pp € [665, 740]
MeV for temperatures in the range of 20 to 100 MeV. These values translate into

density ranges of p € [6 x 1077 py, 0.9pq]-

As it can be seen from the dotted line in Fig. 4.5, the attractive mean-field potential
of the antikaons compensates the effect of increasing baryochemical potential ug. As
a consequence, the density at which the freeze-out temperature compatible with the
measured ratio takes place also grows. But this attraction is not enough to get the
same K1 /K™ ratio for a substantially broader range of density compared to the free
case. S0 we do not see a clear indication of “broad-band equilibration” in our self-
consistent mean-field calculation in contrast to the results of Brown, Rho, and Song

[BroOla, BroO1b].

The influence of the antikaon dressing on the ratio is much more evident when the
spectral density is employed (dashed and solid lines). From the preceding discussions, it
is easy to understand that the low energy behaviour of the spectral density enhances the
K~ contribution to the ratio, having a similar role as an attractive potential and, hence,
the value of up compatible with a ratio at a given temperature increases. Moreover,
due to the bending of the Kt /K~ ratio with density and its evolution with temperature
observed in Fig. 4.1, it is clear that there will be a maximum value of T compatible with
a given value of the ratio. Below this maximum temperature, there will be two densities

or, equivalently, two chemical potentials compatible with the ratio. For example, the
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ratio K*/K~=30 will in fact not be realized neither with 7" = 80 MeV nor 7" = 50
MeV, the two temperatures displayed in Fig. 4.1, if the antikaon is dressed with the
spectral density containing L = 0 and L = 1 components. As shown in Fig. 4.5, only

temperatures lower than 34 MeV are compatible with ratio values of 30!

We note that the flat regions depicted by the solid lines in Fig. 4.5 could be consid-
ered to be in correspondence with the notion of “broad-band equilibration” of Brown
et al. [BroOla, BroO1lb], in the sense that a narrow range of temperatures and a wide
range of densities are compatible with a particular value of the K™ /K~ ratio. Nev-
ertheless, the temperature range is too low to be compatible with the measured one.
Explicitly, for K+/K~=30, we observe a nearly constant ratio in the range of 30 — 34
MeV covering a range of chemical potentials in between 680 — 815 MeV which trans-
lates into a density range p € [1.5 x 107%py, 0.02p0]. Note that in this case, we can
hardly speak of a broad-band equilibration in the sense of that introduced by Brown,
Rho and Song in Ref. [BroOla, Bro01b], where a ratio K*/K~=30 holds over a large
range of densities in between i po and 2p, for T'= 70 MeV. However, as we indicated at
the beginning of this section, this result was obtained in the framework of a mean-field
model and our equivalent on-shell results (dotted lines in Figs. 4.1, 4.5), based on a
stronger variation of the pug with density and on a less attractive Uz, seem to be very

far from producing the broad-band equilibration behaviour.

As pointed out before, our nucleon chemical potential is obtained in the frame-
work of a relativistic model and varies with density more strongly than that used in
Ref. [BroOla, BroO1b], which shows values close to those for a free Fermi gas. If we
now calculate the K+ /K~ ratio using a ug(p,T) for a free (non-interacting) system

in the on-shell approximation, we obtain the thin dotted line in Fig. 4.1. At T" = 80
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Figure 4.6: The K /K~ ratio plotted for the full spectral density of the K~ as a contour
plot for different temperatures and baryochemical potentials.

MeV, we now observe a tendency of a broad-band equilibration but for ratios higher
than 30, of around 50. This is connected to the particular on-shell potential of the an-
tikaon which, in our self-consistent procedure, turns to be moderately attractive. Only
if the attraction was larger would the broad band be realized in this on-shell picture

for smaller values of the ratio as found by Brown et al. [BroOla, BroO1b).

Fig. 4.6 shows the K™ /K~ ratio for the full model calculation as a contour plot
for different temperatures and baryochemical potentials. We note, that the ratio is
substantially lower at the temperature and density range of interest, being more likely
around 15 or so for a moderately large region of baryochemical potential. Note that
this reduced ratio translates into an overall enhanced production of K~ by a factor of

two compared to the experimentally measured value. At pion freeze-out, the medium
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can hold twice as many K~ as needed to explain the measured enhanced production
of K~ if one considers the full spectral features of the K~ in the medium. We stress
again that this enhancement is not due to an increased attraction in the sense of a
mean-field calculation. It is a consequence of the additional strength of the spectral
function at low energies which emerges when taking into account p-wave hyperon-hole
excitations. The Boltzmann factor amplifies the contribution of the low-energy region
of the spectral function so that these excitations are becoming the main reason for the
overall enhanced production of the K~ in the medium. However, in order to determine
the real number of antikaons that will emerge at freeze-out, it is necessary to use

sophisticated dynamical models, and this is precisely one of our future research lines.



Conclusions

The purpose of this thesis has been to study the properties of the K meson in hot and
dense matter, within the framework of a coupled-channel self-consistent calculation
based on a meson-exchange potential, and to investigate the possible implications on

the K~ /K™ ratio in heavy-ion collisions at GSI energies.

The bare meson-baryon interaction of the Jiilich group [Mul90] is the starting-point
of our calculations. The scattering theory for the KN interaction performed by solv-
ing numerically the Bethe-Salpeter equation for the Jiilich meson-exchange potential
has been presented in Chapter 1. Although the experimental values for the s-wave
KN scattering amplitude in the I = 1 sector and some other branching ratios differ
significantly from the calculated ones, the experimental K~ p cross-sections at energies
around the K p threshold are well-reproduced. In addition, the s-wave A(1405) reso-
nance, that governs the behavior of the KN interaction, is generated dynamically. In
the L = 1 channel, the Jiilich KN interaction contains the contribution of the A and

Y. pole diagrams but the ¥*(1385) is omitted. However, in some of the results pre-

140



Conclusions 141

sented in this thesis, the effect of the 3*(1385) has been included through the explicit
coupling of the antikaons to the X*-hole configurations. Clearly, a more accurate K N
bare interaction in all partial waves is needed, which, nevertheless, goes beyond the

scope of this thesis.

In Chapter 2 we have performed a microscopic self-consistent calculation of the
single-particle potential of a K meson embedded in symmetric nuclear matter reviewing

the basic ideas of the BHF theory. The conclusions of this chapter are the following:

e Due to the strong energy dependence of the KN G-matrix it becomes crucial
to follow a self-consistent procedure to evaluate the K self-energy. We have
analyzed two self-consistent schemes which produce substantial different results.
When only the real part of the K optical potential is retained in the self-consistent
procedure, one obtains an attraction of about —100 MeV at zero momentum and
a very small imaginary part of around —3 MeV. This optical potential would
lead to extremely narrow deeply bound kaonic states in nuclei. However, when
the complete complex optical potential is self-consistently determined, the real
part becomes 15% less attractive and the imaginary part increases to around
—25 MeV, as a consequence of the opening of new decay channels which widens
the antikaon strength producing a K N amplitude smoother and more spread out

over energies.

e We have obtained the kaon optical potential as a function of the K momentum, up
to regions that are relevant in the analysis of heavy-ion collisions where antikaons
are created with a finite momentum. Our results for the optical potential show
a momentum dependence which is moderate for the real part and significantly

more relevant for the imaginary part, which is especially important for densities
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around the saturation density.

e We have also studied the effect of including higher partial waves of the KN
interaction than L = 0. Some influence is already seen at zero K momentum
but the largest effects appear clearly at large momenta, where the inclusion of
the L > 0 partial waves of the KN interaction can practically double the size
of the optical potential. At a K momentum of 500 MeV/c the complex optical
potential changes from the L = 0 value of (—28,—39) MeV to (—52, —61) MeV

when all partial waves are included.

e The inclusion of the pion dressing in the intermediate 7Y states changes sub-
stantially the results for the K optical potential. When pions are dressed, the
K optical potential becomes less attractive and the imaginary part loses struc-
ture significantly. At zero antikaon momentum, the optical potential varies from

(—84,—24) MeV to (—62, —62) MeV when pions are dressed.

In Chapter 3 we have studied the KN interaction in hot and dense matter by

extending to finite 7" our previous 7" = 0 model. We conclude that

e Although more moderate than in the 7" = 0 case, we have also found at finite
temperature that dressing the pions has a strong influence on the K N amplitudes

and, consequently, on the K optical potential.

e Partial waves higher than the L = 0 component of the KN effective interaction
also contribute significantly to the antikaon optical potential at finite tempera-
ture. The real part gains attraction and the imaginary part becomes more ab-
sorptive. As in the 7" = 0 case, at a momentum of 500 MeV /c, the contribution

of the L > 0 components is as large as that of the L = 0 one.
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e We have found that self-consistency effects have a tremendous influence on the
behavior of the antikaon optical potential with temperature. At normal satura-
tion density, the antikaon optical potential stays attractive, of the order of —50
MeV, for temperatures as large as 70 MeV. If only Pauli blocking medium effects
were considered, the temperature dependence of the antikaon optical potential
would be much more important still remaining attractive for the temperatures
studied. Other interaction models including only Pauli blocking effects even give

a repulsive optical potential at these high temperatures.

e In general, temperature effects smear out the different observables with respect to
the T' = 0 case. For instance, the antikaon spectral function at finite temperature
shows much less structure than that at 7' = 0, reducing its shape basically to a

single peak located at the quasiparticle energy.

e The attractive potential found here for finite density, finite temperature and finite
momentum is especially interesting to understand the enhanced K~ /K™ ratio
measured by the KaoS collaboration at GSI, together with other mechanisms that
have been already suggested in the literature, such as an enhanced production of

K~ through 7Y collisions.

Finally, we have studied in Chapter 4, within the framework of thermal models,
the influence of the properties of the K meson in hot and dense matter on the K= /K*
ratio in heavy-ion collisions at SIS/GSI. We have considered the effects of the previously
obtained antikaon self-energy for the s-wave adding the p-wave components from the Y-

hole excitations, with Y = A, 3, ¥*. The main conclusions are summarized as follows:

e It is found that the determination of the temperature and chemical potential
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at freeze-out conditions compatible with the ratio K~/K™ is very delicate and
depends very strongly on the approximation adopted for the antikaon self-energy.
For instance, compared to what is obtained for a non-interacting hadronic gas, the
effect of dressing the K~ with an spectral function including both s- and p-wave
components of the KNV interaction lowers considerably the region of temperature
to values around 35 MeV and increases the value of the chemical potential up to

850 MeV, compatible with the experimental value of the K /K~ ~ 30.

When the free or on-shell properties of the antikaon are considered, the ratio
at a given temperature shows a strong dependence with the density. This is in
contrast with the “broad-band equilibration” advocated in the literature, which
was established, in the context of a mean-field picture, through a compensation
between the increased attraction of the mean-field K potential as density grows
with the increase in the baryon chemical potential. Our mean-field properties
do not achieve such a compensation due to a stronger increase of the nucleon

chemical potential with density.

When taking into account the full features of the spectral function of the K—, we
find that the K~ /K™ ratio exhibits “broad-band equilibration”. Nevertheless,
the ratio is even in excess of the measured ratio at experimental temperatures.
One can argue in principle, that dynamical non-equilibrium effects can reduce the
number of K~ by virtue of annihilation with nucleons to hyperons and pions at
freeze-out. What needs to be clarified is how the particles get on-shell at freeze-
out, a question previously posed e.g. for antiproton and antihyperon production

at the GSI and which should be addressed in dynamical models.



Appendix A: Pauli blocking

In this appendix we show how to compute the angular average of the Pauli operator,
QKN(E, ]3) Defining P and k as the total and relative momenta of the KN pair,
respectively

— — - - Ei_ 71_5
P=Fg+ky, Fk="N"K_TKEN

(A.1)

Mg +my

we can rewrite the nucleon and antikaon momenta in the laboratory system, EN and

/2[(, as
v —F+-— B, Fe=kt+—P (A.2)
N — 1 +§. ) K — 1+ ’ :
where a galilean transformation has been used and & = iy
mg

The Pauli operator acts only on the nucleonic line and, in symmetric nuclear matter,

it reads

- kp) , (A.3)
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which depends on the angle between P and k. In order to eliminate this dependence,
we introduce an angle average

@R’N(kap) =

N —

/W dsin 0 Q(k, P) . (A.4)
0

The Pauli blocking factor is only different from zero in the case where

g — -
S Pkl >kp.
‘1+§ r

(A.5)

Therefore, we can define two regions depending if £/(1 + &) P > kp (A region) or

£/(1+¢€) P < kp (B region). The magnitude of k determines the value of the Pauli
blocking factor afterwards.

For the A region, the Pauli blocking will give

( 2
K+ () P2k . .
2kP S
—A
QI_(N(kap) = < ¢ ¢ )
1 fOI'k>1—+£P+k'FOI'k<mP—kF,
\ 0 otherwise
(A.6)
while for the B region
r 2 9
1+k2+($§) P ke for k S P<k<-LP+k
or — 5 S ,
2kP1—§r§ F — Iy¢ 1+€ F
—B
Qf(N(kﬂP) = 1 )
1 for k> 5P+ kp
0
\

otherwise
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Then, the resulting function is given by

2
B+ (%) PP — ke
1 1+¢ F
S [+ Sr P for | (355P —kp |<k < 3P +kr,
1+¢
@I_(N(k’P) = 9 ’
1 fork>ﬁﬁgp+kFork<§§P—kF,
\ 0 otherwise
(A.8)

which depends only on the modulus of the relative and total momenta of the KN state.



Appendix B: K single-particle

potential

The single-particle potential of the K meson embedded in symmetric nuclear matter

is given by
Ur(kic, EE) = Y (KN | Ginorn(Q=EF +EZ)| KN) , (B.1)
N<F

where the sum runs over the nucleon Fermi sea. More precisely, displaying the depen-

dence on the particle momentum, spin and isospin and omitting the energy dependence

Ure(kg) = Y 0(kr — |Enl) (Fxrrs kvonty | G | Egrrs kxonty) - (B.2)

kNONTN

—

In order to express U, (ki) in the partial wave basis, we should first use the expressions
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for ky and k & of Appendix A and rewrite them in terms of the total P and the relative
momenta k of the KN system. The next step is to transform the physical basis
into the partial wave one introducing the coupled isospin basis and the partial wave
decomposition of a plane wave [ see Egs. (1.18) and (1.19)] to finally couple to the total

angular momentum J. As a final product we get

k)= > Okr =) Y Vi, (k) Yo ()
EnonTn LMpL' M,
IMII’M’
JMJ' M’
X <IM[|tRTRtNTN><I’M}|tRTRtNTN><JM|LML%O'N> <JIMI|LIM£%O'N>

x(P'kL'LJ'M'I'M}|G|PkLLTMIM;) (B.3)

where we have used the fact that the total spin is S = 1/2 and its third component

Ms = on. The G-matrix element can be rewritten as
1 —
G— 5JJ15MM’6]I’5MIM’6LL’5PP/<P k‘|GL§JIMI|P k‘) . (B4)

We note that G doesn’t depend on M because of space isotropy. Therefore, Eq. (B.3)

can be simplified

F) = X 0ke —knD) Y Yiu, (B) Yoo (B)(IMy|t gty

!
kNU'NTN LMLL’ML

IM;JM

_, 1 _,
x(JM|LMpion) (JM|L'M}on) 611 (P K|G"27™M|P k) . (B.5)

Using the following property of the Clebsch-Gordan

. . . _ [2j+1 . . .
<J1m1J2m2|Jm> = (—1)J1 Jema m(] m jJo — m2|]1 m1> ) (B-G)
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we can perform the summation over M and oy together with M; and 7

2J+1
Z(JM|LML%0N> (JM|L'M£%ON> =57 51 oL Ompmy
Moy + 1
21 +1
> [IMftgrgtnmy)]® = 1’ (B.7)
MiTn K

where we have used the independence on M; of the G-matrix for symmetric nuclear

matter. Moreover,

. ~ ~ 2L +1
D Vi (B)Yiar (k) = - (B.8)
My,

A7

Therefore, the final expression for U, (k) reads

- 1 - 2J+1)2I+1) =5 1l =
Uy ) = g 0tk = o) S B5 (PRGSIP ) (B

In order to perform the sum over kx one should transform it into an integral over k
d - /d3kN — /(1 +6)3dk . (B.10)
kn

with £ = my/mg.

At this point one approximation is done. We will perform an angular average over
the G-matrix in such way that it will depend on an average center-of-mass momen-
tum, P2, and average hole one, E This last dependence comes through the energy
dependence of the G-matrix. These averaged quantitities are calculated according to

the limit of integration |ky| < kr [see Appendix C, D for more details]. The final
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expression for U f((_}(), including all dependences, reads

ek FR () = 53T+ 0CI+ 00+ [ K ak 15k

LJI

x((EN); k|G (P?, B (k) + EX (K}))|(KN); k) (B.11)

where tz = 1/2 and EI—( — kz. The angular integral has been performed with the aid

of the weight function f(k, k) defined in Appendix C.



Appendix C: Angular integration

In the construction of the K single-particle potential of Appendix C, the integral

over cos f) has been replaced by a weight function that reads

fk, kg) = %/1 d(cosb) f(k, kg,0) , (C.1)

after having introduced an average center-of-mass and average hole momenta on the
calculation of the G-matrix. The integration is restricted to a certain range of angles
according to whether the nucleon is inside or outside the Fermi sphere. In this appendix
we show the regions of integration compatible with this previous condition, together
with the corresponding value of the weight function. Moreover, the values of the
average center-of-mass and average hole momenta also depend on the region studied.

This calculation will be performed in Appendix D.

As it can be seen in Fig. C.1, two regions of integration are defined, £k < kg or
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Ek <k

(g )k<k€ k  kgk<(I€)k<k & Kk (1+&)k>k € k
= £k >k
K F

\—(;%z)k M

N -k

() k< k=K Ek —k <(1€ )k<kt k (1+E) k>k € K

Figure C.1: Regions determined by \IZN| < kp, dis-
cussed in the text.

Ekg > kp , with € = my/mg and kp the Fermi momentum.

Case 1: &kg < kp

o (1+ &)k < kp — Ekg: kn always lies inside the Fermi sphere and therefore, all

angles are possible, i.e., f(k,kg) =1

o (1+&k > kp+ &k kn always lies outside the Fermi sphere and therefore, no
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angles are possible, i.e., f(k,kg) =0

o krp —&kig < (14 &)k < kp + &kg: ky can lie inside or outside the Fermi sphere.

The integration runs from a minimum cos(6,,) [see Fig. C.1]

(Ekr)* + (1 + &)k — ki
26kz (14 &)k

cos b, =

to 1, with the result

ke [k — (1+ ORP
Tk = el Okek

Case 2: ki > kr

o (14+ &k < &ki — kp: kn always lies outside the Fermi sphere and therefore, no

angles are possible, i.e., f(k,kg) =0

o (14+ &k > kp+ &kg: kn always lies outside the Fermi sphere and therefore, no

angles are possible, i.e., f(k,kg) =0

o (kg —kp < (14 &)k < kp + &kg: ky can lie inside or outside the Fermi sphere.

The integration runs from a minimum cos(6,,) [see Fig. C.1]

(Ekgr)® + (14 &2k — k3
26kg (14 &)k ’

cos 6, =

to 1, with the result

ket = [tk — (L P
Tk =g r bt
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Therefore, the final expression for the weight function is
(
kp—ékg
1 for k < =575,
[k, k 0 for |¢kg — (1 + &)k| > kp, (C.2)
k 2 o 2

r Sk — (L+ )] otherwise,

\ A6(1 + &kik

which implicitly defines a maximum £k, =

_ kF+§kf(
1+¢

in the integral over k.



Appendix D: C.M. and hole

momenta angular average

In this appendix we show how to compute an appropiate average of the KN center-
of-mass momentum, ﬁ, and the nucleon momentum, EN, given an external antikaon
momentum, k}(, and a relative K N momentum, E, used as integration variable in

Eq. (2.23). From Egs. (A.1) and (A.2) one obtains
P=(1+&(kg —k), kn==Ekr—(1+Ek. (D.1)

The angle average of the center-of-mass momentum is defined as

/ d(cos 0) P*(kg, k, cos )

/ d(cos 0) |
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P2(l€f(:k) =
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where P?(kg, k,cos0) = (14&)*(k% +k* — 2k gk cos ), with 6 being the angle between

ER and k. Similarly, for @ we have

o /d(cos@) k% (kg, k,cos6)
(ki k) = : (D-3)

/ d(cos 0)

where k% (kg, k,cos 0) = £2k% + (1 + €)%k — 26(1 + &)k k cos 6.

In both cases, the integration runs from cos #,, to 1, where the expression for cos 6,,
depends on two regions of integration, according to the restrictions imposed by Pauli

blocking [see Fig. C.1], and is given by

Ek% + (1 +8)%k* — k%, for lr—ghxl < 1 < hetéhg
26k (14 &)k AT A

_ kr—Ekg
1 for k£ < e

cos 0, = (D.4)

The resulting angle averages for P and ky are given by

(

[k + (L+ QR — K}

P2(kg, k) = < (O e+ ) 26(1+€) for [ErStrl < p < Retiix
\ (1+&)* (K% + k?) for k < kFl_ng
. kg + (1+ EK] — k2 - (1163.5)1c

k5, (e, k) = S e+ (1 % = 22 £ for PR < < PRERE,
( k% + (14 €)°k? for k < b=tk

(D.6)
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