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Abstract

Multiple-input multiple-output (MIMO) channels are an abstract and general way to model

many different communication systems of diverse physical nature. In particular, wireless MIMO

channels have been attracting a great interest in the last decade, since they provide significant

improvements in terms of spectral efficiency and reliability with respect to single-input single-

output (SISO) channels.

In this thesis we concentrate on spatial multiplexing MIMO systems with perfect channel

state information (CSI) at both sides of the link. Spatial multiplexing is a simple MIMO transmit

technique that does not require CSI at the transmitter and allows a high spectral efficiency

by dividing the incoming data into multiple independent substreams and transmitting each

substream on a different antenna. When perfect CSI is available at the transmitter, channel-

dependent linear precoding of the data substreams can further improve performance by adapting

the transmitted signal to the instantaneous channel eigen-structure. An example of practical

relevance of this concept is given by linear MIMO transceivers, composed of a linear precoder

at the transmitter and a linear equalizer at the receiver.

The design of linear MIMO transceivers has been extensively studied in the literature for the

past three decades under a variety of optimization criteria. However, the performance of these

schemes has not been analytically investigated and key performance measures such as the aver-

age bit error rate (BER) or the outage probability have been obtained through time-comsuming
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Monte Carlo simulations. In contrast to numerical simulations, which do not provide any insight

on the system behavior, analytical performance expressions help the system designer to identify

the degrees of freedom and better understand their influence on the system performance. This

thesis attempts to fill this gap by providing analytical average and outage performance charac-

terizations in some common MIMO channel models. More exactly, we derive exact expressions

or bounds (depending on the case) for the average BER and the outage probability of linear

MIMO transceivers designed under a variety of design criteria. Special attention is given to the

high signal-to-noise ratio (SNR) regime, where the system performance is investigated under two

different perspectives. First, from a more practical point-of-view, we characterize the average

BER and outage probability versus SNR curves in terms of two key parameters: the diversity

gain and the array gain. Then, we focus on the diversity and multiplexing tradeoff framework

in order to take into consideration the capability of the system to deal with the fading nature

of the channel, but also its ability to accommodate higher data rates as the SNR increases.

The performance of linear MIMO transceivers is simultaneously analyzed for the most com-

mon wireless MIMO channel models such as the uncorrelated and semicorrelated Rayleigh, and

the uncorrelated Rician MIMO fading channels. For this purpose, we have obtained a gen-

eral formulation that unifies the probabilistic characterisation of the eigenvalues of Hermitian

random matrices with a specific structure, which includes the previous channel distributions

as particular cases, i.e., the uncorrelated and semicorrelated central Wishart, the uncorrelated

noncentral Wishart, and the semicorrelated central Pseudo-Wishart distributions. Indeed, the

proposed formulation and derived results provide a solid framework for the analytical perfor-

mance evaluation of MIMO systems, but it could also find numerous applications in other fields

of statistical signal processing and communications.

Finally, and as a consequence of our performance analysis, limitations inherent to all practical

linear MIMO transceiver designs have been enlightened. Accordingly, new schemes have been

proposed which achieve considerable performance enhancements with respect to classical linear

MIMO transceivers.
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In the elder days of art
Builder wrought with greatest care
Each minute and unseen part,
For the Gods are everywhere.

Wittgenstein once said that the previous bit of verse could serve him as a motto.
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Notation

Vector and Matrices

a (n× 1) a is a column vector with n elements.

A (n×m) A is a matrix with n rows and m columns.

[A]i,j or aij (i, j)th element of A.

[A]i ith column of A.

A
′

transpose of A.

A† conjugate transpose of A.

A > 0 A is positive definite.

A ≥ 0 A is positive semidefinite.

|A| determinant of A.

‖a‖ Euclidean norm of vector a: ‖a‖ =
√

a†a.

‖A‖F Frobenius norm of matrix A: ‖A‖F =
√

tr (A†A).

rank(A) rank of A.

tr(A) trace of A.

A−1 inverse of A.

vec(A) (nm× 1) vector obtained by stacking the columns of A (n×m).

A⊗B (nm× nm) Kronecker product between A (n× n) and B (m×m).
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diag(a1, . . . , an) (n× n) diagonal matrix with diagonal entries equal to a1, . . . , an.

In (n× n) identity matrix.

0n,m (n×m) zero matrix.

Sets and Permutations

N set of natural numbers, i.e., positive integers.

Nn set of natural n-dimensional vectors.

R set of real numbers.

Rn set of real n-dimensional vectors.

Rn×m set of real n×m matrices.

C set of complex numbers.

Cn set of complex n-dimensional vectors.

Cn×m set of complex n×m matrices.

a ∈ A a belongs to set A.

A ⊆ B A is a subset of B.

A ∪ B union of sets A and B.

A ∩ B intersection of sets A and B.

|A| cardinality of set A, i.e., number of elements in A.

µ set of ordered elements (µ1, . . . , µn).

π(µ) permutations of the elements of µ.

sgn(µ) sign of the permutation µ.

Probability and Statistics

Pr{a ≤ b} probability of the event (a ≤ b).

E{a} expectation of the random variable a.

Ea{f(a)} expectation of the random variable f(a) with respect to a.

Fa(x) cumulative distribution function of the random variable a.

fa(x) probability density function of the random variable a.
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Miscellanea

∼ distributed as.

≈ approximately equal.

, defined as.
.= exponentially equivalent, i.e., f(x) .= g(x) denotes

lim
x→∞

log f(x)
log x = lim

x→∞
log g(x)

log x .

≤̇ , ≥̇ exponentially smaller or equal, exponentially greater or equal.

lim limit.

max, min maximum and minimum.

arg argument.

|a| Modulus of the complex scalar a.

(a)+ positive part of the real scalar a, i.e., a = max(0, a).

dae integer part of a, i.e., smallest integer greater than or equal to a.

o(·) Landau little-o, i.e., f(x) = o(g(x)), g(x) > 0, states that f(x)/g(x)→ 0

as x→ 0.
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Distributions

x ∼ CN (µ, σ2) random variable x follows a complex normal distribution with mean

µ and variance σ2.

x ∼ CN n (µ,Σ) random vector x (n×1) follows a multivariate complex normal distri-

bution with mean vector µ (n× 1) and covariance matrix Σ (n×n).

X ∼ CN n,m (Θ,Σ,Ψ) random matrix X (n ×m) follows a matrix variate complex normal

distribution with mean matrix Θ (n×m) and covariance matrix Σ⊗Ψ

(nm× nm).

X ∼ Wn(m,0n,Σ) Hermitian random matrix X (n×n) follows a complex central Wishart

distribution with m degrees of freedom and covariance matrix Σ (n×

n).

X ∼ Wn(m,Ω,Σ) Hermitian random matrix X (n × n) follows a complex noncentral

Wishart distribution with m degrees of freedom, noncentrality pa-

rameter matrix Ω (n× n), and covariance matrix Σ (n× n).

X ∼ PWm(n,0m,Ψ) Hermitian random matrix X (m × m) follows a complex central

Pseudo-Wishart distribution with parameters n, m, and covariance

matrix Ψ (m×m).

X ∼ Qn,m(0n,A,Σ,Ψ) Hermitian random matrix X follows a central Quadratic form distri-

bution with parameters n, m, and A (m×m) and covariance matrices

Σ (n× n) ans Ψ (m×m).

4



Acronyms and Abbreviations

AWGN Additive White Gaussian Noise.

BER Bit Error Rate.

BPSK Binary Phase Shift Keying.

cdf cumulative density function.

cf. (from Latin confer) compare.

CSI Channel State Information.

CSI-R Channel State Information at the Receiver.

CSI-T Channel State Information at the Transmitter.

DSL Digital Subscriber Line.

e.g. (from Latin exempli gratia) for example.

i.e. (from Latin id est) that is.

i.i.d. independent and identicallt distributed.

ISI Inter-Symbol Interference.

mgf moment generating function.

MIMO Multiple-Input Multiple-Output.

MISO Multiple-Input Single-Output.

MMSE Minimum Mean Square Error.

MRC Maximum Ratio Combining.
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MRT Maximum Ratio Transmission.

MSE Mean Square Error.

OFDM Orthogonal Frequency Division Multiplexing.

pdf probability density function.

PSK Phase Shift Keying.

QAM Quadrature Amplitude Modulation.

QoS Quality of Service.

QPSK Quadrature Phase Shift Keying.

SIMO Single-Input Multiple-Output.

SISO Single-Input Single-Output.

SNR Signal-to-Noise Ratio.

SVD Singular Value Decomposition.

V-BLAST Vertical Bell-Labs Layered Space-Time.

vs. versus.



1

Introduction

Multiple-input Multiple-output (MIMO) technology constitutes a breakthrough in the design

of wireless communication systems, and is already at the core of several wireless standards. The

introduction of the spatial dimension (provided by the multiple antennas at the transmitter and

the receiver) delivers significant performance enhancements in terms of data transmission rate

and transmission reliability with respect to conventional single-antenna wireless systems. Hence,

the design of MIMO systems has been traditionally posed under two different perspectives: ei-

ther the increase of the data transmission rate through spatial multiplexing or the improvement

of the system reliability through the increased antenna diversity. Actually, both types of gains

can be simultaneously obtained subject to a fundamental tradeoff between the two. This disser-

tation focuses on spatial multiplexing MIMO systems when perfect channel state information is

available at both sides of the link. Analytical studies of these schemes from a communication-

and an information-theoretical point-of-view enlighten the implications of the tradeoff beween

spatial multiplexing and diversity gain, or, in other words, the tradeoff between transmission

rate and reliability. In this chapter we provide a brief overview on wireless MIMO systems to

locate, justify, and motivate the analyses developed in the rest of the dissertation.
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8 Introduction

1.1 MIMO Wireless Communication

The use of multiple antennas at the transmitter and receiver, commonly known as multiple-input

multiple-output (MIMO) technology, has rapidly gained in popularity over the past decade due to

its powerful performance-enhancing capabilities. MIMO technology offers a number of benefits

over conventional single-input single-output (SISO) systems that help to meet the challenges

posed by both the impairments in the wireless channel as well as the strict resource (power

and bandwidth) constraints. In addition to the time and frequency dimensions (the natural

dimensions of digital communication data), the leverage of MIMO is realized by exploiting the

spatial dimension inherent in the use of multiple spatially distributed antennas. As such MIMO

systems can be viewed as an extension of the so-called smart antennas, a popular technology

using antenna arrays either at the transmitter or at the receiver dating back several decades.

Although pioneering work on wireless MIMO channels can be found as early as 1987 in [Win87],

current interest in MIMO has been mainly inspired by the significant capacity benefits uncovered

independently in [Tel99] and [Fos98]. In particular, it was shown that a MIMO channel formed by

nT antennas at the transmitter and nR antennas at the receiver provides up to min{nT, nR} times

the capacity of a SISO channel without any increase of the required bandwidth or transmitted

power. This has prompted progress in areas as diverse as channel modeling, information theory

and coding, signal processing, antenna design and multiantenna-aware network design, fixed or

mobile.

1.1.1 Benefits of MIMO Technology

MIMO channels provide a number of advantages over conventional SISO channels such as the

array gain, the diversity gain, and the multiplexing gain. While the array and diversity gains

are not exclusive of MIMO channels and also exist in single-input multiple-output (SIMO) and

multiple-input single-output (MISO) channels, the multiplexing gain is a unique characteristic

of MIMO channels. These gains are described in brief below [Böl02b,Big07].

Array Gain

Array gain denotes the improvement in receive signal-to-noise ratio (SNR) that results from a

coherent combining effect of the information signals. The coherent combining may be realized
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through spatial processing at the receive antenna array and/or spatial pre-processing at the

transmit antenna array. Formally, the array gain characterizes the horizontal shift of the error

probability versus transmitted or received power curve (in a log-log scale), due to the gain in

SNR.

Spatial Diversity Gain

Diversity gain is the improvement in link reliability obtained by receiving replicas of the infor-

mation signal through (ideally independent) fading links. With an increasing number of inde-

pendent copies, the probability that at least one of the signals is not experiencing a deep fade

increases, thereby improving the quality and reliability of reception. A MIMO channel with nT

transmit and nR receive antennas offers potentially nTnR independently fading links and, hence,

a spatial diversity order of nTnR. Formally, the diversity gain characterizes the slope of the

error probability versus transmitted or received power curve (in a log-log scale) in the high-SNR

regime.

Spatial Multiplexing Gain

MIMO systems offer a linear increase in data rate through spatial multiplexing [Böl02a, Fos98,

Tel99], i.e., transmitting multiple, independent data streams within the bandwidth of operation.

Under suitable channel conditions, such as rich scattering in the environment, the receiver can

separate the data streams. Furthermore, each data stream experiences at least the same channel

quality that would be experienced by a SISO system, effectively enhancing the capacity by a

multiplicative factor equal to the number of substreams. In general, the number of data streams

that can be reliably supported by a MIMO channel coincides with the minimum of the number

of transmit antennas nT and the number of receive antennas nR, i.e., min{nT, nR}.

1.1.2 A Fundamental Tradeoff

Essentially, different design criteria of MIMO communication schemes are based on exploit-

ing the previous gains, especially the spatial diversity and multiplexing gains. Actually, both

perspectives come from different ways of understanding the ever-present fading in wireless com-

munications. Traditionally, fading is considered as a source of randomness that makes wireless
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links unreliable. In response, a natural attempt is to use multiple antennas for compensating

the random signal fluctuations and achieving a steady channel gain. The spatial dimension is

exploited in this case to maximize diversity. Observe that each pair of transmit and receive

antennas provides a different (possibly independent) signal path from transmitter to receiver.

By sending signals that carry the same information over a number of different paths, multiple

independent faded replicas of the data can be obtained at the receiver end, increasing, thus,

the reliability of the reception process. Some examples of MIMO schemes which fall within this

category are space-time codes [Tar98,Has02] and orthogonal designs [Ala98,Tar99].

A different line of thought suggests that in a MIMO channel, fading can in fact be beneficial

through increasing the degrees of freedom available for communication [Fos98,Tel99]. Essentially,

if the path gains between individual transmit and receive antenna pairs fade independently, the

channel matrix is well-conditioned with high probability, in which case multiple spatial channels

are created. Hence, the data rate can be increased by transmitting independent information in

parallel through the available spatial channels. This spatial multiplexing phenomenon were first

exploited in [Pau94] and by the BLAST and V-BLAST architectures [Fos96,Fos99,Gol99].

This dichotomic view of the fading process and by extension of the analysis and design

MIMO systems is not appropriate. In fact, given a MIMO channel, both the spatial diversity

and the multiplexing gains can be simultaneously obtained, but there is a tradeoff between how

much of each type of gain any MIMO scheme can extract: higher spatial multiplexing comes at

the price of sacrificing diversity. Several attempts were made to understand the diversity and

multiplexing tradeoff in [Hea00, Hea01, Oym02, Oym03]. However, the complete picture of this

tradeoff was given by Zheng and Tse in the excellent groundbreaking paper [Zhe03]. To be more

specific, [Zhe03] focuses on the high-SNR regime and provides the fundamental tradeoff curve

achievable by any scheme, where the spatial multiplexing gain is understood as the fraction of

capacity attained at high SNR and the diversity gain indicates the high-SNR reliability of the

system. The two previously commented design strategies correspond to the two extreme points

of the curve: maximum diversity and no multiplexing gain and maximum multiplexing gain and

no diversity gain. The fundamental tradeoff curve bridges the gap between these two extremes

and offers insights to understand the overall resources provided by MIMO channels.
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1.2 MIMO Communication Systems

Since the emergence of the key ideas in the mid-1990s, a great number of transceiver algorithms

for MIMO systems have been proposed in the literature. The different MIMO communication

techniques basically depend on the amount and quality of the channel state information (CSI)

available at the receiver (CSI-R) and/or transmitter (CSI-T). Clearly, the more channel state

information, the better the performance of the system [Pal07].

The most commonly studied situation is that of perfect CSI available at the receiver. CSI-

R is traditionally acquired via the transmission of a training sequence, i.e., pilot symbols, that

allows the channel estimation. It is also possible to envisage a situation in which CSI is known to

both the receiver and the transmitter. CSI-T can be obtained either from a dedicated feedback

channel, when the channel is sufficiently slow varying, or by exploiting the channel reciprocity

that allows to infer the channel from previous receive measurements. Observe that the first option

implies a loss in spectral efficiency due to the utilization of part of the bandwidth to transmit the

channel state, whereas the latter requires a full-duplex transmission for the reciprocity principle

to hold.

1.2.1 MIMO designs with No CSI-T

MIMO transmit techniques that do not require channel knowledge at the transmitter may be

broadly classified into two categories: those designed to increase the transmission rate and those

designed to increase reliability. The former are often collectively referred to as spatial multiplex-

ing and the latter as transmit diversity schemes. As previously stated, spatial multiplexing and

transmit diversity systems achieve either one of the two extremes in the diversity and multiplex-

ing tradeoff curve but are clearly suboptimal at the other extreme. Techniques that achieve a

flexible diversity and multiplexing tradeoff form an important topic of current research [Big07].

1.2.2 MIMO designs with Perfect CSI-T

When perfect CSI-T is available, the transmission can be adapted to each channel realization

using signal processing techniques. A low-complexity approach with high potential is the use of

linear MIMO transceivers, which are composed of a linear precoder at the transmitter and a lin-
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ear equalizer at the receiver. The design of linear MIMO transceivers is generally quite involved

since several substreams are typically established over MIMO channels. Precisely, the existence

of several substreams, each with its own performance, makes the definition of a global measure of

the system performance not clear; as a consequence, a wide span of different design criteria has

been explored in the literature (see a historical perspective in [Pal07, Sec. 1.4]). In general, the

linear transmitter and receiver are jointly designed to optimize a global cost function that takes

into account the individual SNRs, mean square errors (MSEs), or bit error rates (BERs) of the

established substreams, the number of which has been chosen beforehand. Palomar developed

in [Pal03] a general unifying framework for the joint linear MIMO transceiver design embracing

a wide range of different design criteria. In particular, the optimal solution was obtained for

the family of Schur-concave and Schur-convex cost functions, which happens to diagonalize the

channel (possibly after a rotation of the data symbols) and exploit the spatial multiplexing prop-

erty of MIMO channels to establish several independent data substreams through the strongest

channel eigenmodes. The available transmit power is then distributed among the established

substreams according to the specific design criterion.

1.3 Motivation and Outline of the Dissertation

The design MIMO communication systems with perfect CSI has been extensively addressed in

the literature based on the optimization of some metric of the system performance. Nevertheless,

the performance of the linear MIMO transceivers under realistic channel models has only been

evaluated numerically, due to the difficulty of finding closed-form expressions for the average

error probability or the outage probability.

In this dissertation we exploit the common spatial multiplexing structure of linear MIMO

transceivers to analytically characterize their performance. We consider both a general spatial

multiplexing system with CSI and the practical designs of [Pal03]. This allows us to understand

how design parameters such the cost function itself or the number of established substreams do

impact on the degree of array gain, diversity gain, and multiplexing gain extracted from the

MIMO channel. This enlightens the limitations of the traditional design formulation of MIMO

linear transceivers and poses an additional optimization stage on top of the conventional one to

fully exploit the MIMO channel benefits.
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Characterizing the performance of a communication scheme by computing the average error

probability as a function of the SNR, for a given data rate, may not be appropriate when

comparing several systems transmitting at different rates. Hence, taking into consideration the

capability of the system to combat the fading nature of the channel, but also its ability to

accommodate higher data rates as the SNR increases, spatial multiplexing MIMO schemes with

CSI are also analyzed in the diversity and multiplexing tradeoff framework of [Zhe03]. This

allows us to uncover the limitations of the spatial multiplexing structure with respect to the

fundamental tradeoff of the MIMO channel and to resolve in which situations CSI-T offers

advantages with respect to similar schemes that do no rely on channel information.

The rest of the dissertation is organized as follows.

Chapter 2

The probabilistic characterization of the eigenvalues of the random channel matrix is criti-

cal in the performance evaluation of many MIMO communication schemes. In particular, the

performance of MIMO systems without CSI-T demands the characterization of the unordered

eigenvalues, whereas the techniques that employ CSI-T require the evaluation of probabilities

associated with one or several of the eigenvalues in some specific order (often the highest or

smallest but sometimes any one in particular within the ordered set). Many different contri-

butions, as early as the sixties in the mathematical literature and much more recently in the

signal processing community, provide partial characterizations for specific problems. In Chapter

2 we introduce a unified perspective that can, not only fill the gap of the currently unknown

results, but even more importantly, provide a solid framework for the understanding and direct

derivation of all the previously known results regarding the joint and marginal distributions of

the eigenvalues. Indeed, we consider a general class of Hermitian random matrices that includes

some particular cases of the Wishart and other closely related distributions, such as the Pseudo-

Wishart or the quadratic form distribution. Since these are precisely the distributions induced

by most common wireless MIMO channel models, the results derived in this chapter provide

the essential mathematical tools needed for the analytical performance studies developed in the

subsequent chapters.

Chapter 2 also provides a self-contained overview on random matrix theory. In addition to our



14 Introduction

contributions to this field, it also includes a summary of relevant mathematical preliminaries,

such as determinant definitions and properties, definitions of important functions in integral

form, or definitions of hypergeometric functions of matrix arguments, as well as an introduction

to random matrix distributions.

Chapter 3

The average error probability and outage of probability spatial multiplexing MIMO systems

with CSI is analytically investigated in Chapter 3 under common MIMO channel models: un-

correlated Rayleigh, semicorrelated Rayleigh, and uncorrelated Ricean MIMO fading channels.

Exact expressions are only given for a channel non-dependent power allocation, which is a case

of special interest since it measures the performance of the channel eigenmodes. However, in

order to provide more insight into the general system behaviour, the focus is then turned to the

high-SNR regime. In particular, we study the average and outage performance of each channel

eigenmode at high SNR by characterizing the average BER versus SNR and the outage proba-

bility versus SNR curves in terms of the diversity gain, which determines the slope of the curve

at high SNR in a log-log scale, and the array gain, which determines the horizontal shift of

the curve. We also extend this characterization to global performance measures that take into

account all the established substreams. In addition, our general results applied to analyze the

performance of a wide family of practical linear MIMO transceivers.

Chapter 4

Chapter 4 focuses mainly on improving the performance achieved by the classical minimum BER

linear transceiver. For this purpose, the average BER of the minimum BER linear transceiver

with fixed and equal constellations are characterized in an uncorrelated and a semicorrelated

Rayleigh and in an uncorrelated Rician fading channel. It turns out that this classical minimum

BER design has a diversity order limited by that of the worst eigenmode used, which can

be far from the full diversity provided by the channel. This shows that fixing a priori the

number of independent data streams to be transmitted, a very common assumption in the linear

transceiver design literature, inherently limits the average BER performance of the system. Based

on this observation, we propose the minimum BER linear transceiver with fixed rate and equal
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constellations and show that it achieves the full diversity of the channel thanks to the joint

optimization of the number of substreams and the linear precoder.

Chapter 5

The spatial multiplexing strategy considered in the previous chapters, i.e., dividing the incoming

data stream into multiple independent substreams and transmitting them through the channel

eigenmodes, is also optimal in the sense of achieving the ergodic channel capacity when perfect

CSI is available at both sides of the link. Chapter 5 analyzes the optimality of this technique with

respect to the diversity and multiplexing tradeoff. The approach we adopt is to analyze first the

individual diversity and multiplexing tradeoff curves of the channel eigenmodes. Then, we obtain

the fundamental diversity and multiplexing tradeoff of spatial multiplexing MIMO systems with

CSI by deriving the optimum rate allocation policy among these channel eigenmodes. Practical

linear MIMO transceivers are also considered.

Chapter 6

Chapter 6 concludes and summarizes the results of this PhD thesis and presents future research

lines.





2

Eigenvalues of a General Class of Hermitian Random Matrices

The performance of multiple-input multiple-output (MIMO) systems is usually related to the

eigenstructure of the channel matrix, or, more exactly, to its nonzero eigenvalues. When com-

municating over MIMO fading channels, we have a random channel matrix that depends on the

particular system architecture and propagation conditions. Hence, the probabilistic characteri-

zation of these eigenvalues for the underlying channel distribution is necessary in order to derive

analytical expressions for the average and outage performance measures. This chapter presents

a formulation that unifies the probabilistic characterization of Hermitian random matrices with

a specific structure. Based on a general expression for the joint pdf of the ordered eigenvalues,

we obtain, among other results, (i) the joint cdf, (ii) the marginal cdf’s, and (iii) the marginal

pdf’s of the ordered eigenvalues, where (ii) and (iii) follow as simple particularizations of (i). Our

formulation is shown to include some particular cases of the Wishart and other closely related

distributions, such as the Pseudo-Wishart or the quadratic form distribution. Since these are

precisely the distributions induced by most common wireless MIMO channel models, the pro-

posed formulation and derived results provide a solid framework for the analytical performance

analysis of MIMO systems.

17
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2.1 Introduction

2.1.1 Historical Perspective on the Wishart Distribution

Multivariate analysis is the part of mathematical statistics that derives methods for obtaining

and analyzing observations consisting of several vector measurements (see, e.g., [Roy58,Ksh72,

Sri79, Mui82, And84, Gup00] for standard textbooks). Typically, samples from the multivariate

observation of the physical phenomena under analysis are collected in the columns of the sam-

ple observation matrix. In such matrix, when sampling from a multivariate normal population,

the columns are independently1 and identically distributed as multivariate normal with com-

mon mean vector and covariance matrix. The assumption of normality, besides mathematical

tractability, has a solid empirical and theoretical basis, since multivariate observations from

many natural phenomena are normal distributed. Even when this is not the case, the mean

of repeated samples become normal distributed due to the central limit theorem (the larger

the sample size, the more accurate this approximation is). Hence, the multivariate normal dis-

tribution plays a central role in multivariate analysis. Indeed, many authors define classical

multivariate analysis as the techniques, distribution and inferences based on the multivariate

normal distribution [Mui82].

Most common multivariate techniques and inference procedures are based on the sample

covariance matrix, defined as the covariance matrix of the observation vectors, i.e., of the columns

of the sample observation matrix. A fundamental contribution to multivariate analysis was made

by Wishart in 1928 [Wis28] by deriving the distribution of the sample covariance matrix when

sampling from a multivariate normal population. The Wishart distribution and the proof itself

is a generalization of the distribution of the two sample standard deviation and the correlation

coefficient obtained by Fisher in 1915 [Fis15]. However, the geometrical methods used by Fisher

and Wishart were not totally accepted in those days by the statistical community and the

Wishart distribution was subsequently rederived in many different ways (see, e.g., [Ing33,Mad38,

Hsu39a,Sve47,Ras48,Oga53,Olk54,Jam54,Ksh59], see [Wis48] for a review of some of these, or

see [Gho02] for a simple proof).

1 The assumption of independence of multivariate observations is not met in multivariate times series, stochastic processes,

and repeated measurements on multivariate variables. In these cases, the matrix of observations leads to the introduction

of the matrix variate normal distribution [Car83,Gup00].
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Wishart considered in his original paper [Wis28] the distribution of the sample covariance

matrix of observations from a zero-mean multivariate normal population, which is known as

the central Wishart distribution. In the case of normal populations with nonzero means, the

distribution is known as the noncentral Wishart distribution and was derived by James in

1955 [Jam55b,Jam55a,Jam61a].

All aforementioned results and references restrict to the case of real multivariate distribu-

tions. In fact, the multivariate complex normal distribution was introduced by Wooding in

1956 [Woo56], long time after its real conterpart2 had been derived, after observing that it was

advantageous for the treatment of certain estimation problems of the envelop of random noise

signals. From this point on, owing to the importance of complex multivariate distributions in

various emerging areas of research such as in the analysis of time series or stochastic processes

(see, e.g., [Han70]) or in nuclear physics (see, e.g., [Wig67,Car83]), many results of multivariate

analysis were extended to or directly derived for the complex case. In particular, the complex

central and noncentral Wishart distribution were obtained by Goodman in 1963 [Goo63] and by

James in 1964 [Jam64], respectively. In the rest of this chapter we deal exclusively with complex

distributions, although not explicitly stated.

Closely related to the Wishart distribution is the distribution of its eigenvalues,3 which is also

of great interest for certain test statistics in multivariate analysis. The joint distribution of the

eigenvalues of Wishart matrices were derived in [Fis39, Hsu39b, Roy39, Jam60, Jam61b, Dav80]

for the real case and extended in [Jam64,Kha65,Rat05d] for the complex case. The main object

of this chapter is to provide a solid framework for the obtention of currently unknown joint and

marginal eigenvalue distributions as well as for the understanding and direct derivation of all

the previously known results. For this purpose we focus on a general class of Hermitian random

matrices which includes the Wishart and some other closely related distributions as particular

cases.

2 The distribution of several real normal variables was used for the first time by Bravais in 1846 [Bra46].

3 The eigenvalues are referred to as latent roots in the multivariate analysis literature.
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2.1.2 Connection between the Wishart Distribution and MIMO Channels

Multiple-input multiple-output (MIMO) channels are an abstract and general way to model

many different communication systems of diverse physical nature; ranging from wireless multi-

antenna channels [Fos96, Ral98, Fos98, Tel99], to wireline digital subscriber line (DSL) sys-

tems [Hon90], and to single-antenna frequency-selective channels [Sca99]. Assuming that the

communication link has nT transmit and nR receive dimensions, the MIMO channel is mathe-

matically described by an nR×nT channel matrix H, whose (i, j)th entry characterizes the path

between the jth transmit and the ith receive element. In particular, when communicating over

MIMO fading channels, H is a random matrix that depends on the particular system architec-

ture and the particular propagation conditions. Hence, H is assumed to be drawn from a certain

probability distribution, which characterizes the system and scenario of interest and is known

as channel model. The system behavior is then evaluated on the average or outage sense, taking

into account all possible channel states. Since the performance of MIMO systems is related to

the eigenstructure of H (channel eigenmodes) or, more exactly, to the nonzero eigenvalues of

HH† (or H†H), the probabilistic characterization of these eigenvalues for the adopted channel

model becomes necessary.

In MIMO wireless communications H is commonly modeled with Gaussian distributed en-

tries, leading to the MIMO generalization of the well-known single-input single-output (SISO)

Rayleigh or Rician fading channels, depending on whether the entries are zero mean or not.

Some important particular cases of the MIMO Rayleigh and Rician channel models result in

HH† (or H†H) being a Wishart random matrix. The Wishart distribution and some closely

related distributions have been widely studied during the sixties and seventies in the mathe-

matical literature (see4 [Goo63, Jam64, Kha65, Sri65, Kha66, Tan68]). More recently, the statis-

tical properties of the eigenvalues of Wishart matrices have been investigated and effectively

applied to analyze the information theoretical limits of MIMO channels [Tel99, Gra02, Kan03a,

Chi03,Smi03,Rat03,Alf04a,Alf04b,Jay05,McK05,Rat05d,Alf06,Kan06a,Kan06b,Sim06,Maa07b]

as well as the performance of practical MIMO systems [Bur02, Dig03, Kan03b, Let04, Zan05,

Chi05, Ord05b, Gar05, Maa06, Jin06, Jin08, Ord07b, Maa07a]. Some other interesting channel

4 This bibliographical review is not exhaustive. We only include here some relevant references that focus on the complex

Wishart distribution.
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models entail the study of complex Pseudo-Wishart distributed matrices. However, this dis-

tribution and its eigenvalues have been only marginally considered in the MIMO literature

[Smi03,Kan03a,Rat05b,Kan06b,Sim06,Maa06,Maa07a]. This is also the case of the more gen-

eral complex quadratic form distributions [Shi03, Rat05c, Rat05a, Rat06, Shi06, Sim06, McK07],

which include the Wishart and Pseudo-Wishart distributions as particular cases.

Most of these works deal with the joint pdf of the ordered eigenvalues [Kan03a, Chi03,

Smi03,Rat03,Chi05,Rat05a,Rat05b,Rat05c,Rat05d,McK05,Kan06a,Kan06b,Rat06,Shi06], the

marginal distribution of an unordered eigenvalue [Tel99, Gra02, Alf04a, Alf04b, Jay05, Alf06], or

the distribution of the smallest eigenvalue [Bur02] to evaluate the system performance for the

uninformed transmitter case. In contrast, when perfect channel state information is available

at the transmitter, the weakest channel eigenmodes can be discarded, and the marginal statis-

tics of the ordered eigenvalues become necessary to evaluate the system performance. In this

context, useful closed-form expressions for the distribution of the largest eigenvalue have been

derived in [Kan03a, Dig03, Kan03b, Let04, Zan05, Gra05, Maa05, Maa06, Maa07a] to analyze the

performance of the beamforming scheme (also referred as maximum ratio transmission [Lo99]).

Nevertheless, an exhaustive analysis of the marginals of all ordered eigenvalues is still miss-

ing. Some initial contributions in this direction are [Ord05b, Jin06, Ord07b]. In particular, the

first order Taylor expansion of the marginal pdf’s of all the ordered eigenvalues was given

in [Ord05b, Ord07b] for the uncorrelated central Wishart distribution to characterize the high-

SNR performance of the individual MIMO channel eigenmodes and of linear MIMO transceivers

(see e.g. [Pal03]). With the same purpose, [Jin06] derived the exact marginal cdf’s and the first

order Taylor expansion of the marginal pdf’s of the ordered eigenvalues for the uncorrelated

noncentral Wishart distribution.

2.1.3 Motivation and Contributions

Distribution results of random matrices are typically derived in the literature in terms of hyper-

geometric functions of matrix arguments. In particular, these functions arise in the distribution

of Wishart matrices, as well as in the joint density of its eigenvalues. Hypergeometric functions

of matrix arguments were defined by Herz in 1955 [Her55] using Laplace and inverse Laplace

transforms. Constantine gave in 1963 [Con63] the power series representation in terms of an
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infinite series of zonal polynomials, which are symmetric polynomials in the eigenvalues of the

matrix arguments. The zonal polynomials series expasion became the standard representation of

hypergeometric functions in multivariate analysis and, hence, appears when characterizing the

Wishart distribution (see e.g. [Jam64]).

Unfortunately, the computational complexity of zonal polynomials is extremely high and the

convergence of the series is often very slow [Gut00].5 Hence, it is convenient to derive simpler

and computationally efficient expressions avoiding zonal polynomials to represent hypergeomet-

ric functions of matrix arguments and, thus, the Wishart distribution and related results. The

solution has been available in the literature since 1970, when Khatri gave in [Kha70] an alter-

native expression in terms of a quotient of determinants including generalized hypergeometric

functions of scalar arguments. However, this result has been widely overlooked until it was

independently derived by Gross and Richards in 1989 [Gro89].

In this chapter we present a general formulation that unifies the probabilistic characterization

of the eigenvalues of Hermitian random matrices with a specific structure. Based on a unified

expression for the joint pdf of the ordered eigenvalues, we obtain:

(i) the joint cdf of the ordered eigenvalues,

(ii) the marginal cdf’s of the ordered eigenvalues,

(iii) the marginal pdf’s of the ordered eigenvalues,

(iv) the cdf of the maximum weighted ordered eigenvalue, and

(v) the first order Taylor expansions of (ii), (iii), and (iv),

where (ii), (iii), and (iv) follow as simple particularizations of (i). In addition we also consider

the unordered eigenvalues and derive:

(vi) the joint cdf of a set of unordered eigenvalues,

(vii) the joint pdf of a set of unordered eigenvalues, and

(viii) the marginal cdf of a single unordered eigenvalue.

Using Khatri’s result, we particularize the derived distributions for uncorrelated and corre-

lated central Wishart, correlated central Pseudo-Wishart, and uncorrelated noncentral Wishart

matrices avoiding the non-convenient series expansions in terms of zonal polynomials. Complex

5 An efficient algorithm for the computation of hypergeometric functions of matrix arguments has been recently presented

in [Koe06].
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central quadratic forms are also addressed, although, in this case, we are not able to handle

with the infinite series. To the best of the author’s knowledge, the joint cdf was unknown for

all these distributions and the marginal cdf’s and pdf’s of all ordered eigenvalues were only

available for the uncorrelated central and noncentral Wishart distributions. Recently, other uni-

fied treatments have been proposed in [Zan05,Alf06], including, however, only uncorrelated and

correlated central Wishart and uncorrelated noncentral Wishart matrices. Furthermore, only

the distribution of the largest and the smallest eigenvalue was derived in [Zan05] and the distri-

bution of an unordered eigenvalue in both [Zan05, Alf06]. Simultaneously to the publication of

this work in [Ord08b], the marginal cdf’s of all the ordered eigenvalues were obtained in [Zan08]

following the unified approach by the same authors in [Zan05] that includes uncorrelated and

correlated central Wishart and uncorrelated noncentral Wishart matrices.

The joint analysis of a general class of distributions presented in this chapter settles the

basis for a unified framework in the performance analysis of MIMO systems. Specifically, in

this dissertation our results are applied to investigate the spatial multiplexing system that re-

sults from transmitting independent substreams through the strongest eigenmodes when perfect

channel state information is available at both sides of the link (also termed as MIMO SVD

systems). The motivation behind the analysis of this particular communication scheme is that

it was proven to be optimal in the design of linear MIMO transceivers under a wide range of

different optimization criteria [Pal03] (see Chapter 3 for details).

2.1.4 Outline

The rest of the chapter is organized as follows. Section 2.2 is devoted to introducing some

mathematical definitions, results, and functions that are intensively used in the subsequent

sections. In Section 2.3 we present the matrix variate complex normal distribution and some

other closely related Hermitian matrix distributions, such as the Wishart, Pseudo-Wishart, and

quadratic form distributions. Sections 2.4 and 2.5 contain the main contribution of this chapter,

i.e., the derivations of the joint cdf and both the marginal cdf’s and pdf’s of the ordered and

unordered eigenvalues of a general class of Hermitian random matrices. Then, in Section 2.6 we

establish the matching between this class and some particular cases of the Wishart, Pseudo-

Wishart, quadratic form distributions. Finally, in Section 2.7 we summarize the main results

and provide the list of publications where they have been presented.
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2.2 Mathematical Preliminaries and Definitions

This section presents preliminary definitions and lemmas that are useful when dealing with

matrix-variate distributions and are required to follow the results and developments in the

subsequent sections.

2.2.1 Matrices and Determinants

First we review some basic results on matrices and determinants.

Definition 2.1 (Sign of a permutation [Hor90, Sec. 0.3.2]). The sign of a permutation µ =

(µ1, . . . , µn) of the integers (1, . . . , n), denoted by sgn(µ), is +1 or −1 according to whether the

minimum number of transpositions, or pairwise interchanges, necessary to achieve (µ1, . . . , µn)

starting from (1, . . . , n) is even or odd.

Definition 2.2 (Determinant [Hor90, Sec. 0.3.2]). The determinant of matrix A (n×n), denoted

by |A|, is defined as

|A| =
∑
µ

sgn(µ)
n∏
k=1

[A]µk,k = sgn(ν)
∑
µ

sgn(µ)
n∏
k=1

[A]µk,νk (2.1)

where the summation over µ = (µ1, . . . , µn) is for all permutations of the integers (1, . . . , n),

ν = (ν1, . . . , νn) is any arbitrary fixed permutation of the integers (1, . . . , n), and sgn(·) denotes

the sign of the permutation.

Alternatively, we also use the common compact notation of the determinant of matrix A in

terms of its (i, j)th element, [A]i,j = aij ,

|A| = |aij |. (2.2)

Of special interest in this chapter are Vandermonde matrices, since they admite a closed-form

expression for their determinant that is used to manipulate the considered distributions.

Definition 2.3 (Vandermonde matrix [Hor91, eq. (6.1.32)]). The nth order Vandermonde matrix

in x = (x1, . . . , xn), denoted by V(x) (n× n), is defined as

[V(x)]i,j = xi−1
j for i, j = 1, . . . , n. (2.3)
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Lemma 2.1 (Vandermonde determinant [Hor91, eq. (6.1.33)]). The determinant of the nth

order Vandermonde matrix introduced in Definition 2.3 is given by

|V(x)| =
∏
i<j

(xj − xi). (2.4)

The following operator is useful to express a sum of determinants compactly.

Definition 2.4. Operator T {·} over a tensor T (n× n× n) is defined as6

T {T} =
∑
µ,ν

sgn(µ)sgn(ν)
n∏
k=1

[T]µk,νk,k (2.5)

where the summation over ν = (ν1, . . . , νn) and µ = (µ1, . . . , µn) is for all permutations of the

integers (1, . . . , n) and sgn(·) denotes the sign of the permutation.

Remark 2.1. Observe that the operator T {·} introduced in Definition 2.4 can be alternatively

expressed as

T {T} =
∑
µ,ν

sgn(µ)
n∏
k=1

[T]µk,k,νk =
∑
ν

|A(ν)| (2.6)

where matrix A(ν) (n× n) is defined in terms of the elements of tensor T as

[A(ν)]i,j = [T]i,j,νj for i, j = 1, . . . , n. (2.7)

Lemma 2.2 (Derivative of a determinant [Hor91, eq. (6.5.9)]). The derivative of the determinant

of matrix A(x) (n× n) is given by

d

dx
|A(x)| =

n∑
t=1

|A(t)(x)| (2.8)

where A(t)(x) coincides with A(x) except that every entry in the t-th column is differentiated

with respect to x.

Lemma 2.3 (rth derivative of a determinant [Chr64, eq. (10)]). The rth derivative of the

determinant of matrix A(x) (n× n) is given by

dr

dxr
|A(x)| =

∑
r

r!
r1! · · · rn!

|A(r)(x)| (2.9)

where the summation over r = (r1, . . . , rn) is for all r such that ri ∈ N ∪ {0} and
∑n

i=1 ri = r,

and matrix A(r)(x) (n× n) is defined as

[A(r)(x)]i,j =
drj

dxrj
[A(x)]i,j for i, j = 1, . . . , n. (2.10)

6 This operator is also introduced in [Chi03, Def. 1].
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In the coming sections it is necessary to calculate limits of ratios of the form

lim
(xn+1,...,xm)→(x0,...,x0)

|fi(xj)|
|V(x)|

(2.11)

where x = (x1, . . . , xn, xn+1 . . . , xm) and V(x) is an mth order Vandermonde matrix. The re-

quired generalizations of the L’Hôpital rule are given in the next lemmas.

Lemma 2.4 ([Sim06, Lem. 6]). The limit in (2.11) with x0 <∞ is given by

lim
(xn+1,...,xm)→(x0,...,x0)

|fi(xj)|
|V(x)|

=
|Z(x1, . . . , xn)|

|V(x1, . . . , xn)|
∏n
i=1(xi − x0)m−n

∏m−n−1
j=1 j!

(2.12)

where matrix Z(x1, . . . , xn) (m×m) is defined as

[Z(x1, . . . , xn)]i,j =


fi(xj) 1 ≤ j ≤ n

f
(j−n−1)
i (x)

∣∣∣
x=x0

n < j ≤ m
for i, j = 1, . . . ,m (2.13)

where f (r)(·) denotes the rth derivative of function f(·).

Lemma 2.5 ([Sim06, Lem. 7]). The limit in (2.11) with x0 =∞ is given by

lim
(xn+1,...,xm)→(∞,...,∞)

|fi(xj)|
|V(x)|

=
|Z̃(x1, . . . , xn)|
|V(x1, . . . , xn)|

(2.14)

where matrix Z̃(x1, . . . , xn) (m×m) is defined as

[Z̃(x1, . . . , xn)]i,j =


fi(xj) 1 ≤ j ≤ n

f̃
(j−n−1)
i n < j ≤ m

for i, j = 1, . . . ,m (2.15)

whenever the asymptotic behavior of fi(x) as x→∞ is of the form

fi(x) = xm−1
∞∑
k=0

f̃
(k)
i x−k. (2.16)

2.2.2 Integral Functions

Now we introduce some functions defined in integral form that, due to its importance, have

been tabulated and are available as build-in functions in most common mathematical software

packages such as MATLAB R© or Mathematica R©. We also list some of their properties.

Definition 2.5 (Gamma function [Abr72, eq. (6.1.1)]). The gamma function is defined as

Γ(a) =
∫ ∞

0
e−xxa−1dx. (2.17)
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Definition 2.6 (Complex multivariate gamma function [Jam64, eq. (83)]). The complex multi-

variate gamma function is defined as

Γ̃n(a) =
∫

A=A†>0
e−tr(A)|A|a−ndA = πn(n−1)/2

n∏
i=1

Γ(a− i+ 1). (2.18)

Definition 2.7 (Lower incomplete gamma function [Abr72, eq. (6.5.2)]). The lower incomplete

gamma function is defined as

γ(a, λ) =
∫ λ

0
e−xxa−1dx. (2.19)

Definition 2.8 (Upper incomplete gamma function [Abr72, eq. (6.5.3)]). The upper incomplete

gamma function is defined as

Γ(a, λ) =
∫ ∞
λ

e−xxa−1dx = Γ(a)− γ(a, λ). (2.20)

Lemma 2.6. Let a ∈ N, then it holds that

Γ(a) = (a− 1)! [Abr72, eq. (6.1.5)] (2.21)

Γ̃n(a) = πn(n−1)/2
n∏
i=1

(a− i)! [from (2.18) and (2.21)] (2.22)

γ(a, λ) =
∞∑
i=0

(−1)i

(a+ i)i!
λa+i [Abr72, eq. (6.5.29)] (2.23)

Γ(a, λ) = (a− 1)!−
∞∑
i=0

(−1)i

(a+ i)i!
λa+i [from (2.20), (2.21) and (2.23)]. (2.24)

Definition 2.9 (Modified Bessel function of the first kind). The modified Bessel function of the

first kind of integer order n is defined as [Abr72, eq. (9.6.19) and eq. (9.6.10)]

In(λ) =
1
π

∫ π

0
eλ cosx cos(nx)dx = (λ/2)n

∞∑
k=0

(λ2/4)k

k!Γ(n+ k + 1)
(2.25)

Definition 2.10 (Generalized hypergeometric function [Gra00, eq. (9.14.1)]). The generalized

hypergeometric function is defined in terms of the hypergeometric series as

pFq(a1, . . . , ap; b1, . . . , bq;λ) =
∞∑
k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

λk

k!
(2.26)

where (a)k = a(a+ 1) · · · (a+ k − 1) denotes the Pochhammer’s symbol [Abr72, eq. (6.1.22)].

Lemma 2.7 (Special cases of hypergeometric functions). For the following generalized hyper-

geometric functions it holds that

0F0(λ) = eλ [from (2.26)] (2.27)

0F1(n+ 1;λ) = Γ(n+ 1)λ−n/2In(2
√
λ) [Abr72, eq. (9.6.47)]. (2.28)
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Consequently, 0F0(·) and 0F1(·; ·) are known as exponential type and Bessel type hypergeo-

metric functions, respectively.

Definition 2.11 (Marcum Q-function [Mar50] [Can87, eq. (1)]). The (generalized) Marcum

Q-function is defined as

Qn(a, b) =
1

an−1

∫ ∞
b

xne
−
“
x2+a2

2

”
In(ax)dx. (2.29)

Definition 2.12 (Nuttall Q-function [Nut72, eq. (86)]). The Nuttall Q-function is defined as

Qm,n(a, b) =
∫ ∞
b

xme
−
“
x2+a2

2

”
In(ax)dx. (2.30)

The Nuttall Q-function is not considered to be a tabulated function. However, if m + n is

odd, the Nuttall Q-function can be expressed as a weighted sum of k + 1 generalized Marcum

Q-functions and modified Bessel functions of the first kind as stated in following lemma.

Lemma 2.8 ([Sim02a, eq. (8)]). For m > n ≥ 0 and m + n odd, i.e., m = n + 2k + 1 for

k = 0, 1, . . ., the Nuttall Q-function can be calculated as

Qn+2k+1,n(a, b) =
k+1∑
i=1

wi(k)Qn+i(a, b) + e
a2+b2

2

k∑
i=1

wk,i(b2)ai−1bn+i+1In+i+1(ab) (2.31)

where

wi(k) = 2k−i−j
k!

(i− 1)!

(
k + n

k − i+ 1

)
(2.32)

wk,i(b2) =
k−i∑
j=0

2k−i+1 (k − 1− j)!
(i− 1)!

(
k + n

k − i− j

)
b2j (2.33)

where
(
n
k

)
= n!/((n− k)!k!) denotes the binomial coefficient [Abr72, eq. (3.1.2)].

The definition of the Nuttall Q-function has been extended to encompass negative values of

both parameters m and n and the corresponding series expansion has been given in [Maa08,

App. II].

2.2.3 Functions of Matrix Arguments

Many multivariate distributions are described using hypergeometric functions of matrix argu-

ments, which were introduced by Herz [Her55] in integral form and by Constantine [Con63] in
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terms of infinite series of zonal polynomials (see [Gup00, Sec. 1.5 and 1.6] for a detailed explana-

tion). In particular, we focus only on hypergeometric functions of Hermitian matrix arguments

as defined by James in [Jam64, Sec. 8] (see also [Rat04], [Gra05, App. II], [McK06, Sec. 2.2]),

since this is the class that arises when describing complex multivariate distributions.

2.2.3.1 Zonal Polynomials

Before coming to hypergeometric functions of matrix arguments it is convenient to give a brief

introduction on zonal polynomials, since they are involved in the power series representation

of hypergeometric functions which is the most common definition. Zonal polynomials are ho-

mogenous symmetric polynomials7 in n variables derived from the group representation the-

ory [Jam64, Sec. 4].

Definition 2.13 (Partition [Mui82, Sec. 7.2.1]). A partition κ of k into n parts, where k, n ∈ N,

is defined as κ = (k1, . . . , kn) with ki ∈ N ∪ {0}, k1 ≥ · · · ≥ kn, and
∑n

i=1 ki = k.

Definition 2.14 (Zonal polynomial [Jam64, eq. (85)]). The zonal polynomial of an Hermitian

matrix A (n× n), denoted by C̃κ(A), is defined as

C̃κ(A) = χ[κ](1)χ{κ}(A) (2.34)

where κ is a partition of k into n parts, χ{κ}(A) is the character representation {κ} of the linear

group and is given as a symmetric function of the eigenvalues of A, λ1, . . . , λn by

χ{κ}(A) =

∣∣λkj+n−ji

∣∣∣∣λn−ji

∣∣ (2.35)

and χ[κ](1) is the dimension of the representation [κ] of the symmetric group:

χ[κ](1) = k!

∏n
i<j(ki − kj − i+ j)∏n
i=1 Γ(n+ ki − i+ 1)

. (2.36)

2.2.3.2 Hypergeometric Functions of Matrix Arguments

Definition 2.15 (Complex multivariate hypergeometric coefficient [Jam64, eq. (84)]). Let κ be

a partition of k into n parts. The complex multivariate hypergeometric coefficient, denoted by

7 A homogeneous symmetric polynomial of degree k in n variables x1, x2, . . . , xn is a polynomial that is unchanged by

permutations of the subscripts and every term in the polynomial has degree k [Mui82, Sec. 7.2.1, Rem. 1].
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[a]κ, is defined as [Jam64, eq. (84)]

[a]κ =
n∏
i=1

(a− (i− 1)/2)ki (2.37)

where (a)k = a(a+ 1) · · · (a+ k − 1) denotes the Pochhammer’s symbol [Abr72, eq. (6.1.22)].

Definition 2.16 (Hypergeometric function of matrix argument [Jam64, eq. (87)]). Let A (n×n)

be an Hermitian matrix. The hypergeometric function of Hermitian matrix argument is defined

in terms of zonal polynomials as

pF̃q (a1, . . . , ap; b1, . . . , bq; A) =
∞∑
k=0

∑
κ

[a1]κ · · · [ap]κ
[b1]κ · · · [bq]κ

C̃κ(A)
k!

(2.38)

where the summation over κ is for all partitions of k into n parts and C̃κ(A) is the zonal

polynomial of an Hermitian matrix (see Definition 2.14).

Definition 2.17 (Hypergeometric function of two matrix arguments [Jam64, eq. (88)]). Let A

(n×n) and B (n×n) be two Hermitian matrices.The hypergeometric function of two Hermitian

matrix arguments is defined in terms of zonal polynomials as8

pF̃q (a1, . . . , ap; b1, . . . , bq; A,B) =
∞∑
k=0

∑
κ

[a1]κ · · · [ap]κ
[b1]κ · · · [bq]κ

C̃κ(A)C̃κ(B)
C̃κ(In)k!

(2.39)

where the summation over κ is for all partitions of k into n parts and C̃κ(A) is the zonal

polynomial of an Hermitian matrix (see Definition 2.14).

Remark 2.2. In particular, the hypergeometric functions 0F̃0(A) and 0F̃0(A,B), 0F̃1(·; A) and

0F̃1(·; A,B), and 1F̃1(·; ·; A) and 1F̃1(·; ·; A,B) are referred to as exponential type, Bessel type,

and confluent type, respectively.

The convergence of the series in (2.38) and (2.39) (see convergence conditions in [Gup00,

p. 34]) is often very slow. Hence, hypergeometric functions of matrix argument have acquired

a reputation of being notoriously difficult to approximate even in the simplest cases [Gut00].

However, Koev and Edelman have recently proposed an algorithm in [Koe06] whose complexity

is only linear in the size of the matrix.

8 If matrices A and B have unequal dimensions, the hypergeometric function of matrix arguments A and B can be still

analogously defined.
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Lemma 2.9 ([Jam64, eq. (89)]). Let A (n× n) be an Hermitian matrix. The exponential type

hypergeometric function of Hermitian matrix argument 0F̃0(A) is given by

0F̃0(A) = etr(A). (2.40)

Lemma 2.10 ([Kha70, Lem. 3] [Gro89, Thm. 4.2]). Let A (n×n) and B (n×n) be two Hermitian

matrices with eigenvalues λ = (λ1, . . . , λn) and σ = (σ1, . . . , σn), such that9 (λ1 > · · · > λn)

and (σ1 > · · · > σn). The hypergeometric function of two Hermitian matrix arguments given in

Definition 2.17 in terms of zonal polynomials can be alternatively expressed as

pF̃q (a1, . . . , ap; b1, . . . , bq; A,B) = pGq
|pGq(λ,σ)|
|V(λ)||V(σ)|

(2.41)

with

pGq =
Γ̃n(n)

πn(n−1)/2

∏n
i=1

∏q
j=1(bj − i+ 1)i−1∏n

i=1

∏p
j=1(aj − i+ 1)i−1

(2.42)

where Γ̃n(·) denotes the complex multivariate gamma function (see Definition 2.6), V(λ) (n×n)

and V(σ) (n× n) are Vandermonde matrices (see Definition 2.3), and pGq(λ,σ) is defined as

[pGq(λ,σ)]i,j = pFq (a1 − n+ 1, . . . , ap − n+ 1; b1 − n+ 1, . . . , bq − n+ 1;λiσj)

for i, j = 1, . . . , n (2.43)

where pFq(·; ·; ·) is the generalized hypergeometric function of scalar arguments (see Defini-

tion 2.10). In particular, for the exponential and Bessel type it holds that

0F̃0(A,B) =
Γ̃n(n)

πn(n−1)/2

|0G0(λ,σ)|
|V(λ)||V(σ)|

(2.44)

0F̃1(m; A,B) =
Γ̃n(m)Γ̃n(n)

πn(n−1)Γ(m− n+ 1)n
|0G1(λ,σ)|
|V(λ)||V(σ)|

(2.45)

where 0G0(λ,σ) and 0G1(λ,σ) are defined as

[0G0(λ,σ)]i,j = 0F0(λiσj) = eλiσj for i, j = 1, . . . , n (2.46)

[0G1(λ,σ)]i,j = 0F1(m− n+ 1;λiσj) for i, j = 1, . . . , n. (2.47)

We have already given most of the results needed in this chapter. Several other results, in

addition to these, are given in the text with the corresponding relevant references.

9 When some of the λi’s or σi’s are equal, the result is obtained as the limiting case of the righthand side of (2.41) using

Lemma 2.4.
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2.3 Random Matrices Derived from the Complex Normal Distribution

This section introduces the matrix variate complex normal distribution and some other closely

related Hermitian matrix distributions, such as Wishart, Pseudo-Wishart, and quadratic form

distributions. Here we focus only on the density of these random matrices while the probabilistic

characterization of its ordered and unordered eigenvalues is addressed in Section 2.6.

A matrix random phenomenon is an observable phenomenon which can be represented in

matrix form. Repeated observations yield different outcomes of the observation matrix which are

not deterministically predictable. Then, the degree of certainty with which a matrix event, i.e.,

a subset of the sample space S, occurs can be measured by defining a function which assigns a

probability to every matrix event in S according to the three postulates of Kolmogorov. Hence,

the pdf of the random matrix is defined analogously to that of an scalar random variable.

Definition 2.18 (Probability density function of random matrix [Gup00, Def. 1.9.2]). The pdf

of a random matrix X is defined by a scalar function fX(X) satisfying

(i) fX(X) ≥ 0 (2.48)

(ii)
∫

X∈S
fX(X)dX = 1 (2.49)

(iii) Pr(X ∈ A) =
∫

X∈A
fX(X)dX (2.50)

where A is a subset of the sample space of X denoted by S.

2.3.1 Complex Normal Random Matrices

First we present basic definitions involving the generalization of the complex normal distribution

to include random vectors and matrices.

Definition 2.19 (Complex normal random vector [Sri79, Sec. 2.1 and Def. 2.9.1]). Let u =

(u1, . . . , un)
′

be a complex circular10 random vector of n independent complex normal random

variables with zero mean and unit variance, i.e., ui ∼ CN (0, 1). Then, the random vector x =

10 A complex random vector with real and imaginary parts x and y, respectively, is circular [Nee93] (or proper [Pic94]) if

E{(x− E{x})(y − E{y})′} = 0. Henceforth we always consider circular complex random vectors although not explicitly

stated. In fact, the multivariate complex distribution was initially obtained in [Woo56] assuming circularity, and this

assumption was maintained in the follow-up literature on the complex Wishart distribution.
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(x1, . . . , xn)
′

is said to have a multivariate complex normal distribution with mean vector µ (n×1)

and covariance matrix Σ (n× n), denoted by x ∼ CN n (µ,Σ), if x has the same distribution as

µ+ Au, where A is any nonsingular factorization of Σ such that Σ = AA†.

Definition 2.20 (Complex normal random matrix [Gup00, Def. 2.2.1]11). The random matrix

X (n ×m) is said to have a matrix variate complex normal distribution with mean matrix Θ

(n ×m) and covariance matrix Σ ⊗Ψ, where Σ (n × n) > 0 and Ψ (m ×m) > 0, denoted by

X ∼ CN n,m (Θ,Σ,Ψ), if vec(X
′
) ∼ CN nm(vec(Θ

′
),Σ⊗Ψ).

Lemma 2.11 (Matrix variate complex normal distribution [Woo56, eq. (17)] [Jam64, eq. (78)]

[Kha66, eq. (56)] [Tan68, eq. (2.1)]12). Let X ∼ CN n,m (Θ,Σ,Ψ). The pdf of X is given by

fX(X) =
1

πmn|Σ|m|Ψ|n
e−trΣ−1(X−Θ)Ψ−1(X−Θ)† . (2.51)

Observe that matrix Σ describes the covariance among the elements of any column of X,

i.e.,

Σ = E
{

([X]t − [Θ]t)([X]t − [Θ]t)†
}

for t = 1, . . . , n (2.52)

while Ψ describes the covariance among the elements of any row of X, i.e.,

Ψ = E
{

([X
′
]t − [Θ

′
]t)([X

′
]t − [Θ

′
]t)†
}

for t = 1, . . . ,m. (2.53)

Here we restrict to the case of Σ > 0 and Ψ > 0, i.e., Σ⊗Ψ > 0. Otherwhise, the pdf of X in

(2.51) does not exist and X is said to have a singular matrix variate complex normal distribution

which is not considered here (see [Gup00, Sec. 2.4] for details).

2.3.2 Complex Wishart Random Matrices

Now we focus on the distribution of Hermitian random matrices of the form W = XX† (n× n)

with X ∼ CN n,m (Θ,Σ,Ψ) for the particular case of X having independent columns, i.e.,

Ψ = Im, and n ≤ m. The random matrix W is said to follow the Wishart distribution, which

was initially obtained in [Wis28] for the real case to describe the distribution of the sample

covariance matrix of m independent observation vectors drawn from a normal population. This

result was extended to the complex case in [Goo63,Jam64,Kha65].

11 Reference [Gup00] gives the real counterpart of Definition 2.20.

12 In [Woo56] Θ = 0n and Ψ = Im, in [Jam64] Ψ = Im, and in [Kha66] Θ = 0n.
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Definition 2.21 (Complex Wishart random matrix [Sri79, Sec. 3.1 and Sec. 3.7]). Let X (n×m)

with n ≤ m, then the random matrix W (n× n) defined as W = XX† is said to have:

(i) a complex uncorrelated central Wishart distribution with m degrees of freedom, denoted by

W ∼ Wn(m,0n, In), if X ∼ CN n,m (0n,m, In, Im).

(ii) a complex correlated central Wishart distribution with m degrees of freedom and covariance

matrix Σ (n× n) > 0, denoted by W ∼ Wn(m,0n,Σ), if X ∼ CN n,m (0n,m,Σ, Im).

(iii) a complex uncorrelated noncentral Wishart distribution with m degrees of freedom and

noncentrality parameter matrix Ω = ΘΘ† (n× n) > 0, denoted by W ∼ Wn(m,Ω, In), if

X ∼ CN n,m (Θ, In, Im).

(iv) a complex correlated noncentral Wishart distribution with m degrees of freedom, noncen-

trality parameter matrix Ω = Σ−1ΘΘ† (n×n) > 0, and covariance matrix Σ (n×n) > 0,

denoted by W ∼ Wn(m,Ω,Σ), if X ∼ CN n,m (Θ,Σ, Im).

It is worth pointing out that the mean of W ∼ Wn(m,Ω,Σ) is given by

E {W} = mΣ + ΘΘ† = Σ(mIn + Ω) (2.54)

and the covariance matrix is [Gup00, Cor. 7.7.2.1]

E
{

(vec(W)− vec(E{W})
)(

vec(W)− vec(E{W}))†
}

=

= (mΣ⊗Σ + ΣΩ⊗Σ + Σ⊗ΣΩ)(In + Knn) (2.55)

where Knn is the commutation matrix of order n2 × n2 defined as [Mag79, Def. 3.1]

Knn =
n∑

i,j=1

(
Ji,j ⊗ J

′
i,j

)
(2.56)

where matrix Ji,j (n× n) has a unit element at the (i, j)th entry and zeros elsewhere.

From the pdf of the complex normal random matrix X and the definition W = XX†, it holds

that W > 0 with probability one [Gup00, Thm. 3.2.2]. Hence, the pdf of the complex Wishart

matrix W is well defined in the set of all Hermitian positive definite matrices. This pdf is given

in the following lemmas distinguishing between the central and noncentral cases (see [Sri65] for

a simple derivation).

Lemma 2.12 (Complex central Wishart distribution [Goo63, eq. (1.6)] [Jam64, eq. (94)]). The

pdf of W ∼ Wn(m,0n,Σ) is given by

fW(W) =
1

Γ̃n(m)|Σ|m
e−tr(Σ−1W)|W|m−n (2.57)
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where Γ̃n(·) denotes the complex multivariate gamma function (see Definition 2.6).

Lemma 2.13 (Complex noncentral Wishart distribution [Jam64, eq. (99)]). Let Wc ∼

Wn(m,0n,Σ). The pdf of W ∼ Wn(m,Ω,Σ) is given by

fW(W) = e−tr(Ω)
0F̃1(m; ΩΣ−1W)fWc(Wc) (2.58)

=
e−tr(Ω)

Γ̃n(m)|Σ|m 0F̃1(m; ΩΣ−1W)e−tr(Σ−1W)|W|m−n (2.59)

where Γ̃n(·) denotes the complex multivariate gamma function (see Definition 2.6) and 0F̃1(·; ·)

is the Bessel type hypergeometric function of Hermitian matrix argument (see Definition 2.16).

2.3.3 Complex Pseudo-Wishart Random Matrices

In this section we consider the distribution of Hermitian random matrices of the form W = X†X

(m×m) with X ∼ CN n,m (Θ,Σ,Ψ) and n < m for the particular case of X having independent

rows, i.e., Σ = In. Recall from Section 2.3.2 that W = XX† (n×n) with X having independent

columns satisfies W > 0 with probability one and is Wishart distributed. To the contrary, in

this case W is not full-rank and follows a Pseudo-Wishart distribution.13

In contrast to the Wishart distribution, the Pseudo-Wishart distribution has not been so

extensively studied, since no practical applications were foreseen [Sri03]. Its distribution was

obtained in [Uhl94,Gar97] for the real case and in [Mal03,Jan03,Rat05b] for the complex case.

Definition 2.22 (Complex Pseudo-Wishart random matrix [Sri79, Sec 3.1]14). Let X ∼

CN n,m (0n, In,Ψ) with n < m. The Hermitian random matrix W = X†X (m × m) is said

to have a complex central Pseudo-Wishart distribution with parameters n, m, and covariance

matrix Ψ (m×m) > 0, denoted by W ∼ PWm(n,0m,Ψ) .

Lemma 2.14 (Complex central Pseudo-Wishart distribution [Rat05b, Thm. 3]). The pdf of

W ∼ PWm(n,0m,Ψ) is given by

fW(W) =
πn(n−m)

Γ̃m(m)|Ψ|m
e−tr(Ψ−1W)|Λ|m−n for W ∈ CSm,n (2.60)

13 The Pseudo-Wishart distribution [Ksh72, Sri79, Gup00] is also referred to as singular Wishart [Uhl94] or anti-Wishart

[Jan03] distribution. However, here we prefer the Pseudo-Wishart denomination to distinguish it from the case where the

singularity of W is a direct consequence of X following a singular matrix variate normal distribution (see classification

in [Sri79, Sec. 3.1]).

14 Reference [Sri79] gives the real counterpart of Definition 2.22.
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where Γ̃n(·) denotes the complex multivariate gamma function (see Definition 2.6), Λ =

diag (λ1, . . . , λn) the contains the n nonzero eigenvalues of W, and CSm,n denotes the (2mn−

n2)-dimensional manifold of all m×m positive semidefinite Hermitian matrices of rank n.

Observe that Definition 2.22 and Lemma 2.14 only contemplate the central case, i.e., the

case of X being zero-mean. To the best of the author’s knowledge, the distribution of complex

noncentral Pseudo-Wishart matrices is not available in the literature.

2.3.4 Quadratic Forms in Complex Normal Matrices

In Sections 2.3.2 and 2.3.3, we consider random matrices of the form W = XX† or X†X

with X ∼ CN n,m (Θ,Σ,Ψ) for the particular case of X having independent columns or rows,

respectively. In this section we focus on the distribution of central quadratic forms W = XAX†,

where A (m × m) > 0 and X ∼ CN n,m (0n,m,Σ,Ψ) with Σ (n × n) and Ψ (m × m) being

any positive definite correlation matrices. Hence, it includes the former central random matrix

distributions as particular cases. The distribution of W was derived by Khatri in 1966 [Kha66]

simultaneously for the real and the complex case. The more general noncentral case in which X ∼

CN n,m (Θ,Σ,Ψ) with Θ 6= 0n,m is mathematically more involved (see e.g. [Gup00, Sec. 7.6])

and is not addressed here.

Definition 2.23 (Complex central quadratic form distribution [Gup00, Sec 7.2]15). Let X (n×

m) with n ≤ m, then the random matrix W (n×n) defined as W = XAX† is said to have central

quadratic form distribution, denoted by W ∼ Qn,m(0n,A,Σ,Ψ), if X ∼ CN n,m (0n,m,Σ,Ψ)

with Σ (n× n) > 0, Ψ (m×m) > 0 and A (m×m) > 0.

Lemma 2.15 (Complex central quadratic form distribution [Kha66, eq. (57)]). The pdf of

W ∼ Qn,m(A,Σ,Ψ) is given by

fW(W) =
1

Γ̃n(m)|Σ|m|AΨ|m 0F̃0(−WΣ−1,Ψ−1A−1)|W|m−n (2.61)

where Γ̃n(·) denotes the complex multivariate gamma function (see Definition 2.6) and 0F̃0(·, ·)

is the exponential type hypergeometric function of two Hermitian matrix arguments (see Defini-

tion 2.17).

15 Reference [Gup00] gives the real counterpart of Definition 2.23.
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2.4 Ordered Eigenvalues of a General Class of Hermitian Random Matrices

This section focuses on the ordered eigenvalues of a general class of Hermitian random matrix

distributions which includes the Wishart distribution, the Pseudo-Wishart distribution, and the

quadratic form distribution. Assuming a particular structure for the joint pdf of their ordered

eigenvalues, we are able to perform the probabilistic characterization of the ordered eigenvalues

simultaneously for all these distributions. More exactly, we derive the joint cdf and both the

marginal cdf’s and pdf’s of the ordered eigenvalues of this general class of Hermitian random

matrices. The corresponding first order Taylor expansions are also provided.

2.4.1 Joint pdf of the Ordered Eigenvalues

The joint pdf of the ordered eigenvalues of a complex Hermitian positive definite16 random

matrix is obtained from its pdf as shown in the next lemma.

Lemma 2.16 ([Jam64, eq. (93)]). The joint pdf of the ordered eigenvalues, λ1 ≥ · · · ≥ λn ≥ 0,

of the complex Hermitian random matrix W (n× n) > 0 with pdf fW(W) is given by

fλ(λ) =
πn(n−1)

Γ̃n(n)

∏
i<j

(λi − λj)2

∫
U(n)

fW

(
UΛU†

)
dU (2.62)

where Λ = diag(λ1, . . . , λn), W = UΛU† is the eigendecomposition of W, and dU is the

invariant measure on the unitary group U(n) normalized to make the total measure unity.

Observing that the distribution of the Hermitian random matrices presented in Section 2.3

have all a very similar form and using Lemma 2.16, we can deduce how this common structure

in the pdf of a random matrix is translated into a common expression for the joint pdf of its or-

dered eigenvalues. Following the investigations in Appendix 2.A.1, the general class of Hermitian

random matrices addressed in this section (not necessarily positive definite) is formalized next

in Assumption 2.1 by imposing a particular structure on the joint pdf of its nonzero ordered

eigenvalues.

16 We say that a random matrix is positive definite if it is positive definite with probability one, i.e., its eigenvalues are

greater than zero with probability one. A similar procedure can be followed to deal with the nonzero eigenvalues of

positive semidefinite Hermitian random matrix (see the case of the Pseudo-Wishart distribution in Appendix 2.A.1).



38 Eigenvalues of a General Class of Hermitian Random Matrices

Assumption 2.1. We consider the class of Hermitian random matrices, for which the joint pdf

of its n nonzero ordered eigenvalues, λ1 ≥ · · · ≥ λn ≥ 0, can be expressed as

fλ(λ) = fλ(λ1, . . . , λn) =
∑
ι∈I

K(ι)
m,n|E(ι)(λ)||V(λ)|

n∏
t=1

ϕ(λt) (2.63)

where ι is a vector of indices and the summation is for all vectors ι in the set I, V(λ) (n× n)

is a Vandermonde matrix (see Definition 2.3) and matrix E(ι)(λ) (n× n) satisfies

[E(λ)]u,v = ζ(ι)
u (λv) for u, v = 1, . . . , n. (2.64)

The dimension of ι, the set I, the constant K(ι)
m,n, and the functions ζ(ι)

u (λ) and ϕ(λ) depend on

the particular distribution of the random matrix.

2.4.2 Joint cdf of the Ordered Eigenvalues

Next we present the main theorem of this chapter, since most other distributions and results

follow as (straightforward) particularizations of this one.

Theorem 2.1. The joint cdf of the n nonzero ordered eigenvalues, λ1 ≥ · · · ≥ λn ≥ 0, of an

Hermitian random matrix satisfying Assumption 2.1 is given by

Fλ(η) = Pr (λ1 ≤ η1, . . . , λn ≤ ηn) =
∑
ι∈I

K(ι)
m,n

∑
i∈S

1
τ(i)
T {T(ι)(i;η)} (2.65)

where (η1 ≥ · · · ≥ ηn > 0),17 the summation over i = (i1, . . . , in) is for all i in the set S and the

normalization factor τ(i) are defined as18

S = {i ∈ Nn|max(is−1, s) ≤ is ≤ n, is 6= r if ηr = ηr+1} (2.66)

τ(i) =
n∏
u=1

(
(1− δiu,iu+1)

u∑
v=1

δiu,iv

)
! (2.67)

where δu,v denotes de Kronecker delta. Operator T {·} is introduced in Definition 2.4, tensor

T(ι)(i;η) (n× n× n) is defined as

[T(ι)(i;η)]u,v,t =
∫ ηit

ηit+1

ξ(ι)
u,v(λ)dλ for u, v, t = 1, . . . , n (2.68)

and ξ(ι)
u,v(λ) = ζ

(ι)
u (λ)ϕ(λ)λv−1 (see Assumption 2.1).

Proof. See Appendix 2.A.2.

17 If ηk−1 < ηk then Fλ(η1, . . . , ηk−1, ηk, . . . , ηn) = Fλ(η1, . . . , ηk−1, ηk−1, . . . , ηn) and if some ηk = 0, then Fλ(η) = 0.

18 Note that in = n and by definition i0 = 0, in+1 = n+ 1 and ηn+1 = 0.
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2.4.3 Marginal cdf and pdf of the kth Largest Ordered Eigenvalue

In the following result we particularize the joint cdf of the ordered eigenvalues given in Theorem

2.1 to derive the marginal cdf and the marginal pdf of the kth largest eigenvalue.

Theorem 2.2. The marginal cdf of the kth largest nonzero eigenvalue, λk (1 ≤ k ≤ n), of an

Hermitian random matrix satisfying Assumption 2.1 is given by

Fλk(η) =
∑
ι∈I

K(ι)
m,n

k∑
i=1

∑
µ∈P(i)

|F(ι)(µ, i; η)| (2.69)

where P(i) is the set of all permutations µ = (µ1, . . . , µn) of the integers (1, . . . , n) such that

(µ1 < . . . < µi−1) and (µi < . . . < µn), matrix F(ι)(µ, i; η) (n× n) is defined as

[F(ι)(µ, i; η)]u,v =


∫∞
η ξ

(ι)
u,v(λ)dλ 1 ≤ µv < i∫ η

0 ξ
(ι)
u,v(λ)dλ i ≤ µv ≤ n

for u, v = 1, . . . , n (2.70)

and ξ(ι)
u,v(λ) = ζ

(ι)
u (λ)ϕ(λ)λv−1 (see Assumption 2.1).

Proof. See Appendix 2.B.1.

Theorem 2.2 can be further simplified when dealing with the marginal cdf of the largest and

smallest eigenvalues.

Corollary 2.2.1. The marginal cdf of the largest eigenvalue, λ1, of an Hermitian random matrix

satisfying Assumption 2.1 is given by

Fλ1(η) =
∑
ι∈I

K(ι)
m,n|F(ι)(η)| (2.71)

where matrix F(ι)(η) (n× n) is defined as

[F(ι)(η)]u,v =
∫ η

0
ξ(ι)
u,v(λ)dλ for u, v = 1, . . . , n (2.72)

and ξ(ι)
u,v(λ) = ζ

(ι)
u (λ)ϕ(λ)λv−1 (see Assumption 2.1).

Proof. See Appendix 2.B.2.
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Corollary 2.2.2. The marginal cdf of the smallest nonzero eigenvalue, λn, of an Hermitian

random matrix satisfying Assumption 2.1 is given by

Fλn(η) = 1−
∑
ι∈I

K(ι)
m,n|F(ι)(η)| (2.73)

where matrix F(ι)(η) (n× n) is defined as

[F(ι)(η)]u,v =
∫ ∞
η

ξ(ι)
u,v(λ)dλ for u, v = 1, . . . , n (2.74)

and ξ(ι)
u,v(λ) = ζ

(ι)
u (λ)ϕ(λ)λv−1 (see Assumption 2.1).

Proof. See Appendix 2.B.3.

Similarly, the marginal pdf of the kth largest eigenvalue can be easily derived from Theorem

2.2 as we illustrate in the following corollary.

Corollary 2.2.3. The marginal pdf of the kth largest nonzero eigenvalue, λk (1 ≤ k ≤ n), of

an Hermitian random matrix satisfying Assumption 2.1 is given by

fλk(η) =
∑
ι∈I

K(ι)
m,n

k∑
i=1

∑
µ∈P(i)

n∑
t=1

|D(ι)(µ, i, t; η)| (2.75)

where P(i) is the set of all permutations µ = (µ1, . . . , µn) of the integers (1, . . . , n) such that

(µ1 < . . . < µi−1) and (µi < . . . < µn), matrix D(ι)(µ, i, t; η) (n× n) is defined as

[D(ι)(µ, i, t; η)]u,v =



∫∞
η ξ

(ι)
u,v(λ)dλ 1 ≤ µv < i, v 6= t

−ξ(ι)
u,v(η) 1 ≤ µv < i, v = t∫ η

0 ξ
(ι)
u,v(λ)dλ i ≤ µv ≤ n, v 6= t

ξ
(ι)
u,v(η) i ≤ µv ≤ n, v = t

for u, v = 1, . . . , n (2.76)

and ξ(ι)
u,v(λ) = ζ

(ι)
u (λ)ϕ(λ)λv−1 (see Assumption 2.1).

Proof. See Appendix 2.B.4.

Observe that the simplifications used in the proofs of Corollaries 2.2.1 and 2.2.2 can be

straightforwardly applied to obtain simpler expressions for the marginal pdf of the largest and

smallest eigenvalues than the ones given in Corollary 2.2.3.
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2.4.4 Marginal cdf of the Maximum Weighted Ordered Eigenvalue

Based on the joint cdf of the ordered eigenvalues given in Theorem 2.1, we can easily obtain the

cdf of the maximum weighted eigenvalue (out of a subset K of the ordered eigenvalues).

Theorem 2.3. Let us define the random variable λK as

λK = max
k∈K

λk/θk (2.77)

where λk is the kth largest eigenvalue of an Hermitian random matrix satisfying Assumption

2.1, the set K of cardinality |K| is such that {1} ⊆ K ⊆ {1, . . . , n} , and {θk}k∈K are some given

positive constants (θ1 ≥ · · · ≥ θ|K|).19 Then, the cdf of λK is given by

FλK(η) = Fλ(ϑ(η)) (2.78)

where ϑ(η) = (ϑ1(η), . . . , ϑn(η)) with

ϑk(η) = ϑk · η =


θkη k ∈ K

ϑk−1(η) k /∈ K
for k = 1, . . . , n (2.79)

and Fλ(·) is the joint cdf of the ordered eigenvalues given in Theorem 2.1.

Proof. See Appendix 2.C

2.4.5 Taylor Expansions

In the previous sections we have focused on the general class of Hermitian random matrices

defined in Assumption 2.1. Here, we concentrate on a more restrictive class (as formalized in

Assumption 2.2) but general enough to include the Wishart distribution.

Assumption 2.2. We consider the class of Hermitian random matrices, for which the joint pdf

of its n nonzero ordered eigenvalues, λ1 ≥ · · · ≥ λn ≥ 0, can be expressed as

fλ(λ) = fλ(λ1, . . . , λn) = Km,n|E(λ)||V(λ)|
n∏
t=1

ϕ(λt) (2.80)

19 Note that if {θk}k∈K are strictly decreasing, then λK = λ1.
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where V(λ) (n × n) is a Vandermonde matrix (see Definition 2.3) and matrix E(λ) (n × n)

satisfies

[E(λ)]u,v = ζu(λv) for u, v = 1, . . . , n. (2.81)

The constant Km,n and the functions ζu(λ) and ϕ(λ) depend on the particular distribution of

the random matrix.

Assuming that the Taylor expansion20 of the function ζu(λ)ϕ(λ) is known and satisfies some

mild conditions (see Assumption 2.3), we derive in the following the first order Taylor expansions

of both the cdf and pdf of the kth largest eigenvalue and of the maximum weighted eigenvalue.

Assumption 2.3. Let the Taylor expansion of the function ζu(λ)ϕ(λ) (see Assumption 2.2) be

ζu(λ)ϕ(λ) =
∞∑

t=c(u)

au(t)
t!

λt (2.83)

where au(t) is such that au(t) = 0 for t < c(u) and let matrix M (n× n), defined as

[M]u,v =


au(c+ v) 1 ≤ v ≤ n− k + 1

bu,v n− k + 1 < v ≤ n
for u = 1, . . . , n (2.84)

have nonzero determinant, where c = minu c(u) and

bu,v =
∫ ∞

0
ξu,v(λ)dλ =

∫ ∞
0

ζu(λ)ϕ(λ)λv−1dλ. (2.85)

Theorem 2.4. Under Assumption 2.3, the first order Taylor expansions of the marginal cdf and

the marginal pdf of the kth largest nonzero eigenvalue, λk (1 ≤ k ≤ n), of an Hermitian random

matrix satisfying Assumption 2.2 are given by

Fλk(η) =
( ak
dk + 1

)
ηdk+1 + o

(
ηdk+1

)
(2.86)

fλk(η) = akη
dk + o

(
ηdk
)

(2.87)

20 Recall that the Taylor expansion of a function f(x) around a point x0 is [Abr72, eq. (25.2.24)]

f(x) =

∞X
t=0

f (t)(x)|x=x0

t!
(x− x0)t =

rX
t=0

f (t)(x)|x=x0

t!
(x− x0)t + o ((x− x0)r) (2.82)

where f (t)(x) denotes the t-th derivative of f(x) and we say that f(x) = o(g(x)) if f(x)/g(x) → 0 as x → 0 [Bru81,

eq. (1.3.1)].
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with ak and dk defined as

ak = Km,n(dk + 1)
∑
ν

1
τ(ν)

|F(ν)| (2.88)

dk = (c− n− k − 1)(n− k + 1)− 1 (2.89)

where the summation over ν = (ν1, . . . , νn−k+1) is for all permutations of the integers (1, . . . , n−

k + 1), τ(ν) is

τ(ν) =
n−k+1∏
v=1

(c+ v + νv − 1)! (2.90)

and matrix F(ν) (n× n) is defined as

[F(ν)]u,v =


(c+v+νv−2)!

(c+νv−1)! au(c+ νv − 1) 1 ≤ v ≤ n− k + 1

bu,v n− k + 1 < v ≤ n
for u, v = 1, . . . , n. (2.91)

Proof. See Appendix 2.D.1

Theorem 2.5. Under Assumption 2.3, the first order Taylor expansions of the cdf and the pdf

of the random variable λK introduced in Theorem 2.3 are given by

FλK(η) =
( aK
dK + 1

)
ηdK+1 + o

(
ηdK+1

)
(2.92)

fλK(η) = aKη
dK + o

(
ηdK
)

(2.93)

with aK and dK defined as

aK = Km,n

∑
i∈S

dK + 1
τ(i)

∑
ν

T {T(ν, i;ϑ)} (2.94)

dK = (c− n)n (2.95)

where the summation over i ∈ S and τ(i) are defined as in Theorem 2.3, the summation over

ν = (ν1, . . . , νn) is for all permutations of integers (1, . . . , n), tensor T(ν, i;ϑ) (n × n × n) is

defined as

[T(ν, i;ϑ)]u,v,t =
1

c(νv + v)c(v)!
au(c(v))

(
ϑ
c(νv+v)
it

− ϑc(νv+v)
it+1

)
for u, v, t = 1, . . . , n (2.96)

and c(v) = c+ v − 1.

Proof. See Appendix 2.D.2
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2.5 Unordered Eigenvalues of a General Class of Hermitian Random Matrices

In Section 2.4 we focus on the probabilistic characterization of the ordered eigenvalues of a

general class of Hermitian random matrices formalized in Assumption 2.1. Altenatively, in this

section we disregard the order and consider the probabilistic characterization of a set of or a

single unordered eigenvalue.

2.5.1 Joint pdf and cdf of the Unordered Eigenvalues

Imposing the structure in Assumption 2.1 on the joint pdf of the ordered eigenvalues, the joint

pdf of the corresponding unordered eigenvalues in the next theorem follows.

Theorem 2.6. The joint pdf of the n nonzero unordered eigenvalues, x1, . . . , xn, of an Hermitian

random matrix satisfying Assumption 2.1 is given by

fx(x) = fx(x1, . . . , xn) =
∑
ι∈I

K
(ι)
m,n

n!
|E(ι)(x)||V(x)|

n∏
t=1

ϕ(xt) (2.97)

where ι is a vector of indices and the summation is for all vectors ι in the set I, V(x) (n× n)

is a Vandermonde matrix (see Definition 2.3) and matrix E(ι)(x) (n× n) satisfies

[E(x)]u,v = ζ(ι)
u (xv) for u, v = 1, . . . , n. (2.98)

The dimension of ι, the set I, the constant K(ι)
m,n, and the functions ζ(ι)

u (x) and ϕ(x) depend on

the particular distribution of the random matrix.

Proof. See Appendix 2.E.1

Theorem 2.7. The joint cdf of a subset of p (1 ≤ p ≤ n) arbitrary unordered eigenvalues,

xp = (x1, . . . , xp), of an Hermitian random matrix satisfying Assumption 2.1 is given by

Fxp(η) = Fxp(η1, . . . , ηp) =
(
n

p

)−1∑
ι∈I

K(ι)
m,n

∑
µ∈P(p+1)

|F(ι)(µ, p;η)| (2.99)

where
(
n
p

)
denotes the binomial coefficient [Abr72, eq. (3.1.2)], P(p) is the set of all permutations

µ = (µ1, . . . , µn) of the integers (1, . . . , n) such that (µ1 < . . . < µp−1) and (µp < . . . < µn),
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matrix F(ι)(µ, p;η) (n× n) is defined as

[F(ι)(µ, p;η)]u,v =


∫ ηv

0 ξu,µv(x)dx 1 ≤ v ≤ p∫∞
0 ξu,µv(x)dx p < v ≤ n

for u, v = 1, . . . , n (2.100)

and ξ(ι)
u,v(x) = ζ

(ι)
u (x)ϕ(x)xv−1 (see Assumption 2.1).

Proof. See Appendix 2.E.2

Similarly to Theorem 2.7, we can also obtain the joint pdf of p arbitrary unordered eigenval-

ues.

Corollary 2.7.1. The joint pdf of a subset of p (1 ≤ p ≤ n) unordered eigenvalues, xp =

(x1, . . . , xp), of an Hermitian random matrix satisfying Assumption 2.1 is given by

fxp(η) = fxp(η1, . . . , ηp) =
(
n

p

)−1∑
ι∈I

K(ι)
m,n

∑
µ∈P(p+1)

|D(ι)(µ, p;η)| (2.101)

where
(
n
p

)
denotes the binomial coefficient [Abr72, eq. (3.1.2)], P(p) is the set of all permutations

µ = (µ1, . . . , µn) of the integers (1, . . . , n) such that (µ1 < . . . < µp−1) and (µp < . . . < µn),

matrix D(ι)(µ, p;η) (n× n) is defined as

[D(ι)(µ, p;η)]u,v =


ξu,µv(ηv) 1 ≤ v ≤ p∫∞

0 ξu,µv(x)dx p < v ≤ n
for u, v = 1, . . . , n (2.102)

and ξ(ι)
u,v(x) = ζ

(ι)
u (x)ϕ(x)xv−1 (see Assumption 2.1).

Proof. See Appendix 2.E.3

2.5.2 Marginal cdf and pdf of the Unordered Eigenvalues

Observe that the marginal cdf or pdf of an arbitrary unordered eigenvalue can be easily derived by

particularizing Theorem 2.7 or Corollary 2.7.1 for p = 1. However if the focus is on an arbitrary

unordered eigenvalue xq chosen from the set of the 1 ≤ q ≤ n largest eigenvalues, {λ1, . . . , λq}, its

marginal cdf can be obtained using the marginal cdf of the kth largest eigenvalues for k = 1, . . . , q

given in Theorem 2.2 as we show next. The marginal pdf of xq can be also analogously calculated

using the marginal pdf of the kth largest eigenvalues for k = 1, . . . , q given in Corollary 2.2.3.
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Theorem 2.8. The marginal cdf and pdf of an unordered eigenvalue xq chosen from the set

of the 1 ≤ q ≤ n largest eigenvalues, {λ1, . . . , λq}, of an Hermitian random matrix satisfying

Assumption 2.1 is given by

Fxq(η) =
1
q

q∑
k=1

Fλk(η) (2.103)

fxq(η) =
1
q

q∑
k=1

fλk(η) (2.104)

where Fλk(η) and fλk(η) denote the marginal cdf and pdf of the kth largest eigenvalue given in

Theorem 2.2 and Corollary 2.2.3, respectively.

2.6 Eigenvalues of General Class of Hermitian Random Matrices: Particular Cases

In this section we particularize the results in Sections 2.4 and 2.5 regarding the probabilitic

characterization of the ordered and unordered eigenvalues for the Wishart, Pseudo-Wishart,

and quadratic form distributions introduced in Section 2.3. This requires rewriting first the

joint pdf of the orderered eigenvalues in the form of Assumption 2.1 and then calculating the

corresponding expressions (see Table 2.1 for details).

2.6.1 Complex Uncorrelated Central Wishart Matrices

The joint pdf of the ordered eigenvalues of a real uncorrelated central Wishart matrix was

simultaneously derived in 1939 in [Fis39], [Hsu39b] and [Roy39]. Then, based on the concepts21

introduced in 1956 by Wooding [Woo56] to extend the real normal multivariate distribution to

the complex case, and in 1963 by Goodman [Goo63], who, in addition, obtained the distribution

of complex central Wishart matrices, James derived in 1964 [Jam64] the joint pdf of the ordered

eigenvalues of complex Wishart matrices for cases (i), (ii), and (iii) of Definition 2.21.

Joint pdf: The joint pdf of the ordered eigenvalues, λ1 ≥ · · · ≥ λn ≥ 0, of W ∼

21 A review of the required results of [Woo56,Goo63] is given in [Jam64].
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Result Distribution Required Parameters

Ass. 2.1 Joint pdf of the ordered eigenvalues I, K(ι)
m,n, ζ(ι)

u (λ), ϕ(λ).

Thm. 2.1 Joint cdf of the ordered eigenvalues I, K(ι)
m,n,

∫ ηit
ηit+1

ξ
(ι)
u,v(λ)dλ.

Thm. 2.2 Marginal cdf of the ordered eigenvalues I, K(ι)
m,n,∫∞

η ξ
(ι)
u,v(λ)dλ,

∫ η
0 ξ

(ι)
u,v(λ)dλ.

Cor. 2.2.3 Marginal pdf of the ordered eigenvalues I, K(ι)
m,n, ξ(ι)

u,v(λ),∫∞
η ξ

(ι)
u,v(λ)dλ,

∫∞
η ξ

(ι)
u,v(λ)dλ.

Thm. 2.4 First order Taylor expansions au(t), bu,v, c(u).

Thm. 2.7 Joint cdf of a set of p unordered eigenvalues I, K(ι)
m,n,∫∞

η ξ
(ι)
u,v(λ)dλ,

∫∞
0 ξ

(ι)
u,v(λ)dλ.

Cor. 2.7.1 Joint pdf of a set of p unordered eigenvalues I, K(ι)
m,n, ξ(ι)

u,v(λ),
∫∞

0 ξ
(ι)
u,v(λ)dλ.

Thm. 2.8 Marginal cdf of an unordered eigenvalue I, K(ι)
m,n,

(chosen from the q largest eigenvalues)
∫∞
η ξ

(ι)
u,v(λ)dλ,

∫ η
0 ξ

(ι)
u,v(λ)dλ.

Thm. 2.8 Marginal pdf of an unordered eigenvalue I, K(ι)
m,n, ξ(ι)

u,v(λ),

(chosen from the q largest eigenvalues)
∫∞
η ξ

(ι)
u,v(λ)dλ,

∫ η
0 ξ

(ι)
u,v(λ)dλ.

Table 2.1 List of general distributional results and the parameters required to particularize each result for a given random

matrix distribution.

Wn(m,0n, In) (case (i) of Definition 2.21) is given by22 [Jam64, eq. (95)]

fλ(λ) =
πn(n−1)

Γ̃n(n)Γ̃n(m)
0F̃0(W)|W|m−n

∏
i<j

(λi − λj)2 (2.105)

where Γ̃n(·) is the complex multivariate gamma function (see Definition 2.6) and 0F̃0(·) is the

exponential type hypergeometric function of Hermitian matrix argument (see Lemma 2.9). Using

Lemmas 2.1 and 2.9, we can rewrite (2.105) as [Kha65, eq. (7.1.7)] [Chi03, eq. (10)]

fλ(λ) =
πn(n−1)

Γ̃n(n)Γ̃n(m)
|V(λ)|2

n∏
i=1

e−λiλm−ni (2.106)

where V(·) is a Vandermonde matrix (see Definition 2.3). Identifying terms, the expression in

(2.106) coincides with the general pdf given in Assumption 2.1 if we let I be a singleton (the

22 Note the abuse of notation in writting 0F̃0(W) instead of 0F̃0(diag (λ)) and |W| instead of
Qn
i=1 λi. A similar observation

also holds for the remaining matrix distributions addressed in this section.
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superindex (ι) can then be dropped), define the normalization constant Km,n as

Km,n =
π−n(n−1)

Γ̃n(n)Γ̃n(m)
=

n∏
i=1

1
(m− i)!(n− i)!

(2.107)

the function ϕ(λ) as

ϕ(λ) = e−λλm−n (2.108)

and matrix E(λ) (n× n), equal to V(λ), with entries given by

[E(λ)]u,v = ζu(λv) = λu−1
v for u, v = 1, . . . , n. (2.109)

Hence, it follows that

ξu,v(λ) = ζu(λ)ϕ(λ)λv−1 = e−λλd(u+v−1) (2.110)

where we have defined the function d(v) = m− n+ v − 1.

Results Regarding the Ordered Eigenvalues: In order to derive the marginal cdf and

pdf of the kth largest eigenvalue using the results presented in Section 2.4, we only have to

particularize ∫ ∞
η

ξu,v(λ)dλ = Γ(d(u+ v), η) (2.111)∫ η

0
ξu,v(λ)dλ = γ(d(u+ v), η) (2.112)

where γ(·, ·) and Γ(·, ·) are the lower and upper incomplete gamma functions given in Definitions

2.7 and 2.8, respectively. The integrals in (2.111) and (2.112) can be conveniently combined to

obtain the integrals needed in the computation of the joint cdf of the ordered eigenvalues.

To the best of the author’s knowledge the joint cdf of the ordered eigenvalues of W ∼

Wn(m,0n, In) was not available in the literature. The marginal cdf of the largest eigenvalue of

W ∼ Wn(m,0n, In) was initially derived in [Kha64, Thm. 2] and extended to the marginal cdf

of the kth largest eigenvalue in [AA68, eq. (16)]. Recently, the marginal cdf’s of the largest and

smallest eigenvalue were obtained in [Dig03, eq. (18)] [Kan03b, Cor. 2] [Let04, eq. (6)] [Gra05,

Thm. 5] [Zan05, eq. (5)] and [Bur02, eq. (38)], respectively. Furthermore, the marginal pdf’s of

the largest and smallest eigenvalue were provided in [Dig03, eq. (22)] [Kan03b, Cor. 3] [Let04,

eq. (7)] [Zan05, eq. (23)] and [Zan05, eq. (24)], respectively.

Results Regarding the Unordered Eigenvalues: The results concerning the unordered

eigenvalues in Section 2.5 only require to calculate∫ ∞
0

ξu,v(λ)dλ = Γ(d(u+ v)) = d(u+ v − 1)! (2.113)
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Figure 2.1 Theoretical and simulated results for W ∼ Wn(m,0n, In) with n = m = 4.

where Γ(·) is the gamma function in Definition 2.5, in addition to the integral
∫ η

0 ξu,v(λ)dλ,

which is already given in (2.112).

The joint pdf of a set of unordered eigenvalues and the marginal pdf of an arbitrary unordered

eigenvalue of W ∼ Wn(m,0n, In) were initially given in [Wig65, eq. (29)] and [Wig65, eq. (30)].

Recently, the joint cdf and pdf of a set of unordered eigenvalues were derived in [Maa07b,

Cor. 3] and the marginal pdf of an arbitrary unordered eigenvalue in [Tel99, Sec 4.2] [Sca02a,

Cor. 1] [Alf06, Thm. 1].

In Figure 2.1 we compare some examples of the marginal cdf’s and pdf’s of the ordered and

unordered eigenvalues of W ∼ Wn(m,0n, In) obtained using the results in Sections 2.4 and 2.5

with the corresponding numerical simulations.
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Taylor Expansions: Finally, in order to derive the first order Taylor expansion of the

marginal cdf and pdf of the kth largest eigenvalue, we have to calculate the Taylor expansion of

ζu(λ)ϕ(λ). Using the Taylor expansion of e−λ (see [Abr72, eq. (4.2.1)]), it follows that

ζu(λ)ϕ(λ) =
∞∑

t=c(u)

au(t)
t!

λt (2.114)

where the function c(u) = m− n+ u− 1, c = minu c(u) = m− n and

au(t) =
t!

(t− c(u))!
(−1)t−c(u). (2.115)

The expression for bu,v is given in (2.113).

The first order Taylor expansion of the marginal pdf of the kth largest eigenvalue of W ∼

Wn(m,0n, In) was recently obtained in [Ord05b, Thm. 1] [Ord07b, Thm. 1].

2.6.2 Complex Correlated Central Wishart Matrices

The joint pdf of the ordered eigenvalues of a real correlated central Wishart matrix was derived

in 1960 by James [Jam60] for the real case and extended in 1964 [Jam64] to the complex case.

Joint pdf: The joint pdf of the ordered eigenvalues, λ1 ≥ · · · ≥ λn ≥ 0, of W ∼

Wn(m,0n,Σ) (case (ii) of Definition 2.21) is given by [Jam64, eq. (95)]

fλ(λ) =
πn(n−1)

Γ̃n(n)Γ̃n(m)|Σ|m 0F̃0(−Σ−1,W)|W|m−n
∏
i<j

(λi − λj)2 (2.116)

where Γ̃n(·) is the complex multivariate gamma function (see Definition 2.6) and 0F̃0(·, ·) is the

exponential type hypergeometric function of two Hermitian matrix arguments (see Lemma 2.10).

Denoting by σ = (σ1, . . . , σn) the eigenvalues of Σ and using (2.44) in Lemma 2.10, it follows

that for23 σ1 > · · · > σn > 0 we can rewrite (2.116) as [Chi03, eq. (17)]

fλ(λ) =
πn(n−1)/2

Γ̃n(m)|Σ|m|V(−σ−1)|
|E(λ,σ)||V(λ)|

n∏
i=1

λm−ni (2.117)

where V(·) is a Vandermonde matrix (see Definition 2.3) and E(λ,σ) is defined as

[E(λ,σ)]u,v = e−λv/σu for u, v = 1, . . . , n. (2.118)

Then, identifying terms, the expression in (2.117) coincides with the general pdf given in As-

sumption 2.1 if we let I be a singleton (the superindex (ι) can then be dropped), define the

23 If some σi’s are equal the result is obtained by taking the limiting case of (2.117) using Lemma 2.4.
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Figure 2.2 Theoretical and simulated results for W ∼ Wn(m,0n,Σ) with n = m = 4, and [Σ]i,j = r|i−j| (n× n), r = 0.6.

normalization constant Km,n as

Km,n =
πn(n−1)/2

Γ̃n(m)|Σ|m|V(−σ−1)|
=

n∏
i=1

1
σmi (m− i)!

n∏
i<j

σiσj
(σj − σi)

(2.119)

the function ϕ(λ) as

ϕ(λ) = λm−n (2.120)

and matrix E(λ) with entries [E(λ)]u,v = ζu(λ) as given in (2.118). Hence, it follows that

ξu,v(λ) = ζu(λ)ϕ(λ)λv−1 = e−λ/σuλd(v) (2.121)

where we have defined the function d(v) = m− n+ v − 1.

Results Regarding the Ordered Eigenvalues: In order to derive the marginal cdf and

pdf of the kth largest eigenvalue using the results presented in Section 2.4, we only have to
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W ∼ Wn(m,0n, In) W ∼ Wn(m,0n,Σ)

I {1} {1}

K
(ι)
m,n

∏n
i=1

1
(m−i)!(n−i)!

∏n
i=1

1
σmi (m−i)!

∏n
i<j

σiσj
σj−σi

ϕ(λ) e−λλm−n λm−n

ζ
(ι)
u (λ) λu−1 e−λ/σu

ξ
(ι)
u,v(λ) e−λλd(u+v−1) e−λ/σuλd(v)∫∞
η ξ

(ι)
u,v(λ)dλ Γ(d(u+ v), η) σ

d(v+1)
u Γ(d(v + 1), η/σu)∫ η

0 ξ
(ι)
u,v(λ)dλ γ(d(u+ v), η) σ

d(v+1)
u γ(d(v + 1), η/σu)∫ η

0 ξ
(ι)
u,v(λ)dλ γ(d(u+ v), η) σ

d(v+1)
u γ(d(v + 1), η/σu)∫∞

0 ξ
(ι)
u,v(λ)dλ d(u+ v − 1)! σ

(c+v)
u d(v)!

au(v) v!
(v−d(u))!(−1)(v−d(u)), v ≥ d(u) v!

(v−c)!(−σu)c−t, v ≥ c

c m− n m− n

d(v) m− n+ v − 1 m− n+ v − 1

Table 2.2 Parameters characterizing the eigenvalue distributions of W ∼ Wn(m,0n, In) and W ∼ Wn(m,0n,Σ) (case (i)

and (ii) of Definition 2.21).

particularize ∫ ∞
η

ξu,v(λ)dλ = σd(v+1)
u Γ(d(v + 1), η/σu) (2.122)∫ η

0
ξu,v(λ)dλ = σd(v+1)

u γ(d(v + 1), η/σu) (2.123)

where γ(·, ·) and Γ(·, ·) are the lower and upper incomplete gamma functions given in Defini-

tions 2.7 and 2.8, respectively. The integrals in (2.122) and (2.123) can be conveniently combined

to obtain the integrals needed in the computation of the joint cdf of the ordered eigenvalues.

The marginal cdf’s of the largest and smallest eigenvalue of W ∼ Wn(m,0n,Σ) were recently

derived in [Kan03a, Thm. 4.(1)] [Zan05, eq. (7)] [Maa06, eq. (9)] and in [Zan05, eq. (9)] [Maa06,

eq. (13)], respectively. The corresponding marginal pdf’s were obtained in [Zan05, eq. (26)]

[Maa06, eq. (17)] and in [Maa06, eq. (18)]. To the best of the author’s knowledge, the joint

cdf of the ordered eigenvalues, the marginal cdf and pdf of the kth largest eigenvalue were not

available in the literature.

Results Regarding the Unordered Eigenvalues: The results concerning the unordered
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eigenvalues in Section 2.5 only require to calculate∫ ∞
0

ξu,v(λ)dλ = σd(v+1)
u Γ(d(v + 1)) = σd(v+1)

u d(v)! (2.124)

where Γ(·) is the gamma function in Definition 2.5, in addition to the integral
∫ η

0 ξu,v(λ)dλ,

which is already given in (2.123).

The joint pdf of a set unordered eigenvalues and the marginal pdf of an arbitrary unordered

eigenvalue of W ∼ Wn(m,0n,Σ) were initially given in [Wai72]. Recently, the joint cdf and pdf

of a set of unordered eigenvalues were derived in [Maa06, eq. (3)] and [Maa06, eq. (4)] and the

marginal pdf of an arbitrary unordered eigenvalue in [Alf04b, Thm. 1] [Alf06, Thm. 1] [Maa06,

eq. (13)].

In Figure 2.2 we compare some examples of the marginal cdf’s and pdf’s of the ordered and

unordered eigenvalues of W ∼ Wn(m,0n,Σ) obtained using the results in Sections 2.4 and 2.5

with the corresponding numerical simulations.

Taylor Expansions: Finally, in order to derive the first order Taylor expansion of marginal

cdf and pdf of the kth largest eigenvalue, we have to calculate the Taylor expansion of ζu(λ)ϕ(λ).

Using the Taylor expansion of the e−λ (see [Abr72, eq. (4.2.1)]), it follows that

ζu(λ)ϕ(λ) =
∞∑
t=c

au(t)
t!

λt (2.125)

where c(u) = c = m− n and

au,v(t) =
t!

(t− c)!
(−σu)c−t. (2.126)

The expression for bu,v is given in (2.124).

2.6.3 Complex Uncorrelated Noncentral Wishart Matrices

The joint pdf of the ordered eigenvalues of a uncorrelated noncentral Wishart matrix was derived

by James in [Jam61b] for the real case and extended in [Jam64] to the complex case.

Joint pdf: The joint pdf of the ordered eigenvalues, λ1 ≥ · · · ≥ λn ≥ 0, of W ∼ Wn(m,Ω, In)

(case (iii) of Definition 2.21) is given by [Jam64, eq. (102)]

fλ(λ) =
πn(n−1)e−tr(Ω)

Γ̃n(n)Γ̃n(m)
0F̃1(m; Ω,W)e−tr(W)|W|m−n

∏
i<j

(λi − λj)2 (2.127)
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where Γ̃n(·) is the complex multivariate gamma function (see Definition 2.6) and 0F̃1(·; ·, ·) is

the Bessel type hypergeometric function of two Hermitian matrix arguments (see Lemma 2.10).

Denoting by ω = (ω1, . . . , ωn) the eigenvalues of Ω and using (2.45) in Lemma 2.10, we have

that for24 (ω1 > · · · > ωn > 0) we can rewrite (2.127) as [Kan03b, eq. (45)]

fλ(λ) =
e−tr(Ω)

Γ(m− n+ 1)n|V(ω)|
|E(λ,ω)||V(λ)|

n∏
i=1

e−λiλm−ni (2.128)

where V(·) is a Vandermonde matrix (see Definition 2.3) and E(λ,ω) is defined as

[E(λ,ω)]u,v = 0F1(m− n+ 1;ωuλv) for u, v = 1, . . . , n (2.129)

where 0F1(·; ·) is a generalized hypergeometric function (see Definition 2.10). Then, identifying

terms, the expression in (2.128) coincides with the general pdf given in Assumption 2.1 if we let

I be a singleton (the superindex (ι) can then be dropped), define the normalization constant

Km,n as

Km,n =
e−tr(Ω)

Γ(m− n+ 1)n|V(ω)|
=

e−
Pn
i=1 ωi

((m− n)!)n

n∏
i<j

1
(ωj − ωi)

(2.130)

the function ϕ(λ) as

ϕ(λ) = e−λλm−n (2.131)

and matrix E(λ) with entries [E(λ)]u,v = ζu(λ) as given in (2.129). Hence, it follows that

ξu,v(λ) = ζu(λ)ϕ(λ)λv−1 = 0F1(m− n+ 1;ωuλ)e−λλd(v) (2.132)

where the function d(v) = m− n+ v − 1.

Results Regarding the Ordered Eigenvalues: In order to derive the marginal cdf and

pdf of the kth largest eigenvalue using the results presented in Section 2.4, we only have to

particularize ∫ η

0
ξu,v(λ)dλ =

∫ η

0
0F1(m− n+ 1;ωuλ)e−λλd(v)dλ (2.133)∫ ∞

η
ξu,v(λ)dλ =

∫ ∞
η

0F1(m− n+ 1;ωuλ)e−λλd(v)dλ. (2.134)

Using Lemma 2.7 (eq. (2.28)), it holds that∫ ∞
η

ξu,v(λ)dλ =
Γ(m− n+ 1)(√

ωu
)m−n ∫ ∞

η
e−λλ(m−n)/2+v−1Im−n(2

√
ωuλ)dλ (2.135)

=
eωu21−v(m− n)!(√

2ωu
)m−n Qd(2v),m−n

(√
2ωu,

√
2η
)

(2.136)

24 If some ωi’s are equal the result is obtained by taking the limiting case of (2.128) using Lemma 2.4 (see [Kan03b, App. B]).
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where Qm,n(·, ·) is the Nuttall Q-function given in Definition 2.12. Similarly, using [Gra00,

eq. (6.643.2)] and [Gra00, eq. (9.220.2)], it follows that∫ ∞
0

ξu,v(λ)dλ =
Γ(m− n+ 1)(√

ωu
)m−n ∫ ∞

0
e−λλ(m−n)/2+v−1Im−n(2

√
ωuλ)dλ (2.137)

= Γ(d(v + 1))1F1(d(v + 1);m− n+ 1;ωu) (2.138)

and we have that∫ η

0
ξu,v(λ)dλ =

∫ ∞
0

ξu,v(λ)dλ−
∫ ∞
η

ξu,v(λ)dλ (2.139)

= d(v)!1F1(d(v + 1);m− n+ 1;ωu)

− eωu21−v(m− n)!(√
2ωu

)m−n Qd(2v),m−n
(√

2ωu,
√

2η
)
.

(2.140)

Observe that the sum of the two indices of the NuttallQ-functions in (2.136) and (2.140) is always

odd and, hence, Lemma 2.8 holds. The integrals in (2.136) and (2.140) can be conveniently

combined to obtain the integrals needed in the computation of the joint cdf of the ordered

eigenvalues.

In Figure 2.3 we compare some examples of the marginal cdf’s and pdf’s of the ordered and

unordered eigenvalues of W ∼ Wn(m,Ω, In) obtained using the results in Sections 2.4 and 2.5

with the corresponding numerical simulations.

To the best of the author’s knowledge the joint cdf of the ordered eigenvalues of W ∼

Wn(m,Ω, In) was not available in the literature. The marginal cdf of the kth largest eigenvalue

of W ∼ Wn(m,Ω, In) was derived in [Kha69, eq. (9)] in terms of an infinite series of the

zonal polynomials given in [Jam64]. However, the author conjectures that the given expressions

can be also expressed in terms of a finite sum of determinants based on Lemma 2.10, which

was proved in [Kha70, Lem. 3] by the same author (see also [Gro89, Thm. 4.2]). Recently, the

marginal cdf the kth largest eigenvalue was obtained in terms of a finite sum of determinants

in [Jin06, Thm. 3] and the particular cases of the largest and smallest eigenvalue in [Kan03b,

Thm. 1] [Jin06, Thm. 2] and in [Jin06, Thm. 1], respectively. In addition, the marginal pdf of

the maximum eigenvalue was given in [Kan03b, Cor. 3] and the case of Ω being rank 1 was

considered in [Kan03b, Cor. 3] and of Ω with arbitrary rank in [Jin08].

Results Regarding the Unordered Eigenvalues: The results concerning the unordered

eigenvalues in Section 2.5 only require to calculate
∫∞

0 ξu,v(λ)dλ and
∫ η

0 ξu,v(λ)dλ, which are
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Figure 2.3 Theoretical and simulated results for W ∼ Wn(m,Ω, In) with n = m = 4 and Ω with eigenvalues ω=(19.1276,

5.8817, 1.4901, 0.6466).

given in (2.137) and (2.139), respectively.

The joint pdf of a few unordered eigenvalues of W ∼ Wn(m,0n,m,Σ) was initially given

in [Maa07b, Thm. 1] for Ω being full rank and in [Maa07b, Cor. 2] for Ω being rank 1. Previously,

the marginal pdf of an unordered eigenvalues had been derived in [Alf04a, Thm. 2] [Alf06,

Thm. 1].

Taylor Expansions: Finally, in order to derive the first order Taylor expansion of marginal

cdf and pdf of the kth largest eigenvalue, we have to obtain the Taylor expansion of

ζu(λ)ϕ(λ) =
∞∑
t=c

au(t)
t!

λt. (2.141)
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W ∼ Wn(m,Ω, In)

I {1}

K
(ι)
m,n

e−
Pn
i=1 ωi

((m−n)!)n
∏n
i<j

1
(ωj−ωi)

ϕ(λ) e−λλm−n

ζ
(ι)
u (λ) 0F1(m− n+ 1;ωuλ)

ξ
(ι)
u,v(λ) 0F1(m− n+ 1;ωuλ)e−λλd(v)∫ η
0 ξ

(ι)
u,v(λ)dλ d(v)!1F1(d(v + 1);m− n+ 1;ωu)− eωu21−v(m−n)!

(
√

2ωu)m−n
Qd(2v),m−n

(√
2ωu,

√
2η
)

∫∞
η ξ

(ι)
iu,v

(λ)dλ eωu21−v(m−n)!

(
√

2φu)m−n
Qd(2v),m−n

(√
2ωu,

√
2η
)

d(v) m− n+ v − 1

Table 2.3 Parameters characterizing the eigenvalue distributions of W ∼ Wn(m,Ω, In) (case (iii) of Definition 2.21).

Noting that [Abr72, eq. (9.6.10)]

In(λ) =
(
λ

2

)n ∞∑
i=0

(
λ2

4

)i
Γ(n+ i+ 1)i!

(2.142)

it follows that

dt

dλt
(ζu(λ)ϕ(λ)) =

Γ(m− n+ 1)(√
ωu
)m−n dt

dλt

(
e−λλ(m−n)/2Im−n(2

√
ωuλ)

)
(2.143)

= Γ(c+ 1)
∞∑
i=0

ωiu
Γ(c+ i+ 1)i!

dt

dλt
(
e−λλc+i

)
(2.144)

where c = m− n. Then, using Leibniz’s Rule (see [Abr72, eq. (3.3.8)]), we have that

dt

dλt
(
e−λλc+i

)
=

t∑
r=0

(
t

r

)
(c+ i)!

(c+ i− r)!
(−1)t−re−λλc+i−r (2.145)

where
(
n
t

)
denotes the binomial coefficient [Abr72, eq. (3.1.2)] and, finally, using (2.144) and

(2.145),

au(t) =
dt

dλt
(ζu(λ)ϕ(λ))

∣∣∣
λ=0

=


0 t < c

c!
∑t−c

i=0

(
t
c+i

) (−1)t−(c+i)

i! ωiu t ≥ c
. (2.146)

The expression for bu,v is given in (2.137).

The first order Taylor expansion of the marginal pdf of the kth largest eigenvalue of W ∼

Wn(m,Ω, In) was obtained in [Jin06].



58 Eigenvalues of a General Class of Hermitian Random Matrices

2.6.4 Complex Correlated Noncentral Wishart Matrices

The joint pdf of the ordered eigenvalues of a complex correlated noncentral Wishart matrix W,

i.e., W ∼ Wn(m,Ω,Σ) (case (iv) of Definition 2.21), has been largely unknown in the litera-

ture, due to the impossibility of expressing the joint pdf in terms of hypergeometric functions

of Hermitian matrix arguments or their corresponding series expansion in terms of complex

zonal polynomials. Only recently, Ratnarajah et al derived the joint pdf of the eigenvalues

in [Rat05d] using an infinite series expansion of the invariant polynomials proposed by Davis

in [Dav79, Dav80] to derive the real counterpart. However, analogously to the infinite series of

zonal polynomials associated with hypergeometric functions, this infinite series is extremely dif-

ficult to compute. In this section, we present an approximation of the distribution of complex

correlated central Wishart matrices, which allows us to apply the results presented in Sections

2.4 and 2.5.

Let W ∼ Wn(m,Ω,Σ), using Lemma 2.16 and the pdf of W in Lemma 2.13, the joint pdf

of the ordered strictly positive eigenvalues of W, λ1 ≥ · · · ≥ λn, is given by

fλ(λ) =
e−tr(Ω)πn(n−1)

Γ̃n(n)Γ̃n(m)|Σ|m

n∏
i=1

λm−ni

∏
i<j

(λi − λj)2

∫
U(n)

e−tr(Σ−1UΛU†)
0F̃1(m; ΩΣ−1UΛU†)dU. (2.147)

In the case of uncorrelated noncentral Wishart matrices (Σ = In) we have that

e−tr(Σ−1UΛU†) = e−tr(Λ). (2.148)

Thus, the exponential trace term can be dropped out of the integral and the joint pdf given

in (2.127) follows from using the splitting property (see [Jam64, eq. (92)]) of hypergeometric

functions of matrix arguments. This is not the case for the correlated noncentral case and

the integral in (2.147) has to be obtained in terms of an infinite series expansion of invariant

polynomials as done in [Rat05d].

The approximation of the noncentral Wishart distribution has, among others, been considered

by [Ste72, Tan79, Tan82, Kol95].25 In particular, [Ste72, Tan79, Tan82] perturb the covariance

matrix of Wishart distribution so that the moments of the central and noncentral Wishart

25 These references consider real Wishart distributions but the extension to the complex case is straightforward.
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distributions are close to each other, while [Kol95] uses the idea of centering the noncentral

Wishart distribution, which is not valid to approximate the eigenvalues.

The approach of [Ste72] can be briefly illustrated as follows [Gup00, Sec. 3.7]. Let W ∼

Wn(m,Ω,Σ) with Ω = Σ−1ΘΘ†, then the first two moments of W are given by

E{[W]i,j} = mσij + θij (2.149)

and

E{[W]i,j [W]∗u,v} = (mσij + θij)(mσuv + θuv) +m(σiuσjv + σivσju)

+ σjvθiu + σivθju + σjuθiv + σiuθjv (2.150)

where θij = [ΘΘ†]i,j and σij = [Σ]i,j . When Θ = 0, i.e, θij = 0, the above moments reduce to

the moments the correlated central Wishart distribution:

E{[W]i,j} = mσij (2.151)

and

E{[W]i,j [W]∗u,v} = m2σijσuv + n(σiuσjv + σivσju). (2.152)

Now consider a correlated central Wishart matrix W̃ ∼ Wn(m,0n, Σ̃) with Σ̃ = Σ+ 1
mΘΘ†.

Then, from (2.151) and (2.152), we have that

E{[W̃]i,j} = mσij + θi,j (2.153)

and

E{[W̃]i,j [W̃]∗u,v} = (mσij + θij)(mσuv + θuv) +m(σiuσjv + σivσju)

+ σjvθiu + σivθju + σjuθiv + σiuθjv +
1
m

(θiuθjv + θivθju). (2.154)

Comparing (2.151) with (2.153) and (2.152) with (2.154), it can be seen that the first order

moments of W and W̃ are equal, whereas the second order moments differ in terms of order

O(m−1). This suggests that the distribution of W can be approximated by the distribution of

W̃ as summarized in the following lemma.

Lemma 2.17 (Correlated Noncentral Wishart Approximation [Ste72, eq. (3.4)]). The distri-

bution of W ∼ Wn(m,Ω,Σ) with Ω = Σ−1ΘΘ† can be approximated by the distribution of

W̃ ∼ Wn(m,0n, Σ̃) with Σ̃ = Σ + 1
mΘΘ†.
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Figure 2.4 Examples of marginal cdf’s and pdf’s of the ordered eigenvalues of W ∼ Wn(m,Ω,Σ) using the approximation

in Lemma 2.17 with n = m = 4.
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Hence, using Lemma 2.17, the eigenvalues of correlated noncentral Wishart matrices can be

approximated by those of correlated central Wishart matrices addressed in Section 2.6.2. With

illustration purposes, we provide in Figure 2.4 some examples of the simulated marginal cdf’s

and pdf’s of the ordered and unordered eigenvalues of W ∼ Wn(m,Ω,Σ) and the approximation

given Lemma 2.17. As it can be seen, this approximation is only accurate for a small degree of

noncentrality, which is measured by tr (Ω) = tr
(
ΘΘ†

)
/tr (Σ).

2.6.5 Complex Correlated Central Pseudo-Wishart Matrices

Recall from Section 2.3.3, that Pseudo-Wishart matrices are singular. More exactly, let W ∼

PWm(n,0m,Ψ), then W has n strictly positive eigenvalues and m − n zero eigenvalues with

probability one. Furthermore, for the uncorrelated case, i.e., Ψ = Im, it holds that the nonzero

eigenvalues of W have the same distribution as the eigenvalues of a central uncorrelated Wishart

matrix [Mal03, Sec. V], which have been analyzed in Section 2.6.1. Hence, here we focus only

on complex correlated Pseudo-Wishart matrices.

The joint pdf of the ordered eigenvalues of a correlated central Pseudo-Wishart matrix W,

i.e., W ∼ PWm(n,0m,Ψ) (see Definition 2.22) was derived in [Uhl94, Thm. 6] for the real case

and in [Smi03, eq. (25)] [Rat05b, Thm. 4] for the complex case.

Joint pdf: The joint pdf of the ordered nonzero eigenvalues, λ1 ≥ · · · ≥ λn ≥ 0 of W ∼

PWm(n,0m,Ψ) is given by [Smi03, eq. (25)]

fλ(λ) =
n∏
i=1

1
(n− i)!

m∏
i<j

1
(ψj − ψi)

|E(λ)||V(λ)| (2.155)

where V(·) is a Vandermonde matrix (see Definition 2.3) and E(λ) is defined as

[E(λ)]u,v =


ψv−1
u 1 ≤ v ≤ m− n

ψm−n−1
u e−λv−m+n/ψu m− n < v ≤ m

for u, v = 1, . . . ,m (2.156)

where ψ = (ψ1, . . . , ψm) are the eigenvalues of Ψ ordered such that (ψ1 > · · · > ψm > 0).

Performing the Laplace expansion (see e.g. [Ait83, Sec. 33]) over the first m − n columns of

E(λ), it follows that

|E(λ)| =
∑
ι∈I

(−1)
Pm−n
i=1 (ιi+i)|V(ι)(ψ)||E(ι)(λ)| (2.157)



62 Eigenvalues of a General Class of Hermitian Random Matrices

where the summation over ι = (ι1, . . . , ιm) is for all permutation of integers (1, . . . ,m) such that

(ι1 < · · · < ιm−n) and (ιm−n+1 < · · · < ιm) and the matrices V(ι)(ψ) ((m− n)× (m− n)) and

E(ι)(λ) (n× n) are defined as

[V(ι)(σ)]u,v = ψv−1
ιu for u, v = 1, . . . ,m− n (2.158)

[E(ι)(λ)]u,v = ζ(ι)
u (λv) = ψm−n−1

ιm−n+u
e−λv/ψιm−n+u for u, v = 1, . . . , n. (2.159)

Observing that V(ι)(σ) is a Vandermonde matrix (see Lemma 2.1), we can finally rewrite the

joint pdf as

fλ(λ) =
n∏
i=1

1
(n− i)!

m∏
i<j

1
(ψj − ψi)

∑
ι∈I

(−1)
Pm−n
i=1 (ιi+i)

m−n∏
i<j

(ψιj − ψιi)|E(ι)(λ)||V(λ)| (2.160)

Identifying terms, the joint pdf of the ordered nonzero eigenvalues in (2.160) coincides with the

general pdf given in Assumption 2.1 by defining the set I as

I = {(ι1, . . . , ιm) = π(1, . . . ,m)|(ι1 < · · · < ιm−n) and (ιm−n+1 < · · · < ιn)} (2.161)

where π(·) denotes permutation, the constant K(ι)
m,n as

K(ι)
m,n =

(−1)
Pm−n
i=1 (ιi+i)∏n

i=1(n− i)!

∏m−n
i<j (ψιj − ψιi)∏m
i<j(ψj − ψi)

(2.162)

the function ϕ(λ) = 1, and matrix E(ι)(λ) with entries as given in (2.129). Hence, it follows that

ξ(ι)
u,v(λ) = ζ(ι)

u (λ)ϕ(λ)λv−1 = ψm−n−1
ιd(u+1)

e
−λ/ψιd(u+1)λv−1 (2.163)

where we have introduced the function d(u) = m− n+ u− 1.

Results Regarding the Ordered Eigenvalues: In order to derive the marginal cdf and

pdf of the kth largest eigenvalue using the results presented in Section 2.4, we only have to

particularize ∫ ∞
η

ξ(ι)
u,v(λ)dλ = ψd(v)

ιd(u+1)
Γ(v, η/ψιd(u+1)

) (2.164)∫ η

0
ξ(ι)
u,v(λ)dλ = ψd(v)

ιd(u+1)
γ(v, η/ψιd(u+1)

) (2.165)

where Γ(·, ·) and γ(·, ·) are the upper and lower incomplete gamma functions given in Defini-

tions 2.7 and 2.8, respectively. The integrals in (2.122) and (2.123) can be conveniently combined

to obtain the integrals needed in the computation of the joint cdf of the ordered eigenvalues.

The marginal cdf of the largest eigenvalue and smallest eigenvalue of W ∼ PWm(n,0m,Ψ)

was recently derived in [Kan03a, Thm. 4 (2)] [Maa06, eq. (21)] [Maa07a, eq. (40)] and [Maa07a,
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Figure 2.5 Theoretical and simulated results for W ∼ PWm(n,0m,Ψ) with n = 4 and m = 6, and [Ψ]i,j = r|i−j| (m×m),

r = 0.6.

eq. (41)], respectively, and the marginal pdf’s of the largest and smallest eigenvalue were calcu-

lated in [Maa06, eq. (22)] [Maa07a, eq. (42)] and in [Maa06, eq. (25)] [Maa07a, eq. (43)]. To the

best of the author’s knowledge, the marginal cdf and pdf of the kth largest eigenvalue were not

available in the literature.

Results Regarding the Unordered Eigenvalues: The results concerning the unordered

eigenvalues in Section 2.5 only require to calculate∫ ∞
0

ξ(ι)
u,v(λ)dλ = ψd(v)

ιd(u+1)
Γ(v) = ψd(v)

ιd(u+1)
(v − 1)! (2.166)

where Γ(·) is the gamma function in Definition 2.5, in addition to the integral
∫ η

0 ξ
(ι)
u,v(λ)dλ,

which is already given in (2.165). The joint cdf and pdf of a set of unordered eigenvalues were
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W ∼ PWm(n,0m,Σ)

I {(ι1, . . . , ιm) = π(1, . . . ,m)|(ι1 < · · · < ιm−n) and (ιm−n+1 < · · · < ιn)}

K
(ι)
m,n

(−1)
Pm−n
i=1

(ιi+i)Qn
i=1(n−i)!

Qm−n
i<j (ψιj−ψιi )Qm
i<j(ψj−ψi)

ϕ(λ) 1

ζ
(ι)
u (λ) ψm−n−1

ιd(u+1)
e
−λv/ψιd(u+1)

ξ
(ι)
u,v(λ) ψm−n−1

ιd(u+1)
e
−λv/ψιd(u+1)λv−1∫∞

η ξ
(ι)
u,v(λ)dλ ψ

d(v)
ιd(u+1)

Γ(v, η/ψιd(u+1)
)∫ η

0 ξ
(ι)
u,v(λ)dλ ψ

d(v)
ιd(u+1)

γ(v, η/ψιd(u+1)
)∫∞

0 ξ
(ι)
u,v(λ)dλ ψ

d(v)
ιd(u+1)

(v − 1)!

d(v) m− n+ v − 1

Table 2.4 Parameters characterizing the eigenvalue distributions of W ∼ PWm(n,0m,Ψ) (Definition 2.22).

recently derived in [Maa06, eq. (19)] and [Maa06, eq. (20)] and the marginal pdf of an unordered

eigenvalue in [Maa07a, eq. (36)].

In Figure 2.5 we compare some examples of the marginal cdf’s and pdf’s of the ordered and

unordered eigenvalues of W ∼ PWm(n,0m,Ψ) obtained using the results in Sections 2.4 and

2.5 with the corresponding numerical simulations.

Taylor Expansions: The joint pdf of the ordered eigenvalues of W ∼ PWm(n,0m,Ψ) in

(2.160) does not satisfy Assumption 2.2. Hence, the first order Taylor expansions of the marginal

cdf and pdf of the kth largest eigenvalue cannot be obtained using the results presented in Section

2.4.5.

2.6.6 Complex Central Quadratic Form Matrices

The joint pdf of the ordered eigenvalues of a matrix W following the complex central quadratic

form distribution, i.e., W ∼ Qn,m(In,Σ,Ψ) (see Definition 2.23) was recently derived in [Sim04,

eq. (16)] [Sim06, eq. (56)] [McK07, eq. (57)].

Joint pdf (n = m): The joint pdf of the ordered eigenvalues, λ1 ≥ · · · ≥ λn ≥ 0, of
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W ∼ Qn,m(In,Σ,Ψ) is given for n = m by [Sim06, eq. (56)] [McK07, eq. (57)]

fλ(λ) =
(−1)n(n−1)/2∏n
i=1(ψiσi)n

∞∑
k=0

∑
κ∈K(k)

∏n
i=1(−1)κi∏n

i=1 κi!|V(κ)|
|K(κ)(ψ−1)||K(κ)(σ−1)|
|V(ψ−1)||V(σ−1)|

|K(κ)(λ)||V(λ)|

(2.167)

where the summation over κ ∈ K(k) is for all strictly ordered partitions κ = (κ1, . . . , κn) with

κ1 > · · · > κn and κ1 + · · ·+ κn = k, V(·) is a Vandermonde matrix (see Definition 2.3), matrix

K(κ)(·) (n× n) is defined as

[K(κ)(x)]u,v = xκvu for u, v = 1, . . . , n (2.168)

and σ = (σ1, . . . , σn) and ψ = (ψ1, . . . , ψn) denote the eigenvalues of Σ and Ψ ordered such

that (σ1 > · · · > σn > 0) and (ψ1 > · · · > ψn > 0). Identifying terms, the expression in (2.167)

coincides with the general pdf given in Assumption 2.1 by defining the set I as

I = {(ι1, . . . , ιn) ∈ Nn|(ι1 > · · · > ιn) and (ι1 + · · ·+ ιn = k) for k = 0, 1, . . .} (2.169)

with cardinality |I| =
∑∞

k=0 |K(k)|, the constant K(ι)
m,n as

K(ι)
m,n =

(−1)n(n−1)/2
∏n
i=1(−1)ιi∏n

i=1 ιi!
∏n
i<j(ιj − ιi)

|K(ι)(ψ−1)||K(ι)(σ−1)|
|V(ψ−1)||V(σ−1)|

n∏
i=1

(ψiσi)−n (2.170)

the function ϕ(λ) = 1, and matrix E(ι)(λ) = K(ι)(λ). Hence, it follows that

ξ(ι)
u,v(λ) = ζ(ι)

u (λ)ϕ(λ)λv−1 = λιu+v−1. (2.171)

Joint pdf (n < m): The case of n < m was not explicitly addressed in [Sim06] [McK07].

However, we can use the approach followed in [Sim06, Sec. B] for correlated (Pseudo-)Wishart

matrices and consider an auxiliary expanded system with m ordered eigenvalues denoted by

λ̃ = (λ̃1, . . . , λ̃m) = (λ1, . . . , λn, λ̃n+1, . . . , λ̃m) and an expanded correlation matrix Σ̃ (m ×m)

with eigenvalues denoted by σ̃ = (σ̃1, . . . , σ̃m) = (σ1, . . . , σn, σ̃n+1, . . . , σ̃m). The joint pdf the

ordered eigenvalues, λ1 ≥ · · · ≥ λn ≥ 0, of W ∼ Qn,m(In,Σ,Ψ) for n < m is then obtained by

taking the limit as (σ̃n+1, . . . , σ̃m)→ (0, . . . , 0) and (λ̃n+1, . . . , λ̃m)→ (0, . . . , 0), i.e,

fλ(λ) = (−1)m(m−1)/2|V(λ)|2
n∏
i=1

λm−ni

∞∑
k=0

∑
κ∈K(k)

∏m
i=1(−1)κi∏m

i=1 κi!|V(κ)|
|K(κ)(ψ−1)|∏m
i=1 ψ

m
i |V(ψ−1)|

lim
(σ̃n+1,...,σ̃m,λ̃n+1,...,λ̃m)→(0,...,0)

|K(κ)(σ̃−1)|∏m
i=1 σ̃

m
i |V(σ̃−1)|

|K(κ)(λ̃)|
|V(λ̃)|

(2.172)

where the summation over κ ∈ K(k) is for all strictly ordered partitions κ = (κ1, . . . , κm) with

κ1 > · · · > κm and κ1 + · · · + κm = k, V(·) is a Vandermonde matrix (see Definition 2.3), and
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matrix K(κ)(·) (m×m) is defined as

[K(κ)(x)]u,v = xκvu for u, v = 1, . . . ,m. (2.173)

The limits in (2.180) can be easily calculated by applying the generalized L’Hopital rules

in Lemmas 2.4 and 2.5 to the quotients |K(κ)(λ̃)|/|V(λ̃)| and
∏m
i=1 σ̃

−m
i |K(κ)(σ̃−1)|/|V(σ̃−1)|,

respectively. In the first case, it holds that (see Lemma 2.4)

lim
(λ̃n+1,...,λ̃m)→(0,...,0)

|K(κ)(λ̃)|
|V(λ̃)|

=
1∏m−n−1

i=1 i!
|Z(κ)(λ)|∏n

i=1 λ
m−n
i |V(λ)|

(2.174)

where matrix Z(κ)(λ) (m×m) is defined as

[Z(κ)(λ)]u,v =


λκvu 1 ≤ u ≤ n∏u−n−1
i=1 (κv − i− 1) n < u ≤ m,κv = u− n− 1

0 n < u ≤ m,κv 6= u− n− 1

(2.175)

for u, v = 1, . . . ,m. Before calculating the second limit it is convenient to observe that

m∏
i=1

σ̃−mi
|K(κ)(σ̃−1)|
|V(σ̃−1)|

=
|K(κ)(σ̃−1)|
|V(σ̃−1)|

(2.176)

where [K(κ)(σ̃−1)]u,v = σ̃−kv−mu . Then, by defining σ̄ = (σ−1
1 , . . . , σ−1

n , σ̃n+1, . . . , σ̃m) we can

apply Lemma 2.5 as

lim
(σ̃n+1,...,σ̃m)→(0,...,0)

|K̃(κ)(σ̃−1)|
|V(σ̃−1)|

= lim
(σ̄n+1,...,σ̄m)→(∞,...,∞)

|K(κ)(σ̄)|
|V(σ̄)|

(2.177)

=
n∏
i=1

σ−mi
|K̃(κ)(σ−1)|
|V(σ−1)|

(2.178)

where matrix K̃(κ)(σ−1) (m×m) is defined as

[K̃(κ)(σ−1)]u,v =


σ−κvu 1 ≤ u ≤ n

1 n < u ≤ m,κv = u− n

0 n < u ≤ m,κv 6= u− n

for u, v = 1, . . . ,m. (2.179)

Finally, the joint pdf of the ordered eigenvalues is given by

fλ(λ) =
(−1)m(m−1)/2∏m−n−1

i=1 i!
∏m
i=1 ψ

m
i

∏n
i=1 σ

m
i

∞∑
k=0

∑
κ∈K(k)

∏n
i=1(−1)κi∏n

i=1 κi!|V(κ)|
|K(κ)(ψ−1)||K̃(κ)(σ−1)|
|V(ψ−1)||V(σ−1)|

|Z(κ)(λ)||V(λ)|. (2.180)
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Observe that the joint pdf in (2.180) has the form of the general pdf given in Assumption 2.1

except for the m×m matrix Z(κ)(λ). Nevertheless, we can use the same procedure as in Section

2.6.5 and perform the Laplace expansion of the determinant |Z(κ)(λ)| over the last m−n rows of

Z(κ)(λ). Then, by direct identification we can obtain the expressions of the parameters describing

the joint pdf of the ordered eigenvalues of W ∼ Qn,m(In,Σ,Ψ) with n < m in terms of the pdf

in Assumption 2.1 as done for the case n = m.

Results Regarding the Eigenvalues: In order to apply the distributional results in Sec-

tions 2.4 and 2.5, we have to calculate integrals of the form
∫∞
η ξ

(ι)
u,v(λ)dλ,

∫ η
0 ξ

(ι)
u,v(λ)dλ, and∫∞

0 ξ
(ι)
u,v(λ)dλ (see details in Table 2.1). Unfortunately, integrating over the λk’s before summing

over ι ∈ I seems problematic since some of the integrals are unbounded above (see expression

in (2.171)). However, as noted in [Sim06, Lem. 5], the joint pdf of the ordered eigenvalues in

(2.167) is bounded by an exponential function of any λk as λk becomes arbitrarily large and

hence integrable. The problem lies in the interchange of sums and integrals performed in the

derivations of Sections 2.4 and 2.5. To circumvent this discrepancy we can introduce a cutoff

function g(λk) which is unity as λk → 0 and tends to zero faster than a power law as λk →∞, e.g.

g(λk) = e−δλk . Cutting off the integrals makes all terms finite and thus we can freely interchange

the order of the summation and integration. Then, we should deal with infinite summation over

ι ∈ I by invoking, for instance, the Cauchy-Binet Formula in [Sim06, Lem. 3] and, finally, set

δ = 0 at the end of the calculation. Although we have not been able to go through this last

step, we still conjeture that it is possible as done in [McK07] to calculate the marginal cdf of

the largest ordered eigenvalue of W ∼ Qn,m(In,Σ,Ψ).

2.7 Conclusions and Publications

The probabilistic characterization of the eigenvalues of Wishart, Pseudo-Wishart and quadratic

form distributions is critical in the performance evaluation of many communication and signal

processing applications. Many different contributions, as early as the sixties in the mathematical

literature and much more recently in the signal processing community, provided partial charac-

terizations for specific problems. However, the unified perspective provided by this chapter was

missing and can, not only fill the gap of the currently unknown results, but even more impor-

tantly, provide a solid framework for the understanding and direct derivation of all the already
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existing results.

The main results contained in this chapter regarding the probabilistic characterization of the

eigenvalues of a general class of Hermitian random matrices have been published in two journal

papers and one conference paper:

[Ord09a] L. G. Ordóñez, D. P. Palomar, and J. R. Fonollosa, “Ordered eigenvalues of a general

class of Hermitian random matrices with application to the performance analysis of

MIMO systems”, IEEE Trans. Signal Processing , vol. 57, no. 2, pp. 672–689, Feb.

2009.

[Ord08b] L. G. Ordóñez, D. P. Palomar, and J. R. Fonollosa, “Ordered eigenvalues of a general

class of Hermitian random matrices with application to the performance analysis of

MIMO systems”, Proc. IEEE Int. Conf. Commun. (ICC), pp. 3846–3852, May 2008.

[Ord09b] L. G. Ordóñez, D. P. Palomar, A. Pagès-Zamora, and J. R. Fonollosa, “Minimum

BER linear MIMO transceivers with optimum number of substreams”, accepted in

IEEE Trans. Signal Processing , Jan. 2009.
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2.A Appendix: Joint pdf and cdf of the Ordered Eigenvalues

2.A.1 Motivation of Assumption 2.1

The adoption of Assumption 2.1 can be motivated by investigating the form of the most common

Hermitian matrix distributions and the form of the associated joint pdf of its ordered eigenvalues.

Typical univariate distributions such as the Chi-squared, Cauchy and Beta distributions in-

volve Bessel and hypergeometric functions which can all be written as special cases, for particular

integers p and q, of the generalized hypergeometric function of scalar arguments in Definition

2.10. The corresponding complex matrix variate distributions involve a generalization of this

function to the case in which the variable x is replaced by an Hermitian matrix X, known as

generalized hypergeometric function of Hermitian matrix argument (see Definition 2.16). Ob-

serve that this statement holds in particular for the Wishart, Pseudo-Wishart, and quadratic

form distributions introduced in Section 2.3, as is clarified in the following.

Let us consider first that the distribution of the Hermitian random matrix W = UΛU† can

be written as

fW(W) = KWpF̃q (a1, . . . , ap; b1, . . . , bq; ΣW)
n∏
t=1

ϕ(λt) (2.181)

where KW is a normalization constant, pF̃q(·; ·; ·) denotes the hypergeometric function of Hermi-

tian matrix argument (see Definition 2.16), Σ (n× n) is a deterministic Hermitian matrix with

eigenvalues denoted by σ, and ϕ(λ) is an arbitrary function. By direct identification, is straight-

forward to see that the pdf in (2.181) admits as particular cases the pdf’s of complex central

Wishart and complex uncorrelated noncentral Wishart matrices (see Lemmas 2.12 and 2.13). In

addition, this pdf expression also holds for some cases of the complex inverted Wishart distribu-

tion, complex matrix variate Cauchy, and Bessel distributions (see [Jam64, Sec. 8] and [Gup00]).

Indeed, using Lemma 2.16, the joint pdf of the ordered eigenvalues of W is given by

fλ(λ) = KW
πn(n−1)

Γ̃n(n)
|V(λ)|2

n∏
t=1

ϕ(λt)
∫
U(n)

pF̃q
(
a1, . . . , ap; b1, . . . , bq; ΣUΛU†

)
dU (2.182)

= KW
πn(n−1)

Γ̃n(n)
|V(λ)|2pF̃q (a1, . . . , ap; b1, . . . , bq; Σ,Λ)

n∏
t=1

ϕ(λt) (2.183)

where pF̃q (·; ·; ·, ·) denotes the hypergeometric function of two Hermitian matrix arguments (see

Definition 2.16) and (2.183) follows from the splitting property in [Jam64, eq. (92)]. Hyperge-

ometric function of two Hermitian matrix arguments are defined as an infinite series of zonal
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polynomials but can be alternatively expressed in terms of a quotient of determinants including

generalized hypergeometric functions of scalar arguments. Using Lemma 2.10 it follows that

fλ(λ) = KW
πn(n−1)

Γ̃n(n)
Γ̃n(n)

πn(n−1)/2

∏n
i=1

∏q
j=1(bj − i+ 1)i−1∏n

i=1

∏p
j=1(aj − i+ 1)i−1

|E(λ,σ)|
|V(λ)||V(σ)|

|V(λ)|2
n∏
t=1

ϕ(λt)

= Kλ|E(λ,σ)||V(λ)|
n∏
t=1

ϕ(λt) (2.184)

where |E(λ,σ)| (n× n) is defined as

[E(λ,σ)]i,j = pFq (a1 − n+ 1, . . . , ap − n+ 1; b1 − n+ 1, . . . , bq − n+ 1;λiσj) . (2.185)

Observe that the joint pdf of the ordered eigenvalues in (2.184) coincide with Assumption 2.1 if

we let the set I be a singleton.

Let us now consider an m×m Hermitian random matrices of rank n (n < m) such as Pseudo-

Wishart matrices. In this case, the previous procedure can be also followed but interchanging n

by m and taking the limit {λi}i=n+1,...,m → 0 [Sim04] [Sim06] [McK07]. Hence, matrix E(λ,σ)

is m×m but only the first n rows depend on {λi}i=1,...,n. Performing the Laplace expansion of

the determinant |E(λ,σ)| over the last (m − n) rows, the joint pdf of the ordered eigenvalues

can be expressed as in Assumption 2.1 using the sum over the set I to include this sum of

determinants.

Finally, in a more general case, such as the quadratic form distributions, the hypergeomet-

ric function of one Hermitian matrix argument in (2.181) is substituted by an hypergeometric

function of more Hermitian matrix arguments [McK06, eq. (2.30)]. Since the splitting property

of hypergeometric functions also holds, the structure of the joint pdf of the ordered eigenvalues

is maintained (see e.g. [McK07, eq. (45)]). Although a determinantal expression for hypergeo-

metric function of more than two Hermitian matrix arguments is not known, the corresponding

series expansion in terms of zonal polynomials can still be included in the general expression of

Assumption 2.1 using the summation over the set I.

2.A.2 Proof of Theorem 2.1

Proof. The joint cdf of the ordered eigenvalues, Fλ(η), can be obtained from the joint pdf of

the ordered eigenvalues, fλ(λ), as

Fλ(η) =
∫
Dord(η)

fλ(λ)dλ (2.186)
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where

Dord(η) = {0 ≤ λ1 ≤ η1, . . . , 0 ≤ λn ≤ ηn} ∩ {λ1 ≥ · · · ≥ λn} (2.187)

and recall that by assumption (η1 ≥ · · · ≥ ηn > 0).

Let i = (i1, . . . , in) ∈ Nn and Dord(i ;η) = D(i ;η) ∩ {λ1 ≥ · · · ≥ λn} with

D(i ;η) = {ηi1+1 < λ1 ≤ ηi1 , ηi2+1 < λ2 ≤ ηi2 , . . . , 0 < λn ≤ ηin}. (2.188)

Then, Dord(η) can be expressed as a union of non-overlapping domains Dord(i ;η), i.e.,

Dord(η) =
⋃
i∈S
Dord(i ;η) (2.189)

where the set S is defined as S = S1 ∩ S2 with26

S1 = {i ∈ Nn|max(is−1, s) ≤ is ≤ n} (2.190)

S2 = {i ∈ Nn|is 6= r if ηr = ηr+1}. (2.191)

Observe that the set S1 is such that
⋃

i∈S1
Dord(i ;η) only includes domains Dord(i ;η) in which

each λk belongs to one of the (n − k + 1) possible non-overlapping partitions of the interval

[0, ηk], i.e., [0, ηn], (ηn, ηn−1], . . . , (ηk−1, ηk] (see a representation for n = 3 in Figure 2.6). Then,

by intersecting S1 with S2 we eliminate all domains Dord(i ;η) with empty intervals, i.e., intervals

such that ηi = ηi+1 (compare representations for n = 3 in Figure 2.6).

From (2.186) and (2.189), the joint cdf Fλ(η) can be rewritten as

Fλ(η) =
∑
i∈S
I(i ;η) (2.192)

where

I(i ;η) =
∫
Dord(i ;η)

fλ(λ)dλ. (2.193)

Now, expanding the determinants of E(λ) and V(λ) (see Definition 2.2) in the joint pdf expres-

sion in (2.63), we can rewrite fλ(λ) as

fλ(λ) =
∑
ι∈I

K(ι)
m,n

∑
µ,ν

sgn(µ)sgn(ν)
n∏
t=1

[E(ι)(λ)]µt,t[V(λ)]νt,tϕ(λt) (2.194)

=
∑
ι∈I

K(ι)
m,n

∑
µ,ν

sgn(µ)sgn(ν)
n∏
t=1

ζ(ι)
µt (λt)ϕ(λt)λνt−1

t (2.195)

26 Recall that by definition i0 = 0, in+1 = n+ 1 and ηn+1 = 0.
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1

λ3 λ2 λ1

λ3 ≤ λ2 λ1

λ3 λ2 ≤ λ1

λ3 ≤ λ2 λ1

λ3 ≤ λ2 ≤ λ1

i τ(i)

(1, 2, 3) 1!1!1!

(1, 3, 3) 1!0!2!

(2, 2, 3) 0!2!1!

(2, 3, 3) 0!1!2!

(3, 3, 3) 0!0!3!

0 η3 η2 η1

λ3 λ2 ≤ λ1

λ3 ≤ λ2 λ1

λ3 ≤ λ2 ≤ λ1

i τ(i)

(2, 2, 3) 0!2!1!

(2, 3, 3) 0!1!2!

(3, 3, 3) 0!0!3!

0 η3 η2 = η1

(i) n = 3 and η1 > η2 > η3.

1

λ3 λ2 λ1

λ3 ≤ λ2 λ1

λ3 λ2 ≤ λ1

λ3 ≤ λ2 λ1

λ3 ≤ λ2 ≤ λ1

i τ(i)

(1, 2, 3) 1!1!1!

(1, 3, 3) 1!0!2!

(2, 2, 3) 0!2!1!

(2, 3, 3) 0!1!2!

(3, 3, 3) 0!0!3!

0 η3 η2 η1

λ3 λ2 ≤ λ1

λ3 ≤ λ2 λ1

λ3 ≤ λ2 ≤ λ1

i τ(i)

(2, 2, 3) 0!2!1!

(2, 3, 3) 0!1!2!

(3, 3, 3) 0!0!3!

0 η3 η2 = η1

(ii) n = 3 and η1 = η2 > η3.

Figure 2.6 Integration region Dord(i ;η) and normalizing constant τ(i).

where the summation over ν = (ν1, . . . , νn) and µ = (µ1, . . . , µn) is for all permutations of the

integers (1, . . . , n) and sgn(·) denotes the sign of the permutation. Substituting (2.195) back in

(2.193) and defining ξ(ι)
u,v = ζ

(ι)
u (λt)ϕ(λt)λv−1

t , it follows that

I(i ;η) =
∑
ι∈I

K(ι)
m,n

∫
Dord(i ;η)

∑
µ,ν

sgn(µ)sgn(ν)
n∏
t=1

ξ(ι)
µt,νt(λt)dλ. (2.196)

Using the symmetry of the integrand in (2.196) with respect to λ, i.e.,∑
µ,ν

sgn(µ)sgn(ν)
n∏
t=1

ξ(ι)
µt,νt(λt) =

∑
µ,ν

sgn(µ)sgn(ν)
n∏
t=1

ξ(ι)
µt,νt(λσt) (2.197)

where σ = (σ1, . . . , σn) is any arbitrary fixed permutation of the integers (1, . . . , n), the domain

Dord(i ;η) in (2.196) can be replaced with the unordered domain D(i ;η) (see a similar result

in [Kha69, Lem. 2]) by properly normalizing the result of the integral with

τ(i) =
o(i)∏
s=1

τs(i)! =
n∏
u=1

(1− δiu,iu+1)
( u∑
v=1

δiu,iv

)
! (2.198)

where o(i) denotes the number of different integration intervals in D(i ;η), τs(i) is the number

of ordered variables integrated in the sth one of these intervals (see Figure 2.6) and δu,v denotes

de Kronecker delta. Then, it holds that

I(i ;η) =
∑
ι∈I

K
(ι)
m,n

τ(i)

∫
D(i ;η)

n∏
t=1

ξ(ι)
µt,νt(λt)dλ =

∑
ι∈I

K
(ι)
m,n

τ(i)

n∏
t=1

∫ ηit

ηit+1

ξ(ι)
µt,νt(λ)dλ. (2.199)
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Finally, Fλ(η) is given by

Fλ(η) =
∑
ι∈I

K(ι)
m,n

∑
i∈S

∑
µ,ν

sgn(µ)sgn(ν)
1
τ(i)

n∏
t=1

∫ ηit

ηit+1

ξ(ι)
µt,νt(λ)dλ (2.200)

and the proof is completed by using operator T {·} in Definition 2.4.

2.B Appendix: Marginal cdf and pdf of the Ordered Eigenvalues

2.B.1 Proof of Theorem 2.2

Proof. The marginal cdf of the kth largest eigenvalue, Fλk(η), is given by

Fλk(η) = Pr(λk ≤ η) = Pr(λ1 ≤ ∞, . . . , λk−1 ≤ ∞, λk ≤ η, . . . , λn ≤ η). (2.201)

Hence, it can be obtained from the joint cdf of the ordered eigenvalues Fλ(η) for {ηi}i=1,...,k−1 =

∞ and {ηi}i=k,...,n = η > 0. Particularizing the expression of Fλ(η) in Theorem 2.1, we have

that the set S reduces to

Sk = {i ∈ {k − 1, n}n|is = n if s ≥ k} (2.202)

which only contains k elements. Let us denote by an unique index i (i = 1, . . . , k) each element

of Sk such that i(i) has the first i− 1 components equal to k− 1 and the rest equal to n. Noting

that

τ(i(i)) = (i− 1)!(n− i+ 1)! (2.203)

and using the alternative expression of the operator T (·) in Remark 2.1, it follows that

Fλk(η) =
∑
ι∈I

K(ι)
m,n

k∑
i=1

1
(i− 1)!(n− i+ 1)!

∑
µ

|F(ι)(µ, i; η)| (2.204)

where the summation over µ = (µ1, . . . , µn) is for all permutations of the integers (1, . . . , n) and

the n× n matrix F(ι)(µ, i; η) is defined as (see (2.68))

[F(ι)(µ, i; η)]u,µv = [T(ι)(µ, i(i); η)]u,µv ,v =


∫∞
η ξ

(ι)
u,µv(λ)dλ 1 ≤ v < i∫ η

0 ξ
(ι)
u,µv(λ)dλ i ≤ v ≤ n

for u, v = 1, . . . , n.

(2.205)

Observing that F(ι)(µ, i; η) = F(ι)(ν, i; η) if ν = (π(µ1, . . . , µi−1), π(µi, . . . , µn)) where π(·)

denotes permutation, it suffices to calculate one determinant for all these (i − 1)!(n − i + 1)!
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permutations, for instance, |F(ι)(µ, i; η)| where µ is such that (µ1 < . . . < µi−1) and (µi < . . . <

µn). Finally, we have that

1
(i− 1)!(n− i+ 1)!

∑
µ

|F(ι)(µ, i; η)| =
∑
µ∈P(i)

|F(ι)(µ, i; η)| (2.206)

and this completes the proof.

2.B.2 Proof of Corollary 2.2.1

Proof. Particularizing Theorem 2.2 for k = 1, it follows that

Fλ1(η) =
∑
ι∈I

K(ι)
m,n

∑
µ∈P(1)

|F(ι)(µ, 1; η)|. (2.207)

Observe now that P(1) only contains the element (1, . . . , n). Thus, using (2.70), we define the

n× n matrix F(ι)(η) as

[F(ι)(η)]u,v = [F(ι)((1, . . . , n), 1; η)]u,v =
∫ η

0
ξ(ι)
u,v(λ)dλ for u, v = 1, . . . , n (2.208)

and this completes the proof.

2.B.3 Proof of Corollary 2.2.2

Proof. This proof could be done by particularizing Theorem 2.2 for k = n and simplifying the

resulting expression. However, it is easier to obtain Fλn(η) directly as

Fλn(η) = 1− Pr (λn > η) = 1− Pr (λ1 > η, . . . , λn > η) = 1−
∫
Dord(η)

fλ(λ)dλ (2.209)

where

Dord(η) = {λ1 > η, . . . , λn > η} ∩ {λ1 > · · · > λn}. (2.210)

Then, using the expression for the joint pdf fλ(λ) given in Assumption 2.2 and substituting

operator T {·} by its definition (Definition 2.4), it follows that

Fλn(η) = 1−
∑
ι∈I

K(ι)
m,n

∫
Dord(η)

∑
µ,ν

sgn(µ)sgn(ν)
n∏
t=1

ξ(ι)
µt,νt(λt)dλ (2.211)

where the summation over µ = (µ1, . . . , µn) and ν = (ν1, . . . , νn) is for all permutations of the

integers (1, . . . , n) and sgn(·) denotes the sign of the permutation. Noting the symmetry of the
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integrand in (2.211)

Fλn(η) = 1−
∑
ι∈I

K
(ι)
m,n

n!

∑
µ,ν

sgn(µ)sgn(ν)
n∏
t=1

∫ ∞
η

ξ(ι)
µt,νt(λt)dλ (2.212)

= 1−
∑
ι∈I

K(ι)
m,nsgn(µ)

∑
ν

sgn(ν)
n∏
t=1

∫ ∞
η

ξ(ι)
µt,νt(λ)dλ (2.213)

and using the definition of determinant (see Definition 2.2) the proof is completed.

2.B.4 Proof of Corollary 2.2.3

Proof. The marginal pdf of the kth largest eigenvalue, fλk(η), can be obtained from its marginal

cdf as

fλk(η) =
d

dη
Fλk(η). (2.214)

Then, the proof follows from using the expression for the marginal cdf of the kth largest largest

eigenvalue in Theorem 2.2 and the derivative of a determinant in Lemma 2.2.

2.C Appendix: Marginal cdf of the Maximum Weighted Ordered Eigenvalue. Proof

of Theorem 2.3

Proof. The cdf of the random variable λK defined in (2.77), FλK(η), can be obtained as

FλK(η) = Pr
(

max
k∈K

(
λk/θk

)
≤ η

)
= Pr

(
λK1 ≤ θ1η, . . . , λK|K| ≤ θ|K|η

)
(2.215)

where Ki denotes the ith element and |K| the cardinality of the set K. Defining

ϑ̃k(η) =


θkη k ∈ K

∞ otherwise
for k = 1, . . . , n (2.216)

we can rewritte the cdf in (2.215) as

FλK(η) = Pr
(
λ1 ≤ ϑ̃1(η), . . . , λn ≤ ϑ̃n(η)

)
= Fλ

(
ϑ̃1(η), . . . , ϑ̃n(η)

)
(2.217)

where Fλ(·) denotes the joint cdf of the ordered eigenvalues λ1 ≥ · · · ≥ λn. Precisely, due to the

order of the eigenvalues, for ηk−1 < ηk, it holds that

Fλ(η1, . . . , ηk−1, ηk, . . . , ηn) = Fλ(η1, . . . , ηk−1, ηk−1, . . . , ηn) (2.218)

and, hence, we have that

FλK(η) = Fλ
(
ϑ1(η), . . . , ϑn(η)

)
(2.219)

where ϑk(η) is defined in (2.79) and this completes the proof.
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2.D Appendix: Taylor Expansions

2.D.1 Proof of Theorem 2.4

Proof. The first order Taylor expansion of Fλk(η) is given by

Fλk(η) =
(
F

(r)
λk

(η)|η=0

r!

)
ηr + o(ηr) (2.220)

where F (r)
λk

(η) denotes the rth derivative of Fλk(η) given in Theorem 2.2 and r is the smallest

integer such that F (r)
λk

(η)|η=0 6= 0. Using Lemma 2.3 for the rth derivative of a determinant,

F
(r)
λk

(η) can be expressed as

F
(r)
λk

(η) = Km,n

k∑
i=1

∑
µ∈P(i)

∑
r

r!
r1! · · · rn!

|F(r)(µ, i; η)| (2.221)

where the summation over r = (r1, . . . , rn) is for all r such that rs ∈ N ∪ {0} and
∑n

s=1 rs = r,

and the n× n matrix F(r)(µ, i; η) is defined as (see (2.70))

[F(r)(µ, i; η)]u,µv =
drµv

dηrµv
[F(µ, i; η)]u,µv =

 drµv
dηrµv

∫∞
η ξu,µv(λ)dλ 1 ≤ v < i

drµv
dηrµv

∫ η
0 ξu,µv(λ)dλ i ≤ v ≤ n

(2.222)

for u, v = 1, . . . , n. The proof reduces to find the minimum integer r such that F (r)
λk

(η) in

(2.221) does not equal 0 when evaluated at η = 0. First we determine, for a fixed i and a fixed

permutation µ, the set {rµv}v=1,...,n with minimum r(µ, i) =
∑n

v=1 rµv such that |F(ι,r)(µ, i; η =

0)| 6= 0 and, then, we obtain r as

r = min
1≤i≤k

min
µ∈P(i)

r(µ, i). (2.223)

Recall from the statement of the theorem that the Taylor expansion of ζu(λ)ϕ(λ) is given by

ζu(λ)ϕ(λ) =
∞∑

t=c(u)

au(t)
t!

λt (2.224)

and, since ξu,v(λ) = ζu(λ)ϕ(λ)λv−1, we have that∫ ∞
η

ξu,v(λ)dλ =
∫ ∞

0
ξu,v(λ)dλ−

∫ η

0
ξu,v(λ)dλ = bu,v −

∞∑
t=c(u)+v

au,v(t)
t!

ηt = bu,v + o(η0)

(2.225)∫ η

0
ξu,v(λ)dλ =

∞∑
t=c(u)+v

au,v(t)
t!

ηt =
au,v(c(u) + v)

(c(u) + v)!
ηc(u)+v + o(ηc(u)+v) (2.226)
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where we have defined

au,v(t) =
(t− 1)!
(t− v)!

au(t− v) (2.227)

bu,v =
∫ ∞

0
ξu,v(λ)dλ. (2.228)

From (2.225) and (2.226) we conclude that rµv , such that the columns [F(r)(µ, i; η = 0)]µv do

not have all entries equal to 0, satisfies
rµv = 0 or rµv ≥ c+ µv 1 ≤ v < i

rµv ≥ c+ µv i ≤ v ≤ n
(2.229)

where c = minu c(u).

Note that the condition in (2.229) is only a necessary condition, as we still have to guaratee

that all columns of F(r)(µ, i; η) are linearly independent in order to assure that |F(r)(µ, i; η =

0)| 6= 0. In fact, the condition in (2.229) is not sufficient, as in the following we show that the

set {rµv}v=1,...,n with minimum r(µ, i) and |F(r)(µ, i; η = 0)| 6= 0 is given by

rµv =


0 1 ≤ v < i

c+ µv + νv−i+1 − 1 i ≤ v ≤ n
(2.230)

where ν = (ν1, . . . , νn−i+1) is a permutation of integers (1, . . . , νn−i+1).

Let us focus first on the case 1 ≤ v < i with rµv = 0, for which it holds that

[F(r)(µ, i; η = 0)]u,µv =
drµv

dηrµv

∫ ∞
η

ξu,µv(λ)dλ
∣∣∣∣
η=0

= bu,µv for u = 1, . . . , n. (2.231)

For the case i ≤ v < n we have that

[F(r)(µ, i; η = 0)]µv =
drµv

dηrµv

∫ ∞
η

ξu,µv(λ)dλ
∣∣∣∣
η=0

(2.232)

= au,µv(rµv) =
(rµv − 1)!
(rµv − µv)!

au(rµv − µv) for u = 1, . . . , n. (2.233)

and this, noting (2.229), shows that all rµv in the set {rµv}v=i,...,n have to be different. Since the

set {rµv}v=i,...,n with different elements and minimum r(µ, i) is

rµv = c+ µv + νv−n−i+1 − 1 (2.234)

this confirms (2.230) as long as |F(r)(µ, i; η = 0)| 6= 0 with

[F(r)(µ, i; η = 0)]u,µv =


bu,µv 1 ≤ v < i

au,µv(c+ µv + νv−n−i+1 − 1) i ≤ v ≤ n
. (2.235)
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Now observe that r = min1≤i≤k minµ∈P(i) r(µ, i), with rµv as given in (2.230), is obtained

for i = k and µ such that

µv =


n+ v − k + 1 1 ≤ v < k

v − k + 1 k ≤ v ≤ n
(2.236)

and that, at least in this case, |F(r)(µ, i; η = 0)| 6= 0 by the assumption in the statement of the

theorem. Thus, r is

r =
n∑
v=1

rv = (c− 1)(n− k + 1) + 2
n−k+1∑
v=1

v = (c+ n− k + 1)(n− k + 1) (2.237)

where we have used [Gra00, eq. (0.121.1)]. Finally, we can rewrite F (r)
λk

(η)|η=0 as

F
(r)
λk

(η)
∣∣∣
η=0

= Km,n

∑
ν

r!
τ(ν)

|F(ν)| (2.238)

where

τ(ν) =
n−k+1∏
v=1

(c+ v + νv − 1)! (2.239)

and the n× n matrix F(ν) is defined, using (2.235) and (2.230), as

[F(ν)]u,µv =


bu,µv 1 ≤ v < k

au,µv(c+ µv + νv−k+1 − 1) k ≤ v ≤ n
for u, v = 1, . . . , n (2.240)

or, equivalently, using (2.236) and (2.227), as

[F(ν)]u,v =


(c+v+νv−2)!

(c+νv−1)! au(c+ νv − 1) 1 ≤ v ≤ n− k + 1

bu,v n− k + 1 < v ≤ n
for u, v = 1, . . . , n. (2.241)

Then, we complete the proof by substituting (2.238) back in (2.220).

2.D.2 Proof of Theorem 2.5

Proof. The first order Taylor expansion of FλK(η) is given by

FλK(η) =
(
F

(r)
λK

(η)|η=0

r!

)
ηr + o(ηr) (2.242)

where F (r)
λK

(η) denotes the rth derivative of FλK(η) given in Theorem 2.3 and r is the smallest

integer such that F (r)
θK

(η)|η=0 6= 0. Using the alternative expression of operator T {·} in Remark
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2.1, we can rewrite FλK(η) in (2.78) in terms of sum of determinants. Then, using Lemma 2.3

for the rth derivative of a determinant, it follows

F
(r)
λK

(η) = Km,n

∑
i∈S

1
τ(i)

∑
µ

∑
r

r!
r1! · · · rn!

|F(r)(µ, i ;ϑ(η))| (2.243)

where the summation over r = (r1, . . . , rn) is for all r such that rs ∈ N ∪ {0} and
∑n

s=1 rs = r,

and the n× n matrix F(r)(µ, i ;ϑ(η)) is defined as (see (2.68))

[F(r)(µ, i ;ϑ(η))]u,µv =
drµv

dηrµv
[T(i ;ϑ(η))]u,µv ,v =

drµv

dηrµv

∫ ϑivη

ϑiv+1η
ξu,µv(λ)dλ (2.244)

for u, v = 1, . . . , n. Then, the proof reduces to find the minimum integer r such that F (r)
λK

(η) in

(2.243) does not equal 0 when evaluated at η = 0.

Recall from Assumption 2.3 that the Taylor expansion of ζu(λ)ϕ(λ) is given by

ζu(λ)ϕ(λ) =
∞∑

t=c(u)

au(t)
t!

λt (2.245)

and, since ξu,v(λ) = ζu(λ)ϕ(λ)λv−1, we have that∫ ϑivη

ϑiv+1η
ξu,µv(λ)dλ =

∫ ϑivη

0
ξu,µv(λ)dλ−

∫ ϑiv+1η

0
ξu,µv(λ)dλ (2.246)

=
∞∑

t=c(u)+µv

au(t− µv)
t(t− µv)!

(ϑtiv − ϑ
t
iv+1)ηt (2.247)

From (2.246) we conclude that rµv , such that the columns [F(r)(µ, i ;ϑ(η = 0))]µv do not have

all entries equal to 0, satisfies

rµv ≥ c+ µv (2.248)

where c = minu c(u). Note that the condition in (2.248) is only a necessary condition, as we still

have to guaratee that all columns of F(r)(µ, i ;ϑ(η)) are linearly independent in order to assure

that |F(r)(µ, i ;ϑ(η = 0))| 6= 0. In fact, the condition in (2.248) is not sufficient, since we have

that

[F(r)(µ, i ;ϑ(η = 0))]µv =
(rµv − 1)!
(rµv − µv)!

au(rµv − µv)
(
ϑ
rµv
iv
− ϑrµviv+1

)
for u = 1, . . . , n (2.249)

and this, noting (2.248), shows that all rµv in the set {rµv}v=i,...,n have to be different. The set

{rµv}v=i,...,n with different elements is

rµv = c+ µv + νv − 1 (2.250)
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where ν = (ν1, . . . , νn) is a permutation of integers (1, . . . , n). In addition, due to Assumption

2.3, this set ensures that |F(r)(µ, i;ϑ(η = 0))| 6= 0, at least when µ = ν. Thus, independently

of i and µ, r is

r =
n∑
v=1

rµv = (c− 1)n+ (n+ 1)n = (c+ n)n (2.251)

where we have used [Gra00, eq. (0.121.1)]. Finally, we can rewrite F (r)
λK

(η)|η=0 as

F
(r)
λK

(η)
∣∣∣
η=0

= Km,n

∑
i∈S

1
τ(i)

∑
µ

∑
ν

r!
τ(µ,ν)

|F(µ,ν, i ;ϑ)| (2.252)

where

τ(µ,ν) =
n∏
v=1

(c+ µv + νv − 1)! (2.253)

and the n× n matrix F(µ,ν, i ;ϑ) is defined as

[F(µ,ν, i ;ϑ)]u,µv =
(c+ µv + νv − 2)!

(c+ νv − 1)!
au(c+ νv − 1)

(
ϑ
rµv
iv
− ϑrµviv+1

)
for u, v = 1, . . . , n.

(2.254)

Finally, using again Remark 2.1, it follows

F
(r)
λK

(η)
∣∣∣
η=0

= Km,n

∑
i∈S

r!
τ(i)

∑
µ

T {T(µ, i ;ϑ)} (2.255)

where the n× n× n tensor T(µ, i ;ϑ) is defined as

[T(µ, i ;ϑ)]u,v,t =
1

(c+ µv + v − 1)(c+ v − 1)!
au(c+v−1)

(
ϑrvit − ϑ

rv
it+1

)
for u, v, t = 1, . . . , n.

(2.256)

Then, we complete the proof by substituting (2.255) back in (2.242).

2.E Appendix: Joint and Marginal cdf and pdf of the Unordered Eigenvalues

2.E.1 Proof of Theorem 2.6

Proof. The joint pdf of the unordered eigenvalues, fx(x), is obtained by dividing the joint pdf

of the ordered eigenvalues λ1 ≥ · · · ≥ λn ≥ 0, fλ(λ), by n!, i.e.,

fx(x) =
1
n!
fλ(x) (2.257)

so that fx(x) is a density function in the unordered domain {0 ≤ x1 ≤ ∞, . . . , 0 ≤ xn ≤ ∞}.

The proof is then completed by using the expression for the joint pdf of the ordered eigenvalues

given in Assumption 2.1.
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2.E.2 Proof of Theorem 2.7

Proof. The joint cdf of 1 ≤ p ≤ n unordered eigenvalues, Fxp(η), is obtained from the joint pdf

of the unordered eigenvalues, fx(x), as

Fxp(η) =
∫
D
fx(x1, . . . , xp, xp+1, . . . , xn)dx (2.258)

where D = {0 ≤ x1 ≤ η1, . . . 0 ≤ xp ≤ ηp, . . . , 0 ≤ xn ≤ ∞}. Using the expression for fx(x)

given in Theorem 2.6 and expanding the determinants (see Definition 2.2), it follows that

Fxp(η) =
∑
ι∈I

K
(ι)
m,n

n!

∑
µ,ν

sgn(µ)sgn(ν)
∫
D

[
p∏
t=1

ξ(ι)
µt,νt(xt)

] n∏
t=p+1

ξ(ι)
µt,νt(xt)

 dx (2.259)

=
∑
ι∈I

K
(ι)
m,n

n!

∑
µ,ν

sgn(µ)sgn(ν)

[
p∏
t=1

∫ ηt

0
ξ(ι)
µt,νt(x)dx

] n∏
t=p+1

∫ ∞
0

ξ(ι)
µt,νt(x)dx

 (2.260)

where the summation over µ = (µ1, . . . , µn) and ν = (ν1, . . . , νn) is for all permutations of the

integers (1, . . . , n) and sgn(·) denotes the sign of the permutation. Now, using the alternative

expression of the operator T {·} in Remark 2.1, we can rewrite (2.266) as

Fxp(η) =
∑
ι∈I

K
(ι)
m,n

n!

∑
µ

|F(ι)(µ, p;η)| (2.261)

where the summation over µ is over all permutations of integers (1, . . . , n) and the n×n matrix

F(ι)(µ, p;η) is defined as

[F(ι)(µ, p;η)]u,µv =


∫ ηv

0 ξ
(ι)
u,µv(x)dx 1 ≤ v ≤ p∫∞

0 ξ
(ι)
u,µv(x)dx p < v ≤ n

for u, v = 1, . . . , n. (2.262)

Observing that F(ι)(µ, p;η) = F(ι)(ν, p;η) if ν = (π(µ1, . . . , µp), π(µp+1, . . . , µn)) where π(·)

denotes permutation, it suffices to calculate one determinant for all these p!(n−p)! permutations,

for instance, |F(ι)(µ, p;η)| where µ is such that (µ1 < . . . < µp) and (µp+1 < . . . < µn). Finally,

we have that

∑
µ

|F(ι)(µ, p;η)| = p!(n−p)!
∑

µ∈P(p+1)

|F(ι)(µ, p;η)| = n!
(
n

p

)−1 ∑
µ∈P(p+1)

|F(ι)(µ, p;η)| (2.263)

where
(
n
p

)
denotes the binomial coefficient [Abr72, eq. (3.1.2)] and this completes the proof.
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2.E.3 Proof of Corollary 2.7.1

Proof. The joint pdf of 1 ≤ p ≤ n unordered eigenvalues, fxp(η), is obtained from the joint pdf

of the unordered eigenvalues, fx(x), by integrating out n− p eigenvalues, i.e.,

fxp(η) =
∫
D
fx(η1, . . . , ηp, xp+1, . . . , xn)dxp+1 · · · dxn (2.264)

where D = {0 ≤ xp+1 ≤ ∞, . . . , 0 ≤ xn ≤ ∞}. Using the expression for fx(x) given in Theorem

2.6 and expanding the determinants, it follows that

fxp(η) =
∑
ι∈I

K
(ι)
m,n

n!

∑
µ,ν

sgn(µ)sgn(ν)
[ p∏
t=1

ξ(ι)
µt,νt(ηt)

][ ∫
D

n∏
t=p+1

ξ(ι)
µt,νt(xt)dxp+1 · · · dxn

]
(2.265)

=
∑
ι∈I

K
(ι)
m,n

n!

∑
µ,ν

sgn(µ)sgn(ν)
[ p∏
t=1

ξ(ι)
µt,νt(ηt)

][ n∏
t=p+1

∫ ∞
0

ξ(ι)
µt,νt(x)dx

]
(2.266)

where the summation over µ = (µ1, . . . , µn) and ν = (ν1, . . . , νn) is for all permutations of the

integers (1, . . . , n) and sgn(·) denotes the sign of the permutation. Now, using the alternative

expression of the operator T {·} in Remark 2.1, we can rewrite (2.266) as

fxp(η) =
∑
ι∈I

K
(ι)
m,n

n!

∑
µ

|D(ι)(µ, p;η)| (2.267)

where the summation over µ is over all permutations of integers (1, . . . , n) and the n×n matrix

D(ι)(µ, p;η) is defined as

[D(ι)(µ, p;η)]u,v =


ξ

(ι)
u,µv(ηv) 1 ≤ v ≤ p∫∞
0 ξ

(ι)
u,µv(x)dx p < v ≤ n

for u, v = 1, . . . , n. (2.268)

Finally, following the same procedure as in the proof of Theorem 2.7 (see 2.E.2) the proof is

completed.
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Spatial Multiplexing MIMO Systems with CSI:

Performance Analysis

Spatial multiplexing is a simple multiple-in multiple-out (MIMO) transmit technique that

allows a high spectral efficiency by dividing the incoming data into multiple independent sub-

streams which are simultaneously transmitted. When perfect channel state information (CSI)

is available at both sides of the link, channel-dependent linear processing of the data sub-

streams can improve reliability by adapting the transmitted signal to the instantaneous channel

eigen-structure, i.e., by establishing different parallel channels through the strongest channel

eigenmodes. In this chapter we investigate analytically the average and outage performance of a

general spatial multiplexing MIMO system with CSI. With the final aim of establishing the per-

formance limits of this particular transmission structure, the average bit error rate and outage

probability versus signal-to-noise ratio curves of spatial multiplexing MIMO systems are char-

acterized in terms of two key parameters: the array gain and the diversity gain. Finally, these

results are applied to analyze the performance of practical linear MIMO transceiver designs.

83
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3.1 Introduction

The gains obtained by the deployment of multiple antennas at both sides of the link are the

array gain, the diversity gain, and the multiplexing gain (see Section 1.1.1 for details). The

array gain is the improvement in signal-to-noise ratio (SNR) obtained by coherently combining

the signals on multiple transmit or multiple receive dimensions while the diversity gain is the

improvement in link reliability obtained by receiving replicas of the information signal through

independently fading dimensions. These gains are not exclusive of multiple-input multiple-output

(MIMO) channels and also exist in single-input multiple-output (SIMO) and multiple-input

single-output (MISO) channels. In contrast, the multiplexing gain, which refers to the increase

of rate at no additional power consumption, is a unique characteristic of MIMO channels. The

basic idea is to exploit the multiple dimensions to open up several parallel subchannels within the

MIMO channel, also termed channel eigenmodes. This allows the transmission of several symbols

simultaneously or, in other words, the establishment of several substreams for communication.

In this chapter we focus on spatial multiplexing MIMO systems with perfect channel state

information (CSI) at both sides of the link. Spatial multiplexing is a simple MIMO transmit

technique that allows a high spectral efficiency by dividing the incoming data into multiple

independent substreams which are simultaneously transmitted. When the transmitter has no

CSI, each substream is transmitted on a different antenna resulting in the well-known V-BLAST

scheme [Pau94,Fos99]. To the contrary, when perfect CSI is available at the transmitter, channel-

dependent linear precoding of the data substreams can further improve performance by adapting

the transmitted signal to the instantaneous channel eigen-structure. Different degrees of adap-

tation have been considered in the literature, namely:

(i) Adapt only the linear precoder and/or power allocation among the different sub-

streams, keeping the number of substreams and the constellations fixed. This is by far

the most widely considered scenario, e.g., [Lee76,Sal85,Yan94b,Yan94a,Sca99,Sam01,

Sca02b,Ong03,Pal03,Din03a,Pal07].

(ii) Adapt the precoder/power allocation among the different substreams, the number of

substreams, and choice of constellations, keeping the data rate fixed. This has been

only partially considered in a few papers. For instance, the adaptation of the precoder

and number of substreams is addressed in [Lov05b], and the precoder, constellations,
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and number of substreams are designed in [Pal05a] to minimize the transmitted power

under a bit error rate (BER) constraint.

This chapter concentrates on case (i) which embraces the schemes that have received more

attention in the literature, while case (ii) is partially addressed in Chapter 4. More exactly, in

this chapter we analyze analytically the uncoded performance of a general spatial multiplexing

MIMO system with CSI, when the number of substreams and constellations have been chosen

beforehand.

In order to simplify the study of MIMO systems, it is customary to divide them into an

uncoded part, which transmits symbols drawn from some constellations, and a coded part that

builds upon the uncoded system. Although the ultimate system performance depends on the

combination of both parts, it is convenient to consider the uncoded and coded parts indepen-

dently to simplify the analysis and design. In this chapter we analyze analytically the uncoded

performance of a general spatial multiplexing MIMO system. The final objective is to provide the

fundamental performance limits encountered when the establishing several parallel data streams

through the channel eigenmodes, independently of how the available power is distributed among

them.

First we study the exact individual performance of the substreams transmitted through the

channel eigenmodes under common MIMO channel models: uncorrelated Rayleigh, semicorre-

lated Rayleigh, and uncorrelated Ricean MIMO fading channels. The resulting expressions turn

out to be quite complicated and, consequently, we focus afterwards on the high-SNR perfor-

mance in order to provide more insight into the system behaviour. In particular, we study the

average and outage performance of each channel eigenmode at high SNR following the method-

ology introduced by Wang and Giannakis in [Wan03]. This allows us to characterize the curves

corresponding to average BER versus SNR and outage probability versus SNR in terms of the

diversity gain, which determines the slope of the curve at high SNR in a log-log scale, and the

array gain, which determines the horizontal shift of the curve. We also extend this characteriza-

tion to evaluate the global performance that takes into account all the established substreams

for a fixed number of substreams according to scenario (i).

These general results are then applied to analyze the performance of linear MIMO

transceivers which are low-complexity practical schemes composed of a linear precoder at the



86 Spatial Multiplexing MIMO Systems with CSI: Performance Analysis

transmitter and a linear equalizer at the receiver. The design of linear transceivers when

the number of substream is fixed beforehand has been studied since the 1970s under dif-

ferent measures of performance based on the SNR, the mean square error (MSE), or the

BER [Lee76,Sal85,Yan94b,Sca99,Sam01,Sca02b,Ong03,Pal03,Din03b,Din03a]. A general uni-

fying framework that embraces most of these design criteria was proposed in [Pal03] (see an

up-to-date overview in [Pal07]). Actually, based on the formulation in [Pal03], we are able to

investigate the high-SNR global average performance of a wide family of practical linear MIMO

transceivers.

The rest of the chapter is organized as follows. Section 3.2 is devoted to introducing the

performance metrics of a general digital communication system in fading channels and presenting

how these performance measures can be approximated in the high-SNR regime. The adopted

fading channel models are described in Section 3.3 and the signal model corresponding to a

general spatial multiplexing scheme with CSI in Section 3.4. Next, the the average BER and

outage performance of spatial multiplexing MIMO systems is analytically investigated in Sections

3.5–3.7. Then, in Section 3.8, we apply these results to analyze the performance of linear MIMO

transceivers. Finally, Section 3.9 summarizes the main results and provides the list of publications

where they have been presented.

3.2 Performance Metrics of Digital Communication Systems

The ultimate performance of a digital communication system is given in terms of the symbol error

probability or symbol error rate (SER), defined as the fraction of symbols in error, or in terms of

the bit error probability or BER, defined as the fraction of bits in error. When communicating

over fading channels, instantaneous performance measures1 are random quantities and do not

provide any insight on the behavior of the system. All possible realizations of the fading channel

have to be taken into account, leading to the concepts of average and outage performance metrics.

The average SNR and the average SER/BER measures the SNR and SER/BER averaged over

the different channel states, whereas the outage probability is the probability that the system

SNR performance is below a given acceptable threshold.

1 The notion of instantaneousness is with respect to the channel, i.e., instantaneous performance denotes the performance

for a given channel realization but averaging over the transmitted signal and noise.
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Modulation α β(i) β γ

M -PAM 2
(
1− 1

M

)
6

M2−1
6

M2−1
1

M -QAM 4
(
1− 1√

M

)
(2i− 1)2

(
3

M−1

)
3

M−1

√
M/2

M -PSK 2 2 sin2
( (2i−1)π

M

)
2 sin2

(
π
M

)
max(M/4, 1)

Table 3.1 Constellation parameters for M -PAM, M -QAM, and M -PSK modulations.

In this section, we provide the expressions of these performance measures assuming a flat-

fading channel and additive white Gaussian noise (AWGN) as needed in subsequent subsections.

For an exhaustive and comprehensive treatment of the subject see [Sim02b] or textbooks in

digital communications [Sim95,Stü96,Ben99,Pro01,Tse05].

3.2.1 Instantaneous Performance

In the presence of additive white Gaussian noise, the instantaneous SER of a digital commu-

nication system (under coherent detection and for many different modulation formats) can be

analytically approximated as2 [Lu99, Sec. III] [Sim02b, Sec. 8.1.1]

SER(ρ) ' α
γ∑
i=1

Q
(√

β(i)ρ
)

(3.1)

where ρ denotes the instantaneous SNR, Q(·) is the Gaussian Q-function defined as [Sim02b,

eq. (4.1)]

Q(x) =
1√
2π

∫ ∞
x

e−t
2/2dt (3.2)

and the parameters α , α(M), β(i) , β(i,M), and γ , γ(M) depend on the M -ary modulation

used to map the source bits to symbols. When this modulation process includes a Gray code

mapping, which has the property that in transitioning from one symbol to an adjacent symbol

of the constellation only one out of the source log2M bits changes [Gra53] [Ben99, Sec. 5.1.3],

the instantaneous BER can be approximately obtained from the instantaneous SER as [Sim02b,

eq. (8.7)]

BER(ρ) ' SER(ρ)
log2M

(3.3)

2 See the exact expressions for QAM constellations in [Cho02] and for PSK constellations in [Las03].
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Figure 3.1 Exact instantaneous BER, approximated instantaneous BER in (3.4), and high-SNR approximated instantaneous

BER in (3.5).

since for relatively high SNR the only significant symbol errors occur when deciding in favor of

adjacent symbols. Combining (3.1) and (3.3), we can express the instantaneous BER as

BER(ρ) ' α

log2M

γ∑
i=1

Q
(√

β(i)ρ
)
. (3.4)

The BER expression in (3.4) is shown in [Lu99] to be valid for all M and quite accurate at both

low and high SNR. When focusing only on large SNR, one can further approximate (3.4) by

the first term in the summation since β(i) is strictly increasing in i and, thus, dominates the

instantaneous BER:3

BER(ρ) ' α

log2M
Q
(√

βρ
)

(3.5)

where we have defined β , β(1).

The general BER expressions in (3.4) and (3.5) are particularized in Table 3.1 for the most

common digital modulation formats (see [Sim02b, Sec. 8.1] for other modulations or non-coherent

detection strategies). In Figure 3.1 we plot the exact instantaneous BER performance as a

function of the instantaneous SNR together with the corresponding approximations in (3.4) and

(3.5) when 16-QAM and 64-QAM constellations are used. As expected, the approximated BER

curves predict very accurately the exact performance in the BER region of interest (BER(ρ) >>

10−1).

3 Owing to its accurateness in the BER work-region of practical communication systems, the expression in (3.5) is henceforth

regarded as the exact instantaneous BER.
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3.2.2 Average Performance

Under the flat-fading assumption, the effect of the channel on the transmitted signal is in the

form of a random multiplicative distortion [Big98, Sec. II.B]. According to this, the instantaneous

SNR ρ is given by the product of a channel-dependent parameter µ and a deterministic positive

quantity ρ̄, i.e.,

ρ = µρ̄ (3.6)

where ρ̄ is the average SNR at the receiver whenever E{µ} = 1. As we are interested in the

average BER incurred by the system, we need to take the expectation over all possible channel

states:

BER(ρ̄) , Eµ{BER(ρ)} =
∫ ∞

0
BER (ρ̄µ) fµ(µ)dµ (3.7)

where fµ(µ) is the pdf of the channel-dependent parameter µ.

The average BER in (3.7) has been analytically evaluated only in certain cases, such as

when the channel is Rayleigh or Ricean, i.e., the channel parameter µ follows a χ2-distribution

(see [Sim02b, Sec. 8.2] for some available average BER closed-form expressions). A unifying

procedure for finding the error of digital communication systems over general fading channels

is presented in [Sim98] (see textbook [Sim02b] for further details). This method is based on

an alternative representation of the Gaussian Q-function and requires evaluating the moment

generating function (mgf) of the instantaneous SNR.

In some cases, when even an exact statistical characterization of the channel parameter or,

equivalently, of the SNR is not possible, it is convenient to allow a certain degree of approxi-

mation. The most common approach is to shift the focus from exact performance to high-SNR

performance as done in Section 3.2.4. This high-SNR approximation is also meaningful when the

exact performance evaluation involves complicate expressions and, thus, the potentially simpler

high-SNR performance characterization can easier provide meaningful insight into the system

behavior.

3.2.3 Outage Performance

The average performance metrics presented in Section 3.2.2 are useful performance measures

when the transmission interval is long enough to reveal the long-term ergodic properties of the
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fading channel. The ergodicity assumption, however, is not necessarily satisfied in practical com-

munication systems operating over fading channels, because no significant channel variability

may occur during the whole transmission. In these circumstances, the most convenient measure

to capture the performance of the system is the outage BER, i.e., the minimum BER value guar-

anteed with a small given probability. However, the outage BER is difficult to calculate and the

performance of communication systems over non-ergodic fading channels is instead commonly

measured with the outage probability, defined as the probability that the instantaneous SNR ρ

falls below a certain threshold ρth [Sim02b, eq. (1.4)]:

Pout(ρ̄) , Pr(ρ ≤ ρth) =
∫ ρth/ρ̄

0
fµ(µ)dµ. (3.8)

Observe that, using the approximate instantaneous BER expression in (3.5), the SNR thresh-

old ρth can be chosen as

ρth =
1
β
Q−2

( log2M

α
BERth

)
(3.9)

where Q−1(·) is the inverse of the Gaussian Q-function, and the outage probability can be then

understood as the probability that the instantaneous BER fall below a target BER denoted by

BERth.

The outage probability in (3.8) is closely related to the information-theoretical outage prob-

ability defined as the probability that the instantaneous mutual information of the channel

is below the transmitted code rate [Oza94, Cai99]. For instance, in a Gaussian channel the

information-theoretical outage probability Pout(R) , Pr(log2(1 + ρ) ≤ R) can be obtained from

the outage probability in (3.8) by choosing the SNR threshold as ρth = 2R − 1.

3.2.4 High-SNR Performance

In the high-SNR regime, the average BER function when communicating over flat-fading chan-

nels can be approximated in most cases (clearly, a necessary condition is that BER(ρ̄) → 0 as

ρ→∞) as4

BER(ρ̄) = (Gc · ρ̄)−Gd + o
(
ρ̄−Gd

)
(3.10)

4 We say that f(x) = o(g(x)), g(x) > 0, if f(x)/g(x)→ 0 as x→ 0 [Bru81, eq. (1.3.1)].
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where Gd and Gc are referred to as the diversity and coding gains,5 respectively, and ρ̄ is

the average SNR. The diversity gain determines the slope of the BER versus ρ̄ curve at high

SNR in a log-log scale and the coding gain determines the shift of the curve with respect to the

benchmark BER curve ρ̄−Gd . This leads to a simple parameterized average BER characterization

in the high-SNR regime that can provide meaningful insights related to the system behavior.

As shown in [Wan03], the high-SNR average BER and the outage probability of a communi-

cation system with the instantaneous SNR given in (3.6) depend only on the behavior of the pdf

of the channel dependent parameter µ near the origin (µ → 0+). That is, given the first order

Taylor expansion of the pdf, fµ(µ) = aµd + o(µd), parameterized expressions in terms of the

diversity and coding gains for the average BER and outage probability can be straightforwardly

obtained using [Wan03, Prop. 1] and [Wan03, Prop. 5], respectively. Due to their importance in

this chapter, we reproduce these results in the following lemmas.

Lemma 3.1 ([Wan03, Prop. 1]). The average BER of a communication system under AWGN

and with instantaneous SNR given by ρ = ρ̄µ, where the pdf of the channel-dependent parameter

µ can be written as fµ(µ) = aµd + o(µd), satisfies

BER(ρ̄) = (Gc · ρ̄)−Gd + o
(
ρ̄−Gd

)
(3.11)

where the diversity gain Gd and the coding gain Gc are given by

Gd = d+ 1 (3.12)

Gc = β

(
α

log2M

a2dΓ(d+ 3/2)√
π(d+ 1)

)−1/(d+1)

(3.13)

and Γ(·) denotes the gamma function (see Definition 2.5).

Lemma 3.2 ([Wan03, Prop. 5]). The outage probability of a communication system under

AWGN and with instantaneous SNR given by ρ = ρ̄µ, where the pdf of the channel-dependent

parameter µ can be written as fµ(µ) = aµd + o(µd), satisfies

Pout(ρ̄) = (Oc · ρ̄)−Gd + o
(
ρ̄−Gd

)
(3.14)

5 The coding gain is known as array gain in the context of multiantenna systems [And00a] and, hence, array gain is the

nomenclature adopted in the next sections.
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where the outage diversity gain Gd and the outage coding gain Oc are given by

Gd = d+ 1 (3.15)

Oc =
1
ρth

(
a

d+ 1

)−1/(d+1)

. (3.16)

Lemma 3.1 and 3.2 offer a simple and unifying approach to evaluate the average and outage

performance of communication systems over random fading channels and allow the interpretation

of the effect of the system parameters in the performance. For convenience, we extend these

results for the case in which the instantaneous SNR is given by

ρ = ρ̄µ+ φ (3.17)

where φ is a fixed deterministic parameter. Although the instantaneous SNR in (3.17) does hardly

correspond to a realistic setup, it is useful in the next sections to bound the performance of some

practical linear transceiver MIMO systems. The following corollary shows the generalization of

Lemma 3.1, whereas Lemma 3.2 can be generalized in the same way.

Corollary 3.1. The average BER of a communication system under AWGN and with instan-

taneous SNR given by ρ = ρ̄µ + φ, where the pdf of the channel-dependent parameter µ can be

written as fµ(µ) = aµd + o(µd), is

BER(ρ̄) = (Gc · ρ̄)−Gd + o
(
ρ̄−Gd

)
(3.18)

where the diversity gain Gd and the coding gain Gc are given by

Gd = d+ 1 (3.19)

Gc = β

(
α

log2M

aI(d, βφ)√
2π(d+ 1)

)−1/(d+1)

(3.20)

and I(d, βφ) is defined as6

I(d, βφ) =
∫ ∞
√
βφ
e−

x2

2
(
x2 − βφ

)(d+1)
dx. (3.21)

Proof. See Appendix 3.A.

6 A closed-form expression for this integral does not exist for a general value of the parameter d; however, it can be easily

evaluated for the most common values of d (integers).
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3.3 MIMO Channel Model

Consider a communication link with nT transmit and nR receive dimensions, the resulting MIMO

channel can be mathematically described by an nR×nT channel matrix H, whose (i, j)th entry

characterizes the path between the jth transmit and the ith receive antenna. When communi-

cating over MIMO fading channels, H is a random matrix that depends on the particular system

architecture and the particular propagation conditions. Hence, H is considered to be drawn from

a certain probability distribution, which characterizes the system and scenario of interest and is

known as channel model. The system behavior is then evaluated on the average or outage sense

as described in Section 3.2.

In this section we introduce the Rayleigh and Ricean flat-fading7 MIMO channel models

assumed in the analytical derivations and performance analysis of spatial multiplexing MIMO

systems. In addition, we provide the required probabilistic characterization of its ordered eigen-

values.

3.3.1 Rayleigh and Ricean Fading MIMO Channels

In MIMO wireless communications, the large number of scatters in the channel that contribute to

the signal at the receiver results in zero-mean Gaussian distributed channel matrix coefficients.

Analogously to the single antenna case, this model is referred to as Rayleigh MIMO fading

channel [Fos98].

In realistic environments the SISO channels connecting each pair of transmit and receive

antenna elements are not independent due, for instance, to insufficient spacing between antenna

elements or insufficient scattering. In such cases, a convenient approach is to construct a cor-

relation model that can provide a reasonable description of the propagation environment and

physical setup for the wireless application of interest (see [Yu02] for a review on MIMO channel

models). The most common correlation model assumes that antenna correlation at the transmit-

ter side and at the receiver side are caused by independent phenomena and is known as Kronecker

model (see, e.g., [Chi00,Shi00,Chu02,Böl00,Böl03]). Thus, correlation can be separated and the

7 Observe that in wideband MIMO systems a multicarrier approach is usually applied and the flat-fading assumption holds

then for the channel seen by each subcarrier (see e.g. [Kon96]). Henceforth we use the term ‘fading’ instead of ‘flat-fading’,

although a flat-fading channel is implicitly considered.
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correlated MIMO Rayleigh channel can be modeled as

H(Rayleigh) = Σ1/2
R HwΣ1/2

T (3.22)

where ΣT =
(
Σ1/2

T

)(
Σ1/2

T

)† is the transmit correlation matrix, ΣR =
(
Σ1/2

R

)(
Σ1/2

R

)† is the

receive correlation matrix, and Hw is the random channel matrix with i.i.d. zero-mean unit-

variance circularly symmetric Gaussian entries, i.e., [Hw]i,j ∼ CN (0, 1). Although this simple

correlation model is not completely general (see, e.g., [Abd02,Ozc03] for environments where it

does not apply), it has been validated experimentally in [Yu01, Ker02, McN02] as well as using

the ray-tracing simulations in [Chu02]. Hence, it is widely accepted as an accurate representation

of the fade correlation seen in actual cellular systems.

In addition, for scenarios where a line-of-sight or specular component is present, the channel

matrix is modeled as having nonzero mean [Böl00,Böl03]:

H(Ricean) =
√

Kc

Kc + 1
H +

√
1

Kc + 1
Σ1/2

R HwΣ1/2
T (3.23)

where Kc ∈ [0,∞) is power normalization factor known as the Ricean Kc-factor and H is a

deterministic nR×nT matrix containing the line-of-sight components of the channel. Analogously

to the single antenna case, this model is referred to as MIMO Ricean fading channel [Dri99].

Observe that the MIMO Ricean fading model in (3.23) includes channels ranging from a

fully random Rayleigh channel when Kc = 0 to a fully deterministic channel when Kc → ∞.

For a fair comparison of the different cases, the total average received power is assumed to be

constant, i.e.,

E
{
‖H‖2

}
=

Kc

Kc + 1
tr
(
HH†

)
+

1
Kc + 1

E
{

tr
(
ΣRHwΣTH†w

)}
(3.24)

=
Kc

Kc + 1
tr
(
HH†

)
+

1
Kc + 1

tr (ΣR) tr (ΣT) = nRnT (3.25)

and, hence, we can impose without loss of generality that

tr (ΣT) = nT, tr (ΣR) = nR, and tr
(
HH†

)
= nRnT. (3.26)

3.3.2 Particular Cases of Rayleigh and Ricean Fading MIMO Channels

The general channel model introduced in the previous section can be particularized to obtain

some important special cases of the Rayleigh and Ricean MIMO channels (see physical jus-

tifications in [Ivr03]). In the following we present the adopted channel models as well as the
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distributions of HH† or H†H induced by each particular model, which are required in the sub-

sequent sections when analyzing the performance of spatial multiplexing MIMO systems with

CSI.

Definition 3.1 (Uncorrelated Rayleigh MIMO channel). The uncorrelated Rayleigh MIMO

fading channel model is defined as

H = Hw (3.27)

where Hw is an nR × nT random channel matrix with i.i.d. zero-mean unit-variance complex

Gaussian entries.

Consider an uncorrelated Rayleigh fading MIMO channel H as given in Definition 3.1, then

the random Hermitian matrix W (n× n) defined as

W =


HH† nR ≤ nT

H†H nR > nT

(3.28)

follows a complex uncorrelated central Wishart distribution (see case (i) of Definition 2.21),

denoted as W ∼ Wn(m,0n, In), where n = min(nT, nR) and m = max(nT, nR). Since the

nonzero eigenvalues of HH† and H†H coincide, the statistical properties of the ordered channel

eigenvalues can be analyzed without loss of generality by focusing on the ordered eigenvalues of

W.

Definition 3.2 (Min-semicorrelated Rayleigh MIMO channel). The semicorrelated Rayleigh

fading MIMO channel model with correlation at the side with minimum number of antennas is

defined as

H =


Σ1/2Hw nR ≤ nT

HwΣ1/2 nR > nT

(3.29)

where Σ =
(
Σ1/2

) (
Σ1/2

)†
is the n×n positive definite correlation matrix with n = min(nT, nR)

and Hw is an nR × nT random channel matrix with i.i.d. zero-mean unit-variance complex

Gaussian entries.

Consider a min-semicorrelated Rayleigh fading MIMO channel H as given in Definition 3.2,

then the random Hermitian matrix W (n × n) in (3.28) follows a complex correlated central
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Wishart distribution (see case (ii) of Definition 2.21), denoted as W ∼ Wn(m,0n,Σ), where

n = min(nT, nR), m = max(nT, nR), and Σ is the n× n positive definite correlation matrix.

Definition 3.3 (Max-semicorrelated Rayleigh MIMO channel). The semicorrelated Rayleigh

fading MIMO channel model with correlation at the side with maximum number of antennas is

defined as

H =


HwΣ1/2 nR ≤ nT

Σ1/2Hw nR > nT

(3.30)

where Σ =
(
Σ1/2

) (
Σ1/2

)†
is the m × m positive definite correlation matrix with m =

max(nT, nR) and Hw is an nR × nT random channel matrix with i.i.d. zero-mean unit-variance

complex Gaussian entries.

Consider a max-semicorrelated Rayleigh fading MIMO channel H as given in Definition 3.3,

then the random Hermitian matrix W (m×m) defined as

W =


H†H nR ≤ nT

HH† nR > nT

(3.31)

follows a complex correlated central Pseudo-Wishart distribution (see Definition 2.22) denoted

as W ∼ PWm(n,0m,Σ), where n = min(nT, nR), m = max(nT, nR), and Σ is the m × m

positive definite correlation matrix.

Definition 3.4 (Uncorrelated Ricean MIMO channel). The uncorrelated Ricean fading MIMO

channel model is defined as

H =
√

Kc

Kc + 1
H +

√
1

Kc + 1
Hw (3.32)

where Kc ∈ (0,∞), H is an nR×nT deterministic matrix, and Hw is an nR×nT random channel

matrix with i.i.d. zero-mean unit-variance complex Gaussian entries.

Consider an uncorrelated Ricean fading MIMO channel H as given in Definition 3.4, then

the random Hermitian matrix W̃ = (Kc + 1)W (n × n), where W is given in (3.28), follows a

complex uncorrelated noncentral Wishart distribution (see case (iii) of Definition 2.21), denoted

as W̃ ∼ Wn(m,Ω, In), where n = min(nT, nR) and m = max(nT, nR), and the noncentrality
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parameter Ω is defined as

Ω =


KcHH† nR ≤ nT

KcH
†H nR > nT

. (3.33)

Note that in this case the nonzero channel eigenvalues, i.e., the eigenvalues of W, are a scaled

version of the eigenvalues of the complex uncorrelated central Wishart distributed matrix W̃.

3.3.3 Ordered Channel Eigenvalues

The performance of MIMO systems is strongly related to the eigenstructure of the channel

matrix H, or more exactly, to the nonzero eigenvalues of H†H (or HH†). Focusing on the

spatial multiplexing MIMO systems with CSI investigated in this chapter, the instantaneous

SNR of the substream transmitted through the kth strongest channel eigenmode depends (at

least) on the kth largest channel eigenvalue (see Section 3.4). Hence, in order to obtain closed-

form expressions for the performance measures introduced in Section 3.2 under the channel

models in Definitions 3.1–3.4, the probabilistic characterization of the ordered eigenvalues of the

corresponding random matrices is required. In Chapter 2 we introduced a unified probabilistic

characterization of the ordered eigenvalues of a general class of Hermitian random matrices

which includes Wishart and Pseudo-Wishart random matrices as particular cases. The results

derived therein are, thus, intensively applied in the performance analysis of spatial multiplexing

MIMO systems presented in this chapter.

3.4 Spatial Multiplexing MIMO Systems with CSI

Recall from the introduction that one of the salient and unique characteristics of MIMO channels

is the multiplexing gain, which refers to the increase of rate at no additional power consump-

tion. The multiple dimensions of the MIMO channel are exploited to open up several parallel

subchannels which allow the transmission of several symbols simultaneously. When perfect CSI

is available at the transmitter, the data signal is adapted to the instantaneous channel eigen-

structure by transmitting the established substreams through the strongest channel eigenmodes.

In this section we present a general spatial multiplexing MIMO system with perfect CSI at both

sides of the link. This scheme is analyzed in Sections 3.5–3.7 and afterwards, in Section 3.8, it

is shown to include most interesting MIMO linear transceiver designs as particular cases.
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Figure 3.2 General MIMO system model.

3.4.1 System Model

The signal model corresponding to a transmission through a general MIMO channel with nT

transmit and nR receive dimensions is (see Figure 3.2)

y = Hx + w (3.34)

where x ∈ CnT is the transmitted vector, H ∈ CnR×nT is the channel matrix, y ∈ CnR is

the received vector, and w ∈ CnR is a spatially white zero-mean circularly symmetric complex

Gaussian noise vector normalized so that E{ww†} = InR
. The channel matrix H contains the

complex path gains [H]i,j between every transmit and receive antenna pair.

Following the singular value decomposition (SVD), the channel matrix H can be written as

H = U
√

ΛV† (3.35)

where U and V are unitary matrices, and
√

Λ is a diagonal matrix8 containing the singular

values of H sorted in descending order. This way, the channel matrix is effectively decomposed

into rank (H) = min{nT, nR} independent orthogonal modes of excitation, which are referred to

as channel eigenmodes [Ral98,And00b,Böl02b].

Assuming that the channel is perfectly known at the transmitter and that κ ≤ min{nT, nR}

data symbols per channel use have to be communicated, the transmitted vector can be expressed

as

x = Vκ

√
Pκsκ (3.36)

where sκ ∈ Cκ gathers the κ data symbols (zero-mean,9 unit-energy and uncorrelated, i.e.,

E{sκsκ†} = Iκ), Vκ is formed with the κ columns of V associated with the κ strongest channel

8 We call this matrix diagonal even though it may be not square.

9 The mean of the symbols does not carry any information and can always be set to zero saving power at the transmitter.
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(ii) Equivalent diagonal model.

Figure 3.3 System model of spatial multiplexing MIMO systems with CSI.

eigenmodes, and P = diag ({pk}κk=1) is a diagonal matrix containing the power allocated to each

established substream.

Assuming perfect channel knowledge also at the receiver, the symbols transmitted through

the channel eigenmodes are recovered from the received signal y with matrix Uκ, similarly

defined to Vκ, as (see Figure 3.3-(i))

ŝκ = U†κ
(
HVκ

√
Pκsκ + w

)
=
√

Λκ

√
Pκsκ + nκ (3.37)

where Λκ = diag ({λk}κk=1) is a diagonal matrix that contains the κ largest channel eigenvalues

(squared singular values) in descending order, λ1 ≥ · · · ≥ λκ, and the noise vector nκ = U†κw

has the same statistical properties as w, possibly with a reduced dimension.

As shown in Figure 3.3-(ii), the spatial multiplexing MIMO system with CSI establishes κ

independent data streams which are transmitted through the κ strongest channel eigenmodes

experiencing an instantaneous SNR of

ρk = λkpk for k = 1, . . . , κ (3.38)

where λk denotes the kth ordered channel eigenvalue and pk defines the power allocation pol-

icy. This scheme is also known in the literature as MIMO SVD [Gar05, Jin06] or multichannel

beamforming system [Jin08].
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3.4.2 Power Constraint

The transmitted power is commonly constrained as

E
{
‖x‖2

}
= tr

(
E
{
xx†

})
=

κ∑
k=1

pk ≤ snr (3.39)

where the expectation is over the κ data symbols and snr is the average SNR per receive antenna.

Note that (3.39) limits the total transmitted power in each channel state but does not impose ex-

plicitely any individual restriction on the elemental powers E{|xi|2} (i = 1, . . . , nT) transmitted

through each of the nT antennas. Since it holds that E{|xi|2} ≤ λmax

{
E
{
xx†

}}
, the elemental

powers are usually controlled by imposing a peak-power constraint of the form [Sto02, Sec. II.B]

λmax

{
E
{
xx†

}}
= max

k
pk ≤ φsnr (3.40)

where φ is a given positive constant.

Whenever the constraints in (3.39) and (3.40) are simultaneously imposed, we have the

following possible situations [Sto02, Sec. II.C]: (i) if φ ≥ 1, the sum-power constraint in (3.39)

becomes more restrictive than the peak-power constraint in (3.40) and, hence, only (3.39) is

active, (ii) if φ ≤ κ−1, we have the opposite situation and only (3.40) is active, and (iii) if

κ−1 < φ < 1, both power constraints in (3.39) and (3.40) are active.

Both the sum-power constraint in (3.39) and the peak-power constraint in (3.40) are short-

term power constraints, i.e., the power is limited for each channel state, as opposed to the less

restrictive long-term power contraint in which the transmit power is limited in the average of all

possible channel states (see e.g. [Big98, Sec. III.B] [Big01, eq. (9)]). Long-term power constraints

are not considered in this thesis.

3.5 Individual Performance of Spatial Multiplexing MIMO Systems with CSI and

Fixed Power Allocation

In this section we investigate the exact average and outage performance of the spatial multi-

plexing MIMO systems with CSI presented in Section 3.4 when a fixed (channel non-dependent)

power allocation policy is adopted, i.e.,

pk = φksnr for k = 1, . . . , κ (3.41)
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where φk is a positive constant independent of the channel with
∑κ

i=1 φk = 1. Under the fading

channel models described in Section 3.3, we analyze the exact average BER and the outage

probability of each individual substream. Furthermore we focus on the high-SNR regime and

obtain parameterized analytic expressions for the previous individual performance measures.

3.5.1 Individual Average BER with Fixed Power Allocation

Under AWGN the instantaneous BER of the substream transmitted through the kth channel

eigenmode can be analytically approximated as (see Section 3.2.2)

BERk(ρk) =
αk

log2Mk
Q
(√

βkρk

)
for k = 1, . . . , κ (3.42)

where αk, βk, and Mk are the constellation parameters (see Table 3.1), and ρk is the instanta-

neous SNR in (3.38), given in this case by

ρk = λkφksnr for k = 1, . . . , κ. (3.43)

The average BER is then obtained as

BERk(snr) = Eλk{BERk(ρk)} =
∫ ∞

0
BERk (φkλksnr) fλk(λk)dλk (3.44)

=
αk

log2Mk

∫ ∞
0
Q
(√

βkρk

)
fλk(λk)dλk (3.45)

where fλk(·) is the marginal pdf of the kth channel eigenvalue. Under the channel models in

Definitions 3.1–3.4, the individual average BER given in the next theorem follows.

Theorem 3.1. The individual average BER of the substream transmitted through the kth eigen-

mode of the nR × nT MIMO channels in Definitions 3.1–3.4, when the power allocation is fixed

as in (3.41), is given by

BERk(snr) =
αk

2 log2Mk

√
βk
2π

∫ ∞
0

e−
βkρ

2

√
ρ
Fλk

( ρ

φksnr

)
dρ (3.46)

where Fλk(·) is the marginal cdf of the kth largest eigenvalue in Theorem 2.2 and the correspond-

ing expressions for each channel model are given in Tables 2.2–2.4.

Proof. Using integration by parts, we can rewrite the average BER in (3.44) as a function of the
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cdf of λk:

BERk(snr) = −
∫ ∞

0

d

dρ
BERk (ρ)Fλk

( ρ

φksnr

)
dλk (3.47)

=
αk

2 log2Mk

√
βk
2π

∫ ∞
0

e−
βkρ

2

√
ρ
Fλk

( ρ

φksnr

)
dρ (3.48)

and this completes the proof.

In Section 3.2.2 we provided some efficient methods of calculating the average BER. In

particular, the mgf-based approach of [Sim98] have been widely applied to calculate the average

BER performance of different diversity combining techniques SIMO systems (see [Sim02b, Ch. 9]

for a complete review). However, the mgf of the instantaneous SNR for the MIMO system

presented in Section 3.4, is very difficult to obtain and, thus, the mgf method is not convenient

without making further assumptions to simplify the analysis. For instance, it has been used in

[Kan04,Maa06] to deal with the particular case of transmitting through the strongest eigenmode

(beamforming or maximum ratio transmission (MRT) [Lo99]), i.e., k = 1, when min{nT, nR} = 2.

The approach in Theorem 3.1 to express the average BER as a function of the cdf of the

channel-dependent parameter was used in [Che04, eq. (32)] to obtain the average BER of selec-

tion combining under different SIMO fading channel models, and has been also recently applied

in [Zan05, Sec. IV] [McK07, Sec. III.B] to analyze the average BER of MRT systems in uncor-

related, min-semicorrelated, and double-correlated Rayleigh, and uncorrelated MIMO Ricean

channels and in [Jin08, Sec. IV.A] to analyze the individual average BER of the channel eigen-

modes in an uncorrelated Ricean fading MIMO channel.

Although Theorem 3.1 provides an efficient numerical procedure to obtain the exact average

BER without resorting to the time-consuming Monte Carlo simulations, it is still difficult to

extract any conclusion on the inherent characteristics offered by the different eigenmodes. Hence

we now focus on the high-SNR regime and characterize the average BER performance of the

substream transmitted through the kth channel eigenmode in terms of array gain and diversity

gain. Considering the approach of [Wan03] in Lemma 3.1, the array and diversity gains only

depend on the fading distribution through its near-zero behaviour. Using the first order Taylor

expansion of the marginal pdf of the kth largest channel eigenvalue

fλk(λk) = akλ
dk
k + o(λdkk ) (3.49)
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derived in Theorem 2.4 for the distributions of the channels in Definitions 3.1, 3.2, and 3.4, the

result in the next theorem follows.

Theorem 3.2. The individual average BER of the substream transmitted through the kth eigen-

mode of the nR×nT MIMO channels in Definitions 3.1, 3.2, and 3.4, when the power allocation

is fixed as in (3.41), satisfies

BERk(snr) = (Ga(k, φk) · snr)−Gd(k) + o
(
snr−Gd(k)

)
(3.50)

where the diversity gain and the array gain are given by

Gd(k) = (nT − k + 1)(nR − k + 1) (3.51)

Ga(k, φk) = βkφk

(
αk

log2Mk

ak2dkΓ(dk + 3/2)√
π(dk + 1)

)−1/(dk+1)

(3.52)

where Γ(·) denotes the gamma function (see Definition 2.5) and the parameters ak and dk model

the fading distribution as done in Theorem 2.4. The corresponding expressions for each channel

model are given in Tables 2.2 and 2.3.

Proof. The proof follows from Lemma 3.1 and Theorem 2.4.

The average BER characterization given in Theorem 3.2 was initially presented in [Ord05b,

Thm. 2] [Ord07b, Thm. 2] for uncorrelated Rayleigh fading MIMO channels and later in [Jin08,

Thm. 4] for uncorrelated Ricean fading MIMO channels. It is interesting to note that when

particularizing Theorem 3.7 to k = 1, i.e., a beamforming strategy, we obtain the full diversity

of the channel nTnR, as has been widely observed in the literature, e.g., [Lo99, Dig03]. The

diversity order of the case k = min{nT, nR} has been also previously documented in [Bur02].

In Figure 3.4 we provide the average BER curves attained by the substreams transmitted

through the eigenmodes of a MIMO channel with nT = 2 and nR = 4, and nT = nR = 4 in an

uncorrelated Rayleigh, a semicorrelated Rayleigh and uncorrelated Ricean MIMO channel. We

assume all substreams active (κ = min{nT, nR}), a uniform power allocation (φk = 1/κ), and

all data symbols drawn from a QPSK constellation. We can see that the result in Theorem 3.1

coincides with the average BER obtained through numerical Monte Carlo simulation and the

result in Theorem 3.2 correctly predicts the diversity and array gain and, thus, approximates

the average BER performance at medium to high SNR. Observe that, when the diversity gain
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Figure 3.4 Individual exact, simulated and parameterized average BER of the substreams transmitted by a spatial multiplex-

ing MIMO systems with CSI in an uncorrelated Rayleigh, a semicorrelated Rayleigh (with correlation matrix [Σ]i,j = r|i−j|,

r = 0.7), and an uncorrelated Ricean (with Ricean factor Kc = 0dB) MIMO channel.
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Figure 3.5 Individual array gain in a semicorrelated Rayleigh MIMO channel (with correlation matrix [Σ]i,j = r|i−j|) as a

function of r and in an uncorrelated Ricean MIMO channel as a function of the Ricean factor Kc.

is high, as for the first substreams (k = 1, 2) in the cases nT = nR = 4, the BER decreases with

the SNR so rapidly that the given approximation is only accurate for very small BER values.

For illustrative purposes, we plot in Figure 3.5 the individual array gain of the substreams

transmitted through the strongest and weakest eigenmodes in (i) a semicorrelated Rayleigh and

(ii) an uncorrelated Ricean MIMO channel as a function of (i) the correlation and (ii) the Ricean

factor, respectively. Recall that the array gain depends on the fading distribution through the

parameters dk, which coincides for all investigated channels, and ak, which is a function of (i)

the eigenvalues of the correlation matrix or (ii) the eigenvalues of the line-of-sight matrix and

the Ricean factor. As expected, when the correlation or the Ricean factor is low, both channel

models become very close in distribution to an uncorrelated Rayleigh MIMO channel and so does

the array gain. Despite this fact, these results are by no means representative of the behavior

of a general system, since it can be substantially different for large correlation or large Ricean

factor when the number of antennas, the correlation model, or line-of-sight matrix is modified.

3.5.2 Individual Outage Probability with Fixed Power Allocation

The outage probability as defined in (3.8) of the substream transmitted through the kth channel

eigenmode is given by

Pout,k(snr) , Pout,k(snr, ρth) = Pr(ρk ≤ ρth) (3.53)
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Under the channel models in Definitions 3.1–3.4, the exact outage probability and the corre-

sponding high-SNR characterization given in the next theorems follow.

Theorem 3.3. The individual outage probability of the substream transmitted through the kth

eigenmode of the nR × nT MIMO channels in Definitions 3.1–3.4, when the power allocation is

fixed as in (3.41), is given by

Pout,k(snr) = Fλk

( ρth

φksnr

)
(3.54)

where Fλk(·) is the marginal cdf of the kth largest eigenvalue in Theorem 2.2 and the correspond-

ing expressions for each channel model are given in Tables 2.2–2.4.

Proof. The proof follows from substituting instantaneous SNR in (3.41) in the outage probability

definition of (3.53).

Theorem 3.4. The individual outage probability of the substream using the kth eigenmode of

the nR × nT MIMO channels in Definitions 3.1, 3.2, and 3.4, when the power allocation is fixed

as in (3.41), satisfies

Pout,k(snr) = (Oa(k, φk) · snr)−Gd(k) + o
(
snr−Gd(k)

)
(3.55)

where the diversity and the outage array gain are given by

Gd(k) = (nT − k + 1)(nR − k + 1) (3.56)

Oa(k, φk) =
φk
ρth

(
ak

dk + 1

)−1/(dk+1)

(3.57)

and the parameters ak and dk model the fading distribution as done in Theorem 2.4 and the

corresponding expressions for each channel model are given in Tables 2.2 and 2.3.

Proof. The proof follows from using Lemma 3.2 with the instantaneous SNR in (3.41).

The individual outage probability when transmitting through the strongest eigenmode, i.e.,

for κ = 1 in (3.53) and p1 = snr, has been widely analyzed in the literature, since it corresponds to

the outage probability of the MRT or beamforming scheme. In particular, the outage probability

under uncorrelated Rayleigh fading was obtained in [Dig03, Sec. IV] [Kan03b, Sec. III] [Gra05,

Sec. II] [Maa05, Sec. IV], under semicorrelated Rayleigh fading in [Kan03a, Sec. IV], and under

uncorrelated Ricean fading in [Kan03b, Sec. III]. Additionally, the case of double-correlated
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Rayleigh fading MIMO channels (not included in this chapter) has been recently addressed

in [McK07, Sec. IV]. The individual outage probability of the κ substreams in an uncorrelated

Ricean fading MIMO channel was previously investigated in [Jin08, Sec. IV.B].

In Figure 3.6 we provide the average individual probability curves attained by the substreams

transmitted through the eigenmodes of a MIMO channel with nT = 2 and nR = 4, and nT =

nR = 4 in an uncorrelated Rayleigh, a semicorrelated Rayleigh and uncorrelated Ricean MIMO

channel. We assume all substreams active (κ = min{nT, nR}), a uniform power allocation (φk =

1/κ), and all data symbols drawn from a QPSK constellation. Likewise the individual average

BER plots, the theoretical expressions in Theorems 3.3 and 3.4 correctly predict the individual

outage probability obtained through numerical Monte Carlo simulation.

3.6 Individual Performance of Spatial Multiplexing MIMO Systems with CSI and

Non-Fixed Power Allocation

We have so far analyzed spatial multiplexing MIMO systems with fixed power allocation strate-

gies as expressed in (3.41). We now consider power allocation strategies that depend on the

eigenvalues associated with the κ active channel eigenmodes, i.e.,

pk , pk(λ1, . . . , λκ, snr) for k = 1, . . . , κ (3.58)

and satisfy the short-term power constraint in (3.39).

Owing to the difficulty of drawing any conclusion from an exact performance analysis while

keeping the power allocation policy general, we concentrate in this section only on the high-

SNR regime. This allows us to investigate the performance limits common to any fixed or non-

fixed power allocation policy, i.e., the fundamental performance limits of the individual channel

eigenmodes.

3.6.1 Individual Average BER with Non-Fixed Power Allocation

Most common channel-dependent power allocation policies discard transmission through the

worst eigenchannels by setting the transmit power to zero for the corresponding substreams.

The process by which the power is distributed among the established substreams reminds the

way in which water distributes itself in a vessel and hence is referred to as waterfilling [Cov91,
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Figure 3.6 Individual exact, simulated and parameterized outage probability of the substreams transmitted by a spatial

multiplexing MIMO systems with CSI in an uncorrelated Rayleigh, a semicorrelated Rayleigh (with correlation matrix

[Σ]i,j = r|i−j|, r = 0.7), and an uncorrelated Ricean (with Ricean factor Kc = 0dB) MIMO channel.
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Sec. 10.4]. In order to take into account in the analysis this waterfilling mechanism, we introduce

the following assumption.

Assumption 3.1. Let us assume that the non-fixed power allocation in (3.58) satisfies

Pr (pk < ξksnr) = a(ξk)snr−d(ξk) + o
(
snr−d(ξk)

)
(3.59)

where ξk, a(ξk), and d(ξk) are positive deterministic parameters.

Observe that fixed power allocations in (3.41) also satisfy Assumption 3.1 with ξk = φk

(Pr (pk < ξksnr) = 0 and d(ξk)→∞) and, hence, they are also included in the analysis.

Theorem 3.5. Consider a non-fixed power allocation as in (3.58) under the short-term power

constraint in (3.39) and Assumption 3.1. Then, the individual average BER of the substream

transmitted through the kth eigenmode of the nR × nT MIMO channels in Definitions 3.1, 3.2,

and 3.4 satisfies

BERk(snr) = (Ga(k) · snr)−Gd(k) + o
(
snr−Gd(k)

)
(3.60)

where the diversity gain is given by

Gd(k) = dk + 1 = (nT − k + 1)(nR − k + 1) (3.61)

whenever10 d(ξk) ≥ dk + 1 and the outage array gain Oa(k) can be bounded by distinguishing

between two cases:

(i) If there exists 0 < ξk < 1 such that d(ξk) > dk + 1, the array gain is bounded as11

Ga(k, ξk) ≤ Ga(k) < Ga(k, 1). (3.62)

(ii) If d(0) = dk + 1 and there exists 0 < ξk < 1 such that d(ξk) = dk + 1, the array gain

is bounded as(
Ga(k, ξk)−(dk+1) +

αk
2 log2Mk

a(ξk)
)−1/(dk+1)

< Ga(k) < Ga(k, 1) (3.63)

where Ga(k, ξk) is the array gain obtained when using a fixed power allocation for

φk = ξk and is defined in (3.52).

10 The condition d(ξk) ≥ dk + 1 is satisfied by any reasonable power allocation. If d(ξk) < dk + 1, the average BER

performance is inherently limited by the power allocation and not by the statistical properties of the channel.

11 Observe that an array gain lower bound provides an upper bound on the high-SNR average BER and vice versa.
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The parameters ak and dk model the fading distribution as done in Theorem 2.4 and the corre-

sponding expressions for each channel model are given in Tables 2.2 and 2.3.

Proof. See Appendix 3.B.1.

Theorem 3.5 shows that the diversity gain associated to a substream transmitted through the

strongest kth channel eigenmode does not depend on the power allocation and is fundamentally

limited to (nT−k+1)(nR−k+1). The power allocation can only possibly increase the array gain

as it will be investigated in Section 3.8, where practical power allocation policies are analyzed

in in the context of linear MIMO transceivers.

3.6.2 Individual Outage Probability with Non-Fixed Power Allocation

Similarly to the average BER analysis in Theorem 3.5 we can bound the individual outage

probability of a spatial multiplexing MIMO system with CSI and a non-fixed power allocation

policy as shown in the next theorem.

Theorem 3.6. Consider a non-fixed power allocation as in (3.58) under the short-term power

constraint in (3.39) and Assumption 3.1. Then, the individual outage probability of the substream

transmitted through the kth eigenmode of the nR × nT MIMO channels in Definitions 3.1, 3.2,

and 3.4 satisfies

Pout,k(snr) = (Oa(k) · snr)−Gd(k) + o
(
snr−Gd(k)

)
(3.64)

where the diversity gain is given by

Gd(k) = dk + 1 = (nT − k + 1)(nR − k + 1) (3.65)

whenever d(φk) ≥ dk + 1 and the outage array gain Oa(k) can be bounded by distinguishing

between two cases:

(i) If there exists 0 < ξk < 1 such that d(ξk) > dk + 1, the array gain is bounded as

Oa(k, ξk) ≤ Oa(k) < Oa(k, 1). (3.66)

(ii) If d(0) = dk + 1 and there exists 0 < ξk < 1 such that d(ξk) = dk + 1, the array gain

is bounded as (
Oa(k, ξk)−(dk+1) + a(ξk)

)−1/(dk+1)
< Oa(k) < Oa(k, 1) (3.67)
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where Oa(k, ξk) is the array gain obtained when using a fixed power allocation for

φk = ξk and is defined in (3.57).

The parameters ak and dk model the fading distribution as done in Theorem 2.4 and the corre-

sponding expressions for each channel model are given in Tables 2.2 and 2.3.

Proof. See Appendix 3.B.2.

3.7 Global Performance of Spatial Multiplexing MIMO Systems with CSI

Finally, we investigate the global average BER and global outage probability of the general

spatial multiplexing MIMO system with CSI described in Section 3.4, i.e., when transmitting

over the κ strongest channel eigenmodes. The final aim of this section is to characterize the

quality of the system with a single performance measure.

3.7.1 Global Average BER

We define first the global instantaneous BER as the arithmetic mean of the instantaneous BER

of the κ established substreams:

BER ({ρk}κk=1) ,
1
κ

κ∑
k=1

BERk(ρk). (3.68)

Note that the global instantaneous BER in (3.68) takes into account the instantaneous BER

performance experienced by each one of the κ data symbols to be transmitted, i.e., the number

of substreams κ is fixed regardless of the power assigned to each substream, which can even

be zero for some power allocation strategies under poor propagation conditions. We obtain the

global average BER performance of the spatial multiplexing MIMO system by averaging the

global instantaneous BER in (3.68) over all possible channel states:

BER(snr) , E {BER ({ρk}κk=1)} =
1
κ

κ∑
k=1

BERk(snr). (3.69)

For spatial multiplexing MIMO systems with fixed power allocation policies as in (3.41), the

exact global average BER in (3.69) can be obtained using Theorem 3.1 to calculate each one of

the individual average BERs. In general, we can still characterize the global average BER in the

high-SNR regime. Since Gd(1) > Gd(2) > · · · > Gd(κ) (see Theorem 3.2 for fixed and Theorem
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3.5 for non-fixed power allocations), the global average BER is dominated by the average BER

associated with the κth substream:

BER(snr) =
1
κ

(Ga(κ) · snr)−Gd(κ) + o
(
snr−Gd(κ)

)
(3.70)

where Ga(κ) and Gd(κ) denote the array and the diversity gain associated with the κth sub-

stream. This result is summarized in the following theorem.

Theorem 3.7. The global average BER of a spatial multiplexing MIMO system transmitting

through the κ strongest eigenmodes of the nR × nT MIMO channels in Definitions 3.1, 3.2, and

3.4, when the power allocation is either fixed as in (3.41) or non-fixed as in (3.58), satisfies

BER(snr) = (Ga · snr)−Gd + o
(
snr−Gd

)
(3.71)

where the diversity gain Gd and the array gain Ga are given by

Gd = (nT − κ+ 1)(nR − κ+ 1) (3.72)

Ga = κ1/GdGa(κ) (3.73)

and Ga(κ) is the array gain of the κth substream either given by (3.52) for fixed power allocations

or bounded by (3.62) and (3.63) for non-fixed power allocations.

In Figure 3.7 we show the global average BER of a spatial multiplexing MIMO system with

nT = nR = 4 and κ = {3, 4} in an uncorrelated and a semicorrelated Rayleigh fading MIMO

channel. The transmit power is uniform distributed (φk = 1/κ) and all data streams use QPSK

constellations. In all three cases the exact global average BER with the numerical performance

is correctly approximated by the parameterized characterization proposed in Theorem 3.7.

3.7.2 Global Outage Probability

In this section we analyze the global outage probability of the spatial multiplexing MIMO

system described in Section 3.4. Consider, for instance, that κ services or substreams with

possibly different performance constraints are multiplexed by accommodating each service in

a different channel eigenmode. The global outage probability can be defined in many different

ways depending on how the application of interest takes into account the individual outages of

the established substreams. In the following we provide two illustrative examples.
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(ii) nT = nR = 4, semicorrelated Rayleigh

Figure 3.7 Global exact, simulated and parameterized BER of a spatial multiplexing MIMO system with κ active substreams

and a uniform power allocation among them in an uncorrelated Rayleigh and a semicorrelated Rayleigh (with correlation

matrix [Σ]i,j = r|i−j|, r = 0.7) MIMO channel.

All-Outage Probability: Assume that the communication process is regarded as success-

ful if at least one of the substreams achieves the desired performance. Then, a global outage

event is declared only when all used channel eigenmodes fail to offer their corresponding target

performance and, hence, the global outage probability is defined as

P
(all)
out (snr) , Pr(ρ1 ≤ ρth,1, . . . , ρκ ≤ ρth,κ) = Fλ

( ρth,1

φ1snr
, . . . ,

ρth,κ

φκsnr
,∞, . . . ,∞

)
(3.74)

= Fλ

( ρth,1

φ1snr
, . . . ,

ρth,κ

φκsnr
,
ρth,κ

φκsnr
, . . . ,

ρth,κ

φκsnr

)
(3.75)

where ρth,1, . . . , ρth,κ denote the individual target performances and Fλ(·) is the joint cdf of the

ordered channel eigenvalues. Under the MIMO channel models presented in Definitions 3.1–3.4,

Fλ(·) can be obtained particularizing Theorem 2.1 with the expression of the corresponding

parameters in Tables 2.2–2.4.

When equal target performances are imposed on all substreams, i.e., ρth,k = ρth for k =

1, . . . , κ, and a uniform power allocation is used, i.e., φk = 1/κ, the outage probability in (3.75)

is simply given by

P
(all)
out (snr) = Pr(ρ1 ≤ ρth) = Fλ1

(κρth

snr

)
(3.76)

where Fλ1(·) denotes the marginal cdf of the largest channel eigenvalue given in Corollary 2.2.1.

Any-Outage Probability: Assume that the quality of all substreams has to be simultane-

ously guaranteed, then a global outage event is declared whenever at least one of the used channel
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eigenmodes cannot offer the desired performance. In this case, the global outage probability is

defined as

P
(any)
out (snr) , 1− Pr(ρ1 > ρth,1, . . . , ρκ > ρth,κ) = 1− CFλ

( ρth,1

φ1snr
, . . . ,

ρth,κ

φκsnr
, 0, . . . , 0

)
(3.77)

where CFλ(·) denotes the joint complementary cdf of the ordered channel eigenvalues and can

be obtained with techniques similar to those used to derive the joint cdf in Theorem 2.1.

When equal target performances ρth are imposed on all substreams and a uniform power

allocation is used, the outage probability in (3.77) is simply given by

P
(any)
out (snr) = 1− Pr(ρκ > ρth) = Fλκ

(κρth

snr

)
(3.78)

where Fλκ(·) denotes the marginal cdf of the κth largest channel eigenvalue in Theorem 2.2.

In Figure 3.8 we compare the global all-outage and any-outage probabilities of a spatial

multiplexing MIMO system with nT = 2 and nR = 4, and nT = nR = 4 in an uncorrelated

Rayleigh, a semicorrelated Rayleigh and uncorrelated Ricean MIMO channel. We assume all

substreams active (κ = min{nT, nR}), a uniform power allocation (φk = 1/κ), and all data

symbols drawn from a QPSK constellation. The target performances ρth,1, . . . , ρth,κ have been

chosen using (3.9) to guarantee the following target BERs: BERth,1 = 10−4 and BERth,2 = 10−2

for the case κ = 2; and BERth,1 = 10−4, BERth,2 = 10−3, BERth,3 = 10−2, and BERth,4 = 10−1

for the case κ = 4.

3.8 High-SNR Global Performance of Linear MIMO Transceivers

The performance of linear MIMO transceivers has been always analyzed numerically, due to the

difficulty of finding a closed-form expression for the average bit error probability. For instance,

in [Sam01] we can find the simulated average BER curves for linear precoding schemes designed

under the minimum weighted MSE criterion in an uncorrelated Rayleigh fading MIMO channel.

Other numerical results can also be found in [Yan94b,Sca99,Pal03]. The advantage of obtaining

numerical results via computer simulation is that they provide the performance in realistic

environments. However, they do not give insight into the behavior of the system as analytical

expressions do. In this section we fill the gap by applying the results obtained in Section 3.7

to analytically characterize the high-SNR global average BER performance of the linear MIMO

transceivers given in the unifying framework of [Pal03].
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(i) nT = 2, nR = 4, uncorrelated Rayleigh
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(ii) nT = nR = 4, uncorrelated Rayleigh
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(iii) nT = 2, nR = 4, semicorrelated Rayleigh
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(iv) nT = nR = 4, semicorrelated Rayleigh
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(v) nT = 2, nR = 4, uncorrelated Ricean
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(vi) nT = nR = 4, uncorrelated Ricean

Figure 3.8 Exact instantaneous BER, approximated instantaneous BER in (3.4), and high-SNR approximated instantaneous

BER in (3.5).
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Figure 3.9 Linear MIMO transceivers system model.

3.8.1 Linear MIMO Transceivers Design

Suppose that the general MIMO communication system of (3.34) is equipped with a linear

transceiver (linear precoder and linear equalizer) as shown in Figure 3.9. The transmitted vector

is given by

x = Bκsκ (3.79)

where Bκ ∈ CnT×κ is the transmit matrix (precoder), and sκ ∈ Cκ gathers the κ ≤ min{nT, nR}

data symbols to be transmitted (zero-mean, unit-energy and uncorrelated, i.e., E{sκs†κ} = Iκ)

drawn from a set of constellations. The average transmit power is constrained to satisfy

E
{
‖sκ‖2

}
= tr

(
BκB†κ

)
≤ snr (3.80)

where snr is the average SNR at each receive antenna. Similarly, the estimated data vector at

the receiver is

ŝκ = A†κy (3.81)

where A†κ ∈ Cκ×nR is the receive matrix (equalizer).

The general problem of designing the optimal linear MIMO transceiver under perfect CSI

knowledge is formulated in [Pal03] as the minimization of some cost function of the MSEs, since

other common system quality measures such as the SNR, or the BER can be easily related to

the MSE. Assuming that κ data symbols have to be communicated at each channel use, [Pal03]

shows that (i) the optimum receive matrix Aκ, for a given transmit matrix Bκ, is the Wiener

filter solution [Pal03, eq. (7)]:

Aκ =
(
HBκB†κH

† + InR

)−1HBκ (3.82)

and (ii) the optimum transmit matrix Bκ, for a wide family of design criteria (with Schur-concave

and Schur-convex cost functions), has the following form [Pal03, eq. (14) and (15)]:

Bκ = Uκ

√
PκQκ (3.83)
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n1

...
...Q†κ

sκ
√
p
κ

√
λκ ⊕ p̃κ ŝκ
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Figure 3.10 Spatial multiplexing MIMO systems with CSI model (p̃k =
√
pkλk/(1 + pkλk)).

where Uκ ∈ CnT×κ has as columns the eigenvectors of H†H corresponding to the κ largest

nonzero eigenvalues, Qκ ∈ Cκ×κ is a unitary matrix, and P ∈ Cκ×κ is a diagonal matrix

with diagonal entries equal to {pk}κk=1, that represent the power allocated to each established

substream and depend on the particular design cost function. Owing to the power constraint in

(3.80), the power allocation {pk}κk=1 satisfies

κ∑
k=1

pk = snr. (3.84)

For Schur-concave objective functions (see examples in Tables 3.2 and 3.3), Qκ = Iκ and the

global communication process including pre- and post-processing is fully diagonalized as shown

in Figure 3.10-(i). For Schur-convex objective functions (see examples in Table 3.4), however, Qκ

is a unitary matrix such that (Iκ + B†κH†HBκ)−1 has identical diagonal elements (see [Pal03,

Sec. IV.B] for details). In this case, the communication process is diagonalized up to a very

specific rotation of the data symbols as shown in Figure 3.10-(ii).

Given the transmit matrix in (3.83) and the receive matrix in (3.82), the components of the

estimated data signal ŝ are equal to (possibly with an additional pre- and post-processing of the

data symbols sk in the case of Schur-convex cost functions)

ŝk =
pkλk

1 + pkλk
sk +

√
pkλk

1 + pkλk
nk for k = 1, . . . , κ (3.85)
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Design criterion Optimal power allocation

Maxim. weighted sum of SNRs [Pal03] pk = snr if ωkλk is max. and 0 otherwise

Maxim. product of SNRs [Pal03] pk = snr/κ

Maxim. weighted product of SNRs [Pal03] pk = snrωk/
∑κ

i=1 ωi

Table 3.2 Examples of diagonal schemes with fixed power allocation [Pal07, Tab. 3.1].

with instantaneous SNR given by

ρk = λkpk for k = 1, . . . , κ (3.86)

where λ1, . . . , λκ are the κ largest nonzero eigenvalues of H†H in decreasing order and the

complex κ-dimensional vector nκ = (n1, . . . , nκ)
′

is a normalized equivalent noise vector with

i.i.d. zero-mean, unit-variance, Gaussian entries.

In summary, linear MIMO transceivers transforms the MIMO channel into κ SISO channels,

in which each signal component (possibly after a rotation) corresponds to a different substream

transmitted in parallel through a different channel eigenmode. Hence, they can be treated as

particular cases of the general spatial multiplexing MIMO system introduced in Section 3.4.

3.8.2 Performance of Diagonal Schemes with Fixed Power Allocation

Several design criteria with a Schur-concave cost function found in the literature fall within the

class of diagonal schemes with fixed power allocations as summarized in Table 3.2. Examples

are the maximization of the (weighted) sum of SNRs and the maximization of the (weighted)

product of the SNRs. Furthermore, if the short-term power constraint is substituted by a peak-

power constraint (see Section 3.4.2), the optimum spatial multiplexing system transmits always

at full allowed power through each active channel eigenmode independently of the channel state

[Sca02b,Lov05a]. For all these schemes, the exact individual performance is given in Theorems

3.1 and 3.3, the high-SNR individual performance in Theorems 3.2 and 3.4, and the global

performance is addressed in Section 3.7.
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Design criterion Optimal power allocation

Minim. sum of the MSEs [Lee76,Sal85,Yan94b,Sca99,Pal03] pk = (µλ−1/2
k − λ−1

k )+

Minim. weighted sum of the MSEs [Lee76,Sam01,Pal03] pk = (µω1/2
k λ

−1/2
k − λ−1

k )+

Minim. product of MSEs [Yan94a,Pal03] pk = (µ− λ−1
k )+

Minim. weighted product of MSEs [Pal03] pk = (µωk − λ−1
k )+

Maxim. mutual information [Cov91] pk = (µ− λ−1
k )+

Table 3.3 Examples of diagonal schemes with non-fixed power allocation [Pal07, Tab. 3.1].

3.8.3 Performance of Diagonal Schemes with Non-Fixed Power Allocation

Some other design criteria with Schur-concave cost functions found in the literature, which still

have a diagonal structure, use non-fixed power allocations. From the summary in Table 3.3, we

distinguish two different power allocation strategies which we analyze in the following.

For instance, we consider first design criteria that lead to waterfilling power allocations of

the type

pwf,k =
(
µωk − λ−1

k

)+ for k = 1, . . . , κ (3.87)

where µ is chosen to satisfy the power constraint in (3.84), {ωk}κk=1 denote the weights, and

a+ = max(0, a). These criteria include the minimization of the determinant of the MSE matrix,

the minimization of the (weighted) product of the MSEs, and the maximization of the mutual

information (see Table 3.3). The global average BER performance achieved with the waterfilling

in (3.87) can be analyzed combining Theorem 3.7 with the results for non-fixed power allocations

given in Theorem 3.2-(ii). In addition, tighter bounds can be obtained as presented in the

following result.

Proposition 3.1. The global average BER of a diagonal MIMO linear transceiver when κ data

symbols have to be communicated and the power is allocated in a waterfilling fashion as in (3.87)

under the nR × nT MIMO channel models in Definitions 3.1, 3.2, and 3.4 satisfies

BER(snr) = (Ga,wf · snr)−Gd + o
(
snr−Gd

)
(3.88)

where the diversity gain is given by

Gd = (nT − κ+ 1)(nR − κ+ 1) (3.89)
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(ii) nT = nR = κ = 4, semicorrelated Rayleigh

Figure 3.11 Global exact, simulated and parameterized average BER of linear MIMO transceivers in an uncorrelated

Rayleigh and a semicorrelated Rayleigh MIMO channel (with correlation matrix [Σ]i,j = r|i−j|, r = 0.7).

and the array gain can be bounded as(
Ga ({ωk}κk=1)−Gd +

( ακ
2κ log2Mκ

)( aκ
dκ + 1

) κ−1∑
k=1

(ωk/ωκ)Gd

)−1/Gd

< Ga,wf < Ga ({ωk}κk=1)

(3.90)

where Ga ({ωk}κk=1) is the global array gain obtained with a fixed power allocation with φk =

1/
∑κ

i=1(ωi/ωk) (see (3.73) in Theorem 3.7). The parameters aκ and dκ model the fading distri-

bution as given in Theorem 2.4 and the corresponding expressions for each channel model are

given in Tables 2.2 and 2.3.

Proof. See Appendix 3.C.1.

In Figure 3.11 we show the average BER attained by a linear MIMO transceiver with a

uniform power allocation over the κ active substreams and with the waterfilling power allocation

in (3.87). In particular, we provide the results for a MIMO system with nT = nR = 4, κ = 4 active

substreams with equal QPSK constellations. The simulation results in Figure 3.11 demonstrate

how the average BER curve for both power allocation policies is correctly approximated by the

results presented in Theorem 3.7 and Proposition 3.1, respectively.

Now let us consider waterfilling power allocations of the type

pmse,k =
(
µω

1/2
k λ

−1/2
k − λ−1

k

)+ for k = 1, . . . , κ (3.91)

where µ is chosen to satisfy the power constraint in (3.84) and {ωk}κk=1 denote the weights.
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The power allocation in (3.91) results from minimizing the (weighted) sum of the MSEs (see

Table 3.3) and the corresponding global average BER performance is analyzed in the following

proposition.

Proposition 3.2. The global average BER of a diagonal MIMO linear transceiver when κ data

symbols have to be communicated and the power is allocated in a waterfilling fashion as in (3.91)

under the nR × nT MIMO channel models in Definitions 3.1, 3.2, and 3.4 satisfies

BER(snr) = (Ga,mse · snr)−Gd + o
(
snr−Gd

)
(3.92)

where the diversity gain is given by

Gd = (nT − κ+ 1)(nR − κ+ 1) (3.93)

and the array gain can be bounded as

Ga

({
ω

1/2
k

}κ
k=1

)
≤ Ga,mse < κGa (3.94)

where Ga

({
ω

1/2
k

}κ
k=1

)
and Ga are the global array gains obtained with a fixed power allocation

with φk = 1/
∑κ

i=1(ωi/ωk)1/2 and φk = 1/κ (uniform), respectively, (see (3.73) in Theorem 3.7).

Proof. It follows from Theorem 3.7 and Theorem 3.2-(i) with ξκ = 1/
∑κ

i=1(ωi/ωκ)1/2, since the

exponent of Pr (pmse,κ ≤ ξκsnr) is greater than Gd (see Appendix 3.C.2).

3.8.4 Performance of Non-Diagonal Schemes with Non-Fixed Power Allocation

In this section we complete the performance analysis of linear MIMO transceivers by focusing

on the non-diagonal scheme with the non-fixed power allocation that results for Schur-convex

cost functions. Let us consider, for instance, the minimum BER design with equal constellations

independently derived in [Din03a] and [Pal03]. Other examples of design criteria with a Schur-

convex cost function are the minimization of the maximum MSE, the maximization of the

minimum SNR or the minimization of the maximum BER as summarized in Table 3.4.

When the cost function is Schur-convex, the global communication system including pre- and

post-processing is diagonalized only up to a rotation of the data symbols (see Figure 3.10-(ii)),

which ensures that all substreams have the same MSE, and the optimal power allocation is
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Design criterion Optimal power allocation

Minim. maximum of the MSEs [Pal03]

pk = (µλ−1/2
k − λ−1

k )+

Maxim. minimum of the SNRs [Pal03]

Maxim. harmonic mean of SNRs [Pal03]

Minim. average BER [Din03a,Pal03] (equal constellations)

Minim. maximum of BERs [Pal03]

Table 3.4 Examples of non-diagonal schemes with non-fixed power allocation [Pal07, Tab. 3.2].

independent of the particular cost function and coincides with the power allocation in (3.91)

(see [Pal03, Sec. IV.B]). Due to the rotation of the data symbols, Theorem 3.2 can not be directly

applied and the global average BER performance is analyzed in the following proposition.

Proposition 3.3. The global average BER of the non-diagonal MIMO linear transceiver derived

from Schur-convex cost functions when κ data symbols have to be communicated under the nR×nT

MIMO channel models in Definitions 3.1, 3.2, and 3.4 satisfies

BER(snr) = (Ga,ber · snr)−Gd + o
(
snr−Gd

)
(3.95)

where the diversity gain is given by

Gd = (nT − κ+ 1)(nR − κ+ 1) (3.96)

and the array gain can be bounded as

Ga < Ga,ber < G
(ub)
a (3.97)

where Ga is the global array gain obtained with a uniform power allocation (see (3.73) in Theorem

3.7) and G(ub)
a is defined as

G
(ub)
a = βκ

(
ακ

log2Mκ

aκI(dκ, βκ(κ− 1))√
2π(dκ + 1)

)−1/(dκ+1)

(3.98)

where I(·, ·) is given in (3.21) and the parameters aκ and dκ model the fading distribution as

done in Theorem 2.4 and the corresponding expressions for each channel model are given in

Tables 2.2 and 2.3.

Proof. See Appendix 3.C.3.
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(i) nT = nR = κ = 4, uncorrelated Rayleigh
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(ii) nT = nR = κ = 4, semicorrelated Rayleigh

Figure 3.12 Global exact, simulated and parameterized average BER of linear MIMO transceivers in an uncorrelated

Rayleigh, a semicorrelated Rayleigh MIMO channel (with correlation matrix [Σ]i,j = r|i−j|, r = 0.7).

In summary, Propositions 3.1, 3.2 and 3.3 show that linear MIMO transceivers with non-

fixed power allocation policies (with or without additional pre- and post-processing of the data

symbols) do not provide any diversity advantage with respect to diagonal schemes with fixed

power allocation policies but a possibly higher array gain, which results in non-negligible average

performance differences. This statement is confirmed by Figure 3.12, where we show the global

performance of linear MIMO transceivers with nT = nR = 4, all substreams active, and all

symbols drawn from a QPSK modulation for the following cases: (i) the diagonal scheme with

uniform power allocation, (ii) the diagonal scheme with the power allocation that minimizes the

sum of the MSEs, and (iii) the non-diagonal scheme obtained for Schur-convex cost functions.

Similarly to Figure 3.11, the average BER performance is always measured as the BER averaged

over the κ transmitted data symbols even when the corresponding power allocation assigns zero

power (or a very small amount of power) to the worst substreams. We also provide the high-SNR

average BER parameterized upper and lower bounds derived in Propositions 3.2 and 3.3. It turns

out that the proposed array gain upper bounds are in fact very tight and approximate perfectly

the high-SNR performance of the diagonal and non-diagonal designs with the corresponding

non-fixed power allocation.
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3.9 Conclusions and Publications

The main contribution of this chapter is the analytical performance analysis of spatial multi-

plexing MIMO systems in Rayleigh and Rician MIMO channels. To summarize, in this chapter

we obtain analytical expressions to calculate:

(i) the exact individual average BER and its corresponding parameterized high-SNR char-

acterization when using a fixed power allocation,

(ii) the exact individual outage probability and its corresponding parameterized high-SNR

characterization when using a fixed power allocation,

(iii) high-SNR parameterized upper and lower bounds for the individual average BER

when using a non-fixed power allocation,

(iv) high-SNR parameterized upper and lower bounds for the individual outage probability

when using a non-fixed power allocation,

(v) the global average BER and its corresponding parameterized high-SNR characteriza-

tion, and

(vi) different global outage probability measures.

These general results are then applied to analyze the performance of most linear MIMO

transceivers existing in the literature with adaptive linear precoder but fixed number of data

symbols and fixed constellations. In particular, using the unifying formulation in [Pal03], we

are able to investigate the high-SNR global average performance of a wide family of practical

designs:

(vii) diagonal schemes with a fixed power allocation,

(viii) diagonal schemes with a non-fixed power allocation, and

(ix) non-diagonal schemes with a non-fixed power allocation.

The proposed parameterized characterization shows that spatial multiplexing MIMO systems

have a diversity order limited by that of the worst eigenmode used, (nT−κ+1)(nR−κ+1), which

can be far from the full diversity of nTnR provided by the channel. This enlightens that fixing a

priori the number of independent data streams to be transmitted, a very common assumption

in the linear transceiver design literature, inherently limits the performance of the system. As a

consequence, it seems reasonable to optimize the number of substreams jointly with the linear

precoder for each channel realization. This design is investigated in Chapter 4.
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3.A Appendix: Proof of Corollary 3.1

Proof. This proof is strongly based on the proof given in [Wan03] to Lemma 3.1, thus some

repetitive parts are omitted. Let ε be a small positive number so that pµ(µ) can be approximated

by its first order expansion for 0 ≤ µ ≤ ε, then the average BER can be written as

BER(ρ̄) =
α

log2M

∫ ε

0
Q
(√

β(ρ̄µ+ φ)
)
pµ(µ)dµ+

α

log2M

∫ ∞
ε
Q
(√

β(ρ̄µ+ φ)
)
pµ(µ)dµ

=
α

log2M

∫ ∞
ε
Q
(√

β(ρ̄µ+ φ)
)
pµ(µ)dµ (3.99)

− α

log2M

1√
2π

∫ ∞
ε

∫ ∞
√
β(ρ̄µ+φ)

e−
x2

2
(
aµd + o(µd)

)
dxdµ (3.100)

+
α

log2M

1√
2π

∫ ∞
0

∫ ∞
√
β(ρ̄µ+φ)

e−
x2

2
(
aµd + o(µd)

)
dxdµ. (3.101)

The terms (3.99) and (3.100) are shown in [Wan03] to be of order o
(
ρ̄−(d+1)

)
and, computing

the integral in (3.101) by interchanging the integration order, it follows that

BER(ρ̄) =
α

log2M

a√
2π

∫ ∞
√
βφ

∫ x2−βφ
βρ̄

0
e−

x2

2 µddµdx+ o
(
ρ̄−(d+1)

)
=

α

log2M

a√
2π(d+ 1)(βρ̄)d+1

∫ ∞
√
βφ
e−

x2

2
(
x2 − βφ

)(d+1)
dx+ o

(
ρ̄−(d+1)

)
=
( α

log2M

aI (d, βφ)√
2π(d+ 1)βd+1

)
ρ̄−(d+1) + o

(
ρ̄−(d+1)

)
(3.102)

where I(d, βφ) is defined as

I(d, βφ) =
∫ ∞
√
βφ
e−

x2

2
(
x2 − βφ

)(d+1)
dx (3.103)

and this completes the proof.

3.B Appendix: Performance of Spatial Multiplexing MIMO Systems with CSI

3.B.1 Proof of Theorem 3.5

Proof. The average BER of the kth substream with pk , pk(λ1, . . . , λκ, snr) can be expressed as

BERk(snr) = BERk(snr|pk ≥ ξksnr) (1− Pr (pk < ξksnr)) (3.104)

+ BERk(snr|pk < ξksnr)Pr (pk < ξksnr) (3.105)

where BERk(snr|pk ≥ ξksnr) denotes the average BER conditioned on (pk ≥ ξksnr) and

BERk(snr|pk < ξksnr) is analogously defined. Using the expression for Pr (pk < ξksnr) given in
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(3.59), the average BER can be rewritten as

BERk(snr) = BERk(snr|pk ≥ ξksnr)
(
1− a(ξk)snr−d(ξk) + o

(
snr−d(ξk)

))
(3.106)

+ BERk(snr|pk < ξksnr)
(
a(ξk)snr−d(ξk) + o

(
snr−d(ξk)

))
. (3.107)

In the following we distinguish between two cases: (i) when d(ξk) > dk+1 for a given ξk ∈ (0, 1),

and (ii) when d(ξk) = dk + 1 for a given ξk ∈ (0, 1) and d(0) = dk + 1.

(i) If there exists 0 < ξk < 1 such that d(ξk) > dk+1, the term in (3.107) is of order o
(
snr−(dk+1)

)
,

since it holds that

BERk(snr|pk < ξksnr)a(ξk)snr−d(ξk) <
αk

2 log2Mk
a(ξk)snr−d(ξk) = o

(
snr−(dk+1)

)
. (3.108)

Using the short-term power constraint in (3.39), the power allocated to the kth substream is

upper-bounded as pk ≤ snr and, hence, BERk(snr|pk > ξksnr) satisfies

BERk(snr|pk = snr) < BERk(snr|pk ≥ ξksnr) ≤ BERk(snr|pk = ξksnr). (3.109)

The upper and lower bounds in (3.109) can be analyzed applying Theorem 3.1. Both result in

the same diversity gain Gd(k) = dk + 1 and, thus,

BERk(snr|pk ≥ ξksnr)
(
1− a(ξk)snr−d(ξk)

)
= BERk(snr|pk ≥ ξksnr) + o

(
snr−(dk+1)

)
. (3.110)

Finally, the average BER is

BERk(snr) = BERk(snr|pk ≥ ξksnr) + o
(
snr−(dk+1)

)
(3.111)

and the array gain bounds given in the theorem are obtained by deriving the array gain associated

with the bounds in (3.109) recalling Theorem 3.1.

(ii) If d(0) = dk + 1 and there exists 0 < ξk < 1 such that d(ξk) = dk + 1, the term in (3.107)

can be bounded as

BERk(snr|pk < ξksnr)a(φk)snr−(dk+1) < BERk(snr|pk = 0)a(ξk)snr−(dk+1) (3.112)

=
αk

2 log2Mk
a(ξk)snr−(dk+1). (3.113)

Then, proceeding as in case (i), it follows that

BERk(snr) < BERk(snr|pk = ξksnr) +
αk

2 log2Mk
a(ξk)snr−(dk+1) + o

(
snr−(dk+1)

)
(3.114)



128 Spatial Multiplexing MIMO Systems with CSI: Performance Analysis

and the array gain lower bound given in the theorem is obtained by combining the array gain

corresponding to BERk(snr|pk = ξksnr) with the term in (3.113). Similarly, we can lower-bound

the average BER as

BERk(snr) > BERk(snr|pk = snr)
(
1− a(ξk)snr−(dk+1)

)
+ BERk(snr|pk = ξksnr)

(
a(ξk)snr−(dk+1)

)
+ o
(
snr−(dk+1)

)
= BERk(snr|pk = snr) + o

(
snr−(dk+1)

)
(3.115)

and the array gain corresponding to BERk(snr|pk = snr) is the array gain upper bound given in

the theorem.

3.B.2 Proof of Theorem 3.6

Proof. This proof uses similar techniques as the ones used in the proof of Theorem 3.5 in

Appendix 3.B.1. Nevertheless, for the sake of completeness, we provide in the following all

important steps. The outage probability of the kth substream can be expressed as

Pout,k(snr) = Pout,k(snr|pk ≥ ξksnr)(1− Pr(pk < ξksnr)) (3.116)

+ Pout,k(snr|pk < ξksnr)Pr(pk < ξksnr) (3.117)

where Pout,k(snr|pk ≥ φksnr) denotes the outage probability conditioned on pk ≥ φksnr and

Pout,k(snr|pk < ξksnr) is analogously defined. Using the expression for Pr (pk < ξksnr) given in

(3.59), the outage probability can be rewritten as

Pout,k(snr) = Pout,k(snr|pk ≥ ξksnr)
(
1− a(ξk)snr−d(ξk) + o

(
snr−d(ξk)

))
(3.118)

+ Pout,k(snr|pk < ξksnr)
(
a(ξk)snr−d(ξk) + o

(
snr−d(ξk)

))
. (3.119)

In the following we distinguish between two cases: (i) when d(ξk) > dk + 1 for a given ξk ∈ (0, 1)

and (ii) when d(ξk) = dk + 1 for a given ξk ∈ (0, 1) and d(0) = dk + 1.

(i) If there exists 0 < ξk < 1 such that d(φk) > dk+1, the term in (3.119) is of order o
(
snr−(dk+1)

)
,

since it holds that

Pout,k(snr|pk < ξksnr)a(ξk)snr−d(ξk) < a(ξk)snr−d(ξk) = o
(
snr−(dk+1)

)
. (3.120)

Using the short-term power constraint in (3.59), the power allocated to the kth substream is

upper-bounded as pk ≤ snr and, hence, Pout,k(snr, ρth|pk > φksnr) satisfies

Pout,k(snr|pk = snr) < Pout,k(snr|pk ≥ ξksnr) ≤ Pout,k(snr|pk = ξksnr). (3.121)
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The upper and lower bound in (3.121) can be analyzed applying Theorem 3.3. Both result in

the same diversity gain, Gd(k) = dk + 1 and

Pout,k(snr|pk ≥ ξksnr)
(
1− a(ξk)snr−d(ξk)

)
= Pout,k(snr|pk ≥ ξksnr) + o

(
snr−(dk+1)

)
. (3.122)

Finally, the outage probability is

Pout,k(snr) = Pout,k(snr|pk ≥ ξksnr) + o
(
snr−(dk+1)

)
(3.123)

and the outage array gain bounds given in the theorem are obtained by deriving the outage

array gain associated with the bounds in (3.121) recalling Theorem 3.3.

(ii) If d(0) = dk + 1 and there exists 0 < ξk < 1 such that d(φk) = dk + 1, the term in (3.119)

can be bounded as

Pout,k(snr|pk < ξksnr)a(ξk)snr−(dk+1) < Pout,k(snr|pk = 0)a(ξk)snr−(dk+1) (3.124)

= a(ξk)snr−(dk+1). (3.125)

Then, proceeding as in case (i), it follows that

Pout,k(snr) < Pout,k(snr|pk = ξksnr) + a(ξk)snr−(dk+1) + o
(
snr−(dk+1)

)
(3.126)

and the outage array gain lower bound given in the theorem is obtained by combining the outage

array gain corresponding to Pout,k(snr|pk = ξksnr) with the term in (3.124). Similarly, we can

lower-bound the outage probability as

Pout,k(snr) > Pout,k(snr|pk = snr)
(
1− a(ξk)snr−(dk+1)

)
+ Pout,k(snr|pk = ξksnr)

(
a(ξk)snr−(dk+1)

)
+ o
(
snr−(dk+1)

)
= Pout,k(snr|pk = snr) + o

(
snr−(dk+1)

)
(3.127)

and the array gain corresponding to Pout,k(snr|pk = snr) is the outage array gain upper bound

given in the theorem.

3.C Appendix: Performance of Linear MIMO Transceivers

3.C.1 Proof of Proposition 3.1

This proof is in essence the same as the proof of Theorem 3.2-(ii) in Appendix 3.B.1, but here we

use an asymptotic equivalence of the power allocation, instead of bounding it. Observe that the
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waterfilling in (3.87) tends to a fixed power allocation over the κ active substreams as snr→∞,

i.e.,

lim
snr→∞

pwf,k

snr/
∑κ

i=1(ωi/ωk)
= 1 (3.128)

whenever pwf,k > 0. Hence, the average BER at high SNR (see Section 3.7.2) can be expressed

as

BER(snr) =
1
κ

BERκ(snr) (1− Pr (pwf,κ = 0)) +
ακ

2κ log2Mκ
Pr (pwf,κ = 0) (3.129)

where BERκ(snr) is the individual average BER of the substream transmitted through the κth

eigenmode with fixed power pκ = snr/
∑κ

k=1(ωk/ωκ) and Pr (pwf,κ = 0) denotes the probability

of not allocating power to the κth substream. This probability is upper-bounded as

Pr (pwf,κ = 0) = Pr

(( κ−1∑
k=1

(ωk/ωκ)λ−1
κ −

κ−1∑
k=1

λ−1
k

)
≥ snr

)
≤ Pr

(
λ−1
κ ≥

snr∑κ−1
k=1(ωk/ωκ)

)
= Pr

(
λκ ≤

∑κ−1
k=1(ωk/ωκ)

snr

)
(3.130)

=
aκ

dκ + 1

(
snr∑κ−1

k=1(ωk/ωκ)

)−(dκ+1)

+ o
(
snr−(dκ+1)

)
(3.131)

where the last equality comes from the first order Taylor expansion of the marginal cdf of the

κth strongest eigenvalue in Theorem 2.4. Then, substituting BERκ(snr) by its parameterized

characterization applying Theorem 3.1 with φk = 1/
∑κ

i=1(ωi/ωk) and Pr (pwf,κ = 0) by its

upper bound derived in (3.131) back in (3.129), it follows that

BER(snr) <
(
Ga
−(dκ+1) +

( ακ
2κ log2Mκ

)( aκ
dκ + 1

)( κ−1∑
k=1

(ωk/ωκ)
)(dκ+1)

)
snr−(dκ+1)

+ o
(
snr−(dκ+1)

)
(3.132)

where Ga denotes the global array gain achieved with a fixed power allocation with φk =

1/
∑κ

i=1(ωi/ωk). Finally, the array gain lower bound can be directly obtained from (3.132) and

the upper bound simply comes from setting Pr (pwf,κ = 0) = 0 in (3.129). �

3.C.2 Proof of Proposition 3.2: Exponent of Pr (pmse,κ ≤ ξksnr)

We want to prove that the power allocation in (3.91) satisfies the condition in Theorem 3.1-(ii),

i.e.,

δκ = lim
snr→∞

− log Pr (pmse,κ < ξκsnr)
log snr

> Gd,mse = dκ + 1 (3.133)
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with ξκ smaller but arbitrarily close to 1/
∑κ

k=1 (ωk/ωκ)1/2. The probability Pr (pmse,κ < ξκsnr)

is given by

Pr (pmse,κ ≤ ξκsnr) = Pr

(
(ωκ/λκ)1/2∑κ
k=1(ωk/λk)1/2

(
snr +

κ∑
k=1

λ−1
k

)
− λ−1

κ ≤ ξκsnr

)

= Pr

((
(ωκλκ)−1/2

κ∑
k=1

(ωk/λk)−1/2 −
κ∑
k=1

λ−1
k

)

≥ snr

(
1− ξk

(ωκ/λκ)1/2∑κ
k=1(ωk/λk)1/2

))
(3.134)

Observing that

ξκ(ωκ/λκ)−1/2
κ∑
k=1

(ωk/λk)1/2 ≤ ξκ
κ∑
k=1

(ωk/ωκ)1/2 (3.135)

since λκ/λk ≤ 1 for k = 1, · · · , κ, Pr (pmse,κ ≤ ξκsnr) can be upper-bounded as

Pr (pmse,κ ≤ ξksnr) ≤ Pr

(
(ωκλκ)−1/2

κ−1∑
k=1

(ωk/λk)1/2 ≥ snr

(
1− ξκ

κ∑
k=1

(ωk/ωκ)1/2

))

≤ Pr

(
λκλκ−1 ≤

( ∑κ−1
k=1 (ωk/ωκ)1/2

1− ξκ
∑κ

k=1 (ωk/ωκ)1/2

)2

snr−2

)
(3.136)

whenever ξκ < 1/
∑κ

k=1 (ωk/ωκ)1/2. Hence, it follows that

δκ ≥ lim
snr→∞

log Pr
(
λκλκ−1 ≤ snr−2

)
log snr−1

. (3.137)

Then, by defining ηκ = λκ−1λκ, we can rewrite (3.137) as

δκ ≥ lim
x→0

log Pr
(
ηκ ≤ x2

)
log x

= lim
x→0

log
(∫ x2

0 fηκ(η)dη
)

log x
(3.138)

where fηκ(η) is the pdf of a product of two random variables and can be calculated as [Roh76, Sec.

4.4, Th. 7]

fηκ(η) =
∫ ∞

0

1
x
fλκ−1,λκ(x, η/x)dx. (3.139)

We are interested in fηκ(η) as η → 0 and, thus, we only need to derive the joint pdf

fλκ−1,λκ(λκ−1, λκ) as λκ → 0. Using the same procedure as in the proof of Theorem 2.4, it

can be shown that

fλκ−1,λκ(λκ−1, λκ) = g(λκ−1)λdκκ + o(λdκκ ) (3.140)

where g(λκ−1) is a function of λκ−1. Then, substituting back this result in the expression of

fηκ(η) in (3.139), it follows that

fηκ(η) = aηdκ + o(ηdκ) (3.141)
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where a is a fixed constant in terms of η. Finally, the exponent of Pr (pmse,k < ξκsnr) can be

bounded as

δκ ≥ lim
x→0

log
(
a
∫ x2

0 ηdκdη
)

log x
= lim

η→0

log
(
η2dκ+2

)
log η

= 2dκ + 2 (3.142)

and this proves (3.133). �

3.C.3 Proof of Proposition 3.3

The minimum BER scheme distributes the available power over the κ active substreams in a

waterfilling fashion as in (3.91). Since the exponent of the probability of not allocating power to

the κth substream is greater than Gd (see Appendix 3.C.2 for details), we can just focus in the

case when {pk > 0}κk=1.

First we lower-bound the instantaneous SNR of the minimum BER design using the uniform

power allocation, because it leads to a higher sum MSE than the power allocation in (3.91):

ρber,κ >

(
1
κ

κ∑
k=1

1
(λk/κ)snr + 1

)−1

− 1 (3.143)

>(λκ/κ)snr (3.144)

where in (3.143) we have forced all substreams to experience the same MSE (see Section 3.8.1)

and (3.144) follows from lower-bounding each λk by λκ. The lower bound in (3.144) corresponds

to the instantaneous SNR achieved by the κth substream of a diagonal scheme with a uniform

power allocation and, hence, we can lower-bound the array gain by Ga as in Propositions 3.1

and 3.2.

Let us now consider a non-diagonal linear MIMO transceiver that allocates infinite power to

all the substreams except to the κth one, to which it assigns pκ = snr. Due to the power constraint

in (3.84), the instantaneous SNR of the BER minimizing design can be upper-bounded by the

instantaneous SNR of this scheme:

ρber,κ <

(
1

κλκsnr + κ

)−1

− 1 = κλκsnr + (κ− 1). (3.145)

Finally, using Corollary 3.1 with the upper bound in (3.145), it follows the array gain upper

bound given in Proposition 3.3. �



4

Spatial Multiplexing MIMO Systems with CSI:

Optimum Number of Substreams

Multiple-input multiple-output (MIMO) systems with perfect channel state information at

both sides of the link can adapt to the instantaneous channel conditions to optimize the spectral

efficiency and/or the reliability of the communication. A low-complexity approach is the use of

linear MIMO transceivers, which are composed of a linear precoder at the transmitter and a

linear equalizer at the receiver. The design of linear transceivers has been extensively studied in

the literature with a variety of cost functions. In this chapter we focus on the minimum bit error

rate (BER) design, and show that the common practice of fixing a priori the number of data

symbols to be transmitted per channel use inherently limits the diversity gain of the system. By

introducing the number of symbols in the optimization process, we propose a minimum BER

linear precoding scheme that achieves the full diversity of the MIMO channel. For the cases

of uncorrelated Rayleigh, semicorrelated Rayleigh, and uncorrelated Rician fading, the average

BER performance of both schemes is analytically investigated and characterized in terms of two

key parameters: the array gain and the diversity gain.

133



134 Spatial Multiplexing MIMO Systems with CSI: Optimum Number of Substreams

4.1 Introduction

One of the salient and unique characteristics of multiple-input multiple-output (MIMO) channels

is the multiplexing gain, which refers to the increase of rate at no additional power consumption.

The multiple dimensions of the MIMO channel are exploited to open up several parallel subchan-

nels which allow the transmission of several symbols simultaneously. When perfect channel state

information (CSI) is available at the transmitter, the data signal is adapted to the instantaneous

channel eigenstructure by transmitting the established substreams through the strongest chan-

nel eigenmodes. These schemes are commonly known as spatial multiplexing MIMO systems

with CSI (see Chapter 3 for details) and are practically implemented by using linear MIMO

transceivers, which are composed of a linear precoder at the transmitter and a linear equalizer

at the receiver.

The design of linear transceivers when perfect CSI is available at both sides of the link has

been extensively studied in the literature according to a variety of criteria based on performance

measures such as the signal-to-noise ratio (SNR), the mean square error (MSE), or the bit

error rate (BER). The most common approach in the linear transceiver design literature is

to adapt only the linear precoder/power allocation among the different substreams, assuming

that the number of substreams κ and the corresponding constellations are fixed beforehand,

e.g. [Lee76,Sal85,Yan94b,Yan94a,Sca99,Sam01,Sca02b,Ong03,Pal03,Din03a,Pal07].

In this chapter we show analytically for the cases of uncorrelated Rayleigh, semicorrelated

Rayleigh and uncorrelated Rician fading that the diversity gain of these schemes with κ sub-

streams is at most given by (nT − κ+ 1)(nR − κ+ 1), where nT is the number of transmit and

nR the number of receive antennas. This diversity order can be far from the inherent diversity

provided by the MIMO channel nTnR [And00a]. To overcome this limitation, we consider the

introduction of the number of active substreams in the design criterion by fixing the global rate

but allowing the use of an adaptive symbol constellation to compensate for the change in the

number of active substreams. Observe that this alternative restriction does not render ineffec-

tive the schemes available in the literature but simply implies an additional optimization stage

on top of the classical design. The given diversity analysis confirms the intuitive notion that

the full diversity nTnR demands this final optimization step that has been commonly neglected

in the literature. An exception is [Lov05b], where a similar scheme that adapts the number of
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substreams under a fixed rate constraint was proposed in the context of limited feedback linear

precoding.

More specifically, this chapter focuses on the minimum BER linear MIMO transceiver design.

We first present the conventional design in which the linear transmitter and receiver are designed

to minimize the BER under a transmit power constraint and assuming that the number of

transmitted symbols and constellations are fixed. This scheme is denoted hereafter as minBER-

fixed scheme and was derived independently in [Pal03] and [Din03a]. Suboptimal results, in

which the linear precoder and receiver are designed under the same constraints but forced to

diagonalize the channel can be found in [Ong03, Din03b]. The substream optimization stage is

considered next, i.e., the linear MIMO transceiver design with adaptive number of substreams,

denoted as minBER-adap scheme. Although the symbol constellation is jointly adapted with the

number of substreams to keep the total transmission rate fixed, the design problem addressed

here is substantially different from the classical problem formulation in the adaptive modulation

literature [Chu01, Cat02, Zha03, Zho05], where, typically, the transmission rate is maximized

under power and quality-of-service (QoS) constraints or the transmission power is minimized

under QoS and rate constraints. For instance, in the context of MIMO linear transceivers, the

design of both the constellations and the linear transceiver to minimize the transmit power under

QoS constraints (given in terms of BER) is addressed in [Pal05a].

In addition, in this chapter we investigate the global performance of the minBER-fixed and

the minBER-adap design in terms of the BER averaged over all transmitted data substreams

and all possible channel states, when assuming an uncorrelated, a semicorrelated Rayleigh, and

an uncorrelated Rician fading channel. We derive upper and lower bounds for the average BER

performance that can be efficiently computed without resorting to time-consuming Monte Carlo

simulations. In order to provide more insights into the system behavior, we also focus on the high-

SNR regime and characterize the average BER vs. SNR curves in terms of two key parameters:

the diversity gain and the array gain.

The rest of the chapter is organized as follows. Section 4.2 is devoted to introducing the

system model and the design problem formulation. In addition, the average BER performance

measure and the adopted channel models are presented. The design and performance analysis

of the minimum BER linear transceiver with fixed and with adaptive constellations is addressed
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in Sections 4.3 and 4.4, respectively. Finally, in Section 4.5 we summarize the main results and

provide the list of publications where they have been presented.

4.2 Preliminaries

In this section we introduce the general signal model corresponding to linear MIMO transceivers

and formulate the minimum BER design problem. Additionally, we briefly describe the procedure

followed to analyze the performance of these schemes in fading channels.

4.2.1 System Model

The signal model corresponding to a transmission through a general MIMO channel with nT

transmit and nR receive antennas is

y = Hx + w (4.1)

where x ∈ CnT is the transmitted vector, H ∈ CnR×nT is the channel matrix, y ∈ CnR is

the received vector, and w ∈ CnR is a spatially white zero-mean circularly symmetric complex

Gaussian noise vector normalized so that E{ww†} = InR
.

Suppose that the MIMO communication system is equipped with a linear transceiver (see

Figure 4.1), then the transmitted vector is given by

x = Bκsκ (4.2)

where Bκ ∈ CnT×κ is the transmit matrix (linear precoder) and the data vector sκ ∈ Cκ gathers

the κ ≤ min{nT, nR} data symbols to be transmitted (zero-mean, unit-energy, and uncorrelated,

i.e., E{sκs†κ} = Iκ). We consider a fixed-rate data transmission and, hence, each data symbol1

sk,κ is drawn from an Mk,κ-dimensional constellation such that the total transmission rate

R =
κ∑
k=1

log2Mk,κ (4.3)

is fixed for all channel realizations. The transmitted power is constrained such that

E
{
‖x‖2

}
= tr{BκB†κ} ≤ snr (4.4)

1 Observe the slight change of notation with respect to Chapter 3. Now we use the subscript κ to emphasize that the number

of data symbols to be transmitted is fixed to κ.
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Figure 4.1 Linear MIMO transceivers system model.

where snr denotes the average SNR per receive antenna. The estimated data vector at the receiver

is

ŝκ = A†κy = A†κ (HBκsκ + w) (4.5)

where A†κ ∈ Cκ×nR is the receive matrix (linear equalizer). Observe from (4.5) that κ data

streams are established for communication over the MIMO channel, where the kth column of

Bκ and Aκ, denoted by bk,κ and ak,κ, respectively, can be interpreted as the transmit and

receive beamvectors associated with the kth data stream or symbol sk,κ:

ŝk,κ = a†k,κ(Hbk,κsk,κ + nk,κ) for k = 1, . . . , κ (4.6)

where nk,κ =
∑κ

i=1,i 6=k Hbi,κsi,κ + w is the interference-plus-noise seen at the kth substream.

4.2.2 Problem Statement

The linear MIMO transceiver design, i.e., the joint design of the receive and transmit matrices

(Aκ,Bκ) when perfect CSI is available at both sides of the link, is generally quite involved since

several substreams are established over the MIMO channel (see (4.6)). Precisely, the existence of

several substreams, each with its own performance, makes the definition of a global measure of

the system not clear. As a consequence, a span of different design criteria has been explored in

the literature since the 1970s, based on the MSEs, the SNRs, and the BERs. A general unifying

framework that embraces most of these design criteria was proposed in [Pal03] (see an up-to-date

overview in [Pal07]). The general design problem is formulated as the minimization of certain

cost function f0(·) of the MSEs, {msek,κ}κk=1:

(Aκ,Bκ) = arg min
Aκ,Bκ

f0 ({msek,κ}κk=1) (4.7)

subject to the power constraint in (4.4), since any reasonable performance measure can be easily

related to the MSEs.
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Some examples of the design criteria included in the previous general formulation are given

in Tables 3.2, 3.3, and 3.4. In this chapter, we focus only on the design that minimizes the BER

averaged over the κ data symbols:

BERκ ({ρk,κ}κk=1) =
1
κ

κ∑
k=1

BERk,κ(ρk,κ) (4.8)

where ρk,κ is the instantaneous SNR of the kth substream in (4.6) given by

ρk,κ =
|a†k,κHbk,κ|2

a†k,κak,κ
for k = 1, . . . , κ (4.9)

and BERk,κ(ρk,κ) is the corresponding instantaneous BER. In the presence of additive white

Gaussian noise and assuming a Gray coding mapping, BERk,κ(ρk,κ) can be approximated as (see

details in Section 3.2)

BERk,κ(ρk,κ) =
αk,κ

log2Mk,κ
Q
(√

βk,κρk,κ

)
for k = 1, . . . , κ (4.10)

where Q(·) is the Gaussian Q-function defined in (3.2) and the parameters αk,κ and βk,κ depend

on the Mk,κ-dimensional modulation used to map the source bits to symbols (see the expressions

for the most common digital modulation formats in Table 3.1).

To summarize, the problem studied in this chapter is

minimize BERκ ({ρk,κ}κk=1) (4.11)

subject to tr (BκBκ) ≤ snr

in the following two cases:

(i) minBER-fixed design: fixed constellations (for some given rate R) and fixed number

of substreams κ with optimization variables (Aκ,Bκ).

(ii) minBER-adap design: fixed rate R with optimization variables (κ,Aκ,Bκ).

4.2.3 Performance Evaluation

For fading channels, the instantaneous BER defined in (4.8) does not offer representative infor-

mation about the overall system performance and all different realizations of the random channel

have to be taken into account, leading to the concept of average BER:

BERκ(snr) , E{BERκ ({ρk,κ}κk=1)}. (4.12)
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Given the limited availability of closed-form expressions for the average BER in (4.12), a

convenient method to find simple performance measures is to allow a certain degree of approxi-

mation. In this respect, the most common approach is to shift the focus from exact performance

to large SNR performance as done in [Wan03], where the average BER versus SNR curve is char-

acterized in terms of two key parameters: the diversity gain and the coding gain (also known as

the array gain in the context of multiantenna systems [And00a]). The diversity gain represents

the slope of the BER curve at high SNR and the coding gain (or array gain) determines the

horizontal shift of the BER curve. Interestingly, both parameters only depend on the channel

statistics through the first order expansion of the pdf of the channel parameter (see details in

Section 3.2.4).

In this chapter we analyze the average BER of both the minBER-fixed and the minBER-

adap linear transceivers. More exactly, we find upper and lower bounds on the performance

in uncorrelated/semicorrelated Rayleigh and uncorrelated Rician fading MIMO channels, with

special emphasis on the high-SNR regime. The outage performance measures introduced in

Chapter 3 (see Sections 3.2.3 and 3.2.4 for details) could be also analogously analyzed.

4.2.4 MIMO Channel Model

When analyzing the performance of a communication system over a MIMO fading channel, it

is necessary to assume a certain channel fading distribution in order to obtain the average BER

measure introduced in Section 4.2.3. In wireless communications, the large number of scatters

in the channel that contributes to the signal at the receiver results in Gaussian distributed

channel matrix coefficients. Analogously to the single antenna channel, this model is referred to

as MIMO Rayleigh or Rician fading channel, depending whether the channel entries are zero-

mean or not. In this chapter we adopt the uncorrelated Rayleigh, the semicorrelated Rayleigh,

and the uncorrelated Rician MIMO channel models introduced in Definitions 3.1–3.4 (see Section

3.3 for details). Similarly to Chapter 3 we rely on the unified probabilistic characterization of

the ordered eigenvalues of a general class of Hermitian random matrices presented in Chapter

2, since this class includes the distribution of the considered channel models.
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4.3 MinBER Linear MIMO Transceiver with Fixed Number of Substreams

The linear MIMO transceiver design that minimizes the BER has been addressed in [Din03a]

and [Pal03] when equal constellations are used on all substreams. In this section we present this

minimum BER linear transceiver and analyze its average BER performance under the Rayleigh

and Rician MIMO channel models introduced in Definitions 3.1–3.4.

4.3.1 Linear Transceiver Design

Following the approach in [Pal03], the optimum receive matrix Aκ, for a given transmit matrix

Bκ, is the Wiener filter solution [Pal03, eq. (7)]:

Aκ =
(
HBκB†κH

† + InR

)−1
HBκ (4.13)

independently of the design cost function. Specifically, under the minimum BER design criterion

when equal constellations are used in all κ substreams, the transmit matrix Bκ is given by [Pal03,

Sec. V.C and eq. (15)]

Bκ = Uκ

√
PκQκ (4.14)

where Uκ ∈ CnT×κ has as columns the eigenvectors of H†H corresponding to the κ

largest nonzero eigenvalues λ1 ≥ · · · ≥ λκ, Qκ ∈ Cκ×κ is a unitary matrix such that(
Iκ + B†κH†HBκ

)−1
has identical diagonal elements (see [Pal03, Sec. IV.B] for details), and

Pκ ∈ Cκ×κ is a diagonal matrix with diagonal entries equal to

pk,κ =
(
µλ
−1/2
k − λ−1

k

)+ for k = 1, . . . , κ (4.15)

where µ is chosen to satisfy the power constraint in (4.4) with equality, i.e.,
κ∑
k=1

pk,κ = snr. (4.16)

4.3.2 Analytical Performance

Given the optimum receive matrix in (4.13) and the optimum transmit matrix in (4.14), the

communication process is diagonalized up to a specific rotation (see Figure 3.10-(ii)) that forces

all κ data symbols to have the same MSE:

mseκ , msek,κ =
1
κ

κ∑
i=1

(1 + pi,κλi)
−1 (4.17)
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and, hence, the same instantaneous SNR:

ρκ , ρk,κ = mse−1
κ − 1 =

(
1
κ

κ∑
i=1

(1 + pi,κλi)
−1

)−1

− 1. (4.18)

Thus, the minBER-fixed design transmits a rotated version of the κ data symbols through the κ

strongest channel eigenmodes, so that all data symbols experience the same BER performance.

The instantaneous BER averaged over the κ data symbols defined in (4.8) is then given by

BERκ(snr) =
ακ

log2Mκ
Q
(√

βκρκ

)
(4.19)

where Mκ ,Mk,κ, ακ , αk,κ, βκ , βk,κ for k = 1, . . . , κ, since all constellations are equal. Now,

taking into account all possible channel states, the average BER is obtained as

BERκ(snr) = E{BERκ(snr)} =
ακ

log2Mκ

∫ ∞
0
Q
(√

βκρ
)
fρκ(ρ)dρ (4.20)

where fρκ(ρ) is the pdf of the instantaneous SNR, ρκ, given in (4.18). Observe that ρκ is a

non-trivial function of the κ strongest eigenvalues of the channel matrix H†H. Thus, a closed-

form expression for the marginal pdf fρκ(ρ) and by extension for the average BER in (4.20) is

extremely difficult to obtain. However, we can derive easily computable average BER bounds

based only on the marginal cdf of the κth largest channel eigenvalue given in Theorem 2.2 as

done in the following theorem.

Theorem 4.1. The average BER attained by the minimum BER linear transceiver with fixed

and equal constellations (assuming κ data symbols per channel use) under the nR × nT MIMO

channel models in Definitions 3.1–3.4 can be bounded as

BER
(lb)
κ (snr) ≤ BERκ(snr) ≤ BER

(ub)
κ (snr) (4.21)

with

BER
(ub)
κ (snr) =

ακ
2 log2Mκ

√
βκsnr

2πκ

∫ ∞
0

e−
βκλsnr

2κ

√
λ

Fλκ (λ) dλ (4.22)

BER
(lb)
κ (snr) =

ακ
2 log2Mκ

βκκsnr√
2π

∫ ∞
0

e−
βκ(λκsnr+κ−1)

2√
βκ(λκsnr + κ− 1)

Fλκ (λ) dλ (4.23)

where Fλk(·) is the marginal cdf of the kth largest eigenvalue in Theorem 2.2 and the correspond-

ing expressions for each channel model are given in Tables 2.2–2.4.

Proof. See Appendix 4.A.1.
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Remark 4.1. Observing that the average BER upper-bound in Theorem 4.1 follows from using

a diagonal scheme with a uniform power allocation among the κ established substreams and

recalling Theorem 3.7, the average BER of the minBER-fixed design can be tighter upper-bounded

in the high-SNR regime by dividing BER
(ub)
κ (snr) by κ.

Although Theorem 4.1 provides a numerical procedure to bound the average BER perfor-

mance of the minBER-fixed design without resorting to the time-comsuming Monte Carlo simu-

lations, it is still difficult to extract any conclusion on how to improve the system performance.

Thus, we focus now on the high-SNR regime and provide a simpler performance characterization

in terms of the array gain and the diversity gain. In Chapter 3, the average BER versus SNR

curves of the channel eigenmodes have been parameterized for an uncorrelated, a semicorre-

lated Rayleigh, and an uncorrelated Rician fading MIMO channel. In addition, the performance

characterization of the channel eigenmodes has been applied to analyze the global average BER

performance of practical linear MIMO transceivers. For the sake of completeness we provide the

high-SNR average BER characterization of the minBER-fixed scheme in the following theorem.

Theorem 4.2. The average BER attained by the minimum BER linear transceiver with fixed

and equal constellations (assuming κ data symbols per channel use) under the nR × nT MIMO

channel models in Definitions 3.1, 3.2, and 3.4 satisfies2

BERκ(snr) = (Ga,κ · snr)−Gd,κ + o
(
snr−Gd,κ

)
(4.24)

where the diversity gain is given by

Gd,κ = (nT − κ+ 1)(nR − κ+ 1) (4.25)

and the array gain can be bounded as3

G
(lb)
a,κ < Ga,κ < G

(ub)
a,κ (4.26)

with

G
(lb)
a,κ =

βκ
κ

(
ακ

log2Mκ

aκ2dκΓ(dκ + 3/2)√
πκ(dκ + 1)

)−1/(dκ+1)

(4.27)

G
(ub)
a,κ = κβκ

(
ακ

log2Mκ

aκI(dκ, βκ(κ− 1))√
2π(dκ + 1)

)−1/(dκ+1)

(4.28)

2 We say that f(x) = o(g(x)), g(x) > 0, if f(x)/g(x)→ 0 as x→ 0 [Bru81, eq. (1.3.1)].

3 Observe that an array gain lower bound provides an upper bound on the high-SNR average BER and vice versa.
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where Γ(·) denotes the gamma function in Definition 2.5, I(d, β) is given in (3.21), and the

parameters aκ and dκ model the pdf of the κth largest eigenvalue as in Theorem 2.4. The corre-

sponding expressions for each channel model are given in Tables 2.2 and 2.3.

Proof. See Proof of Proposition 3.3 in Appendix 3.C.3.

In Figures 4.2-(i) and 4.2-(iii) we show the average BER performance of the minBER-fixed

design and the average BER bounds derived in Theorem 4.1 in an uncorrelated and a semicorre-

lated Rayleigh MIMO channel, respectively. In both cases we consider the minBER-fixed scheme

with nT = nR = 4, a target transmission rate of R = 8 bits per channel use, and κ = {2, 4}. In

Figures 4.2-(ii) and 4.2-(iv) we show the high-SNR performance and the parameterized upper

and lower average BER bounds (dashed lines) corresponding respectively to the lower and upper

array gain bounds derived in Theorem 4.2. We only include the beamforming strategy (κ = 1) in

the high-SNR plots, as for this case the upper and lower bounds coincide with the exact average

BER. It turns out that for κ > 1 the proposed average BER upper bound is more convenient to

approximate the low SNR performance while the average BER lower bound is very tight in the

high-SNR regime.

Finally, it is important to note that the diversity gain given in Theorem 4.2 coincides with

the diversity gain achieved with the classical SVD transmission scheme without the additional

rotation of the data symbols (cf. Theorems 3.2 and 3.5). Hence, Theorem 4.2 shows that the

minBER-fixed design does not provide any diversity advantage with respect to diagonal schemes

with simpler channel non-dependent power allocation policies but only a higher array gain.

Actually, this statement is not exclusive of the investigated scheme but a common limitation

of all linear MIMO transceivers whenever the number of symbols to be transmitted is fixed

beforehand (even when using different constellations), as we show in the next theorem.

Theorem 4.3. The diversity gain attained by any linear MIMO transceiver with fixed constel-

lations (assuming κ data symbols per channel use) under the nR× nT MIMO channel models in

Definitions 3.1, 3.2, and 3.4 satisfies

Gd,κ ≤ (nT − κ+ 1)(nR − κ+ 1). (4.29)
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Figure 4.2 Simulated average BER of the minBER-fixed design and bounds (nT = 4, nR = 4, κ = {1, 2, 4},R = 8) in an

uncorrelated Rayleigh, a semicorrelated Rayleigh (with correlation matrix [Σ]i,j = r|i−j|, r = 0.7), and an uncorrelated

Ricean (with Ricean factor Kc = 0dB) MIMO channel.
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Proof. The BER averaged over the κ data symbols to be transmitted of any linear MIMO

transceiver given in (4.8) can be lower-bounded as

BERκ({ρk,κ}κk=1) ≥ 1
κ

max
1≤k≤κ

BERk,κ(ρk,κ) ≥ 1
κ

min
Aκ,Bκ

max
1≤k≤κ

BERk,κ(ρk,κ). (4.30)

The linear MIMO transceiver (Aκ,Bκ) that minimizes the maximum of the BERs as in (4.30)

coincides with the optimum receive and transmit matrices given in (4.13) and (4.14), respectively

(see Table 3.4). Hence, as the factor 1/κ does not have any influence on the SNR exponent, the

diversity gain of any linear MIMO transceiver is upper-bounded by the one provided in Theorem

4.2.

Intuitively, the performance of any linear MIMO transceiver is inherently limited by the

performance of κth strongest channel eigenmode, since the design cost function (see (4.11) for

the minimum BER design) is evaluated for the κ data symbols to be transmitted, regardless

of whether transmission power is allocated to all κ channel eigenmodes during the effective

transmission or not. This reveals that the average BER can be improved by introducing the

parameter κ into the design criterion, as analyzed in the following section.

4.4 MinBER Linear MIMO Transceiver with Adaptive Number of Substreams

In this section we derive the minimum BER design with fixed rate and adaptive constellations

and examine analytically its performance.

4.4.1 Linear Transceiver Design

The precoding process is in this case slightly different from classical linear precoding, where

the number of data symbols to be transmitted per channel use κ is fixed beforehand. In the

following, the parameter κ and the Mκ-dimensional constellations (assumed equal for simplicity)

are adapted to the instantaneous channel conditions to minimize the BER by allowing κ to vary

between 1 and n = min(nT, nR) while keeping the total transmission rate R = κ log2Mκ fixed.

Usually, only a subset K of all n possible values of κ is supported, since the number of bits

per symbol R/κ has to be an integer (see examples in Table 4.1). This simple optimization of κ

suffices to exploit the full diversity of the channel whenever κ = 1 is included in K, as shown in

the next theorem.
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R κ = 1 κ = 2 κ = 3 κ = 4

1 BPSK ? ? ?

2 QPSK BPSK ? ?

3 8-QAM ? ? ?

4 16-QAM QPSK ? BPSK

6 64-QAM 8-QAM QPSK ?

8 256-QAM 16-QAM ? QPSK

Table 4.1 Examples of supported number of active substreams κ and the corresponding modulations for different rates R

(in bits per channel use).

Theorem 4.4. The diversity gain attained by any linear MIMO transceiver with adaptive num-

ber of substreams (assuming that the number of data symbols per channel use is chosen optimally

from the set {1} ⊆ K ⊆ {1, . . . , n}) under the nR×nT MIMO channel models in Definitions 3.1,

3.2, and 3.4 satisfies

Gd,K = nTnR (4.31)

provided that the linear transceiver design reduces to the optimum beamforming scheme for κ = 1.

Proof. The average BER of any linear MIMO transceiver when κ is optimized to minimize the

BER can be upper-bounded using Jensen’s inequality [Gra00, Sec. 12.411] as

BERK(snr) = E{min
κ∈K

BERκ({ρk,κ}κk=1)} ≤ min
κ∈K

E{BERκ({ρk,κ}κk=1} ≤ BER1(snr) (4.32)

where BER1(snr) denotes the average BER obtained for κ = 1. If, in this case, the optimum

beamforming scheme is selected, it follows that

nTnR ≥ Gd,K ≥ Gd,1 = nTnR (4.33)

where we have used Theorem 4.2 for κ = 1. Hence, the full diversity of the channel is achieved.

Observe that a more general setup would also adapt the individual modulations without the

constraint of equal constellations. However, the proposed minBER-adap scheme achieves already

the full diversity of the channel with low complexity. On top of that, not even the minimum
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BER linear transceiver with fixed and unequal constellations can be optimally obtained in closed

form [Pal05b], and this dramatically increases the complexity of the system.

The linear transceiver (Aκ,Bκ) and κ are designed to minimize the BER averaged over the

data symbols to be transmitted for all supported values of κ:

{κ,Aκ,Bκ} = arg min
κ∈K,Aκ,Bκ

BERκ({ρk,κ}κk=1) (4.34)

where Bκ has to satisfy the power-constraint in (4.4) and BERκ({ρk,κ}κk=1) is defined in (4.8). The

optimum linear transceiver (Aκ,Bκ) for a fixed κ and equal constellations has been presented

and analyzed in Section 4.3. Using the resulting BER expression in (4.19), the optimum κ should

be selected as

κ = arg min
κ∈K

ακ
log2Mκ

Q
(√

βκρκ

)
(4.35)

or, neglecting the contribution of ακ/ log2Mκ (since it is not in the argument of the Gaussian

Q-function), as4

κ = arg max
κ∈K

βκρκ (4.36)

where ρκ is given in (4.18).

A similar scheme, named multimode precoder, that adapts the number of substreams under a

fixed rate constraint was proposed in [Lov05b] in the context of limited feedback linear precoding.

Even assuming perfect CSI, the multimode precoder designed in [Lov05b] is still suboptimum,

since it does not perform the rotation to ensure equal BER on all substreams, the power is

uniformly allocated among the established substreams, and parameter κ is suboptimally chosen

as

κ = arg max
κ∈K

βκλκ/κ. (4.37)

A different approach to overcome the diversity limitation of classical linear MIMO transceiver

has been also recently given in [Vri08], where the precoder is designed to maximize the minimum

Euclidean distance between symbols. However, the diversity order is only increased to (nT−κ/2+

1)(nR − κ/2 + 1).

In Figure 4.3 we compare the performance of the proposed minBER-adap scheme, the multi-

mode precoder of [Lov05b], and the optimum minimum BER linear MIMO transceiver of [Pal05b]

4 Numerical simulations do not show appreciable average BER differences between the selection functions in (4.35) and in

(4.36) in the BER region of practical interest (BER << 10−1).
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(ii) nT = 4, nR = 6

Figure 4.3 Simulated average BER of the minBER-adap design (κ = {1, 2, 4}, R = 8), the multimode precoder (κ = {1,2,4},

R = 8), and the optimum minimum BER linear transceiver with an exhaustive search over all possible number of substreams

and QAM constellations such that R = 8 in an uncorrelated Rayleigh fading channel.

combined with an exhaustive search over all possible combinations of number of substreams and

(possibly unequal) modulation orders which satisfy the rate constraint. We have obtained the

average BER performance by numerical simulation in an uncorrelated Rayleigh fading channel,

a target transmission rate of R = 8 bits per channel use, and (i) nT = nR = 4 and (ii) nT = 4,

nR = 6. For the minBER-adap design and the multimode precoder, the number of substreams

has been adapted with K = {1, 2, 4} and the corresponding constellations {256-QAM, 16-QAM,

QPSK} (see Table 4.1), while for the optimum minimum BER system all 11 feasible combinations

of number of substreams {1, 2, 3, 4} and modulations {256-QAM, 128-QAM, 64-QAM, 32-QAM,

16-QAM, 8-QAM, QPSK, BPSK} have been taken into account. As expected, the minBER-adap

design offers a better BER performance than the multimode precoder but it is still outperformed

by the optimum minimum BER linear transceiver. However, this performance improvement over

the proposed scheme does not justify in any case the prohibitive increase of complexity in the

optimum design, which implies numerical linear transceiver design and exhaustive search over

all possible combinations of substreams and modulations.

4.4.2 Analytical Performance

The minimum BER linear transceiver with fixed rate and adaptive constellations has the same

structure as the minBER-fixed design presented in Section 4.3.1 but the number of symbols to
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be transmitted is optimally adapted to minimize the BER. Analogously to Section 4.3.2 for the

minBER-fixed scheme, we analyze in the following theorems the average BER performance of

the minBER-adap design.

Theorem 4.5. The average BER attained by the minimum BER linear transceiver with fixed

rate and equal constellations (assuming that the number of data symbols per channel use is chosen

from the set {1} ⊆ K ⊆ {1, . . . , n} as in (4.36)) under the nR × nT MIMO channel models in

Definitions 3.1–3.4 can be bounded as

BER
(lb)
K (snr) ≤ BERK(snr) ≤ BER

(ub)
K (snr) (4.38)

with

BER
(ub)
K (snr) = min

κ∈K

( ακ
2 log2Mκ

)√snr

2π

∫ ∞
0

e−
λsnr

2

√
λ
F
λ

(ub)
K

(λ)dλ (4.39)

BER
(lb)
K (snr) = max

κ∈K

( ακ
2 log2Mκ

) snr√
2π

∫ ∞
0

e−
λsnr+βK

2

√
λsnr + βK

F
λ

(lb)
K

(λ)dλ (4.40)

where βK = maxκ∈K(κ− 1)βκ and we have defined

λ
(ub)
K = max

κ∈K
(βκλκ/κ) and λ

(lb)
K = max

κ∈K
(κβκλκ). (4.41)

The corresponding cdfs, F
λ

(ub)
K

(·) and F
λ

(lb)
K

(·), can be obtained using Theorem 2.3 with the ex-

pressions for each channel model given in Tables 2.2–2.4.

Proof. See Appendix 4.A.2.

Remark 4.2. Observe that BER
(ub)
K (snr) in (4.39) coincides with the exact average BER per-

formance of the multimode precoder of [Lov05b] except for the factor minκ∈K
(

ακ
2 log2Mκ

)
which is

an upper bound. The corresponding lower bound can be obtained using (4.50) in Appendix 4.A.2.

Theorem 4.6. The average BER attained by the minimum BER linear transceiver with fixed

rate and equal constellations (assuming that the number of data symbols per channel use is chosen

from the set {1} ⊆ K ⊆ {1, . . . , n} as in (4.36)) under the nR × nT MIMO channel models in

Definitions 3.1, 3.2, and 3.4 satisfies

BERK(snr) = (Ga,K · snr)−Gd,K + o
(
snr−Gd,K

)
(4.42)
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Figure 4.4 Simulated average BER of the minBER-adap design and bounds (nT = 4, nR = 4,K = {1, 2, 4},R = 8).

where the diversity gain is given by

Gd,K = nTnR (4.43)

the array gain can be bounded as

G
(lb)
a,K < Ga,K < G

(ub)
a,K (4.44)

with

G
(ub)
a,K =

(
max
κ∈K

( ακ
κ log2Mκ

) a
(ub)
K 2dK√
π(dK + 1)

)−1/(dK,u+1)

(4.45)

G
(lb)
a,K =

(
min
κ∈K

( ακ
log2Mκ

)a(lb)
K I(dK, βK)√
2π(dK + 1)

)−1/(dK+1)

(4.46)

where I(d, β) is defined (3.21) and βK = maxκ∈K(κ − 1)βκ. The parameters {a(ub)
K , dK} and

{a(lb)
K , dK} model the pdfs of λ(ub)

K and λ(lb)
K defined in (4.41). They can be obtained using Theorem

2.5 with the expressions for each channel model given in Tables 2.2 and 2.3.

Proof. The proof follows from using the high-SNR average BER characterizations in Lemma

3.1 and in Corollary 3.1 with the instantaneous SNR bounds derived in the proof of Theorem

4.5.

Theorem 4.6 shows that the minimum BER linear transceiver with fixed rate and equal

constellations effectively exploits the maximum diversity offered by the MIMO channel whenever

κ = 1 is contained in K. In Figure 4.4 we show the average BER performance of the minBER-

adap design and of the average BER bounds derived in Theorem 4.5 in an uncorrelated and
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a semicorrelated Rayleigh fading channel. We have considered the minBER-fixed scheme with

nT = nR = 4, a target transmission rate of R = 8 bits per channel use, and K = {1, 2, 4}. As

expected, the proposed design outperforms the classical minBER-fixed linear transceiver (cf.

Figure 4.2).

4.5 Conclusions and Publications

The linear MIMO transceiver design has been addressed in the literature with the typical under-

lying assumption that the number of data symbols to be transmitted per channel use is chosen

beforehand. In this chapter we have proved that, under this assumption, the diversity order

of any linear MIMO transceiver is at most driven by that of the weakest channel eigenmode

employed, which can be far from the diversity intrinsically provided by the channel. Based on

this observation, we have fixed the rate (instead of the number of data symbols) and we have

optimized the number of substreams and constellations jointly with the linear precoder. This

procedure implies only an additional optimization stage upon the classical design which suffices

to extract the full diversity of the channel. Since the ultimate performance of a communication

system is given by the BER, we have focused on the minimum BER design. Nevertheless, a

similar procedure holds for any of the practical linear MIMO transceiver designs presented in

Section 3.8. The implications of the proposed optimization have been then illustrated by means

of analytical performance analysis of the minimum BER linear MIMO transceiver with fixed

and with adaptive number of substreams.

The main results contained in this chapter regarding the minimum BER linear MIMO

transceiver design and performance analysis have been published in one journal paper and two

conference papers:

[Ord07c] L. G. Ordóñez, D. P. Palomar, A. Pagès-Zamora, and J. R. Fonollosa, “On equal

constellation minimum BER linear MIMO transceivers”, Proc. IEEE Int. Conf. on

Acoustics, Speech, and Signal Processing (ICASSP), vol. III, pp. 221–224, Apr. 2007.

[Ord07a] L. G. Ordóñez, A. Pagès-Zamora, and J. R. Fonollosa, “On the design of minimum

BER linear MIMO transceivers with perfect or partial side channel state informa-

tion”, Proc. IST Summit on Mobile and Wireless Comm., pp. 1–5, July 2007.
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[Ord09b] L. G. Ordóñez, D. P. Palomar, A. Pagès-Zamora, and J. R. Fonollosa, “Minimum

BER linear MIMO transceivers with optimum number of substreams”, accepted in

IEEE Trans. Signal Processing , Jan. 2009.
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4.A Appendix: Performance of Minimum BER Linear MIMO Transceivers

4.A.1 Proof of Theorem 4.1

Proof. The instantaneous SNR of the minBER-fixed design in (4.18) can be bounded as (see

proof of Proposition 3.3 in Appendix 3.C.3)

λκsnr/κ < ρκ < κλκsnr + (κ− 1). (4.47)

The proof follows then from calculating the average BER attained with the bounds in (4.47):

BER
(ub)
κ (snr) =

ακ
log2Mκ

∫ ∞
0
Q
(√

βκλsnr/κ
)
fλκ (λ) dλ (4.48)

BER
(lb)
κ (snr) =

ακ
log2Mκ

∫ ∞
0
Q
(√

βκ(κλsnr + (κ− 1))
)
fλκ (λ) dλ. (4.49)

Finally, using integration by parts (see details in the proof of Theorem 3.1), we can rewrite

(4.48) and (4.49) in terms of the cdf of of the κth largest eigenvalue, Fλκ(·), and this completes

the proof.

4.A.2 Proof of Theorem 4.5

Proof. The average BER of the minBER-adap design with κ chosen from K as in (4.36) can be

bounded as

min
κ∈K

( ακ
log2Mκ

)
B̃ERK(snr) ≤ BERK(snr) ≤ max

κ∈K

( ακ
log2Mκ

)
B̃ERK(snr) (4.50)

where B̃ERK(snr) is

B̃ERK(snr) =
∫ ∞

0
Q (
√
ρ) fρK(ρ)dρ (4.51)

we have defined ρK = maxκ∈K(βκρκ), and fρK(·) denotes its pdf. Using the bounds of the

instantaneous SNR ρκ in (4.47), it holds that

max
κ∈K

(κβκλκ)snr + max
κ∈K

βκ(κ− 1) ≥ max
κ∈K

(κβκλκsnr +βκ(κ− 1)) > ρK > max
κ∈K

(βκλκ/κ)snr. (4.52)

Let us define λ(ub)
K = maxκ∈K(βκλκ/κ) and λ

(lb)
K = maxκ∈K(κβκλκ) and denote their pdf by

f
λ

(ub)
K

(·) and f
λ

(lb)
K

(·), respectively. The proof follows then from calculating the average BER

attained with the bounds in (4.52) and combining them with (4.50):

BER
(ub)
K (snr) = max

κ∈K

( ακ
log2Mκ

)∫ ∞
0
Q
(√

λsnr
)
f
λ

(ub)
K

(λ) dλ (4.53)

BER
(lb)
K (snr) = min

κ∈K

( ακ
log2Mκ

)∫ ∞
0
Q
(√

λsnr + βK

)
f
λ

(lb)
K

(λ) dλ. (4.54)
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Finally, we can rewrite (4.53) and (4.54) in terms of the cdfs F
λ

(ub)
K

(·) and F
λ

(lb)
K

(·), respec-

tively, using again integration by parts (see details in the proof of Theorem 3.1).
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Spatial Multiplexing MIMO Systems with CSI:

Diversity and Multiplexing Tradeoff

Following the seminal work of Zheng and Tse, this chapter investigates the fundamental diver-

sity and multiplexing tradeoff of spatial multiplexing multiple-input multiple-output (MIMO)

systems in which knowledge of the channel state at both sides of the link is employed to transmit

independent data streams through the channel eigenmodes. First, the fundamental diversity and

multiplexing tradeoff of each of the individual substreams is obtained and this result is then used

to derive a tradeoff optimal scheme for rate allocation among channel eigenmodes. The tradeoff

of spatial multiplexing is finally compared to the fundamental tradeoff of the MIMO channel

and to the tradeoff of both space only codes and V-BLAST which do not require channel state

information at the transmit side.

155
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5.1 Introduction

The usual performance characterization of a communication scheme based on computing the

average error probability as a function of the signal-to-noise ratio (SNR) for a fixed data rate,

may not be appropriate when comparing several systems with different data rates. In order to

compare these schemes fairly, Forney and Ungerboeck proposed in [For98] to plot the average

error probability against the normalized SNR, defined as the nominal SNR divided by the SNR

needed to achieved the actual data rate as predicted by the channel capacity formula. Under

this philosophy, the performance of a system could be also evaluated alternatively by obtaining

the average error probability as function of the data rate, for a fixed SNR level. Analogously,

the data rate should be normalized by the capacity of the channel to take into account the

effect of the SNR. Based on these considerations, Zheng and Tse proposed a new framework for

comparison among MIMO systems [Zhe03], in which the performance is characterized by the

tradeoff between the diversity and multiplexing gains when both, the SNR and the transmission

rate, increase without bound.

Indeed, Zheng and Tse showed in [Zhe03] that both diversity and multiplexing gains can be

simultaneously obtained, but there is a fundamental tradeoff between how much of each type

of gain any coding scheme can extract. The main result of [Zhe03] is a simple characterization

of the optimal tradeoff curve between diversity and spatial multiplexing gains for any coding

scheme when perfect channel state information (CSI) is available only at the receiver. This

tradeoff framework does not only enlighten the fundamental limits of MIMO channels but also

provides a very interesting procedure to compare the performance of existing diversity-based

and multiplexing-based practical MIMO schemes by jointly analyzing their reliability and rate

accommodation properties.

In this chapter we deal with the diversity and multiplexing tradeoff of MIMO systems with

perfect CSI at the transmitter (CSI-T) and at the receiver (CSI-R)1 in contrast to [Zhe03], where

only perfect CSI-R is assumed. More specifically, we concentrate on spatial multiplexing MIMO

systems, which divide the incoming data stream into multiple independent substreams without

any temporal coding of the data symbols. When the transmitter is not aware of the channel

realization, each substream is transmitted on a different antenna, such as the well-known V-

1 The combination of CSI-T and CSI-R is henceforth referred to as just CSI.
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BLAST scheme [Fos99]. However, when perfect CSI-T is available, performance can be further

improved by transmitting the established substreams through the strongest channel eigenmodes.

The resulting spatial multiplexing MIMO system with CSI is optimal in the sense of achieving

the ergodic channel capacity [Tel99], and also arises in the joint linear transmitter-receiver design

of practical MIMO systems, e.g., [Lee76,Sal85,Yan94b,Sca99,Sam01,Sca02b,Ong03,Pal03].

The approach we adopt in this chapter is to analyze the individual diversity and multiplexing

tradeoff curves of the channel eigenmodes. Then, the fundamental diversity and multiplexing

tradeoff of spatial multiplexing MIMO systems with CSI is obtained by deriving the optimum

rate allocation policy among these channel eigenmodes.

The rest of the chapter is organized as follows. Section 5.2 is devoted to introducing the

system and MIMO channel model and Section 5.3 to briefly reviewing the diversity and mul-

tiplexing tradeoff framework. Section 5.4 describes the signal model corresponding to spatial

multiplexing MIMO systems with CSI and motivates their analysis. In Section 5.5 we obtain

the individual tradeoff curves of the different channel eigenmodes. Section 5.6 provides the fun-

damental diversity and multiplexing tradeoff of spatial multiplexing systems with CSI, which

is compared to the fundamental limits offered by the channel in Section 5.7. Finally, the last

section summarizes the main results of the chapter and provide the list of publications where

they have been presented.

5.2 Preliminaries

5.2.1 System Model

We consider a wireless communication system with nT transmit and nR receive antennas, in

which the channel matrix H remains constant within a block of T symbols, i.e., the block length

is significantly smaller than the channel coherence time. In this situation, the received signal

within one block can be gathered in an nR × T matrix Y related to the nT × T transmitted

matrix X as

Y = HX + W (5.1)

where W is the additive white Gaussian noise and has i.i.d. entries with zero mean and unit

variance, [W]ij ∼ CN (0, 1). The transmitted signal X is normalized forcing the transmit power
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per channel use to satisfy
1
T

E
{
‖X‖2F

}
≤ snr (5.2)

where snr is the average SNR at each receive antenna.

In the work by Zheng and Tse [Zhe03], the channel is assumed to be perfectly known at

the receiver only. In contrast, we focus on the situation where the instantaneous channel gains

are perfectly known at both transmitter and receiver, so that the transmitter can adapt its

transmission strategy relative to the instantaneous channel state under the short-term power

constraint in (5.2).

5.2.2 MIMO Channel Model

Recall that the MIMO channel with nT transmit and nR receive dimensions is described by an

nR × nT channel matrix H, whose (i, j)th entry characterizes the propagation path between

the jth transmit and the ith receive antenna. In wireless communications, the large number

of scatters in the channel that contributes to the signal at the receiver results in Gaussian

distributed channel matrix coefficients. Analogously to the single antenna channel, this model is

referred to as MIMO Rayleigh or Rician fading channel, depending whether the channel entries

are zero-mean or not. In this chapter we adopt the uncorrelated Rayleigh, the min-semicorrelated

Rayleigh, and the uncorrelated Rician MIMO channel models introduced in Definitions 3.1, 3.2,

and 3.4, respectively (see Section 3.3 for details).

5.2.3 Spatial Diversity and Spatial Multiplexing

The traditional role of multiple antennas was to provide spatial diversity to overcome channel

fading by supplying the receiver with several independently faded replicas of the transmitted

signal and, thus, increasing the link reliability. A MIMO channel with nT transmit and nR receive

antennas has a maximal diversity order of nTnR, since there are a maximum of nTnR random

fading coefficients to be averaged over in the reception process of one symbol. Mathematically,

we define the diversity gain as the slope of the average error probability versus SNR curve at

high SNR, i.e., the SNR exponent of the average error probability.

Additionally, the simultaneous use of multiple antennas at the transmitter and receiver en-
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ables also the exploitation of multiple parallel channels which can operate independently. This

property is a consequence of the MIMO channel ergodic capacity which can be approximated in

the high-SNR regime as [Fos98]:

C(snr) ≈ min{nT, nR} log (snr) . (5.3)

The channel capacity increases with the SNR as log(snr) with the prelog factor min{nT, nR},

in contrast to the prelog factor 1 corresponding to SISO channels. In order to achieve a certain

non-trivial fraction of the capacity in the high-SNR regime, we consider schemes that support

a data rate which also increases with the SNR. Hence, we define a scheme as a family of codes

{C(snr)} of block length T, which employs a different code C(snr) for each SNR level. Let R(snr)

be the rate of a code C(snr), then a coding scheme is said to achieve a spatial multiplexing gain

r if the supported data rate can be approximated in the high-SNR regime as

R(snr) ≈ r log snr. (5.4)

These intuitive definitions regarding spatial diversity and spatial multiplexing gain can be for-

malized as follows.

Definition 5.1. A MIMO coding scheme {C(snr)} is said to achieve a spatial multiplexing gain

r and a diversity gain d if the data rate satisfies

lim
snr→∞

R(snr)
log snr

= r (5.5)

and the error probability follows2

lim
snr→∞

log Pe(R(snr))
log snr

= −d. (5.6)

For each r, we define d?(r) to be the supremum of the diversity gain achieved over all schemes.

Notation: Let us define the symbol .= to denote exponential equality, i.e., Pi(snr) .= Pj(snr)

denotes

lim
snr→∞

log Pi(snr)
log snr

= lim
snr→∞

log Pj(snr)
log snr

. (5.7)

2 This definition (introduced in [Zhe03, Def. 1]) differs from the standard definition of diversity gain widely used in the MIMO

(see Section 3.2.4) and space-time coding literature (see e.g. [Tar98]) in the fact that we consider the error probability of

a family of coding schemes {C(snr)}, which employs a different code for each SNR level, instead of considering the error

probability of a fixed coding scheme.
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The symbols
.
≥ and

.
≤ are similarly defined. Hence, equation (5.6), for instance, can be expressed

as

Pe(R(snr)) .= snr−d. (5.8)

5.3 Fundamental Diversity and Multiplexing Tradeoff

5.3.1 Fundamental Diversity and Multiplexing Tradeoff with Perfect CSI-R

The design of MIMO systems has been traditionally tackled from two different perspectives:

either the maximization of the diversity gain (to increase the transmission reliability) or the

maximization of the spatial multiplexing gain (to approach the capacity limits). The diversity

and multiplexing tradeoff was conceived as a unified framework to deal simultaneously with both

design criteria. In fact, given a MIMO channel, both gains can be simultaneously obtained, and

the fundamental tradeoff curve shows how much of each one any coding scheme can potentially

extract or, equivalently, it provides the fundamental relation between the error probability and

the normalized data rate in a system.

The tradeoff curve in [Zhe03] is based on analyzing the behavior of the error probability

Pe(R) as function of the data rate R in the high-SNR regime by deriving tight (exponentially

equal) upper and lower bounds. In particular, the lower bound is given by the outage probability,

denoted by Pout(R) and defined as the probability that the mutual information between the input

and the output of the channel is smaller than the data rate R [Oza94,Cai99,Big01]. On the other

hand, the upper bound is obtained by conditioning the error probability on the outage event as

Pe(R) = Pout(R)Pr(error|outage) + Pr(error, no outage) (5.9)

≤ Pout(R) + Pr(error,no outage). (5.10)

The second term in (5.10) can be upper-bounded by the pairwise error probability averaged over

the non-outage channel states and the resulting SNR exponent coincides with that of the lower

bound whenever the coding length T satisfies

T ≥ nT + nR − 1. (5.11)

This illustrates that, under the condition in (5.11), the typical error occurrence is caused by the

channel outage event. The resulting tradeoff curve is given in the following lemma and plotted

in Figure 5.1.
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Figure 5.1 Fundamental diversity and multiplexing tradeoff of MIMO channels with perfect CSI-R.

Lemma 5.1 ([Zhe03, Thm. 2]). Consider the MIMO system in (5.1) with perfect CSI-R only.

The fundamental diversity and multiplexing tradeoff d?(r) in an uncorrelated Rayleigh nR × nT

MIMO fading channel (see Definition 3.1) is given by the piecewise-linear function connecting

the points

(k, d?(k)) k = 0, 1, . . . ,min{nT, nR} (5.12)

where

d?(k) = (nT − k) (nR − k) (5.13)

whenever the coding block length condition in (5.11) is satisfied.

If the block length does not fulfill (5.11), the given upper bound can not be guaranteed to

be tight anymore, since the outage occurrence is not the dominant event in the probability of

error. Hence, we have to take into account the three circumstances leading to a detection error:

(i) the channel matrix is atypically ill-conditioned, (ii) the additive noise is atypically large, and

(iii) some codewords are atypically close together. When the block length is finite and satisfies

(5.11), the two last events are averaged out and the probability of error is dominated by the

bad channel occurrence. Otherwise, all three events come into play and the optimal tradeoff

curve can be only partially obtained. In any case, the fundamental tradeoff given in Lemma 5.1

provides an upper-bound for the tradeoff achievable by any coding scheme with T < nT +nR−1.

In particular, when T = 1 (space-only coding schemes), tight bounds on the average error
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probability can be derived. The tradeoff curve is indeed completely characterized in [Zhe03]

when no CSI-T is available. This case is of particular interest in this chapter, since we analyze

spatial multiplexing schemes with CSI which do not perform any temporal encoding strategy,

and, thus, it is introduced in Section 5.7 for comparison purposes.

The fundamental tradeoff of the channel originally derived in [Zhe03] and presented in Lemma

5.1 only holds for uncorrelated Rayleigh MIMO channels. This results have been however gener-

alized in the literature for many different channel models [Cha06,Poo06,Cor07,Zha07,Shi08]. In-

terestingly, [Zha07] extend Lemma 5.1 to more general fading conditions, which include Rayleigh,

Rician, Nakagami-m, Weibull, and Nakagami-q i.i.d. distributed fading coefficients. The effects

of correlation and nonidentical distribution among the channel elements are also included in the

analysis of [Zha07].

Remark 5.1 ([Zha07, Thm. 2, Thm. 3, and Cor. 3]). The fundamental diversity and multiplexing

tradeoff in Lemma 5.1 also holds for the semicorrelated Rayleigh and uncorrelated Rician MIMO

fading channel models (see Definitions 3.2 and 3.4).

5.3.2 Fundamental Diversity and Multiplexing Tradeoff with Perfect CSI

The diversity and multiplexing tradeoff is still a meaningful framework when perfect CSI-T is

also available. For instance, it is useful to analyze the performance of delay limited systems in

which the data rate cannot depend on the channel variations except in outage states, where the

channel cannot support the desired rate and the data to be transmitted is lost. In fact, during

outages the wisest strategy is to stop transmission and do not waste power (see [Big01, Rem. 3])

but, of course, generating unrecoverable errors at the receiver.

When the channel is perfectly known at the transmitter, the coding strategy can be adapted

to the instantaneous channel state by properly tuning the input distribution. As in [Zhe03], the

input distribution can be taken to be Gaussian with a covariance matrix R , R(H), where the

optimum R maximizes the mutual information, i.e.,

R? = arg max
R≥0,tr(R)≤snr

log det(InR
+ HRH†). (5.14)
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Then, the outage probability [Big01, Def. 2]

Pout(R) = inf
R≥0,tr(R)≤snr

Pr
(

log det(InR
+ HRH†) ≤ R

)
(5.15)

= Pr
(

log det(InR
+ HR?H†) ≤ R

)
(5.16)

can be upper-bounded by choosing

R(ub) =
snr

nT
InT

(5.17)

without exploiting the available CSI-T and lower-bounded by choosing

R(lb) = snrInT
(5.18)

since (snrInT
−R?) ≥ 0, due to the short-term power constraint in (5.2), and this implies that

log det(InR
+ snrH†H) ≥ log det(InT

+ snrHR?H†). Both bounds were shown in [Zhe03] to be

tight and the corresponding exponent was derived. Finally, using Fano’s inequality, the outage

probability was shown to provide a lower bound on the error probability in the high-SNR regime,

independently of R.

In consequence, the fundamental tradeoff presented in [Zhe03] for T ≥ nT + nR − 1 holds

for any R bounded by (5.3.2) and (5.18) with or without CSI-T. This result is not surprising,

since the diversity and multiplexing tradeoff framework focuses on the high-SNR regime, where

the system is degree-of-freedom limited [Zhe03] and, thus, the additional power gain obtained

by adapting R to the instantaneous channel does not modify the fundamental tradeoff of the

channel whenever T ≥ nT + nR − 1.

5.4 Spatial Multiplexing MIMO Systems with CSI

5.4.1 Signal Model

Let us consider the block-fading MIMO system presented in (5.1), i.e.,

Y = HX + W. (5.19)

Following the singular value decomposition (SVD), the channel matrix H can be expressed as

H = U
√

ΛV† (5.20)
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where U ∈ CnR×nR and V ∈ CnT×nT are unitary matrices, and
√

Λ ∈ RnR×nT is a diagonal3

matrix containing the singular values of H sorted in descending order. Assuming that perfect

CSI is available, we can rewrite the signal model in (5.19) without loss of generality as

Ŝ =
√

ΛS + N (5.21)

where Ŝ = U†Y, S = V†X, and N = U†W with i.i.d. Gaussian entries with zero mean

and unit variance, i.e., [N]i,j ∼ CN (0, 1), as the distribution of W is invariant under unitary

transformations [Tul04, Ex. 2.4]. Since E
{
‖X‖2F

}
= E

{
‖S‖2F

}
, the power constraint in (5.2) can

be equivalently expressed in terms of S as

1
T

E
{
‖S‖2F

}
≤ snr (5.22)

where snr is the average SNR per receive antenna. Henceforth, we restrict our attention to spatial

multiplexing MIMO systems with CSI, as formalized in the following assumptions.

Assumption 5.1. The t-th transmitted vector, denoted by st ∈ CnT, within a given block S =

[s1 s2 · · · sT] is generated independently from all other transmitted vectors in S, {si}Ti=1, i 6=t, or,

equivalently, coding is performed only across space.

In this sense, we can restrict our attention to the case T = 1, although our results hold for

any given block length T <∞.

Assumption 5.2. Let κ ≤ min{nT, nR} i.i.d., zero-mean, and unit energy data symbols, denoted

by {zk}κk=1, be transmitted per channel use, such that (omitting the index t within a block):

s =
√

Pκzκ (5.23)

where zκ ∈ Cκ gathers the κ data symbols, and Pκ , Pκ(H) ∈ RnT×κ is a non-negative matrix

whose off-diagonal entries are zero and the κ nonzero diagonal entries, {pk , [Pκ]k,k}κk=1,

contain the power allocated among the κ established substreams and satisfy
κ∑
k=1

pk ≤ snr (5.24)

due to the power constraint in (5.22).

3 We call this matrix diagonal even though it may be not square.
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The signal model corresponding to spatial multiplexing MIMO systems with CSI (see As-

sumptions 5.1 and 5.2) is then given by

ŝ =
√

ΛPκzκ + n (5.25)

or, component-wise,4

ŝk =
√
λkpkzk + nk for k = 1, . . . , κ (5.26)

where λk is the kth ordered (λ1 ≥ · · · ≥ λκ) eigenvalue of H†H (squared modulus of the kth

channel singular value) and nk is the kth component of the noise vector n.

5.4.2 Motivation of Spatial Multiplexing MIMO system with CSI

The analysis of spatial multiplexing MIMO systems with CSI is mainly motivated by their

optimality in terms of the channel capacity. Telatar showed in [Tel99] that the ergodic MIMO

channel capacity with perfect CSI can be achieved by splitting the incoming data stream into

min{nT, nR} substreams, coding these substreams separately using i.i.d. Gaussian codes, and

waterfilling the available transmit power as

pk =
(
µ− λ−1

k

)+ for k = 1, . . . ,min{nT, nR} (5.27)

where the water level µ is selected to satisfy the power constraint in (5.24) with equality. Note

that this scheme can be described using the general signal model of spatial multiplexing MIMO

systems in (5.26) with κ = min{nT, nR} and the power allocation given in (5.27).

It is worth pointing out that, sacrificing the low-complexity of the previous coding strategy

(and the low-complexity of the corresponding optimum decoding), one can approach capacity

with lower error probabilities using multidimensional codes, as can be inferred from the theory

of error exponents of parallel channels [Gal68, Sec. 7.5]. As it will be seen in Section 5.7, this

fact has important consequences in terms of the diversity and multiplexing tradeoff5 achievable

by spatial multiplexing MIMO schemes with perfect CSI.

However, the motivation behind the analysis of spatial multiplexing MIMO systems with

CSI is not only supported by their optimality from the channel capacity point-of-view. Let us

4 Observe that {ŝk}
nR
k=κ+1 only contain noise.

5 The similitudes and differences between the theory of error exponents and the diversity and multiplexing tradeoff framework

are investigated in [Zhe03, Sec. VI].
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Figure 5.2 Linear MIMO transceivers system model.

assume that the ideal Gaussian codes are substituted with practical constellations (e.g. QAM)

and that the MIMO system is equipped with a linear transmitter Bκ ∈ CnT×κ and a linear

receiver Aκ ∈ CnR×κ (linear transceiver) as shown in Figure 5.2. The resulting signal model is

given by

ẑκ = A†κ(HBκzκ + w) (5.28)

where ẑκ ∈ Cκ is the estimated data vector and zκ ∈ Cκ contains the κ data symbols as in

(5.23). The uncoded linear transceiver optimization with perfect CSI, i.e., the joint optimization

of Aκ and Bκ in (5.28) subject to the short term power constraint (equivalent to (5.24))

tr
(
BκB†κ

)
≤ snr (5.29)

has been largely studied in the literature under practical design criteria based on performance

measures such as the SNR, the mean square error (MSE), or the bit error rate (BER), e.g.,

[Lee76,Sal85,Yan94b,Yan94a,Sca99,Sam01,Sca02b,Ong03,Pal03,Din03a,Pal07]. In most cases

(see details in Section 5.5.3) the optimum strategy results in transmitting the κ independent

data substreams through the κ strongest eigenmodes with a particular power allocation that

depends on the specific design criterion. Hence, most of the linear MIMO transceiver designs

proposed in the literature satisfy Assumptions 5.1 and 5.2 and, hence, can be also expressed as

in (5.26).

5.5 Diversity and Multiplexing Tradeoff of the Individual Substreams

In this section we analyze the diversity and multiplexing tradeoff behavior of each individual

substream transmitted in parallel through the channel eigenmodes, given the spatial multiplexing

signal model presented in the previous section. We focus first on the capacity-achieving solution

and derive the fundamental tradeoff of each individual MIMO eigenchannel. Then, we extend

our analysis to include a more general class of power allocation policies and show that the given



5.5. Diversity and Multiplexing Tradeoff of the Individual Substreams 167

individual diversity and multiplexing tradeoff curves also hold for some interesting practical

linear transceiver designs.

5.5.1 Capacity-Achieving Spatial Multiplexing MIMO System with CSI

Let us consider the spatial multiplexing MIMO system in (5.26) with the power allocation

{pk}κk=1 given by the capacity-achieving waterfilling in (5.27). Following the same procedure as

in [Zhe03], the diversity and multiplexing tradeoff can be derived by bounding the individual

error probability of the kth substream, Pe
(k)(Rk), as

Pout
(k)(Rk) ≤̇ Pe

(k)(Rk) ≤̇ PEP(k)(Rk) (5.30)

where Pout
(k)(Rk) denotes the outage probability and PEP(k)(Rk) denotes the pairwise error

probability averaged over the non-outage channel states (see (5.10)) of the kth substream. The

outage probability is given by [Tse05, Sec. 5.4]

Pout
(k)(Rk) = Pr (log(1 + pkλk) ≤ rk log snr) (5.31)

where 0 ≤ rk ≤ 1 can not possibly exceed the value of 1, since it represents the rate of the kth

eigenchannel in which capacity scales as log(1+pkλk). The short-term power constraint in (5.24)

implies that pk ≤ snr and, hence, Pout
(k)(Rk) can be lower-bounded with the outage probability

obtained when allocating all available power to the kth substream independently of the channel

state:

Pout
(k)(Rk) ≥ Pr (log(1 + snrλk) ≤ rk log snr) (5.32)

≥̇ Pr
(
λk ≤ snrrk−1

)
. (5.33)

On the other hand, the pairwise error probability PEP(k)(Rk) can be upper-bounded by

substituting the ideal Gaussian codes with some suboptimal coding strategy. Let us assume, for

instance, that the data symbols are drawn from a QAM constellation of size snrrk in order to

sustain a data rate of Rk = rk log snr. Hence, the minimum distance between symbols is snr−rk/2.

The pairwise error probability between two arbitrary symbols transmitted in the kth substream

satisfies6 [Zhe03, Sec. VII.A]

PEP(k)(Rk)
.= Pr

(√
pkλk

2
snr−rk/2 < 1

)
. (5.34)

6 The only difference with [Zhe03] is that in our case the channel power gain is λk instead of ‖H‖2F.
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In order to take into account the waterfilling mechanism, we rewrite (5.34) as

PEP(k)(Rk) ≤̇ Pr

(√
pkλk

2
snr−rk/2 < 1

∣∣∣pk > 0
)

(1− Pr(pk = 0)) + Pr(pk = 0) (5.35)

≤ Pr

(√
pkλk

2
snr−rk/2 < 1

∣∣∣pk > 0
)

+ Pr(pk = 0) (5.36)

and the upper bound in (5.36) is shown in Appendix 5.A.1 to satisfy

Pr

(√
pkλk

2
snr−rk/2 < 1

∣∣∣pk > 0
)

+ Pr(pk = 0) ≤̇ Pr
(
λk ≤ snrrk−1

)
. (5.37)

Finally, combining (5.33) and (5.37) we conclude that

Pr(λk ≤ snrrk−1) ≤̇ Pe
(k)(Rk) ≤̇ Pr(λk ≤ snrrk−1) (5.38)

and, hence,

Pe
(k)(Rk)

.= Pr(λk ≤ snrrk−1). (5.39)

The resulting individual diversity and multiplexing tradeoff curves are characterized in the fol-

lowing theorem and plotted in Figure 5.3.

Theorem 5.1. Consider a spatial multiplexing MIMO system with CSI (see Assumptions 5.1

and 5.2) and consider that the power allocated to the substream transmitted through the kth

ordered channel eigenmode is given by the capacity-achieving waterfilling, i.e., pk =
(
µ− λ−1

k

)+.

The individual diversity and multiplexing tradeoff d
(k)
S (r) of the substream transmitted through

the kth eigenmode of the nR × nT MIMO channels in Definitions 3.1, 3.2, and 3.4 is given by

d
(k)
S (rk) = dk(1− rk) 0 ≤ rk ≤ 1 (5.40)

where dk is defined as

dk = (nT − k + 1)(nR − k + 1). (5.41)

Proof. See Appendix 5.A.2.

Note that the individual diversity and multiplexing tradeoff curves presented in Theorem 5.1

are, in fact, the fundamental tradeoff curves of the eigenmodes of the adopted nR × nT MIMO

channel models.
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Figure 5.3 Fundamental diversity and multiplexing tradeoff of the MIMO channel eigenmodes.

5.5.2 General Spatial Multiplexing MIMO Systems with CSI

Let us now consider a spatial multiplexing MIMO system with CSI such that the power allocated

to the kth substream is a function of the SNR and possibly a function of the κ strongest channel

eigenvalues, i.e, pk = gk(λ1, . . . , λκ, snr), and satisfies the short-term power constraint in (5.24).

We also assume that there exits a deterministic strictly positive quantity, φk, such that

Pr (pk ≤ φksnr) ≤̇ Pout
(k)(Rk). (5.42)

This condition ensures that the power allocation does not inherently limit the achievable in-

dividual tradeoff either by allocating with large probability zero or a small amount of power

in terms of the SNR. Observe that, due to the short-term power constraint, it is not possible

to design a power allocation which privileges the individual tradeoffs of some substreams by

penalizing the tradeoffs of the remaining substreams. The individual diversity and multiplexing

tradeoff curves given in Theorem 5.1 for the capacity-achieving waterfilling also hold for this

general power allocation policy as presented in the following corollary.

Corollary 5.1.1. Consider a spatial multiplexing MIMO system with CSI (see Assumptions

5.1 and 5.2) and consider that the power allocated to the substream transmitted through the kth

ordered channel eigenmode is given by pk = gk(λ1, . . . , λκ, snr) under the condition in (5.42)

and the short-term power constraint in (5.24). The individual diversity and multiplexing tradeoff
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d
(k)
S (r) of the substream transmitted through the kth eigenmode of the nR × nT MIMO channels

in Definitions 3.1, 3.2, and 3.4 is given by

d
(k)
S (rk) = dk(1− rk) 0 ≤ rk ≤ 1 (5.43)

where dk is defined in Theorem 5.1.

Proof. See Appendix 5.A.3.

Corollary 5.1.1 shows that the power allocated to an individual substream (under a short-

term power constraint) cannot improve the SNR exponent of the error probability, which is on

the contrary fixed by the order of the channel eigenmode used for communication.

5.5.3 Practical Spatial Multiplexing MIMO Systems with CSI

In Section 5.4.2 we introduced linear MIMO transceivers as a practical implementation of spatial

multiplexing systems with CSI. Palomar developed in [Pal03] a unifying framework, in which the

design problem of linear MIMO transceivers under perfect CSI is formulated as the minimization

of some cost function of the MSEs of the individual substreams, since the other common practical

system quality measures such as the SNR, or the BER can be easily related to the MSEs. More

exactly, the optimum transmit matrix Bκ and receive matrix Aκ (see (5.28)) are obtained as

{Aκ,Bκ} = arg min
Aκ,Bκ

f0 ({msek}κk=1) (5.44)

subject to tr
(
BκB†κ

)
≤ snr (5.45)

where f0 (·) denotes the design cost function and msek is the kth diagonal element of the MSE

matrix E = E
{

(ẑκ − zκ)(ẑκ − zκ)†
}

. In particular, [Pal03] shows that the optimum linear re-

ceiver is always given by the MMSE solution [Pal03, eq. (7)]:

Aκ =
(
HBκB†κH

† + InR

)−1
HBκ (5.46)

and provides the optimum linear transmitter for the class of Schur-concave and Schur-convex cost

functions. Interestingly, this framework embraces most of the linear transceiver schemes previosly

proposed in the literature, e.g., [Lee76,Sal85,Yan94b,Yan94a,Sca99,Sam01,Sca02b,Din03a].

In the case of Schur-concave cost functions (see Tables 3.2 and 3.3 for a list of design criteria),

the optimum transmit strategy establishes κ independent data streams through the κ strongest
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channel eigenmodes with a power allocation that depends on the particular cost function [Pal03,

eq. (14)]:

Bκ = Uκ

√
Pκ (5.47)

where Uκ ∈ CnT×κ has as columns the eigenvectors of H†H corresponding to the κ largest

eigenvalues and Pκ ∈ Cκ×κ is a diagonal matrix containing the power allocation policy {pk}κk=1.

For instance, when the design criterion is the minimization of the product of MSEs, the optimum

power allocation is given by the capacity-achieving waterfilling in (5.27) [Pal03, eq. (24)]. When

the focus is on the minimization of the weighted sum of MSEs, the optimum power allocation

is given by [Pal03, eq. (22)]

pmse,k =
(
µω

1/2
k λ

−1/2
k − λ−1

k

)+
for k = 1, . . . , κ (5.48)

where ωk is a strictly positive constant (weight) and µ is chosen to fulfill the power constraint

in (5.45), and when it is on the maximization of the weighted product of SNRs, the optimum

power allocation is given by [Pal03, eq. (40)]

psnr,k =
ωk∑κ
i=1 ωi

snr for k = 1, . . . , κ (5.49)

where {ωk}κk=1 is a strictly positive constant (weight). In the following propositions we show

that the power allocation policies in (5.48) and (5.49) satisfy the conditions of Corollary 5.1.1.

Observe that the optimum power allocation for the design criteria in Tables 3.2 and 3.3 is given

by (5.27), (5.48), or (5.49). Hence, all these practical linear MIMO transceivers are included in

our analysis using either Theorem 5.1 or Corollary 5.1.1.

Proposition 5.1. The power allocation that minimizes the weighted sum of MSEs given in

(5.48) satisfies the conditions of Corollary 5.1.1.

Proof. See Appendix 5.B.

Proposition 5.2. The power allocation that maximizes the weighted product of SNRs given by

(5.49) satisfies the conditions of Corollary 5.1.1.

Proof. The power allocation in (5.49) is channel non-dependent and, thus, the condition in (5.42)

is directly satisfied.
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Finally, since the linear transceivers of (5.28) with Aκ and Bκ as given in (5.46) and (5.47),

respectively, can be described by the general signal model presented in (5.26) for spatial multi-

plexing MIMO system with CSI (see Section 3.8.1 for details), it follows that the tradeoff curves

given in Corollary 5.1.1 also characterize the individual substreams of practical linear transceiver

designed under Schur-concave cost functions.

In the case of Schur-convex cost functions (see Table 3.4 for a list of design criteria), however,

the optimum transmit strategy transmits a unitary transformation of the κ independent data

streams through the κ strongest channel eigenmodes [Pal03, eq. (14)]:

Bκ = Uκ

√
PκQκ (5.50)

where Uκ and Pκ are defined as in (5.47), and Qκ ∈ Cκ×κ is a unitary matrix such that all κ

substreams experience the same equivalent channel (see [Pal03] for details). Furthermore, the

optimum power allocation is always given by (5.48). Schur-convex cost functions appear, for

instance, in the minimization of the maximum of the MSEs, or in the minimization of the sum

of BERs (under equal constellations). These schemes cannot be described by the signal model

in (5.26), since the individual data symbols are not transmitted in parallel through the channel

eigenmodes and, hence, Corollary 5.1.1 cannot be applied.

5.6 Diversity and Multiplexing Tradeoff of Spatial Multiplexing Systems with CSI

In the previous section we derived the SNR exponent of the error probability associated to the

individual substreams transmitted in parallel through the channel eigenmodes when using the

capacity-achieving waterfilling or a general power allocation that satisfies the condition in (5.42).

Based on this result, we obtained the individual diversity and multiplexing tradeoff curves of

the established substreams in Theorem 5.1 and Corollary 5.1.1, respectively. In contrast, in

this section we are interested in the global diversity and multiplexing tradeoff of the spatial

multiplexing MIMO system with CSI that results from the combination of these individual

substreams.

Recall that the κ-dimensional data symbol vector zκ ∈ Cκ is formed by the κ i.i.d. individual

data symbols {zk}κk=1 transmitted through each channel eigenmode (see Assumption 5.2). We

define the global error probability of spatial multiplexing MIMO systems with CSI, denoted by

Pe(R), R =
∑κ

k=1 rk log snr, as the probability of having an error in the detection of at least one
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of the κ individual symbols in the data symbol vector zκ. Thus, Pe(R) can be bounded as

max
1≤k≤κ

Pe
(k)(Rk) ≤ Pe(R) ≤

κ∑
k=1

Pe
(k)(Rk). (5.51)

The SNR exponent of
∑κ

k=1 Pe
(k)(Rk) is dominated by the term with the lowest exponent

and this term corresponds precisely to the substream with the worst error probability, i.e,

max1≤k≤κ Pe
(k)(Rk). Assuming that the power allocation among the κ substreams is either given

by the capacity-achieving waterfilling (or satisfies the condition in (5.42)), we can use Theorem

5.1 (or Corollary 5.1.1) and (5.51) to obtain that

Pe(R) .= snr−minκ d
(κ)
S (rκ) (5.52)

where d(κ)
S (rκ) is defined in (5.40) and7 κ ≥ dre, since the individual multiplexing gains {rk}κk=1

cannot exceed the value 1. Hence, as it becomes apparent later on in this section, the diversity

and multiplexing tradeoff curve depends on both the number of active substreams κ and the

rate allocation policy adopted by the transmitter, {rk}κk=1. In the following, we present first

the tradeoff curve obtained when using a uniform rate allocation among the active substreams.

Then, we derive the optimum rate allocation, which results in the fundamental diversity and

multiplexing tradeoff of spatial multiplexing MIMO systems with CSI formalized in Assumptions

5.1 and 5.2.

5.6.1 Diversity and Multiplexing Tradeoff with Uniform Rate Allocation

Let us denote by κ(r) the number of active substreams as a function of the spatial multiplexing

gain r =
∑κ(r)

k=1 rk with 0 < rk ≤ 1 and let us assume a uniform rate allocation policy among

these κ(r) substreams, i.e.,

rk =
r

κ(r)
for k = 1, . . . , κ(r). (5.53)

Then, as shown in (5.52), the diversity and multiplexing tradeoff is obtained by deriving the

optimum number of active substreams:

κ?(r) = arg max
κ≥dre

min
1≤k≤κ

d
(k)
S (r/κ). (5.54)

This problem is implicitly solved in the following theorem and the resulting diversity and mul-

tiplexing tradeoff curve d?SU(r) is plotted in Figure 5.4.

7 dae denotes the smallest integer bigger than or equal to a.
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Theorem 5.2. Consider a spatial multiplexing MIMO system with CSI (see Assumptions 5.1

and 5.2) and consider that the power allocation among the active substreams is either given by

the capacity-achieving waterfilling in (5.27) or satisfies the condition in (5.42). The diversity

and multiplexing tradeoff d?SU(r) achievable with a uniform rate allocation policy under the nR×

nT MIMO channels in Definitions 3.1, 3.2, and 3.4 is given by the piecewise-linear function

connecting the points (r(κ), d?SU(κ)) and (min{nT, nR}, 0), where

r(κ) = κ− κdκ+1

(κ+ 1)dκ − κdκ+1

d?SU(κ) =
dκdκ+1

(κ+ 1)dκ − κdκ+1

for κ = 0, . . . ,min{nT, nR} − 1 (5.55)

with dκ = (nT − κ + 1)(nR − κ + 1) and r(κ) denoting the values of r at which the number of

active substreams is increased from κ to κ+ 1.

Proof. Assuming a uniform rate allocation among the κ active eigenchannels, the SNR exponent

of the kth substream is equal to

d
(k)
S (r/κ) = dk(1− r/κ) for k = 1, . . . , κ (5.56)

where dk = (nT−k+1)(nR−k+1). Since it holds that dk > dk+1 for k = 1, . . . , κ−1, the global

performance of the spatial multiplexing scheme with κ active channel eigenmodes is dictated by

the individual performance of the κth substream. Hence, for a given multiplexing gain r, we can

maximize the diversity gain by optimizing the number of active substreams κ

κ?(r) = arg max
κ≥dre

d
(κ)
S (r/κ) (5.57)

and the global diversity and multiplexing tradeoff is given by the supremum of the individual

tradeoff curves, {d(κ)
S (r/κ)}κ=1,...,min{nT,nR},

d?SU(r) = max
κ≥dre

d
(κ)
S (r/κ). (5.58)

Clearly, the resulting tradeoff curve is a piecewise-linear function connecting the points r(κ),

defined as the values of r at which the optimum number of active substreams is increased from

κ to κ+ 1, i.e., the discontinuity points of κ?(r). Forcing equal diversity gains in these points:

d
(κ)
S (r/κ) = d

(κ+1)
S (r/(κ+ 1)) (5.59)

it follows that

r(κ) = κ− κdκ+1

(κ+ 1)dκ − κdκ+1
for κ = 1, . . . ,min{nT, nR} − 1 (5.60)
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Figure 5.4 Diversity and multiplexing tradeoff of spatial multiplexing systems with CSI (uniform rate allocation).

and, finally, substituting (5.60) back in (5.56), we obtain the corresponding diversity gains

d?SU(κ) = d
(κ)
S (r(κ)/κ) =

dκdκ+1

(κ+ 1)dκ − κdκ+1
κ = 1, . . . ,min{nT, nR} − 1 (5.61)

which completes the proof.

5.6.2 Diversity and Multiplexing Tradeoff with Optimal Rate Allocation

The derivation of the fundamental tradeoff of spatial multiplexing systems with CSI requires

maximizing the minimum SNR exponent not only over the number of active channel eigenmodes,

κ(r), but also over the rate allocation policy among the established substreams, {rk}
κ(r)
k=1:

d?S(r) = max
κ,{rk}κk=1

min
1≤k≤κ

d
(k)
S (rk) (5.62)

subject to κ ≥ dre (5.63)
κ∑
k=1

rk = r (5.64)

0 < rk ≤ 1. (5.65)

This problem is implicitly solved in the following theorem and the resulting diversity and mul-

tiplexing tradeoff curve d?S(r) is plotted in Figure 5.5.

Theorem 5.3. Consider a spatial multiplexing MIMO system with CSI (see Assumptions 5.1

and 5.2) and consider that the power allocation among the active substreams is either given by the
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capacity-achieving waterfilling in (5.27) or satisfies the condition in (5.42). The fundamental di-

versity and multiplexing tradeoff d?S(r) under the nR×nT MIMO channels in Definitions 3.1, 3.2,

and 3.4 is given by the piecewise-linear function connecting the points (0, nTnR), (r(κ), d?S(κ)),

and (min{nT, nR}, 0), where

r(κ) = κ− dκ+1

( κ∑
k=1

1/dk

)
d?S(κ) = (nT − κ)(nR − κ)

for κ = 1, . . . ,min{nT, nR} − 1 (5.66)

with dκ = (nT−κ+1)(nR−κ+1) and r(κ) denoting the values of r at which the number of active

substreams is increased from κ to κ+ 1. The fundamental diversity and multiplexing tradeoff is

achieved if the rate is allocated among the optimum number of active substreams κ?(r) as

rk = 1− 1/dk∑κ?(r)
i=1 1/di

(κ?(r)− r) for k = 1, . . . , κ?(r). (5.67)

Proof. The constrained optimization problem in (5.62) is equivalent to first imposing a rate

allocation that assures the same SNR exponent d(κ, r) for the κ active substreams:

d(κ, r) , d(k)
S (rk) = dk(1− rk) for k = 1, . . . , κ (5.68)

and, then, maximizing the resulting SNR exponent d(κ, r) over κ subject to the constraint in

(5.63), i.e.,

d?S(r) = max
κ≥dre

d(κ, r) (5.69)

κ?(r) = arg max
κ≥dre

d(κ, r). (5.70)

From (5.68) we obtain the individual rates that force all κ active substreams to have the same

SNR exponent:

rk = 1− d(κ, r)
dk

for k = 1, . . . , κ (5.71)

and, combining (5.71) and (5.64), we have that

d(κ, r) =
κ− r∑κ
k=1 1/dk

. (5.72)

The fundamental diversity and multiplexing tradeoff d?S(r) is then given by the supremum of

the individual curves, {d(κ, r)}κ=1,...,min{nT,nR}. As in Theorem 5.2, the resulting tradeoff curve

is a piecewise-linear function connecting the points r(κ), defined as the values of r at which the
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rate allocation).

Figure 5.5 Diversity and multiplexing tradeoff of spatial multiplexing systems with CSI (optimum rate allocation).

optimum number of active substreams is increased from κ to κ+ 1, i.e., the discontinuity points

of κ?(r). Forcing equal diversity gains in these points:

d(κ, r(κ)) = d(κ+ 1, r(κ)) (5.73)

it follows that

r(κ) = κ− dκ+1

( κ∑
k=1

1/dk

)
for κ = 1, . . . ,min{nT, nR} − 1 (5.74)

and, substituting (5.74) back in (5.72), we obtain the corresponding diversity gains

d?S(κ) = d(κ, r(κ)) = (nT − κ)(nR − κ) for κ = 1, . . . ,min{nT, nR} − 1. (5.75)

Finally, the optimal rate allocation among substreams comes simply from combinig (5.71) and

(5.72) and this completes the proof.

5.6.3 Achievability of the Diversity and Multiplexing Tradeoff

In the previous section we obtained the diversity and multiplexing tradeoff of spatial multiplexing

systems with CSI based on the individual tradeoff curves derived in Theorem 5.1. Thus, the

diversity and multiplexing tradeoff curves provided in Theorems 5.2 and 5.3 for the uniform and

the optimal rate allocation policy, respectively, are achieved whenever the individual tradeoffs

in Theorem 5.1 are achieved. In addition to the capacity-achieving spatial multiplexing scheme
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analyzed in Section 5.5.1, we considered spatial multiplexing systems with a general power

allocation in Section 5.5.2 and practical linear MIMO transceivers in Section 5.5.3. Consequently,

the fundamental diversity and multiplexing tradeoff of spatial multiplexing systems with CSI can

be achieved with practical linear MIMO transceiver designs even with a channel non-dependent

power allocation and using QAM constellations.

Recall that in Section 5.5.3 we proved the individual tradeoff achievability for the class

linear transceivers designed under Schur-concave cost functions. However, the individual tradeoff

performance of the linear MIMO transceivers obtained under Schur-convex cost functions could

not be analyzed using Theorem 5.1 due to the unitary transformation applied to the data symbols

before transmission. This preprocessing of the data symbols forces all κ established substreams

to experience the same equivalent channel (see Section 4.3.2 for details) and, hence, it holds that

max
1≤k≤κ

Pe
(k)(Rk) ≥ max

1≤k≤κ
Pout

(k)(Rk) = max
rk

Pr(log(1 + ρk) ≤ rk log snr) (5.76)

> max
rk

Pr(log(κ+ κsnrλκ) ≤ rk log snr) (5.77)

.= max
rk

Pr(λκ ≤ snrrk−1) .= snr−minrk d
(κ)
S (rk) (5.78)

where in (5.77) we have used the upper bound on the instantaneous SNR derived in Appendix

3.C.3. Similarly, using the lower bound on the instantaneous SNR given also in Appendix 3.C.3,

it is not difficult to show that

κ∑
k=1

Pe
(k)(Rk) ≤ κ max

1≤k≤κ
Pe

(k)(Rk)
.= snr−minrk d

(κ)
S (rk) (5.79)

and, noting (5.51), we can finally conclude that

Pe(R) .= snr−minrk d
(κ)
S (rk). (5.80)

The diversity and multiplexing tradeoff of the linear MIMO transceivers obtained under Schur-

convex cost functions follows then from maximizing the exponent of the error probability in

(5.80) with respect to the number of active substreams κ and the rate allocation among them,

{rk}κk=1. In this case the optimum strategy is to allocate uniformly the rate among the established

substreams and, thus, the resulting tradeoff coincides with that presented in Theorem 5.2.
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5.7 Analysis of the Results

In this section we analyze the diversity and multiplexing tradeoffs of spatial multiplexing MIMO

systems with CSI with respect to the fundamental tradeoff of the channel and the achievable

tradeoffs under different assumptions when space-only coding is performed and no CSI-T is

available. Observe that space-only coding schemes imply T = 1 or the adoption of Assumption

5.1, whereas the fundamental tradeoff requires T ≥ nT + nR − 1 and, hence, provides an upper

bound on the achievable tradeoff for any block length T.

5.7.1 Tradeoff of Spatial Multiplexing with CSI (T = 1) vs. Fundamental Tradeoff of the

Channel (T ≥ nT + nR − 1)

In this section we compare the diversity and multiplexing tradeoff of spatial multiplexing systems

with CSI with the fundamental tradeoff offered by the channel for T ≥ nT +nR−1 as illustrated

in Figures 5.4 and 5.5 for the uniform and the optimum rate allocation policies, respectively.

It can be observed that, for a given diversity gain, spatial multiplexing schemes suffer from a

degradation with respect to the diversity and multiplexing limits of the channel, due to the

lack of coding between substreams (see Assumption 5.2). In fact, the established substreams are

coded independently and transmitted through the κ strongest channel eigenmodes and, hence,

the outage event must be understood under the perspective of the individual eigenmodes, since

spatial multiplexing systems experiences an outage whenever at least one of the κ established

substreams is in outage.

Let us consider the fundamental tradeoff of the channel and the fundamental tradeoff of

spatial multiplexing systems with CSI (see Figure 5.5) and let us focus on values of r close to

0, such that only the first linear part of both curves is taken into consideration. This requires

0 ≤ r ≤ 1 in the fundamental tradeoff of the channel and 0 ≤ r ≤ 1 − (nT−1)(nR−1)
nTnR

in the

spatial multiplexing case (see Figure 5.6). In this region, the tradeoff exponent of the spatial

multiplexing system, d?S(r), is derived by evaluating the outage probability for the transmission

through the eigenmode associated with the largest eigenvalue of H†H, denoted by λ1. More

exactly, applying Theorem 5.1 and noting that for 0 ≤ r ≤ 1− (nT−1)(nR−1)
nTnR

only one substream

is used, it follows that r1 = r and

Pout(R) .= Pr(λ1 ≤ snr−(1−r)) .= snr−d
?
S(r) = snr−nTnR(1−r). (5.81)
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Figure 5.6 Diversity and multiplexing tradeoff of the channel and of spatial multiplexing systems with CSI (low spatial

multiplexing regime).

On the other hand, the fundamental tradeoff curve is obtained evaluating the dominant term of

the SNR exponent of the outage probability, which in the interval 0 ≤ r ≤ 1 can be expressed

as [Zhe03, Sec. III.B]

Pout(r)
.= Pr(λ1 ≤ snr−(1−r), λ2 ≤ snr−1, · · · , λmin{nT,nR} ≤ snr−1) .= snr−d

?(r) (5.82)

where d?(r) = (nT− 1)(nR− 1) + (nT +nR− 1)(1− r). Comparing the expressions in (5.81) and

(5.82), it is now apparent that the probability of outage of the strongest eigenmode is higher

than the dominant outage event probability of the MIMO channel, which in addition requires

all other min{nT, nR} − 1 eigenmodes to be fully ineffective. A similar argument can be used

in different regions of the tradeoff curve (see Figure 5.5) and this explains the diversity and

multiplexing loss.

This performance degradation can be characterized more exactly by defining the spatial

multiplexing loss ∆r(κ) as

∆r(κ) = κ− r(d?(κ)) for κ = 1, . . . ,min{nT, nR} − 1 (5.83)

where r(d?(κ)) is the spatial multiplexing gain for which the spatial multiplexing system achieves

a diversity gain of (nT − κ)(nR − κ). Using Theorems 5.2 and 5.3, we obtain

∆rSU(κ) = min
0≤k<κ

k + dκ+1
κ− k
dκ−k

(5.84)
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for the uniform rate allocation and

∆rS(κ) = dκ+1

κ∑
k=1

1
dk
. (5.85)

for the optimum rate allocation. Observe that in (5.84) the multiplexing loss is dominated by

κ− k times the inverse of the maximum diversity of the worst active eigenmode, (κ− k)/dκ−k,

whereas in (5.85) the multiplexing loss depends on the sum of the inverse of the maximum

diversities associated the κ active channel eigenmodes,
∑κ

k=1 1/dk. By allocating the same rate

among all substreams, the performance of the system is limited by the performance of the

(κ − k)th channel eigenmode, since it is the worst active subchannel and is the first one to

become in outage. Therefore, in this case, not even the active subchannels are fully exploited.

On the contrary, by using the optimal rate allocation, we force all active channel eigenmodes to

become in outage simultaneously or, equivalently, we transmit always (for any given diversity) at

the maximum individual rate supported by each channel eigenmode. Moreover, with the optimal

rate allocation the number of active substreams is optimal in the sense that it coincides with the

number of channel eigenmodes which are typically not in outage (see geometrical interpretation

in [Zhe03, Sec. III.B]) and this is not always the case when using the uniform rate allocation,

where the term k in (5.84) can further increase the multiplexing loss. As we illustrate in the

following section, however, spatial multiplexing with CSI often provides an advantage with

respect to space-only codes and spatial multiplexing with CSI-R only.

5.7.2 Tradeoff of Spatial Multiplexing with CSI (T = 1) vs. Tradeoff of Space-only Codes

with CSI-R (T = 1)

In this section we focus on the tradeoff achieved by any space-only coding scheme (T = 1 or

Assumption 5.1 is satisfied) and CSI-R only. The fundamental diversity and multiplexing tradeoff

of space-only codes was derived in [Zhe03] as given in the following lemma.

Lemma 5.2 ([Zhe03, Sec. IV.D] and Rem. 5.1). Consider the MIMO system in (5.1) with T = 1

and perfect CSI-R only. The fundamental diversity and multiplexing tradeoff d?S0
(r) under the

nR × nT MIMO channels in Definitions 3.1, 3.2, and 3.4 with nT ≤ nR is given by

d?S0
(r) = nR (1− r/min{nT, nR}) for 0 ≤ r ≤ min{nT, nR}. (5.86)
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Observe that the fundamental tradeoff of spatial multiplexing MIMO systems with CSI

obtained in Theorem 5.3 can be expressed as

d?S(r) = max
κ,κ≥dre

κ∑κ
k=1 1/dk

(1− r/κ) for 0 ≤ r ≤ min{nT, nR}. (5.87)

Clearly, it holds that d?S(r) ≥ d?S0
(r) as long as nT 6= nR. Hence, CSI-T exploitation, or more

exactly, the diversity gain increase obtained by selecting only the strongest channel eigenmodes

and optimally allocating the rate overcomes the limitations inherent to the independent coding

procedure of spatial multiplexing systems. Only when nT = nR and for

r ≥ max
κ,κ≥r

κ− nT
∑κ

k=1 1/dk
1−

∑κ
k=1 1/dk

(5.88)

higher diversity gains can be achieved with space-only codes. Intuitively, in the high multiplexing

gain regime, all channel eigenmodes are used to transmit independent data streams, rendering

CSI-T less useful. On the contrary, an arbitrary space coding scheme can potentially benefit from

coding among different streams. This turns out to be more beneficial than spatial multiplexing

with CSI when nT = nR, i.e., when the weakest eigenmode has diversity 1. In fact, when nT = nR

and r > min{nT, nR} − 1, d?S0
(r) coincides with the fundamental tradeoff of the channel d?(r).

Observe that it is false to conclude from this result that there are circumstances under

which is better to ignore the perfect CSI at the transmitter. Indeed, the comparison is not

completely fair, since space-only codes can transmit any data vector with arbitrary correlation

among components while spatial multiplexing MIMO systems are restricted to transmit data

vectors with i.i.d. data symbols due to Assumption 5.2. This low-complexity spatial multiplexing

strategy, although capacity-achieving, is suboptimal in terms of error probability (see e.g. [Tel99,

Ex. 1]).

5.7.3 Tradeoff of Spatial Multiplexing with CSI (T = 1) vs. Tradeoff of V-BLAST (T = 1)

Finally, in this section we compare the fundamental tradeoff of spatial multiplexing systems with

CSI and with CSI-R only, in order to evaluate the benefits of having perfect channel knowledge

at the transmitter. Let us consider the spatial multiplexing system with CSI-R only, in which

an independent substream is transmitted through each transmit antenna (nT ≤ nR) with the

same rate and the receiver uses the nulling and canceling algorithm. This scheme is commonly

known as V-BLAST [Fos99] and the corresponding diversity and multiplexing tradeoff curve is

presented in the following Theorem.
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Figure 5.7 Comparison of the tradeoff curves of spatial multiplexing systems with CSI and space-only codes with CSI-R

only.

Theorem 5.4. Consider the spatial multiplexing MIMO system with CSI-R in [Fos99]. The

fundamental diversity and multiplexing tradeoff curve dV(r) under the nR × nT MIMO channels

in Definitions 3.1, 3.2, and 3.4 with nT ≤ nR is given by

dV(r) = (nR − nT + 1) (1− r/min{nT, nR}) 0 ≤ r ≤ min{nT, nR}. (5.89)

Proof. The diversity and multiplexing tradeoff of V-BLAST was obtained in [Zhe03, Sec. VII.B]

for the uncorrelated Rayleigh MIMO channel model and nT = nR. Using the procedure presented

in [Zhe03] and Remark 5.1 along with the high-SNR performance analysis of V-BLAST in [Jia05],

the tradeoff curve given in Theorem 5.4 follows.

Observing (5.87), it is not difficult to show that d?S(r) > dV(r) for all values or r. This result is

not surprising, since the spatial multiplexing scheme with CSI exploits the channel information

at the transmitter to select only the best eigenmodes and perform the optimal rate allocation

among them, whereas the V-BLAST architecture must rely blindly on all eigenchannels. In fact,

this is precisely the reason why the tradeoff curves for spatial multiplexing with CSI and a

uniform rate allocation and for V-BLAST coincide in the high multiplexing gain regime, i.e.,

when r is such that κ?(r) = min{nT, nR}. In this particular situation, the spatial multiplexing

scheme with CSI does not use the CSI at the transmitter for either discarding substreams or
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allocating the target rate optimally.

5.8 Conclusions and Publications

This chapter addresses the study of the fundamental tradeoff of MIMO systems when not only

the receiver but also the transmitter has access to the channel matrix. First we show that the

fundamental tradeoff is not altered by channel knowledge at the transmit side, as long as the

duration of the encoding blocks satisfies T ≥ nT +nR− 1. The chapter then concentrates on the

analysis of spatial multiplexing MIMO systems with CSI, a family of transceiver schemes which

has been subject to study in the literature owing to its simplicity and capacity achieving capa-

bilities. These systems transmit independent symbols through the MIMO channel eigenmodes.

The fundamental tradeoff of each of these substreams is determined and allows the formula-

tion of a fundamental tradeoff optimal rate allocation strategy for linearly combining different

parallel channels as done by most of the spatial multiplexing schemes. The fact that channel

knowledge at the transmitter does not increase the diversity versus multiplexing tradeoff of the

MIMO channel was highly predictable. However, what was not known so far, is how much loss

would simple spatial multiplexing schemes with CSI incur with respect to the fundamental lim-

its of the channel and how much would they be able to benefit from channel knowledge at the

transmitter. Precise answer to these two questions has been given in this chapter comparing

the fundamental tradeoff of spatial multiplexing schemes with the fundamental tradeoff of the

channel, the tradeoff of space only codes and V-BLAST.

The main results contained in this chapter regarding the diversity and multiplexing tradeoff of

spatial multiplexing MIMO systems with CSI and linear MIMO transceivers have been published

in two conference papers and one journal paper:

[PZ04] A. Pages-Zamora, J. R. Fonollosa, and L. G. Ordóñez, “Diversity and multiplexing

tradeoff of beamforming for MIMO channels”, Proc. IEEE Workshop on Signal Pro-

cessing Advances in Wireless Communications (SPAWC), pp. 536–540, July 2004.

[Ord05a] L. G. Ordóñez, A. Pagès-Zamora, and J. R. Fonollosa, “Diversity and multiplexing

tradeoff of multiple beamforming in MIMO channels”, Proc. IEEE Int. Symp. Inform.

Theory (ISIT), pp. 1808–1812, 2005.
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[Ord08a] L. G. Ordóñez, A. Pagès-Zamora, and J. R. Fonollosa, “Diversity and multiplexing

tradeoff of spatial multiplexing MIMO systems with CSI”, IEEE Trans. Inf. Theory ,

vol. 54, no. 7, pp. 2959–2975, July. 2008.
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5.A Appendix: Individual Diversity and Multiplexing Tradeoff

5.A.1 Exponent of the Individual Pairwise Error Probability

Proof. In this appendix we derive the exponent of bound on the pairwise error probability of

the kth substream given in (5.36):

PEP(k)(Rk) ≤̇ Pr

(√
pkλk

2
snr−rk/2 < 1

∣∣∣pk > 0
)

+ Pr(pk = 0) (5.90)

where Pr(pk = 0) denotes the probability of not transmitting power through the kth channel

eigenmode with the capacity-achieving waterfilling. Recall that pk is given by (see (5.27))

pk =
(
µ− λ−1

k

)+ (5.91)

where the water level µ is chosen such that
κ∑
k=1

pk =
κ∑
k=1

(
µ− λ−1

k

)+ = snr. (5.92)

Hence, pk = 0, if (µ − λ−1
k ) ≤ 0 for the water level µ calculated as in (5.92) with κ = k, then

Pr(pk = 0) is given by

Pr (pk = 0) = Pr

(
(k − 1)λ−1

k −
k∑
i=1

λ−1
i ≥ snr

)
(5.93)

This probability can be upper-bounded as

Pr (pk = 0) ≤ Pr
(
λ−1
k ≥

snr

k − 1

)
.= Pr

(
λk ≤ snr−1

)
. (5.94)

Now, let us assume that κ̃ substreams are transmitted with nonzero power, such that k < κ̃ ≤ κ.

Then, the power allocated to the kth substream is

pk =
snr

κ̃
+

1
κ̃

κ̃∑
i=1

λ−1
i − λ

−1
k (5.95)

and the first term in (5.90) satifies

PEP(k)(Rk|pk > 0) ≤̇ Pr
(pkλk

2
snr−rk < 1

∣∣∣pk > 0
)

= Pr

((
snr

κ̃
λk +

1
κ̃

κ̃∑
i=1

λk
λi
− 1
)

snr−rk < 1
)

≤ Pr
(snr

κ̃
λk < snrrk

)
.= Pr

(
λk ≤ snrrk−1

)
. (5.96)
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Finally, combining (5.94) and (5.96), it follows that

PEP(k)(Rk) ≤̇ Pr
(
λk ≤ snrrk−1

)
(5.97)

since 0 ≤ rk ≤ 1 and this completes the proof. �

5.A.2 Proof of Theorem 5.1

Proof. Theorem 5.1 presents the diversity and multiplexing tradeoff of the the kth channel

eigenmode, assuming an uncorrelated flat fading Rayleigh channel. In Section 5.5.1 we show

that

P(k)
e (Rk)

.= Pr(λk ≤ snrrk−1) (5.98)

where λk is the kth ordered eigenvalue of H†H. Thus, the diversity and multiplexing tradeoff

can be obtained as

d
(k)
S (r) = − lim

snr→∞

log Pr(λk ≤ snrrk−1)
log snr

= lim
λ→0

log Pr(λk ≤ λ1−rk)
log λ

(5.99)

since 0 ≤ rk ≤ 1, and the proof of Theorem 5.1 reduces to obtaining the exponent8 of the

marginal pdf of the kth ordered eigenvalue of H†H. Using the first order Taylor expansions of

the marginal cdf of the kth ordered eigenvalue in Theorem 2.4 for the uncorrelated Rayleigh,

the semicorrelated Rayleigh, and the uncorrelated Rician MIMO channel models (see Section

3.3 for details), the exponent of Pr(λk ≤ λ) is given by

Pr(λk ≤ λ) .= λ(nT−k+1)(nR−k+1). (5.101)

Now, returning to the equivalence presented in (5.99), we have that

Pe
(k)(Rk)

.= snr−(nT−k+1)(nR−k+1)(1−rk) (5.102)

which completes the proof of the theorem.

5.A.3 Proof of Corollary 5.1.1

Proof. In this proof we derive the exponent of the error probability of spatial multiplexing MIMO

system with a general power allocation satisfying the condition in (5.42). Since this proof is

8 In this appendix the exponent is defined as λk → 0 and g(λk)
.
= h(λk) denotes

lim
λk→0

g(λk)

log λk
= lim
λk→0

h(λk)

log λk
. (5.100)
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strongly based on the procedure used for the capacity-achieving waterfilling power allocation in

Section 5.5.1, some repetitive parts are omitted.

The individual error probability of the kth substream, Pe
(k)(Rk) with the general power

allocation described in Corollary 5.1.1 can be lower-bounded by the outage probability obtained

when allocating all available power to the kth substream:

Pe
(k)(Rk) ≥ Pout

(k)(Rk) ≥̇ Pr
(
λk ≤ snrrk−1

)
(5.103)

since pk ≤ snr, due to the short-term power constraint. In addition, Pe
(k)(Rk) can be upper-

bounded as (see Section 5.5.1)

PEP(k)(Rk) ≤ Pr

(√
pkλk

2
snr−rk/2 < 1

)
= Pr

(pkλk
2

snr−rk < 1
∣∣∣pk > φksnr

)(
1− Pr (pk ≤ φksnr)

)
+ Pr

(pkλk
2

snr−rk < 1
∣∣∣pk ≤ φksnr

)
Pr (pk ≤ φksnr)

≤ Pr
(pkλk

2
snr−rk < 1

∣∣∣pk = φksnr
)

+ Pr (pk ≤ φksnr)

≤ Pr
(
φkλksnr−rk+1 < 1

)
+ Pr (pk ≤ φksnr)

≤̇ Pr
(
λk ≤ snrrk−1

)
(5.104)

where we have used that the power allocation satisfies the condition in (5.42).

Pr (pk ≤ φksnr) ≤̇ Pout
(k)(Rk) ≤̇ Pr

(
λk ≤ snrrk−1

)
. (5.105)

Finally, combining (5.103) and (5.104), it follows that

Pe
(k)(Rk)

.= Pr(λk ≤ snrrk−1) (5.106)

which coincides with the exponent derived for the capacity-achieving spatial multiplexing MIMO

system in Theorem 5.1 and this completes the proof. ss

5.B Proof of Proposition 5.1

Proof. We want to prove that power allocation in (5.48) satisfies the condition in (5.42). Since

the exponent of the error probability is given by (see Corollary 5.1.1)

d
(k)
S (rk) = dk(1− rk) (5.107)
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where dk = (nT − k + 1)(nR − k + 1) and 0 ≤ rk ≤ 1, we have to show that

δk = lim
snr→∞

−
log Pr (pmse,k ≤ φksnr)

log snr
> dk (5.108)

where φk is a strictly positive constant. The individual power pk is maximum when the weakest

κ−k substreams are discarded, i.e., {pk}κi=k+1 = 0, and, thus, we can assume without loss of gen-

erality that only k ≤ κ substreams are transmitted with nonzero power. Then, Pr (pmse,k ≤ φksnr)

is given by

Pr (pmse,k ≤ φksnr) = Pr

(
(ωk/λk)1/2∑k
i=1(ωi/λi)1/2

(
snr +

k∑
i=1

λ−1
i

)
− λ−1

k ≤ φksnr

)
(5.109)

= Pr

(
(ωkλk)

−1/2
k∑
i=1

(ωi/λi)1/2 −
k∑
i=1

λ−1
i

≥ snr
(

1− φk(ωk/λk)−1/2
k∑
i=1

(ωi/λi)1/2
))

.

(5.110)

Observing that

φk(ωk/λk)−1/2
k∑
i=1

(ωi/λi)1/2 ≤ φk
k∑
i=1

(ωi/ωk)1/2 (5.111)

since λk/λi ≤ 1 for i = 1, . . . , k, Pr (pmse,k ≤ φksnr) can be upper-bounded as

Pr (pk ≤ φksnr) ≤ Pr

(
λ
−1/2
k

k−1∑
i=1

(ωi/λi)1/2 ≥ snr
(

1− kφk
k∑
i=1

(ωi/ωk)
1/2
))

(5.112)

≤ Pr

(
λkλk−1 ≤

(
k − 1

1− kφk
∑k

i=1 (ωi/ωk)
1/2

)2

snr−2

)
(5.113)

whenever φk < 1/
(
k
∑k

i=1 (ωi/ωk)
1/2
)

. Hence, it follows that

δk ≥ lim
snr→∞

log Pr
(
λkλk−1 ≤ snr−2

)
log snr−1

. (5.114)

Then, by defining ηk = λk−1λk, we can rewrite (5.114) as

dmse,k ≥ lim
x→0

log Pr
(
ηk ≤ x2

)
log x

= lim
x→0

log
( ∫ x2

0 fηk(η)dη
)

log x
(5.115)

where fηk(η) is the pdf of a product of two random variables and is given by [Roh76, Sec. 4.4,

Th. 7]

fηk(η) =
∫ ∞

0

1
x
fλk−1,λk(x, η/x)dx. (5.116)

We are interested in fηk(η) as η → 0 and, thus, we only need to derive the joint pdf

fλk−1,λk(λk−1, λk) as λk → 0. Using the same procedure as in the proof of Theorem 2.4, it
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can be shown that9

fλk−1,λk(λk−1, λk) = g(λk−1)λdk−1
k + o(λdk−1

k ) (5.117)

where g(λk−1) is a function of λk−1. Then, substituting back this result in the expression of

fηk(η) in (5.116), it follows that

fηk(η) = aηdk−1 + o(ηdk−1) (5.118)

where a is a fixed constant in terms of η. Finally, the exponent of Pr (pmse,k ≤ φksnr) can be

bounded as

δk ≥ lim
x→0

log
(
a
∫ x2

0 ηdk−1dη
)

log x
= lim

η→0

log
(
η2dk

)
log η

= 2dk > dk (5.119)

and this completes the proof.

9 We say that f(x) = o(g(x)), g(x) > 0, if f(x)/g(x)→ 0 as x→ 0 [Bru81, eq. (1.3.1)].
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Conclusions and Future Work

This dissertation has focused on the evaluation of the performance limits of the spatial mul-

tiplexing MIMO systems that result from transmitting independent substreams through the

strongest channel eigenmodes when perfect channel state information is available at both sides

of the link. Analytical studies of these schemes from a communication- and an information-

theoretical point-of-view have enlightened the implications of the tradeoff beween spatial mul-

tiplexing and diversity gain, or, in other words, the tradeoff between transmission rate and

reliability. For this purpose, the probabilistic characterization of the eigenvalues of Wishart,

Pseudo-Wishart and quadratic form distributions has been proven to be critical. In particular,

the performance of spatial multiplexing MIMO systems with CSI demanded the evaluation of

probabilities associated with one or several of the eigenvalues in some specific order. In this work

we have developed a unified formulation that can, not only fill the gap of the currently unknown

results, but even more importantly, provide a solid framework for the understanding and direct

derivation of all the already existing results.

191
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6.1 Summary of Results

Let us give a detailed summary of the main results contained in this PhD thesis. The open

issues or lines for future research that have been singled out during the elaboration of the

present dissertation are also highlighted.

Chapter 2

In Chapter 2 we have proposed a general formulation that unifies the probabilistic character-

ization of the eigenvalues of Hermitian random matrices with a specific structure. Based on a

unified expression for the joint pdf of the ordered eigenvalues, we obtained:

(i) the joint cdf of the ordered eigenvalues,

(ii) the marginal cdf’s of the ordered eigenvalues,

(iii) the marginal pdf’s of the ordered eigenvalues,

(iv) the cdf of the maximum weighted ordered eigenvalue, and

(v) the first order Taylor expansions of (ii), (iii), and (iv),

where (ii), (iii), and (iv) follow as simple particularizations of (i). In addition we have also

considered the unordered eigenvalues and we have derived:

(vi) the joint cdf of a set of unordered eigenvalues,

(vii) the joint pdf of a set of unordered eigenvalues, and

(viii) the marginal cdf of a single unordered eigenvalue.

The former distributions and results have been particularized for uncorrelated and corre-

lated central Wishart, correlated central Pseudo-Wishart, and uncorrelated noncentral Wishart

matrices avoiding the non-convenient series expansions in terms of zonal polynomials. Central

quadratic forms have been also addressed, although, in this case, we have not been able to handle

with the infinite series. In this respect, there are some issues which are still open:

(i) Derivation of the first order Taylor expansion of a more general class of Hermitian

random matrices than the one formalized in Assumption 2.2. In particular, this will

allow to deal also with Pseudo-Wishart and quadratic forms distributions.

(ii) Evaluation of the joint and marginal distributions of the ordered eigenvalues of com-

plex quadratic forms distributions.
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(iii) Evaluation of the joint and marginal distributions of the ordered eigenvalues of com-

plex correlated Wishart distributions, since they are not included in the proposed

unified formulation.

The joint analysis of a general class of distributions presented in this chapter settles the

basis for a unified framework in the performance analysis of MIMO systems. Specifically, in this

dissertation our results are applied to investigate the performance limits of spatial multiplex-

ing MIMO systems with CSI. Our unified framework could, however, be also useful in other

communication and signal processing applications.

Chapter 3

The main contribution of Chapter 3 is the analytical performance analysis of spatial multiplexing

MIMO systems in Rayleigh and Rician MIMO channels. More exactly, in this chapter we have

obtained analytical expressions to calculate:

(i) the exact individual average BER and its corresponding parameterized high-SNR char-

acterization when using a fixed power allocation,

(ii) the exact individual outage probability and its corresponding parameterized high-SNR

characterization when using a fixed power allocation,

(iii) high-SNR parameterized upper and lower bounds for the individual average BER

when using a non-fixed power allocation,

(iv) high-SNR parameterized upper and lower bounds for the individual outage probability

when using a non-fixed power allocation,

(v) the global average BER and its corresponding parameterized high-SNR characteriza-

tion, and

(vi) different global outage probability measures.

These general results have been applied to analyze the performance of linear MIMO

transceivers existing in the literature with adaptive linear precoder but fixed number of data

symbols and fixed constellations. In particular, using the unifying formulation in [Pal03], we have

been able to investigate the high-SNR global average performance of a wide family of practical

designs:

(vii) diagonal schemes with a fixed power allocation,
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(viii) diagonal schemes with a non-fixed power allocation, and

(ix) non-diagonal schemes with a non-fixed power allocation.

Chapter 4

The linear MIMO transceiver design has been addressed in the literature with the typical under-

lying assumption that the number of data symbols to be transmitted per channel use is chosen

beforehand. In Chapter 4 we have proved that, under this assumption, the diversity order of any

linear MIMO transceiver is at most driven by that of the weakest channel eigenmode employed,

which can be far from the diversity intrinsically provided by the channel. Based on this observa-

tion, we have fixed the rate (instead of the number of data symbols) and we have optimized the

number of substreams and constellations jointly with the linear precoder. This procedure implies

only an additional optimization stage upon the classical design which suffices to extract the full

diversity of the channel. Since the ultimate performance of a communication system is given

by the BER, we have focused on the minimum BER design. The implications of the proposed

optimization have been then illustrated by means of analytical performance expressions of the

minimum BER linear MIMO transceiver with fixed and with adaptive number of substreams,

including:

(i) upper and lower bounds for the global average BER, and

(ii) high-SNR parameterized upper and lower bounds for the global average BER.

Chapter 5

Chapter 5 addresses the study of the fundamental tradeoff of MIMO systems when not only the

receiver but also the transmitter has access to the channel matrix. First, it has been shown that

the fundamental tradeoff is not altered by channel knowledge at the transmit side, as long as

the duration of the encoding blocks satisfies T ≥ nT + nR − 1. Then we have concentrated on

the analysis of spatial multiplexing MIMO systems with CSI (T = 1 is implicitly assumed) and

we have derived:

(i) the individual diversity and multiplexing tradeoff of the channel eigenmodes,

(ii) the global diversity and multiplexing tradeoff of spatial multiplexing MIMO systems

with CSI and a uniform rate allocation, and
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(iii) the fundamental diversity and multiplexing tradeoff of spatial multiplexing MIMO

systems with CSI and optimum rate allocation.

The fact that channel knowledge at the transmitter does not increase the diversity versus

multiplexing tradeoff of the MIMO channel was highly predictable. However, what was not

known so far, is how much loss would simple spatial multiplexing MIMO schemes with CSI

incur with respect to the fundamental limits of the channel and how much would they be able

to benefit from channel knowledge at the transmitter. Precise answer to these two questions has

been given in this chapter comparing the fundamental tradeoff of spatial multiplexing schemes

with the fundamental tradeoff of the channel, the tradeoff of space only codes and V-BLAST.

6.2 Summary of Key Insights

This dissertation has focused on the evaluation of the performance limits of the spatial multi-

plexing MIMO systems with CSI with the final aim of understanding the implications of the

tradeoff beween spatial multiplexing and diversity gain in those schemes. In the following we

present the key insights extracted from the two perspectives adopted in this dissertation. As a

conclusion a new line of research to merge both approaches is briefly commented.

Communication-Theoretic Analysis

First, we have considered a rather practical setup, in which the transmission rate is fixed (prac-

tical modulations are assumed) and the reliability of the communication is measured by the

average BER vs. SNR curves. In the high-SNR regime the performance have been characterized

in terms of the diversity and the array gain. The following key insights have been observed:

(i) The global diversity gain is limited by that of the worst eigenmode use, independently

of unitary transformations and power allocations.

(ii) Channel-dependent power allocation policies can only possibly increase the array gain

but not the diversity gain of the system.

(iii) Pre-equalization of the equivalent channels by means of a rotation of the data symbols

before transmission through the channel eigenmodes increases the array gain but not

the diversity gain of the system.
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This enlightens that fixing a priori the number of independent data streams to be transmitted,

a very common assumption in the linear transceiver design literature, inherently limits the

average BER performance of the system. However, an additional optimization of the number of

substreams suffices to obtain the full diversity of the channel.

Information-Theoretic Analysis

In order to take also into consideration the rate accommodation capabilities of spatial multi-

plexing MIMO systems, we have next analyzed their performance in terms of the diversity and

multiplexing tradeoff. The following key insights have been observed:

(i) The fundamental tradeoff of the channel is not achieved due to the lack of coding

between substreams. The outage event is dictated by the individual outages of the

used channel eigenmodes.

(ii) The fundamental tradeoff of spatial multiplexing is achieved whenever the number of

substreams is optimally chosen and the transmission rate is optimally allocated among

them.

(iii) Channel-dependent power allocation policies among the established substreams do not

modify the diversity and multiplexing tradeoff.

(iv) Pre-equalization of the equivalent channels by means of a rotation of the data streams

before transmission suffers from a degradation with respect to the fundamental trade-

off due to the impossibility of optimally allocating the data rate.

Future Work: Unified Analysis

The perspectives under which spatial multiplexing MIMO systems have been analyzed in this

thesis are distinct in their motivations and implications. On the one hand, the communication-

theoretic analysis gives clear answers on how the reliability of the communication is modified by

an SNR increase when the data rate is fixed. On the other hand, the information-theoretic anal-

ysis indicates how the reliability of the communication is decreased as the data rate approaches

the ergodic capacity of the channel. By means of the diversity and multiplexing tradeoff, a more

global point-of-view is given, since it shows how an SNR increase can be used to lower the error

probability or to increase the transmission rate or a combination of the two. However, although
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elegant, this formulation is also quite loose and observations extracted from the tradeoff curve

are difficult to be translated into implications in the error probability curve of a particular

scheme with a finite SNR. For instance, the diversity and multiplexing tradeoff curve suggest

for the fixed rate case that the maximum diversity order can be achieved by beamforming over

the strongest channel eigenmode. We know, to the contrary, that for finite SNR, schemes with

lower error probabilities exist. On the other extreme of the curve, i.e., for a fixed error prob-

ability, the high-SNR scaling of the ergodic capacity is shown to be achieved by transmitting

independent substreams though all the channel eigenmodes but nothing is said about the op-

timal power allocation among them. In this respect, a combination of both analysis would be

preferable. This would require to measure more exactly the error probability, for instance in

terms of array and diversity gain, and perhaps redefine the multiplexing gain. Several attempts

to deal with the limitations of the diversity and multiplexing tradeoff framework, such as the

non-asymptotic framework of [Nar06] or the throughput-reliability tradeoff of [Aza07] have been

recently developed. However, this unified analysis is left as a future line of research.
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