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Summary

In this thesis I present a geophysical study that aims to define the structure and 

petrological nature of the main geological domains in the Central Tyrrhenian basin, and 

to investigate the mechanisms involved in their formation. 

The geophysical data used in this thesis was acquired during the MEDOC 

(2010) survey within the framework of the MEDOC project, which was designed to 

improve our understanding of the origin and evolution of rifted margins. The MEDOC 

survey was focused on the Tyrrhenian back-arc basin, an extraordinary natural 

laboratory to investigate the structure and evolution of back-arc basins, and hence rifted 

margins, since 1) extension evolves from north to south [Kastens and Mascle, 1990], 2) 

the original structure is preserved, and 3) it is small enough to be investigated with a 

single marine survey. 

The present work is based on the analysis, processing, modeling, and 

interpretation of coincident Wide-Angle Seismic (WAS), Multichannel Seismic (MCS), 

and gravity data corresponding to the two longest transects acquired during the 

MEDOC survey in the Central Tyrrhenian basin, the southern Line GH/MEDOC-6 

(~450 km) and the northern Line EF/MEDOC-4 (~400 km). Both lines run across the 

Central Tyrrhenian basin from Sardinia to the Campania margin. 

The processing of MCS data provides the tectonic structure and geometry of the 

sedimentary basins, whereas the modeling of WAS data from travel-time tomography 

provides 2D seismic velocity models from which the velocity distribution of the crust 

and uppermost mantle, and the geometry of the crust-mantle boundary are inferred. The 

WAS models are then converted to density models using existing empirical 

relationships for different lithologies in order to test which of the different hypothesis 

concerning the petrological nature of the basement (e.g. continental/oceanic crust or 

exhumed mantle) explain better the observed gravity data. The results obtained from the 

MCS, WAS and gravity data of each line, have been complemented with a thorough 

analysis of the velocities of the WAS-derived models, which consisted of comparing the 

depth-velocity structure of the models with existing 1D velocity-depth references of 

continental and oceanic crust, and exhumed mantle [White et al., 1992; Christensen and 

Mooney, 1995; Dean et al., 2001; Sallarès et al., 2013a]. All these results, together with 

the integration of geological data from rock sampling of the seabed [Colantoni et al., 
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1981; Kastens and Mascle, 1990] reveals the existence of three geological domains in 

the Central Tyrrhenian, that is: continental crust, magmatic crust, and exhumed mantle. 

Along both lines, continental crust is observed beneath the island of Sardinia, 

and beneath the Sardinia and Campania margins. In Sardinia the crust is ~25 km thick, 

whereas in the margins the crust thins toward the center of the basin from 25-22 km to 

10-13 km thick, implying a stretching factor � > 2. Only in the northern Line 

EF/MEDOC-4, continental crust is observed in between both continental margins, in the 

so-called Sechi segment, being ~8 km thick (� > 3). 

The magmatic crust is observed beneath the Cornaglia Terrace and the new-

defined Campania Terrace in both lines. This type of crust is characterize by a seismic 

velocity structure that closely resembles to an oceanic crust (e.g. Atlantic oceanic crust) 

[White et al., 1990], but with lower velocity gradient in the L3 region. Based on 

observations made in other back-arc basins of the world, such as in the western Pacific 

[e.g. Martinez et al., 2007], it is suggested in this thesis that this type of crust could be 

formed by back-arc rifting and/or back-arc spreading processes near the volcanic arc, so 

that its formation would be influenced by two types of magmas: 1) those produced by 

pressure-release melting or related with the passive decompression of the underlying 

mantle, and 2) those produced by hydrous flux melting or derived from the subducted 

slab. 

The exhumed mantle domain is observed beneath the V-shaped Magnaghi and 

Vavilov basins. The basement beneath these basins is characterized by the lack of Moho 

reflections in both WAS and MCS data and by a vertical velocity structure similar to 

other regions where basement is made of serpentinized mantle [Dean et al., 200; 

Sallarès et al., 2013a]. Additionally, this domain hosts large basaltic structures (i.e. 

Magnaghi and Vavilov seamounts, and D’Ancona and Gortani Ridges) that are 

intersected by Line GH/MEDOC-6, and hence imaged in depth by the velocity model. 

The comparison between the results of Line EF/MEDOC-4 (northern line) with 

those of the Line GH/MEDOC-6 (southern line) reveals that the velocity and tectonic 

structure of the three geological domains differ in some regions from north to south. 

These differences are most likely attributed to the southward increase of extension that 

characterizes the Tyrrhenian basin [e.g. Faccena et al., 2001; Sartori et al., 2004]. 
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Finally, to explain the mechanism involved in the formation of these domains, I 

examine the modes of back-arc basin formation proposed to explain the formation of the 

western Pacific basins [Martinez et al., 2007; Dunn and Martinez, 2011], as well as the 

causes that may have led to mantle exhumation [Pérez-Gussinyé, et al., 2006]. In 

summary, the proposed conceptual model is based on a slab rollback and depleted 

mantle setting, in which production of extension-related melting is limited, thus, crustal 

accretion is attributed to hydrous flux melting. The model presents 5 stages of opening 

that includes: (I) a normal subduction scenario followed by (II) development of back-

arc rift, (III) initiation of back-arc spreading, (IV) mantle exhumation, and finally (V) 

emplacement of large volcanic edifices in the central parts of the basin. 

In summary, the basement configuration presented in this thesis led to a 

completely new definition of geological domains in the Central Tyrrhenian. According 

to the presented distribution of the basement, rifting in the Central Tyrrhenian basin 

would have started with continental crust extension, continued with back-arc spreading 

leading to generation of magmatic back-arc crust, and followed by mantle exhumation 

intruded by later magmatic episodes. The interpretation of these results differ from 

current conceptual models of the formation of rifting systems involving mantle 

exhumation and indicate that the response of the continental lithosphere to extension 

processes may be more complex than previously assumed. 
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Chapter 1: General Introduction 

 

1.1 Background and motivations 

Rifted continental margins are one of the most distinctive morphological 

features of the world’s oceans, being the location of the transition between continental 

and oceanic crust. They are also globally the location of the largest accumulations of 

sediments and hence represent one of the remaining frontiers to find substantial 

geological resources, especially hydrocarbons. Additionally, as they undergo slope 

instability processes , rifted continental margins also represent a source of natural 

hazards, particularly to coastal communities. Because of their overall significance in 

many aspects of high scientific and societal relevance, a large number of recent 

international programs such as the GeoPRISMS (US), IODP (Integrated Ocean Drilling 

Program and the new Integrated Ocean Discovery Program), or Euromargins (Europe) 

have focused on the understanding of processes governing their evolution. Traditionaly, 

a limited number of continental rifted margins (e.g. west Iberia, Newfoundland, 

Western Mediterranean) have been the goal of interdisciplinary geophysical studies 

during the past few decades, to investigate their structure and internal architecture, their 

nature [e.g. Boillot et al., 1987b; Reston et al., 1996, Chian et al., 1999; Dean et al., 

2000; Pérez-Gusinyé et al., 2003; Van Avendonk et al., 2006; White et al., 2008; Gailler 

et al., 2009; Sallarès et al., 2011], and their mechanisms of formation [e.g. McKenzie, 

1978; Pichon and Sibuet, 1981; Mutter et al., 1988; White and McKenzie, 1989; Pérez-

Gusinyé and Reston, 2001; Lavier and Manatschal, 2006; White et al., 2008; Reston, 

2007; Ranero and Pérez-Gusinyé, 2010]. In the overall context of formation of rifted 

margins, back-arc basins represent a particular case of extensional basins that form 

above subduction zones by rifting and accretion of new volcanic seafloor [e.g. Karig, 

1970; Martinez et al., 2007; Dunn and Martinez, 2011]. 

Despite the large amount of work, there is still significant lack of knowledge on 

key questions concerning the structure, formation processes and evolution of rifted 

margins, and particularly of back-arc basins. Some of the most relevant open questions 

are related with the timing and kinematics of the extension, and with the petrological 

nature and processes involved in the formation of the continent-ocean transition zone 
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[e.g. Taylor et al., 1995; Benes et al., 1997; Dean et al., 2000; Pérez-Gusinyé and 

Reston, 2001; Ranero and Pérez-Gusinyé, 2010]. The main motivation of this work is 

thus to contribute to answer part of these open questions. 

In order to contribute to this quest for knowledge, the MEDOC project (Estudio 

geofísico de las cuencas del MEDiterráneo OCcidental, funded by the National 

Programme of the former Spanish MICINN under grant number CTM2007-66179-C02) 

was designed to carry out a geological and geophysical comparative study of the 

Western Mediterranean back-arc basins to improve our understanding of the origin and 

evolution of rifted continental margins, in general, and back-arc basins, in particular. 

The Tyrrhenian basin was selected as a case study area to develop this project because it 

meets some conditions that make it a natural laboratory to investigate the structure and 

evolution of back-arc basins. The main characteristics that make the Tyrrhenian basin 

an excellent case study are: 

� The basin was formed within the last ~10 million years [e.g. Kastens and 

Mascle, 1990] and most of the original structure that formed during its evolution is not 

overprinted by subsequent deformation. 

� It has been proposed that the basin structure evolved from north to south from 

little extended continental crust in the north to full continental break-up and formation 

of oceanic basins [Kastens and Mascle, 1990], so that it is possible to trade space by 

time in order to study the temporal evolution of rifting. 

� The evolution of the Tyrrhenian basin occurs within a region small enough to be 

studied within a single marine survey. 

Thus, in 2010 an amphibious geophysical survey was carried out in the 

Tyrrhenian basin within the framework of the MEDOC project (i.e. MEDOC survey) 

(Figure 1.1). During this survey a total of 17 Multichannel Seismic (MCS) lines with a 

total length of 2,808 km, and 5 long Wide-Angle Seismic (WAS) profiles crossing the 

basin from side to side, were acquired with the Spanish R/V Sarmiento de Gamboa, 

with the support of the Italian R/V Urania. The WAS data were also recorded by several 

land-stations installed in Corsica and Sardinia. The seismic data were combined with 

coincident multibeam, sediment profiler and gravity data. The geophysical data were 

complemented by oceanographic measurements of water properties that were acquired 

by deploying Conductivity-Depth-Temperature (CTD) profilers and a large number of 
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Expandable Bathythermographic (XBT). The goal of this experiment was to obtain 

information on the thermohaline fine-structure of the water layer using recently 

developed seismic oceanography techniques to better understand the hydrographic 

system of the Tyrrhenian basin. 

 

Figure 1.1 .- Bathymetric and topographic map of the Tyrrhenian Sea located at the eastern 

region of the Western Mediterranean Sea (see inset). Wide-angle seismic (black thick lines) and 

multichannel seismic (red lines) profiles acquired during the MEDOC survey are depicted in 

the image. Lines EF/MEDOC-4 and LineGH/MEDOC-6 are those included in this thesis. Red 

and yellow circles represent the Ocean Bottom Seismometers (OBS) and Ocean Bottom 

Hydrophones (OBH), respectively, used to acquire Line EF and GH. Yellow squares define the 

location of land stations used to complement Line EF and GH on land. Multichannel seismic 

profiles MEDOC 4 and 6 are coincident with Lines EF and GH, respectively. Grey circles and 

white squares show the location of the rest of OBS/H and land stations used during the MEDOC 

survey to accomplish the rest of wide-angle seismic lines. 

The work presented in this thesis consisted on the analysis, processing, 

modeling, and interpretation of the coincident WAS, MCS and gravity data 

corresponding to the two longest transects acquired during the MEDOC survey in the 

Central Tyrrhenian basin, Line GH/MEDOC-6 (~450 km) and Line EF/MEDOC-4 
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(~400 km) (Figure 1.1). MCS data processing provides the tectonic structure and 

geometry of the sedimentary basins, whereas the modeling of WAS data provides 2D 

seismic velocity models from which the velocity distribution of the crust and uppermost 

mantle, and the geometry of the crust-mantle boundary can be inferred. The WAS 

velocity models are then converted to density models using existing empirical 

relationships for different lithologies in order to test which of the different hypotheses 

concerning the petrological nature of the basement (e.g. continental/oceanic crust or 

exhumed mantle) explain better the gravity data. Hence, the overall goals of the work 

are: 

I. To define the crustal structure of the rifted continental margin 

II. To constrain the petrological nature of the main geological domains across the 

basin 

III. To investigate of the processes involved during the back-arc extension in the 

Central Tyrrhenian basin 

In summary, this study will help to further understand fundamental questions on 

the mechanisms of rifted margins formation, and particularly those formed in a back-arc 

setting. 
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1.2 Objectives  

In order to achieve the overall goals defined in the previous section, I have 

defined the following objectives with their specific activities and tasks: 

I To obtain the seismic velocity distribution of the crust and uppermost mantle 

across the Central Tyrrhenian basin: 

i. Processing, interpretation and modeling of the WAS data corresponding to Line 

GH and EF to obtain the corresponding 2D seismic velocity models of the crust 

and uppermost mantle, and the geometry of the crust-mantle boundary. 

ii. Quantifying the uncertainty of the velocity model parameters; that is, seismic 

velocity, and geometry/depth of the crust-mantle boundary.  

II To characterize the tectonic structure across the Central Tyrrhenian basin: 

iii. Analyzing and processing the MCS data to provide a final time-migrated seismic 

section. 

iv. Combine the information provided by the seismic velocity models (i) with that 

provided by the MCS time-migrated sections (iii). 

III To classify the petrological nature of the main geological domains across the 

Central Tyrrhenian basin: 

v. Defining the most likely lithological affinities of both 2D seismic velocity 

models by comparing their 1D velocity-depth structure with existing 1D 

velocity-depth reference profiles for continental crust, oceanic crust, and 

exhumed mantle regions. 

vi. Calculating the density model of the crust and uppermost mantle from both 2D 

velocity models using empirical seismic velocity-density relationships for the 

different rock types corresponding to the different crustal affinities defined in 

(v). 

vii. Performing the gravity modeling of the obtained density models (v) to check the 

consistency with the results obtained in the velocity analysis (iv). 

IV To define the spatial distribution of the main geological domains in the Central 

Tyrrhenian basin and propose the processes that may have lead to their 

formation: 
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viii. Integrating all the results obtained from the analysis, processing and modeling of 

WAS, MCS and gravity data for the different lines to define the distribution of 

the main geological domains. 

ix. Comparing the interpretation of both profiles to determine the variations and 

limits between the geological domains defined north and south of the Central 

Tyrrhenian basin. This task will be complemented by integration of rock 

sampling information and geomorphological observations based on bathymetry 

to present a plan view distribution of the main geological domains in the region.  

x. Investigating the mechanisms involved in the formation of the main geological 

domains in the Central Tyrrhenian basin and presenting a conceptual model to 

explain their formation during the opening of the basin as well as their present 

layout. 
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1.3 Basic concepts 

In this section I introduce some basic concepts that are necessary to understand 

the geological context of this work. First, I present the fundamentals of rifting at 

divergent margins, subduction processes, slab rollback, and formation of back-arc 

basins, which jointly conform the geodynamic setting of the Tyrrhenian basin. Then, I 

describe the different types of basement affinities that can be found in passive rifted 

margins to better understand the rationale of the petrological classification. 

 

 1.3.1 Plate tectonics 

The theory of plate tectonics was proposed in the 60’s to explain seafloor 

spreading, a process that explains continental drift, which had been originally proposed 

in 1915 by Alfred Wagner based on the movement of the Earth’s continents relative to 

each other over geological time [Fowler, 2005]. The theory of plate tectonics states that 

the Earth's outermost rigid layer, the lithosphere, is fragmented into a small number of 

nearly rigid plates that are moving relative to one another as they ride on top of hotter, 

more viscous material, the asthenosphere. This theory describes the large-scale motion 

of these plates, stating that most of the deformation that results from their motion is 

accommodated along the edge, or boundary of the plates. Observing the seismicity 

Earth’s map (earthquake activity) (Figure 1.2) one can then define these boundaries, 

since most of earthquakes and volcanism of the Earth occur along plate boundaries 

[Fowler, 2005]. 

There are three types of plate boundaries (Figure 1.3): 

1. Divergent, where plates move away from each other. At such boundaries new 

plate material is added to the lithosphere. They are normally represented by mid-

ocean-ridges systems.  

2. Convergent, where plates approach each other. Most such boundaries are 

represented by island-arc systems of subduction zones, although some 

convergent boundaries also occur on land, where are represented by large 

mountain ranges like the Himalayas. 
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3. Conservative, where lithospheric plates are neither created nor destroyed. In 

this case plates move laterally relative to each other creating transform faults. A 

well-known example is the San Andreas fault in California, USA.  

 

Figure 1.2 .- Worldwide seismicity map (1900-2012) showing earthquake’s epicenters 

(circles) and volcanism (yellow triangles). Yellow lines define plate boundaries. Extracted from 

http://earthquake.usgs.gov/earthquakes/world/seismicity_maps/index.php 

 

Figure 1.3.- Topographic and bathymetric map of the Earth showing the different types of 

plate boundaries, and the name of each tectonic plate. Modified from 

http://earthquake.usgs.gov/learn/topics/plate_tectonics/plates.php 

The formation and evolution of all these boundaries are tightly inter-related. 

This is especially evident in the case of small basins as the Mediterranean ones, where 
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continental extension (i.e. rifting) is triggered by the retreat of subduction fronts. In the 

next sections I revise the fundamentals of these two processes. 

 

1.3.1.1 Extension and continental rifting at divergent boundaries 

Continental rifting, or simply rifting, is the process that occurs when the 

continental lithosphere is pulled apart by divergent tectonic forces (Figure 1.4). During 

rifting, the lithosphere stretches with a component roughly perpendicular to the trend of 

the rift (Figure 1.4). The formation and evolution of rifts depends on many factors 

including the thermal structure of the mantle, and the mechanical structure of the 

lithosphere [e.g. McKenzie, 1978; Pluijm and Marshak, 2004].  

 

Figure 1.4.- Conceptual illustration of three stages of rifting. (a) In the early stage, rifting 

creates or reactivates old fractures. (b) Then, stretching evolves forming major faults. The 

sediments deposited during this stage are those of the synrift sequence. (c) Finally with the end 

of rifting, postrift thermal subsidence and sedimentation takes place. Blue lines display the main 

direction of the divergent tectonic forces responsible of rifting. From Fossen [2010]. 

Based on the timing of extension, rifts can be classified as active and inactive 

rifts. Active rifts refer to those places where extension currently takes place, like in the 

East African Rift [Ebinger, 1989]. These rifts are characterized by a notorious seismic 

activity and by occasional volcanic eruptions. In contrast, inactive rifts are those places 

where extensional deformation ceased some time ago. This last type includes in turn 
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two subgroups of rifts; those that have stopped before continental break-up, known as 

unsuccessful or failed rifts, and those in which extensional deformation completely 

splits a continent into two pieces, known as successful rifts. In this last type, mid-ocean 

ridges form between two continental margins, and seafloor spreading produces new 

oceanic lithosphere (see sections 1.3.2.2). Hence, the geometry of successful rifts is 

characterized by a relict rift that underlies a continental margin on either side of a new 

oceanic basin (Figure 1.15). These regions are also known as rifted margins and are 

better explained in section 1.3.2.1. Successful rifts are found in the North Atlantic 

margins [e.g. Louden and Chian, 1999] and in some of the Western Mediterranean 

basins [e.g. Rollet et al., 2002]. 

The amount of lithospheric stretching that takes place prior to the full 

continental break-up is variable. This value is usually measured with the stretching 

factor, �: 

�= l0/l1 , 

where, l0 is the undeformed crustal thickness and l1 the stretched crustal 

thickness after rifting. Typically, the continental lithosphere stretches by a � factor >3 

before full continental break-up and separation [e.g. Pérez-Gussinyé et al., 2003; Pluijm 

and Marshak, 2004]. 

Concerning the geometry of rifts, in the pre-70’s rift models assumed a 

symmetric system of extensional or normal faults (Figure 1.5). In this model, pairs of 

normal faults that dip toward each other outline grabens, while pairs of faults that dip 

away from each other form horst structures (Figure 1.5) [Pluijm and Marshak, 2004; 

Fossen, 2010]. However, symmetric rifts are rare, modern seismic reflection surveys 

show that most rifts are typically asymmetric [e.g. Ranero and Pérez-Gussinyé, 2010].  

The stretching and thinning of the lithosphere results on the formation of 

elongated troughs, which are filled with large amounts of sediments as they form 

(Figure 1.4). Hence, the extensional evolution of a rift is reflected in the sedimentary 

record (Figure 1.4). Based on the timing of deposition three sedimentary sequences can 

be then differentiated in a rift system: prerift, synrift, and postrift. The prerift 

sediments are those deposited prior to extension, while the synrift sequence is 

constituted by those sediments deposited contemporaneously to extension. These 

deposits display thickness variations across the growth of faults. Finally, the postrift 
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sequence is deposited after rifting, and is controlled by the geometry of the fault blocks 

and the thermal subsidence. 

 

Figure 1.5.- Cross section illustrating (a) symmetric horst and grabens and (b) the asymmetric 

model of tilted fault blocks and half grabens, over a detachment fault. Form Pluijm and 

Marshak [2004]. 

Once rifting is over and hence stretching ceases, the thinned lithosphere 

gradually subsides. This process happens because the lithosphere, which has been 

heated during extension, cools. With cooling, the lithosphere thickens and thus sinks to 

maintain isostatic compensation. This process of cooling, thickening, and sinking of the 

lithosphere is called thermal subsidence, and as stated above is one of the parameters 

that control the postrift sedimentation [McKenzie, 1978]. 

Another relevant feature of continental rifts is that rifting is often accompanied 

by variable amounts of melting and igneous activity. This magmatic activity is 

triggered by the decrease of confining pressure in the asthenosphere as a result of 

progressive thinning of the lithosphere, a process known as decompression melting. 

When decompression occurs, partial melting takes place [e.g. White and McKenzie, 

1989]. The magmas produced by this process are less dense than the overlying 

lithosphere, and thus they rise across it. Part of these magmas get trapped and solidified 

at the base of the crust, a process called magmatic underplating. Decompression 
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melting is also the main process involved in the assemblage and formation of new 

oceanic lithosphere at mid-ocean ridges (see section 1.3.2.2). 

 

1.3.1.2 Subduction at convergent boundaries 

The process of subduction in a convergent boundary occurs when one of the 

colliding plates moves under another plate and sinks into the mantle (Figure 1.6). 

Usually the downgoing lithosphere (i.e. slab) is that generated at mid-ocean-ridges (i.e. 

oceanic lithosphere) that as it moves away from the ocean ridge, cools, thickens, and 

becomes denser because of the thermal contraction (Figure 1.6) [Turcotte and Schubert, 

2002]. The density increase makes the lithosphere gravitationally unstable with respect 

the hot mantle rocks immediately underlying the lithosphere. Thus, when both plates 

collide this dense lithosphere begins to bend downward, defining the location of the 

oceanic trench, and sinks into the mantle; whereas the other plate, which is less dense, 

remains in the surface overriding the subducting lithosphere (Figure 1.6). 

 

Figure 1.6.- Cross-section of a conceptual model of creation of lithosphere at mid-ocean 

ridges, and destruction of it at subduction zones. The sketch shows the location of the oceanic 

ridge, the oceanic trench, the volcanic arc, the mantle wedge, and the Moho or crust-mantle 

boundary in red (see section 1.3.2). Modified from Turcotte and Schubert [2002]. 

The negative buoyancy of the dense rocks of the descending lithosphere results 

in a downward body force. Since the lithosphere deforms elastically it may transmit this 

body force to the surface section of the lithosphere, which is pulled toward the oceanic 

trench (Figure 1.6). This driving force is also known as slab pull, and it is considered to 
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be the main mechanism causing plate tectonics and continental drift (Figure 1.6) 

[Turcotte and Schubert, 2002]. 

Subduction velocity may vary from mm yr-1 to cm yr-1. The fastest subduction 

zones are found around the Pacific Ocean, where plates subducts at rates of ~9 cm yr-1 

[Molnar and Atwater, 1978]. The interaction between the downgoing lithosphere and 

the surrounding mantle at depths < ~70 km is mostly accommodated by great 

subduction earthquakes, such as the 1960 Chilean earthquake (Mw~9.5) or the more 

recent 2004 Andaman (Mw~9.1) and 2011 Tohoku (Mw ~9) ones (Magnitudes from the 

United States Geological Survey “USGS”). Earthquakes within a cold subducted 

lithosphere are caused by a wealth of mechanisms and extend to depths of ~660 km, 

defining the so-called Wadati-Benioff zone that in turn allows the definition of the 

location and geometry of the descending slab [e.g. Turcotte and Schubert, 2002]. 

Another peculiarity of subduction zones is the existence of a line of 

approximately regularly spaced volcanoes nearly parallel to the oceanic trench. This 

structure is known as the volcanic arc (Figure 1.6). Its distance to the oceanic trench is 

controlled by the dip angle of the subducting slab (Figure 1.6). Volcanic arcs that are 

close to the trench are usually related to steep subduction angles, while those located far 

from the trench indicate flatter subduction angles. The average dip angle for subduction 

zone is near 45º, which results in a trench-volcanic arc distance of ~175 km [Isack and 

Barazangi, 1977]. The volcanic arc is built on top of the overriding plate and composed 

of slab-derived magmas. This type of magmas are generated by water released from 

heating of hydrated minerals of the subducted lithosphere that can contribute to melting 

by depressing the solidus of adjacent mantle wedge rocks (Figure 1.6) [Turcotte and 

Schubert, 2002]. The mantle wedge of the overriding plate partially melts and the 

products rise then buoyantly through the mantle. A fraction of these melts is 

underplated at the base of the overriding plate crust, another fraction intrudes the 

overriding plate’s crust, and finally the lighter fraction of the melt erupts and forms the 

volcanic arc. 

Subduction zones over the Earth are mainly found around the Pacific Ocean 

defining a region of nearly continuous series of oceanic trenches and volcanic belts 

known as the Ring of Fire (Figure 1.7). Other regions of the planet governed by this 

type of plate tectonics are found in the Mediterranean Sea (see Figure 2.1 in chapter 2). 

In this region, though, subduction is driven by a process known as slab rollback, which 
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is also linked to continental rifting and back-arc basins formation. The concepts of 

slab rollback and back-arc basins are explained in the next sections. 

 

Figure 1.7.- Subduction zones(blue lines) around the Pacific ocean forming the so-called Ring 

of Fire. Extracted from http://pubs.usgs.gov/publications/text/fire.html 

 

1.3.1.2.1 Slab rollback 

As explained in the previous section, the negative buoyancy of the subducted 

oceanic lithosphere with respect to the surrounding mantle generates the slab pull force 

(Figure 1.8). The negative buoyancy, and hence the intensity of the slab pull force 

depend on the density of the lithosphere that in turn increases with the age of the slab 

[Turcotte and Schubert, 2002; Heuret and Lallemand, 2005].  

Figure 1.8.- Slab rollback model. 

Where, Fsp represents the slab pull force 

and Mb the bending moment. Vc 

represents the rate of convergence 

between plates, and Vt the rate of trench 

retreat, which is dependent on the age of 

the slab (i.e. density). When Vc << Vt 

extension in the overriding region occurs 

as shown by the sketch, causing back-arc 

extension. Modified from Heuret and 

Lallemand [2005] 
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Therefore, old oceanic lithospheres are denser than young ones. The negative 

buoyancy of a given old, dense, and cold oceanic lithosphere results in steep angles of 

subduction. The steepening of the subduction angle may make that the slab pull force 

focuses on the vicinity of the bending point, or hinge of the slab, causing a spontaneous 

retreat of the oceanic trench in surface, which results in slab rollback in depth (Figure 

1.8) [Mollnar and Atwater, 1978; Royden, 1993]. 

Slab rollback, then, is controlled by the age of the slab, the older and colder a 

slab is, the harder it should pull down on the hinge and the faster it should rollback 

[Heuret and Lallemand, 2005]. Thus, when the rate of slab rollback exceeds plate 

convergence rate –i.e. the overriding plate is considered to be fixed (Figure 1.8)- 

subduction fronts (i.e. frontal part of the overriding plate) migrate with the hinge of the 

slab causing tensional stresses in the overriding plate (Figure 1.8). This occurrence 

causes extension of the overriding plate and formation of the so-called back-arc or 

marginal basins [Nur et al., 1993; Royden, 1993]. The Tyrrhenian basin is an 

example of basin formed under these circumstances (see chapter 2). 

 

1.3.1.2.2 Back-arc basins 

Formation and evolution of back-arc basins has been a matter of discussion in 

plate tectonics since the 70’s. Figure 1.9 illustrates two general concepts or models of 

back-arc basin formation based on geophysical and geological observations of several 

well-known examples in the Western Pacific (Figure 1.10).  

A first model assumes that they develop in a slab rollback setting (Figure 1.9 

left-hand panels), whereas a second model proposes that is the overriding plate the one 

that moves away from the trench. In this new scenario the slab acts as a sea anchor in 

the mantle resisting the migration of the oceanic trench [Martinez et al., 2007]. Both 

models, however, coincide in the fact that extension initiates near the volcanic arc. This 

is based on the fact that heating of the lithosphere due to intrusions of arc-related 

magmas weakens the overriding lithosphere sufficiently so that it fails under tensional 

stresses (Figure 1.9) [Mollnar and Atwater, 1978; Taylor, 1995; Turcotte and Schubert, 

2002; Martinez et al., 2007]. 
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Figure 1.9 .- Back-arc basin formation models shown in Martinez et al. [2007]. Left-hand 

panels show the back-arc opening under slab rollback conditions (i.e. proximal stresses). Note 

that the trailing plate is considered to be fixed (mark with black dot) while the oceanic trench 

moves away from it. In contrast, right-hand panels show the opening of back-arc basins 

assuming a slab “sea anchor” model. Here the frontal section of the overriding plate is 

considered to resist migration due to the slab “sea anchor” force, and hence is represented as 

the fixed point in the model (black dot). Conversely, the trailing part of the overriding plate 

migrates to the left causing the onset of back-arc extension (i.e. far-filed stresses). Red and pink 

areas define the seafloor spreading-like and slab-derived magmas, respectively. 

Regardless of the model that governs the opening of the basin, it has been well-

documented in the Western Pacific (Figure 1.10) and the Western Mediterranean 

(Figure 2.1) that the evolution of back-arc basins has two main stages. In the first and 

early stage of extension, the crust of the overriding plate is affected by extensional 

faulting forming a rift (see section 1.3.1.1) [e.g. Taylor, 1995; Parson and Wright, 1996; 
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Martinez et al., 2007]. During this phase an elongated depression bordered by faults, is 

created by tensional stresses. Then, in the second, more evolved extensional episode, 

the continental crust breaks off and spreading centers similar to those found at mid-

ocean ridges are generated, forming new oceanic crust (see section 1.3.2.2) (Figure 1.9) 

[e.g. Taylor, 1995; Taylor et al., 1995; Benes et al., 1997; Martinez et al., 2007]. 

Additionally, formation of back-arc basins is accompanied by an important 

magmatic activity. Given that back-arc basins tend to initiate by rifting near the volcanic 

arc systems, the magmas that build up to construct the new back-arc crust are affected 

by two different sources: the hydrous flux melting that is associated to the dehydration 

of the subducted slab (pink area in Figure 1.9), and the pressure release melting that is 

produced by passive mantle decompression beneath spreading centers (red area in 

Figure 1.9) [e.g. Taylor, 1995; Martinez et al., 2007; Dunn and Martinez, 2011]. The 

influence of both sources is observed to be temporally and spatially juxtaposed in most 

back-arc basins, for example at the Lau basin (Figure 1.9 and 1.10) [Taylor, 1995; 

Martinez et al., 2007; Dunn and Martinez, 2011]. 

Regarding the kinematics of back-arc basins (Figure 1.9), their opening appear 

to be totally controlled by either proximal (Figure 1.9 left-hand panels) or far-field 

(Figure 1.9 right-hand panels) stresses [Martinez et al., 2007]. That implies that small 

changes in the whole subduction system results in significant variations on the opening 

of the basin. This can be clearly seen in the Philippine Sea (Figure 1.10) and in the 

Western Mediterranean region (see section 2.1). In the Philippine Sea, the Parece Vela 

and the Mariana Through back-arc basins are the result of the eastward rollback of the 

Pacific lithosphere. Despite sharing a common setting, both marginal basins display 

significant differences regarding their geometry (Figure 1.10). Extension in the Parece 

Vela basin appears to be rather symmetric (E-W), whereas the Mariana Trough displays 

an asymmetric degree of extension, being widest and hence more extended on its central 

part [Martinez et al., 1995]. Variations in the degree of extension and geometry of these 

basins are mainly attributed to changes on the trench geometry (i.e. subduction 

geometry) that results in important variations of the main stresses that control back-arc 

opening [Martinez et al., 1995, 2007]. 
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Figure 1.10.- Right-hand, distribution of the main back-arc basins in the western Pacific. HT= 

Havre Trough, JS = Japan Sea, KB = Kurile Basin, LB = Lau Basin, MB = Manus Basin, MT = 

Mariana Trough, NFB = North Fiji Basin, PVB = Parece Vela Basin, SB = Shikoku Basin, SFB 

= South Fiji Basin, and OT = Okinawa Trough. Left-hand, zoom of the Shikoku, Parece Vela, 

and Mariana Trough back-arc basins. Modified from Martinez et al. [2007]. 

The Western Mediterranean basins also show this behavior, their geometry 

appears to be the result of changes in the subduction system configuration (Figure 2.1) 

[Rosenbaum et al., 2002; Jolivet et al., 2008; Schettino and Turco, 2011]. A more 

detailed description of these basins is presented in chapter 2. 
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1.3.2 Nature of the basement 

Before introducing the concepts of this section, it is important to note the 

difference between lithosphere, crust and mantle, and to introduce the concept of 

basement. As stated before, the lithosphere is the rigid outermost shell of the Earth, and 

it is composed by the crust and uppermost mantle, being both chemically different 

(Figure 1.11). While the crust is constituted by a great variety of igneous, metamorphic 

and sedimentary rocks, the underlying rigid mantle is mainly formed by peridotite, a 

rock denser than those commonly found in the crust. The term basement is generally 

used to define those metamorphic or igneous rocks that underlie the sedimentary cover, 

although in petroleum geology it may also refer to the non-prospective rocks that lie 

below the strata of interest [Allaby, 2008].  

 

Figure 1.11.- Earth’s internal structure showing the distribution of the crust, mantle and core; 

the lithosphere and the asthenosphere are also represented in the not scaled drawn (right 

figure). Extracted from http://pubs.usgs.gov/gip/dynamic/inside.html 

The nature of the basement is defined by its rock’s composition, which can be in 

turn determined by direct rock sampling and geochemical analysis. In the absence of 

Chapter 1: General Introduction

21



rock samples, the composition can be also inferred using indirect geophysical methods, 

which allow inferring physical parameters that are characteristic of different rock types 

such as the seismic velocity, the rock density, or the gradients of these properties with 

depth. However, those properties are not univocal, meaning that many different rock 

types may have the same velocity or density values (e.g. Carlson and Herrick, 1990). A 

way to mitigate this issue is using empirical relationships that relate between them the 

physical properties for a given rock type. There exist a number of such relationships for 

seismic velocity and density for the most common oceanic and continental rock types 

[e.g. Carlson and Herrick, 1990; Christensen and Mooney, 1995]. Overall, an 

appropriate and realistic strategy to infer the nature of the basement in marine studies is 

to combine rock sampling information of the seabed from dredging or oceanic drilling 

with complementary geophysical information provided by methods such as wide-angle 

seismic (WAS) or gravity measurements (see chapters 3 and 4). 

Based on geophysical and geological observations the most common affinities 

of the basement found in rifted margins and back-arc settings are: continental and 

oceanic crust, and exhumed mantle rocks [e.g. Boillot et al., 1980, 1987a; Beslier et al., 

1993; Taylor et al., 1995; Benes et al., 1997]. In the following section I describe all of 

them in detail. 

 

1.3.2.1 Continental crust 

This type of crust is formed from mantle material over the geological time by a 

series multiple episodes of accretion, deformation, erosion, metamorphism, plutonism, 

and volcanism.  

Based on the Wilson’s cycle (Figure 1.12), origin and growth of continental 

crust occurs at convergent plate boundaries. In subduction zones, arc volcanism 

provides new crustal material from slab-derived magmas making the overriding 

lithosphere thicker. Then, when subduction consumes all the oceanic lithosphere, both 

continental masses collide resulting in a complex orogenic belt like the Himalayas 

(Figure 1.12) [e.g. Taylor, 1967; Allaby, 2008]. 

Because of the numerous processes involved in its formation, the lithological 

composition of continental crust includes a wide variety of igneous, metamorphic, and 

sedimentary rocks. In general, continental crust presents a felsic bulk composition, 
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which means that is relatively rich in elements that form feldspar and quartz (i.e. Si, Al, 

O, K, and Na).  

 

Figure 1.12.- Schematic diagram of the Wilson’s Cycle illustrating the evolution of continental 

crust, from rifting and formation of oceanic crust to subduction and continental collision. From 

http://www.earth.northwestern.edu/people/seth/202/new_2004/wilson_cycle.html 

Christensen and Mooney [1995] inferred an overall composition for continental 

crust by comparing results from a large number of WAS profiles, acquired in different 

tectonic provinces (Figure 1.13), with high-pressure laboratory measurements of P-

wave seismic velocity of a wide range of rocks commonly found in continental crust. In 

summary, the authors conclude that in the upper crust, that is the first 10 km, P-wave 

seismic velocities usually range between 5.9-6.3 km/s (Figure 1.13), matching with 

granitic and low-grade metamorphic rocks. Beneath, in the middle and lower crust the 

average velocity increases and ranges between 6.5 and 6.8 km/s (Figure 1.13). These 

velocities match with metamorphic rocks like gneiss and amphibolites in the mid-crust, 
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and gabbros at the lower crust. Therefore, the authors attribute the increase of velocity 

gradient to an increase in the metamorphic grade and a decrease in the silica content. 

Finally, the compositional difference between the felsic crust and the mantle peridotite 

is represented by sharp velocity contrast, where velocities jump from ~6.8 km/s to 8.0-

8.2 km/s [Christensen and Mooney, 1995; Fowler, 2005]. Crustal density for this 

compositional model increases from 2.6 kg/cm3 at surface to 3.1 kg/cm3 at the base of 

the crust [Christensen and Mooney, 1995], which is in agreement with propositions that 

state that the average density for continental crust ranges between 2.7-3.0 kg/cm3 

[Allaby, 2008]. 

 

Figure 1.13.- Average velocities versus depth of (a) five different tectonic provinces and (b) 

reference average crustal model compiled from weighted tectonic provinces at 5-km interval. 

Extracted from Christensen and Mooney [1995] 

The global average thickness for a continental crust ranges between 30 and 40 

km [Christensen and Mooney, 1995; Fowler, 2005; Allaby, 2008]. However, continental 

crust may be affected by rifting, and become thinner due to tensional forces as described 

in section 1.3.1.1 (e.g. Great Rift Valley in Africa).  

It is noteworthy that all of these features, seismic velocity, density, and 

thickness, may vary considerably depending on the tectonic framework that governs the 

continental crust. Figure 1.14 illustrates the general variations of velocity and thickness 

at different tectonic provinces. Lowermost crustal velocities of 7.0 km/s or higher that 

are observed in several settings such are arcs, rifts or rifted margins are commonly 
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associated to magmatic underplating so they do not fit into the lithological classification 

referred to above. 

 

Figure 1.14.- Cross section of an idealized continental crust showing the average P-wave 

velocity structure of different tectonic regions. Extracted from Fowler [2005]. 

Transition between continental crust and oceanic crust, occurs in active margins 

and rifted continental margins (Figure 1.15). In active margins the crustal boundary 

between oceanic and continental crust is defined by active plate boundaries in 

convergent margins like subduction zones (see section 1.3.1.2 and Figure 1.6). In 

contrast, the continent-ocean boundary along rifted margins occurs along progressively 

rifted and extended continental crust that ultimately breaks apart and transitions to 

oceanic crust. Rifted margins are classified in two types depending on the degree of 

extension-related magmatism that is produced during the extension, that is: volcanic and 

non-volcanic rifted margins.  

Volcanic margins are characterized by the generation of large amounts of 

magmas during their formation that are emplaced on top or at the base of the crust. The 

large amounts of magma produced in these types of margins cannot be explained only 

by decompression melting. Three primary hypothesis exist that account for this 

excessive magmatism, these are 1) mantle plume with elevated temperatures [White and 

McKenzie, 1989; White et al., 2008]; 2) small-scale convection at the base of the 

lithosphere [Mutter et al., 1988; King and Anderson, 1995]; and 3) heterogeneities in 

mantle source composition [Korenaga and Kelemen, 2000; Korenaga, 2004]. 

Independently of the process involved in the formation of the margin, volcanic margins 

are characterized by a narrow continent-ocean transition (COT) zone marked by the 

presence of lower crustal bodies interpreted as magmatic underplating [Geoffroy, 2005; 

Gernigon et al., 2006].  
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In contrast, non-volcanic rifted margins do not present such features. Instead, 

they are hyper-extended, characterized by polyphase and diachronous rifting, 

detachment faulting, and fault-bounded basement blocks that progressively thin towards 

the center of the basin [e.g. Reston et al., 1996; Louden and Chian, 1999; Tucholke et 

al., 2007]. In this case, the COT occurs more progressively along a wide (~100-200 km-

long) region where the mantle can eventually be exhumed without any associated 

melting due to the progressive extension (see section 1.3.2.3) [e.g. Boillot et al., 1987b; 

Pérez-Gussinyé and Reston, 2001; Tucholke et al., 2007]. Figure 1.15 summarizes the 

overall crustal structure along volcanic and non-volcanic rifted margins. 

.  

Figure 1.15.- Conceptual sketch of (a) non-volcanic and (b) volcanic rifted or rifted 

continental margins structure showing the COT in both cases. CLCB: continental part of lower 

crustal body; OLCB: transitional–oceanic part of the lower crustal body; SDRS: seaward 

dipping reflectors. (S) Symbolizes the thermal subsidence of the non-volcanic margin; (U) 

represents the relative uplift recorded along the volcanic margin. From Gernigon et al. [2006] 
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1.3.2.2 Oceanic crust 

As explained in section 1.3.1.1, oceanic lithosphere, and hence, oceanic crust is 

formed at mid-ocean ridges along divergent boundaries. These structures are chains of 

undersea mountains with a total length of over 60.000 km [Fowler, 2005]. In contrast 

with subduction zones, mid-ocean ridges mark the constructive boundaries of plates. In 

these regions, hot melt produced by the passive decompression of mantle rocks rises 

from the asthenosphere along the axis of the ridge, and fills the space left by the 

separating plates; as this melt cools, it forms new oceanic crust (Figure 1.16). 

 

Figure 1.16.- Basic sketch of the formation of oceanic crust in a mid-ocean ridge 

A large amount of WAS data correlated with rock sampling information 

provided by several surveys of the Ocean Drilling Program (ODP) and the Deep Sea 

Drilling Project (DSDP) among others, have determined that the oceanic crustal 

structure, lithology and composition are much more uniform than that of continental 

crust [Kennett, 1982; Bratt and Purdy, 1984; White et al., 1992].  

 

Figure 1.17.- 1D velocity-depth profiles from the North-Atlantic oceanic crust, grouped 

according to the age of the lithosphere. Extracted from White et al. [1992].  
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White et al. [1992] compile a large number of velocity-depth profiles extracted 

from seismic lines acquired in the Atlantic and the Pacific, evidencing that despite some 

local differences, the general variation of seismic velocity with depth is fairly constant 

within each age zone (Figure 1.17). 

This large amount of geological and geophysical data has allowed to identify a 

standard structure for oceanic crust (Figure 1.18). This structure includes from top to 

bottom:  

 

Figure 1.18.- Basic sketch of the standard layered structure of oceanic crust, from Kennett 

[1982] 

Layer 1, the sedimentary layer. This layer varies in thickness from being absent 

over the oceanic ridge to 2-3 km near the continental shelves [Allaby, 2008]. P-wave 

velocity on top of this layer is close to water velocity (1.5 km/s) and increases steadily 

and rapidly with depth [White et al., 1992; Fowler, 2005]. The average density of this 

layer may vary depending on the type and degree of consolidation of sediments from 

~1.6 to 2.3 kg/cm3 [Hamilton, 1978]. 

Layer 2, this layer is usually called the volcanic layer and is subdivided in two 

layers: Layer 2A and 2B. Layer 2A displays an average thickness of ~0.5 km and is 

represented by extrusive basaltic pillow and sheeted lavas. In contrast, Layer 2B is 

thicker than 2A with an average thickness of 1.5 km and represented by basaltic dikes 

[Kennett, 1982] (Figure 1.18). Both layers define a region of the oceanic crust in which 

seismic velocity increases rapidly with depth, from ~3.5 km/s to ~6.2 km/s in ~ 2 km of 
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crust (gradients of 1-2 s-1) [White et al., 1992]. The rapid increase of seismic velocity is 

mainly attributed to: (1) lithological changes as a function of depth, and (2) the decrease 

on the degree of fracturing/porosity, and the related alteration of the rocks [Fowler, 

2005]. Based on measured physical properties of core samples from the seafloor and 

from ophiolites (see below), the average density of Layer 2 is estimated between 2.6-2.7 

kg/cm3 [Carlson and Herrick, 1990]. 

Layer 3 is the thickest oceanic layer, with an average thickness of 5 km [Allaby, 

2008], although it is highly variable. Based on its physical properties and on onshore 

observations (i.e. ophiolites), it is assumed that Layer 3 is gabbroic in composition [e.g. 

Kennett, 1982; Fowler, 2005]. Seismic velocities in Layer 3 range from ~6.5 km/s on 

top to ~7.2 km/s at the base of the crust, which means a velocity gradient of 0.1-0.2 s-1, 

10 times lower than Layer 2 gradient (Figure 1.18). The average density of this layer is 

estimated between 2.9-3.0 kg/m3 [Carlson and Herrick, 1990]. 

Layer 4 in Figure 1.18 corresponds to the uppermost mantle that underlies the 

oceanic crust, and therefore, it is not included in the oceanic crust structure.  

Based on compilations of WAS data, it has been shown that oceanic crust is 

much thinner than continental crust, with a crustal thickness varying from 5.0 km and 

8.5 km [White et al., 1992]. In some cases such as oceanic plateaus, originated under the 

influence of active mantle melting anomalies commonly identified as “hotspots”, 

oceanic crust can be much thicker, up to 30-40 km in some extreme cases such as 

Iceland, Galapagos Volcanic Province, or Ontong-Java [e.g. Gladczenko et al., 1997; 

Maclennan et al., 2001; Sallarès and Charvis, 2003]. However, here I will not refer to 

these anomalous cases. 

Although this type of crust forms exclusively beneath the sea, it can be also 

found on land, since fragments of oceanic lithosphere were involved in convergent plate 

tectonics, being uplifted and exposed above sea level. These fragments, that not only 

include oceanic crust but also the uppermost section of the underlying mantle, are 

known as ophiolites and can be found in many region of the world like in Cyprus, in the 

Trodos complex [Christensen, 1978]. 
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1.3.2.3 Exhumed mantle 

At many rifted margins MCS and WAS data have evidenced how continental 

crust thins progressively as a result of the rotation of large continental blocks along 

high-angle normal faults (Figure 1.15) [e.g. Reid, 1994; Whitmarsh et al., 1996; 

Finlayson et al., 1998]. As thinning progresses, the highly stretched continental crust 

leads to the so-called continent-ocean transition (COT) zone (Figure 1.15). In some of 

these transition zones, ODP drillings have found that the basement was made of 

serpentinized mantle rocks [e.g. Boillot et al., 1980, 1987a; Whitmarsh and Wallace, 

2001].

Serpentinization of mantle rocks occurs when seawater interacts directly with 

mantle at temperature < ~400°C. This interaction results in a metamorphic process that 

involves hydration of the ferromagnesian minerals of mantle rocks, mostly olivine. This 

process destroys the structure of this mineral by adding large amounts of waters into the 

crystalline structure giving as a result the transformation into serpentinite [Allaby, 

2008].

The processes involved in exhumation of mantle rocks and serpentinization have 

been studied since the 80’s and are still under discussion. Some of the first conceptual 

models of mantle serpentinization and exhumation were proposed by Boillot et al. 

[1987b]. Their model was based on a low-angle, normal faults setting in which mantle 

exhumation occurs from complex process of lithospheric necking and tectonic 

denudation of the underlying mantle (Figure 1.19). Later on, seismic studies in the West 

Iberia rifted margin evidenced the presence of serpentinized mantle beneath the rifted 

continental crust [Boillot, et al., 1989], implying that mantle serpentinization may occur 

beneath the stretched continental crust prior to exhumation in the COT zone. Assuming 

this, several laboratory and numerical models were performed to address fundamental 

questions on the rheological evolution of rifted margins and mantle exhumation [e.g. 

Brun and Beslier, 1996; Lavier and Manatschal, 2006; Pérez-Gusinyé and Reston, 2001; 

Pérez-Gussinyé et al., 2003]. These studies conclude that after significant extension the 

entire continental crust becomes brittle due to the progressive thinning and cooling 

(Figure 1.19). At this point, faulting cuts across the entire crust acting as seawater 

conduits to the mantle, where serpentinization occurs. Interestingly, mantle 

serpentinization not only changes the rock’s chemistry but it also modifies its rheology 

from brittle to ductile regime [Escartín et al., 1997]. Thus, it is suggested that the 
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serpentinized uppermost mantle acts as a decollement or detachment horizon [e.g. S 

reflector in Reston et al., 1996], accommodating large amounts of extension and leading 

to the full continental break-up and subsequent mantle exhumation (Figure 1.19) [e.g. 

Pérez-Gusinyé and Reston, 2001]. 

Figure 1.19.- (a) Low-angle, normal fault and tectonic denudation model presented by Boillot 

et al. [1987b] to explain mantle exhumation. (b) Basic sketch of the temporal evolution of a 

rifted margin, from the onset of the extension to the continental break-up and mantle 

exhumation. The sketch illustrates the onset of mantle serpentinization at the time that the entire 

continental crust becomes brittle (i.e. at �=4.27). At this stage the extension is accommodated 

by large decollements or detachment faults (black thick line). From Pérez-Gussinyé and Reston 

[2001]. 

However, not only rheology plays an important role in mantle exhumation. As 

stated before, it is well known that the passive decompression of the astenospheric 

mantle results in large production of partial melting. Then, how can mantle be exhumed 

without producing melting? In mid-ocean ridges, it is well studied that the three 

parameters that control melting production from decompression of the mantle are 

velocity of extension, and temperature and composition of the underlying mantle [e.g. 

Klein et al., 1987; Reid and Jackson, 1987; Michael et al., 2003]. Based on this, 

dynamic models of rifting explored how these three parameters influence the formation 

the COT zone and mantle exhumation [Pérez-Gussinyé et al., 2006]. The results of 
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these models conclude that in case that the mantle is cold enough, or extension is slow 

enough, or mantle source is depleted enough, extension could eventually lead to the 

exhumation of mantle rocks without producing significant amounts of melting [Pérez-

Gussinyé et al., 2006]. 

Concerning the physical properties, serpentinization lowers both seismic 

velocity and density of mantle rocks, which originally display P-wave velocities of 8.1-

8.2 km/s and density of ~3.3 kg/cm3 [Birch, 1961; Allaby, 2008]. For that reason, 

exhumed mantle regions can be identified from seismic velocity and density models 

[e.g. Dean et al., 2000; Van Avendonk et al., 2006; Sibuet et al., 2007].

Figure 1.20.- 1D velocity-depth profiles 

(black thick lines) from the exhumed mantle 

zone in the southern Iberia Abyssal Plain 

overlaid with the reference velocity-depth 

profile of Atlantic oceanic crust (grey area) 

from White et al. [1992]. Extracted from 

Dean et al. [2000]. 

The most relevant features concerning the seismic velocity structure of exhumed 

mantle regions are explained below and illustrated by Figure 1.20: 

� In the uppermost 2-4 km of basement seismic velocities used to increase 

rapidly with gradients that can be even twice higher than those observed in oceanic 

Layer 2. This rapid increment is mostly attributed to a progressive decrease in peridotite 

serpentinization degree with depth due to the significant reduction of rock fracturing, 

and fluid percolation (Figure 1.20) [Chian et al., 1999; Dean et al., 2000; Sallarès et al., 

2013a].
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� Then, a moderate increment of seismic velocities underlies this fast 

transition zone, reflecting a less intense, more homogeneous serpentinization degree that 

would lead to unaltered mantle velocities (8.1-8.2 km/s) with depth (Figure 1.20) [Chian 

et al., 1999; Dean et al., 2000]. 

� Finally, no Moho discontinuity is defined, since there is no crust-mantle 

boundary [e.g. Dean et al., 2000]. 
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Chapter 2: Geological & Geodynamic setting 

 
2.1 The Western Mediterranean back-arc basins 

The Western Mediterranean realm is characterized by the formation of back-arc 

basins associated to rollback of slabs and retreat of subduction fronts since Oligocene 

times [Dewey et al., 1989; Doglioni et al., 1997; Spakman and Wortel, 2004; Schettino 

and Turco, 2011]. As a result of of this setting, the morpho-tectonic structure of the 

Western Mediterranean is represented by an arcuate configuration of mountain belts [i.e. 

subduction fronts] that surrounds a system of back-arc basins formed by the Valencia 

Trough, the Liguro-Provençal, the South Balearic-Algerian, the Alborán, and the 

Tyrrhenian basins (Figure 2.1). 

 
Figure 2.1.- Bathymetric and topographic map showing the main tectonic features and the 

location of back-arc basins in the Western Mediterranean region, modified from Booth-Rea et 

al. [2007]. 

The formation of this system of back-arc basins started ~33 Ma ago [Schettino 

and Turco, 2011] (Figure 2.1). In a first stage, migration of the trench zone related to the 

subduction of the old Ligurian Thetys lithosphere toward the east-northeast and south-
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southeast caused the rotation of Sardinia, Corsica, the Balearic Islands, and the Kabylies 

leading to the opening of the Liguro-Provençal, the Valencia Trough, and the South 

Balearic-Algerian basins before ~20 Ma (Figure 2.2a). The opening of these basins was 

accompanied by continental rifting in the Valencia Trough [Pascal et al., 1992; Gallart et 

al., 1995], that evolved until full continental breakup and seafloor spreading in the 

South Balearic-Algerian basin [Booth-Rea et al., 2007] and the Liguro-Provençal basin 

[Rollet et al., 2002; Gailler et al., 2009]. 

 
Figure 2.2.- Plate reconstruction of Atlantic and Mediterranean regions from Schettino and 

Turco [2011], (A) at 20.1 Ma (chron C6n, early Burdigalian) and (B) at 10.9 Ma (early 

Tortonian). Red lines are spreading centers. Green and blue areas represent oceanic crust. The 

areas affected by the first rifting events are bounded by orange lines. Arrows represent 

direction and amount of relative motion. ABB: Algero-Balearic Basin; AB: Alboran Basin; 

LPB: Liguro-Provençal Basin; PB: Pannonian Basin; TB: Tyrrhenian Basin; VT: Valencia 

Trough. 

In a second stage, two subsequent episodes of trench retreat took place during 
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the early Tortonian (10.9 Ma), leading to the formation of the Alborán basin, in a first 

stage, and the Tyrrhenian basin in a second stage [Schettino and Turco, 2011] (Figure 

2.2b). The Alborán basin was generated by the westwards rollback of the subducting 

Alpine-Tethys oceanic lithosphere [Lonergan and White, 1997]. This subducted slab, 

which likely corresponds to the oceanic crust that floors the Gulf of Cadiz [Sallarès et 

al., 2011], has been imaged beneath the Gibraltar arc by means of global tomography 

[Spakman and Wortel, 2004]. Back-arc extension processes in the Alborán basin result 

in a thin continental crust later modified by arc magmatism [Booth-Rea et al., 2007].  

Simultaneously to the opening of the Alborán basin, the eastward migration of 

the Apennines-Calabrian subduction system in the eastern part of the Western 

Mediterranean led to the opening of the Tyrrhenian basin (Figure 2.2b). The evolution 

and structure of this basin is presented more in detail in the next sections. 
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2.2 The Tyrrhenian back-arc basin 

The Tyrrhenian is a Neogene, triangular shaped, back-arc basin, located at the 

easternmost region of the Western Mediterranean (Figure 2.1). 

 
Figure 2.3.- Bathymetric map of the Tyrrhenian basin. The location of the main sedimentary 

basins and morphological structures are included. N.T.: Northern Tyrrhenian, C.T.: Central 

Tyrrhenian, S.T.: Southern Tyrrhenian, 1: Pianosa Ridge, 2: Etruschi seamount, 3: Cialdi 

seamount, 4: Vercelli seamount, 5: Baronie seamount, 6: Cornaglia seamount, 7: Quirra 

seamount, 8: Cassini seamount, 9: Sechi seamount, 10: Major seamount, 11: Magnaghi 

seamount, 12: D’Ancona Ridge, 13: De Marchi seamount, 14: Farfalla seamount, 15: Gortani 

Ridge, 16: Vavilov seamount, 17: Flavio de Gioia seamount, 18: Monte delle Sirene, 19: Issel 

seamount, 20: Poseidone seamount, 21: Glauco seamount, 22: Marsili seamount, 23: Palinuro 

seamount, 24: Anchise seamount, 25: Sisifo seamount, 26: Enarela seamount, 27: Eolo 

seamount. The Central Fault after interpretation by Marani and Gamberi [2004]. 

It is surrounded to the E and S by an arcuate orogenic system formed by the 
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Apennines in the Italian peninsula, the Calabrian Arc in southern Italy and the 

Maghrebides in Sicily and north-eastern Africa, and to the west by the Corsica-Sardinia 

block (Figure 2.1). 

From a morpho-tectonic point of view, the Tyrrhenian basin can be subdivided in 

three different domains: the Northern (north of ~40º 45’N), which displays shallower 

seafloor and rough morphology; the Central (from ~40º 45’N to ~39ºN) with deeper 

seafloor and extended abyssal plains spotted with prominent volcanic and non-volcanic 

seamounts, and the Southern Tyrrhenian, where the active volcanic arc is represented by 

the Aeolian Islands in front of the Sicilian-Calabrian margin (Figure 2.3). 

Since the Tyrrhenian basin is the setting of this study, a detailed description of its 

geodynamic evolution, tectonic, geology and volcanism is presented below based on the 

knowledge before the present work. 

 

2.2.1 Geodynamic evolution of the Tyrrhenian basin region 

The evolution of the Tyrrhenian basin together with the surrounding arcuate 

orogenic system is linked to the east-southeastward migration of the Apennines-

Calabrian subduction front, which in turn is related to the slab rollback of the Thetyan 

oceanic lithosphere (Figure 2.4) [Malinverno and Ryan, 1986; Rehault et al., 1987; 

Faccena et al., 2001].  

Before the opening of the Tyrrhenian basin, oceanic spreading occurred in the 

central part of the Liguro-Provençal basin in response to the 25º-30º counterclockwise 

rotation of the Corsica–Sardinia block at ~20-15 Ma [Gattacceca et al., 2007]. At that 

time rollback and hence back-arc extension slowed down and eventually stopped. It has 

been hypothesized that a possible cause for this slow down of extension was the arrival 

of the subducting slab at the 660 km-transition zone (upper-lower mantle transition) 

[Faccena et al., 2001].  

Soon after, during the intra-Tortonian (~10-9 Ma) extension started in the 

Tyrrhenian region affecting a region occupied by the Alpine and the Apenninic orogenic 

belts. [Trincardi and Zitellini, 1987; Mascle and Rehault, 1990; Sartori et al., 1990, 

2001]. Nevertheless, synrift deposits related to the last stages of opening of the Liguro-

Provençal basin (~20 Ma) were found in the Corsica basin indicating that the 

westernmost section of the Northern Tyrrhenian basin undergone earlier extension 

Chapter 2: Geological & Geodynamic setting

39



[Zitellini et al., 1986; Mauffret et al., 1999; Mauffret and Contrucci, 1999] (Figure 

2.4a). From Tortonian to late Messinian the rapid eastward migration of the subduction 

front caused the roughly E-W contemporaneous back-arc extension in the Tyrrhenian 

region [Faccena et al., 2001; Rosenbaum and Lister, 2004] (Figure 2.4b).  

 
Figure 2.4.- Schematic sequence of the Neogene and Quaternary evolution of the Apennines-

Calabrian subduction front from Rosenbaum and Lister [2004]. 

Between ~6-5 Ma the style of subduction rollback experienced major changes 

(Figure 2.4c). It is suggested that the under-thrusting of positively buoyant continental 

crust into the subduction system caused a progressive slow down of rollback in the 

Northern Tyrrhenian [Faccena et al., 2001]. Consequently, back-arc extension in the 

Northern Tyrrhenian also slowed down in the upper-Messinian and stopped during 

Pleistocene time [Bartole et al., 1995]. In contrast, the Central and Southern Tyrrhenian 

underwent larger amount of extension due to the rapid migration of the subduction front 

toward southeast [6 cm yr-1 in Faccena et al., 2004 and references therein], where it is 

currently consuming oceanic Ionian lithosphere beneath the Calabrian arc (Figure 2.4d) 

[Faccena et al., 2001; Chiarabba et al., 2008]. It has been suggested that extension in the 

Southern region may have led to continental break-up and oceanic crust formation in the 

Vavilov and Marsili basins (Figure 2.3) [Trincardi and Zitellini, 1987; Kastens and 

Mascle, 1990; Faccena et al., 2001; Rosenbaum and Lister, 2004]. The different degree 

of extension from north to south is believed to be accommodated by two major strike-

slip systems located at 41ºN and along the north coast of Sicily, respectively (Figure 

2.4c and d) [Bruno et al., 2000; Faccena et al., 2001; Rosenbaum and Lister, 2004]. 

 

2.2.2 Tectonic setting of the Tyrrhenian basin 

Differences of extension from north to south caused by the rollback evolution in 

the Tyrrhenian basin, led to a complex tectonic structure and important crustal thickness 
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variations (Figure 2.5) [Gvirtzman and Nur, 2001; Di Stefano et al., 2011]. 

Early interpretations of the tectonic structure of the Tyrrhenian basin were 

summarized by Funizello et al. [1981] in the Carta Tettonica d’Italia. Additional 

information has been also provided by seismic reflection data acquired since the 70’s in 

the Tyrrhenian region by many authors [e.g. Zitellini et al., 1986; Trincardi and Zitellini, 

1987; Kastens and Mascle, 1990; Mauffret et al., 1999; Mauffret and Contrucci, 1999; 

Sartori et al., 2004; Moeller et al., 2013] (Figures 2.6 and 2.7). The aim of this section is 

to integrate these data and present the most widely accepted aspects concerning the 

tectonic structure of the Tyrrhenian basin. I focus particularly in the Central part of the 

basin, which is the main area of interest of my work. 

Figure 2.5.- Map of the 

distribution of the Moho 

depth in the Alpine, 

Adriatic and Tyrrhenian 

regions, extracted from Di 

Steffano et al. [2011]. 

 

Northern Tyrrhenian 

The Northern Tyrrhenian displays a tectonic structure mainly formed by a 

roughly N-S-trending system of East-dipping normal faults that define a number of half-

graben structures (Figure 2.6) [Zitellini et al., 1986; Mauffret and Contrucci, 1999; 

Mauffret et al., 1999; Moeller et al., 2013]. In the western region, the main tectonic 

Chapter 2: Geological & Geodynamic setting

41



feature is represented by the half-graben of the Corsica basin, which is >8.5 km-deep 

(Figures 2.3 and 2.6) [Mauffret et al., 1999; Moeller et al., 2013]. In the deepest part, 

this basin is filled by Oligocene-early Miocene synrift sediments [Zitellini et al., 1986; 

Mauffret et al., 1999] deposited during the counterclockwise rotation of Corsica and 

Sardinia. To the east of this basin the rifted crust exhibits a structure of tilted blocks 

rotated along eastward dipping normal faults [Moeller et al., 2013]. The resultant half-

graben structure is filled by syn-tectonic deposits from late Tortonian, Messinian and 

Early-Pliocene times basin [Mauffret et al., 1999;], indicating that most of the normal 

faulting in this sector of the Northern Tyrrhenian was produced from Tortonian to mid-

Pliocene time and hence during the opening of the Tyrrhenian. In response to this 

tectonic activity crustal thickness in the Northern Tyrrhenian thins from ~25 km to ~15 

km thick from Corsica to the central parts of the basin along MEDOC WAS Line AB 

[Moeller et al., 2013] (Figure 2.6) and thickens toward the Italian peninsula where it is 

25-30 km thick (Figure 2.5) [Di Stefano et al., 2011]. 

 

Figure 2.6.- Tectonic map of the Northern Tyrrhenian basin showing the location of the 

MEDOC WAS line AB, modified from Moeller et al. [2013]. 

Central Tyrrhenian 

To the south, the Tyrrhenian basin has been subjected to larger extension rates. 

The Central Tyrrhenian basin is bounded by the asymmetric conjugate margins of 

Sardinia and mainland Italy [Trincardi and Zitellini, 1987; Sartori et al., 2004] and by 
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the Magnaghi, Vavilov and Marsili basins (Figure 2.3), which are interpreted to be 

oceanic [Kastens and Mascle, 1990]. In the Sardinia margin extensional faulting 

changes the trend from N-S to NE-SW eastward in response to changes of the 

subduction system during Messinian times (~6-5 Ma) [Faccena et al., 2001; Rosenbaum 

and Lister, 2004] (Figure2.4). Sartori et al. [2004] interpreted the tectonic structure of 

the ~180 km-wide Sardina margin, which they interpreted to include the Cornaglia 

Terrace (Figure 2.3), as an irregularly spaced system of tilted continental blocks rotated 

by East- and West-verging extensional faults (Figure 2.7). These authors interpreted 

MCS images to show that extensional faulting reaches the base of a ~10 km thick crust 

beneath the Cornaglia Terrace [Sartori et al., 2001; Carrara, 2002; Sartori et al., 2004]. 

Half-grabens in the Sardinia margin are filled with pre-rift deposits of Serravalian-

Tortonian age and syn-rift deposits from late-Tortonian to intra-Pliocene age [Sartori et 

al., 2001; Carrara 2002; Sartori et al., 2004], which allows to constrain the duration of 

extension in this region. At the eastern edge, the east-dipping Central Fault, also known 

as the Selli Line, is interpreted to separate the Cornaglia Terrace from the Magnaghi and 

Vavilov basin (Figure 2.3) [Carrara, 2002; Sartori et al., 2004]. 

The tectonic structure of the Magnaghi and Vavilov basins has been proposed to 

be controlled by a N-S trending group of extensional listric faults (Figure 2.7) [Sartori et 

al., 2004]. In the Magnaghi basin the syn-extensional sequence was deposited during 

intra-Messinian to intra-Pliocene times [Kastens and Mascle, 1990; Sartori, 1990; 

Sartori et al., 2004], while in the Vavilov basin a sedimentary infill corresponding to the 

Pliocene-Quaternary appears undeformed directly covering the irregular topography of 

the basement [Sartori et al., 2004]. Another relevant feature of these basins is that both 

of them host large magmatic structures that are thought to be related with oceanic 

crustal accretion and intra-plate magmatism (Figure 2.10) (see section 2.2.3 and 2.2.4 

for further details) [Savelli 2002]. Moho depth beneath Magnaghi and Vavilov basins 

has been inferred from topographical analyzes -based on isostatic equilibrium- and 

regional tomography at ~10 km of depth (Figure 2.5) [Gvirtzman and Nur, 2001; Di 

Stefano et al., 2011]. However, the seismic reflection profile presented in Sartori et al. 

[2004] does not image any Moho-like package of reflections beneath these basins 

(Figure 2.7). 

The conjugated Italian margin of the Central Tyrrhenian is less extended than the 

conjugated margin of Sardinia [Trincardi and Zitellini, 1987; Sartori et al., 2004]. The 
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NW-SE-trending system of normal faults produced horst-and-graben structures parallel 

to the Apenninic chain (Figure 2.3). Some of these extensional structures appear to be 

currently inverted in response of a compressive episode that took place during upper-

Pliocene-Quaternary times [Trincardi and Zitellini, 1987]. The syn-extensional 

sequences identified in the half-grabens infill indicate that rift-related faulting occurred 

during pre-Messinian times in this sector of the Italian margin [Trincardi and Zitellini, 

1987]. Average Moho depth along the Italian margin has been estimated to be ~25-30 

km (Figure 2.5) [Biella et al., 2007; Di Stefano et al., 2011]. 

The southeastern region of the Central Tyrrhenian is represented by the Marsili 

basin (Figure 2.3), where oceanic crust is interpreted to underlay the sediments 

[Trincardi and Zitellini, 1987; Kastens and Mascle, 1990]. This region is also the locus 

of the largest volcano in the Tyrrhenian basin, the so-called Marsili seamount, which is 

~ 3000 m tall above the seafloor (Figure 2.3). Faulting in this basin presents a NNE- 

SSW direction implying a WNW-ESE extension [Kastens and Mascle, 1990]. The 

oldest sediments were deposited during early-Pleistocene times (~2 Ma) [Hieke et al., 

1990]. 

Southern Tyrrhenian 

The Southern Tyrrhenian basin is characterized by the Aeolian volcanic arc 

resulting of the subduction of the Ionian lithosphere (Figure 2.3). The tectonic structure 

of this region is represented by trans-tensional basins controlled by normal faults in 

response of a right-lateral transcurrent regime along WNW-ESE direction [Trincardi and 

Zitellini, 1987]. Additionally, the inversion of a number of basins reveals the occurrence 

of recent trans-pressional episodes in this area [Trincardi and Zitellini, 1987]. 
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2.2.3 Previous work on the rock-type distribution of the Tyrrhenian basin 

The first large compilation of information concerning the geology of the 

Tyrrhenian Sea date from the early 80’s [Colantoni et al., 1981]. The map provided by 

these authors was drawn up on the basis of available data from the literature up to 1980 

including samples from the Deep Sea Drilling Project (DSDP) Leg 42A [Keneth et al., 

1978] (Figure 2.8). Later, the Ocean Drilling Program (ODP) Leg 107, provided, 

drilling sites 650 to 656, a considerable addition of lithological and stratigraphic 

information from the basin (Figures 2.8 and 2.9) [Kastens and Mascle, 1990]. In 

conjunction, all these data reflected for the first time the significant lithological and 

stratigraphic heterogeneity of the Tyrrhenian basin, suggesting a complex geological 

history. 

Apart from samples acquired in the framework of the ODP and DSDP drilling, 

geophysical data has also been collected in the Tyrrhenian basin in the last decades 

[Fahlquist and Hersey, 1969; Nicolich, 1981; Recq et al., 1984; Duschenes et al., 1986; 

Kastens and Mascle, 1990; Sartori, 1990; Sartori et al., 2004; Cella et al., 2008] before 

the MEDOC experiment. All this information had allowed to improve the knowledge 

concerning the crustal structure and proposes the nature of the basement in the different 

parts of the basin. In this section I describe the main results of the most representative 

geophysical studies that in conjunction with the geological data have produced the most 

accepted geological interpretations of the basin proposed before this work. 

Based on the lithological composition and the geological processes involved in 

their formation, three groups of rocks have been identified in the basin: igneous, 

metamorphic and granitic, and sedimentary rocks. 

Igneous rocks 

This group includes lithologies linked with oceanic spreading and subduction 

processes, that is tholeiitic and alkali-olivinic basalts, related to oceanic spreading, calc-

alkaline lavas, related to subduction, volcaniclastic rocks, and intrusive mafic and 

ultramafic rocks (e.g. serpentinites). Granitic rocks of continental affinity are presented 

in another group. 

Basaltic rocks are mostly found in the Magnaghi, Vavilov and Marsili basins 

(Figure 2.3), and in very specific points of the Sardinia margin (e.g. ODP 654 in Figures 

2.8 and 2.9). Basalts that have been associated to oceanic spreading processes are found 
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in the Gortani ridge (ODP site 655 in Figures 2.8 and 2.9) [Beccaluva et al., 1990], the 

Vavilov basin (sites ODP 651 and DSDP 373 in Figures 2.8 and 2.9) [Barberi et al., 

1978; Dietrich et al., 1977; Bertrand et al., 1990], and in both Marsili basin and 

seamount (ODP site 650 in Figures 2.8 and 2.9) [Colantoni et al., 1981; Beccaluva et al., 

1990]. The overall, basic interpretation based on these data is that the Magnaghi, 

Vavilov and Marsili basins were formed by oceanic accretion [Kastens and Mascle, 

1990; Faccena et al., 2001; Sarotri et al., 2004].  

Comparatively low-resolution seismic refraction experiments carried out during 

the 60’s-80’s (Figure 2.9) provided local 1D velocity models that were interpreted as 

showing oceanic crust structure under the Magnaghi and Vavilov basins (Figure 2.3) 

[Fahlquist and Hersey, 1969; Nicolich, 1981; Recq et al., 1984; Duschenes et al., 1986]. 

Similarly, gravity and magnetic field anomalies observed beneath these sub-basins have 

been also interpreted as an indication for seafloor spreading [Cella et al., 2008]. An 

observation that has not been reconciled with this interpretation is the presence of 

serpentinized peridotites at the lowermost unit of site ODP 651 in the Vavilov basin 

(Figures 2.8 and 2.9) [Beccaluva et al., 1990; Bonatti et al., 1990]. Kastens and Mascle 

[1990] tentatively interpreted this occurrence as an isolated portion of continental crust 

that might contain a sliver of Thetyan ophiolite.  

Further basaltic rocks have been found in the volcanic edifices of Magnaghi and 

Vavilov [Colantoni et al., 1981] (#11 and #16 in Figures 2.3, 2.8, and 2.9), but in this 

case the rocks have intra-plate and calc-alkaline (i.e. subduction-related) affinity [Robin 

et al., 1987; Savelli 2002]. Basaltic samples in the Sardinia margin, such as those found 

in ODP site 654 (Figures 2.8 and 2.9) also present an intra-plate affinity linked to post-

extensional processes [Beccaluva et al., 1990]. 

Subduction-related calc-alkaline lavas are mostly concentrated in the Aeolian 

Island arc and related with the subduction of the Ionian slab (Figure 2.8). Volcaniclastic 

rocks, possibly linked with extension processes have been also identified in the 

Magnaghi and Vavilov basins, and locally in the Campania Margin [Colantoni et al., 

1981] (Figures 2.3 and 2.8). For further details of the volcanic activity in the Tyrrhenian 

basin see section 2.2.4.  
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Figure 2.8.- Map of the Tyrrhenian basin showing lithological and 

stratigraphic information, modified from Colantoni et al. [1981]. ODP drillings 

are also located in the map [Kastens and Mascle, 1990]. 1: Pianosa Ridge, 2: 

Etruschi seamount, 3: Cialdi seamount, 4: Vercelli seamount, 5: Baronie 

seamount, 6: Cornaglia seamount, 7: Quirra seamount, 8: Cassini seamount, 9: 

Sechi seamount, 10: Major seamount, 11: Magnaghi seamount, 12: D’Ancona 

Ridge, 13: De Marchi seamount, 14: Farfalla seamount, 15: Gortani Ridge, 16: 

Vavilov seamount, 17: Flavio de Gioia seamount, 18: Monte delle Sirene, 19: 

Issel seamount, 20: Poseidone seamount, 21: Glauco seamount, 22: Marsili 

seamount, 23: Palinuro seamount, 24: Anchise seamount, 25: Sisifo seamount, 

26: Enarela seamount, 27: Eolo seamount.
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Metamorphic and granitic rocks 

Metamorphic and granitic rocks of continental affinity have been also identified 

in the basin. The main lithologies of this group are phyllites, quartzites, micaschists, 

gneisses, and granites [Colantoni et al., 1981] (Figure 2.8). 

Most of these rock types have been found in the Sardinia margin (Figure 2.3), 

confirming the continental nature of the basement there (e.g. Baronie seamount, #5 in 

Figures 2.3, 2.8, and 2.9). To the east, there is little lithological sampling information to 

define the lithology of the basement in the Cornaglia Terrace (Figures 2.3 and 2.8). The 

only point were the basement has been sampled is the top the Cornaglia seamount (#6 in 

Figures 2.3, 2.8, and 2.9), where Carboniferous metamorphic rocks have been recovered 

[Colantoni et al., 1981]. However this particular seamount may probably not be 

representative of the whole terrace, which has a more subdued bathymetric expression.  

Several geophysical studies of the Cornaglia Terrace including old WAS 

[Nicolich, 1981; Duschenes et al., 1986] and relatively recent MCS studies [Carrara, 

2002; Sartori et al., 2004], have been interpreted to indicate the existence of continental 

crust beneath the Cornaglia Terrace [Nicolich, 1981; Duschenes et al., 1986; Carrara, 

2002; Sartori et al., 2004]. 

Continental-type rocks have been also found in the central parts of the basin, 

like in the Sechi seamount (#9 in Figures 2.3, 2.8, and 2.9) region and at the top of the 

Farfalla seamount (#14 in Figures 2.3, 2.8, and 2.9). In between the Magnaghi and 

Vavilov basins, metamorphic and granitic continental rocks have been also recovered in 

the structural high known as the De Marchi seamount [Colantoni et al., 1981] (#13 in 

Figures 2.3, 2.8, and 2.9). ODP site 656 (Figures 2.8 and 2.9) drilled Alpine-type rocks 

in the uppermost basement of this structural high, which was interpreted as an isolated 

fragment of continental crust emplaced in the oceanic region represented by the 

Magnaghi and Vavilov basins [Kastens and Mascle, 1990]. At the easternmost region of 

the Vavilov basin, Carboniferous granitic and metamorphic rocks were recovered in the 

prominent Flavio de Gioia seamount [Colantoni et al., 1981] (#17 in Figures 2.3, 2.8, 

and 2.9). Eastward of this structural high there are no basement samples from either 

DSDP or ODP. However, a continental nature has been suggested on the basis of 

different types of geophysical data, especially MCS images [Mascle and Rehault, 1990; 

Sartori, 1990; Sartori et al., 2004; Biella et al., 2007]. 
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Finally, metamorphic and granitic rocks have been also found in the Cialdi, 

Verceli and Cassini seamounts located in the Northern Tyrrhenian (#3, #4, and #8, 

respectively in Figures 2.3, 2.8, and 2.9), where a recent study based on seismic 

tomography revealed the existence of continental crust likely intruded by mafic magmas 

at lower crustal levels [Moeller et al., 2013]. 

 

Figure 2.9.- Bathymetric and topographic map of the Tyrrhenian region showing the location 

of old WAS experiments carried out between the 60’s and 80’s (white lines) [Fahlquist and 

Hersey, 1969; Nicolich, 1981; Recq et al., 1984; Duschenes et al., 1986]. Yellow stars display 

the location of DSDP and ODP sites [Keneth et al., 1978; Kastens and Mascle, 1990]. 1: 

Pianosa Ridge, 2: Etruschi seamount, 3: Cialdi seamount, 4: Vercelli seamount, 5: Baronie 

seamount, 6: Cornaglia seamount, 7: Quirra seamount, 8: Cassini seamount, 9: Sechi 

seamount, 10: Major seamount, 11: Magnaghi seamount, 12: D’Ancona Ridge, 13: De Marchi 

seamount, 14: Farfalla seamount, 15: Gortani Ridge, 16: Vavilov seamount, 17: Flavio de 

Gioia seamount, 18: Monte delle Sirene, 19: Issel seamount, 20: Poseidone seamount, 21: 

Glauco seamount, 22: Marsili seamount, 23: Palinuro seamount, 24: Anchise seamount, 25: 

Sisifo seamount, 26: Enarela seamount, 27: Eolo seamount. 
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Sedimentary rocks 

This section presents a brief description of the sediments found in the ODP leg 

107 [Kastens and Mascle, 1990] and DSDP leg 42 [Keneth et al., 1978]. 

ODP site 654 in the Sardinia margin (Figures 2.8 and 2.9) drilled a sequence that 

from top to bottom includes Pleistocene and Pliocene calcareous biogenic sediments, 

followed by Messinian evaporites and terrigenous sediments [Kastens and Mascle, 

1990]. The lowermost unit of this site includes reddish conglomerate possibly indicating 

a continental depositional environment [Shipboard Scientific Party, 1987; Kastens and 

Mascle, 1990]. 

ODP site 653 is located next to DSDP 132 (Figures 2.8 and 2.9), both drillings 

present an upper sequence constituted by Pleistocene and Pliocene pelagic sediments 

that overlay a Messinian sequence of evaporites and terrigenous sediments [Keneth et 

al., 1978; Colantoni et al., 1981; Kastens and Mascle, 1990]. 

In the northernmost region of the Magnaghi basin (Figures 2.8 and 2.9), ODP 

site 652 displays an upper sequence of Pleistocene and Pliocene calcareous biogenic 

sediments followed by a Messinian unit formed by pelagic sediments interbedded with 

thin layers of gypsum and anhydrite [Kastens and Mascle, 1990]. Southward, ODP site 

656 was drilled at the western side of a tilted fault block represented on surface by the 

continental De Marchi seamount (#13 in Figures 2.3 and 2.8). In this hole, calcareous 

biogenic and terrigenous sediments from the Pleistocene and Pliocene were found in the 

uppermost unit. The lowermost unit is constituted by red conglomerates, deposited in a 

continental environment, and derived from Alpine-type continental basement [Kastens 

and Mascle, 1990]. 

ODP site 655 was drilled on top of the Gortani Ridge, located in the Vavilov 

basin (Figures 2.8 and 2.9). Here a very thin Pleistocene and Pliocene sequence (< 100 

m-thick) of calcareous biogenic and terrigenous sediments was found overlaying 

oceanic-type basalts that were proposed to form this ridge [Kastens and Mascle, 1990]. 

The sedimentary unit drilled in the Vavilov basin by ODP site 651 (Figures 2.8 and 2.9) 

shows ~350 m of Pleistocene and Pliocene pelagic, terrigenous and volcanogenic 

sediments. DSDP site 373 displays a rather similar sedimentary sequence [Keneth et al., 

1978; Colantoni et al., 1981] (Figure 2.8).  

ODP site 650 in the Marsili basin (Figures 2.8 and 2.9), found ~600 m of 
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Pleistocene and Pliocene terrigenous and volcanogenic sediments on top of vesicular 

basalts [Kastens and Mascle, 1990].ODP and DSDP data have reported the existence of 

Messinian deposits related to the salinity crisis in the Tyrrhenian basin (e.g. ODP site 

653; DSDP site 132) [Keneth et al., 1978; Kastens and Mascle, 1990]. The spatial 

distribution of the main evaporitic deposits has provided important information that 

helped to reconstruct the main phases of opening of the Tyrrhenian basin [e.g. 

Rosenbaum and Lister, 2004]. 

 

2.2.4 Neogene-Quaternary Volcanism 

The opening of the Tyrrhenian basin has been accompanied by an important 

volcanic activity, including the arc-type magmatism linked to the subduction of the 

Tethyan slab beneath the Apennines-Calabrian subduction front, the interpreted oceanic 

crust of the Vavilov and Marsilli basins, and the volcanic edifices of Vavilov, Marsilli 

and other large seamounts. Hence, the spatio-temporal distribution of magmatism 

(Figure 2.10) reflects a complex back-arc and arc igneous activity related to the retreat 

of the subduction front [Savelli, 2002; Lustrino 2011]. 

Magmatic rock types in the Tyrrhenian Sea basin present a wide variety of 

compositions ranging from subalkaline (tholeiitic and calc-alkaline) to alkaline 

(potassic), and ultra-alkaline (ultrapotassic) affinity [Lustrino et al., 2011] (Figure 2.10). 

Based on Savelli [2002], igneous activity in the Tyrrhenian region can be divided in 5 

magmatic phases, being the oldest during Early-Mid Miocene times (~15-9 Ma), which 

concentrates in Corsica and Sardinia, and the youngest and most important during 

Pleistocene to present times (1.5-0 Ma), which concentrates in the Aeolian Islands 

(Figure 2.1). 

Phase 1 [~15-9 Ma]: 

The orogenic igneous activity related to this first phase took place soon after the 

last stages of the Liguro-Provençal opening [~20-15 Ma; Gattacceca et al., 2007] and 

the coetaneous Oligocene-Early Miocene volcanic activity located in Corsica and 

Sardinia (orange figures in Figure 2.10) [Savelli 2002]. Magmatic products related to 

this phase are found in Sardinia and in the Cornacya seamount, located in the 

southernmost part of the Cornaglia Terrace (easternmost inverted yellow triangle in 

Figure 2.10), and include calc-alkaline, high-K calc-alkaline and ultra-alkaline volcanics 
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[Savelli 2002]. Additionally, lamproitic rocks (ultrapotassic) were found in the 

northeastern sector of Corsica [Serri et al., 1993]. Isotopic composition analyses of 

these lithologies indicate a complex range of crustal contamination and possibly a 

component of slab-derived fluids and/or melts [Lustrino et al., 2011]. 

 

Figure 2.10.- Map of the distribution of the magmatic activity in Sardinia, Corsica, and the 

Tyrrhenian and Apenninic regions from Oligocene to the present days, modified from Savelli 

[2002]. 1=tholeiites; 2=calcalkaline and high-K calcalkaline plutons; 3=calcalkaline and high-

K calcalkaline volcanics; 4=shoshonites; 5=ultrapotassic volcanics; 6=lamproites; 

7=carbonatites; 8=intra-plate volcanics; 9=rocks from intra-plate, large central volcanoes; 

10=volcanics from deep drillings. Red dashed line shows the relict Alpine front as suggested by 

Savelli [2002]. 

Phase 2 [8-6 Ma]: 

During this phase the Tyrrhenian basin was already in advanced stages of 

extension [Kastens and Mascle, 1990]. In the northern Tyrrhenian basin granitoids were 

intruded in the stretched continental crust between 7.5 Ma and 6.5 Ma [Serri et al., 

1993; Savelli, 2002]. At the same time in the southern basin the first tholeiitic basalts 
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were erupted in the Vavilov basin [DSPD site 373, Dietrich et al., 1977] (site 373 in 

Figure 2.9). 

Phase 3 [5-2 Ma]: 

An important pulse of calc-alkaline and tholeiitic intra-plate volcanism (i.e. 

anorogenic) occurred in this phase [Savelli, 2002]. Evidences of this eruptive phase 

have been found in the island and margin of Sardinia (ODP site 654 in Figures 2.8 and 

2.9) [Beccaluva et al., 1990; Savelli, 2002], and by volcanics in the Magnaghi (3-2.7 

Ma) and the Vavilov (< 2.6 Ma) seamounts (#11 and #16 in Figures 2.3, 2.8, and 2.9) 

[Colantoni et al., 1978; Robin et al., 1987; Savelli 2002]. In addition, in the central part 

of the Tyrrhenian basin, enriched- and normal- mid ocean ridge basalts (E-/N-MORB) 

were emplaced in the Gortani Ridge at 4.3 Ma (ODP site 655 in Figures 2.8 and 2.9) 

and in the Vavilov basin basement at 2.6 Ma (ODP site 651 in Figures 2.8 and 2.9), 

respectively [Bertrand et al., 1990; Savelli, 2002]. However, basalts of this age in the 

Vavilov basin (ODP site 651 in Figures 2.8 and 2.9) also present a calc-alkaline affinity 

indicating the influence of slab-related products within the magmatic source [Bertrand 

et al., 1990]. During this phase calc-alkaline acidic volcanic and plutonic magmatism 

also occurred in the eastern sector of the Northern Tyrrhenian basin and western 

Apenninic chain [Savelli, 2002] (Figure 2.10). The isotopic composition of these 

magmas also revealed the influence of a slab [Lustrino et al., 2011]. 

Phase 4 [2-1.5 Ma]: 

This is the shortest magmatic phase evidenced in the region and took place in 

the SE portion of the Tyrrhenian basin, probably during the formation of the Marsili 

basin (Figures 2.3, 2.8, and 2.9), where E-MORB and calc-alkaline basalts were 

generated during oceanic crustal accretion [ODP site 650 in Beccaluva et al., 1990].  

Phase 5 [1.5-0 Ma]: 

This is the most important magmatic phase of the Tyrrhenian region in terms of 

volume of volcanism [Savelli, 2002] (Figure 2.10). The Southern Tyrrhenian basin 

witnessed one of the most important episodes of volcanism of the late Pleistocene-

Holocene age, which originated the current volcanic arc of the Aeolian Islands. These 

islands present a wide range of subduction-related volcanic rocks including calc-

alkaline and ultrapotassic (Blue figures in Figure 2.10) [Savelli 2002]. Similarly, the 

large Marsili seamount was emplaced during this phase (#22 in Figures 2.3, 2.8, and 
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2.9) [< 0.7 Ma; Lustrino et al., 2011]. The composition of the Marsili seamount lavas 

varies from transitional- and E-type MORB to calc-alkaline basaltic and high-K 

andesitic type, suggesting that the source is also affected by slab-derived products 

[Lustrino et al., 2011]. Further to the north, in the Vavilov seamount the last intra-plate 

basalts erupted [~0.7- 0.1 Ma; Lustrino et al., 2011]. In the western margin of the Italian 

Peninsula, especially west of the northern Apenninic chain, magmatism was also 

widespread during this period of time [Serri et al., 1993; Savelli 2002] (Figure 2.10). 

In summary, the magmatic activity of the Tyrrhenian region through time can be 

classified in two main groups: 

i. A first group of slab-derived magmas linked to the evolution of subduction . 

ii. A second group related to passive mantle decompression by lithospheric extension 

and/or other intra-plate processes (e.g. anorogenic volcanism in phase 3). 

Nevertheless, these rocks also show in their isotopic composition the influence of 

slab-derived fluids/melts [Lustrino et al., 2011]. 
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Chapter 3: Acquisition & Modeling of Wide-

Angle Seismics 

 

3.1 Introduction 

Wide-Angle Seismics (WAS) is an active seismic method that consists of 

acquiring and analyzing the seismic record of both refracted and wide-angle reflected 

waves that result from the propagation of elastic waves through the media at relatively 

long offsets between source an receiver. Modeling of these data provides information of 

the propagation velocity field through the medium of interest and on the geometry of 

geological discontinuities that have a contrast of impedance and produce laterally 

continuous reflected phases (e.g. the sediment-basement and Moho boundaries). 

In this chapter I describe the acquisition system, processing, analysis, and 

modeling of marine WAS data for crustal-scale studies, which has been used often to 

study the structure and properties of active and passive margins, including different 

areas of the Western Mediterranean [e.g. Duschenes et al., 1986; Pascal et al., 1993; 

Contrucci et al., 2001; Gailler et al., 2009; Lêpretre et al., 2013]. 

 

3.2 Acquisition system 

The marine WAS acquisition system consists of a seismic source, usually an 

array of air guns (Figure 3.1a), and a set of receivers that are deployed on the seabed 

(Figure 3.2). In our case the receivers are the so-called Ocean Bottom Hydrophones 

(OBH) (Figure 3.1c), which record pressure variations in the water using hydrophones, 

and Ocean Bottom Seismometers (OBS) (Figure 3.1b), that measure the three 

components of motion with a seismometer and also with a hydrophone. The whole 

system is attached to the seabed by an expendable anchor. When the experiment finishes 

the system is recovered by means of an acoustic releaser that liberates the instrument 

from the anchor that remains on the seafloor. Then the OBH/S rises by buoyancy to the 

sea surface where it is recovered from the vessel. 
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The design of a WAS experiment includes the source design (number, size, 

power, spatial distribution and depth of the guns), the firing interval, and the distance 

between receivers. These parameters are defined on the basis of the desired level of 

spatial and vertical resolution and the depth of the target to be sampled and modeled. 
 

 

The depth of the source controls the interference of primary and ghost pulses 

and thus the useful frequency bandwidth of the signal emitted by the source. In crustal-

scale WAS experiments it is usually set deeper than in other seismic experiments (10-20 

meters beneath the sea surface) to have lower frequencies in the source wavelet. Low 

frequencies attenuate less than higher ones as they propagate, reaching greater depth 

and longer offsets (e.g. source-receiver distance). Firing frequency or shot interval in 

WAS experiments is longer than in seismic reflection techniques because the shot point 

distance is aimed at minimizing the background noise by reducing wraparound noise 

from previous shots in the water layer. The typical shooting distance is 60-120 s or 

about 150-300 m. Receiver spacing helps improving the accuracy of the final velocity 

Figure 3.1 .-.(a) Array of air guns used to 

create the seismic impulse during the MEDOC 

(2010) WAS experiment. (b) Ocean Bottom 

Seismometer and (c) Ocean Bottom 

Hydrophone ready for deployment during the 

MEDOC (2010) survey. 
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model, the smaller the receiver spacing, the higher is the redundancy of data, and hence 

the information provided by the data set in the modeling process is better constrained. 

The interval between receivers depends on many factors, such as the bathymetry or the 

number of available receivers, but for modern crustal-scale experiments it is typically 

set at 5-15 km spacing. 

 

Figure 3.2 .-.Schematic representation of the WAS experiment and the propagation of the 

different P-waves seismic phases refracted through the sediments (PsP), crust (Pg), and mantle 

(Pn); and reflected at the sediment-basement boundary (PsP), and at the crust-mantle boundary 

(PmP). 

In this work, the R/V Sarmiento de Gamboa seismic source consisted of two 

arrays of 6 G-II airguns each, with a total capacity of 4600 in3, fired at constant interval 

of 90s (~220m). Average receiver spacing for both WAS lines was ~10 km. WAS data 

along Line GH were recorded by 4 Spanish LC2000 4x4 OBSs deployed by the R/V 

Sarmiento de Gamboa, 22 German E-2PD and HTI-01-PCA OBHs and 5 Italian 

onshore Lennartz M24-LP-24 Bit seismometers installed in Sardinia. In the case of Line 

EF, WAS data were recorded by 5 Spanish LC2000 OBSs, 23 German E-2PD and HTI-

01-PCA OBHs, and 5 Italian onshore Lennartz M24-LP-24 Bit seismometers installed 

in Sardinia (see Figure 1.1). 

Once the experiment is designed according to the target to be resolved, the 

OBS/Hs are deployed on the seafloor and the seismic source is fired at constant interval, 

generating acoustic waves in the water column that propagate through the different 

layers of the subsurface. Out of the different phases recorded, those that are used for 
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modeling are the body waves (i.e. either primary or P-waves, and secondary or S-

waves) (Figure 3.2). In general those which are more commonly visible and thus 

generally used for modeling in WAS experiments are the P-waves (Figure 3.2). These 

seismic waves are reflected as a result of acoustic impedance contrasts across sharp 

geological interfaces and transmitted or refracted through the medium following Snell’s 

law (Figure 3.3a). 

 

Figure 3.3 .-.(a) Schematic representation of the Snell’s law (left), showing how the 

ray path (red line) incides with angle �1 from a medium with velocity v1, and refractive index n1 

to a lower medium with velocity v2, and refractive index n2; v1 < v2. As a result, the ray path is 

refracted with an angle �2 through the lower medium. The relationship between all this factors 

is represented by the Snell’s law (right). (b) Schematic representation of the evolution of the 

reflections and refractions as the source-receiver distance increases. Note that after point C, the 

ray of the seismic wave incides with the critical angle ic and critically refracts through the top 

of the lower layer. Reflections that occur after the critical distance are known as wide-angle 

reflections 

In theory, as the angle of incidence increases due to the increase of the source-

receiver distance, the refracted rays experience a change of direction according to 

Snell’s law (Figure 3.3a). When the source-receiver distance reaches the critical 

distance (Figure 3.3b), the ray encounter the boundary between geological layers with a 

critical angle of incidence (ic in Figure 3.3b). At that point the ray is refracted with an 

angle of refraction of 90º and travels parallel to the boundary in the top of the lower 

layer with the faster velocity V2. The critical angle ic can be calculated by applying 

Snell’s law (Figure 3.3b). At angles greater than the critical angle refraction is no longer 

possible. The energy from seismic rays that are incident more obliquely than the critical 
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angle is entirely reflected. These reflections are known as supercritical reflections, or 

simply wide-angle reflections. They lose little energy to refractions and travel large 

distances providing information of boundaries like the sediment-basement boundary or 

the Moho [Lowrie, 2007]. 

The data recorded by an OBH/S consist of a continuous temporal trace that 

includes, at different offsets, the seismic events produced by the arrivals of the recorded 

waves corresponding to the different seismic phases. The sorting by offset of this 

seismic trace provides the so-called common receiver gather or record section that is 

commonly represented in an offset-time corrected diagram as shown in Figure 3.4. This 

representation makes easier the phase identification and interpretation. 

 

Figure 3.4 .-.Seismic record section obtained after sorting by offset the recorded seismic 

traces of an OBS/H. The vertical axis commonly represents a “reduced time”, this is T-offset/v, 

where v is a reference velocity. This way, the slope of the different phases indicates if the 

propagation velocity is higher or lower than, or equal to, v. In the diagram above v= 8 km/s. 

 

3.3 Wide-Angle seismic data processing and seismic phase 

identification 

WAS data are processed to enhance the signal-to-noise ratio and visually 

recognize better the lateral correlation of seismic phases in the record section. 

Processing of WAS data is considerably simpler than that applied to MCS data (see 

section 5.2), and typically includes: 
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� The relocation of the instrument in the seafloor. Oceanic currents may drift the 

receiver on its way to the seafloor causing significant variations in the original 

location of deployment. 

� A processing sequence that generally consist of a predictive deconvolution (see 

section 5.3), a time- and offset-variant Butterworth (or other) bandpass filter and 

an amplitude balancing like an Automatic Gain Control (AGC) [e.g. Sallarès and 

Ranero, 2005; Moeller et al., 2013], although other processing steps may be 

applied to the data when necessary. In this work the WAS data processing has 

consisted of a Butterworth band-pass filter (5-15Hz) and an AGC for the OBSs 

of both lines, and a predictive deconvolution (see section 5.3), a Butterworth 

band-pass filtering (2-11Hz) and an AGC for the OBHs. For all the land 

receivers a Butterworth band-pass filtering (3-13Hz) was only applied.  

Once data are processed the first step for phase identification is to determine the 

type of information that is available in the record section. In the case of refractions, the 

first arrivals are displayed as short segments of straight lines whose slope is 

proportional to the seismic velocity of the layer at which they turn out (e.g. Pg and Pn 

Figure 3.5). In this case, phases displaying slopes that are smaller than the correction 

velocity (see figure caption of Figure 3.4) must correspond to waves propagating at 

velocity lower than the correction velocity (e.g. Pg in Figure 3.5), whereas phases 

displaying slopes larger than the correction velocity must correspond to higher 

propagation velocity (e.g. Pn in Figure 3.5). In contrast, reflections are secondary 

arrivals represented by hyperbolic functions that are asymptotic to the corresponding 

refracted wave in the record sections. For example, PmP is asymptotic to Pg/Pn in the 

record section of Figure 3.5. 

The analysis of WAS data consist in the identification of these seismic phases 

and the manual or automatic selection (picking) of their arrival times. The selected picks 

are used as initial data set for the next step: the modeling. 
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Figure 3.5 .-(a) Record section shown in Figure 3.4 including three seismic phases of P-waves 

refracted through the crust (Pg) and mantle (Pn), and reflected at the Moho (PmP). Details of 

these phases are given in the text and in Figure 3.2. (b) Approximation of the hodochrone or 

travel time curves of the same seismic phases identified in (a). Note that the relation between 

the refracted Pg and the reflected PmP is asymptotic. 

 

3.4 Wide-Angle seismic modeling 

Typically, there are two different ways to model the travel time data set and 

obtain a velocity model of the crust and uppermost mantle: forward modeling or 

inversion. Forward modelling implies that the velocity model and the geometry of the 

geological boundaries are manually built by an interpreter, and it is improved by trial-

and-error until an acceptable fit between the observed and simulated data is obtained. 

The core tool to construct the velocity models is thus a ray-tracer algorithm [e.g. Zelt 

a) 

b) 
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and Smith, 1992]. This method was widely used until the 90’s and is still used in land 

experiments, where the number of sources/receivers is limited. However this approach 

has many limitations, the final solution is rather subjective, and it does not allow 

performing formal parameter uncertainty analysis. In addition, it becomes unfeasible 

when there is a large number of sources and receivers as is the case of modern 2D or 3D 

marine WAS experiments. 

In contrast, the aim of inverse methods, also known as “tomographic” methods, 

is to determine the velocity model, as well as the geometry of the reflecting boundaries 

in the case that reflected phases are used, in an automatized manner [e.g. Toomey et al., 

1994; Korenaga et al., 2000]. The tomographic problem can be divided in two parts. 

The first, which is known as forward problem, is the same that must be solved in the 

forward modeling techniques and consists of tracing the rays and calculating the 

synthetic travel-times. The second is the inverse problem. In this case the actual 

problem of travel-time calculation is approximated by a linear version, in which the 

travel time residuals for an initial (i.e. reference) model are related to the model changes 

by means of the matrix of partial derivatives (i.e. the Jacobian), which is also known as 

the sensitivity, or Fréchet, matrix. The inverse problem, which is solved iteratively, 

consists on inverting this matrix to get the model changes out from the travel time 

residuals for a reference model. 

The WAS data in this work have been modeled using a joint refraction and 

reflection travel time inversion method, implemented in the code tomo2d [Korenaga et 

al., 2000]. This method allows obtaining a two-dimensional velocity model and also the 

geometry of a single floating reflector [Korenaga et al., 2000]. The velocity model is 

represented as a sheared mesh of velocity nodes hanging from the seafloor and/or land 

surface (Figure 3.6). The floating reflector is represented by an array of linear segments, 

whose nodal spacing is independent of that used in the velocity mesh [Korenaga et al., 

2000]. The flow diagram of tomo2d is shown in Figure 3.7 and explained below. 
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Figure 3.6 .- Velocity mesh used by TOMO2D composed of cells of variable size hanging from 

seafloor. From Korenaga et al. [2000]. 

 

Figure 3.7 .- Flow diagram of the joint refraction and reflection travel time inversion method 

applied with TOMO2D [Korenaga et al., 2000]. 

To solve the forward problem (Figure 3.7), this method uses a hybrid ray-tracing 

strategy that first calculates a polygonal ray trajectory using the graph method [Moser, 

1991] that is subsequently refined using a ray-bending technique [Moser et al., 1992]. 
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The optimal parameters for bending are calculated using the conjugate gradients method 

(Figure 3.8). 

 

Figure 3.8 .- Example of ray-tracing resulting from the combination of the graph and ray-

bending methods for both refracted and reflected waves [Moser et al., 1992]. 

Then, an inverse problem is set to solve equation 3.1, which represents the linear 

approximation of the forward problem around a reference model: 

 

In this case, d is the travel time residual vector, obtained from the difference 

between observed and synthetic data, G is the Fréchet derivative matrix (Jacobian 

matrix), that contains the velocity and depth derivatives of the residual travel times, and 

�m is the unknown model perturbation vector, which includes the velocity and floating 

reflector depth perturbations. Additionally, to control the degree of perturbation of the 

model parameters, smoothing constraints are applied to both velocity and reflector 

geometry, defining laterally- and vertically-variable correlation lengths. Damping 

constraints are also used to regularize the linear system and stabilize the inversion. 

Hence, with these weighting parameters added to the linear system, equation 3.1 can 

then be written as: 

 

where, v and d subscripts denote the velocity and depth components. LHv and 

LVv, correspond to the horizontal and vertical correlation length matrices for velocity, 

respectively, and Ld is the correlation length matrix for depth. �v and �d are control 

,                          (3.2) 

.                                               (3.1) 
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parameters of the smoothing constraints. The depth kernel weighting is represented by 

w, which adjusts the depth sensitivity in the Fréchet matrix. Damping matrices for 

velocity and depth are represented by Dv and Dd, respectively, and, �v and �d control the 

strength of the damping constraints.  

Equation 3.2 is a sparse system, so it is efficiently solved using a sparse matrix 

solver. In the case of tomo2d the Fréchet matrix is inverted applying the LSQR solver 

[Paige and Saunders, 1982]. Given that the problem solved is a linear approximation of 

the real one, equation 3.2 must be applied iteratively using as input in each iteration the 

model parameters obtained in the previous one. This scheme is repeated until 

convergence is achieved (Figure 3.7). For that reason, the reference model is modified 

successively by �m until the root mean square (RMS) value of travel time equals 

approximately the uncertainty of the observed data (i.e. ~70-60 ms), or, what is the 

same, when the chi-squared (�2) value becomes ~1 (Figure 3.7). The linear sensitivity of 

the inversion, which is also a measure of the ray coverage throughout the model, is 

provided by the Derivative Weight Sum (DWS) [Toomey and Foulger, 1989] (Figure 

3.9). 

 

Figure 3.9 .- Derivative weight sum for the velocity model of Line GH. The higher is the DWS, 

the higher is the ray coverage. 

In this work, the mesh of both models is 450 km wide and 35 km deep, with 

node spacing varying in the vertical component from 0.125 km at the seafloor to 1.5 km 

at the bottom, and a constant spacing of 0.5 km in the horizontal. Node spacing for the 

floating reflector is also 0.5 km and constant. In order to select the most appropriate set 

of regularization constraints, several combinations of correlation lengths, damping and 

smoothing parameters were tested. According to test results a horizontal correlation 

length of 2 km at the top and 8 km at the bottom, and a vertical correlation length of 0.2 

km at the top and 1.5 km at the bottom were selected for Line GH model. For Line EF, a 
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horizontal correlation length of 1 km at the top and 10 km at the bottom, and a vertical 

one of 0.2 km at the top and 1.5 km at the bottom were selected.  

The final velocity model of Line GH (see Figure 6.2a) was obtained after 10 

iterations with a RMS of 68 ms, and a �2 of 1.2. The RMS is 69 ms for the Pg, Pb and 

Pn phases and 59 ms for the PmP. In case of Line EF (see Figure 7.2a), the final model 

was obtained after 10 iterations with a RMS misfit of 68 ms, and a �2 of 1.3. The RMS 

for first arrivals (Pg and Pn phases) is 70 ms and 59 ms for PmP. 

 

3.4.1 Layer-stripping strategy 

As stated in the previous section, tomo2d just allows inverting a single reflector 

at a time, so it is necessary to define an iterative strategy in the case that different 

boundaries, or layers, have to be inverted. To solve this issue I followed a top-to-bottom 

layer-stripping strategy similar to that described in Sallarès et al. [2011; 2013a, b]. This 

multi-step inversion strategy consists of adding the data sequentially to the inversion, 

starting with shortest offsets (e.g. sediment phases) and finishing with the longest (e.g. 

mantle phases). This strategy permits to account for sharp geological contacts such as 

those occurring across the sediment/basement interface or the Moho [e.g. Sallarès et al., 

2011]. 

The data of this work do not show clear sediment/basement boundary phases, so 

that the only reflector to be inverted is the Moho. Thus, I have followed a two-step 

layer-stripping strategy to invert first for the crustal phases and then for the upper 

mantle ones. Thus, in the first step the refracted phases through the crust (Pg) and 

basement (Pb) and reflected at the crust-mantle boundary (PmP) were jointly inverted to 

account for the entire crustal velocity field and the Moho reflector geometry (Figure 

3.10). 

In the second stage the crustal velocity model and Moho reflector obtained after 

the first step (Figure 3.10) were used as initial model whereas Pn phases were 

incorporated to the data set. To concentrate changes in those regions that are unresolved 

(i.e. below the crust-mantle boundary), the velocity nodes above the Moho reflector 

were over-damped by a factor of 100:1. As a result, the obtained velocity model 

displays a sharp velocity contact that coincides with the Moho location (Figure 3.11).  
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Figure 3.10 .- 2D P-wave velocity model result of the first step of the layer stripping strategy. 

This tomographic model results from the inversion of Pg, Pb, and PmP phases. The 

tomographic model has been masked with the DWS values to show only those regions of the 

velocity mesh that are illuminated, and thus solved, during inversion. 

 

Figure 3.11 .- P-wave velocity model result of the second step of the layer stripping strategy. 

This tomographic model results from the inversion of Pg, Pb, Pn and PmP phases.  

 

3.4.2 Uncertainty analysis 

The uncertainty of the seismic velocity and other velocity-derived parameters 

such as density is fundamental for a reliable interpretation of basement affinity. Diverse 

deterministic techniques exist to estimate the parameter uncertainty based on the 

covariance matrix, but most of them only take into account the mathematical 

indetermination that is intrinsic to the approach and do not consider other sources of 

indetermination such as for example the dependence of the solution on the initial model 

used. In practical terms, the only methods to estimate the model uncertainty for a large-

scale, non-linear inversions such as this one, are the stochastic, Monte Carlo-type ones 

[e.g., Tarantola and Valette, 1982; Tarantola, 1987]. In these methods, a set of data with 

random noisy travel-time sets with random initial models are inverted and the Monte 

Carlo realizations are constructed, with which the posteriori model covariance matrix 

can be estimated. By assuming that all the Monte Carlo realizations have the same 
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probability, the mean deviation of all the solutions can be taken as a measure of the 

model parameter uncertainty [Tarantola, 1987]. The errors in the travel times are 

assigned based on Zhang and Toksöz [1998] approach, which suggest separating the 

picking errors on common shot errors (or receiver), common phase errors and individual 

picking errors. The amplitude of each of these errors depend on data quality but it is 

typically 15-30 ms each for a total of 45-90 ms. The highly correlated nature of travel 

time pick errors can be taken into account by this data randomization. Therefore to 

estimate model parameters uncertainty due to combinations of picking errors and 

starting velocity model a nonlinear Monte Carlo-type error analysis has been performed. 

This method is similar to that used in Sallarès and Ranero [2005], which is a modified 

version of that used in Korenaga et al. [2000]. The flow diagram of the analysis made is 

shown in Figure 3.12. 

 

 

Figure 3.12 .- Flow diagram of the Monte Carlo Uncertainty approach applied to travel time 

inversion. 
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This approach consist of randomly perturbing the velocity values of the initial 

model and the depth of the Moho reflector using a Gaussian distribution with a 

reasonable variance taking into account a priori information (�v=0.75 km/s and �z=2 

km). This way, we create a set of 250 2D reference models and their modified reference 

Moho reflectors. A Gaussian filter is applied to the reference velocity mesh to avoid 

abrupt changes of velocity within the model caused by the perturbation step. 

Additionally, 250 noisy travel time data sets were constructed by adding a Gaussian 

distribution for timing errors (�t=65ms), which includes the potential influence of 

common phase errors (±25ms), common receiver errors (±25ms) and individual picking 

errors (±15ms). Then, randomly selected pairs of perturbed reference models and 

reflectors, and noisy data sets are inverted. The average mean deviation of all inversion 

solutions is taken as a measure of the model parameters (velocity and reflector’s 

geometry) uncertainty [Tarantola, 1987]. Details of the results obtained with this 

analysis are given in chapters 6 and 7. 
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Chapter 4: Gravity 

 

4.1. Introduction 

Gravitational attraction measurements and hence gravity anomalies are routinely 

used in many crustal-scale studies to complement WAS-derived information such as 

crustal thickness and velocity, and hence to further constrain the petrological nature of 

the rocks [e.g. Todd and Reid, 1989; Reid and Jackson, 1997]. 

Gravity is directly proportional to the distribution of the masses in the Earth, so 

it is directly related with density (�). Additionally, there is also empirical evidence 

showing that in most cases approximately linear relationships exist between the density 

of rocks and their P-wave velocity (Vp) [e.g. Christensen and Mooney, 1995; Carlson 

and Miller, 2003]. Thus, it is possible to convert modeled Vp values to � using the 

existing Vp-� empirical relationships for different rock types and model the density 

distribution to check whether it is compatible with the observed gravity data. This 

chapter explains the fundamentals of the acquisition and modeling of gravity data, and 

presents the Vp-� relationships used in this work. 

 

4.2 Data acquisition and corrections 

Gravity data are acquired with a gravimeter (Figure 4.1), which measures 

variations of the downward gravity acceleration. The units of these measurements are 

milligals (mGal) (10-3 mgal = 10-5 m s-2). Since these instruments are extremely 

sensitive to vibrations, gravimeters in marine experiments are habitually stabilized on a 

platform that isolates the sensor from the influence of the movements of the ship (Figure 

4.1). 

Marine gravity measurements are affected by sea level changes, and variations 

on heading, speed and gyro of vessel. Besides, neither the shape of Earth nor its density 

distribution are uniform, there are deviations in the direction and magnitude of the 

gravity across its surface. Therefore, data must be corrected by sea level, Eötvös effect, 

which is the change in perceived gravitational force caused by the eastbound or 

westbound velocity, and drift corrections to obtain the Free Air Gravity Anomaly, 
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which according with the Geodetic Reference System of 1980 in Moritz [2000], is 

calculated with equation 4.1. 

e 

Figure 4.1 .- Marine gravimeter Lacoste & Romberg installed onboard the R/V Sarmiento de 

Gamboa and used to acquire the gravity data during the MEDOC experiment.  

         Free Air Anomaly = Gm + Eot - drift – Gt;                  (4.1) 

Eot = 7.5038*v*sin(�)*cos(�)+0.04154*v2;             (4.2) 

Gt = 978.0327*(1.0+0.0053024*(sin(�))2-0.0000058*sin(�))2).       (4.3) 

Where, Gm is the measured gravity data, and Eot the Eötvös correction 

(Equation 4.2), which depends on the velocity (v) and the gyro (�) of the vessel, and on 

the latitude (�). Gt is the theoretical gravity value, which depends exclusively on � 

(Equation 4.3). Once these corrections are applied, the observed gravity data can be 

used as a reference value during the gravity modeling (section 4.4). 
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4.3 Empirical relationships between compressional-wave velocity (Vp) 

and density (�) 

In this work, gravity modeling has been used to complement the information 

provided by WAS. To do this, I have converted the WAS-derived Vp models to � 

models using different empirical Vp-� relationships for each geological layer and 

domain assuming a given lithological composition. The idea behind this approach is to 

see whether it is possible to discern between interpretations of the nature of basement 

rocks based on seismic velocity exclusively [Korenaga et al., 2001; Sallarès et al., 2001; 

Sallarès and Ranero, 2005]. However, there are several aspects that must be taken into 

account to properly address this issue. Vp-� relationships may present significant 

uncertainty because of the compositional and porosity effects of the rock. Similarly, 

velocity models always have data-associated uncertainty. The cumulative effect of such 

uncertainties causes the non-uniqueness of the velocity-derived density distribution, and 

hence includes a subjective interpretation in the construction of the density model that is 

used to explain the gravity anomaly [Korenaga et al., 2001]. Therefore, it is important to 

determine how well constrained is the velocity model and to translate its uncertainty to 

the derived-density model. To address these requirements I have used the results 

obtained from the Monte Carlo uncertainty analysis of the velocity model (section 3.4.2) 

to infer the corresponding uncertainty of the derived density model and synthetic gravity 

response. 

The selection of the proper Vp-� relationships is essentially based on previous 

velocity analysis and geological interpretations of the velocity model. This, in turn, 

allows the definition of the regions or domains where the selected Vp-� relationships 

will be applied (Figure 4.2).  

Vp-� relationships of interest in this work include the Hamilton’s [1978] 

conversion law for the sedimentary layer (Figure 4.3), which is a result of a compilation 

of large amount of DSDP data, and reflection and refraction measurements of sound 

velocity in marine sediments. For the basement I have tested Vp-� relationships for 

three different affinities, including continental, oceanic and exhumed mantle rocks. For 

continental igneous and metamorphic rocks I used the relationship from Christensen and 

Mooney’s [1995] [Figure 4.3]. For oceanic crust basalts and gabbros of Layer 2 and 3 

the Carlson and Herrick’s [1990] conversion law was used (Figure 4.3). Finally, for 
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low-T partially serpentinized peridotites I used Carlson and Miller’s [2003] relationship 

(Figure 4.3). 

 

Figure 4.2.- Definition of geological domains (white lines) in the tomographic model of Line 

GH as a previous step to the application of Vp-� relationships. 

 

Figure 4.3.- Graphical representation of all the Vp-� relationships used in this work. 

Empirical formulas and corresponding references are shown above and below each 

relationship, respectively. 

The Vp-� conversion laws shown in figure 4.3 have been estimated in laboratory 

conditions, so that to convert in situ � from in situ Vp, temperature and pressure 

derivatives of velocity and density must be taken into account in the conversion process 

to correct from in situ to laboratory conditions, and vice-versa [Korenaga et al., 2001]. 

Hence, using these derivatives, the conversion of in situ Vp to in situ � can be expressed 

with the following equations:  
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where, Vr is the converted-to-laboratory conditions velocity or velocity of 

reference, V is the in situ velocity (i.e. that from the velocity model), and �r and Tr the 

reference pressure and temperature values (e.g. 1000 MPa and 25ºC), respectively. 

Additionally, in situ values of pressure (p) and temperature (T) are inferred from both 

thermal (33ºC km-1) and lithostatic (33.3MPa km-1) gradients [Korenaga et al., 2001]. 

With Vr calculated by equation 4.4, Vp-� empirical reletionships can be then applied to 

obtain �r from Vr (i.e. Equation 4.5). Subsequently, in situ � are calculated from �r using 

expression 4.6 that includes pressure and temperature derivatives of �, obtaining 

thereby, the velocity-derived density model.  

Pressure and temperature derivatives of velocity and density in this work were 

applied for the oceanic crust [Korenaga et al., 2001] and mantle rocks relationships 

[Kern and Tubia, 1993]. The derivative values employed in each case are shown in 

Table 4.1: 

 dVp/dP 

(km s-1 MPa-1) 

dVp/dT 

(km s-1 ºC-1) 

d�/dP 

(g cm-3 MPa-1) 

d�/dT 

(g cm-3 ºC-1) 

Oceanic crust 2x10-4 -4x10-4 0.01x10-3 -0.03x10-3 

Serpentinized 

peridotites 

3.94x10-4 -8.21x10-4 0.069x10-3 -0.028x10-3 

Table 4.1.- Pressure and temperature derivatives of velocity and density for oceanic crust 

[Korenaga et al., 2001] and serpentinized peridotites [Kern and Tubia, 1993]. 

(4.5)

(4.6) 

(4.4)
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4.4 Gravity modeling 

The 2D gravity modeling is performed using Parker’s [1972] spectral method as 

modified by Korenaga et al. [2001]. It calculates the free air gravity anomaly produced 

by the density model. In this approach, the 2-D gravity anomaly gz caused by a 1-D 

density variation �(x) bounded by two limits z=z1(x) and z=z2(x) (Figure 4.4) is 

expressed in the Fourier domain as a function of the density distribution between these 

two limits as Equation 4.7 [Parker, 1972]: 

             (4.7) 

where F[] represents the 1-D Fourier transform with respect to the horizontal 

coordinate, and G, z0,and k are the universal gravity constant, the vertical coordinate of 

the observation plane, and the horizontal wavenumber, respectively. This approximation 

includes usually a restriction to constant thickness to separate the F[�] term from other 

higher-order terms with topography variations and to construct an iterative inversion 

formula for the density inversion. 

Figure 4.4.- Schematic 

diagram showing the 2D 

density model geometry, with 

the presence of upper and 

bottom topography. After 

Korenaga et al. [2001] 

This limitation to constant thickness is easily solved noting that the 1D density 

variation between the two boundaries can be also expressed as a layer of constant 

thickness with topographic variations [Korenaga et al., 2000]. Equation 4.7 can then be 

written as equation 4.8: 
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             (4.8) 

in which, za=min(z1), zb=max(z2), zr1=(za+max(z1))/2 and zr2=(zb+min(z2))/2; 

because the convergence of the infinite series summation is fastest when the reference 

plane is located between the top and bottom boundaries of the target area (z1, z2) 

[Parker, 1972]. Equation 4.8 is that used to calculate the gravity anomaly of the 

different models tested in this work, using the code grav2d [Korenaga et al., 2001]. 

Worth to be mentioned is that the measured gravity anomaly is affected by 

surrounding bodies that may be out of the modeled structure, like deeper mantle or 

distant large crustal bodies that usually results in long-wavelength variations of the 

gravity field. This influence is not included in the velocity-derived density model, and 

hence in the synthetic gravity anomaly. Consequently, the synthetic anomaly is 

habitually affected by a systematic shift respect the observed anomaly that must be 

corrected to properly compare both anomalies. 
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Chapter 5: Acquisition, Analysis & Processing of 

Multichannel Seismics 
 

5.1 Introduction 

As WAS, MCS data can be also classified as an active seismic method. In this 

case, however, it is based on the acquisition and processing of seismic data resulting 

from near-vertical reflections of elastic waves at the different interfaces of the medium. 

Moreover, in contrast with WAS that aims to explains the great-scale structure of the 

crust and uppermost mantle from velocity models, MCS allows to characterize (small-

scale) geological structures of the crust directly from 2D/3D high resolution images of 

the subsurface resulting from a thorough processing of the recorded seismic data. 

Although this methodology is often applied on land, this chapter deals with offshore 

applications. 

Marine MCS data has been widely used in oil explorations since the 60’s to map 

in detail sedimentary structures. Additionally, it has been also very useful to obtain new 

information about the geometry of rifted continental margins, and to investigate the 

mechanisms involved in their formation [e.g. Pérez-Gussinyé et al., 2003; Ranero and 

Pérez-Gussinyé, 2010]. To explain this method in detail, this chapter focuses on the 

offshore acquisition system and the data processing required to obtain the final seismic 

image of the subsurface. 

 

5.2 Acquisition system and geometry of the experiment 

In MCS marine experiments, the acquisition system consist of an array of air 

guns as seismic source (Figure 5.1a), similar to WAS experiments, and a set of 

hydrophones as receivers, distributed along a cable or streamer (Figure 5.1b). Apart 

from hydrophones, the streamer also includes several devices like compasses (Figure 

5.1c), that record the magnetic heading at several points of the streamer allowing to 

control its shape, the birds (Figure 5.1d), that control the streamer depth during the 

experiment, and the tail buoy (Figure 5.1e), attached to the tail of the streamer with a 

Global Positioning System (GPS) that sends the signal via UHF and/or through the 
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streamer to know its location. The length and depth of the streamer, the number and 

spacing of channels (formed by several hydrophones), and the source configuration 

depends on the objectives of the experiment. 

 

Figure 5.1.- Acquisition system during the MEDOC (2010) MCS experiment. It includes the (a) 

array of air guns as the seismic source, (b) the ~3.5 km long streamer, which in turn is 

composed by the hydrophones, (c) the compasses, (d) the birds, and (e) the tail buoy. 

In contrast with WAS experiments where receivers (i.e. OBS/H) remain in the 

seabed (Figure 3.2), in MCS the seismic source and receivers (i.e. streamer) are both 

towed of the stern of the vessel along a profile (Figure 5.2). The array of air guns is 
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submerged at depths of 3-15 m below sea level, and fired at constant distance interval 

(i.e. shot spacing) along the profile, generating a constructive interference of the 

acoustic signal (3-70 Hz), that create an energetic pulse (wavefront) closer to the 

theoretic Dirac delta. Then, once this energetic pulse interacts with the subsurface, part 

of it is reflected at the different interfaces of the crust as a result of changes in the 

acoustic impedance of the medium and returned back to the surface where it is recorded 

by the hydrophones of the streamer as seismic traces (Figure 5.2). 

 

Figure 5.2 .-.Schematic representation of the MCS experiment and the propagation of the 

reflected waves at each interface of the subsurface. 

The geometry of this acquisition system allows that several wave fronts reflect 

in a same interface’s location or depth point (Figure 5.3). All the traces reflecting in the 

same point in depth make up a Common Depth Point (CDP) gather (Figure 5.3), and the 

maximum number of traces in the CDP gathers is the fold. The larger the fold per CDP, 

the larger is the redundancy of data per CDP. The fold (F) of the experiment depends 

essentially on the number of channels (�), the spacing between them (x), and the shot 

frequency of the source (μ) (equation 5.1). 

F = (�x)/2μ                                   (5.1) 

Hence, the longer the streamer, the larger is the CDP fold. In the MEDOC 

experiment, the streamer was 3450 m long with 276 channels separated each 12.5 m, 

and the shot spacing was set to 50 m (~20s at 4.8 knots) to achieve a fold of ~35 traces 
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per CDP. Figure 5.3 shows a schematic representation of this multifold, or 

multichannel, system: 

 

Figure 5.3 .-.Schematic representation of the multichannel acquisition system used in marine 

MCS (top), and the resultant geometry of a CDP (bottom). S1 and S2 represent two consecutive 

shots, and r1, 2, 3, 4, and 5 show the hydrophones location along the streamer at the each time 

of firing (i.e. s1 and s2). Yellow and red dashed lines represent the reflected waves at each point 

of the seafloor interface (numbers). The resultant CDP is shown for number 2, although 

numbers 3, 4, and 5 have been also recorded by several receivers at different offset. Fold value 

of this schematic CDP is 2, since only two reflections have been displayed in this sketch (i.e. 

those recorded by r1 and r2). 

Note that when reflections illuminate a flat interface, the CDP is equivalent to 

the midpoint between source and receiver, therefore it is also known as Common Mid 

Point (CMP) (Figure 5.3).  

In conclusion, the great strength of the MCS system is data redundancy, because 

it takes multiple images of the same point in depth in the form of CDP/CMP gathers 

assuring data redundancy, which consequently will increase the signal-to-noise ratio of 

the data. To get the full potential of these data it is necessary to properly process them in 

order to attenuate/eliminate the noise (random and coherent) inherent to the data 

recording. This process sequence is detailed in the next section. 
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5.3 Data processing 

MCS data processing aims to eliminate or attenuate the inherent noise of the 

signal in order to increase the signal-to-noise ratio and improve the quality of the data. 

Additionally, it also aims to properly sort MCS data to finally obtain a seismic section 

of the subsurface that provides realistic geological information. Although I present in 

this work two MCS profiles, MEDOC4 and MEDOC6, I have only performed the 

processing of MEDOC 4. Here I explain the main processing steps followed to obtain 

the final seismic section of MEDOC4, which were accomplished using Globe Claritas 

software. The evolution of the data during processing is shown in section A.2.2.1 of the 

Annex. 

 

Figure 5.4 .-. Generic processing flow followed to process MCS data of profile MEDOC4. 
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Seismic quality control and trace edition: 

During the acquisition of MCS data several factors like the malfunction of 

channels or the interference of signal due to marine traffic may occur, causing 

incoherent noise on the registered signal. It is important, then, to control the quality of 

the data before starting with a more exhaustive processing. Hence, it is necessary to 

careful visualize all shot/CMP gathers (Figure 5.5), and treat and/or remove noisy traces 

when necessary. 

Geometry 

The geometry of the experiment has to be defined in order to correctly identify 

and place each trace of the seismic dataset. Geometry information like number of 

streamers, number of channels, shot distance, channel distance, shot location, channel 

location, near offset, etc. is then setup in the header of each trace. Once the traces are 

identified and located, CDP gathers can be created when assembling the traces that 

illuminate the same point in depth. Figure 5.5 illustrates how the trace order changes 

within a shot gather and a CDP gather.  

 

Figure 5.5 .- Trace visualization of a (a) Shot gather and (c) CMP gather. Modified from 

Bartolome [2002] 

During the experiment, the streamer is most likely affected by sea perturbations 

like waves or currents that modify the geometry of the experiment along the profile. 

Hence, detailed information of the xyz-location of the streamer at every shot should be 

introduced to set up a realistic geometry. However, in regional MCS experiments, 

whose main purpose is to investigate large structures (i.e. crustal scale), it is usual to 

apply a marine regular geometry, which assumes that the streamer is towed of the vessel 

along a straight and constant course, and shots are fired at a constant distance. This 

assumption in regional studies provides enough resolution to accomplish data 
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processing and interpretation of crustal structures. For that reason, in this work, a 

regular geometry has been defined and set in traces headers. 

Spherical divergence correction 

Spherical divergence is the attenuation of seismic wave amplitude due to energy 

dissipation and geometrical spreading of the wavefront as it interacts with the different 

layers of the subsurface. The loss of energy of the seismic wave causes that the 

amplitude of the seismic signal becomes lower with depth (time). Hence, it is necessary 

to compensate this loss and recover the best resolution of the seismic trace in time 

before applying further processing. Assuming an earth model with increasing velocity 

with depth, the amplitude decay can be represented as: 

1/tV2
,                                     (5.2) 

where, V is the velocity of propagation and t the two-way travel time [Newman, 

1973]. Therefore, to apply a spherical divergence correction is necessary to have a first 

estimation of the velocity propagation of the medium or V(t). The correction of 

amplitude decay, then, is done by multiplying the samples of the trace by a time variant 

scalar function that enhances the signal of the trace, increasing its temporal resolution.  

Deconvolution 

The seismic trace is the result of convolution of the seismic wave created by the 

source or seismic wavelet, and the Earth’s impulse as a response to the interaction of the 

seismic wavelet with the different layer boundaries of the subsurface (acoustic 

impedance). The aim of the deconvolution is to remove the effect of the source 

waveform from the trace, and enhance the signal corresponding to the Earth’s response.  

Mathematically, as its names suggests, deconvolution is the inverse process of 

convolution. The conventional convolution model of a seismogram may be represented 

by Equation 5.3, where x(t) is the recorded seismogram, w(t) the source wavelet, e(t) the 

Earth’s impulse response, n(t) the random ambient noise, and * signifies convolution 

(Figure 5.6) [Yilmaz, 2001]. 

x(t) = w(t) * e(t) + n(t),                 (5.3) 

The aim of deconvolution, then, is to recover e(t) from x(t). However, all that 

normally is known in equation 5.3 is only x(t) (recorded seismogram), since e(t) must be 

estimated, and w(t) is normally unknown, although in some cases, however, it can be 
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inferred from measurements of the signature of the air-gun. Finally, there is no prior 

information of the ambient noise n(t). Then, to efficiently solve equation 5.3 n(t) is 

usually assumed to be zero. Thus, equation 5.3 can, then, be written as equation 5.4 

[Yilmaz, 2001]. 

x(t) = w(t) * e(t),                      (5.4) 

 

Figure 5.6 .- Graphical representation of the convolution model explained by Equation 5.3. 

After Yilamz [2001]. 

Convolution in time domain (*) is represented by a rather complex mathematic 

operation, whereas in the frequency domain it becomes a simple multiplication. Thus, 

the recorded time signal is converted to the frequency domain using the Fourier 

transform to easily resolve the deconvolution problem. Thus, equation 5.4 is now 

written as equation 5.5 [Yilmaz, 2001]. 

Ax(μ) = Aw(μ)Ae(μ),                            (5.5) 
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where, Ax(μ), Aw(μ), and Ae(μ) are the amplitude spectra of x(t), w(t), and e(t), 

respectively. Now, if the source wavelet w(t) or Aw(μ) is known (record of the source 

signature), the solution to the deconvolution problem is fundamentally deterministic. 

However, the seismic wavelet is usually unknown, hence, e(t) or Ae(μ) must be 

determined from a statistical methods.  

 

Figure 5.7 .- Frequency spectrum of the seismogram Ax(μ) as a result of the multiplication 

of the seismic wavelet Aw(μ), and the Earth’s impulse response Ae(μ). After Yilamz [2001] 

In Figure 5.7, it can be observed that the similarity in the overall shape between 

the amplitude spectrum of the wavelet (Figure 5.7b) and that of the seismogram (Figure 

5.7c) is apparent. In fact, it is generally believed that the rapid fluctuations observed in 

the amplitude spectrum of a seismogram (Figure 5.7c) are manifestation of the earth’s 

impulse response (Figure 5.7a), while the basic shape is associated fundamentally with 

the source wavelet (Figure 5.7b). This occurrence is also observed in the autocorrelation 

functions of the three signals (Figure 5.8) 

 

Figure 5.8 .- Autocorrelation functions of the three signals shown in Figure 5.7. 

Modified from Yilamz [2001]. 

Thus, the source wavelet can be statistically estimated from a recorded 

seismogram by computing its amplitude spectrum and autocorrelation function. This is 

the foundation of the statistical deconvolution.  
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Hence, statistical predictive deconvolution in practice consists of design a time 

windows in the CMP gathers from which the autocorrelation functions of the 

seismogram is computed to estimate the amplitude and phase spectra of the seismic 

wavelet. Then, given a length of the trace (operator length), a Wiener filter is designed 

(operator). This type of filter is also known as predictive filter, since it predicts coherent 

energy (seismic wavelet) from a signal and subtracts it from the waveform [Peacock and 

Treitel, 1969]. The operator is, then, applied within a time window (application 

window) to filter the effect of the source from the recorded signal increasing temporal 

resolution and subsurface reflectivity.  

In this work, two design windows are used accounting for the different seismic 

facies and the loss of energy of the seismic wavelet with depth. Hence, a first window 

was designed for the shallow sediments and a second for the lower sediments and 

basement. The operator length for the first window was 300 ms while for the second 

was 360 ms. The gap of both windows was set at 24 ms (see Figure A.2.2.2). 

Velocity analysis and NMO correction 

As observed before in Figure 5.5b, reflectors represented in a single CMP 

describe a hyperbolic function (Figure 5.5 and 5.9). This reflects the relationship 

between arrival times and source-receiver offset (Figure 5.9). The time difference 

between travel times at a given offset and at zero offset is called normal moveout 

(NMO) (Figure 5.9). This time difference must be corrected previously to sum and stack 

traces in CMPs applying the hyperbolic moveout equation (Equation 5.5):  

tn=[t²� (4h²/v²n)]1/2
,                     (5.5) 

where tn is the time after NMO correction, h the depth of the reflector, and t the 

recorded travel time of the reflector. The vn value is the velocity function required to 

correct the NMO, also known as the NMO velocity, which is equal to the velocity of the 

medium above the reflector [Yilmaz, 2001]. Nevertheless, the velocity that can be 

inferred from seismic data is known as stacking velocity and presents differences with 

the NMO velocity: stacking velocity is based on the hyperbola that best fits data over 

the entire spread length, whereas NMO velocity is only based on a small-spread 

hyperbolic travel time [Yilmaz, 2001]. However, stacking and NMO velocities are 

generally assumed to be equal.  
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To properly perform the NMO correction, a velocity analysis has to be made for each 

CMP to find the mentioned velocity of correction. There are several ways to perform 

this analysis, those used in this work are: the semblance analysis and the constant-

velocity stack (CVS) analysis. The semblance analysis consists of stacking traces of a 

given CMP at different hyperbolic trajectories or velocities, obtaining thereby, its 

velocity spectrum (Figure 5.10). Then, from this velocity spectrum one may identify 

those velocities corresponding to the best lateral coherency or semblance of the signal at 

time. The picking of the maximum levels of lateral coherency at different travel times 

will provide the best stacking velocity function of the CMP (Figure 5.10).  

 

Figure 5.9.- Basic sketch of the NMO 

time difference (�t NMO) between traces 

of a single CMP gather. 

Alternatively to the semblance analysis, a small portion of a line can be stacked 

with a range of constant velocity values obtaining the CVS, which can be plotted in the 

form panel. Stacking velocities that yield the desired stack then can be picked from the 

CVS panel. Both analyzes are performed more than once, since the temporal resolution 

of the signal is incremented after multiple removal (see below). Hence, velocity 

spectrum changes after multiple suppression allowing the identification of new events in 

depth (time). 

Before stacking velocities using the selected velocity functions, however, and 

external mute is recommended to be applied. Muting is an elementary processing 

technique that removes those undesired sections of the trace. External muting is mainly 

applied at shallow levels to far-offset traces to avoid stretching deformations (Figure 

5.11). This effect is a frequency distortion undergone by far-offset traces due to the 

NMO correction that must be excluded from stacking.  
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Figure 5.10 .- (a) CMP 37500 of profile MEDOC-4 without NMO correction. (b) Semblance 

velocity spectrum of CMP 37500. The velocity function (black line) has been selected on the 

basis of the events with highest coherency (red). (c) CMP 37500 with NMO correction. 

Multiple suppression 

This sequence of the processing aims to attenuate the signal of multiple or 

secondary reflections in order to unmask real primary reflections. The multiple signal is 

a coherent noise generated when the seismic energy produce more than one reflection 

during its travel path. Depending on their time delay from the primary event, multiples 

are classified as shot-path (or peg-leg) when are located closed to the primary, or long-

path when they appear as a separate event. In marine data acquisition, multiple 

reflections of the seafloor are typically registered due to a portion of seismic energy 

reverberating in the water layer. These multiple reflections strongly affect the quality of 

the data as they usually mask real low-amplitude reflections. This kind of noise cannot 

be treated with a simple bandpass filter since it presents frequencies similar to primary 

reflections. In this work, the multiple suppression consist of applying a parabolic 

radon transform demultiple process that attenuates most of the multiple seafloor 

reflection, followed by a pre- and post-stack frequency-wavenumber (F-K) filter 

that eliminates residual multiple in the far-offset, and an inner mute for residual 

multiple in the near-offset. 
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Figure 5.11 .- External and inner 

mutes manually picked in the NMO-

corrected CDP 2500 of MEDOC4. Red 

arrows depict the multiple signal 

Parabolic Radon transform 

The parabolic Radon transform decomposes the input data of a CMP gather into 

the parabolic Radon domain (Figure 5.12), where the dipping events of the CMP are 

observed as parabolas or hyperbolas, while flat events are visualized as points. This 

allows to better discriminate multiples and primaries reflections and attenuate the 

multiples.  

To apply the parabolic Radon transform, then, the NMO correction is first 

applied to the CMP gathers, using equation 5.5. Thus, primary reflections in this NMO-

corrected CMP gather are represented as flat events, while multiple arrivals are 

undercorrected events (e.g. left panel in Figure 5.13). These NMO-corrected CMP 

gathers are transformed into the parabolic Radon domain. Then, the parameters of the 

parabolic moveout for primaries and multiples arrivals are defined. These parameters 

refer to the amount of parabolic moveout at far offset, and are the main criteria used by 

the Radon filter to suppress those parabolas corresponding to the multiple. To remove as 

much as possible multiple arrivals without modifying primaries, several trials of these 

parameters have been performed before choosing that applied in this work of 0.85. Once 

the Radon filter is applied, the NMO correction is undone to get the demultipled CMP 

gathers (see Figure A.2.2.3).  
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Figure 5.12 .- Illustration of the Radon transform. In the Radon domain dipping event of the 

CDP gather become parabolas while flat events become punctual events. From 

http://www.xsgeo.com/course/basic.htm#radon 

In this work, Radon demultipling was performed in super-CMP gathers (8 CMP 

gathers to form one super-CMP, in this experiment) in order to have all offsets of the 

geometry, this is a trace distance of 12.5 m instead of 100 m as is usual in a 

conventional CMP gather. This increment of the offset resolution improves the 

parabolic Randon demultipling by reducing spatial aliasing caused by the long offset 

between traces within a normal CMP gather. 

F-K filtering 

An efficient way to remove the remaining multiple energy that left after 

applying the Radon transform is to apply a F-K filter. The F-K filter is based on the F-K 

transform, which decomposes the input data in the F-K domain, where the coherent 

linear events of the time-space (T-X) domain are separated by their dips (Figure 5.13). 

Therefore, a range of dips in time can be identified in FK domain and suppressed by 

muting (Figure 5.14) 
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Figure 5.13 .- Example of the F-K transform. Dipping and flat events of the time domain can 

be discriminated in the F-K domain. From http://www.xsgeo.com/course/basic.htm#fk 

Hence, multiple suppression from CMP gathers (pre-stack) using F-K filtering is 

achieved by applying them the 2D Fourier transform o the NMO-corrected CMP 

gathers, and obtaining the 2D F-K amplitude spectrum. Then, the region corresponding 

to the multiple energy is selected to be muted (Figure 5.14). Finally, the 2-D inverse 

Fourier transform is applied to the filtered data to return to the T-X domain. 

Inner mute 

The inner mute is used to remove multiples in the near offset traces, where their 

slope resembles to that of primaries (Figure 5.11), and hence, neither the F-K filtering 

nor the parabolic Radon transform work properly. 

Stack 

Once accomplished the above processing traces in each CMP are ready to be 

added together and summed to provide a stack section (Figure 5.15). Stacking traces 

from a CMP gather reduces noise and improves the overall quality of the data. In a stack 

section, however, a zero-offset is assumed for each stack trace, that means that the 

source-receiver distance is zero and that the stacked trace corresponds to a normal-

incidence trace at the CMP gather location (Figure 5.16b). 
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Figure 5.14 .- Representation of the F-K filtering sequence. CDPs are NMO corrected (left) in 

order to differentiate between dipping (multiple) and flat (primaries) events in the F-K domain 

(upper panels). The multiple is attenuated in the CMPs (right) by muting the signal enclosed by 

the red box in the F-K spectrum (upper right). 

Part II: Methodology

100



 

Figure 5.15 .- (Left) Seismic traces of a CMP gather uncorrected. (Mid) Traces of a CDP 

gather with NMO correction. (Right) Stacked trace result of the sum of all traces within a CDP 

gather. From http://www.glossary.oilfield.slb.com/en/Terms/s/stack.aspx 

Since this assumption is only valid for flat events or geological layers, dipping 

reflectors in a stack section are not at their true location (Figure 5.16) resulting in 

diffractions of seismic waves that have to be properly processed before interpretation. 

This issue is addressed with the migration - explained below -, which moves dipping 

reflectors from their apparent locations to their true location providing the proper 

geometry of the geological layers in the seismic section. 

Post-stack filtering 

Before applying the migration to the seismic stack section, in this work I have 

applied a post-stack filtering to attenuate those undesired frequencies from the stack. 

The filter consisted of a time variant band-pass filter built up with three windows 

manually picked based on geological structure: 

o 1st window: was designed from the top of the seafloor to the base of the 

sediments, with filter frequencies of 4-6-60-80 Hz. 

o 2nd window: that goes from the top of the sediment to almost the crust-mantle 

boundary, with frequencies of  2-5-45-60 Hz 

o 3rd window: designed from the crust-mantle boundary to the end of the bottom of 

the seismic section, with frequencies of 1-2-35-45 Hz  

Post-stack time migration 

As aforementioned the stack of CMP gathers produces a zero source-receiver 

offset, which implies a normal-incidence of the ray path to the reflecting interface 
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(Figure 5.16b and 5.17a). This assumption is obviously not realistic, since the 

subsurface reflectors are not always horizontal and hence ray path do not reflect always 

with a normal incidence (Figure 5.16a). As a result, dipping events in the stack section 

are not at their true location. Migration moves these dipping reflectors to their true 

subsurface and collapse diffractions using an interval velocity function. Interval velocity 

corresponds to the constant velocity of a single layer and can be approximately 

calculated from DIX equation (Equation 5.6) [Allaby, 2008]: 

vint= [(t2vrms2
2–t1vrmsl

2)/(t2–t1)]1/2   (5.6) 

Where, t1 and t2 are the travel-time of the upper and lower reflectors that define 

the interval or layer, respectively; and Vrms1 and Vrms2 are the root-mean square 

velocities of the upper and lower reflectors, respectively. The root-mean square velocity 

is picked in the seismic section based on geological observations (e.g. geometry of 

sedimentary basin, top of basement, crust-mantle boundary, etc.). 

In summary, migration of stack sections increases spatial resolution and yields a 

section that more closely resembles the geologic cross-section of the profile [Yilmaz, 

2001] (Figure 5.16c and 5.17b). 

 

Figure 5.16 .- Basic sketch of the effect of migration. (a) Shows the real reflections on a 

synclinal structure, while (b) shows a stacked section of this structure assuming zero-offset 

reflections, and (c) time migrated section displaying the real location of the synclinal reflector. 

Migrated sections are commonly presented in time (Figure 5.17b), since the 

velocity estimated from seismic data by conventional methods is limited in accuracy. 

Hence, depth conversion is not accurate. The migration process that produces a 

migrated time section is called time migration, whereas if the final result is a depth 

section is called depth migration. In this work, the migration step has been performed 

by applying a post-stack time migration based on a finite difference algorithm that 

works on the T-X domain and allows migration of 45º-60º dipping events. To migrate 
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section MEDOC4 I have used a dip of 0.55 which is optimal to migrate events dipping 

up to ~56º. 

 

Figure 5.17 .- Comparison between a stacked time section of profile MEDOC 4 without 

migration (A) and with time migration (B) applied. Note that diffractions in (A) appeared 

collapsed in (B), where the reflector geometry becomes geologically more realistic. 

The velocity model used to assess the time migration has to be designed 

carefully since low velocities do not entirely collapse reflectors, and high velocities may 

create overcorrected artifacts or smiles (Figure 5.18). The velocity model used in this 

work varies in time and space. It was firstly designed on the basis of the geometry of the 

main reflections, which were interpreted as the main geological boundaries that limit 

layers with changes of seismic velocity.  

After the migration a time-variant Automatic Gain Control (AGC) was applied 

to the time-migrated stack section to obtain the final MCS image profile MEDOC 4 (see 

section 7.2.2).  
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Figure 5.18 .- Smile structure (red arrows) result of the overmigration of a multiple 

reflection during time migration of profile MEDOC4.  
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Chapter 6: Line GH/MEDOC-6 
 

The results and discussion presented in this chapter have been included in the 

manuscript “Seismic structure of the Central Tyrrhenian basin: geophysical constraints 

on the nature of the main crustal domains” that has been recently accepted for 

publication in the Journal of Geophysical Research – Solid Earth, and of which I am 

first author. 

 

6.1 Data analysis 

Line GH (Figure 6.1) extends from Sardinia to the Campania margin across the 

deepest parts of the Tyrrhenian basin (Magnaghi and Vavilov basins) (Figure 6.1). In 

this section I present the WAS data of this line and the different seismic phases selected 

for modeling. 

 

Figure 6.1.- Bathymetric and topographic map of the Tyrrhenian Sea region showing the 

location of Line GH/MEDOC-6 and the location of the main morphological features. The Land-

stations (yellow squares), OBSs (red circles) and OBHs (yellow circles) used to obtain the 

tomographic model of Line GH (Figure 6.2a) are also depicted in the image. Grey circles 

correspond to both OBSs and OBHs that came out without valid data. Colored triangles 

represent the petrological nature of the basement at those points of interest for this section 

[Dietrich et al., 1977; Colantoni et al., 1981; Kastens and Mascle, 1990; Sartori et al., 2004] 1: 

Baronie seamount, 2: Cornaglia Seamount, 3: Magnaghi seamount, 4 De Marchi seamount, 5: 

D’Ancona Ridge, 6: Gortani Ridge, 7: Vavilov seamount, and 8: Flavio de Gioia seamount. 
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6.1.1 Wide-Angle seismic Data 

Four types of seismic phases have been interpreted in the record sections 

(Figures A.1.1.1 to A.1.1.31 in section A.1.1 of the Annex); three refraction phases 

within the crust (Pg), the basement (Pb) and uppermost mantle (Pn), and a crust-mantle 

boundary reflection (PmP). In average, land-stations display a ~40 km-long Pg phase 

with apparent velocities ranging from 6.0-6.5 km/s (Figures A.1.1.1 to A.1.1.5), a Pn 

phase from km ~40 to ~110 with a mantle-like apparent velocity of >7 km/s, and 

energetic PmP reflections (Figure A.1.1.1 to A.1.1.5). The same phases are observed in 

OBS 95 to OBH 87 located in the Sardinia margin and the Cornaglia Terrace (Figure 

A.1.1.6 to A.1.1.13). These OBS/H stations show Pg arrivals in 40-50 km offset range 

with 6.0-6.5km/s apparent velocities, and faster Pn phases with >7 km/s apparent 

velocity. Most of these record sections display a secondary arrival corresponding to 

PmP reflections, indicating an abrupt crust-mantle velocity boundary. Conversely, 

OBHs 84 to 74 located in the central part of the basin under the Magnaghi and Vavilov 

basins, display no PmP phase (Figure A.1.1.14 to A.1.1.23) (Figure 6.1). Here a single 

refracted phase through the basement (Pb) is interpreted, because it is not evident how 

to distinguish between crustal and upper mantle refractions. This Pb phase is observed 

up to 90 km offset with unusually high apparent velocity of > 7 km/s at short offsets in 

most OBH records. In this region, only OBH 77, 78 and 79 (Figures A.1.1.19 to 

A.1.1.21), show Pb phases with slower 5-6 km/s apparent velocities along their ~30 

near-offset km, located across the Gortani Ridge and Vavilov seamount (Figure 6.1). 

From OBH 73 to 66 (Figures A.1.1.22 to A.1.1.31) across the Campania Terrace and 

margin (Figure 6.1), seismic phases changes displaying a configuration that resembles 

to that of the conjugate Sardinia margin, with moderate-velocity Pg phases in the 

~40km offset range, mantle-like velocity Pn phases, and clear, high-amplitude PmP 

phases (Figure A.1.1.31). 

A total of 14403 first arrivals (Pg, Pb and Pn) and 1877 PmP reflections were 

manually picked combining all the record sections. A picking error of one half of the 

dominant period in the data (~8 Hz) was assumed for refracted phases, and slightly 

larger for reflected phase arrivals, accounting for a possible systematic shift in arrival 

identification. Taken this into account, picking uncertainty was between 40-50 ms for 

Pg, Pb and Pn and 60ms for PmP. 
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6.2 Results 

In the following section I present the main results obtained from the modeling 

and processing of Line GH/MEDOC-6 WAS, MCS, and gravity data. These results 

provide the velocity, tectonic, and density structure of the crust and uppermost mantle 

along this transect. 

 

6.2.1 Velocity structure 

The main characteristics of the velocity model in Figure 6.2a are the laterally 

variable marine sediment layer, the heterogeneous basement velocity structure showing 

a strong vertical velocity gradient at its upper part, and the progressive crustal thinning 

toward the center of the basin. Based on the velocity structure I propose the presence of 

5 different domains. 

Domain 1 extends from 0 to ~125 km (Figure 6.2a) and includes mainland 

Sardinia (0-80 km), and the Sardinia margin (80-125 km). Here the model displays the 

2.0-2.5 km-deep Sardinia basin (Figures 6.2a), with Vp of ~1.8 km/s at the top to 3.5-

4.0 km/s at the base (Figure 6.6). Under the sedimentary basin, the upper 2-3 kms of the 

basement are characterized by a strong velocity gradient of ~0.5 s-1, underlain by a 

lower velocity gradient with velocity at mid- and lower-crustal levels of 5.5-6.5 km/s. 

The Moho of Domain 1 is well constrained by PmP reflections between km ~80 to ~125 

km along the profile in Figure 6.2a, showing a significant shoaling from 20-21 km 

depth at ~80 km to ~15 km depth at ~125 km along profile, defining a significant crustal 

thinning (Figure 6.2a).  

Domain 2 extends from ~125 to ~210 km, (Figure 6.2a), and corresponds to the 

Cornaglia Terrace (Figure 6.1). Similarly to Domain 1, the underlying uppermost 2-3 

km of basement have a vertical velocity gradient of ~0.5 s-1, whereas mid-and lower-

crustal velocities are higher than in Domain 1, ranging between 6.5 km/s at the top to 

7.1-7.2 km/s at the bottom (Figure 6.2a). The Moho is well-constrained by clear PmP 

phases in WAS data and it is also visible in the MCS line (Figures 6.4 and 6.5). It shoals 

from ~15 km to 10 km depth between ~125 to ~210 km along profile (Figure 6.2a). The 

basement velocity structure also displays abrupt lateral contrasts of about 0.5 km/s that 

delineate four 10-15 km-wide, sub-vertical structures with velocity ranging between 6.0 

km/s and 6.5 km/s (between OBH 91 and 87 in Figure 6.2a).  
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Domain 3 extends from km ~210 to ~345 along profile (Figure 6.2a). This 

region is characterized by the absence of wide-angle Moho reflections (no PmP between 

OBH 84 and OBH74). Similarly, the MCS images that show Moho reflections in other 

domains, do not display clear reflections at the expected Moho TWT in Domain 3 

(Figure 6.4 and 6.6). The Vp model displays here the strongest vertical velocity gradient 

(�1 s-1), twice as strong as in any other domains. The base of the 1-2 km-thick sediment 

cover of Magnaghi and Vavilov basins, well imaged on MCS data (Figure 6.4), 

corresponds to the 3.5-4.0 km/s contours (Figure 6.6). The basement is not bounded at 

its base by PmP reflections and it is well-resolved by the dense coverage of Pb phases in 

Figure 6.2b. The velocity structure shows a gradual increase from ~4.0-4.5 km/s near 

the top of basement to 8 km/s at the deepest well-resolved part of the model at ~7-10 

km depth, i.e. 4-5 km below the top of the basement. In average, the vertical velocity 

gradient in these uppermost ~5 km of the basement is twice stronger than in Domain 2, 

and even more compared with that of Domain 1. Coinciding with the bathymetric highs 

of Magnaghi seamount, and the profile intersections with the D’Ancona and Gortani 

Ridges and the Vavilov seamount (Figure 6.1 and 6.2a), the model shows four velocity 

anomalies extending from the top of the basement to about 10 km depth (r1-r4 in Figure 

6.10). Compared to the rest of Domain 3, these anomalies have gentler vertical velocity 

gradient, faster velocity at shallow levels, and slower velocity at deep levels. These 

local anomalies are better displayed by comparing vertical velocity gradients rather than 

absolute velocities (Figure 6.10b) (see section 6.3.4 for details). 

Domain 4 encompasses the Campania Terrace, from ~350 to 410 km (Figures 

6.1 and 6.2a). Here, PmP reflections are clear in the record sections (Figure A.1.1.24 to 

A.1.1.28), constraining well the Moho geometry. Crustal thickness increases from ~7 to 

~10 km from km 355 to ~410 along profile (Figure 6.2a). The basement velocity 

structure is similar to Domain 2, with Vp increasing from 4.0-4.5 km/s at the top to 7.1-

7.2 km/s at the base of the crust. However, the velocity distribution of Domain 4 is more 

homogeneous laterally, without the sub-vertical velocity structures observed in Domain 

2 (Figure 6.2a). 
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Domain 5 runs across the Campania margin (i.e. last 30-40 km of profile in 

Figure 6.2a). Here the crustal structure is just moderately well-resolved because the ray-

coverage is poorer (Figure 6.2b). However, the reduction in crustal velocities and the 

increment of crustal thickness complemented with a significant change of the 

bathymetry relief suggest that it may represent a change in crustal structure, hence a 

fifth domain is interpreted. 

Mantle velocity structure is well resolved along the entire line. Beneath 

mainland and Sardinia margin (Domain 1) long-offset Pn phases recorded in the land-

stations dive 5-10 km into the mantle (Figure 6.2a). Clear Pn phases on OBH and OBS 

records along Domains 2 and 3 (Figures A.1.1.6 to A.1.1.13) constrain well the mantle 

velocity, whereas the Campania margin (Domain 4) has limited ray coverage so that 

mantle velocity is less well resolved (Figure 6.2b). Overall, velocity under the Moho 

increases with depth from ~7.6 km/s just under the crust-mantle boundary to ~8.0 km/s 

~5 km below, indicating low uppermost mantle velocity in all Domains (Figure 6.2a). 

 

6.2.1.1 Uncertainty analysis 

Crustal velocity and Moho depth uncertainty of the velocity model in Figure 

6.2a is displayed in Figure 6.3.  

 

Figure 6.3.- Final standard deviation values for the P-wave velocity values and the Moho 

geometry (grey band), as a result of the statistical uncertainty analysis. Note that in this 

analysis the mantle is not included. Details of the calculation are given in section 3.4.2 in 

chapter 3. Yellow circles display the location of the Land-stations, OBHs, and OBSs used in this 

thesis. 

Uncertainty values range between ±0.1 km/s and ±0.2 km/s in most of the 

model, except under Sardinia, where velocity uncertainty is between ±0.2 km/s and ±0.3 
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km/s due to low ray coverage (Figure 6.2b). Velocity uncertainty is also >±0.2 km/s at 

some locations with strong velocity gradient or contrast, like at ~15 km depth between 

OBH 87 and 88, and below OBH 69 (Figure 6.3). This effect has been observed in other 

studies [Sallarès et al., 2011, 2013a] around the sediment-basement boundary where 

there is a sharp velocity contrast. Depth uncertainty for the Moho is small, ranging 

between ±0.2 km where crustal velocity is constrained by Pg and Pb phases, and ±1.3 

km where crustal velocity is primarily controlled by PmP phases only and the depth-

velocity trade-off is higher (Figure 6.3). 

6.2.2 Tectonic structure

As stated before, although I have not processed the MCS profile MEDOC-6, I 

have interpreted it and included it in my thesis to complement the information of the 

coincident WAS model of Line GH (Figure 6.2a). Particularly, the post-stack time 

migration image of MEDOC-6 was used to define the tectonic structure and to map the 

presence/absence of Moho in the near-vertical seismic reflection image (Figure 6.4). 

The MCS profile displays well the sediment cover, the top of basement (TOB), and 

locally groups of reflections from the lower crust that possibly delineate the transition to 

the Moho at their base (Figure 6.4 and 6.5). The Vp model has been converted to two-

way time (TWT) and overlain on the seismic image to directly compare the structure 

obtained by the two methods (Figure 6.6). Overall, there is a regional good 

correspondence between structures in both images, but the two methods appear to have 

mapped some structures in different ways, which may give information on the nature of 

rocks forming the domains. 

The crust-mantle boundary has been mapped in Domain 1 only with PmP wide-

angle reflections because MCS data is contaminated with multiple energy at Moho 

arrival time predicted by WAS modeling (blue line in Figures 6.4 and 6.6). In Domains 

2 and 4 both methods have detected the crust-mantle boundary and provide 

complementary information. The interpreted crust-mantle boundary appears in MCS 

image typically as a band of reflections that is ~0.2-0.5 s TWT thick, formed by 

individual events that are ~0.5-2 km long (Figure 6.5) and locally as sub-horizontal 

reflections that may indicate a more abrupt boundary (e.g. CMPs 44000-45000). The 

band of reflections may be interpreted to represent a layered transition from crust to 

mantle rocks. In some areas the sub-horizontal reflections forms the base of a 
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reflectivity package where gently dipping mid-crustal reflections merge downdip (e.g. 

CMPs 47000-42000 and 17000-14000 in Figure 6.5). 

The crust along domains 2 and 4 displays a 7-9 km laterally rather constant 

thickness (Figure 6.2a) that is displayed as a 2.5 to 2.9 s TWT thick crust in seismic 

images (Figure 6.5). Similar crustal structure and lower crustal reflectivity has been 

described in oceanic back-arc crust in the South Balearic basin [Booth-Rea et al., 2007] 

and in –slightly thinner- oceanic crust formed at fast-spreading rates [Ranero et al., 

1997]. In these two settings the lower crustal structure has been interpreted as formed 

by either a lithological layering formed in a lower-crustal magma chamber or a 

deformation fabric of such a lithological layering that has been transposed by ductile 

flow. 

The crust-mantle boundary location obtained by WAS modeling and converted 

to TWT systematically shows the Moho somewhat shallower than the base of the 

reflectivity band in MCS images (Figures 6.4, 6.5 and 6.6). This observation has two 

potential explanations: 1) the package of reflections in MCS images represents a 

layering with overall mantle velocities and the crust to mantle velocity transition is at its 

top, observed as the Moho location in the WAS, 2) alternatively, the TWT mismatch of 

Moho location in both data sets is due to seismic anisotropy [e.g. Sallares et al., 2013b]. 

This situation may arise when subhorizontal-propagating WAS waves travel faster than 

near-vertical MCS waves. Domain 3 shows neither wide-angle PmP reflections nor 

MCS images of the crust-mantle boundary, which strongly indicates that the increase 

from Vp<8km/s to Vp>8km/s is not an abrupt lithological boundary, but a gradual 

transition possibly over hundreds of meters that is expressed by the strong vertical 

velocity gradient (Figure 6.7).  
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Fig. 6.5a 

Fig. 6.5b 
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Figure 6.4.- Post-stack time migration of profile MEDOC-6. The tectonic structure of the curst 

along this section is mainly represented by landward and seaward normal faults (red lines). 

Noted the excellent correlation between the interpreted Moho along the MCS profile and that 

obtained by the inversion of PmP phases (blue line). Colored triangles are the same used in 

Figure 6.1 to indicate the nature of the basement inferred from rock sampling [Dietrich et al., 

1977; Colantoni et al., 1981; Kastens and Mascle, 1990; Sartori et al., 2004]. TOB: top of 

basement. 

Domain 2 displays a tectonic structure fundamentally different compared to that 

of Domain 1. It is characterized by comparatively wider spacing between fault blocks 

that in Domain 1, indicating that faulting was less important during extension of 

Domain 2. In Domain 2 there are 6 main fault blocks with a maximum relief of a few 

hundreds of meters, bounded by eastward dipping normal faults (Figure 6.5). The 

largest and only fault block that crops out of the seafloor is the southernmost extension 

of the Baronie seamount (Fig 6.1). The Baronie fault-block forms over 1 km of top-of-

basement relief, and dredging indicates a continental origin [Sartori et al., 2004] so that 

is probably similar to blocks in Domain 1. The rest of the fault blocks of Domain 2 are 

considerably smaller in dimensions. 

Domain 3 across the Magnaghi and Vavilov basins is bounded on either end by 

two set of major faults that dip with opposite directions on either side. However, the 

~130 km-wide Domain 3 displays basically no evidence of high-angle normal faulting 

causing significant basement relief (Figure 6.4 and 6.6). The large relief in the map (Fig 

6.1) corresponds to the 1-4 km tall basaltic Magnaghi and Vavilov seamounts (Figure 

6.1), and D’Ancona and Gortani Ridges. The deeper, smooth basement top of the 

Vavilov basin was drilled during ODP 651 near line MEDOC-6. Drilling recovered a 

few tens of meters of basalt overlying mantle peridotite [Kastens and Mascle, 1990] 

(Figure 6.1). Domain 3 has neither Moho reflections in the MCS images nor PmP 

phases from Moho in the WAS records, which may indicate a different nature for the 

basement of this Domain (Figure 6.4 and 6.6). 
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Figure 6.5.- (a) Close-up of the MCS profile in Figure 6.4 along the Cornaglia Terrace. The 

main features of this region include the coincident absence of both, the inverted Moho (blue 

line) and the interpreted one along the MCS profile at ~ 135km of the profile MEDOC-6, and 

the presence of seaward normal faults (red lines). The yellow triangle represents the 

petrological nature of the Baronie seamount [Kastens and Mascle, 1990; Sartori et al., 2004]. 

(b) Close-up of Figure 6.4 along the Terrace and margin of Campania. As in the Cornaglia 

Terrace in (a), the location of the Moho interpreted along this region of the MCS profile and 

that obtained by the inversion (blue line) coincide remarkably well. The yellow triangle 

indicates the continental nature of the Flavio Gioa seamount [Colantoni et al., 1981; Kastens 

and Mascle, 1990]. TOB: top of basement 

Domain 4 extends from ~275 to 330 km along the MCS profile, with a structure 

in the MCS image that resembles the structure of Domain 2, but contains fewer, 

smaller-offset faults (Figures 6.4, 6.5 and 6.6). The image shows a fairly smooth top of 

the basement, indicating minor tectonic extension during the creation of this region of 

the basin. The well-imaged lower-crustal packages of reflections in the MCS data 

(Figure 6.5) and the spatially coincident PmP WAS reflections (Figure 6.6) clearly 

delineate the base of the crust as an abrupt seismic boundary for Domain 4, which is in 

contrast to Domain 3 but similarly to Domain 2. The pattern of eastward-dipping lower-

crustal reflections that merge with the base of the crust reflections in the MCS image is 

also similar to the structure of Domain 2 (CMP 16000 to 14000 in Figure 6.5).  

The MCS image extends further eastward that the WAS recordings and provides 

a wider coverage of Domain 5 (Figure 6.2). The seismic image of Domain 5 displays a 

progressive shoaling of the top of basement corresponding to a gradual landward 

thickening of the crust, as indicated by the WAS model (Figures 6.4 and 6.6). The crust 

is cut by numerous faults, including several large-offset normal faults that produce 

considerable top of basement relief. The tectonic structure of half and full grabens of 

few hundreds of meter to about 1 km deep indicates that extension by faulting was a 

comparatively important process during the opening of Domain 5, similarly to Domain 

1 and in contrast to Domains 2-4. 

. 
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Figure 6.6.- Post-stack time migration of profile MEDOC-6 with the same tectonic 

interpretation as in Figure 6.4 and overlaid with the TWT converted version of the P-wave 

seismic velocity model (Figure 6.2a). Yellow circles display the location of the OBSs and OBHs 

along the profile. Colored triangles are the same used in Figure 6.4 [Dietrich et al., 1977; 

Colantoni et al., 1981; Kastens and Mascle, 1990; Sartori et al., 2004]. White circles display 

the location of those reflections interpreted as the crust-mantle boundary. Note that in Domains 

2 and 4, the tomographic model presents an inversion of seismic velocities from 5km/s to 4km/s. 

This inversion could be related to the existing salt deposits of the Cornaglia Terrace (CMP 

46000-42000) and the Campania Terrace (CMP 16000-11000). 

 

6.2.3 Automatized interpretation of basement affinity based on P-wave depth-

velocity profiles 

To reduce interpretation subjectivity from the conventional velocity analysis 

(Figure 6.7), I have developed an independent method for the automatic classification of 

the petrological affinity of the structural domains based on velocity-depth relationships. 

The method consists of comparing 1-D velocity-depth profiles extracted from the 2-D 

tomographic model (Figure 6.2a) with compilations made for continental crust 

[Christensen and Mooney, 1995], oceanic crust [White et al., 1992] and exhumed 

mantle [Sallarès et al., 2013a] (Figure 6.8). As a result, the RMS difference between 1-

D velocity models along the 2-D profile (1-D profiles are calculated from 5-km-wide 

averages of the 2D velocity model) with the average of each of the three velocity-depth 

references is calculated [White et al., 1992; Christensen and Mooney, 1995; Sallarès et 

al., 2013a], allowing to assign the petrological affinity corresponding to the smallest 

RMS. The results obtained from the comparison with continental crust, oceanic crust 

and exhumed mantle are depicted in Figure 6.8a. 

The smallest RMS at any point along the line automatically determines the 

basement affinity (Figure 6.8b). This method clearly separates basement type in the five 

domains previously discussed in section 6.2.1. In Domain 1, the reference model that 

best fits the velocity-depth profile is that of continental crust (Figure 6.8a and 6.8b). 

Domains 2 and 4, including the Cornaglia Terrace and the conjugate Campania Terrace 

have velocities that fit better with the reference model of oceanic crust (Figure 6.8). 

However, in these two domains the lower crust has velocities that are systematically 

lower than typical, Atlantic-like, 0-7 Ma old oceanic crust [White et al., 1992] (Figure 
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6.7). The easternmost ~10 km of the profile matches better the continental crust 

reference, suggesting that the nature of Domain 5 could be continental. This 

interpretation must be carefully taken since this region is poorly constrained by the 

WAS data. However Biella et al. [2007] shows that at about 90 km eastward OBH 66 

the basement displays continental features. Interestingly, a narrow continental-affinity 

segment is discerned in Domain 2, coinciding with the location of the Baronie seamount 

of known continental nature [Sartori et al., 2004] (Figure 6.8c). In Domain 3 the 

velocity-depth profiles that match best clearly correspond to that of partially 

serpentinized peridotite (Figure 6.7 and 6.8b), with the exception of two narrow 

segments just below the Gortani Ridge and the Vavilov seamount, which are better 

explained by an oceanic crustal affinity (Figures 6.3a and 6.8b). These two seamounts 

have been previously described as basaltic edifices [Robin et al., 1978; Beccaluva et al., 

1990; Bertrand et al., 1990; Savelli, 2002], possibly intruding a basement made of 

serpentinized mantle rocks.  

 

Figure 6.7.- 1D P-wave velocity-depth profiles of the five differentiated domains along the 

tomographic model (Figure 6.2a). Black lines represent the 5 km-laterally-averaged 1D 

velocity-depth profiles extracted from the tomographic model. 1D velocity-depth profiles of 

reference include a 20 km–thick continental crust (orange band) [Christensen and Mooney, 

1995], 0-7 Ma Atlantic oceanic crust (blue band) [White et al., 1992], and a compilation of the 

exhumed mantle regions found West Iberia (green band) [Dean et al., 2000; Sallarès et al., 

2013]. 
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Figure 6.8.- (a) Velocity RMS values for the three models referred in the text as a function of 

the distance along the tomographic model (Figure 6.2a), result of the automatic basement 

classification analysis (see section 6.2.3). The orange band corresponds to the comparison of 

each 1D velocity-depth profile of the tomographic model and the continental crust 1D velocity-

depth reference [Christensen and Mooney, 1995]. Similarly, the blue and green bands 

corresponds to the comparison with a young (0-7 Ma) Atlantic oceanic crust [White et al., 

1992] and an exhumed mantle region [Sallarès et al., 2013], respectively. Details of the 

calculation are given in the text (see section 6.2.3). The thickness of each RMS line corresponds 

to the error bar obtained in the uncertainty analysis explained in section 3.4.2. (b) Basement 

affinity model corresponding to the automatic basement classification shown in (a). The 

inverted Moho geometry (thick red line) and the location of the OBSs and OBHs (yellow circles) 

are also shown in the image. (c) MCS profile MEDOC-6 with the main morphological 

structures identified along the profile (e.g. Vavilov seamount), and the projections of ODP sites 

655 and 651 [Kastens and Mascle, 1990]. The petrological nature of the basement is also 

represented by the same colored triangles as in Figure 6.1 (see legend in Figures 6.1, 6.4 or 

6.6) [Dietrich et al., 1977; Colantoni et al., 1981; Kastens and Mascle, 1990; Sartori et al., 

2004]. Vertical scale is exaggerated. 

 

6.2.4 Density structure 

In order to challenge the petrological interpretation described in the previous 

section (Figure 6.7 and 6.8), the velocities of the tomographic model (Figure 6.2a) have 

been converted into densities using the Vp-� relationships corresponding to the 

petrological affinities assigned by the automatized velocity analysis and mentioned in 

section 4.3 in chapter 4 (Figure 6.8). Hence, the Christensen and Mooney’s [1995] Vp-� 

relationship for continental rocks was used in Domains 1 and 5, Carlson and Herrick’s 

[1990] conversion law for oceanic crust in Domains 2 and 4, and Carlson and Miller 

[2003] Vp-� relationship for partially serpentinized peridotites in Domain 3.  

The gravity response of the resulting density model (Figure 6.9a) presents a 

slight mismatch of 18mGal with the observed free-air gravity anomaly. A possible 

explanation for this mismatch is the anomalous lower crustal velocity in Domains 2 and 

4, which is systematically lower than a typical 0-7 Ma-old oceanic crust [White et al., 

1992], possibly reflecting a different petrological composition. To correct this effect, 

crustal densities have been decreased by 1-2% in these two domains (Figure 6.9b). The 
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obtained model fits remarkably well the observed gravity anomaly with an RMS of 8 

mGal (Figure 6.9a). 

 

Figure 6.9.- (a) Observed free-air gravity anomaly (grey circles) recorded during the MEDOC 

survey. Blue band corresponds to the gravity anomaly calculated from the velocity-derived 

density model obtained using Hamilton’s [1978] relationship for the sediment layer, 

Christensen and Mooney’s [1995] relationship for continental crust in Domain 1 and 5, 

Carlson and Herrick’s [1990] relationship for oceanic crust in Domains 2 and 4, and Carlson 

and Miller’s [2003] conversion law for partially serpentinized peridotites in Domain 3. The 

RMS value for this case is 18 mGal. Red band corresponds to the gravity anomaly calculated 

from the density model obtained by using the same conversion laws as in the first case, but 

decreasing by 2 % and 1 % densities in Domains 2 and 4, respectively. The RMS value is 8 

mGal. (b) Velocity-derived density model corresponding to the best fit (red band). Yellow 

circles show the location of the OBS and OBH. 

Chapter 6: Line GH/MEDOC-6

127



6.3 Characterization of geological domains along Line GH/MEDOC-6

In this section, the results obtained from the WAS model, MCS image, and the 

gravity modeling are integrated in order to interpret the nature of the basement beneath 

the Sardinia margin (Domain 1), Cornaglia Terrace (Domain 2), Vavilov and Magnaghi 

basins (Domain 3), Campania Terrace (Domain 4) and Campania margin (Domain 5). 

6.3.1 The continental margins of Sardinia (Domain 1) and Campania (Domain 5)

The Sardinia Island and its margin (Domain 1 in Figures 6.2a, 6.4 and 6.6) have 

a continental velocity and density structure (Figure 6.7 and 6.8). This interpretation is 

also consistent with regional geology. Field observations indicate that Sardinia 

basement is mainly formed by Paleozoic, locally Mesozoic and Eocene rocks from the 

European continental lithosphere, overlaid by -from bottom to top- continental-to-

marine sediment sequence related to Oligocene-Miocene rifting [Cherchi and 

Montadert, 1982]. Similarly, dredged basement rocks of the Sardinia margin (Figure 

6.1, 6.4 and 6.5) include Late Paleozoic (~300 Ma) granitoids (e.g. Baronie seamount in 

Figures 6.2a, 6.5, 6.6 and 6.7) of the Variscan orogeny [Mascle and Rehault, 1990; 

Sartori et al., 2004], covered by Serravallian-early Tortonian to Pliocene-Pleistocene 

sediment [Mascle and Rehault, 1990; Sartori, 1990; Sartori et al., 2004].  

The WAS data do not constrain well crustal thickness beneath the island, but 

complementary ��	
��� ��������� �����	���� 	� ���� ��� ����������� ��� 	��������� �����

previous seismic estimations [Di Stefano et al., 2011]. Other WAS profiles acquired 

during the MEDOC-2010 experiment in the northern Tyrrhenian basin, across Corsica 

and offshore to the east, suggests a similar thickness beneath the island [Moeller et al., 

2013]. The crystalline crust thins from ~15 km thick under the coastline (km 80, Figure 

6.2a) to 9 km at Domain 1 edge, implying a stretching factor (ß) of ~3 (km 125, Figure 

6.2a). However, the transition between continental Domains 1 and 2 along the transect 

is probably relatively abrupt as the automatic classification seems to indicate and a 

Continent to Ocean Transition (COT) has not been found (Figure 6.8b).

Domain 5 (Campania margin) is less well characterized with WAS data because 

the line has mapped only the outer segment (Figure 6.2a) although it is also classified as 

continental (Figure 6.8). However, the MCS image extends further East and shows 60 

km of a terrain characterized by significant extensional tectonics during formation. The 
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structure of Domain 5, with a rough, eastward shoaling relief, indicating a gradual 

eastward thickening of the crust, (also mapped in the segment covered with the WAS 

line) is clearly differentiated from Domain 4. No basement samples from the margin 

have been reported in literature, and I interpret this segment as an extension of the 

continental crust of Italy mainland.

6.3.2 Magmatic crust under the Cornaglia Terrace (Domain 2) and Campania 

Terrace (Domain 4)  

In Domains 2 and 4 there are two anomalously tall seafloor highs, the Baronie 

and Flavio Gioia seamounts, respectively, where dredging recovered continental rocks 

(Figures 6.1). These highs are narrow and only Baronie shows well as continental in the 

automatized classification (Figure 6.8b). However, the rest of Domains 2 and 4 do not 

appear as continental in the automatized classification. Under the Cornaglia Terrace 

(Domain 2) and Campania Terrace (Domain 4) (Figures 6.1, 6.2a, 6.4, 6.5 and 6.6) the 

basement presents a two-layer seismic structure characterized by different vertical 

velocity gradients that resemble oceanic crust layer 2 and layer 3 typical structure but 

with somewhat slower velocity in the lower crust (Figure 6.7). Under the Cornaglia 

Terrace the velocity model shows East-dipping crustal-scale velocity anomalies perhaps 

linked to east-dipping crustal-scale faults observed in the upper crust in the MCS line 

(Figures 6.2a and 6.5). This might indicate that these faults may be reaching close to the 

crust-mantle boundary. In contrast, faulting in the Campania Terrace has smaller offset. 

The limited amount of extension by faulting in the Campania Terrace is 

accompanied by a velocity structure somewhat more homogeneous than in the 

Cornaglia Terrace (Figure 6.2a), although it displays similar velocity-depth profiles 

(Figure 6.7). Most lower crust velocity-depth profiles of both domains display velocities 

ranging between 6.5 and ~7.0 km/s, so they are between typical continental and oceanic 

[Christensen and Mooney, 1995; White et al., 1992] (Figure 6.8a), with a few 

exceptions in Domain 2 that may reach 7.1-7.2 km/s in the lowermost crust.

Thus, in general the velocity-depth relationships in Domains 2 and 4 agree better 

with that of oceanic crust (Figures 6.7 and 6.8). However, the crust in these two 

domains is slightly thicker than typical oceanic crust [White et al., 1992], ranging 

between 7-9 km and locally reaching 12 km (Figure 6.2a). In addition, to obtain a good 
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fit of the gravity data in these two domains (Figure 6.9a) it is necessary to decrease the 

crustal densities obtained with the Carlson and Herrick’s [1990] Vp-�� ���	�������������

oceanic crust by 1-2% (Figure 6.9). This suggests a departure in mineral composition 

from typical mid-ocean ridge oceanic crust.

A two-layer seismic structure with similarly slow lower crustal velocity and 

crustal thickness has been described in other back-arc extensional settings, such as 

Ligurian basin [Gailler et al., 2009] and Lau basin [Turner et al., 1999]. In Lau the 

seismic structure is attributed to volcanic intrusions into the lower crust during crustal 

extension [Turner et al., 1999] and to oceanic crust in the Ligurian [Gailler et al., 2009].

Additionally, it is important to note that it has been suggested that the interaction 

between subduction-related hydrous flux melting and decompression melts under a 

back-arc spreading center system produce a rock composition more felsic than typical 

mid-ocean ridge basalts [Dunn and Martinez, 2011]. 

Therefore, a plausible hypothesis is that the two-layer seismic structure under 

the Cornaglia Terrace and Campania Terrace (Figures 6.3a and 6.7) could have formed 

during the first phases of back-arc spreading at a distance of the volcanic arc close 

enough that there was an important contribution of subduction-related magmatism 

during crustal accretion [Martinez et al., 2007]. 

6.3.3 Exhumed mantle-rock basement at the Magnaghi and Vavilov basins 

(Domain3) 

The Magnaghi and Vavilov basins (Domain 3) are the segments that do not 

display Moho reflections in either MCS (Figures 6.4 and 6.6) or WAS data (Figures 

A.1.1.14 to A.1.1.23), and show the strongest vertical velocity gradients (Figure 6.7). 

The basement classification based on velocity-depth profiles indicate that the seismic 

structure is analogous to the continental-ocean transition of the West Iberia margin 

where the basement appears to be made of mantle rocks with no overlay of crustal-type 

rocks [Dean et al., 2000; Sallarès et al., 2013a]. The velocity uncertainty is small 

enough to discard that it might correspond to 0-7 Ma old-oceanic crust [White et al., 

1992] (Figure 6.7). These results, together with the corroboration by the good fit of the 

gravity data using Carlson and Miller’s [2003] conversion law for partially 
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serpentinized peridotites (Figure 6.9), strongly indicate that the basement is made of 

mantle rocks with no detectable igneous crust carapace.

In contrast with this interpretation, 1D P-wave velocity models obtained by 

forward modeling from WAS data recorded by deep-ocean geophones and 

seismographs between the 60’s and the 80’s [Fahlquist and Hersey, 1969; Nicolich, 

1981; Recq et al., 1984; Duschenes et al., 1986] (see Figure 2.9), were interpreted as 

indicating that the Magnaghi and Vavilov basins are floored by oceanic crust. 

Nonetheless, the spatial density of deep-ocean receivers in these studies (~5 receivers 

per 100 km of profile) was much lower than in the MEDOC experiment (Figures 6.1

and 6.2a), and shot-spacing was 10 times larger than in the MEDOC WAS lines 

[Duschenes et al., 1986], so that the resolution and velocity control in our models is far 

better as demonstrated by the uncertainty analysis. 

Additionally, there is some evidence of igneous rocks in the basin that include 

the E-MOR basalts drilled on top of the Gortani Ridge (ODP site 655) and at the 

basement of the Vavilov basin (ODP site 651) [Beccaluva et al., 1990; Bertrand et al., 

1990; Savelli, 2002] (Figures 6.1, 6.4 and 6.6). The Gortani Ridge is intersected by the 

tomographic model (between OBH79 and 80 in Figures 6.1 and 6.2a) and consequently 

imaged in depth (at ~300 km in Figure 6.2a). The velocity model shows that its crustal 

structure is anomalous and local (Figure 6.10) and it is not representative of the nature 

of the whole domain. The interpretation on its nature and origin is discussed in the next 

section.

Concerning the oceanic-like nature of rocks of the Vavilov basin, E-MOR 

basalts drilled in this region are underlain by serpentinized peridotites, being this the 

lithological composition of the last unit in the borehole (ODP site 651 in Figures 6.1,

6.4 and 6.6) [Bonatti et al., 1990; Kastens and Mascle, 1990]. Other magmatic 

intrusions are present along this domain (i.e. Magnaghi and Vavilov Smts.) (Figures

6.2a and 6.10), however, based on their affinity (alkaline) and age (3-0.1 Ma), I 

conclude that they are not representative of oceanic accretion related to the opening of 

the Magnaghi and the Vavilov basins [Robin et al., 1978; Savelli, 2002], but they likely 

represent later episodes of magmatic activity that intruded the original basement made 

of mantle rocks.

On the basis of these observations, the basement beneath Domain 3 is

interpreted to be mainly constituted by serpentinized peridotites locally intruded and 
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overlaid by ocean-like basalts (i.e E-MOR basalts). The strong vertical velocity gradient 

in the uppermost 3-4 km of the basement (> 1s-1), the smoother velocity gradient just 

beneath, the velocities lower than those characteristic of unaltered mantle (< 8.2 km/s), 

and the absence of the Moho (Figure 6.2a and 6.6) are common features that have also 

been observed off Western Iberia [Pinheiro et al., 1992; Chian et al., 1999; Dean et al., 

2000; Sallarès et al., 2013a]. In that region, the strong velocity gradient of the 

uppermost 3-4 km of the basement is attributed to an abrupt decrease in degree of 

serpentinization with depth (e.g. from >80 % of serpentinization to 30-20% in less than 

2 km), whereas the underlying smoother velocity gradient would correspond to a 

weakly serpentinized mantle [Sallarès et al., 2013a]. The similar velocity and velocity 

gradient encountered in the Central Tyrrhenian basin allows me to suggest that the case 

is also very similar.

6.3.4 Volcanic intrusions in mantle-rock basement

Throughout Domain 3, and coinciding with the location of the magmatic 

edifices of the Magnaghi and Vavilov seamounts, the D’Ancona Ridge and the 

southernmost part of the Gortani Ridge, the tomographic model displays several 

vertically-elongated velocity anomalies characterized by a gentler vertical velocity 

gradient as compared with the rest of this domain (e.g. at ~300 km in Figures 6.10a). In 

order to improve the definition of these velocity anomalies, the vertical velocity 

gradient model obtained from the tomographic model (Figure 6.2a) has been compared 

with a laterally-smoothed version of the vertical velocity gradient model, excluding the 

sedimentary layer. As a result, I have obtained anomalies where the vertical gradient is 

smoother than the background gradient. As can be seen in Figure 6.10b, these anomalies 

concentrate under the volcanic centers (r1, r2, r3, r4 in Figure 6.10b). 

The sub-vertical anomaly r1 (Figure 6.10b), one of the strongest anomalies in 

the tomographic model (<-0.3s-1), is interpreted as the root of the magmatic body 

corresponding to the Magnaghi seamount, which has been sampled and dated at 3.0-2.7 

Ma [Savelli, 2002].  

Anomaly r2 (Figure 6.10b) occurs under the intersection of the D’Ancona Ridge 

with the WAS line (Figures 6.1 and 6.10). This ridge, which has not been sampled, has 

been generally interpreted as a faulted continental block, although a possible magmatic 
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origin has also been suggested [Marani and Gamberi, 2004; Sartori et al., 2004]. On the 

basis of its location and given that the velocity gradient below is rather high in 

comparison to that of a continental block (e.g. Baronie Smt at 150 km of profile in 

Figure 6.2a); it might also correspond to a basaltic intrusion into the mantle basement 

forming the root of a volcanic edifice.

Figure 6.10.- (a) Close-up of the tomographic model (Figure 6.2a) along the Magnaghi and 

Vavilov basins with the main morphological elements identified. The same colored triangles 

used in Figure 6.1 are also used in this image [Dietrich et al., 1977; Colantoni et al., 1981; 

Kastens and Mascle, 1990]. (b) Map of the vertical velocity gradient anomalies along the 

tomographic model, which has been obtained by comparing the vertical velocity gradient 

model, corresponding to the tomographic model (Figure 6.2a), with a laterally-smoothed 

version of the same gradient model. The smoothing was done by applying a Gaussian filter with 

a horizontal correlation length of 15 km and a vertical one of 0.5 km. The goal of this method is 

to determine the dimensions of those velocity anomalies observed along the tomographic model 

(Figure 6.2a), which in this case might be representing the tomographic signature of the 

structure in depth of the Magnaghi seamount. (r1), D’Ancona (r2) and Gortani (r3) Ridges, and 

the Vavilov seamount (r4).

Anomaly r3 (Figure 6.10b) is interpreted as the root of the Gortani Ridge. This 

ridge is composed by E-MOR basalts (ODP site 655) dated at 4.3 Ma [Beccaluva et al., 
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1990; Bertrand et al., 1990; Savelli, 2002], being the oldest magmatic body imaged in 

the central basin, but younger than the opening of the Vavilov basin where it intrudes. 

Anomaly r4 (Figure 6.10b) is located below the northernmost intersection of 

Vavilov seamount, likely representing a related intrusion. Similarly to Magnaghi 

seamount, Vavilov seamount is related to intra-plate magmatism created at 2.6-0.1 Ma 

after the end of extension in the central basin [Robin et al., 1978; Savelli, 2002]. 
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Chapter 7: Line EF/MEDOC-4 

 

As in chapter 6, the results and discussion of this chapter, together with the 

discussion in section 8.1 are included in the paper “3D definition of geological domains 

in the Central Tyrrhenian basin based on crustal properties” to be submitted for 

publication to Geochemistry, Geophysics, Geosystems (G3), and of which I am first 

author. 

 

7.1 Wide-Angle seismic Data analysis 

The ~400 km-long Wide-Angle seismic (WAS) Line EF (Figure 7.1) extends 

from Sardinia to the Campania margin (Figure 6.1), ~55 km to the north of line GH 

(Figure 7.1). As in section 6.1, I present here the WAS data of this line and the different 

seismic phases selected for modeling. 

 

7.1.1 Wide-Angle seismic Data 

Three types of seismic phases were identified in the record sections (Figures in 

Annex A.1.2). Two of them were interpreted as refractions throughout the crust (Pg) 

and the mantle (Pn), and the other as a reflected phase into the crust-mantle boundary 

(PmP). As in the case of the GH line, and due to the thickness of the sedimentary layer, 

sedimentary phases were not identified. In Sardinia most land-stations display a ~40 

km-long Pg phase with an apparent velocity of 6.0-6.5km/s, except land-station EF1 

(Figure A.1.2.5), which presents > 70 km-long Pg phase. Only in land-stations EF1 and 

EF4 a 90-100 km offset Pn phase with an apparent velocity of ~8 km/s is identified 

(Figure A.1.2.5). The only PmP phase in land-stations is identified in receiver EF1 

(Figure A.1.2.5). The same distribution of seismic phases is observed from OBS 36 to 

OBH 55 (Figures A.1.2.6 to A.1.2.24). In these receivers the Pg phase presents an 

apparent velocity of 6.0-6.5 km/s at offsets ranging from ~50 km beneath the Sardinia 

margin (Figure A.1.2.6) to ~30 km below the Cornaglia Terrace (Figure A.1.2.12) and 

Sechi and Farfalla segments (Figures A.1.2.15 and A.1.2.21) to the point where Pn 

phases arise.  

Chapter 7: Line EF/MEDOC-4

135



 

Fi
gu

re
 7

.1
.- 

Ba
th

ym
et

ri
c 

an
d 

to
po

gr
ap

hi
c 

m
ap

 o
f t

he
 C

en
tr

al
 T

yr
rh

en
ia

n 
re

gi
on

, w
ith

 p
et

ro
lo

gi
ca

l i
nf

or
m

at
io

n 
an

d 
lo

ca
tio

n 
of

 L
in

es
 E

F/
M

ED
O

C
-4

 

(n
or

th
er

n 
lin

e)
 a

nd
 L

in
eG

H
/M

ED
O

C
-6

 (s
ou

th
er

n 
lin

e)
. R

ed
 s

ol
id

 li
ne

s 
co

rr
es

po
nd

 to
 W

AS
 p

ro
fil

es
 a

nd
 w

hi
te

 th
ic

k 
lin

es
 r

ep
re

se
nt

 M
C

S 
lin

es
. Y

el
lo

w
 

ci
rc

le
s c

or
re

sp
on

d 
to

 L
an

d-
st

at
io

ns
, O

BS
s a

nd
 O

BH
s u

se
d 

to
 re

co
rd

 W
AS

 d
at

a 
in

 b
ot

h 
pr

of
ile

s. 
Ye

llo
w

 st
ar

s d
is

pl
ay

 th
e 

lo
ca

tio
n 

of
 O

D
P 

si
te

s [
K

as
te

ns
 

an
d 

M
as

cl
e,

 1
99

0]
. C

ol
or

ed
 tr

ia
ng

le
s 

re
pr

es
en

t t
he

 li
th

ol
og

ic
al

 n
at

ur
e 

of
 th

e 
ba

se
m

en
t [

D
ie

tr
ic

h 
et

 a
l.,

 1
97

7;
 C

ol
an

to
ni

 e
t a

l.,
 1

98
1;

 K
as

te
ns

 a
nd

 

M
as

cl
e,

 1
99

0]
. B

.s.
: B

ar
on

ie
 S

ea
m

ou
nt

, C
a.

s.:
 C

as
si

ni
 se

am
ou

nt
, C

o.
s.:

 C
or

na
gl

ia
 S

ea
m

ou
nt

, D
’A

.r.
: D

’A
nc

on
a 

Ri
dg

e,
 D

e 
M

. s
.: 

D
e 

M
ar

ch
i S

ea
m

ou
nt

, 

F.
s.:

 F
ar

fa
lla

 S
ea

m
ou

nt
, F

.G
.s.

: 
Fl

av
io

 G
io

ia
 S

ea
m

ou
nt

, G
.r.

: 
G

or
ta

ni
 R

id
ge

, I
.s:

 I
se

l s
ea

m
ou

nt
, M

.s.
: 

M
ag

na
gh

i S
ea

m
ou

nt
, M

.b
.: 

M
ag

na
gh

i B
as

in
, 

S.
s.:

 S
ec

hi
 S

ea
m

ou
nt

, V
e:

 V
er

ce
lli

 se
am

ou
nt

, V
.b

.: 
Va

vi
lo

v 
Ba

si
n,

 V
.s.

: V
av

ilo
v 

Se
am

ou
nt

. 

Part III: Results & Discussion

136



This variation in length of the Pg phases indicates a substantial crustal thinning 

towards the East. Pn phases are clearly observed in most OBHs displaying an apparent 

velocity of ~8 km/s (Figures A.1.2.6 to A.1.2.24). Reflections from the crust-mantle 

boundary (i.e. PmPs) are also identified in most of these receivers (i.e. from OBS 36 to 

OBH 55) (Figures A.1.2.6 to A.1.2.24). Eastward, the seismic record of OBH 56, 

located in the northernmost part of the Vavilov basin (Figure 7.1), displays striking 

differences with the aforementioned receiver records, showing a Pg phase extending 

~40 km from the receiver with a rather fast apparent velocity of ~7 km/s which followed 

by a faster, Pn-like phase (Figure A.1.2.25). Similarly, Pg phases observed at the eastern 

wing of the record section of OBH 55 (Figure A.1.2.24) and the western wing of OBH 

57 (Figure A.1.2.26) also display fast apparent velocities of >7km/s immediately below 

the sediments. It is worth noting that PmP-like reflections have been identified in the 

western wing of OBH 57 (Figure A.1.2.26), but not in the eastern wing of OBH 55 or in 

OBH 56 (Figure A.1.2.24 and A.1.2.25). 

Record sections of OBH 57 to OBH 64 located in the northern Campania 

Terrace and margin (Figure 7.1), show clear Pg phases with a moderate velocity of 

~6.0-6.5 km/s, similar to those observed in stations located on the Sardinia margin 

(Figure A.1.6). The maximum offset at which Pg phases are observed increase toward 

the continent (Figures A.1.2.26 to A.1.2.33). For offset longer than Pg, a prominent Pn 

phase is observed in most receivers up to 70 km offset, displaying apparent velocities of 

>7 km/s (Figures A.1.2.26 to A.1.2.33). PmP reflections are also identified in some 

receivers at offsets that increase toward the East, in accordance with the expected 

crustal thickening towards the continent (Figures A.1.2.26 to A.1.2.33). 

Overall, a total of 14557 first arrivals corresponding to refracted waves (Pg, Pb, 

and Pn) and 2477 corresponding to reflections at the crust-mantle boundary (PmP) were 

manually picked in the 33 record sections that are shown in Annex A.1.2. The 

uncertainty for the different seismic phases, which corresponds to half a period of the 

dominant wavelength of the seismic source, was 40-50 ms for Pg and Pn, and 60 ms for 

PmP. 
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7.2 Results 

The following section presents the main results obtained from modeling and 

processing of WAS, MCS, and gravity data corresponding to Line EF/MEDOC-4. As in 

Line GH/MEDOC-6, these results provide the velocity, tectonic, and density structure 

of the crust and uppermost mantle along the profile. 

 

7.2.1 Velocity structure 

The velocity model of profile EF (Figure 7.2a) shows the velocity structure of 

the crust and uppermost mantle together with the Moho geometry. As in the case of 

profile GH (Figure 6.2), the model displays marked lateral velocity variations in both 

sediments and basement, a strong vertical velocity gradient between these units, and a 

significant crustal thinning toward the central part of profile (Figure 7.2a). On the basis 

of these observations 5 domains are identified along 7 regions of the profile, these are 

1a, 1b, 2a, 2b, 3, 4, and 5. Their location along the model corresponds to the distribution 

to the north of the five velocity domains described in Line GH (Figure 6.2). 

Domain 1a (Figure 7.2a), corresponds to the island and continental margin of 

Sardinia. Crustal velocities beneath the island range between 6.0 and 6.5 km/s, similar 

to those obtained in Line GH under the island (Figure 6.2). The margin of Sardinia 

(OBS 36 to 40 in Figure 7.2a) has velocity contours outlining the 2.0-2.5 km-deep 

Sardinia basin, which displays velocities varying from 1.8 km/s at the top to ~3.5 km/s 

at the base. To the east, the basin is limited by the continental Baronie seamount 

(Figures 7.1 and 7.2a). The basement beneath the sedimentary layer of the Sardinia 

margin presents a steep velocity gradient (~0.5 s-1) in its uppermost 2-3 km, and turns 

gentler below. Mid- and lower-crustal velocities range between 6.0 and 6.5 km/s (Figure 

7.2a). In this domain the crust thins from ~20 km at 100 km of profile to ~10 km-thick 

at ~145 km (Figure 7.2a). 

Domain 2a includes the northernmost part of Cornaglia Terrace, from ~145 km 

to 200 km along the profile (Figure 7.2a). As in Line GH, this domain has lower crustal 

velocities that range from 6.5 to 7.5 km/s, being ~10% higher than velocity in Domain 

1a (Figure 7.2a). The crust under Cornaglia Terrace thins from ~11 to 8 km from 145 to 

~170 km along profile, and remains fairly constant to the edge of Domain 2 (Figure 

7.2a). 
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Eastward, Domain 1b has been named Sechi segment since it intersects the 

Sechi seamount. This domain extends from 200 to 270 km along the profile (Figure 

7.2a) and presents a velocity distribution of the sedimentary layer and uppermost 2-3 

km of the basement similar to Domain 2a (Figure 7.2a). However, mid- and lower-

crustal velocities are lower, ranging between 5.5 km/s to 6.5 km/s, similar to Domain 1a 

of Sardinia margin (Figure 7.2a). The crust is 8-7 km-thick along the entire domain with 

an almost flat Moho geometry (Figure 7.2a). 

Domain 2b has been named the Farfalla segment, which extends from km 280 to 

~300 along the profile (Figure 7.2a). Here, lower crustal velocities sharply increase 

toward Vavilov basin (Figures 7.1 and 7.2a), reaching values that range between 6.5 to 

7.5 km/s at a depth of ~2-3 km below the top of basement. In this domain, the crust 

thins from ~7 km to ~6 km (Figure 7.2a). 

Domain 3 extends across the northernmost part of Vavilov basin (Figure 7.1 and 

7.2a). As in Line GH, the basement in this region presents the steepest vertical velocity 

gradient of the tomographic model (>0.8 s-1) (Figure 7.2a). The lack of PmP reflections 

in the OBHs deployed in this short segment in the central part of the domain implies 

that the crust-mantle boundary is absent there or, at least, that it does not represent a 

sharp, first-order transition as is the case of the rest of the profile (Figure 7.2a). 

To the East, Domain 4 includes the northernmost extension of Campania 

Terrace (Figure 7.1), and extends from km ~320 to ~350 along profile (Figure 7.1 and 

7.2a). The crustal velocity distribution is similar to that of Domain 2b, with lower 

crustal velocities that decrease away from Vavilov basin (Figure 7.2a). The crustal 

thickness increases from ~6 km to 9 km in ~30 km of profile bounded by a well-defined 

Moho boundary(Figure 7.2a). 

Finally, Domain 5 extends from km ~350 to the end of the profile along the 

Campania margin (Figure 7.2a). Here, mid- and lower-crustal velocities decrease 

compared to Domain 4, to 5.5-6.5 km/s (Figure 7.2a), and are similar to velocities of 

Domain 1a and 1b. The lack of land-stations and reversal shooting make the PmP ray-

coverage limited under this domain, so that Moho is worse constrained than in the rest 

of domains (Figure 7.3). However, the progressive crustal thickening toward the 

continent, 10 to 14 km in less than 20 km, is well constrained (Figure 7.2a).  
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The uppermost mantle velocity structure is well-resolved up to ~6 km beneath 

the Moho reflector with good coverage of Pn phases (Figure 7.2b) in the western section 

of the model under domains 1a and 2a (Figure 7.2a). In contrast, the other domains have 

Pn phases diving less than ~1 km deep below the Moho into the mantle (Figure 7.2a). 

Mantle velocity ranges between 7.5 to 8.0 km/s, which is lower than the ~8.1-8.2 km/s 

typically associated to non-altered uppermost mantle peridotites [Christensen, 1978; 

Carlson and Miller, 2003]. 

 

7.2.1.1 Uncertainty analysis 

The results of the statistical uncertainty analysis for the crustal velocity structure 

and the Moho geometry along Line EF are shown in Figure 7.3: 

 

Figure 7.3.- Final standard deviation values for the P-wave velocity values and the Moho 

geometry (grey band), as a result of the statistical uncertainty analysis. Contours lines are 

every 0.1 km/s. Note that in this analysis the mantle is not included. Details of the calculation 

are given in section 3.4.2 in chapter 3. Yellow circles display the location of the Land-stations, 

OBHs, and OBSs used in this profile. 

The P-wave velocity uncertainty is lower than ±0.1 km/s in the uppermost parts 

of the model, where the ray coverage of Pg phases is the best (Figure 7.3), and increases 

to ±0.2 km/s in regions where the ray coverage of Pg phases is poorer so crustal velocity 

is constrained based on PmP phases alone, for instance beneath the continent and the 

Sardinia margin (Figure 7.2b). Moho depth uncertainty ranges from ±0.25 km in regions 

well covered by both Pg and PmP phases (for example between OBH 45 and 54), and 

almost ±1 km in sections of the model poorly covered by PmP reflections (e.g. beneath 

the Campania margin) (Figure 7.2b), and in areas where Pg phases are lacking so crustal 
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velocity structure is mainly controlled by PmPs, and hence the depth-velocity trade-off 

is larger (i.e. western part of the Sardinia margin in Figure 3c). 

 

7.2.2 Tectonic structure 

The post-stack time migrated profile MEDOC 4 (Figure 7.4) shows the 

sedimentary blanket, the tectonic fabric, and bright and continuous lower crustal 

reflectivity likely attributed to some form of lower crustal layering and Moho 

reflections. Following the same steps as in section 6.2.2, the velocity model and the 

PmP-inverted Moho reflector were converted to two-way time (TWT) and overlaid on 

the MCS image to compare the information of both data sets (Figure 7.5). It is worth 

noting the remarkable correlation between the WAS Moho reflector and the Moho 

reflections interpreted in the MCS profile (Figure 7.5). 

The crust-mantle boundary is clearly observed in Domains 2a, 1b, 2b and 4 

(Figures 7.4 and 7.5). In Domain 2a and 1b (i.e. under Cornaglia Terrace and Sechi 

segment), laterally continuous packages of reflections are observed between 7.0-7.5 s 

TWT, likely indicating the Moho location at their base (Figure 7.4). The PmP-inverted 

Moho reflector coincides rather well with this reflectivity along both domains except 

between CMP 25000 and 26500, where the reflectivity package appears to be slightly 

deeper than the inverted Moho in the velocity model (Figure 7.4 and 7.5). This misfit 

between both reflectors is similar to that observed in the comparison of WAS-Line GH 

and the MCS profile MEDOC-6 (see Figure 6.4 and 6.6). As explained in section 6.2.2, 

it can be attributed to velocity anisotropy between vertical and sub-horizontal 

propagation [Sallarès et al., 2013b], or, alternatively, it can indicate that the band of 

reflectivity in MCS image occurs in the uppermost mantle and that the crust-mantle 

boundary is located at its top, thus coinciding with the location of the Moho in the 

velocity model. In Domain 2b (i.e. Farfalla segment), less clear lower crustal reflections 

shoal from 7.0 to ~6.5 s TWT (Figures 7.4 and 7.5). Similarly to Domain 1b, there is a 

slight mismatch with respect to the location of the inverted Moho between CMP 34500 

and 35000 (Figures 7.4 and 7.5). Domain 4 presents a package of strong reflectivity 

between CMP 40000 and 42000, being again slightly deeper than the Moho obtained by 

the inversion of PmP (Figures 7.4 and 7.5). In contrast with all previously discussed  

domains, lower crustal reflections in Domains 1a and 5 are masked by the remaining 

energy of the water-layer multiple, and therefore it is difficult to discern the location of 
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the Moho reflections (Figure 7.4). In Domain 3, there are not clear lower crustal 

reflections that could be associated with the crust-mantle boundary (Figures 7.4 and 

7.5).  

Concerning the tectonic structure, Domain 1a (Figure 7.4) presents at its 

westernmost part a large tilted fault-block that includes the half-graben of the Sardinia 

basin. The major fault that controls this basin appears to be deeply rooted into the 

basement dipping to the west (Figure 7.4). Additionally, other minor westward and 

eastward dipping normal faults cut the strata of the basin, which presents an important 

sedimentary infill of >2 s TWT with ~ 1.5 s TWT of syn-tectonic sequence (Figure 7.4). 

To the east, the horst of the continental Baronie seamount [Colantoni et al., 1981; 

Sartori et al., 2004] (Figure 7.4) is bounded by two major normal faults and affected by 

minor faulting at its top (Figure 7.4). The rest of Domain 1a (from 35 km to ~70 km in 

Figure 7.4), is represented by 3 tilted fault-blocks that bound 3 half-grabens. The 

sedimentary infill, which is �1 s TWT-thick, display a number of major, east-dipping 

faults. The morpho-tectonic features of this region, which are displayed in the 

bathymetry (Figure 7.1), suggest that these structures together with the Baronie 

seamount are related to a major continental block that have collapsed during extension. 

The transition between Domain 1a and 2b appears to happen with no significant 

structural changes (Figure 7.4). The tectonic structure of Domain 2a in the Cornaglia 

Terrace is totally different from that of Domain 1a. Beneath the sedimentary blanket, 

which is �1s TWT-thick, the top of the basement is affected by some minor faulting, but 

overall it appears to be fairly uniform laterally (Figure 7.4). Some sub-horizontal intra-

crustal reflectors (between CMP 13000-16000 in Figure 7.4) are observed across this 8-

10 km-thick crustal domain (Figure 7.2a and 7.4). 
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Figure 7.4.- Post-stack time migration image of profile MEDOC-4 overlaid with the tectonic 

interpretation (red lines). Blue line represents the PmP-inverted Moho geometry. As in Figure 

7.1, inverted triangles are colored according to the nature of basement inferred from seabed 

rock sampling (see legend in Figure 1) [Colantoni et al., 1981; Kastens and Mascle, 1990]. 

TOB: Top of basement.�

The tectonic structure of Domain 1b (i.e. Sechi segment) varies significantly 

from West to East. The western sector (from 125 to 155 km along profile in Figure 7.4) 

is mainly characterized by two structural highs bounded to the east by two major normal 

faults and a small basin with a ~1 s TWT-thick sedimentary infill between them. The 

Sechi seamount (Figure 7.1), which is known to be continental in nature [Colantoni et 

al., 1981], corresponds to the easternmost structural high of this domain (from 155 to 

190 km in Figure 7.4). Eastward, the domain is affected by pervasive eastward-dipping 

normal faulting. The variations in the tectonic setting are also reflected in crustal 

thickness variations. The crust is thicker beneath the Sechi seamount (8-9 km) and 

thinner in the eastern sector (~7 km) (Figure 7.2a and 7.4). The transition between 

Domains 1b and 2b occurs rather sharply at 185-190 km along the profile (Figure 7.4), 

where some sub-vertical lower crustal reflections appear to reach the crust-mantle 

boundary (CMP 30000-31000 in Figure 7.4). 

Domain 2b runs across the so-called Farfalla segment and, as in the eastern part 

of Domain 1b (the Sechi segment), normal faulting appears to cut deep into crust, 

indicating that a significant tectonic activity took place during its formation (Figure 

7.4). The most representative structure of this domain is the tilted continental fault-

block of the Farfalla seamount (Figure 7.1) [Colantoni et al., 1981], which is located at 

the easternmost region. Crustal thickness decreases from ~7 km to 6 km thick along this 

domain (Figure 7.2a). 

The Vavilov basin in Domain 3 is filled by a ~1.5 s TWT-thick sequence of 

sediments and is bounded at either side by major faults. The strata is horizontally 

continuous without significant faulting, however, as in profile MEDOC-6 (Figure 6.4), 

the uppermost parts of the basement appear to be locally affected by minor faulting 

(Figure 7.4). 

Domain 4 includes the northern segment of the Campania Terrace (from 250 to 

280 km along profile in Figure 7.4). This domain presents similarities with Domain 2b 

(i.e Farfalla segment) concerning the tectonic structure. However, the package of 
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reflectivity attributed to the crust-mantle boundary is thicker in this domain (Figure 

7.4). Transition between Domains 4 and 5 is characterized by a significant thickening of 

the crust toward the continent, which is expressed at the surface by a bathymetric 

shoaling (Figures 7.1 and 7.4). The tectonic and bathymetric structure of Domain 5 

displays differences from west to east. The western region of this domain (from 280 km 

to 305 km in Figure 7.4) presents a fairly flat topography and a pervasive minor normal 

faulting, whereas the eastern region (from ~305 km to the end of profile in Figure 7.4) 

presents a bathymetric shoaling and several major faults that appear to cut deep into the 

crust (Figure 7.4). 

. 
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Figure 7.5.- MCS image of profile MEDOC-4 overlaid with the P-wave velocity model shown 

in Figure 7.2a converted to TWT. Yellow circles and blue line represent the OBS/H location and 

geometry of the PmP-inverted Moho, respectively. Colored triangles are the same used in 

Figure 4 to indicate the continental nature of the basement [Colantoni et al., 1981; Kastens and 

Mascle, 1990]. 

 

7.2.3 Automatized interpretation of the basement affinity based on P-wave depth-

velocity profiles 

In this section I have used the same approach as in Line GH to automatically 

classify the petrological affinity of the basement based on the vertical velocity structure 

of the model along line EF (Figure 7.2a). The approach is described in section 6.2.3 in 

chapter 6. 

The results obtained using this technique as well as those obtained in the 

conventional velocity analysis have allowed to define the possible petrological affinity 

of the different domains described in previous sections (Figures 7.6 and 7.7). The 

affinity that best explains the velocity-depth structure in Domains 1a, 1b and 5 (Figures 

7.6 and 7.7) is that of continental crust [Christensen and Mooney, 1995]; whereas 

Domains 2a, 2b, 3, and 4 agree better with the velocity-depth profile representative of 

oceanic crust (Figures 7.6 and 7.7) [White et al., 1992]. However, it must be noted, as in 

Line GH, that the lower crustal velocities in these domains, especially under the 

Cornaglia Terrace (Domain 2a in Figure 7.2a, 7.6 and 7.7), are lower than those 

expected in a young (0-7 Ma) oceanic crust [White et al., 1992] (Figure 7.6). In Domain 

3, in the northernmost tip of the Vavilov basin (Figures 7.1 and 7.2a) the velocity 

profiles are also consistent with oceanic crust, although some of them display stronger 

velocity gradients characteristic of exhumed mantle (Figure 7.6) [Dean et al., 2000; 

Sallarès et al., 2013a]. This observation is less clear and more confined to a limited 

region (i.e., between OBH 55and 56 in Figures 7.2a and 7.7) than in the case of the Line 

GH, where most of the basement beneath the Vavilov basin has been classified as 

exhumed mantle based on the velocity-depth profiles (see Figure 6.8). 
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Figure 7.6.- 1D P-wave velocity-depth profiles corresponding to the seven regions identified 

in the tomographic model (Figure 7.2a) (black lines). 1D velocity-depth reference profiles 

include the 20 km-thick continental crust from Christensen and Mooney [1995] (orange band), 

0-7 Ma Atlantic oceanic crust from White et al. [1992] (blue band), and a exhumed mantle 

compilation made from Dean et al. [2000] and Sallarès et al. [2013a], both works focused on 

the western Iberia margin (green band). 
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Figure 7.7.- (a) Final result corresponding to the same automatic classification of the 

basement affinity used section 6.2.3. RMS velocity values are obtained from the comparison of 

the basement vertical velocity structure of the tomographic model (Figure 7.2a) -1-D profiles 

are extracted from 5-km-wide average of the velocity model- with references of continental 

crust (orange band) [Christensen and Mooney, 1995], oceanic crust (blue band) [White et al., 

1992], and exhumed mantle (green band) [Sallarès et al., 2013a]. (b) Resulting basement 

affinity model corresponding to the automatic classification shown in (a). Yellow Circles 

correspond to the OBS/H location. (c) MCS post-stack time migrated image of profile MEDOC 

4 with the same colored triangles shown in Figures 7.1, 7.4 and 7.5 [Colantoni et al., 1981; 

Kastens and Mascle, 1990]. Vertical scale is exaggerated. 

 

7.2.4 Density structure 

As in Line GH, in order to verify the results of the automatic basement affinity 

classification (Figure 7.7), I converted the velocity model into densities using Vp-� 

relationships according to the inferred compositions (Figure 7.7) and I checked the fit 

between the calculated gravity response and the observed one (Figure 7.8). The 

relationships used for sediments, continental and oceanic crustal rocks, and exhumed 

mantle rocks are those already presented in section 4.3 and used to perform the density 

modeling in section 6.2.4. 

The fit using these relationships is rather good overall but presents a significant 

misfit that is concentrated in Domain 2. Similarly to what is observed in the same area 

along Line GH, the calculated anomaly in this domain is 10-15 mGal higher than the 

observed one, so the density should be reduced by 2 % to match well the observed 

gravity anomaly (Figure 7.8b). With this correction, the RMS misfit between the 

observed and calculated anomalies is only of 6.9 mGal (Figure 7.8b). Additionally, it is 

important to note that using Carlson and Miller’s [2003] Vp-� relationship for partially 

serpentinized peridotites in Domain 3 (i.e. Vavilov basin) instead of Carlson and 

Herrick’s [1990] conversion law for oceanic basalts and gabbros the results are rather 

similar. 
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Figure 7.8.- (a) Velocity-derived density model obtained using Christensen and 

Mooney’s [1995] Vp-� relationship for continental rocks in Domains 1a, 1b, and 5, and 

Carlson and Herrick’s [1990] conversion law for oceanic crustal rocks in Domains 2a, 2b., 3, 

and 4. Hamilton’s [1978] Vp–� relationship for sediments was used for the sedimentary layer. 

Densities in Domain 2a were decreased by 2% to fit the observed gravity anomaly. Blue band 

represents the uncertainty values of the inverted Moho geometry. (b) Observed (grey circles) 

and calculated (red band) free-air gravity anomaly corresponding to the velocity-derived 

density model shown in (a). 
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7.3 Characterization of geological domains along Line EF/MEDOC-4 

This section integrates all the results provided by the WAS-derived model, the 

MCS profile and the gravity modeling to discuss the nature and spatial distribution of 

the different geological domains identified along LineEF/MEDOC-4 (Figure 7.2a). 

 

7.3.1 Continental crust in the Sardinia and Campania margins and the Sechi 

segment (Domains 1a, 1b and 5) 

As in Line GH, the continental affinity of Domain 1a is supported by basement 

samples in Sardinia [e.g. Cherchi and Montadert, 1982], and on top of the Baronie 

Seamount (Figure 7.1) [Colantoni et al., 1981; Mascle and Rehault, 1990; Sartori et al., 

2004]. In addition, pre-Tortonian reddish conglomerates were drilled in ODP site 654, 

in the last unit of the hole (Figure 7.1) [unit VI of site 654 in Shipboard Scientific Party, 

1987], indicating that they were most likely deposited in a continental environment 

[Shipboard Scientific Party, 1987]. Crustal thickness beneath Sardinia has been inferred 

from gravity modeling at ~25 km-deep, being in agreement with what is estimated in 

Line GH and also with results from active and passive seismic tomographic models in 

the area [Di Stefano et al., 2011; Moeller et al., 2013]. In the western edge of Domain 1, 

beneath the Sardinia margin (at 140 km in Figure 7.2a), crustal thickness has decreased 

to ~10 km thick, implying a stretching factor (�) of ~2.5. 

In Domain 1b, the Sechi segment, crustal thickness is fairly constant (~8 km) 

resulting in a high stretching factor (� >3) (Figure 7.2a). The continental affinity 

determined by the gravity and velocity analyses is supported by dredging samples of 

calcareous phyllites and calcschists on top of the Sechi seamount [Colantoni et al., 

1981] (Figures 7.1 and 7.4). These samples are lithologically alike to those sampled on 

top of the continental De Marchi seamount (Figure 7.1) [Colantoni et al., 1981; Mascle 

and Rehault, 1990; Sartori 1990]. These observations, together with those made from 

the tectonic structure (Figure 7.4) support the interpretation that the Sechi segment 

corresponds to a highly stretched continental crust. 

As in Line GH (see section 6.3.1), the conjugated Campania margin (Domain 5 

in Figures 7.2a and 7.4) is interpreted as the westernmost extension of the Italian 

continent. Crustal thickness of this domain has been also inferred from gravity 

modeling, increasing from 7.5 km to ~15 km-thick ~25 km landward (Figure 7.8).  
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7.3.2. Magmatic back-arc crust in the Cornaglia and Campania Terraces (Domain 

2a and 4), and in the Farfalla segment (Domain 2b) 

As in the southern Line GH, the Cornaglia Terrace (Domain 2a) in Line EF 

presents a velocity structure that is close to that of young oceanic crust [White et al., 

1992] (Figures 7.6 and 7.7), but with a crustal velocity gradient in Layer 3 twice weaker 

than the gradient of a typical oceanic crust (Figure 7.6) [White et al., 1992]. In addition, 

results from the gravity modeling suggest that there is a difference in the petrological 

composition with respect to “normal” mid-ocean ridge oceanic crust (Figure 7.8), 

similarly to what has been obtained in Line GH (see section 6.3.2). Therefore, following 

the same arguments presented in section 6.3.2, this domain is interpreted as formed by 

back-arc rift and/or spreading near the volcanic arc, so that it would be significantly 

influenced during its formation by subduction-related magmatism [Martinez et al., 

2007; Dunn and Martinez, 2011]. 

In the Farfalla segment (Domain 2b) and in the conjugated Campania Terrace 

(Domain 4) (Figure 7.2a) mid and lower crustal velocities increase toward the Vavilov 

basin (Domain 3). The velocity analysis has determined that both domains present a 

crustal velocity structure that resembles to that of oceanic crust [White et al., 1992] 

(Figures 7.6 and 7.7). However, drillings on top of the Farfalla seamount in Domain 2.2 

have found Carboniferous phyllites [Colantoni et al., 1981] indicating continental 

affinity. In contrast, lower crustal velocities beneath this seamount and just above the 

Moho are >7.0 km/s, considerably larger for lower continental crust velocities, typically 

found at 6.5-6.8 km/s (Figure 7.2a and 7.6) [Christensen and Mooney, 1995]. 

A similar seismic structure and crustal thickness is observed at the transition 

between the continental crust of the Sardinia margin and the magmatic crust of the 

Cornaglia Terrace in both Line EF (Figure 7.2a) and GH (Figure 6.2a). These 

similarities may suggest that both domains correspond to a highly stretched continental 

crust that has been progressively affected by underplating of igneous rocks as they were 

extended. The existence of volcanoclastic rocks in the region could support this 

hypothesis (Figure 7.1) [Colantoni et al., 1981]. Alternatively, high velocities of the 

lower crust might also correspond to mantle material serpentinized by fluid flow 

through faults in the crust. In this case, the PmP reflections observed in the OBH 

records would correspond to the base of the serpentinization front. This has been 

proposed in the Liguro-Provençal basin [e.g., Pascal et al., 1993; Chamot-Rooke et al., 
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1999; Gailler et al., 2009], and in the Iberian and Canadian margins [Dean et al., 2000; 

Funk et al., 2004] to explain similar high velocities beneath the stretched continental 

crust.  

In any case, the lack of petrological information in both domains makes difficult 

the confirmation of these hypotheses. 

 

7.3.3. Possible presence of exhumed mantle rocks at the northernmost Vavilov 

basin (Domain 3) 

In contrast with results obtained in Line GH (Figure 6.8), the nature of the 

northern Vavilov basins seems to be less clear. Although the velocity structure seems to 

fit better with an oceanic-like gradient (Figure 7.6 and 7.7), the density modeling has 

shown that the gravity fit is rather similar whether using the oceanic crust conversion 

law of Carlson and Herrick [1990] or that for serpentinized mantle rocks of Carlson and 

Miller [2003]. 

The presence of oceanic crust beneath this region of the Vavilov basin is 

unlikely; since no Moho reflections are evidenced in the MCS profile nor in most of the 

WAS records (Figures 7.4, 7.5, and A.1.2.25). Only few reflections have been 

evidenced in OBH 57 (Figure A.1.2.26 in the Annex) and might also correspond to 

another type of contrast, like the base of a serpentinization front, for instance. 

Therefore, assuming that the Vavilov basin has been the locus of mantle rocks 

exhumation (Figure 6.7 and 6.8), and that this exhumation has been accompanied by 

large basaltic intrusions, as evidenced by Figure 6.10 and samples from the ODP site 

655 and 651 (Figure 7.1) [Beccaluva et al., 1990]; the lower velocity gradient of this 

region might be caused by the influence of basaltic sills or dikes in the exhumed mantle 

basement. Nevertheless, this hypothesis needs to be confirmed with further petrological 

and geophysical information. 
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Chapter 8: Geological domains of the Central 

Tyrrhenian: Geodynamic implications 

 

8.1 Distribution of the geological domains in the Central Tyrrhenian 

basin 

In this section I discuss the distribution of the geological domains in the central 

Tyrrhenian basin based on the results obtained in Line GH (chapter 6) and Line EF 

(Chapter 7) (Figure 8.1). 

 

Figure 8.1.- P-wave velocity models of Lines EF (a) and GH (b). Yellow circles display 

location of land-stations, and OBS/H along both profiles. Blue lines represent the PmP-

inverted Moho geometry. 

 

The goal is to integrate all available data to spatially define the distribution of 

continental crust, magmatic back-arc oceanic crust, and exhumed mantle in the study 
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region. The geophysical models and seismic images have been combined with rock 

sampling information and seafloor morphology (Figure 7.1), to interpret the spatial 

configuration of the Central Tyrrhenian domain (see Figure 8.5). 

 

8.1.1 Continental crust 

As indicated in the previous two chapters, continental crust in the Central 

Tyrrhenian basin is identified in Domains 1 and 5 in both lines (Figures 8.1). 

Domain 1 in both profiles includes the Island and the upper margin of Sardinia, 

and the region defined as the Sechi segment (Domain 1b) (Figures 8.1). In the Sardinia 

Margin (Domain 1 and 1a), lateral changes in crustal thickness are similar in both 

profiles displaying a thinning of the crust from ~20 km-thick beneath the coast line to 

14-13 km-thick under the eastern limit of the continental margin (Figure 8.2). 

 

Figure 8.2.- Crustal thickness along Line EF (blue) and GH (red) inferred from the PmP-

inverted Moho.�

In contrast, the crustal velocity structure beneath the Sardinia margin presents 

some differences from north (Domain 1a) to south (Domain 1). Along Line EF crustal 

velocities (~6.0-6.3 km/s) are slightly higher than in profile GH (~5.8-6.0 km/s) 

(Figures 8.1 and 8.3a). This may be explained by lithological changes [Christensen and 

Mooney, 1995]. This hypothesis is supported by the wide variety of lithologies (e.g. 

basaltic, granitic, and metamorphic) found by dredging in the Sardinia margin 

[Colantoni et al., 1981]. 

The Sechi segment in Line EF (Domain 1b) is interpreted as a stretched portion 

of continental crust (� > 3) (Figures 7.7, 8.2a, and 8.4). The tectonic structure 
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interpreted from the bathymetric map supports that this domain is formed by a 30-40 km 

long southward extension of the same continental crust defined further north [Moeller et 

al., 2013] (Figure 8.5).  

 

Figure 8.3.- 1D P-wave 

velocity-depth profiles 

corresponding to (a) domains 

1, 1a, 1b, and (b) domain 5. 

Grey band represents the 1D 

velocity-depth reference for a 

20 km-thick continental crust 

from Christensen and Mooney 

[1995].�

 

The Campania margin (Domain 5) is mapped by both WAS lines (Figures 8.1, 

8.3, 8.4, and 8.5) and interpreted as the westernmost extension of the Italian continent 

(Figure 8.5). The short segments mapped with WAS and gravity data indicate no 

important variations in crustal thickness or crustal velocity structure from north to south 

along the margin (Figures 8.2 and 8.3b). 

The basement of the northern Tyrrhenian basin has been poorly sampled, but the 

available information indicates a continental affinity (Figure 8.5) [Colantoni et al., 

1981]. In agreement, WAS tomographic models reveal the presence of continental crust 

likely affected by possibly minor magmatism [Moeller et al., 2013]. Hence, the 

continental crust domains mapped with the WAS lines have been extended in Figure 8.5 

toward the Northern Tyrrhenian region.  
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8.1.2 Magmatic back-arc crust 

Anomalous magmatic-type crust with a 2 layer structure that departs from 

typical oceanic crust has been identified in Domains 2 and 4 in both lines (Figures 8.1, 

8.4, and 8.5). 

Domain 2 extends along the Cornaglia Terrace from south (Domain 2) to north 

(Domain 2a) (Figures 8.1, 8.4, 8.5, and 8.6a) showing variability in tectonic and 

velocity structure of the crust. 

 

Figure 8.6.- 1D P-wave velocity-depth profiles corresponding to (a) Domain 2, 2a ,and (b) 

Domains 2b and 4. Light grey band represents the 1D velocity-depth reference for a 20 km-thick 

continental crust from Christensen and Mooney [1995], whereas the dark grey band is the 1D 

velocity-depth reference for a 0-7 Ma Atlantic-type oceanic crust of White et al. [1992].�

The tectonic structure of the southern segment (Domain 2) is characterized by 

large tilted fault-blocks, controlled by eastward dipping normal faults that appear to be 

deeply-rooted into the crust (Figure 6.5a), whereas faulting in the northern segment 

(Domain 2a) is less important (Figure 7.4). These tectonic variations are accompanied 

by differences in the velocity structure (Figure 8.1 and 8.6a). The southern segment of 

the Cornaglia Terrace (Domain 2) has a laterally comparatively heterogeneous velocity 

structure marked by 4 sub-vertical velocity anomalies of 6.0-6.5 km/s (Figure 8.1b), 

whereas the velocity field of the northern segment is comparatively more homogeneous 

(Figure 8.1a). Additionally, the velocity gradient of the crust in the northern region 

(Domain 2a) appears to be gentler than in the south that shows a 2 layer structure 
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(Figure 8.6a). All these differences suggest a lower amount of extension and possibly a 

less important effect of magmatism during extension in the northern region of the 

Cornaglia Terrace (Domain 2a). 

The Farfalla segment (Domain 2b) is intersected by Line EF (Figure 8.1a, 8.4, 

and 8.5). Dredging of metamorphic continental rocks on top of the Farfalla seamount 

suggests that it may likely correspond to stretched continental crust similar to that 

identified in Domain 1b in the Sechi segment (Figure 8.1a, 8.3 and 8.5). However, the 

oceanic-like velocity structure, and particularly the high lower crust velocity of this 

domain (Figure 8.6b) may suggest that it is affected by either magmatic intrusions or 

that the high lower crust velocity may in fact represent serpentinized mantle rocks [e.g. 

Chamot-Rooke et al., 1999; Dean et al., 2000; Funk et al., 2004]. 

To the east, the Campania Terrace (Domain 4) is mapped by both WAS lines 

showing from north to south differences in crustal velocity structure (Figure 8.6b), and 

in the tectonic expression (Figures 6.4, 7.4, and 8.1, 8.6b). Faulting in the northern 

segment is more important than in the southern segment, where faulting appears to be 

less important, only affecting the uppermost part of the basement (Figures 6.4 and 7.4). 

In addition, in the northern segment the crust thickens eastward 3-4 km in ~30 km of 

profile, while in the southern segment a similar variation occurs in ~60 km of profile 

(Figure 8.2). These tectonic differences are also evidenced in the bathymetry (Figures 

7.1 and 8.5), which shows a rough fault-controlled topography in the north, and a 

subdued relief in the southern region. A similar variation in bathymetry occurs between 

the Sardinia margin (Domain 1) and the Cornaglia Terrace (Domain 2) (Figures 8.4and 

8.5).  

Based on these observations, the northern region of the Campania Terrace 

(Domain 4 in Line EF) might be similar to the Farfalla segment (Domain 2b), 

representing a continental crust heavily intruded by rift-related magmatism or 

serpentinized mantle, while the southern section of the terrace (Domain 4 in Line GH) 

possibly corresponds to a back-arc oceanic crust similarly to Cornaglia Terrace 

(Domain 2 and 2a) (Figures 8.4 and 8.5). 
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8.1.3 Exhumed mantle 

In both lines, the basement of Domain 3 is interpreted to be mainly formed by 

exhumed mantle rocks (Figures 8.1, 8.4, and 8.5). 

 

Figure 8.7.- 1D P-wave velocity-depth 

profiles corresponding to Domain 3. Light 

grey band represents the 1D velocity-depth 

reference for exhumed mantle regions [Dean 

et l., 2000; Sallarès et al., 2013], whereas the 

dark grey envelop represents oceanic crust 

reference as in Figure 8.6 from White et al. 

[1992].�

 

In Line GH, this domain extends more than 120 km across the Magnaghi and 

Vavilov basins, in the Vavilov basin it is 20 km-wide along Line EF, mimicking the V-

shaped morphology of deepest seafloor (Figures 8.1, 8.4, and 8.5).  

This domain contains basaltic edifices possibly related to oceanic crustal 

accretion [i.e. Sites 655 and 651 in Figures 8.5] [Beccaluva et al., 1990] and to inter-

plate volcanism (i.e. Magnaghi and Vavilov seamounts in Figures 8.4 and 8.5) [Robin et 

al., 1978; Savelli, 2002]. Some of these structures are intersected by Line GH and 

mapped at depth as low velocity anomalies that indicate locally-intruded bodies (Figure 

6.10). Line EF, in contrast, does not show evidence of basaltic structures at crustal 

depths. However, the lower velocity gradient of the basement, compared to that of the 

southern line GH (Figure 8.7) suggests that the exhumed mantle rock basement could be 

locally intruded by basaltic sills or dikes. 
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8.2 Implications of the new geological domains defined in the Central 

Tyrrhenian Sea 

The interpretation of the velocity, density and tectonic structure obtained with 

the MEDOC experiment WAS, gravity and MCS data, has led to a radically new 

definition of geological domains in the Central Tyrrhenian basin (Figures 8.4 and 8.5) 

compared to what has been previously accepted. 

Previous interpretations of the Cornaglia (Domain 2 and 2a) and the new-

defined Campania Terraces (Domain 4) assumed a basement formed by stretched 

continental crust (Figure 7.1 and 8.5) [e.g. Duschenes et al., 1986; Sartori et al., 2004]. 

However, the two-layer velocity structure in those two regions fits better with that of 

oceanic-type crust, or what is called magmatic back-arc crust. The depth-velocity 

distribution indicates that the lower crust velocity is slightly slower than typical oceanic 

Layer 3. The interpretation is that this oceanic-type crust structure formed in a back-arc 

spreading setting influenced by flux melting related with the dehydration of the 

subducted Ionian slab, similar to what has been described in other back-arc basins in the 

Pacific [Martinez et al., 2007; Dunn and Martinez, 2011]. In this context, it is likely that 

the crust was build at the approximate location of the volcanic arc, so its anomalous 

velocity and density structure might reflect the combined effect of the original volcanic 

arc crust, developed on top of a continental crust, and later affected by magmatism 

during the extensional phase. 

Previous interpretations of the Magnaghi and the Vavilov basins assumed that 

they were floored by oceanic crust [Kastens and Mascle, 1990; Sartori et al., 2004; 

Cella et al., 2008] and that the serpentinized peridoties cored in ODP site 651 (Figure 

7.1 and 8.5) might correspond to an isolated continental block that contain a sliver of 

Tethyan ophiolite [Kastens and Mascle, 1990]. As a result most maps from the region 

typically display ocean crust in the basins. In contrast, the results of this thesis suggest 

that the basement of the Magnaghi and Vavilov basins is fundamentally composed of 

mantle peridotites serpentinized to 5-6 km depth under the sediment cover. The new 

interpretation is that these altered mantle rocks are locally intruded by basaltic magmas 

that form the root of volcanic constructions of the Magnaghi and Vavilov seamounts, 

and D’Ancona and Gortani Ridges (Figure 6.10). 
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Results obtained along this transect of the MEDOC experiment show that the 

Sardinia and Campania conjugate margins are formed by extended continental crust of 

overall crustal and tectonic asymmetric structure. The joint analysis of velocities and 

densities with observations of the tectonic structure show how both continental margins 

rather abruptly transition to what has been interpreted as magmatic back-arc crust in the 

Cornaglia (Domain 2 and 2a) and Campania (Domain 4) Terraces. Finally, in contrast to 

what has been previously proposed, the back-arc crust under both terraces give up in the 

center of the basin to exhumed mantle rocks of the Magnaghi and Vavilov basins 

(Domain 3). 

The structure defined with the data set of this thesis indicates a spatial 

distribution of rock types that implies a temporal basin evolution from an extending 

continental crust to back-arc oceanic crust formation and to mantle exhumation. This 

spatial distribution of crust types and the inferred temporal evolution are in stark 

contrast to current models of lithospheric extension and rifting in systems where mantle 

unroofing is interpreted to have occurred (e.g. North Atlantic rifted margin). Commonly 

accepted models studying the continent to ocean transition (involving mantle unroofing) 

typically postulate a continuum from continental crust extension, mantle exhumation 

and eventual oceanic crust formation by gradual instauration of a decompression melt 

system [e.g. Pérez-Gussinyé et al., 2006]. To explain this peculiar configuration of the 

basement, in the following section I examine the potential mechanisms that may have 

led to the formation of these domains in the Central Tyrrhenian basin. 
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8.3 Conceptual model of the basement formation in the Central 

Tyrrhenian basin 

The main purpose of this section is to discuss the processes that may have led to 

the formation of the different types of basement identified in the Central Tyrrhenian and 

propose a model to explain the opening of the basin. 

As explained in chapter 2, the opening of the Tyrrhenian basin, as is also the 

case of the rest of Western Mediterranean basins, has been governed by slab rollback 

and back-arc extensional processes. In this setting, it is well-studied, particularly in the 

western Pacific basins, that back-arc extension tends to initiate near the weakest zone of 

the overriding plate, which is the volcanic arc (see Figure 1.9 in section 1.3.1.2.2) 

[Mollnar and Atwater, 1978; Martinez et al., 2007; Dunn and Martinez, 2011]. 

Consequently, back-arc rifting and the initial stages of oceanic spreading are influenced 

by both pressure-release melting (i.e. that related to the extension) and subduction-

derived hydrous flux melting (Figure 8.8a) [Martinez et al., 2007; Dunn and Martinez, 

2011]. The simultaneous influence of these processes tends to generate a magmatic 

crust in which composition and hence physical properties are between extended arc-type 

and oceanic-type crust [Dunn and Martinez, 2011]. Therefore, it is very difficult to 

discern the relative input of both magmatic sources. 

 

Figure 8.8.- Vertical sections of a subduction 

zone showing the spatio-temporal evolution of a 

back-arc spreading system. As the subduction front 

and the volcanic arc migrate trenchward due to 

slab rollback, the influence of hydrous flux melting 

(grey area) at the mid-ocean ridge decreases. In 

the last stage (3) magma supply at the spreading 

center is mainly generated by passive 

decompression of the underlying mantle. 

Consequently, the crust formed in this system 

would transition from arc-like composition to a 

normal oceanic crust. The green area depicts 

lithospheric plates and red dashes are melt flow. 

From Dunn and Martinez [2011] 
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As rollback proceeds and hence extension increases, the spreading center 

physically separates from the volcanic arc and from the influence of hydrous flux 

melting, so that the main production of magma at the ridge results from pressure-release 

melting (Figure 8.8b) [Martinez et al., 2007; Dunn and Martinez, 2011]. Consequently, 

a typical oceanic crust starts to be formed in the spreading center (Figure 8.8c). 

However, the results of this thesis suggest that there is no “typical” oceanic crust in the 

Central Tyrrhenian basin formed as a result of the extension. Instead of that, mantle 

appears to have been exhumed without significant melting in the central parts of the 

basin. 

As explained in section 1.3.2.3, the exhumation of the mantle prior to the 

generation of melting depends on the parameters that control production of magma at 

the spreading center, that is: extension velocity, temperature and mantle composition 

[Klein et al., 1987; Reid et al., 1987; Michael et al., 2003; Pérez-Gussinyé et al., 2006].  

Numerical experiments indicate that for extension velocities <0.6 cm yr-1 mantle 

exhumation may occur prior to melt production, preventing to form a well-developed 

oceanic crust [Pérez Gussinyé et al., 2006]. However, extension rates in the Central 

Tyrrhenian are thought to be ten times faster [5-6 cm yr -1 according to Faccena et al., 

2001], which would have triggered the production of large amounts of pressure-release 

melting, and so the formation of a typical oceanic crust, if the mantle would have been 

under regular conditions, that is, at a potential temperature of ~1300ºC and with a 

fertile, pyrolitic-type composition [e.g. Korenaga and Kelemen, 2000; Koreanga, 2004]. 

Therefore, extension velocity cannot explain mantle exhumation without crustal 

generation in the Central Tyrrhenian. 

Regarding the thermal structure, it has been found that for extension rates as low 

as of 1 cm yr -1, a sub-lithospheric mantle temperature of ~1200 ºC is needed to promote 

mantle exhumation prior to melting [Pérez-Gussinyé et al., 2006]. As the Central 

Tyrrhenian has opened at velocities six times faster [Faccenta et al., 2001], the 

temperature of the mantle should be considerably lower than 1200 ºC to exhume mantle 

without production of pressure-release melting. It is really difficult to conceive a 

process that could cold the mantle to such low temperatures, especially in the mantle 

wedge above a subducting slab where temperature is typically well above 1200 ºC [e.g. 

Peacock, 1996; Syracuse et al., 2010]. Additionally, the investigation of the thermal 

structure of the mantle beneath the Liguro-Provençal basin at the time of the spreading 

Part III: Results & Discussion

170



phase concludes that the potential mantle temperature should be around 1280 ºC 

[Chamot-Rooke et al., 1999], which makes even more unlikely that the potential mantle 

temperature at the time of opening of the Tyrrhenian basin was below 1200ºC. 

The last parameter that may explain mantle exhumation prior to melting is the 

composition of the mantle source. A more depleted composition of the mantle leads to 

lower melting degrees beneath the spreading center [e.g. Michael et al., 2003; Pérez-

Gussinyé et al., 2006]. Geochemical analyses of the peridotites drilled in the Vavilov 

basin (site 651 in Figure 8.4) concluded that they are highly depleted in composition, 

and attribute this depletion to partial melting under hydrous conditions (slab-derived 

melts) [Bonatti et al., 1990].  

Therefore, the depletion of the mantle seems to be a priori the most likely cause 

that could explain mantle unroofing in the Central Tyrrhenian. Based on the 

geochemical analysis of the peridotites from ODP 651 in the Vavilov basin, a possible 

explanation to this is that subduction and back-arc processes in the Western 

Mediterranean have triggered the production of large amounts of melting, for example 

during the opening of the Liguro-Provençal basin just before the opening of the 

Tyrrhenian one. This cumulative process may have led to the progressive depletion of 

the underlying mantle. Therefore, since the Tyrrhenian is the youngest back-arc basin 

formed in this setting, and given that it opened just after the Liguro-Provençal basin, the 

hypothesis that the mantle beneath this region could be considerably depleted is rather 

plausible.  

Based on this hypothesis, I propose a conceptual model characterized by a 

depleted mantle setting in which production of pressure-release melting is limited, so 

the melt production is dominated by hydrous flux melting from the subducted slab. The 

model displays 5 stages of opening: (I) a normal subduction scenario followed by (II) 

development of the back-arc rift, (III) initiation of back-arc spreading, (IV) mantle 

exhumation, and finally (V) a last stage in which large volcanic edifices are emplaced in 

the central part of the basin (Figure 8.9) 

The Stage I shows previous phase to back-arc extension, in which bending-

related faulting promotes hydration of the subducting lithosphere [Ranero et al., 2003]. 

When the appropriate pressure/temperature conditions are met (typically at a depth of 

100-150 km), the subducting lithosphere releases these fluids into the overlying mantle, 

triggering the generation of hydrous flux melting in the mantle wedge. This slab-derived 
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melting originates arc volcanism (Figure 8.9a). Note that the mantle beneath the 

overriding plate is illustrated as depleted in composition following the arguments stated 

above. This stage might correspond to the latest phases of opening of the Liguro-

Provençal basin at ~20-15 Ma [Gattacceca et al., 2007]. 

In Stage II back-arc rifting was already initiated due to the migration of the 

subduction front toward the oceanic plate as a result of the slab rollback (black arrows 

in Figure 8.9b). During this stage, back-arc extension triggers the decompression of the 

underlying mantle that rises passively beneath the spreading center. As stated above, 

this process would promote the formation of pressure-release melts if the mantle would 

be under normal conditions. However, we assume that the mantle is depleted enough to 

limit the production of this type of magmatism considerably. In contrast, since back-arc 

rifting occurs near the volcanic arc, a large amount of hydrous flux melting would be 

accreted forming thereby a new magmatic crust, in which both composition and crustal 

structure would differ from those of normal oceanic crust [Martinez et al., 2007; Dunn 

and Martinez, 2011]. This process could explain the “anomalous” characteristics of the 

crust that we found in domains 2, 2a and 4 (Figure 8.1, and 8.6), which would 

correspond to “a mixture” between the original continental crust, the volcanic arc that 

was emplaced on top of it during subduction, and the final influence of subduction-

related magmatism. Stage II, then, illustrates the Tyrrhenian basin at some point 

between the last phases of rifting and the initiation of the spreading center. At that 

period both rifted continental crusts reported in the Sardinia and the Campania margins 

(Domain 1,1a and 5) and in the called Sechi segment (Domain 1b) would have formed 

(see Figure 8.9b). 

Thus, between Stage II and Stage III a new magmatic back-arc crust is formed 

due to the accretion of large amounts of hydrous flux melting (grey crust in Figure 

8.9c). This magmatic back-arc crust would correspond to that found beneath the 

Cornaglia (Domain 2 and 2a) and Campania (Domain 4) Terraces (Figures 8.4 and 8.5). 

As observed in previous sections the seismic velocity structure of this type of crust 

closely resembles to an oceanic crust (e.g. Atlantic oceanic crust) [White et al., 1990] 

but with lower velocity gradient in the L3 region. Gravity modeling indicates that this 

crust presents a departure in composition with normal oceanic crust. However, without 

further geochemical information it is not possible to confirm if this process is 

compatible with the composition of the basement rocks. 
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Figure 8.9.- Formation model of the Central Tyrrhenian basin in a slab rollback and 

depleted mantle setting. Note that the overriding plate is screwed and thus fixed. 
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In Stage III back-arc rift has evolved until full continental break up and back-

arc spreading has initiated (Figure 8.9c). In this stage, as hydrous flux melting migrates 

with subduction front trenchward, magma supply in the spreading center must diminish 

considerably because the depleted mantle is not able to produce large amounts of 

melting by itself. In this case, the limited amounts of melt are not emplaced as a crust 

but as intrusive bodies forming sills and dikes as has been observed in the ODP site 651 

[Beccaluva et al., 1990]. Therefore, in Stage IV (Figure 8.9d), extension leads to the 

exhumation of mantle rocks, while the little amount of pressure-release melting forms 

isolated oceanic ridges like the Gortani Ridge [4.3 Ma] (ODP 655 in Figure 8.5) 

[Beccaluva et al., 1990; Bertrand et al., 1990]. This stage would illustrate the formation 

of the basement that floors the Magnaghi and Vavilov basins (Domain 3) (Figure 8.5). 

Finally, as stated in section 2.2.4 the Tyrrhenian basin was subjected to an 

important pulse of anorogenic volcanism [Savelli, 2002]. Stage V (Figure 8.9e) 

illustrates the emplacement of important volcanic edifices in the Magnaghi and the 

Vavilov basins as a result of this sporadic magmatic episode dated at 3-0.1 Ma (i.e. 

posterior to the exhumation of the mantle) and attributed to an intermittent episode of 

intra-plate magmatism [Robin et al., 1978; Savelli, 2002]. 

In summary, the presented model, speculates on formation of the Central 

Tyrrhenian basin in a regional setting that is constrained by the presence of a depleted 

mantle source. However, it is clear that the hypothesis of a depleted mantle should be 

tested and confirmed by geochemical analysis of the exhumed peridotites in 

combination with petrological mantle melting models. In addition, rock sampling and 

further geochemical information of the basement in the magmatic back-arc crust region 

would allow to better constrain the affinity of the basement, and to infer the processes 

related with its formation. In Chapter 10 I propose some potential studies that would 

provide this valuable information and would help to better understand the geological 

structure of the Central Tyrrhenian. 
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Chapter 9: Conclusions 

 

9.1 Geophysical cross-sections 

The results obtained from WAS and gravity modeling, together with 

observations based on the MCS profiles MEDOC-4 and 6 reveal three different 

basement affinities in the Central Tyrrhenian basin, that is, continental crust, magmatic 

back-arc crust and exhumed mantle. In addition, combination of these results with 

morpho-tectonic observations from bathymetry, and geological information from rock 

sampling and drilling [Colantoni et al., 1981; Kastens and Mascle, 1990] has allowed to 

interpret the plan view distribution of these domains (Figure 8.5). This section presents 

the main conclusions concerning the distribution of continental crust, magmatic back-

arc crust, and exhumed mantle in the Central Tyrrhenian basin. 

 

Continental crust  

In Line GH this type of crust is observed in Domain 1 and 5 (Figure 8.1b and 

8.4b). Domain 1 is formed by the continental crust of Sardinia and its margin, which is 

characterized by landward and seaward normal faults and crustal thinning from ~22 km 

to ~13 km-thick. The conjugate margin of Campania (Domain 5) might represent the 

westernmost part of the Italian continental crust.  

Similarly, in Line EF continental crust is also observed beneath the Island and 

margin of Sardinia in Domain 1a, characterized by a significant crustal thinning from 

~25 to ~10 km-thick. However, the northern and southern geophysical segments of the 

Sardinia margin display differences in crustal velocity structure (Figure 8.3a) that might 

be attributed to differences in the petrological composition (e.g. granitic, basaltic, 

metamorphic). To the east, the continental Domain 1b is identified along the Sechi 

segment as a highly stretched portion of continental crust (�>3) (Figure 8.1a and 8.4a). 

This domain appears to belong to a major continental structure that extends northward 

and southward but does not reach Line GH (Figure 8.5). Finally, in Line EF the 

conjugated Campania margin (Domain 5) is also intersected and interpreted to represent 

the westernmost extension of the Italian continental landmass (Figure 8.5).  
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Continental crust is extended toward the Northern Tyrrhenian (Figure 8.5), 

where it is believed that is partially intruded by magmas at lower crustal levels [Moeller 

et al., 2013].  

 

Magmatic back-arc crust 

In Line GH it is represented by the Cornaglia Terrace (Domain 2) and the 

Campania Terrace (Domain 4) (Figures 8.1b and 8.4b). The transition between 

continental and magmatic crust is only observed by a marked, abrupt increase of 

velocities (> 7 km/s) in the lower crust (at ~125 km in Figure 8.1b). Large-scale normal 

faulting has affected the Cornaglia Terrace (Figure 6.5a), whereas in the Campania 

Terrace, normal faulting is less important (Figures 6.5b). The crustal structure in both 

regions is represented by velocities slightly lower than those found in a 0-7 Ma-old-

oceanic crust [White et al., 1992]. This has been discussed and finally interpreted as 

indicative of back-arc spreading close to the active volcanic arc [Martinez et al., 2007]. 

In Line EF, this type of crust is encountered in Domains 2a, 2b, and 4 (Figure 

8.1a). Domain 2a is represented by the northern region of the Cornaglia Terrace 

showing lower crustal velocities >7 km/s and a rather homogeneous velocity (Figure 

8.6a) and tectonic (Figure 7.4) structure compared to that of Line GH in the south 

(Domain 2) (Figure 6.5a). Eastward of Line EF, lower crustal velocities > 7 km/s are 

also observed in Domains 2b and 4 in the Farfalla segment and the northern Campania 

Terrace, respectively (Figures 8.1a and 8.4a). The Farfalla segment (Domain 2b) does 

not present any counterpart in Line GH (Figure 8.1 and 8.5), and it is interpreted as a 

continental crust affected by magmatic underplaiting or either serpentinized mantle 

rocks at the base of the crust [e.g. Chamot-Rooke et al., 1999; Dean et al., 2000; Funk et 

al., 2004]. In contrast, the Campania Terrace is intersected by Line GH in the south 

(Figure 8.1, 8.4, and 8.5), displaying crustal velocity, tectonic, and bathymetric 

variations from north to south (Figures 6.4, 7.4, and 8.1, 8.6b). These differences 

suggest that the northern terrace might correspond to a stretched continental crust 

heavily intruded by rift-related magmas, while the southern terrace might correspond to 

a magmatic back-arc crust, similar to that of the Cornglia Terrace (Domain 2 and 2a). 

However, drilling in the Cornaglia and Campania Terraces has only evidenced 

the presence of isolated continental blocks (e.g. Flavio de Gioia seamount in Figure 
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8.1b, 8.4b, and 8.5) [Colantoni et al., 1981]. Hence, further rock sampling and 

geochemical information of the basement in these two terraces is necessary to better 

constrain its petrological nature. 

 

Exhumed mantle 

In Line GH, the presence of a basement made of exhumed mantle rocks is 

evidenced in Domain 3, which intersects both V-shaped Magnaghi and Vavilov basins 

(Figure 8.1b, 8.4, and 8.5). The main characteristics of this domain are the lack of Moho 

reflections in both WAS and MCS data and a vertical velocity structure characterized by 

a strong velocity gradient in the topmost 3-4 km similarly to other regions where 

basement is interpreted to be made of serpentinized mantle [Reid, 1994; Dean et al., 

2000; Van Anvendonk et al., 2006; Sallarès et al., 2013a]. 

In Line EF, the presence of a mantle rock basement is less clear, since the 

velocity gradient is lower than the velocity-depth references of exhumed mantle, and 

hence fits better with that of oceanic crust (Figure 8.7). However, the lack of Moho 

reflections in the MCS data and in most of the WAS receivers of this region supports 

the exhumation of mantle (Figures 7.4, 7.5, and A.1.2.25). Thus, I tentatively suggest 

that the lower velocity gradient of the exhumed mantle basement might be attributed to 

the influence of basaltic intrusions like sills and dicks. Nevertheless, more petrological 

information of the basement is needed to confirm this interpretation. 

Additionally, this domain hosts large basaltic edifices related to oceanic crustal 

accretion (i.e. Sites 655 and 651 in Figures 8.5) [Beccaluva et al., 1990] and to inter-

plate volcanism (i.e. Magnaghi and Vavilov seamounts in Figures 8.4 and 8.5) [Robin et 

al., 1978; Savelli, 2002]. Some of these structures are intersected by Line GH and 

imaged in depth showing that they are local and hence not representative of the entire 

basement nature (Figure 6.10). 

The overall differences in the seismic velocity structure and the tectonic 

signature between domains of the northern Line EF and the southern Line GH are most 

likely attributed to the southward increase of extension that characterizes the Tyrrhenian 

basin [e.g. Faccena et al., 2001; Sartori et al., 2004].  

The analysis of these new geophysical data has led to a radically new definition 

of geological domains in the Central Tyrrhenian. According to the presented 
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distribution of the basement, rifting in the Central Tyrrhenian basin would have started 

with continental crust extension, continued with back-arc spreading leading to 

generation of magmatic back-arc crust, followed by mantle exhumation and subsequent 

magmatic intrusions. 

 

9.2 Basement formation model 

To explain the formation of the basement in the Central Tyrrhenian basin I 

propose a new conceptual model for the opening of the basin (Figure 8.9). This model is 

based on those previously proposed to explain back-arc extension and formation of the 

Western Pacific basins in slab rollback settings [Martinez et al., 2007; Dunn and 

Martinez, 2011].  

The most relevant observation concerning the evolution of the basin is the 

presence of a wide exhumed mantle band in the Central Tyrrhenian despite the fast 

spreading rates (5-6 cm/yr) and the apparently “normal” mantle temperatures at the time 

of extension. This makes that the most likely cause for the lack of substantial 

magmatism at the spreading, and hence formation of typical oceanic crust, is the 

presence of a depleted mantle source. 

In summary, the presented model is based on 5 stages of opening in which a 

depleted mantle setting constrains the production of pressure-release magmas, and thus, 

back-arc crustal accretion is mainly explained by the influence of subduction-related 

melts (i.e. hydrous flux melting in Figure 8.9). The main features of these stages are 

briefly exposed below: 

I. The first stage consists of a normal subduction scenario, in which slab-derived 

melting originates arc volcanism (Figure 8.9a). The mantle beneath the 

overriding plate is assumed to be depleted in composition. This stage may likely 

illustrate the latest phases of opening of the Liguro-Provençal basin at ~20-15 

Ma [Gattacceca et al., 2007]. 

II. In the second stage back-arc rift forms as a result of the slab rollback (Figure 

8.9b). In this stage, extension causes the passive decompression of the 

underlying asthenospheric mantle, which in turn results in the production of 

pressure-release melts. However, since the mantle is assumed to be depleted, this 
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production is rather limited. In contrast, since rifting occurs near the volcanic arc 

a large amount of hydrous flux melting is accreted in the lower crust forming 

thereby a new magmatic crust. The composition and crustal structure of this new 

magmatic crust would differ from those of normal oceanic crust [Martinez et al., 

2007; Dunn and Martinez, 2011]. Stage II, then, illustrates the formation of both 

magmatic crusts interpreted beneath the Cornaglia and the Campania Terrace 

(Domains 2, 2a, and 4) (grey crust in Figure 8.9c). 

III. In the third stage back-arc spreading is initiated (Figure 8.9c). However, as 

hydrous flux melting migrates with subduction front trenchward, magma supply 

in the spreading center diminish considerably because the depleted mantle 

source is not able to produce large amounts of melting by itself. Consequently, 

no oceanic crust is generated, but the limited amount of melt is emplaced as 

intrusive bodies forming sills and dikes, as suggested by the ODP site 651 

(Figure 8.5) [Beccaluva et al., 1990], and isolated oceanic ridges like the Gortani 

Ridge [4.3 Ma] (ODP 655 in Figure 8.5) [Beccaluva et al., 1990; Bertrand et al., 

1990]. 

IV. In the fourth stage (Figure 8.9d) extension leads to the exhumation of mantle 

rocks, while the little amount of pressure-release melting continues forming 

isolated oceanic ridges. This stage would illustrate the formation of the basement 

that floors the Magnaghi and Vavilov basins (Figure 8.5). 

V. Finally, the last stage illustrates the emplacement of large volcanic edifices in 

the central part of the basin, as a result of the sporadic magmatism dated at 3-0.1 

Ma (i.e. posterior to the exhumation of the mantle) and attributed to an 

intermittent episode of intra-plate magmatism (e.g. Vavilov seamount in Figure 

8.5) (Figure 8.9e) [Robin et al., 1978; Savelli, 2002]. 
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Chapter 10: Outlook 
 

The results of this Thesis provide novel information concerning the petrological 

nature of the geological domains and their distribution in the Central Tyrrhenian basin 

with unprecedented accuracy and detail. The spatial distribution of these domains has 

been discussed, as along with a conceptual model that attempts to explain how 

extension leads to the formation of stretched continental crust, magmatic back-arc crust, 

and mantle exhumation in the Central Tyrrhenian. However, as stated in previous 

chapters additional geological, geophysical, and geochemical information is needed to 

address the open questions arising with these new findings. Therefore, in this chapter I 

propose the acquisition of new geophysical data, the location of several sites for drilling 

and dredging, and the investigation of the formation of these types of basement from 

numerical modeling that would help to answer those open questions. 

 

10.1 Geophysical transects 

The distribution of the geological domains made in this thesis has been inferred 

with only two geophysical profiles that are separated ~55km one from each other. 

Additionally the available rock sampling information [e.g. Colantoni et al., 1981] is 

useful to identify local structures, but not to define the overall nature of the different 

domains. Consequently, most of the boundaries in the basement distribution map remain 

unconstrained (Figure 8.5). To solve this issue and constrain the distribution of the main 

geological domains, I recommend to complement the existing data with new WAS, 

gravity, and MCS profiles, which will also provide new information on the crustal 

structure of the Northern Sicilian margin and on the transition between the Vavilov and 

the Marsili basins (see Figure 2.3). The proposed experiment includes 6 long 

geophysical transects along which WAS, gravity, and MCS data would be acquired 

(Figure 10.1): 

� Profile P1 cuts from north to south the Cornaglia Terrace crossing 

roughly perpendicular the MEDOC lines of this thesis (Figure 10.1). The data of profile 

P1 would provide information on the north-south variations of the crustal structure, and 
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on the transition between the magmatic back-arc crust of the Cornaglia Terrace and the 

continental crust identified in the Northern Tyrrhenian. 

� Profiles P2 and P3 are parallel between them and perpendicular to the 

lines presented in this thesis. The proposed profiles cut from north to south the 

Magnaghi and Vavilov basin, and end in the Northern Sicilian margin (see Figure 2.3). 

Geophysical data along P2 and P3 would help to constrain the northern and southern 

boundaries of the exhumed mantle domain, and would provide valuable information on 

the nature of the basement beneath the northern margin of Sicily and its relationship 

with the volcanic arc (Figure 10.1). Additionally, both profiles are designed to cut 

several ODP sites, which would allow the correlation of the MCS data with the main 

seismo-stratigraphic units. 

 

Figure 10.1.- Geophysical, drilling, and dredging survey proposal. 

Part IV: Conclusions

184



� Profile P4 runs along the Campania Terrace, crossing Line EF and GH 

(Figure 10.1). Similarly to P1, this profile is designed to investigate the north-south 

crustal variations, and to constrain better the crustal structure along the Campania 

Terrace. 

� Profile P5 is proposed to provide new insights on the crustal transition 

between the Vavilov and the Marsili basin. This profile would also reveal the crustal 

structure and nature of the Marsili basin. Hopefully, it would also image the magmatic 

chamber beneath the Marsili seamount (see #22 in Figure 2.3). Moreover, profile P5 

cuts P2 and P3 providing more constrains concerning the 3D distribution of the 

geological domains. 

� Profile P6 is a continuation of profile P5 towards the southeast (Figure 

10.1). This profile would cross the Aeolian Islands and the Calabrian margin (see Figure 

2.3) in order to provide valuable information of the crustal structure beneath the arc. In 

addition, it would be interesting to extend the line further to the southeast, crossing the 

Calabrian arc, to investigate the whole subduction system including the incoming and 

upper plates at seismogenic depths.  

 

10.2 Drilling and dredging 

One of the most relevant points in this thesis is the definition of magmatic back-

arc crust beneath the Cornaglia and the Campania Terraces. However, this observation 

is constrained only with crustal velocity and density information. To better constrain the 

petrological nature of these domains it is necessary to drill in these two areas and 

perform geochemical analysis of the samples. For that reason, I propose D1 and D2 as 

two potential locations for IODP (Integrated Ocean Discovery Program) drilling sites 

(Figure 10.1). The location of these two perforation sites is based on the information 

provided by MCS images and the seismic velocity models obtained in this work.  

Interestingly, it turns out that in the last years several proposals for drilling in the 

Mediterranean Sea have been presented to the IODP [e.g. GOLD project, DREAM 

project]. One of the main goals of these projects is to drill below the thick Messinian 

salt layer and provide information on the Mediterranean basin history. Since the 

Tyrrhenian basin is also the locus of Messinian salt deposits, particularly in the 

Cornaglia Terrace [e.g. Fabbri and Curzi, 1981; Sartori et al., 2004], I believe that 
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drilling in the Cornaglia and Campania Terraces would not only provide petrological 

information of the basement, but it would also grant invaluable geological information 

on the Messinian geological record, and hence, on the evolution of the opening of the 

basin. 

Because of drilling is rather expensive and it requires extensive ship time to 

accomplish the objectives, I additionally propose four areas for rock dredging (Figure 

10.1):  

� Area A1 is located in the Cornaglia Terrace because of the lack of rock sampling in 

this region . The main goal of this proposal is to ground-truth the interpretation of 

magmatism related with the formation of the aforementioned back-arc crust.  

� Area A2, where dredging would give petrological information about the nature of the 

D’Ancona Ridge which is still a matter of discussion [Marani and Gamberi, 2004].  

� Dredging in area A3 would be conducted to investigate the presence of magmatism 

during the formation of this region, similarly to dredging A1. Additionally, it would 

put an end to the lack of petrological information in the Campania Terrace providing 

important information on the nature of some structural highs in this terrace.  

� Finally, I suggest dredging in area A4, in the Northern Sicilian margin (Figure 10.1) 

to  ground-truth the geophysical data acquired in that region with petrological 

information obtained from rock sampling of the seabed.  

The geological data collected from dredging would also be subjected to an 

exhaustive geochemical analysis in order to shed some light upon the formation of the 

basement beneath the selected regions. 

 

10.3 Numerical modeling 

As stated above further investigations of the parameters that control back-arc 

extension and mantle exhumation are necessary to constrain the conceptual model of 

section 8.3 (Figure 8.9). Therefore, in addition to the acquisition of new geophysical 

and geological data in the Tyrrhenian basin, that would also help to address this issue, I 

suggest the investigation of the mechanisms involved in back-arc extension and mantle 

exhumation from numerical modeling. Dynamic models of extension such as those 

presented by Pérez-Gussinyé et al. [2006] would allow to explore how extension 
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velocity, mantle composition and temperature influence the evolution of the entire 

system as well as the formation the different domains observed in the Central 

Tyrrhenian basin. 
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A.1 Wide-angle seismic records 

 

A.1.1 Line GH 

 From top to bottom, record section, data fit and ray-tracing of all the receivers used to 

obtain the 2D P-wave velocity model of Line GH (Figure 6.2a). In the data fit panels, the black 

and white circles correspond to the picked and calculated data, respectively. While the thick 

black line in the ray-tracing panels represents the inverted Moho geometry, and the white circle 

the receiver location.  

 

Figure A.1.1.1.-Land station HG 5 
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Figure A.1.1.2.-Land station HG 4 
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Figure A.1.1.3.-Land station HG 3 
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Figure A.1.1.4.-Land station HG 2 

Annex

212



 

Figure A.1.1.5.-Land station HG 1 
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Figure A.1.1.6.-OBS 95 
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Figure A.1.1.7.-OBS 93 
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Figure A.1.1.8.-OBS 92 
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Figure A.1.1.9.-OBS 91 
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Figure A.1.1.10.-OBH 90 
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Figure A.1.1.11.-OBH 89 
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Figure A.1.1.12.-OBH 88 
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Figure A.1.1.13.-OBH 87 
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Figure A.1.1.14.-OBH 84 
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Figure A.1.1.15.-OBH 83 
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Figure A.1.1.16.-OBH 82 

Annex

224



 

Figure A.1.1.17.-OBH 81 
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Figure A.1.1.18.-OBH 80 
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Figure A.1.1.19.-OBH 79 
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Figure A.1.1.20.-OBH 78 
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Figure A.1.1.21.-OBH 77 

Annex

229



 

Figure A.1.1.22.-OBH 76 
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Figure A.1.1.23.-OBH 74 
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Figure A.1.1.24.-OBH 73 
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Figure A.1.1.25.-OBH 72 
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Figure A.1.1.26.-OBH 71 
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Figure A.1.1.27.-OBH 70 
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Figure A.1.1.28.-OBH 69 
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Figure A.1.1.29.-OBH 68 
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Figure A.1.1.30.-OBH 67 
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Figure A.1.1.31.-OBH 66 
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A.1.2 Line EF 

 From top to bottom, record section, data fit and ray-tracing of all the receivers used to 

obtain the 2D P-wave velocity model of Line EF (Figure 7.2a). In the data fit panels, the black 

and white circles correspond to the picked and calculated data, respectively. While the thick 

black line in the ray-tracing panels represents the inverted Moho geometry, and the white circle 

the receiver location.  

 

Figure A.1.2.1.- Land Station EF5 
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Figure A.1.2.2.- Land Station EF4 
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Figure A.1.2.3.- Land Station EF3 
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Figure A.1.2.4.- Land Station EF2 
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Figure A.1.2.5.- Land Station EF1 
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Figure A.1.2.6.- OBS 36 
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Figure A.1.2.7.- OBS 37 
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Figure A.1.2.8.- OBS 38 
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Figure A.1.2.9.- OBS 39 
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Figure A.1.2.10.- OBS 40 
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Figure A.1.2.11.- OBH 42 
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Figure A.1.2.12.- OBH 43 
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Figure A.1.2.13.- OBH 44 
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Figure A.1.2.14.- OBH 45 

Annex

253



Figure A.1.2.15.- OBH 46 
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Figure A.1.2.16.- OBH 47 
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Figure A.1.2.17.- OBH 48 
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Figure A.1.2.18.- OBH 49 
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Figure A.1.2.19.- OBH 50 
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Figure A.1.2.20.- OBH 51 
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Figure A.1.2.21.- OBH 52 
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Figure A.1.2.22.- OBH 53 
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Figure A.1.2.23.- OBH 54 

Annex

262



 

Figure A.1.2.24.- OBH 55 
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Figure A.1.2.25.- OBH 56 
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Figure A.1.2.26.- OBH 57 
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Figure A.1.2.27.- OBH 58 
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Figure A.1.2.28.- OBH 59 
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Figure A.1.2.29.- OBH 60 
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Figure A.1.2.30.- OBH 61 

Annex

269



 

Figure A.1.2.31.- OBH 62 
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Figure A.1.2.32.- OBH 63 
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Figure A.1.2.33.- OBH 64 
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A.2 Multichannel seismic profiles 

 A.2.1 MEDOC 6  
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A.2.2 MEDOC 4  
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Figure A.2.2.1 .-. Close-up of the brute stack section corresponding to profile MEDOC 4 

obtained using a water velocity model.  

Figure A.2.2.2 .-. Same close-up of Figure A.2.2.1showing the stack section after spherical 

divergence correction and predictive deconvolution. This stack has been obtained using 

velocities from the first velocity analysis. Note that the interpreted crust-mantle reflections are 

recovered (arrows).  

A.2.2.1 MEDOC 4 Processing evolution 
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Figure A.2.2.3 .-. Same close-up of Figure A.2.2.1 showing the stack section after spherical 

divergence correction, predictive deconvolution, parabolic radon demultipling and pre-stack 

FK filtering. The stack has been obtained using velocities from the second velocity analysis. 

Note the interpreted crust-mantle reflections (black arrows), and that multiple is attenuated 

(white circles). 

 

Figure A.2.2.4 .-. Final stack section of Figure A.2.2.1 after time migration. Blue arrows 

depict the interpreted crust-mantle boundary.  
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