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Resumen

En este trabajo presentamos el metodo HERMESH al que hemos catalogado
como un meétodo de composicion de dominios puesto que a partir de mallas
independientes se obtiene una solucién global del problema como la unién de
los subproblemas que forman las mallas independientes. Como resultado, la
malla global mantiene el mismo nimero de grados de libertad que la suma de
los grados de libertad de las mallas independientes, las cuales se acoplan en las
interfases internas a través de nuevos elementos a los que nos referimos como
elementos de extension. Por este motivo decimos que el método de composi-
cion de dominio es geométrico. El resultado de la malla global es una malla que
no es conforme en las interfases entre las distintas mallas debido a las nuevas
conectividades generadas sobre los nodos existentes.

Los requerimientos de partida fueron que el método se implemente de
forma implicita, sea valido para cualquier PDE y no implique ningin es-
fuerzo adicional ni perdida de eficiencia para el funcionamiento paralelo del
codigo de altas prestaciones en el que ha sido implementado. Creemos que es-
tas propiedades son las principales aportaciones de esta tesis dentro del marco
de acoplamiento de mallas en mecanica computacional.

A partir de estas premisas, hemos conseguido una herramienta automatica
e independiente de la topologia para componer mallas. Es capaz de acoplar sin
necesidad de intervencién del usuario, mallas con solapamiento parcial o total
asi como mallas disjuntas con o sin "gap" entre ellas. También hemos visto
que ofrece cierta flexibilidad en relaciéon al tamafos relativos entre las mallas
siendo un método valido como técnica de remallado local.

Presentamos una descripcion detallada de la implementacion de esta téc-
nica, llevada a cabo en un cédigo de altas prestaciones de mecanica computa-
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cional en el contexto de elementos finitos, Alya. Se demostraran todas las
propiedades numéricas que ofrece el métodos a través de distintos problemas
tipo benchmark y el método de la solucion manufacturada.

Finalmente se mostraran los resultados en problemas complejos resueltos
con el método HERMESH, que a su vez es una prueba de la gran flexibilidad
que nos brinda.
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Abstract

With this thesis we present the HERMESH method which has been classified
by us as a a composition domain method. This term comes from the idea that
HERMESH obtains a global solution of the problem from two independent
meshes as a result of the mesh coupling. The global mesh maintains the same
number of degrees of freedom as the sum of the independent meshes, which
are coupled in the interfaces via new elements referred to by us as extension
elements. For this reason we enunciate that the domain composition method
is geometrical. The result of the global mesh is a non-conforming mesh in the
interfaces between independent meshes due to these new connectivities formed
with existing nodes and represented by the new extension elements.

The first requirements were that the method be implicit, be valid for any
partial differential equation and not imply any additional effort or loss in effi-
ciency in the parallel performance of the code in which the method has been
implemented. In our opinion, these properties constitute the main contribution
in mesh coupling for the computational mechanics framework.

From these requirements, we have been able to develop an automatic and
topology-independent tool to compose independent meshes. The method can
couple overlapping meshes with minimal intervention on the user’s part. The
overlapping can be partial or complete in the sense of overset meshes. The
meshes can be disjoint with or without a gap between them. And we have
demonstrated the flexibility of the method in the relative mesh size.

In this work we present a detailed description of HERMESH which has
been implemented in a high-performance computing computational mechanics
code within the framework of the finite element methods. This code is called
Alya. The numerical properties will be proved with different benchmark-type
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problems and the manufactured solution technique.

Finally, the results in complex problems solved with HERMESH will be
presented, clearly showing the versatility of the method.
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Chapter ]_

Overview

1.1 Introduction

Composing or decomposing? Our objective is to try to reproduce phys-
ical phenomena present in our everyday life as successfully as possible. This
entails resolving partial differential equations (PDE) in complex geometries
with their proper boundary conditions. When we want to solve actual prob-
lems with their naturally complex physical phenomena and geometry, we turn
to the strategy of composing meshes or decomposing our domain. To obtain an
accurate solution to problems of this kind, we must take into account different
aspects, such as the geometry of each subdomain, the physics of the different
phenomena to be modelled, the numerical methods used to solve each sub-
domain or the boundary conditions to be imposed in the interfaces between
subdomains.

Although Nature is nowadays as complex as it was two centuries ago, the
current computing power allows one to study it at much greater depth. For
example, we can deal with coupled multi-physic problems or with larger and
more complex geometry systems. The reason behind this is the enormous po-
tential of the computational performance. In 1958, IBM’s researchers, John
Cocke and Daniel Slotnick discussed the use of parallelism in numerical meth-
ods for the very first time. Today, this discussion still goes on.

Nowadays, many computational mechanics codes allow to take the advan-
tage of massively parallel supercomputers. Some are purely MPI, some hybrid
(MPI/OpenMP), and some others make use of accelerators like GPGPU’s. The
range of number of cores in which these codes are efficient is still increasing,
not only due to a better performance of the connection network but also to
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the treatment of the bottlenecks in the computational mechanics codes (e.g.
parallel I/0O). Within this context of constant increase in performance, ap-
plied scientists are becoming increasingly greedy in terms of mesh size, multi-
physics coupling and computational domain. Old challenges, such as solving
multi-physics problems or complex geometry domains, are now possible, and
not only thanks to the growth of computational resources but also to mesh or
subdomain composed tools, which allow us to solve this kind of problem more
efficiently.

The origin of the subdomain composed tools dates back to two centuries ago,
in 1869, when Schwarz solved the Laplace equation in a domain composed of a
circumference and a rectangle, which individual solution were already known
as it is shown in Figure 1.1. Since then, several methods have been developed
to couple independent parts of the computational domain, obtaining a unique
and continuous solution.

Figure 1.1: Original problem proposed by Schwarz.

More specifically, there are different reasons for the interest in the coupling
of meshes. If one is interested in to assemble components obtained from differ-
ent sources; this is a typical case in industry where components are designed in
different departments of the company. Or if one needs to simplify the meshing
of complex geometries by dividing it into different meshable pieces. Another
reason is to perform local refinement to adapt to local mesh requirements. Or
to couple multi-physics problems and/or subdomains in relative motion. And
finally if one wants to optimize the relative positions of some components with-
out having to remesh the whole computional domain. All of these situations
could appear simultaneously and are in fact quite frequently found in actual
problems. The objective of this work is to be able to deal with the majority of
them in a more useful or practical way.
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From the studies of Schwarz mentioned before, the so-called domain de-
composition methods (DDM) appeared in order to allow one to solve compu-
tational mechanics problems using parallel algorithms in sequential or parallel
machines. The idea in which all these methods are based on is the supposition
that a given computational domain can be decomposed into subdomains with
or without overlapping. So, the problem is reformulated in terms of each sub-
domain obtaining new, smaller subproblems which are solved independently
although they are coupled by the unknown solution in the interface between
them. However the expression “domain decomposition” has different meanings
in the PDE’s community:

e In parallel computation, it means that the data of the computational
problem is distributed among parallel tasks. In this case, the DD can be
independent from the numerical method.

e From the point of view of computational mechanics, DD means separat-
ing the physical model into regions which can be modelled with different
physical phenomena imposing continuity conditions in the interfaces.

e In an algebraic sense, DD divides the solution of a large linear system
equation into smaller problems. The solution of each problem is used
to design a preconditioner for the algebraic system. In this context, DD
only means the manner in which we solve the linear system obtained
in the discretization procedure. It is well known that, when we solve
computational mechanics problems, other issues appear in the resolution
of the linear system if we use very fine meshes in complex domains or
with discontinuities in the coefficients and with boundary layers. We have
to take into account that in such cases the number of degrees of freedom
can be large and parallel computing will be necessary. Direct methods
to solve the linear system in parallel do not represent a good strategy
because this kind of method requires a lot of communication between the
processors. Iterative methods are well suited to solve the linear system
but in the context of fine meshes the system could be ill-conditioned
and the number of iterations excessive. A good preconditioner for the
system reduces the number of iteration and one way to design such a
preconditioner lies in the use of DD or multigrid algorithms.

The list comprising the different domain decomposition methods and their
associated shortcomings is significantly large and constantly evolving. It is
enough to observe the 962,000 academic entries that appear in Google when
introducing domain decomposition methods. This huge variety of models is due
to the different motivations related to these methods. As we have explained
before, on the one hand, nowadays we find huge problems to be solved which
we have to decompose in order to be able to solve and overcoming the mem-
ory problems. On the other hand, we also deal with multi-physics problems.

3
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Finally, we should also take into account certain limitations related to the
meshing process, which are perhaps solved if this process is done in parallel
or in different parts, obtaining non-conforming meshes. In any case, the final
objective shared by all of these techniques is to divide and conquer. This is
probably the reason why the methods are known as domain decomposition
even if what we want to do is couple or compose subproblems of diverse origin.
The strategy for composing them depends on conformity of the global mesh,
the numerical method, the overlapping, the continuity condition of the solu-
tion in the interface or whether the coupling is implicit or iterative. In fact,
to the best of the author’s knowledge, no complete classification which takes
all of these factors into account has been found. The terminology used in the
bibliography is sometimes confusing, due to the multiplicity of methods and
associated names. For the sake of clarity, we will classify the different strate-
gies into two main classes. On the one hand, there are the so-called Domain
Decomposition Methods (DDM); and on the other hand, we introduce, with
obvious meaning and after hours of debates, the concept of Domain Compo-
sition Methods (DCM)... Figure 1.2 illustrates the difference between both.

DDM DCM

2

re————  —

Figure 1.2: Domain Decomposition Method vs Domain Composition Method

The first class, DDM, consists in dividing an existing mesh into submeshes,
usually referred to as subdommains. The application of these methods consists
mainly in parallelizing the solution strategy or devising algebraic solvers and
preconditioners based on local solutions: Primal/Dual Schur, Schwarz, block
LU, coupling via transmission conditions and so on. The other class, DCM,
has the opposite objective: to join subdomains meshed independently, likely
to be non-conforming, and obtain a global solution on this composite mesh.

4
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It should be mentioned that in some applications, certain strategies used in
DCM can be used for the same purpose as DDM (multi-block strategies for
parallelization), and similar methodologies can be used in both classes (cou-
pling via transmission conditions, see Houzeaux & Codina (2003a)). The role
of all DDM and DCM consists in obtaining a global solution on a composite
mesh. The DCM category can in turn be divided into two families, depending
on whether the coupling is applied directly to the mesh or to the local solutions
obtained on the submeshes. These families can be referred to as mesh-based
and formulation-based. The methods proposed in the literature for these two
families include:

e Mesh-based (joining, gluing, assembly):

— mesh conforming;
— HERMESH (current work).

e Formulation-based (local solution coupling):

— transmission conditions;
— constraints imposition;
— mesh-free interpolations.

The objective of the next section is to present a broad review of this context
and in Figure 1.3 showing a sketch of it. This work aims to make a contribu-

Multiple domain problems

Domain Composition Methods

(DCM)

Domain Decomposition Methods

(DDM)

Formulation-based Mesh-based

- Primal/Dual Schur

- Schwarz

- transmission conditions
- FETI

Transmission Conditions:
Dirichlet, Neuman, Fluxes
_Constraints imposition:
Lagrange multiplier / Penalty /Mortar
~Mesh Free interpolation

_Conforming approaches:
Conforming the gap (Dragon mesh)
Mesh Merging
Imprint and Merge

Non-conforming approach:

<ZZERA\1ES] Dmethod

Figure 1.3: Alternatives in the resolution of multiple domain problems

tion in the composite meshes field. The method proposed has been called the
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HERMESH method and allows one to couple meshes in an implicit, versatile
and automatic way. We regard these properties as a great step forward. We will
also show that the method becomes naturally parallel, retaining the parallel
performance of the original code. The developments carried out in this the-
sis have been successfully applied in different contexts. The method has been
tested to solve the temperature equation, the Navier-Stokes problems (NS),
the Reynolds Average Navier Stokes equations (RANS) coupled with a hyper-
bolic equation of level set and the solid mechanics problems. We hope that this
thesis will serve as a contribution to the state of the art of the area of high
performance computing, in mesh coupling problems.

The thesis is organized as follows. In the rest of this chapter, we present
our own classification of the existing methods which deal with the coupling of
the parts of the domain from different points of view. Roughly, this may be
a matter of minimizing the cost of solving a large system of equations, or of
issues related to the physics of the problem or the complexity of the geometry.
Finally, we present the main objectives of this work.

The second chapter will present the equations of computational mechanics
in which we have applied the HERMESH method, showing its versatility. The
first will be the advection-diffusion-reaction equation, where we will also ex-
plain a new development carried out by the same authors to determine a new
expression for stabilization parameter 7 in the context of two-scale variational
models. Afterwards we will present the incompressible and stabilized Navier-
Stokes equations with its respective time discretization as well as the algebraic
split strategy used to solve the linearized system. We will also talk about the
turbulence phenomenon describing the numerical approaches as well as the
level set equation. Finally, there will be a description of the solid mechanics
equations.

The third chapter is divided in two parts. Firstly it is dedicated to the pre-
sentation of the first steps that were carried out during the development of the
methodology proposed in this work and which led us to the technique we now
call the HERMESH method. Next, we describe this proposed method as a new
strategy for coupling independent meshes. The coupling is carried through the
creation of new connectivities based on geometrical criteria that are discussed
in this chapter. A detailed description for two- and three-dimensional cases is
made. We also talk about smoothing aspects that have been implemented to
obtain better solutions of the method. We discuss the parallel performance as
well as implementation issues and possible improvements. Finally, some nu-
merical properties are discussed through different examples.

The next two chapters are dedicated to the description of the applications
of the HERMESH method. Chapter four describes the Chimera-type problems
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solved with our proposed method. The nomenclature and implementation is-
sues are presented in this chapter. The strategy to construct a manifold surface
in the hole-cutting process is detailed as well as the coupling in the apparent
interfaces created in this hole-cutting step is shown. Finally we prove the nu-
merical properties of HERMESH for this kind of problems through different
examples. These properties are: independence of flow direction, mesh conver-
gence and mass conservation. Chapter five presents the other kind of applica-
tion, the mesh gluing strategy carried out with HERMESH method. We are
able to join independent non-matching meshes in an automatic way regardless
of their relative positions. This tool is based on different definitions of the in-
terface connectivity information resulting in the four combinations illustrated
in the chapter. We prove through different examples some numerical properties
as the follows: We obtain error zero when the solution lives in the finite element
space. HERMESH can obtain the same solution as one domain problem in a
particular case. It is also proved that the mesh convergence is order two.

The sixth chapter presents real applications that are solved with the HER-
MESH method. The simulation of the free surface flow around a ship hull with
the RANS equations together with the Spalart-Allmaras turbulence model and
level set equation is run. We have also applied the method to the simulation of a
neuron within a solid mechanics framework. The HERMESH method is a very
useful strategy for simulating the flow in a wind farm to optimize the position
of the turbines since for each configuration of the computational domain we do
not have to remesh. Another advantage is related to being able to capture the
wake generated for each turbine. It is possible with a fine patch mesh which
contains the disk used to simulate the turbine. The rest of the computational
domain could be meshed with a coarse and structured background mesh, sav-
ing a lot of computational resources. The simulation of the wind farm entails
solving the Navier-Stokes equations coupled with a k — ¢, and the boundary
layer is solved with a wall law. Finally, we present two biomechanical applica-
tions solved with the HERMESH method. One corresponds to the large and
small airways simulation. The other one is the flow passing through a bypass
in a stenosed artery. So both applications belong to the context of the incom-
pressible Navier-Stokes equations.

The last chapter is devoted to some conclusions and future work.

1.2 State of the art in multiple domains problems

We are going to make a broad review of all of these methods.
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1.2.1 Origins

As noted before, in 1869 Schwarz proposed the idea of dividing the domain
to solve the Laplace equation. His idea was the origin of the family of meth-
ods called DDM. With this technique the computational domain €2 where the
boundary value problem is set is subdivided into two or more subdomains on
which discretized problems of smaller dimension are to be solved. There are
two ways of subdividing the computational domain: overlapping and disjoint
subdomains.

Overlapping: Schwarz methods. In particular, the way of dividing the
Schwarz domain was with overlapping subdomains. His idea was to solve the
Laplace equation in a domain composed of simple domains, as is illustrated in
Figure 1.1. In particular, he proposed solving the PDE in a circle with boundary
conditions taken from the interior square and solving the PDE in the square
with boundary conditions taken from the circle interior. And iterating.

Let Q = Q; UQy with Q, N, # 0 and solve the next problem:

—A(u) = f in Q (1.1)
u = 0 on o)

such that,
A =f in Q
uitt =0 on 0y N o
uftt =l on Iy
Ayt =Ff in Qs
ujy™ =0 on 00 N 0N
uftt =t on Iy

The part of the subdomain boundary €2;, 0€2;, which is not part of the global
physical boundary, 0€), is referred to as the artificial internal boundary, T';.
This problem was called the alternating Schwarz algorithm. The problem in
Q; has to be solved before the problem in €2,, so the algorithm is sequential
by nature.

One century later, Lions (1988) introduced the Parallel Schwarz method for the
purpose of parallel computing. It consists of the following formulation, based
on the problem presented above:

Auf™) = f in O
uf™t =0 on 09, NN
uftt =l on I
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~A(uy™) =Ff in Q,
uftt = on 05 N 0N
uj™t = ur on Iy

It inherently becomes parallel. The differences stems from the way of updating
the artificial Dirichlet boundary condition on I';. These methods can be gen-
eralized to an arbitrary number of subdomains.

Both methods presented in a continuous sense were discretized to obtain com-
putational tools. The Multiplicative Schwarz Method (MSM) is the algebraic
equivalent to the original alternating method and the Additive Schwarz Method
(ASM), developed by Dryja and Widlund in 1988, is the algebraic equivalent
to the Parallel Schwarz method. At the same time, as shown in Figure 1.4,
there exists a system solver analogue for both methods. MSM can be seen as
block Gauss-Seidel and ASM as block Jacobi; this algorithm can be seen as an
iterative solver.

Continuos Level Algebraic Level
Altcrnanting Schwarz Mothod
{ Lu?“ — f in € 21 Multiplicative Schwarz Method Gauss Seidel iterative solver
uftt = wup on Iy Anu™ =bi— Awud o4 o) (b (b1) 0 A\ (up
Lu;”'l = f in Qz {1422“12'”»1 = bg - A21U¥+1 (A21 A22) (U;+l) bZ (0 0 ) (ug)
{ uptt = wfon Iy

Parallel Schwarz Method
. Additive Schwarz Method T AR e
{ Luft™t = f in O e

uf™ = uf on I Aputt = by — Apul ~ (Au 0 )(ugi) = (bl) - (AO Aol2) (uz)
{L“gﬂ = f in & Aggugtt = by — Aguf 0 Axp)\uj by 21 uf
ntl . on r

) = u; on 12

Figure 1.4: Continuous and algebraic forms of Schwarz methods.

In both cases we have two elliptic boundary value problems with a Dirichlet
condition, in € and €, and two sequences u{" ™", u{""" that must converge to
the restrictions of the solution u of the original problem. The rate of the conver-
gence depends on the overlapping region. Roughly speaking, overlapping DDM
operate by means of an iterative procedure, where the PDE is repeatedly solved
within every subdomain. Each subdomain with the artificial internal boundary
condition is provided by its neighbouring subdomains The convergence of the
solution on these internal boundaries ensures the convergence of the solution
in the whole domain. But the problem is that this convergence is deteriorated
when the number of subdomains increases. This problem can be relaxed with
the so called coarse grid corrections, introduced in Bramble, Pasciak, & Schatz
(1986), which incorporate a more rapid global information propagation mech-
anism.

As is well known, when real problems, Lu = f in Q with u = ¢g in 99, are
solved with a numerical method such as the finite difference, finite volume or
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finite element method, the resulting system of linear equations Au = b is very
large and so we solve it in an iterative way. A stationary iterative method could
be applied and is formulated in the following way:

u"tt =" + P(b— Au™) (1.3)

where P represents a preconditioner. If the domain €2 is divided in p overlapping
subdomains, 2; an equivalent algebraic residual formulation of the overlapping
DDM can be done. First of all a restriction operator, R;, has to be designed
such that. R; : 0 — €, and is defined as:

(R!),: = {1, if g is the global number of local node 1 in€);; (1.4)

0, otherwise.

That is, this matrices are formed by the identity on the corresponding sub-
domains and extended by zeros. Their action restricts a vector in the global
discrete domain to a vector in the local discrete domain by choosing the entries
corresponding to the interior nodes of the subdomain. Their transpose is an
extension matrix that prolongs a vector in the discrete domain to one in the
global domain by adding zeros for the nodal values which are not in the con-
sidered subdomain. A prolongation operator is also necessary and corresponds
to R!. With this definition, the restriction of the matrix A in each subdomain
is computed by:

and the formulation of the overlapping ASM is computed as follows:
p
ut =+ Y RIATIR (b — Au™), (1.6)
i=1

This residual form of the algorithm helps to state that the ASM could be
seen as a preconditioner in a Richardson iteration, with the preconditioner
written as follows: )

P=> RIAT'R; (1.7)
i=1

For the simple case of two subdomains, considered in Figure 1.4; the ex-
pression of the Richardson iteration is done by:

u un—l 3 B .

<u711> - ( nt1) + (RiAanl + R§A221R2)(b — Au 1)
2 2

the restriction operators are:

R = [I 0

S (1.8)

10
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such that applied to the global matrix A:

All A12
A21 A22

we obtain the same expression given in Figure 1.4:

) ) AL 0\ (0 0 A0
(RUAL Ry + RYAGR,) = < 0 0> + (0 A;;) = < 0 A;;)

Incorporating the idea mentioned before about the coarse grid correction, the
preconditioner will be written as follows:

P

> RIAT'R; (1.9)

=0

where A;' represents the solver for the global coarse grid problem. Strategies
of this kind could be seen as a variant of the two-level multigrid methods,
originally introduced by Bank & Dupont (1980). The generalization to many
levels was done by Dryja, Sarkis, & Widlund (1996). The first studies related
to the development of preconditioners based on DDM strategies are found in
Golub (1983); Chan (1987). A key point in this issue is to achieve the opti-
mality property when the number of subdomains grows. Dryja and Widlund
developed a special additive Schwarz method, see Dryja & Widlund (1994). In
this paper the authors demonstrate that the condition number of the precondi-
tioned operator for the two-level additive Schwarz algorithm is bounded from
above by C(1+ (H/J)) where H is the diameter of the subregion and ¢ is the
overlap between subdomains and the constant C' is independent from H, h and
0. But in this case, the size of the overlap has to be generous. Other numerical
results, Gropp & Smith (1994), demonstrated that this is not a restriction so,
with a minimal overlap, these methods perform quite well. Some years later,
a variant of the additive Schwarz algorithm was developed by Cai and Sharkis
and called Resctrictive Additive Schwarz (RAS) algorithm. The original pa-
per was Cai & Sarkis (1999) and was further analyzed in Sarkis & Koobus
(2000). This variant converges faster than the classical Additive Schwarz and
this is due to RAS algorithm is convergent everywhere whereas ASM is not
convergent in the overlap.

Although these Schwarz methods had been developed originally for elliptic
problems, there are a lot of studies to apply them to parabolic problems. See
Lions (1988) where the dependence of the convergence rate on the time step
and mesh size is discussed. Lions analyses the variational form interpretation
of the problem and mentions some references of previous studies about the
convergence of the solution of classical boundary value problem for harmonic
functions in an iterative way. In Cai (1994) the time is discretized to obtain

11
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a sequence of steady problems to which the domain decomposition methods
are applied. On the other hand, in Gander (2006) the authors formulate algo-
rithms directly for the original problem without discretization in time, which
means that time dependent subproblems are solved. In Gerardo-Giorda, No-
bile, & Vergara (2010) a convergence analysis of Robin/Robin strategy for the
fluid-structure problem is presented as well as optimal values of parameters in
the Robin transmission conditions are determined.

To finalise this brief review of the Schwarz methods, it is worth noting some
remarks. The additive methods converge more slowly than multiplicative ones
and are more restrictive in terms of the smoothness required by subdomains
although ASM presents better properties in parallel computations. In order to
combine the best properties of both methods in Cai (1993) a hybrid method is
proposed. But there is no general and universal method because the multiple
proposed combinations depend on the problem to be solved. Both methods
present the drawback of needing overlapping subdomains to converge since only
the continuity of the unknown is imposed, and not on the flux of the unknown
(called Neumann condition). When there is no overlap, the convergence is
not possible. In Lions (1989) a new version of the Schwarz algorithm with
Robin conditions (which means a linear combination of Dirichlet and Neumann
condition) in the interface is presented. Methods of this kind are referenced
as optimized Schwarz methods, do not depend on the overlapping, and the
converge is faster. In Houzeaux (2003) an algorithm of domain decomposition
in overlapping subdomains based on the imposition of the Dirichlet/Robin
condition is developed.

Non-overlapping. Also formulated as an iterative strategy, the idea is to in-
troduce proper coupling transmission conditions in the interface between sub-
domains. Such methods are known as Iteration-by-subdomains and were
first proposed by P.L. Lions, see Lions (1989). Non-overlapping DDM neces-
sarily use two different transmission conditions on the interface, in such a way
that both the continuity of the unknown and its first derivatives are achieved
on the interface (for ADR equations). See Houzeaux (2003).

Many possibilities could be formulated as we can see in the following formula-
tion. Let Q = Q,UQ, with Q1N = 0 and I the interface between subdomains.
Then the problem is formulated as:

in Ql
on 0, NN

RS
Il

|

>
—~

<
=3
7t
I

o -

au?-&-l B . puntl (1'1())
= oul + ﬁ107m on T
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“AwT) = f mo
uttl =0 on 09, N 0N (1.11)
apuy T 4 B %ﬁ = apuy + 52% on L

with n; being the outward unit vector normal to the interface I' and n/
could be the iteration n + 1 for the parallel version of the algorithm or n
for the sequential option. Depending on the kind of transmission conditions,
(1.10)3 and (1.113) different strategy types appear:

e Dirichlet/Neuman(D/N): with 5, = as = 0;
e Robin/Robin(R/R): with ay, s, 8y, B2 # 0;
e Robin/Neuman(R/N): with a; = 0.

One of the first works devoted to developing variations of the Schwarz meth-
ods is Bjorstad & Widlund (1986). In particular, the authors analyse a D/N
method. Other similar studies are carried out in Marini & Quarteroni (1988).
Also, Widlund (1988) shows an extension of this method considering global
coarse solvers. In Funaro, Quarteroni, & Zanolli (1988) the authors propose
a relaxation parameter for the iterative process. The first studies in the N/N
methods correspond to the reference Bourgat, Glowinski, Tallec, Vidrascu et al.
(1988). Other works are Tallec (1993); Berselli & Saleri (2000); Achdou, Tallec,
Nataf, & Vidrascu (2000) among others. In Carlenzoli & Quarteroni (1995) the
adaptive D /N was introduced, meaning that a Dirichlet transmission condition
at inflow and Neumann transmission condition at outflow are imposed as well
as adaptive R/N method. These methods are reviewed in Gastaldi, Gastaldi, &
Quarteroni (1996). Robin/Robin combination is studied in Lions (1989); Nataf
(1995); Lube, Otto, & Muller (1998);

These methods could be transformed to other iterative processes solving
the problem on the interface. The Steklov-Poincaré methods and the Schur
complement methods involve the construction of lower dimensional systems
for degrees of freedom defined on the interfaces of subdomains; the former is
at the differential level, and the latter at the algebraic level. As in the case
of Schwarz methods, any combination of iteration-by-subdomains methods de-
scribed before can be reinterpreted as a preconditioned Richardson method,
but in this case, for the solution of the Steklov-Poincaré interface equation.
For example in Toselli & Widlund (2005) or Marini & Quarteroni (1989) such
an equivalent is treated in D/N algorithm. For the N/N case, this issue is
treated in Tallec (1993). For a detailed study of these issues see Quarteroni &
Valli (1999). Mandel developed the so-called Balancing Domain Decomposition
methods (BDD, Mandel (1993)) in which the coarse problem is introduced. The
way to construct an efficient preconditioner for the resulting interface opera-
tors is a core problem in the study of non-overlapping DDM. The construction

13
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of this preconditioner has been investigated from various strategies and to
various models in the literature. This kind of preconditioner consists of two
ingredients: one coarse solver and a set of local solvers. So one has to consider
multi-level methods to ensure faster communication between subdomains. The
idea behind these techniques is to combine a smoothing step in which the high
error frequencies are attenuated and a correction step at the coarse level. A
review of algebraic multilevel methods can be found in Axelsson (2003). The
difference between algebraic multigrid, also called multi-level technique, and
geometric multigrid is that the former method does not take into account any
information about the mesh associated with the discretization. The second
class of methods uses the finest mesh to construct the coarse space to speed
up convergence. A good review of these methods applied to CFD techniques
is found in Wesseling & Oosterlee (2001). A general review about algebraic
multigrid is seen in Stiiben (2001) and the references therein. A general survey
of preconditioning techniques for large linear systems can be found in Benzi
(2002).

All of these methods presented have been traditionally called domain de-
compositions methods. With the continuing growth of computational resources,
these methods have constitued the paradigm for evolving parallel computa-
tional techniques. In fact, the origin of both, DDM and DCM is the same:
Schwarz methods. This thesis adresses the problem consisting of coupling in-
dependent meshes by means of DCM. This strategy is described in detail in
the following section.

1.2.2 Domain Composition Methods

In this work we are going to focus on the DCM class. This technique is useful
for different reasons:

e To assemble different components obtained from different sources, this
case being typical in industries in which components are designed in
different departments of the company.

e To simplify the meshing of complex geometries by dividing it into differ-
ent meshable pieces.

e To perform local refinement to adapt to local mesh requirements.
e To couple multi-physics problems.

e To couple subdomains in relative motion without having to remesh the
whole computational domain (typically the Chimera method).

e To optimize the relative positions of some components without having
to remesh the whole computational domain, tipically in the Chimera
problems.

14
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Any of these reasons leads in general to non-matching meshes. The work pre-
sented in this thesis as well as the rest of this section will be focused on this
framework. As we have shown before, the DCM class has been divided into two
families, depending on whether the coupling is applied directly to the mesh or
to the local solutions obtained on the submeshes. These families have been
referred to as mesh-based and formulation-based as is shown in the scheme of
Figure 1.2 and will be explained in the rest of the section.

Formulation-Based

We have considered three different methodologies belonging to this first family:
e transmission conditions coupling;
e constraint imposition methods;
e mesh-free interpolation.

This section is devoted to dealing with them.

Transmission conditions. This family corresponds to the methods explained
in section 1.2.1. It is worth to mention that in the DCM context, the continu-
ity could be imposed through non-matching meshes. The coupling is achieved
via transmission conditions (in the finite element context) or by imposing the
continuity of fluxes (in the finite volume context). In a finite element context,
the transmission conditions make it possible to obtain continuous variables and
continuous fluxes across the interfaces. These conditions can be of Dirichlet or
Neumann/Robin type, imposing continuity of the solution and its flux, respec-
tively.

The main drawbacks of iteration-by-subdomains methods are listed as follows:

e As pointed out in Houzeaux & Codina (2003b) at the continuous level,
one can show the equivalence between the two-domain and one-domain
formulation for overlapping subdomains. The same equivalence is demon-
strated for disjoint subdomains in Quarteroni & Valli (1999). However,
the equivalence is no longer true at the discrete level.

e They introduce an additional iterative loop.
e The convergence depends on the local characteristics of the equation.
e The Neuman or Robin condition depends on the type of equation.

In fact, as we noted before, this kind of methods has been applied mainly to
the parallelization strategies.

15
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Constraint Impositions. This family of methods couples the solutions ob-
tained on disjoint subdomains by constraining the governing equations with
certain continuity conditions. These continuity constraints can be imposed via
Lagrange multipliers or by using penalty methods.

Lagrange multiplier methods are functions defined on the interfaces between
adjacent subdomains for imposing continuity in the primal unknowns. The cou-
pling is explicitly in the variational form, in the continuous or discrete sense.
The first works found in this issue are Dihn, Glowinski, & Périaux (1984) or
Dorr (1989). Although these methods do not imply the iterative procedure,
an increasing number of degrees of freedom is necessary in order to add the
new unknowns corresponding to Lagrange multipliers. The Lagrange spaces
have to be properly chosen if we want to obtain a well-posed linear system or
we have to apply some stabilization technique, see Brezzi, Franca, Marini, &
Russo (1997b). Farhat and Roux introduced another variant of these meth-
ods, the so-called Finite Element Tearing and Interconnecting (FETI) meth-
ods, Farhat & Roux (1991). In particular, these methods were developed for
elasticity problems in conforming subdomains although they have also been
extended to advection-diffusion-reaction problems, see Toselli (2001), and in
non-conforming subdomains, see Stefanica & Klawonn (1999). The primal or
original unknowns are eliminated by solving a local Neuman subproblem with
the result of obtaining the equation for the Lagrange multipliers or dual un-
knowns. A strategy inspired in the elasticity problems lies in the 3-field method,
by Marini & Brezzi (1994). This was introduced in the domain decomposition
framework by Brezzi and Marini in 1994 and offers the possibility to discretize
different subdomains with different formulations. The original problem is refor-
mulated introducing one Lagrange multipliers in each subdomain. This method
enables one to independently solve two local problems corresponding to each
subdomain so one can work with different meshes or different discretizations.
In order to by-pass the inf-sup conditions of the standard three-field formula-
tion, in Rapin & Lube (2004) a stabilized three-field formulation is presented.
The authors use finite elements with SUPG stabilization in the interior of the
subdomain so that almost arbitrary discrete function spaces could be used in
each subdomain.

These methods are also useful in an algebraic sense and could also be use-
ful as a solver strategy. In the reference Rivera, Heniche, Glowinski, & Tanguy
(2010) we can find a strategy to parallelize an ILU-type iterative finite element
solver for the Stokes problem using the Lagrange multiplier to communicate
between the processors, minimizing the number of communications. The so-
lutions of the Lagrange multipliers represent the jump in normal derivatives
through the interfaces. In that work, some penalty parameters are introduced
in order to solve the problem of the existence of zeros in the diagonal of the
resulting matrix.

We want to devote special attention to the non-matching meshes, since

16



“tesi” — 2014/5/13 — 11:39 — page 17 — #35

our method can couple this kind of meshes. As it will be emphasized during
this thesis, there are a lot of reasons to treat non-matching meshes. The idea
presented before in the context of three-field formulation, consisting in allow-
ing the use of different orders of interpolation in the different subdomains, is
not the only motive to deal with non-matching meshes. It is also useful when
PDE’s with heterogeneous media or Adaptive Mesh Refinement (AMR) are
solved. When complex geometries have to be meshed, one of the most use-
ful strategies is to divide the geometry into independent parts obtaining a
non-matching global mesh. In contact problems, the necessity to tie two in-
dependent and non-matching meshes also appears. Many examples could be
mentioned in this context. As a first result of coupling different discretizations
we find the work of Bernardi & Maday (1990). The authors propose and com-
pare two types of couplings with the Poisson equation. Later, the so-called
mortar methods, Belgacem & Maday (1994), appeared to treat the coupling
in non-matching grids, developed originally to disjoint subdomains. Mortar
methods impose the continuity in the interfaces in a weak form using the
Lagrange Multipliers space which is orthogonal to the jump in the unknown
interface. These methods couple a mesh discretized with spectral elements with
another mesh discretized with finite elements. The earliest works can be found
Belgacem & Maday (1997); Belgacem (1999). In the following references the
mortar method is extended to overlapping subdomains, Cai, Dryja, & Sarkis
(1999); Achdou (2002); Kim & Widlund (2006). In Becker, Hansbo, & Stenberg
(2003) a mortar method based on the classical Nitsche method is developed.
This last approach solved a Dirichlet problem without introducing boundary
conditions in the finite element space definition. In Hansbo, Hansbo, & Lar-
son (2003); Hansbo (2005) a consistent finite element method for overlapping
meshes based on Nitsche’s method is analysed. In Massing, Larson, & Logg
(2013) the geometric computations which are necessary to assemble the dis-
crete system associated to the Nitcshe methods, and other methods like contact
mechanics or extended finite elements methods, among others, are discussed.
In Bernardi, Maday, & Rapetti (2005) the authors describe the characteristics
of mortar spectral element and mortar finite element methods. The coupling
is done optimally in the sense that the error is bounded by the sum of the ap-
proximation errors in different subdomains to be coupled. But one of the main
drawback of these methods lies in the fact that the resulting matrix becomes
non-positively definite. An alternative strategy to mortar methods is found in
Boillat (2003). The authors couple independent meshes discretized with linear
finite elements through the use of a penalty technique. The scheme is compared
to the Nitsche method and the penalty parameter, with which a quasi-optimal
convergence is obtained, is proportional to the mesh size.

In the adaptive mesh refinement (AMR) context mentioned before the confor-
mity of the mesh is lost, which leads to the so-called hanging nodes. To solve
these problems the Lagrange Multipliers method has been widely used. See,
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for example, Berger & Colella (1989); Bernardi & Maday (2000); Trangenstein
& Kim (2004); Fard, Hulsen, Meijer, Famili, & Anderson (2012). In Glowin-
ski, He, Lozinski, Rappaz, & Wagner (2005) we can find the resolution of this
problem with a Schwarz algorithm presented in 1.2.

Mesh-free methods. Let us mention other kinds of methods that belong to
the formulated-based family and correspond to the use of mesh-free techniques
to locally connect non-conforming meshes. The idea is to pass the information
from one side to another, using the mesh-free framework in the gap between
the subdomains. This strategy to couple both kinds of discretization methods
is already studied in the work of Belytschko, Organ, & Krongauz (1995), where
the advantages of each of the methods are used, meaning that the authors cou-
ple finite elements near the Dirichlet boundaries and element-free Galerkin in
the interior of the domain. Another application of this strategy is found in the
refinement process, as we can see in the work of Liu, Uras, & Chen (1997). The
reference Huerta & Mendez (2000) presents a unified formulation of a mixed
interpolation general to any spatial order and this formulation is applied for
coupling and enrichment purposes. A general presentation of these methods
is in Belytschko, Krongauz, Organ, Fleming, & Krysl (1996) and an excellent
review is found in Li & Liu (2002). There are different strategies to interpo-
late the information between subdomains when mesh-free methods are used.
In Kim (2002) we find the moving-least-square (MLS) interpolation (Dolbow
& Belytschko (1998)) to construct shape functions used in Interface Element
Method (IEM). The same strategy for hexahedral meshes in three dimensions
with curved surfaces is explained by the same author in Kim (2008). The con-
tinuity and compatibility conditions are satisfied at the non-matching interface
and no additional degrees of freedom are generated. The finite element meshes
to be joined could present gaps and penetrations on the curved interfaces be-
cause the interface elements eliminate these irregularities since they divide the
finite elements into several polygons. But rational-type shape functions coming
from MLS-approximations present a difficulty in numerical integration. In Tian
& Yagawa (2007) the authors couple non-matching meshes for the elasticity
problem with three different interpolations: compact support radial basis func-
tion (CS-RBF), radial point interpolation method (RPIM) and moving Kriging
interpolation method (MKIM). The basic idea of the coupling via mesh-free
methods is to define in the interface between finite element meshes a new mesh-
free type of mesh with new elements called meshless gluing elements. In this
new mesh the integration area does not coincide with the interpolation area. A
new interface also appears between the meshless-type mesh and original mesh,
but there is conformity between the nodes, meaning that the interpolation is
continuous C° | so the continuity is set automatically. A general review of the
existing methods in this kind of hybrid formulations is the following reference:

18



“tesi” — 2014/5/13 — 11:39 — page 19 — #37

Rabczuk, Xiao, & Sauer (2006).

Mesh-free methods to couple non-conforming meshes presents some advantages
over the methods based on Lagrange multipliers. On the one hand, mesh-free
methods are easier to implement for any dimension. On the other hand, in an
algebraic sense, the resulting matrix is positive definite and without adding
more degrees of freedom. The main drawback of this strategy is determining
the influence domain of the elements of the interface since the shape func-
tions do not maintain the same properties of finite element shape functions.
To overcome this issue in Cho, Jun, Im, & Kim (2005), an alternative method
is presented in such a way that a correspondence is set between a master ele-
ment and one element of the interface which naturally determines the influence
domain.

In the AMR context, one also finds some applications of this technique, see
Lim, Im, & Cho (2007), where the authors illustrate the application for auto-
matic mesh refinement around a stress concentration zone in a T-shape struc-
ture in three-dimensions. It is worth mentioning that, in this context, another
hybrid combination could be found in the form of Continuous Galerkin with
Discontinuous Galerkin Method; for instance, in Badia & Baiges (2013) for
incompressible flows. A continuous Galerkin variational multiscale formula-
tion is combined with an equal-order symmetric interior penalty discontinuous
Galerkin with upwind for the convective term.

Mesh-based

The mesh-based methods belonging to this family only take geometrical aspects
into consideration to connect independent meshes. These methods are usually
given a general term: meshing assembly models. This type of methods are
divided into two main groups:

e Conforming approaches:

— creating a gap and meshing it with a conforming mesh;
— mesh merging;
— imprinting and merging.
e Non-conforming approach: HERMESH method.
All of these techniques represent an alternative to the above-mentioned strate-
gies of “formulated based” and consist in modifying certain aspects of the

meshes to be coupled in order to obtain conforming or quasi-conforming meshes.
Let us analyse both approaches.
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Conforming approaches. The first group obtains one conforming mesh
from two independent meshes. There are serveral techniques to do this. Among
them, we find the so-called DRAGON (Direct Replacement of Arbtrary Grid
Overlapping by Non-strucutred grid) meshes, see Liou & Kao (1994). The
meshes are originally formed from two structured meshes joined together by
one non-structured mesh. The non-structured mesh is formed a posteriori from
a hole-cutting process. The hole is filled in with this non-structured mesh which
connects both structured meshes in a conforming manner.

The second strategy corresponds to the mesh merging technique and it is found
in the work of Staten, Shepherd, Ledoux, & Shimada (2010), for hexahedra
meshes. The author called the technique Mesh Matching. It locally modifies
the topology of the hexahedra elements on one or both sides of the interface
surfaces, allowing the meshes to be merged into a conforming mesh across the
interface. In the finite volume framework, we can mention the code developed
by EDF R&D, Code Saturne, which uses non-conforming meshes. Adjacent
boundaries of non-conforming meshes are split into their intersecting subsets,
resulting in their forming a conforming mesh of polyhedra with an arbitrary
number of faces per cell, although they exclude polygons with holes. The idea
is to build new faces corresponding to the intersections of the initial faces to
be joined. The terminology used by the authors for this process is conforming
joining.

We also find a mesh merging technique to create a conforming mesh coming
from two independent meshes and consisting in merging the meshes with the
intersection between them. This kind of algorithm performs what are, in a way,
Boolean operations between groups of surface meshes. In Lo & Wang (2004)
we find an algorithm based on tracing the neighbours of intersecting triangles
(TNOIT) to determine the intersection lines. Once this intersection is done,
the nodes on the intersection lines are repositioned, elements cut by the in-
tersection line are removed and the gap is meshed by the proper connection
of nodes between the intersection line and the surface boundary. A similar
technique is found in Cebral, Lohner, Choyke, & Yim (2001) to join a carotid
artery with stenosis or to merge surface models representing the internal and
external carotid arteries of a normal subject.

Finally, we mention the geometric operation of imprinting technique, although
this is done at the geometry level and not at the mesh level. The idea is to
compute the intersection graph between two objects which create a coincident
topology where both objects intersect. After the imprinting operation, mesh
mirror technique or merge strategy is applied in order to obtain a conforming
mesh between two objects. These techniques are explained in White, Saigal, &
Owen (2004) or Clark, Hanks, & Ernst (2008) where non-manifold interfaces
between volumes are created from an assembly model for conformal meshing.
This technique, like many others, is used in the CUBIT project (Blacker, Bohn-
hoff, & Edwards (1994)). It is a full-featured software toolkit for the robust
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generation of two- and three-dimensional finite element meshes and geometry
preparation. Its main goal is to reduce the time for generating meshes, par-
ticularly large hex meshes of complicated, interlocking assemblies. One of the
functions of this code is to import two independent and non-conforming meshes
and modifying the meshes locally to make them conforming. The result is a
single mesh that is stitched together at the locally modified region.

Non-conforming approach. The other class of strategies based on mesh
modifications is the method presented in this work: the so-called HERMESH
method. It creates new connectivities between independent meshes with the
existing nodes. The method has been explained in some references as Eguzkitza,
Houzeaux, Aubry, & Vazquez (2013a); Houzeaux, Eguzkitza, Aubry, Owen, &
Vazquez (2013); Eguzkitza, Houzeaux, Calmet, Vazquez, Soni, Aliabadi, Bates,
& Doorly (2013b) and it will be described in detail in this manuscript.

1.3 Applications of Domain Composition Methods

The Domain Composition Methods presented before have been developed to
be applied in two kinds of frameworks. One corresponds to the Mesh Gluing
problems where different components will be composed to obtain a global solu-
tion. The other context corresponds to the so-called Chimera problems, which
also compose independent meshes but add the particularity of one overset mesh
inside the other with a corresponding hole-cutting procedure. Both scenarios
will be described in the following sections.

1.3.1 Mesh gluing

The idea of this kind of application is to compose independent meshes also re-
ferred to as dissimilar meshes. The issue of connecting them is one of the major
problems in FEM. The meshes could be non-matching and the discrete interface
between the meshes may present gaps or overlaps. Coupling non-conforming
meshes help us to piece together the parts that are modelled independently,
without sacrificing accuracy or efficiency, such as wing and fuselage structures
that may have been modelled by different analysts in different groups or or-
ganizations. Moreover, one can also impose selective refinement only on those
components where it is required. Hence, in a variety of industrial applications,
it is important to employ an efficient method that uses the existing meshes
to solve the global system.The origins were in aerospace engineering and was
also extended to offshore and shipbuilding industries or even in the electronic
field. Another advantage of this technique is found in problems with repeated
structural components like blades in an wind turbine.

We find the application of mesh gluing in several softwares under different
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names. In the NASA Langley Research Center, a method has been developed
for analysing structures composed of two or more independent substrucutures,
based on a hybrid variational formulation with Lagrange multipliers and in-
terfaces elements, Aminpour, Ransom, & McCleary (1995). The software de-
veloped by them is MSC' Patran/Nastran, see Schiermeier, Housner, Ransom,
Aminpour, & Stroud (1996), which offers the possibility to connect dissimilar
meshes and they refer to this option as glue. They apply the technique mostly
for permitting a high level of refinement in the local region and a coarser level
of refinement in the global region, that is, as a local refinement technique.
The software Abaqus also offers the possibilty of mesh gluing, known by the
developers as tie, via constraint equations and using a master-slave formula-
tion. The constraint prevents slave nodes from separating or sliding in relation
to the master surface. See this manual for further details: ABAQUS (2014).
In both softwares, the union between meshes could be for a shell and solid or
two solids. In other commercial softwares like Altair (2014) only the contact
between surfaces is valid.

Mesh gluing is also necessary to solve multiphysic problems. As an example,
in fluid-structure interaction (FSI) computations, a natural decomposition is
carried out by using non-overlapping meshes for the flow and the structure,
also referred to as partitioned coupling. See Piperno, Farhat, & Larrouturou
(1995); Farhat, Lesoinne, & Tallec (1998); Dureisseix (2008). In FSI realistic
applications, the fluid and structure meshes are non-matching either because
they have been designed by different analysts or because the fluid and structure
problems have different resolution requirements, as we have explained before.
In the following reference, Felippa, Park, & Farhat (2001) we find an interesting
review of the use of partitioned strategies in coupled dynamical systems and
a particular summary of the terminology related to this issue. Among many
other definitions, the authors describe two kinds of partitioning which we want
to mention:

Partitioning may be algebraic or differential. In algebraic par-
titioning the complete coupled system is spatially discretized first,
and then decomposed. In differential partitioning the decomposition
is done first and each field then discretized separately.

Differential partitioning often leads to non-matched meshes, as a
typical of fluid-structure interaction and handles those naturally.
Algebraic partitioning was originally developed for matched meshes
and substructuring, but recent work has aimed at simplifying the
treatment of non-matched meshes through frames

As the authors note, since the problem that we are considering can be studied
from many angles, the terminology is far from standard. We want to refer to
the general problem of coupling systems with independent meshes, whether it
be coupling different structural domains, multiphysical problems or even con-
tact problems, such as mesh gluing.
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The Arlequin method is another tool for the multimodel and multiscale analy-
sis of complex mechanical problems, see Dhia & Rateau (2005). This technique
locally allows refinement to link structure models (also called substructuring or
external junction by the authors) or to introduce an essential local modification
in the models themselves (which is referred to by the authors as internal junc-
tion). The coupling operator is based on the Lagrange multiplier field belonging
to the dual space of admissible displacement fields restricted to the gluing zone.

Different ways can be found to transfer data between non-matching meshes
in FSI and could be divided in a direct way or dual way. The former is formed
by techniques such as nearest neighbour interpolation, projection methods and
methods based on interpolation by splines. A good reference where these meth-
ods are compared is Boer, Zuijlen, & Bijl (2007). A dual way to impose bound-
ary conditions is by Lagrange multipliers, explained before. Another example
of multiphysical problem is the work of Dureisseix & Bavestrello (2006), for
thermo-viscoelasticity coupled problems where an extension of mortar tech-
nique is applied.

Techniques in contact computational finite element analysis involve tying
or gluing several non-matching computational domains. In this problem, inter-
faces are physical ones and present the boundary between two components and
could present gaps or overlapping between them. Many of the mortar meth-
ods with non-matching grids applied to this problems fail the so-called patch
test, meaning that they do not exactly recover any globally linear solution
of the governing equations (see Dohrmann, Key, & Heinstein (2000) for fur-
ther discussion of this issue). In Parks, Romero, & Bochev (2007) this test is
guaranteed using a novel Lagrange multipliers technique joining finite element
models on two independently meshed subdomains in two dimensions that share
a curved interface solving the Poisson equation. Another example of mortar
method with curved surfaces is Flemisch, Melenk, & Wohlmuth (2005) or Puso
(2004) in three dimensional problems for solid mechanics.

We find also composing meshes in aeroacoustic computation. This is the
case of the work of Lee, Vouvakis, & Lee (2005) for modelling large finite an-
tenna arrays, or the work of Peers, Zhang, & Kim (2010) in high-order finite
difference schemes for multiblock computational aeroacoustic in complex ge-
ometries.

To unite the rotor and stator independent meshes to compose an electric
machine we find the work of Tsukerman (1992). In this reference, the authors
propose an overlapping elements method which is valid only if the surfaces to
be connected are regular. This drawback is overcome in Krebs, Clénet, & Tsuk-
erman (2010) where the method is extended to non-planar surfaces introducing
modified shape functions in the overlapping area. The method is valid for mov-
ing meshes without any distortion in it. The method has been developed for
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three-dimensional meshes with hexahedral, tetrahedral or prism elements. The
idea is to project the nodes of one surface to the other and these projections
create virtual nodes and virtual elements. The virtual nodes do not entail new
degrees of freedom and are just used to define the nodal shape function for the
scalar potential in the overlapping area with the result that it is continuous in
the whole domain. In the framework of Generalized Finite Element Methods
(GFEM) we find the work of Duarte, Liszka, & Tworzydlo (2007) to unite non-
matching meshes. In particular, the authors present a GFEM with clustering
since they cluster a set of nodes and elements which define a modified finite
element partition of unity that is constant over part of the clusters.

In the solid mechanics framework, the meshless technique could be useful for
problems which present cracks or large deformations. See, for example, Cho
& Im (2006) where different couplings are compared in such situations. Other
references are Cho et al. (2005); Tian & Yagawa (2007); Kim (2008). Fluid-
structure interaction is another example of applicability in the meshless and
finite element combination for mesh joining application. In fact, one of the first
works related to this issue is found in this application, see Attaway, Heinstein,
& Swegle (1994).

Mesh-based techniques like the work of Lo & Wang (2004) or Cebral et al.
(2001) also have also been applied to solve mesh union problems.

1.3.2 Chimera

This section describes the so-called Chimera methods. As stated above, when
real problems have to be solved, complex geometries could be present. The
Chimera methods, also called overset grid methods, are a proper tool to sim-
plify the meshing process. Also the simulation of objects in relative motion is
the other classical problem simplified with Chimera methods. A key point is
that they allow flexibility in the choice of the type of the elements as well as
their orientation. The origin of the terminology Chimera is the mythological
Greek monster. Its descriptions were varied but all of them coincided in the
fact that the monster was composed of different parts of other animals. And
this characteristic is what gives the name to the strategy. In the Chimera prob-
lems, the mesh is composed of independent meshes embedded, one embedded
inside the other. The idea came from Steger & Benek (1983, 1987); Steger
(1991); Keeling (1997). At the beginning, the composed meshes were struc-
tured meshes. Firstly, Steger applied the method to solve the Euler equations
in a transonic flow in a wing plane. But due to the non-conservative algorithm
applied on the interfaces, the results between one domain and the Chimera
problem differed very much. In fact, this issue is one of the main difficulties of
the method. The interchange of the information in the interfaces to couple the
independent meshes could be the source of the error in the solution. In Liu &
Shyy (1996) and the references therein we can find a good discussion of this
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question in the context of Navier-Stokes equations.
The appealing characteristics of the Chimera method have enabled many
applications, summarized here:

e Simplified mesh generation. Landmann & Montagnac (2011); Zheng &
Liou (2003) At the time when mesh generators could not handle com-
plex geometries, the Chimera method was proposed as an alternative.
Different meshes around the components of the computational domain
are generated in an independent way. This enables a great flexibility in
the choice of elements in each mesh.

e Local refinement. Kao, Liou, & Chow (1994); Meakin (1995); Tang, Casey,
& Sotiropoulos (2003); Part-Enander (1995). When more accuracy is
required in some specific parts of the computational domain, the Chimera
method is a capable alternative in codes that cannot handle adaptivity.
Local refinement can be achieved by simply placing a refined patch mesh
onto the original mesh.

e Mowving components. Meakin (1993); Prewitt, Belk, & Shyy (2000); Blades
& Marcum (2007) The Chimera method is well suited for treating prob-
lems where components are moving (e.g.. opening flat). The indepen-
dent meshes are moved as rigid bodies and the solution is recoupled
when suited (e.g. each time step). This recoupling can be very costly
and cumbersome when taking into consideration parallel solvers on dis-
tributed memory machines. However, they make it possible to maintain
the boundary layers and local refinement around the bodies in a natural
way.

e Optimization. Nielsen & Diskin (2013) Another straightforward applica-
tion is the configuration optimization. A series of objects with indepen-
dent meshes can be moved around without having to remesh the whole
computational domain. Then, optimization techniques can be used to
find the optimum configuration of the components.

The main advantage of the Chimera method for the last two applications with
respect to a complete automatic remeshing stems from the fact that the compo-
nent meshes move like rigid bodies from one time step/configuration to another.
The coupling only affects the vicinity of the interfaces and, if the interfaces are
far enough from the body, the impact of the coupling is expected to be min-
imal. A good review of the literature related to the first two applications is
found in Wolf (2004).

The development of this technique has been widely treated in NASA aerospace
applications. A good review of the work coming from the institution is Chan
(2009). Examples of this include the Chimera Grid Tools project developed
by Chan (see Chan (2005)), PEGASUS 5 (see Benek, Steger, Dougherty, &
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Buning (1986); Rogers, Suhs, & Dietz (2003)) or the OVERFLOW series (see
Jespersen, Pulliam, & P.G.Buning (1997)). PEGASUS is completely indepen-
dent from the solver but will produce interpolation information for either finite
difference or finite volume flow solvers. In the DRAGON meshes presented pre-
viously, the authors use the software PEGASUS to provide boundary or fringe
nodes which are reordered according to their geometric coordinates. They need
to introduce additional matrices to describe the connection between the struc-
tured and unstructured grids. In most of the codes for solving this kind of
problem the experience of the user is a decisive factor to the success of the
simulation. The details of the computational mesh have to be known as well as
some trial and error test could be necessary to decide the best configuration of
the hole-cutting process. This step is the first thing to do in these problems. It
consists in eliminating the elements of the background mesh located just above
the embedded meshes, called patch meshes. This process generates apparent
interfaces where the coupling has to be imposed. To avoid the dependency of
the experience of the user in Wang, Parthasarathy, & Hariharan (2000) the
authors develop an automated Chimera strategy. In Landmann & Montagnac
(2011) we find a highly automated parallel Chimera method for overset grids
based on the implicit hole-cutting (IHC) technique. This algorithm is based
on the one presented by Lee & Baeder (2003). In Fan & Chao (2010), three
enhancements for the original overset grid assembly method are proposed. The
Beggar code (see Maple & Belk (1994)) is capable of solving three-dimensional
inviscid or viscous compressible flows problems involving multiple moving ob-
jects. It allows patched and overlapping structured grids in a framework that
includes grid assembly, flow solution, force and momentum calculation and the
integration of the rigid body, with a reduced number of user inputs. DCF3D
(domain connectivity function), Meakin (1991), is another code used to achieve
the grid assembly task in overset meshes. It has been used with the OVER-
FLOW solver. Smith & Pallins (1993) shows the parallel implementation of
an overset grid flow solver for a network-based heterogeneous computing en-
vironment. It was derived from OVERFLOW. Parallel performance, but only
for static problems, was presented in Meakin & Wissink (1999). The first pre-
sentation of the parallel implementation of grid assembly for dynamic overset
grids was by Barszcz, Weeratunga, & Meakin (1993). DCEF3D was parallelized
and used in connection with a parallel version of OVERFLOW on a distributed
memory parallel machine. In Cai, Tsai, & Liu (2006) a multi-block overset grid
method using a combination of matched and overlapping grids to simulate
turbulent flows over multi-element airfoils and three-dimensional wing-body
combinations is presented. In Djomehri & Biswas (2003) the role of asyn-
chronous communication, grid-splitting and grid-grouping strategies used with
the OVERFLOW flow solver is analysed. CMPGRD, see Chesshire & Henshaw
(1990), is another code for accomplishing the same objective and it has been in-
cluded in the OVERTURE code, by Brown, Henshaw, & Quinlan (1999). This

26



“tesi” — 2014/5/13 — 11:39 — page 27 — #45

code is developed in Los Alamos and it is designed to solve PDE allowing the
adaptive grid refinement, moving objects and overlapping meshes to be solved
in parallel or sequential version. Another software valid for Strucutured, Un-
strucutured, and Generalized overset Grid AssembleR, (SUGGAR, see Noack
(2005)) is devoted to the simulation of moving bodies. DirtLib: Donor interpo-
lation Recep-tor Transaction library, described in Noack (2006) by the same
author of the SUGGAR code, contains all the connectivity information be-
tween subdomains required by the solver.

Although it is true that Chimera methods are useful in a variety of applica-
tions, it is worth mentioning that the hole-cutting preprocess described before
also demand a great deal of computational work which must be done in an
efficient manner. In Guerrero (2007) successful and efficient applications of the
Chimera Method are described.

From a more theoretical point of view, it should be highlighted the analysis
of the Chimera method given by Brezzi, Lions, & Pironneau (2001). In this
work, the Laplace operator in a Chimera problem is analysed. The domain is
the union of two subdomains, Q = Q, UQ, with €, and €2, open and such that
Q=0Q,NQ, # 0. In the work of Keeling (1997) the authors analyse the differ-
ences between a differential equation system coming from one domain problem
and another one coming from the resoultion of two overlapping subdomains.
They identify the boundary operator, called trace operator needed to impose
a proper transmission conditions on the interfaces as well as its numerical ap-
proximation.

Finally, we want to mention the following reference Sanders & Puso (2012)
where the Nitsche method is applied in the simulation of fluid-structure prob-
lems and the discontinuous Galerkin discretization is used for non-linear ma-
terials. As well as other approach like the next work Katz & Jameson (2008)
with an mesh-less interface as an alternative to interpolation

1.4 Main objectives

As we have seen in the review of the state of the art, the idea of coupling
meshes or subdomains appears in a great number of contexts or applications,
each of them with their own particularities. Next, we present a list in order to
summarize the main problems detected in all of these different strategies.

e Main drawbacks of Formulation-Based Methods:

— Iteration-by-subdomain methods introduce an additional iterative
loop, are PDE dependency and difficult to implement.

— Difficult to choose a proper space for the Lagrange Multiplier func-
tions.
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— Modify the number of degrees of freedom in constraint methods.

— Problems to determine the influence domain for the shape function
in meshless methods.

— Difficult numerical integration in some approximations used in mesh-
less methods.

e Main drawbacks of Mesh-Based Methods:

DRAGON mesh implies modifying the number of degrees of freedom
as well as a powered mesh generator.

— Difficulty associated with generating a conformal mesh between
solids where solid-solid interfaces are not obvious.

— Loose tolerances or user error from CAD packages often make con-
formal mesh generation tedious.

— Strong element type dependency.

With the HERMESH method, we want to achieve a general method, easy to
implement, valid for any PDE, implicit and parallel. So the first requirements
were the method are:

1 Implicit;
2 versatile;
3 parallel.

These three main aspects have been respected in the HERMESH method
which in turn offers the following advantages:

4 Quasi-automatism: in some cases, the coupling can be done without a
priori identifications of the interfaces.

5 Topology independency: submeshes can be disjoint with and without gap
or overlapping; conforming and non-conforming.

6 Mesh size and mesh type independencies; the sizes and types of the ele-
ments of the different submeshes can be different.

7 Degrees of freedom conservation: the method introduces new elements
but no additional degrees of freedom, which can be a very attractive
feature from the implementation point of view.

All of these features will be studied in this manuscript.
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Chapter 2

Computational Mechanics Equations

Before describing our method in depth, one might propose describing the
physics and the numerical schemes of all the equations solved in this work.
These are the equations which govern the following problems:

Ship Hull: We have four coupled equations solved in a staggered man-
ner, two equations for the Navier-Stokes equations: momentum equation
and continuity equation, one equation of the Spalart-Allmaras turbulence
model and one level set equation;.

Neuron test: We solve large-scale computational solid mechanics. In par-
ticular, we consider the Neo-Hookean hyperelastic constitutive model.

Wind Farm: This problem entails the solution of the RANS equations
along with a k-¢ turbulence model specially designed for the Atmospheric
Boundary Layer and a specific law of the wall, including roughness effects.

Large and small airways: We solve the Navier-Stokes equations for in-
compressible transient flow.

Bypass in an estenosed artery: We solve the Navier-Stokes equations for
incompressible flow.

All these problems have been addressed successfully with the HERMESH
method presented in this work. This shows its considerable versatility. In each
case, the advantages of solving the problem with HERMESH are different, as
is explained below.
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Ship hull. In this problem we simulate the free surface flow around a ship
hull with the RANS equations together with the Spalart-Allmaras turbulence
model and a hyperbolic equation for the level set. The computational domain
is composed of two independent meshes. On the one hand, we have generated
a mesh for the hull, including the boundary layer. On the other hand, we have
generated a mesh for the background in which the hull is embedded. HER-
MESH applied to this problem could be useful in the optimization purpose if
we would want to test different keels.

Neuron test. In this case we have been able to prove that the application
of the HERMESH method in solid mechanic equations is valid for a real and
complex geometry. In particular, we simulate the real geometry of a neuron
composed of two different materials, one corresponding to the nucleus and the
other to the body of the neuron. The nucleus is assumed to be three times
stiffer than the cell body. The applpication of HERMESH to this problems
could be very useful when different parts of the neuron are meshed indepen-
dently.

Wind farms. We present a CFD modelling strategy for wind farms aimed
at predicting and optimizing the production of farms. The CFD model includes
meteorological data assimilation, complex terrain and wind turbine effects. The
model involves the solution of the RANS equations together with a k-¢ turbu-
lence model specially designed for the Atmospheric Boundary Layer. As the
integration of the model up to the ground surface is still not viable for complex
terrains, a specific law of the wall including roughness effects is implemented.
The wake effects and the aerodynamic behaviour of the wind turbines are de-
scribed using the actuator disk model, which consists of a volumetric force
included in the momentum equations. The placement of the wind turbines and
a mesh refinement for the near wakes is done by means of a Chimera method
based on HERMESH coupling. It consists in having an independent patch for
each turbine and coupling all of them to the background mesh which contains
the topography. There is, in this case, a large difference in mesh sizes between
the non-structured patch mesh and the structured background mesh. The ap-
plication of the HERMESH method to the optimization of the position of the
wind turbines in the wind farms saves a huge amount of time and memory
computational resources. In fact, one does not have to remesh for each differ-
ent configuration and it allows the combination of a coarse structured mesh for
the background and a fine and non-structured mesh around the wind turbines
to capture the effects of the wakes.
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Large and small airways. This simulation comes from joint research be-
tween the Barcelona Supercomputing Center (BSC), Imperial College (IC) and
Jackson State University (JSU). On the one hand, IC obtains a mesh for the
large airways down to the trachea. On the other hand, JSU generates an ar-
bitrary number of generations of the idealized broncho-pulmonary tree in an
automatic manner. With the method presented in this work, the HERMESH
method, both independent meshes will be coupled in such a way that the global
mesh is ready to be treated to solve the transient flow.

Bypass in an stenosed artery. Finally, we propose applying the HER-
MESH method to couple the bypass with the vessel. In this way, the geometry
of the bypass can be easily changed in order to test various configurations (an-
gles and diameters), without any need to remesh the complete computational
domain.

During the development of this thesis, some results have been obtained
for the solution of the general Advection-Diffusion-Reaction (ADR). For this
equation we have developed a new stabilization method based on a two-scale
variational method. This strategy will be adapted and applied for the rest of
the equations presented before, except for the solid mechanical problems, as
stabilization is not needed. The stabilization method presented in this work
is based on the following. A two-scale variational method is applied to the
one-dimensional problem. Then, a series of approximations is assumed to ana-
lytically solve the subgrid scale equation. This enables one to devise expressions
for the “stabilization parameter” 7, in the context of a variational multiscale
(two-scale) method. The method is equivalent to the traditional Green method
used in the litterature, although it offers another point of view. The scheme
proposed is compared to existing methods by means of solving a simple nu-
merical example.

2.1 Advection-Diffusion-Reaction Equation and Sta-
bilization

The advection-diffusion-reaction equation we want to focus on is:

L(u) := —eAu+V - (au) + su=f in Q, (2.1)

where Q is a ng-dimensional (open and bounded) domain (ng = 1,2, 3) with
boundary 0€2; € is the diffusion constant of the medium; f is the force term;
a is the advection field (not necessary solenoidal) and s is a constant source
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term. This equation should be provided with boundary conditions.

Let Q* be a regular finite element partition of the domain Q, with index K
ranging from 1 to the number of elements. The diameter of Q* will be denoted
by h as usual. Let us construct (at least mentally...) the functional linear spaces
from the previous partition so that the resulting finite element approximation
is said to be conforming. Given two functions w and v we define (u,v),, as
the L-inner product in w (if w is omitted the scalar product is considered
over ). Assuming homogeneous Dirichlet and Neumann boundary conditions,
the discrete Galerkin formulation of the problem consists in finding w; in the
appropriate space U, such that

a(un, vn) = (f,vn) vy, € Vh, (2.2)

where V}, is an appropriate test function space and the bilinear form a is
defined as

a(up,vy) == e(Vw; Vo) + (a - Vw,v) + (sw,v). (2.3)

Note that for the sake of clarity, some technical details have been and will be
omitted (e.g. the right-hand side of Equation 2.2 should be the duality paring).
As has been well-known for a long time, the Galerkin method is infradiffussive
and can lead to oscillant solutions. Stabilized finite element techniques have
been developed to improve the numerical stability. We will make a quick review
of these methods developed until now in order to set the variational multiscale
framework. We will only consider those techniques which have naturally led
to the settings of the variational multiscale family and will not consider tech-
niques such as the Characteristic-Galerkin or the Taylor-Galerkin methods.
The effects of the stabilization techniques we are interested in consist of the
addition of a stabilization term s(uy,v;) to the original equation so that the
stabilized system reads:

a(up,vp) + s(un,vn) = (f,vn) vy € Vi, (2.4)

We define the residual of the equation as

R(up) := f — L(up). (2.5)

The first stabilization methods that were developed were called artificial
viscosity (AV) methods, Johnson (1987). They consist in adding a viscosity-like
term to the equation whose coefficient was originally a constant; sufficiently
small to avoid over-diffusion and sufficiently large to stabilize the solution.
These methods are not consistent and, as the additional term is of first order
accuracy, the convergence of the method is not optimal.

To remedy this, second order artificial viscosity methods have been developed,
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see Baruzzi, Habashi, & Hafez (1992). To correct the indiscriminate character
of artificial viscosity, the streamline upwind (SU) was introduced in Hughes
& Brooks (1979). This method is less diffusive than the AV method as the
diffusion is only added in the streamline direction, but the non-consistency of
artificial viscosity methods is not improved.

Simultaneously with their work on the advection-diffusion systems of equa-
tions, the Standford team ( Hughes, Franca, & Balestra (1986)) devised a
Petrov-Galerkin formulation for solving the Stokes problem which avoided the
need to satisfy the Babuska-Brezzi stability condition, by adding a new per-
turbation to the continuity equation, proportional to the pressure gradient test
function. Following the same ideas, the Galerkin/Least-square (GLS) method
was presented in Hughes, Franca, & Hulbert (1989) as a “conceptual simplifica-
tion” and generalization of the SUPG method for advection-diffusion equations
with a negative perturbation term proportional to the whole differential oper-
ator of the test fuction.

At the same time, Douglas & Wang (1989) developed a stabilization technique,
known as the Douglas-Wang (DW) method, for the Stokes problem changing
the sign of the Laplacian of the perturbation function. This method was soon
applied to the ADR equation ( Franca, Frey, & Hughes (1992)) substituting
the differential operator L to minus its adjoint L*. During that time, the dif-
ferent expressions for the stabilization parameter were obtained in two main
ways; obtaining a nodally exact solution for simple one-dimensional problems
and using convergence analysis. In 1995 it was shown by Hughes (1995) that
stabilized methods could be derived from a variational multiscale (VMS) for-
mulation considering that the basis of residual-based, or consistent, stabilized
methods is a variational multiscale analysis of the partial differential equations
under consideration. This approach combines ideas of physical modelling with
numerical approximation in a unified way. The numerical instabilities of the
Galerkin method are due to the subgrid (unresolved) scales and their effects
must be modelled at the grid (resolved) level. This method not only explains
the instabilities but also clearly identifies the intrinsic time 7.

In the same sense, the bubbles method ( Brezzi, Franca, Hughes, & Russo
(1997a)) can be interpreted as a particular case (and implementation) of a
VMS method when the coarse scale space consists of linear polynomials.
Table 2.1 shows the expression of the stabilization term s(uy,v,) for the sta-
bilization methods described earlier, where 7 is a stabilization parameter that
can depend on the element size h and the equation coefficients, and where

JRCCE > / e

is the integral over all the elements. Note that in both AV and SU methods,
the stabilization parameter has sometimes been regarded as constant over the
mesh.
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Method Stabilization term s(up, vp)
Non-consistent
Artificial viscosity (AV) Jor T(Vup, - Vuy,) dQ
Streamline upwind (SU) Jo(a-Vup)T(a- Vuy) dQ
Consistent

SU Petrov-Galerkin (SUPG)  — [, (a- Vo)TR(up) dQ
Galerkin Least-Square (GLS) — [, L vh )T R(up,) d2

Douglas-Wang (DW) Jor L*(vn) 7 R(up,) d2
Variational Multiscale
Algebraic Models (ASGS) Jor L*(vp)udQ) - with @ = TR(up,)

Table 2.1: Stabilization term s(up,vp,) of common stabilization methods 2.4.

The variational subgrid scale (VSGS) method is a two-scale variational
multiscale method which offers a general framework for stabilization methods.
From a splitting of the exact solution u into a grid (coarse) scale u; and a
subgrid (fine) scale @ and a substitution of u into the continuous weak form,
one can obtain a system of two weak equations for these unknowns. At this
stage, simplifications must be done to solve the subgrid scale equation. In the
litterature, the usual approximation consists in taking the subgrid scale as
element-wise and solving for the following equation

L(@) = R(uy) (2.6)

in each element. The differential operator L is usually approximate by an
algebraic operator 7 ~ L~!; these methods are referred to as algebraic subgrid
scale methods (ASGS). Then the expression for the subgrid scale is substituted
into the grid scale equation which is solved for u; using the Galerkin method.
Figure 2.1 shows the road map of stabilization methods (this figure was strongly
inspired by that of Hughes, Feijoo, Mazzei, & Quincy (1998)).

The different ASGS methods proposed in the litterature differ essentially
in two points. First, the choice for the subgrid scale space; then, the manner
in which the differential operator is approximated, that is how 7 is chosen.
The main characteristics of the method proposed here consists of three main
assumptions. The first one consists in considering a one-dimensional problem.
The second one consists of the choice of the subgrid scale: the bubble space. The
third one consists in taking the right-hand side of the subgrid scale equation
(the residual R(uy)) constant and solving the subgrid scale analytically.

The first part of this chapter is organized as follows. We derive a family of
weak forms, depending on the integration by parts of the advection term. This
leads to a different natural condition of Robin type, and different coercivity
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Variational principle

Y

Weak form for u

U X Up
/ Multiscale splitting v = up + @
Y

’ Weak form for uy, ‘ ’ Weak forms for uj and 4 ‘
GW lStabilization method Approx. for @, Galerkin for uy,
Y
Unstable Eq. for uj, ‘ ’ Stable Eq. for up, ‘ ’ Stable Eq. for up, ‘

Figure 2.1: Road map of stabilization methods

properties of the bilinear operator. In the framework of subgrid scale models,
it is therefore legitimate to ask if the Robin transmission condition should
include the subgrid scale effects. Next, we present the ASGS model and, in
particular, derive the expressions for the stabilization parameter 7. To finalise
this first part of this chapter, we aim to solve some numerical examples to
demonstrate the behavior of the expression comparing it with others proposed
in the litterature, in the full range of physical parameters.

Weak formulations. We derive a family of weak forms, by integrating the
diffusion term by parts as well as a fraction (1—b) of the advective term, where
b € [0,1]. The corresponding formulation will be referred to as (1 — b)-weak
formulation. We split the boundary 9€) into two components denoted I'p and
I'n, so that 02 = I'p UT'y. We introduce the following definitions:

L) = {0 1@ | ur, =0},
Ve o= Hy (9),
V = H{ ().

We endow H*'(€2) with usual scalar product (-, -); and associated norm ||-|;.
Let us consider our differential problem (2.1). We restrict ourselves to so-
lutions in H*(£2), which obliges us to choose the force term so that

fe HY(Q).

In order to be able to show the existence and uniqueness of the solution,
we must assume that all the remaining terms present in the last equation are
bounded, i.e.

SE Ly(Q),V-a€ L,(Q),ac L,(Q)". (2.7)
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We first note that according to the Gauss theorem, we rewrite the advective
term as follows:

Jola-Vw)vdQ = (1-9) [, (a-Vw)odQ+b [, (a- Vw)vdQ

= (1-b) [o(a-Vw)pdQ+b [ (a-n)wvdl (2.8)

—b [,(a-Vo)wdQ —b [(V-a)wvdQ.

where b corresponds to the part of convective term which is integrated by parts.
Therefore, the weak formulation reads: find u € V so that

a(u,v) = l(v) YvelV, (2.9)
where

a(w,v) = &(Vw,Vv)+ (1 ->b)(a-Vw,v) —bd(w,a - Vv)
+([s+ (1 —=b)V - a]w,v),
(2.10)
lv) = (g9,0)ry + (f,v)q,

where the natural condition consists in prescribing g on 'y defined as

g=eg - b(a- n)u. (2.11)
Although strictly algebraically equivalent, the formulations stemming from the
different values of b have two major differences: their respective natural condi-
tions and their variational properties. The former has just appeared explicitly,
as the natural boundary condition is given by Equation (2.11). The latter be-
comes evident when we study the existence and uniqueness of the solutions.
From Lax-Milgram lemma, problem (2.9) has a unique solution if a(w,v) is
both continuous and coercive for any w,v € V. It can be shown that for any
p > 0 the bilinear form is continuous. However, coercivity is subjected to the
following conditions, as see Quarteroni & Valli (1994); Houzeaux & Codina
(2002):

1
s+ §V ca>0 almost everywhere, (2.12)
and the following condition on the relative values of the coefficients:
e>C'1 =2 |la-n|ory (2.13)

which implies that ||@ - n||. r, should not be too high with respect to the
diffusion e. We will distinguish three cases, b = 0,1/2,1. The unique solution
is therefore conditioned by the following:
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1. The data of the problem are such that s € L,(Q2),a € L,,(Q)";

1
2. The source term and advection satisfy s+ §V -a > 0 almost everywhere.

3. Finally, we require that

e (O-weak formulation: I'yy is an outflow or the advection is not too
high in the sense of Equation (2.13).

e 1/2-weak formulation: no additional condition.

e l-weak formulation: 'y is an inflow or the advection is not too high
in the sense of Equation (2.13).

We can easily see the great advantage that the weak 1/2-weak formulation has
over the other two: apart from Inequality (2.12), no condition on the magnitude
and direction of a is required on I'y.

2.1.1 Multiscale Approach

We would like to review the shortcomings of the Galerkin finite element for-
mulation. For the sake of clarity, we will consider here the stationary and
homogeneous Dirichlet problem with V- a = 0 and b = 0. We can derive the
following error estimate, Quarteroni & Valli (1994)

M
lu = unlly < e G h™ [ullmes, (2.14)
with
M = e+|alxa+[s]o.0
N lJrECQ’

where Cg, is a geometrical constant, h is the maximum diameter of the poly-
hedron of the triangulation, and c¢ is a constant depending on the geometry
and triangulation of €, but not on h. Error estimate (2.14) is optimal in the
H' norm, so we conclude that the Galerkin method can lack stability when
M > N, that is, when the diffusion ¢ is small compared to ||@| w0 and |||/ «.o
and if h is not sufficiently small. In fact, taking u = v = u;, in Equation (2.10),
we have

a(un, un) = [ Vunlg + [Is'2uall3,

as the convective term disappears when it is integrated by parts. We observe
that we have no control on the advective term of the equation. In addition,
when s'/2 is high, we gain control of the L, norm of the unknown at the expense
of losing control of its gradient. This is why a stabilization method is necessary.
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Expressions for 7. We now review some expressions for 7 that have been
proposed in the litterature. The first expressions were designed in the context
of SUPG, GLS or DW method. Typically, two ways have been undertaken; on
the one hand, with the help of convergence analysis and error estimate; on the
other hand, to obtain a nodally exact solution in some simple 1D problems
and using the straighforward extension to multidmensional cases. The Fourier
analysis and the use of Green’s function was specially designed in the context
of ASGS models. In these models, the key point for designing the stabilization
parameter is the algebraic approximation of the differential operator 7 ~ L~1.
Let us define a as an appropriate norm of the advection a (which is not
detailed here for the sake of clarity).
Discrete mazimum principle. Codina (1998) obtains the following expression
for 7 requiring that the associated algebraic system leads to a solution that
statisfies the discrete maximum principle:

4e  2a -1
T:|:h2+h+8:| : (2.15)

A similar expression is proposed by Shakib et al. Shakib, Hughes, & Johan

(1991):
() <)

Fourier analysis. Another strategy is that used by Codina ( Codina (2000)) in
the VMS context. The subgrid scale equation is expressed in the Fourier space
within each element, and approximated by taking into account the subscales
which contain only high wave numbers. This last assumption enables one to
get rid of a boundary term. Defining

—1/2
(2.16)

one can obtain

dg Ky d2g ki
— (k) ~i-2g(k k)~ ——2g(k
where k = (ki,...,kq) is the dimensionless wave number and % the diameter

of Q. The result of this is:

a(k) ~ 7(k)R(k), B
k) = [eUEvizEis]

Then Plancherel’s formula and the mean value theorem are applied to obtain
the mean energy of the subgrid scale obtained in each element, from which the
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stabilization parameter 7 is obtained:

e 9 a 9 —1/2
T= [(Cliﬂ+s) +<62h)] !
where ¢; and ¢, are constant independent of the equation coefficients and h.

Bubble condensation. The bubble method can be viewed as a particular case of
the VMS method. Traditionally, they have been treated in separate contexts
due to their different associated numerical approaches. In the case of the VMS
models, the subgrid scale is generally expressed as a proportional to the residual
TR(uy) while in the bubble method, the subgrid scales are solved numerically,
and are generally eliminated using static condensation. In this last context, one
can nevertheless relate both methods and obtain the 7 expression in terms of
the bubbles basis function. An expression of the parameter was designed from
convergence and stability theory by Franca and Valentin ( Franca & Farhat

(1995)): -
7 = min (2}; 5+ >

Green’s function. The Green function g(x,y) is introduced to set an equivalent
problem to the subgrid scale Equation 2.6 ( Hughes et al. (1998)). This enables
one to "propagate” the subgrid scale effects into the grid scale equation. As in
common ASGS methods, the Green function is localized and is obtained in
each element independently as:

L*(g(z,y)) = d(x—y) inQ,
glz,y) = 0 on k.

From the solution of this problem the stabilization parameter is computed as:

1
T = / / g(x,y)dQ,0,. (2.17)

Hauke & Garcia-Olivares (2001) obtains with this method the following ex-
pression:

1 sh(—1 4 M) — (14 ehPemh) —emhA ehAa) (N, — Np)e 918
T $2(—1 + ehr2=2))  (218)
where
A —  a—Va?+tdes
1 2¢ ]
)\2 —_ a+\/a2+4es'

2e

Let us outline two important points from what has been done in the lit-
terature. All the methods employed for designing the stabilization parameters
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in the context of ASGS involve an averaging over the element: this is why 7
depends on the diameter h of the element. The other point is that the subgrid
scale is assumed to be “small” or zero on the element boundaries: this assump-
tion is explicit in the case of the Green function and implicit in the case of the
Fourier analysis (a commendable characteristic of this method). Note that in
the wonderful one-dimensional world, when one requires the grid scale to be
nodally exact, one explicitly requires the subgrid scale to be nodally zero.

The method we propose in this work is similar to the previous ones in the
sense that a spatial averaging is performed and the subgrid scale is nodally
zero. The next generation of stabilization methods, in the framework of ASGS
formulations, will certainly overcome these deficiencies. This is necessary for
treating anisotropic meshes and for better taking into account the local varia-
tion of the subgrid scale within an element.

A variational two-scale method. Let us decompose the exact solution u
into a grid scale (resolved) w;, and a subgrid scale @ so that

u = uy + u, (2.19)
where u belongs to a space U that completes Uy, in U. That is U = U, ® U.

The same sum is performed for the test function space V=V, & V.

The weak form written as a system of equations reads: find (uy,, @) € Uy, x U
such that

alup +@,v, +0) =U(v, +0) Y (vh,0) € Vi, x V.

By taking successively v;, = 0 and © = 0 we obtain the following system:

a(up,vy) + a(a,v,) = (o) V oy € Vi,
a(up,v)  + a(w,0) = U(0), VoeV.

Let us define

(2.20)

fod = ZKZ/QKWQ,
/m/(') = g/m(‘) dr, (2.21)
/89”(.) o= ZK:/BQK(‘) dF—/aFN(’) dr. (2.22)

Now the fourth term of the grid scale equation is substituted by the sum
of the integral over the elements (25 and it is integrating back by parts. The
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same is done for the subgrid scale equations. We then obtain:

a(up,vn) + [o L*(v)0dQ
+ [ WV, -n+ (1 =b)(a-n)v,)dl =1l(v,) Vv, €V,

fQ, (up)0dS) + fﬂ, ) odS)

[S§]
m
<

+ [0 0(EVUu-n —b(a - n)u)dl = [, fodQ N

(2.23)
where the adjoint L* of operator L is

L*(vy) = —eAvy, — a - Vo, + svp,.

Note that the adjoint does not contain the compressiblity term (V - a).

Up to now, no approximation has been introduced. The idea is the follow-
ing: first, to “simplify” the subgrid scale equation; then, to obtain a solution to
this approximate equation; finally, to substitute this solution in the grid scale
equation.

A methodology for the solution of the subgrid scale equation. Re-
membering the definition of the residual given by Equation (2.5), we can rewrite
the subgrid scale equation as

/Q, L(a)vd) = /, R(uh)ﬁdQ—/Bm (eVu-n—b(a-n)u)dl Yo eV. (2.24)

The procedure to compute the subgrid scale consists in considering a simplified
problem for which we can obtain a solution to the subgrid scale and then
generalize it. The procedure is described in the following and sketched in Figure
2.2.

1. Consider a one-dimensional problem with constant coefficients.

2. Assume that the subgrid scale is zero on the element nodes, that is we
sought for a nodally exact grid scale solution wu;,. Therefore, the boundary
term in Equation (2.24) disappears. Note that we explicitly choose V=
Vi to be the bubble space in each element; the resulting equation is:

/ L(@)5dQ = | R(u,)odQ Vo€ V. (2.25)
’ Q/

For an element K = [0, h], the equivalent strong form of this problem is:

L(a) = R(up), u=0atz=0,h.
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3. Assume that the grid scale residual R(uy) is constant.

4. Set u = 7(x)R(uy). Substitute this equality into last equation and solve
for 7(x):
L(r(z)) =1, 7(z)=0atz=0,h. (2.26)

5. Compute the average 7 of 7(x) over the element as:

6. Approximate the subgrid scale as:

=41

(x) = TR(up). (2.27)

Thus, the stabilization parameter 7 is an approximation to the inverse
of the differential operator
Ta L7l

The proposed method is therefore an Algebraic Subgrid Scale model
(ASGS).

7. This expression is generalized to the multidimensional and variable con-
stant case so that the subgrid scale effects on the grid scale equation
becomes:

/Q/ L™ (vp,)udQ = /Q/ L*(vy)7 (g, a, s)R(uy)dSQ. (2.28)

We now study why the expression for 7 obtained by Hauke (2.18) (see
Section 2.1.1) using the Green method is the same as the one presented in this
work. Let us consider the strong form of problem (2.6) and express the solution
by introducing the Green function g(x,y):

~ [ | swRua)a.d, (2:29)

We have to find g(z,y) such that @ is a solution of Equation (2.6). If we intro-
duce Equation (2.6) in the last expression and integrate by parts we obtain:

a(y) = fQ fQ ﬂ(x))dQ aQ,,
= — o fg L* ,y)u(x sz+faQw Joer, 9(@,y) Badl,,

where B is a certain boundary operator. Thus, if the Green function g(x,y)

satisfies _
L*g(.%',y) = (5(IE _y) m QKa
g(x,y) = 0 on Tk,
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’ Equation for @ ‘

Assume 1D-constant coefﬁcientsl

’Consider: L(u) = R(up), t=0at x =0, h‘

Assume R(up) = cstl
’Set u(z) = 7(x)R(up) ‘

Solve i

’Expression for 7(x) ‘

Average over element i

Expression for 7 = 7(x)

Approximate a(z) = ?R(uh)i
Jo GL* (vp)dQY = [, L* (vp) 7 R(up)dQ)

Extension to 3D-Fvariable coefﬁcientsl

Joy AL (vp)dY = [o, L*(vp)7 (e, @, 5) R(up,)d2

Figure 2.2: Procedure to compute the subgrid scale.

then @ can be expressed as given by Equation (2.29).
Now, let us consider the effect of the subgrid scale as given by Equation (2.29)
in the grid scale equation. We have:

Jo L) = foy foo T ()9 ) Rl ()0, 2,
= > . fQK fQK L* (v, (y)g(z, y) R(up())dQ,dQ,.

By assuming that the product L*(v,(y))R(ux(z)) is constant, the subgrid
scale effects reduces to

Jo L(wn)udQ = 304 [o, Jo, 9(x,y)dQdQ, (% Jo L*(vh)R(uh)dQ> .

By identifying the average of the Green function with the stabilization
parameter T,

/Q, L* (vp)0dS) = /QK L (00 P R{u )0,

so that we identify u with 7R(up).
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Approximate solution of the subgrid scale. Following the algorithm
sketched in Figure 2.2, we first have to solve for the subgrid scale on a generic
element, and then compute the average over this element, while considering
the right-hand side (grid scale residual) constant. We are going to treat the
second order as well as the first-order following equations:

ADR: L() = —e20Q 4490 44,
AD: L() = —e2Q 4420

AR:  L() = a® 45(),

DR: L() = —eL045().

with € > 0 and s > 0, as well as a > 0 without loss of generality. We present
in this subsection the results for 7, the average 7(x) over an element, where
7(x) is solution of Equation (2.26). That is:

with

7(x) o = 0 for ADR, AD, DR,

T(z)lo = 0  for AR. (2.30)

L(r(x)) = 1in [0, h], with {

Note that the case of the AR equation, 7(x) is only prescribed to zero at the
inflow.
Let us introduce the following element dimensionless numbers:

h
Element Péclet: Pe, = a*,
2e
- sh
Element Damkohler: Da, = —,
a
o ) sh?
Element Kinetic number: Ki, = o = Pe;,Da,,,
€

and

Ay, = \/Pei + 2Pe,Day, = \/Pei + 2Kiy,
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The solutions for the different cases are:

ADR: 7(z) = g (—;Z;h(jh’;[e*m sinh(Ah%)Jrsinh(Ahu—g))]ﬂ),
AD: 7)) = k(5 - ).

AR:  71(x) =

SR

1 (1 _ e—Daha:/h)’

Dah
DR ) = b (MR coun (G 2/ + 1)

The stabilization parameter 7 has dimension of time. It is therefore convenient
to introduce the dimensionless parameter « such that 7 can be written as
follows:

ADR, AD, AR: 7 = Z2a(Pe,,Day),

DR: T = la(Kip). (2.31)

Table 2.2 gives the results of the expression for a obtained with the strategy
proposed together with the expression proposed by Codina and Shakib. Figure
2.3 shows the dependence of « upon Pe;, and Day, for the ADR equation. The
asymptotic behaviors of the three methods are similar although they slightly
differ in some special cases. These special cases will be examined in the example
presented in the next section. Note that with the expression for the ADR and
AR equations, the same results as Hauke are obtained, see Hauke & Garcia-
Olivares (2001) (although the expression for ADR presented here has been
rearranged).

Remark 1: Advection-diffusion equation for linear elements. Let us
take a look at the advection-diffusion equation (s = 0) in one dimension. If
linear elements are used, then both R(u;) and L*(vj,) are constant and do not
include the diffusion term (in this case, the ASGS method is equivalent to the
SUPG method). Then the expression @(z) = 7(z)R(uy) is exact, with 7(z)
solution of Equation (2.26). The subgrid scale term of the grid scale equation
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Codina

Shakib

Present work

ADR Pey, Pey, 2 Ap cosh(Pej,)—cosh(Ay,) +1
Pep,+PepDay /2+1 \/Pei+(PehDah/2)2+9 Day, | PepDay, sinh(Ap)
AD Pe, —Pen coth(Pep,)— 5i—
Pep+1 /Pei-i-g ( h) Pey,
1 1 2 (. . -Day
AR Day, /211 (Dan /2711 Da,zl [Dah 1+e ]
1 1 1—cosh(1/2Kip,)
DR 2/Kip+1 /(6/Kip)2+1 V/2Kij, sinh(1/2Kip,) +1
Table 2.2: Different expressions for a.
Codina Codina
Shakib Shakib
Present work Present work

10
~"Codina
7 Shakib
" present work
10" g
10?
10
10%
10° 102 100 10° 100 102 10°
Pey
o
0 Codina
Shakib
Present work
10t
10?2 _
10°
1074 3 2 1 0 'y 2 3
10° 102 107 10° 100 10 10
Day,

10°
107
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10°
10 10°
) e
10
10
10° 10°
= Codina
Shakib Shakib
Present work Present work
10" 10
© 10° = 102 -
10% 10%
4 104
10° 102 100 10° 100 102 10° 10° 102 100 10° 100 10?2 10°
Pey, Pey,
0 0
0 Codina 0 T Codina
... Shakb Shakib
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10" 107
s 107 s 102
10° 10°
1074 3 2 1 0 1 2 3 10 3 2 1 0 1 2 3
10° 102 1207 120° 10" 10?10 10° 10?7 100 10° 100 10° 10
Day, Day,

Figure 2.3: « for the ADR equation. (Top) Different Views. (Mid.) As a function of
Pe;, for Day, = 1072,10°,10% from left to right. (Bot.) As a function of
Day, for Pej, = 1072,10°,10? from left to right.
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—
mu - Shakib — < /%g —
Figure 2.4: « for different equations. (Left) AD. (Mid.) AR. (Right) DR.

becomes for an element Qx = [0, hl:
. hor .
fQK aL*(v,)dQ = [ L*(vp)7(2) R(up)de,
. h
= L*(vp)R(uy) [, 7(z)d,
= L*(va)R(up)hT,
Borwr N
= fo L*(vy)TR(up,)dzx.
This means that, for this particular case, the solution w;, is nodally exact using
7 in the integral instead of 7(z). In fact we recognize that the expression for 7
is the one usually used in the litterature. In addition, we note that u, + o =
up, + 7(x)R(up) is exact in every element Q.
Remark 2: What is h for quadratic elements? Let us consider the case
of quadratic elements. As in the case of linear elements, we ask for the solution
to be nodally exact. Then we take as a stabilization parameter T, so that
To = ]’L/Q/OV TQ(:U)d-:U,
where 75 (x) is solution of
1 . 7'2($) ’07}1/2: 0 for ADR, AD, DR,
L(m(x)) = 1in [0,h/2], with { () o= 0 for AR,
and, equivalently,
1 /h
Tog = —— TQ(I’)d.ﬁ,
h/2 Jus
where
1 . TQ(IE) |h/2,h: 0 for ADR, AD, DR,,
L(m(x)) = 1in [h/2, h], with { (@) o= 0 for AR.
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Figure 2.5: Comparisons of the stabilization parameters for a linear and a quadratic
element [0, h]. (Left) AD. (Mid.) AR. (Right) DR.

For linear elements we have 7 = 7(h). We can easily check that 7o(h) = T(h/2).
Therefore, the subgrid scale term in the grid scale equation for an element €2
reads:

h/2

Jor L'(w)ad = 7% L*(0) 7o (h) R(uy)dz + [, L (v)72(h) R () do,
= J LT/ R(un)dz + [, L (0n)7(h/2) R(un)d,

= foh L*(vy)7T(h/2)R(up)dx.

Therefore, for quadratic elements, the expression of 7 given by Equation (2.31)
with a given by Table 2.2 holds with h substituted by h/2. Figure 2.5 illustrates
the case of the AD (¢ = 0.01,a = 1), AR (a =1, s = 1) and DR (¢ = 0.1,
s = 1) equations, all with a unit right-hand side.

2.1.2 Stabilized finite element formulation

The stabilized finite element formulation consists in substituting the equa-
tion for the subgrid scale (2.27), together with Equation (2.31), into Equation
(2.23). However we need a further approximation concerning the boundary
term in the latter equation. We saw in the last section that for the one-
dimensional problem, we chose the subgrid scale to vanish on the node: thus
the boundary term vanishes exactly. In multi-dimensional problems, Codina,
using a Fourier analysis, showed that the subgrid scale tends to zero on the
element boundary.

alup,vp) + / L*(vp)TR(up) dQ = U(vy,).
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3 a S
ADR1 5 1 10°
ADR2 5x1072 1 107
ADR3 5x107% 1 10!
AD 5x1072 1 0
AR 0 1 102
DR 1073 0 1

Table 2.3: Numerical example. Cases and coefficients.

By rearranging the terms, this equation can be rewritten in terms of the equa-
tion residual as:

/ —R(up) vy, — TL* (vy,)] dQ+/

Q

b/ -Vup)vy + up(a - Vo) + (V- a)v,] dQ = / guy, dSQ.
I'n

eVuy, - Vuy, dQ+/5Auhvh 1Y)

Q

2.1.3 Numerical Example

We solve the one-dimensional problem on the domain [0, 1]. Both linear and
quadratic elements are compared using 10 elements and 5 elements (h = 0.2),
respectively. The cases have been chosen using Figures 2.3, 2.4 to select values
of Pe;, and Da;, for which the a’s give different values. The data are given
in Table 2.3. For all of them the source term is f = 1, and the boundary
conditions are u(0) = u(1) = 0, except for the AR case for which only «(0) = 0
is prescribed.

Figures 2.6 and 2.7 show the results obtained. Note that for quadratic
elements, the solution is drawn as if it was linear within each element, as we
are only interested in nodal values. As a general observation, we can state
that the stabilization parameter presented here never gives the worst result.
For ADRI1, we obtain results similar to those of Shakib for both linear and
quadratic elements. The results of ADR2 are better than those of Codina
and Shakib. The latter give very bad results in the quadratic case. For the
ADR3 case, Codina obtains a slightly better solution. The advection-diffusion
equation gives nodally exact results for the presented strategy, as explained in
Section 2.1.1. They are very similar to those of Shakib. In the case of the AR
equation, an overshoot of 50% is obtained with all the method. It is somewhat
lesser for quadratic elements. Finally, the present stabilization parameter based
on exact solution gives the better results for the DR method.
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Figure 2.6: 1D problem: numerical solutions compared to the exact solution for lin-
ear and quadratic elements. (Top) Linear element. (Bot.) Quadratic el-
ement. (Left) ADR1 (Mid.) ADR2. (Right) ADRS3.
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Figure 2.7: 1D problem: numerical solutions compared to the exact solution for lin-
ear and quadratic elements. (Top) Linear element. (Bot.) Quadratic el-
ement. (Left) AD. (Mid.) AR. (Right) DR.

2.2 Incompressible Navier-Stokes Equations

The equations for an incompressible flow will be described. Next, the varia-
tional and stabilized form will be presented as well as the time discretization
strategy. Finally we will explain the Navier-Stokes solver used in this work and
the strategy to transform the solution process into a fractional step.
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2.2.1 Governing Equations

On the basis of the second law of motion, the Navier-Stokes equations are:

poiu+ p(u - Viu =2V - (ne(uw)) + Vp = pf, (2.32)
V-u = 0, (2.33)

where w is the velocity of the fluid and p its pressure; p is the dynamic viscosity
and p the density considered to be constant over the computational domain
and insensitive to pressure variations. e(u) is the rate of deformation tensor
given by

1
e(u) = §(Vu + Vu')
Finally f is the vector of body forces (for example, gravity). A detailed deriva-
tion of these continuum equations of the fluid motion can be found in Batchelor
(1970).
The Navier-Stokes equations are solved in a domain €2 of dimension n4 together

with appropiate boundary conditions on the contour I' : 6€2. For example,

U = u, on I'p x (0,7),
coon = t, on I'y x (0,7,

U = U on 2 x 0,
where I' = I'p U 'y, n is the outward unit normal and o is the stress tensor
o= —pl+2ue(u)

being I the ng4-dimensional identity.
Let U := [u, p|" and define the differential operator L(U) and force term F as

L(U) — [ p(’u ’ V)u - 2'3 ,lflus(u)) + Vp (2.34)

o [ of } (2.35)
0
We have to introduce the matrix M so that
M = diag(pl, 0)

So using this notation, the Navier-Stokes equation presented before can be
written in a compact form as:

Mo,U + L(U) =F (2.36)
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2.2.2 Stabilized finite element formulation

We now derive the variational formulation of our problem. Let us introduce
the following functional spaces:

V = veH'(Q)"|vp, =0},
Q = L*9),

U = ’UEHl(Q)nd”U‘FD = ’U,g},
P

= {peLQ(Q) /deZOifFN:@}
Q

The first step to solve the Navier-Stokes equations is to linearise them. Let
us denote by m the iteration number of the iterative scheme. For the sake of
clarity, we only consider here the Picard linearization, that is,

(- V)u]™ = (™ V)

The variational formulation of the problem reads as follows according to the
decomposition of the advection term done in Equation 2.8. Given u%¢U, for
m = 0, 1... until convergence, find (u™*!, p™*1)eU x P so that

a™ (u™,v) = b(p™, v) + b(g, um ) = I(v) (2.37)
for all (v x q)eV x @, where

a"(w0) = 2 [ pe(w): )+ (1-5) [ [ptu” - V)ul - va0
—b/ u™ - V)v udQ+b/ ™. n)u - vdl,
b(p,v) = /QpV-UdQ
l(v) = Apf-de+£Nptn~vdF

It is well-known that the latter formulation can lack stability for different
reasons. One is related to the compatibility of the finite element spaces for the
velocity and the pressure which have to satisfy the so-called Ladyzhenskaya-
Brezzi-Babuska condition, see Fortin & Brezzi (1991). This condition is neces-
sary in order to control pressure field. Another reason for the lack of stability
is related to the relative importance of the viscous and advective effects. It can
be directly related to the instabilities caused by high advection in the case of
the ADR equation, as studied in section 2.1. The stabilized technique applied
to this Navier-Stokes equation is based on the VMS method presented before,
the ASGS.
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Let @ be the convection velocity known from the previous iteration (coming
from the Picard linearization method). And let us decompose the Navier-Stokes
differential operator L defined in 2.34 into two components L; and L, so that

Li(U) = [”(%'_?“} (2.38)
L(U) = [—2V.(Mso(u))+Vp] (2.39)

where L, represents the part of the operator that is integrated by parts. The
stabilized formulation reads:

(M@tUh + L1 (Uh), Vh) + (2M€(U)h, €(’U)h) — (ph, V- Uh) (240)
+(MOo,U, V) + (U, L*(Vy)) = L(Vy,) (2.41)
In this equation V;, := [vp,qu]", v, and g, being the velocity and pressure

test functions, respectively. For the right-hand side we have to taken in an
appropiate discrete space; L(V) := (pf,v). The subgrid scale U is computed
element-wise by solving the following equation:

Mo, U + T = R(U,),
R(Uh) =F — M@tUh — L(Uh),

where 7 is a square matrix such that

= [711 0 } (2.42)

0 T2

and 71 and 7, are given byCodina (2001)

2.2.3 Time discretization

Let us introduce a uniform partition of the time interval [0, 7] and define

u" = fu" (1 - O)u”,
ot = th -t
5 un+9 _ un+9 —u”
! ' 9ot

According to this integration rule, the time-discretized Navier-Stokes equations
are solved as follows. Given an initial condition u", find u"** and p"** for each
n > 0 so that

p(stun-l-@ i p(un+9 . v)un+9 _ 2,uV . E(un+0> + vpn-‘ré’ — pfn+9 in (0]
V-urt? = 0 in Q
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Figure 2.8: Algebraic split strategy. Orthomin(1) method applied to the pressure
Schur complement system.

2.2.4 Navier-Stokes solver and algebraic split strategy

At each time step, the linearized system
Auu Aup u _ bu
v =
must be solved. Four sub-matrices arise. Matrix A, includes the Galerkin as
well as the stabilization terms, like the SUPG-like term and the continuity
enforcing term. Matrix A, includes the stabilization terms and the Galerkin
pressure gradient term. Matrix A, includes the velocity divergence operator
as well as the part of the pressure stabilization involving the velocity in the
momentum residual. Finally, matrix A,, includes only the pressure stabiliza-
tion. Note that this sub-matrix is null if div-stab elements are used. When
this system is solved in one blow using either a direct solver or an iterative
solver with preconditioning, the resulting scheme is referred to as a monolithic
scheme. The next section briefly explains the split strategy for transforming
the solution process into a fractional scheme.
In this section, we will obtain an algorithm to solve Equation 2.43. The
steps are summed up in Figure 2.8. In this subsection, we shall limit ourselves
to briefly describing the algebraic split strategy used to solve the linearized

system. Although the complete development of the algorithm can be found
inHouzeaux, Aubry, & Véazquez (2011), we shall nevertheless give some details.
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Pressure Schur complement system. Let us manipulate the matrix system
2.43 to compute the Schur complement system, Golub & Loan (1996), for the
pressure. The Schur complement system is the pressure equation one obtains
after eliminating the velocity from the momentum equations:

Sp = b,, with, (2.44)
S = A,-ALAA,,, (2.45)
b, = b,—A,.A.'b,. (2.46)

Preconditioned Orthomin(1) iteration. The idea is now to apply a relaxed
preconditioned Richardson iteration (also referred to as a simple iteration)
method, Golub & Loan (1996); Greenbaum (1997), to solve Equation 2.44. Let
r* be the residual of the Schur complement system at iteration k: r, = b,—Sp*.

We introduce a relaxation parameter a so that the simple preconditioned
iteration reads:

pt =p" +aQ 1. (2.47)

The preconditioner Q should approximate S defined in Equation 2.45. When
« is constant and « < 1, it is referred to as under-relaxation parameter. When
« is constant and a > 1, it is referred to as the over-relaxation parameter.
The Orthomin scheme consists in choosing « in a dynamic way. To do so, let
us multiply Equation 2.47 by S and add —b, on both sides of the resulting
equation. We obtain

" =rF —aSQ'r". (2.48)

k+1”2

Minimizing ||r we obtain the following equation for a:

<rf SQ 'rk >
o= .
<SQ-'rk, SQ-1r* >

(2.49)

The resulting scheme is shown in Algorithm 1. At each iteration k the
residual is measured as:

b, — Aj,u* — A} p*|
b, — A, ut]]

Continuity equation residual = (2.50)

We can check that this algorithm is momentum-preserving. It involves two
momentum solves, that is one more than classical fractional step techniques.
In addition, we can derive from it a continuity-preserving version. Figure 2.9
compares the convergence of the Orthomin(1) with that of the continuity-
preserving Richardson method (which has close similarities with classical frac-
tion step methods). The example is a transient LES simulation for which we
show the first five time steps. An evident gain in convergence is obtained by
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Algorithm 1 Momentum preserving Orthomin(1) iteration

1. Solve momentum eqn A, u**! =b, — A,,p*.

: k _ k+1 k
2. Compute Schur complement residual r* = [b, — A, u*"| — A, p".
3. Solve continuity eqn Qz = r*.
4. Solve momentum eqn A, v = A,pz.
5. Compute x = A,z — Ay, v.
6. Compute o =< r¥, x > / < x,x >.
7. Update velocity and pressure
Pl = pF 4oz,
ubt? = uFtl — v,
Orthomin(l) —— 10* Orthomin(l) ——
Richardson - Richardson -
E k=
g g
g z
5 £
107 - - - - . 10 - - - - .
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Number of iterations Number of iterations

Figure 2.9: Comparison of convergences of Orthomin(1) and Richardson. (Left) Mo-
mentum. (Right) Continuity.

the Orthomin(1) method, even though it requires one additional momentum
solve.

The Schur complement preconditioner (). In the litterature, the precon-
ditioner is usually based on the following splitting

Q=A,+P,

where P approximates the second term of the Schur complement matrix given
by Equation 2.45 such that

P ~ —A,A A,
Let us introduce the momentum operator M (after first order time dis-
cretization) acting on the velocity as M = p/dt +u -V — V - [2ue]. If we

identify A,, with the divergence operator, A,, with M and A,, with the
gradient operator (that is, without considering the stabilization contribution
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to the matrices), P can be computed from the weak form of Uzawa’s opera-
tor =V - M~'V as described in Houzeaux et al. (2011). Using the so-called
stabilization parameter 7, presented in the section 2.1.1 as an algebraic approx-
imation of the inverse momentum operator, P is approximated by the following
weak form

P < / TVp - VqdSd. (2.51)
Q

The important fact to note here is that the resulting preconditioner Q is sym-
metrical.

2.3 Turbulence Modelling

In 1937, Taylor and von Karman proposed the following definition of tur-
buleuce:

Turbulence is an irregular motion which in general makes its ap-
pearance in fluids, gaseous or liquid, when they flow past solid
surfaces or even when neighboring streams of the same fluid flow
past or over one another.

It is characterized by the presence of a wide range of excited length and time
scales. The irregular nature of turbulence stands in contrast to laminar motion,
so called historically, because the fluid was imagined to flow in smooth lami-
nae, or layers. Virtually all flows of practical engineering interest are turbulent.
Turbulent flows always occur when the inertial forces are relatively much more
important than the viscous forces, that is for large Reynolds number, an adi-
mensional parameter devoted to quantify the relative importance of these two
types of forces for given flow conditions. Careful analysis of solutions to the
Navier-Stokes equations, or more typically to its boundary-layer form, show
that turbulence develops as an instability of laminar flow.

For a viscous fluid, the instabilities result from interaction between the
Navier-Stokes equation’s non-linear inertial terms and viscous terms. The in-
teraction is very complex because it is strong rotational, fully three-dimensional
(even if the original laminar flow or the initial disturbance is two-dimensional)
and time-dependent (nevertheless, it is classified as stationary if the mean flow
is time-independent).

It is observed that turbulent flows are always dissipative. Turbulence con-
sists of a continuous spectrum of scales ranging from largest to smallest. In
order to visualize a turbulent flow with a spectrum of scales, one often refers
to turbulent eddies. A turbulent eddy can be thought of as a local swirling
motion whose characteristic dimension is the local turbulence scale. Eddies are
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generated in regions of high shear in the main flow field, i.e. near the solid
wall or in the vicinity of interface between two streams flowing at different
velocities. Eddies are three-dimensional. At any given time the flow contains
eddies of various sizes. The size of the largest eddies is governed by the size of
the flow and its geometry. The largest eddies break into smaller and smaller
eddies until they are finally dissipated through viscosity (dissipation = friction
loses). The largest eddies interact with the main flow and extract energy from
it by a process called vortex stretching. Kinetic energy is transferred from large
eddies to progressively smaller and smaller eddies in what is called the energy
cascade. The smallest scale of motion which can occur in a turbulent flow is
dictated by the viscosity. The energy associated with the smallest eddies is
dissipated and converted into thermal energy. The transfer of energy from the
main flow is expressed by the non-linear terms in the Navier-Stokes equations.
These terms play a very important role in the generation and maintenance of
turbulence.

The structure of the largest eddies is highly anisotropic and flow-dependent
due to their strong interaction with the main flow. The diffusive action of
viscosity tends to smear out directionality at small scales and therefore the
smallest eddies are isotropic. A characteristic of turbulent flow, which results
from the movement of eddies, is the greater ability for mixing or diffusion.
Transportable quantities related to the flow - such as momentum, heat, sedi-
ment or pollutants - spread much more rapidly in turbulent than in laminar
flow. The mixing motion resulting from fluctuations causes the viscosity to
seem much greater than it actually is.

Additional stresses (known as Reynolds stresses) are developed in turbulent
flows. Because of the large magnitude of the Reynolds stresses, there is much
greater energy loss in turbulent than in laminar flows.

Turbulence modeling is one of three key elements in CFD. Very precise
mathematical theories have evolved for the other two key elements, grid gen-
eration and algorithm development. Despite the many approaches and turbu-
lence models that have been attempted since the eighties, no universal model
has been devised. An ideal model should introduce the minimum amount of
complexity while capturing the essence of the relevant physics but this is very
difficult because an enormous amount of information is required to completely
describe a turbulent flow.

Numerical approaches for turbulent flows. In contrast to laminar flow
problems, numerical simulation of turbulent flows cannot be carried out by sim-
ply discretising the governing equations and solving them on a certain mesh.
This is caused by the fact that turbulence is essentially three-dimensional and
simultaneously contains many length scales. With increasing Reynolds number,
the length scales of the smallest eddies in the flow become smaller and smaller.
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Consequently, the amount of computational resources necessary to describe all
the length scales that occur increases with the Reynolds number. Even the
largest supercomputers do not have the required speed and memory capacity
to handle this amount of data, except for turbulent flow with relatively low
Reynolds.

In order to compute all significant motions of a turbulent flow, the domain
on which the computation is performed must be at least as large as the largest
eddy, and the mesh must be as fine as the smallest eddy.

The most important computational approaches developed up to now to simu-
late turbulent flows are:

e Direct Numerical Simulation (DNS);

e Large Eddy Simulation (LES);

e Detached Eddy Simulation (DES);

e Reynolds Averaged Navier-Stokes Models (RANS).

Although one can numerically solve the complete set of Navier-Stokes equa-
tions in three-dimensional space and time, as the first method presented above,
the DNS method, because of large demand on computer resources, is limited
to relatively low Reynolds and Rayleigh numbers and simple geometries.

For practical problems of industrial and environmental relevance, one of
the most viable approaches is to consider RANS equations, the solution of
which requires low-to-moderate computer resources that are affordable. How-
ever, RANS methods require some approximations, based on certain physical
principles, known as "turbulence modelling”.

A middle of the road between DNS and RANS is represented by the LES
method, which resolves in space and time only the large-scale eddy motion,
but employs models for subscale motion, usually defined in terms of numer-
ical mesh size (hence called subgrid-scale models). LES can deal with higher
Reynolds numbers and more complex geometries. However, LES is still quite
demanding in terms of computer resources, closer to DNS than to RANS.
This is because both DNS and LES always require solving the instantaneous
Navier-Stokes equations in time and three-dimensional space, even if the time-
or ensemble-averaged properties are steady and two- or one-dimensional, e.g.
a steady fully developed flow in a pipe or in a jet.

Unlike DNS and LES, RANS can be used in steady form, and the problem
can be solved only in two- and even one dimension if the average flow condi-
tions satisfy these constraints.
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Also, there have been many activities to combine LES and RANS in a hy-
brid manner. Because the resolution problem in LES is especially acute close
to a solid surface where there are no large eddies and where proper numeri-
cal resolving of the small-scale eddy-structure requires very fine computational
mesh, the hybrid approach uses RANS modelling in the near-wall region and
LES solutions in the usually much larger flow region away from the wall.

As the method used in the simulations of CFD where the HERMESH
method has been tested consists in RANS equations, it will be described in
more detail below.

Reynolds Averaged Navier-Stokes Models: RANS. The quickest and
computationally cheapest approach among those listed above is the Reynolds
Averaged Navier-Stokes, based on ideas proposed by Reynolds over one century
ago.

In this approach, each unknown variable is decomposed into a mean part ¢
and a fluctuating part ¢’ , ¢ = ¢+ ¢'. This decomposition is substituted in the
Navier-Stokes equations and the equations are ensemble averaging over time.
The nonlinearity of the equations gives rise to new terms (second moments)
that make the set of equations be not closed (more unknowns than equations).
This problem is known as the Turbulence Closure Problem. For this we need
additional algebraic or differential relations. A set of mathematical equations
which provide unknown variables, is called the Turbulence Closure Model.
The second moments are always vectors of higher order than the basic vari-
ables that complicate the closure problem. The type (algebraic or differential)
and the number of auxiliary equations define the closure level. Two basic levels
of modelling are currently used in computational fluid dynamics and trans-
port processes: Eddy Viscosity /Diffusivity Models (EVM) (known also as the
first-order models) and Second-Moment Closure Models (SMC) (known also
as Reynolds stress/flux models or second-order models). Each category has a
number of variants. The first-order models assume that the turbulent fluxes
of momentum, heat and species are directly related to the mean flow field,
i.e. mean velocity, mean temperature and mean concentrations, respectively.
In the second-order models, the turbulent flux is obtained by solving separate
differential transport equations for each flux component ¢'u.

As compared with DNS and LES, the RANS approach offers decisive compu-
tational advantages: in addition to dispensing with the need to solve the N-S
equations in time and three-dimensional space for every problem, the RANS
approach tolerates a much coarser computational grid and larger time steps if
steady flow is sought than DNS and LES.

However, it should be borne in mind that the RANS approach is a drastic
simplification within the description of turbulence. Statistical averaging brings
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about a "loss of information” the consequence of which is the appearance of
"superfluous” variables (higher moments). Providing these variables by Turbu-
lence Models is always approximative (more or less, depending on the modelling
level) and, consequently associated with some errors.

If we apply to the so-called Reynolds decomposition we obtain: u = u + u’
and substituing it in Equation 2.32 we obtain the RANS equation:

pOru+ p(u - Viu =2V - (pe(u)) + pu’ @ u' + Vp = pf; (2.52)

where the fourth term represents the Reynolds stress term, 7 and it has to be
modelled.

Two RANS models are described below since they are used in the resolved
problems presented in this work, k-¢ turbulence model and Spalart-Almaras
turbulence model.

k- turbulence model. k-¢ turbulence model is a two-equation model,
which means that it includes two extra transport equations to represent the
turbulent properties of the flow. This allows a two-equation model to account
for history effects like convection and diffusion of turbulent energy.

pdik + p(u-VE) =V - (4 2)Vk) +pe =P, = 0
poie + p(u-Ve) =V - ((pn+ %)VE) + pCeoe?/k — Core/kP, = 0,

(2.53)
with the following relations:

w = CLk?/e

P, = 2ue(u):e(u), (2.54)

where k is the turbulent kinetic energy and e the dissipation rate. p; is the
eddy viscosity that needs to be modelled and P, is the production term of
kinetic energy, both expressed in 2.54. C,,,C,y,C., 01 and o, are the k — ¢
model constants.

Spalart-Almaras turbulence model. The Spalart—Allmaras model, Spalart
& Allmaras (1992), is a one-equation model for turbulent viscosity. This model
was devised “using empiricism and arguments of dimensional analysis, Galilean
invariance, and selective dependence on molecular viscosity”. It involves an
eddy-viscosity variable o, related to the eddy-viscosity v; by:

v, =D, (2.55)
The high Reynold transport number equation for v is:

]')2

1
PO + pu - VU = ¢, pSU + EV [p(v + D)V + Cgﬂp(v&)2 - Cwlf’wpﬁy
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where d is the shortest distance to the wall and x is the Von-Karman con-
stant. The constants of the model are given later on. Equation (2.3) is not the
original SA model. For the sake of clarity, some terms have been voluntarily
omitted. The laminar region and transition cannot be simulated using the ver-
sion presented previously; see the original publication of the authors for more
information Spalart & Allmaras (1992).

The function f,, is given by

L+cs 1° .
f’w - g |:96+CG :| bl Wlth (256)
v
g = T4+ cy,(r®—1), Ti= e (2.57)

The production term, the first term of the right-hand side of (2.3) involves the
vorticity S given by

S = 2Q(u) : Q(u), and (2.58)
1
Qu) = i(Vu — Vuh). (2.59)
The values of the constants of the model are

¢, = 0.1355, ¢, = 0.622, 0 = 0.667, & = 0.41,
Co, = Cp, /K> + (1 +cp,) /0, Cw, = 0.3, Cp, = 2.0. (2.60)

2.4 Level Set Equation

The Level Set method leads to a transport partial differential equation, pre-
sented in section 2.1, the solution of which determines the position of the free
surface as an iso-value of the unknown of this equation. The basic idea of the
level set method is to define a smooth scalar function, say ¢ (x,t), over the
computational domain €2 that determines the extent of subdomains €2; and
Q). For instance, we may assign positive values to the points belonging to €2,
and negative values to the points belonging to §2,. The position of the fluid
front will be defined by the iso-value contour 1 (x,t) = 0. The evolution of the
front ¢ = 0 in any control volume V; C € which is moving with a divergence
free velocity field u leads to:

Op + (u - V) = 0. (2.61)

Function 1 is the solution of the hyperbolic equation (2.61) with the boundary
conditions:

Y = ¢ on Ty x (to, ty), (2.62)
Y(x,0) = th(w), (2.63)
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where I',¢ represents the inflow boundary and ¢,t; are the initial and final
time respectively. The initial condition 1) is chosen in order to define the initial
position of the fluid front to be analyzed. The boundary condition ¢ determines
which fluid enters through a certain point of the inflow boundary.

Due to the pure convective type of the equation for i, we use the SUPG
technique for the spatial discretization. The temporal evolution is treated via
the standard trapezoidal rule.

The space discrete problem using SUPG stabilization, mentioned in 2.1,
for the Level Set problem consists in finding 1, in the appropriate space X,
such that

/ on (Butbn + (s, - Vi) A2
Q

+ Z/ 7 (up - Voor) (Octhn + (up, - V)ihy) dQ = 0,
k=17 Q"

for all ¢, € V},, where V, is an appropriate test function space. n; is the
number of elements in the mesh and Q¢ is the element domain. The stabilization
parameter for the Level Set equation is calculated element-wise as

2wy

where h is the characteristic length of the element. As in the Navier Stokes
case, the minimum element length has been used for anisotropic meshes.

For the numerical solution of the level set equation, it is preferable to have
a function without large gradients. Since the only requirement such a function
must meet is ¢» = 0 at the interface, a signed distance function (V| = 1) is
used. Under the evolution of the level set equation, 1 will not remain a signed
distance function and thus needs to be reinitialized. This can be achieved by
redefining v for each node of the finite element mesh according to the following
expression:

Y = sgn(y°)d,

where 1° stands for the calculated value of 9, d is the distance from the node
under consideration to the front, and sgn(-) is the sign of the value enclosed in
the parenthesis.

In order to calculate the distance d we are currently using a geometrical
method based on a skd-tree, see Khamayseh & Kuprat (2008). Computing the
distance from a point to a surface mesh is a crucial issue in the implementation
of the level set reinitialization. For each point where one wants to know the
distance, it involves searching among all the triangular faces into which the
surface is divided to find the one that gives the minimum distance. This search
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can affect the performance of the whole system in a negative way: the time of
simulation can grow considerably. To reduce the number of computations of this
expensive task, we use geometric search structures to define the surface mesh.
Our implementation uses a bounding volume hierarchy known as skd-tree. In
these binary trees, each node has a set of faces of the surface mesh and their
corresponding associated bounding volume. The implementation details for
building these structures are described in Khamayseh & Kuprat (2008). This
reference also describes a way to use the skd-trees to determine the distance
between a point and the surface mesh. The idea is to minimize an upper bound
on the distance between the point and the surface mesh while traversing the
binary tree from the root node. This upper bound is computed as the distance
to the farthest point in the bounding volume corresponding to the current
node.

2.5 Solid Mechanics Equations

Solid mechanical problems consist in the simulation of a deformable body,
which is subjected to some external forces or imposed displacements. Although
a extensive reference in solid mechanics is Belytschko, Moran, & Liu (1999),
we are going to describe the physical problem, two models of materials and
space and time discretization implemented in this work.

Let ¢ : R?* — R? be a function that maps a material point X € By in the refer-
ence configuration to its corresponding point = ¢(X) € B in the deformed
configuration. The deformation gradient tensor F' is defined as

F := Gradz = Vx, (2.64)

where Grad or Vj is gradient operator with respect to the reference configura-
tion. In Cartesian basis, the above expression can be written in index notation
as
8:132'
F;; = X, (2.65)

Since (X ) = X + u(X), with w the displacement vector, thus the de-
formation gradient can be given by F = I + Vyu, where Vyu is the dis-
placement gradient and I is the second-order identity tensor. In components,
F,; = 0i; + 0u;/0X;, where 0;; is a Kronecker-delta function, i.e., §;; = 1 if
i = j or ¢;; = 0 otherwise.

The equation of the balance of momentum with respect to the reference
(or undeformed) configuration can be written as

Div P + by = poii, VX € By, (2.66)

where pg is the mass density (per unit reference volume) and Div is the di-
vergence operator with respect to the reference configuration, Div P = V- P.
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Using index notation, the above balance of momentum equation can be written
as

8Xj 0i = Po 8t2 3

VX; € By, (2.67)

In the above expression, tensor P and vector by stand for, respectively, the
first Piola—Kirchhoff stress (or nominal/engineering stress) and the distributed
body force on the undeformed body. The following boundary conditions are
applied:

w(X) = @, VX €,By, (2.68)
to(X) = Pno(X) = t_o, VX € 8tBo . (269)

2.5.1 Linear isotropic elasticity

Linear isotropic elasticity, referred to as ISOLIN, is a finite deformation in-
terpretation of the infinitesimal linear elasticity model, which can be writen
as

S = 2uE + tr(E)AT (2.70)

where S is the second Piola—Kirchhoff tensor (in the undeformed configura-
tion), E is the Green-Lagrange strain tensor, and A and p are material param-
eters representing elastic Lame’s constants. The second Piola—Kirchhoff tensor
S is related to the first Piola—Kirchhoff stress tensor P as P = SFT and the
Green-Lagrange strain tensor is obtained as E = L(FTF — I). Using index
notation, the linear isotropic elasticity model ISOLIN can be written as

The fourth-order stiffness tangent corresponding to the above linear isotropic
elasticity model ISOLIN can be expressed in index notation as

0S;;
Cijkl = aTkl =K (5ik6jl + 5il5j7€) + /\5ij(5kl . (272)

Sometimes, material isotropic elasticity parameters are described using Young’s
modulus £ and Poisson ratio v. In this case, the Lame’s constants A\ and u
can be computed as

FEv E

)\: and M:m

L+ )1 — ) (2:73)

It is important here not to confuse the Young’s modulus E with the components
of the Green-Lagrange strain tensor F;;.
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2.5.2 Neo-Hookean hyperelasticiy model

In the Neo-Hookean hyperelasticity model, referred to as NEOHOOKE, the
constitutive stress-strain relation is derived from an elastic potential, which is
defined as

¥ = A ()~ i (n(J)  tx(E)) | (2.74)

with J = det(F). The second Piola-Kirchhoff stress is obtained from the
derivative of the above elastic potential as follows:

o 1

S=—=0Aln(J)—pn) C +pul, (2.75)

OF
where C' is the left Cauchy—Green tensor (in the undeformed configuration),
computed as C = FTF = 2E — I. In index notation, the (isotropic) Neo-
Hookean hyperelasticity model can be written as

Sij = (AIn(J) — p) Ci;* + pdyj (2.76)

where Cij = F]ﬂ'ij = 2El] + (Sl]
In terms of index notation, the fourth-order stiffness tangent for the above
Neo-Hookean hyperelasticity model can be written as

95i; 1 . .
Cign 1= 5t = w(CRl Oyt + O C5l) + 0G5 O (2.77)

2.5.3 Finite element formulation

The weak form of balance of the momentum equation (2.66) can be formulated
for any arbitrary admissible virtual displacement w(X), such that,

/DivP-de+/ bo-de:/ pott - wdV . (2.78)
By By Bo

For an finite element approximation £y = |J,_ Q2§ of the undeformed contin-
uum body By, let u; be a polynomial approximation of degree k to the actual
displacement w, such that

w,(X) = N“X)u,, (2.79)

where u,, is the a-component of the nodal vector of u displacement and u,,(X)
represents the interpolated displacement value.

The finite element formulation for the balance of momentum equation
(2.78) thus reads as follows: find u € R? so that for all elements Qf € Q,

Mll + fint — bmfem, (280)
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where M, f,;(u), and f.,; are, respectively, the mass matrix, the vector of
internal and external forces. These quantities are constructed and assembled
from the corresponding element quantities M°, £, and f°,, which are the
corresponding mass matrix, internal force vector and external force vectors.
These elemental tensors are calculated using Gauss quadrature approximation

in the isoparametric referential and are given (in indicial form) by:

M = Zq Wy podik NG (&) NG (€4)T0 (&) (2.81)
ftia = 2 wWaPia(§)NG 5 (£4)J0 (&), (2.82)
feext ia — Zp wptOi (EP)NZ (ﬁp)JO(Ep) + Zq wqui (gq)NZ (sq)JO(Eq)7 (2'83)

where ¢;;, is the Kronecker symbol, &, corresponds to the coordinates of Gauss
point ¢ in the isoparametric referential, w, is its corresponding weight, and J,
is the Jacobian between the isoparametric referential and the reference config-
uration. The same notations with subscripts p (first term of Equation (2.83))
are for the surface elements belonging to I'yy mapped onto the corresponding
faces of the volume elements.

As the internal force vector ff, is not necessarily linear in u, a Newton-
Raphson procedure can be used in conjunction with the time discretization
scheme (see next Subsection 2.5.4). In this case, the elemental stiffness matrix
K° is needed:

afzentm 8 (3
qu FLEIN (€N (€)T0(E). (280

K¢
kb —
ia 8ukb

where the tangent moduh “ is provided by the constitutive law at each
time step.
2.5.4 Time discretization

The generalized Newmark formulation used here for the balance of momentum
equation (2.80) can be written as

Mii,, . + 1" = fl';?l ) (2.85)
where subscripts “n” and “n + 1”7 indicate that the variables are evaluated at

time t,, and t,,, respectively (the subscript “A” has been dropped for sim-
plicity). Parameters (3 and 7 set the characterictics of the Newmark scheme.
Parameter 3 = 0 leads to an explicit Newmark scheme, whereas 0 < § < 0.5
leads to an implicit scheme. In the latter case, the set of equations (2.85)—(2.87)
are solved for unknown displacement u,, 1, velocity 0,1, and acceleration 1,14
using the iterative Newton-Raphson algorithm.

67



“tesi” — 2014/5/13 — 11:39 — page 68 — #86

2.6 Manufactured Solution

The two main objectives of manufactured solution are: on the one hand, to test
that the equation is well coded; on the other hand, to perform a mesh con-
vergence test using a target solution u(®, with a given degree of regularity. In
Roache (1998) we find the definition of code verification, although this defini-
tion can differ between different authors. One of the earliest articles published
related to this issue is Shih (1985).

We have applied the manufactured solution technique to prove the order
of accuracy of the HERMESH method.
A manufactured solution is an exact solution to some PDE that has been
constructed by solving the following problem: £(u) = f. The idea is to manu-
facture a solution u, and then apply the differential operator £ to this solution
U, to find the right hand side, f, so that £L(u) = L(u,). In addition, u, is pre-
scribed as a Dirichlet condition on the Dirichlet part of the boundary and the
exact traction on the Neumann part of the boundary. We have proved that
HERMESH method is exact if the solution belongs to the finite element space.
That is, an up to linear solution is nodally exact.
The norms of the error considered in these tests are computed as follows:

\/fQ(uh — u(9)2dQ)
= [, w0 dS)

: (2.88)

€ u) =
\/fg > Viu e

where €(u) is the L? norm of the relative error of the solution and €(Vu) of
the gradient.

, (2.89)

Manufactured solution for the ADR equation

In the case of advection-diffusion-reaction equation we seek for the solution of
Equation 2.1 with the following f for the right hand side:

f=L(u.) :=—eAu, + V - (au,) + su.. (2.90)

If u, belongs to the finite element space (up to bilinear), then the algorithm
should give u = wu,.

Manufactured solution for the Navier-Stokes equations

To apply the manufactured solution to the Navier-Stokes system implies im-
posing both exact solution for velocity, u, and pressure p, with a given degree
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of smoothness. Then we seek for this solution by adding two force terms f,,
and f. to the momentum and continuity equations, respectively:

p P4 (- V)u—V - [2pe(w)] + Vp = fu (2.91)
V-ou=f, (2.92)
with
Foo = 0 pluse- Ve~V - ()] + Vo (299)
fe=V u, (2.94)

In addition, wu, is prescribed as a Dirichlet condition on the Dirichlet part of
the boundary and the exact traction on the Neumann part of the boundary.
In addition, if the flow is confined, the pressure is defined up to a constant.
In this case, the pressure is prescribed to p. on one node of the domain. Note
that if the manufactured solution belongs to the finite element space (linear in
this case), the finite element solution is exactly the manufactured solution.

Manufactured solution for solid mechanics equation

In index notation, the equation we are solving is:

32ui (9]3”

o ™ o,

—bo,; =0. (2.95)

In order to test the mesh convergence, we propose a manufactured solution
u'®) and solve the following equation:

82ui 8Pij api(;)

If u'® belongs to the finite element space (up to bilinear), then the algorithm
should give u = u(®).

We have:
(5) (6) e e
or; [ 0u s, | Gramt *ufy) O Pu e
Ox; oxy, ! 2 0z;0z,, nl Ox;0x; "™
ij 1 8211,(-6) (
e (FOFS = om)
T Bapor, s T 0m )
Oule
Flo) = L
ml a$l + l
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2.7 Alya: Parallel Computational Mechanics code

Alya System, which was developed at the Barcelona Supercomputing Center
(BSC-CNS), is a Computation Mechanics (CM) code with two main features.
Firstly, it is specially designed to run with the highest efficiency standards on
large-scale supercomputing facilities. Secondly, it is capable of solving different
physics problems, each one with its own modelling characteristics, in a cou-
pled way. These two main features are intimately related, which means that any
complex coupled problems solved by Alya will still be solved efficiently. Alya’s
architecture is modular, grouping the different tasks into kernel, modules and
services. The kernel, the core of Alya, contains all the facilities required to
solve any set of discretized PDEs (e.g., the solver, the I/O, the coupling, the
elements database, the geometrical information, etc.). Each module describes
the physical description of a given problem (e.g, the discretized terms of the
PDE, the meaning of the boundary and initial conditions, etc.). Finally, the
services contain the tool boxes providing several independent procedures to be
called by modules and kernel.

The parallelization of Alya is a service inside the code is based on a mesh
partitioning technique performed by METIS (see the reference: METIS (2014)
for more details) and uses a Master-Slave strategy. The main input data of
METIS are the element graph and the weight of the vertices of the graph.
The number of Gauss integration points is used to control the load balance
of hybrid meshes related to the former aspect. The element graph is a cru-
cial point in the application of the HERMESH method and will be discussed
later on. To construct this element graph needed by METIS, two strategies
are possible. On the one hand, an adjacent element to an element e can be
considered as all the elements sharing a node with e. However, this graph can
be quite memory- and time-consuming. On the other hand, the other strategy
consists in taking as adjacent elements to e only the elements sharing a face
with e. The latter option requires much less memory. As a reference for valu-
ing the difference in memory consuming, for a regular hexahedra mesh the face
connectivity criterion gives 6 neighbours while the node connectivity criterion
gives 26 neighbours. The former strategy will be referred to as by-faces and
the latter as by-nodes.

Based on the Master-Slave strategy, the Master is in charge of reading the
mesh, of performing the partitioning and the output. The slaves are in charge
of the construction of the local right-hand side (b;) and the local matrices
(4;) and of the solution of the resulting system in parallel. In other words,
each process will be in charge of each subdomain, which are the slaves. In
the assembling tasks, no communication is needed between the slaves, and the
scalability only depends on the load balancing. In the iterative solvers, the
scalability depends on the size of the interfaces, which METIS minimizes, and
the communication scheduling. All the details on the code parallelization can
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be found in Houzeaux, Véazquez, Aubry, & Cela (2009).

Figure 2.10 is a schematic flowchart for the execution of a simulation using
Alya. The tasks that the master process is responsible for are shown on the
left side of the same figure with a grey background. As we have explained, it
performs the first steps of the execution, namely reading the file and parti-
tioning the mesh. Afterwards, the master sends the corresponding subdomain
information to each worker process or slaves; then the master and the slaves
enter the time and linearization loops, represented as one single loop. Along

MPI_Send

( Partition mesh ] ------- [ Receive submesh] [ .n ] [Receive submesh J
[ Assemble Ay, b, J [ oo ] [Assemble A,,b, J } Assembly
MPT_: MPI_

Coan ) J(nhm )

- x - x

Output convergence m;:'s‘;;‘g;;w MPIisendRecv Solver
T N

MPI_Allreduce MPI_Allreduce

Not finished

Figure 2.10: Parallel flowchart. Master (grey) and n slaves (white).

with the execution of the iterative solvers carried out by the slaves, two types
of communications are required to exchange interface information with their
neighbours using the MPI functions:

e Point-to-point communications via MPI_SendRecv, which are used when
sparse matrix-vector products are carried out.

e Global communications via MPI_Al1lReduce, which are used to compute
residual norms and scalar products.

All solvers need both these types of communication, but, when using com-
plex solvers like the DCG, additional operations may be required, such as
the MPI_AllGatherv functions explained in 6hner, Mut, Cebral, Aubry, &
Houzeaux (2011). In the current implementation of Alya, the solution obtained
in parallel is, up to round-off errors, the same as the sequential one all the way
through the computation. This is because the mesh partition is only used for
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distributing work without, in any way, altering the actual sequential algorithm.
This would not be the case if one took into account more complex solvers, like
the primal/dual Schur complement solvers, or more complex preconditioners,
like linelet Soto, Lohner, & Camelli (2003) or block LU.

The code has proven to scale well on the main European supercomputers,
as shown in Figure 2.11. As implemented in this work, the HERMESH method

Lindgren - Cray XE6 Jugene - Blue Gene/P Curie - BullX
Sweden Germany France
Average # elements per CPU Average # elements per CPU Average # elements per CPU
365K 91k sk 730k 183k 92k 200k 50k 25k
14000 24000
Ideal 16000 [ "ideal \deal

12000 |  Lindgren - Jugene - Curie -
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12000
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Speed up
Speed up
Speed up
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0 0
1536 6144 12288 2048 8192 16384 2816 11264 22528
Number of CPU's Number of CPU's Number of CPU’s

Figure 2.11: Parallel performance of Alya.

can be viewed as part of the preprocess and the mesh partitioning is carried
out after the mesh gluing. Therefore, the parallel performance of the code is
automatically inherited by the current implementation.
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Chapter 3

Proposed Method : HERMESH

3.1 Motivation

As has been presented in the first chapter we propose to devise a mesh compos-
ing method with certain characteristics. In particular, the three requirements
of the method were: implicit, versatile and parallel. These are essential condi-
tions in order to be able to solve real problems in different contexts as they
are solved in the department where HERMESH has been developed. So the
method has to be able to address problems with non-matching grids whether
they be disjoint with (as can be observed in Figure 3.1-a) or without a gap (as
can be observed in Figure 3.1-b). Also, the method has to be able to solve the
mesh coupling with a certain overlapping between independent meshes (as we
can see in Figure 3.1-c¢) or even Chimera-type problems (illustrated in 3.1-d).

The scenarios represented in Figure 3.1 a,b and ¢ belongs to the applica-
tion referred to in the first chapter as mesh gluing. The other scenario, Figure
3.1-d, corresponds to the Chimera-type problem. The particular details of the
proposed method for both cases will be explained in the following chapters, 4
and 5. In this chapter, the principles and general properties of the HERMESH
method will be described, as will certain details related to the implementation.

In order to fulfil the three main requirements described before (implicit,
parallel and versatile), we have come a long way, and it is basically divided in
these three main points:

e Making implicit the explicit conditions transmissions which was described
in Houzeaux (2003).
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(a) Disjoint meshes with gap (b) Disjoint meshes without gap

(c) Overlapping meshes (d) Chimera problem: background + patch

Figure 3.1: Possible HERMESH scenarios

e Stabilizing the transmission conditions in the variational multiscale frame-
work.

e The HERMESH method.

These points will be described in this chapter in order to gain a better under-
standing of proposed method.

3.2 First effort: implicit transmission conditions

In order to achieve the main objectives of the new mesh coupling technique,
the first effort entailed implementing in an implicit way the classical trans-
mission conditions like Dirichlet, Neumann or Robin, typical of the iteration-
by-subdomain methods explained in the first chapter. This first idea comes
from the natural evolution of the work developed in Houzeaux (2003). They
developed a new Chimera method, overlapping mixed iteration-by-subdomain
domain decomposition method as an extension of certain existing DD meth-
ods to the case of overlapping subdomains. The transmission conditions on
the interfaces are mixed, i.e. they are of different type on each side of the
interfaces and the solutions on the subdomains are coupled iteratively until
convergence is achieved. In that work, a study of a one-dimensional scalar
advection-diffusion-reaction equation enabled them to identify the possible
benefits of using overlapping subdomains together with a mixed DD method.
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The overlap is good for two main reasons, convergence and order of accuracy
in Neumann conditions. In particular, they analyzed the Dirichlet/Dirichlet
method, or Schwarz method, the Dirichlet/Neumann method and the Dirich-
let /Robin method for overlapping and disjoint subdomains. They discussed the
importance of the relaxation parameter to gain control on the stability of the
DD algorithm, and apart from the general ADR equation, they studied three
limiting behaviors of the equation, i.e. the Poisson equation, the advection-
diffusion equation, and the hyperbolic limit. The most important result is that
even in the hyperbolic limit, Dirichlet and Neumann (or Robin) conditions can
be placed indifferently with respect to the direction of the advection in order
to achieve convergence. They concluded that the overlap renders mixed meth-
ods more robust. Then they studied an overlapping Dirichlet/Robin method
within a variational framework for a two-subdomain partition and showed the
convergence of the relaxed sequential algorithm. Using the finite element ap-
proximation, they showed that the overlapping methods lead to an algebraic
preconditioned Richardson procedure. Although reflecting transmission condi-
tions are undesirable in the advection dominated range, as they destabilize the
iterative algorithm, they showed that mixed methods diffuse the error much
more rapidly and that considerable gain in convergence can be obtained even
with a small geometric overlap.

Before showing the way of implicitly imposing the transmission conditions, we
are going to briefly review the explicit strategy. In particular, we are going to
concentrate on the D/N case when we solve the problem L(u) = f for a simple
two-subdomain problem, as the one illustrated in Figure 3.2. Considering that
L represent de Laplacian operator, in a strong form for the continuous case,
the problem is formulated as follows:

L(uy™) = fi n
k+1 k
uy = us on I's,
L(us*™) = f in {2y, (3:1)
V’LLIQCJFI c Ny = Vu’f“ Ny on FQ]_,

where k and k + 1 is the iteration index. Let us consider the operator L(u) is
the one defined in 2.1 by the bilinear form given by 2.3 and the appropriate
spaces U;, V; with ¢ = 1,2, meaning that the weak form of the same problem
has the next expression:

a(uy™, v) = (fi,v1) Y, € Vi,
ubtt =k on I'yy, (3.2)

a(u’§+1,v2) = (fa,v2) — fle Vub ™ nyu,dld Yo, € Vs,
where we have used the fact that n; = —n,. Now, we want to evaluate the

possibility of implementing this transmission condition implicitly to avoid the
iteration between subdomains with the associated convergence problems.
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e e O '

{2

Figure 3.2: Two overlapping subdomain problems in one dimension.

How we proceeded. From the previous problem presented in Equations
3.2, we are going to present the formulation in the discrete level of the implicit
boundary condition, Dirichlet and Neumann.

e The Dirichlet condition is linearly imposed by interpolating us on I'js
from the other subdomain €2s.

e The Neumann condition is computed by adding the contribution of 2,
on I'y;. This can be implemented using different orders of accuracy, as
follows:

— First order: We have to search the element of the other subdo-
main where the Gauss point of the interface I'y; is located. From
this element we interpolate the gradient of the velocity, Vu, with
the gradient of the shape function evaluated in the interface Gauss
point. See the left part of Figure 3.3.

— Second order: We have to search the element of the other subdo-
main where the Gauss point of the interface I'y; is located. From
this element we calculate the smoothed gradient on the nodes and
interpolate it with the value of the shape function in the interface’s
Gauss point. This strategy is illustrated on the right part of Figure
3.3.

Following this ideas, the implicit formulation of the problem is:
a(uh,lavh,l) = (f, Uh,l) Yop1 € Vi,
Up,1 — Upz =0 on I'yy, (3.3)

alun,2,vn,2) + frm Vg1 - navp2dl = (f,vp2) Vupa € Vo,
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Figure 3.3: First and second order of the gradient in Neumann conditions.

In this implicit formulation, the superscripts are no more necessary, as we
avoid the iterative loop between subdomains. At this discrete level, we have
to assemble in the matrix these transmission conditions, i.e., up1 — up2 = 0
in the equations of u;; for the Dirichlet condition and the integral boundary
me Vup 1 - novy, 2dl” which represent the Neumann condition. These new con-
tributions imply new connectivities of the interface nodes with the nodes of the
other subdomain. What determines the nodal connectivities in a finite element
code is the element connectivity. Let us define 1nods(1:nnode,1:nelem) the
element connectivity array - that is, the nodes belonging to a given element,
and where nnode is the number of nodes per element. From this array we create
the resulting matrix graph in CSR format as a linked list with the arrays ia
and ja, such that ja(ia(é):ia(i + 1) — 1) are the neighboring nodes of node i
. Bearing in mind that our objective is to introduce the implicit transmission
conditions in a way as unintrusive as possible, we originally suggested to im-
plement the strategy introducing a new elements calledvirtual elements. These
elements are responsible for adding the new terms associated to the row of the
fringe nodes, as we will see next. In the Figure 3.4, on the right and top, we
can compare the difference between an explicit and an implicit strategy.

For the particular two-subdomain problem formulated in the equations 3.3,
these terms are represented in Figure 3.5 where we can see that in node 4, where
we impose the Dirichlet condition, we eliminate the row associated to it and
substitute that with the coefficients that impose continuity of the solution with
the other subdomain. We have pictured in green the new connectivities men-
tioned before, coming from the introduction of the virtual element associated
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Figure 3.4: Schematic system matrix. (Top) Explicit scheme. (Bottom) Implicit
scheme. (Left) Without coupling. (Right) Coupled system.

to the Dirichlet condition. In the same way, in order to impose the

1 2 3
wimma
5 N

ug — 1/2(ug +uz) =0

L

HEHEHHHEE

HEHHHEES

LI TTTTTT]

Neumann

Figure 3.5: Assembling of the Dirichlet and Neumann conditions

condition on node 5, we have also pictured in blue the new connectivities, cre-
ated by the wirtual element associated with this node. In this case, we do not
eliminate the original coefficients but we add new coefficients in the matrix.
If the gradient of the unknown in the Neumann expression is calculated at
first order, only nodes 2 and 3 are taken into account, but if it is calculated
at second order using the gradient’s projection, values at the position 1 and 4
also appear. The difference of the order convergence in both cases is shown in
Figure 3.6. We can observe that the smoothed gradient obtains a second order
mesh converge while the other strategy has a first order of convergence.
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Figure 3.6: Order of convergence of D/N problem with order 1 or order 2 of Neu-
mann condition.

3.3 Stabilized and implicit Neumann transmission
conditions

Now that the implicit transmissions condition have been presented, the idea is
to study the contribution of the subscale in Neumann transmissions. As is well
known, the equation associated to one node i comes from the contribution of
the elements connected to it, when we solve with finite element methods.

Ql Qr FD I’ N
O O O G0 O0—Ow
i1 i i+l i1 P '
L3 $ T D it+1
(a) One-domain problem (b) Two-domain problem: D/N  (c) Two-domain problem: N/D

Figure 3.7: (Left) One-domain problem.(Middle) D/N two-domain problem.(Right)
N/D two-domain problem.

In particular, for the advection-difussion-reaction problem, i.e. Equation
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2.1, the terms associated to both elements connected with the node i, ; (left
element) and €2, (right element) in case (a) of Figure 3.7 in the one-dimensional
case, using the variational multiscale approach described in 2.1, are:

g a
Ql . E(UZ — Uifl) + (1 — b)i(ul — Uifl)
da h Ui_q ba

s+ A —0))g(u+ =) — 5 (ui + uiea)
Ta> TSa h 7sfh
+T(U/Z — 'U/i_1> — T(UZ — Ui—l) — f? =+ 2f — Taf (34)
and for the other element:
€ a
Qr . E(UZ — Ui+1) — (]. — b)i(uz — ’U,Z‘+1)
da h Uit ba
+(s+(1- b)@)g(ui + )+ 5 (s t uin)
2 h h
+%(Ui — Uit1) + %Sa(uz — Uiy1) — f? + TSQf +7af (3.5)

If we compare the terms of the left volume element, Equation 3.4 with the
corresponding first order Neumann transmission condition given by the term
of the right part of Figure 3.5, we observe that the first term is the only
term that we recover in the interface boundary conditions (if b = 0). So there
are many other terms in the volume element equation, about which we do
not have information in the Neumann transmission condition. For this reason,
we thought that perhaps some of them appeared in the stabilized form of
the Neumann boundary condition, which is given by the following expression,
stemming from the Equation 2.23 :

—/ (eVuy, -n —b(a - n)uy)v,dl + / w(eVo, -n+ (a-n)v,)dl, (3.6)
FN 1—‘N

where the term @ is given by the expression: @ = 7(x)R(uy) where R(uy) rep-
resents the residual of the Equations, i.e., R(u,) = f — L(up).

We have compared the terms stemming from the case (a) of Figure 3.7, with
the stabilized Neumann conditions in the interface of the two-domain problem
as is illustrated in case (b) or (c). For simplicity, the two-subdomain problems
will be disjoint and with matching nodes. In particular, for advection-diffusion
problem, without reaction term, a > 0 for both cases, D/N and N/D we are
going to compare the contribution in the interface stemming from Equation 3.6
and the volume term corresponding to the element of the neighbor subdomain,
i.e., Equation 3.4 in D/N case or Equation 3.5 in N/D case. The expressions
becomes:

e D/N: Considering n = -1, Vv, = —1/h and v, =1 in T'y;
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— interface condition:

—/ (EVuh‘n—b(a'n)uh)vhdf—i—/ u(eVup-n+(1-b)(a-n)v,)dl
I'n

I'n
2
= %(Ut — ui_l) — ba(ul + ui—l) + (1 — b)%(ut — ui_l)
Tae €
?(Ui — 'I,Li_l) =+ Tf (ﬁ — a) 3 (37)
— left volume element contribution of the neighbor subdomain, €);:

b
%(Uz‘ —ui) + (1 - b)%(ui —ui1) + g(uz + ;1)
2
+ T (i) - % “raf; (38)

e N/D: Considering n =1, Vv, =1/h and v;, = 1 in I'y;

— Interface condition:

- / (eVupm—b(a-m)us ) ondl+ / (=Y n+(1—b)(@n)v, )dT

I'n
2
= — (i1 = w) +balu; +ui-1) = (1= ) S (i — ui)
Tae g
- F(uﬂrl —w)+7f (E + a) ; (3.9)

— right volume element contribution of the neighbor subdomain, 2,

b
—%(Uiﬂ —u;) + (1 - b)%(uiﬂ —u;) — Ea(uwl + u;)
2
—%(uiﬂ —u;) — % +7af;  (3.10)

So, apparently, with the stabilization term in the interface more terms included
in the volume element expression appear. To quantify the effect of this term
in the Neumann transmission condition, we conducted the mesh convergence
test for an advection-diffusion problem with two subdomains imposing both
D/N and N/D with different regimes for the Peclet number, i.e., Pe = %7
Pe = 0.5, Pe = 5.0 and Pe = 5.0 - 107%, and with b = 0. Two different
stabilization parameters 7 have been tested, given by Equation 2.31 and Table
2.2. In particular, Codina and Present work.

We can observe with these graphics shown in Figures 3.8, 3.9 and 3.10 that
the stabilization term added in the Neumann transmission condition is not
relevant. We just only see the utility of the term in a pure convection problem
where we obtain error zero with the exact stabilization parameter while if we
do not add the stabilization term in the Neumann transmission condition the
problem is unresolved, so we conclude that the problem in non well-posed.
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Figure 3.8: Advection-diffusion equation with Pe = 0.5. (Left) D/N transmission
conditions. (Right) N/D transmission conditions.
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Figure 3.9: Advection-diffusion equation with Pe = 5.0. (Left) D/N transmission
conditions. (Right) N/D transmission conditions.
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Figure 3.10: Advection-diffusion equation with Pe = 5.010~%. (Left) D/N transmis-
sion conditions. (Right) N/D transmission conditions.
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3.4 HERMESH. General description

After ruling out our previous hypothesis about the stabilized implicit Neu-
man transmission condition we thought in another strategy in order to achieve
the implicit coupling. The rest of this chapter presents the principles of the
HERMESH method. The framework in which the method works is that of the
finite element methods. For an extensive theory of this numerical technique,
see Zienkiewicz & Taylor (1977); Hughes (2012) among many others. HER-
MESH is based on a geometrical coupling that allows us to assemble indepen-
dent meshes, with or without overlapping. The continuity of the solution is
achieved by newly constructed elements which have slightly different behavior
from that of the original elements of the meshes. These elements are referred
to by us as extension elements since, in fact, what they do is extend one sub-
domain to the other and connect the existing nodes in both meshes. This is
an important point because the method does not introduce more degrees of
freedom. The idea is depicted in a simple one-dimensional case in Figure 3.11,
where we have illustrated the extension elements that are constructed when
coupling two disjoint meshes and reproducing the one-domain problem.

In the top part of the figure, we have shown a one-domain problem in
one dimension and the shape function associated to each node of the mesh.
Next, in the middle part, we have depicted the problem in two disconnected
subdomains. Finally, in the bottom part of Figure, we have drawn the two
extension elements (with discontinuous line in the figure) associated to each
interface node, called fringe nodes. We can observe that in order to assemble
the two independent meshes, we have to create two elements while, in the
one-domain case, the two fringe nodes are connected with one element. Each
extension element connects the nodes of the adjacent subdomains in order to
create a shape function with compact support. So, as the extension elements
only contain the shape function associated to the fringe node, the contribution
in the global matrix is different from any other original element, as we will see
in detail below.

To better understand what the contribution is, in an algebraic sense, of this
non-standard extension elements, let us consider the following simple Laplace
problem:

d*u/dz* =0 in [0,4], (3.11)
u(0) =1, wu(4) =3, (3.12)

In Figure 3.12 we can compare the resolution of this equation on two over-
lapping subdomains with the Dirichlet/Dirichlet (D/D) method (left part of
the figure) and two disjoint subdomains with the HERMESH method (right
part of Figure). The top part of the Figure shows the meshes and node num-
berings before the couplings. The top matrices are the matrices assembled on
these meshes, blue block of matrix (corresponding to blue subdomain) and
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HERMESH
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2 extension elements

Figure 3.11: Joining two-subdomain problem with HERMESH in one-dimensional
case.

green block (green subdomain), and therefore before the couplings. Then, the
middle meshes illustrate the couplings. Finally, the bottom matrices are the
resulting matrices obtained after the D/D and HERMESH couplings. As far
as the D/D method is concerned, the coupling is achieved by substituting the
rows of nodes 4 and 5 in order to impose uys = u; and us = u,. As far as the
HERMESH method is concerned, the steps of the method are:

e Step 1: Identifying interfaces. Obtaining a list of the fringe nodes of each
subdomain. In this case, the fringe nodes are nodes 3 and 6.

o Step 2: Extending shape functions. Extending the shape functions of the
fringe nodes towards the neighboring subdomains.

e Step 3: Imposing Dirichlet condition. Implicitly imposing the Dirichlet
conditions by choosing the neighbor’s nodes to close the support of the
shape functions. The shape function of node 3 extends to node 7, while
the shape function of node 6 extends to node 2.
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Figure 3.12: Principles of the HERMESH method and comparison with a Dirich-
let /Dirichlet method.

In practice, Step 2 and Step 3 are carried out at the same time. That is, the
extensions of the shape functions of the fringe nodes (3 and 6) are carried out
by adding extension elements to the mesh, shown in Figure 3.12 (Mid.). In
one dimension, the extension element of a fringe node is the element to be
created from the boundary fringe node (here node 3 and 6) to a free node
of the neighboring subdomain (nodes 2 and 7). The process of the extension
elements construction in two- and three- dimensions is more elaborate and will
be described in the next section.

To finalize the presentation of the HERMESH method, we would like to em-
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phasize the main properties of the method:
e Error is zero if the solution is in the finite element space.
e Method is order 2 for linear elements.

e If the problem composed by independent meshes plus the extension ele-
ments coincide with the mesh in one domain problem, both solutions are
exactly the same.

e Gradients and mass matrix are calculated naturally.
e Coupling is implicit.

e Parallelization is direct.

3.5 Construction of the extension elements

The description of the construction process of the extension elements in two
and three dimensions will be divided for clarity. The extension elements extend
from the boundary connected to the fringe nodes. In two dimensions these
boundaries are bar elements, while in three dimensions the boundaries can be
quadrilaterals or triangles. In two dimensions, we use triangles to extend from
the bar elements. In three dimensions, two extension elements are necessary:
pyramids for quadrilaterals boundaries and tetrahedra for triangles boundaries.

3.5.1 Two dimensions

As illustrated in Figure 3.13, the process for constructing the extension ele-
ments from €2; to {2, consists of the following steps:

e I[dentifying fringe nodes f of ;.

e Given a fringe node, we identify its host element in )y, that is, the
element where the node lies. This could be efficiently done with either
a bin or a quad/oct tree strategy, see Houzeaux & Codina (2003a) for
more details.

e Making a list of candidate nodes (used to create the extension triangle
elements). This list is first filled with the neighboring nodes of the host
element nodes. In this list, eliminating the nodes of €2, located inside
Q. To do that, we use an a skd-tree strategy, as explained in Khamay-
seh & Kuprat (2008). Skd-trees are used to efficiently find the signed
shortest distance between a point and a surface, as is mentioned in the
presentation of the level set equations in chapter 2.
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e Computing the exterior normals of the two edges connected to the fringe
node. Applying a windscreen criterion: taking the candidate nodes out of
the list if the angle formed between these normals and the vector between
the fringe and candidate node is above a certain criteria. For example, in
top part of Figure 3.13, the bottom right candidate node would be taken
out.

e From this reduced candidate list, choosing the nodes that form the best
triangles in terms of quality Q, to be treated later. They are the red
elements in Figure 3.13 and we have illustrated two different options
that could be valid. On the left, the first option is composed of three
extension elements. This is because the candidate node chosen by the
left boundary, the extension node in blue, is different from the extension
node of the right boundary. So we have to close the extension with an
additional triangle, the middle one formed by the fringe node and two
selected candidate nodes. This way of closing the extension in variational
terms means that the shape function associated to the fringe node has a
compact support. On the right part of Figure 3.13, the extension node
of both boundaries is the same, so we no longer need a triangle to close
the extension.

Fringe nodes O
Possible candidate @

Extension node Q@

Extension element ‘

One fringe node

@ option 1 option 2 @

Figure 3.13: Two-dimensional extensions process.
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Conformity issue. In order to have a greater flexibility when selecting the
best extension elements, we have allowed the possibility for the crown made
by extension elements to be non-conforming. The crown is defined here as the
union of extension elements of one subdomain to another. Figure 3.14 depicts

Quasi-conforming crown Conforming crown
i1 ; i1 i1 . i+1
a( Y Njuj HNF Py, Nig) = f(Nicv) a( Y Nju; 4 NF D, Nioy) = f(Nia)
j=Lj I=Lit .
a( Z Nju; H NP wi, Ni) = f(IV;) a( Z Nju; + N® ui, N;) = f(V;)
j=1,j%#i ) j=L,j#i )
o Y Njuj H NI, Nipy) = (Vi) a( Y Njuj H N, Nir) = f(Nipr)
j=1,ji s J=1,5#i H
(i-1) (8) (i+1) — - :
NG £ N £ NI (V&0 = y® = N&

Figure 3.14: Extension elements in two dimensions. (Left) Non-conforming crown.
(Right) Conforming crown.

the concept of a crown for both, quasi-conforming (left part of the figure)
and conforming (right part of the figure) cases, making clear the difference at
the discrete level formulation. We observe that in quasi-conforming crown, the
shape function associated to node i is different depending on the equation to
be consider. In the equation of node 7 — 1 the contribution of the node 7, that
is the shape function N — 1), is not the same as the contribution of node i in
its own equation (N(i);) neither the contribution of node i in the equation of
the neighbor node i +1 (N +1);). On the other hand, the conformity crown,
all the shape function are the same.

In Figure 3.15 we have pictured the crown associated to one fringe node,
in order to appreciate the difference between conforming and non-conforming
crown. It shows the extension elements of three fringe nodes, leading to a
non-conforming crown (left part) and to a conforming crown (right part). On
the left part, the elements extending from the boundaries connected to the
middle fringe node (yellow one) are not coinciding. The resulting test function
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&> “2,

U’ Non-conforming crown U Conforming crown

Figure 3.15: Extension elements in two dimensions. (Left) Non-conforming crown.
(Right) Conforming crown.

used to assemble the equation of this node is uniquely defined and its support
corresponds to the yellow triangle. However, when assembling the equation of
its neighboring fringe nodes, different approximations are used (for example,
right red triangle does not coincide with left yellow triangle). On the other
hand, in the conforming case, the extension elements connected to the fringe
nodes always coincide. The crown is thus conforming. This discussion about
conformity is valid to a 3-dimensional case but for simplicity it is shown here
in a two-dimensional case.

3.5.2 Three dimensions

The extension to 3D is not as straightforward as it looks, and the challenge is
higher for boundary layer meshes. The process is divided into two steps. First,
the creation of extension elements connected to the boundaries (faces) of the
fringe node and then, if necessary, the closing of the extension.

Figure 3.16 shows an example of one of these extension functions associated
to one of the fringe nodes. The steps for creating the extension associated to
a fringe node f from its connected boundaries are the following.

Step 1. Create extensions from connected boundaries:

e Ordering the boundaries (faces) b; connected with f in a clockwise or
counter-clockwise direction.
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e Creating for each b; a list of candidate extension nodes e; of the other
subdomain, according to the windscreen criteria, mentioned in section
3.5.1.

e Ordering this list in accordance with the quality of the tetrahedra which
could be formed between b, and e;.

e Grouping the selected extension nodes according to the number of ap-
pearances in the previous boundary b; list. The ranking is therefore a
combination between quality and popularity.

With respect to Figure 3.16, we have chosen 3 extension nodes e;, ez, e3 and
created at this first step 4 extension elements, ¢, to, t3, t4. Note that e, is used
by two extension elements that come from by, and bs.

“ i Step 1 | i‘*'
€1 e

‘ | Step .

€1 ‘I el l| es

Figure 3.16: 3D extensions process. Step 1 and Step 2.

€1 © €g

3

&

Then, if necessary, depending on the number of selected candidates, the
extension should be closed with more tetrahedra, as in the example of Figure
3.16. The procedure is as follows.

Step 2. Close extensions:
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e Join pairs of extension elements having node f + two contiguous nodes
e;’s + boundary node belonging to two contiguous boundaries b; with
different nodes e;’s. In the case of Figure 3.16, the first closing element is
the brown one, t5 shown at the first stage of the second step. Using this
procedure we then create the next two purple elements involving ez — e,
i.e. tg and ey — eq, i.e. tr.

e [f needed, close the extensions from above. At this stage we are only left
with a minimum of three extension nodes e; and the fringe. In particular,
with three different e;, only one tetrahedron is required to close the ex-
tension and is formed by the e;’s + f. This is the case of the last element
in Figure 3.16, , tetrahedron tg. For more than three extension nodes
(say n), we have multiple alternatives to create the remaining tetrahe-
dra to close the extension. The number of combinations C, is given by
the so-called Catalan number, see Shapiro (1976) for more details. C,, is
the number of different ways a convex polygon with n + 2 sides can be
cut into triangles connecting vertices with straight lines. The Catalan
number is exponentially complex. As we have few elements in average,
we observe linear complexity in practice. From this C, possibilities, we
choose the one that gives the best global quality Q.

Figure 3.17 and 3.18 shows two practical examples where Step 1 (Figure
3.17) and Step 1 + Step 2 (3.18) are required. In the first case, Figure 3.17,
we observe that the extension is automatically closed at the end of Step 1
since all the boundaries have chosen the same extension node e; so no more
tetrahedra are needed. In the second case, Figure 3.18 we observe that there
are two different extension nodes e; and e, such that the extension becomes
closed with after the first stage of step 2.

As we noted before, in three dimensions, we have to use pyramids as exten-
sion elements when the interface is formed by quadrilaterals. This is frequently
the case in problems with boundary layers. The procedure for the HERMESH
method is the same as has been described previously. The quality criteria used
for pyramids is the average of the quality criteria of the two tetrahedra in which
the pyramid could be decomposed. If the extension elements associated to one
fringe node of the quadrilateral boundary need for step 2 described before, the
elements to close the extension will be tetrahedra. In Figure 3.19 we show the
two different types of extensions in three-dimensional problems, tetrahedra on
the left and pyramids on the right.

It is worth mentioning that if the fringe node belongs to a boundary layer,
when we create the extension elements we have to consider the anisotropy and
respect the same aspect ratio for the new extension elements, as is illustrated
in Figure 3.20. On the left part we can see the pyramid extension element
adapted to the boundary layer where it is created; on the right part of the
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Figure 3.17: 3D extensions process. For one fringe node f with one extension node
e1: Only Step 1. 3D extensions process

same figure, we can see the pyramid extension elements constructed following
only the quality criterion without taking into account the aspect ratio of the
boundary layer.

3.6 Implementation

In this section we treat some details of the implementation of the method which
we consider to be relevant for an understanding of the method. We are going
to devote special attention to the parallel issues related to the HERMESH
method.

3.6.1 Element assembly

The following is specific to the finite element method with an element-based
assembly. Once the extensions have been created, a very simple implementa-
tion is possible. It is probably not the most efficient one, but the one that will
certainly not degrade the comprehension of the resulting code. The extension
elements are attached to a given fringe node and should only be used to as-
semble the fringe node equation. Therefore, something must be done during
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Figure 3.18: 3D extensions process. For one fringe node f with closing and two
extension nodes e; and es: Step 1 and 2.

Figure 3.19: Extension elements in 3D. (Left) Tetrahedra to extend from a triangle
boundaries. (Right) Pyramids to extend from quadrilateral boundaries.

the assembly process.

Let us create an array letyp(nelem) where nelem is the total number of

93



“tesi” — 2014/5/13 — 11:39 — page 94 — #112

Anisotropic pyramid Isotropic pyramid

Figure 3.20: Example of pyramid extension in a boundary layer (Left) Pyramid
maintaining the aspect ratio, i.e., anisotropy. (Right) Isotropic pyramid
without to consider the aspect ratio of the boundary layer.

elements (including extensions). Say this array is:

Normal element: letyp(ielem) = O,
Extension element: letyp(ielem) = 1.

Let us put the fringe node ipoin in the first place in the element connectivity,
1nods presented before in Section 3.2, when we deal with the implementation
of a extension elements. For example, if ielem is an extension element of the
fringe node ipoin, the connectivity would be lnods(1,ielem) = ipoin. A
classical assembly process in a finite element code (not edge-based) consists in
looping over the elements, computing the elemental LHS (matrix) and RHS
(vector) and then gathering the result into the global matrix and RHS. Now, if
we deal with extension elements, what we need is only to set to zero all the rows
of the LHS and RHS except for the first one. This task is illustrated in Figure
3.21 for the element assembly of a scalar equation for triangular elements. The
code inside the conditioning is the only specificity of the HERMESH method.

3.6.2 Extension on a real boundary

This point concerns fringe nodes on which a Neumann type boundary condition
is imposed. The issue is depicted in Figure 3.22. On the top and bottom figures,
we have picture two options for the extension elements of the fringe node f. In
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do ielem = 1,nelem
elmat elrhs

ofofo n
Initialize elmat and elrhs [:> ool nnode
ofofo n
Compute elmat and elrhs [i> e E
if( letyp(ielem) == 1 ) then
elmat (2:nnode, l:nnode) = 0.0 il | [=] <::| Fringe node row
olo]o o
elrhs(2:nnode) = 0.0 [:> olo]o
end if

Assemble elmat and elrhs

end do

Figure 3.21: Implementation of the HERMESH method for a scalar equation.

order to make sure that the extension elements are closed with the Neumann
boundaries of the other subdomain, we construct the extension of a fringe node
which belongs to a real boundary like the bottom figure. The problem with
the top option is that we would introduce a 45° artificial boundary. When
imposing a zero flux Neumann condition, we would therefore perpendicularize
the isovalues near the fringe node with respect to the extension outer boundary.
Although this problem does not exist with Dirichlet boundary conditions, the
candidate nodes associated to a fringe node located in a real boundary have
to be located in the real boundary in order to avoid the mentioned problem
associated to the Neuman conditions.

3.6.3 HERMESH breaks symmetry

This issue is studied for Navier-Stokes equations solved with Schur complement
preconditioner. One very important aspect is that the HERMESH method pre-
sented here does not lead to a directed graph of the nodal connectivity (repre-
sented by the CSR format used for the assembly of the matrices). A directed
graph connects vertices through edges in a symmetrical way, contrary to undi-
rected graphs. More precisely, the graph created by the HERMESH coupling
is said to be hybrid, in the sense that it is both directed and undirected. In
fact, when a fringe node is connected to an extension node via an extension
element, only the equation of the fringe node is assembled in the global system,
as we have explained before. Therefore, in the matrix, the row of a fringe node
has non-zero coefficients in the columns of its extension nodes. However, these
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I T o
Py Neumann condition
@® O
€L
Bad ion elements: bad Neumann condition
- f T Neumann condition
O
Ez
® )
€1
Good extension elements: good 1 condition

Figure 3.22: Problem when a fringe node is on a Neumann boundary. (Top) Bad
extension elements. (Bot.) Good extension elements.

extension nodes are not necessarily themselves connected to the fringe node.
The graph is therefore locally directed, as the relation between a fringe node
and an extension node is not symmetrical. This is illustrated in Figure 3.23,
where the row of the fringe node is coloured according to its existing connec-
tivities. On the other hand, the extension nodes are not connected to any node
in subdomain 1.

If the matrix graph does not have a symmetrical structure, then the result-
ing matrix will obviously not either. Therefore, and unintuitively, the pressure
matrix A, and the preconditioner QQ are no longer symmetrical. A, is not an
issue. The problems stems from the iterative solution of the Schur complement
preconditioner Q presented in chapter 2, in section 2.2.4 and involved in Step
3 of Algorithm 1 therein.

If one wants to use an efficient iterative solver for symmetrical systems like
the Conjugate Gradient (CG) or the Deflated Conjugate Gradient (DCG), the
matrix should be symmetrized. Remember that Q is only a preconditioner;
thus should the solution procedure of the Navier-Stokes equations converge,
then it will converge to the same solution regardless of Q. The symmetrization
can be simply achieved. We propose four simple options, illustrated in Figure
3.24. On the left part of Figure, the element matrix of an extension element is
represented for triangle elements (3 degrees of freedom per element). In order
to obtain a global symmetrical system, the extension element matrices should
be symmetrical as well. The first option, referred to as “all-preconditioner” con-
sists in maintaining the whole element matrix, which is obviously symmetrical
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Row of fringe node O Coupling subdomain 1

Q with subdomain 2
1

Extension nodes

ion nodes Q

/\
0o

~ EEEESEEEEESE

One fringe node

Coupling subdomain 2
with subdomain 1

connected to other fringe nodes
and interior nodes Qz

Row of one extension node

Figure 3.23: Matrix graph is not fully undirected. A fringe node is connected to
extension nodes, but these ones are not connected to the fringe node.

as it comes from the assembly of Equation 2.51. The second option, referred
to as “symmetrized-preconditioner” consists in assembling only the fringe node
row and the fringe node column. In the third option, referred to as “zero-
preconditioner”, the extension element matrix is not assembled at all. Finally,
the fourth option, “diag-preconditioner” consists in retaining only the diago-
nal. We will show that the best option is the first one, which is the one that
retains the whole extension element matrix. In order to use symmetrical itera-

0

0

[ 3k
olojo| = all symmetrized
0jojo oflofo
as it is ololo

0o(0]|0O0

Z€ero diag

Figure 3.24: Schur complement solver. Four strategies for obtaining a symmetrical
pressure Schur complement preconditioner.

tive solvers like the CG or the DCG, the system obtained with the HERMESH
method should be symmetrized. In the following example we want to compare
the four different strategies proposed here, namely all, symmetrized, zero, diag.
The example is the flow over a square cylinder at Reynolds 10 based on the
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square length and inflow velocity. A symmetry condition is applied on the top
and bottom. The cylinder is meshed with an independent mesh and is coupled
with another mesh representing the rest of the domain.

We first compare the four convergence histories of the continuity equation.
In this example, the Orthomin(1) (Algorithm 1 presented in section 2.2.4)
linearization and time iterations are coupled. That is for each time step, only
one Orthomin(1) and linearization iteration step is carried out. At iteration k
the residual is measured as the expression given by 2.50.

Figure 3.25 (Left) shows the convergence of the different options. We ob-
serve that assembling the whole extension is by far the best option. The same
behavior has been observed in many other examples, so we conclude that this
is the best way to construct a symmetric preconditioner for the pressure Schur
complement.

diag-preconditioner all-preconditioner

10

0.1 +
0.01

0.001

all ——
0.0001 F symmetrized -

zerg e
,  dag e L
0 20 40 60 80 100 120 140 160 180 200
Number of iterations

Continuity equation residual

1le-05

Figure 3.25: Schur complement preconditioner. (Left) Convergence history of the
continuity equation. (Right) Evolution of the residual of the continuity
equation: diag-preconditioner in the left column and all-preconditioner
in the right column.

Let us observe the damping of the continuity equation residual. Figure
3.25 (Right) shows the evolution of this residual for some consecutive iter-
ations, for both the diag-preconditioner (left column) and all-preconditioner
(right column). We observe that with the first method, the error is much more
concentrated near the interfaces and damped out much more slowly than with
the all-preconditioner.

With respect to the fill-in of the matrix, Figure 3.26 illustrates the new
connection obtained with the extension elements, for this example.

We have just mentioned the way to obtain a symmetric Schur complement
preconditioner A,. In the case of the other matrices, i.e. A,,, A,,, A,, and
A,,, the same procedure as the one described in Section 3.6.1 is employed, as
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Before coupling
el | HERMESH coupling

Figure 3.26: Schur complement preconditioner. All elemental contributions of ex-
tension elements are assembled.

A ., is unsymmetrical in any case (assuming we have convection). The proce-
dure is illustrated in Figure 3.27, where ndime is the dimension of the problem.

3.6.4 Parallelization

This section deals with the critical points of the parallelization method when
HERMESH is applied. Before discussing the relevant aspects related to the
parallelization with the HERMESH method, we would like to make clear the
nomenclature through a simple picture shown in Figure 3.28. We have adopted
the term interface to the boundary between one independent mesh to the other,
while the term boundary is used to refer to the boundary between different
processors also called CPU’s. The boundary of the whole domain is referred
by us as real boundary.

Within the modular structure of the Alya code described in Section 2.7, the
HERMESH method corresponds to a service in such a way that the method
could be valid for any of the modules corresponding to different physics inside
the code and could be run in parallel maintaining the same performance but
with some particularities. More precisely, the HERMESH service is a prepro-
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do ielem = 1,nelem
if( letyp(ielem) > 0 ) then
Ay elauu = 0.0
Ay <:| elaup = 0.0
Ay elapu = 0.0
App elapp = 0.0
Q elagqqg = 0.0
b, elrbu = 0.0
b, = elrbp = 0.0
Compute element matrices and RHS’s
if( letyp(ielem) == 1 ) then
elauu (ndime+1:ndime*nnode, 1:ndime*nnode) = 0.0
Extension up (ndime+1:ndime*nnode, 1:nnode) = 0.0
element <:| lapu (2:nnode,1:ndime*nnode) = 0.0
treatment elapp (2:nnode, 1:nnode) = 0.0
elrbu (ndime+1l:ndime*nnode) = 0.0
elrbp (2:nnode) = 0.0
end if
Assemble elements matrices and RHS's
end if
end do

Figure 3.27: Implementation of the HERMESH method for the Navier-Stokes equa-
tions. Extension element is completely assembled for Q .

Mesh 1

real bounda: Mesh 2

Figure 3.28: Nomenclature
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cess step in the code.

As we have explained in that Section 2.7, for mesh partitioning, METIS

requires the element graph and to construct this, there are two possible op-
tions, referred to as by-nodes or by-faces. Although the latter strategy requires
much less memory, when we use extension elements, we have to apply the first
strategy to divide the mesh, as illustrated in Figures 3.29 for a 2D mesh. We
want to remember that fringe nodes are connected to the extension nodes via
elements and not faces. This particularity leads to a problem when METIS
divides the mesh if the graph is given by-faces. This is because METIS has no
way to know the neughbors of the extension elements on the side where they
extend.
We have run a test in order to evaluate the differences between both options
in mesh partitioning with the HERMESH method, by-faces or by-nodes. The
test corresponds to a cube domain formed by two meshes, one inside the other
with 374832 tetrahedra in total. After the creation of the extension elements
to couple both meshes, we have divided the composite mesh into 63 processors
and with both classes of graphs. We show three important issues in the division
performed by METIS for this problem through Figure 3.30:

1. The top graphic represents the number of elements in each processor. We
can observe in it that there is one processor, the number fourteen, with
much more elements than the others which will imply a load imbalance.

2. The middle graphic represents the number of boundaries between pro-
cessors. Again we observe that processor fourteen contains much more
boundary nodes, which implies a big size in the communications and
in turn this slows down the point-to-point communication steps (e.g.
matrix-vector-product).

3. The bottom graphic represents the number of neighboring processors for
both cases. We observe that in average there are more neighbors with
the graph given by-faces (which could imply more time in the communi-
cations, depending on the length of the communications if one consider
that data transfer time is given by ¢t = na+>_ | [;b, where the first term
corresponds to the latency or startup time and the second one depends
on the messages size).

To analyze all these questions at more depth, we show a trace visualized
with the program paraver, PARAVER (2014). Paraver describes in a graphical
way the status of the processes involved in the parallel execution of the code.
The x-asis is time, and the y-axis shows, according to a specific color, the
status of each process. In particular, blue color means idle process. Figure
3.31 compares the parallel performance of the code using by-nodes and by-
faces graphs. The top graphics of the figure represents the assembly process
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Figure 3.29: 2D Mesh partitioned into 3 subdomains. (Left) Element graph based
on nodes. (Right) Element graph based on faces.

(loop over the elements painted in green) while the bottom graphics show some
matrix-vector products of the GMRES algebraic solver (painted in red). The
top figures confirm the load imbalance already observed in Figure 3.31 (Top).
We note that the assembly step in process 14 is longer than that of other
processes. On the other hand, we observe that using the by-nodes graph, five
matrix-vector products can be carried in the same time as the by-faces graph
can only perform three of these. This is due to the fact that in average, a
process has to communicate with much more processes, as already shown by
Figure (Bottom). These communications are depicted with yellow arrows in
the bottom right part of the figure.

With Figures 3.30 and 3.31, we have shown that the by-faces graph has sev-
eral shortcomings: (1) Load imbalance; (2) More communications. The reason
is that the by-faces graph gives a wrong information to METIS. Let us try to
explain why. The by-faces graph connects elements which share faces. We know
that in a normal finite element mesh, a face is shared by at most two elements.
But the HERMESH method (as it is implemented in this work) can construct
lots of extension elements from a single face. It means that these elements can
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Figure 3.30: (Top) Number of elements by process. (Middle) Number of boundaries
by process. (Bottom) Number of neighbors subdomains by processor.

end up lost in the graph, unconnected to any other element. That said, we
know that, using the element graph information, METIS tries to balance the
work by equalizing the number of elements per process while minimizing the
boundaries between the processes. Therefore, for METIS, this lost elements do
not communicate, enabling METIS to give lots of these elements to some pro-
cesses. But, this elements do involve communication, if their nodes are located
on the process boundaries. In the present example, we observe that process 14
inherit much more elements than others.

Let us finally note that processes that have hole elements present a load
imbalance in the assembly step, as these hole elements are not assembled.
This is confirmed by Figure 3.31 (Top). However, the corresponding degrees
of freedom do exist and participate to the matrix-vector product, as seen in
Figure 3.31 (Bottom). This is why we do not observe such load imbalance in
the matrix-vector product (although the corresponding matrix rows are null),
and useless work is carried out.
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Processor 14 —]

Graph by-faces

Processor

Graph by-nodes

time

Solver in&erations by faces 1 . ! interations by faces with commuications

interations by nodes

Figure 3.31: Trace extracted from paraver program.

3.6.5 Possible Improvements

e As we noted before briefly, it should be pointed out that, due to the
way the extension elements are constructed, some extension elements
are very likely to be repeated. For example, in Figure 3.13, the leftmost
extension triangle would also be an extension element of the gray node
located on the left of the white node. Therefore, these elements could be
collapsed in order to save memory and time. The assembly as explained
in the previous subsection should therefore be slightly modified. In this
example, if the leftmost extension element is shared by these two fringe
nodes, then the elemental LHS and RHS should be assembled for the two
respective rows.
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e Another possible improvement from the point of view of parallelization
is that of minimizing the communications between the subdomains, at
these places where boundary nodes are also fringe nodes. Let us take a
look at Figure 3.32. On the left part, the green fringe node of subdomain
2 is connected to subdomain 1 through an extension element belonging
to subdomain 1. Remember that the equation coming from an extension
element is only assembled for the corresponding fringe node (see sec-
tion 3.6.1). This means that subdomain 1 will assemble the fringe node
equation coming from the extension element while subdomain 2 will as-
semble the equation coming from the leftmost element of subdomain 2.
After a matrix-vector product, an exchange (send and receive) is there-
fore necessary to obtain a global result on the fringe node, coming from
the contributions of both subdomains to the equation of the fringe node
for uys,;. Now let us see what happens if the extension element belongs
to subdomain 1, as depicted in the right part of Figure 3.32. This sub-
domain is able to assemble the complete equation for the fringe node.
It only requires the value of u; from subdomain 1. On the contrary, the
equation of node () in subdomain 1 does not depend at all on subdomain
2. This means that subdomain 1 does not require any value from subdo-
main 2. However, subdomain 2 needs the value of u; from subdomain 1
in order to perform the matrix vector product of uy row. Thus, in this
case, we only need one communication from subdomain 1 to subdomain
2, while in the first case (left part of the figure), we need two communica-
tions. The parallelization in Alya is based on a send /receive as explained
in section 2.7. Therefore, in the situation represented by the right part
of the figure, we would carry out one unnecessary communication from
subdomain 2 to subdomain 1.

CPU CPU

[7] Interface node between CPU’s

Fringe node with an extension element

= ]
-- x| x| x
.
x | x| x Ji
@35 | ask| aqt | [Tie Yt 01010 U; 0
= X | x| x url = (Y

Figure 3.32: Fringe node as a boundary node between processors.
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One possible improvement related to the question of the type of graph
used by METIS is a hybrid option, such that METIS divides the mesh
by-faces if the element is normal (i.e. letyp(ielem) = 0) and by-nodes if
the element is an extension element (i.e. letyp(ielem) = 1).

Another issue concerns the matrix graph. As illustrated in the 1D ex-
ample (Figure 3.12), the fringe node is connected to the extension nodes
through the extension element. However, only the row of the fringe node
is assembled. Therefore, we will obtain null coefficients in the row of the
extension nodes at the place of the fringe nodes. The nodal graph (used
for example for the CSR format of sparse matrices) could therefore be
reduced by cancelling these positions.

Quality Criteria for extension elements

As any other element of a finite element mesh, the priority criteria for con-
structing the extension elements is the geometric quality although this could
be a non-trivial issue. There are several parameters for assessing the quality of
an element, and the expression depends on the type of element. A good sum-
mary of tetrahedra measures and a global definition of the tetrahedron shape
measure is given in Dompierre, Labbé, Guibault, & Camarero (1998). Let us
present just a brief mention of these classical tetrahedron shape measures:
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The Radius Ratio p. The radius ratio p of a tetrahedron T is de-
fined to be p = Npin/pour Where p;, and p,,; are the in-radius and the
circumradius of 7', respectively and N is the dimension of the space.

The Solid Angle O,,;,. It is defined as follows:0,,;, = aming<,<30;
where a~! = 6 arcsin(,/(3)/3) — 7 and 0 < Z?:o 0, < 2.

The Dihedral Angle. The minimum dihedral angle is a defined as:
(Dmin = amil’logigjgg (bij = minogigjgg(ﬂ' — arccos(nijl . nijg)) where Njj1
and n;j» are the two triangular faces adjacent to the edge ij and o™t =
m — arccos(—1/3) = 1.230959 is the value of the six dihedral angles of
the regular tetrahedron.

The Edge Ratio. The ratio between the minimum and maximum edges
l;; of the tetrahedron. r = ming<;<;<3 l;;/ maxo<;<j<3 l;;. But this is a not
a proper tetrahedron shape measure and it fails to detect some degener-
ated tetrahedra.

The Aspect Ratio. The ratio of two characteristic sizes of the tetrahe-
dron. In particular, in our work we use the ratio between the maximum
edge [;; of the tetrahedron and the minimum height h; calculated as the
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distance between a vertex and the center of the gravity of the opposite
face.
= li; in h; 1
Q= max I/ Join A (3.13)

0<i<j<3

In our work we have also used the next quality measure coming from Gamma
Team, see George (1997):

where hy, = max;—; ¢h;, h; being the length of edge i of the element under
consideration, p is the in-radius, S = Zi:l, 4 Si, S; being the surface of face 7,
and V is the element volume.

Apart from these nodal-based objective functions, there are also other interpre-
tations using matrices and matrix norms. This matrix point of view suggests
several different objective functions such as, for example, the smoothness ob-
jective functions in terms of the condition number of Jacobian matrix.
See references like Freitag & Knupp (1999), Freitag & Knupp (2002),Freitag,
Plassmann et al. (2000),Knupp (2000b),Knupp (2000a) related to this question.
The expression of the condition number of Jacobian matrix is given by:

M—1 1/2
=[] 19
m=0

To evaluate the importance of the quality of the mesh and the role of
its different criteria, we have checked the mesh convergence modifying this
parameter. For this, we consider the solution of the diffusion equation in a unit
cube 2 = [0,1] x [0,1] x [0, 1] and we have applied the manufactured solution
technique explained in 2.6 with the following analytical exact solution:

u, = sin(mz) sin(my) sin(rz) exp(xryz). (3.16)

We consider four meshes with lengths h, h/2,h/4,h/8 and two subdomains in
a Chimera-type problem. The background mesh is 2; with a spherical hole of
radius 0.2 and the patch mesh located inside is a spherical subdomain 2, of
radius 0.21 to ensure a minimum overlap. Three criteria have been used for the
creation of the extension elements. They are the Gamma Team criterion given
by Equation 3.14 ; the condition number quality criterion done by Equation
3.15 and the aspect ratio quality criterion done in Equation 3.13. In addition,
for the Gamma Team criterion, two qualities have been selected: the “best
quality” and the “worst quality". Figure 3.33 shows the extensions obtained
for subdomain €2, using both qualities for the Gamma Team criterion. We
observe very distorted elements for the “Worst quality” criteria. To have an
order of magnitude, the h/8 mesh has a total of 6.5M of elements including
2% of extension elements.
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Figure 3.33: Extension elements of interior subdomain {2, using Gamma team cri-
terion. (Left) Best quality criterion. (Right) Worst quality criterion.

Figure 3.34 shows the L? error norms of the solution and its gradient. They
confirm the good asymptotic behavior of the solution as well as the fact that
the Best quality gives better results than the Worst quality criterion for the
Gamma team criterion. Finally, the bottom part of Figure shows that for this
example, all quality criteria yield similar results.

3.8 Interface smoothing

The domain decomposition coupling we propose is geometrical, as has been
shown in Section 3.4. It is therefore important to ensure a minimum regu-
larity of the interfaces and the mesh nearby, as this will affect the quality of
the results, as is shown in Figure 3.34. So, it could sometimes be useful to
previously smooth the interfaces where the crown of extension elements will
be constructed. This requirement is more frequently done in Chimera-type
problems when the hole is created, in particular if the mesh where the hole is
constructed is structured and the geometry of the patch located inside does
not coincide with the regularity of the mesh, as it will be shown below.

The algorithms for mesh improvement can be divided into three basic cate-
gories:

e Point insertion/deletion to refine or coarsen meshes.

e Local reconnection or face swapping to change mesh topology for a given
set of vertices.
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Figure 3.34: Error with respect to exact solution given by Equation (3.16). (Top)
Gamma team criterion with best and worst qualities. (Bot.) Gamma
with best quality criterion, condition number criterion and aspect ratio
criterion. (Left) L? error: solution. (Right) L? error: gradient.

e Mesh smoothing to relocate grid points to improve mesh quality without
changing mesh topology.

In this work, the last category is treated. Basically, mesh smoothing falls into
two major groups:

e Local, so that nodes are moved one by one.

e Global smoothing that simultaneously changes all the nodal locations in
the mesh.

Local mesh smoothing algorithms have been shown to be effective in re-
pairing distorted elements in meshes and we have used them in our work.

The most commonly used smoothing technique is Laplacian smoothing, see
Lo (1985), which moves a given node to the barycenter of all the nodes con-
nected with it. This method is computationally inexpensive but it does not
guarantee an improvement in mesh quality, it being possible to create inverted
or invalid elements. More drawbacks related to this Laplacian approach in-
clude convergence problems and shrinking issues of the mesh. A variant of this
algorithm was developed, the so-called constrained-Laplacian smoothing, see
Freitag (1997) for more detail. It overcomes this problem by placing a node at
a new location only when the mesh quality is improved. This method success-
fully prevents the degradation of mesh or place nodes at their best locations.
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In Taubin (1995b) the author reduces the problem of surface smoothing to
low-pass filtering. This approach is based on the observation that the classical
Fourier transformation of a signal can be seen as the decomposition of the
signal into a linear combination of the eigenvectors of the Laplacian operator.
This iterative algorithm is linear both in time and space, simple to implement,
and produces smoothing without shrinkage.

Other smoothing strategies include the so-called optimization-based smooth-
ing algorithms. These algorithms integrate certain mesh quality measures into
objective functions. These schemes depend on the type of the mesh, the opti-
mization method used as well as the measure of a mesh quality to construct the
objective function, this being a key point. One has to define a proper objective
function which is closely related to mesh quality measures, treated in Section
3.5.2. Knupp and Freitag have brought about mesh quality improvement al-
gorithms for 2D and 3D linear elements, which have to be treated separately
since some matrix norm identities can be varied depending on the rank. Freitag
& Knupp (2002) proposed a low cost, optimization-based alternative to Lapla-
cian smoothing that guarantees valid elements in the final mesh if the initial
mesh is valid. Most of the existing objective functions used in optimization-
based smoothing schemes cannot guarantee a converged solution for an invalid
mesh. For this reason, untangling techniques as is shown in Freitag et al. (2000)
have been proposed to remove invalid elements from the mesh before execut-
ing optimization-based smoothing. The authors use this fact to formulate the
solution to max ¢(z) = max min;<;<,A4;(x) as a linear programming problem
which they solve via the simplex method. On each sweep, m linear programs
are solved, which sequentially moves each interior node in the mesh, and this
process is made until the mesh is untangled or a maximum number of sweeps
has occurred. The problem is well posed if the vertices of the subproblem do
not all lie in a lower-dimensional subspace in relation to the original prob-
lem and none of the vertices are collocated in the same point in the space.
Chen, Tristano, & Kwok (2004) propose an objective function for their Lapla-
cian/optimization smoothing scheme for both linear and quadratic triangular
and quadrilateral element that can be used to untangle and smooth a mesh in
a single process.

It should be noted that since finite element mesh smoothing is used to
improve the quality of finite element analysis (FEA) results, another way to
assess mesh quality is to examine the relationship of mesh quality with the
FEA results. Shewchuk (2002) has studied this relationship. His work showed
that the conditioning of the stiffness matrices depends on element shape. And
it also showed the connection between mesh geometry, interpolation error, and
stiffness matrix conditioning. The author expresses these relationships with
error bounds and element quality measures that determine triangle element
fitness for achieving low condition numbers.
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In our work, our objective is to achieve a more regular interface to couple
different subdomains. For this reason, we have applied a surface Laplacian-
smoothing algorithm based on Taubin (1995a) with the same parameters A,
w and the number of iterations numiter chosen is 7. This algorithm is repre-
sented in Algorithm 2. Another version of the same algorithm is presented in
Algorithm 3 and Algorithm 4 , where we check if the movement of each free
node entails a worse condition number than a certain reference value, regarded
as the worst condition number of the original mesh.

Algorithm 2 Laplacian smoothing general algorithm
1: Mark to not move points in the interface and located in the real boundary.
2: (INPUT):

e A=0.6307, n=1.0/(0.1 —1/X)
e numit: number of iterations

3: (INITIALIZE) k =0, k= .
4: while k < numiter do

5. for Laplacian loop: Points to be moved with free coordinates (z) do

6 Compute the barycenter: b; with the connected points to be moved.

7 Move the coordinate (z%): ¥ = 2% 4+ \(b; — %)

8: end for

9:  for Anti-Laplacian loop: Points to be moved with free coordinates (z*)
do

10: Compute the barycenter b;.

11: Move the coordinate (z¥): 2% = 2% + pu(b; — %)

12:  end for
13: end while

As a consequence of this Laplacian surface smoothing, the quality of the
volume mesh is perturbed, so we have to relocate the volume-nodes with the
alm to repairing the poor quality elements resulting from the above surface
smoothing. To do this, we have applied a tetrahedron mesh improvement via
optimization of the element condition number developed in Freitag & Knupp
(1999) and this algorithm is sketched in Algorithm 5.

This optimization uses a steepest descent framework with a modified line
search adapted to the geometrical constraints of the sub-mesh ¢;,,i =1,...,m
associated to the free point. For more details about this issue, see Nocedal &
Wright (2006). The implemented line search satisfies the Armijo rule which
guarantees the local convergence of the method. A structured strategy is ap-
plied in order to perform the line search. The descent direction is obtained
using the gradient of the following objetive function f(x), in which the free
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Algorithm 3 Laplacian constrained smoothing algorithm

1: Mark to not move points in the interface and located in the real boundary.

2. (INPUT):

e A=0.6307, n =1.0/(0.1 —1.0/X)
e numit: number of iterations

e control: number of iterations to reduce the moviment.

flag: flag to control if the free vertex can be moved.

o kpof: Reference condition number.

3: (INITIALIZE) k = 0, 2% = 2, flag = 0.
4: while k < numiter do

5
6:
T
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

26:
27:

for Laplacian loop: Points to be moved with free coordinates (z¥) do
Compute the barycenter: b; with the connected points to be moved.
Move the coordinate (z¥): ¥ = ¥ + A(b; — 2*)
(INITIALIZE) jiter =0
while jiter < control do
Move the coordinate with a weight a, (z*): 2% = ¥ + a(b; — 2F)

for Tetrahedra t;,7 = 1,...,m connected to the free point do
Compute the maximum condition number of the sub-mesh: K44
end for

if Kiae > Krep then

Modify the weight to move: o = « * %

Move the coordinate with weight o, (z*): 2% = 2% + aX(b; — 2¥)
else
flag =1
end if
end while
if flag =0 then
The point cannot be moved.
end if
end for
for Anti-Laplacian loop: Points to be moved with free coordinates (z*)
do
Detailed in Algortihm 4
end for

28: end while
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Algorithm 4 Continuity of the Laplacian constrained smoothing algorithm

1: for Anti-Laplacian loop: Points to be moved with free coordinates (z*) do

2:  Compute the baricenter: b; with the connected points to be moved.
3:  Move the coordinate (z%): 2% = 2% + pu(b; — 2¥)

4:  (INITIALIZE) jiter =0

5. while jiter < control do

6: Move the coordinate with a weight a, (z*): 2% = ¥ + au(b; — %)
7 for Tetrahedra t;,7 = 1,...,m connected to the free point do

8: Compute the maximum condition number of the sub-mesh: K4z
9: end for

10: if Kimae > Krep then

11: Modify the weight to move: a = a %

12: Move the coordinate with weight o, (2): 2% = 2% 4+ au(b; — 2¥)
13: else

14: flag =1

15: end if

16:  end while

17: if flag = 0 then

18: The point cannot be moved.

19:  end if
20: end for

vertex x is the variable:

M—1 1/2
f(z) =[[K(z)|2 = [Z /fm(x)z] : (3.17)

m=0

First, we select the tetrahedron ¢; of the sub-mesh which intersects the line
defined by the descent direction p = —V,f and z. After that, we calculate
the distance d, between x and the face formed by the rest of the points of this
tetrahedron ¢;. This distance is expressed in Algorithm 5 by

d=|z" —y*|| where y* € {z"+spp:s>0}N[Ur 0]

, where U, 0t; represents the boundary of the submesh and the intersection
with the mentioned line is the point in the face of the tetrahedron ¢;. Using an
input parameter n given by the user, we calculate the step v = d/n . Finally,
the next position of the free vertex is calculated as

Af(x+iyp) sz +ivp € R, (3.18)

The process is illustrated in Figure 3.35, where the sub-mesh associated
to the free vertex to be moved as well as the steepest descent direction is

Tpew = argmin,_,

.....
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Algorithm 5 Optimization smoothing algorithm
1. (INPUT):

e (x): free vertex coordinates

e {;,i=1,...,m: tetrahedra connected to the free point.
e n: partitions

e maxiter: maximum number of iterations

e c: convergence tolerance

2: (INITIALIZE) k = 0, 2 = .
3: while |V f(2F)|| > € and k < maxtiter do

4 pp=—-Vf(ah

5. d=|z* — y¥|| where y* € {z* + spi : s > 0} N (U, 0]

6:  aFtl = argmin {f (2% + l%pk) l=1,...,n}

7. k=k+1

8: end while

Maximum Average Minimum

Regular Mesh 3.8 3.8 3.8
Perturbed Mesh 160.6 6.1 3.0
Optimized Mesh 7.2 4.0 3.1

Table 3.1: Condition number mesh quality.

illustrated. The red tetrahedron is the tetrahedron of the sub-mesh which in-
tersected the yellow line, defined by the steepest descent direction given by the
negative gradient of the objective function.

To verify the smoothing volume technique we have performed the following
test. From a regular Cartesian mesh consisting of 3000 tetrahedral elements
and 791 nodes in a cube domain we have randomly perturbed the position of
all the interior nodes and applied the volume mesh smoothing Algorithm 5, as
we can see in Figure 3.36. The statistic of the condition number mesh quality
is represented in Table 3.1.

So we observe how the smoothing algorithm corrects the perturbed mesh. In
Figure 3.36 these three meshes are represented.

The coupling between the Laplacian surface mesh smoothing and optimization
volume mesh smoothing can be done in different ways. On one side, we can
perform the Laplacian smoothing as in the Algorithm 2 and after that, apply
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Figure 3.36: (Left) Regular mesh. (Middle) Perturbed mesh. (Right) Smoothed

mesh.

an optimized volume smoothing to volume points from the interface to the
fourth layer. This parameter can be modified adding or removing points to be
smoothed in the volume mesh. This algorithm is described in Algorithm 6.

On the other side, we have applied another strategy to couple the subdo-
mains so that the volume mesh smoothing is done inside the surface smoothing
iterations. This is described in Algorithm 7.
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Algorithm 6 Coupling surface-volume smoothing version 1

1: Call Algorithm 2 or 344

2. (INPUT): nyqyer

3: for Volume points untill the 14y, from the interface do

4:  Tetrahedra t;,i = 1,...,m connected with the free point.
5. Call Algorithm 5

6: end for

Algorithm 7 Coupling surface-volume smoothing version 2
1: Mark not to move points in the interface and located in the real boundary.
2: (INPUT):

e A=0.6307, n =1.0/(0.1 —1/X)
e numit: number of iterations

3. (INITIALIZE) k=0, 2* = 2.

4: while k < numiter do

5. for Laplacian loop: Points to be moved with free coordinates (z) do

6: Compute the barycenter: b; with the connected points to be moved.
7: Move the coordinate (z¥) : ¥ = zF 4+ \(b; — %)

8 Tetrahedra t;,7 = 1, ..., m connected with the free point

9: Call Algorithm 5

10: end for

11:  for Anti-Laplacian loop: Points to be moved with free vertex coordinates

(z*) do
12: Compute the baricenter: b; of the coordinates of the rest of the points
connected with the point to be moved.
13: Move the coordinate () : 2¥ = ¥ + u(b; — 2¥)
14: trahedra t;,7 = 1,...,m connected with the free point
15: Call algorithm 5

16: end for
17: end while

As we noted before, one of the worst scenarios in which the smoothing in-
terface technique helps us to a better construction of the extension elements is
represented in Figure 3.36. It corresponds to a regular mesh in a cube with a
spherical patch inside. When the hole is constructed, the interface surface con-
tains the boundaries forming ninety degrees between them which complicates
the construction of the extension elements. In Figure 3.8 we have illustrated
the interface of the hole, smoothed and non-smoothed. If we do not apply the
smoothing of the interface we are in trouble when the extension elements are
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Figure 3.37: (Left) Geometry of the domain. (Right) Non-smoothed and smoothed
interface.

constructed, bearing in mind that these new elements for this interface have
to be constructed inwards to the surface.

3.9 HERMESH numerical properties

The numerical properties of HERMESH will be shown in the different appli-
cations which are valid for the method; Chimera-type problems and joining
meshes. They will be presented in the next chapters, 4 and 5, respectively. In
Table 3.9 we present which are these numerical properties, for which equations
they have been tested and for which particular application.

Navier-Stokes Solid mechanics  ADR

Linear - - Joining
Mesh cvg  Joining & Chimera Chimera -
Mass cons. Chimera - -
Matching Chimera Joining -

where the definitions of the different properties are the following:

e Linear: The HERMESH method gives error zero for linear solutions.
Manufactured solution technique with imposed linear solution is applied
to prove it.
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e Mesh convergence: The order of convergence of the HERMESH method
in different equations. Manufactured solution technique with different
imposed solutions are applied in each case.

o Mass conservation: Quantify the mass non-conservation in Navier-Stokes
equations.

e Matching overlap: To show that if the union of the subdomain meshes
and their extensions matches with the one-domain mesh then we recover
the same solution in both problems, two-subdomains and one-domain.
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Chapter 4

Hermesh method for Chimera strategy

As we have explained in first chapter, the main idea of the Chimera method
is to generate independent meshes for the components present in the compu-
tational domain (e.g. fuselage, airfoil, flap, slap, etc.) and to couple them via
a coupling strategy in order to obtain a global solution. The appealing char-
acteristics of the Chimera method have permitted many applications such as
simplified mesh generation, local refinement, moving components or optimiza-
tion problems saving a lot of computational resources in all cases. HERMESH
also offers the possibility of applying this technique, which will be given in
detail below.

4.1 Introduction

The Chimera jargon. When the Chimera Method is taken into account, the
mesh is divided into a background mesh, which covers all of the computational
domain, and patch or overset meshes attached to the different components
(objects) which are located on the background mesh. First, a proper prepro-
cess is applied to create the interface of the background mesh with the overset
meshes. This can be achieved by removing elements (in Finite Element jargon)
of the background mesh located inside the patch meshes to create apparent
interfaces between the background and the patches: this is the hole-cutting. If
the patch meshes are stationary, the elements of the hole can be permanently
removed from the mesh definition. Then a domain decomposition (DD) cou-
pling algorithm is carried out in order to obtain a “continuous solution” across
the interfaces.
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Different implementations. In the literature, all the Chimera methods have
a common feature, the hole-cutting. They differ in the way the coupling of the
background with the patches is carried out. Figure 4.1 illustrates three options.

@ hole cutting @ hole cutting @

mesh transmission 2-way mesh
conforming conditions extension

overlap

Example of elements Impose transmission Example of extension
to fill in the gap condition element for node o

Figure 4.1: Some Chimera methods.

In the first method shown in Figure 4.1 (Left), the hole-cutting is created
in such a way that a gap between the two subdomains is obtained. Then, the
gap is meshed in such a way that a conforming mesh connects the subdo-
mains (see e.g. Chan & Buning (1996)). This technique is commonly used as
a meshing strategy to glue octree meshes to boundary layer meshes (see e.g.
Park, Jeong, Lee, & Shin (2013)). The two main advantages of this method
are as follows: on the one hand, it consists of a preprocess technique that can
be taken out of the simulation code; on the other hand, the resulting mesh
is conforming. The main drawback is that some nodes may be added if the
mesh sizes are different, and the meshing can be problematic. The Shear-Slip
Mesh Update Method (SSMUM), see Behr & Tezduyar (1999), is a particular
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case of this method where the nodes on the interfaces are reconnected to the
other interface nodes without adding any nodes in the gap, which restricts the
application of the method to meshes of similar sizes on both sides of the gap.
The Chimera method shown in Figure 4.1 (Middle) consists in imposing trans-
mission conditions to obtain continuous variables and continuous fluxes across
the interfaces. In a finite element context, the transmission condition on one
interface could be of Dirichlet type and on the other one of Neumann type, in
order to impose continuity of the solution and its flux, respectively. Usually,
the coupling is imposed iteratively, imposing an additional iteration loop to
the original algorithm. In addition, the flux continuity is PDE-dependent and
a specific implementation would be required for different physics. The latter
method, illustrated by Figure 4.1, (Right) is the one proposed in the present
work.

The proposed parallel implementation of the Chimera method is only valid
for fixed components. In fact, the coupling between the meshes is done as a
preprocess, before the mesh partitioning is carried out for parallelization pur-
pose. This is not an inherent restriction of the method but a deliberate choice
on the authors’ part, due to the specific requirements of the applications en-
visaged in this work. It should be mentioned that the parallelization of the
Chimera method in a distributed memory context is not an easy task when-
ever the method is meant to be implicit. In common explicit implementations
of the method, the transmission conditions are usually imposed iteratively, as
we have noted before. This option means that the subdomains can be solved
in a staggered manner. In this case the parallelization is more straightforward
as one could use as many parallel instances of the code as subdomains and
the only difficulty consists in the exchanging of the transmission conditions
through MPI. In the case of an explicit coupling, each subdomain is indepen-
dently solved with different parallel instances of the code and the coupling is
carried out between these instances in an iterative way. As we have seen in
previous chapter, in the implicit case, the transmission conditions are included
in the matrix of the algebraic system. So in this case, the global coupled solu-
tions are solved in parallel, regardless of the existence of background and patch
meshes.

If the subdomains are moving, the number of degrees of freedom as well as
the connectivity in each subdomain vary in time, and the parallel implementa-
tion is cumbersome. The method proposed, implemented as a preprocess, can
therefore be applied for simplifying the mesh generation, for local refinement
and optimization.

The following section deals with the hole-cutting, which leads to the creation
of the background interface.
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4.2 Hole cutting

For the sake of clarity we will consider only one patch mesh, although the dis-
cussion still holds for multi-components meshes. The hole-cutting task consists
in removing some elements, the hole elements, from the background mesh. The
resulting background mesh is therefore made of the original elements without
the hole elements and the interface is the boundary mesh formed by the hole.
This interface will be used later on to couple the background with the patch.
One key point when creating the hole is that the boundary of the new mesh is
a manifold boundary mesh.

A triangle mesh is a 2-manifold if it contains neither non-manifold
edges nor non-manifold vertices, nor self-intersections. A non man-
ifold edge has more than two incident triangles and a non manifold
vertex is generated by pitching two surface sheets together at that
vertex such that the vertex is incident to more than one fan of tri-
angles.

More details about the requirements for ensuring mesh validity can be found
in Dey, Shephard, & Georges (1997). The purpose is to avoid the situation
depicted in Figure 4.2 (Right), where a node (vertex) is connected to four
boundary edges and its connected elements (faces in 2D) do not form neither a
closed nor an open fan. To ensure that we obtain a manifold mesh, the idea is

V

Manifold boundary Non-manifold boundary

Figure 4.2: Manifold and non-manifold mesh after hole cutting.

to recursively mark some candidate hole elements, using the common faces as
a criterion. Therefore, we will never mark a candidate element if it connects to
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another marked element through only an edge or a node. The method consists
therefore of two steps:

1. Select the candidate hole elements.

2. Mark the candidate hole elements recursively using the common face
criterion.

Candidate hole elements. We propose two methods for selecting the can-
didate elements, as illustrated in Figure 4.3. The first one consists in first
marking the elements crossed by the patch interface. The candidate elements
are therefore all the elements until the previously marked elements are reached
by the recursive algorithm. The second method consists in using the signed
distance between the background nodes and the patch interface to identify the
hole nodes located inside the patch. In this case, the candidate elements are
those elements all of whose nodes are hole nodes. To evaluate the signed dis-
tance, we have used a skd-tree strategy, as explained in 2.4. In this case, the
surface is formed by the patch outer boundary elements.

Hole elements from candidates. Once candidate elements have been se-
lected, a recursive algorithm is executed to create a manifold hole boundary.
The seed element of the recursive algorithm is selected near the center of grav-
ity of the hole. Figure 4.4 represents the recursive algorithm where elements
are chosen from top to bottom and black to white. The red element is the seed.

The recursive algorithm is summarized in Algorithm 8. We will not give
too many details here as the complete algorithm largely depends on the data
structure in question. We shall simply mention that in the current implemen-
tation, when marking an element, the associated faces and nodes can also be
marked, in order to identify critical edges and vertices more easily.

The algorithm works as follows. From a marked element ielem in the stack,
we loop over its neighbors jelem, which share common faces. In order to accept
and mark the new element jelem, one should check that it only connects to
other marked elements kelem through faces. This is necessary in order to avoid
having critical edges or vertices, as illustrated in Figure 4.5, and thus to obtain
a manifold mesh.

4.2.1 Hole cutting plus HERMESH coupling

We now illustrate the complete strategy for setting up the Chimera method
using two one-dimensional and overlapping meshes, as shown in Figure 4.6.
The complete strategy consists of the following steps:

e Step 1: Hole cutting. From the top meshes, perform the hole cutting by
identifying the hole elements. In Figure, they are elements 4, 5 and 6. We
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Method 1 Method 2

Mark boundary elements crossed Mark hole nodes using signed
by boundary distance (SKD-Tree)

Candidate elements are interior ones Candidate elements are elements
until boundary elements with hole nodes

Figure 4.3: Two methodologies to select hole element candidates. (Left) Marking
the elements crossed by patch interface. (Right) Marking the hole nodes
using the signed distance to the patch interface.

observe that we end up with an overlap between the subdomains. The
overlap is the zone comprised between nodes 4 and 10 on the left-hand
side, and between nodes 7 and 14 on the right-hand side.

e Step 2: Identify fringe nodes. The fringe nodes are the nodes located on
the boundary of the hole of the background (blue subdomain), which are
nodes 4 and 7, and the outer boundary of the patch (green subdomain),
which are nodes 10 and 14.

e Step 3: HERMESH coupling. Create the extension elements (in red),
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Figure 4.4: Recursive algorithm to create the hole from the candidate elements. The
red element is the seed of the algorithm.

Algorithm 8 Recursive algorithm to create hole from candidate hole elements.
Find seed hole element ielem
Initialize element marker 1mark(:) = 0
lstack(l) = ielem
lmark(ielem) = 1
istack =1
while istack # nstack do
istack = istack + 1
ielem = 1lstack(istack)
for Candidate neighbors jelem of ielem with common face do
if Critical edge or critical vertex then
Do not mark jelem
else
Mark element: lmark(jelem) = 1
nstack = nstack + 1
1stack(nstack) = jelem

end if

end for

end while
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Figure 4.5: Marking or not a neighbor jelem (green) of ielem (grey) according to
the previously marked elements kelem (grey).
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Figure 4.6: Chimera method: hole cutting plus HERMESH coupling.

which are elements 13, 14, 15 and 16, which connect one subdomain to
the other. The final overlap is now the zone comprised between nodes 2
and 11 on one side and nodes 7 and 13 on the other side.
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4.3 Implementation aspects

We are going to describe some details of the particular case of the Chimera
problem in relation to the implementation aspects, although some of them have
already been partially explained in the general Chapter 3.

4.3.1 Equation assembly

Once the extensions have been created, a very simple implementation is possi-
ble. We have to deal with the new types of elements, namely the hole elements
and the extension elements.

Hole elements. The governing equations should not be assembled in the hole
elements as they are no longer part of the solution process. We can choose
to eliminate the hole elements and hole nodes from the mesh definition and
apply a node and element renumberings before going any further. However, if
the Chimera method is implemented to treat moving components, this option
is no longer valid. In the present work, we do not eliminate the hole elements
and hole nodes to show how the implementation should proceed.

Extension elements. As described in the previous chapter, the extension
elements are attached to a given fringe node and should only be used to as-
semble the fringe node equation. Therefore, something must be done during
the assembly process in order not to assemble the complete contribution of the
extension elements. The following strategy treats both the extension and hole
elements and is specific to the finite element method.

Let us once again consider the array letyp(nelem) where nelem is the
total number of elements (including extensions and holes). Say this array is:

Normal element: letyp(ielem) = 0,
Extension element: letyp(ielem) =1,
Hole element: letyp(ielem) = —1.

4.3.2 Hole nodes treatment

We have already mentioned that hole elements could be removed from the
mesh. However, they are kept in the present implementation. Therefore, as
these elements do not participate in the assembly of the global matrix, we are
left with empty rows in the global matrices and RHS’s. These rows correspond
to the hole node degrees of freedom. We have basically two alternatives. On
the one hand, the hole nodes can be eliminated from the matrix graph (in the
CSR format). On the other hand, we have the option to let the matrix as it is;
in fact, no free node is connected to a hole node, so any nodal value on a hole
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node is irrelevant. If this last option is selected, one should only remember to
put a non-zero value on the diagonal if a diagonal preconditioner is used in the
algebraic solver. The drawback is that useless operations are carried out in the
matrix-vector operations of the iterative solvers.

4.4 Numerical propierties of the HERMESH Method
for Chimera problems

As is illustrated in Table 3.9, , Chimera problems have been tested with HER-
MESH for different PDE’s and certain numerical properties have been proved.
They will be presented in this section. In particular, we are going to show the
matching property, i.e., if the independent coupled meshes plus its extension
elements replicate the same mesh as in one domain, the solution is exactly the
same. This is done for Navier-Stokes and Solid Mechanics in two-dimensional
problems. Then a three-dimensional problem where the advection-diffusion-
reaction equation is solved will be presented and we will show that the solution
is not affected by the direction of the flow. A mesh convergence test proves that
the method is of order two for Navier-Stokes and Solid Mechanics problems.
Finally, we shall quantify the loss of mass for the Navier-Stokes equations in
the last example.

4.4.1 Independence of flow direction in the ADR problem

As we have mentioned in the first chapter, classical domain decomposition tech-
niques are flow-direction-dependent when they solve an advection-diffusion-
reaction equation. Here we present an example in three dimensions for a
Chimera-type domain solved with the HERMESH method. We will show that
the solution is not affected by the direction of the flow across the interface.
Figure 4.7 shows the problem to have been solved with the boundary condi-
tions for unknown u, and in Figure 4.8 we can see the meshes used in this
example. The gray extensions are the extensions of the patch and the green
ones are those of the background. On the right and bottom part of the figure,
a zoom of the corner is shown, as are the extension elements of a particular
fringe node of the patch.

4.4.2 Mesh convergence

This section is devoted to solving the problem with the manufactured tech-
nique, explained in Section 2.6. With these examples, we want to study the
mesh convergence and compare the results with the one-domain solution for
Navier-Stokes equations and solid problems.
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Pe = kla|/d = 10
d: Sphere diamenter

Figure 4.7: Advection-Diffussion-Reaction problem. Presentation of the physical
problem and the solution not affected by the flow direction.
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Figure 4.8: Advection-Diffussion-Reaction problem. Mesh and extension elements

Chimera in solid mechanics for a plate

The two-dimensional exact solution u'®) considered here for the manufactured
technique described in 2.6 is:

w” = ¥ xy! (4.1)

UQ - 33’3 X y3
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solved on a unit square. Figure 4.9 shows the resulting mesh convergence re-
sults, namely the following definition of the errors:

e ¢(u): error of the displacement;

e ¢(Vu): error of the gradient of the displacement.

1 subdomain
2 subdomains

0.01 h ]

0.001 | / 2 1
0.0001 | / 1

Error - displacement

0.01 0.1 1
h
1 subdomain ‘
© 2 subdomains —
% 01¢ / |
8 -~
&
S 0oL | / h_- ]
-
k5
®
> 0.001 | ) B
. h
=
m
0.0001 | 1
0.01 0.1 1
h

Figure 4.9: Mesh Convergence study for solid mechanics; e(u)-error (left) and
e(Vu)-error (right).
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Figure 4.10 shows the three finest meshes of the convergence study. The
subdomains are meshed with Q1 (quadrilateral) elements while the extensions
are P1 (triangular) elements. For the one domain solution, @1 regular meshes
have been used.

Figure 4.10: Mesh Convergence study for solid mechanics; the three finest meshes
used for the Chimera method (blue and red elements are, respectively,
the regular and extension elements).

The results successfully confirm a first order convergence in €(Vu) and
second order in e(u) with respect to h for the Chimera method with almost
the same error as for one subdomain.

Chimera in CFD for two-dimensional example

To assess the mesh convergence, we shall consider the following exact solution
to have been solved with the manufactured technique strategy described in 2.6
on the unit square:

U, = [1+$+y2’_1_y_x2]t,
Pe = :I"2+y2'

Both the one-domain and Chimera method with two subdomains are solved,
and two different scenarios are studied. In the present case, the two subdo-
mains used for the Chimera method have the same mesh size and their inter-
faces end up being matching. The overlap comes from the extension elements,
after connecting the subdomains. On the one hand, the problem is solved with
a Dirichlet condition for the velocity on all the boundary. On the other hand,
the right-hand side wall Dirichlet condition is substituted by a Neumann con-
dition. Figure 4.11 shows the meshes and boundary conditions. As shown in
chapter 3, the HERMESH coupling is equivalent to extending the subdomain
and imposing a Dirichlet condition on the extension nodes. Therefore, we may
not conserve mass at the subdomain interfaces. On the one hand, if the com-
putational domain is confined, it is well known that the continuous problem
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Figure 4.11: Mesh convergence study for Navier-Stokes equations. Meshes and
boundary conditions.

does not have a solution (as the Dirichlet condition violates the data compati-
bility which establishes the global mass conservation). On the other hand, the
numerical problem has a solution, but the pressure solution carries an error ac-
cording to the magnitude of the mass imbalance. The problem can be avoided
by imposing a Neumann condition on one of the walls. Figure 4.12 shows the
errors obtained in velocity and pressure using the one-domain and the Chimera
method, and for the Dirichlet and Neumann conditions. The expected rates of
convergence are obtained, with low differences in velocity between the Chimera
and one-domain solutions. The difference is much greater in pressure in the case
of the Dirichlet condition on all the boundary. This difference is mitigated by
imposing the Neuman condition.

4.4.3 Mass conservation

A good review of this issue can be found in reference Liu & Shyy (1996). This
matter is also dealt with in detail in Ahusborde & Glockner (2010). In order to
quantify the mass non-conservation, the Navier-Stokes equations are solved on
the same geometry as in the mesh convergence example of the previous subsec-
tion, imposing a parabolic profile on the left wall (inflow), zero velocity on the
top and bottom walls, and a zero traction condition on the right wall (outflow).
Due to the not-strictly-conservative property of the HERMESH coupling, we
expect the background to interpolate a global non-zero mass from the patch.
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Figure 4.12: Mesh convergence study for Navier-Stokes equations. (Top) All Dirich-
let conditions. (Bot.) Right wall is a Neumann condition. (Left) Veloc-
ity L2 residual. (Right) Pressure L2 residual.

This is shown in Figure 4.13.

The mesh convergence of the velocity is quadratic so it is expected that the
mass imbalance is expected to be quadratic as well. This comment is confirmed
by Figure 4.14, where we depict the difference in mass between inflow and

outflow as well as the percentage of error.
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Figure 4.13: Non-conservative interface between background and patch meshes.
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Figure 4.14: Mass conservation.
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Chapter 5

Hermesh Method for mesh gluing strategy

As we have discussed in the first chapter, the question of the non-conforming
meshes is very useful in many circumstances. One of the strategies in complex
geometries is that of dividing the geometry into meshable parts so as to simplify
the meshing process. Also, in fluid-structure interaction, we can find problems
in which the geometry does not match perfectly and gaps may appear between
different parts of the domains. In all such cases, it is very important to be able
to join these non-matching meshes with some flexibility in the relative position
of the different parts composing the whole geometry or the relative mesh size,
and in the most automatic way as possible. We have developed the HERMESH
method to be able to deal with non-conforming meshes. In this chapter, we will
describe the capacities HERMESH has for automatically joining meshes as a
lego, as well as show the numerical properties with different examples.

To describe the gluing method developed in this work, we shall consider four
different situations illustrated in Figure 5.1 to which the the HERMESH method
can be applied. These situations correspond to the main combinations that ap-
pear in practice. When meshes come from different sources, their interfaces are
likely not to match perfectly. Therefore, some parts can present a gap (Figure
5.1 (a,b,c)) and others can be overlapping (Figure 5.1 (d)). In addition, we need
to define where the subdomains should connect to each other. In other words,
we need to define the interfaces where HERMESH coupling is to be applied. If
the user knows the interface a priori, this interface should be depicted; such is
the case of Figure 5.1 (a) as well as partially the case of Figure 5.1 (b). If the
user has no means to act on the mesh and describe these interfaces, one would
like them to be automatically detected, whenever possible, as shown in Figure
5.1 (¢,d) and partly in (b). In the following, we shall confine our discussion
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to two subdomains, although the methodology still holds for multi-component
meshes.

e known interface
m— guessed interface

2 known interfaces 1 known/1 unknown interfaces 2 unknown interfaces holed / 1 unknown interfaces

L \

N\ @nn :

@ (b) © @

Figure 5.1: Lego with independent components.

The aforementioned possibilities come from the combinations of three dif-
ferent types of interfaces. We refer to these interfaces as: Known, Unknown and
Holed-Unknown.In accordance with this nomenclature we have the following
four possibilities illustrated in Figure 5.1:

Interface 4 Interface j
Case a Known Known
Case b Known Unknown
Case ¢ Unknown Known

Case ¢ Unknown  Holed-Unknown

At the mesh level, an interface consists of a list of element boundaries
which, in turn, defines a list of nodes on which the HERMESH method will be
applied. These nodes will be referred to as fringe nodes in the next Section.

5.1 Description of the types of Interfaces

Let us now describe the different types of interfaces.

e The Known interface of a subdomain ¢ is the one that is prescribed by
the user as an input data.
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e The Unknown interface of a subdomain i is constructed by using some
geometrical information of the adjacent subdomain j in different ways,
according to whether subdomain j has a known or unknown interface
with 4.

e The Holed-Unknown interface of a subdomain 7 is constructed with a
previous hole-cutting step.

According with this definitions we have the four cases represented in Table 5
and explained next:

e Case a. Both interfaces are prescribed by the user and the extension
elements can be constructed directly.

e Case b. If the interface of j is known (Figure 5.1 (b)), the geometrical
information is the average normal n of the interface of j. Then, we guess
the interface as being the list of boundaries of 7 that are intercepted by
the projection of the interface of j along the direction of n.

e Case c¢. when both interfaces are unknown, the procedure is quite risky
and its usefulness largely depends on the case considered. Figure 5.1
(c) shows an example of both unknown interfaces. Let us first select a
Master subdomain, for instance i; the procedure is illustrated in Figure
5.2. Boundaries b; and b3 are not interface boundaries, whereas b, is. The
procedure consists of the following:

— Loop over the boundaries b of ¢, and compute the line going from
the center of gravity of b along the normal of b; if the line does not
intersect with j, do not consider the boundary (boundary b in the
figure). If this line intersects subdomain j (triangles in the figure),
check if it intersects with its own boundary:

« If the line intersects with its own subdomain boundary (in ),
do not consider b. In the figure, this is the case of boundary b;.

x If the line does not intersect with its own subdomain boundary,
then mark this boundary b as an interface boundary. In this
Figure, this is the case of b,.

— Once the process is finished, mark this interface (union of all the
b’s) as known.

— Use the procedure described before for a known-unknown interface
corresponding to Figure 5.1 (b), where now j is the unknown sub-
domain.

Roughly speaking, the interface of an unknown interface is created by
the shadow of the neighbor mesh.

137



“tesi” — 2014/5/13 — 11:39 — page 138 — #156

Figure 5.2: Unknown-unknown interfaces procedure.

e Case d. The Holed-Unknown case (Figure 5.1 (d)) means that a previous
step is necessary for defining the interface, that is, the hole-cutting pro-
cess. The hole-cutting task consists in removing some elements from the
mesh, referred to as the hole elements, and defining the holed-unknown
interface. The interface will be the boundary mesh formed by the hole.
This process is the same as the hole-cutting process of the Chimera prob-
lem explained in Section 4.2. However, in this case we do not locate the
seed of the recursive algorithm in the hole candidate elements because we
could find a holed-unknown interface with two non-connected parts. An
example is shown in the next chapter, corresponding to the simulation
of a by-pass in a stenosed artery problem solved with HERMESH.

Once this is done, we identify the fringe nodes as the nodes that form
the interface to be connected to the adjacent mesh. With all the different
interfaces previously defined, we are able to couple disjoint and non-overlapping
subdomains (case a, b, ¢) or overlapping subdomains (case d).

Finally, when the interfaces are defined, the next step consists in coupling
the meshes applying the HERMESH technique, explained in chapter 3.
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5.2 Numerical properties of the HERMESH Method
for mesh-gluing problems

In this section, as in the Chimera chapter, we present the main numerical
properties of the HERMESH method in different examples. We show that in
problems of this kind we also obtain an error zero if the exact solution is linear
for the manufactured strategy, as see Section 2.6. Also, we are going to prove
that the solution is nodally exact when the composed mesh with HERMESH
and the mesh in one-domain problem are the same. This test will be performed
for the solid mechanics equations. Finally, we show a mesh convergence test
for the Navier-Stokes equations.

5.2.1 Linear solution in gluing meshes
We consider the four geometries depicted in Figure 5.1. The first manufactured

solution is linear in space. The automatic extension elements constructed by
this lego-tool and the solution obtained are illustrated in Figure 5.3.

2 known interfaces 1 known/1 unknown interfaces 2 unknown interfaces 1 unknown/1 unknown holed interfaces

~

\‘
<

.

w

|
4 Ad-ﬂ

Figure 5.3: Results of the coupled meshes.

The results show that the error is null in the four cases, so, as we mentioned
in the previous chapter, the error is null when the solution belongs to the finite
element space.
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Figure 5.4: Matching overlap. Extension elements (in red) coincide with the adjacent
elements.

5.2.2 Matching overlap

With this example, we want to show that when the subdomain elements
(including extension elements) coincide everywhere including the overlapping
zone, the solution using the HERMESH coupling is the same as with one sub-
domain. In this case, a two-dimensional end-loaded cantilever beam clamped
on the other side is considered. We choose two disjoint subdomains and then
construct the extension elements so that they coincide with the elements of
the adjacent subdomain, as shown in Figure 5.4.

As we only want to show that the solution on one and two subdomains are
the same, we do not provide any physical and numerical descriptions of the
simulation. Figure 5.5 compares the solution, namely the vertical displacement
and vertical normal stress, along a horizontal cut and at a given time step.
Figure 5.6 compares the vertical displacement at some given point versus time.
The two figures confirm that the solutions are identical.
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Figure 5.5: Matching overlap. Comparison of solutions with 1 and 2 subdomains.
(Left) Vertical displacement along the beam. (Right) Vertical normal
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Figure 5.6: Matching overlap. Comparison of Vertical displacement vs time with 1
and 2 subdomains, at an arbitrary position.

5.2.3 Mesh convergence in gluing meshes for Navier-Stokes

problem

With these examples, we want to study the mesh convergence and compare
the results with the one-domain solution for Navier-Stokes equations and solid
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problems.

We consider a unit square domain on which we solve the Navier-Stokes
equations with a quadratic manufactured solution, as see in Section 2.6 with
the following manufactured solution: u, =1+ z + y?, v. = —(1 + y + %) and
pe = 22, where (u,,v.) are the manufactured velocity components and p, is
the manufactured pressure. We compare the solutions obtained on one domain
and using the HERMESH method for three different mesh sizes. The meshes
and extension elements are shown in Figure 5.7. Note that the gap between
the subdomain is of the same size as the elements of the finest mesh.

Figure 5.7: (Top) Meshes and geometries. (Top) One domain. (Bot.) HERMESH
method.

The L? errors (represented for Equation 2.88) of the velocity and pressure
are shown in Figure 5.8, and confirm that we obtain a quadratic convergence
for the velocity when using the HERMESH method. Let us remark that the
velocity error is of the same order for both approaches, whereas in the case of
the pressure, it is one order of magnitude higher for the HERMESH method.
As noted in Section 4.4.2, this bears on the lack of conservation of mass which
introduces additional errors in the pressure. However, this error is consistent
with the scheme accuracy.
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Chapter 6

Complex problems solved with Hermesh Method

In this chapter we want to present the real applications solved with the HER-
MESH method. The presentation of the different cases will be in a chronological
way. Since the validity of the method has been demonstrated with different ex-
amples during the writing of this manuscript, in this chapter we will just focus
on showing real problems solved with the method. As we will see, there are
many different situations in which the HERMESH method could be useful.
First, we simulate the free surface flow around a ship hull. This is a good ex-
ample for proving the versatility of the method since three coupled systems are
solved in the same problem. Next, we present the simulation of a neuron, cor-
responding to the solution of the solid mechanics equations. So, once again, the
versatility of the method is proved. The neuron is divided into a background
mesh corresponding to the body of the neuron and the nucleus is divided into
another mesh. This problem could be useful for measuring some properties of
the behavior of the neuron submitted to certain pressure conditions. We have
proved that the method in solid mechanics equations has a good performance
in complex geometries and with different materials, as is the case of the neuron
presented in this work, following a previous test in a simple cube domain. An-
other real problem solved with the HERMESH method is the simulation of the
air flow in a wind farm. The wind turbines are approximated by the actuator
disk theory and we mesh each disk with a patch mesh and the background
is the whole park, so we can simulate different configurations of the turbines
inside the park, without remeshing in each test. Another advantage is that
we can capture the wake with much less computational effort just by locally
refining in the patch but not in the rest of the park. The next problem to be
shown lies in small and large human airways simulation. With the HERMESH
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method we have been able to join both parts stemming from different research
centers. The last application presented in this work also bears on the biome-
chanical framework; more specifically, it consists of the numerical simulation
of the hemodynamics in the cardiovascular system. The idea is to study the
viability of the HERMESH method to study the hemodynamic effects of the
bypass diameter and incidence angle implanted in the stenosed vessel. If this
strategy is valid, the different by -pass could be tested rapidly without having
to remesh in each test.

6.1 Ship Hull

In this first real problem, we simulate the free surface flow around a ship
hull with the RANS equations together with the Spalart-Allmaras turbulence
model, described in Section 2.3 and a hyperbolic equation for the level set,
see Section 2.4. We therefore have three coupled systems solved in a stag-
gered manner, as described in Owen, Houzeaux, Lesage, Samaniego, & Véazquez
(2013): Navier-Stokes equations, Spalart-Allmaras turbulence model and level
set equation, all presented in chapter 2.

The domain has been created with two subdomains in a Chimera-type prob-
lem. As we have explained before, the main advantage of the Chimera method
in optimization problems or moving components with respect to a complete
automatic remeshing stems from the fact that the component meshes move
like rigid bodies from one time step/configuration to another. The coupling
only affects the vicinity of the interfaces and, if the interfaces are far enough
from the body, the impact of the coupling is expected to be minimal. As an
example, a boundary layer will remain the same boundary layer. It enables one
to respect the tendencies. In fact, a CFD solution always carries an error. By
moving the meshes as rigid bodies, without remeshing the whole geometry, it
is expected that the error will go the right way. In this sense, let us consider
the hydrodynamics of a yacht for which we would want to test two different
keels. We would have two options: building two different meshes from scratch
for the two configurations, or using the Chimera method in the following way.

e Generating a mesh for the hull including the boundary layer, ignoring
the presence of any other object.

e Generating a mesh for each one of the two keels.

e Using the Chimera method to couple the hull with the first keel and, in
another simulation, to couple the hull with the second keel.

The drawback of the first strategy, which consists in generating complete
meshes for the two configurations is that we may not be able to obtain ex-
actly the same boundary layer mesh around the hull in both cases. Using the

146



“tesi” — 2014/5/13 — 11:39 — page 147 — #165

Chimera method, we make sure that the boundary layer will be the same and
we do not have to worry about the difference in accuracy from one configura-
tion to another. We are more likely to respect the tendencies of the solutions.
Although in this work we have not tested different keels, we have applied our
method to a Chimera problem in such a way that the computational domain
is composed of two independent meshes. One the one hand, we have generated
a mesh for the hull including the boundary layer. On the other hand, we have
generated a mesh for the background in which the hull is embedded. We show
the successful results next by showing the viability of the HERMESH method
for studying the hydrodynamics of a yacht.

Figures 6.1 show the extension elements as well as the mesh. The mesh has
been refined around the water-free surface. This makes the creation of extension
elements more difficult as the size of the elements from one subdomain to
another can be quite different. In Figure 6.2, we can also observe the free
surface level with the pressure contour on it.

Figure 6.3 shows the partition obtained with METIS and selecting by-
nodes (and not by-faces) to construct the element graph, as we have discussed
in 3.6.4.

Finally, Figure 6.4 shows the results obtained for the four unknowns of
the problem. We can observe a successful continuity of the solution across
the subdomain interfaces despite the large difference in element size from one
subdomain to the other.

6.2 Neuron test

This test allows one to prove that the application of the HERMESH method
to the solid mechanics equations is valid for a real and complex geometry. Up
till now, the HERMESH method applied to these equations has been tested in
an end-loaded cantilever two-dimensional beam clamped on the other side or
a holed plate submitted to a load in the 0Y direction from the top side and
clamped on the base, and has been presented in chapter 5. Before presenting
the results obtained in a real neuron test, we have proved the reliability of
HERMESH method for a three-dimensional problem with different materials
comparing it with a one-domain reference solution.

Preview: Two material cube. The Chimera method is applied here to the
solution of a three-dimensional example shown in Figure 6.5. The geometry is
composed of two different Neo-Hookean materials, one of which corresponds
to the spherical patch mesh which includes a second material. In this example,
arbitrary constitutive parameters have been considered for both materials, but
material 2 (within the sphere) is stiffer than material 1. The cube is submitted
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Figure 6.1: Ship Hull. Extension elements and mesh.

Elements  Elements Elements Elements

Total Extension Hole Size
Mesh 1 374.848 14.848 17.120 2.910°3
Mesh 2 2.939.664 59.664 151.448  3.6107°
Reference mesh 10.790.400 9.310~6

Table 6.1: Example 2: Number of elements and mesh size.

to an increasing y-displacement on the top face, the bottom face being con-
strained in the y-direction. Additional lateral boundary conditions are applied
to avoid rigid body motion (not shown for clarity).

The problem was solved on two different meshes with the Chimera method:
a coarse one of 400,000 elements and a fine one of 3 million elements. A reference
solution without the Chimera method was also computed on a refined mesh
of 10 million elements. Table 6.1 shows the geometrical details of the three
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Figure 6.2: Free surface, pressure contours and extension elements.

different meshes. Figure 6.6 shows the displacement and normal stress in the y
direction as well as the corresponding mesh obtained on the mid yz-plane for
the coarse and fine meshes of the Chimera method. For the Chimera meshes,
the extension elements used for coupling the patch and background mesh are
demarcated in red. Figure 6.7 shows the solution for an additional cut along
the vertical displacement and stress. The solution on both meshes with the
Chimera method is compared to the reference solution. A good qualitative
agreement is observed for the displacement even for the larger mesh. The stress
exhibits a lower convergence, but this should be tempered by the fact that the
meshes are only first-order for the solution derivatives. In the overlapping zone,
covered by the extension elements, two solutions coexist: the one obtained on
the patch and the one obtained on the background. The discontinuity in the
stress inside the overlapping zone is appreciable for the coarsest mesh, but
this jump decreases when refining the mesh. Nevertheless, the maximum error
between the solution with HERMESH computed with the fine mesh and the
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Figure 6.3: Mesh partitioning.

Figure 6.4: (Top) (Left) Velocity. (Top) (Right) Pressure. (Bot.) (Left) Turbulent
viscosity. (Bot.) (Right) Level set.

reference solution is of an order of less than 1074,

Results of neuron test The following problem corresponds to the real ge-
ometry of a neuron cell with a soma, an axon, several dendrites and a nucleus
under hydrostatic pressure. Figure 6.8 shows the described problem.

The geometry of the neuron-cell was obtained from a real cell using electron
microscopy. The two-domain problem is composed of the background, corre-
sponding to the whole body of the neuron and a patch mesh consisting in the
nucleus of the neurone inside (Figure 6.9).
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Figure 6.5: Example 2: extension elements and hole (left) and boundary conditions
(right).

Nucleus and soma material models are different and representative for a
neuron cell. In particular, material parameters representing a (homogenized)
neuron cell used in this work for the soma material are given as follows: 1%*-
Lamé constant Ay = 12 kPa, shear modulus (2"-Lamé constant) po = 0.5
kPa, and mass density po = 107'? g/um?® (taken the same as water, py = 10?
kg/m?). And the properties used for the nucleus are given al follows: 15*-Lamé
constant \g = 36 kPa, shear modulus (2"d-Lamé constant) po = 1.5 kPa, and
mass density po = 107'2 g/um? (taken the same as water, py = 10® kg/m?). In
this case, HERMESH method creates a hole (nucleus) in the background mesh
(soma) and construct the extension elements in both interfaces, the background
interface and the patch interface (Figure 6.10).

The problem was aimed at studying the deformation of neuron-cells under
mechanical loading, e.g. pressure. With this kind of analyses, the mechanical
behavior of the cell under external forces can be studied, to assess whether a
certain load may induce damage to the cell or not. The results obtained in
this problem are shown in Figure 6.11. We can observe the continuity of the
stresses and displacements between two meshes.

Acknowledgements This test has been possible thanks to the collabora-
tion of two research centers. The geometry has been extracted from confocal
microscopy images by Prof. Antoine Jerusalem’s group (Computational Me-
chanics of Materials Group, University of Oxford) and has been provided by
the Laboratorio Cajal de Circuitos Corticales, CTB-UPM/Cajal-CSIC, which
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Figure 6.6: Example 2: solution on mid yz-plane for the three meshes: y-
displacement (top) and stress along the y-direction (middle) and com-
putational mesh (bottom).
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Figure 6.7: Example 2: solution along mid line of mid yz-plane for the three meshes:
y-displacement (left) and stress along the y-direction (right).
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Figure 6.8: Finite element mesh with 139921 linear tetrahedral elements, discretizing
a neuron cell (a soma, an axon and several dendrites).
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R
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Figure 6.9: (Left) White mesh: background mesh containing the body. Green Mesh:
patch mesh containing the nucleus. (Right) Zoom

is involved in the Blue Brain Project (BBP) with an initiative named Cajal
Blue Brain (http://cajalbbp.cesvima.upm.es/)
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Body mesh

Body

Figure 6.10: (Left) White mesh: background mesh containing the body Red Mesh:
Extension elements from the patch to the background. (Right) Cut
showing both extension elements from the patch to the background
and from the background to the patch.

Sigma YZ Displacement

Displacement Z

Displacement Y

Figure 6.11: Neuron results in a cut.

6.3 Wind Farm

We present a CFD modeling strategy for wind farms aimed at predicting and
optimizing the production of farms. The CFD model includes meteorological
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data assimilation, complex terrain and wind turbine effects. The model involves
the solution of the RANS equations together with a k- turbulence model es-
pecially designed for the Atmospheric Boundary Layer. As the integration of
the model up to the ground surface is still not viable for complex terrains, a
specific law of the wall including roughness effects is implemented. The wake
effects and the aerodynamic performance of the wind turbines are accounted
for using the actuator disk model, upon which a volumetric force is included
in the momentum equations. The placement of the wind turbines and a mesh
refinement for the near wakes is achieved by means of a Chimera method based
on HERMESH coupling.

In order to reliably evaluate wind farm efficiency, simulating the turbulent
wakes generated from the turbines is a necessary condition. This turbulent
wakes produce changes in the flow received by the neighbor turbine, mean-
ing that efficiency is deteriorated. The CFD technique is used to capture this
microscale phenomenon since it gives a detailed description of the wind flow
passing through a wind farm. The problem is that the application of this tech-
nique entails discretizing the computational domain with a very fine mesh size,
the cost of which could eventually become computationally unaffordable.
With the application of the HERMESH method in the simulation of wind
farms, we are able to locally discretize around the turbines with a finer patch
mesh located inside the background mesh that covers the whole computational
domain. So, with our method we can combine a structured mesh which repre-
sents the background and non-structured and fine patch meshes representing
the turbines. We want to stress that one of the best achievements of the ap-
plication of the HERMESH method to the wind farm simulation lies in the
optimization purpose, as in each configuration of the computational domain
composed of the turbines, remeshing is not needed.

The first result that we want to show before carrying out the simulation de-
scribed earlier is that the HERMESH method could be valid as a refinement
technique. As we have explained, the patch mesh in the wind farms simulation
contains a finer mesh than the background. So we have had to test how sen-
sitive the method was to the difference in size in the coupled meshes. This is
shown in the next section with a simple domain for the cavity flow problem.

Preview: Local refinement in Navier-Stokes problem. In this example
we present the application of the HERMESH method as a local refinement
technique. To illustrate this application, the cavity flow at a Reynolds number
5000 is considered, on a unit square [0, 1] x [0, 1], solved on uniform and rather
coarse meshes (finest one has only 50 x50 elements). The Chimera-type problem
solved with HERMESH is compared to some one-domain solutions and with
Ghia’s results; see the reference Ghia, Ghia, & Shin (1982). For the HERMESH

method, the patch mesh is located on the bottom right corner, where the flow
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exhibits a strong recirculation. Four solutions are going to be compared:
e Mesh 1: one-domain solution on a coarse mesh (10 x 10 elements).
e Mesh 2: one-domain solution on a fine mesh (50 x 50 elements).

e Mesh 3: HERMESH solution where the background and patch meshes
are of the same size as Mesh 1 and Mesh 2, respectively.

e Mesh 4: HERMESH solution where the background mesh is of the same
size as Meshl and the patch is twice as fine as Mesh2.

The four meshes are shown in Figure 6.12.

Mesh 1 Mesh 2

Mesh 3 Mesh 4

Figure 6.12: Local refinement. (Top) One-domain meshes (Mesh 1 and Mesh 2).
(Bot.) Meshes for HERMESH with extensions in red (Mesh 3 and Mesh
4).

Figure 6.13 shows the positive effects of the patch mesh for capturing re-
circulation. The solution was obtained with Mesh 3. Without using a patch
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recirculation

Figure 6.13: Local refinement. Recirculation captured by the patch mesh on Mesh
3.

mesh as a local refinement, no recirculation at all could be obtained, as only
very few nodes were located in the recirculation area.

Figure 6.14 compares the solutions obtained on one horizontal cut and one
vertical cut. The coarse mesh (Mesh 1) does not capture the recirculation,
partly captured by the fine mesh (Mesh 2). Both HERMESH methods enable
one to rectify the solution not only in the recirculation zone but also at the
core of the cavity. We can also observe that the very fine patch of Mesh 4 gives
almost the same solution as Mesh 3: the error is dominated by the coarse mesh.

Turbine turbulent wakes. Once the local refinement application of the
HERMESH method is proven, we are going to show the results of the method
obtained in the simulation of turbines with an actuator disk theory.

As noted before, in the current work the wind farm simulation consists in
solving the Reynolds Averaged Navier-Stokes equations with a specific k-e
turbulence model described in Section 2.3, on a real topography, using real
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Figure 6.14: Local refinement. Comparison of solutions obtained on Mesh 1, Mesh
2, Mesh 3 and Mesh 4. (Left) Vertical velocity along horizontal cut at
y = 0.5. (Right) Horizontal velocity along horizontal cut at = 0.9.

wind measures as boundary conditions. Although other approximations, such
as the virtual blade model are possible, see for example Hussein & El-Shishiny
(2012), in this work the actuator disk theory is applied. This theory is used to
account for the wind turbine effects. Using this approximation, the momentum
needed for putting the wind turbine in motion is extracted from the Navier-
Stokes equations. The real rotor is approximated by a permeable thin cylinder
of equivalent area A, and the total linear momentum sink is distributed uni-
formly within a volume V. The rotor model used in this work is based on
the one-dimensional axial momentum theory for a uniformly loaded rotor and
non-rotating flow in which the change of momentum is only due to pressure
differences across the actuator disk. The expression of the force sink module
is:

1
F= 5pACtUjo. (6.1)

In the last equation, the force is expressed in terms of the upstream velocity
module U, and the rotor thrust coefficient C;. This coefficient is rotor depen-
dent and determined experimentally. Taking into account the actuator disk,
the resulting Navier-Stokes equations read:

ou

Par +puVu — V- ((p+ ) e(u) + Vp+2pw x u = pf + 6y F/Vn, (6.2)

where dy is the delta Dirac function with support in the cylinder V' and n is
the cylinder unit normal pointing towards the incoming flow.

To implement the actuator disk theory in a finite element code, we face two dif-
ficulties. The first one entails the geometrical representation of the rotor inside
the mesh. The second one concerns the accuracy of the solution in the wake of
the rotor. Regarding this last point, accurate calculations in the neighboring
of the rotor are essential for a proper estimation of the wind farm power. This
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requires mesh refinement in the wake, which is computationally problematic
when dealing with structured or Cartesian meshes. As far as the geometrical
representation of the cylinder is concerned, we have several options. On the
one hand, the mesh can be locally adapted to represent the disk in which the
momentum is extracted. This technique requires adapting the mesh for each
configuration and is quite difficult to implement for structured and Cartesian
meshes. In fact, one direction should necessarily be aligned with the cylinder.
On the other hand, the Chimera technique offers a viable alternative for facing
the two aforementioned difficulties.

A good review of computational fluid dynamics for wind turbine wake aerody-
namics simulations can be found in Sanderse, der Pijl, & Koren (2011). To the
author’s knowledge, the application of Chimera methods to the simulation of
micro-scale wind farms is new, although the Chimera method has been used
to simulate single wind turbines, as is the case of the work: Zahle, Sgrensen, &
Johansen (2009). The application of the Chimera method in the optimization
of wind farm problem consists in having an independent patch for each turbine
and coupling all of them to the background mesh which contains the topogra-
phy. Due to the log profile of the flow velocity and rapidly decreasing ¢ away
from the wall, a boundary layer mesh is unavoidable. Figure 6.15 illustrates the
idea, where 28 patches were superimposed on a structured background mesh
attached to the topography.

Figure 6.15: Wind Farm. Example of topography and patches with actuator disks.

To see with more detail the composed mesh, Figure 6.16 illustrates a cut of
this kind of meshes showing the disk, the patch interface as well as background
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interface. Figure 6.17 shows the orthogonal cut to the previous one with and
without the extension elements in both interfaces. As we can see in previous
figures, the background mesh for these problems consists of hexahedra with a
boundary layer refinement near the ground. This entails another issue in the
creation of the extension elements. First, the extension elements that connect
the background mesh with the patch meshes are pyramids because the outer
boundary of the hole is formed by quadrilaterals, as was explained in Section
3.5.2. Second, as some quadrilaterals of the hole boundary may come from
anisotropic hexahedra, one could require the pyramids to inherit the aspect
ratio of the hexahedra, as is also shown in Section 3.5.2.

We have compared the one-domain solution with the Chimera method for a sin-
gle wake case, extracted from the experimental Sexbierum testCleijne (1992).
In Figure 6.18 we show the difference between Chimera-background mesh and
one-domain mesh. In Figure 6.19 we can see how both cases, one-domain and

Chimera problem: 156.740 nodes

1 domain problem: 290.835 nodes

Disk refi t
Disk refinement SRS

Figure 6.18: (Top) Chimera background mesh without refinement. (Bottom) One-
domain mesh with refinement.

Chimera domain, reproduce very similar results. It is worth mentioning that
the number of nodes of the one-domain mesh is 290,835 while 156,740 were
sufficient in the case of the Chimera method. This difference is due to the fact
that with one-domain mesh, the refinement around the disk is propagated dur-
ing the whole domain, while in Chimera-type problem this refinement is only
necessary in the patch mesh. The difference in the number of nodes can be
significant when considering tens of wind turbines. In Figure 6.19 we observe
that the difference in the velocity drop down to the turbines between one and
two subdomains is of no significance.
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Figure 6.19: Wind farm. Wind speed deficit 2.5D downstream. Comparison between
one-domain and Chimera method.

Figure 6.20 shows the results obtained for two wind turbines, using isotropic
pyramids, on a flat topography. The second turbine is located 2.5 rotor diame-
ters downstream from the first one. The left part of the figure shows the patch
boundary meshes. The other figures on the right show the solution (velocity,
pressure and turbulent viscosity) obtained on a vertical cut passing through
the middle of the actuator disk.

The results point out that the HERMESH method is a proper strategy for
this problem since it overcomes the drawbacks presented when one has to face
simulations of this kind.

Acknowledgements. This work has been sponsored by an Fundacion IBER-
DROLA grant.

6.4 Joining large and small airways

This application originates from a joint research between the Barcelona Super-

computing Center (BSC), Imperial College (IC) and Jackson State University
(JSU). From tomography images, IC obtains a mesh for the large airways down
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Figure 6.20: Double weak test. Patch meshes and solution.

to the trachea, see Doorly, Taylor, Gambaruto, Schroter, & Tolley (2008) for
more details; permission to use the patient image data was obtained from
the physician in charge with the patient’s consent. On the other hand, JSU
automatically generates an arbitrary number of generations of the idealized
bronchopulmonary tree, see Soni & Aliabadi (2013). The task of BSC during
the preprocess phase is to join the two meshes using the HERMESH method
presented in the previous section, as illustrated in Figure 6.21. Then, the global
mesh is ready to be treated to solve the transient flow. The utility of this join-
ing procedure is to provide realistic inlet conditions for the study of the fow
patterns and particle deposition in small airways.

The joining procedure of the preprocess step is not straightforward, as one
major issue must be overcome before carrying out the simulation: the bron-
chopulmonary tree starts as a perfect cylinder, which is not the case of the large
airways mesh, see Figure 6.22 (Top). This mesh comes in fact from tomogra-
phy and is patient-dependent. Therefore, a correction procedure is necessary
to adapt the crown of the inlet of the small airways to the outlet crown of the
large airways. We project the nodes of the first crown onto the geometry of
the second crown by prescribing their displacements, and then carrying out a
volume mesh motion to adapt the geometry smoothly downwards. This is car-
ried out by solving a weighted Laplacian, to conserve the boundary layer mesh,
using the aforementioned displacement as the Dirichlet boundary condition.

Once the inlet and outlet are adapted, we apply the HERMESH procedure
to create the extension elements from both interfaces, as is illustrated in Figure
6.22 (Bot.). In this case, both interfaces were of the known types: the interface
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Figure 6.21: Joint research

of the large airways is their outlet section while that of the small airways
corresponds to their inlet section. Figure 6.23 shows the extension elements in
the joining region. We observe a large difference in mesh sizes from one side
to the other. The mesh of the large airways includes a boundary layer mesh
while the mesh of the small airways is almost isotropic. In spite of this, the
extensions were created properly.

Figure 6.24 shows the mesh and the velocity field at one time step of the
simulation, using real respiration conditions (in this case, a sniff). Continuous
primary variables are obtained across the extension elements.

Acknowledgements. This research was motivated by an ongoing PRACE
project involving BSC and IC, for simulating the transient flow in large airways.
The research at JSU was carried out under the National Science Foundation
(NSF) EPSCoR grant (EPS-0903787).

6.5 Flow passing through a bypass in a stenosed
artery

Atherosclerosis is one of the major causes of death in the western world. The

numerical simulation of the hemodynamics in the cardiovascular system has

proven to be an important tool for the understanding of the problem. One
of the aspects is the prediction of the post-operative flow and the related
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Figure 6.22: Top: Adapted crown. Bottom: Extension elements.

global parameters for helping doctors to determine the best option for the
treatment of vascular disease. The geometrical aspects in vascular interventions
affect the hemodynamic and permeability of the intervention. The study of
the influence of the caliber of a bypass or insertion angle would be very useful
for reducing the graft occlusion and determining the best configuration in a
vascular intervention. We propose applying the HERMESH method to couple
the bypass with the vessel. In this way, the geometry of the bypass can be
easily changed in order to test various configurations (angles and diameters),
without any need to remesh the complete computational domain.

We take into consideration a realistic highly stenosed segment with a length
of 24 cm and a diameter of 1 cm in unaffected zones. This configuration could
correspond to a femoral or iliac artery. The idea is to study the viability of
the HERMESH method for studying the hemodynamic effects of the bypass
diameter and incidence angle. For the sake of simplicity, we assume the follow-
ing hypothesis: density p = 994 kg/m? is constant; the fluid is Newtonian with
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Figure 6.24: (Left) Resulting mesh. (Right) Velocity field.

viscosity = 0.0036 Pa - s; the walls of the artery are rigid; velocity at inlet is
parabolic and steady and pressure at outflow is constant. The computational
domain consists of two independent meshes. One corresponds to the stenosed
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segment of the artery and the other one to the bypass.
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Figure 6.25: Geometry of artery and bypass

The geometry of the problem is shown in Figure 6.25. As we can see in the
figure, the bypass mesh consists of two non-connected interfaces to be coupled
to the artery mesh. So in this case, we cannot define the interfaces as un-
known /unknown, following the nomenclature presented in Chapter 5, because
the shadow of the bypass projected to the artery becomes half of this artery!
Nor can we define the interfaces as known/unknown without overlapping, be-
cause the curvature of the vessel would entail excessively large extension el-
ements. Our solution to this case is defining as holed-unknown/unknown by
imposing some overlapping between the meshes, as in the example in Figure
5.1-d. Figure 6.26 shows a zoom of the extension elements.

Finally, in Figure 6.27 we show some results of the velocity and pressure
fields. Note that in this case, the gluing procedure is carried out in a critical
region of the flow, where a small fraction of the fluid goes straight to the artery

167



“tesi” — 2014/5/13 — 11:39 — page 168 — #186

Bypass

e

Artery S

" o Extension
Ll
\ elements

Extension
Bypass o elements
Artery /

Figure 6.26: (Top) Extension elements in artery and bypass mesh. (Bot.) Zoom of
the extension elements.

and the main fraction of it goes through the bypass. Despite this, we observe
a good continuity of the main flow variables.
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Figure 6.27: (Top) Pressure field. (Bot.) Velocity field.
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Chapter 7

Conclusions and future work

During all this work we have focused on mesh composition techniques in the
framework of the finite element method and applied to computational mechan-
ics simulations. To be able to couple independent meshes in an efficient manner
is a crucial point in the area. This allows to face problems like: to assemble
components obtained from different sources, to simplify the meshing of com-
plex geometries, to perform local refinement, to couple multi-physics problems,
to couple subdomains in relative motion or to optimize the relative positions of
some components, without having to remesh the whole computional domain.
These approaches are quite common and powerful to solve complex problems.
In this work we have developed a new method which addresses some of these
approaches applied to any partial differential system of equations. Problems
in fluid mechanics coupled with turbulence models and level set equation as
well as solid mechanics and advection-diffusion-reaction (ADR) equation have
been explored.

The first topic we have presented in this work is a multiscale variational
method to solve the ADR equation. A methodology was developed to obtain a
solution to the subgrid scale. It consists in solving the one-dimensional subgrid
scale with constant coefficients by: firstly, requiring that the subgrid scale is
zero on the nodes; secondly, assuming that the subgrid scale residual is con-
stant inside the element; finally, averaging the result over the element. The
method gives nodally exact result in the case of the advection-diffusion equa-
tion, and justifies the use of h/2 in the definition of the stabilization parameter
for quadratic elements.
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As a first effort to develop a mesh composition method, we have presented
the implicit Dirichlet and Neuman boundary transmission conditions via vir-
tual elements. This strategy avoids the iterative loop, typical in the literature
to impose the transmission conditions. The Neumann condition has been im-
plemented using schemes of first and second order of accuracy. This strategy
was integrated in a computational mechanics code, Alya, at the expense of
significant modifications in the basic structure of the code. This transmission
conditions were equation dependent so each of the modules in the Alya code
corresponding to each physic had to contain the corresponding terms. As far
as we know, this implicit strategy to impose the transmission conditions is
original. However, the Neuman condition did not gave satisfactory results in
general. Therefore we proposed to introduce additional terms to this condition,
coming from the variational multiscale context.

The next step was the unsuccessful stabilization of the Neumann boundary
conditions. The idea was to analize if the boundary term of the subscale would
contain the information of the neighboring elements belonging to the adjacent
subdomains. A simple one-dimensional example in different regimes showed
that the idea did not help us to obtain better solution of the coupled problem.

After this attempt, we took step forward and we developed a new coupling
mesh method: HERMESH method, the main result of this thesis. The study
is presented in one, two and three dimensions. The method consists of a non-
conforming overlapping finite element method. The coupling is based on the
construction of new elements which are the responsible to add new connec-
tivities between the nodes of the interfaces with the ones of the neighboring
subdomains. Although no theoretical analysis of the method has been devel-
oped, we have proved through different cases the following main properties:

1. Implicit: the method assembles the transmission conditions implicitly.

2. Equation independent: HERMESH does not depends on the equation to
be solved.

3. Relative mesh position autonomy: independent meshes can be composed
with or without overlap (partial or total) and even with a gap between
them.

4. Flexible to the relative size and mesh simplification: the ratio between the
sizes of the elements forming the independent meshes can be dissimilar.
HERMESH is valid as a mesh simplification technique.

5. Parallel: Adapted to a high performance parallel code, Alya.

6. Accuracy: HERMESH is of order 2 for linear elements and the solution
is exact.
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7. HERMESH=1-domain: If the coupled meshes plus its extension elements
form the same mesh as a one-domain mesh, what we have refer to as mesh
matching in this thesis, the solution is exactly the same as the solution
in one domain.

Implicit. The first item is one of the main requirements of this work. We
want to avoid the iterative loop between subdomains. Thanks to the extension
elements presented in chapter 3 and the way that we have implemented the
method, we have achieved our objective.

Equation independent. This property has been reflected during all this
thesis. The HERMESH method has been applied to different tests governed
by different PDE’s . The problem consisting in the simulation of ship hull pre-
sented in section 6.1 involves to solve the RANS equations, Spallart-Almaras
turbulence model and level set equations. The problem of the optimization of
the wind farm also involve RANS equations and another turbulence model:
k-e. The solid mechanics equation is also solved with the neuron test problem
presented in section 6.2. The ADR equation also has been tested in sections
3.7 and 4.4.1. All of these problems prove the versatility of the technique.

Relative mesh position autonomist. The autonomy to the relative posi-
tion of the meshes to be joined is shown also during all the problems presented
in this thesis. We have presented the problems mentioned before as an example
of Chimera-type problems. We present a detailed description of this kind of
problems in chapter 4. The jargon used in this context as well as implementa-
tion issues are explained in this chapter. In order to simplify the construction
of the extension elements in the hole created in this kind of problems, we
shown the strategy to obtain a manifold boundary mesh. In addition, we have
proved that we are able to gluing meshes in chapter 5. Two real cases reflected
the potential of the strategy in chapter 6. One corresponds to the simulation
of the small and large airways down to the trachea, presented in section 6.4.
Both components of the computational domain have been generated in differ-
ent centers. As the shape interface meshes differ significantly, a strategy was
developed to fit the shape of the interfaces . The other example presented in
section 6.5 corresponds to the simulation of a bypass in a stenosed artery. In
this case the by-pass is designed with a certain overlap with the vessel so that
a hole-cutting step is necessary.

Flexible to the relative size and mesh simplification. This is illustrated
in the wind farm simulation in section 6.3, where we show that the HERMESH
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method is useful as a mesh refinement technique. In fact, all of the real cases
solved and presented in this thesis which present a complex geometry, also in-
dicate that the method is a powerful strategy for mesh simplification purpose.

Parallel. It is reflected in all the real problems solved in the previous chap-
ter. All of them have been solved in parallel and involve a large number of
elements. The strategy has been designed in such a way that it does not imply
significant modifications in the code where it has been programmed, Alya code.
The method does not add more degrees of freedoms in the system of equations.

Accuracy. This property is related to the convergence of the method. We
have shown in 5.2.1 that if the solution lives in the finite element space, the
error is zero. As far as the mesh convergence property is concerned, order two
with linear elements, is proved for different problems presented in sections 4.4.2
and 5.2.3. In the context of Navier-Stokes equations, we showed the consistency
of mass conservation with the finite element accuracy.

HERMESH=1-domain. The last point we want to stress, called in this
work matching overlap which shows when HERMESH is equal to one-domain
problem, is proved in 5.2.2.

A lot of work remains to be done in order to make the presented method
a more powerful tool in computational mechanics. As we have noted, non-
repeated extension elements also remain a still-pending improvement, saving
memory and time resources (Section 3.6.5). HERMESH has been programmed
in a Serial way. The Parallel version of the method constitutes the next step
to be taken. This is not an easy task in the context of distributed memory
machines due to the strong dependence among the different meshes on the
construction of the extension elements process. In fact, in a distributed mem-
ory context, candidates could be located in any subdomain of the partition
or CPU. Construction the extension elements would therefore involve lots of
communications between different CPU’s. In addition, each partition should
be able to reallocate all its arrays, as the extension elements imply new con-
nectivity in the mesh.
We also have to consider the possibility of non-fixed components to be joined.
This case implies to repeat the previous communications in each time step, so
the parallel strategy has to be implemented in the most efficient manner. The
relative motion of the components is not available for the time being as the
method is integrated in Alya code as a preprocess step.
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