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Abstract

We investigated the neuronal processes which occur during a decision-making task

based on a perceptual classification judgment.

For this purpose we have analysed three different experimental paradigms (so-

matosensory, sisual, and suditory) in two different species (monkey and rat), with

the common goal of shedding light into the information carried by neurons.

In particular, we focused on how the information content is preserved in the un-

derlying neuronal activity over time. Furthermore we considered how the decision,

the stimuli, and the confidence are encoded in memory and, when the experimen-

tal paradigm allowed it, how the attention modulates these features. Finally, we

went one step further, and we investigated the interactions between brain areas

that arise during the process of decision-making.
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Resum

Durant aquesta tesi hem investigat els processos neuronals que es produeixen du-

rant tasques de presa de decisions, tasques basades en un judici lògic de classifi-

cació perceptual. Per a aquest propòsit hem analitzat tres paradigmes experimen-

tals diferents (somatosensorial, visual i auditiu) en dues espècies diferents (micos i

rates), amb l’objectiu d’il·lustrar com les neurones codifiquen información referents

a les tàsques.

En particular, ens hem centrat en com certes informacions estan codificades en

l’activitat neuronal al llarg del temps. Concretament, com la informació sobre:

la decisió comportamental, els factors externs, i la confiança en la resposta, bé

codificada en la memòria. A més a més, quan el paradigma experimental ens ho

va permetre, com l’atenció modula aquests aspectes. Finalment, hem anat un pas

més enllà, i hem analitzat la comunicació entre les diferents àrees corticals, mentre

els subjectes resolien una tasca de presa de decisions.
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Durant aquests anys m’he trobat a varios Dory pel cami, persones que sense un

peque m’han ajudat: als huevones, piltrafilles, socràtic@s, informatico-informaticos...

gràcies, continueu amb mi!

A tots els ulls extra, que m’han ajudat a redactar/ corregir/ estructurar la tesi,
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Chapter 1

Introduction

Decision-making can be defined as the cognitive process of selecting one out of

several possible outcomes. Of all factors that intervene in the process, only those

which are observable from an outsider’s point of view can be quantified. Thus,

only outcomes that result in a defined, clear action can be the object of our

study. Furthermore, subjective factors introduce unknown variables, making it

more difficult to find which underlying rules apply to the decision-making process.

Although most of our day-to-day decisions do not meet any of these requirements,

it is our hope that knowledge of the more controllable cases will shed some light

on the less controllable cases.

While this subject can be approached from many points of view, including philos-

ophy, economics or marketing, our approach stems from the field of neuroscience.

The problem of decision-making has become the center of interest of many neuro-

scientists aiming to understand the neural basis of intelligent behaviour by linking

perception and action.

Behavioural aspects of decision-making have been deeply studied for over a cen-

tury [1]. However, only as the technology of measuring devices (such as electrodes)

evolves we can delve deeper into the neurophysiology (Hodgkin and Huxley [2]).

In the late 50’s this experimental technology allowed scientists to record neuronal

activity from animals, and go in depth into neural codification. The most cele-

brated work in this direction was done by Hubel and Wiesel [3, 4], who related

visual stimulus to the neuronal activity from the cortex of cats.

Our interest focuses on the neural correlates of decision-making process. For in-

stance, we want to understand the role of neural activity in perception, memory,

confidence or attention, which are key components that lead to the final choice.

1



Chapter 1. Introduction 2

There has been remarkable progress in the context of perceptual discrimination

tasks, in which the principal factors involved in the design are controlled. For ex-

ample, we can establish a logical rule by which one of the above possible outcomes

is chosen. Then by recording the subject’s brain activity, and more specifically

the neuronal activity, we can relate these factors with neuron’s dynamics. We

are aware that this kind of tasks are a simplification of the decision-making pro-

cess, and they are far away from the day-to-day decisions humans make. Despite

their limitations, these perceptual discrimination tasks offer a wealth of informa-

tion, since they involve several cognitive processes of interest such as perception,

working memory, comparison or confidence.

Two-alternative forced-choice tasks (2AFC) are a subclass of perceptual discrimi-

nation tasks in which the choice is obtained as an objective relationship between

two different sensory inputs (S1, S2). At the end of the task the subject must

report the choice via a motor response. 2AFC are the focus of this thesis. The

reason is twofold: on one hand, most cognitive factors of interest make manifest

appearances in them, so there is no loss of generality in restricting thus our at-

tention. On the other hand, 2AFC are the source of all experimental data made

available to us.

The aim of this thesis is to shed light into the neuronal processes which occur

during a decision-making task based on a perceptual judgment. We ask ourselves

about the mechanism the brain (through its neurons) uses to solve these classi-

fication tasks. We analyse several internal and external factors involved in the

decision-making process:

Inputs (S1, S2)→





Black Box/ Brain:

Perception

Working memory

Comparison

Confidence

Attention

· · ·





→ Output (Response)

In particular, we focused on how the information is preserved in the underlying

neuronal substrate in time. Furthermore we considered how the decision, the stim-

uli, and confidence are encoded in memory, and when appropriate, how attention

modulates these pieces of information. Finally, we went one step further, and in-

vestigated the interactions between areas that arise during the process of decision

making.
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To solve the previously mentioned, as well as other related questions, we analyse

data from two different species (monkeys, rats) in different sensory modalities (so-

matosensory, auditory and visual). In what follows we present a description of

the tasks conducted. Each task enables us to study neural correlates for a specific

parameter of interest. Through linear and non-linear, when appropriate, math-

ematical techniques, we analyse the relationship between the choice of the tasks

and the information of electrophysiological origin at our hands (neuron voltage

action potencial). Additional factors, such as the variability of the state of the

brain, subject confidence, inter-neuron relationships, and stimuli are introduced

into the analysis when it is appropriate to do so.

1.1 Perceptual Discrimination Tasks

Perception is related to the mental process associated with the interpretation of

the sensory information. It is a mental representation which ultimately allows the

subject to perform the task [5].

In a perceptual discrimination task the sensory information can be obtained through

one of the five traditional senses: sight, hearing, taste, smell, and touch [6–10].

In this thesis we focus on three modalities: somatosensory, visual, and auditory,

and through these we analyse the information carried by the neurons while the

subjects perform the tasks.

Somatosensory discrimination task

One of most studied tasks in the somatosensory perception domain is the vibrotac-

tile discrimination task, which was first performed by Mountcastle [11] and then by

Romo [8, 12]. In this task the stimuli (S1, S2) are stimulation frequencies (f1, f2).

At the outset of the task, two consecutive mechanical vibrations with respective

frequencies f1, f2 are delivered to the subject’s fingertip. The monkey must com-

pare the two frequencies and then report the highest frequency by pushing one of

two buttons (f1 < f2; f1 > f2) (see Fig. 1.1). The two frequencies are delivered

with a time lag of 3 seconds, forcing the brain to store in memory the traces of the

first frequency, to perceive separately the second frequency and then to compare

both to make a decision. Hence, the processes of perception, memory, comparison

and decision-making can be independently studied.
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DIFFERENCE LIMEN

In flutter discrimination, the
difference limen is a measure of
how small an increase in the
frequency of a vibrotactile
stimulus can be detected when
compared to a standard stimulus
frequency. A smaller difference
limen implies a higher
discrimination capacity.

WEBER FRACTION

Weber made the observation
that, within a fairly large range,
the increase in a stimulus that is
just noticeable (ΔI) is a constant
proportion of the initial
stimulus (I) for any one sense.
The proportion ΔI/I is the 
Weber fraction.
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variations are essentially removed. Spatiotemporal inte-
gration of tactile input, as in texture discrimination or
recognition of Braille characters, is certainly an interest-
ing problem10–12,but it complicates the neural codes con-
siderably13–16 without necessarily adding any essential
features to the memory or decision-making steps of a
discrimination process.However, for the flutter task to be
a useful model, it is essential that it generates a reliable
sequence of cognitive events, such as the one described
earlier.How do we know this is the case?

A crucial step is to scrutinize the psychophysics17.
Importantly, in the original flutter discrimination task,
f1 did not vary from trial to trial during a run. When we
re-examined the design of the task18 we found it to be
ambiguous — when the f1 is kept constant, the task can
be solved either by comparing the two stimuli or by cat-
egorizing the second stimulus as ‘high’ or ‘low’, ignoring
the base stimulus. What were the monkeys actually
doing? When f1 was kept constant during long blocks
of trials, as done originally, the measured DIFFERENCE

LIMENS and WEBER FRACTIONS were, as expected, similar to
those reported before. But if the monkeys had been
evaluating the difference between f1 and f2, they would

~5 and ~50 Hz1–3. Mountcastle and his colleagues
showed that flutter is primarily mediated by rapidly-
adapting cutaneous mechanoreceptors2,3, and found that
humans and monkeys have similar abilities for detecting
and discriminating the frequencies of mechanical sinu-
soids delivered to the hands3–5. These authors also tried
to determine how the neural activity triggered by flutter
stimuli is related to psychophysical performance3,5. In
their discrimination task5, animals had to indicate
whether the frequency of a comparison stimulus was
lower or higher than the frequency of a base stimulus that
had been presented earlier (FIG. 1). In principle, the task
can be conceptualized as a chain of neural operations or
cognitive steps: encoding the first stimulus frequency (f1),
maintaining it in working memory, encoding the second
frequency (f2), comparing it with the memory trace that
was left by the first stimulus, and communicating the
result of the comparison to the motor system. The flutter
task offers several advantages as a model for sensory pro-
cessing in the brain6 — not only do humans and mon-
keys perform similarly,but the items to be compared are
temporally spread and always activate the same well-
defined population of primary receptors2,3,7–9. So, spatial
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Figure 1 | Flutter discrimination task. a, b | Sequence of events during discrimination trials. The mechanical stimulator is lowered,
indenting the fingertip of one digit of the restrained hand. The monkey places its free hand on an immovable key (a, red line; KD).
The probe oscillates vertically at the base stimulus frequency (f1). After a delay, a second mechanical vibration is delivered at the
comparison frequency (f2). The monkey releases the key (b, red line; KU), and presses either a medial or a lateral push button (b, red
line; PB) to indicate whether the comparison frequency was lower or higher than the base frequency. c | Stimulus sets used during
recording sessions. Each box indicates a base/comparison frequency pair. The numbers inside the boxes show the overall
percentage of correct discriminations. The stimulus sets shown here were used to determine discrimination thresholds (left), and to
study working-memory (middle) and comparison (right) processes during the task. The three sets were often used during any given
recording session. Modified, with permission, from REF. 42 © (2002) Elsevier Science.

Figure 1.1: Vibrotactile discrimination task. The stimulator lowers. The
monkey places its free hand on an immovable key (key down, KD). The monkey
receives the first vibrotactile stimulation on its fingertip (f1). After a delay of
3 s, a second stimulus is delivered (f2). When the second stimulus ends the
monkey releases the key (key up, KU) and then pushes one of the two buttons
(PB) to indicate its decision (f1 < f2; f1 > f2). Figure adapted from [18].

Romo and colleagues recorded neurons from seven cortical areas: primary so-

matosensory cortex (S1) [13], secondary somatosensory cortex (S2) [14], medial

premotor cortex (MPC) [15], ventral prefrontal cortex (VPC) [16], dorsal premo-

tor cortex (DPC), prefrontal cortex (PFC) [17], and primary motor cortex (M1).

This task allowed Romo and colleagues to study the neural encoding of the neu-

rons. They showed that a coding mechanism based on the firing rate predicted

strong correlation between the stimulus frequencies and the subject’s response.

We will come back to their findings in the next section.

Visual discrimination task

In this modality there is a wide range of decision-making tasks being studied. In

this thesis we worked with the bar orientation discrimination task, designed by

Acuña and colleagues [7, 19]. In this task the monkeys were trained to compare

the orientation of a reference bar, presented during an initial interval of time with

that of a test bar, presented during the second interval. Then, they had to decide

whether the test bar was tilted right or left as compared to the reference bar (see

Fig. 1.2).

The authors recorded activity from single neurons from the ventral premotor cor-

tex (PMv). They showed that PMv neurons carry information about the first

stimulus during the delay and comparison periods, and that neurons also reflect

the comparison between stimuli, including the strength of the evidence. Their

findings suggest that PMv is involved in shaping future behavior and in learning.
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Continuous DiscriminationTask: correctdecision “to the right”

FT Reference Delay Test Resp.
0.5 s 1s 0.5 s

PSD
0.1-0.3 s

Figure 1.2: Visual discrimination task. Two circles appear at the center and at
both sides of the screen (fixation time, FT). After a variable delay (100–300 ms),
the first bar appears, followed by a delay of 1 s, and then the second stimulus
appears. Once the second stimulus is over, the monkey makes a saccade to
indicate the relative tilt of the bars. Correct discrimination is rewarded. Figure
adapted from [19].

Auditory discrimination task

For this modality we analysed single-unit activity from the auditory cortex (A1)

of rats while they performed an interval-discrimination task. The animals had to

decide whether two auditory stimuli were separated by either 150 or 300 ms and

nose-poke to the left or to the right accordingly (see Fig. 1.3). The special feature

of this task is that it incoporates different brain states: engaged and idle. These

allowed us to study the Input-Output relationship under different enviroment con-

ditions.

Figure 1.3: Auditory interval-discrimination task. The rats entered the central
socket and two identical stimuli (50 ms; 80 dB; 5322 Hz) were presented through
earphones. About 150 or 300 ms interstimulus interval indicated left or right
reward delivery, respectively. Figure adapted from [10].
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1.2 Neural code

In our context, the neural code can be defined as the set of rules and mechanisms

that neurons would use to represent information about the task. These rules are

encoded through neuronal activity, e.g. spikes or silence periods, and allow the

system to solve the task.

In this domain, one of the natural questions is: How can we look into the neuronal

activities and predict what is going on in the outside world?

Luna et al.[13] studied five possible neuronal codes used for S1 neurons during the

vibrotactile discrimination task. The five possible codes analysed were: time in-

tervals between spikes, average spiking rate during each stimulus, absolute number

of spikes elicited by each stimulus, average rate of bursts of spikes and absolute

number of spike bursts elicited by each stimulus. They showed that the code based

on the spike count is the most likely code for that task. We have used this result

to justify our analysis based on spike count throughout this thesis.

In this section we introduce two different methods which can be applied to spike

count coding. In a more formal way, we want to characterize the relationship

between the response and task parameters. From a mathematical point of view,

the relationship between variables can be roughly divided into the following two

categories: the linear relationship and the non linear relationship.

1.2.1 The linear regression models approach

To show the state of the art of the linear relationship between neuronal activity and

task parameters we come back to the vibrotactile discrimination task explained

above (see Fig. 1.1). As an example, we will summarise now the work done by

Hernández et al.[8] and Lemus et al.[12]. The authors analysed single unit activity

across seven different cortical areas (see Fig. 1.4), while the monkeys performed a

variant of the previously described vibrotactile discrimination task.

In both studies the authors introduced a second delay period between the second

stimulus and the report of the response. We call it the postponed response delay

period. This unique operation requires the subject to store in working memory

the decision during the second delay period.

They used a multivariate lineal regression model (LRM) to relate the neuron’s

firing-rates, r(t), to the stimulus frequencies f1 and f2. To compute the firing-rate

they counted the number of spikes in a certain time window t:



Chapter 1. Introduction 7

motor report, i.e., whether f2 > f1 or f2 < f1. Clearly, the neuronal
processes associated with the postponed decision report and
the task components that precede it can be analyzed across
diverse cortical areas.

Here we report the extent to which the stimulus identity is
encoded across diverse cortical areas in this task. We found
that the encoding of f1 and f2 through all task periods is widely
distributed across cortical areas. We also found that the activity
of frontal lobe circuits encodes both the result of the sensory
evaluation and past information on which those choices are
based. Notably, the activity of primary motor cortex (M1) showed
processes similar to those observed in the premotor areas
(ventral premotor cortex, VPC; dorsal premotor cortex, DPC;
and MPC) and prefrontal cortex (PFC), both during the compar-
ison and postponed decision report periods. These results
suggest that frontal lobe neurons have the capacity to encode
during the comparison and postponed decision report periods
both the final result of the sensory evaluation and past informa-
tion about it.

Here we also document the nature of the neuronal responses
during the stimuli and their interactions. In addition to the stan-
dard discrimination test, the neuronal activity of all cortical areas
was studied when the stimuli were delivered but monkeys were
not requested to perform the task. Under this condition, most
neurons across the cortical areas no longer encode information
about the stimuli and their interactions during these trials. The
only areas that responded in this case were S1 and S2. This
would suggest that those cortical areas central to S1 that encode
information about the stimuli are more likely associated with
the sensory evaluation, than engaged simply in encoding the
sensory stimulus. We also tested each neuron in a simpler
task, in which trials proceeded exactly as in the vibrotactile
task, but the stimuli were not delivered to the skin and the move-
ments were guided by visual cues. Neurons responded during

movement execution but not during the periods preceding it.
These control tests show that the neuronal responses from all
the cortical areas studied, except for S1, reflect both the active
comparisons between f1 and f2 and the execution of the motor
choice that is specific to the context of the vibrotactile discrimi-
nation task.

RESULTS

Optimal Conditions for Studying Perceptual
Discrimination
Four monkeys (Macaca mulatta) were trained to discriminate the
difference in frequency between two consecutive vibrotactile
stimuli, f1 and f2 delivered to one fingertip (Figure 1A). Monkeys
were asked to report discrimination after a fixed delay period of
3 s between the end of f2 and the cue that triggered the motor
report (probe up, pu in Figure 1A). This delay period thus sepa-
rates the comparison between the two stimuli from the motor
response. In this task, monkeys must hold f1 in working memory,
must compare the current sensory input f2 to the memory trace
of f1, and must postpone the decision until the sensory cue
triggers the motor report. Animals were trained to perform the
task up to their psychophysical thresholds (Figures 1B and C).
After training, we recorded the activity of single neurons from
diverse cortical areas while the monkeys performed the task
(Figure 1D). These recordings were made in primary somatosen-
sory cortex (S1), secondary somatosensory cortex (S2), PFC,
VPC, DPC, and MPC contralateral to the stimulated finger and
in PFC, VPC, DPC, MPC, and M1 contralateral to the responding
hand/arm. All neurons were recorded using the stimulus set of
Figure 1B. In these trials, the comparison frequency (f2) can be
judged higher or lower than f1. Thus, the neuronal responses
across trials can be analyzed as functions of f1, f2, f2 ! f1, or
as functions of the monkey’s two possible motor choices.

Figure 1. Discrimination Task
(A) Sequence of events during discrimination

trials. The mechanical probe is lowered, indenting

the glabrous skin of one digit of the restrained

hand (pd); the monkey places its free hand on an

immovable key (kd); the probe oscillates vertically,

at the base stimulus frequency (f1); after a fixed

delay (3 s), a second mechanical vibration is deliv-

ered at the comparison frequency (f2); after

another fixed delay (3 s) between the end of f2

and probe up (pu), the monkey releases the key

(ku) and presses either a lateral or a medial push-

button (pb) to indicate whether the comparison

frequency was higher or lower than the base,

respectively.

(B) Stimulus set used during recordings. Each box

indicates a base/comparison frequency stimulus

pair. The number inside the box indicates overall

percentage of correct trials for that (f1, f2) stimulus pair, except when the stimulus pair was identical (22 Hz; we plotted the number of times that animal pressed

the lateral push button).

(C) Psychophysical performance when f1 was maintained fixed at 22 Hz and f2 was variable (red curve), and when f2 was fixed at 22 Hz and f1 was variable (green

curve). D.L. is the discrimination threshold in Hz.

(D) Top view of the monkey brain and the cortical areas recorded during perceptual discrimination (orange spots). Recordings were made in primary somatosen-

sory cortex (S1) and secondary somatosensory cortex (S2) contralateral to the stimulated hand (left hemisphere) and in primary motor cortex (M1) contralateral to

the responding hand/arm (right hemisphere). Recordings were made contralateral and ipsilateral to the stimulated fingertip in prefrontal cortex (PFC), ventral pre-

motor cortex (VPC), medial premotor cortex (MPC), and dorsal premotor cortex (DPC).

Neuron

Decision Making across Cortex

Neuron 66, 300–314, April 29, 2010 ª2010 Elsevier Inc. 301

Figure 1.4: Top view of macaque brain hihlighting recorded cortical areas:
Primary somatosensory cortex (S1), secondary somatosensory cortex (S2), me-
dial premotor cortex (MPC), prefrontal cortex (PFC), ventral prefrontal cortex
(VPC), dorsal premotor cortex (DPC), and primary motor cortex (M1). Figure
adapted from [8].

r(t) = a0(t) + a1(t)f1 + a2(t)f2

They analysed the significance of the linear regression coefficients (a1, a2) as a

function of time to characterize the information carried by neurons about the

frequencies f1, f2 and the decision. Specifically, they classified the function of

each neuron as follows:

• If a1 is significant and a2 is not significant, the neuron encodes f1 (green

traces in Fig. 1.5).

• If a2 is significant and a1 is not significant, the neuron encodes f2 (red traces

in Fig. 1.5).

• If both a1 and a2 are significant, of opposite sign but different magnitude,

the neuron combines also information about the response with a sensory

component (black traces in Fig. 1.5).

• If both a1 and a2 are significant and a1 = −a2, the neuron encodes the

decision motor report (blue traces in Fig. 1.5).

If the coefficients are positive the encoding process is called positive, otherwise it

is called negative.

Using the above classification, the authors described the role played by each corti-

cal area during perceptual discrimination. First, the primary somatosensory cor-

tex, S1, was reported to be essentially sensory as its neurons positively encoded
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Figure 1.5: Percentage of neurons with significant coefficients as a function of
time. Green and red traces correspond to neurons with significant a1, a2 coeffi-
cients, respectively. Black traces indicate neurons in which a1, a2 are significant,
with opposite signs and different magnitude. Blue traces indicate neurons in
which a1, a2 are significant, with opposite signs and equal magnitude. Figure
adapted from [8].

information about f1 and f2 in each stimulation period and remained independent

of these variables for the rest of the trial. Areas S2, PFC, VPC, MPC, M1 and

DPC also generated neural representation of each stimulus during the whole task,

but in contrast with S1, their neurons encoded f1 and f2 in a positive as well as a

negative monotonic manner.

During the delay between each stimulus, the above mentioned areas, except M1,

encoded traces of f1 in a time window known as the working memory period. After

the presentation of the second stimulus, they encoded information about f2 and

f1 as well as information about the comparison between f2 and f1. Hence, these

cortical areas encoded at various strengths and times the information of both past

and current sensory information on which the perceptual decision report is based.

Even during the postponed response delay period the authors found neurons in

MPC whose firing rates were correlated with the frequency of the f1 stimuli and/or

the f2 stimuli (Fig. 2B in [12]). Also in this period, the information carried by
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S2 to M1 about the comparison evolved into information that was consistent with

the animal’s choice. Although the percentage of each neuron type greatly varies

from S2 to M1 (see Fig. 1.5), the above findings suggest that sensory, memory and

comparison information is gradually conveyed to the frontal lobe circuits that in

turn drive the motor circuits for movement execution. The authors also suggested

that the neurons that reflect the sensory stimuli in the postponed response delay

period (Fig. 2B in [12]) enable the subject to revise the report and thus allow for

a change in the initial decision.

1.2.2 Non-linear relationships: Information Theory approach

During this section we update and reformulate the first question (How can we look

into the neuronal activities and predict what is ocurring in the outside world? )

from an information-theoretic Theory point of view. So we ask ourselves the

following questions:

• What is the capacity of a neuron to express information?

• How much of this “information” is due to a certain experimentally related

parameter S (i.e. a sensory stimulus)?

In this context the capacity of being informative is closely related to the variability

of the neuron response (R): the more variable a neuron is, the more informative

it can be. Our goal is to quantify the variability (information) due to a given

parameter, for example a stimulus S. One way to solve this problem is to calculate

the total variability of the neuron and then remove the variability which is not

caused by the stimulus S.

Variability due to S= Total amount of variability - Variability NOT due to S

Although this last formula will be next rewritten next in precise terms using

information-theoretic tools, we have choosen to include it because of its intuitive

value.

Measuring the total amount of variability

The first step is to quantify the total information/variability of a neuron. The

classic way to do so is through the entropy. In his celebrated paper [20] from 1948,

Shannon introduced a quantitative measure of the information conveyed by the
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occurrence of an event r, with probability p(r): he defined I(r) = log2
1
p(r)

. From

here it was natural to define entropy as the averaged information content of events

r of a given variable R:

H(R) = −
∑

r∈R

p(r) · log2 p(r) (1.1)

Where p(r) is the probability of observing the response r across all trials1. Using

logarithms in base two, the entropy is expressed in bits. As can be seen from 1.1,

entropy is the statistical average of the information stored in variable R, and as

Shannon proved in [20] gives the minimum number of bits on average required to

describe a random variable R .

When applied to neural responses, the entropy gives a measure of statistical vari-

ability. In principle, this variability may be due to different factors. To unravel

the variability for a specific factor we must use a refinement of this measure.

Measuring the variability which is not due to S

An easy way to tackle the problem is to calculate the variability when the stimulus

S is fixed. By setting the stimulus and computing again the entropy we can

quantify the variability not caused by it (because it is fixed, and known). To do

so, we first calculate : Conditional entropy :

H(R|S) = −
∑

r∈R

∑

s∈S

p(s, r) · log2 p(r|s). (1.2)

Where p(r|s) is the probability of observing response r given the stimulus s (i.e.

conditioned on s) and p(s, r) is the probability distribution of R and S.

Measuring the variability due to S

Finally, the difference between the unconditional and conditional entropy gives: A

I(S;R) = H(R)−H(R|S) =
∑

s∈S,r∈R

p(s, r) · log2

(
p(s, r)

p(s)p(r)

)
. (1.3)

This quantity is known as the mutual information between stimuli and response.

It is the reduction in uncertaninty of R due to the variable S. It measures the

strength of association between two variables, and it can be regarded as a non-

linear correlation. In particular, MI takes the value zero if the two variables

are independent. A graphical representation of the relationship between entropy,

1The measure is well defined for p(r) = 0, because we used the convention that 0 · log = 0,
which is justified by continuity since limr→0 r · log r = 0.
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conditional entropy and MI is shown in Fig. 1.6, in which we can see that the MI is

the common area between H(Y ) and H(X). Some of the most relevant properties

of this quantity are: it is always positive and symmetrical (I(S;R) = I(R;S)).

In this thesis we use this concept as a nonlinear measure of the relationship between

two different series. As with the LRM methods this measure can be applied to

spike count (firing-rate, r(t)) series, but also to the rawest neuronal information:

spike trains.

Next example is used to illustrate the presented Information Theory concepts. For

more information on these concepts and their properties see [21].

Figure 1.6: Relationship between entropy and mutual information. In our
case we used R,S instead of X,Y . Adapted from [21].

Example of the Information Theory concepts

Figure 1.7: 8-sided dice.

Imagine that we have an 8-sided die like in Fig. 1.7. If someone rolls it and we

are given only the parity of the result (even/odd), how much information is that?

In other words, what is the mutual mnformation between the die and the parity?

We can answer this question using two procedures: by doing all the calculations,

or via intuition.
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Applying the formulas

What is the entropy of a roll?

The die can take values from 1 to 8 (X = {1, 2, 3, 4, 5, 6, 7, 8}) with equal prob-

ability, (we assume a fair die). The probability for each side (xi), or value, is

p(xi) = 1/8. Applying equation 1.1 yields its entropy:

H(die) = −
∑

i=1:8

p(xi) log2 p(xi) = 8
(1

8
log2(8)

)
= 3 bits

The next step is to compute the conditional entropy. For that we need to know the

conditioned distribution and the probability of a throw ending with and odd/even

result. As we have the same number of odd and even rolls: p(odd) = p(even) =

1/2. For the conditioned distribution computation:

• In the odd case:

– For xi = {2, 4, 6, 8} p(xi|odd) = 0

– For xi = {1, 3, 5, 7} p(xi|odd) = 1/4

• In the even case:

– For xi = {2, 4, 6, 8} p(xi|even) = 1/4

– For xi = {1, 3, 5, 7} p(xi|even) = 0

Now, applying the formula 1.2, the conditional entropy is:

H(X|parity) = p(odd)
∑

i=1:8

p(xi|odd) log2 p(xi|odd)

+ p(even)
∑

i=1:8

p(xi|even) log2 p(xi|even)

=
1

2

∑

i=1,3,5,7

p(xi|odd) log2 p(xi|odd) +
1

2

∑

i=2,4,6,8

p(xi|even) log2 p(xi|even)

=
1

2

(
4

1

4
log2(1/4)

)
+

1

2

(
4

1

4
log2(1/4)

)
= 2 bits

Finally, the calculation of their mutual information, following equation 1.3, is:

I(X; parity) = H(X)−H(X|parity) = 3− 2 = 1 bit

From an Encoding point of view
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Decimal Bits

1 001
2 010
3 011
4 100
5 101
6 110
7 111
8 000

Table 1.1: Encoding of 8 numbers in triplets.

Another way to understand the entropy is by using Shannon’s theorem (1946),

which states that the shortest length of a code is bounded by the entropy of a

system. In this particular example (8 equiprobable symbols), the minimal bound

can easily be reached, as is shown in the table 1.2.2, though this is not in general

the case.

Then if we apply Shannon’s Theorem, the entropy of the die is 3 bits, which of

course matches the previous calculation.

In order to answer the second question we note that the last symbol of all the

odd numbers is a 1 while the last symbol of all even numbers is a 0. So what we

know about X if we know its parity is the last bit. In other words the mutual

information between X and the parity is equal to 1 bit, which again matches the

above calculation.

1.3 Outline of the Thesis

In chapter 2 we study a variant of the vibrotactile discrimination task previously

explained (see Fig. 1.1). In this version the authors [8, 12], introduce a second

delay between the end of the second stimulus (f2) and the motor action (PB in

Fig. 1.1). In that way they force the subject to hold in memory its choice, allowing

us to ask about the internal mechanisms that enable decisions to be postponed for

a period after the evidence has been provided. We analyse the firing rate (r(t))

of MPC neurons, to relate them with the response. We focus on the dynamics

of the whole population. We also tried to understand, by using two different

mathematical models, the possible mechanism that generates these dynamics.
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In chapter 3 we study single neurons discharge while rats were performing the

above auditory discrimination task 1.1. This experiment allows us to ask the

following questions: How do the dynamics of A1 neurons vary under different

brain states? or, What is the information content about the response (right, left)

of the A1 neurons? Does it vary under the different brain states? To awswer these

questions we studied the relationship between the firing rate (r(t)) of A1 neurons

and the behavioural response across engaged and idle brain states.

In chapter 4 we look past the behavioural response and the internal parameters,

such a the confidence in the response, and how this internal information is en-

coded. We studied neurons from the ventral Premotor cortex while monkeys were

performing the above visual discrimination task (see Fig. 1.2). To understand

how the confidence is encoded in the brain we study the firing rate (r(t)) of PMv

neurons. But as confidence can vary from trial to trial even though the difficulty

is fixed we apply a technique which allows us to analyse trial by trial in a big time

window without lost information. For this analysis we use the rawest information

that we have, the single spike trains, instead of the spike count used in previous

chapters.

In the last chapter we take a full turn with respect to our previous approaches. In

previous chapters we related the neuronal activity with a certain parameter. In

this chapter, our aim is to study the interaction between different cortical areas

to characterize communication flows. In particular, we analyse to what extent

these communications are dependent on the key stages of the discrimination task:

sensory encoding, working memory, effective decision-making and motor action.

For that purpose we analysed data simultaneously recorded while monkeys were

performing the above vibrotactile discrimination task and also a passive version

of the task. The data recorded corresponds to single neurons from five areas si-

multaneously (S1, S2, SMA, DPC, and M1, see Fig. 1.4). These simultaneous

recordings allow us to explore to what extent feed forward and feedback interac-

tions across the study cortical areas are task dependent. Our aim in this chapter

is to study neuronal causal correlations:

• To characterize feed forward and feedback communications across the five

cortical areas under study at the different stages of the task. We determine

the task-specificity of these interactions using a passive task.

• To investigate whether feed forward and feedback communications encode

synergistically or redundantly information about the decision report and to

classify cortical circuits accordingly.



Chapter 2

Neural and computational

mechanisms of postponed decision

The work presented in this chapter was published in:

Proceedings of the National Academy of Sciences (PNAS) in May 2011

Authors: Marina Martinez-Garcia, Edmund T. Rolls, Gustavo Deco, and

Ranulfo Romo

2.1 Introduction

An important aspect of decision-making is that actions must often be delayed after

the information for the decision has been provided. We examine the mechanisms

that underlie this in a well-known paradigm because research in decision-making

is the comparison of two vibrotactile stimuli (f1, f2) applied to the fingertips with

a fixed delay period between them [8]. To perform this cognitive task, the subject

needs to store in working memory the information about the first stimulus, f1,

and to compare it with the second stimulus, f2, to make the decision of whether

f1 < f2 or f1 > f2, and report it immediately after the f2 stimulus is released.

To extend the analysis of the mechanisms’ underlying decisions, which sometimes

cannot be made immediately after the evidence is provided, Romo et colleagues

[8, 12] introduced an additional delay between the second stimulus and the sub-

ject’s response. In these works they analyzed neuronal activity by using a linear

regression model. In the Introduction (1.2.1) we have summaryzed their findings.

In this chapter, we use a different approach to the linear regression model (LRM

see section 1.2.1 for more information) to analyze the nature of the activity in

15
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the postponed response delay period. We measure the mutual information (MI)

between the neuronal activity and the postponed response, which takes into ac-

count the variability of the firing [21–24], and apply this to understanding neuronal

activity in the MPC recorded in the same paradigm as [12]. We wished to mea-

sure the information in the firing rates during the delay period. To do so, we

computed the MI between the variables “firing rate” and “category of response”

(i.e., f1 < f2 or f1 > f2) throughout the 3-s delay period in which the response

is being postponed. For the population of neurons with significant information

during the second stimulus (f2), when the evidence required to make the decision

is available, many of the neurons have low information during the delay period

after f2 before the postponed response can be made, but recover the information

when the response must be made, as illustrated in Fig. 2.1B. We propose here

that the information can be recovered by a nonspecific input applied at the time

of the response, and demonstrate this with two models. In one model, synaptic

facilitation (SF) [25–27] occurring in the postponed response delay period allows

the memory to be maintained with little firing, and little information from the

firing, in the delay period. In a second model, graded firing rates in the attractor

decision-making network [28] in the delay period allow the faster-firing neurons to

maintain sufficient firing and information in the delay period so that the nonspe-

cific recall cue can activate these and the lowerfiring neurons in the same attractor

network to their full information value when the behavioural response is required

at the end of the delay period.

2.2 Results

2.2.1 Information in the Neuronal Activity of Medial Pre-

motor Cortex Neurons

The activity of a single MPC neuron in the postponed response delay task is

illustrated in Fig. 2.1 A and B. The monkeys (Macaca mulatta) were trained

to discriminate in frequency between two consecutive mechanical vibrations (f1

and f2) delivered to one fingertip [8]. The monkeys were asked to report the

results of the decision about which vibrotactile stimulus, f1 or f2, had a higher

flutter frequency after a fixed delay period (3 s) between the end of f2 and the cue

that triggered the beginning of the motor report. Sequential decision tasks with

a delayed response require information about f1, temporally stored in working

memory, to be compared with the current information from f2 to form a decision
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Figure 2.1: Response of a single decision-making neuron recorded in
the MPC. (A) Color map of the firing rate (Hz) in bins of 200 ms moving in
steps of 100 ms. Each row is the mean activity for a specific pair of stimuli [f1 :
f2]. Labels indicate the pairs of vibrotactile frequencies [f1 : f2] for each trial
type. The trials are organized into two blocks: first with f1 < f2, and then f1 >
f2; this makes the decision-making pattern of neuron firing clear: the neuron
fires for decisions when f1 < f2, for a short time after f2, and close to the time of
the response. Only correct trials were included in the analysis. The time scale
beneath the map shows the periods of stimulation and for reporting the decision.
The f1 period is 0.0–0.5s. The delay period between the stimuli is 0.5–3.5s. The
f2 period is 3.5–4.0s. The postponed response delay period is 4.0–7.0s. The
behavioral response can be started at a signal given at the time of 7.0s. (B)
The MI between the activity shown in A and the category of the response with
a surrogate correction (200 surrogates) [29]. The red circles indicate the values
that are significant at p < 0.05, tested with a first-order Monte Carlo method.
The shaded rectangles show the stimulation periods f1and f2, and the report
period. (C) Architecture of the spiking integrate-and-fire attractor network
model of decision-making and of activity in the subsequent delay period. The
model consists of two different neuronal populations: excitatory and inhibitory
(interneurons). There are two types of excitatory population: selective (pool 1
and pool 2 for each of the two decisions) and nonselective. The recurrent arrows
indicate recurrent connections between the different neurons in a pool, and the
other arrows show the different connections between the groups. The selective
pools first receive λ1 = 250 Hz and λ2 = 150 Hz during the red period. The
inputs are then removed during a delay of 3 s in which the same unspecific input
λ = 204 Hz (0.255 Hz for each of 800 synapses onto each neuron) is injected to
both selective pools. For nonselective and inhibitory neurons, λunsp = 0.
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of whether f2 > f1 or f2 < f1. After the discrimination, the subject must keep

the decision or response in working memory for 3 s, and then report the outcome

by pressing one of two push buttons (one for each option: f2 > f1, f2 < f1) after

the postponed response delay (Fig. 2.1B). Fig.2.1A shows that the neuron fired

during the f2 period on trials in which f2 > f1, had a lower firing rate in the

postponed response delay period (4–7 s), and then increased its rate when the

signal was given that the behavioral response could be made (7.0–7.5 s). Fig.

2.1B, the MI analysis for the same neuron, shows that there was information in

the firing rate about the response made at the end of each trial during and just

after the f2 period when the decision could be made, and that the information

decreased during the postponed response delay period and increased again when

the signal for the behavioral response was given.

The single-cell mutual information for the whole set of MPC neurons is shown

in Fig. 2.2 Top. It is clear that some neurons do have low information in the

postponed response delay period.These neurons also tend to have low information

in the f2 and response periods. Other neurons have higher amounts of information

in the delay period, and these neurons tend to have higher information in the f2

and response periods. The neurons are ordered according to how much information

they have in the f2 period. We confirmed that some of these neurons maintain

their firing in the delay period even after a strict Holm–Bonferroni correction for

multiple tests [30] described in section 2.4, Fig. 2.5 and Table 2.1.

More tellingly, we performed a multiple-cell information analysis, which tests how

the information about the decision increases with the number of neurons in the

sample [22, 31] (Figs. 2.5 and 2.7). We found that with 18 neurons taken at

random from those with low single-cell information content in a 600-ms window

in the delay period (5.2–5.8 s), the average information per neuron was 0.06 bits,

and the total information provided was 0.51 bits, with a 90% correct prediction

of the decision (Fig. 2.6). (These 18 neurons had low information even during f2,

on average 0.4 bits/ neuron, and we needed 14 such neurons selected at random

to reach 1 bit of information). If we consider 16 randomly selected neurons from

those with the higher information values shown in Fig. 2.3, then the multiple-

cell information analysis showed that the average amount of information for each

cell was 0.56 bits in the same 600-ms window in the delay period, and that with

subsets of cells chosen at random from the 16 cells the information reached 1 bit

and 100% correct with four to six cells (Fig. 2.7). The implication is that with

just six MPC cells chosen at random from the set with higher information values

in the delay period shown in Fig. 2.2, the animal could do the task perfectly, with

100% correct.
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Overall, the single- and multiple-cell information analyses show that while some

neurons do contain little information in the delay period about which a report

will be made at the end of the postponed response delay period, other neurons do

maintain significant information in the delay period, with four to six such MPC

neurons being sufficient to account for the correct behavioral response at the end

of the delay period.

We now consider two models that examine the basis of the recovery of the infor-

mation at the end of the postponed response delay period when the behavioral

response must be made. The models have in common the fact that a nonspecific

external input applied at the time when the response can be made after the delay

allows the information to be recovered in the neuronal firing, as shown in Fig. 2.2

Top.

2.2.2 Synaptic Facilitation Model

To explain the mechanism underlying the appearance of information about the

decision during and just after f2, then its disappearance for some neurons in the

postponed response delay period, and finally its reappearance at the response time,

we made an integrate-and-fire attractor network model [25, 26, 32] of the decision-

making neurons (Fig. 2.1C) that is able to reproduce that pattern of activity by

incorporating SF. There are two decision populations, or pools, of neurons, with

pool 1 activated by stimulus f1 via the λ1 inputs and winning the competition if

f1 > f2, and pool 2 activated by stimulus f2 via the λ2 inputs and winning the

competition if f1 < f2. The global inhibition produced by the inhibitory neurons,

together with the different λ1 and λ2 inputs to pools 1 and 2, provide the basis for

the competition, which is influenced by the randomness of the spiking times of the

neurons to produce probabilistic choice [22, 33]. We also implemented short-term

SF (see section 2.4) in which the calcium-mediated SF makes the residual calcium

level grow [34]. Each neuron that spikes increases the residual calcium level, u,

in the presynaptic terminals, which in turn increases the release probability. The

time constant for this process was 2 s. Details of the implementation and operation

of the simulation are in section 2.4.

The results of the SF simulations are illustrated in Fig. 2.2 Bottom and Fig. 2.3

Lower. After a period of spontaneous activity before t = 3.5 s, the decision cues

λ1 and λ2 are applied at t = 3.5 − 4.0s. If λ1 > λ2, pool 1 corresponding to a

decision that f1 > f2 wins, and its firing rate and the MI between the firing and

the behavioral response increases. In the delay period from 4 to 7 s, the decision
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cues are no longer present, and the firing rate and the MI decrease to close to zero

(Figs. 2.2 and 2.3). During this delay period, the synaptic facilitation between the

neurons in pool 1 that occurred during f2 in decision pool 1 remains, gradually

decaying (Fig .2.8). When a nonspecific external input (λunsp) is applied at t =

7.0–7.5 s to both pools 1 and 2 to reflect the moment when the subject receives

the stimulus to give its behavioral response, then because of the altered synaptic

calcium levels, the firing rate of one of the selective pools increases to the attractor

activity level (Fig. 2.3), as does its information about the response to be made

(Fig. 2.4), whereas the firing of the other selective pool remains with low activity,

although a little higher than the spontaneous firing rate. In this way, the SF model

recalls the selective firing for the correct response even though there was no firing

in the delay period (Figs. 2.2 –2.4).

It has been shown that as the postponed response delay period increases, the

performance of the subjects decreases [12]. We found that the performance of

the SF model decreases in a similar way over periods of up to 3 s (Table 2.3).

However, it is a prediction of the SF model that performance will decay as the

shortterm memory period increases much beyond the time constant of the synaptic

facilitation, 2 s. We therefore examine a firing rate model in the next section that

can maintain the memory over much longer periods than this. Further, it is a

property of the SF model that it can perform the delay task with no firing and

no firing rate information in the delay period, because the memory is held in

the facilitated synaptic weights (Figs. 2.2 –2.4); however, this was not found for

the MPC neurons, the majority of which do have some firing during the delay

period (Figs. 2.3 and 2.4), and retain some information in their firing rates in

the delay period (Fig. 2.2). Moreover, the MPC neurons have a distribution

of firing rates and of the single-cell information in the delay period, with some

neurons maintaining their firing rates and firing rate-related information in the

delay period well, and others less so (Figs. 2.2 –2.4). We therefore analyzed

a different model of the delay-related firing, which has a graded distribution of

firing rates.

2.2.3 Graded Firing Rate Attractor Network Model of the

Activity in the Delay Period After the Decision.

An integrate-and-fire decision-making network was implemented in the way just

described, but without any synaptic facilitation, and with graded firing rates. The

gradation to the firing rates was implemented by replacing the equal and strong
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synaptic weights (w+) that connect the neurons within each specific decision-

making pool with an exponentially graded set of synaptic weights. The graded

synaptic weights had the same average value (w+ = 2.1), but some were con-

siderably stronger, and the distribution decreased exponentially to a value of 1,

as described elsewhere [28] and in section 2.4. Graded firing rate distributions

are not usually examined in these attractor decision-making networks because the

mean field analysis used to set the network parameters requires the same value

for the weights within a pool. However, because neurons in the brain typically

have graded firing rate distributions, frequently close to exponential [22, 35], we

have investigated the properties of decision-making networks with graded firing

rate representations [28]. Here, we investigate the activity of a similar network

in a short-term memory period after a decision, and analyze whether the firing

rate distribution in the delay period is similar to that found for MPC neurons in

that some neurons encode little information in their firing rates, and others more

information. For these graded simulations, there was a predecision cue period of

spontaneous firing; the decision cues were applied at 3.5–4.0 s, and in this period

the decision was made; there was a 3-s delay period from 4 to 7 s, and then a

nonspecific input was applied equally to the two decision pools (1 and 2) from 7.0

to 7.5 s, to investigate whether just pool 1, which had reached the decision during

3.5–4.0 s, could be restored to its high and selective activity with respect to pool

2 when the behavioral response was required.

The performance of the graded firing rate network for neurons in the winning

pool (pool 1) is illustrated by rastergrams in Fig. 2.3. Some neurons continue

firing in the delay period, whereas others decrease their rates considerably, to

only slightly above the spontaneous rate shown in the spontaneous period. This

pattern is qualitatively similar to that found for the MPC neurons (Fig. 2.3,

Upper). Fig. 2.4 shows that the firing rates for these simulations are indeed

graded in the delay period, and that, as is expected, the firing rates in the delay

period are monotonically related to the firing rate in the decision period (3.5–4.0

s). Fig. 2.4 also shows that the MPC neurons have graded rates in the delay

period, as well as in the f2 decision period. Fig. 2.2 shows that the graded firing

rate simulations have graded information conveyed by the different neurons, with

some with relatively high firing rate information, and others with much lower firing

rate information, in the delay period. This is qualitatively similar to the MPC

neurons’ information measures throughout the task, although as the MPC neurons

are noisier from trial to trial than the graded simulation, the actual magnitude of

the information is less for the MPC neurons than for the graded simulations.

Of particular interest and theoretical significance is that the graded simulations
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recover the information when the external stimulus is applied nonselectively (i.e.,

equally) to pools 1 and 2 at t = 7.0–7.5 s. The concept here is that with low

inputs during the delay period, the neurons overall have less activity than in the

decision period when the decision cues are applied. However, the correct decision

pools can maintain the identity of the decision by having just some neurons firing

at a sufficient rate to keep the attractor active by the feedback of the firing rates

through the graded synaptic weights. The neurons with the low weights in the

graded distribution may have very little firing in the delay period, and indeed may

be firing at a rate insufficient to maintain the attractor themselves in the delay

period (as shown by further simulations). However, when the nonselective external

signal is applied at t = 7.0–7.5 s equally to neurons in pools 1 and 2, the neurons

in pool 1 that are already active are stimulated into higher firing, which has the

effect of recruiting through the intrapool recurrent synaptic connections the other

lower-firing neurons in pool 1, and also, by competition through the inhibitory

interneurons, keeping the neurons in pool 2 at low activity. This results in the

recovery of information during t = 7.0– 7.7 s, illustrated in Fig. 2.2, which models

what is shown for the MPC neurons in Fig. 2.2. (The actual process at the time

of the application of the external stimulus at t = 7.0–7.5 s can also be viewed as

a decision-making process in which λ1 = λ2, but there is a bias to λ1 from the

greater activity left in pool 1 than in pool 2 at the end of the delay period).

In summary, the graded firing rate model of decision-making has properties that

capture many of the properties of the MPC neurons (Figs. 2.2-2.4). These proper-

ties include the maintenance of low but significant information in the delay period,

which is graded according to the graded firing rates, and the restoration of the

information when it needs to be recalled, by a nonselective external input in the

case of the network. This operation is different from that of the synaptic facilita-

tion model, which can hold the memory in the synaptic facilitation with no firing

rate or information evident in the delay period (Figs. 2.2-2.4), and which has only

a limited short-term memory period.

2.3 Discussion

In this chapter we have shown using mutual information analyses that though

some MPC neurons lose their information about the decision in a subsequent delay

period before the behavioral response can be made, some neurons maintain that

information, although at a lower level and with lower firing rates than during the
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Figure 2.2: Mutual information analyses as a function of time (Top)
Eighty neurons from the medial premotor cortex. Each row corresponds to a
different neuron. All neurons in the dataset are included for which there were
five or more trials for each condition. The times when the f2 stimuli are applied
(the delay period and the behavioral response period) are indicated (Fig. 2.1).
In particular, the f2 period is 3.5–4.0 s. The postponed response delay period is
4.0–7.0 s. The behavioral response can be started at signal given at 7.0 s. The
mutual information shown is that between the firing rate in a 200-ms window
(sliding every 100 ms) and the response made by the monkey. The calibration
bar shows the information value for a single neuron. (Middle) Eighty neurons
in pool 1 of the graded firing rate simulation. Each row is a single neuron.
The rows are sorted by the amount of information during the decision period,
3.5–4.0 s, which corresponds to the f2 period for the MPC neurons. The delay
period is 4–7 s. The equal external inputs are applied at t = 7.0–7.5 s, labeled
recall period. The mutual information shown is that between the firing rate
in a 200-ms sliding window and the firing in the decision period. (Bottom) SF
simulation (conventions as in Middle).
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Figure 2.3: Rastergrams to illustrate the firing for the MPC neu-
rons, the graded simulations, and the SF simulations. For the MPC
neurons,(Upper) with firing to f1 < f2, and the Lower set of rasters is for neu-
rons with firing to f1 > f2. One trial is shown for each neuron, and the trial
selected is one in which that neuron by its highfiring rate encodes the decision.
For the graded simulation, each row is the firing for a different neuron, and all
of the data are from one simulation trial, to show how the rates for the different
neurons remain graded throughout the trial, including when there is some fluc-
tuation of average firing rate in the delay period. For the synaptic facilitation
simulations, one trial is also shown. The times correspond to those in Fig. 2.1.
The recall period for the MPC data was when the behavioral response could be
initiated, and for the simulationswas when the unspecific input was applied to
produce recall.
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Figure 2.4: The firing rate during the delay period (ordinate) vs. the
firing rate in the decision period (abscissa). Each point represents one
neuron (Upper) MPC neurons. Scatterplots show the rates for two different 0.5-
s time windows in the delay period. (Lower Left) SF simulations. (Lower Right)
Graded firing rate simulations. The blue line shows where an equal response
would lie. Red lines show linear fits to the data.

decision period (f2) (Figs. 2.2-2.4). We have shown previously that an integrate-

and-fire decision-making attractor network can account for the decision-making

itself in this task [26], and show here that the same network can also account for

the memory of the decision in the subsequent delay period before the behavioral

response can be made. This use of the same network to make the decision and

to hold the decision in a short-term memory is a good and evolutionarily efficient

property of this model of decision-making [22, 33].

The two mechanisms we model for the details of how these processes are imple-

mented have different advantages. The SF mechanism is energy efficient, for it

can, as we show here, maintain the evidence of a previous decision even with no

neuronal firing (Figs. 2.2-2.4); however, it is limited by the maximum duration

of its short-term memory, set by the time constant of the synaptic facilitation,

which is ∼ 1 − 2s [25, 36]. The SF model can be made to have, as in the MPC

(Figs. 2.2-2.4) and many other brain areas [12, 22, 37, 38], some continuing firing

in the delay period by increasing the nonspecific inputs to the neurons in the delay

period. In the MPC, in which some neurons have low single-cell information levels

at some point in the delay, the multiple-cell information shows that a group of as

few as seven neurons in the group with most single-cell loss of information never
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fall below 0.42 bits, allowing 90% correct performance in the delay period (see

section 2.4). The graded firing model of decision-making and subsequent short-

term memory for the decision described here shows that low levels of firing in

some neurons in an attractor population with graded firing rates can enable the

attractor to be maintained, and later restored, even when some of the neurons in

the graded representation have low activity in the delay period, and correspond-

ingly low MI values. In the graded firing rate simulations analyzed, we took the

parameters—in particular the inputs being applied equally to pools 1 and 2 in the

delay period—down to levels that just enabled the attractor to be maintained.

Because neurons in the MPC and in many other cortical areas [22] have graded

representations, ours is an accurate model of the neurophysiological mechanism.

And by using firing rates, the graded firing rate model can maintain its firing rates

for potentially long periods, of tens of seconds.

In practice, it could well be that the cortex uses both mechanisms described here in

the same network. That is, the level of firing that is required in a small proportion

of neurons in the graded firing rate attractor population may be sufficient to

produce some synaptic facilitation, and thus synaptic facilitation may be involved

in the cortex in these types of networks. In this mixed scenario, however, the

mechanism relies more on the graded nature of the firing rate representations, and

for the attractors to be maintained by low firing rates of at least some neurons,

especially when the memory must be for more than a few seconds.

Asynaptic facilitation mechanism has been proposed previously to help with the

memory of f1 during the delay between the stimuli f1 and f2 in a sequential

decision-making task [26], but has not been suggested before for implementing

the memory in a postponed decision task. We have shown here that synaptic

facilitation provides a possible mechanism for remembering the decision during

the delay period before the decision can be reported.

In this chapter we used MI to quantify the relationship between the firing of the

MPC decision-making neurons during different parts of the task, and the decision

taken when f2 is applied. MI analysis is useful because it takes into account the

variability of the firing from trial to trial, and at different times within a trial. The

MI analysis shows that the information about the response is not significant until

the end of the second stimulus (by which time f1 and f2 have been presented; Fig.

2.2). Immediately after f2, the analysis shows an association between the firing

rates and the later response of the monkey. Then for some neurons (Fig. 2.2), the

information becomes low during the delay period only to come back again at the

response time. At the report time the MI becomes significant as a consequence

of the large difference in the firing rates of the two selective populations. The



Chapter 2. Neural and computational mechanisms of postponed decision 27

multiple-cell information analysis is helpful in showing that if a population of

neurons with low single-cell information values in the delay period are considered

together, then because the information from the different neurons adds (Fig. 2.6),

there is in fact some information provided even by these neurons in the delay

period. The MI analysis also highlights that it is the high firing rate neurons that

encode much information, as the information measure reflects the difference in the

firing rates—that is, the number of spikes in a short time window between the two

populations being considered [22, 31].

The relative contribution of the two mechanisms, synaptic facilitation vs. restora-

tion of firing in the whole set from the firing in a subset with graded activity, could

be investigated experimentally by using longer delay periods before the behavioral

response can be made. The synaptic facilitation mechanism with its time constant

of 2 s would predict very poor performance (by the neurons and behaviorally) if

the delay period is increased to 5 s. In contrast, the mechanism that involves

restoration of firing in the whole set of neurons from the firing remaining in a

subset could in principle restore the firing in all of the neurons in the appropriate

decision pool after much longer periods.

Finally, we note that in the first delay period, between f1 and f2, a sensory repre-

sentation of f1 must be stored. In the postponed response delay period, the result

of the decision must be stored, and we show in this chapter that it is natural for

the decision-making network to also store the results of the decision, for it is an

attractor decision-making mechanism that we analyze. The networks that imple-

ment these memories must be different, and are shown to be different by the fact

that different neuronal populations are engaged by these two processes [8].

2.4 Methods

2.4.1 Information Analysis

Single-cell information analysis

We are interested in knowing the information carried by neuronal responses, es-

pecially how the firing rate is related to the stimulus or to the category of the

behavioral response. To estimate the information content carried by the neuron’s

firing rate, we performed mutual information (MI) analysis [21, 22], which quanti-

fied the average amount of common information contained in the variables R and
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S —in our case, firing rate and category of behavioral response. In other words,

the MI reflects the uncertainty removed from one by knowing the other. The MI

was calculated following Eq. 1.3.

In the data, the calculation of firing rate was based on the mean number of spikes

across trials, obtaining for each bin an n−dimensional vector of spike counts, where

n is the number of frequency pairs. One frequency pair is the set of [f1 : f2] stimuli

presented on one specific trial. This computation was performed in sliding windows

of 200 ms in steps of 100 ms for each pair of frequencies. The variable category (the

behavioral response) is represented by ones with the sign of the difference between

a specific frequency pair [f1 : f2], i.e., +1 for f1 > f2, and −1 for f1 < f2. We only

included “correct” trials in the analysis, i.e., only the trials on which the monkey

solved the task correctly. Because the MI estimate is subject to statistical errors

that can lead to an overestimate of the information, we corrected the information

estimates using a first-order Monte Carlo method. In this correction procedure

the mean information from many runs in which the stimuli and the responses

are shuffled across trials is subtracted from the information estimate from the

original unshuffled data [22, 39]. We applied this Monte Carlo method basing the

correction on 50 shuffled runs. This method also leads to a test of the statistical

significance of the corrected MI between firing rates and category [29].

The same method was used in the simulations to measure the MI between the

neuronal firing in different 200- ms epochs through a trial, and the decision that

had been taken by the network represented by which pool had the high firing rate

in the decision period when the decision cues were applied (t =3.5–4.0 s).

We next show how we corrected for multiple comparisons in the single-cell infor-

mation analysis using a Holm–Bonferroni multiple-test correction procedure [30].

First, we performed a statistical significance test of the single-neuron MI on 864

neurons from the MPC (medial premotor cortex), 323 from the pre- SMA (presup-

plementary motor cortex), and 252 from M1 (the primary motor cortex) [12] as

follows. To calculate a p-value (for the null hypothesis of no information) for each

single cell at a specific time window (in a 200-ms sliding window with 100-ms step),

we applied a surrogate-based statistical test. The null hypothesis implemented by

the surrogates corresponds to the absence of statistical dependencies between the

firing rate of the neuron in a particular window and the behavioral response of

the animal. To do this, we generated 200 surrogates by randomly reordering the

responses and the firing rates on different trials for each cell. The p-value is cal-

culated by comparing the estimated MI value of each single cell at a specific time

window with the empirical distribution of the MI of the corresponding surrogates.

The Holm–Bonferroni procedure considers the fact that we have many cells and
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Significant MI in f2 and H-B multiple test
Area Responsive recall period k maximum k minimun

MPC 867 180 (18.2 %) 21 (11.67 %) 2 (1.1 %)
pre-SMA 323 30 (9.0 %) 5 (53.33 %) 1 (3.33 %)
M1 252 34 (11.1 %) 18 (52.9 %) 1 (2.9%)

Table 2.1: The proportions of neurons in different areas that retain single
cell information in the postponed response delay period when tested with a
Holm–Bonferroni correction for multiple comparisons. Column 2 shows the
number of neurons responsive in the task. Column 3 shows the number and
proportion of neurons that show significant information in both f2 and in the
response period. Columns 4 and 5 show the maximum and the minimum across
each of the 200-ms time windows in the delay period of the number of neurons
k with significant information after the Holm–Bonferroni test has been applied.
The number and proportion of neurons in an area is shown (see Fig. 2.5 for
more details). f2, second stimulus; MPC, medial premotor cortex; pre-SMA,
pre-supplementary motor area; M1, primary motor cortex.

therefore multiple null hypotheses to test in a given time window. Let us assume

that the significance α level is 0.05. The Holm–Bonferroni procedure consists of

ordering the p-values and comparing the smallest p-value to α/k. The first null

hypothesis is rejected if the p-value is less than α/k. After this, one tests the

remaining k−1 null hypotheses by starting again with the same α, i.e., reordering

the k − 1 remaining p-values and comparing the smallest one to α/(k − 1). This

iteration is continued until the null hypothesis with the smallest p-value cannot

be rejected. The result of the Holm–Bonferroni correction is accepting all null

hypotheses that have not been rejected at previous steps.

We are interested in finding the percentage of neurons that maintain informa-

tion about the behavioral response during the postdecision delay relative to those

neurons that show significant information during the decision period of f2 presen-

tation and also during the final behavioral response period. Therefore, we selected

the neurons with an MI > 0.26 bits during these periods: from f2 to 50 ms later

and at the response time (end of the postdecisional delay period) in at least three

time windows. In that way we obtained 180 neurons (18.2%) from MPC; 30 neu-

rons (9.0%) from pre-SMA; and 34 neurons (11.1%) from M1. The results after

the Holm–Bonferroni correction are shown for each of the 200-ms time windows

in Fig. 2.5. Table 2.1 shows that in the MPC between 21 and two (depending

on the time window) of 180 MPC neurons are able to maintain the (single-cell)

information in the delay period.
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Figure 2.5: Results of the Holm–Bonferroni correction, for multiple
tests for the single-cell information measure in the following areas: MPC, M1,
and pre-SMA. The y axis represents the percentage of neurons for each 200-
ms time window that have significant information after the correction has been
applied during the postponed response delay period from 4 to 7 s. Time course
of the task is shown above (Fig. 2.1).

Multiple-cell information analysis

When measuring the information about a set of stimuli S from the responses of

many neurons, the response space becomes very large, as there are responses from

every neuron to every stimulus. It becomes difficult to record a sufficiently large

number of trials to sample this high dimensional space adequately. Rolls et al.

[31] introduced a decoding procedure in which the stimulus s′ (from the set S)

shown on each trial is predicted from the neuronal responses. It is then possible

in the low dimensional space of the number of stimuli in the set to compute the

MI between actual stimuli s shown on a trial and the predicted stimuli s′ based

on the neuronal responses of the population of neurons. The MI between the

stimuli and the predicted stimuli is then calculated as follows. Bayesian probability

decoding using crossvalidation was used to generate a table of conjoint probabilities

P (s, s′).The s′ represents all possible stimuli, and hence belong to the same set

S as each stimulus s. The MI value based on this probability decoding (Ip) was

calculated as

< Ip > =
∑

s∈S

∑

s′∈S

P(s, s′) log2

P(s, s′)

P(s)P(s′)
. (2.1)
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A correction procedure for the sampling bias was used. The percentage correct was

calculated using maximum-likelihood decoding in which the most likely stimulus

that was shown on each trial is predicted from the neuronal response of all of

the neurons on that trial. Examples and fuller descriptions of the use of these

procedures are available [22, 31, 40–42].

We performed multiple-cell information analyses to measure how the information

about the decision increases with the number of MPC neurons (6) in the sample.

We found, taking 18 neurons at random from those with low single-cell information

content in a 600-ms window in the delay period (5.2–5.8 s), that the average

information per neuron was 0.06 bits, and that with 18 neurons the information

provided was 0.51 bits, and 90% correct prediction of the decision (Fig. 2.7).

(These 18 neurons had low information even during f2, on average 0.4 bits/neuron,

and it needed 14 such neurons selected at random to reach 1 bit of information

during f2). A further analysis showed that just seven such neurons provided 0.42

bits of information and 90% correct or better performance throughout the delay

period.

If we consider 16 randomly selected neurons from those with the higher information

values shown in Fig. 2.2, then the multiplecell information analysis showed that

the average amount of information for each cell was 0.56 bits in the same 600-ms

window in the delay period, and that with subsets of cells chosen at random from

the 16 cells the information reached 1 bit and 100% correct with four to six cells.

The implication is that with just six of the MPC cells chosen at random from

the set with higher information values in the delay period shown in Fig. 2.2, the

animal could do the task perfectly, 100% correctly.

2.4.2 Synaptic Facilitation Model

Implementation of the model

The decision-making network is illustrated in Fig. 2.1C, and operates according

to the principles described elsewhere [32], with the addition of synaptic facilita-

tion, as specified in the tabular material that follows. The model is biologically

realistic and based on an attractor network [33]. The network has four neuronal

populations or pools: one inhibitory pool (with NI = 200 neurons) and three ex-

citatory pools or populations (with the total number of excitatory neurons NE =

800), of which one pool is nonselective and the other two are selective and specific

for each decision. The selective pools are involved in a competition mediated by
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Figure 2.6: Multiple-cell information for the group of MPC neurons
with low single-cell information values. (A) The values for the average
information available in the responses of different numbers of MPC neurons on
each trial taken in a 600-ms period toward the end of the delay period about
which decision had been made. (B) The values for the average information
available in the responses of different numbers of MPC neurons on each trial
taken in a 600-ms period during f2 about which decision had been made. The
decoding method was Bayesian probability estimation.

inhibition (inhibitory interneurons), in which only one pool wins (a winner-take-

all model). The nonspecific group is connected to the selective pools; likewise, all

three excitatory pools are connected to the inhibitory pool. All of the pools are

self-connected (recurrent connections). We used integrate-and-fire neurons with

three types of receptors mediating the synaptic currents: the excitatory recurrent

postsynaptic currents are mediated by AMPA (fast) and NMDA (slow) receptors,

and the inhibitory postsynaptic currents to both excitatory and inhibitory neu-

rons are mediated by GABA receptors (see refs. [22, 26, 32] for more details). The

external excitatory recurrent postsynaptic currents injected onto the network for

λ1, λ2, and λunsp are driven only by AMPA receptors. The parameters used are

shown in the following section.

In the simulations, first the network runs with a background external input of 3 Hz

to each of the 800 synapses for external inputs onto every neuron, which remains

on throughout the simulation. Then in a decision period corresponding to f2 for t

=3.5–4.0 s, each selective pool is driven by a different input, λ1 and λ2 respectively.

This time symbolizes the first part of the vibrotactile decision-making task, i.e.,
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Figure 2.7: Multiple-cell information for the group of MPC neurons
with high single-cell information values. (A) The values for the average
information available in the responses of different numbers of MPC neurons on
each trial taken in a 600-ms period toward the end of the delay period about
which decision had been made. (B) The values for the average information
available in the responses of different numbers of MPC neurons on each trial
taken in a 600-ms period during f2 about which decision had been made. The
decoding method was Bayesian probability estimation.

from the beginning of f1 to the end of f2 (Fig. 2.1). The network responds to

the external inputs (λ1 and λ2 applied in the decision period) by starting the

competition between the two selective (decision) pools, the firing rates of which

grow apart during this period as one pool moves to a high firing rate attractor

level. The pool that reaches the high firing attractor reflects the decision that has

been made, and the other selective pool remains firing at around the spontaneous

firing rate level. As a result of the calcium-mediated SF, the residual calcium

levels of the neurons in the winning selective pool have grown in this decision

period, and the probability of spiking has increased [26], as illustrated in Fig. 2.8

Left. After this 0.5-s decision-making period, the decision cues are removed and

the postponed response delay short-term memory period lasts from 4 to 7 s. In

this delay period, because the decision cues have been removed, the firing rates

of the two selective pools drop to a spontaneous level of activity (as shownby the

rastergram in Fig. 2.3 and by the firing rate in the delay period shown in Fig.

2.4 Lower Left). Note, however, that the information in the delay period is still

present in the network at the synaptic level but not in the firing rates, as reflected

in the information analysis shown in Fig. 2.2 for the subsequent recall period.
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Finally, at t = 7.0–7.5 s, both selective pools receive the same extra nonspecific

external input (λunsp), to reflect the moment when the subject receives the stimulus

to give its response. The extra nonspecific external rate was 0.255 Hz onto each

of the 800 external input synapses of each neuron in a selective pool ( with a set

of Next = 800 external synapses for external inputs, this results in an additional

Poisson background external input of 204 Hz to each neuron in both selective

pools). When the external nonspecific input (λunsp) is injected into the selective

pools the report period starts and, because of the altered synaptic calcium levels,

the firing rate of one of the selective pools increases to the attractor activity level

(Fig. 2.3), as does its information about the response to be made (Fig. 2.4),

whereas the firing of the other selective pool remains with low activity, although

a little higher than the spontaneous firing rate. The outcome of the competition

in the postponed response period (t = 7.0–7.5 s in the simulations) is the report

of the task.

Analyzing the computational activity of the SF model by the MI method (Fig.

2.2), we can see how the information becomes significant during the discrimination

period, because the MI decodes the network responses to the injected inputs (λ1

and λ2 to pool 1 and pool 2, respectively), one higher than the other (in our

simulations, λ1 > λ2). During the postponed response delay period, the MI in

the firing rates about the decision becomes less significant as a result of the reset

of the external input, with the variability of the firing rates as well as the low

and nondifferential firing rates contributing to the low information at this time.

Finally, the information available becomes high again during the report time owing

to the λunsp injected, which acts to increase the rates, but selectively in the pool

with the synaptic facilitation, as shown in Figs. 2.2 and 2.3. That is, in the SF

model the rates are encoding the response only during two specific periods: after

f2, when they already have all of the sensory information, and when the response

is demanded. With this criterion we confirm that the SF network remembers the

discrimination and it is able to reproduce it when it is requested at the time of

the postponed response without having to store the information about f1, f2 or

the decision in short-term memory using high firing rates in an attractor. The

simulation results are shown in Figs. 2.2–2.4.

In the simulations we consider a trial as correct if the activity of the more stimu-

lated selective pool (with λ1 = 250 Hz and λ2= 150 Hz) is higher than the activity

of the other selective pool, during all of the bins of the 100-ms period centered at

the end of the λunsp period.
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Postponed response delay, %
1 s 1.5 s 2.5 s 3 s

Task performance 100 98.6 92.6 85.5
Model performance 100 99 92 83

Table 2.2: The performance of the task [12] versus the performance of the
network with different postponed decision delays: 1, 1.5, 2.5 and 3 seconds.

Performance in the task by the subjects, and by the SF model, as a

function of the postponed response delay period magnitude.

We tested the performance of the model as a function of the duration of the delay

period, because synaptic facilitation is unlikely to be able to maintain a memory

trace for long time periods, and it is a prediction of the model that performance

will decay to zero as the short-term memory period increases much beyond the

time constant of the synaptic facilitation, 2 s. We performed four simulations

with different postponed response delays. In Table 2.2 we compare the recorded

experimental data [12] with the performance of the SF model. Our model fits the

data well. Analyzing the MI of the different postponed decision delays, we found

that the maximum MI value at the end of the decision period in the network

is 0.967 ± 0.001 bits, and it does not depend on the delay period, whereas the

maximum MI value at the end of the nonspecific stimulation is not always the

same, but depends on the delay period. The longer the delay period, the lower

is the MI value: 0.95, 0.91, 0.63, and 0.37 bits for 1-, 1.5-, 2-, and 3-s postponed

response delays, respectively.

Magnitude of the synaptic facilitation u in the four pools as a function

of time for the synaptic facilitation model, and a mean-field analysis

For the SF model, the time evolution of u, the synaptic utilization, for the four

different pools is shown in Fig. 2.8 Left.

The results of a mean field analysis [43, 44] for two different scenarios for the

synaptic facilitation model are shown, one with synaptic facilitation (Fig. 2.8,

Lower Right) and one without synaptic facilitation (Fig. 2.8, Upper Right). We

plotted the value for the firing rate difference between pools 1 and 2 for a fixed

value of λunsp, w+ and U , for two values of U (one for each scenario, 0.15 and

0, respectively) to check that the synaptic facilitation network cannot recover

the information after a delay period without synaptic facilitation. To compare

both ranges of parameters λunsp, w+, we performed the mean field analysis by
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Figure 2.8: The time evolution of the variable u(Left), the synaptic
utilization, for the four different pools.(Upper Left) The network without stim-
ulation. (Lower Left) the network with stimulation. The shaded gray rectangles
show the period of stimulation; blue, the inhibitory pool; green, selective pool 1;
pink, the selective pool 2; cyan, the nonselective pool. The plots are an average
of >50 trials. The dark lines are the mean, and the colored shadows are 1 SD.
(Right) Results of the mean field analysis [28, 43]. Each point represents the
firing rate difference between pool 1 and pool 2 for a fixed value of (λunsp, w+)
and U . We used the values of the mean synaptic facilitation (one for each pool)
at the time instant of 7,500 ms extracted from the simulation shown in the
above plots.

multiplying the specific connectivity weight by the two specific sets of U , one for

each scenario. To obtain the set that corresponds to a nonfacilitated network,

we ran the network without any stimulation, and we took the U values after the

network was stable. To obtain the set that corresponds to a facilitated network,

we took the U values of the simulation at the time value of 7.5 s, and show the

results in Fig. 2.8. We show that there is selective firing at the time of recall in

this model with these parameters only when SF is present.

2.4.3 Graded Firing Rates in an Attractor Network Model

The attractor network used was similar to that described for the SF network,

except that no synaptic facilitation was used, and the synaptic weights in the

intrapool connections for the selective pools 1 and 2 were set to an exponential-like

distribution to produce an exponential-like firing rate distribution, as described

below and in more detail by [28].
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Graded weight patterns

In an attractor network, the synaptic weights of the recurrent connections are set

by an associative (or Hebbian) synaptic modification rule with the form

δwij = αrirj, (2.2)

where δwij is the change of synaptic weight from presynaptic neuron j onto post-

synaptic neuron i, α is a learning rate constant, rj is the presynaptic firing rate,

and ri is the postsynaptic firing rate when a pattern is being trained [22, 45, 46].

To achieve this for the firing rate distributions investigated, we imposed binary

and graded firing rates on the network by selecting the distribution of the recur-

rent synaptic weights in each of the two decision pools. To achieve a binary firing

pattern, used for the SF simulations described, all of the synaptic weights between

the excitatory neurons within a decision pool were set uniformly to the same value

w+.

Graded firing patterns were achieved by setting the synaptic weights of the recur-

rent connections within each of the decision pools to be in the form of a discrete

exponential-like firing rate (r) distribution generated using methods taken from

[31]:

P (r) =





4
3
aλe−2(r+r0) for r > 0

1− ∑
ri∈r:i>0

4
3
aλe−2(ri+r0) for r = 0

(2.3)

where a is the sparseness of the pattern defined in Eq. 2.4, and r0 isthe firing rate of

the lowest discretized level. The population sparseness a of a binary representation

is the proportion of neurons active to represent any one stimulus or decision in

the set. The sparseness can be generalized to graded representations, as shown in

Eq. 2.4;

a =

(
NE∑
i

ri)
2

NE∑
i

r2
i

, (2.4)

where ri is the firing rate measured for neuron i in the population of NE excitatory

neurons in the network [22]. We note that this is the sparseness of the represen-

tation measured for any one stimulus over the population of neurons [22, 35].

In the graded firing rate simulations, we use a = 0.1 to correspond to the fraction

of excitatory neurons that are in a single decision pool. We chose 50 equal-spaced



Chapter 2. Neural and computational mechanisms of postponed decision 38

discretized levels to evaluate the distribution (0, 1
3
− r0,

2
3
− r0, ..., 3 − r0) . r0

and λ are chosen so that first and second moments of the firing rate distribu-

tion are equal to the sparseness, i.e., < r >=< r2 >= a. A weight matrix

W = {w1,1, · · · , w1,fNE , w2,1, · · · , wfNE ,fNE} was constructed by first sampling a

firing rate for each neuron, ri, using Eq. 2.3 and then setting wij based on the

desired firing rates of each pair of neurons, as described in more detail by Hopfield

[28]. The mean weight was set to a value close to 2.1, the maximum weight was

∼ 5.0, and the minimal weight was 1.0. The final mean weight used for the sim-

ulations was 2.04, as this provided for satisfactory stability of the network in the

spontaneous period, because stability is reduced by graded compared with binary

firing rates [28].

Graded firing rate simulation protocol

Our focus was on the activity in the delay period after the decision had been

taken, and on whether a low level of firing in the delay period could be restored

to a high level, with a high information content, at the end of the delay period

when an external input was applied equally to the two decision pools, 1 and 2. In

a 0.5-s period of spontaneous firing from 3.0 to 3.5 s, the external rates λ1 and λ2

were 3.00 Hz applied to each of the 800 external synapses on each neuron. In the

decision period from 3.5 to 4.0 s, λ1 was 3.10 Hz and λ2 was 2.98 Hz per external

synapse, values that produced a decision on almost all trials of pool 1 winning. In

the delay period from 4 to 7 s, λ1 and λ2 were set to the lowest value that enabled

firing to be maintained reliably (although at a low level) by some neurons, 2.95

Hz per synapse. During the recall period from 7.0 to 7.5 s, λ1 and λ2 were set to

the identical value of 3.05 Hz per synapse.
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2.4.4 Model Summary

A Model Summary

Populations Two: excitatory, inhibitory

Topology —

Connectivity Full connected

Neuron model Leaky integrate-and-fire, fixed threshold, fixed refractory

period, MNDA

Channel models —

Synapse model Instantaneous jump and exponential decay for AMPA and

GABA and exponential jump and decay for NMDA recep-

tors

Plasticity Synaptic facilitation

Input Independent fixed-rate Poisson spike trains to each selec-

tive population

Measurements Spike activity

B Populations

Total number of neurons N = 1000

Excitatory neurons NE = 0.8 ·N Neurons in each selective pool:

Nselective = NE · sparseness
Inhibitory neurons NI = 0.2 ·N
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C1 Neuron and Synapse Model

Type Leaky integrate-and-fire, conductance-based synapses

Subthreshold

dynamics

Cm
dV (t)

dt
= −gm(V (t)− VL)− Isyn(t)

Isyn(t) = Iampa,ext(t) + Iampa,rec(t) + Inmda(t) + Igaba(t)

Spiking

If V (t) > Vθ ∧ t > t∗ + τrp

1. set t∗ = t

2. emit spike with time-stamp t∗

3. V (t) = Vreset

Synaptic

currents

Iampa,ext(t) = gampa,ext(V (t)− VE)
Next∑

j=1

sampa,ext
j (t)

Iampa,rec(t) = gampa,rec(V (t)− VE)

NE∑

j=1

wjs
ampa,rec
j (t)uj(t)

Inmda(t) =
gnmda(V (t)− VE)

1 + γ exp(−β V (t))

NE∑

j=1

wjs
nmda
j (t)uj(t)

Igaba(t) = ggaba(V (t)− VI)
NI∑

j=1

sgabaj (t)

C2 Neuron and Synapse Model

Fraction

of open

channels

dsampa,ext
j (t)

dt
= −sampa,ext

j (t)/τampa +
∑

k

δ(t− tkj − δ)

dsampa,rec
j (t)

dt
= −sampa,rec

j (t)/τampa +
∑

k

δ(t− tkj )

dsnmdaj (t)

dt
= −snmdaj (t)/τnmda,decay + α xj(t)(1− snmdaj (t))

dxj(t)

dt
= −xj(t)/τnmda,rise +

∑

k

δ(t− tkj − δ)

dsgabaj (t)

dt
= −sgabaj (t)/τgaba +

∑

k

δ(t− tkj − δ)

Synaptic

facilitation
uj(t)

dt
=
U − uj(t)

τF
+ U(1− uj(t))

∑

k

δ(t− tkj )
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D Input

Type Description

Poisson generators Fixed rate Next synapses per neuron, which each synapse

driven by a Poisson process

E Measurements

Spike activity

Parameters

Integrate-and-fire
Cm (E) 0.5 nF Cm (I) 0.2 nF
gm (E) 25 nS gm (I) 20 nS
VL -70 mV Vthr -50 mV
Vreset -55 mV VE 0 mV
VI -70 mV
gAMPA,ext (E) 2.08 nS gAMPA,rec (E) 0.104 nS
gNMDA (E) 0.327 nS gGABA (E) 1.25 nS
gAMPA,ext (I) 1.62 nS gAMPA,rec (I) 0.081 nS
gNMDA (I) 0.258 nS gGABA (I) 0.973 nS
τNMDA,decay 100 ms τNMDA,rise 2 ms
τAMPA 2 ms τGABA 10 ms
τrp(E) 2 ms τrp(I) 1 ms
α 0.5 ms−1 γ [Mg2+]/(3.57mM) = 0.280
β 0.062 mV−1 sparseness 0.10
Next 800
U 0.15 τF 2000 ms
Connection
w+ 2.17 wi 0.97

Table 2.3: Parameters used in the integrate-and-fire simulations and the con-
nection parameters. Capital letters: E corresponds to excitatory, and I to in-
hibitory.





Chapter 3

Decision-making under different

brain states in A1

The work presented in this chapter was published in:

Frontiers in Integrative Neuroscience in October 2011

Journal of Neurophysiology in August 2013

In both cases, the authors are: Juan M Abolafia*, Marina Martinez-Garcia*,

Gustavo Deco, and Maria V. Sanchez-Vives.

3.1 Introduction

In this chapter we present the study of a data-base of neurons from rat auditory

cortex (A1) while they performed a decision-making task. The animals had to

decide whether two auditory stimuli were separated by either 150 or 300 ms (see

Fig 3.1). The special feature of this study is that the neurons were recorded under

different brain states: during engaged (correct choices provided reward) and during

idle states (performance not required).

In the first part of this chapter, we present a study on the firing patterns of

the neurons across brain states. In particular, we wanted to characterise and

interpret the modulations of the rate during the inter stimuli interval (ISI). The

slow modulatory components could be locally generated or the result of a top-

down influence originated in higher associative association areas. Such a neuronal

discharge may be related to the computation of the interval time and contribute

to the perception of the auditory stimulus.
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In the second part of this chapter, we focus on the variability and the information

content of the neurons. As a measure of the variability we used the Fano Factor(
Ff = σ2

µ

)
. Which was markedly reduced, not only during stimulation, but also in

between stimuli in engaged trials. Next, we explored if this decrease in variability

was associated with an increased information encoding. Our information theory

analysis revealed an increase of the information content in the auditory responses

during engagement as compared to idle states, in particular in the responses to

task-relevant stimuli. Altogether, we demonstrated that task-engagement signif-

icantly modulates the coding properties of auditory cortical neurons during an

interval-discrimination task.

3.2 Task description

In this section we define with more details the interval-discrimination task de-

scribed in the Introduction 1.1. The behavioural protocol consisted of four differ-

ent recording stages with a total duration of 2.5 hours (Fig. 3.1 A). For the stages

that required it, the animals were trained to poke their noses into the center socket

(see 3.1 B), which immediately triggered the onset of two identical stimuli (80dB,

5322 Hz, 50 ms duration). The end of stimulus one (S1) was separated from the

beginning of stimulus two (S2) by 150 or 300 ms. In a chronological order the

different stages were:

• The “Initial-idle” stage (17 min) was done during idle listening of the animal.

The auditory stimuli (50 ms, 80dB; 5322Hz), ISI, intertrial interval (2-3 s)

and trial repetitions (180) were the same in each recording stage. During this

recording the animals freely moved around the recording box (with occluded

sockets) while listening to stimuli presentation, and they did not receive

reward.

• The “Engagement-task” was the behaviourally relevant one. During the en-

gagement stage the rat enters the central socket and two identical stimuli

are presented through earphones. The animals had to remain in the center

socket till the end of the stimuli presentation. They had to discriminate

whether the two stimuli were separated by 150 or 300 ms. This required

a left or right poke respectively, in order to get the water reward. In the

behavioural task, false alarms (poking in the opposite side) or early with-

drawals (withdrawal before stimuli termination) were punished with a 3 s

time out and white noise (WAV-file,0.5 s, 80 dB SPL).
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Figure 3.1: Behavioural protocol and performance. A: Sequence of
recording stages in chronological order. The “initial-idle” stage was done during
idle listening of the animal. The auditory stimuli (50 ms, 80dB; 5322Hz), ISI
(150 and 300 ms), intertrial interval (2-3 s) and trial repetitions (180) were
the same in each recording stage. The following stage was the behaviourally
relevant one. Next, there was again a “idle-post” recording identical to the
“initial-idle” one, and another idle recording but now followed by a reward
after each pair of stimulus presentation. The total duration of the recording
protocol was 2.5 hours. B: In the interval-discrimination task the rat entered
in the central socket and two identical stimuli (50 ms; 80dB; 5322Hz) were
presented through earphones. 150 or 300 ms ISI indicates left or right reward
delivery, respectively. C: Animal 1 performance (correct trials (%)) against
days of training. Dashed line indicates beginning of recorded sessions. D:
Psychometric curve of performance for pairs of intervals differing between 2
and 150 ms. within the same session. Performance improved as the difference
between both ISIs (ms) increased, while discrimination became more difficult for
highly similar intervals.E-F: Same as C-D but for animal 2. Animal 1 and 2 were
trained before implanting microdrives with tetrodes. Learning performance in
animals 1 and 2 shown in C-F corresponds to short and long ISIs appearing at
random trials.
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• The “Idle-post” (17 min) recording was identical to the “initial-idle” one.

• The last stage was the “Idle+reward” recording. During this stage, the left

and right sockets were occluded but not the central one, where the animal

repeatedly entered and received a water drop 0.3 s after having listened to

the same stimuli as in the engagement stage.

Note that there was movement in all phases of the experiment, either towards the

sockets or around the cage. The aim of these recording sequences was to track the

activity of a single unit, and compare response patterns between engaged versus

idle brain states. The three idle stages (initial-idle, idle–post and idle+reward) had

the same amount of trials (180-200 trials each), stimuli (50 ms; 80 dB; 5.3 kHz),

ISIs (150 and 300 ms) and intertrial intervals (2 to 3 s) as the task-engagement

stage. As soon as the animals reached 70% of behavioural performance (Fig. 3.1

C,E), they were implanted. After the last recording we obtained a psychometric

curve to further evaluate the perceptual and behavioural effects of the short and

long ISIs being presented to the animal during the behavioural task. During

the psychometric curve the short ISI (150 ms) became longer, while the long

ISI (300 ms) became shorter, allowing us to test the perceptual threshold of ISI

discrimination (Fig. 3.1 D, F).

3.3 Study of the data-base: Slow Modulations

In the present study we recorded the activity of eighty-six neurons from the au-

ditory cortex of the behaving rat. The aim of this section is to explore the slow

modulation of neuronal activity in the intervals between stimuli while the rat was

performing an interval-based decision-making task.

In principle, sensory areas such as A1 are primarily associated with stimulus en-

coding. However there is increasing evidence that early cortices, and in particular

A1, are not only feature detectors. Multimodal responses [47, 48], attentional mod-

ulation [49–51], expectation [52], or reward-modulation [53] illustrate additional

contextual aspects that modulate responses even in early sensory cortices.

While fast responses to auditory stimuli have been characterized in detail in au-

ditory cortex, the slow modulation of neuronal firing to evoked and spontaneous

activity has barely been studied. Slow modulation of sustained responses has been

found to predict the behavioral decisions during auditory categorization tasks in
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monkeys, including errors [54]. Sensory or behavioral events contingent on re-

inforcement can also result on slow modulation of firing rate or sustained fir-

ing as a consequence of a learning process [55]. Therefore, slow modulation of

firing could constitute an anticipatory mechanism that associates events (stimu-

lus–behavior–reinforcer) that are relevant or adaptive to the environment. These

cognitive components associated to stimulus discrimination tasks have been more

commonly associated to higher areas such as frontal areas [56].

3.3.1 Description of the singular patterns

Eighty-six single units from the rat auditory cortex were isolated and classified

[57, 58] according to their phasic auditory responses as: onset (26%), onset +

offset (13%), offset (2%), non-responsive (43%), suppressive (13%), and “other”

(3%). The percentage of non-responsive neurons was similar to the one reported

by means of cell-attached recordings in the head-fixed awake animal [58].

In this section we describe different patterns of neuronal discharges occurring

during the intervals (ISI) in between stimuli and thus in the absence of auditory

stimulation. We show that the neuronal firing occurring between auditory stimuli

in the auditory cortex can be quite prominent and that is often modulated by

attention. Finally, the possible functional role of this slow modulation of neuronal

discharge is discussed.

We found that 17.4% (n = 14) of the recorded neurons showed a prominent neu-

ronal discharge during the interstimulus interval, in the form of either an upward

or downward ramp towards the second auditory stimulus. While in some of the

neurons the activity during the interval ramped up toward the second stimuli (n =

6; Figs. 3.2 A, B, and 3.3 A, B, C), in others the activity ramped down following

a sort of post-discharge (n = 6; Figs. 3.3 D, E and 3.4 A, B). In the two remaining

neurons the activity during the interval remained rather in a plateau (Fig. 3.3

F). The neurons shown here further illustrate the large heterogeneity of neuronal

responses that have been described in auditory cortex.

The Fig. 3.2 illustrates the PSTHs from two different neurons while the rat was

performing the task. During the passive sound stimulation, the neuron in Fig.

3.2 A had a weak offset response to the first auditory stimulus and a subsequent

decrease in the firing during the interval, that progressively increased towards the

second stimulus. During attention these responses became more prominent (Fig.

3.2 A; top PSTHs). The offset response was increased, and neuronal activity



Chapter 3. Decision-making in A1 48

Figure 3.2: Ramping-up activity during the interstimulus interval.
A: Upper part. PSTH (180 trials) of the response (bottom) and raster plot
(top) of a single neuron during the attentive task shows the response pattern to
two identical stimuli (50 ms; 80 dB; 5322 Hz) separated by 150 ms (left) and
300 ms (right). The gray boxes correspond to the periods of auditory stimu-
lation. The PSTH shows an offset response to stimulus 1 and onset response
during stimulus 2 while in the passive brain state (lower part) there is an over-
all decrease of excitability and no monotonic increase of spontaneous activity
toward S2 presentation. B: Same as in (A), but this other neuron is silenced
by the auditory stimulation followed by an increase of firing until S2 occurrence
(upper part), while in the passive brain state (lower part) the neuronal firing is
markedly reduced. In (A, B) the mean spontaneous activity is represented with
a dotted line.
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ramped up toward the second stimulus well above the spontaneous activity pre-

ceding the first stimulus. Interestingly, the response to the second stimulus was

not an offset response but a sustained one. This is the case for both the short and

the long interval trials, which were randomly given. The neuron illustrated in Fig.

3.2 B is of a different type, a “suppressive” response [58], since its discharge was

silenced by auditory stimulation. This is well appreciated in the raster plots that

correspond to the attentional trials (Fig. 3.2 B, top PSTHs). Still, even when the

neuron was silenced by the auditory stimulation, its activity ramped up toward

the second stimulus, more prominently in the attentional trials than in the passive

ones. The second auditory stimulus again decreased its firing rate, which remained

decreased for 200 ms following stimulation.

Out of the six neurons with increasing activity toward the second stimulus, all

of them had an up-regulation of this activity during attentive trials. When the

average firing rate during the first half of the interval was compared against that

during the second, the activity increased in a 17% in passive trials and 246% in

attentive ones for the short (150 ms) intervals. For the long (300 ms) intervals

these values were 58 and 192% respectively.

In some cases, the activity occurring in between auditory stimuli was not ramping-

up toward the second stimulus, as the one illustrated above, but rather appeared

as a prominent post-discharge following the auditory stimulation (Figs. 3.3 D, E

and 3.4 A) In the neuron illustrated in Fig. 3.4 A, each auditory response was

followed by a post-discharge lasting around 200 ms. In this neuron, not only the

auditory responses but also the auditory post-discharge was significantly increased

by attention. A total of five neurons showed a similar modulation by attention,

the post-discharge increasing an average of 45% (short ISIs) and 53% (long ISIs)

in attentive versus passive trials. In one neuron, the post-discharge was decreased

in a 40% by attention. In the case of the neuron illustrated in Fig. 3.4 A, the firing

rate during the 200-ms preceding the first auditory stimulus was also significantly

increased by attention. This is the period of time that takes place when the animal

is heading to the central nose poke that triggers stimulus presentation.

The firing rate during the period preceding auditory stimulation was also signifi-

cantly increased during attentive trials in the neuron displayed in Fig. 3.4 B, which

on the other hand had a rather different auditory response. This neuron had a

weak spontaneous discharge preceding the auditory stimulation, and no response

to the auditory stimulus. However, a very large post-discharge followed each audi-

tory stimulus. This unusual pattern of response took place during non-attentional

trials. During attentional trials, those prominent post-discharges disappeared, and
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Figure 3.3: Modulation of neuronal firing between stimuli presenta-
tion. A–C: PSTH (180 trials) of two equal stimuli (50 ms; 80 dB; 5322 Hz)
separated by either 150 ms (left) or 300 ms (right). Three example neurons
during the attentive task show suppressive activity during stimuli presentation
followed by an increased firing until S2 is presented. D, E: PSTHs of two differ-
ent neurons showing firing activity during the interval that decreases toward the
second stimulus. F: PSTH of an example neuron showing a late onset response
accompanied by a sustained activity after stimuli termination.

instead, the discharge preceding the first stimulus was increased, as did the ex-

ample in Fig. 3.4 A. An enhanced firing rate preceding the occurrence of the first

stimulus could be related to stimulus expectancy [52] or to prediction of reward

[53], both described in early sensory cortices.

3.3.2 An interpretation of the patterns

In the previous section we report about 14 particular neurons that showed promi-

nent responses during the intervals between stimuli, with firing rates that either

increased or decreased toward the second stimulus. These neuronal discharges

could be referred to as spontaneous activity, since they occurred while there was no

auditory stimulation. However the term “spontaneous activity” has been avoided
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Figure 3. Abolafia et al.

Figure 3.4: Attention modulated firing rate in the periods in between
auditory stimuli. A: PSTH (180 trials) of a single neuron during the passive
(gray) and attentive (red) task where two identical stimuli (50 ms; 80 dB; 5322
Hz) separated by 150 ms (left) and 300 ms (right) were delivered. Notice that
not only the response but also prominent responses in the absence of stimuli
(preceding and between stimuli) are up regulated by attention. B: Example
neuron that had no auditory response, but a prominent and slow response after
the termination of auditory stimuli during passive trials. This response was
silenced during the attentive trials. However, notice that the activity preceding
the first auditory stimulus was increased during attention (in red). In both cases
(A, B), the raster plots correspond to the attentive trials. In all cases, 150 and
300 ms intervals were given randomly during the same sessions.
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since these neuronal discharges were often associated to the preceding auditory

responses, even if with a slow time course of over 150 ms. The neuronal discharges

occurring in the absence of auditory stimulation were enhanced by attention in 12

(out of 14) cases, while they were decreased in the remaining two.

Most of the studies of the effects of attention on auditory responses have focused on

how phasic responses modulate their response properties according to the brain

state [51, 59–65]. Slow modulation of firing rate in the auditory cortex of the

behaving monkey has been previously found to be related to the processing of

stimuli, motor decision, or even reward [54, 55, 64], as it has been in primary

visual cortex [53]. During behavioral experiments, this slow or sustained (up to

several seconds) part of the response is related to event sequences during a task and

provides a neuronal mechanism for anticipation and association of events related

to hearing and relevant to behavior [55]. Altogether, slow modulation of firing

could complement the representation of the timing of auditory stimuli as well as

the codification of stimuli by means of phasic responses. A similar pattern was

reported by [50, 64, 66].

Some studies have found no changes in spontaneous activity under attentional

demands [51, 60, 61]. On the other hand, an increase in spontaneous firing rate

at the end of the trial under attention with respect to the passive state has been

reported, enhancement that could be reflecting motor-related aspects [67]. Sin-

gle units from auditory cortex have also been shown to have enhanced sustained

responses preceding a target stimulus [68]. Here we have shown that the sponta-

neous discharge is increased by attention in the period preceding the first stimulus

in two neurons (Figs. 3.4 A, B).

The mechanisms for these slow modulations of firing rate are not known. One

possibility would be that they reflect top-down modulation. Not only cortical, but

also subcortical areas present modulation of spontaneous activity within tasks.

Late trial neuronal activity in the monkey inferior colliculus has been described

to be modulated by context, like a “reward expectation” signal [69]. Reward-

modulation of the late activity after the end of the auditory stimulus has also been

described in the rat auditory thalamus [70]. A difference of these ramping activities

with respect to the ones we have illustrated (Fig. 3.2 is that the ramping-up here

was preceding the second stimulus, and not the reward [64, 71]. The reward in

our protocols occurred after the second stimulus, whenever the animal poked his

nose in the correct side and thus triggered its delivery. It did not occur at a fixed

time (usually after 1 s in the illustrated PSTHs). The ramping activity illustrated

in Fig. 3.2 B between 0.6 and 1 s could be interpreted as such or associated to

motor activity. We can speculate that the ramping-up activity in between stimuli
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(Figs. 3.2 A, B) could be rather associated to stimulus expectation or to interval

computation. In this respect, a recent study [52] showed that neurons from the

primary auditory cortex increased their firing rate as the target approached. This

firing rate modulation reflected a temporal expectation which improved sound

processing, therefore increasing the probability of obtaining a reward.

In all, neuronal firing in early auditory cortex in the absence of auditory stimula-

tion could provide a neuronal mechanism for anticipation and memory, reflecting

a learning process where consecutive sensory and behavioral events are associated

with reinforcement. The slow modulation of ongoing firing during the interval be-

tween stimuli and the post-stimulus period could act as a mechanism to track and

integrate time between stimuli presen-tations and be part of the neuronal basis of

interval-categorization by means of tonic firing, particularly in attentive stages.

3.4 Variability and information content in A1

In this section our main objective was to study the effects of task-engagement on

firing variability not only on evoked responses during correct trials but also during

the interstimulus interval (ISI).

3.4.1 Engagement diminishes variability during and after

stimulation in A1

Both enhanced [72–74] and reduced responses [51] to stimulation have been ob-

served while processing behaviourally relevant auditory stimuli. We first explored

the effect of engagement on the firing rate of 33 neurons that comprised the onset

and onset-offset ones. In most cases engagement significantly increased the spike

firing (see section 3.6) during stimuli-evoked responses (n=22; Fig. 3.5, while the

opposite trend was less common (n=11). The response to the second stimulus

was typically decreased as a result of auditory adaptation processes [51, 75, 76].

Substantial adaptation was observed both in onset responses (Fig. 3.5 A) as well

as offset ones (Fig. 3.5 B) (n=13). There was a trend for the average adaptation

to the second stimulus to be lower in the engaged than in the idle state (n=10), al-

though the difference was not statistically significant (p-value=0.23 and p-value=

0.37 for short and long ISIs respectively; Wilcoxon; Fig. 3.5 C). In the remaining

three cases, adaptation increased during engagement.
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Figure 3.5: Firing rate during the interval-discrimination task in dif-
ferent brain states. A: Raster and persistimulus histogram (PSTH) of an
example neuron for different brain states. The frequency response histogram
(bottom) using 10-ms bins and the spikes raster plot (top) for 180 trials. A
response peak can be observed at the onset of stimuli (50 ms; 80 dB; 5322 Hz)
for 150 ms ISI (left) and 300 ms ISI (right). Grey bars indicate stimuli presen-
tation, and dotted bars indicate stimulus presentation if the opposite ISI would
have occurred. B: Same as in A for a different neuron. A specific increase of
spontaneous activity previous to stimuli presentation is observed only during
task-engagement. C: Average adaptation of thirteen neurons for short and long
ISIs for different brain states. Error bars are S.D.

Next we studied whether engagement altered neuronal response variability in the

auditory cortex of the behaving animal. We calculated the Fano factor (Ff) (spike-

count variance divided by spike-count mean) in order to test how neuronal vari-

ability changes during and after stimulus-evoked responses as a function of the

behavioural state of the animal. The Ff was calculated on a trial by trial basis.

Since the evoked auditory responses were mostly phasic we found that ms bins

showed the best time resolution and reflected the most accurately the changes in

variability.

Fig. 3.6 shows, for two single units (A, B and C, D), the average Ff variation for

short (A, C) and long (B, D) ISIs, and for the engaged state (red) versus idle states

(blue). A significant reduction (see section 3.6) in Ff during task-engagement can

be observed during stimulus presentation (S1 and S2) for short (Fig. 3.6 A)

and long (Fig. 3.6 B) ISIs with respect to the idle ones. A second neuron with

a prominent offset response is illustrated in (Fig. 3.6 C, D). This neuron had

a reduction in Ff during the response onset and offset during engagement with

respect to the idle state.

The variability in responses to stimuli was decreased not only during engagement,
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Figure 3.6: Response variability is reduced during engaged brain
states. A-B:. Fano factor (Ff) of an example neuron during short (A) and
long (B) ISI and for the engaged (red) versus idle stages (blue). Grey bars
indicate the presentation of S1 and S2. A reduction in Ff during the engaged
compared to the idle state can be observed during trials of both short (A) and
long (B) ISI. Not only during stimulation but also during the ISI, and during
the spontaneous activity period preceding stimulation (-0.2-0 s), variability was
decreased in the engaged with respect to the idle state of the animal. C-D:.
Same as in A, B for another example neuron with an onset-offset response
pattern. In the engaged state, there was a reduction in Ff during the onset and
offset compared to the idle state. Similarly, during the spontaneous activity
period preceding stimulation (-0.2-0 s), there was a decreased variability in the
engaged (C; D) compared to the idle state of the animal. E-F:. The difference
in the Ff value for each bin of the trial was obtained between the engaged state
and the average idle recordings. The obtained differences were averaged and
the SEM errors are displayed with the grey shadow. Most of the values are
negative, indicating lower variability in the engaged condition with respect to
the idle one. Enhanced differences in variability are observed during stimuli
presentation.
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but also during the ISI. Accordingly, neuronal activity during the ISI (Fig. 3.6

A, B) showed a reduced variability during task-engagement for short and long

ISIs when compared to the idle state. Furthermore, we found that during the

spontaneous activity period preceding a stimulus presentation (200 ms), there was

a marked decreased variability in the engaged compared to the idle state of the

animal (Fig. 3.6 A-D). In most cases, a significant reduction of neuronal activity

variability during engagement was observed (n=14; p=0.01 (Wilcoxon))(Fig. 3.6

E-F), while the opposite was only observed in one neuron. Statistical comparisons

(Wilcoxon) showed a significant difference between the variability during S2 in

the engaged state vs that in initial idle (p < 0.008) or idle-post (0.008). However,

there was no significance (p < 0.7) when the two idle states were compared.

Out of these fourteen neurons with significantly modulated Ff during engagement,

nine neurons showed a reduction of variability in the 200 ms preceding a stimulus

presentation, while eight neurons showed a reduction of variability during the ISI.

In all, we observed a significant reduction of variability along the trial duration for

all studied neurons during engagement as compared to the idle brain state, and

this was enhanced during stimuli presentation.

It has been shown by other authors that Ff is not contingent on the firing rate

[77–80]. We also tested this and, for that purpose, we selected bins with similar

firing rate (< 5% difference) from engaged and idle trials. We plotted for each

selected bin the Ff value in the idle versus in the engaged state for each neuron

(n=14; see Fig. 3.7 A-B). Bins were matched according to the same time location

of the trial in the different brain states (Fig. 3.7 A) and also to different time

location (Fig. 3.7 B). Fig. 3.7 shows that most of the values remain above the

x/y main diagonal, indicating that Ff values are larger in the idle than in the

engaged state than what would be expected by a change in firing rate. We also

computed the mean distance of the values with respect to the x/y main diagonal,

which reflects the difference between the Ff-idle and Ff-engaged. We found that

the positive values of the difference was 0.14 (std: 0.05) and 0.09 (std: 0.07)

(A and B, respectively) while for negative values was 0.08 (std: 0.06) and 0.05

(std: 0.03) (A and B, respectively). Thus the Ff is nearly times larger in the idle

compared to the engaged state, and therefore a decrease in Ff during engagement

is not a mere artefact of an increase in firing rate. Additionally, the number

of values above the diagonal are 64% and 67% (A and B,respectively) while the

ones below are 36% and 32% (A and B, respectively). Finally, we compared the

statistical significance (Wilcoxon) between the values above and below the x/y

main diagonal (i.e., engagement vs idle). We found no statistical significance for

Fig. 3.7 A (p < 0.3) while the opposite was found in Fig. 3.7 B (p < 0.00)
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Figure 3.7: The Fano factor is not dependent on the firing rate. A:
The Ff value of idle recordings (Y axis) is plotted against the Ff value of engaged
ones (X axis). The Ff value was calculated for each pair of bins with equal spike
count (< 5%) between the idle and engaged states. Each pair of bins with equal
firing rate had the same position in the trial in the different brain states. B:
Each pair of bins with equal firing rate had different position in the trial. Only
neurons with significant Ff were included (n= 14) for A and B. A significantly
larger amount of the values remained above the x/y main diagonal for A and
B.

possibly due to the increased number of values in the later. Thus from this section

we conclude that during engagement there is a reduction in variability. In order to

evaluate if this decrease in Ff is associated with an increased encoding capability

we proceeded to use information theory to estimate mutual information (MI).

3.4.2 Mutual information is increased during engagement

MI analysis has been previously used to estimate the information content present

in spike trains generated by neurons from the auditory cortex in both anesthetized

[81, 82] and awake animals [83]. Here, we performed the MI analysis to find out

whether single units in auditory cortex of the awake behaving animal encode in-

formation related with interval-discrimination of auditory stimuli. In our interval-

discrimination task, the animals had to decide whether two identical stimuli were

separated by 150 or 300 ms. In that task, the key stimulus that determines if the

ISI category is “short” or “long” is the second one. MI between the variable “spike

count” and the variable “ISI category” (150 or 300 ms), was calculated. Hence,

we compared the MI value in the response to the first stimulus versus that to the

second stimulus, in both idle and engaged states.

In order to compute the MI value we used here the bias corrected method of

[84] as described in section 3.6. Furthermore, in order to evaluate the statistical
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Figure 3.8: Information content in response to auditory stimuli. A:
Raster plots and PSTHs of the neuronal discharge in different brain states.
Identical auditory stimuli occurred in the grey boxes, with 150 ms interstimuli
interval (left) and 300 ms interstimuli interval (right). In the right column,
mutual information in the responses for both stimuli is represented in bits.
Significance of surrogate test of mutual information is shown only during en-
gagement in S2. B: The same pattern as in A (right) is shown for the average
of ten neurons that passed the surrogate test of MI. The significance of surro-
gate test of mutual information is shown only during engagement in S2. Bars
indicate SEM. Asterisks indicate p < 0.05.
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significance of these MI values we used the surrogates method (see also 3.6). Given

the sparse activity and the requirements for the calculation of MI [24] we found

necessary to use 50 ms bins which comprised the stimulus duration (S1/S2). MI

was calculated in twenty-one neurons with an average firing rate during the 50 ms

duration of the auditory stimulus (S1) that was significant as defined in section

3.6. Of these twenty-one neurons 10 successfully passed the surrogates test of

the spike count during S2 in the engaged brain state. One example neuron of

these is shown in Fig. 3.8 A, showing a raster plot and peristimulus histogram

(PSTH), for interstimulus intervals of 150 ms and 300 ms. In this case, MI values

were higher during the response to S2 than to S1 in the engaged state (S2:0.016;

S1:0.0), while it was not in the initial-idle stage (S2:0.0; S1:0.0), idle-post (S2:0.0;

S1:0.0) or idle+reward (S2:0.0004; S1:0.0). Furthermore, we tested the surrogates

significance of these MI values and we found that in the engaged estate the MI

value during S2 significantly (0.007) passed the surrogates test.

Mean MI values during responses to S1 vs S2 stimuli (N=10) in the initial-idle

(S2:0.007), idle-post (S2:0.005) and idle+reward (S2:0.010) were lower than in

the engaged state (S2:0.028) (see Tab. 3.1). Even though these MI values could

be interpreted a rather low, similar MI values have been found in the auditory

cortex [85]. The surrogate test was only passed in the engaged brain state and

these results suggest that the engaged state carries more information than the first

one.

Statistical comparisons (Wilcoxon) of the MI were also performed between S1 and

S2 for each brain state (see Tab. 3.1). We observed significant differences between

MI values during S1 and S2 in engagement while not during the idle brain states

(see Tab. 3.1). Additionally, S2 values of MI were compared (Wilcoxon) among

brain states (see Tab. 3.1) and we also observed a significant difference of MI in

S2 during engagement as compared with the idle states. Therefore, information

content of spike trains evoked by auditory responses is augmented during the

engagement in an interval-discrimination task.

A response profile of another example neuron showing an “onset-offset” pattern

is illustrated in Fig. 3.9 A and B. In this case, spontaneous activity is increased

during the time interval preceding stimulus presentation during task-engagement.

The MI value in the response to S2 was 0.0465, with a surrogate significance of

0.002, during task-engagement, while MI value was lower during the idle ones

(initial-idle: 0.0001; idle-post: 0.0065; idle+reward: 0.0001, see Fig. 3.9 C,left).

This neuron further shows that the engaged state of animals has an effect on the

information content in spike trains evoked by behaviourally-relevant stimuli.
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Figure 3.9: Information content in response to a second auditory
stimulus (S2). A: Raster plot and PSTH (180 trials) of the firing rate of an
example neuron to identical stimuli presentation to 150 (left) and 300 (right)-
ms interstimulus intervals. Notice the prominent offset responses of this neuron.
B: Overlaid PSTHs illustrate the response of the neuron in A while in different
brain states. An increase in spontaneous activity preceding a stimulus presen-
tation is observed only in the engaged state. C: Mutual information in the
response to stimulus 2 (S2) in the different stages of the experiment (II (initial-
idle); E (engagement); IP (idle-post); I+R (idle +reward). The graph on the
left corresponds to the case illustrated in A and B only for S2. The significance
of surrogate test of mutual information is shown only during engagement in S2.
The graph on the right corresponds to MI contained in offset responses (n=7).
The significance of surrogate test of mutual information is shown only during
engagement in S2 offset. Bars indicate SEM. Asterisks indicate p < 0.05.



Chapter 3. Decision-making in A1 61

We also explored the information contained in the offset responses evoked once

the stimulus was terminated. Seven neurons showed offset responses to auditory

stimulation, while four of them showed additionally onset responses (e.g. Fig. 3.9

A, B). MI during the offset response component was calculated after S2 termina-

tion in those neurons that were classified as “onset-offset” or “offset” (n=7). We

analyzed MI during a time window of the same duration as the one used to calcu-

late MI during stimuli presentation(50 ms). The 50 ms window was taken around

the peak of the offset response (25 ms before and after the peak) of S2. MI values

of the population mean of offset neurons (Fig. 3.9 C; right) were significantly

higher in the engaged state (0.0310) as compared with the idle (initial idle:0.0021

; idle-post:0.0017; idle+reward: 0.0067) as evidenced with the surrogate test (see

Tab. 3.1). In order to test the significance of that MI values statistical compar-

isons (Wilcoxon) of the MI were again performed between S1 and S2 for each

brain state (see Tab. 3.1). As in the other case we observed significant differences

between MI values during S1 and S2 in engagement (0.0468) while not during the

idle brain states (see Tab. 3.1). When we compared S2 values of MI (Wilcoxon)

among brain states we again observed a significant difference of MI in S2 during

engagement as compared with the idle states (see Tab. 3.1). These results alo-

gether suggest that offset neuronal response after S2 termination not only carries

information, but carries a similar amount of information about the category of the

ISI carried by the one of the responses of onset neurons during S2 presentation.
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Figure 3.10: Relationship between Fano Factor (Ff) and Mutual In-
formation (MI). A: Spike count distribution of an example neuron during the
second stimulus presentation (50 ms) during the engaged state (red) and idle
(blue) and for the left (dashed) versus right (solid) responses. B: Spike count
distribution of simulated neuronal data with a gamma distribution. The same
amount of trials (400) and parameter values (mean, and Ff) were used as in A
in the four different conditions. C: The MI was obtained out of the simulated
distribution of the engaged state shown in B. As the Ff value was increased the
MI value decreased. Bars indicate S. D.

3.4.3 Relationship between Fano Factor and Mutual Infor-

mation

In order to study the relationship between Ff and MI more systematically we

developed a theoretical toy model that parametrised the experimental data. The

toy model was defined by generating artificial spike train datasets whose inter-spike

intervals follow a gamma distribution with a given mean firing rate (Fig. 3.10 B)

as in the real data (Fig. 3.10 A) in order to test the relationship between Ff and MI

(Fig. 3.10 C). Artificial datasets were modelled by gamma point processes, where

Ff and the firing rate can be controlled. This model has been successively used to

model spiking data [86, 87]. In this model, inter-spike intervals are independently

drawn from a gamma distribution (see equation 3.1) that has two parameters: a

scale parameter, r, that controls the intensity of the process (firing rate) and a

shape parameter, α, that controls the variance of the distribution. Indeed, Nawrot

et al[88] showed that Ff = 1/α. For a given pair of r and α, we generated a spike
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train composed of 1000 consecutive inter-spike intervals. The length of the spike

train (T) was divided into short non-overlapping time bins of 50 ms (equal to the

stimulus period in the experiments) and the spike count (N) was calculated in each

time bin. To avoid border effects we left aside the 10 first time bins and we stored

the spike counts of the following 200 bins. As a result we obtained a spike count

distribution for a given set of r and α, noted fr,α(N).

pα(τ) =
(αr)ατα−1

Γ(α)
exp(−αrτ) (3.1)

Using this procedure, we generated, for a given α and for two fixed values of the

rate parameter, denoted r1 and r2, two spike count distributions, fr1,α(N), and

fr2,α(N) computed the MI between the parameter r and the N . In our case r1

corresponds to the mean firing rate during S2 in short ISI trials while r2 corre-

sponds to the mean firing rate during S2 in long ISI trials for a certain neuron.

According to Ff = 1/α, we varied α between 0.3, 1.1 while keeping r1 and r2

fixed. Then we calculated the MI for the pair (r1, r2), for all the α, between the

stimulus and the response. This procedure was repeated 1000 times in order to

estimate the error. As shown in Fig. 3.10 C, the MI of the simulated distribution

(Fig. 3.10 B) increased for decreasing values of Ff. We found then a negative cor-

relation between these parameters (corr:−0.77; p < 0.05) such that for lower Fano

factor, mutual information increased. In conclusion, this toy model demonstrated

that a parametric decrease of the Ff systematically increased the MI, generalizing

therefore the experimental observations.

3.5 Discussion

We studied neuronal responses in rat auditory cortex during a decision-making

task where intervals between auditory stimuli were categorized. Neuronal re-

sponses during and after evoked activity were compared in engaged versus idle

states. Their firing rate, mutual information and variability were also quantified.

Out of eighty six neurons recorded in the auditory cortex of the awake freely

moving rat, auditory responses were evoked in forty nine neurons, a proportion

similar to that in [58]. We refer to task- engagement since we consider that the

animal needs to be engaged to do the task correctly. However, during trials of

engagement we cannot rule out the participation of other mechanisms like expec-

tation [52]. We found that neuronal firing rate during engagement was more often

up than down-regulated during auditory responses. We cannot rule out a bias

of extracellular recordings towards more active neurons, influencing our observed
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impact of task-engagement on the firing rate. Ongoing activity recorded in the

intervals in between auditory stimuli during the same task is in some cases also

significantly modulated by engagement, being usually increased [10]. A promi-

nent decrease in neuronal variability during both sensory-evoked and non- evoked

activity was detected during engaged versus idle listening. Finally, information

content in auditory-evoked spike trains was higher in engaged than in idle states,

in particular in those evoked by the task-relevant stimulus.

In general, Fano factor reduction can be associated with incremented encoding

capabilities only under strong assumptions. Indeed, a neuronal network can have

a very low Fano factor (almost identical spike trains in multiple trials), but zero

coding precision (identical spike trains for multiple stimuli). We showed that, in

our case, the reduction of the Fano factor is indeed directly associated with an

increment of the encoding/processing of the discrimination capability evidenced

in the behavioural response. Furthermore, mutual information is more powerful

because it is defined by the measurement of different sources of variability, namely

an entropy term that characterizes the neuronal variability in general, and another

“conditional” entropy that measures the specific variability observed for a given

condition (or behavioural response). Let us note, that the increase of MI observed

is not only due to a decrease of the conditional entropy term but to the combina-

tion of both, total response entropy, and conditional noise entropy terms. Indeed,

the total response entropy term increases too, so that the increased information

acts synergistically with changes in the neural representation. In order to comple-

ment this view we also studied the direct reduction of the variability per se. We

thus studied the Fano factor reduction for a specific condition. Ff is particularly

useful because, contrary to the mutual information, it can be computed in small

sliding windows during the whole trial. Indeed, by doing this, we were able to

show for the first time that a reduction of variability is observed in the absence of

external stimulation (between the stimuli) but also in a relevant time region. In

this study, we have demonstrated that the reduction of variability (Fano factor)

observed during stimulus presentation (including the interval between both stim-

uli), in particular the larger reduction due to engagement, is in fact associated with

increased encoding capabilities for discrimination. We show this by complement-

ing the Fano factor variability measurement with a direct information-theoretical

measurement of encoding capabilities via mutual information between neuronal

activity and behavioural responses.
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3.5.1 Firing variability of single units in A1

Sensory processing during the processing of task relevant information has been

linked to enhanced responses [72–74] and also to decreased ones [51]. Moreover,

evoked responses in primary auditory cortex can be modulated as a result of tem-

poral expectation [52]. Increased inhibition has also been suggested to play an

important role in cortical responses to relevant stimuli [89, 90]. Task-engagement

also induces tonotopic changes [91–94] and tuning shifts of the same neurons to-

wards the target stimulus [95]. However, there are no studies describing how

engagement affects response variability of single units in the auditory cortex of

the behaving animal.

Earlier studies have suggested that a decline in response variability is a widespread

phenomenon in the cortex that spans different areas, animal species, and that

always occurs to the onset of stimuli presented, irrespective of the brain state of

the animal [77, 96–98]. Furthermore, the neuronal variability over trials declines in

particular in situations where the encoded information serves to guide behaviour

[77, 96, 99, 100]. This has been experimentally demonstrated in recorded neurons

of the visual area V4 [101, 102] in the context of an attentional paradigm. In these

studies it has been shown that the mean-normalized variance (Fano factor) of the

spiking activity is reduced by attention, consequently increasing the sensitivity of

neurons towards relevant aspects of stimuli. Neuronal response variability may also

depend on the type of neuron, i.e., narrow or broad spiking [80], while some authors

suggest that the attentional effects on variability may reflect an intrinsic property

of neural circuits [103]. Moreover, stimulus-induced trial-to-trial variability may

be explained by the same dynamics of ongoing spontaneous activity [104]. Our

results suggest that the external stimulation or the behavioural requirements of

an interval-discrimination task stabilize the dynamics in a controlled way such

that neuronal variability is reduced. Thus, the signal-to-noise ratio is increased,

yielding the basis for an improved encoding of the stimulus information. The

possible dependence of Ff on firing rate deserves to be considered. It has been

suggested that a reduction in neuronal response variability could be correlated

with an increase in firing rate [77–80]. Some studies have shown that decreased

variability is not due to an increase in firing rate [77]. In our current study, we find

that in bins where the firing rate was equal between the idle and engaged states,

variability was still reduced in the later (see Fig. 3.6). This is consistent with

the result reported by [80] in visual cortex (V4), where lower variability during

engagement was observed when bins with equal firing rate were compared.
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3.5.2 Information content in single units of A1

Quantification of information content in spike patterns has provided important

insights in the understanding of key features of sensory processing [24, 81–83, 105–

108]. Previous studies [108] have suggested that information content in multiunit

activity of auditory cortex is higher in the interspike interval, than during the firing

rate or event-locked spikes [109] when repetitive stimulation is presented to anes-

thetized animals. Similarly, [83] quantified the information present in temporal

spike patterns and the phase of population firing, suggesting that these combine

information for encoding natural sounds in the auditory cortex. Therefore, the

combination of different neuronal codes could enrich auditory stimuli representa-

tion, and increase robustness against noise. Looking into the mutual information

between the stimulus and neuronal response, [110] suggested that spike precision

enhances the encoding of information about extended complex sounds. Also, in-

formation can be carried by spike timing in case of sparse acoustic events, while

firing rate-based representations encode rapidly occurring acoustic events [81]. The

study of auditory activity during a task where a monkey compared the relative fre-

quency of two auditory stimuli showed that stimulus-locked responses, and in par-

ticular firing rate, only correlated with performance during stimulus presentation

[12]. This was not the case though during delay periods, as it would be the case if

it was related to working memory or decision-making. The authors suggested that

the auditory cortex may serve to encode information of sensory stimuli, mostly

by means of firing rate, with no cognitive function related to decision-making or

memory. Our analysis shows that MI is particularly enhanced to the relevant

stimulus during task-engagement, although we do not definitely demonstrate its

association to performance. Altogether, we think that this is an evidence of the

role of auditory cortex in temporal discrimination during a decision-making task,

even when its origin may be a top-down influence.

3.6 Methods

Cluster cutting (isolating single units from the multiunit recording data) was per-

formed using an Off-Line Spike Sorter (OFSS, Plexon). Waveforms were sorted as

in [75]. Single units exhibited a recognizable refractory period (>1 ms) in their

ISI histograms.

Analysis of peristimulus histogram (PSTH) were performed using 10 ms bins to

estimate responses to auditory events accurately. Frequency response histograms
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were obtained by averaging the spiking activity within each bin during the whole

recording. The onset of each stimulus presentation was aligned to 0. Raster plots

illustrate the timings of individual spikes in individual trials during the whole

recording. Only correct trials were selected, comprising 180-200 responses per

each side.

We refer generally to “spontaneous activity” along the manuscript to that firing

rate of the neuron occurring whenever there was no auditory stimulation. There-

fore we include under the term “spontaneous activity” neuronal firing rate that

may as well correspond to prolonged responses to the stimuli or to modulation due

to cognitive and behavioural states (expectation, engagement, attention, etc).

3.6.1 Fano Factor

The Fano factor (Ff= σ2

µ
), was computed as the ratio between spike count variance

(sigma2) across trials and mean spike count (µ). Ff was calculated in 10 ms bins

along the trial duration (from - 200 ms to S2 + 600-750 ms) for correct trials (180-

200 at each response side). For each cell we compared the minimum Ff value during

the interstimulus interval (ISI) (-200 ms to 0) and the minimum Ff value in the

interval from 0 to S2 + 600-750 ms. We defined a decreased Ff when a neuron had

three consecutive bins with Ff lower than the minimum value obtained during the

ISI (whether short or long ISI). Sparseness of neuronal activity has been shown to

affect information theoretic measurements [24]. To avoid this, we selected neurons

with the highest firing rate while the rat performed correct trials. In all cases

a minimum of 180 trials per side were considered. Given that the animal made

few errors plus the fact that the firing was sparse, there were not enough spikes

fired during wrong trials to allow for independent analysis of correct vs incorrect

trials. The response to all correct trials was represented in a PSTH in 10-ms bins.

The mean firing frequency and its standard deviation during the 200 ms preceding

S1 was calculated. Neurons were considered to have significant evoked-spiking

responses if after S1 onset the evoked firing during the 50 ms stimulation was 5

standard deviations over the spontaneous frequency [57, 111]. Twenty-one neurons

crossed the threshold during S1 presentation (50 ms).

3.6.2 Information Analysis

To estimate the information content carried by the neuron’s firing rate, we per-

formed Mutual information (MI) analysis between ”spike rate” and ”category of
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ISI (ISI)”. The MI was calculated following the equation 1.3. In that specific case,

s is spike rate and r is category of the ISI (either short or long). As we explain in

the introduction, the calculations were based on frequency estimates of the proba-

bilities (p(r, s), p(s), and p(r)) we used spike counts in 50-ms time windows during

each stimulus presentation.

We estimated the value of the MI by using the direct method for the MI esti-

mate and the [112] method for the bias correction since the computation of the

information content is subject to statistical errors given that the MI is based on

the estimation of probabilities. This method corrects for the bias by means of

decomposing the mutual information in different factors and then removing the

ones affected by the bias or noise.

Significance of the MI

In order to establish the significance of the estimated MI we applied the surrogates

method [29]. We tested if the estimated MI significantly rejected the null hypoth-

esis, i.e., non information content (I(r; s) = 0). We tested this null hypothesis by

generating 1000 surrogates of the spike activity during stimulus duration, which

by construction should not contain information. Thus, each surrogate is generated

by shuffling the assignment between stimuli and response. We computed for each

surrogate the MI value and we compared all these bootstrapped information values

with the real value of the original data. We calculated the statistical significance

of the estimated MI by computing the area in the null hypothesis distribution

(MI of the surrogate) below the MI value corresponding to the original data. We

considered that if the area of the null hypothesis was larger than 85% of the total

area, the estimated MI value of the original data was significant. This criterion

means that the Null hypothesis (no significant MI) can be rejected with a 85%

probability, i.e., the estimated MI is significant at 0.15 level (p < 0.15) Let us note

that even for a smaller p-value of 0.05 still 7 neurons passed the test. Nevertheless,

we took a p-value of 0.15 in order to increase the amount of neurons that passed

the test and have a more reliable statistics. All the calculated MI values for both

original data and surrogates were bias corrected using this method.
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3.6.3 Experimental Details

Ethics approval and Surgical Procedure

The project was approved by the animal Ethics Committee of the University of

Barcelona. Rats were cared for and treated in accordance with the Spanish reg-

ulatory laws (BOE 256; 25-10-1990) which comply with the EU guidelines on

protection of vertebrates used for experimentation (EUVD 86/609/EEC).

Recordings were obtained from two Lister Hooded rats (250-350 grs) that were

chronically implanted with tetrodes in their primary auditory cortex. Animals

were trained for 21 days. After a week of water and food ad libitum, a microdrive

holding the tetrodes was implanted. To perform the surgery, anaesthesia was

induced using intraperitoneal injections of ketamine (60 mg/kg) and medetomidine

(0.5 mg/kg). The animals were then mounted in a stereotaxic frame and their

skulls exposed. A 3 mm diameter craniotomy was made, with its center at -5.3

mm anterior-posterior, and 6.6 -7 mm medium-lateral from bregma [113]. These

coordinates were used in order to position the microdrive dorsally, which made it

more stable than entering laterally over the auditory cortex. Body temperature

was monitored through a rectal thermometer and maintained (36-38o) using an

electric blanket. Heart rate and blood oxygen levels were monitored. Reflexes

were regularly checked during surgery to assure deep anaesthesia. Other drugs

were given during surgery and recovery period to prevent infection, inflammation

and as analgesia: antibiotics (enrofloxacin; 10mg/kg; s.c.) and topical application

of neomycin and bacitracin in powder (Cicatrin R©), analgesic (buprenorphine;

0.05 mg/kg; s.c.), anti-inflammatory (methylprednisolone; 10 mg/kg; i.p.), and

atropine (0.05 mg/kg, s.c.) to prevent secretions during surgery. Once the animals

went through all experimental sessions, humane killing was performed by means

of an overdose of pentobarbital (0.8 ml).

Tetrodes and Microdrives

Each tetrode was made from four twisted strands of HM-L-coated 90% platinum-

10% iridium wire of 17 diameters (California Fine Wire, Grover Beach, CA). Gold

plating decreased their impedance to ca. 300-500 κΩ. Four tetrodes were held by

a cannula attached to a microdrive supplied by Axona Ltd, St Albans, UK. This

microdrive allowed for dorsal to ventral tetrode movement to search for new units.

Microdrives were attached to the skull with dental cement and 7 stainless steel

screws. The auditory cortex was reached by vertical descent, and the tetrodes



Chapter 3. Decision-making in A1 71

Figure 3.11: Picture of a coronal rat’s brain slice after tinction. Tetrodes
socket can be seen in the auditory cortex at the right side of the picture.

were lowered 300µm during the surgery. Vertical descent performed after surgery

was of 50µm per day until an auditory response was observed. All the recordings

included in this study corresponded to A1 [114] . This estimation is based on

the depth of the included recordings and on the histological reconstruction of the

electrode’s tracks (see Fig. 3.11). The auditory latencies were typically 10-20 ms,

which are also characteristic of A1 [115–117].

Electrophysiological recordings from awake freely moving rats

During the training period, animals lived in large cages of 28 x 42 x 30cm (Charles

River) in a rich environment, under a 12 hr light/dark cycle, and with food ad

libitum and water restriction. Before training and after a week of postoperative

recovery period, the animals were accustomed to the recording chamber. The elec-

trode wires were AC-coupled to unity-gain buffer amplifiers. Lightweight hearing

aid wires (2-3 m) connected these to a preamplifier (gain of 1000), and to the fil-

ters and amplifiers of the recording system (Axona, St. Albans, UK). Signals were

amplified (x15000-40000), high pass filtered (360 Hz), and acquired using software

from Axona Ltd (St Albans, UK). Each channel was continuously monitored at a

sampling rate of 48kHz. Action potentials were stored as 50 points per channel

(1 msec, 200µsec pre-threshold; 800µsec post-threshold) whenever the signal from

any of the prespecified recording channels exceeded a threshold set by the exper-

imenter for subsequent off-line spike sorting analysis. Data were excluded if any

drift was detected. Before each experimental session, tetrodes were screened for
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Figure 3.12: The earphone used for the experiment.

neuronal activity. Once spikes could be well isolated from background noise, the

experimental protocol started.

Experimental set up

The recordings were performed inside a box built in black acrylic of 22 x 25.5 x

35 cm. This box was placed inside two wooden boxes placed one inside the other.

Between each box, two isolating foam rubbers (4 and 2 cm thick) were placed to

soundproof for low and high frequencies. A wooden cover and soundproof foams

closed the entire recording chamber, with only a hole to allow the entry of a

recording wire (2 mm thick) connected to the preamplifier. Water valves were

placed outside the recording chamber. The animals poked their noses into three

different sockets (2 cm wide and separated by 3 cm each, and with no cover in

the top part to avoid being hit by the microdrive). Recordings were obtained in

darkness, and the experiment was filmed with an infrared camera placed above

the recording chamber.

Presentation of Sound Stimuli

The protocols of stimulation were controlled through MATLAB R©, a National In-

strument card (BNC-2110), and a breakout box (FS 300 kHz). Sound triggers

had µs precision. Sound stimuli were delivered through earphones (ER.6i Isola-

tor, Etymotic Research Inc.) which were screwed in each recording session to the

earphone (see Fig. 3.12) holders, chronically attached to the animal skull with

dental cement. The earphones were adjusted inside the ear with silicone tips with

a separating distance of 1 mm from the ear canal. Similarly sound calibration
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was performed inside the acoustic isolation box with a microphone (MM1, Bey-

erdynamic) placed 1 mm away from the earphone and using a preamplifier (USB

Dual Pre, Applied Research and Technology). The sound stimuli during idle and

engaged recording stages had a duration of 50 ms, with an intensity of 80 dBs SPL

pure tones of 5322 Hz, and a 6 ms rise/fall cosine ramps. It was identical for both

the first and second stimulus. Interstimuli intervals were 150 or 300 ms and both

had the same amount of trials (180-200). Similarly, the total number of correct

trials in the engagement stage was the same as in the idle one (180-200). The

intertrial interval also had a similar duration in the engagement and idle stages

(2-3 s).





Chapter 4

Neural correlates of decision

confidence in PMv

The work presented in this chapter is submited in Journal of Neuroscience:

The authors are: Marina Martinez-Garcia, Andrea Insabato, Mario Pannunzi,

Jose L. Pardo-Vázquez, Carlos Acuña and Gustavo Deco.

4.1 Introduction

Decision-confidence, the sensation of the correctness of a choice, is a first step

towards introspection and it is crucial for learning in perceptual decision-making.

Although confidence has been a topic of investigation in psychophysics since its

beginning [118–122], and is generally being considered as one of the most mean-

ingful ways to measure behavior (together with accuracy and reaction time), very

little, in fact, is known about its neurophysiological and computational correlates.

Using two-alternative forced-choice (2AFC), psychophysical experiments have es-

tablished a direct relation between confidence and the discriminability of the stim-

ulus in correct trials [118, 123]. Inversely, confidence as a function of evidence for

the decision decreases in error choices [1, 119, 122]. This modulation produces an

x-shaped pattern, which is considered a hallmark of confidence (for a review see

[9]).

75
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4.1.1 Neurophysiological studies

Recently, two neurophysiological studies [124, 125] have shed some light on the

neural basis of confidence. The first was an olfactory discrimination task, [124]

Figure 4.1: A, Schematic of the olfactory discrimination task . The rat enters
the central socket and after a pseudorandom delay of 0.2–0.5 s a mixture of
odours is delivered. It indicates left or right reward delivery, respectively. B
The possible mixture of the two odours, A and B. design. C, Mean normalized
firing rate of OFC neurons, for the negative outcome selective neurons. In red,
error trials. In green correct trials. Both, the correct and the incorrect trials
form the x-shaped pattern. Figure adapted from [124]-

(see Fig. 4.1). The authors trained rats to perform a two-alternative forced-choice

(2AFC). In this task, subjects initiated a trial by entering a central socket. Then

the stimulus was delivered, a mixture of two odours (A and B see Fig. 4.1B). The

subject decided which of the two odours was the dominant one by going to the

socket responding to A or B (see Fig. 4.1A). The difficultly of the task can be

manipulated by varying the ratio of the two odours, as is indicated in Fig. 4.1B.

Correct choices were rewarded after a delay period of 0.3-2 s.

The authors showed that the mean firing-rate of single neurons in a rat’s Orbito-

frontal Cortex (OFC) systematically increases as a function of the evidence in

correct trials, and decreases in error trials, producing the above mentioned x-

shaped pattern (see Fig. 4.1C). They have therefore suggested that OFC-neurons

encode the uncertainty (or conversely the confidence) of a decision process.

The second was a visual discrimination task, [125], a random-dot motion task. In

this task the subjects have to decide the net direction (to the right/left) of the dots,

where some of them are moving coherently while the others just do it randomly.

After a delay period, monkeys have to to indicate decision choice by a saccadic

movement to one of the two targets (see Fig. 4.2). In a random half of the trials

the authors introduced a third possibility, the “sure target”. With this option the

subjects got a small but certain reward. The “sure target” appeared during the
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Figure 4.2: The sequence of events in the task. After fixation point (small
red circle), two direction targets (large red circles) appeared on the screen. The
motion stimulus appeared after a short delay. Bottom row: the delay persisted
until the fixation point was turned off, which served as a “go” signal, then the
monkey makes a saccade on the one target direction. A correct response were
rewarded. Top row: a third target was presented after extinction of the motion.
Choosing this sure target (Ts, blue circle) led to a smaller reward ( 80% of
correct reward). On these trials, the monkey could choose Ts or a direction
choice. The two trial types were randomly interleaved. Figure adapted from
[125].

delay period, at least 500 ms after the random-dot motion was extinguished. The

task’s difficulty was controlled by varying the percentage of coherently moving

dots.

They recorded neurons from Lateral Intraparietal sulcus (LIP) because it is well-

known that in motion-direction discrimination-tasks single neurons in the pri-

mate’s LIP-cortex fire with persistent levels of activity which predicts the saccade

towards the neuron’s response field, and indicates the subject’s choice [6, 126, 127].

With this task Kiani et al. [125] have shown that the average firing-rate of LIP

decision neurons in uncertain trials reaches only an intermediate level of activity,

as compared to confident trials. Based on that they suggest that the LIP-sulcus

neurons are involved in confidence encoding.

4.1.2 Neuronal code of confidence

However, all these results still leave open the question as to how the neural signal

of confidence is encoded in single trials. In particular, it remains unclear whether

neurons encode confidence in a continuous manner, or in a discrete manner. The

results of [124] seem to suggest that OFC encodes confidence in a continuous

way, which has also been suggested by theoretical studies based on drift-diffusion

models (DDM) [1, 128, 129]. These theoretical studies seem to indicate that
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Figure 4.3: Pipeline of decision and confidence processing. The left part
(in gray) represents the simplified sensory-motor path of perceptual decision-
making. On the right (in red): modules involved in confidence estimation and
confidence-related decisions. The “confidence” module receives input from the
“decision-making” stage, thereby implementing a sort of monitoring of the de-
cision process. This module represents the reliability of the decision process.
The “confidence-based decision” module makes a judgment based on the con-
fidence representation and value signals about the given options and transmits
this second decision to the “motor” stage.

confidence is encoded by the position of accumulators at the moment of choice

(race models), or by the time it takes the system to reach a decision (diffusion

models). A binary coding of decision confidence, on the other hand, is suggested

by the activity of LIP; Here neurons present a very different firing-rate in confident

trials, as compared to uncertain trials [125]. Furthermore, it is interesting to note

that [130] have shown that human subjects’ confidence ratings present a highly

bimodal distribution. A recent biologically realistic attractor model [131] combines

continuous and discrete encoding into a two-stage model. The authors suggested

that continuous confidence signals encoded in the decision-making neurons are

translated into a binary response of confidence neurons, which discriminates high

from low confidence. A similar mechanism has also been proposed within the

DDM-framework of [132].

In order to embed these results in a general picture, we outline (in Fig. 4.3) the
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essential pipeline of a simple decision task involving confidence computations. The

left part of the graph represents the usual perceptual decision. In this context,

sensory neurons encode the relevant information about the stimulus and inform

decision neurons. Hence, once the decision has been computed, the motor plan

can be elaborated by the “motor” module. When the decision confidence is go-

ing to have a role in the behavioral output one need to consider also the right

part of the graph. A new module (“confidence”) can compute the confidence in

the decision by monitoring the activity of the decision area. Then the confidence

information can be compared with informations about the value of different op-

tions and a new, confidence-based decision can be taken (e.g. the post-decision

wagering experiments well summarized by [9]. In this outline it is reasonable that

the “confidence” module would encode in a continuous manner the decision con-

fidence. However, if the decision confidence is ever going to have an influence on

the behavior, at some point in the sensory-motor path this information need to be

discretized, in order to select one course of action (this is represented in Fig. 4.3

by the module for making confidence-based decisions).

In this chapter we analysed the data presented in the Introduction (1.1), in this

task we controlled the difficulty by varying the difference between the bars ori-

entation. Our aim in this chapter is to shed light on the encoding mechanisms

of decision confidence in the primate brain. PMv neurons seem well suited to

evaluate decision confidence, since previous studies have shown a central role of

premotor cortex in the conversion of a decision into an action [8, 133]. More

precisely, it has been found that PMv neurons encode higher cognitive processes,

such as decision-making [7, 134], and performance-monitoring [7, 19], they also

found that, besides the response, these neurons also encode the difficulty of the

decision. These neurons can be the basis for an encoding of decision confidence

since confidence is modulated by the difficulty of the decision.

We chose this task to analyse confidence, 1) Because the recorded area is well-

suited to look for confidence encoding neurons. 2) Because the moment in which

the decision is made is well marked off, from S2 presentation until the saccade.

We have analyzed neuronal activity both across trials using Linear Models, and

in single trials, using a Hidden Markov model (HMM).

We found in the primate brain a pool of neurons whose firing-rate continuously

encoded confidence, in a very similar way to the results in rats OFC [124]. These

neurons are not merely encoding the difficulty since their activity presents a mir-

ror modulation in correct versus error trials, which is considered a hallmark of

confidence. Interestingly, we also found neurons that showed two distinct levels
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Continuous DiscriminationTask: correctdecision “to the right”

FT Reference Delay Test Resp.
0.5 s 1s 0.5 s

PSD
0.1-0.3 s

Figure 4.4: Experimental paradigm. The trial starts when the monkey fixes
the gazeto the central target (FT). A brief pre-stimulus delay follows (PSD).
The reference bar is presented for 500 ms with one of three possible orientations
(Reference). During the subsequent delay the subject has to maintain fixation
(delay). The test bar is shown tilted to the left or to the right in relation to the
reference bar. The orientation of the test bar relative to the reference (TRO)
manipulates the difficulty of the trial. When the test bar disappear the subject
decides whether the test was tilted right or left in relation to the reference bar
by making a saccade towards the right or left choice targets respectively. For
more details see [7].

of activity over trials. Our results thus suggest that both continuous and discrete

coding schemes for confidence are active in the brain.

4.2 Results

4.2.1 PMv neurons encode decision confidence

We studied the decision-process in the primate brain during a simple binary de-

cision task. Two male monkeys (Macaca mulatta) performed a two-interval two-

alternative discrimination task. They had to compare the orientation of a reference

bar, presented during the first interval, with that of a test bar, presented during

the second interval. They then had to decide whether the test bar was tilted right

or left as compared to the reference bar (see Fig. 4.4 and section 4.4 for details).

The level of difficulty of the task was controlled by varying the difference between

the orientation of the first and the second bar, i.e the test bar’s relative orientation

(TRO). The TRO was varied from one up to four degrees and in both directions.

Single cells from PMv were recorded while monkeys performed the task. For a

more detailed description of the task, behavioural results and neural recordings

see section 4.4 and [7].

Our principal objective was to find neural signatures of decision confidence com-

putations in this area of the primate brain. It is plausible that confidence-related
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computations take place in the same area as where the decision is encoded, given

the dependence of decision confidence processes on decision-making processes. In

addition, [7] found decision-making neurons in PMv that encode the difficulty of

the decision, a computation that is fundamental to confidence processing. And

[125] found a correlate of decision confidence in the same neurons that encode

the choice in monkeys’ LIP. We therefore analyzed the activity of PMv activity

recorded during the decision task above described.

Our analysis was restricted to a subset of the recorded neurons (336 neurons, see

[7]), comprising the cells that were relevant to the decision task. Unless specified

otherwise, in the following we will only describe correct trials, since error trials

were enough only for few neurons. We identified a population of neurons (49 cells)

whose firing-rate was high for both right and left decisions (as can be seen in the

raster plot of a single neuron in Fig. 4.5A). Even if not predictive of the choice, the

firing-rate of these neurons encoded the difficulty of the task, independently of the

subject’s choice, as revealed by the linear regression model (LRM) we used (see

section 4.4). Fig. 4.5B shows the evolution in time of the coefficient of the LRM

for a single neuron. The shaded area marks the time-window where the coefficient

(d1) of the LRM was significant (p < 0.05), giving an estimate of the encoding

time-window of the neuron. For the neuron in Fig. 4.5 the encoding window

spanned approximately 300 ms. As shown in Fig. 4.5C, during this period the

firing-rate of the neuron, as a function of TRO, increases for both positive and

negative values of TRO, producing a v-shaped pattern. Moreover, by pooling data

from all the neurons we were able to analyze firing-rates during error trials. When

the behavioral response was incorrect the firing-rate of this population showed

an inverse pattern compared to correct trials. Overall, the normalized firing-rate

separated in correct and error trials formed an x-shaped pattern (see Fig. 4.7),

which had already been described by [124] in rats’ OFCs as a correlate of decision

confidence. Therefore these neurons are not merely encoding the difficulty but

the confidence of the decision. As has already been remarked, consistent neural

recordings during error trials were rare, but in order to confirm the pattern of the

pooled responses at the level of single neuron we analyzed fifteen of the 49 neurons

for which we had enough error trials recordings (see section 4.4 for details). To

check whether the x-pattern was present in the single-cell activity we looked for

neurons having the LRM coefficient significant, but with a different sign in error

trials compared to correct ones. According to this analysis the coefficient was

statistically significant for five of the fifteen neurons.

The x-pattern associated with confidence is poorly understood in terms of the

computations from which it could be said to arise. In the following, we will try to
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Figure 4.5: Single neuron from PMv cortex encoding confidence in a continu-
ous way. To each separate test relative orientation (TRO) is assigned a different
color: colors from dark blue (red) to light blue (yellow) correspond to right (or
left) responses with increasing difficulty, i.e., relative orientation from 4◦ (−4◦)
to 1◦ (−1◦). Trials are aligned to the saccade; around -510 ms the second bar
was shown. A: Raster plot. The trials are sorted by the TRO and according to
the timing of the state switch (as indicated by the HMM). B: Time course of
state switchings, according to HMM and for the same neuron. Every row repre-
sents a trial. State one is represented by the color white, while black represents
state two. Trials start in state one and later change to state two (indicating
that they have increased their firing-rate). The vertical red line indicates when
the 90% of the trials have changed state. C: Time averaged firing-rate of the
singles trials taken in the window from the red line of panel B to the saccade;
red lines represent the mean firing-rate over trials for “down” state (solid) and
“up” state (dashed). D: The time evolution of the LRM coefficient. Shaded
area corresponds to the period in which the coefficient was significant (p < 0.05
t statics). E: Average firing-rate as a function of TRO. The time average is
taken during the time window marked by the shaded area D. Error bars repre-
sent SEM. F: Mean switch time (according to HMM analysis) as a function of
TRO.
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Figure 4.6: Pictorial representation of possible mechanisms underlying the
confidence x-shaped pattern. The figure only illustrates a linear relation between
firing-rate and test relative orientation (TRO), since it is the basis of the x-
shaped pattern. A: switch timing code. In the upper panel the time evolution
of the firing-rate is shown for three trials (one for each TRO; the color code
is the same of the bottom panel). Each trial presents a switch from a state of
low activity to a state of high activity. The three horizontal marks show the
time averaged firing-rates taken in the window enclosed in the vertically dashed
lines. In the bottom panel the average firing-rates are shown as a function of
TRO. The different switch times of the trials produce different firing-rates. B:
rate code; each trial reaches a different level of firing-rate in the high activity
state (upper panel) and this is reflected in the mean firing-rate (bottom panel).
C: binary code; only some trials switch to the high activity state while others
remain in the “down” state. The number of trials that switch states depends on
TRO. When many trials are in an “up” state (red trials) the mean-over-trials
of the time averaged firing-rate is higher in respect to the case of many of the
trials in the “down” state (yellow trials).

shed light on this matter. However, we only analyze correct trials because of the

small number of errors in most of the recordings. The increased firing-rate as a

function of the absolute value of TRO, i.e., the v-shaped pattern associated with

correct trials, can arise from at least three distinct mechanisms (for a pictorial

representation see Fig. 4.6). 1) Rate coding (panel A): neurons increase the

firing-rate respect to the baseline in proportion to the confidence in the decision.

2) Switch time coding (panel B): neurons increase the firing-rate, switching from

a low to a high activity state, with a different timing according to the confidence,

and with the average rate reflecting this timing. 3) Binary coding (panel C):

neurons have a binary response, i.e., they increase the firing-rate only in high

confidence trials (whilst when confidence is low they remain in a “down” state).

In this last scenario the proportion of high confidence trials depends on its level

of difficulty, and mixing trials of high and low activity produces the v-shaped
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Figure 4.7: Average population activity. Normalized firing-rate as a func-
tion of TRO of the confidence neurons that present a positive relation between
firing-rate and difficulty. Black lines: correct trials; gray lines: error trials.
Every neuron firing-rate was normalized to its own maximum firing-rate. Bars
represent SEM.

pattern of average firing-rates [131]. In order to identify neurons implementing

each of these mechanisms we used different statistical techniques. Although we

present them here as separated mechanisms, we do not rule out the possibility

that they could all appear at the same time.

We started by verifying whether the switch timing had any relevant effect in our

data. To do so we used a Hidden Markov Model (HMM) which is able to detect

when a system switches from one state of activity to another (see section 4.4 for

details). In Fig. 4.5B we show a summary of the two-state HMM analysis for one

confidence neuron (each row represents a trial). The color of the row changes from

white to black when the neuron goes from a low to a high-activity state. This

neuron exhibits a lot of variability in the switch timing, changing state from just

a few milliseconds up to 300 ms after stimulus onset. The timing of the change

was correlated with the difficulty of the trial (Kendall’s correlation coefficient

τ = 0.18, p < 0.05). Fig. 4.5F represents the mean switch time as a function of

TRO. Once we had determined when a neuron changes its state we were then able

to assess the relevance of the rate coding mechanism. The firing-rate after the

state switch is represented in Fig. 4.5C for the same confidence neuron. Each dot

represents the time-averaged firing-rate of one trial, color-coded according to the

state assigned by HMM (for comparison the dashed and solid red lines represent

the firing-rate of the high and low states founded by HMM respectively).
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To estimate whether the increase in firing-rates was proportional to the difficulty

(i.e., the rate coding mechanism of Fig. 4.6B), we first calculated the average firing-

rate from when 90% of the trials switched states (red vertical line in Fig. 4.5B),

until the coefficient of LRM had a significant value (p < 0.05, shaded region in Fig.

4.5D). Then we effectuated a correlation analysis between the level of difficulty

and the average firing-rate. We obtained a significant correlation coefficient for

the neuron in Fig. 4.5 (τ = 0.24, Kendall’s correlation, p < 0.05), which suggests

that it could be the firing-rate of the neuron in the “up” state that encodes the

trial’s level of difficulty.

To summarize, we found that twelve neurons presented a significant impact on the

timing in the formation of the pattern, while nine neurons increased the firing-rate

proportionally to the difficulty of the trial, thereby implementing the rate coding

mechanism. There were also five neurons that presented both switch timing code

and rate code (see Fig. 4.9 for a graphical representation of all classes of neurons).

We note that we could apply this method only to 28 out of 49 confidence neurons,

as we considered the HMM analysis was only reliable under some constraints (see

section 4.4).

4.2.2 Discrete confidence encoding

The binary mechanism postulated above corresponds to a discrete confidence en-

coding like the one hypothesized in [131]. Although a continuous representation

of confidence is probable at some stage of the sensory-motor integration, a dis-

cretization stage is needed to account for the behavioral effect of the confidence

computation [132]. Indeed, both the usual confidence ratings and confidence-

related decisions [124] require a selection between different alternatives. Therefore

this mechanism is not merely bounded to the difficulty of the task but to the

confidence in the decision.

In order to identify neurons with a binary response we hypothesized that the

distribution over trials of the mean firing-rate as calculated during the test-bar

presentation, has to consist of two different distributions. The resulting distribu-

tion is not necessarily bimodal but it should differ substantially from the expected

Poisson distribution [135–137]. For each trial, therefore, we took the average

firing-rate over a 200 ms time-window, ending at the time of subject’s response.

Then we fitted these mean firing-rates to the average of two gamma distributions,

parametrically varying the shape and the mean of the distributions:

B = (FΓ(x; k1, µ1) + FΓ(x; k2, µ2))/2,
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Figure 4.8: Single neuron from PMv, implementing a binary confidence en-
coding. Color and line convention is the same as Fig. 4.5. A: Raster plot.
The trials are sorted as in 4.5. B: Time course of state switching, according to
HMM. Same conventions as in Fig. 4.5B. In contrast to the neuron depicted
in Fig. 4.5, not every trial of this neuron changed from state one to state two.
This clearly indicates that the neuron has two distinct behaviors: in some trials
it increases the firing-rate, while in others it remains at a lower level of activ-
ity. C: Average firing-rates of single trials. D: LRM coefficient value. The
shaded area corresponds to the period in which the coefficient was significant
(p < 0.05 t statics). E: Average firing-rate versus TRO. The time average was
calculated during the period marked by the shaded area in D. F: Histogram of
the firing-rate during the 200 ms previous to the saccade (in blue). In black
the distribution that best fits the data. This distribution is the average of two
gamma distributions shown in red. The fitting has been computed separately
for positive and negative TRO; the picture corresponds to negative TRO val-
ues. G: χ2 goodness-of-fit. The fitting was done in the four dimensions of the
model parameters but here we show the results in the plane of µ1, µ2. Each
point in the plane correspond to a pair of µ1, µ2 values. The color of the point
represents the difference between the highest acceptable p-value (0.05) of the
χ2 and the p-value obtained with that set of parameter values. See section 4.4
for details. The white area indicates regions of the parameter values that give
non-significant results. The red point represents the best fit.



Chapter 4. Neural mechanisms of confidence 87

where k1,2 is the shape parameter and µ1,2 the mean. We used a gamma distribu-

tion because of its broad generality. We used a chi-squared test (χ2) to evaluate

the goodness of fit for each set of parameters (see section 4.4 for details). Fig. 4.8F

shows the histogram of the firing-rate of one single neuron (blue line) and the best

fit model (black line), composed of the two gamma distributions (red lines).

In our analysis we took all the possible combinations of the parameters of the two

distributions into consideration. Therefore, it is possible that, if the actual empiri-

cal firing-rate distribution is unimodal (e.g. Poisson, normal, etc.), it could be well

fitted by the mean of two gamma distributions with similar parameters. In order

to eliminate this possibility we tested whether a model with four parameters (two

for each distribution) was more adequate than a model with only two parameters

(only one gamma distribution). To this aim we used the Bayesian Information

Criterion (BIC) that, while comparing the likelihood function of the two models,

corrects the result by penalizing for the number of free parameters. Therefore,

even if the likelihood of the single distribution model were equal to that of the

double distribution model, the BIC would always prefer the simpler model (or,

conversely, a double distribution model would be preferable only if it was able to

explain much more than the single distribution model).

In conclusion, we consider a neuron to have given a binary response if the chi-

squared test gives a significant result and the model with a double distribution

is better than the one with only a single distribution according to the BIC. Fig.

4.8G represents the goodness of fit (for significant values only) in the space of the

means of the two gamma distributions (µ1, µ2). In this space the color of each point

represents the difference between the highest acceptable value of the probability

of the chi-square statistics (p < 0.05) and the actual value of this probability

obtained for the combination of µ1 and µ2 of that point. It is interesting to note

that the points where we get significant values do not lay on the diagonal (where

the two means are identical). We ran this analysis on the entire confidence related

population (49 neurons) and we found that eighteen neurons displayed a binary

encoding of decision confidence in the case of at least one behavioral response

(e.g., “left”) (see Fig. 4.9 for a graphical representation of all classes of neurons).

In these neurons the v-shaped pattern of the firing-rate is the result of the fact

that the proportion of trials with high firing-rate correlates with the difficulty of

the trial. We also reasoned that the neurons showing a binary behavior should

also lead to a characteristic pattern showing up in the HMM analysis: they should

present a state switch only on a subset of trials. And indeed this pattern can be

seen in Fig. 4.8B. In Fig. 4.8C the mean firing-rate of the neurons is shown for

each trial, separated in high firing-rate trials (filled dots) and low firing-rate trials
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49 confidence

18 binary

12 timing

9 rate

11

28 HMM

5

Figure 4.9: Graphical representation of the different classes of neurons. The
label and number in each rectangle indicate the class (rate code, switch timing
code and binary code) and the number of neurons in that set. Five neurons are
in the intersection between the rate and switch time populations.

(open dots). The separation of firing-rates can be clearly seen when compared to

the continuous confidence encoding neurons (see Fig. 4.5C).

4.2.3 PMv encode decision and task difficulty

Our aim with this section is to complete the vision of the data-base analised. In

this section we sumarize the dinamics of the neurons which activity is related with

the behavioural response of the monkey and the task difficultly at the same time.

In order to find these neurons we used a variation of the linear regression model

(LRM) used before (see section 4.4). As already reported, [8, 19], we found that

the firing rate of decision neurons in VPM cortex encodes the difficulty of the task.

We identified 192 neurons (57% of all recorded neurons, n=336) whose activity

correlates with the decision of the monkey during the presentation of the second

bar which also encode the task difficulty. Out of these, 80 neurons had a high firing

rate when the subject took the decision “right”, while they had a low firing rate in

“left” decision. We call this the “right selective population”. Another population

(112 neurons) was selective for “left” responses.

In Fig. 4.10 we show the activity of a single neuron encoding both decision and

trial difficulty. This neuron was selective for “right” decisions, as can be observed

in the raster plot and the PSTH (panels A and B). Fig. 4.10C shows the coefficient

of the LRM as a function of time. The shaded area marks the time window where

the coefficient was significant. In this same time window we took the average firing
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Figure 4.10: Single neuron from PMv, whose activity correlates with the task
difficulty. A: Raster plot during the visual discrimination task. This neuron
fires when monkey chose the right target, its activity increases depending on
the difficulty of the task. Each row of points is a correct trial, and each point is
a spike. The trials are sorted by the TRO. B: Time course of mean firing rates
sorted by TRO. C: Resulting coefficients values of LRM, (c1) for correct/incor-
rect trials for neuron in A, as functions of time. In blue c1 correponding to the
correct trials, in grey c1 for the incorrect. Shaded area corresponds to the period
in which the c1 for the correct trials was significative (p < 0.05 , t−tstatics). D:
Average Firing rate during the shaded area period in B/D, versus TRO, in blue
for the correct trials in grey for the incorrect trials (error bars indicate SEM).

rates shown in Fig. 4.10D. This procedure gives us the advantage of choosing the

precise interval where the neuron is responsive for the feature of interest. Indeed

the firing rate during the significant time window plotted as a function of TRO (see

Fig. 4.10D) shows a clear dependence on stimulus difficulty. The corresponding

population activity is shown in Fig. 4.11 Upper Rigth, confirming the activation

pattern at the population level. Error trials are very few to be analyzed on a single

neuron bases, therefore we grouped the activity of all neurons in order to get more

statistical power. When the responses of all neurons are normalized and pooled

together they show indeed a clear tendency to decrease when stimulus gets easier

(see Fig. 4.11).
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Figure 4.11: Average population activity. Normalized firing-rate as a func
tion of TRO of the decision neurons, which also encode the task difficultly.
We represented the 4 possible population: positive/negative relation between
firing-rate and task difficulty for both decisions left/tigth. Black lines: correct
trials; gray lines: error trials. Every neuron firing-rate was normalized to its
own maximum firing-rate. Bars represent SEM.

4.3 Discussion

In this study we address the question of how neurons in the primate brain encode

decision confidence in single trials. While evidence found in rat OFCs seems to

suggest that confidence is encoded by the continuously varying firing-rate of neu-

rons, recordings made in monkey LIPs show that confident trials and uncertain

trials do not display the same pattern. Continuous encoding schemes and discrete

encoding schemes involve different computations and probably serve different func-

tions; it is therefore important to know which of the two (or both) is implemented

in the brain.

We have demonstrated that, during correct trials, neurons in primate PMv increase

their firing-rate as a function of stimulus discriminability (in our experiments: the

relative orientation of a bar), whereas in error trials the firing-rate decreased. This



Chapter 4. Neural mechanisms of confidence 91

peculiar pattern has already been described by [124] as a correlate of confidence

in the rat OFCs. Here, for the first time, a similar result in monkey PMv cortex

is presented.

It is worth noting that the pattern emerges when the firing-rates of neurons over

several trials, and with the same discriminability, are averaged together. Nonethe-

less, different computations performed by neurons in single trials can produce the

same pattern of average firing-rates. We suggested three hypothesis: 1) The switch

time coding: when the activity of the neuron changes, the confidence of the deci-

sion, is encoded in the timing of the change; 2) The rate coding: the confidence

is encoded in the firing-rate, after the change has taken place; or 3) The binary

coding: the neuron only changes activity in high (or low) confidence trials and

the proportion of high confidence trials changes according to the discriminability

of the stimulus. The first two alternatives correspond to a continuous encoding of

confidence, whereas the last one is a form of discrete encoding. We found that,

in fact, all three mechanisms are at work in monkey PMv neurons. For certain

neurons the timing and firing-rate mechanisms work together, i.e., a neuron that

changed state earlier on less difficult trials will also have a higher firing-rate after

the change. Other neurons present a binary response (increasing activity only in

some trials), which suggests a possible role in confidence judgments.

An important question is: why should neurons use different schemes to encode

confidence? Our hypothesis is that confidence neurons carry-out more than one

function in the sensory-motor path. It is logical that a “confidence” module would

encode decision confidence on a continuous scale, since confidence is a graded

sensation. However, if decision confidence is to have behavioral relevance, the

information about confidence needs to be discretized (see Fig. 4.3). Our hypothesis

is that, while certain neurons encode confidence in a continuous manner, other

neurons read-out this scale and transform it into a discrete quantity in order to

produce consistent behavior.

This idea has been partially implemented in the biologically realistic attractor

neural network of [131] and in the DDM framework of [132]. Indeed, [131] have

shown that the sum of the firing-rate of the decision neurons is a good represen-

tation of the confidence on a continuous scale. This representation is given as

input to another decision-making network that then makes a choice based on the

confidence estimation. Therefore, our results of binary confidence neurons confirm

the predictions of the model about a confidence-related decision-making module.

However, we must note that the model does not explicitly consider the continuous

confidence representation as found in PMv neurons. In the model, confidence is
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represented implicitly by the sum of decision-neurons’ firing-rates, as no neuron

seems to encode it directly.

Despite the results as presented in this article, it could be objected that, like in

[124], the task has no confidence measurement, and that reasonable doubts could

thus be cast on the interpretation of the results. Although we think that a set-up

where both choice and confidence are recorded would better serve the scope, we

note that, rather more intriguingly, we found confidence encoding neurons in a

context where confidence estimation was not relevant. Indeed, it stands to reason

that a mechanism that estimates confidence and that makes decisions based on this

would stay in place even when not in use. We therefore expect that a more suited

task will lead to the recording of even stronger signals of confidence. Moreover

the population activity, as shown in Fig. 4.7, presents the hallmark of confidence,

excluding that these neurons were merely encoding the difficulty of the trial. In

addition, although we demonstrate the three encoding schemes only for correct, the

binary neurons present two different states of activity that can not be explained

as a simple encoding of the difficulty. Conversely these binary neurons can be

interpreted as confidence neurons of the type predicted by the model of [131].

Most of our results depend on a linear model of the firing-rate. But does this

relation have to be linear (and not, for example, logarithmic or sigmoidal)? Firstly

we note that linear functions have been extensively used to model the relation

between the firing-rates of neurons and certain task features (e.g. [7, 14, 138]).

Yet it is possible for the relation not to be linear. Indeed, we consider the linear

function as a first probable approximation.

The three mechanisms underlying the confidence x-shaped pattern that we have

suggested, raise the question of whether PMv neurons change their firing-rate

gradually, or whether they jump from a low to a high activity state. This ques-

tion, which has often been raised concerning the decision neurons of the lateral

intraparietal sulcus (LIP), has been bothering the scientific community for some

time now [6, 96, 139, 140]. Recently, [141] have provided reliable evidence for the

hypothesis that LIP neurons display a gradual ramp. Although our analysis was

aimed at differentiating single trial mechanisms, we did not address this issue. We

do note that all three proposed mechanisms are compatible with both a gradual

and an abrupt transition of states.

In this article we have abstained from directly defining decision confidence. We

agree with [9] that a formal computational foundation of the phenomenon is far

more valuable than a semantic definition. The semantics surrounding concepts

involving subjective experience (such as consciousness and confidence) is often
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inadequate to define the underlying phenomena [142]. A computational account

thus aims at characterizing the system in terms of functions and computational

units [143]. As it has been presented here, the concept of decision confidence

probably needs revising. We may thus separate the neural representation of the

reliability of a decision, call it ’decision confidence, from the classification of this

sensation, be it a verbal rating or a post-decision wagering, which we can call

’confidence judgment’. Decision-confidence would be a continuous quantity that

depends on the decision process and on sensory input. Confidence judgment, then,

would be of a discrete nature that depends on decision confidence as well as on

the constraints of the required judgment.

4.4 Methods

All analyses were performed using custom-made programs in MATLAB R©. Unless

noted otherwise, all statistical analyses were applied to the firing-rates of single

neurons during the 500 ms preceding the saccade. In fact, the second stimulus

was presented during this period, and therefore the decision-making process was

expected to take place during this time window.

Our first aim was to found any existing neurons whose activity relates to:

1. Difficulty of the task: Neurons whose mean firing-rate for the correct trials

increases linearly with the difficulty. When plotted against the TRO the

activity of these neurons shows the v-pattern.

2. Confidence: Confidence measures present a characteristic x-shaped pattern

when plotted against the signed difficulty of the task [1, 9, 124]. Therefore,

when a difficulty neuron had enough error trials to be analyzed and when its

firing-rate in error trials showed a mirror modulation of the difficulty respect

to correct trials we considered it a confidence neuron (i.e., neurons that are

a subset of the difficulty neurons)

In order to accomplish this we used a linear regression analysis (LRM) [144]. We

applied a linear measure instead of a non linear measure of correlations (like MI),

because at the end we are looking for a v-paterns and x-patterns, which in both

cases are a linear relationship between the rate and the difficulty.

Our second aim is to try to shed light into the mechanism by which these neurons

produce the above modulation of the difficulty neurons. We individuated three
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possible neural mechanisms responsible for modulations; a simplified representa-

tion of these mechanisms is presented in Fig. 4.6. In order to understand which

difficulty neuron belongs to each of the three categories, we applied two methods:

1. In order to find neurons that switch states with a timing dependent on the

difficulty (i.e., signaled the decision with a change in activity), we used the

Hidden Markov Model (HMM) analysis [145]. Indeed, the HMM was able to

cluster the spiking activity of individual neurons into periods of ’stationary’

activity (the states) within a single trial. Hence the switch time between

states could be estimated.

2. In order to find neurons whose activity after the change correlates whith the

difficulty we calculated the correlation between the mean activity and the

difficulty of the task. The mean activity was calculated in the time window

starting at the time bin where the 90% of the trials had passed from one

state to the other and ending at the last significant time bin marked by the

LRM.

3. In order to find the neurons whose activity could be explained as a compound

of high and low firing-rate states we fitted (χ2 goodness-of-fit test) the firing-

rate distribution to the average of two gamma distribution functions.

4.4.1 Linear regression analysis

The firing-rate (FR) of the last 500 ms before the saccade was computed by aver-

aging the spike count in a sliding window of 100 ms slided with a step of 20 ms. In

this way we got for each trial and each neuron a time series r(t) of the firing-rate,

where t is time discretized in 25 time bins.

To individuate the neurons presenting a modulation of task difficulty (v-shaped

modulation) the following LRM analysis was used, r(t) = d1 |S1 − S2| + d2(t),

where d1, d2 are the parameters to be fitted. Activity was considered linearly

dependent on the difficulty, |S1 − S2|, if the coefficient d1 was different from 0

(p < 0.05 , t − statistics) and no sign switch occurred during a time interval (T )

with a length of at least four consecutive bins (140 ms). Details as to how T was

chosen are given below.

The population activity in Fig. 4.7 shows that these neurons don’t encode merely

the difficulty but the confidence in the decision. Indeed their activity has the

opposite modulation in error trials which can not be explained by a difficulty
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encoding mechanism. However to confirm that this pattern is verified by single

neurons we applied the above LRM analysis to both correct and error trials, but

we kept the two analyses separate. Therefore, the pairs of parameters d1, d2 are

different for error (de1,de2) and correct (dc1,dc2) trials. We looked for neurons whose

firing-rate presented a mirror modulation of difficulty in error trials compared to

correct trials, hence we considered a neuron as encoding confidence if the sign of

dc1 was the opposite of that of de1. Due to the low number of error trials, it was

only possible to analyze fifteen of the 49 difficulty neurons; only five satisfied all

of the constraints described above. In order to produce Fig. 4.7 the firing-rate

of each neuron was normalized to its maximum value and then the activity of all

neurons was averaged together.

Error trials

In order to identify confidence neurons we independently applied the LRM to

correct and error trials. Unfortunately, the number of error trials was not enough

to analyze all the neurons. As experiments were done using animals that were

awake it was very difficult to record single neurons over a long period. We recorded

approximately 10 trials per monkey and stimulus conditions (i.e., orientation of

S1, S2). Hence only few error trials were recorded under easier conditions (|S1−
S2| = 3, 4). In the end only 124 neurons had at least one error for difficult

categories (|S1 − S2| = 1, 2). Therefore, we were only able to run the LRM

methods (described below) on this subset.

Minimal time window (T )

In order to find the minimum length of T we proceeded as follows. Given that

linear regression has a p-value cutoff at 0.05 in each bin there is a probability of

0.05 to get a false positive. We wanted to know what the probability Pn is of

getting n consecutive false positives. We then selected n such that Pn < 0.05.

In order to calculate Pn we proceeded as follows. A statistical test with p <

α = 0.05 applied to a time series produced a time series of significant and non-

significant bins. The vector X representing the time series is generated by:

X = {x1, . . . , x25 |xi ∈ [0, 1] , P (xi = 1) = α, P (xi = 0) = 1− α}
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where xi takes value 1 when the ith bin is significant by chance and 0 otherwise.

X has length 25 since our time series (r(t)) has 25 bins. We generated 106 vectors

with this procedure and then evaluated the probability Pn of having n consecutive

ones. Pn is thus the probability that an i exists such that xi + . . .+ xi+(n−1) = n.

Since we ran the test on a large number of neurons we corrected Pn for the family

wise error-rate: PN
n = (1− (1− Pn)N), where N is the number of neurons (336).

Then we found n such that Pn < 0.05. We found that the minimum number of

consecutive bins needed to get a significant result was n = 4. The applied method

gave the same results of the more common Bonferroni correction.

Decision Neurons

To identify the decision neurons we applied a LRM using the equation r(t) =

b1(t)S1 + b2(t)S2 + b3(t). A neuron was considered as decision during a time

interval T the coefficients b1, b2 were different from 0 (p < 0.05, t-statistics), of

opposite sign (sign(b1) = −sign(b2)) and they never switched their sign during the

whole T . Note that if a neuron satisfies these constrains the information about

the response can be extracted by comparing the coefficients signs, i.e, the sign

coefficients determine the selectivity of the neuron to the behavioral response: It

is classified as “left selective” if b1 < 0, b2 > 0 and “right selective” if b1 > 0, b2 < 0.

We impose the sign constant because we require neurons whose selectivity remain

constant in time. Once we have individuated the decision neurons, we want to

test if they also encode the difficulty. For this purpose we run a LRM analysis,

with equation r(t) = c1(t)(S1−S2) + c2(t). Where c1, c2 are the parameters to be

fitted. The main difference with respect to the previous analysis is that here we

used for each neuron only those trials that are in correspondence to its selectivity,

i.e. for ‘left selectivity’ neurons we used only trials to-the-left. Neuron response

was considered linearly dependent on difficulty if the coefficient c1 was different

from 0 (p < 0.05 , t−statistics), and during T it never switched its sign. The mean

firing rate of the trials whichbelong to the neuron’s selectivity, increased/decreased

the activity level with the difficulty during T . If c1 is positive the mean firing rate

vs difficulty produces just a branch of the v-shaped (see Fig. 4.10C).

4.4.2 V-mechanism methods: Hidden Markov Model

To analyze the single-trial activity of the recorded neurons we used the HMM that

clusters the spiking activity of individual neurons into periods of stationary activity
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within a single trial. The HMM technique has been successfully applied to char-

acterize the single-trial activity of cortical neuronal ensembles during movement

with holding and preparation [146, 147], taste processing [148], and perceptual

decision-making [140]. Here, we briefly review some aspects of the HMM analysis;

more details about the algorithms can be found in previous works [140, 146, 148].

Within the HMM, the activity of a recorded neuron at time t is assumed to be in

one of a (predetermined) number (Q) of hidden firing-rate states. In each state q,

the discharge of a neuron is assumed to be a Poisson process of intensity λq, which

defines the instantaneous firing probability Eq, i.e., the probability of firing a spike

within one time bin, equal to 2ms throughout this study. States are said to be

hidden because they are not directly measured; instead, we observe the stochastic

realizations of the state-dependent Poisson process (observation sequences). The

state variable changes from state i to state j with fixed probabilities that defined

a transition matrix A, given by Aij = P (qt+1 = j|qt = i), where qt is the state at

time t and i, j ∈ {1, . . . , Q}. The entire process is a Markov chain: the transition

probabilities Aij are independent of time, i.e., they depend only on the identities

of states i and j, which means that the state sequence at time t only depends

on the state at time t − 1. In summary, for a single neuron the HMM is fully

characterized by the spike-emission probabilities (E) and the transition matrix

(A). These model parameters are estimated from the data, using a likelihood

expectation-maximization algorithm [140, 146, 148].

Briefly explained, the procedure starts with random values for E and A and re-

estimates the parameters to maximize the probability of observing the data given

the model. After optimization of the model parameters, the Viterbi algorithm is

used to find the most likely sequence of hidden states given, for each single trial,

the model and the observation sequence [140]. In the present study we used the

HMM to detect the transitions between a state of low and a state of high activity.

For this reason, the number of states was set to Q = 2. For each neuron, the data

was divided into two subsets, composed of trials corresponding to each behavioral

response (left or right). For each subset, a HMM was estimated using the activity

of 80% of the trials (randomly selected) during the period within the last 500 ms

before the saccade. After optimization the most likely state sequence was stored

for all trials.

Unfortunately, a HMM analysis was not reliable for all the neurons. We only

considered the HMM reliable if 1) The duration of both states was at least 25

ms. (i.e., we do not take into account states with very brief duration) B) The

number of state-switches per trial was three or less; or (i.e., we do not take into

account bursting neurons). C) At least five of both the left and right oriented
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trials had a state-switch (i.e., we want neurons with 2 different states). We found

45 confidence neurons (out of 49) whose HMM was interpretable. For this subset,

we wanted to distinguish between the three v-shaped mechanisms, to do so we

analyzed the state-switch time. For each trial the HMM gave the time in which it

changed from a low to a high state (or vice versa).

4.4.3 V-mechanism methods: Bimodality vs Unimodality

Our aim was to investigate whether the firing-rate distribution of neurons dur-

ing correct trials was better described using a bimodal than a unimodal function

distribution. The procedure we applied was the following:

1. Trials were divided into two sets, depending on their behavioral responses

(“left” or “right”). We calculated the average firing-rate for each trial

in a 200 ms time window that ended at the time of subject’s behavioral

response. We called the empirical distribution functions of the average

firing-rate F (νL) and F (νR) respectively. The distributions were fitted with

a function B, which was the average of two gamma distributions: B =

(FΓ(x;κ1, µ1) +FΓ(x;κ2, µ2))/2. Gamma distribution was chosen because is

one of the most general function distributions with positive support. The

gamma distribution is given by:

FΓ(x;κ, µ) =
1

(µ/κ)κ
1

Γ(κ)
xκ−1e(−xκ

µ
)

for x, κ, µ > 0; Γ is the gamma function; κ is the shape parameter and µ is

the mean.

2. We looked for best fit (in terms of χ2 goodness-of-fit, p < 0.05) using the

following parameter space: µd ∈ [min(F (νd)),max(F (νd))], κd ∈ [0.1, 10],

for d ∈ (1, 2).

In order to apply the goodness-of-fit test, we discretized the firing-rate dis-

tribution in bins of 5 Hz. The χ2 goodness-of-fit probability test is valid

under the assumption that the number of events in each bin is greater than

five. Whenever this condition was not satisfied we enlarged the bin on the

right until the event count was at least five.

3. Finally, in order to verify whether a bimodal model explains the data better

than a model with just one mean, we fitted the data to a single Gamma
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distribution and then we compared the two models using the Bayesian In-

formation Criterion (BIC) [149, 150], which is given by:

BIC = −2 · lnL+ p ln(T )

where L is the maximized value of the likelihood function for the estimated

model; p the number of free parameters of the model (2 or 4); and T the

length of the observation data (the number of bins). This means that the

BIC method penalized the model likelihood by a measure of its complexity

(i.e., the number of free parameters). The single mode model has two free

parameters, while the bimodal model has four free parameters. Therefore,

in order to have a better score in the BIC, the higher complexity due to the

second mode should really be well balanced by a better ability to explain

the data. Hence we considered that a neuron has a binary response if the

BIC favored the model with two modes.

4.4.4 Experimental Details

The Visual Discrimination task

Experiments were made using two male monkeys (Macaca mulatta). Animals

(BM5, 8 kg; and BM6, 6 kg) were handled according to the standards of the Euro-

pean Union (86/609/EU), Spain (RD 1201/2005), and the Society for Neuroscience

Policies and Use of Animals and Humans in Neuroscience Research. The experi-

mental procedures were approved by the Bioethics Commission of the University

of Santiago de Compostela (Spain).

The monkeys’ heads were immobilized during the task and looked binocularly at

a monitor screen placed 114 cm away from their eyes (1 cm subtended 0.5 to the

eye). The room was isolated and soundproofed. Two circles (1◦ in diameter) were

horizontally displayed 6◦ at the right and 6◦ at the left of the fixation point (a

vertical line; 0.5◦ length, 0.02◦ wide) displayed in the screen center. The monkeys

used right and left circles to signal with an eye movement the orientation of visual

stimuli to the right and to the left, respectively. Orientation Discriminations Task:

the monkeys were trained to discriminate up to their psychophysical thresholds in

the visual discrimination task sketched in Fig. 4.4A (training lasted for approx.

11 months). The stimuli were presented in the center of the monitor screen and

eye movements larger than 2.5◦ aborted the task. The orientation discrimination

task was a two-interval, two-alternative forced-choice task. A masking white noise
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signaled the beginning of the trial and then the fixation target (FT) appeared in the

center of the screen (see Fig. 4.4A). The monkey was required to fixate the FT. If

fixation was maintained for 100 ms, the FT disappeared, and, after a variable pre-

stimulus delay (100 - 300 ms), two stimuli (S1 and S2), each of 500 ms duration,

were presented in sequence, with a fixed inter-stimulus interval (1 s). At the end of

the second stimulus, the subject made a saccadic eye movement, in a 1200 ms time

window, to one of the two circles, indicating whether the orientation of the second

stimulus was clockwise or counterclockwise to the first. Trials lasted approx. 3.5

s separated by a variable intertrial interval (1.5 − 3 s). Fifty milliseconds after

the correct response, a drop of liquid was delivered as a reward. A modulation

of the masking noise signaled the errors; the modulation started 50 ms after the

incorrect response and lasted for 75 ms.

Monkeys’ weights were measured daily to control hydration, and once a week the

animals had access to water ad libitum. The level of training was assessed by

the psychometric functions. Once trained, the monkeys performed around 1000

trials per day. The lines were stationary, subtending 8◦ length and 0.15◦ wide.

Three different S1 orientations were used for each monkey during the recordings:

87◦, 90◦, and 93◦ (BM5) and 84◦, 90◦ and 96◦ (BM6); all angles referred to the

horizontal axis. Different S2, eight per S1, were presented, four clockwise and

four counterclockwise to S1 in steps of 1◦ (BM5) and 2◦ (BM6). More details can

be found in [7].

Recordings

Neuronal population: extracellular single-unit activity was recorded with tungsten

micro-electrodes (epoxylite insulation, 1.5-3.5M, catalog # UEWMGCLMDNNF;

FHC) in the posterior bank of the ventral arm of the sulcus arcuatus and adjacent

surface in the ventral premotor cortex in the four hemispheres of the two monkeys

(see [7], for a detailed description of the recording sites). In this work, we studied

the responses of a subset (336) of the recorded neurons. This subset was selected

with a ROC analysis of firing-rate respect to the choice (see [7] for details).
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Causal correlation paths in

decision-making

The work presented in this chapter was carried out by Adrià Tauste Campo and

the author of this thesis in collaboration with: Verónica Nácher, Ranulfo Romo

and Gustavo Deco.

5.1 Introduction

A fundamental problem in neuroscience is to understand how neural activity en-

codes, integrates and communicates information across different brain areas. An

ideal paradigm to study this problem is the perceptual discrimination task.

As we described in the introduction, Chap. 1, this tasks involves a number of pro-

cesses which require communication across the cortical areas; from the areas which

perceive the stimuli, to the areas which make the decision and to the areas that

report the decision. The purpose of this chapter is to study the causal paths that

arise between sensory and motor areas within the realization of the vibrotactile

decision-making task and also during the control task.

To study this problem we resort again to the vibrotactile discrimination task de-

signed by Romo [8, 18] (see sections 1.1, 2 and Fig. 5.1). Briefly, the subjects must

compare two different frequencies (f1, f2) and then report their decision (f1 < f2

or f1 > f2) by a saccade. During the task the brain must store in memory the

traces of the first frequency, then perceive the second one and compare both to

make a decision. The processes of perception, memory and comparison are not

101
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overlapped in time, and we can thus study them independently. In this chapter we

also analyse the control task. In this task, the monkey receivep both mechanical

vibrations at the same time periods of the discrimation task, but was requested

to remain still upon reward (the reward time was not fixed, it arrived at different

time instances after f2).

Figure 5.1: A: Sequence of events of the vibrotactile discrimination and for the
passive stimulation tasks. B: Top view of macaque brain highlighting recorded
cortical areas. (f1, first stimulus; f2, second stimulus; kd, key down; ku, key up;
pb, push button; pd, probe down; pu, probe up; Primary somatosensory cortex
(S1), secondary somatosensory cortex (S2), medial premotor cortex (MPC),
dorsal premotor cortex (DPC), and primary motor cortex (M1). Figure adapted
from [151].

Previous studies on this dataset have mainly focused on the correlation of single-

neuron responses with different aspects of the task such as stimuli, memory or

decision ([8, 18], see sections 2 and 1.2.1). The results show that, while stimuli

are mostly encoded in sensory areas, the comparison between stored and ongoing

sensory information is reported to take place in a distributed fashion, and in

particular, can be identified as the unique site of decision-making.

We measure the causal correlation between sets of simultaneous spike trains in

sensory and motor areas. Our approach can be summarized into two steps. First,

we model spike-train responses as binary sequences. By using this model, we

characterize both the amount of neuronal activity and the inter-spike interval (ISI)

of spike trains. Second, we make use of a non-parametric method to estimate the

causal correlation between binarized neural responses based on an information-

theoretic measure called directed information. In the next section, we describe

the estimation method.

The main features of our method are:

• The data available was simultaneously recorded.
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• We model the neural spike trains as binary series without making any as-

sumption on the neural.

• Our correlation measure is non-linear and directional.

• The algorithm used to estimate the correlation measure follows a Bayesian

non-parametric approach.

5.2 Directed information as a measure of causal

correlation

Since the later 90’s, information theory concepts and techniques have been exten-

sively used in neuroscience [152, 153]. In most cases, the measure of mutual infor-

mation has been employed either to measure non-linear correlations between pairs

of neural responses [154] or between a neural response and a stimulus ([153, 155],

and sections 2, 3). As it has been earlier introduced in this thesis, the mutual infor-

mation between any pair of variables tells us indistinctively the added knowledge

that one has about one variable by knowing the other. It is therefore a symmetric

function of the pair of variables [21]. However, this property is not suitable to

characterize the feed-forward and feedback correlations that arise in neural sys-

tems. Instead, a more natural approach is to use a non-symmetric correlation

measure such as the directed information (DI) [156].

The directed information definition is built upon from the ideas of Granger [157] on

causal interactions, and it is philosophically grounded on the following principle:

the extent to which XT statistically causes Y T is measured by how much help the

causal side information of process XT provides when predicting the future of Y T ,

given knowledge of Y T ’s past [157].

5.2.1 Definition

Directed information was placed in an information-theoretic perspective by Massey

[156] to give a meaningful notion of directionality to the information flow through

a channel. He defined the directed information of a sequence XT = (X1, . . . , XT )
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to Y T = (Y1, . . . , YT ) as

I(XT → Y T ) ,
T∑

t=1

I(Yt;X
t|Y t−1) (5.1)

=E

[
T∑

t=1

log
PYt|Y t−1,Xt(Yt|Y t−1, X t)

PYt|Y t−1(Yt|Y t−1)

]
. (5.2)

Similarly to the mutual information (see section 1.2.2), directed information can

be expressed as a difference of two entropies:

I(XT → Y T ) = H(Y T )−H(Y T‖XT ), (5.3)

where H(·) is the usual vector entropy function, defined by

H(Y T ) ,
T∑

t=1

H(Yt|Y t−1), (5.4)

and H(·‖·) is the causal conditional entropy [158], defined by

H(Y T‖XT ) ,
T∑

t=1

H(Yt|X t, Y t−1), (5.5)

where XT and Y T are assumed to be finite-memory Markov chains that are sta-

tionary and ergodic.

Directed Information and Mutual Information The mutual information

measure between two time series can be defined as:

I(XT ;Y T ) ,
T∑

t=1

I(Yt;X
T |Y t−1). (5.6)
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The main difference between MI and DI is that the MI is a symmetric measure

while the DI is not. If we compare Eq.(5.1) and Eq.(5.6),

I(XT → Y T ) =
T∑

t=1

I(Yt;X
t|Y t−1)

I(XT ;Y T ) =
T∑

t=1

I(Yt;X
T |Y t−1)

Yt

X1 Xt

Y2Y1

X2 XT

Yt

X1 Xt

Y2Y1

X2 XT

YT

YT

I(XT ;Y T )

Mutual

Directed
I(XT → Y T )

Figure 5.2: Relationship directed information vs mutual information.

we realise that the difference lies on the following fact: the MI takes into account

the past and the future of XT , while the DI only take into account the past of the

XT . By inspection of (5.6), it can be checked that 0 ≤ I(XT → Y T ) ≤ I(XT ;Y T )

since I(Yt;X
t|Y t−1) ≤ I(Yt;X

T |Y t−1), for every t = 1, . . . , T .

Moreover, it can be proved that [159]

I(XT ;Y T ) = I(XT → Y T ) + I(Y T−1 → XT ), (5.7)

i.e., the mutual information can be expressed as a sum of directed information

from XT to Y T and a reversed directed information from the delayed sequence

Y T−1 to XT .

5.2.2 Related causal correlation quantities

Directed Information and Granger Causality Directed information gener-

alizes upon previous approaches to quantify causal dependencies between pairs

of time series. The original computation of causal dependency due to Granger

assumes that the two time series are stationary Gaussian and are linearly corre-

lated [157]. Then, Granger’s causality computation results from applying a linear

multivariate autoregressive model fitted to the two time series.
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DI and Transfer Entropy A more closely related measure to the directed

information is the transfer entropy developed by Schreiber [160]. Unlike the di-

rected information, the transfer entropy is sustained on two assumptions. First, it

assumes that the processes XT and Y T satisfy the Markov property

PYt|Y t−1,Xt−1

(
yt
∣∣yt−1, xt−1

)
= PYt|Y t−1

t−J ,X
t−1
t−K

(
yt
∣∣yt−1
t−J , x

t−1
t−K

)
, (5.8)

for every t = max(J,K) + 1, . . . , T , which means that we require that the value of

Yt only depends on the past J values of its process and the past K values of XT

at time t. Second, it assumes that

I(Xt;Yt|X t−1, Y t−1) = 0, (5.9)

for every t = 1, . . . , T , i. e., there is no instantaneous dependency conditioned on

the past of each process. Then, the transfer entropy from XT and Y T is defined

as [160]

TE(XT → Y T ) , I
(
Yt;X

t−1
t−K |Y t−1

t−J

)
(5.10)

= H
(
Yt|Y t−1

t−K

)
−H

(
Yt|X t−1

t−J , Y
t−1
t−K

)
, (5.11)

for every t = max(J,K) + 1, . . . , T . By expressing the directed information under

the same assumptions as the transfer entropy it can be checked that

I(XT → Y T ) ≤ TE(XT → Y T ), (5.12)

with the equality holding when I(Y t;Y t−J−1|Y t−1
t−J ) = 0 for every t = max(J,K) +

1, . . . , T . Finally, we note that a number of works [161, 162] use a normalized

version of the transfer entropy, defined by

NTE(XT → Y T ) ,
H
(
Yt|Y t−1

t−K

)
−H

(
Yt|X t−1

t−J , Y
t−1
t−K

)

H
(
Yt|Y t−1

t−K

) . (5.13)

The main argument for using (5.13) is that it normalizes (5.10) with respect to

the different degrees of complexity of each process [161, 162].
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5.2.3 Causal measures in neuroscience

Recently, directed information (DI) and transfer entropy (TE) have been applied

to analyze interactions between simultaneous neural recordings. We next provide

a brief review of a few examples.

• Gourévitch et al [161] estimated the TE between simultaneous spike trains in

the cat’s auditory cortex, under acoustic stimulation. The TE’s asymmetry

also allows feedback evaluations. In this paper the authors show the prop-

erties of the measure by simulation. When they applied it to the real data

their results suggest that: 1) the common history between pairs of neurons

would account for roughly 20% of information transfer values if condition-

ing was not performed; 2) there exist pairs of neurons that are transferring

information but are poorly synchronized, or in the opposite direction; 3) the

activity may be integrated over a larger interval than that strictly associated

with the mean delay between neuronal firings.

• Besserve et al [162] estimate the normalized transfer entropy (NTE) between

local field potentials from primary visual cortex of anaesthetized macaques,

during spontaneous activity and during binocular presentation of naturalis-

tic color movies. They show that the visual stimulus modulates the causality

between gamma bands, suggesting a strong role of the gamma cycle in pro-

cessing naturalistic stimuli. They also found that the dominant direction

of causality was mainly found in the direction from gamma band signals

to lower frequency signals, suggesting that hierarchical correlations between

lower and higher frequency cortical rhythms are originated by the faster

rhythms.

• So et al [163] applied a variation of the DI method to rodent and monkeys

recordings. On the rodent data, their goal was to measure the influence of in-

tracortical micro-stimulation applied to the primary motor cortex on spiking

activity in the dorsolateral striatum (DLS). They show that DI can correctly

infer the degree of influence of intracortical stimulation in M1 on neural spik-

ing activity in DLS. They also show that their method can approximate the

conduction delay between M1 and DLS.

On the monkeys data, they analyzed neural recordings while the subjects

were performing a center-out reaching task under manual and neuro-prosthetic

modes of operation. They examined the degree of in/out connections, and

they found that neurons with high out-degree influenced the activity of many
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f1 vs f2 f1 vs resp f2 vs resp
Pearson correlation -0.000 (0.997) 0.679 (0.000) 0.633 (0.000)
MI 0.738 (0.000) 0.399 (0.000) 0.343 (0.000)
MI− < MIsur > 0.388 0.374 0.318

Table 5.1: Relationhip between variables, f1, f2, and the behavioural response.
The values in brackets are the p-values of the corresponding measures.

others, suggesting that these neurons are important drivers of the observed

network activity.

• Quinn et al [164] estimated the DI from simultaneous spike trains to esti-

mate neural connectivities. The authors analysed single neurons from M1

from monkeys, while the subjects were performing a series of trials involving

contralateral arm movement tasks. They could distinguish three patterns in

the connections: 1) neurons which had several incoming and outgoing con-

nections, 2) neurons which had more incoming, 3) neurons which had very

few, if any, incoming or outgoing connections.

5.3 Results

5.3.1 Correlation with task parameters

The aim of this section is to reproduce the results obtained by Hernández et al.

(Fig. 5 [8], see section 1.2.1 for a summary) using a binary non-parametric model

of spike-trains and a non-linear measure of correlation. We calculated the mutual

information between the spike trains, the parameters f1, f2, and the behavioural

response.

In order to directly apply the mutual information, the task variables must be a

priori independent. Although f1 and f2 are linearly independent, they are depen-

dent in a non-linear sense (See Table 5.1). We therefore use the conditional mutual

information to remove any indirect association between spike-train responses and

frequency variables (see section 5.5.2.1 for more details).

Despite the differences in the model and the correlation measure, the outcomes of

both analyses are similar, as shown in Fig. 5.3 (MI, A; LRM, B). This suggests

that the information about the task parameters is mainly encoded in the spike

count, and also that the amount of activity is fundamentally linearly related to

the task variables.
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Figure 5.3: Information carried by neurons across areas. A: Percentage of
neurons with significant MI values as a function of time. Green points cor-
respond to I(X; f1|f2), red points correspond to I(X; f2|f1), and black traces
correspond to the I(X;response) B: Percentage of neurons with linear signifi-
cant coefficients (see section 1.2.1) as a function of time. Green and red dots
correspond to a1 and a2 coefficients (see section 1.2.1), respectively. Black dots
indicate percentage of neurons with a1 and a2 coefficients of opposite sign but of
different magnitudes. Blue dots show the percentage of neurons with coefficients
a1 and a2 of opposite sign but similar magnitude. Primary somatosensory cor-
tex (S1), secondary somatosensory cortex (S2), medial premotor cortex (MPC),
dorsal premotor cortex (DPC), and primary motor cortex (M1).
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5.3.2 Causal correlations during the discrimination task

To investigate how interactions arise during the discrimination task, we only con-

sidered correct trials of similar psychophysical performance (see section 5.6). The

central measure of our analysis is the directed information, which is a non-linear

measure of causal correlation between any pair of random variables.

To estimate this measure in practice we applied a non-parametric method to pairs

of simultaneous binary time series. This method sequentially learns the joint distri-

bution of the sequences when the pair is a realization of a finite-memory stationary

and ergodic process [165]. The estimation of the joint probability is based on the

context-tree weighting (CTW), a well-known algorithm in the field of data com-

pression [166]. To apply this method to neuronal recordings, we first converted the

spike-trains into binary time series using bins of 2 ms [167]. Second, we divided

the task into 16 adjacent time intervals of 500 ms from the period prior to the f1

stimulation to the lift of the sensory cue (Probe up), and concatenated the binary

series at each time interval for trials recorded under the same conditions (session,

stimulation, and pair). The concatenation was done chronologically across trials

simultaneously recorded neurons (see section 5.6). Finally, we obtained an esti-

mate of the causal correlation between any pair of simultaneously recorded neurons

at a given interval by running the directed information estimator over the corre-

sponding concatenated binary time series (see section 5.5). To avoid the effect of

instantaneous coupling artifacts, we only considered inter-neuronal correlations at

time lags larger than 10 ms.

For each ordered area pair and time interval, we tested the significance of each

estimate against a null hypothesis of complete causal independence. Local tests

were used to threshold each interneuronal directional correlation and obtain a

binarized functional connectivity matrix. Then, we clustered the underlying con-

nectivity graph into its connected components. Finally, we tested the significance

of each cluster using the aggregated sum of causal correlations over its directed

paths as the test statistic (see section 5.6). For each one of the 25 inter-area com-

parison, we computed both the percentage of paths lying in a significant cluster

(Green curves in Fig. 5.4) and the average value of the test statistic over signifi-

cant clusters (Green curves in Fig. 5.4) as a function of the 16 time intervals. In

general, clusters of causal correlations were present in all studied areas from f1

stimulation to the PU period and were negligible in the interval preceding the first

stimulation. In inter-area comparisons involving S1 the size of significant clusters

also dropped during stimulation intervals while for S2 the drop was only evident

during f2 stimulation. Another drop was found in the number of incoming paths
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to DPC during the interval preceding the PU. These patterns were consistent

across all sessions and stimulation pairs. An inspection of Fig. 5.4 also reveals

that comparisons with opposite direction were of the same magnitude, which may

indicate that feedforward and feedback interactions are equally present along the

task (Green curves in Fig. 5.4).
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Figure 5.4: In green, percentage of significant cluster paths for every direc-
tional inter-area comparison during the time course of the discrimination task
with f1 = 14 Hz and f2 = 22 Hz. In black, the same percentage for the passive
stimulation task with f1 = 14 Hz and f2 = 22 Hz. Percentages are averaged
over 5 sessions and error bars denote the standard deviation across sessions.

5.3.3 Causal correlations are inherent to decision-making

To test whether these correlations were directly associated with the discrimination

task, we estimated the causal correlation for the same simultaneous neuron pairs in

a control task, in which the monkey received both mechanical vibrations identically

to the original task but was requested to remain still upon a reward that arrived

at variable time (passive stimulation). Compared with the discrimination task,

the percentage of paths in significant clusters abruptly decreased after the first
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stimulation and remained almost negligible for the rest of the experiment (See

black curves in Fig. 5.5). The only exceptions were found in the arriving paths to

S1 where the percentages peaked again during the second stimulation and in the

arriving paths to DPC in which cluster sizes fluctuated during the second delay. In

summary, active and passive task percentages were almost identical during the first

two intervals and became clearly differentiated after f1 stimulation for all inter-

area comparisons except for S1 as a destination area, in which the percentages

were again similar during f2 stimulation. These findings were consistent across

the five sessions and stimulation pairs except the increase during f2, which was

more evident for the stimulation pair (14:22) Hz than for the pair (30:22).

Since the directed information is made up of two entropy terms (Eq. 5.3), we

corss-validated our findings with the estimation of the entropy for each neuron.

Specifically, we investigated whether the remarkable differences between both tasks

after the first stimulation were due to a difference in the conditional entropy on

the stimulation pair.

To test this hypothesis, we estimated the entropy of single neurons in each area

under study. In both tasks, significant values of entropy were found in each studied

areas, but were not significantly different between each other (Fig. 5.5) in periods

after f1 stimulation.

5.4 Discussion

In this chapter we used a novel methodology to compute causal correlations be-

tween spike-trains responses and applied it to simultaneous recordings to investi-

gate the interactions between nearby and distant cells during a decision-making

task.

The first question of this chapter was: What is the neuronal variability that can

be explained by the task parameters?

To address this question we computed the mutual information between the spike

trains and the task parameters (see Fig. 5.3). This result suggests that the

information about the task parameters is mainly encoded in the spike count, and

also that the amount of activity is fundamentally linearly related to the task

variables.
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Figure 5.5: Mean entropy vs time. Green lines correspond to the discrimina-
tion task. Black lines correspond to the passive task. Errors bars SEM. Red
crosses on the X-axis mean that the passive and the discrimination task are
statistically different.

The second question arising in this chapter was: What is the neuronal information

that can be explained by the interactions among neurons? And in particular, is

thisadress variability task-dependent?

To solved this question in the second part of the chapter we cnditioned on the

external frequencies. Our aim was to capture the variability that can not be

directly explained by the task parameters. This approach per se was novel because

to the classical way to study the information carried by the neurons (under a 2AFC

task) was varyring the task parameters.

When we compared that the percentage of significant path during the passive task

and discrimation task (Fig. 5.4), surprisingly, the estimated correlations were

highly distributed across distant and nearby areas as well as task periods and
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were equally present in feedforward and feedback interactions between sensory and

motor areas. The observed correlations were task-specific for two reasons. First,

they were not present during the period previous to the first stimulation when

task-related information is not yet available (Fig. 5.4). Second, these interactions

vanish in the passive stimulation task once the first stimulus has been perceived.

Interestingly, none of these findings could be devised using an entropic measure

over single-cell recordings (Fig. 5.5).

Our results indicate that a great part of the internal neural variability in the

discrimination task can be explained by the activity of other neurons, in distant

and nearby cortical regions. But a natural question arisest: What is difference

between both tasks? The difference may come from some processes present in the

discrimination which they are not in the passive task, such as attention or memory.

More generally, our findings strongly suggest that analyzing neuronal interactions

on simultaneous recordings opens novel and promising lines of study that may

unravel task-related process which have not been yet described.

5.5 Methods: Information Theory quantities

A great number of methods to estimate the information-theoretical quantities

(H, MI, DI, TE, etc), involve the estimation of the underlying joint probability

distribution of a pair of sequences. Gao et al [168] summarise the properties of

a number of entropy estimators. The most commonly used method to estimate

the distributions in neuroscience, the plug-in estimator, is a frequentist approach

used by authors like Panzeri [23, 162]. The plug-in estimator approach estimates

the underlying joint probability distribution P̂ (XT , Y T ) based on the frequency

of string occurrences. All the works presented in the section 5.2.3 used different

versions of the plug-in estimator : In [161, 162], TE (5.10) has been estimated by

using a maximum likelihood estimator of the joint probability, whereas in [163, 164]

DI is estimated by assuming an underlying point processes.

The main drawback of the plug-in estimator is the undersampling problem. As

this method assumes equal distribution of all the possible combinations, it needs a

high number of trials to ensure convergence. For example, if we want to estimate

P̂X , where X is a time series of alphabet two and length six, we have 26 = 64

possible combinations, and we would need 64 strings for a good estimation of

P̂X . In our case, we have a time series of length T = 250, so we would need 2250

samples. It is worth noting that some bias reduction strategies have been proposed
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to increase the convergence of the plug-in estimator [84, 162], and we have used

them when appropriate (see Chapter 3).

Instead, we used a Bayesian non-parametric approach to estimate the directed

information. The estimator is based on methods which have recently been devel-

oped [165]. Here we used the non-parametric and sequential estimator based on

the context-tree weighting method (CTW) [165], which originated in the field of

data compression. This method improves the bias problem. In practice, to esti-

mate these quantities, it is typically assumed that processes (i.e., spike trains in

our case) are stationary and ergodic. However, these assumptions are challenging

to test.

In the netx sections we dicuss the implementation of the CTW algorithm to esti-

mate the DI.

5.5.1 CTW algorithm

Tree source model

The propierties of the method and the implementation details can be found in

[165, 166]. Here we summarise the general idea. Although the first version of the

algorithm only applied for a binary alphabets, we here present the generalisation

to a M -ary alphabet. Throughout the chapter, we used and modified conveniently

when appropriate the MATLAB R© code available here.

We consider that sequences of a M -ary alphabet (in our case M=2) are generated

by a tree source of bounded memory D. The generation of a symbol depends

on the past D symbols. More formally stated, the probability of the generated

sequence is defined by the model (S,ΘS), where S is the suffix set consisting of

M -ary strings of length no longer than D, and

ΘS = (θs; s ∈ S) (5.14)

is the parameter space where θs , (θ0,s, θ1,s, . . . , θM−2,s). The suffix set is required

to be proper -suffixes in the set are not suffixes of other elements of S- and complete

-every sequence has a suffix in S-. Then, we can define a mapping βS(·) by

which every sequence is mapped onto a unique suffix s ∈ S. To each suffix, there

corresponds a parameter vector θs that determines the next symbol probability in

the sequence as

http://www.stanford.edu/~tsachy/DIcode/
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Pr
{
Xt = i|xt−1

t−D,S,ΘS

}
= θi,βS(xt−1

t−D) (5.15)

for i = 0, . . . ,M − 2, and

Pr
{
Xt = M − 1|xt−1

t−D,S,ΘS

}
= 1−

M−2∏

i=0

θi,βS(xt−1
t−D). (5.16)

The name of tree source comes from the fact that the suffix set can be characterized

by a tree. The goal is to find an algorithm that estimates the probability of

any sequence generated by a tree source without knowing the underlying model

(S,ΘS), i.e, without knowing neither the suffix set S nor the parameter space Θ.

Example

Let M = 2, D = 2 and consider the suffix set S = {00, 10, 1}. Then, the prob-

ability of the sequence x7
1 = 0110100 given the past symbols 10 can be evaluated

as Pr {x7
1|S, θ00, θ10, θ1}:

Pr(0110100|10) =P (0|10) · P (1|00) · P (1|01) · P (0|11) · P (1|10) · P (0|01) · P (0|10)

=(1− θ10) · θ00 · θ1 · (1− θ1) · θ10 · (1− θ1) · (1− θ10)

where we used the mapping βS(10) = 10, βS(00) = 00, βS(01) = 1 (the sufix 01 is

not in the set of suffixes S, and we thus map it to the suffix one βS(11) = 1.

Bayesian approach

The context-tree weighting is a method of approximating the true probability of a

T -length sequence xT1 (under the true model (S?,θ?)) with the mixture probability

P̂ (xT1 )=

∑

(S,ΘS)

w(S,ΘS)PS,ΘS
(xT1 ), (5.17)

where w(·) is a weighting function over the models and PS,ΘS(xT1 ) is the probability

of generating the sequence xT1 under the tree model (S,ΘS).

To approximate (5.17), we first make use of the concept of context tree. The

context tree is a set of nodes where each node is an M -ary string s with length

l(s), and where l(s) is upper-bounded by a given memory D. Each node s splits

into M (child) nodes 0s, 1s, . . . , (M − 1)s. To each node there corresponds a
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vector of counts as = (a0,s, a1,s, . . . , aM−1,s). For a parent node s and its children

0s, 1s, . . . , (M − 1)s, the counts must satisfy ai,s =
∑M−1

j=0 ai,js for every symbol

i = 0, . . . ,M − 1. Then, for every node with string s we estimate the probability

that a sequence is generated with the counts as.

The idea of the algorithm is to update the counts in each node by keeping track

of how many times a symbol i = 0, . . . ,M − 1, is preceded by the corresponding

string.

In general, the probability that a memoryless source with parameter vector θ

generates a given sequence follows a multinomial distribution. By weighting this

probability over all θi using a prior Dirichlet distribution we obtain the well-known

Krichevsky-Trofimov (KT) estimate. A useful property of this estimator is that it

can be computed sequentially as P s
e (0, 0, . . . , 0) = 1 and

P s
e (a0,s, a1,s, . . . , ai−1,s, ai,s+1, ai−1,s, . . . , aM−1,s) =

ai,s + 1
2

a0,s + a1,s + . . .+ aM−1,s + M
2

.

(5.18)

Finally, we assign a probability to each node, which is the weighted combination

of the estimated probability and the weighted probability of its children:

P s
w =




P s
w = αP s

e (as) + (1− α)
∏M

i=1 P
is
w , 0 ≤ l(s) < D

P s
e (as), l(s) = D,

(5.19)

where α is typically chosen to be 1
2
.

Original Algorithm for M−ary alphabet

For every t = 1, . . . , T , we use the context xt−1
t−D and the value of xt. Then, we

track nodes from the leaf to the root node along the path determined by xt−1
t−D.

• Leafs: Identify the leaf s that corresponds to xt−1
t−D in the context tree. Then

1. Counts update

Based on the value of xt, update as.

2. Estimated probability

Compute P s
e (as) using the Krichevsky-Trofimov estimator, which is

defined recursively as Pe(0, 0 . . . 0) = 1 and for ai,s ≥ 0, i = (1...M −1),

Pe(a0,s, a1,s, . . . , ai−1,s, ai,s+1, ai−1,s, . . . , aM−1,s) =
ai,s + 1

2

a0,s + a1,s + . . .+ aM−1,s + M
2

.
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3. Weighted probability

For the leaf nodes, P s
w = P s

e (as).

• Internal nodes: Using the path determined by the context xt−1
t−D,

REPEAT

1. Parent search

Identify the parent s of the previously tracked node.

2. Counts update

Based on the value of xt, update as.

3. Estimated probability

Compute P s
e (as) using as and the Krichevsky-Trofimov estimator.

4. Weighted probability

Compute P s
w as

P s
w = αP s

e (a0,s, a1,s, . . . , aM−1,s) + (1− α)
M∏

i=1

P is
w ,

where α is typically chosen to be 1
2
.

UNTIL the root node is tracked.

• Probability assignment: Let λ denote the root node of the context tree.

Then, P̂ (xt1) ≡ P λ
w(xn) is the universal probability assignment in the CTW

algorithm. As a result, we also obtain the conditional probability P̂ (xt1|xt−1
1 )

as:

P̂ (xt1|xt−1
1 ) =

P λ
w(xt1)

P λ
w(xt−1

1 )
.

Example

Consider the sequence xt = 1011011 with past 101, where M = 2 and D = 3.

Suppose that we are at time instance t = 7 and thus, the context is xt−1
t−D. Then,

we follow the algorithm steps as shown in Figs. 5.6 and 5.7.

5.5.2 Estimation of the Directed Information

We resort to an estimator of the DI based on the CTW algorithm [165]. This

estimator therefore applies to finite-memory Markov chains XT and Y T defined
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Figure 5.6: Step 1: Context tree, in which the path determined by t =
1, x−3 = 101 is marked. Step 2: Counts update of the leaf index for t = 1, x1 = 1
with past x−3 = 101: update the leaf index corresponding to node 101 from (0,0)
to (0,1); the leaf index corresponding to 01 from (0,0) to (0,1); the leaf index
corresponding to 1 from (0,0) to (1,0); the leaf index of λ from (0,0) to (0,1).
We update until t = 7.
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Figure 5.7: Steps 3 and 4: Estimation of P se (as) and P sw
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over a finite alphabet that are stationary and ergodic. The estimator is computed

using the following alternative definition of the DI:

I(XT → Y T ) ,
1

T

T∑

t=1

D
(
P (Yt|X tY t−1)‖P (Yt|Y t−1)

)

=
1

T

T∑

t=1

∑

yt

P (yt|X tY t−1) log
P (yt|X tY t−1)

P (yt|Y t−1)
(5.20)

In summary, the steps to compute the DI are the following:

1. Estimate P (Y ) by using the CTW algorithm with memory D:

P (Yt|Y t−1). (5.21)

2. Estimate P (XT , Y T ) by using the CTW algorithm with memory D:

P (Xt, Yt|X t−1Y t−1). (5.22)

3. Obtain the marginal probability from (5.22).

P (Xt|X t−1Y t−1) =
∑

yt

P (Xt, yt|X t−1Y t−1) (5.23)

4. Apply Bayes theorem using (5.22) and (5.24) to compute

P (Yt|X tY t−1) =
P (Xt, Yt|X t−1Y t−1)

P (Xt|X t−1Y t−1)
(5.24)

5. Apply (5.20) using (5.21) and (5.24) to obtain the final result.

5.5.2.1 Mutual Information application

To compute the mutual information between the neuronal spike trains and task

parameters we compute the conditional mutual information, we proceed as follows:

I(XT ; f1|f2) =H(XT |f2)−H(XT |f1, f2)

We compared results obtained with the MI estimation and the multi regression

lineal model (LRM) explained in section 1.2.1 to the same set of neurons. There
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are two main differences in the application of the two methods: for the LRM case

we used a spike count code within a sliding window of 100 ms duration moving

in steps of 20 ms for performing the analysis, while for the MI analysis we used

non-overlapping binary time series of 500 ms.

5.6 Methods: Application to spike-train data

5.6.1 Data pre-processing

Preliminary selection

We selected five out of twenty recorded populations. In the following we summarise

the neurons per area and population:

Area/population S1 S2 SMA DPC M1
Pop 1 8/5 8/8 14/13 4/4 8/8
Pop 2 6/6 7/7 12/12 9/9 9/9
Pop 3 6/ 5 12/12 13/13 9/9 6/6
Pop 4 5 /5 4/4 12/11 8/8 5/5
Pop 5 2 /1 9/9 15/15 4/3 5/5

TOTAL 27 /22 40/40 66/64 34/33 33/33 200/192

Table 5.2: Number of neurons per area and population, for discrimina-
tion/passive taks.

For each population, we analysed the following frequency pairs:

(f1 : f2) = {(14 : 22), (22 : 14), (30 : 22), (22 : 30)}.

We chose the pairs according to two criteria. The first criterion was to maintain the

distance between the frequency pairs constant (|f1−f2| = 8) to neglect differences

among the pairs due to the task difficulty. The second criteria was to keep f1 or f2

fixed in at least two opposite responses, namely, for fixed f1 ((22:14), (22:30)), and

for fixed f2 ((14:22), (30:22)). We only used correct trials in the discrimination

task.
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Binarization of spike-train trials

To quantify the information carried by spikes, we discretized each trial into non-

overlapping bins of 2 ms [167], assigning the value 1 to each bin with at least one

spike and the value 0 otherwise (see Fig. 5.8).

We test the goodness of our bin choice by counting the number of times that more

than one spike occur in one bin. Although the number of ISI shorter than 2 ms is

high (18 spikes each 8.5 seconds), the number of spikes losses is much lower (14%

of 18). The results are summarised in Tab. 5.6.1.

Area S1 S2 SMA DPC M1

#ISI < 2ms per trial 18.6 6.3 1.0 0.4 1

#negleted spikes
#ISI<2ms 14.5 % 10.8% 10.6% 5.5% 8.3 %

Table 5.3: Mean number of ISIs less than 2 ms per area in a trial (8.5 s).
Ratio of neglected spikes to number of ISIs less than 2 ms per area.

The approximate duration of each trial was 8500 ms, hence we obtain time series

of 4250 bins.

By doing this binarization we preserve in the model the most evident pieces of

information,i.e., the number and distance between spikes.

10001000010000 · · ·
Figure 5.8: An example of a binary dicretization of a continuous signal.

Trial partition

We subdivided each binarized trial, of 4250 bins in 16 consecutive and non-

overlapping intervals of 250 bins (see Fig. 5.9). Each interval is of 500 ms, which

coincides with the stimulation period. In particular, the first interval corresponds

to the 500 ms previous to the first stimulation, the second interval corresponds to
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Stimulus 2 Previous
state Motor action 

500 ms

2 9 16

Stimulus 1

1

Delay periods Delay periods t

. . . . . .

Figure 5.9: A simplified representation of the division of one trial into 16
intervals of 500ms, where the second interval corresponds to the first stimula-
tion, the ninth interval corresponds to the second stimulation and the sixteenth
interval corresponds to the probe up.

the presentation of the f1, the ninth interval corresponds to the the presentation

of the f2, and the sixteeenth interval corresponds to the KU.

At the end of this process we obtain one binary time series XT for each interval,

neuron, and pair of stimulation frequencies. The length of this time series is 250

xm bins., where m equals the number of trials under a given stimulation pa At

the end of this process we obtain, for each neuron, pair of frequencies, and task

period, one binary time series XT :

XT
(f1:f2),interval = {X1, . . . , XT}

Trial concatenation

To obtain a good estimation of the joint distribution we need the more bins the

better. For each neuron, we concatenate all trials recorded under the same stimu-

lation pair (f1 : f2) and at each interval i, (i = 1, · · · , 16). This results in sixteen

time series per neuron and stimulation pair, sixteen time series, one for each pe-

riod under study (see Fig. 5.10). The concatenation preserves chronology across

neurons, as the trials at interval i have been simultaneously recorded.

· · ·XT · · ·0 0 · · ·10 11 · · ·0 01

Trial 1 Trial 2 Trial 3

Figure 5.10: A scheme of the trial concatenation procedure for a given neuron,
interval and frequency pair.

Delays

A central question to our approach is the time scale at which interactions occur.

Results on inter-area delays during decision making are scarce in the literature.
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Instead, the concept of latency, the average time that an area takes to respond

to a certain stimulus, has been used to approximate the computation of delays

during the whole discrimination task [133]. Using these results, we consider the

inter-area and intra-area delays within the interval of [10, 140] ms.

Memory

The CTW algorithm has a free parameter that we must choose, the maximum

depth used, D, which can be interpreted as the memory of the Markov chain.

The computational cost of the algorithm grows exponentially with D, and hence,

D becomes a critical parameter since we have to deal with a large number of

comparisons. To estimate the memory of the neurons, we calculate the entropy of

all neurons in one population for values of D ranging from 0 to 9 in all considered

task intervals. As showed in Fig. 5.11, the memory of the analyzed spike trains

may vary across intervals and areas. By inspecting the general pattern of the

average entropy in each area under study (see Fig. 5.11), and trading it off with

the computational cost of the estimation, we decided to choose a memory of 2 bins

(4 ms).
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Figure 5.11: Averaged entropy of neurons estimated with the CTW algorithm
as a function of the memory parameter.

5.6.2 Convergence of the CTW algorithm

In order to observe the convergence of the CTW algorithm on real data, we show

the estimated probability distribution P̂X of a neuron in the primary somatosen-

sory cortex (S1) (see Fig. 1.4). In this example we studied the neuron during the
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first vibrotactile stimulation (see Fig. 1.1). The response of S1 neurons under the

vibrotactile stimulation is shown in Fig. 5.12 (Top). It shows weak rate modula-

tion, which reflects the periodicity of the stimulus (f1). In Fig. 5.12 (Middle) we

can see the value of P̂X for each 2 ms bin. We clearly observe that the algorithm is

able to differentiate four distributions conditioned on the pasts 00, 01,10,11, when

the number of bins is approximately larger than 300. This is represented in Fig.

5.12 (middle plot) by 4 paths that originate from a common root.
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Figure 5.12: Application of CTW to real neurons from S1 during a vibrotac-
tile stimulation. Top) Binarization of the neuron in bins of 2 ms. Each row
corresponds to a trial with f1 = 22. Each black point is a spike. Middle) Con-
ditional distribution obtained with the CTW algorithm bin by bin (D = 2). All
the above trials were concatenated in one trial in order to compute P (0|−,−).
The number of bins are represented on the X-axis while the estimated value
P̂ (0||−,−) is represented on the Y-axis. We can see 4 different paths which
correspond to the 4 possible pasts of length-2 (00,01,10,11) that precede any
symbol. Bottom) All the bins shown in the top figure have been plotted de-
pending on the value of the two preceding bins: 00 corresponds to blue, 01 to
orange, 10 to red, and 11 to green.
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5.6.3 Statistical procedures

5.6.3.1 Testing the significance: Surrogates procedure

Our goal is to test causal correlations between neurons based on the entropy, causal

conditional entropy and DI measures. In practice, to assess statistical significance

of these measures, we test whether the measure computed for two simultaneous

time series is significantly different from the measure computed when the simul-

taneity is violated. To do so, we used a Monte-Carlo randomization test. CITE!

To construct H0 we used the shuffling procedure. We estimated the measure (en-

tropy, causal conditional entropy, directed information) from XT to Y ∗T . Where

Y ∗T was constructed as the randomly concatenation of the T correct trials. For

example if T = 3, one possible randomization will be Y 3 = {Y2, Y3, Y1} (see Fig.

5.13 for a schematic representation). Concatenations violated simultaneity across

all trials. This boostrapping procedure destroys all simultaneous dependencies but

preserves the statistics of individual concatenated trials, which may be still affected

by common input factors. We obtain an approximation of H0 by generating 30

randomization for each comparison.

Trial 1 Trial 3

Trial 2

Neuron in  

Neuron in  

Trial 2

Trial 3 Trial 1
Î(XT → Ȳ T )

A1

A2

XT

Ȳ T

Figure 5.13: An example of the shuffling procedure between two time series
XT , Y ∗T

5.6.3.2 Clustering procedure to correct for multiple comparisons

We applied a multiple test procedure based on clustering locally significant results

[169]. The calculation of this test involves:

1. For each (A1, A2, interval, and f1 : f2) and delays from 10 to 140 ms in steps

of 10 ms, we run a different Monte-Carlo randomization test [170], over the

conditional entropy H(Y |X) at 97%. We obtain a set of triplets (neuron 1,

neuron 2, delay) for each interval and stimulation pair.

2. For each neuron pair and interval, we average the directed information over

all significant delays and do another Monte-Carlo randomization test over

this statistic at level of 97%. We now obtain a set of locally neuron pairs for
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each interval and stimulation pair. Based on the previus test, construct the

bipartited graph from A1 neurons to A2 neurons.

3. Cluster the connected components of the bipartite graph.

4. For each connected component, calculate cluster-level statistics by sum the

DI over all the edges within the same component belong to the component,

and test at a significance level of 97%.

5. Finally, correct the values with the Šidák multiple test correction.





Chapter 6

Conclusions

We divide the last chapter of the thesis in three parts. In the first part we sum-

marise the main results presented in the previous chapters. In the second part, we

compare the methods used throughout the thesis discussing their advantages and

drawbacks.

6.1 Summary of the results

In this thesis we have investigated the neuronal processes that occur during a

decision-making task based on a perceptual classification judgment. For this pur-

pose we have analysed three different experimental paradigms (sensory, visual,

and auditory) in two different animals species (monkey and rat), with the goal of

studying the information carried by the neurons.

In particular, we focused on how the information is preserved in the underlying

neuronal substrate in time. Furthermore we considered how the decision, the

stimuli, and the confidence are encoded in memory and, when the experimental

paradigm allowed it, how attention modulates these features. Finally, we went

one step further, and we performed an analysis of the interactions between areas

during a decision-making task.

In the first part of the thesis, we worked on the mechanisms that enable decisions to

be postponed for a period after the evidence has been provided. To tackle this issue

we used the mutual information between the rate and the behavioural response.

129
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We showed that information about the forthcoming action becomes available from

the activity of neurons in the medial premotor cortex in a sequential decision-

making task after the second stimulus is applied. It provided the information

for a decision about whether the first or second stimulus is higher in vibrotactile

frequency. The information then decays in a 3s delay period in which the neuronal

activity declines before the behavioural response can be made. The information

then increases again when the behavioral response is required.

We modeled this neuronal activity using an attractor decision-making network

in which information reflecting the decision is maintained at a low level during

the delay period, and is then selectively restored by a nonspecific input when the

response is required. One mechanism for the short-term memory is synaptic fa-

cilitation, which can implements a procedure for postponed decisions that can be

corrected even when there is little neuronal firing during the delay period before

the postponed decision. Another mechanism is graded firing rates by different

neurons in the delay period, with restoration by the nonspecific input of the low-

rate activity from the higher-rate neurons still firing in the delay period. These

mechanisms can account for the decision-making and for the memory of the deci-

sion before a response can be made, which are evident in the activity of neurons

in the medial premotor cortex.

In chapter 3, we focused on variability and information content in A1 during an

interval-discrimination task (of temporal information). First, we studied the neu-

ronal firing rates patterns in this area, and we compared them across brain states.

We found neurons that showed prominent responses during the intervals between

stimuli, with firing rates that either increased or decreased toward the second stim-

ulus. These patterns of spontaneous activity were often modulated in the attentive

versus passive trials. Modulation of the spontaneous firing rate during the task

was observed not only between auditory stimuli, but also in the interval preceding

the stimulus. These slow modulatory components could be locally generated or

the result of a top-down influence originated in higher associative association ar-

eas. Such a neuronal discharge may be related to the computation of the interval

time and contribute to the perception of the auditory stimulus.

In the second part of chapter 3, we analysed the variability and information con-

tent. We found that spike firing variability measured with the Fano factor was
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markedly reduced, not only during stimulation, but also in between stimuli in en-

gaged trials. We next explored if this decrease in variability was associated with

an increased information encoding. Our theoretical analysis revealed an increased

information content in auditory responses during engagement when compared with

idle states, in particular in the responses to task-relevant stimuli. Altogether, we

demonstrated that task-engagement significantly modulates coding properties of

auditory cortical neurons during an interval-discrimination task.

In the third part of the thesis, we studied the neural correlates of decision confi-

dence. In this chapter we studied neurons from Ventral Premotor cortex while the

subjctes were performing a decision-making task. In this area we showed the ex-

istence of neurons that encode the confidence in the decision. Moreover we found

that both continuous and discrete encoding of decision confidence are present in

the primate brain. In particular we showed that different neurons encode confi-

dence through three different mechanisms: 1) switch time coding, 2) rate coding,

and 3) binary coding. This rich representation of decision confidence indicates the

basis of different functional aspects of confidence in the making of a decision.

In the fourth and last part of this thesis, we analysed the interaction between

different cortical areas to characterise the causal correlation paths that may arise

in the discrimination task. In the analysis, we measured the causal dependence

between sets of simultaneously recorded neurons during a discrimination task and a

control task of passive stimulation. To quantify these correlations, we made use of

a non-symmetrical information-theoretic measure called directed information (DI),

which quantifies causal correlations between a pair of sequences without making

any linearity assumption. Our results support the role of S1 as a prominently

sensory area. We More generally, we provide evidences that the discrimination

task conclude that the discrimination task and more specifically, the stages of

working memory, comparison and decision involve the existence of feed-forward

and feedback paths across sensory and motor areas.
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6.2 Summary of the methods

In this section we want to compare the different methodologies used along the

thesis. The main objective of this thesis was to establish correlations between

the activity of single neurons and other variables, i.e., explain the variability of a

neuron based on its relationship to some parameter or neuron. In Table 6.1 we

summarise the principal features of the analysis performed in each chapter: neural

code, method used, species, sensory modality, cortical area analysed, objective of

the study neuronal activity or parameter of interest, neuronal code, method used,

and its principal features.

In chapters 2 and 3, we used the mutual information measure to quantify the

correlations between the neuronal activity modeled by the spike count and the

behavioural response of the animals. Fig. 6.1 shows a scheme of the process.

In chapter 3 we also analysed the interval variability across trials. For that purpose

we measured the Fano factor
(
Ff = σ2

µ

)
. In our case, the reduction of Ff was

associated with an increment to the encoding/processing of the discrimination

capability evidenced in the behavioural response.

In chapter 4, we used a linear regression model to quantify the correlation be-

tween the neuronal activity modeled by the spike count and the difficultly of the

task, modeled by the absolute difference between both stimuli (|S1 − S2|). Fig.

6.2 shows a scheme of the process. We used a linear model instead of a non-

linear measure because the hallmark of confidende is the increasing monotonic

relationship between difficulty and rate. Confidence, as a function of evidence

for the decision, decreases in erroneous choices and increases in correct choices

[1, 119, 122], producing an x-shaped pattern. In our paradigm we had four differ-

ent levels of difficulty and the linear relationship approach is a good aproximation

of the increasing monotonic relationships.

In chapter 4, we also wanted to approximate the moment in time when the activity

of the single neurons switched dynamics from one state of activity to another, and

to relate that moment with the level of confidence of a trial. Note that for that

purpose we needed a measure that gave a different output for each trial, instead of

a general measure of the whole neuron. To do that we applied a Hidden Markov

Model to all the trials of a given neuron. To apply the method we modeled the

neurons’ activity as a discrete time series of zeros and ones. In this method, instead
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Figure 6.1: Scheme of the MI application to the data, where the output was
binarised into the two types of responses (−1/1).

of sliding the time window along the analysed period, we applied it to the whole

period, so that it could capture the changes along time for each trial. Fig. 6.3

shows a scheme of that process.

In chapter 5, our aim was to study the relationship between two different neurons

and, in particular, to measure th e causal dependence between them. We used the

and information-theoretic measure called directed information (DI, see Fig. 6.5.

The main difference between the DI and the MI is that the DI is a non-symmetric

measure. Similarly to the MI, we first estimated the joint probability distribution

P (XT , Y T ) to compute the DI.

Throughout the thesis we used serval times the MI as a measure of non-linear

correlation. There are two main difference between the approach taken in chapter

5 as compared to previous chapters (Chap. 2, 3). The first difference is that the

variables in chapter 5 are time series while in previous chapters are scalars (see both

schemes in Figs. 6.4, 6.1). The second difference lies in the estimation method. In

chapters 2 and 3 we used a frequentist approach to estimate information-theoretic

quantities and used several methods to remove the intrinsic estimation bias. In
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Figure 6.2: Scheme of the linear regression model application to the data. In
it we related the task difficulty (|S1−S2| ∈ [1 . . . 4]) with the spike count (r(t)).
We moved the time window (t) in several steps during all the period of study.

HMM

_______
t

1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 0 1

1 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 

1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 

Neuron:

Figure 6.3: Scheme of the HMM application to the data.
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Figure 6.4: Scheme of the MI application between a neuron (through its spike
train) and the behavioural response: I(sc ;n).

_______
t

1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 

1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 0  
Neuron 2

Figure 6.5: Scheme of the DI application to two neurons: I(n1 → n2).

contrast, in chapter 5 we followed a Bayesian approach based on the context-tree

algorithm.

6.2.1 Feature comparisons

Linear vs Non-linear: The major strength of the information-theoretic measures

is that they can capture non-linear relationships between variables, and they have
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flexible definitions that can be applied to several neuronal codes (spike train, spike

count).

However, the main drawback of these measures is that their computation involves

the underlying probability distributions, P̂X,Y , of the data, which in most of the

cases is difficult to compute. To solve this problem there are two main approaches:

the frequentist and the Bayesian. The frequentist approach needs a large amount

of data to converge, but some bias reduction strategies have been proposed to

increase the convergence [84, 162].

The Bayesian approach minimizes the samplig bias problem (e.g., the CTW algo-

rithm [165, 168]) but its main problem is that it is computationally intense both

in space as in time.

The major strengths of the linear regression model (LRM) are: 1) It usually gives

a clear interpretation of the results [8], 2) Their application to data is normally

simple and is computationally cheaper than the computation of underlying prob-

ability measures. However, the LRM can only capture linear relationships.

Spike count vs spike train: The spike train model preserves the most evident

pieces of information, the number and distance between spikes (inter-spikes inter-

val), whereas the spike count only accounts for the amount of activity. Another

important difference is that the spike train can capture temporal aspects of the

time series, which can be potentially correlated with task parameters.

Despite these differences between both approaches, the results from Chapter 5

support a widespread understanding that information about the task parameters

is mainly encoded in the spike count, and that the amount of activity is fundamen-

tally linearly related to the task variables. However, to the best of our knowledge,

attempts to describe neuronal interactions with spike counts and linear methods

(personal communication, Romo’s lab) have not been able to characterize the ac-

tivity of a cognitive task using a control task. We therefore believe that information

transfer across cortical areas strongly relies on temporal patterns of spike trains.

In conclusion, the choice of method and measure may depend on the research

problem at hand.
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Neural correlates of a postponed decision report. Proc Natl Acad Sci USA,
104:17174–17179, 2007.

[13] R. Luna, A. Hernández, C D. Brody, and R. Romo. Neural codes for percep-
tual discrimination in primary somatosensory cortex. Nature neuroscience,
8(9):1210–1219, 2005.

[14] R. Romo, A. Hernández, A. Zainos, L. Lemus, and C.D. Brody. Neuronal
correlates of decision-making in secondary somatosensory cortex. Nat Neu-
rosci, 5:1217–1225, 2002.

[15] A. Hernández, A. Zainos, and R. Romo. Temporal evolution of a decision-
making process in medial premotor cortex. Neuron, 33(6):959–72, 2002.

[16] R. Romo, A. Hernández, and A. Zainos. Neuronal correlates of a perceptual
decision in ventral premotor cortex. Neuron, 41:165–73, 2004.

[17] J. K. Jun, P. Miller, A. Hernández, A. Zainos, L. Lemus, C.D. Brody, and
R. Romo. Heterogenous population coding of a short-term memory and
decision task. J Neurosci, 30(3):916–929, 2010.

[18] R. Romo and E. Salinas. Flutter discrimination: neural codes, perception,
memory and decision making. Nature reviews neuroscience, 4(3):203–218,
2003.

[19] JL. Pardo-Vázquez, V. Leboran, and C. Acuña. A role for the ventral pre-
motor cortex beyond performance monitoring. Proc Natl Acad Sci, USA,
106:18815–18819, 2009.

[20] C. Shannon. A mathematical theory of communication. Bell Syst. Tech. J.,
27:379–423 and 623–656, July and Oct. 1948.

[21] TM. Cover and JA. Thomas. Elements of Information Theory. John Wiley
and Sons, New York, 1991.

[22] ET. Rolls. Memory, Attention, and Decision-Making: A Unifying Compu-
tational Neuroscience Approach. Oxford Univ Press, Oxford, 2008.

[23] S. Panzeri, N. Brunel, NK. Logothetis, and C. Kayser. Sensory neural codes
using multiplexed temporal scales. Trends Neurosci, 33:111–120, 2010.

[24] I. Nelken and G. Chechik. Information theory in auditory research. Hear
Res, 229:94–105, 2007.

[25] G. Mongillo, O. Barak, and M. Tsodyks. Synaptic theory of working memory.
Science, 319:1543–1546, 2008.

[26] G. Deco, ET. Rolls, and R. Romo. Synaptic dynamics and decision making.
Proc Natl Acad Sci USA, 107:7545–7549., 2010.



Bibliography 141

[27] O. Barak, M. Tsodyks, and R. Romo. Neuronal population coding of para-
metric working memory. J Neurosci, 30:9424–9430, 2010.

[28] T. Webb, ET. Rolls, G. Deco, and J. Feng. Noise in attractor networks in
the brain produced by graded firing rate representations. PLoS ONE, 6:
e23630, 2011.

[29] T. Schreiber and A. Schmitz. Surrogate time series. Physica D, 142:346–382,
2000.

[30] S. Holm. A simple sequentially rejective multiple test procedure. Scandina-
vian Journal of Statistics, 6:65–70, 1979.

[31] ET. Rolls, A. Treves, MJ. Tovée, and S. Panzeri. Information in the neuronal
representation of individual stimuli in the primate temporal visual cortex. J
Comput Neurosci, 4:309–333, 1997.

[32] XJ. Wang. Probabilistic decision making by slow reverberation in cortical
circuits. Neuron, 36:955–968, 2002.

[33] ET. Rolls and G. Deco. The Noisy Brain: Stochastic Dynamics as a Prin-
ciple of Brain Function. Oxford Univ Press, Oxford, 2010.

[34] RS. Zucker and WG. Regehr. Short-term synaptic plasticity. Annu Rev
Physiol, 64:355–405, 2002.

[35] L. Franco, NC. Rolls, ET. anb Aggelopoulos, and JM. Jerez. Neuronal
selectivity, population sparseness, and ergodicity in the inferior temporal
visual cortex. Biol Cybern, 96:547–560, 2007.

[36] Y. Wang. Heterogeneity in the pyramidal network of the medial prefrontal
cortex. Nat Neurosci, 9:534–542, 2006.

[37] JM. Fuster and GE. Alexander. Neuron activity related to short-term mem-
ory. Science, 173:652–654, 1971.

[38] PS. Goldman-Rakic. Cellular basis of working memory. Neuron, 14:477–485,
1995.

[39] MJ. Tovée, ET. Rolls, A. Treves, and RP. Bellis. Information encoding and
the responses of single neurons in the primate temporal visual cortex. J
Neurophysiol, 70:640–654, 1993.

[40] ET. Rolls, A. Treves, RG. Robertson, P. Georges-François, and S. Panzeri.
Information about spatial view in an ensemble of primate hippocampal cells.
J Neurophysiol, 79:1797–1813, 1998.

[41] ET. Rolls, NC. Aggelopoulos, L. Franco, and A. Treves. Memory, attention,
and decision-making: A unifying computational neuroscience approach. Biol
Cybern, 90:19–32, 2004.



Bibliography 142

[42] MCA. Booth and ET. Rolls. View-invariant representations of familiar ob-
jects by neurons in the inferior temporal visual cortex. Cereb Cortex, 8:
510–523, 1998.

[43] N. Brunel and XJ. Wang. Effects of neuromodulation in a cortical network
model of object working memory dominated by recurrent inhibition. Journal
of Computational Neuroscience, 11:63–85, 2001.

[44] N. Brunel. Dynamics of sparsely connected networks of excitatory and in-
hibitory spiking neurons. Journal of Computational Neuroscience, 8:183–
208, 2000.

[45] JJ. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proc Natl Acad Sci USA, 79:2554–2558, 1982.

[46] J. Hertz, A. Krogh, and RG. Palmer. Introduction to the Theory of Neural
Computation. Addison Wesley, Wokingham, U.K, 1991.

[47] C. Kayser, CI. Petkov, and NK Logothetis. Visual modulation of neurons
in auditory cortex. Cereb. Cortex, 18:1560–1574, 2008.

[48] L. Lemus, A. Hernández, R. Luna, A. Zainos, and R. Romo. Do sensory cor-
tices process more than one sensory modality during perceptual judgments?
Neuron, 67:335–348, 2010.

[49] DH. Hubel, CO. Henson, A. Rupert, and R. Galambos. Attention units in
the auditory cortex. Science, 129:1279–1280, 1959.

[50] Y. Gottlieb, E. Vaadia, and M. Abeles. Single unit activity in the auditory
cortex of a monkey performing a short term memory task. Brain Res, 74:
139–148, 1989.

[51] GH. Otazu, LH. Tai, Y. Yang, and AM. Zador. Engaging in an auditory task
suppresses responses in auditory cortex. Nat. Neurosci, 12:646–654, 2009.

[52] S. Jaramillo and A. M. Zador. The auditory cortex mediates the perceptual
effects of acoustic temporal expectation. Nat. Neurosci, 14:246–251, 2011.

[53] M.G. Shuler and M.F. Bear. Reward timing in the primary visual cortex.
Science, 311:1606–1609, 2006.

[54] E. Selezneva, H. Scheich, , and M. Brosch. Dual time scales for categorical
decision making in auditory cortex. Curr. Biol., 16:2428–2433, 2006.

[55] M. Brosch, E. Selezneva, and H. Scheich. Formation of associations in audi-
tory cortex by slow changes of tonic firing. Hear. Res, 271:66–73, 2011.

[56] LM. Romanski and PS. Goldman-Rakic. An auditory domain in primate
prefrontal cortex. Nat. Neurosci, 5:15–16, 2002.

[57] GH. Recanzone. Response profiles of auditory cortical neurons to tones and
noise in behaving macaque monkeys. Hear Res, 150:104–118, 2000.



Bibliography 143

[58] T. Hromadka, M. R. Deweese, and A. M. Zador. Sparse representation of
sounds in the unanesthetized auditory cortex. PLoS Biol, 6:e16, 2008.

[59] S. Hocherman, D. A. Benson, M. H. Jr. Goldstein, H. E. Heffner, Hienz,
and R. D. Evoked unit activity in auditory cortex of monkeys performing a
selective attention task. Brain Res., 117:51–68, 1976.

[60] BE. Pfingst, TA. O’Connor, and JM. Miller. Response plasticity of neurons
in auditory cortex of the rhesus monkey. Exp. Brain Res, 29:393–404, 1977.

[61] D. A. Benson and R. D. Hienz. Single-unit activity in the auditory cortex
of monkeys selectively attend-ing left vs. right ear stimuli. Brain Res, 159:
307–320, 1978.

[62] JB. Fritz, SA. Shamma, M. Elhilali, and D Klein. Rapid task-related plas-
ticity of spectrotemporal receptive fields in primary auditory cortex. Nat.
Neurosci, 6:1216–1223, 2003.

[63] JW. Schnupp, TM. Hall, RF. Kokelaar, and B. Ahmed. Plasticity of tem-
poral pattern codes for vocalization stimuli in primary auditory cortex. J.
Neurosci., 26:4785–4795, 2006.

[64] P. Yin, M. Mishkin, M. Sutter, and J. B. Fritz. Early stages of melody pro-
cessing: stimulus sequence and task-dependent neuronal activity in monkey
auditory cortical fields a1 and r. J. Neurophysiol, 100:3009–3029, 2008.

[65] Y. Liu, L. Qin, X. Zhang, C. Dong, and Y. Sato. Neural correlates of
auditory temporal-interval discrimination in cats. Behav. Brain Res., 215:
28–38, 2010.

[66] C. Durif, C. Jouffrais, and E. M. Rouiller. Single-unit responses in the
auditory cortex of monkeys performing a conditional acousticomotor task.
Exp. Brain Res, 153:614–627, 2003.

[67] BH. Scott, BJ. Malone, and MN. Semple. Effect of behavioral context on
representation of a spatial cue in core auditory cortex of awake macaques.
J. Neurosci, 27:6489–6499, 2007.

[68] Y. Sakurai. Cells in the rat auditory system have sensory-delay correlates
during the performance of an auditory working memory task. Behav. Neu-
rosci., 104:856–868, 1990.

[69] RR. Metzger, NT. Greene, KK. Porter, and JM. Groh. Effects of reward
and behavioral context on neural activity in the primate inferior colliculus.
J. Neurosci., 26:7468–7476, 2006.

[70] Y. Komura, R. Tamura, T. Uwano, H. Nishijo, and T. Ono. Auditory tha-
lamus integrates visual inputs into behavioral gains. Nat. Neurosci, 8:1203–
1209, 2005.

[71] M. Brosch, E. Selezneva, and H. Scheich. Representation of reward feedback
in primate auditory cortex. Front. Syst. Neurosci, 10, 2011.



Bibliography 144

[72] S. Atiani, M. Elhilali, SV. David, JB. Fritz, and SA. Shamma. Task diffi-
culty and performance induce diverse adaptive patterns in gain and shape
of primary auditory cortical receptive fields. Neuron, 61:467–480, 2009.

[73] DT. Blake, MA. Heiser, M. Caywood, and MM. Merzenich. Experience-
dependent adult cortical plasticity requires cognitive association between
sensation and reward. Neuron, 52:371–381, 2006.

[74] JB. Fritz, M. Elhilali, and SA. Shamma. Active listening: taskdependent
plasticity of spectrotemporal receptive fields in primary auditory cortex.
Hear. Res, 206:159–176, 2005.

[75] JM. Abolafia, R. Vergara, MM. Arnold, R. Reig, and MV. Sanchez-Vives.
Cortical auditory adaptation in the awake rat and the role of potassium
currents. Cereb. Cortex, 21:977–990, 2011.

[76] N. Ulanovsky, L. Las, D. Farkas, and I. Nelken. Multiple time scales of
adaptation in auditory cortex neurons. J Neurosci, 24:10440–10453, 2004.

[77] MM. Churchland, BM. Yu, JP. Cunningham, LP. Sugrue, MR. Cohen, GS.
Corrado, WT. Newsome, AM. Clark, P. Hosseini, BB. Scott, DC. Bradley,
MA. Smith, A. Kohn, JA. Movshon, KM. Armstrong, T. Moore, SW. Chang,
LH. Snyder, SG. Lisberger, NJ. Priebe, IM. Finn, D. Ferster, SI. Ryu,
G. Santhanam, M. Sahani, and KV. Shenoy. Stimulus onset quenches neural
variability: a widespread cortical phenomenon. Nat Neurosci, 13:369–378,
2010.

[78] P. Kara, P. Reinagel, and RC. Reid. Low response variability in simultane-
ously recorded retinal, thalamic, and cortical neurons. Neuron, 27:635–646,
2000.

[79] CJ. McAdams and JH. Maunsell. Effects of attention on the reliability of
individual neurons in monkey visual cortex. Neuron, 23:765–773, 1999.

[80] JF. Mitchell, KA. Sundberg, and JH. Reynolds. Differential attention-
dependent response modulation across cell classes in macaque visual area
v4. Neuron, 55:131–141, 2007.

[81] T. Lu and X. Wang. Information content of auditory cortical responses to
time-varying acoustic stimuli. J. Neurophysiol., 91:301–313, 2004.

[82] I. Nelken, G. Chechik, TD. MrsicFlogel, AJ. King, and JW. Schnupp. En-
coding stimulus information by spike numbers and mean response time in
primary auditory cortex. J Comput Neurosci, 19:199–221, 2005.

[83] C. Kayser, MA. Montemurro, NK. Logothetis, and S. Panzeri. Spike-phase
coding boosts and stabilizes information carried by spatial and temporal
spike patterns. Neuron, 61:597–608, 2009.

[84] S. Panzeri, R. Senatore, MA. Montemurro, and RS. Petersen. Correcting
for the sampling bias problem in spike train information measures. J Neu-
rophysiol, 98:1064–1072, 2007.



Bibliography 145

[85] R. Brasselet, S. Panzeri, NK. Logothetis, and C. Kayser. Neurons with
stereotyped and rapid responses provide a reference frame for relative tem-
poral coding in primate auditory cortex. J Neurosci, 32:2998–3008, 2012.

[86] SN. Baker and RN. Lemon. Precise spatiotemporal repeating patterns in
monkey primary and supplementary motor areas occur at chance levels. J
Neurophysiol, 84:1770–1780, 2000.

[87] A. Ponce-Alvarez, BE. Kilavik, and A. Riehle. Comparison of local measures
of spike time irregularity and relating variability to firing rate in motor
cortical neurons. J Comput Neurosci, 29:351–365, 2010.

[88] MP. Nawrot, C. Boucsein, V. Rodriguez-Molina, A. Riehle, A. Aertsen, and
S. Rotter. Measurement of variability dynamics in cortical spike trains. J
Neurosci Methods, 169:374–390, 2008.

[89] EE. Galindo-Leon, FG. Lin, and RC. Liu. Inhibitory plasticity in a lateral
band improves cortical detection of natural vocalizations. Neuron, 62:705–
716, 2009.

[90] I. Nelken. Inhibitory plasticity in auditory cortex. Neuron, 62:605–607, 2009.

[91] KM. Bieszczad and NM. Weinberger. Representational gain in cortical area
underlies increase of memory strength. Proc Natl Acad Sci USA, 107:3793–
3798, 2010.

[92] DB. Polley, EE. Steinberg, and MM. Merzenich. Perceptual learning di-
rects auditory cortical map reorganization through top-down influences. J
Neurosci, 26:4970–4982, 2006.

[93] RG. Rutkowski and NM. Weinberger. Encoding of learned importance of
sound by magnitude of representational area in primary auditory cortex.
Proc Natl Acad Sci U S A, 102:13664–13669, 2005.

[94] CE. Schreiner and JA. Winer. Auditory cortex mapmaking: principles,
projections,and plasticity. Neuron, 56:356–365, 2007.

[95] M. Brown, DR. Irvine, and VN. Park. Perceptual learning on an auditory
frequency discrimination task by cats: association with changes in primary
auditory cortex. Cereb Cortex, 14:952–965, 2004.

[96] AK. Churchland, R. Kiani, R. Chaudhuri, XJ. Wang, A. Pouget, and MN.
Shadlen. Variance as a signature of neural computations during decision
making. Neuron, 69:818–831, 2011.

[97] MN. Shadlen and WT. Newsome. The variable discharge of cortical neu-
rons: implications for connectivity, computation, and information coding. J
Neurosci, 18:3870–3896, 1998.

[98] D. Sussillo and LF. Abbott. Generating coherent patterns of activity from
chaotic neural networks. Neuron, 63:544–557, 2009.



Bibliography 146

[99] MM. Churchland, BM. Yu, SI. Ryu, G. Santhanam, and KV. Shenoy. Neural
variability in premotor cortex provides a signature of motor preparation. J
Neurosci, 26:3697–3712, 2006.

[100] C. Hussar and T. Pasternak. Trial-to-trial variability of the prefrontal neu-
rons reveals the nature of their engagement in a motion discrimination task.
Proc Natl Acad Sci U S A, 107:21842–21847, 2010.

[101] MR. Cohen and JH. Maunsell. Attention improves performance primarily
by reducing interneuronal correlations. Nat Neurosci, 12:1594–1600, 2009.

[102] JF. Mitchell, KA. Sundberg, and JH. Reynolds. Spatial attention decorre-
lates intrinsic activity fluctuations in macaque area v4. Neuron, 63:879–888,
2009.

[103] G. Deco and E. Hugues. Neural network mechanisms underlying stimulus
driven variability reduction. PLoS Comput Biol, 8:e1002395, 2012.

[104] C. Curto, S. Sakata, S. Marguet, V. Itskov, and KD. Harris. A simple model
of cortical dynamics explains variability and state dependence of sensory
responses in urethane-anesthetized auditory cortex. J Neurosci, 29:10600–
10612, 2009.

[105] G. Chechik, MJ. Anderson, O. Bar-Yosef, ED. Young, N. Tishby, and
I. Nelken. Reduction of information redundancy in the ascending auditory
pathway. Neuron, 51:359–36, 2006.

[106] MR. DeWeese, M. Wehr, and AM. Zador. Binary spiking in auditory cortex.
J Neurosci, 23:7940–7949, 2003.

[107] DD. Gehr, H. Komiya, and JJ. Eggermont. euronal responses in cat primary
auditory cortex to natural and altered species-specific calls. N. Hear Res,
150:27–42, 2000.

[108] K. Imaizumi, N. J. Priebe, T. O. Sharpee, S. W. Cheung, and C. E. Schreiner.
Encoding of temporal information by timing, rate, and place in cat auditory
cortex. PLoS ONE, 5:e11531, 2010.

[109] S. Furukawa and JC. Middlebrooks. Cortical representation of auditory
space: information-bearing features of spike patterns. J Neurophysiol, 87:
1749–1762, 2002.

[110] C. Kayser, NK. Logothetis, and S. Panzeri. Millisecond encoding precision
of auditory cortex neurons. Proc. Natl. Acad. Sci. U.S.A, 107:16976–16981,
2010.

[111] M. Sakai, S. Chimoto, L. Qin, and Y. Sato. Differential representation of
spectral and temporal information by primary auditory cortex neurons in
awake cats:relevance to auditory scene analysis. D. Brain Res, 1265:80–92,
2009.



Bibliography 147

[112] S. Panzeri, G. Biella, ET. Rolls, WE. Skaggs, and A. Treves. Speed, noise,
information and the graded nature of neuronal responses. Network, 7:365–
370, 1996.

[113] G. Paxinos and C. Watson. The rat brain in stereotaxic coordinates. San
Diego CA: Academic, 1998.

[114] NN. Doron, JE. Ledoux, and MN. Semple. Redefining the tonotopic core of
rat auditory cortex: physiological evidence for a posterior field. J. Comp.
Neurol, 453:345–360, 2002.

[115] MS. Malmierca. The structure and physiology of the rat auditory system:
an overview. Int Rev Neurobiol, 56:147–211, 2003.

[116] I. Nelken, A. Fishbach, L. Las, N. Ulanovsky, and D. Farkas. Primary
auditory cortex of cats: feature detection or something else? Biol Cybern,
89:397–406, 2003.

[117] H. Ojima and K. Murakami. Intracellular characterization of suppressive
responses in supragranular pyramidal neurons of cat primary auditory cortex
in vivo. Cereb Cortex, 12:1079–1091, 2002.

[118] CS. Pierce and J. Jastrow. On small differences in sensetion. Proceedings of
the National Academy of Sciences of the USA, 3:73–83, 1884.

[119] DM. Johnson. Confidence and speed in the two-category judgment. Archs
Psychol, 34:1–53, 1939.

[120] L. Festinger. Studies in decision: I. decision-time, relative frequency of
judgment and subjective confidence. Journal of Experimental Psychology,
32:291–306, 1943.

[121] R. Pierrel and C. S. Murray. Some relation between comparative judgment
confidence and decision-time in weight lifting. American Journal of Psychol-
ogy, 76:28–38, 1963.

[122] D. Vickers and J. Packer. Effects of alternating set for speed or accuracy on
response time, accuracy and confidence in a unidimensional discrimination
task. Acta Psychologica, 50:179–197, 1982.

[123] HE. Garret. A study of the relation of accuracy to speed. Archs Psychology,
56:1–105, 1922.

[124] A. Kepecs, N. Uchida, H. A. Zariwala, and Z. F. Mainen. Neural correlates,
computation and behavioural impact of decision confidence. Nature, 455:
227–231, 2008.

[125] R. Kiani and M. N. Shadlen. Representation of confidence associated with
a decision by neurons in the parietal cortex. Science, 324:759–764, 2009.

[126] J. Gold and M. Shadlen. Representation of a perceptual decision in devel-
oping oculomotor commands. Nature, 404:390–394, 200.



Bibliography 148

[127] MN. Shadlen and WT. Newsome. Neural basis of a perceptual decision in
the parietal cortex (area lip) of the rhesus monkey. J Neurophysiolgy, 86:
1916–1936, 2001.

[128] R. Moreno-Bote. Decision confidence and uncertainty in difusion models
with partially correlated neuronal integrators. Neural Computation, 7:1786–
1811, 2010.

[129] J. Drugowitsch, R. Moreno-Bote, AK. Churchland, MN. Shadlen, , and
A. Pouget. The cost of accumulating evidence in perceptual decision making.
The Journal of Neuroscience, 32:3612–3628, 2012.

[130] M. Graziano and M. Sigman. The spatial and temporal construction of
confidence in the visual scene. PLoS ONE, 4:e4909, 2009.

[131] A. Insabato, M. Pannunzi, ET. Rolls, and G. Deco. Confidence-related
decision-making. Journal of Neurophysiology, 104(1):539–47, 2010.

[132] TJ. Pleskac and JR Busemeyer. Two-stage dynamic signal detection: a
theory of choice, decision time and confidence. Psychological Review, 1:
864–901, 2010.

[133] V. de Lafuente and R. Romo. Neural correlate of subjective sensory expe-
rience gradually builds up across cortical areas. Proc Natl Acad Sci, USA,
103:14266–14271, 2006.

[134] R. Romo, A. Hernández, and A. Zainos. Neuronal correlates of a perceptual
decision in ventral premotor cortex. Neuron, 41:165–73, 2004.

[135] W.R. Softky and C. Koch. The highly irregular firing of cortical cells is
inconsistent with temporal integration of random epsps. The Journal of
Neuroscience, 13(1):334–350, 1993.

[136] W. Bair, C. Koch, W. Newsome, and K. Britten. Power spectrum anal-
ysis of bursting cells in area mt in the behaving monkey. The Journal of
neuroscience, 14(5):2870–2892, 1994.

[137] MN. Shadlen and WT. Newsome. Noise, neural codes and cortical organi-
zation. Current opinion in neurobiology, 4(4):569–579, 1994.

[138] R. Romo, A. Hernández, A. Zainos, C.D. Brody, and L. Lemus. Sensing
without touching: psychophysical performance based on cortical microstim-
ulation. Neuron, 1:273–278, 2000.

[139] GD. Horwitz and WT. Newsome. Target selection for saccadic eye move-
ments: Prelude activity in the superior colliculus during a direction-
discrimination task. Journal of Neurophysiology, 86:2543–2558, 2001.
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