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Centre de Visió per Computador
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Abstract

Searching for text objects in real scene images is an open problem and a very ac-
tive computer vision research area. A large number of methods have been proposed
tackling the text search as extension of the ones from the document analysis field or
inspired by general purpose object detection methods. However the general problem
of object search in real scene images remains an extremely challenging problem due to
the huge variability in object appearance. This thesis builds on top of the most recent
findings in the visual attention literature presenting a novel computational model of
eye guidance aiming to better describe text object search in real scene images.

First are presented the relevant state-of-the-art results from the visual attention
literature regarding eye movements and visual search. Relevant models of attention
are discussed and integrated with recent observations on the role of top-down con-
straints and the emerging need for a layered model of attention in which saliency
is not the only factor guiding attention. Visual attention is then explained by the
interaction of several modulating factors, such as objects, value, plans and saliency.

Then we introduce our probabilistic formulation of attention deployment in real
scene. The model is based on the rationale that oculomotor control depends on two
interacting but distinct processes: an attentional process that assigns value to the
sources of information and motor process that flexibly links information with action.
In such framework, the choice of where to look next is task-dependent and oriented
to classes of objects embedded within pictures of complex scenes. The dependence
on task is taken into account by exploiting the value and the reward of gazing at
certain image patches or proto-objects that provide a sparse representation of the
scene objects.

In the experimental section the model is tested in laboratory condition, compar-
ing model simulations with data from eye tracking experiments. The comparison is
qualitative in terms of observable scan paths and quantitative in terms of statisti-
cal similarity of gaze shift amplitude. Experiments are performed using eye tracking
data from both a publicly available dataset of face and text and from newly performed
eye-tracking experiments on a dataset of street view pictures containing text.

The last part of this thesis is dedicated to study the extent to which the proposed
model can account for human eye movements in a low constrained setting. We used a
mobile eye tracking device and an ad-hoc developed methodology to compare model
simulated eye data with the human eye data from mobile eye tracking recordings.
Such setting allow to test the model in an incomplete visual information condition,
reproducing a close to real-life search task.
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Resum

La cerca d’objectes de text en imatges d’escena reals és un problema obert i una àrea
de cerca molt activa la visió per computador. S’han proposat un gran nombre de
mètodes basats en l’extensió dels mètodes des de l’anàlisi de documents o inspirat en
mètodes de detecció d’objectes. No obstant això, el problema de la cerca d’objectes
en imatges d’escena reals segueix sent un problema extremadament dif́ıcil a causa de
la gran variabilitat en l’aparença dels objectes. Aquesta tesi es basa en els més recents
troballes en la literatura de l’atenció visual, introduint un nou model computacional
de visió guiada que apunta descriure la cerca de text en imatges d’escenes reals.

En primer lloc es presenten els resultats més pertinents de la literatura cient́ıfica
en relació amb l’atenció visual, els moviments oculars i la cerca visual. Els més
rellevants models d’atenció són discutits i integrats amb recents observacions sobre
la funció dels anomenats ’top-down constraints’ i l’emergent necessitat d’un model
estratificat d’atenció en què la saliència no és l’únic factor guia d’atenció. L’atenció
visual s’explica per la interacció de diversos factors moduladors, com ara objectes,
valor, plans i saliència.

S’introdueix la nostra formulació probabiĺıstica dels mecanismes d’atenció en es-
cenes reals per a la tasca de cerca d’objectes. El model es basa en l’argument que
el desplegament d’atenció depèn de dos processos diferents però interactuants: un
procés d’atenció que assigna valor a les fonts d’informació i un procés motor que
uneix flexiblement informació amb l’acció. En aquest marc, l’elecció d’on buscar la
propera tasca és dependent i orientada a les classes d’objectes incrustats en imatges
d’escenes reals. La dependència de la tasca es té en compte en explotar el valor i la
recompensa de contemplar certes parts o proto-objectes de la imatge que proporcionen
una esclarissada representació dels objectes en l’escena.

A la secció experimental prova el model en condicions de laboratori, comparant
les simulacions del model amb dades d’experiments de eye tracking. La comparació és
qualitativa en termes de trajectòries d’exploració i quantitativa, en termes de similitud
estad́ıstica de l’amplitud de moviments oculars. Els experiments s’han realitzat amb
dades de eye tracking tant d’un conjunt de dades públic de rostre humans i text, tant
amb un nou conjunt de dades de eye tracking i d’imatges urbanes amb text.

L’última part d’aquesta tesi es dedica a estudiar en quina mesura el model proposat
pot respondre del desplegament d’atenció en un entorn complex. S’ha utilitzat un
dispositiu mòbil de eye tracking i una metodologia desenvolupada espećıficament per
comparar les dades simulades amb les dades gravades de eye tracking. Tal configuració
permet posar a prova el model en la tasca de cerca de text molt semblant a una cerca
real, en la condició d’informació visual incompleta.
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Resumen

La búsqueda de objetos de texto en imágenes de escena reales es un problema abierto
y un área de investigación muy activa la visión por computador. Se han propuesto
un gran número de métodos basados en la extensión de los métodos desde el análisis
de documentos o inspirado en métodos de detección de objetos. Sin embargo, el
problema de la búsqueda de objetos en imágenes de escena reales sigue siendo un
problema extremadamente dif́ıcil debido a la gran variabilidad en la apariencia de
los objetos. Esta tesis se basa en los más recientes hallazgos en la literatura de la
atención visual, introduciendo un nuevo modelo computacional de visión guiada que
apunta a describir la búsqueda de texto en imágenes de escenas reales.

En primer lugar se presentan los resultados mas pertinentes de la literatura cient́ıfica
en relación con la atención visual, los movimientos oculares y la búsqueda visual. Los
mas relevantes modelos de atención son discutidos e integrados con recientes obser-
vaciones sobre la función de los denominados ’top-down constraints’ y la emergente
necesidad de un modelo estratificado de atención en el que la saliencia no es el único
factor gúıa de atención. La atención visual se explica por la interacción de varios
factores moduladores, tales como objetos, valor, planes y saliencia.

Se introduce nuestra formulación probabiĺıstica de los mecanismos de atención
en escenas reales para la tarea de búsqueda de objetos. El modelo se basa en el
argumento de que el despliegue de atención depende de dos procesos distintos pero
interactuantes: un proceso de atención que asigna valor a las fuentes de información
y un proceso motor que une flexiblemente información con la acción. En ese marco,
la elección de dónde buscar la próxima tarea es dependiente y orientada a las clases
de objetos incrustados en imágenes de escenas reales. La dependencia de la tarea se
tiene en cuenta al explotar el valor y la recompensa de contemplar ciertas partes o
proto-objetos de la imagen que proporcionan una rala representación de los objetos
en la escena.

En la sección experimental se prueba el modelo en condiciones de laboratorio,
comparando las simulaciones del modelo con datos de experimentos de eye tracking.
La comparación es cualitativa en términos de trayectorias de exploración y cuanti-
tativa, en términos de similitud estad́ıstica de la amplitud de movimientos oculares.
Los experimentos se han realizado con datos de eye tracking tanto de un conjunto de
datos públicos de rostros humanos y texto, tanto con un nuevo conjunto de datos de
eye tracking y de imágenes urbanas con texto.

La última parte de esta tesis se dedica a estudiar en qué medida el modelo prop-
uesto puede responder del despliegue de atención en un entorno complejo. Se ha
utilizado un dispositivo móvil de eye tracking y una metodoloǵıa desarrollada es-
pećıficamente para comparar los datos simulados con los datos grabados de eye track-
ing. Tal configuración permite poner a prueba el modelo en la tarea de búsqueda
de texto muy parecida a una búsqueda real, en la condición de información visual
incompleta.
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Chapter 1

Introduction

Searching for objects in real scene images is known to be a difficult problem due
to the huge variability of object appearance. The majority of computer vision ap-
proaches commonly address the problem of object detection by means of class-specific
trained object detectors [136, 16]. However, begin to appear, novel computer vision
approaches aiming to detect objects in the large, generating possible object locations
for use in object recognition [118].

Parallel to the research in computer vision, the fields of cognitive science and
psychology have made considerable progress addressing the principles of vision, aiming
to explain how the human visual system accomplish visual search task. Abstract
models of attention attempt to trace the ongoing cognitive process and describe them
at the functional and biological level. The study of eye movements proved to be of
great value as providing observable fact deeply related to the cognitive process [88] and
starting with the pioneering work by Koch and Ullman in 1985, several saliency based
computational models of attention have been proposed in the attempt to describe the
eye movements and attention deployment mechanism.

A basic aspect of the human visual system is its limited visual acuity that seems
to be a prerequisite for the efficient and effective navigation of the surrounding world.
The foveal area of the retina extends about two degrees across the center of the eye
and achieves the highest visual acuity in a vary narrow field of view. The nonuniform
resolution of the human eye sensor gives rise to the necessity of eye movements as a
mechanism to move the fovea on the part of the scene we need to see clearly.

Recent findings on the so called phenomenon of change blindness, highlighted spe-
cial experimental settings in which humans fail at the perceptual task of detecting
changes in the scene. As such it tells us about the strategies employed by the visual
system to quickly and accurately process the huge amount of information coming from
the outer world [91]. Change blindness is a surprising and counter-intuitive finding,
as the daily visual experience appears as a detailed and complete representation of
the world. Human vision is far different than a photographic snapshot of the world.
Investigation in the visual attention literature have clearly proved that vision is the
result of a dynamic process based on a dynamic representation of the perceived world
[90, 101]. Building on top of these findings, this thesis explore new ways computers
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can be instructed to tackle complex visual search tasks, and introduces a novel com-
putational model of eye guidance to describe the object search under a specific search
task.

1.1 Motivations

Attention based mechanisms are naturally embedded in the human visual system as
a mean for realizing an active vision process. In this perspective, first recall that, al-
though we deal with a perceptual task (e.g. a text localization/detection), our active
vision approach diverges from the traditional concept in computer vision that: sen-
sation, perception and cognition are isolated processes previous to actuation (passive
vision). Under the passive vision paradigm the perceptual system is limited to operate
using the raw data captured by the sensors “as is”. In active vision, we begin not with
a sensory stimulus, but with a sensorimotor coordination. It is the movement which
is primary, and the sensation which is secondary, the movement of the body, head,
and eye muscles determining the quality of what is experienced. Therefore, the active
observer does not obtain information by plain observation, but also by interaction
and selection of stimuli so to gain control of what to see and how to see it.

This point can be further described in terms of foraging metaphor. In a foraging
metaphor [10, 129] the eye is a forager moving across the visual landscape and feeding
on valuable information. The forager, moment to moment, is confronted with the
choice between “feed”, that is, performing local intensive exploration of the landscape,
or to “fly” by making an extensive relocation toward over the landscape. This choice,
in turn, entails the decision of whether to stay longer or to fly that is usually based
on incomplete information.

When the active vision approach may be of vital importance for the local-
ization/detection task? We focus here on the Visibility / Discriminability space,
a simplified representation as described in Fig. 1.1 that can be useful to provide some
hints on the issues discussed by Eckstein under the question [31].: What limits visual
search performance?

Visibility Visibility is related to the location of the potential target with respect to
the current focus of attention and related field of view (FOV) of the observer. In a
full visibility condition all targets are equally visible within the foveal region and the
observer just needs to perform a detection procedure. This is the case corresponding
to classic machine vision and pattern recognition procedure.

Visibility decreases when targets become located in the extra-foveal field of view,
and decreases even further in the extreme case when the targets are out of the FOV:
consider for instance yourself walking down an unknown street and looking for an
hotel: you will move your eyes, move your head, or even stop and turn your back
with your body to be sure you have not previously missed the target. That is actually
searching in the wild. The visibility is also a well studied problem in the visual
attention literature. From the searcher / forager standpoint full visibility corresponds
to perfect information of target location, thus the foraging problem is just to perform
an optimal tour while foraging.
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Figure 1.1: The problem of the searcher: Visibility vs. Discriminability in detection
task

Discriminability Discriminability relates to how difficult is to effectively com-
pute the likelihood of an object’s location. In high discriminability condition object’s
feature are fully informative, and a simple detection procedure is needed; low discrim-
inability entails that features we can extract are are not really distinctive, and in turn
this implies the adoption of a more complex detection procedure. From the searcher
/ forager standpoint discriminability is related to the deceitfulness of the target/prey.
Recalling Wang and Pomplun’s experiments, observers are attracted by text, but we
can deceive the observer, undermining his recall/precision performance by inserting
spurious patches that may have spatial-frequency text-like characteristics yet they are
not text.

Thus, if considering the Visibility / Discriminability space in the Figure 1.1 one can
feel quite comfortable in stating that in the full Visibility / Discriminability condition
we certainly do not need to resort to the active paradigm. On the other extreme, in
very-low Visibility / Discriminability, we are forced to exploit an active approach; in
terms of foraging it means that in null visibility condition the forager must rely on a
stochastic search. Other cases are probably in between these two.
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1.2 Objective of this work

This thesis is part of a larger research aiming to develop state-of-the-art human in-
spired text localization algorithms able to cope with condition of incomplete visual
information and high deception, as in a real-life 360 degree search. To such end the
attention mechanisms are implemented as an active vision mechanism to explore and
detect potential objects of interest. The goals of this thesis are:

1. investigate the mechanism behind the attention allocation in real scene images
and provide a plausible computational model able to describe how some top-
down constrains can interact with stimulus driven saliency. We are especially
interested in the task of object search and specifically text-object search in street
view images.

2. describe statistical properties of model generated and eye tracked gaze shifts as
closely as possible, including inter-individual scan path variability.

3. measure the extent to which the model of attention can account for human
eye movements in a close to real life experimental conditions, accounting for
incomplete visual information condition.

1.3 Contributions

1. Proposed a novel computational model of eye guidance extending the exist-
ing models of attention to include a multilevel description of the scene at the
saliency, object and value level. The problem of text search is then tackled as a
foraging problem in which the ’foraging eye’ moves across a multilevel descrip-
tion of the scene, encoding salience and task-dependent information oriented to
classes of objects present in the scene. The model, tested in laboratory experi-
ments, proved to account well the statistical properties of gaze shifts.

2. Studied to what extent the model can account for human eye movements in
condition of high deception and incomplete information. Developed an ad-hoc
methodology to compare model simulated eye data with the human eye data
from mobile eye tracking recordings.

3. Created two new eye tracking datasets:

(a) an eye tracking dataset for text detection in real scene images to study
the influence of the task on attention deployment. Eye tracking data are
recorded under a free viewing and a look for text experimental condition,
using a traditional desktop eye tracker.

(b) An eye tracking dataset for text search in outdoor setting to investigate
eye movements under a condition of incomplete visual information in a
real-life 360 degree search. Data are collected by making use of a mobile
eye tracker to allow low constrained experimental conditions and freedom
of movements for the subjects under test.
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1.4 Organization

The thesis is organized as follows. In Chapter 2 we will first review the state-of-the-
art on attention modeling. The content is a logical reorganization of the relevant
contributions made in the visual attention literature regarding eye movements and
visual search, constituting the backbone of our approach to attention modeling. In
Chapter 3 we will describe the proposed computational model of attentional eye guid-
ance and a rigorous experimental evaluation on the gaze shift amplitude distributions
will be carried out in Chapter 4. In Chapter 5 we will show to what extent the
proposed model of attention can mimic observer’s oculomotor behaviour in outdoor
settings. Chapter 6 will conclude this thesis by summarizing the main contributions
of the work presented hereafter. It will also point out the limits of this model and
the future research directions that this thesis may open. Finally, Appendixes A will
present additional material for the interested readers about foraging models and Lévy
flights.





Chapter 2

Eye Movements, Attention and

Visual search

2.1 Eye Movements

The visual field can be divided in three regions: the foveal, parafoveal and peripheral.
The fovea is the central area of the retina, extending about two degrees across the
center of the eye, and achieves the best visual acuity. Moving from the fovea toward
the periphery, the visual acuity drops quickly as shown in figure 2.2. The parafovea
surrounds the fovea and is poorer in visual acuity although it extends out to ten
degrees off-center, the periphery is the largest region and the one with the lowest
acuity. Such limited visual acuity give rise to the necessity of eye movements to bring
the fovea on the part of the scene we need to see clearly. Several kinds of movements
have been observed although their role is not completely understood [63].

Figure 2.1: Schematic diagram of the human eye, with the fovea at the bottom. It
shows a horizontal section through the right eye. From Wikipedia.

13
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Figure 2.2: The relative acuity of the human eye quickly drops as as moving from
the fovea toward the periphery. Image from Wikipedia.

Saccades are the fastest eye movements, they allow the jumping to different por-
tions of the scene. During saccades vision is inhibited and no visual information is
gained. The phenomenon goes under the name of saccadic suppression [67] and it is
completely automatic and volition independent. From a dynamical point of view sac-
cades differ from other eye movements by their ballistic nature. The velocity rapidly
rises during the saccade to a maximum that occurs slightly before the midpoint of
the movement and then drops at a slightly slower rate until the target location is
reached. According to previous experiments reported by Rayner [88] the velocity of
the saccade is a monotonic function of how far the eyes move. A 2 degrees saccade
typical of reading takes around 30 ms, whereas a 5 degrees saccade, typical of scene
perception, takes around 40-50 ms.

Pursuits eye movements are the movements initiated to follow a moving target.
They are an active response to the stimulus, able to synchronize the fovea’s speed
to the object’s cues such as speed, attention, expectation. Pursuits are probably
completely involuntary movements as it does not seems to be possible initiate pursuits
without a proper stimulus. Pursuits movements are slower than saccades and, can
be interlaced by some saccades to catch up with the target when its moving too fast.
Recent studies have begun to blur the classical line between pursuits and saccades
[63] and evidence has been gained for a close coupling between the control of selection
for pursuits and saccades.

Fixations relate to an almost still eye condition, typically lasting about 200-300 ms.
In order to maintain stable the image on the retina during fixations a slow control is
continuously performed and there is a broad agreement that image motion on retina is
crucial for vision and if too much motion degrades resolution, too little image motion
may lead to image fading [63]. Microsaccades are saccades during fixations of a very
small length (15 min arc) that do not seem to be due to image stabilization nor due
to ideal generation of useful image motion. Recent research suggests that their role
seems to be more related to the fovea repositioning on close details, that is exactly
the role played by saccades on a bigger scale [63].

Some other movements, such as Vergence and Vestibular, are instead compensation
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movements useful to keep stable the image on the retina. Vergence are inward eye
movements occurring when, in order to fixate on a close object, we move our eyes
toward each other. The Vestibular are instead rotational eye movements occurring to
compensate head movements in order to maintain the same direction of vision.

2.1.1 Eye movements and perception

Thinking of perception as the task of attending visual information, it is clear that
performance depends on the reliability of the available signal. Studies on the contrast
sensitivity and visibility models provided a sound basis to measure the information
gained by looking to specific locations. Work by Geisler [70] supports the thesis that
humans select fixation locations in order to maximize the information gain more than
to account for the location having the highest probability to be attended. Observers
had to search for small Gabor targets in the midst of pink random noise, Geisler
found that human performance closely matched the performance of an ideal Bayesian
observer using just the knowledge about the visibility map to decide where to look
next. [70]

Although the evidence provided by Geisler does not directly demonstrate that
humans follow the exact computations of the ideal observer, it remains that eye
movements and perception are strongly coupled. A single object starting to move is
a typical example of signal able to trigger a saccade and consequent smooth pursuits
to follow the movement. As such the moving object has to be visible enough to stand
out from a noisy environment.

Other studies by Araujo et. al. [1] proposed that the next saccade generation
might not be optimal in terms of information maximization. Authors used a simple,
two-location visual search task and found that saccadic patterns were not much in-
fluenced by the probability of finding the target, instead a stronger correlation was
observed with spatial and distance stimulus distribution. Their findings support the
thesis that eye movements have a built-in preference to minimize the effort of cog-
nitive and attentional load in saccadic planning and observed a preference to make
saccades to nearby locations. Than looking at these findings it seems that the eye
movements do not follow any simple strategy and eye movements cannot be explained
only on the basis of perceptual stimulus. More complex mechanism are involved and
attention is an often used concept to describe the eye movement guidance.

2.1.2 Eye movements and attention

The relationship between eye movements and attention has been extensively investi-
gated. In reading task or any visual search tasks, the covert and the overt attention
(eye location) are tightly linked [17] and the eye movements are commonly used as
a measurements of covert attention during complex cognitive processing tasks [89].
Although it seems we can shift attention independently from the eye movements and,
as a matter of fact, the planning of an eye movement is thought to be preceded by a
shift of covert attention to the target location before the actual movement is deployed
[88, 46]. What actually attracts attention, the role of covert attention and in general
how eye movements are planned is a wide research area and the debate is open. Back
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Figure 2.3: Yarbus. Studies on saccadic eye movements and subject’s scanpath
under several different task conditions.

in the seventies the associationist theories asserted that the experience of the whole is
built by combining elementary sensations, on the other hand the Gestalt psychologists
supported synthetic theories claiming that the whole proceeds its parts.

It has been thought that features come first in perception. The feature integra-
tion theory by Treisman [117] largely influenced research. An early parallel integration
of features such as color, orientation, spatial frequency, brightness and direction of
movements provides an initial coding of the scene. Then a spotlight of focused atten-
tion integrates the features by serially directing attention to the locations creating an
unitary percept.

Yarbus [132] first performed important studies of saccadic eye movements showing
that the subject’s scanpath is highly influenced by the task that the observer has to
perform. Some scanpaths from the Repin’s painting The Unexpected Visitor are
shown in Figure 2.3. Note the difference between plot 2 and plot 3 relatively to the
task estimate material circumstances of the family and the task give the age to the
people. It shows that subjects use scanning patterns that are quite dependent to the
task at hand and fixations are highly linked to regions of interest.

At this regard the selection of a fixation points appears to be driven by a bottom-
up process accounting for the saliency of image features and a top-down process
producing a task-dependent and volition-controlled allocation of attention.
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2.2 Vision and scene representation

One of the open problems in vision is about the kind of representation of the world
might be retained by the brain. The problem of the brain’s representation of the scene
is linked to the capability of predicting the interesting fixation locations, based on a
partial knowledge of the scene. In the observable facts vision is made up by frequent
saccadic relocation while the retinal information has high resolution in the small
central fovea, rapidly degrading radially towards the very low resolution peripheral
vision, as shown in Figure 2.2.

An example used by Ballard [96] to describe the ’Vision problem’ is the task of
looking for a cup while preparing a cup of coffee. If we assume that the cup is not
placed in the fovea, more likely be placed somewhere in the peripheral region of the
retina, that the peripheral visual acuity will probably not be enough to recognize and
localize the object. In general the cup could even be completely outside the field of
view, so that eye movements would be necessary to bring the cup in the foveal region
of the retina.

If the brain were able to retain all the visual information coming from the retina,
then it would have a quite complete map of the surroundings, in a kind of very detailed
picture-like photographic representation. Although the latter is correspondent to the
daily experience, there are some practical and experimental arguments against it: first
is regarding the huge amount of information would be necessary to handle even for
short-time scene retention, and apart that the difficulty to dynamically update the
representation over the time and as soon as change takes place into the scene.

On the other hand recent research provided strong evidence to the theory that vi-
sion is not a picture-like sampling of the scene. Such evidence comes from the “Change
Blindness” phenomenon: it has been observed that in certain circumstances, humans
are unable to perceive changes happening in the scene, although the changes are big
and affecting to semantically reach part of the scene. The Change blindness was first
associated to the saccadic suppression of perception during saccadic eye movements
but it has been recently proved that the blindness to change is also occurring when
eye if fixated on the point of change[101].

The most common change detection paradigm is the so called “flicker paradigm”
in which two images, one representing the full scene, the other the scene missing of a
meaningful part, are shortly shown on a screen alternated by a brief gray field (scene
presented for 240ms and gray field for 80ms). Experiments proved that the changes
were hard to be detected even if participant were asked to report the occurrence of
any change to the scene, and to report it by pressing a button, as soon as the change
was perceived. In some cases participants needed a continuous stimulus repeated
up to 1 minute before becoming aware and able to report the change in the scene.
The phenomenon has been proved to be a quite general one, not depending on the
particular kind of images, not dependent to the kind of blanking interval and colors
and occurring for a wide variety of changes [91, 90].

Change blindness has first be used to sustain that we do not construct any detailed
picture-like internal representation of the scene [77]. Because we have highly mobile
eyes we can point directly to the world to extract the information we need and the low
cost of this would make not necessary to interrogate any internal representation. [76].
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Figure 2.4: Triadic model of attention. From Rensink [91]

And although the motion signals associated to the change should attract attention to
specific location making changes visible, the observed inability to perceive changes in
the scene in presence of a brief blanking, could be explained as a result of the induced
motion signal swamping the change signal. A possible solution is given by the Triadic
Model of Rensink and described in the following section 2.2.1.

2.2.1 Triadic architecture of Rensink

Building on top of the experimental evidence coming from the flicker paradigm [91],
Rensink suggests that little of the retinal information is stored in the brain, so vision
is the result of a dynamic process based on a dynamic representation of the perceived
world, in which humans can only attend a very limited part of the scene available
at a certain moment, although the daily experience is to have detailed and complete
representations of the scene.

Vision is described by Rensink as the result of the interaction of three largely
independent systems. An Early-level process receives continuously new retinotopic
information and continuously creates detailed and volatile proto-objects. These proto-
objects, consisting of some aggregate information, constitute the only available infor-
mation that is passed to the higher attentional and non-attentional systems.

The non-attentional system or “Setting system” performs an overall assessment
referred as the Gist and Layout of the scene. The Gist is thought to account for the
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kind of the scene, the Layout is instead related to the spatial organization of proto-
objects. The Setting system is than more stable over the time than the proto-objects
and is thought as the part of the Vision system responsible of the making a stable
perception of the scene out of the continuous flux of proto-objects. Gist and Layout
describe the whole scene at the first sight, even before any of its parts have been
perceived at a high resolution, and are supposed to be quickly assessed from a low
resolution input [73].

The attention system or Object system is the responsible to form a stable object
representation. According to the “coherence theory” the focused attention give rise to
the perception of the object by keeping together the proto-objects with high degree
of coherence over time and space. As soon as the focused attention releases the
proto-objects, the object loses its coherence.

The model does not provide a computational procedure to implement such focused
attention mechanism, and the description is provided in figurative terms “as a hand
collecting some of the proto-objects”. On the other hand it is very clear that the
attentional system needs to be guided by the Gist and the Layout will provide a
guidance (or in different words we would say providing a context) conditioning which
proto-objects to grab next.

2.2.2 Virtual representation

From the point of view of explaining Vision an interesting question regards “the stable
perception of the world” how humans perceive the scene as complete, coherent and
rich in details, although scenes are never seen completely.

This is well explained by the model of Rensink in terms of Virtual Representation
that is thinking Vision as a “just in time process able to provide detailed represen-
tation of the scene whenever required”. In such a way humans do not notice these
limitations of their own Visual system, because of the coordination of the sub sys-
tems of the triadic model (and in particular the coordination of attention and selection
of proto-objects) allows to get the right information from the world just when it is
needed.

The Virtual representation is thought in analogy to the way computer networks
are designed, and computer appears to contain all the information available in the
network as long as the information can be instantly accessed when requested. It’s a
powerful scheme in which the complexity of the system is dramatically reduced at the
cost of having an partial representation that might sometimes turn into an incoherent
one.

2.3 Computational models of attention

Many different computational models of attention have been presented. In a recent
survey have been listed more than 65 models, addressing visual attention as a saliency
based mechanism [12]. Attention is generally thought as a combination of scene driven
bottom-up factors and cognitively task related top-down factors. Here we look first
to the pure saliency based models and than we look at the current attempts to model
top-down constrains.
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2.3.1 Saliency based models

The Feature Integration Theory by Treisman & Gelade [117] first described a way to
account for the way human attention is attracted by features. Such theory constituted
the basic building block for many attention models, first the model proposed by
Koch and Ullman [60] which formalized the theory in a feed-forward model combining
intensity, color, orientation features to create a Saliency Map representation.

The model proposed by Itti [53, 52] include a multilevel pyramidal representa-
tion of the input image and features are extracted at all the pyramid levels from the
color channels (red, green, blue, yellow) and from the intensity, and local orientation
maps. A center-surround mechanism computes within-map differences creating pyra-
midal feature maps that are combined and normalized to create the conspicuity maps.
The Saliency Map is than the linear combination of the conspicuity maps. Several
weighting factors modulate the contribution of the conspicuity and feature maps. A
winner-take-all neural network selects the most salient location and an inhibition of
return mechanism allows to detect all the salient locations.

The concept of saliency map proved to be useful to predict the location likely to
be attended and has been largely used, providing a topographic map of locations of
interest. Several models have been developed using the basic scheme by Itti. Several
kinds of features have been used to give rise to conspicuity maps and different ways
to combine the features have been explored. All those computational models focus on
the bottom-up contribution to attention and are here referred as the saliency based
computational models of attention.

Bruce and Tsotsos [15] proposed a bottom-up attention model based on Infor-
mation Maximization, using the Shannon’s self-information measure for calculating
saliency as −log(p(f)), where f is a local visual feature vector. Itti and Baldi [51]
defined a Bayesian surprise map, measures how data affects an observer, in terms
of differences between posterior and prior beliefs about the world. Only data ob-
servations which substantially affect the observer’s beliefs are accounted as long as
yielding surprise. Surprise map are irrespectively of how rare (or informative in Shan-
non’s sense) are the data observations. Kienzle et al. [57] proposed to learn a visual
saliency model directly from human eye movement data. Instead of using Gabor or
Difference-of-Gaussians filters, they directly use image intensities to train linear clas-
sifier. The saliency function is than determined by the fact that it maximizes the
prediction performance on the observed data. The advantage of this approach is that
the features are not predefined in the system.

2.3.2 Top-down modelling

Top-down factors are universally accepted to be an important modulating factor of
eye moments, and complex cognitive process are thought to be responsible of such
effect that. Pioneering work by Yarbus 2.1.2 proved that the task at the hand and
the semantic content of the scene, have a dramatic effect on the way humans look at
the scene and the visual search (specifically we observe the scanpath) changes among
different tasks. Some computational models have tackled the problem of modelling
top-down factors by 1) modulating the model’s weights 2) accounting for the context
3) accounting for objects:
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Modulating the model’s weights. A way to take into account the top-down
constraints (attention) is to modulate the weights in a saliency based model to bias
the allocation of attention towards the object of interest. When looking for a green
vertical object a higher contribution could be assigned to greenish color features and
to almost vertical directions. Such approaches take inspiration from the guided search
theory [130, 131] initially developed by Wolfe. Similarly Desimone and Ducan [29]
account for the top-down factors by modulating the weights of the model and making
different balance of how the conspicuity maps contribute to the final saliency map.
More recently the discriminant saliency approach described by Gao [37] derives an
optimal saliency detector by looking at the discriminant power of a set of features
in a center-surround mechanism with respect to a two-class classification problem:
the stimuli of interest and the non interest stimuli. Saliency decisions are taken in
a optimal decision-theoretic sense, comparing the classified locations and taking the
lowest expected probability of error.

Accounting for the context. A different way to take into account top-down
contribution is by acknowledging the modulating power of the context in how humans
look at the locations of their interest. Key questions then are about how to model
the top-down contributions and how they combine with the bottom-up ones.
Torralba and Oliva [115, 114, 116, 75] combine bottom-up saliency contribution and
the top-down scene context. In the contextual guidance model, the saliency is derived
as P (f |FG) where FG represents the global image features and is related to the prob-
ability of presence of the target object in the scene (gist). Contextual contribution
instead is modelled as a learned association between target locations and global scene
features. The saliency information is so modulated by the scene prior and the two
maps are combined up according to a learned weight to avoid that the product could
be constantly dominated by one factor. Such a model outperforms a purely saliency
based model in predicting human fixation locations in a search task.
In the work by Zhang et. al. [135, 134], the saliency of a point z is defined as
P (C = 1|F = fz, L = lz), where C denotes the class label associated to z, L denotes
the location of a point, F be the visual features. Using the Bayes rule and making use
of conditional independence hypothesis the saliency of a point comes of to be defined
by three components: a self information of the features making rarer features the
most informative, the likelihood term that favors feature values that are consistent
with the knowledge of the target and third a location prior independent of visual
features and reflects any prior knowledge of where the target is likely to appear.
Ehinger et al. [32] use a scheme similar to one used by Torralba to account for
human eye movements in people search task in natural scenes. They jointly model
the contribution of bottom-up saliency, gist, and object features by linearly integrating
the three sources of guidance: M(x, y) = MS(x, y)

γ
1+MT (x, y)

γ
2+MC(x, y)

γ
3 in which

MS(x, y) is the bottom-up visual saliency, MT (x, y) the learned visual features of the
target’s appearance, and MC(x, y) a learned relationship between target location and
scene context. The exponents (gamma1, gamma2, gamma3), act as weights and are
required and learned from the data to avoid that the combined distribution could be
dominated by one of the sources.

Accounting for objects. The top-down constraints can then be accounted by
directly looking to the presence of specific objects. Recent research proved that faces
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as well as text have strong attractive power [123], by eye movements measuring it
was observed that objects predict fixations better than saliency maps built on early
features such as color, contrast, orientation, motion [33]. The work by Cerf et. al.
proved that text and faces attract fixation and independent of the task, are even
difficult to be ignored in free viewing condition. Enhancing the model of Itti by the
faces and text conspicuity maps, as coming from trained face and text detractors,
improves the eye fixation location prediction [19, 20, 21].

Other. Some other approaches aimed to describe vision as inference on a graphical
model. Chikkerur et al. [25] proposed a model of attention similar to the model of
Rao et al. [86] to jointly model features, object identity and locations, in which
attention emerges as the inference in a Bayesian graphical model. The model proved
to explain well some spatial-attention psychological mechanism as well as predict
human fixations in free viewing and search tasks.

2.4 Criticism to the saliency based models

Saliency based models have been used to predict eye fixations quite successfully in
artificial stimuli arrays. To a large extent, the psychological literature was conceived
on simple stimuli, nevertheless the key role that the above models continue to play
in understanding attentive behaviour should not be overlooked as long results from
psychophysics experiment do not directly extend to real scene. It has been proved
in the specific case of natural images, and in particular those for which no related
top-down task is involved, the features seem to be discriminative enough to reliably
predict the fixation locations as proved by work on saliency modelling [53] [52].

Although when moved into more complex stimuli, like street view pictures, these
models do not predict well fixation locations. The adoption of complex stimuli has
sustained a new brand of computational theories, though this theoretical development
is still at an early stage [36]. Human generated scanpath exhibit inter-subjects and
intra-subjects variability, are dependent to the image stimulus in a saliency-based
attention capture fashion, dependent on the task at hand [132] and, more in general,
perception of complex scene is based on cognitive task that may completely over-
ride saliency. To this extent it’s not surprising that nobody has really succeeded in
predicting the sequence of fixations of a human observer looking at an arbitrary scene.

When saliency fails to predict eye movements In walking experiments
saliency based attention models do not predict well fixations, Rothkopf and Ballard
showed that in artificial walking experiments in which participants had to avoid ob-
stacles [96], most of the fixations are direct to the objects and not to the background
scene as predicted by saliency. Similarly in ball sports the expert players make sac-
cades to the places where they expect the ball [4] as well as in sandwich making [43]
some of the fixations are even directed to empty space in relation to where the object
will be placed.

Objects predict fixations. Einhäuser, Spain and Perona [33] eye tracked human
observers while observing photographs of common natural scenes and proved that
fixated and control locations can be better distinguished by object-level information
than by image saliency, bringing evidence of how the early saliency plays a not so
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central role in fixation generation.
Saccadic bias. From a perception point of view it’s not clear the degree to

which eye movements maximize the information gain (as discussed in Sec. 2.1.1). In
this respect Tatler observed that human and model generated scanpaths substantially
differ in their statistical properties, specifically the saccade amplitude plots present
quite different characteristics revealing how the saliency model does not capture the
underlying mechanisms of human perception [110]. From a quantitative point of
view Tatler showed that the saliency models are able to predict eye fixations just a
little better than chance [111]. Employing an edge density classifier Tatler measured
the performance as a proportion of correct classification and proved that including
systematic tendencies will speed up the system performance.

Saliency based models predict well eye fixations when a large visual signal present
in the environment acts as a proxy for visual attention. However when moving to the
real world such large signals are no more present or masked by a number of signals
acting at the same time. Tatler argues against the dominant role of saliency [110]
and about the role of such large signals and how often attention is captured by these
large signals in ordinary oculomotor behavior.

Picture-viewing paradigm. There is than a methodological problem related
to the measurement of eye movements. The picture-viewing paradigm has long been
used to investigate about how humans gaze in natural environments, however some
bias may be introduced by the paradigm itself more than the visual stimulus. The
central bias [109] observed in the fixation distribution may be due to the framing
constraint introduced by the monitor used for the stimulus display. In addition the
dynamic range of a picture is much less than a real scene, motion cues and many
depth cues are absent, the observer viewpoint is fixed and decided by the viewpoint
of the photographer introducing compositional biases. This rises the question about
the use of picture-viewing paradigm and its general validity in extending results to
the vision in real world.

Inhibition of return. A practical problem regarding the use of saliency based
model in dynamical scenes has been addressed by Henderson [45]. Since the traditional
model works with static images, the saliency map can be computed pre-attentively
and all the successive saccades be computed on the basis of such a map. However in
a dynamic scene the saliency map has to be updated or computed several times. So a
single map could be retained over multiple fixations, or a new map can be computed
for each successive fixation. In the latter case it rises the necessity to have a mechanism
able to handle the inhibition of return across a number of fixations and to assign to the
correspondent point in the newly generated map. In general the inhibition of return
even in static images poses a big problem in the possibility of having re-fixations. A
transient inhibition will allow cyclic repetition of the scanpath leading to unnatural
repetitive scanpaths, instead a long lasting inhibition of return will make it impossible
to reproduce the typical human behavior. E.g. several re-fixations of a location are
observed by Ballard in a block-copying task [5].
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2.4.1 The layered model of Schütz

In the light of a series of limits shown by the use of saliency to predict fixations, it
raises the question of how and when it happens that saliency can be overridden by
top-down constraints? and how these constraints should be modelled?

Schütz suggests that the control of saccadic target selection could be produced by
a layered model in which separate factors act at different levels of visual processing
[97], in which the saliency is only one of the factors. A better explanation of visual
processing can be given in terms of several modulating mechanisms contributing to
the fixation location selection at different levels. These mechanisms are related to the
concept of object, value and plans.

Figure 2.5: The model of Schütz. Attention deployment described at several levels
of visual processing.

Individual maps may exist for each factor and the levels of saliency, object, value
and plans might be somehow integrated through a number of local interactions in
order to make a common priority map closely linked with the saccadic eye movements
control. The interaction among the different levels of processing should be the a
research priority to investigate perception and eye movements.

2.4.2 The Object level

Object could predict fixation locations better than saliency in a number of real world
task. Thinking to the objects as material things would allow to move in an action-
perception loop in which eye movements are basis object manipulation and scene
interaction. In such a context saccadic target selection could be driven by the object’s
suitability for a given task. On a compartmental line of thinking the abstract concept
of familiarity and suitability of an object could be claimed to justify specific eye
movements, as well as more skilled or less skilled oculomotor behavior. In a real world
experiment involving the interaction with objects it’s quite intuitive to think of the
objects itself as the triggers for saccadic target selection. The only features without
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the concept of object would not allow to justify some task related eye movements.
Support to this theory comes from the work of Perona proving that object plays

a relevant role in fixation generation [33] fixated and control locations can be better
distinguished by object-level information than by image saliency. Under specific tasks
such as artificial walking [96], text reading or people counting search task the saliency
contribution is completely overridden by the contribution of the object.

It’s well known that faces and text in general are playing an important role in
saccade control regardless to the task [19]. Than a practical approach is to enhance
saliency map by object detection algorithm to improve the fixation prediction. Cerf
et. al. [20, 21] found that using face detection algorithm to extend the saliency map
led to improved gaze prediction for images containing faces.

Object priming. Some neurophysiological studies have shown by making Elec-
troencephalography (EEG) recordings that humans are capable of detecting very
rapidly the presence of animals (or other objects) in a scene; the time for such detec-
tion is less than the time needed to make a saccade [113]. Recently work of Drewes,
Trommershäuser, and Gegenfurtner [30] have shown that humans are able to make
animal detection and estimated the visual processing time in 120 ms. Such detec-
tion were performed on realistic photography containing only one animal each and
authors observed that observers were able to saccade to the animal directly and in
many cases the saccades were directed to the animal’s head. They also showed that
a saliency-based algorithm such as the computational one by Walther and Koch [122]
cannot account for the human fixation performance.

2.4.3 The Value level

Studies have been done in learning theory accounting for the consequences of hands
and body movements to actively manipulate the environment with immediate positive
or negative consequences, nevertheless a similar investigation is lacking on the side
of eye movements. Schütz observed that a fundamental contribution to the selection
of saccade location should come from the value of the fixating to a specific location.
The value of an eye movement is understood as the positive or negative consequence
of making a change to the environment. At this point it’s worth underline that
eye movements, although not directly making manipulation of the environment, they
determine changes in the field of view, that is affecting to which portion of the scene
to look at than which part of the scene take into account. Only the fixated part will be
attended and processed, the other parts will be ignored. In this sense eye movements
select the visual information and be able to make good eye movements allows to
gather relevant information from the scene. Value is than related to a possible reward
from the having done good eye movements.

Navalpakkam, Koch, Rangel, and Perona [72] investigated the impact of value
and saliency on choice. In psychophysics experiments, human subjects attempted
to maximize their monetary earnings by quickly picking items from a brief display
containing distractors and two salient and valued targets. Observers picked the target
that maximized the expected reward, not the more salient target nor the more valuable
target, although decisions are affected by both saliency and value. Results proved to
be consistent with the predictions of an ideal Bayesian observer
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From this perspective the contribution of the Value assumes the characteristics of
a mixed bottom-up and top-down mechanisms. According to this way of thinking the
next fixation location is only partially driven by saliency. We are embracing a more
dynamical view of perception, a view that is accounting for an action-perception loop,
and suggesting to think of Value as a predictive mechanism able to evaluate different
possible eye movements, and aiming to gather (the most) relevant visual information
needed to better perform in the environment.

2.5 Systematic tendencies

Eye saccadic movements are not randomly distributed, different driving mechanisms
have been hypothesized to be responsible of the driving of fixation location selection.
Only recently some research has been directed to assess the capability of the human
visual system to perform eye movement from a biological point of view. Tatler and
Vincent argued that as well as certain combination of finger movements are much
more frequent than others [50], in a similar way certain eye movements should be
more likely than others and that such knowledge on behavioral bias in eye movements
might have a high informative content by itself [111].

Eye movement recordings reveal that human generated scanpaths have some statis-
tic regularities: saccades follow a positively skewed distribution of amplitudes and the
horizontal and vertical directions seem to be preferred to diagonal saccadic directions.
Tatler names those regularities as oculomotor biases, since they seems to be due to
specific characteristic of the visual system.

Saliency based models (e.g. the Itti model) produce scanpaths with statistical dis-
tributions (saccades amplitudes and orientation) completely different from the human
ones. Saccade amplitude looks Gaussian distributed and no long tails are observed,
while saccadic direction are equally distributed in all directions [110].

Figure 2.6: Amplitude distribution of gaze shifts. Plot of the data from eye tracking
experiments on 6 subjects and 110 images.
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These saccadic biases can be further analyzed in relation to the direction and
magnitude of a saccade. Humans have a clear bias in making horizontal saccades
instead of vertical ones, and to make vertical saccades more frequently than oblique
saccades. Moreover there were more longer saccades in the horizontal direction than
for the overall distribution. In contrast vertical saccades are more frequently of smaller
amplitude than either the overall distribution or horizontal saccades. See Fig. 2.6.

These saccadic biases cannot be ignored by computational models of attention
aiming to predict fixation locations, Tatler and Vincent show that a model based
only upon systematic tendencies outperforms saliency-only based methods. The best
performance is obtained putting together saliency and systematic tendencies.

Such systematic tendencies are responsible for positively skewed saccade length
distribution as well as the non-isotropic direction distribution. The resulting oculo-
motor behavior allows local search on interesting locations and then wide relocation to
new locations performing a human inspired optimal search. Such resulting behavior
is similar to the animal foraging behavior.

2.6 Discussion

Let us summarize the main points tackled in this chapter. First we introduced a
review on eye movements and put it in relation with the peculiarity of the limited
foveal visual acuity. To this end the saccadic eye movements seems to be finalized to
bring the fovea on the part of the scene we need to see clearly. However it’s not clear
up to which extent the eye movements follows an information maximization strategy,
as supported by Geisler. Eye movements seems to follow complex strategy and the
only perceptual stimulus seems to be not sufficient to explain the eye movements
in the large. Pioneering investigation by Yarbus showed that recordable human eye
scanpath are largely affected by the task. Different scanning pattern are observed in
relation to the information needed to be extracted, asking to account for more general
concept as the scene context and the relationships between objects.

Further investigation in the psychological field addressed the problem of internal
representation of the scene. From such point of view it seems that human do not re-
tain a picture-like representation as it would be incompatible to the observed Change
blindness phenomenon. In such sense vision is more likely to maintain an intermedi-
ate representation to which Rensink refers as proto-objects. In this respect we take
the Triadic Model of attention as a general scheme towards the implementation of
computational model of attention able to account for eye movements in complex and
cluttered scenes.

Current saliency based models address well artificial stimulus array and proved
good performance in natural scene with little or no context. However it emerges the
need of models able to better predict fixations in cluttered environments such as street
view images. How the top-down constrains should be modelled and how they could
interact with stimulus driven saliency are open problems under debate. Some progress
in this direction have been made by approaches aiming to embed object detection in
the saliency description, and the approach of Torralba accounting for the Gist as a
top-down mechanism able to modulate the bottom-up saliency-map description.
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From the cognitive science field some progress in modeling of top down constraints
have been recently made by Schütz calling for a layered model of attention in which
Saliency is treated as one of the factors guiding attention. Visual attention could be
than explained by the interaction of several modulating mechanism, such as Objects,
Value, Plans and Saliency. This is in agreement with several studies which led evidence
to the role of objects in attracting attention, although from the computational point
of view it remains open the problem of how to make a rough object detection from low
resolution images. The Value is, instead, a seldom used concept in computer vision,
although promising as allowing to close the action-perception loop. In such a sense
the Value can be interpreted as a predictive mechanism able to evaluate different
possible eye movements, and aiming to select the best one.

Complementary to this some recent investigation showed the existence of some
systematic tendencies in eye movements. Tatler et al. proved that only accounting
systematic tendencies is eye movements would allow to predict eye movements better
than using the only saliency. Novel models of attention should be able to include such
oculomotor bias and use them as efficient/human inspired search mechanism. In this
sense it seems to delineate two components: a perceptual one, as described at multiple
levels of Objects, Value, Plans and Saliency, and a motor one described in terms of
eye movements systematic tendencies. We propose that the model of Rensink might
be the glue between the perceptual and the motor component, and such modeling
will allow to better describe the mechanism behind the attention allocation in street
view images.



Chapter 3

Modeling Task-dependent Eye

guidance

In this chapter, we introduce a model of attentional eye guidance based on the ratio-
nale that oculomotor control depends on two interacting but distinct processes: an
attentional process that assigns value to the sources of information and motor process
that flexibly links information with action. In such framework, the choice of where
to look next is task-dependent and oriented to classes of objects embedded within
pictures of complex scenes. The dependence on task is taken into account by ex-
ploiting the value and the reward of gazing at certain image patches or proto-objects
that provide a sparse representation of the scene objects. The different levels of the
action-perception loop are represented in probabilistic form and eventually give rise
to a stochastic process that generates the gaze sequence. This way the model also
accounts for statistical properties of gaze shifts such as individual scanpath variability.

3.1 The model

In the light of the discussion provided in Chapter 2, it is convenient to phrase the
Where to look next? question in the language of stochastic processes. To such end,
we represent the sequence of gaze positions through the time-varying random variable
(RV) rFOA(·), and the problem turns into the issue of how to sample the new gaze
position rFOA(t+1) when at time t gaze is deployed at rFOA(t), the latter being the
center of the focus of (overt) visual attention (FOA). In other terms, the transition
rFOA(t) → rFOA(t+1) is a transition whose dynamics is that of a stochastic process.

In this perspective, denote A(t) the ensemble of time-varying RVs defining the
oculomotor action setting, while W(t) stands for the ensemble of time-varying RVs
characterising the scene as actively perceived by the observer. We are interested in
knowing the probability of shifting the gaze to the new location rFOA(t+1), namely
P (rFOA(t + 1)|A(t),W(t), rFOA(t)) based upon all the information that the visual
system has available to it, that is the current gaze location rFOA(t), the scene W(t)
as perceived from image I gazed at rFOA(t), the oculomotor action setting A(t) chosen
under the given task T.

29
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To solve this problem, our model relies on the following assumptions:

• The scene that will be perceived at time t + 1, namely W(t + 1) is inferred
from the raw data, here in the form of a picture I, gazed at rFOA(t+ 1) under
the task T assigned to the observer, and is conditionally dependent on current
perception W(t); thus, the perceptual inference problem is summarised by the
conditional distribution P (W(t+ 1)|W(t), rFOA(t+ 1), I,T);

• Task T being assigned, the oculomotor action setting at time t + 1, A(t + 1),
is drawn conditionally on current action setting A(t) and the perceived scene
W(t+1) under gaze position rFOA(t+1); thus, its evolution in time is inferred
according to the conditional distribution P (A(t + 1)|A(t),W(t + 1), rFOA(t +
1),T).

• The action setting dynamics A(t) → A(t+1) and the scene perception dynamics
W(t) → W(t + 1) are intertwined with one another by means of the gaze shift
process rFOA(t) → rFOA(t+1): on the one hand next gaze position rFOA(t+1)
is used to define a distribution on W(t + 1) and A(t + 1); meanwhile, the
probability distribution of rFOA(t+ 1) is conditioned on current gaze position,
W(t) and A(t), namely P (rFOA(t+ 1)|A(t),W(t), rFOA(t)).

By fulfilling such assumptions, the actual shift can be summarised as the statistical
decision of selecting a particular gaze location r�FOA(t+1) on the basis of P (rFOA(t+
1)|A(t),W(t), rFOA(t)) so to maximize the expected payoff with respect to the given
task T.

The conditional dependencies between RVs A(t),A(t+1),W(t),W(t+1), rFOA(t),
rFOA(t+1),T, I can be explicitly represented by means of the Probabilistic Graphical
Model (PGM) depicted in Fig. 3.1. A PGM [61] is a graph-based representation
where nodes denote RVs and arrows code conditional dependencies between RVs. It
is important to note that arrows do not generally represent causal relations, though
in specific situations it could be the case. More precisely, the structural dependency
X → Y , states the probabilistic dependency of RV Y on X represented via the
conditional probability P (Y |X)). Indeed, this is one suitable way of formalising a
model at the computational theory level [59].

Note that the scheme in Fig. 3.1 can be read as a dynamic (time-varying)
PGM [61]. Further, it is important to note that the state transition dynamics of
the RVs from time t to time t + 1 only depends on the state of such RVs a time
t. In the language of stochastic processes this statement characterises a first or-
der Markov process. Such formal assumption, which is largely exploited in dy-
namic PGMs [61] is occasionally summarised as a memoryless assumption about
the process. By analogy with the psychological literature, this would amount to
say that our model when used to perform a search task, implements a kind of vi-
sual search that has no memory [48]. However, such liberal interpretation turns
to be improper. A first order Markov assumption about the gaze shift rFOA(t) →
rFOA(t + 1) only states that the transition probability has the following property:
P (rFOA(t + 1)|rFOA(t)) = P (rFOA(t + 1)|rFOA(t), rFOA(t − 1), rFOA(t − 2), · · · ),
namely, at time t the probability of the transition rFOA(t) → rFOA(t + 1) can be
computed by conditioning on rFOA(t), and earlier terms - at times t − 1, t − 2, · · · -
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Figure 3.1: The model represented as a dynamic Probabilistic Graphical Model.
A(t) stands for the ensemble of time-varying random variables (RVs) defining the
oculomotor action setting (for short, the action component); W(t) is the ensemble of
time-varying RVs characterising the scene as actively perceived by the observer (the
perception component). The gaze shift rFOA(t) → rFOA(t + 1) ties the dynamics
of both components, and the scan path {rFOA(1), rFOA(2), · · · } is the result of an
action-perception loop performed by the observer on an input image I under a given
task T. Here, the evolving loop is unrolled for two time slices, respectively, t and
t+ 1.

need not be taken into account. The same holds for P (W(t+1)|W(t), rFOA(t+1), I,T)
and P (A(t + 1)|A(t),W(t + 1), rFOA(t + 1),T). However, as we will discuss later,
there are RVs in the sets W(t),A(t) that are used to define probability distributions
over the image spatial support (for example, the priority map and the value map rep-
resented through the spatially defined RVs L(t) and V(t), respectively) that, though
evolving in time according to a first order Markov dynamics, keep track of events pre-
viously occurred. Thus, when engaged in a search task the gaze sampling mechanism
may behave very differently from a sampling with no memory (i.e., with replacement
[81]).

We consider two tasks: a general “free-view” task (T = FV ) and a “look for x”
(T = S) or search task. Hence T is a binary RV influencing, at any time t, both
the perceptual ensemble W(t) and the action ensemble A(t). This will be obtained
at the perceptual level by conditioning on task the prior probability of gazing at
certain objects within the scene, while at the action level, the task will modulate the
probabilities of the value and the payoff related to a possible oculomotor act. In the
following sections, we will provide concrete examples of the top-down role played by
the task variable T. Further, we instantiate and discuss the actual RVs characterising
the general representational levels that we have summarised through the ensembles
W(t) and A(t), together with their dependencies. As a result, the PGM presented in
Fig. 3.1 will be eventually specified in a full probabilistic model that we introduce in
Fig.3.2 below.

For explanatory convenience, we will start our discussion from the representations
underpinning the perceived scene W(t), as available by “freezing” the loop at time t
(Fig. 3.2) when gaze is deployed at rFOA(t). Nevertheless, it is important to note that
in this article we are not committing to any specific visual procedure, inasmuch as it
serves the purpose of supporting the computational theory of the integrated loop.
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Figure 3.2: A snapshot of the model when gaze is deployed at rFOA(t). It provides
a detailed view of the time slice t outlined in Fig. 3.1. Rounded boxes are “plates”
denoting stacks of multiple random variables generated from the same distribution.

3.1.1 Moment-to-moment scene perception W(t)

Consider the PGM specification of the model outlined in Fig. 3.2 and in particular
the perception component at the bottom of the scheme. At time t, the perceived
scene W(t) is an ensemble of different representations, namely

• {Î(t),X(t)}: the visual front-end given by the foveated image Î and a local
feature map X(t) [25];

• L(t): a priority map, that is a map of visual space constructed from a combi-
nation of properties of the external stimuli, intrinsic expectations, contextual
knowledge [25, 114];

• O(t): an ensemble of proto-objects or patches [10, 127, 122];

• {O,FOA(t)}: an object-level representation, as determined by the classes of
objects that can be embedded within the scene together with the visual features
characterising the appearance of such objects [25]. In this study, we take into
account faces and text regions that are known to attract attention even in a free
viewing task [19, 124], thus the RV accounting for objects is a binary one, i.e.,
O = {face, text}.

All together, such RVs define the joint probability of perceiving W(t), the task T
being assigned, when I is observed after the gaze shift rFOA(t− 1) → rFOA(t):

P (O,FOA(t),L(t),L(t− 1),O(t),X(t), Î(t)|I,T, rFOA(t), rFOA(t− 1)).

The “foraging eye”, by gazing at rFOA(t), allows the observer to gauge, at time t, the
actual scene represented here by the given image I and thus to construct W(t). The
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first step for inferring the perceived scene W(t) is to derive a foveated representation
of the input image I. Many visual attention models do not take into account the
retinal position of image information, and decreasing retinal acuity in the periphery
is surprisingly overlooked [110]. Yet, retinal anisotropies in sampling play a role in
tendencies to move the eyes in particular ways, and Tatler et al. [110] raised the
point that the assumption of uniform spatial sampling can lead to distributions of
saccade amplitudes that do not match human eye behaviour. Thus, in our model the
starting point is represented by the foveated image Î(t), that is I gazed at rFOA(t).

The foveated image Î(t) is structured as a pair Î(t) = {ÎLR(t), ÎHR(t)}, respectively a
low-resolution (LR) one, mainly exploited during long relocations of gaze, and a high
resolution one (HR), mainly used to support local fixational movements and small
saccades.

From the foveated image, perception is accomplished according to a hierarchical
scheme (cfr., Fig. 3.2). The structural dependencies shaping such hierarchy can be
formalised in terms of probabilistic conditional dependencies among the RVs intro-
duced above, which amounts to the following factorisation of the joint pdf introduced
above:

P (O,FOA(t),L(t),L(t− 1),O(t),X(t), Î(t)|I,T, rFOA(t), rFOA(t− 1)) =

P (O|T)P (L(t)|L(t− 1), rFOA(t− 1))P (O(t)|L(t))

· P (FOA(t)|O) · P (X(t)|L(t),FOA(t))

· P (̂I(t)|rFOA(t),X(t), I)

(3.1)

The factorization specified in Eq. 3.1 makes explicit the distributions at the dif-
ferent levels of representation from top to bottom: the object and object feature
level, P (O|T) and P (FOA(t)|O), respectively; the priority map level, P (L(t)|L(t −
1), rFOA(t− 1)); the proto-object level, P (O(t)|L(t)); the local feature level that ties
object features to prioritized locations, P (X(t)|L(t),FOA(t)); the foveated image

level P (̂I(t)|rFOA(t),X(t), I).
Clearly, the probability of dealing with certain classes of objects, P (O|T) depends

on the kind of images taken into account according to the task. The likelihood of
spatially independent object-based features, i.e., P (FOA(t)|O), can be learned off-
line with any suitable technique. Indeed, it is important to note that any perceptual
inference model capable of top-down, object-based analysis and representation, can
serve as a suitable one for the framework presented here, provided that a priority map
L(t) is computed. One suitable procedure could be the one discussed by Chikkerur
et al. [25], though in the work presented here there is a conceptual difference with
respect to [25] in that we consider the generation of a sequence of gaze locations.
Hence, the actual input to the visual inference process is in terms of a sequence of
foveated images Î(t). So, for instance the inference of the priority map becomes time

and gaze dependent, i.e., P (L(t)|̂I(t)) rather than simply P (L|I).

The priority level representation can be inferred from the posterior P (L(t)|̂I(t)).
Note that if the features X(t) are observed, then L(t) and O are conditionally depen-
dent, and prioritization is biased by objects present in the scene. Note that, in the
absence of object information, P (FOA(t)|O) = P (FOA(t)) and L(t) boils down to a
classic saliency map. The attentional priority is related to both the object’s saliency
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and any top-down biases that influence the relative importance of that object to the
subject, including the suppression of objects that have already been examined during
visual search, thus playing a role in participating to the elusive Inhibition of Return
(IOR) mechanism [126]. The reduction in the response to a stimulus that has been
fixated essentially acts as a form of short term memory that lets the priority map
keep track of which potential targets have been examined. This effect is here taken
into account by letting the current L(t) to depend on gaze location and priority at
time t−1, P (L(t)|L(t−1), rFOA(t−1)) (Fig. 3.2). This modelling choice is consistent
with the finding that LIP neurons receive feedback about the selected action.

Note that the distribution on L, P (L(t)|L(t − 1), rFOA(t − 1)), serves as a spa-
tial prior to locate object features FOA on the early feature map X. But, more
generally, the priority map could also be used to take into account contextual spa-
tial modulation of visual attention [114]. We do not consider here this problem,
but integrating contextual issues in our scheme is readily done (say, in the form
P (L(t)|L(t− 1), rFOA(t− 1), Gist)), and it has been experimented for a text localisa-
tion task in urban street pictures using an earlier and simplified version of the model
presented here [27].

The time varying priority map L(t) is fundamental to organise a dynamic rep-
resentation of the scene in terms of proto-objects [90, 127, 122, 49], which serves as
the actual dynamic support for gaze orienting. They are conceived as the dynamic
interface between high-level and low-level processing, a “quick and dirty” interpre-
tation of the scene [90] . There are several possibilities to compute a proto-object
representation. One way is in compact form, from either a simple [122, 49] or a more
complex mid-level segmentation process (e.g., [127, 7]); an alternative is to use a
sparse representation [10]. This latter option, which we embrace, will be discussed in
detail in Sec. 3.2.

3.1.2 Oculomotor action setting A(t)

Consider now the action component at the top of the PGM in Fig. 3.2. The oculomotor
action setting A(t) under task T can be defined through the following ensemble of
RVs:

• {V(t),R(t)}: V(t) is a spatially defined RV used to provide a suitable proba-
bilistic representation of value; R(t) is a binary RV defining whether or not a
payoff (either positive or negative) is returned;

• {π(t), z(t), ξ(t)}: an oculomotor state representation as defined via the binary
RV z(t), occurring with probability π(t), and determining the choice of motor
parameters ξ(t) guiding the actual gaze relocation;

• D(t): a set of state-dependent statistical decision rules to be applied on a set of
candidate new gaze locations rnew(t+ 1) distributed according to the posterior
distribution on rFOA(t+ 1).

These RVs provide different levels of representation suitable to support a value-
based competition among different regions of the perceived scene serving the purpose
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of statistically sampling the next gaze location. Briefly, the given task selects the most
appropriate values for relocating gaze in a certain region of the currently perceived
visual landscape and the possible payoffs gained after shifting. Here the landscape is
summarised in terms of proto-objects. The current gaze location rFOA(t) determines
the actual payoff gained by the foraging eye, as a function of the availability of valuable
objects at that location, which in turn is assessed through perceptual information
inferred at the foveated region. The probability distribution of value defined on V(t)
is consequently updated, while the experienced payoff biases the forager’s statistical
choice: to engage in local feeding or to fly away (represented through the binary RV
z(t)). Such “coin toss” is fuelled by the competition between the time spent in local
exploration and the payoff gained, which shapes the “coin fairness” parameter π(t).
At each moment t a set of reachable new gaze locations rnew(t+ 1) is sampled so to
account for both the current visual landscape, represented in terms of proto-objects
O(t) and the motor parameters (shift angles and amplitudes as determined by ξ(t))
that are most plausible given the state z(t). Then, as a function of current oculomotor
state (feed / fly), the next gaze location rFOA(t+1) is statistically selected within the
set of candidate locations ranked in terms of expected payoff, thus taking the value
of such locations into account. Eventually, the gaze shift rFOA(t) → rFOA(t+ 1) is
actually performed.

3.1.2.1 Value and payoff

Following the discussion in Chapter 2, we use the payoff (or reward) as an operational
concept for describing the value that the foraging eye gains, under a given task, for
landing in rFOA(t). In an object-based setting it amounts to ascribing a value to one
or more objects that can be sensed in the FOA region centered in rFOA(t).

In a more formal way, we cast R(t) as a binary variable, with discrete values of one
and zero and we assume that the probability of the experienced payoff R(t), at location
r(t) is described by P (R(t)|r(t),L(t),O,T). In the vein of [103], payoff magnitude
is encoded as the probability P (R(t) = 1|rFOA(t),L(t),O,T), for which we use the
shorthand P (R(t)). Under this encoding, a gaze location rFOA(t) associated with
large positive payoff would give P (R(t) = 1) � 1. If the state were associated with
large negative payoff , P (R(t) = 1) would fall near zero.

This entails that, if for generality we are going to adopt either positive or negative
numerical values for payoff, we need a proper normalisation within the [0, 1] interval
to treat such values as probability values. Thus, following [103],

P (R(t)) = 0.5

(
R(rFOA(t))

Rmax
+ 1

)
, (3.2)

where Rmax = max |R| is the maximal effective reward.
To compute such probabilities, the effective payoff, that is the actual numerical

payoff assigned when gazing at rFOA(t), is always computed along the feed stage and
as such it is a local payoff [64]: a functional of the probability measure that is positively
defined in a region centred on rFOA(t) (e.g., the FOA). Clearly the effective payoff
depends on the task T. For instance, in a free viewing task, an implicit reward will
be gained by observers that gaze on text or faces, due to their intrinsic attractiveness
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[19, 124]. However in a “look for text” task, a higher payoff will be gained when a
text region is recognised within or near the FOA centred on rFOA(t).

In a more formal way let’s consider T as a selector variable [61] that controls the
multiplexed conditional probability density P (R(t)|r(t),L(t),O,T):

P (R(t)|rFOA(t),L(t),O,T = S) = P (R(t)|r(t),O); (3.3)

P (R(t)|rFOA(t),L(t),O,T = FV ) = P (R(t)|r(t),L(t)). (3.4)

Eq. 3.3 is selected when the task is a search task: in this case the effective payoff
R(rFOA(t)) is a functional of the probability P (rFOA(t),O) of “hitting” an object of
classO while gazing at rFOA(t). Namely, R(rFOA(t)) =

∫
N (rFOA(t))

P (rFOA(t),O)dN ,

where N (rFOA(t)) is a suitable neighborhood centered on current gaze location. This
is basically the effective payoff locally computed in terms of a high-resolution object
detector. By contrast, in a free-viewing task we compute R(rFOA(t)) by taking into
account the local landscape of the priority map (Eq. 3.4). The rationale behind this
choice stems from the fact that, although it is clear whether a subject fixates a partic-
ular region in a scene, it is not so easy to infer which features are being processed (the
difference between looking and seeing [96]). In a search session fixational eye move-
ments are likely to serve the purpose of confirming the identity of a detected object
or disambiguating parts of an object; thus, the local use of a classifier/detector work-
ing at high-resolution, which is more performant than a weak and lower resolution
localiser as applied in the pre-attentive stage, is a desirable choice [133]. On the other
hand, the free-view task is unfortunately very uncontrolled. However, some of the
highest correlations between saliency/relevance and fixation are found in free-viewing
tasks. This is likely to happen, since in the absence of a specific target, visual saliency
coincides with places that are useful for interpreting or remembering the scene [35].
In this case, the choice of computing the local reward as R (P (rFOA(t),L(t)) is a
reasonable approach.

The payoff gained at rFOA(t) allows to update the probability distribution of value
defined on V(t), the time-varying spatial map of behaviourally relevant locations over
the visual space, so that at each point a task-dependent value is attached. For the
specific purposes of this study, we assume a layered representation of value maps,

{V�(t)}
|O|
�=1, in particular one for each class of objects that may be relevant for the

given task. This is an extension of the scheme proposed by Navalpakkam et al. [72],
though their study was limited to the use of primary rewards. Each location of V�(t)
represents a binary random variable v�(r, t), denoting whether r is a valuable point
(v� = 1) or not (v� = 0).

The �-th value map at time t
′

> 0 and at location r, given the locally experienced
payoff is computed as the cumulated payoff averaged on the neighborhood N (r):

P (v�(r, t
′

)|R(t
′

)) = kV

⎛⎝ t
′∑

t=1

EP (R)[R(t)|N (r)] + P (v�(r, 0))

⎞⎠ , (3.5)

where kV is a suitable normalizing constant. Eq. 3.5 provides an iterative formulation
of the recursive computation of the pdf P (v�(r, t)|R(t),v�(r, t− 1),T).
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At time t = 0, the �-th density P (v�(r, 0)) is initialized as a function of P (L(t),O =
o|T), the object-based map obtained through a pre-attentive rough classification stage
(see Sec. 3.2). The effective value at each point is assigned using Eq. 3.2. Notice
that the value map is different than the priority map L although at t = 0 it might be
similar since the distribution P (L|I) captures the presence of objects (in the sense of
shaping an object-based top-down saliency map). Indeed, value depends on task and
is adapted in time as a function of payoff: for instance in a control task, regions that
are likely to contain objects do not loose value in time by always assigning positive
rewards, so to be re-fixated; in a “quickly search for all objects”, value of the detected
object will decrease in time, since reward will be high for the first fixation on the
objects and negative for subsequent fixations.

3.1.2.2 Oculomotor state representation

Once a value setting is supplied, the ultimate problem of gaze relocation is to choose
between feeding on local information (intensive stage performed through fixational
movements) or “flying away” in search of more valuable foraging patches by relocating
gaze (extensive stage via medium and large saccades) [11]. Notice that we equate
fixations with local feeding, since a fixation is not simply the maintenance of the
visual gaze on a single location but rather a slow oscillation of the eye (minimum 50
milliseconds duration) within a circumscribed region (typically 0.5◦ − 2.0◦ degrees of
visual angle), [47]; longer displacements stand for saccades.

Formally we index such two states using the binary RV z(t), where z(t) = 1 denotes
the “feed” state and z(t) = 0 the “fly” state. We assume that after a flight (a saccade)
the foraging eye is always prompted to engage in the intensive stage, that is, the
transition z = 0 → z = 1 occurs with probability 1. This in principle does not imply
that local feeding be always actually performed: if conditions for feeding are not met
and/or because of the randomness of the process, the transition z = 1 → z = 0 may
occur before such stage actually take place. Let π(t) be the probability of remaining
in the feeding state, P (z(t) = 1) = π(t). Clearly, the transition z = 1 → z = 0
occurs with probability P (z(t) = 0) = 1− π(t). In other terms, in state z(t) = 1 the
choice of state, keep feeding or engage in a flight, can be conceived as a “coin toss”
governed by the Bernoulli distribution, Bern(z(t);π(t)) = π(t)z(t)(1− π(t))1−z(t) for
z(t) ∈ {0, 1}. The bias of such “coin tossing” procedure is, differently from [11],
dependent on payoff.

The bias accounts for the competition between the time already spent within the
foraging patch and the willingness of the forager to continue with local feeding. Thus,
the local feeding time is evaluated through the number of points locally visited at
time t, say ns(t); the willingness to stay or to leave is accounted for by the mean
feeding rate of the forager, μ, which in turn is a function of the actual payoff R(r)
gained while engaged in the intensive stage. On this basis, we model π(t) with the
exponential function,

π(t) ∝ exp

(
−

ns(t)

μ(R(rFOA(t)))

)
; (3.6)

To sum, the mean feeding rate, determining the willingness of the forager to
continue the feeding stage, is a function of gained payoff, which in turn depends on the
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given task T. When “biased” parameters π(t) have been computed, the oculomotor
state can be sampled as:

z(t) ∼ Bern(z(t);π(t)). (3.7)

3.1.2.3 Deciding the gaze shift

The decision D(t) of shifting the gaze to a new position is taken in order to maximize
the expected reward of moving to a valuable site. In our framework, the candidate
new gaze locations rnew(t + 1) can be obtained by sampling from the distribution
P (rFOA(t+ 1)|A(t),W(t), rFOA(t)):

rnew(t+ 1) ∼ P (rFOA(t+ 1)|A(t),W(t), rFOA(t)) (3.8)

Valuable sites are provided by the set of currently available proto-objects {Op(t)}
while the decision rule adopted depends on the current oculomotor state z(t).

By assuming that the current oculomotor state is z(t) = k and considering the
conditional dependencies in the PGM of Fig. 3.2, Eq. 3.8 can be reduced to

rnew(t+ 1) ∼ P (rFOA(t+ 1)|O(t), ξk(t), rFOA(t)), (3.9)

where ξk(t) are the most likely motor parameters for state z(t) = k, from which
the angle and the amplitude of the gaze shift can be derived. Parameters ξk(t)
and candidates rnew are obtained, at the simulation stage, via a stochastic sampling
procedure. Indeed, stochastic sampling provides the computational tool to mimic
human gaze shift variability (for details, see following Sec. 3.2 and [10] for an in-
depth discussion).

At the most general level, if z(t) = 1 (saccade) has been chosen, then the expected
reward of the shift rFOA(t+ 1) → rnew(t+ 1) is computed with respect to the value
of available proto-objects,

E [Rrnew
] =

∑
p∈Ik

V

V(Op(t))P (Op(t)|rnew(t+ 1),T). (3.10)

In Eq. 3.10, the proto-objects Op to be considered are those included in the set Ik
V

of most valuable patches sampled from the whole image at time t, whose dimension
is |Ik

V (t)| = NV ≤ Np. In Eq 3.10, V is the average value of proto-object Op(t) with
respect to the probability maps P (V�(t)|R(t)).

Note that the set of proto-objects taken into consideration depends on index k =
z(t). If z(t) = 0, that is the eye is engaged in local exploration, then I0

V restricts
to the proto-objects localised within the current FOA area: thus, candidate point
sampling occurs locally (fixational and small amplitude saccades).

Eventually, in either state, the next gaze location is determined so as to maximise
the expected reward:

rFOA(t+ 1) = argmax
rnew

E [Rrnew
] . (3.11)

The term argmaxrnew
is the mathematical shorthand for “find the value of the ar-

gument that maximizes ...”. In this instance, the argument is the next gaze candidate
rnew and the expression to be maximised is the expected payoff.
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It is worth recalling, from the discussion above, that what actually changes as
a function of state is that, if the eye is feeding locally, and the task is a search
task, then the effective reward R{P (rFOA(t),O)} is computed through a “high res-
olution” detector/classifier. If the task is free-viewing then reward is obtained via
R (P (rFOA(t),L(t)) computed on the high resolution priority map.

3.2 Simulation: gaze shift sampling

Here we provide details of a computational procedure to simulate the main features
of the model and also we present some results by elucidating the whole computational
process step by step; the corresponding representations that are obtained at the dif-
ferent levels of processing in the simulation are shown in Fig. 3.3. Following [10], we
take the view that the gaze shift rFOA(t) → rFOA(t + 1) is a way of sampling the
visual landscape W(t) according to the current oculomotor action setting A(t) framed
by the task T.

Pre-attentive representation We assume that at t = 0, when then observer
opens his eyes, a quick pre-attentive representation of the scene is made available
[90]. To this end the fixation point rFOA(0) is set at the centre of the picture, and
the retinal image is simulated by blurring I through an isotropic Gaussian function
centered at rFOA(t), whose variance is taken as the radius of a FOA, σ = |FOA|,
approximately given by 1/8min[w, h], where w × h = |Ω|, |Ω| being the dimension of
the image support Ω. This way we obtain the high resolution (HR) foveated image

ÎHR(0) (Fig. 3.3, top row, right picture); the foveated HR is mainly exploited to
support local fixational movements and small saccades. This is then reduced through
a pyramidal decomposition to ÎLR(t), a low-resolution (LR) image mainly used during
long relocation of the gaze. The foveation process will be updated for every gaze shift
involving a large relocation, but not during fixational eye movements.

The LR image is adopted to roughly compute the initial feature likelihood
P (X|FOA,L). To such end, for what concerns face objects, we use the Viola-Jones
detector by converting the AdaBoost outcome in a probabilistic output [8]. For what
concerns textual objects, following [19] we simulate the localiser/detector using the
text ground-truth. However, to be more realistic and compliant with the theoretical
model, differently from [19], object likelihood is computed by using the output of
Torralba’s saliency [114] localised in the bounding box as given by the text region
ground-truth. The motivation for this choice is that Torralba’s saliency well correlates
with text appearance [98] and it can be used as a rough but reliable estimate of its
likelihood P (FOA|O = text). Further, the main reason for using a simulated text
likelihood estimator (instead of a real one such as in [27]) is that one can exploit ad-
hoc control of the number of true positive / false positive regions. Having computed

these coarse object-based maps it is easy to infer the initial priority map P (L|̂ILR)
[25] (Fig. 3.3, second row, left picture).

The value probability maps P (v�(r, 0)) can be initialised as discussed in Sec. 3.1.2.1.
One example, referring to the picture used in Fig. 3.3 is provided in Fig. 3.4. More in
detail, such initialisation has been obtained through the following steps. At time t = 0,
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Figure 3.3: The main representations that are obtained at the different levels of
processing in the simulation (details in the simulation discussion, Sec. 3.2). In this
case the given task T is a “Look for text regions” task. From top to bottom, left
to right: the original image I; the foveated image Î obtained by setting the initial
FOA rFOA(0) at the centre of the image; the priority map L; selected proto-objects
parametrised as ellipses θp(t); the interest points O(t) sampled from proto-objects;
the sampling process of candidate FOAs rnew(t+ 1) (Eq. 3.16) and the selection of
k-th candidate point which maximises the expected reward E [Rrnew ] (the big circles
covers the points within Ik

V ); the sampled FOA rFOA(t+1). All maps are depicted
at the same resolution (HR) of the original image I for visualisation purposes. Value
map initialisation follows the procedure illustrated in Fig. 3.4 below.
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(a) T = FV : Text Value (b) T = FV : Face Value

(c) T = S: Text Value (d) T = S: Face Value

Figure 3.4: The initial value probability maps P (V�(0)|R(0),T) calculated by
weighting, at each spatial location, the estimated object maps (text and face) through
the numerical payoff chosen for the given task T (see text for details). The input im-
age is the one used for the example in Fig. 3.3. Free view (FV): P (Vtext(0)|R(0), FV )
3.4a and P (Vface(0)|R(0), FV ) 3.4b. Search for text (S): P (Vtext(0)|R(0), S) 3.4c
and P (Vface(0)|R(0), S) 3.4d. Probabilities, superimposed on the foveated image,
have been scaled between [0, 255] and colour coded, red colour denoting high proba-
bility, grey colour low probability.

the payoffs are set as a function of the task. We used Rtext = 50 and Rface = 100
for T = FV (free-view), granting a higher attractiveness to faces with respect to
text. For T = S (searching for text), Rtext = 100 and Rface = −50. Then, the spa-
tial feature map P (X(t)|L(t),FOA(t)) computed for either O = face and O = text
provides a pair of object likelihood maps that are used as approximate estimates of
the object-based posterior density maps P (L(t),O = face|T) (the posterior proba-
bility of observing a face object at a spatial location) and P (L(t),O = text|T) (the
posterior probability of observing a text object). Task T being assigned, the object
maps are multiplied, with the payoff values chosen as above. To this point, the re-
sulting maps are no longer probability maps. Thus, Eq. 3.2 is applied to each point
of the maps for normalising between 0 and 1, and the task dependent value maps
are eventually obtained, i.e. P (Vtext(0)|R(0),T), P (Vface(0)|R(0),T). Such maps
are shown in Fig. 3.4, where, for visualisation purposes, probabilities have been repre-
sented through colours. Note that, in order to fairly compare left and right probability
maps, each colourbar at the right side of the map represents a colour (probability)
range that is specific for that map. For instance the colourbar in Fig. 3.4c depicts the
range [130 = grey, · · · , 255 = red], whilst the colourbar in Fig. 3.4c represents the
range [75 = grey, · · · , 130 = red].
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Sparse representation of proto-objects: Similarly to [10]) we make use of a
sparse representation of proto-objects. Describing in terms of a foraging metaphor,
the proto-objects can be conceived as foraging sites around which food items can be
situated.

At any given time t, the foraging eye perceives a set O(t) = {Op(t)}
NP

p=1 of proto-
objects or patches in terms of prey clusters, each patch being characterised by different
shape and location. More formally, Op(t) = (Op(t),Θp(t)). Here Θp(t) is a parametric

description of a patch, while Op(t) = {ri,p}
Ni,p

i=1 is a sparse representation of patch p
as the cluster of interest points that can be sampled from it. More precisely, Θp(t) =
(Mp(t), θp). The setMp(t) = {mp(r, t)}r∈L stands for a map of binary RVs indicating
at time t the presence or absence of patch p. The overall map of proto-objects is

given by M(t) =
⋃Np

p=1 Mp(t). Here, M(t) is simply drawn from the priority map

by deriving a preliminary binary map M̃(t) = m̂(r, t)}r∈L, such that m̂(r, t) = 1

if P (L(t)|̂I(t)) > TM , and m̂(r, t) = 0 otherwise. The threshold TM is adaptively
set so as to achieve 95% significance level in deciding whether the given priority
values are in the extreme tails of the pdf. The procedure is based on the assumption
that an informative proto-object is a relatively rare region and thus results in values
which are in the tails of P (L(t)|̂I(t)). Then, following [122], M(t) = {Mp(t)}

NP

p=1 is

obtained as Mp(t) = {mp(r, t)|�(B, r, t) = p}r∈L, where the function � labels M̃(t)
around r using the classic Rosenfeld and Pfaltz algorithm (implemented in the Matlab
bwlabel function). We set the maximum number of patches to NP = 8 to retain the
most important patches. The patch map provides the necessary spatial support for
a 2D ellipse maximum-likelihood approximation of each patch (see Fig. 3.3 second
row, right picture), whose location and shape are parametrised as θp = (μp,Σp) for
p = 1, · · · , Np (see [10] for a formal justification). Next, the procedure generates
clusters of interest points, one cluster for each patch p:

Op(t) ∼ P (Op(t)|θp(t),Mp(t) = 1,L(t)). (3.12)

By assuming a Gaussian distribution centered on the patch, Eq. (3.12) can be
further specified as [10]:

ri,p ∼ N (rp;μp(t),Σp(t)), i = 1, · · · , Ni,p. (3.13)

We set Ns = 50 the maximum number of interest points and for each patch p, and

we sample {ri,p}
Ni,p

i=1 from a Gaussian centered on the patch as in (3.13). The number

of interest points per patch is estimated as Ni,p = �Ns×
Ap∑
p
Ap

	, Ap = πσx,pσy,p being

the area of patch p. Thus, the set of all interest points characterising the perceived

scene can be obtained as O(t) =
⋃Np

p=1{ri,p(t)}
Ni,p

i=1 (Fig. 3.3, third row, left picture).

Determining the oculomotor action setting: At the end of the proto-object
sampling procedure we have at time t the set O(t) = {Op(t)}

NP

p=1 of proto-objects
in terms of interest points O(t) , each patch being characterised by different shape
and location, i.e., by proto-object parameters Θp(t). The first step is to determine
the oculomotor state by sampling from the Bernoulli distribution via Eq. 3.7 with
parameters determined by Eq. 3.6.
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Assume that choice z(t) = k, with k = 0, 1, has been made. This allows to
set the actual values of the motor parameters ηk = {αk, βk, γk, δk}. These are the
parameters of the α-stable distribution f(ξk; ηk(t)), namely, the skewness β (measure
of asymmetry), the scale γ (width of the distribution), the location δ and, most
important, the characteristic exponent α, or index of the distribution that specifies
the asymptotic behavior of the distribution. The α-stable distribution f(ξk; ηk(t)) is
then used to sample the stochastic components ξk(t) = {ξk,1, ξk,2} of candidate gaze
shifts [10]:

ξk(t) ∼ f(ξk; ηk(t)) (3.14)

The α-stable random vector ξk is sampled using the well known Chambers, Mallows,
and Stuck procedure[22]. Here, parameters for longer shifts (k = 0) have been set to
η0 = {α0 = 1.6, β0 = 1, γ0 = 40, δk = 200} promoting a Lévy exploration, while for
local walk (k = 1), η1 = {α1 = 2, β1 = 1, γ1 = 22, δ1 = 60}.

Deciding where to look next Having determined the oculomotor action setting
A(t), we can rewrite Eq. 3.9, that is the sampling of candidate gaze locations for the
shift rFOA(t) → rFOA(t+ 1) as:

rnew(t+ 1) ∼ P (rFOA(t+ 1)|O(t), θ(t), ξk(t), rFOA(t)), (3.15)

The shift is generated according to motor behaviour z(t) = k and thus regulated
by parameters ηk conditioned on proto-objects sparsely represented through sampled
interest points O(t) and patch parameters θ(t).

Following the formal derivation of [10], exploiting the Euler-Maruyama discreti-
sation of a Langevin-type stochastic differential equation, we sample rnew(t + 1) by
making explicit the stochastic dynamics behind the process as:

rFOA(tn+1) ≈ rFOA(tn)−
∑
p∈Ik

V

∑
i∈Ip

(rFOA(tn)− rp(tn))τ + γkIτ
1/αkξk. (3.16)

Thus the dynamics of gaze shift is determined by two terms. The first term
−
∑

p∈Ik
V

∑
i∈Ip

(rFOA(tn) − rp(tn), is the deterministic drift that biases the walk

towards the centre of gravity of selected interest points assuming that such attractors
act as independent sources. Here Ip is the set of valuable interest points sampled
from the patch Op such that p ∈ Ik

V and τ = tn+1 − tn is the integration time step.
The term γkIτ

1/αkξk is the stochastic component which determines amplitude and
orientation of the candidate gaze shift [10]. The symbol I denotes the 2 × 2 identity
matrix and γk the width of the α-stable distribution from which ξk is sampled (Eq.
3.14). Notice that, due to the feed/fly switching of index k = z(t) in Eq. 3.16,
this random walk is a mixture of Lévy (large relocation) and nearly-Gaussian (local
exploration) displacements.

Thus, Eq. 3.16 provides the explicit procedure for sampling candidate gaze shifts
rFOA(t) → rnew(t+1). Assume we sampleNnew such candidates, as shown in Fig. 3.3,
third row, right picture. Then the decision to saccade is taken in order to maximise
the expected reward of having valuable interest points in the neighbourhood of the
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candidate shift (represented in the same picture as a wide yellow circle). This can be
obtained by writing Eq. 3.10 as

E [Rrnew
] =

∑
p∈Ik

V

∑
i∈Ip

V(ri,p(t))N (ri,p(t)|rnew(t+ 1),Σs). (3.17)

Finally, the actual gaze shift is obtained through Eq. 3.11 (Fig. 3.3, bottom picture)
Recall from Secs. 3.1.2.3 and 3.1.2.1 that in the feeding state we have to compute

the effective reward. In particular, if the task is a search task, we stated that the
effective reward R (P (rFOA(t),O)) should be computed through a “high resolution”
detector/classifier. To such end, if the object to look for is a face we use the prob-
abilistic version of the Viola-Jones detector, but working on the HR image (which
entails higher precision); if we are searching for text, we straightforwardly use the
HR text ground-truth as a “perfect classifier” (oracle). To complete the picture, at
each shift the IOR is simulated on the priority map by applying an inverse Normal
suppression function at rFOA(t), as in [108].

All parameters of the model have been tuned by using a subset of 50 images from
the Microsoft dataset and related eye tracking data (see Secs. 4.1, 4.3).

Finally, in order to get a better understanding of the inner workings of the model,
we show an example where we successively switch off the different control levels.
Results are shown in Fig. 3.5. The top row presents two scan paths obtained assigning
the task of “Look for text” (left picture) and the task of “Look for people” (right
picture); at this level the simulation of the model is working in full mode. The central
row presents results obtained when no task is given and control by value and payoff is
inhibited. The left picture shows the priority map after the first central fixation. In
this case, W relies entirely on the priority representation and the on proto-objects that
can be sampled from it; also, the prior probability of objects given the task, P (O|T), is
taken as a uniform distribution and hence the contribution by early saliency becomes
stronger. The forager’s willingness to feed or to fly μ(R(rFOA(t))) (Eq. 3.6) is set to a
constant, and the decision rule in Eq. 3.17 is simplified by letting V(ri,p(t)) = ri,p(t),
that is V is to be considered an identity function, since value plays no role at this
stage. The right picture on the same row depicts one simulated scan path where
the central bias effect of the foveated priority map is readily apparent. The bottom
row shows the simulation of the model when no object information is available, thus
P (FOA(t)|O) = P (FOA(t)) and the gaze shift process (right) only nourishes on
early saliency yet modulated by foveation (left).

3.3 Conclusion

Let us summarize the main points tackled in this chapter. We proposed a human-
like visual attention model aiming to describe the mechanism behind the attention
allocation in street view images. We specifically address the point of how to model
some top-down constrains and how they could interact with stimulus driven saliency.
Some progress in this direction have been recently made by approaches aiming to
embed object detection in the saliency description, and the approach of Torralba
accounting for the Gist.
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Figure 3.5: Inhibition of levels of representation and control. Top row: scan path
generated when the given task T is “Look for text”, similarly to Fig. 3.3 (left); scan
path generated when the model simulates a “Look for people” task (right). Middle
row, no task and value assigned, but object likelihood is still computed: the foveated
priority map L (left, red colour coding for high priority locations, blue for low priority)
and one generated scan path (right). Bottom row: when the object likelihood is not
computed, the priority map collapses to a classic early saliency but modulated by
foveation (left); a corresponding scan path (right). All maps are depicted at the same
resolution (HR) of the original image I for visualization purposes

Largely inspired by the psychological model of Rensink and the discussion pro-
vided in Chapter 2, here we propose a computational model describing attention
deployment as coming from the interaction between an attentional process and a
motor process. On a side the attentional process assigns value to proto-object like
sources of information and on the other side the motor process implements a selection
mechanism based on human like oculomotor biases.

The model is described in terms of Probabilistic Graphical Model, a graph-based
representation where nodes denote RVs and arrows code conditional dependencies
between RVs. The structural dependencies shaping such hierarchy can be formalised
making explicit the distributions at the different levels of representation: the object
and object feature level, the priority map level, the priority map level, the local
feature level that ties object features to prioritized locations, the foveated image level.
Given the complexity of the model we provide details of a computational procedure
to simulate the main features of the and also we present some results by elucidating
the whole computational process step by step.
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In our formulation the choice of where to look next is task-dependent and oriented
to classes of objects embedded within the picture. The dependence on task is taken
into account by exploiting the value and the reward of gazing at certain image patches
or proto-objects that provide a sparse representation of the scene objects.



Chapter 4

Experimental Evaluation of the

Model

In this chapter we confront the scan paths produced by the model with those from
eye-tracked human subjects. Such comparison is qualitative in terms of observable
scan paths and quantitative in terms of statistical similarity of oculomotor behaviour.
Gaze shift amplitude distributions of human observers are compared to those obtained
from simulations by means of studying the amplitude distribution [110, 112], and
in particular of the corresponding complementary cumulative distribution function,
following the standard convention in the literature [10].

Comparative experiments are performed using eye tracking data from both a pub-
licly available dataset of face and text and from newly performed eye-tracking experi-
ment on a complex dataset of street view pictures containing text. In both cases data
are collected by a video based desktop eye tracker.

In order to provide quantitative results concerning semantic aspects of the text
search, we also analyse the discriminability performance of simulated scan paths, in
the specific case of the “Look for text” task, in terms of average True Positive Rate
and False Positive Rate. For all quantitative assessments we used as a baseline control
model, the Itti & Koch model as implemented in the latest version of the saliency
tool box downloaded from the saliencytoolbox web page.1

4.1 Datasets

Cerf’s Fixations In FAces dataset. This dataset2 contains Faces a subset of 229 im-
ages (1024× 768 pixels) showing frontal faces in various sizes, locations, skin colours,
races, etc. Each image has a corresponding background image with no faces for com-
parison. The dataset includes the fixations data recorded via eye-tracking experiments
of 8 subjects in free viewing conditions (see [19] for details). Dataset also provides
annotation of faces position in the form of bounding box coordinates.

1http://www.saliencytoolbox.net
2http://www.fifadb.com/

47
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Epshtein’s Microsoft dataset. This publicly available dataset3, consists of 307 colour
street view pictures of sizes ranging from 1360× 1024 to 1024× 768 pixels. The text
content is embedded in the scene in the form of shop names, street signs or advertise-
ments and it is usually not located at the centre of the image, nor covering a large
region of the image, so as to make the localisation problem more difficult (see [3]
for details). We use this dataset for specifically assessing the difference between hu-
man subjects and model’s simulation behaviour when looking at street view pictures
containing text objects.

4.2 Experiment 1

The aim of this experiment was to compare the motor behaviour predicted by the
model with experimental scan paths from human subjects in free viewing condition
(T = FV ). For this experiment we used the Fixations In FAces dataset. Pictures
contained either faces, or text regions or both.

First comparison is qualitative: we generated 20 scan paths for each image and
compared them to those exhibited by human observers by choosing the most similar
scan paths in terms of fixations coordinates, duration, and time occurrence. Some
typical results obtained are presented in Fig. 4.1, in which a face is present on the
left part of the scene 4.1a and when the face is removed 4.1b. For both the human
observer (scanpath on the left side, in red) and the model (scanpath on the right side,
in yellow) fixations goes to the face, as long a face is present in the scene. Similarly
in Fig. 4.2 showing a scene in which face and text are both present 4.2a and when
the face is removed and the only text appear 4.2b, we observe that face and text are
both attracting fixations even if the task is a free viewing task. In the second case,
when the face object is missing, fixations goes to other semantically important object
of the scene. The model, that is including partial knowledge of the objects present
in the scene as described in Chapter 3, is than able to mimic observer’s oculomotor
behaviour in free viewing observation of complex street view images.

More quantitatively, we studied the empirical distributions of gaze shift amplitudes
[112, 110, 10] by analyzing eye-tracking data. To this end the gaze shift samples
from all the experiments, regardless of the observers, are aggregated together and
used in the same distribution. Aggregating the data is a reasonable assumption
because every scanpath obtained from the same image is subject to the same or
similar visual constraints and the same technique is used in other studies of Levy
walks (e.g., [94]) but also in eye-tracking experiments [110]. For a precise description
of the tail behaviour, the laws governing the probability of large shifts, we account
for the upper tail, or complementary CDF (CCDF) of jump lengths, following the
standard convention in the literature. The upper tail of the distribution of the gaze
shift magnitude X can be defined as F (x) = P (X > x) = 1 − F (x), where F is the
cumulative distribution function (CDF).

We introduce a control condition, running simulations were virtual observers are
’viewing’ the same set of images. We used as baseline control model the Itti et. al
model [53]. For each image, the virtual observer made the same number of simulated

3http://research.microsoft.com/en-us/um/people/eyalofek
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(a)

(b)

Figure 4.1: Scan paths generated while free viewing a picture from Fixations In FAces

dataset, when a face is present 4.1a and when the face is removed 4.1b. Left (in red
colour), scan path obtained eye-tracking a human observer; right, model output (in
yellow)

(a)

(b)

Figure 4.2: Scan paths generated while free viewing a picture from Fixations In

FAces dataset. In 4.2a face and text are both present, whilst in 4.2b the face is
removed. Left (in red colour), scan path obtained eye-tracking a human observer;
right, model output (in yellow)
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Figure 4.3: Comparing the oculomotor behaviour generated by humans with either
the one simulated by the proposed model and by the one of Itti model. The compar-
ison is provided in terms of gaze shift amplitudes on the Fixations In FAces dataset .
Top panel (4.3a) shows the empirical distributions of gaze shift amplitudes; bottom
panel (4.3b) shows the double log-plots of the corresponding CCDFs.

saccades as the human observer had on that scene. Comparison of the oculomotor
behaviour generated by humans with the one simulated by the proposed model and
by the model of Itti are illustrated in Fig. 4.3. Top panel (4.3a) shows the empirical
distributions of gaze shift amplitudes; bottom panel (4.3b) shows the double log-plots
of the corresponding CCDFs. It can be noticed that Itti et al. model does not show
the characteristic positively skewed distribution of gaze shift amplitudes exhibited by
human scan paths and well captured by the proposed model. Differences in gaze shift
statistics can be easily appreciated from the CCDF plot (Fig. 4.3b), in this regard the
tail behaviour of the gaze amplitude distribution of the proposed model fits well the
human. The tail behaviour of the Itti model stays far from both human and proposed
model distribution. These results are consistent with results presented by Tatler et
al. [110].

The fit between the empirical distributions of eye-tracked and simulated gaze shifts
amplitudes, is also assessed via the two-sample Kolmogorov-Smirnov (K-S) test, which
is very sensitive in detecting even a minuscule difference between two populations of
data, and the standard Mann-Whitney U (MWU) test, to assess the null hypothesis
that two samples have the same median (central tendency). All tests are performed
at the level of significance α = 0.05 and repeated for ten model simulation trials.
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According to the K-S test, the simulated distribution was shown to be not significantly
different from the human one for 70% of cases (average value for all trials). MWU
assessed the same central tendency for 92% of cases. The control model always fails
both tests.

4.3 Experiment 2

With this experiment we aim to assess the difference between human subjects and
model’s simulation behaviour when looking at street view pictures containing text
objects. We use the Microsoft dataset, which comprises images more complex than
those in the Fixations In FAces dataset, as it is mostly adopted for “text-in-the-wild”
detection/classification contests. This dataset offers the advantage of having publicly
available ground-truth for text regions but no eye-tracking data is available. Thus
we conducted some eye tracking experiments to collect data in both free viewing and
text search condition.

4.3.1 Eye Tracking data collection

The eye-tracking experiments have been conducted using a video-based SMI RED eye
tracker (SensoMotoric Instruments, Teltow, Germany) at a sampling rate of 120Hz.,
with automatic head movement compensation (tracking range, 40 × 30 cm at 70 cm
distance). The infrared video-based system has an instrument spatial resolution of
0.03◦ and an absolute gaze position accuracy of up to 0.4◦.

The experiment took place in a dimly lit room in the Computer Vision Center in
Barcelona. Subjects were seated in a contact-free setup, 70 cm in front of a 22-inch
LCD monitor (60 Hz refresh rate, 58.18 dpi). Stimulus resolution was 1024×768 pixels
at both sites and subtended approximately a visual angle of 36.6◦(w) × 27.4◦(h). A
9-point calibration of the eye tracker was carried out at the onset of every trial.

Participants recruitment: Two groups of six naive adults (3 women and 3
men, composing the first group, 2 women and 4 men for the second group, range
25-44 years, mean 32 years) participated in the experiment. All participants were
native speakers of Spanish and had normal or corrected to normal vision.

Task instructions: Each subject was asked to look at pictures presented on the
monitor. Two tasks were considered. A search task, T = S, formulated in terms of
“Look for text regions within the pictured scene” was assigned to the first group; a free-
view task, T = FV , formulated as a generic “Guess the city from the pictured scene,”
so as to motivate the participants, was given to the second group. Pictures were
presented in randomized order and each picture was shown for 5 seconds. Stimulus
luminance was linear in pixel values.

4.3.2 Comparison

Qualitative comparison are performed as in Experiment 1. Some examples represen-
tative of scanpaths obtained for the Task T = S are provided in Fig. 4.4 when text is
the main semantic object, and in Fig. 4.5 when other semantic objects (face, people)
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(a)

(b)

Figure 4.4: Scan paths generated under the “Look for text regions” task for pictures
from the Microsoft dataset, where text is the main semantic object class. Left (in red
colour) the scan path obtained from eye-tracking a human observer; Right (in yellow
colour) the simulated scanpath from our model.

appear in the picture together with the text. In both the cases the scan path ob-
tained from our model (on the right in yellow colour) is able to mimic well observer’s
scanpath as recorded from eye-tracking experiments (on the left side in red colour).

We also observe that the scanpath goes on the bigger text objects as it was ex-
pected, as long as the text is always attractive for fixations [19, 124]. It is worth
noting that in the Microsoft dataset the vast majority of images contains text regions
as the most semantically relevant objects appearing within the image scene. This
result is also reflected in the cumulative statistics of shift amplitudes, which result to
be fairly similar for both text search and free viewing Task, as it can be appreciated
at a glance from Figs. 4.7 and 4.8 below.

Fig. 4.7a and Fig. 4.8a shows the empirical distribution of gaze shifts amplitude
for respectively T = S and T = FV . The distribution for the Itti model is the
same in both the plots as long that model does not allow to condition the scanpath
in the task. The human distributions of gaze shifts are very similar although coming
from separate eye tracking experiments under different experimental conditions as
described before. The distribution coming from our model is also very similar in both
the task and similar to the human distribution.

Nevertheless, there are cases that bear a specific interest. For instance, we show
one such example in Fig. 4.6. This can be considered as the “dual” of the example
provided in Fig. 4.2 in which, under the unchanged task (T = FV ), one class of
objects was removed and specifically face and text were both present in one picture
and only text was present in the other. Here instead both classes of objects (O = face
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(a)

(b)

Figure 4.5: Scan paths generated under the look for text for pictures from Microsoft

dataset when other semantic objects (faces, people) are embedded in the picture
together with text. Left (in red colour), the scan path obtained from eye-tracking a
human observer; Right (in yellow colour) the simulated scanpath from our model.

and O = text) are retained, but the task is switched from T = S (4.6a) to T = FV
(4.6b). It can be noted that for T = S (4.6a, left), the girl is treated as a “distractor”
by the human observer, whilst for T = FV (4.6b) it is competing for attracting gaze
though being less visible and physically salient with respect to text regions in the
scene (4.6b). The model achieves a similar behaviour by the different assignment of
value in either task (cfr. Fig. 3.4).

Under “Look for text regions” task, by performing the K-S test as in the previous
experiment, the simulated distribution resulted no significantly different from the
human one for an average 79% of cases. MWU assessed the same central tendency
for 89% of cases. For the task “Guess the city”, the K-S test found no significant
differences between the two distributions 89% of cases. MWU assessed the same
central tendency 96% of cases.

4.4 Discriminability performance in Text Search

In order to provide quantitative results concerning semantic aspects that the “Look
for text ” task brings in, we have performed the following analysis. Since the Microsoft

dataset includes the maps of text objects located in each image we can compute the
ground-truth binary text map T M with T M(x, y) = 1 for pixels (x, y) belonging to
target objects, T M(x, y) = 0 for points outside text regions. Given the s-th scan path
on the same image, we obtain the binary fixation map FMs by considering the first
10 fixations of s and by setting to 1 points within the circular region defining around
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(a) “Look for text ”

(b) “Guess the city”

Figure 4.6: Scan paths generated under the “Look for text ” task, for a picture
where other semantic objects (faces, people) are embedded in the picture 4.6a and
under the “Guess the city” task, 4.6b. Left (in red colourrealis), scan path obtained
eye-tracking a human observer; right, model output (yellow)

each fixation point, and to 0 points outside such areas. For what concerns the radius
of each fixational region, we set ϕ = 2◦ of visual angle. The size of this “functional
fovea” is slightly larger than the 2◦ window spanned by a fixational eye movement
[47, 107] and corresponds to the 7◦ − 8◦ window that can be searched effectively in
one fixation [41]. Yet, it is smaller than the conservative estimate by Shioiri and
Ikeda, who define 10◦ of visual angle the maximal window over which high-resolution
pictorial information can be extracted [99]. By taking into account the experimental
viewing conditions (viewing distance vd = 70 cm, screen resolution sr = 58.18 dpi),
the radius ϕ of region can be calculated in pixel units as

rfix = ϕ
1

2 tan−1
(

1
2vd

) π

180

sr
2.54

(pxl). (4.1)

Thus, rfix ≈ 55 pixels. The reason for considering a small circular region circumscrib-
ing a fixation rather than simply the fixation point itself is either to account for the
fixational movement and to provide a different weight for fixations falling in the neigh-
bourhood of object border with respect to fixations occurring within object. Then,
for each scan path s, we can measure the True Positive Rate, TPRs = |TPs|/|P | and
the False Positive Rate, FPRs = |FPs|/|N |, where |P | is the number of points within
the object set,
P = {T M(x, y)|T M(x, y) > 0} and |N | is the number of points outside. The true
positives and false positives, |TPs| and |FPs|, respectively, are determined by counting
the non zero points of the sets
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Figure 4.7: Comparing the oculomotor behaviour generated by humans and simu-
lated by the model on the Microsoft dataset in terms of gaze shift amplitudes. The
task was “Look for text regions”. Top panel (4.7a) compares the empirical distribu-
tion of gaze shift amplitudes; bottom panel (4.7b) shows the double log-plot of the
corresponding CCDF.
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Figure 4.8: Comparing the oculomotor behaviour generated by humans and simu-
lated by the model on the Microsoft dataset in terms of gaze shift amplitudes. The
task was “Guess the city”. Top panel (4.8a) compares the empirical distribution of
gaze shift amplitudes; bottom panel (4.8b) shows the double log-plot of the corre-
sponding CCDF.



4.4. Discriminability performance in Text Search 57

Observers TPR FPR d′

Humans 0.511± 0.075 0.057± 0.008 1.60
Model 0.351± 0.091 0.052± 0.009 1.21
Control model 0.129± 0.17 0.079± 0.007 0.27

Table 4.1

TPR, FPR and d′ for observers and virtual observers simulated by the

proposed model and by the control model

TPs = T M
⋂

FMs, FPs = T M�
⋂

FMs, (4.2)

where T M� is the complement of the binary map T M. Then, the average TPRs

and FPRs are calculated taking into account all the scan paths generated within
each group of observers: human, model and control model. The final total averages
TPR and FPR computed on all the images of the dataset for each group are reported
in Table 4.1, where the performance of the proposed model can be compared with
human and control model performance. As previously, the Itti et al model was used
as a baseline control model.

It can be seen from Table 4.1 that the average sensitivity (TPR) - in our case the
average proportion of actual positives (pixels belonging to text regions) that have been
correctly spotted within the first 10 fixations - is similar in both human and model gen-
erated scan paths, while the control model exhibits a lower sensitivity. Analogously,
humans and model are close in terms of specificity (1 − FPR), at variance with the
control model, which is characterized by marginally lower specificity. These results are
statistically significant as it can be seen by measuring the difference between the spot-
ting error rate of human observers and the error rate of a modelm (either the proposed
or the control model). This way, the statistic zobs,m = (pobs−pm)/

√
2p(1− p)/n [102]

is obtained, with p = (pobs + pm)/2, n = |N | + |T |, and where pobs and pm are the
proportions of test samples (pixels) incorrectly spotted by observers and the model
m respectively. The statistic has a standard normal distribution [102], and the null
hypothesis that human subjects and the model have the same error rate cannot be
rejected (|zobs,model| = 0.07 < Z0.975 = 1.96, two-sided test, p = 0.94, significance
level α = 0.05); conversely, the difference between the control model and humans is
remarkable (|zobs,control| = 70.5 > Z0.975, p < 0.001). The same conclusion is achieved
via McNemar’s chi-square test [34], with Yates’ correction (p = 0.97 and p < 0.001,
respectively, α = 0.05).

Similar results are obtained by computing, as index of performance, the discrim-
inability d′ (cfr. Table 4.1), which summarises the capability of the scan path to
separate text objects and non text regions, regardless of the statistical decision crite-
rion. This index was calculated as ZTPR − ZFPR, where ZTPR is the z-transformed
TPR and ZFPR is the z-transformed FPR.
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4.5 Conclusion

In this chapter we confront the scan paths produced by the proposed model with those
from eye-tracked human subjects and a control model. Performance were assessed
both in qualitative terms observing some sample scanpath and quantitative in terms
of statistical similarity of oculomotor behaviour.

We used first a publicly available dataset providing pictures and eye tracking data
to test our model capability to simulate the human behaviour. It can be noticed
that Itti et al. model does not show the characteristic positively skewed distribution
of gaze shift amplitudes exhibited by human scan paths and well captured by our
proposed model. Differences in gaze shift statistics can be easily appreciated from
the CCDF plot (Fig. 4.3b), in this regard the tail behaviour of the gaze amplitude
distribution of the proposed model fits well the human. The tail behaviour of the Itti
model stays far from both human and proposed model distribution. These results are
consistent with results presented by Tatler et al. [110]. According to the K-S test,
the simulated distribution resulted no significantly different from the human one for
70% of cases (average value for all trials). MWU assessed the same central tendency
for 92% of cases. The control model always fails both tests.

We use a dataset of street view picture for specifically assessing the difference
between human subjects and model’s simulation behaviour when looking at more
complex pictures containing text objects. We recorded eye tracking data on this
specific dataset to explicitly look at two different working conditions: under a free
viewing task and under a text search task.

In conclusion our model is able to describe the statistical properties of human
gaze shifts, mimicking well the observer’s oculomotor behaviour in the observation
of complex street view images. In the limitation of our analysis to the gaze shift
amplitudes, our model is approximating well the human behaviour in both free viewing
and text search task. Regarding the only text search task we assessed the model
performance in terms of discriminability d′ metric, summarising the capability of the
scan path to separate text objects and non text regions. Our model scores closer to
the human performance than the one of Itti in terms of d′ metric.



Chapter 5

Experimental evaluation in outdoor

settings

In this chapter we study to what extent the baseline attentive model presented in
Chapter 3 can account for human eye movements in an experimental setting by far
more complex than the laboratory setting used in the experimental evaluation dis-
cussed in Chapter 4. We make use of a mobile eye tracker to record human eye
movements in free condition, allowing head movements and small body rotational
movements, while subjects are looking for text object in 360 degrees directions, in
an outdoor recording setting. By means of this experimental evaluation we are inter-
ested to see whether the proposed model can account for human eye movements in
a close to real world setting. Variations to the baseline model are made on the basis
of oculomotor biases learned from eye tracking data of human subjects. The scan-
paths produced by the different sets of models are compared one with the other by
employing a definition of performance accounting for how accurate are the fixations
in hitting the in-scene text targets. Human performance and the chance level are
measured using the same definition of performance, and are used to define the upper
and lower bound of the model performance.

5.1 Challenges in outdoor locations

The use of a mobile device in outdoor locations brings new challenges, some due to
the use of a mobile device others due to the semi controlled environment we run
experiments in. Planning the mobile eye tracking experiments we accounted for:
scene, subject and recording device. Differently from desktop eye tracker setups,
where the stimulus is typically a picture or a video, when doing mobile eye tracking
the stimulus is a piece of the real world and we will be taking multiple views of it over
the time, one for each eye tracking recording session. Given such settings we have
to account for some amount of variability in the scene, thus some variability into the
stimulus provided to each subject under test, and experiments have to be designed
accordingly, to minimize such variability.

The scenes of interest in this research are limited to street view scenes, typically
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commercial areas in which we can expect to find some text in the form of shop names
and signs. Perfect candidates to this objective are city center squares as well as
commercial streets. Accounting for scene changes in the time range from few hours to
few weeks, we can roughly distinguish between target objects that are supposed to be
stable, such as buildings, shops names, city signs and objects, such as people and cars,
that are supposed to move. In this research we assume that all the text objects (targets
/ objects of interest) are not moving (and stable) across all eye tracking experiments.
Note that this assumption is not always true because in real life scenarios new text
panels might appear from day to day; to this end the best we could do was to choose
locations where the text content was not expected to change position or appearance
in the time frame of a few weeks. We also assume that all the other objects allowed
to move will not contain text, and play the role of distractors.

Illumination conditions are strongly affecting the visibility of the scene. Running
an outdoor experiment at different times of the day may strongly affect the scene
appearance, making text more or less readable. In pilot experimentation we observed
the extreme cases of sun light casting shadows on the text, as well as masking text
by making reflections on glass or reflective surfaces. We thus planned to perform
experiments so that we minimise illumination changes in the scene.

Mobile eye tracking experiments make the data collection a much more slower
and time consuming activity than traditional desktop eye tracking experiments due
to several factors: 1. the overall experiment time is longer due to the need of moving
to the different locations, 2. subjects cannot be queued nor allowed to participate
more than one at a time, to avoid biasing 3. experiment scheduling has to account
for weather conditions, 4. number of experiments per day is also limited by the need
of running experiments in specific time of the day, (illumination variation during the
day) Running experiments we also observed that is best to run experiments with
subjects not using corrective glasses, due to technical difficulty in pupil tracking.

Mobile eye tracking devices differ from the desktop ones for recording information
in a per frame reference system. As lacking of a fixed and predefined two-dimensional
reference system, the mobile eye tracking is making the eye movements analysis more
difficult than the desktop setting, and usually calling for manual annotation of video
sequences.
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(a)
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Figure 5.1: Panoramic pictures of the three locations from mobile eye tracking
experiments: (a) Location n.1, (b) Location n.2, (c) Location n.3
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5.1.1 Eye Tracking Glasses

Technological development made available a large number of devices for mobile eye
tracking from several manufacturers as SMI Glasses, Tobii Glasses, Mangold Mobile
Eye and ASL Mobile Eye-XG. For this research we made use of the SMI Eye Tracking
Glasses 1.0 device, equipped with a front camera to record the scene at 1280x960 pixel
resolution and 24 fps from the subject’s head point of view, as in Fig. 5.2.

A binocular system to record eye movements consisting of two cameras and infra
red illuminators. Movements of both eyes are captured by two small cameras on the
rim of the glasses, while automatic parallax compensation ensures accurate data over
all distances with no need for manual adjustments. Table 5.1 reports technical data.

Figure 5.2: The mobile eye tracking glasses used to record eye movement. Front,
left, top views. Images taken from the ETG SMI user manual.

Eye tracking principle: Binocular eye tracking with automatic parallax com-
pensation; Pupil/CR, dark pupil tracking

Temporal resolution: 60Hz and 30Hz binocular
Gaze position accuracy: 0.5 ◦ over all distances, parallax compensation
Gaze tracking range: 80 ◦ horizontal, 60 ◦ vertical
HD scene camera, resolution: 1280x960p at 24 fps; 960x720p at 30 fps
HD scene camera, video format: H.264; Field of view: 60 ◦ horizontal, 46 ◦ vertical

Table 5.1

SMI Eye Tracking Glasses, device technical data.



5.2. Experimental design 63

————————

5.2 Experimental design

Mobile eye tracking methods provide a good solution for studying perception in vari-
able contexts and a wider degree in the freedom of movement, than traditional desktop
eye tracking experiments. However such freedom brings new challenges as observed
in Sect. 5.1. We devised the following experimental settings to allow both a good
freedom of movement to the subjects under test and, at the same time, keep the data
analysis processing as simple as possible:

Method: Subjects were instructed to fully observe the scene in 360 degrees from
a single observation point. Observers’ movements were restricted by asking them to
do not walk and do not move from the assigned point. Subjects were allowed to only
turn around by taking small steps on the place. Imposing the subject to do not move
across the scene allows us to describe the scene as an unfolded panoramic picture.
Sect. 5.3 describes the procedure we use to obtain the mapping between eye tracker
camera scene view and the panoramic scene.

Locations selected: We selected three locations inside the university campus.
We opted for safe pedestrian areas at the commercial area of the campus close to
shops, restaurants, library and train station. Panoramic views of the locations are
shown in figure 5.1

Participants recruitment: We recruited 14 participants and for all of them
performed the eye tracking experiments at all the selected locations. The participants
were students and researchers recruited at the science department, half native Spanish
and half non-Spanish and English speakers. All able to read the text without use of
corrective glasses. Participants were compensated for their time.

Task instructions: Subjects were instructed about the task by means of written
instructions. The task instructions were provided before starting the real experiment
to ensure the subject understood the task and understood the importance of not
moving from the assigned place. The written instructions were as follows: “You are
allowed to look around in 360 degrees without moving from the assigned point. Take
all the time you need to observe the scene but look at it fully and only one time. After
viewing the scene you will be given a memory test asking you to pick from a list of
10 words the only words appearing in the scene.” The test was used to motivate the
subject to look for the text in the scene and to motivate a search for the text more
than an intensive text reading task, although the test results were discarded.

Initial observation point and experiment end condition: Subjects were all
instructed to look at the scene with the same initial orientation, by looking straight
to an initial point in the scene (similarly to how subjects are initially set by visual-
izing a target cross in the center of the screen in desktop eye tracking experiments).
Regarding the experiment end condition, the experiment had no time limit allowing
all subjects to fully look at the scene up to one complete 360 degree scene view. The
rational was to allow all subjects to freely look at the scene each one at his own speed,
up to look it fully but not look at the scene twice. Subjects were further reminded of
the experiment end by voice commands.
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Figure 5.3: A sequence of 12 selected frames taken by the Mobile Eye Tracker’s
scene camera. Following the frame sequence by rows, from the top left to the bottom
right, a typical pattern of a subject making a full 360 degrees scan of the scene while
searching for text objects. The FOA position is superimposed in red color.
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Calibration: Eye tracker calibration was performed before running each exper-
iment in a “calibration location” distinct from the experiment locations. Data was
stored on a notebook computer which participants carried in a backpack during both
calibration and experiment.

5.3 Data processing

Exploiting the experimental design described in Sect. 5.2, here we introduce a state-of-
the-art procedure to map the raw data eye position from a per-frame reference system
of the mobile eye tracker to a global reference system shared between all subjects.

5.3.1 Event detection

Event detection is performed using the software tools provided with the recording de-
vice. The built-in detector looks first for fixations, using a dispersion based algorithm
to cluster row data points in a fixational average point. Other events are derived from
them. A saccade is regarded as being bordered by two saccades, a blink is considered
a special case of fixation where eye data is not present.

Data from mobile eye tracking are likely to have some missing sequence of data,
due to the impossibility to track the focus of attention (FOA) position under certain
illumination condition. We observed that both high intensity light saturating the
ETG eye camera or clouds-filtered infra-red light is able to affect the eye recording
process.

5.3.2 Mapping

We used a state-of-the-art procedure to compute homography transformation between
each frame and the panoramic image, based on the detection of stable image key
points. The eye tracker scene camera records high resolution videos at 24 fps, but
among those we only needed to compute the homography at frames for which there
have been detected fixation events. The homography matrix is then used to transform
the FOA coordinates from the video frame coordinate system to the panoramic picture
reference system.

We used the OpenCV library to compute the homography transformation and the
key point detectors and descriptors. The high resolution panoramic picture lead to a
large number of detected key points, however we have not made any reduction on the
number of the detected key points as we are interested in maximise the correctness
of homography transformations at the cost of a higher computational time. As the
slowest part of the algorithm was found to be the computation of pairwise feature
descriptor distance, represented in Fig. 5.4 by the blue lines connecting pairs of key
points between the frame and the panoramic picture. To speed-up this computation
we used a cosine approximation of the feature distance.

Results of the homography transformation have been checked by visual inspection.
More than the 80% of the frames resulted correctly mapped. To ensure the full
correctness of the mapping, we developed a tool for manual mapping of the FOA
position. Incorrect homography transformations are mainly due to the presence of
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shadows cast on the ground by trees and foliage, affecting a large part of the scene
in the eye tracker’s scene camera, and making it appear different from the panoramic
scene. We observed that due to the large width of the scene view, small changes, such
as the presence of people walking, did not affect the correct mapping.

The mapping process is summarized in Fig. 5.5. First is retrieved a video frame
taken at the fixational event timestamp, then it’s computed the homography transfor-
mation. Frame and the current FOA are mapped on the panoramic picture. Proce-
dure is repeated iterating on all the fixational events and the final mapped scanpath
is shown in Fig 5.5(d).

Figure 5.4: Graphical illustration of the key points matching procedure. Key points
from a low resolution taken by the ETG device (top left figure) are matched to the
key points in a high resolution panoramic picture (bottom figure). Lines represents
pairs of key points scoring highest in the matching.
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Figure 5.5: Homography transformation, the procedure to map a frame onto the
scene. (a) a video frame taken at the event timestamp, (b) homography transfor-
mation video frame and foa position, (c) mapping of the FOA on the panoramic
picture, in blue the video frame mapping for visualization purpose, (d) scanpath
after mapping all fixation on the panoramic picture
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5.4 Model simulations and Performance

In this section we assess the model performance and evaluate how changes to some
parts of the model are affecting the global model performance. We specifically look at
the effect of biasing the baseline model presented in Chapter 3 with different settings
of 1) amplitude distributions as in sec 5.4.3, 2) angle distribution as in sec 5.4.4, 3)
reward mechanism as in sec 5.4.5.

The amplitude and angle distributions are learned from the eye tracking data as
obtained after the mapping described in section 5.3. Different sets of distributions
lead to different sets of models. Aiming to investigate the effect of amplitude and
angle biases, we look at differences in a per-location specific settings or in a global
settings. In the first case using sets of distributions learned from a specific location
and averaged over all the subjects, in the second case using sets of distributions
learned from all the data averaging over all locations and all subjects. For easy of
description the models are named with a three characters string coding in the form
Model x-y-z, in which x,y,z stands for the amplitude, angle, reward parameter setting
as further described in the appropriate following sections.

The scanpaths produced by the different sets of models are compared one with
the other by employing a definition of performance accounting for how accurate are
the fixations in hitting the in-scene text targets. Details on the performance metric
are described in the Sect. 5.4.2. To account for the inherent stochasticity of eye
movements, the human performance is computed as an average over 14 eye tracking
experiments it’s thought as the upper bound to the model performance. The chance
level is computed as an average performance on 14 random sequences of fixational
points and it’s regarded here as the lower bound to model performance. Results are
assessed individually per each location among the three locations of interest in this
evaluation and depicted in Fig. 5.1.

5.4.1 Learning model parameters

Eye tracking data can be used to learn human oculomotor bias in the form of the
amplitude and angle distributions of gaze shifts. As long as the model describes
the gaze shift process as a two state finite state machine, switching between local
exploration (short saccades) and large relocations (long saccades), both the amplitude
and angle distributions need to be specified for the two states. We split the sequence of
saccadic eye movements data in two sets of short and long saccades using an algorithm
of robust clustering [2]. The distributions for amplitude and angle distribution are
than computed twice on the two sets of data.

Amplitude distribution: According to the baseline model introduced in Chap-
ter 3 the gaze shift amplitudes follows the α-stable distribution and the α-stable
parameters can be fitted using the Chambers, Mallows, and Stuck procedure [22].
The stable fitting procedure returns an estimate of the four parameters in a fit of the
α-stable distribution to the amplitude of gaze shift eye tracking data. Parametriza-
tion is given in terms of characteristic exponent alpha, the skewness beta, the scale
gamma and the location delta.

Angle distribution: The distribution of angles is modeled in the form of a
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transition matrix describing the sequence of angle directions as a discrete-time Markov
chain (DTMC) over a finite state space. Eye tracking data are used to build the
transition probabilities from the state encoded by the angle at the time t-1 to the
angle at time t. Angle directions are quantized in 16 directions. Sample transition
matrix learned from all the data at the location 1 are visualized in Fig. 5.6.

Figure 5.6: Histogram-based transition matrix of angle occurrence. (a) local explo-
ration, (b) large relocations. Both transition matrix are computed on all the fixation
data at the location 1. Rows represents angles at time t-1 and columns angles at
time t. Values are normalized per-row to sum 1.

5.4.2 Performance metric

Performance is measured in terms of how accurate are the fixation in hitting text
targets. The metric used here is an adaptation from the metric used by Judd [54, 55],
although we applied it in a complementary way, as in her work the objective is to
score saliency maps, as her proposed algorithm predicts the saliency map per pixel.
We keep the idea that human fixations can be used to score the saliency maps as a
function of the correlation between fixation locations the saliency map. In Judd the
evaluation procedure consists in the following steps: The saliency map is thresholded
at n =1, 3, 5, 10, 15, 20, 25, and 30 percent of the image for binary saliency maps
which are typically relevant for applications. For each binary map, they find the
percentage of human fixations within the salient areas of the map as the measure of
performance. As the percentage of the image considered salient goes to 100%, the
percentage of human fixations within the salient locations also goes to 100% [54, 55].

Our adaptation of this procedure accounts for two facts: 1. our algorithm gen-
erates a scanpath and does not a saliency map, 2. we are interested to assess the
capability of the system to generate fixation related to text location. In such a sense
the adaptation we propose consist in replacing the roles proposed in Judd [54, 55] of
the saliency map with a distance transform and the human eye fixations recorded in
eye tracking sessions with the model generated fixations.
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The distance transform is an operator defined on a binary map, and consists in
labeling each pixel of the binary map with the distance to the nearest obstacle pixel.
A graphical representation of how we use the distance transform is provided in Fig.
5.7. We use as binary map a ground truth map, labelling text pixels in white and non-
text pixels in black as shown in Fig. 5.7(a). The distance transform is computed as
distance for each pixel to the nearest text pixel, giving as result a gray level map as in
Fig. 5.7(b) in which the light gray levels encode distance close to zero, and dark gray
levels encode bigger distance from text. The distance transform is then thresholded
such that a percent of the image pixels are above the threshold. Similarly to Judd,
such percentages are set to the {1, 3, 5, 10, 15, 20, 25, 30} percent of the total number
of image pixels. The thresholded maps corresponding to the levels of 1%, 5% and
15% are depicted in Fig. 5.7(c,d,e). The higher is the threshold value, the bigger
is the selected portion of the distance transform (drown in white). The thresholded
maps are used as binary classifier on every fixation, counting them as on-target or
off-target.

This use of the distance transform implements what we define here as a relaxation
factor. As the multiple thresholded maps have the property of being enlarged version
of the ground truth map, it allows to account for fixational points that are slightly
off-target with a variable level of relaxation. This is very useful as allows as to account
for unknowns in the eye tracking, especially for the fovea region extension that is here
affected by variable eye-target distance and the accuracy of the eye tracker instrument
in FOAs position detection.

Figure 5.7: (a) The binary ground truth map corresponding to the panoramic
picture in Fig 5.1. The white pixels annotate the text, (b) Distance transform gray
levels encode distance value for each pixel to the nearest text pixel, (c,d,e) effects of
the relaxation factor at the levels of respectively 1%, 5%, 15%
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5.4.3 The effect of learning amplitude distribution

In our model of attention the amplitude distribution of gaze shift is governed by the
α-stable distribution. Varying the α-stable parameters has an important impact of
the selection of visual information as they are directly linked to the next fixation
generation and the selection of visual patches.

Using the Chambers, Mallows, and Stuck procedure [22] we can learn the α-
stable parameters from eye tracking data and study the effect of varying the α-stable
parameters on the system performance in text search. The amplitude settings studied
here are the following two: 1) a location-generic setting, in which are used data from
all the subjects and all the locations 2) a locations-specific setting in which are used
the data from all the subjects and only a specific location. Following the baseline
model, we do not include any bias to the saccadic angle directions, and angles are
sampled from the uniform distribution. Regarding the reward mechanism, in this
first analysis we assign zero reward independently of the detectable value. For easy
of description the models are named with a three characters string coding that are
the amplitude, angle and reward setting. The model are coded as Model S-U-N and
G-U-N standing respectively for a {location-Specific amplitude, Uniform angle, No
reward} setting and the second for {location-Generic, Uniform angle, No reward}.

Plots in Fig. 5.4.3 show the average performance of system measured as the true
positive rate against the relaxation factor. Plots are one per locations (over the
three locations on interest). Plotted curves are averaged values of true positive rate
on 14 model simulation trials , 14 human subjects eye tracking sequences and 14
random sequence for the chance level. We can observe the following things: Location
specific amplitude parameters lead to better performance than generic parameters.
At location 1 and location 2 the S-U-N model is outperforming the G-U-N for any
level of the relaxation factor.

Figure 5.8: Average performance of the system, at the three different locations and
under different sets of amplitude parameters
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At location 3 the models S-U-N and G-U-N are very close each other although
both are very close to the chance level. This might be explained in terms of text
item density, as at the location 3 there are just a few text areas. In such a sense the
third location is inherently more difficult than the other two, for the purpose of a text
search task. This observation is also confirmed by looking at the human performance
level that is close the level of 0.8 for both location 1 and 2, lower than 0.6 at location
3. In short learning amplitude parameter in a location-specific setting is a winning
strategy, as we intuitively expected. We can read this as an indicator that amplitude
distributions are, somehow, able to capture location specific distribution of objects as
a form of scene layout.
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5.4.4 The effect of learning angle distribution

In our model the angle distributions of gaze shift are modelled as uniform distribution
in the range (0, 2π) radian. As in the previous section, we study the effect of varying
the angle distributions by learning from different sets of eye tracking data. The angle
distribution settings are the following two: 1) a location-generic setting, in which are
used the data from all the subjects and all the locations. 2) a locations-specific setting
in which are used the data from all the subjects and only a specific location. Details
on how we computed the angle distributions are described in Sect. 5.4.1. Regard-
ing amplitude distribution we set location-specific amplitudes. Regarding the reward
mechanism, here we always assign zero reward independently of the detected value.
The models in this section are coded as the Model S-S-N and Model S-G-N standing
for a {location-Specific amplitude, location-Specific angle, No reward} setting and
the second is {location-Specific amplitude, location-generic angle, No reward}. Per-
formance are reported in Fig. 5.4.4 and the Model S-U-N, already introduced in the
previous section, is shown in the following for comparison purpose. We can observe the
following things: The model S-S-N is always scoring higher than the S-G-N, showing
that learning location-specific angle distribution is better than location-generic ones.
In this respect we can say that location-specific bias are always better than location-
generic ones, and this observation is true for both amplitudes and angles. In addition
we can see that the uniform angle distribution is also scoring well at location 1 and 2,
as shown in Fig. 5.4.4 S-U-N model. However at the location 3, only the S-S-N model
is able to achieve a true positive rate significantly higher than the chance level. It
seems that the location-specific angle distribution can hit text items more efficiently
than the uniform distribution, especially in locations with very low text item den-
sity. In this respect it’s difficult to give general conclusion, however an explanation
might lie in strongly biasing toward horizontal saccadic direction observable in the
location-specific angle distribution.

Figure 5.9: Average performance of the system, at the three different locations and
under different sets of angle parameters
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5.4.5 The effect of reward

Third component of this analysis is the role of the rewarding system. In an active
vision paradigm be able to get feedback from the scene and choose where to look
next, is of core importance as allowing to spend time on portions of the scene that are
relevant in the sense of the task related value. Differently from previous analysis in
which the attentive system was set to be agnostic to text presence, here we employed a
state-of-the-art text detector [40, 56], and a perfect classifier (or oracle) always giving
the correct answer on the text presence. Regarding amplitude and angle distributions
we set location-specific amplitudes and location-specific angle. The models in this
section are coded as the Model S-S-A and Model S-G-P in which the first stands
for {location-Specific amplitude, location-Specific angle, state-of-the-art text detector
based reward} setting, the second for {location- Specific amplitude, location-Specific
angle, perfect classifier based reward}. Performance are reported in Fig. 5.4.5. The
S-S-A model, based on a state-of-the-art text detector, is able slightly improving over
the S-S-N. Although small this is a positive result as a correct interpretation of results
must take into account the discriminability of the text in real scene images. Although
the text detection method used here is scoring as top performance (precision = 0.58,
recall = 0.54 on the MSRA-TD500 dataset [40]), the scene illumination conditions
are strongly affecting the text appearance. The S-G-P model, based on a perfect
classifier, is instead outperforming any other model, although never reaching the
true positive rate achieved by the human level. This is something expected as the
role of the perfect classifier is to inform the attention model on a per-fixation basis,
although its role is not to ensure the selection of on-target fixation. Finally the human
performance is always higher than any achievable performance by our models, as
accounting contextual information by far larger then the one included in our models.

Figure 5.10: Average performance of the system, at the three different locations.
Accounting for the effect of reward
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5.4.6 Comparison

Here we report a comparison of the different models introduced in this chapter. The
names of the models are coded as described in the previous sections. Plots in figure
5.11 report a very dense picture of the system performance averaged over the three
locations. We observe the following: 1) As long as the human performance is around
0.7 for a relaxation factor ranging in (20, 30)%, we register an average upper bound to
performance of around seven fixations over ten for almost on target fixations. 2) The
use of location-specific biases is improving over the use location-generic biases. The
S-U-N model scores better than the G-U-N for any relaxation factor (using as using
location-specific amplitudes, and uniform angle distribution). 3) The S-S-N model
is improving over the previous two as including both location-specific amplitudes
and angles. The models S-U-N and G-U-N, both characterized by an uniform angle
distributions, score at an intermediate level. Although not performing equally well
for all locations as observed in previous section. 4) Learning location-specific angle
distributions (as in the model S-S-N) improves performance, especially at higher levels
of relaxation factor indicating the tendency of having slightly off-target fixation. 5)
The use of a rewarding mechanism is improving performance if reliable. The use of a
rewarding system based on a state-of-the-art classifier makes a small although positive
improvement over not using any reward.

Figure 5.11: Average performance over all subjects and all locations. Comparison of
performances for variations to the baseline models. Humans and chance performance
level are plot for comparison purpose.
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5.5 Conclusion

In this Chapter we have studied to what extent our model of attention can account
for human eye movements in a close to real life exploration of a 360 degree scene.
We have specifically addressed the condition of highly incomplete visual information,
fully embracing an active vision paradigm. We stressed the point of limited visual
information and deeper investigate the mechanism through which perceptual bias can
modulate object search performance.

We use a mobile eye tracker to record eye data from human subject in an outdoor
setting. In such experimental condition the scene is not all visible at a glance and head
movements as well body rotation are needed to fully see the scene in its 360 degrees.
We developed a novel and ad-hoc methodology to compare model simulated eye data
with the human eye data from mobile eye tracking recordings. A novel element in our
analysis is in having resorted to a procedure based on the computation of homography
transformation to map the mobile device camera view, to a panoramic picture. This
operation allowed us to think in bi-dimensional reference system, and establish a clear
correspondence between mobile eye tracking data and model generated data.

Experiments show that learning biases in a location-specific settings translates in
higher average performance. Location specific amplitude parameters lead to better
performance than generic parameters, the inclusion of location-specific angle distri-
butions seems to be able to achieve higher true positive rate by properly biasing the
saccadic direction in locations with very low text item density. The use of a reliable
rewarding system allows to select significantly better the informative regions of the
scene, leading to the closest to human performance, although the latter is accounting
contextual information by far larger then the one included in our model.



Chapter 6

Conclusions

In this thesis we have presented an integrated computational model of eye guidance
for task-dependent attention deployment to objects in natural pictures. To the best of
our knowledge, the model is novel in proposing a unified framework that i) accounts
for task-dependent visual attention on semantically rich natural images by using dif-
ferent levels of representation, beyond the baseline saliency maps; ii) simulates gaze
shifts that exhibit statistical properties close to those of eye-tracked subjects, by ex-
tending previous approaches proposed in the literature, [10, 11] that addressed the
intrinsic stochasticity of gaze shifts; iii) tackles close to real life experimental condition
characterized by high deception and incomplete information scenarios:

• task-dependent visual attention: For what concerns the task-dependent
visual attention, the proposed model can cope with eye guidance both under a
search task, an issue which has been taken into account by some models [128,
85, 71, 133], and under a generic picture viewing task, which has been typically
accounted for by saliency/relevance-based models (either bottom-up [53] or top-
down biased [108, 24]). The key to such integration is that, different from those
models, we have considered the generation of a scan path as the interplay among
several levels of representation and control that goes beyond the classic debate
bottom-up vs. top-down, but brings payoff, value and motor representations
into the game. We believe that, although this broad and flexible approach also
creates new theoretical and computational challenges, this very breadth is an
important issue to address. In fact, to succeed in complex environments we must
act in a flexible manner as appropriate for a given task, which suggests that a
stage of visual selection can be distinct from that of saccade motor selection.
For instance, the priority map may encode signals of visual selection that are
not eventually captured by current action based decision module. Differently
from methods using purely visual top-down modules, the biases provided do
not amount directly to motor command, and action related areas may also
block or supplement its signal as required in a given task. This integration of
different levels of representation and control is important to define some issues
that remain elusive if considered with respect to a single level or locus. One
such example is the inhibition of return (IOR). Depending on the task, different
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variants of IOR exist [126]. In our model, the priority map explicitly uses IOR
in a classic way, by suppressing the response at the currently attended location.
However, a reduction or an enhancement in the reward likelihood can modulate
the IOR at the priority map level. In general, this multiple level interaction can
be a way of framing the discussion surrounding a functional interpretation of
IOR (that is fostering or not optimal foraging behaviour, see [126]).

More generally, the use of value and payoff can provide a suitable bridge to
explain gaze behaviour that, even in the absence of given task seems to be
driven by internal motivational saliency, which in pathological conditions could
be generated by a disruption of biological reward systems [18]. Visual scan path
analyses provide important information about attention allocation and atten-
tion shifting during visual exploration of social situations characterised by both
cognitive complexity and emotional content or even strain. On the one hand,
the approach proposed here paves the way to the effective exploitation of com-
putational attention models in the emerging domain of social signal processing
[119], and, more broadly, to cope with the problem the affective modulation of
the visual processing stream [79, 80] with the aim of closing the gap between
emotion and cognition [42]

• scan path variability: As regards the scan path variability, the model at-
tempts at filling a gap in the current computational literature (cfr., [12]). The
majority of models in computational vision basically resort to deterministic
mechanisms to realise gaze shifts, therefore, if the same saliency map is pro-
vided as input, they will basically generate the same scan path. Moreover
ignoring motor strategies and tendencies that characterise gaze shift program-
ming results in distributions of gaze shift amplitudes different from those that
can be observed from eye-tracking experiments. We have presented in examples
showing that the overall distributions of human and model generated shifts are
close in their statistics.

The core of such strategy actually relies upon a mixture of α-stable motions
modulated by the different visuomotor levels of control participating to the
action-perception loop. The composition of random walks in terms of a mixture
of α-stable components allows to treat different types of eyes movement within
the same framework and makes a step towards the unified modelling of differ-
ent kinds of gaze shifts. The latter is a research trend that is recently gaining
currency in the eye movement realm [78]. For instance, when Eq. (3.16) is ex-
ploited for within-patch exploration, it generates a first-order Markov process,
which is compatible with most recent findings [6]. Notice that this approach
may be exploited for a principled modelling of individual differences and depar-
ture from optimality [70] since providing cues for defining the informal notion of
scan path idiosyncrasy in terms of individual gaze shift distribution parameters.
The latter represents a crucial issue both for theory [97, 112] and applications
[65]. For instance, the study by Sprenger et al. [105], concerning patients with
schizophrenia, has shown that show that alterations such as restricted free vi-
sual exploration were present in patients independently of cognitive complexity,
emotional strain or physical properties of visual cues implying that they rep-
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resent a rather general deficit, which may be accounted for in terms of group
specific oculomotor bias or scanning strategy.

• Close to real life experimental conditions: From a searcher standpoint
real life experimental conditions are typically characterized by high deception
and incomplete visual information. As long as target in real scene are typically
not easy to distinguish due to the huge variability in object appearance, relo-
cations of the perception point of view is a straightforward strategy to gather
multiple views of the target and, hopefully, more easily detect the object. As
soon as adopting an active vision paradigm, the limited visual information has
to be accounted as an intrinsic property of a vision system implementing vi-
sual information selection by interaction with the scene. Investigating in this
direction we collected a dataset of human eye movements in mobile eye tracking
experiments in outdoor settings. Our attentive system allowed to simulate the
limited visual information and the gathering of small scene views from a large
panoramic picture. Performance, measured in terms of true positive rate of text
targets, report the human upper bound performance at the level of about 7
fixations on-target each 10 fixations (0.7 %). Simulations show that the model
performance are largely lower than human performance as measured through
eye tracking data. Model performance can be improved by accounting for oculo-
motor bias in amplitudes and angle distributions of gaze shifts achieving a true
positive rate in the range (0.4; 0.5) for a relaxation factor in range (20, 30) %.
The use of a reliable rewarding system allows to reach a bit higher performance
of about still far from the human upper bound. Such result is not surprising as
the visual system is able to account contextual information by far larger then
the one included in our model.

6.1 Limitations and Future Perspective

Clearly, there are some limitations of the model in its present version. We do not
consider here time-varying or multiple task assignment, which may be important in
real world behaviours. Also, we barely touched the level of neural implementation.
However, in this respect, the model is agnostic about whether or not probabilistic com-
putations can be neurally implemented (see the review by Knill and Pouget [58]). This
is an intriguing but intricate debate. For instance, Heinke and Humphreys [44] raised
the interesting point of using differential equations the exhibits chaotic behaviour to
account for noise and recently Churchland and Abbot [26] argued that randomness
in neuronal firing rates and spike timing could arise from a network built of deter-
ministic neurons with balanced excitation and inhibition. Further, to make the broad
integration behind the model feasible, we have focused on the core issues, providing
some black-box or simulated implementations for other components. For instance, for
the text localisation/detection task we rely on simulated detectors both for the pre-
attentive coarse grained localisation and for the fine-grained detection/recognition. In
a preliminary work using a simpler version of the model presented here [27] we have
experimented with a text localiser component based on a Relevance Vector Machine
classifier applied to “gist” texture features á la Torralba [114] both at a coarse and at
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a high resolution level. However, “textual objects” are a difficult task as opposed to
faces for which, at least, efficient and effective face detectors do exist [120], if one is
not concerned with the biological plausibility of the algorithm. Actually, our current
research work is indeed addressed at verifying the suitability of our model in a diffi-
cult practical problem such as text localisation and detection “in the wild”, in order
to overcome present limitations of attentive-based approaches proposed within such
realm [27]. To this end, we are adapting the model to handle time-varying images,
and we are performing mobile eye-tracking experiments outside the lab, in complex
urban environment. Another limitation, which is conceptually more important than
the previous one, is that using value and payoff calls for adopting learning procedures
that could be at hand with such information and could be exploited, in the case of
a search task, for priming the guidance process [104]. However, it is clear that when
dealing with restricted real-world tasks (e.g., crossing a road or making a tea cup)
the learning stage can be effectively stated; what has to be learned in the task of
searching in a dataset of mostly unrelated pictures of natural scenes is less evident.
Treatment of these topics is deferred to a future study.

We do not by any means regard the following as a complete picture of what
actually goes on in the attentive brain. But results presented here encourage us to
put forth this preliminary attempt at outlining a theoretical foundation grounded in
a principled integration of several levels of representation and control for supporting
eye guidance, albeit calling for further research into these basic processes.



Appendix A

Foraging models and Lévy flights

A.1 The foraging metaphor

The foraging metaphor comes from the assumption that animals are in some way op-
timizing in their foraging activities [23]. Several authors have designed mathematical
models to predict the foraging behavior of animals and they all assume that the fitness
of the forager is a function of the efficiency of the foraging and that natural selection
has resulted in animals that forage so as to maximize this fitness [84]. These models
have become known as “optimal foraging models” and are traditionally divided in four
categories: optimal diet, optimal patch choice, optimal allocation of time to patches,
optimal patterns.

A.1.1 Primates foraging model

Recently Boyer and others [13] introduced a simple foraging model for individual pri-
mates foraging in forest. The foraging environment is modeled as a two-dimensional
square domain containing N point-like targets randomly and independently distributed
in space (Poisson process), representing the trees with fruits that monkeys eat. Each
target is identified by an index i and the target’s size (or fruit content) is described by
ki which one, according to recent work (Enquist and Niklas 2001; Niklas et al. 2003),
is assumed to be distributed according to a inverse power-law probability distribution

P (k) = CK−β (A.1)

where C = 1/
∑inf

k=1 k
−β is the normalization factor and 1 < β < inf is a fixed

exponent characterizing the environment.
A forager located at a starting point (the centre of the domain), knows the location

and size of all targets in the system, and recursively follows some rules of motion:
(a) the forager located at the target number i will move in a straight line to a

target j such that the quantity lij/kj is minimal among all available targets j �= i in
the system, where lij is the distance separating the two targets and kj is the size of
target j;
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(b) the forager does not choose an already visited target, as it is assumed that
visited targets no longer contain fruits.

A.1.1.1 model’s assumption

1. The distance size ratio l/k roughly represents a cost/gain ratio for a move
motivating the being attracted or repelled from a certain site, so that valuable
targets may be chosen even if they are not the nearest to the monkey’s position.

2. A crucial assumption of this model is that the forager is assumed to know lo-
cation and size of all targets to move from one target to another. Although,
according to previous work, many animals (bees, rodents, primates) do not for-
age randomly but rely instead on cognitive maps to navigate their environment
(Collett et al. 1986; Garber 1989; Dyer 1994). These maps may contain in-
formation on the location of different targets and the geometric relationships
between them (Kamil & Jones 1997).

In order to relax the assumption of perfect knowledge by the foragers, we assume
that the forager is inexact in evaluating the distance to a given target, as well
as its fruit content. Models simulation concludes that when the foraging rule
is imperfect and with a typical error of 65%, no qualitative differences in the
distributions are found with respect to the perfect, deterministic rule.

A.1.1.2 findings

By varying its main parameter β which describes the decay of the tree-size frequency
distribution, the trajectories of the artificial forager following a differs widely. Levy
walks arise as a consequence of food intake maximization in a spatially disordered,
heterogeneous environment where the location of resources is at least partially known.

A.2 Efficient search in foraging

A.2.1 Random walks and Lévy flights in a nutshell

In continuous time a d-dimensional random motion under the influence of a force field
for the stochastic variable r(t) can be described by the Ito-type Stochastic Differential
Equation (SDE) [38]

dr(t) = g(r, t)dt+D(r, t)ξdt. (A.2)

The trajectory of the variable r is determined by a deterministic part g, the drift, and
a stochastic part D(r, t)ξdt, where ξ is a random vector and D is a weighting factor.
Thus, clearly, the motion is determined by the probability density function f from
which ξ is sampled. For instance, if f is a Gaussian distribution, the usual Brownian
motion occurs.

However, Brownian motion is nothing but a special case within the family of
stochastic processes qualifying as natural models for random noise sources. Other
types of motion can be generated by resorting to the class of the so called α-stable
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distributions [39]. These form a four-parameter family of continuous probability den-
sities, say f(ξ;α, β, γ, δ), parametrized by the skewness β (measure of asymmetry),
scale γ (width of the distribution) and location parameters δ and, most important,
the characteristic exponent α or index of the distribution that specifies the asymptotic
behavior of the distribution.

Indeed the probability density function p(l) of length jumps scales, asymptotically,
as l−1−α, and thus relatively long jumps are more likely when α is small. By sampling
ξ ∼ f(ξ;α, β, γ, δ), for α ≥ 2 the usual random walk (Brownian motion) occurs; if
α < 2 , the distribution of length jump is “broad” and the so called Lev́y flights take
place.

More precisely, a random variable X is said to have a stable distribution if the
parameters of its probability density function (pdf) f(x;α, β, γ, δ) are in the fol-
lowing ranges α ∈ (0; 2], β ∈ [−1; 1], γ > 0, δ ∈ R and if its characteristic function
E [exp(itx)] =

∫
R
exp(itx)dF (x), F being the cumulative distribution function (CDF),

can be written as

E [exp(itx)] =

{
exp(−|γt|α)(1− iβ t

|t| ) tan(
πα
2 ) + iδt)

exp(−|γt|(1 + iβ 2
π

t
|t| ln |t|) + iδt)

the first expression holding if α �= 1, the second if α = 1.
Special cases of stable distributions whose pdf can be written analytically, are

given for α = 2, the normal distribution f(x; 2, 0, γ, δ), for α = 1, the Cauchy dis-
tribution f(x; 1, 0, γ, δ), and for α = 0.5, the Lévy distribution f(x; 0.5, 1, γ, δ); for
all other cases, only the characteristic function is available in closed form, and nu-
merical approximation techniques must be adopted for both sampling and parameter
estimation [22, 74, 62].

Special cases of stable distributions, for which the pdf can be written analytically,
are the normal distribution (α = 2), the Cauchy distribution (α = 1), and the Lévy
distribution (α = 0.5) ; for all other cases, only the characteristic function is available
in closed form, and numerical approximation techniques must be adopted for sampling
and parameter estimation [22, 125, 74, 62].

Examples of Lévy flights, typically exhibiting local walk interleaved with long
jumps, are presented in Figure A.1 (second and third plots) compared to Brownian
motion (top left). In the same figure, the bottom right plot illustrates a random walk
pattern obtained as a composite process simulated by sampling from a mixture of
two α-stable distributions indexed by α1 = 2 and α2 = 1, respectively, and mixture
weights w1 = 0.4, w2 = 0.6. It is worth noting in the latter case that the walking
pattern could be identified as a Levy pattern though, in contrast with the other
cases, the pattern generating process is not a pure Levy process, but a composite one
(Brownian and Cauchy).

Coming back to (A.2), in many applications [9] g(r, t) is modelled as a force field
due to a potential V (r, t), that is g(r, t) = −∇V (r, t), Then (A.2) can be written as
a Langevin equation,

dr(t) = −∇V (r, t)dt+D(r, t)ξdt (A.3)

In this case the probability density function P (r, t) can be obtained via differential
equations of the Fokker-Planck type [95] for Brownian motion and via their fractional
versions in case of Lévy flights [68].
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Figure A.1: Different random walks (left column) obtained by sampling ξα for
different α parameters; the walks shown in the top left,top right and bottom left
plots have been generated via α = 2, α = 1.6 , α = 1, respectively; the bottom right
plot, represents a composite walk sampled from a mixture of two stable distributions
indexed by α = 2 and α = 1, parameters.

Stochastic differential equations have been used in researches concerning memory
retrieval, language comprehension, and visual search (see, e.g., [87], [137] ), and the
concept of potential functions is used in ecological modelling of animal movements
to motivate a form for the drift term as a function of distances to selected habitat
covariates [83]. In particular Lévy flights have been used to models searches of foraging
animals and they have been shown to produce optimal searches in term of the ratio
between the number of sites visited to the total distance traversed by a forager [100],
[121].

A.2.2 Efficiency

In a seminal paper [14], Brockmann and Geisel have shown that a visual system pro-
ducing Lévy flights implements a more efficient strategy of shifting gaze in a random
visual environment than any strategy employing a typical scale in gaze-shift magni-
tudes; evidence of Lévy diffusive behavior of scanpath has been presented in [106].
Equation (A.3) has been used in [9], within a ”foraging metaphor”, assuming that the
Lévy-like property of scanpath mirrors patterns of foraging behavior found in many
animal species [121]: the stochastic part of the motion was generated by Cauchy noise
and the potential was designed as a function of a saliency map to derive a gaze-shift
model (see [9] for a detailed discussion, and [66],[69] for application to robot vision
relying on stochastic attention selection mechanisms).

However, the general applicability of Lévy flights in ecology and biological sciences
is still open to debate, as recent experimental data show that the movement patterns
of various marine predators and terrestrial animal exhibit a Lévy walk pattern in
areas with low abundance of preys or foods and Brownian walk pattern (a sort of
food tracking) in areas with high abundance. [28].

Thus, in complex environments, optimal searches should result from a mixed/composite
strategy (generating patterns similar to the bottom right one of Fig. A.1), in which
Brownian and Lev́y motions can be adopted depending on the structure of the land-
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scape in which the organism moves [82], [93], [92]. Such strategy is optimal because
Lévy flights are best suited for the location of randomly, sparsely distributed patches
that once visited are depleted and Brownian motion gives the best results for the
location of densely but random distributed within-patch resources [92].
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[39] B.V. Gnedenko and A.N. Kolmogórov. Limit distributions for sums of indepen-
dent random variables. Addison-Wesley Pub. Co., 1954. [Page 83]

[40] Lluis Gomez and Dimosthenis Karatzas. Multi-script text extraction from nat-
ural scenes. In Document Analysis and Recognition (ICDAR), 2013 12th Inter-
national Conference on, pages 467–471. IEEE, 2013. [Page 74]

[41] PM Greenwood and Raja Parasuraman. Scale of attentional focus in visual
search. Perception & Psychophysics, 61(5):837–859, 1999. [Page 54]

[42] Claudius Gros. Cognition and emotion: perspectives of a closing gap. Cognitive
Computation, 2(2):78–85, 2010. [Page 78]

[43] M.M. Hayhoe, A. Shrivastava, R. Mruczek, and J.B. Pelz. Visual memory and
motor planning in a natural task. Journal of Vision, 3(1), 2003. [Page 22]

[44] Dietmar Heinke and Andreas Backhaus. Modelling visual search with the selec-
tive attention for identification model (vs-saim): a novel explanation for visual
search asymmetries. Cognitive computation, 3(1):185–205, 2011. [Page 79]

[45] J.M. Henderson. Human gaze control during real-world scene perception. Trends
in cognitive sciences, 7(11):498–504, 2003. [Page 23]

[46] J.M. Henderson, A. Pollatsek, and K. Rayner. Covert visual attention and
extrafoveal information use during object identification. Attention, Perception,
& Psychophysics, 45(3):196–208, 1989. [Page 15]

[47] K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka, and
J. Van de Weijer. Eye tracking: a comprehensive guide to methods and measures.
Oxford University Press, Oxford, UK, 2011. [Pages 37 and 54]

[48] T.S. Horowitz and J.M. Wolfe. Visual search has no memory. Nature,
394(6693):575–577, 1998. [Page 30]

[49] X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In
Proceedings CVPR ’07, volume 1, pages 1–8, 2007. [Page 34]

[50] J.N. Ingram, K.P. Körding, I.S. Howard, and D.M. Wolpert. The statistics of
natural hand movements. Experimental brain research, 188(2):223–236, 2008.
[Page 26]

[51] L. Itti and P. Baldi. Bayesian surprise attracts human attention. Advances in
neural information processing systems, 18:547, 2006. [Page 20]



REFERENCES 91

[52] L. Itti and C. Koch. Computational modelling of visual attention. Nature
Reviews - Neuroscience, 2:1–11, 2001. [Pages 20 and 22]

[53] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention
for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20:1254–1259, 1998. [Pages 20, 22, 48 and 77]

[54] Tilke Judd. Understanding and predicting where people look in images. PhD
thesis, Massachusetts Institute of Technology, 2011. [Page 69]
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