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Abstract

It is commonly recognized by the scientific and technical community of the Internet that
its current routing system architecture suffers from a scalability problem, because the fast
(exponential) growth in its number of nodes (routers and Autonomous Systems), as well
as other factors, translates into a similar growth in the size of the Routing Table (RT).
This makes Internet routers to require an excessive amount of storage to maintain the
RT and a high processing to make routing decisions. A similar problem arises in Data
Centers (DCs), where the emergence of new paradigms such as Cloud Computing, Smart
Cities and the Internet of Things (IoT), have also increased exponentially their number of
nodes (servers and network devices). This growth degrades the performance of the DC
routing system and has a negative impact on energy consumption and environment. As a
consequence, the design of scalable routing schemes for the Internet and DC is of major
importance.

The problem known as Compact Routing (CR) consists in designing routing schemes
that achieve scalable RT size with respect to the number of network nodes n, i.e., the
RT size grows sub-linearly (or lower) in n, with vertex labels (i.e., node identifiers) of
logarithmic size in n, and low stretch. The (multiplicative) stretch of the routing scheme
is defined as the worst (highest) ratio between the length of the path produced by the
routing scheme and the length of the shortest path (for the same source-destination pair),
among all source-destination pairs (we consider that the length of the path is its number
of hops).

As a potential solution to the Compact Routing Problem (CRP), Greedy Geometric
Routing (GGR) has been proved to be both simple and heuristically effective (a GGR
scheme that solves the CRP is called a Compact Greedy Geometric Routing (C-GGR)
scheme). This family of routing schemes assigns some (virtual) coordinates in a metric
space to each node through the process called embedding. By forwarding packets to the
closest neighbor node (in this space) to the destination, they ensure a completely local
process with the RT size bounded by the maximum vertex degree. However, the GGR
schemes proposed so far experience one or more of the following problems: 1) they do

not guarantee packet delivery, 2) they produce vertex labels of size linear (or higher) in n,

XV
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3) they can not be implemented in a distributed way, 4) they require a full knowledge of
the network topology, or 5) they have unbounded stretch.

In this work we propose a novel and simple embedding of any connected finite
graph into a Word-Metric space, i.e., a metric space generated by algebraic groups. By
combining word processing in groups with graph search algorithms, we prove that any
GGR scheme built on top of this embedding guarantees the packet delivery (the embedding
is said to be “greedy”). Then, for any graph H with n nodes, m edges, maximum vertex
degree Ay, and spanning tree Ty with diameter D(7p), we propose the following three
GGR schemes:

e A GGR scheme for any kind of graph, with stretch of O(D(Ty)), O(D(Tn) -
log(Ag)) bits per vertex label, RTs of size O(Ay - D(Ty) - log(Ap)) and routing
decisions that take O (A%, - D(Ty)) steps.

e A C-GGR scheme for scale-free graphs (which include many real-world topologies
such as Internet), with stretch of O (log(n)), O(log?(n)) bits per vertex label, RTs of
size O(n'/? - log?(n)) and routing decisions that take O (n-log(n)) steps.

e A C-GGR scheme for Cayley Graphs (which are used as a model for Data Center
interconnection networks), with shortest paths, O(log(n) - log(log(n))) bits per
vertex label, routing tables of size O(log?(n) - log(log(n))), and routing decisions
that take O (log®(n)) steps.

While the first GGR scheme works for any kind of graph and its complexity depends
on the parameters D(Ty) and Ay, the two C-GGR schemes are specialized, and their
complexity only depends on n. In addition, these C-GGR schemes can be constructed in a
distributed way in O(log(n)) steps, using O(n +log(n) - m) messages of size O(log?(n))
and O(Ap -log(n)) bits of additional storage to build the RT, i.e., not only the RT is scalable
but also the routing scheme itself.

Experimental evaluation through simulation of the C-GGR scheme for scale-free
graphs and the C-GGR scheme for Cayley Graphs shows that the stretch, the vertex label
and the RT size are well below the theoretical upper bounds, and that these results are

better in comparison with other well-known routing schemes.



Resumen

Estd ampliamente reconocido por la comunidad cientifica y técnica de Internet que la
arquitectura actual del sistema de encaminamiento sufre un problema de escalabilidad,
ya que el rdpido (exponencial) crecimiento en su nimero de nodos (routers y sistemas
auténomos), asi como otros factores, se traslada a un crecimiento similar del tamafio de
la tabla de encaminamiento (Routing Table o RT). Esto hace que los routers de Internet
requieran una cantidad excesiva de espacio de almacenamiento para mantener estas tablas
y que las decisiones de encaminamiento también requieran un elevado procesamiento. Un
problema similar aparece también en los centros de datos (Data Centers o DC), donde la
aparicion de los nuevos paradigmas de computacion en la nube, ciudades inteligentes y la
Internet de las cosas, han provocado un crecimiento exponencial en su nimero de nodos
(servidores y elementos de red). Este crecimiento degrada el rendimiento del sistema de
encaminamiento y esto acaba teniendo un impacto negativo en el consumo de energia y
en el medio ambiente. Como consecuencia, el disefio de esquemas de encaminamiento
escalables para Internet y centros de datos es de una gran importancia.

El problema conocido como encaminamiento compacto (Compact Routing o CR)
consiste en disefar esquemas de encaminamiento que consigan que el tamaiio de la tabla
de encaminamiento sea escalable con respecto al nimero de nodos de la red n, es decir,
que el tamafio de la tabla de encaminamiento crezca de un modo sub-linear (o inferior)
a n, con unas etiquetas de nodos (o sea, identificadores de nodos) de tamafio logaritmico
respecto a n, y manteniendo un stretch bajo. El stretch (multiplicativo) de un esquema
de encaminamiento se define como la peor (o la mas alta) ratio entre la longitud de los
caminos producidos por el esquema de encaminamiento y la longitud del camino mds
corto (para el mismo par origen-destino), entre todos los posibles pares origen-destino
(consideramos que la longitud de un camino es su nimero de saltos).

Como posible solucion al problema del encaminamiento compacto (Compact Routing
Problem o CRP), se ha propuesto el uso de esquemas de encaminamiento geométrico
greedy (Greedy Geometric Routing o GGR), los cuales han demostrado ser esquemas
simples y heuristicamente efectivos (un esquema GGR que resuelve el problema CRP es

llamado un Compact Greedy Geometric Routing o C-GGR). Esta familia de esquemas
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de encaminamiento asigna algtin tipo de coordenadas (virtuales) de un espacio métrico
a cada nodo a través de un proceso que se llama incrustacion (embedding). Haciendo
que los nodos retransmitan los paquetes al nodo vecino mdas cercano (en este espacio
métrico) al destino, se consigue un proceso es completamente local y un tamaiio de la
tabla de encaminamiento limitada por el grado maximo de los nodos. Sin embargo, los
esquemas GGR propuestos hasta hoy presentan uno o mas de los siguientes problemas:
1) no garantizan la entrega de todos los paquetes, 2) producen etiquetas de los nodos de
tamafo linear (o0 superior) respecto a n, 3) no pueden ser implementados de una forma
distribuida, 4) necesitan una vision global de la topologia de la red, o 5) presentan un
stretch no limitado.

En este trabajo se propone un nuevo y simple método de incrustacién de un grafo
finito y conectado cualquira en un espacio métrico de palabras (Word-Metric space), es
decir, un espacio métrico generado por grupos algebraicos. Combinando el procesamiento
de palabras en grupos con algoritmos de bisqueda en grafos, hemos demostrado que
cualquier esquema GGR construido sobre esta incrustacion garantiza la entrega de todos
los paquetes (es decir, que el incrustado es ’greedy”). Entonces, para cualquier grafo H
con n nodos, m enlaces, grado nodal méximo Ag, y un arbol recubridor (spanning tree)

Ty con diametro D(Ty ), proponemos los siguientes tres esquemas GGR:

e Un esquema GGR para cualquier tipo de grafo, con un stretch de O(D(Ty)),
etiquetas con O(D(Ty) - log(Ag)) bits, tablas de encaminamiento de tamafio
O(Ap -D(Ty) -log(Ag)) y donde las decisiones de encaminamiento se toman en
O (A} - D(Ty)) pasos.

e Un esquema C-GGR para grafos libres de escala (scale-free) ( los cuales incluyen
muchas topologias del mundo real como Internet) con un stretch de O (log(n)),
etiquetas con O(log?(n)) bits, tablas de encaminamiento de tamafio O(n'/? .

log*(n)) y donde las decisiones de encaminamiento se toman en O (n-log(n))

pasos.

e Un esquema C-GGR para grafos de Cayley (los cuales se usan de modelo para las
redes de interconexion en centros de datos), con stretch 1 (todos los caminos son
los mds cortos), etiquetas con O(log(n) -log(log(n))) bits, tabla de encaminamiento
de tamafio O(log?(n) - log(log(n))) y donde las decisiones de encaminamiento se

toman en O (log*(n)) pasos.

Mientras que el primer esquema GGR propuesto funciona en cualquier tipo de grafo
y su complejidad depende de los parametros D(Ty) y Ap, los dos esquemas C-GGR

son especializados y sus complejidades dependen solo de n. Ademads, estos esquemas
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C-GGR se pueden implementar de una manera distribuida en O(log(n)) pasos, usando
O(n-+log(n)-m) mensajes de tamafio O(log?(n)) y usando un espacio de almacenamiento
adicional de O(Ap - log(n)) bits para construir la tabla de encaminamiento, es decir,
no solo los esquemas especializados propuestos presentan una tabla en encaminamiento
escalable, sin6 tambiém los mismo esquemas de enrutamiento.

Se ha realizado una evaluacion experimental, a través de simulaciones, del esquema
C-GGR para grafos de escala libre y del esquema C-GGR para grafos de Cayley,
donde se ha comprobado que el stretch, el tamafio de las etiquetas y el tamafio de la
tabla de encaminamiento estdn muy por debajo de las cotas superiores tedricas, y que
dichos resultados son mejores en comparacion con otros esquemas de encaminamiento

conocidos.



Resum

Esta ampliament reconegut per la comunitat cientifica 1 técnica d’Internet que
I’arquitectura actual del sistema d’encaminament presenta un problema d’escalabilitat,
ja que el rapid (exponencial) creixement en el seu nombre de nodes (routers i sistemes
autonoms), aixi com altres factors, es trasllada a un creixement similar de la longitud
de la taula d’encaminament (Routing Table o RT). Aix0 fa que els routers d’Internet
requereixin d’una quantitat excessiva d’espai d’emmagatzemament per mantenir aquestes
taules i que les decisions d’encaminament també requereixin d’un elevat processament.
Un problema similar apareix en els centres de dades (Data Centers o DC), on I’aparicid
dels nous paradigmes de informatica en nuvol, ciutats intel-ligents i Internet de les coses,
han provocat un creixement exponencial en el seu nombre de nodes (servidors i elements
de xarxa). Aquest creixement degrada el rendiment del sistema d’encaminament i aixo
acaba tenint un impacte negatiu en el consum d’energia i en el medi ambient. Com a
conseqencia, el disseny d’esquemes d’encaminament escalables per a Internet i centres
de dades és d’una gran importancia.

El problema conegut com encaminament compacte (Compact Routing o CR)
consisteix en dissenyar esquemes d’encaminament que aconsegueixin que la longitud de
la taula d’encaminament sigui escalable respecte del nombre de nodes de la xarxa n, és a
dir, que la longitud de la taula d’encaminament creixi d’un mode sub-linear (o inferior)
a n, amb unes etiquetes dels vertexs (o sigui, identificadors dels nodes) d’una longitud
logaritmica respecte a n, 1 mantenint un stretch baix. L’stretch (multiplicatiu) d’un
esquema d’encaminament es defineix com la pitjor (o la més alta) ratio entre la longitud
dels camins produits per I’esquema d’encaminament 1 la longitud del cami més curt (per
al mateix parell origen-desti), entre tots els possibles parells origen-desti (considerem que
la longitud d’un cami €s el seu nombre de salts).

Com a possible soluci6o al problema de I’encaminament compacte (Compact
Routing Problem o CRP), s’ha proposat 1’is d’esquemes d’encaminament geometric
greedy (Greedy Geometric Routing o GGR), els quals han demostrat ser esquemes
simples 1 heuristicament efectius (un esquema GGR que resol un problema CRP

s’anomena Compact Greedy Geometric Routing o C-GGR). Aquesta familia d’esquemes

XX
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d’encaminament assigna algun tipus de coordenades (virtuals) d’un espai metric a cada
node a través d’un procés que s’anomena incrustaci (embedding). Fent que els nodes
retransmetin els paquets al node vei més proper (en aquest espai metric) al desti,
s’aconsegueix un procés completament local i una longitud de la taula d’encaminament
limitada per el grau maxim dels vertexs. No obstant, els esquemes GGR proposats fins
avui presenten un o més dels segents problemes: 1) no garanteixen I’entrega de tots els
paquets, 2) produeixen etiquetes dels vertexs d’una longitud linear (o superior) respecte a
n, 3) no poden ser implementats de forma distribuida, 4) necessiten una visi6 global de la
topologia de la xarxa, o 5) presenten un stretch no limitat.

En aquest treball es proposa un nou i simple metode d’incrustaci d’un graf finit
connectat qualsevol en un espai metric de paraules (Word-Metric space), és a dir, un espai
metric generat per grups algebraics. Combinant el processament de paraules en grups
amb algoritmes de cerca en grafs, hem demostrat que qualsevol esquema GGR construit
amb aquest incrustaci garanteix I’entrega de tots els paquets (és a dir, que I’incrustaci
€s “greedy”). Per tant, per a qualsevol graf H amb n nodes, m enllacos, grau maxim de
vertex de Ay, i un arbre recobridor (spanning tree) Ty amb un diametre D(Ty ), proposem

els segiients tres esquemes GGR:

e Un esquema GGR per a qualsevol tipus de graf, amb un stretch de O(D(Ty)),
etiquetes amb O(D(Ty) - log(An)) bits, taula d’encaminament de longitud O(Ag -
D(Ty) - log(Ay)) i on les decisions d’encaminament es prenen en O (A% - D(Ty))

passos.

e Un esquema C-GGR per a grafs lliures d’escala (scale-free) (que inclouen moltes
topologies del mén real com ara Internet) amb un stretch de O (log(n)), etiquetes
amb O(log?(n)) bits, taula d’encaminament de longitud O(n'/?-log?(n)) i on les

decisions d’encaminament es prenen en O (n-log(n)) passos.

e Un esquema C-GGR per a grafs de Cayley (que s’utilitzen de model per a les xarxes
d’interconnexié en centres de dades) amb un stretch 1 (tots els camins sén els
més curts), etiquetes amb O(log(n) - log(log(n))) bits, taula d’encaminament de
longitud O(log?(n) - log(log(n))) i on les decisions d’encaminament es prenen en

O (log*(n)) passos.

Mentre que el primer esquema GGR proposat funciona en qualsevol tipus de
grafs i la seva complexitat depén dels parametres D(Ty) i Ay, els dos esquemes
C-GGR sén especialitzats i les seves complexitats depenen només de n. A més a
més, aquests esquemes C-GGR es poden implementar d’una manera distribuida en

O(log(n)) passos, utilizant O(n + log(n) - m) missatges de longitud O(log?(n)) i usant
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un espai d’emmagatzemament addicional de O(Ag - log(n)) bits per a construir la taula
d’encaminament, €s a dir, no només els esquemes especialitzats proposats presenten una
taula d’encaminament escalable sin6é també ells mateixos esquemes d’encaminament.
S’ha realitzat una avaluacié experimental, a través de simulacions, de I’esquema
C-GGR per a grafs d’escala lliure 1 de I’esquema C-GGR per a grafs de Cayley, on
s’ha comprovat que 1’stretch, la longitud de les etiquetes i la longitud de la taula
d’encaminament estan molt per sota de les fites superiors teoriques, i que aquests resultats

s6n millors en comparacié amb altres esquemes d’encaminament coneguts.



Chapter 1
Introduction

In this chapter we present the motivation for this research work and the desired objectives.

We also describe the structure and contents of this document.

1.1 Motivation

The Internet is a large, dynamic, heterogeneous collection of independently administered
computer networks, where each one has its own administration, rules, and policies.
There is no central authority overseeing the growth of this network-of-networks, where
connections and computers are being added/deleted every day. The Internet topology
can be viewed as an undirected graph, where a vertex represents either a router (Internet
Router (IR) level topology) or an Autonomous System (AS) (AS level topology). Although
both models represent the Internet at different levels, they present similar statistical and
structural properties at large-scale (Chapter 5, [1]). Both models are characterized by
heavy tailed vertex degree distributions following a power-law form, and the presence
of shortcuts that connect far away parts of the network, thus reducing the average path
length of the graph, one of the main characteristic of small-world networks, i.e., they are
scale-free networks [2]. Figure 1.1 shows an example of the Internet topology at the level
of IR and AS.

The current inter-AS routing scheme in the Internet is based on the Border Gateway
Protocol (BGP) [3]. Each network node maintains a Routing Table (RT) that contains the
next neighbor node per destination, information that is used for packet forwarding. In
the early years of the Internet, the hierarchical topology together with the assignment of
addresses based on topological location using Classless Inter-Domain Routing (CIDR),
made the Internet to achieve high address aggregation and hence small RTs in routers
[4]. However, the de-aggregation of addresses, traffic engineering, network dynamics

and routing policies, among others, have broken this model, and even if the number of
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Figure 1.1: The Internet topology represented at different level: a) Internet Router and
b) Autonomous Systems.

network nodes were constant, the size of the RTs would grow. Recent measurements have
shown that the growth of the RT size is exponential (see Figure 1.2), and therefore routers
require excessive amount of storage to maintain the RT, a high processing to make routing
decisions, and high number of update messages of the routing protocol.

A lot of partial solutions (or patches) have been developed and deployed to solve
the above problems, but the Internet Architecture Board recognizes that this patching
methodology will not sustain the continuous growth of the Internet at an acceptable cost
and speed. The fundamental problem is the poor scalability of the routing scheme based
on BGP. BGP achieves the shortest path but it requires RT of size Q(n-log(n)), assuming
log(n) bits per label, and being n the number of network nodes. In fact, it has been proved
that this is the lowest bound of the RT size for any shortest path algorithm that works on
any kind of network [5]. Instead of this super-linear growth (in terms of n), the desired
routing system scalability would be supra-linear in n, and ideally proportional to log(n)
[4].

A similar problem arises in Data Centers (DCs), where the emergence of new
paradigms such as Cloud Computing, Smart Cities, Bring your Own Device and the
Internet of Things (IoT), have also increased exponentially their number of nodes (servers
and network devices) in order to provide large-scale storage and computing for services
in various domains such as e-commerce, health-care, smart-grids, and other. A DC
(sometimes called a server farm) is a centralized repository for the storage, management,
and dissemination of data and information. Figure 1.3 shows an example of a Cloud
Computing infrastructure. Their interconnection networks are designed with topological
properties such as high connectivity, node symmetry, hierarchical structure (allowing
recursive construction) and small vertex degree in order to achieve low equipment cost,

high and balanced throughput, easy expandability, low delay, scalable performance, and
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Figure 1.2: The growth of the RT between 1994 and 2014.
Source: http://bgp.potaroo.net.

robustness [6, 7]. Example of such topologies are Fat-Tree [8], BCube [9], Hypercube
and Butterfly [6, 10], among others.

Modern DCs connect hundreds of thousands of computers and keep growing
exponentially in number and size [11]. This information is recently supported by the
Cisco Visual Networking Index 2013—2018 [12], where it is predicted 20.6 billion
network devices in 2018 (from 12 billion in 2013) that will generate 1.6 zettabytes of
traffic per year. This growth degrades the performance of the DC routing system and
increases the cost of power and cooling systems (as part of the operation total cost) and
its environment impacts [13]. As a consequence, the design of routing schemes in DCs that
achieve good scalability plays a vital role in the system performance and energy efficiency
[14].

In order to find sustainable solutions for the scalability problem in both the Internet
and DCs topologies, the scientific community is trying to design routing schemes that have
low time and space complexity, and that provide routes as close as possible to the shortest
ones, by exploiting the statistical and structural properties of such networks. One of these
research initiatives was the EULER project [15], an EU FP7 project in which this research
work has been developed, whose aim was to investigate on new paradigms for distributed
and dynamic routing schemes suitable for the Internet and its evolution.

The problem known as Compact Routing (CR) consists in designing routing schemes
that achieve scalable RT size with respect to the number of network nodes n, i.e., the

RT size grows sub-linearly (or lower) in n, with vertex labels (i.e., node identifiers) of
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Figure 1.3: A Cloud Computing Infrastructure.

logarithmic size in n, and low stretch. The (multiplicative) stretch of the routing scheme
is defined as the worst (highest) ratio between the length of the path produced by the
routing scheme and the length of the shortest path (for the same source-destination pair),
among all source-destination pairs (we consider that the length of the path is its number
of hops). In other words, CR schemes can be seen as a trade-off between source routing
(optimal RT size at the detriment of packet header size) and point-to-point routing (optimal
packet header size at the detriment of RT size) by removing the requirement that packets
are always routed on the shortest path.

As a potential solution to solve the Compact Routing Problem (CRP), Geometric
Routing (GR) has been proved to be both simple and heuristically effective [16, 17].
Greedy Geometric Routing (GGR) schemes exploit the “geometric” dimension of graphs
by assigning to each vertex (virtual) coordinates out of a metric space. These coordinates
represent the relative position of the vertices as a function of their distances, such that
they can be used to forward packets by selecting the closest neighbor (under some criteria
in this space) to the destination requiring only local routing information. When the

criteria to select the closest neighbor is the one whose distance to the destination is the
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minimum one among all the neighbors, the forwarding process is referred to as Greedy
Forwarding (GF). The family of routing schemes that perform GF using coordinates of
some metric space (i.e. Euclidean Hyperbolic, etc.) are called GGR schemes [18-20].
Without maintaining any routing state information per destination, the RT size in GGR is
bounded by the maximum vertex degree with fast computation. GGR schemes that solve
the CRP are called Compact Greedy Geometric Routing (C-GGR) schemes. However, the
GGR schemes proposed so far experience one or more of the following problems: 1) they
do not guarantee packet delivery, 2) they produce vertex labels of size linear (or higher)
in n, 3) they can not be implemented in a distributed way, 4) they require a full knowledge

of the network topology, or 5) they have unbounded stretch.

1.2 Objective of the thesis

This research work explores the use of the GGR schemes to solve the CRP in Internet-like
networks and several families of DCs architectures. The main objective of this thesis is to
design GGR schemes that have low time and space complexity, and that achieve routes as
close as possible to the shortest ones (low stretch), suitable for general graphs and also

specialized for these two types of networks.

1.3 Contributions

The main contribution of this dissertation is the proposal of a graph embedding together
with the related mathematical tools, and the design of GGR schemes on top of this
embedding that solve the CRP in both Internet-like networks and DCs. Specifically, the
main contribution of this thesis are the following:

e An state-of-art of the scalability problem (CRP) in both Internet-like networks and

DCs together with the most relevant works on GGR for these topologies.

e The mathematical tools to exploit the properties of metric spaces generated by

algebraic groups and its application in GGR.

e Several novel and simple C-GGR schemes, with low time and space complexity and
that achieve routes as close as possible to the shortest ones, for any finite connected
graph, for Internet-like networks and for several families of DCs interconnection

networks, by exploiting the statistical and structural properties of these networks.
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1.4 Outline of the document

This document is organized into six chapters including this one, plus the bibliography at
the end.

In Chapter 2 we present the fundamental concepts, terminology and notation on graph
theory, metric spaces and group theory that are used in the rest of the document.

In Chapter 3 we present a survey of the most relevant works on GGR in several kinds
of topologies.

In Chapter 4 we propose several GGR schemes, one GGR scheme for any finite
connected graph and two specialized C-GGR schemes for Internet-like networks and for
several families of DCs interconnection networks, and we analyze their performance
theoretically.

In Chapter 5 we present the experimental evaluation through simulation of the two
specialized C-GGR schemes, one in several scale-free networks and the other in several
Cayley Graph (CG) interconnection networks, in terms of the RT size, the path length and
others.

Finally, in Chapter 6 we summarize the main contributions of this work and propose

possible directions for future work.



Chapter 2
Definitions, notation and terminology

In this chapter we present the fundamental concepts, terminology and notation that will
be used in this document in the topics of graph theory, metric spaces and group theory.
Although theorems, propositions, lemmas, and other, are presented without formal proofs,

references to the source are provided to the reader.

2.1 Graph theory

In this section we establish definitions, terminology, notation, and important results in the
area of graph theory. For more information on graph theory concepts and results, we refer
the reader to the books [21-23].

2.1.1 Graphs and subgraphs

In graph theory, the term graph refers to the representation of a set of elements where

some pairs of them are connected by links. Formally, a graph is defined as follows:

Definition 2.1. A graph H consists of two sets V and E together with two maps 6, : E —V
and 6, 1 E —V.

We write H = (V,E). The set V(H) is called the vertices, nodes or points and the set
E(H) is called the edges, lines or links. If the context makes it clear, they can be simply
denoted by V and E. The cardinality of V, that is the number of vertices, is denoted by
|V| = n. The cardinality of E, that is the number of edges, is denoted by |E| = m. Given
an edge e € E, the vertex 6,(e) is called the origin of e, and the vertex 6;(e) is called the
terminus of e. These two vertices are called the endpoints or endvertices of e. We say
that € is the inverse of the edge e if 6,(¢) = 6;(¢) and 6;(e) = 6,(¢). The pair of endpoints
x,y € V associated with an edge e € E is simply denoted by e = {x,y}. When x,y € V are
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endpoints of an edge, we say that x and y are joined or connected by e, or that x and y are
adjacent or neighbors, or e is incident to both x and y. When 6,(e) = 6;(e), the edge e
is called a loop. Note that this definition permits that two or more edges have the same
endpoints x and y. In this case, we say that there are multiple edges connecting x and y. A
graph is said to be simple if it contains neither loops nor multiple edges. A graph is said
to be finite if both V and E are finite sets.

A graph H is called undirected if the elements of the set E have no orientation, i.e.,
each e € E is an unordered pair of vertices (¢ = €). On the other hand, if the elements of
the set E have orientation, i.e., E is composed by ordered elements, then H is said to be
directed. Let H = (V,A) be a directed graph. Each ordered element (x,y) € A is called
an arc or oriented edge. Vertex y is called the head (or successor of x) and vertex x is
called the tail (or predecessor of y). In addition, we say that the arc e € A comes out
of the vertex x and that it enters into vertex y. Finally, associated to any graph H, there
exists an undirected graph with the same set of vertices and two vertices are connected by
an edge if, and only if, they are different and joined by at least one (oriented) edge in H.

This graph is called the the underlying graph of H.

Definition 2.2. Let H = (V,E) and K = (U,F) be two graphs. A subgraph K of H,
denoted by K C H or simply Ky, is a graph of the form K = (U,F), where U C'V and
F CE, such that any edge of F has its endpoints in U. If V = U, then the subgraph Ky is
called a spanning subgraph of H.

A subgraph K is said to be induced if U C V and the endpoints of any edges are in
both V and U. In other words, the graph K is an induced subgraph of H if it has all the
edges that appear in H with the same vertex set. In general, since U C V, we say that K
is the graph induced by the vertex set U. A supergraph of a graph H is a graph of which
H arises as a subgraph. Finally, if a graph H does not contain K as an induced subgraph,
then it is called K-free. As example, those graphs that do not have a triangle graph as an

induced subgraph are triangle-free graphs.

2.1.2 Graph isomorphism problem

Given two graphs H and K, an important question in graph theory is Do H and K have an
identical graph structure? or simply Are H and K the same graph?. Formally, the terms

“same” or “identical” graph are defined as follows:

Definition 2.3. Let H = (V,E) and K = (U, F) be two graphs. An isomorphism of graphs
H and K consist of two bijections: ¢y :V — U and ¢, : E — F, such that for each e € E
and x,y €V, the edge ¢1(e) has for endpoints ¢o(x) and ¢o(y) in K, if and only if the edge
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e has x and y as endpoints in H. The graphs H and K are said to be isomorphic (written
H = K) if such bijections exist.

Note that these mappings preserve the incidence relation of the edges to the vertices.
In fact, both graphs have the same graph structure and properties, but they differ in the
names or labels of vertices and edges. Since it is the structural properties of the graph
what we primarily are interested in, unlabeled graphs can be considered as a representative
of an equivalence class of isomorphic graphs.

We conclude this subsection by introducing some special families of graphs. A graph
that is simple and where any two vertices are connected by an edge is called a complete
graph. Up to isomorphism, there is just one complete graph on n vertices and it is denoted
by K,,. If a graph can be drawn in a plane with the condition that two edges can not cross
each other, except in their common endpoints, then it is called a planar graph. A graph
is called bipartite if its set of vertices can be split into two disjoint subsets of vertices
V = XY such that each edge has an endpoint in each subset. Such partition (X,Y) is
called a bipartition of the graph. If the bipartite graph with bipartition (X,Y) is simple
and each vertex of X is connected to each vertex of Y, then it is called a complete bipartite
graph. If |X| = n, and |Y| = n,, then this graph is denoted by K, Finally, a graph is

Xty *

called sparse if m is much less than n?, while it is called dense if m is closed to n?.

2.1.3 Paths, cycles and vertex degree

For any pair u,v € V, we define a walk as a sequence of the form {xg,e;,x1,e2,...,ex, X},
where k is an integer > 0, xo = u, xy = v, x; € V and ¢; € E such that fori =0,...,k—1,
x; and x;;1 are the endpoints of e; . The vertex xq is called the start or source vertex,
xi the end or destination vertex, and both together are called the ends of the walk. The
value of the integer k is the length of the walk. We also can define a walk by the sequence
{X0,X1,...,x;} or {ey,ea,...,ec}. If the edges of the walk are all distinct, then it is called
a trail. A walk is called a path if all its vertices are different, and it will be denoted by
p(u,v), where u,v € V is any source-destination pair of vertices. Note that a path itself
is a trail. A cycle or closed walk is a walk of the form {x,,e;,x1,e2,...,er,x0}. We say
that a walk is a simple cycle, circuit or polygon if it is a closed walk and all its vertices
are different, excepts its ends. A graph H is said to be connected if there is a path for any
two vertices. The distance dy(x,y) in H between two vertices x,y € V is the length of a
path that has the shortest length connecting them. The largest distance between any two
vertices in H is called the diameter of H, and it is denoted by D(H), or simply D if the
context makes it clear.

The degree of a vertex x in an undirected graph is the number of incident edges to
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x. This value is an integer and is denoted by d(x). The minimum vertex degree of the
graph H is the smallest degree among all its vertices and is denoted by dy. Likewise,
the maximum vertex degree of the graph H is the largest degree among all its vertices
and is denoted by Ay. A graph is called locally finite if d(x) is finite for any vertex x
in H. When a graph H has the same vertex degree k in all its vertices, then this graph
is called k-regular graph. In directed graphs, the in-degree (respectively out-degree) of
a vertex x is the number of arcs entering into (exiting from) x. In general, the concepts
of vertex degree, walk, trail, cycle, circuit, path, etc., can be transposed directly from the
undirected to the directed case by replacing the word edge by the word arc. However,
there is an alternative approach which is to apply the concepts defined for undirected
graphs to directed graphs by means of its underlying graph, e.g., we say that a directed
graph is connected if its underlying graph is connected. In this document, we will follow
the second approach.

Finally, the following proposition shows the relation between the number of edges

and the vertex degrees of a graph.

Proposition 2.1 (Proposition 1.1 of [21]). In a graph H = (V,E), we have:
Y d(x)=2m.
xev

Note that as a direct consequence of the above proposition, we can obtain

n-6g(H) <2m<n-Ay(H).

2.1.4 Trees

One family of graphs that plays an important role in many applications of graph theory is

the trees. Formally, it can be defined as follows:

Definition 2.4. A tree is an undirected and connected graph T = (V,E) that has no cycles
(acyclic).

Theorem 2.1 (Theorem 2.1 of [21]). The following conditions for a graph T are

equivalent:
1. If T is finite, then n = m+ 1 (Proposition 2.1 of [21]).
2. Any two vertices in T can be connected by a unique path. (Proposition 2.3 of [21]).

3. For every edge e € E, removing e from T disconnects the graph. (Proposition 2.5
of [21]).
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A vertex x € V(T) is called internal if d(x) > 2. If d(x) = 1, then the vertex is called
terminal or leaf . A polytree or oriented tree is a directed acyclic graph whose underlying
undirected graph is a tree, i.e., by replacing its arcs with edges, the resulting undirected
graph is both connected and acyclic. A tree is said to be rooted if some arbitrary vertex
r € V(T) is selected as the root of the tree. The tree order associated with 7 and r is a
partial ordering on V(T') such that for any x,y € V(T'), x < y if the unique path from the
root to y passes through x. In a rooted tree, the parent of a vertex x is its adjacent vertex
on the path to the root. Note that every vertex has a unique parent, except the root which
does not. A child of a vertex x is a vertex of which x is the parent. A tree for which any
vertex has at most k children is called k-ary tree. A spanning tree T of H, represented
by Ty, is a spanning subgraph of H that is a tree. The depth of a node is the length of the
path from the root to the node, and the tree depth, denote by td(T) is the length of the
path from the root to the deepest node. Finally, one of the more useful results of spanning

trees is the following:

Proposition 2.2 (Proposition 2.6 of [21]). Every connected graph H has (at least) one

spanning tree.

2.1.5 Representation of graphs

There are several ways to represent graphs. Let H = (V,E) be a graph with vertex set
V = {x1,x2,...,x,}. The adjacency matrix is the square matrix M(H) = [m; ;] of order n,
where m; ; is the number of edges having x; and x; as endpoints in H. This representation
requires a memory space of the order O(n?) and because the time to process the graph is at
least the time to read its data, then the time complexity of any algorithm over a graph with
this representation is at least O(n?). Another way of representing a graph is the adjacency
list, which consist of an array A of n lists, one for each vertex in V. For each x € V, the
adjacency list A[x] contains all the vertices y € V such that there is an edge {x,y} € E. In
this representation, the space complexity is bounded by O(n+ m) and its processing time
is linear.

The selection of such representation is very important because it may have a direct
impact on the efficiency of the algorithms in terms of complexity (Chapter 1, [24]). For
example, in adjacency list, listing the neighbors of each vertex is performed efficiently in
time proportional to the degree of the vertex. However, the same operation in an adjacency
matrix takes time proportional to the number of vertices in the graph, which may be
significantly higher than the degree. In contrast, the adjacency matrix allows verifying if
two vertices are adjacent in constant time, but in adjacency list this operation is slower

[21, 25]. In terms of space complexity, the adjacent list is a compact way to represent
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sparse graphs. However, if the graph is dense, the adjacency matrix is the best option to
run algorithms that require some specific operations. For example, determining whether
there is an edge between two vertices, which is used in all-pairs shortest path algorithm,

can be performed in constant time on graphs with adjacency matrix representation [25].

2.2 Metric spaces and embeddings

Given a set of elements X, the concept of distance is a numerical way to describe how
far apart the elements are. Roughly speaking, if there is a distance function or metric,
which behaves according to a set of rules, such that the distances among all the members
of the set are defined, then the function together with the set are called a metric space.
The metric on the set induces geometric properties that can be useful to solve problems
on that set.

If a problem is defined over a “difficult” metric, it could be reduced to a problem
over an “easier” metric. Here, the concept of embedding between metric space becomes
important. For further information about metric spaces, we refer the reader to the book

[26] and for graph embedding and topological graph theory to [27] .

Definition 2.5. A Metric Space (X ,dx) consists of a set X and a distance function dx :
X x X — R such that for any x,y,z € X:

1. d(x,y) > 0 (non-negative).

2. d(x,y) =0 if and only if x =y (identity of indiscernible).
3. d(x,y) =d(y,x) (symmetry).

4. d(x,y)+d(y,z) > d(x,z) (triangle inequality).

An interesting class of metric spaces is the one obtained by defining the vertices of a
graph as the set of elements, and defining the distance as the number of edges of a shortest

path connecting them. Formally, it can be defined as follows:

Definition 2.6. Let H(V,E) be a graph. The graph H is a metric graph by assigning to
each edge e € E(H) a metric of length 1: define X =V (H) and for any pair of vertices
x,y € V(H), define dy(x,y) as the length (number of edges) of a shortest path connecting

them.

In metric spaces, a geodesic is a curve which is everywhere locally a distance
minimizer, i.e., the shortest curve connecting two points. A metric space where every pair

of points can be connected by a geodesic is called a geodesic space. In metric graphs,
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a geodesic between two vertices correspond to a shortest path between them. Therefore,
any connected metric graph is itself a geodesic metric space.

Given two sets X and Y, X is said to be embedded in Y if there exists some injective
and structure-preserving map f : X — Y. Here, the meaning of structure-preserving
depends on the mathematical structure that X and Y are. Therefore, an embedding

between metric spaces can be defined as follows:

Definition 2.7. A metric embedding (with distortion ¢ > 0) from a metric space (X ,dx)
(the source metric) to another (Y,dy) (the target metric) is an injective map ¢ : X —Y
such that:

Vx,yeX, l-dx(x,y) <dy(¢(x),0(y)) <c-l-dx(x,y), for some constant | > 0.

Definition 2.8. A contractive metric embedding with distortion c from a metric space
(X,dx) to another (Y,dy) is an injective map ¢ : X — Y such that:

__dx(ny)
vxvy GX’l < dy (¢ (x),0(y)) sc

Definition 2.9. An expansive metric embedding with distortion c from a metric space

(X,dx) to another (Y,dy) is an injective map ¢ : X — Y such that:

Vx,y c le S dy (9 (x),9(y)) <c.

dy(xy) — —

More generally, a metric embedding is a trade-off between the dimension and the
fidelity (or distortion) of the embedding. Note that if ¢ = 1, then the Definitions
2.9 and Definition 2.8 coincide with an exact preservation of all distances. This
kind of embedding is called metric embedding with no distortion, distance-preserving

embedding, or isometric embedding:

Definition 2.10. An isometry from one metric space (X,dy) to another (Y,dy) is an

injective map ¢ : X — Y such that:

vx,y € X, dx(x,y) = dy (¢ (x),9(y))-
If the function ¢ exists then (X,dy) and (Y,dy) are said to be isometric.

Definition 2.11. An isometric embedding from one metric space (X ,d) to another (Y,dy)

isamap ¢ : X — Y such that ¢ is an isometry.

In general, the problem of finding an isometric embedding between metric spaces
is proved to be NP-Hard [28]. However, the value of the distances themselves is
not essential in nearest-neighbor searching problems in contexts such as visualization,
compression, routing, and clustering [29, 30]. In these cases, what is important is to
preserve the relative order between pairs of distances (which pairs are larger or smaller),
and not necessarily the values of the distances themselves, which is obtained by an ordinal

embedding.
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Definition 2.12. An ordinal embedding (with no relaxation) from a metric space (X,d)
to another (Y,dy) is a mapping ¢ : X — Y such that every comparison between pairs
of distances has the same outcome: Yw,x,y,z € X,dx(w,x) < dx(y,z) if, and only if,

dy(¢(w),0(x)) <dy(9(y),0(2)).

Note that the map ¢ induces a monotone function d(p,q) — d'(¢(p),9(q)), i.e., the
map preserves the given order between distances. Because the order of the distances
captures enough information, then it is only necessary an embedding that ensures a
monotone mapping of the distances into the target metric space. However, finding this
kind of embedding still is NP-hard and the target metric space requires (|X|) dimensions
[29]. As an alternative, greedy embeddings [31], which is a kind of ordinal embedding,
have been used to find low-dimensional target metric spaces in polynomial time [32, 33].
This embedding requires order preservation only among pairs of points of the form (x,z)
and (y,z), where x and y must be connected or share an adjacent point in the source metric

space. Formally, this embedding is defined as follows:

Definition 2.13. A greedy embedding from a metric space (X,dx) to another (Y,dy) is
an injective map ¢ : X — Y such that for every pair of elements x,z € X there exists an

element y adjacent to x such that dy (§(y),¢(z)) < dy(¢(x),9(z)).

It is proved in [34] that finding a monotone map for a given order on the pairwise
distances between n points is not equivalent to finding a distance-preserving greedy
embedding. On the other hand, a monotone map for a metric space is also a greedy
embedding for this metric. When the source metric space is a finite and connected graph,
the existence of a greedy embedding is a monotonic increasing graph property, i.e., adding
an edge does not prevent a graph of greedy embedability [31]. The following lemma is a

direct consequence of this property.

Lemma 2.1. Let (X,dx) be a metric space and H be a connected metric graph. If K is
a spanning subgraph of H, then every greedy embedding ¢ : V(K) — X is also a greedy
embedding from V (H) to X.

Proof. Let ¢ : V(K) — X be a greedy embedding. For any two vertices x,y € V(K), there
exists a path x, s, s1,52,...,5,y such that dx (¢ (s;),¢(y)) is monotonically decreasing as
i moves from O to k. Because V(K) =V (H) and E(K) C E(H) by Definition 2.2, then all

the vertices and edges in the path x, s, 51,52, ...,Sk,y are also in H. Thus, x has a neighbor
so in V (H) such that dx (¢ (s0), ¢ () < dx(¢(x),(y)). 0
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2.3 Group theory

In the area of abstract algebra, group theory studies the mathematical structures known as
groups. Besides studying groups as algebraic structures (the concept of group comes from
the 19th century [35]), they can be studied from the point of view of geometry and theory
of regular languages. In this section we present the main concepts and results about
groups from these different points of view. For more information about combinatorial
group theory, we refer the reader to [36, 37], about geometric group theory to [26, 38,
39], about word processing in groups to [40] and about computational group theory to
[41].

2.3.1 Groups as algebraic objects

A group is defined as follows:

Definition 2.14. An (algebraic) group (G,-) is a non-empty set G together with a binary
operation - defined in G for which the following four conditions (also called the group

axioms) are satisfied:

1. For any pair of elements g, h € G, there exists a uniquely determined element k € G
such that g-h = k.

2. The operation - is associative, i.e., for any elements g,h,k € G we have (g-h) -k =
g (h-k).

3. For any element g € G, there exists an element e € G, called the identity element of

the group, for whichg-e=e-g = g.

1

4. If g is any element in G, then there exists an element g—°, called the inverse of g,

1 1

suchthatg-g= =g  -g=e.

A group is called an abelian group if the operation - is commutative, i.e.:
5. g-h=h-gforallgheG

In this document we will refer to the group (G,-) simply by G, and the operation
symbol - will be omitted and write gh instead of g-h. We also assume that the groups
are multiplicative, i.e., they have the multiplication as its group operation. Note that
the following can be easily deduced from Definition 2.14: for all g,h,k € G, (gh)~! =
h~lg=1:if gh = gk then h =k, and if hg = kg then h =k. If n € N and g € G, then g"

n+1

is defined inductively by g! = g and g"*! = gg" for n > 1. We also define g° = e. The

order of an element g € G, denoted by |g|, is the least n > 0 such that g" = e, if such n
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exists. If it does not exist, then we say that g has infinite order, denoted by |g| = o, and
the elements g’ are all different for any i € N. Finally, the order or rank of the group G,
denoted by |G

, 18 its cardinality, i.e., the number of elements in the set G.

Definition 2.15. Let X = {xy,...,x,} be a set of elements in a group such that X C G. The
group G is said to be generated by X if every element of G can be expressed as a product

of elements from X and their inverses. The set X is called the generating elements of G.

In computational group theory, the field of group theory that deals with the design
and analysis of algorithms and data structures to compute information about groups, there
are three methods commonly used to describe groups: group of permutations of a finite
set, groups of matrices over a ring and groups defined by a finite presentation. In this
document, we will use the finite presentation of groups (see below in Definition 2.24)
for two main reasons. Firstly, because they often provide the most compact and precise
definition of the group, and secondly, because the algorithms used in this work require
the finite presentation for computational purposes. However, there exist algorithms that
allow transformations among these different representations (see [42] and both Chapters
3 and 5 of [41]).

2.3.2 Groups as algebraic objects: group elements and words

Because the notion of group is an abstract concept, we will introduce some ideas to
represent a formal product of group elements by using symbols, in the same way that
polynomial variables are used to represent algebraic combination of elements in an integer

domain.

Definition 2.16. Let S = {s,...,s,} beasetandlet S~ = {s7',... 571} be a set, disjoint
from S, for which there is a bijection (map one-to-one) S — S~ and denoted by s; — s L

for all i. A word is a sequence w = s153 ..., where s; € SUS_l,for all i.

Definition 2.17. The length of a word w = 5155 ... s, denoted by I;(w), is the value of the
integer n. The empty word is the word of length 0 and it is denoted by 1.

It is customary to abbreviate a block of n consecutive symbols s; and sl._1 by s and

s; ", respectively.

Definition 2.18. If w = s152...5, is a word, then its inverse is the word wl =

-1 1

Sy a8y sfl. The inverse of the empty word is itself.

Definition 2.19. A subword of w = s1s;...s, is either an empty word or a word of the

formv=s;...s;, where1 <i< j<n
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Definition 2.20. A word w is reduced if either w is empty or w = 515>...5, does not

contain any subword of the form s,-sl-_l.

Given any two words in the set s; € SUS™!, we define the operation of juxtaposed

/

' are two words,

product of elements as follows: if w = s1s...5, and v = s|s,...5s
then their juxtaposed product is wv = 5157 ...s,s55 ... sh,. Clearly (wv)~! =v~1w~! and
L(wv) = Is(w) + L5(v).

From the definitions above, one can define a map of symbols S into a group G.

Definition 2.21. Let G be a group, S a set of symbols and S* the set of words over the
set S. By interpreting the juxtaposed product of words as an associative multiplication on
G, we define a surjective group homomorphism ©t : S* — G. Because T is surjective, then
7n(S) generates G as a group and the elements of S are called the generating symbols for
G (under T).

Note that under this map, (1) = e, i.e., the empty word 1 defines the identity element
e of G. In the same way, the generating elements of G can be obtained under the map 7(S).
For the rest of the document, if the context makes it clear, both the generating symbols and
the generating elements may be referred to as the generators of G. In addition, both the
empty word and the identity of the group will be simply denoted by e. Note also that, it is
possible to see that the juxtaposed product of two words w and v does not define a product
on the set of the all reduced words on S because wv does not need to be reduced even if
w and v are. By defining a new juxtaposed product of reduced words as the reduced word

obtained from wyv after cancellation, it is possible to construct the free group with basis S.

Definition 2.22. If S is a set of generators for a group G and no reduced word w represents
the identity element of G, then it is called the free group with basis S.

The rank of the free group with basis S is the number of elements in S. We denote a
free group of rank n by F,(S) or simply F(S), if the set of generators and its cardinality is
sufficiently clear from context. Two important results about free groups are related to the
fact that 1) given a set S, it is always possible to define a free group on it and, 2) given two
sets S and T where |S| = |T'| = n, then the free groups F,(S) and F,(T') are isomorphic.

Theorem 2.2 (Theorem 11.1 of [37]). Given a set S, there exists a free group F(S) with
basis S.

Theorem 2.3 (Theorem 11.4 of [37]). Let F(S) and G(T) be free groups with bases S
and T, respectively. Then F = G (isomorphic) if and only if |S| = |T|.

Any word w that defines the identity element e in the group is called a relator.

1

In addition, the equation w = v is called a relation if the word wv—" is a relator, or
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equivalently if w(w) and 7(v) define the same element in the group. Note that in any
group G with generator set S, the empty word and all the words of the form w = sisi_l, for

si € SUS™!, are always relators and they are called trivial relators.

Definition 2.23. Let p,q,r,... be relators of a group G. A word w is derivable from

D,q,1,. .., if the following operations, applied a finite number of times, change w into the
empty word:
1. Insertion of one of the words p,p~',q,q~',r,r='... or one of the trivial relators

between any two consecutive subwords of w, or before w, or after w.

2. Deletion of one of the words p,p~',q,q ", r,r=\ ... or one of the trivial relators, if

it is a subword in w.

It is clear that if w is derivable from the relators p,q,r,..., then w is itself a relator
because the application of the operations 1) and 2) on w does not change the element of
the group defined by w, and because the empty word is obtained, then w must define the
identity element of G. If every relator is derivable from the relators p,q,r, ..., then the set
D,q.r, ... is called set of defining relators or a complete set of relators for the group G

on the generators S. We denote that set by R.

Definition 2.24. Let G be a group with generator set S. The group G has a presentation
(S|R) if and only if G can be described by a set S of generators and a set R of defining

relations for these generators, i.e., a set of relations from which all others can be derived.
Theorem 2.4 (Theorem 3.15 of [39]). If G has presentation (S|R), G = (S|R).

The group presentation is called finitely generated (finitely related) if the number of
generators (relators) in it is finite. If a group presentation is finitely generated and finitely

related, then the group is said to be finitely presented.

2.3.3 Groups as geometric objects: the graph of the group

As we have seen, groups are abstract objects represented by a set of elements and a binary
operation that satisfy a list of conditions (see Definition 2.14). However, groups arise in
other contexts. Groups can also be studied by means of their actions on mathematical
objects such as graphs, sets of numbers, regular polygons, etc. This section presents the
geometric realization of a group: the so-called Cayley Graph.

The representation of the abstract concept of group as geometrical object such as a

graph, requires the introduction of the concept known as group action on sets.
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Definition 2.25. Let (G, *) and (K,-) be two algebraic groups. A group homomorphism
from (G,x*) to (K,-) is a function h : G — K such that for all u and v in G it holds that
h(uxv) = h(u)-h(v)

Definition 2.26. A permutation ¢ on the set X = {1,...,n} is a bijective map from X to
X, and it is denoted by the images of the elements (¢(1),...,¢(n)).

Definition 2.27. Let Sym(X) be the group of all permutations on the set X. An action of a
group G on a mathematical object X, denoted by G ~ X, is a group homomorphism from
G to Sym(X). In other words, it is a map from G X X — X such that:

l. e-x=xVxeX
2. (gh)-x=g-(hx),Vxe X andVg,he G

The associated homomorphism of the group action G ~ X is called a representation
of G. When the map is injective, then the representation is faithful. The group
G = Sym(X) is called the symmetric group of X being X a set. In other contexts,
Sym(X) receives different names. For example, if X is a group, then G is the set of
all automorphisms of G and is denoted by Aut(G). Given a metric space (Y,d), the group
of all asymmetries from (Y,d) to itself is denoted by Isom(Y ). In general, the symmetric
group denotes all bijections from X to X that preserve the mathematical structure of X.

An important result in group theory is the Cayley’s Theorem where the notions of

abstract group G and group of permutation are proved to be equivalents.

Theorem 2.5 (Theorem 1.5 of [39]). Every group can be faithfully represented as a group

of permutations.

In other words, the Cayley’s Theorem says that every group G is isomorphic to a
subgroup of the symmetric group acting on G. One of its applications is the construction
of a representation of G as a group of permutations of itself. However, it is not its
unique application. An improvement of the Cayley’s theorem allows studying an abstract
group by means of its action on geometric objects such as graphs. Before presenting the
extended version of the Cayley’s Theorem, let us introduce the concept of symmetries of

a graph:

Definition 2.28. Ler H = (V,E) be a graph. A symmetry of H is a bijection B taking
vertices to vertices and edges to edges such that if e = {x,y}, for e € E and x,y € V, then
B(e) ={B(x),B(y)}. The symmetric group of H is the collection of all its symmetries and
is denoted by Sym(H).

Theorem 2.6 (Theorem 1.42 of [39]). Every finitely presented group can be faithfully

represented as a symmetric group of a connected, directed and locally finite graph.
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Definition 2.29. Let G be a group with generating set S and let I'G s be a connected,
directed and locally finite graph. The graph I s is called the Cayley Graph (CG) of G if
it is the graph with vertex set V(I'g s) = {g | § € G} and edge set E(I' s) = {(g,85) | s €
S,g € G}.

For a given group G with generating set S, the proof of Theorem 2.6 shows that there
exists an inclusion mapping from G to Sym(I'G s). In the proof, it is constructed both the
graph I'G ¢ and the action of G on I'g s by multiplication on the left as follows: the element
g € G defines a map @, : h — gh that maps a vertex i € ' g to the vertex gh € I' s and
the endpoints of the adjacent vertices of 1 € I'g g go to the endpoints of the adjacent edges
of gh preserving the direction and labeling on those edges. The graph I' g is directed but
it also can be considered undirected if we take an inverse-closed generating set, i.e., if
s € S then s™! € S. Since every vertex has an edge for each generator and its inverse,
then it is a 2|S|-regular graph. If the graph I'; s has not auto-loops in every vertex, then
the identity element of the group G does not belong to S. In addition, if the graph has no
multiple edges, then s; # s, Vs;,s; € S.

Note that the action of a group G on a graph does not say anything specific about the
group G itself. The following theorem indicates that all finitely generated groups can be

seen as label and orientation preserving symmetries of a locally finite and directed graph.

Theorem 2.7 (Theorem 1.51 of [39]). Let I'g s be the CG of a group G with generating set
S. Consider I'g 5 as the directed graph with edge labels corresponding to the generating
set S. Then Sym(I' s) = G.

Thus, for any finite presentation of a group in terms of generators and defining
relations, there exists an associated CG by Theorem 2.7, i.e., the geometry and structure
of the I'G s 1s directly related to a group presentation and specifically to its generator set.
Note that the CG is itself a graph according Definition 2.1, and it is a connected metric
space by using Definition 2.6. In addition, it is also possible to define a metric in the

group by using its algebraic structure rather than its geometric one as follows:

Definition 2.30. The length of g, identified by I(g), is the length of a shortest word in the
Free Group F(S) representing g, i.e., I;(g) = min{l;(w) |w € F(S),n(w) = g}.

Definition 2.31. Let G be a group with generating set S. The corresponding word-metric
(i.e., distance function) d is the metric on G satisfying d(e,s) = d(e,s 1) =1 forall s € S,
and d(g,h) = min{l;(w) | w € F(S),m(w) =g~ 'h}, forall g,h € G.

The word-metric on G measures how efficient the difference g~!4 can be expressed
as a word in the generating set for that group. From the geometric point of view, the

word-metric on a group G = (S|R) is a way to determine the length of a shortest path
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between any two elements of G in I' . Therefore, the word-metric of a group G = (S|R)
corresponds to the graph metric induced on its graph I' s. Finally, it is important to note
that graph structure of the CG of a group depends on the choice of the generating set, i.e.,
different group presentations of the same group would result into completely different CG
(from the point of viewpoint of graph theory).

2.3.4 Groups as geometric objects: words and paths

As we have seen, a group presentation G = (S|R) defines a unique group (up to
isomorphism). However, it is difficult to derive characteristics of the group from its
presentation, e.g. whether it is abelian, finite, and other. A way to determine whether
a group is abelian is by verifying that for all s;,s; € S, s;5;5; ls;I

there was a procedure to decide whether or not a word defines the identity element in G,

= e. In other words, if

then it could be decided whether G is abelian. The problem of deciding whether a word in
G represents the identity element (or, equivalently, whether two words represent the same
element in G) is one of the three fundamental problems in Group Theory formulated by

Max Dehn [43]. Formally, the so-called word problem can be formulated as follows:

Definition 2.32. Let G = (S|R) be a group presentation. For an arbitrary word w in the
set of generators, decide in a finite number of steps whether w defines the identity element
of G or not.

Although the word problem has been solved for many groups, in general the word
problem for finitely presented groups is not solvable, that is, given two words in the group
generator set, it might be that there was no algorithm able to decide whether the words
represent the same element in the group [44]. A related problem is how to decide whether
a given word w in the set of generators has minimum length. Equivalently, this can be

formulated as follows:

Definition 2.33. Let G = (S|R) be a group presentation. For an arbitrary word w in the
generators, decide in a finite number of steps whether there exists a word v such that w
and v define the same element in G and I;(v) < I5(w).

Definition 2.34. Let X be a set. A total ordering is a binary relation (denoted by < )
on a set X which is transitive, antisymmetric, and total. A set paired with a total word
problem is called a totally ordered set. If X is totally ordered under <, then the following

statements hold for all a, b and c in X :
1. Ifa < band b < a then a = b (antisymmetry).

2. Ifa<bandb < cthen a < c (transitivity).
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3. a<borb <a/ totality).

Definition 2.35. Let X be a set. A well-ordering on S is a total order on X with the
property that every non-empty subset of X has a least element in this ordering. A set

paired with a well-ordering is called a well-ordered set.

The above problem is called the minimum-length word problem (MWP) and it has
been proved to be NP-hard [45]. Assume that the set $* is given by a kind of normal or
canonical form and it is a well-ordered set. Thus, deciding whether two elements in S*
are equivalent can be solved by testing their canonical forms for equality. In other words,
if the map 7 : §* — G (see Definition 2.21) is a bijection, then we can solve the MWP by
reducing w to its canonical form w', and verifying that w = w’. Note that the last step
can be done only if the word problem in G is solvable. As we will see in the next sub
section, there are several groups where there exists a procedure to solve the word problem
and to reduce words to normal forms, if these groups can be treated as a regular language.
From a geometrical point of view, the MWP is equivalent to the problem of finding shortest
paths between pairs of vertices in the CG of G. Given any word w € SUS™!, there is an
associated edge path in the Cayley Graph I'G 5. The path starts at vertex corresponding
to the identity and then traverses edges of I'g 5 as dictated by w. Conversely, every finite
edge path in I' g describes a word in the generators and their inverses: by reading off the
labels of edges being traversed, and adding an inverse if they are traveling in the opposite
direction of the orientation of the edge. Let g and & be two vertices in I'g g represented
by the words w, and wy, in the set SUS —1. Using this relation between paths and words in

the set $*, we can define a generic path between vertices in the CG of G as follows:

Definition 2.36. Let g and h be two vertices in I'g 5 represented by the words we and wy,
in the set SUS™!. A generic path between g and h is the one represented by wglwh.

The definition of this path is clear by the fact that w, and wy, represent paths from
the identity vertex to the vertices g and A, respectively. Thus, if we go back from g to e,

following the path dictated by wg_l, and then go from e to & as dictated by wy, the path

wéjlwh is automatically obtained. If wglwh = s187...5,, with s; € SUS™!, 1 < i <t, then

w = s152...5; defines a path from vertex g to i with edges labeled by {sj,s,...,s/} in

I'Gs. Alternatively, finding a path from g to & is equivalent to finding a path from the

-1
8

pair of vertices g,h € I'g s, which are represented by the words w, and wy, is equivalent

vertex e to the vertex with label w = w, “wj,. Therefore, finding a shortest path between a

to finding a word w = s15....s; with minimum-length in the generators such that w =

wé?lwh. Conversely, given any word w, representing an element g € I'g g, solving the

MWP for w, is equivalent to finding a shortest path between e and g.
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2.3.5 Groups as languages

Besides the algebraic and geometric point of view of a group, groups can also be seen
as languages. Let us define an alphabet A as a finite set of symbols. An element of A
is called a letter. A string on the alphabet A is a finite sequence of letters, that is, an
integer n > 0 and a mapping {1,...,n} — A. If n = 0, there is a unique such mapping,
called of nullstring and denote by €. The set of all strings over the alphabet A is denoted
by A*. Let G be a group, A an alphabet and ¢ : A — G a map, which needs not be
injective. By interpreting concatenation as an associative multiplication on G, we define
a group homomorphism 7 : A* — G, where A* is the set of strings on the alphabet A.
If w is a string over A, we say that 7(w) is the element of G represented by w. If the
homomorphism is surjective, i.e., T(A) generates G as a group, then A is the set of group
generators for G. Note that the definitions in Subsection 2.3.1 are equivalent to the above
ones by replacing the term “string” by “word”. In the rest of the document both terms

will be used interchangeably.

Definition 2.37. Let w, p,q and u be any (possibly null) strings over A such that w = pugq.
We say that the string p is a prefix of w, q is a suffix of w, and that u is a sub-string of
w. For a integer t > 0, we denote by w(t) the prefix of w of length t, or else w itself if t is
greater than Iy (w).

Definition 2.38. A language over A, denoted by L, is a subset of A*, together with the
alphabet A.

Given a language L over A, it is possible to use 7 to denote the restriction of the map
w:A* — Gto L. Since 7 is surjective, any element in the group G could be represented by
at least one string in L. Therefore, we can define an equivalence relation between strings

on A as follows:

Definition 2.39. Let & : L — G be a group homomorphism and let u and v be any two
strings in L. We say that u and v are equivalent, denoted by u ~ v, if t(u) = (v). Thus,
the equivalence class of w, denoted by |w), is the set [w] = {a € L|n(w) = n(a)}.

Note that an equivalence class of any element w € A* is completely determined by any
one of its representatives. Then, a new multiplication group arises from the equivalence

classes of words as follows:

Theorem 2.8 (Theorem 1.1 of [36]). Let @ : L — G be a group homomorphism and L'
be the set of equivalence classes of strings in L. By defining a multiplication between
equivalence classes as [w][v] = [wv|, L' forms a group. In fact, the group homomorphism
given by 1 : L' — G is bijective (i.e., L' = G).
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This group of equivalence classes is a way to define a normal or canonical form of
every element in the group, i.e., each element of the group has a unique representation. In
general, the existence of a regular language L (a language that can be defined by means
of a regular expression) such that the group homomorphism given by 1 : L — G exists,

allows solving the word problem for G.

Theorem 2.9 (Theorem 2.1.9 of [40]). Let G be a finitely presented group with generator
set A. Assume that G is regularly generated, which means that there is a regular language
L over A such that @ : L — G is surjective, and the inverse image of the identity under T

is also a regular language in L. Then the word problem in G is solvable.

A traditional way to classify languages is by means of the type of machine capable
of recognizing them. A Finite State Automata (FSA) is a particularly simple type of
machine, and it turns out that a language is regular if and only if it is recognized by some
FSA [46].

Definition 2.40. A Finite State automaton (or simply automaton) is a quintuple M =
(S,A,1,Y,s0), where S is a finite set called the state set, A is a finite set called the
alphabet, |1: S x A — S is a function called the transition function, Y is a subset of S
called the accepted states, and sy € S is called the start or initial state.

Roughly speaking, the main idea is that the automaton starts in sg and reads a string
w over A, one letter at a time. After reading a letter, the state of the automaton changes
according to its actual state, the letter read and the transition function t. Once all the
strings are read, if the state of the automaton is in Y, then the automaton answers Yes, and
it is said that w is recognized by the automaton. Otherwise, it answers No. The language
of strings recognized by the automaton M is denoted by L(M). Finally, a FSA is often
represented by a directed graph, where a node represents a state and an arc represents a

letter that causes the transition from one state to another.

Definition 2.41. Let G be a group, M be and FSA and L(M) be the language of M. An
Automatic Structure (AuS) on G consists of a set A of generators of G, a FSA WA over A,
and a FSA M, over (A,A), for a € (AUe), satisfying the following conditions:

1. The map m: LIWA) — G is surjective.

2. Fora € (AUe), we have (wy,w;) € L(M,) if and only if T(wy)a = w(wy) and both
Wi, Wy € L(WA).

In this definition, WA is called the Word-Acceptor Automaton, M, the Equality
Recognizer, and each M, for a € A, a Multiplier Automaton for the AuS. The AuS is
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usually represented by (A,L(WA)). An Automatic Group (AG) is one that admits an AusS.
If the Word-Acceptor Automaton (WA) accepts a unique word mapping onto each element
of G, e.g. choosing the lexicographically least among the shortest words that map onto
each element as the normal form representative of that element, we say that the WA has

the uniqueness property. Note also that M, recognizes equality in G between words in
L(WA).

Definition 2.42. Let < be a given well-ordering of a set A and let u,v € A. Then, the
associated shortlex ordering < of A* is defined by u <4 v if either ly(u) < Is(v), or if
Ia(u) =1a(v) and u <q v

Definition 2.43. Let <4 be some total order on the alphabet A. An AuS is called
Shortlex Automatic Structure (SAS) if L(WA) consists of the shortlex representatives of
each element g € G; therefore the map © : L(WA) — G is bijective and all paths in T' 4
according to the words of L(WA) are the shortest ones. In other words, L(WA) = {w €
A |w<gv,VYw,v € A*,w =g v}.

Thus, given a group G with generator set A, a string w € L is called a geodesic if
it has the minimal length among all strings representing the same element as w. Since
the language of all geodesic strings maps finite-to-one onto G, a SAS is an AuS for G
that contains a unique geodesic representative for each g € G. In general, the problem
to decide whether or not a group is automatic is undecidable, since the property of being
automatic is a Markov property ([47], p. 192). However, if such structure exists, i.e., if it

is verified that the group is automatic, then it is possible to perform the following tasks:

1. Using the WA with uniqueness, one can quickly enumerate unique representatives

of all words up to a given length.

2. Determine the order of G, by counting the number of words in normal form.

However, the main feature of an AG is its ability to solve efficiently the word problem
in quadratic time. Specifically, a given string can be put into normal form in quadratic
time, and then the word problem can be solved by testing whether the normal form of two

strings are equal using the Equality Recognizer. Formally, it is expressed as follows:

Theorem 2.10 (Theorem 2.3.10 of [40]). Let G be an AG and (A,L(WA)) an AuS for G.
For any word w over A, we can find a string in L representing the same element of G as

w, in time proportional to the square of the length of w.

The software packages KBMAG [48] and MAF [49] provide an implementation of a

procedure for computing the AuS of finitely presented groups. The main objective of these
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packages is to construct a normal form for the elements of G in terms of its generators,
together with a string reduction algorithm for calculating the normal form representative
of an element in G, given as a string in the generators of G. The above mentioned packages
offer two alternatives to achieve this objective. The first one is to apply the Knuth-Bendix
algorithm [50] to the presentation of G, usually using the shortlex orderings on strings, and
expecting that the algorithm completes with a finite Confluent Rewriting System (CRS)
(see sub-section 2.3.6). Many infinite groups [46, 51] and all finite ones [52] have a CRS,
although, the algorithm may take a long time to find it, or it may require more space than
the available one. The second alternative is trying to compute directly the AuS of G. Again
it uses the Knuth-Bendix procedure as one component of the algorithm, but it constructs
several FSA rather than obtaining a finite CRS. Note that if a group is automatic it may
not have a CRS. In fact, a finitely presented group with solvable word problem may not
have a CRS [51] and conversely, a group with CRS does not imply that it is automatic (see
example 6.2.2 of [40]).

2.3.6 Alternatives to solve the word problem in automatic groups

If the group G is automatic, then the word problem can be efficiently solved. In addition,
during the process of finding an AuS for G, several intermediate structures are created, and
they can also solve the same problem [46, 53]. A short description of these structures is

the following:

e Finite Confluent Rewriting System (CRS): This is a system of reductions (or
directed equations) on strings of the form v — w such that any string that is not in
normal form is composed by a sub-string that is the left-hand side of one of these
equations. Therefore, any of these strings can be reduced to a unique normal form
by replacing the left-hand side of one of the equations by its right-hand side in a
finite number of steps. The Knuth-Bendix procedure [50] is an efficient method
to make a rewriting system confluent. If the group has a CRS that is finite, then
the word problem is solved in a way that is particularly easy to implement on a
computer [S51].

e The Index Automaton (IA): This is a machine that recognizes the set of strings
which are reducible with respect to a given CRS. In general, this automaton tells
us if a specific left-hand in a CRS is a sub-string of a given string w. Since this
automaton identifies sub-strings of w with left-hand sides in the CRS, we can replace
that sub-string by the right-hand side of the equation. It is proved in [54] that this
automaton improves the performance (in time) of a CRS when it is used as a string

reducer. If the CRS is confluent with respect to a shortlex ordering, then the mapping
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7 : L(IA) — G is bijective. It implies that we can enumerate the elements of a
group G in shortlex order by enumerating the language of the IA. Section 3.5 of

[54] contains a detailed description of this automaton.

e Word-Differences Automaton: Any AG has the so-called fellow-traveler property,
that is, the geodesics between any two vertices in the Cayley graph of the automatic
group remain within a bounded distance of each other [40]. It implies that there
exists a finite set of D (word differences) such that if u,v € L(WA) and either u = v

oru~!

length, then u(¢)~'v(¢) € D. Therefore, the Word-Differences Automaton (WD) is

the FSA that accepts (u,v) if and only if u~!v € D. In other words, WD can encode

v =s for some s € S, and u(¢) and v(¢) are prefixes of u and v having the same

the set of rules from a (possibly infinite) Rewriting System. Thus, the set D can be
seen as reduction rules for the group G and then, the WD can be used to reduce any
word in the group to a normal form. Section 2 of [53] contains a detailed description

of this automaton.

Software packages KBMAG and MAF also implement some procedures that attempt
to construct the CRS, IA and WD of a finitely presented group.



Chapter 3

Solving the Compact Routing Problem
with Greedy Geometric Routing

The Compact Routing Problem (CRP) consists of designing routing schemes (called
Compact Routing schemes) that achieve scalable Routing Table (RT) size with respect
to the number of network nodes #, i.e., the RT size grows sub-linearly (or lower) in n, with
vertex labels of logarithmic size in n, and low stretch. A potential solution to this problem
is the set of routing schemes known as Greedy Geometric Routing (GGR), where nodes
are assigned some (virtual) coordinates in a metric space and the node along the routing
path is the closest neighbor (in this space) to destination. In this chapter we describe the

main GGR schemes that have been proposed and discuss its advantages and drawbacks.

3.1 The Compact Routing Problem

The main task of a network is to provide communication among its nodes. Given a source
node and a destination node, there may be several paths or routes from the source to the
destination and finding the best of such routes under some criteria is called the routing
problem. A routing scheme is an algorithm that solves the routing problem.

In this work, we consider distributed routing schemes in data networks, that is, in
each node there is a routing process that once a packet arrives, it decides (independently
of the other nodes) whether the packet has just reached its destination, and otherwise,
it forwards the packet to a neighbor node towards the destination. Each packet has a
header that contains the destination address and (possibly) other information. The routing
process in each node maintains a RT that together with the packet header is used to decide
whether to pass the packet to the own node, i.e., the packet has reached its destination, or
to forward the packet to one of its neighbors, otherwise. For example, a RTs may store an

entry for each destination containing the next node in the path, IP prefixes, vertex labels

28
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of the neighbors, port numbers, or other.

The quality of a routing scheme can be measured by the following:

e Stretch: Given a pair of vertices, the quality of a path computed by a routing
scheme is measured as the ratio between the length of this path and the length
of a shortest path between the same pair of nodes. This measure is called the path
(route) stretch. The maximum path stretch among all the source-destination pairs is
called the stretch of the routing scheme. In this work we consider that the length of

the path is its number of hops.

e Vertex Label Complexity: Any node of the network must be identified by a label.
The vertex label complexity is the maximum size (in number of bits) of any label
used by any node. Depending on the kind of scheme, the label can be a coordinate
in some metric space, and IP address, a number, etc. If the size of a vertex label is

polylogarithmic in n, then the scheme is said to be succinct.

e Routing Table Size: The output of a routing scheme is the RT. The size of the RT is

the maximum number of bits that it stores at any node at any time.

e Memory/Space Complexity: The space complexity of a routing scheme is measured
as the maximum number of bits that are used during the construction the routing

scheme together with the size of the RT. 2

e Routing Decision Time: Once a packet arrives to a node, this quantity measures the

time that the routing scheme takes to decide the next hop toward the destination.

e Time Complexity: This is the time that is needed to construct the routing scheme,

i.e., the time after which each node is able to take routing decisions.

o Message Complexity: In distributed routing schemes, it is the total number
of messages exchanged among nodes to construct the routing scheme and the

maximum size (in number of bits) of such messages.

e Routing Scheme Scalability: The scalability of a RT is expressed in terms of the
growth of its size with respect to n. The scalability of a routing scheme is expressed
in terms of the growth of the space complexity with respect to n. A linear (or higher)

growth rate is considered a poor scalability.”

In literature on routing schemes, see e.g., Thorup et al. [5], the space complexity is the size of the RT.
PIn literature on routing schemes, see e.g., Krioukon et al. [4], the scalability of a routing scheme is the
scalability of the RT.
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There are two extreme solutions for the routing problem. The first one is to store a RT
in each node having an entry for each destination, and each entry containing the output
link (or port) through which the packets should be forwarded. With this approach, the
packets can be routed through the shortest path following a point-to-point (also known as
hop-by-hop) routing scheme (see e.g. [55, 56]). It is clear that, in the worst case, this
solution requires storing in each node a RT of size Q(n-log(n)) bits, assuming log(n) bits
per node identifier. The second extreme solution is the source routing scheme (see e.g.
[57]), which includes into the packet header a complete description of the path through
the packet must be routed. Again, the packet can be routed through the shortest path.
However, the packet header should have a size of Q(n-log(n)) bits assuming log(n)
bits per label identifier and worst-case path with n hops. Therefore, the RTs/packet
headers makes both solutions not to scale well [5, 58]. The Compact Routing Problem
(CRP) consists of designing routing schemes (called Compact Routing (CR) schemes) that
achieve scalable RT size with respect to the number of network nodes n, i.e., the RT
size grows sub-linearly (or lower) in n, with vertex labels of logarithmic size in n, and
low stretch (usually constant or logarithmic in n). Usually Compact Routing schemes
achieve this scalability at the cost of producing longer paths than the shortest ones [5],
and therefore an important desired design goal is to achieve the lowest possible stretch.

CR schemes can be seen as a trade-off between source routing (optimal RT size at the
detriment of packet header size) and point-to-point routing (optimal packet header size at
the detriment of RT size) by abandoning the requirement that packets are always routed
on a shortest path. A CR scheme is said to be universal if it works correctly and satisfies
promised scaling bounds on any graph. If it does so only on some specific graph families,
then it is called specialized [4]. Following [5, 58, 59], universal CR schemes with worst
case stretch < 3 require at least Q(n) bits per vertex for any graph. In other words, shortest

path routing schemes are incompressible.

3.2 Greedy Geometric Routing schemes

As a potential solution to solve the CRP, Geometric Routing (GR) has been proved to
be both simple and heuristically effective [17]. GGR schemes exploit the “geometric”
dimension of graphs by assigning to each vertex (virtual) coordinates out of a metric
space. These coordinates represent the relative position of the vertices as a function of
their distances, such that they can be used to forward packets by selecting the closest
neighbor (under some criteria in this space) to the destination requiring only local routing
information. When the criteria to select the closest neighbor is the one whose distance

to the destination is the minimum one among all the neighbors, the forwarding process
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Figure 3.1: The embedding of the 3-cube graph in several metric spaces.

is referred to as Greedy Forwarding (GF). The family of routing schemes that perform
GF using coordinates of some metric space are called Greedy Geometric Routing (GGR)
schemes [18-20]. In fact, GGR schemes are a type of Distance Labeling Schemes (see
e.g. [60-63]), that is, routing schemes that rename (or label) the network nodes, such
that a quick forwarding process is performed based only on the (approximate) distance
to the destination (unique information in the packet header). In this work, we assume
that the destination label is known by the source node and is written in the packet header.
Figure 3.1 shows a 3-cube graph and its embedding in both the Euclidean space R> and
the Hyperbolic space H? ©.

GGR schemes can be seen as composed by two procedures, the vertex labeling and
the packet forwarding. The vertex labeling procedure computes and assigns coordinates
(i.e., labels) to nodes by using some kind of metric embedding of the set of nodes (the

source metric) into some target metric space (see Section 2.2). The packet forwarding

“In this example, a coordinate in the Hyperbolic space is a tuple representing a complex number. For
visualization, the coordinates are truncated at the fifth digit right of the decimal point.
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procedure uses the GF strategy to select the next hop to forward the packets. These two
procedures can be directly mapped to the routing system architecture functional model
that we proposed in [64], where the labeling procedure is part of the Process Topology
and Routing Information function and the forwarding procedure is part of the Determining
Routing Path function.

The potential of GGR schemes for solving the CRP relies on two main points: the
embedding process and the topology itself. With respect of the topology, since the number
of entries in a RT for a GGR scheme is bounded by O(Ag), topologies with O(Ay) << n
can enjoy small RTs in size (assuming vertex label with succinct representation). With
respect to the assignment of coordinates to nodes, we can see that it is equivalent to
perform an embedding of the graph into a metric space. Therefore, the quality (in terms
of stretch) of a GGR built on top of this embedding mainly depends on the quality of
the embedding in terms of distortion, a metric that is closely related to the concept of
embedding distortion, the dimensions of the metric space (i.e., the number of coordinates
used to describe a point in the space), and the number of bits to describe each coordinate.
This means that the potential of GGR schemes for solving the CRP relies on the definition
of embeddings with low distortion, metric spaces with low dimension and a simple

representation of coordinates.

3.3 GGR Schemes with no guarantee of packet delivery

One of the first GGR schemes developed for interconnection networks was presented in
[65]. The author proposed a distributed procedure to solve the RT size limitations of
the shortest path routing schemes in large scale networks. The nodes are labeled by a
two-tuple < location,id >. The location represents the position of a node using some
coordinate system, and the id is a unique identifier for that node. He assumes that
the location of the nodes is known (e.g. latitude and longitude in the Earth’s surface).
However, this approach fails when the packet reaches a local minimums, i.e., it reaches a
node such that none of its neighbors is closer to destination than itself. He partially solves
the problem by searching a node that has a closer neighbor to destination, no farther than
(k—1) hops (k < n), from the node. Note that in the worst case, it is necessary a storage
of O(n-log(n)) bits to ensure packet delivery in all cases. Other proposals, such as Least
Deviation Angle, also called Compass Routing [66], Nearest with Forwarding Progress
(NFP) [67] and Most Forwarding progress within Radius (MFR) [68], also solve partially
the local minimum problem and therefore do not guarantee the packet delivery.

In order to avoid the need of using either a Global Positioning System (GPS) or any

similar device to obtain real (physical) location coordinates, Rao et al. [69] introduced
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the idea of assigning virtual coordinates (in some space) to the nodes, and then to forward
packets using GF. Later, Caruso et al. [70] proposed a GGR scheme based on the
computation of a virtual coordinate system based on the hop account metric, a metric
that tends to be close to the one on R? when the node density is high (the probabilistic
analysis presented in [71] confirms it). However, there is still no guarantee of packet

delivery.

3.4 GGR schemes with guarantee of packet delivery

To overcome the local minimum problem, other proposals such as Greedy Perimeter
Stateless Routing (GPSR) [19] and Greedy Other Adaptive Face Routing (GOAFR) [72]
(or its improvement GOAFR+ [16]) include mechanisms to guarantee the success of the
routing process. These proposals assume that each node knows its own position, either
from a GPS device or through other means, and also requires computing an underlying
subgraph that needs to be planar. These algorithms are a combination of Greedy
Forwarding and Face Routing (also called Compass Routing II [66]). When a local
minimum is detected, the algorithms change the operation mode from Greedy to Face
Routing. A practical improvement of Face Routing was presented in [73]. However, these
proposals (and similar) have several drawbacks: first, the recovery mechanism increases
the path length proportional to the square of the optimal ones; second, although the node
coordinates correspond with points in the two-dimensional Euclidean Space, i.e., R2, the
description complexity of each coordinate requires O(n -log(n)) in the worst-case [18]
(the same space complexity of the RT of a shortest path routing scheme); and finally,
if the network topology violates the assumption of the unit disk model [74], then the
planarization algorithms may produce graphs that are either non-planar or non-connected
planarized in the real topology [75]. Some improvements in the computation to guarantee
both a constant stretch and bounded degree for the underlying graph are proposed in [76,
77], and for mitigating the impact of the network model in [75].

The first theoretical work to guarantee packet delivery using GGR was presented
in [31], where it is proved that any graph containing a 3-connected planar sub-graph
has a greedy embedding in R3. In addition, they conjectured that every of such graph
has a greedy embedding in R?. Recently, several works confirmed this conjecture [18,
78]. However, O(n - log(n))-bits are required to described the coordinates. A more
general approach with a distributed algorithm to construct the embedding was proposed
in [32] for static graphs. The author proved that there always exists a greedy embedding
of any connected finite graph into the two-dimensional Hyperbolic space H?. As a

direct consequence of the greedy embedding, any spanning subgraph defines a greedy
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embedding of its supergraph yielding arbitrary but low stretch. An alternative algorithm
for greedy embedding in dynamic graphs using H?, Gravity-Pressure Greedy Forwarding
(GPGF), was presented in [79]. Although the last two approaches allow the embedding
of any finite graph into a two-dimensional space with packet delivery guarantee, the

coordinate description is still bounded by O(n -log(n)) bits [18].

3.5 GGR schemes with succinct representation of the

coordinates

Although most of the works related with graph embedding (from a pure mathematical
view point) are impractical due to their high time and space complexity [34, 80-84],
one of the most relevant results is that obtaining an isometric embedding of any graph
into the Euclidean metric space requires at least O(log(n)) dimensions with succinct
representation of coordinates. Specifically, in [34] the author proved that every tree has a
greedy embedding in H> and R/°$(") with coordinate description of O(log?(n)). Recently,
the works of Goodrich et al. [85] (for 3-connected graphs) and Eppstein et al. [20] (for any
graph), which are based on the techniques used in [34], proposed a greedy embedding into
R? and H?, respectively, with succinct representation of O(log(n)) bits per coordinates.
However, these embeddings are based on heavy path decomposition procedure, which
requires a centralized algorithm that runs in O(n-log(n)) and needs additional space of
O(n) bits [86].

3.6 GGR schemes in scale-free topologies

Many GGR schemes are usually designed without considering topological information
about the structure of the network. However, if one could exploit the structure of the
topology, then it would be possible to construct graph embeddings on which the GGR
schemes built on top of them have good properties in terms of space and time complexity,
label complexity and stretch. Real-world topologies such as the Internet, the World Wide
Web, biological interactions, social and collaboration networks, among others, are part
of the so-called scale-free networks [87]. Two of the most important properties of these
graphs are the power-law vertex degree distribution [88] and that their diameter growth is
proportional to [og(n) [89]. This property is called the small-world effect [90].

In 2002, the scheme called Global Network Positioning (GNP) [91] is built on top of
an embedding of the Internet topology at the level of Autonomous System (AS) into the

Euclidean space with seven dimensions R”. It tries to approximate the network distance
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between any pair of nodes by the Euclidean distance of their assigned coordinates.
However, this scheme would incur in large stretch due to the triangle inequality violation
in the Internet distances [92]. In fact, in [92] the authors proved that the Euclidean metric
is a good estimation of the distance between nodes that are far away from each other, but it
incurs in high distortion for closer nodes. In addition, they also proved that the embedding
would suffer high distortion even if the dimensions of the embedding were increased.
Shavitt and Tankel [93] showed experimentally that the Internet AS topology maps better
(with low stretch) into a low-dimensional hyperbolic space than into a Euclidean space
with similar dimensions.

Serrano et al. [94] found a geometrical interpretation of the structure and properties
of the scale-free graphs, in which the nodes are located in some hidden metric spaces
and the empirical results presented in [95] confirm it. In [95] the authors showed that
GGR in scale-free networks with strong clustering (e.g. Internet-like topologies) can be
performed in a very efficient way without global knowledge of the topology. In fact, the
analysis presented in [96] proved that the scale-free network topologies are congruent
with the hyperbolic metric space. They used the GPGF routing scheme proposed by [79]
to show that even under highly dynamic networks, the congruence is holding. However,
the stretch is unbounded and the coordinate description is not succinct. A procedure to
perform the inverse process on real AS Internet topologies, i.e., to get coordinates in the
hyperbolic metric space for the Internet topology nodes, was presented in [97]. This
work provides important facts to understand the direct relationship between scale-free
topologies and the hyperbolic metric spaces. However, a pure GGR scheme can not
guarantee the packet delivery in all the cases, and again, the coordinate description is
not succinct. As an alternative, in [98] the authors presented a greedy embedding with
succinct coordinate description of O(log?(n)) bits on scale-free topologies. However, the
number of coordinates remains unbounded. Table 3.1 summarizes the main features of

the routing schemes analyzed in this section.
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Packet | Stretch

Reference Advantages/Contributions delivery | upper Other drawbacks

guarantee | bound

[65] It is independent of the coordinate | No No It requires O(n - log(n)) bits
system. of storage.

[66-68] It solves partially the local minimum | No No The input graph must be
problem and introduces new forwarding planar.
techniques.

[69-71] It introduces the idea of assigning virtual | No No It requires an input graph with
coordinates in some metric space. high node density.

[16][19] | It overcomes the local minimum problem. | Yes No It implements recovery

[66] [72, mechanisms that increase the

73] path length. The vertex label

size is O(n - log(n)) bits. The
graph must be planar.

[76, 77] Both the stretch and the degree of the | Yes Yes The input graph must be
underlying graph are bounded. The time planar. It requires O(n)
complexity is O(A-log(A)) messages.

[31] First theoretical work that guarantees | Yes No It requires vertex labels of
packet delivery. It introduces the concept O(n - log(n)) bits. It only
of greedy embedding. works on 3-connected planar

subgraph.

[32, 79] It works on any kind of graph. It can be | Yes No It requires vertex labels of
implemented in distributed environments O(n-log(n)) bits.
and its time and space complexity is low.

[20, 85] It guarantees a succinct representation of | Yes No It requires a  graph
the coordinates. pre-processing with a

centralized algorithm that
requires O(n - log(n)) bits of
storage.

[92] It assigns Euclidean coordinates to | Yes No Euclidean spaces are not well
Internet topologies at the AS level. It suited to represent Internet
implements a hybrid model to reduce the nodes
stretch. This model can be extended to
other metric spaces.

[93] By computing the curvature of the | Yes No It requires a centralized
Internet, the embedding of the graph algorithm to construct the
into a low dimensional hyperbolic space embedding.
reaches a low stretch.

[96] Theoretical proof of the negative | No No It requires vertex labels of
curvature (hyperbolicity) of the Internet O(n-log(n)) bits.
topology.

[97] It guarantees a succinct representation of | Yes Yes The number of coordinates is
the coordinates. It can be implemented unbounded
in distributed environments with low time
and space complexity.

Table 3.1: State-of-art of GGR schemes for both general and scale-free graphs
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3.7 GGR schemes in Data Centers

Nowadays Data Centers (DCs) are becoming huge facilities with hundreds of thousands
of nodes, connected through a network. The design of such interconnection networks
involves finding graph models that i) have good topological properties (e.g. high
connectivity, small degree, etc.) to ensure good performance in terms of throughput,
delay, robustness, etc., and ii) allow to have routing algorithms with both low stretch
and low computational complexity even if the number of nodes in the network grows
exponentially [6, 99]. In fact, the design of efficient routing algorithms with low stretch
is one of the major challenges of the Information and communications technology sector
with regard to the reduction of energy consumption [14]. Therefore, a way to face that
challenge is by exploiting the geometric properties of the DC topologies in order to find
shortest routes (or routes with low stretch) with small RTs. For a survey and taxonomy on
DCs, we refer the readers to [100].

Many DCs topologies have been proposed in the literature. For instance, Fat-Tree
[8], BCube [9], DCell [101] and FiConn [102] provide high performance with good
topological properties. However, the previous proposals for mapping graphs (or at
least a family of them) into some metric space can not be directly applied to this
kind of topologies. The main reason is the difficulty of guarantee properties such as
symmetry, fault tolerance, complete success packet delivery, bounded degree, logarithmic
diameter, etc., under such maps. As an alternative, several DC architectures have been
proposed such that their underlying topologies emerge from some metric space. In [103],
the authors proposed a DC architecture based on tessellations of the hyperbolic metric
space. In this topology, each node is identified with a coordinate in the hyperbolic
plane. Because of the topology is congruent with its underlying hyperbolic geometry,
any path computed by GGR is also a shortest path (even under network dynamics). A
DC based on a 3D-Torus, called CamCube, was presented in [104]. This topology
is regular, recursive and supports GGR schemes such as the one proposed in [105].
However, this topology suffers from large diameter (slow polynomial diameter growth).
Y. Shin et al. proposed in [106] a DC topology based on the d-dimensional torus lattice,
called Small-World Datacenter (SWDC), following the small-world model of [107]. This
topology improved the performance of the CamCube by including random connectivity
among nodes. However, the use of a regular lattice underlying the topology limits the
incremental expansion of the network.

Another kind of topologies that have been proposed for DCs architecture are those
ones based on Cayley Graphs (CGs) because they meet the desired properties i) and ii)
mentioned above [108, 109]. Note that the definition of a CG implies that the vertices

are elements of some group but it does not imply any specific group. This flexibility
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allows finding the graph that better meets the desired requirements on diameter, vertex
degree, number of nodes, etc [110]. Moreover, it has been demonstrated that CGs can also
be used as models of deterministic small world networks [111]. In general, the routing
schemes for CG have been designed specifically for specific topologies in order to take
advantage of their algebraic structure. Many of these schemes are based on permutation
representation that admits greedy forwarding techniques (because the shortest path
problem is equivalent to find an optimal sorting of integers in such topologies). Examples
of this kind of topologies are the hypercube and butterfly graphs [10], the toroid graph
[112], alternating-group graph [113], complete transposition, bubble-sort and star graphs
[114, 115]. However, there are other CG-based topologies that either do not admit a simple
greedy forwarding strategy based on permutation representation or can not ensure shortest
paths. Examples of these CGs are the pancake [108] and the borel graphs [116, 117].

To our best knowledge, the only shortest path routing algorithm for any finite CGs was
presented in [116]. In this work, the authors proved that all finite CGs can be represented
by Generalized Chordal Rings (GCR) and based on this transformation, they proposed an
iterative routing algorithm based on table look-up (which is constructed using a shortest
path algorithm such as Dijkstra or Bellman Ford). However, the proposed scheme is not
scalable. In general, all the schemes previously mentioned do not exploit the intrinsic
geometric structure of any CGs when they are treated as metric spaces (see Section 2.3.3).
Recently, Ji-Yong Shin presented in [118] a routing scheme over a specific CG that exploits
the geometric structure of the underlying topology, and which uses a two-level shortest
path GGR scheme based on the one proposed in [105]. Table 3.2 summarizes the main

features of the routing schemes analyzed in this section.

3.8 Summary and conclusions

In this chapter we have described the main GGR schemes that have been proposed for
several types of topologies and we have discussed its advantages and drawbacks. We have
seen that these works experience one or more of the following problems: 1) they produce
a non-greedy embedding, 2) they are not succinct, 3) they can not be implemented in
distributed environments, 4) they require a full knowledge of the topology, or 5) they
have unbounded stretch.

Several GGR schemes have been designed to exploit the topological structure of
scale-free graphs. In fact, it has been found a geometrical interpretation of the structure
and properties of these graphs using Hyperbolic geometry. With respect to DCs, the
routing schemes are mostly designed only for specific graphs, and GGR schemes for any

CG (i.e., a general purpose scheme) with low complexity have not been proposed. Just a
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few works exploit the geometric structure of some DCs topologies. Moreover, the family
of CG-based DCs do not have (in the literature) any general-purpose GGR scheme that

guarantees the shortest paths and that exploits its intrinsic Word-Metrics (WMs) spaces.

Packet Stretch
Reference Advantages/Contributions delivery upper Other drawbacks
guarantee bound

[103] A DC architecture that is Yes Yes It requires vertex labels of
congruent with the hyperbolic O(n-log(n)) bits.

space. The computed paths are
the shortest ones.

[104] A CG DCs architecture that Yes No It has large diameter
supports GGR.

[106] A hybrid DC architecture that Yes No It uses a regular lattice as
combines a high regular and underlying the topology
recursive underlying network that limits the incremental
topology with some features of expansion of the network.

small-world graphs.

[10] A CG DCs that support Yes Yes Although all of them are CG,
[112-115] | greedy forwarding based on each topology has its own
permutation representation of routing scheme that can not
groups. work on any other kind of CG
DC
[116, 117] | Regular and recursive DC Yes Yes The routing scheme is based
architecture with high fault on a shortest path routing
tolerance. algorithm, and therefore it

requires O(n - log(n)) bits of

storage.
[118] A completely wireless CG DCs Yes No The scalability is worst than
that support greedy forwarding in the traditional (wired) DC.

with high aggregate bandwidth,
lower latency, and high fault

tolerance.

Table 3.2: State-of-art of CG DC architectures and their routing scheme properties



Chapter 4

Greedy Geometric Routing schemes

with Word-Metric spaces

In this chapter we describe the main contributions of our work. First we propose a novel
and simple greedy embedding of any finite connected graph into a metric space generated
by algebraic groups. Then we present three Greedy Geometric Routing schemes built on
top of this embedding: the first one for any kind of graph, the second one for scale-free
graphs and the third one for Cayley Graphs. We also prove that these last two schemes

can be considered as specialized Compact Routing Schemes.

4.1 A greedy embedding in Word-Metric spaces

In this work we propose the use of Word-Metric (WM) spaces, 1.e., metric spaces generated
by algebraic groups, to build Greedy Geometric Routing (GGR) schemes. Our first
contribution is to prove that there exists an embedding of any graph into this metric space

and that this embedding is greedy. We state our main theorem.

Theorem 4.1. Every connected and finite graph H = (V,E) has a greedy embedding in
the WM space of an algebraic group.

The proof of Theorem 4.1 requires finding a distance-decreasing monotone map from
vertices of the graph to points (or elements) of a word-metric space generated by an
algebraic group and verifying the correctness of Algorithm 1 that performs such mapping.
In order to prove Theorem 4.1, firstly, we prove that the algebraic group that generates the

target Word-Metric space is the free group of rank |2-Ag|.

Proposition 4.1 (Theorem 3.20 of [39]). A group is free if, and only if, it acts freely on a

tree.

40
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Algorithm 1 Greedy embedding in WM spaces.

1: Choose an arbitrary vertex r € V(H).

2: Use a distributed algorithm to compute a spanning tree 7y rooted at r.

3: Compute the maximum degree Ay of the graph.

4: For each v € V(H), enumerate its children and assign them a unique integer i €
{1,...,Ag}.

5: Assign to each vertex a unique word (label) representing a group element from a
specific algebraic group G.

Proposition 4.2. Let I'g g be the Cayley Graph (CG) of a group G generated by S. Given
an element g € G, the left multiplication ©y : G — G defined by m,(h) = g-h is an
automorphism of its L' s.

Proof. Let h and k be any two adjacent vertices in I'g 5, i.e., {h,k} € E(I'g 5). Because
h and k are connected by an edge, there exists an element s € S such that k = & -s by
Definition 2.29. In fact, {h,k} = {h,h-s} is an edge with label 5. Now, assume that 7,
does not define an automorphism, i.e., the vertices 7,(h) = g-h and m,(k) = g - k are not
adjacent under 7,. If we replace k by /- s, then we get 7, (k) = mg(h-s) =g-h-s. Let p
be the element of G such that p = g - h, then m,(h) = p, me(k) = m,(h) - 5, and therefore
Ttg(h) and m, (k) are connected with an edge with label s by Definition 2.29, but this is a

contradiction to the assumption that 7, does not define an automorphism in I'g s. O

Proposition 4.3. Let L' s be the CG of a group G generated by S. Then I'g s is the infinite
connected 2|S|-regular tree if, and only if, G is a free group with basis S. In fact, if
G =F(S), then I'G s is the word-metric space generated by F (S).

Proof. Firstly, we prove that if G is a free group with basis S, then I' ¢ is a tree. Note
that if G is generated by S, then the graph I'; s is a connected and 2|S|-regular graph by
Definition 2.29. Note that if G is free, there is no freely reduced word in G representing
the identity, and according to the correspondence between words in the group G and
paths in its CG, the graph I'g 5 has no cycles. Therefore I' g is a tree by Definition 2.4.
Secondly, we prove that if ' g is a tree, then G is a free group with basis S. If I'g g is a
tree, then it is connected and generated by S. Given an element g € G, left multiplication
my : G — G defined by m,(h) = g - h is an automorphism by Proposition 4.2. In fact, it
is also an isometry by Definition 2.10, i.e., dy (7g(x), T (y)) = d(x,y),Vx,y € V(I'G.s).
Therefore, the action of G on its CG is by isometries (Theorem 2.7). In addition, this
action is free, i.e., for any g,h € G, the existence of an x € V(F(;?S) with g-x=h-x
implies g = h, otherwise, the path defined by g-h~! is a cycle of length I;(g-h~!) > 2,
which contradicts the assumption that I'G ¢ is a tree. Since a group is free if, and only if,

it acts freely on a tree by Proposition 4.1, then G = F(S). Finally, considering each edge
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of I' s to be the isometric image of [0, 1], the word-metric of the group corresponds to

the graph metric induced on I'g s (Definition 2.31), and the proposition follows. U

At this point, we have proved that the algebraic group G mentioned in Algorithm 1 is
the free group of rank |2 - Ag|. The next step for proving Theorem 4.3 consists in defining
an isometric embedding of a spanning tree of H into I'g ¢ and then proving that it is also
greedy.

Select an arbitrary vertex r € V(H). Construct a spanning tree rooted in r. Compute
the maximum vertex degree Agy. Define an ancestor/descendant relationship between
vertices: for some v € V(Ty), choose an ordering of the children of v and denote the
i-th child of v as ¢;(v), for i € {1,...,d}. Define the mapping function f : T — F(S) as
follows: f(r) = e and recursively for some v € V(Ty), let f(ci(v)) = f(v) - s; for all the
children of v. Label each vertex v € V(T ) with the word f(v).

Proposition 4.4. Let F(S) be the free group with |S| = Ag. Then the function [ : Ty —
F(S) defined above is a greedy embedding of Ty into F(S).

Proof. We claim that for every pair s,t € V(Ty) there is a vertex u € V(Ty) adjacent to
s such that d(f(u), f(t)) < d(f(s),f(t)). Firstly, f(ci(v)) must exist since there are at
least as many group generators as children. Let f(s) = ws, f(¢) = w; and f(u) = w, be
the assigned words in F(S) to the vertices s,7,u € V(Ty), respectively. Depending on the
relative position of s and ¢ with respect to r, there are 3 cases to analyze:

1. If t is an ancestor of s, that is, ¢t lies in the path from s to r, then take u as the
parent of s. Let s be the i-th child of u. Since ¢ is an ancestor of s, we have f(u) =
wy = w; -w, where w € F(S) and I;(w) > 0. So, d(f(u),f(t)) = Li(w,; ' -w,) =
Is(w™ - w; b w,) = [;(w™"). Note that f(s) =ws = w, - s;, and then d(f(s), f(1)) =

L(witowe) = L(s;tow bowe) = (s w™low b owy) = Ig(s7 1w 1), Therefore,

we have [i(w™!) < Ii(s; 1wl = d(f(u), £(£)) < d(f(s), £(1)).

2. Iftis a descendant of s, then w; can be written as w, = wy-s; - w, for some w € F(S),
s; € S and [5(w) > 0. Take u as the single child of s such that f(c;(s)) = f(u) = wy-si,

and the proof follows.

3. If t and s are not ancestor of each other, then the path from s to ¢ goes through the

parent of s. Take u as the parent of s, and the rest follows.

Finally, in order to establish the correctness of Algorithm 1, we must prove that
if vyu € V(Ty) are adjacent, then d(f(v),f(u)) = 1. By contradiction, assume that
d(f(v),f(u)) # 1. Suppose that u is the i-th child of v, and let f(v) = w, be the assigned
word in F(S) to the vertex v € V(Ty) by Algorithm 1. Since f(u) = f(v)-s; = wy - s;, then
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we have that d(f(v), f(u)) = Ls(w; ' -w,-s;) = Li(s;) = ds(e,s;) = 1 by Definition 2.31,

but this is a contradiction. The same applies if v is the i-¢4 child of u. U

At this point we have proved that the embedding of a spanning tree Ty into F(S)
(with |S| = Ap) is greedy. Combining this results with Lemma 2.1, we are able to prove

our main Theorem 4.1.

Proof. (Theorem 4.1): We need to prove that if Ty is a spanning tree of H and f : Ty —
F(S) is a greedy embedding, then f : H — F(S) is also a greedy embedding. Because
H is connected, then it is always possible to construct a spanning tree 7y by Proposition
2.2. Note that the map f: Ty — F(S) is a greedy embedding of Ty into the metric
space generated by F(S) by Proposition 4.4, but the greedy embedding of any spanning
subgraph of H is also a greedy embedding of itself by Lemma 2.1. Therefore f : H —
F(S) is also a greedy embedding of H in the word-metric space generated by the group
F(S). ]

4.2 A GGR scheme in WM spaces for any kind of graph

In this section we propose a Greedy Geometric Routing (GGR) scheme for any connected
and finite graph on top of the previous embedding. We prove its vertex label size, Routing
Table (RT) size, stretch, and routing decisions time upper bounds in terms of Ay and

D(Ty). A simple application case and the worst-case graph analysis is also presented.

4.2.1 The GGR scheme and its complexity analysis

In Section 3.2 we showed that GGR schemes can be seen as composed by two procedures,
the vertex labeling and the packet forwarding. The first procedure is performed by
Algorithm 1, which gives to each vertex a unique label representing an element of
the free group. The second procedure uses the Greedy Forwarding (GF) strategy to
select the next hop to forward the packets. This procedure requires a mechanism to
determine the distance between vertices using their labels in the WM space, that is, for
any pair of vertices u,v € H(V) with labels w,,w, € F(S), we need a procedure to
compute dy(f (), f(v)) = min{ly(w) | w € F(S),w=w;, ! -w,}. As solving this problem is
equivalent to solve the minimum-length word problem (MWP) in groups (See Definition
2.33), then we propose to compute the distances between vertices using the Confluent
Rewriting System (CRS) of F(S). Given a graph H, the complexity analysis of this GGR

scheme is summarized in the following four theorems:
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Theorem 4.2. Any GGR scheme built on top of the proposed greedy embedding produces
labels of size O(D(Ty) - log(An)).

Proof. For any vertex, the number of generators in its label is bounded by the tree depth
of the spanning tree rd(7Ty). However, it is well-known that td(Ty) < D(Ty). Since
each generator can be represented by O(log(Ap)) bits, then the label vertex complexity is
bounded by O(D(Ty) - log(Ag)). O

Theorem 4.3. Any GGR scheme built on top of the proposed greedy embedding produces
RT of size O(Agy - D(Ty) - log(Am)).

Proof. Each vertex stores a RT containing, for all neighbors, the label and the
corresponding output identifier. Note that this information is for all neighbors because
not only the edges in the spanning tree are used to forward traffic but all edges Because
there is at most Ay neighbors and each one of them has a label of size O(D(Ty ) - log(An)),
the RT size is bounded by O(Ag - D(Tw) - log(Am)). O

Theorem 4.4. Any GGR scheme built on top of the proposed greedy embedding has a
stretch bounded by O (D(Ty)).

Proof. if the vertices u and v are at distance at least two each other in H, and if their only
common parent in Ty is the root vertex, then dr, (u,v) < 2-D(Ty). For this reason, the

stretch upper bound of our scheme is O (%) = O(D(Tw)). O

Theorem 4.5. Any GGR scheme built on top of the proposed greedy embedding takes
routing decisions in O (A%;(H)-D(Ty)) steps.

Proof. For free groups, the set of rules of the form s-s~! — eands~! -5 — ¢, forall s € S,
form a CRS for F(S) (Section 2.3, [54]). Due to any element s € S can be represented by
O(log(Ag)) bits, then the required space to store the CRS is bounded by O(|S|-log(Ax)).
The CRS can reduce any word w € F(S) to a unique minimal length word in O(|S| - I;(w))
steps by using a simple replacement process of strings (Section 2.4, [54]). Note that the
GGR scheme uses at most D(7y) generators in any vertex label, and therefore /;(w) =
Iy(w,'-w,) <2-D(Ty). Since |S| = Ay and any vertex has at most Ay neighbors, the
routing decisions take O(A% (H) - D(Ty)) in each vertex while the required space for this
computation is O (Ay -log(Ag)). Therefore, the distance computation does not increase

the space complexity of the proposed embedding. 0

4.2.2 Using the GGR scheme in WM spaces: a simple case on a 3-cube
graph

We present a simple example of how our greedy embedding would work on a 3-cube graph

modeling a 8-node network. Figure 4.1 (a) shows the topology of the input graph. Let v
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Figure 4.1: An example of graph embedding in the WM metric space for GGR.

be the vertex selected by Algorithm 1 to be the vertex r. Then we construct a spanning tree
rooted on vg (e.g. using a Breadth-First Search (BFS) algorithm) and determine the value
of Ay. For each v € V(H), we enumerate its children and assign them a unique integer
i €{1,...,Ag}. The resulting spanning tree and the enumeration of the vertices is shown
in Figure 4.1 (b). Let S be an alphabet with letters a, b, c, let S~' = {a=!,b=!,c™!} be the
inverse of S and |S| = Ay. Defining the mapping function f : T — F(S) as f(r) = e and
recursively for some v € V(Ty), f(ci(v)) = f(v) -s; for all the children of v, each vertex
v € V(Ty) is labelled with the word f(v) € F(S)). Figure 4.1 (c) shows the resulting
mapping of the 3-cube graph in the WM space generated by F(S).

Assume that vertex vs wants to send a message to vertex v7 (labeled as aba). Firstly,
vs uses the labels of its neighbors vy, v4 and vg to create the generic paths between them
and v; (see Definition 2.36): (¢)~!(aba), (ab)~'(aba) and (ba)~(aba), for vy, v4 and v,
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respectively. Secondly, vs computes the length of the shortlex word that represents each
one of the generic paths using the CRS for F(S): (e)~!(abc) = abc, (ab)~!(aba) = a and
(ba)~(aba) = b~'a~'aba. Because the length of the reduced word that represents the
generic path connecting v4 and v7 is the shortest one, vs sends the message to v4. Vertex vy
does the same process with the labels of its neighbors v; and v7. The reduced words that
represent (a) ! (abc) and (abc) ™! (abc) are be and e, respectively. Since e is the empty
word, i.e., the word of length 0, v4 sends the message to v7, the final destination. Note
that although the labeling process is based on a rooted spanning tree, the algorithm has
found the a path (the shortest one )between vs and v; using the whole graph and not only
the computed spanning tree.

4.2.3 Worst-case graph analysis

As one can deduce from Subsection 4.2.1, given a graph H, the complexity of this GGR
scheme depends on two topological parameters: the maximum degree of the graph Ay and
the diameter of the computed spanning tree D(7p). If we consider the worst-case graphs,
the complexity of this GGR scheme (in terms of the number of nodes n) is presented in the

following proposition.

Proposition 4.5. For any GGR scheme built on top of the proposed greedy embedding,

there exists a connected graph such that the worst-case of Algorithm 1 is:

1. The vertex label is O (n-log(n)), or
2. The RT size is O (n-log*(n)), or

3. The stretch is O(n).

Proof. Note that for any graph H, the maximum degree is at most n. Therefore, we need
at most O(log(n)) bits to describe any generator. Now, for the case 1, assume that H is a
path graph of n vertices. The diameter of this graph is n — 1 and therefore there exists a
node with label O (n-log(n)) by Theorem 4.2. For the case 2, let H be a star graph of n
vertices. In this graph there is a vertex with Ay = O(n), and therefore its RT is bounded
by O (n . logz(n)) following Theorem 4.3. Note that in both cases, the graph H is also a
tree and its embedding in the word-metric space is an isometry, and therefore the resulting
stretch is 1. Finally, let H be a cycle graph of n vertices. Any spanning tree in it has a
minimum diameter of [n/2] vertices, and then the resulting embedding will have a stretch
bounded by O(n) by Theorem 4.4. O

Therefore, for general graphs the complexity of the vertex label and the RT size of
the GGR scheme has a worst-case similar to either the point-to-point or the source routing

scheme with shortest paths, while the stretch grows linearly in n.
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4.3 A Compact GGR scheme in WM spaces for scale-free
graphs

As we have just proved, the worst case of any GGR scheme built on top of the proposed
greedy implies a severe limitation in its performance. As an alternative for solving
this limitation and ensuring scalability in large-scale graphs, we present a specialized
Compact Routing (CR) scheme built on top of the proposed embedding, which exploits
the structural and statistical properties of scale-free graphs. In order to build this scheme,
we will select a spanning tree such that its diameter is bounded by some function in terms

of either the diameter or the number of nodes of the graph.

4.3.1 Spanning tree selection

Given a graph H, we showed in Section 4.2 that the selection of the spanning tree Ty
plays a fundamental role in the complexity and performance of the constructed GGR
scheme. In general, the following three main issues should be studied for the spanning

tree computation:

1. How the selection of the vertex root will affect the structure of the resulting

spanning tree.

2. How the maximum vertex degree will affect the complexity of the label description

and RT size.

3. How the exploration strategy to create such spanning tree, specifically the diameter

of the resulting spanning tree, will affect the stretch of the resulting routing scheme.

According to [119] and [120], the selection of the root has minimum impact in the
structure of the computed spanning tree, and the resulting stretch of greedy embedding
in tree metrics is almost independent of the degree of such root. On the other hand,
the maximum vertex degree, which affects the number of generators for the CRS and
the maximum number of entries of the RT, does not affect (as a factor) neither the label
description complexity nor the stretch value. However the number of entries in the RT
will be always limited for this value since our scheme is greedy. Therefore, the main
parameter to be considered for selecting a spanning tree would be its depth, which affects
the stretch and the label description. Table 4.1 presents some alternatives to compute a

rooted spanning tree and their computational complexity in a distributed environment.
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Message
Spanning Tree Time Space
Size Number
Approximated Minimum Spanning 5 5
O(D+1 O(Ag -1 o(l O(m-1
Tree (AN (121 (D+l0g* () (& - tog(m) (1og(m) (- 1og? (n))
BFS [122] O(Dg) O(An) o(1) O(D-m)
Depth-First Search (DFS) [123] O(n) O(Ay -log(n)) O(n) O(n)
Minimum Diameter Spanning
0 O(n-1 o(l O(n-
Trew (b [124] () (n-log(m) (10g(m) (n-m)
Minimum Degree Spanning
o O(Ap -1 o(l O(n-
Trew (tasm (1391 (n) (& - Log(n) (1og(n) (n-m)

Table 4.1: Strategies for distributed computing of a rooted spanning tree from an
undirected, unweigthed and connected graph.

Note that the only two algorithms that guarantee an upper bound for the tree-depth
(in terms of the input graph diameter) are both the BFS and the MDST, for any selected root
(see Proposition 4.6 below). Although it is clear that the minimum stretch of any of these
spanning trees is obtained by the MDST algorithm, the computation of the MDST requires
to run an All Pairs Shortest Path (APSP) algorithm and it implies O(n - log(n)) bits in
addition to the RTs (the MDST problem is NP-hard). Therefore, the best trade-off between
complexity and the stretch is reached by the distributed version of the BFS proposed by
[122].

Proposition 4.6. Given a graph H = (V,E) and a spanning tree Ty constructed by the
BFS algorithm, D(Ty) < D(H).

Proof. By Theorem 22.5 of [25], a BFS tree rooted at vertex r is a subgraph of H such
that for any v € V(H), dr, (r,v) = du(r,v). Assume that D(Ty) > D(H). Therefore, there
exists a vertex u € V(H) such that dr(r,u) > dp(r,u), but it is a contradiction. O

As we discussed before, the worst-case of a GGR scheme for any kind of graph is
independent of the selected spanning tree: some graphs could have D = O(n), e.g. take the
cycle graph of order n, and therefore any computed spanning tree will have a tree-depth
bounded by O(n). So, in addition to the selection of the spanning tree, it is important
to exploit the structural and statistical properties of some families of graphs such that
our proposal can be seen as a specialized and distributed Compact Greedy Geometric

Routing (C-GGR) scheme using word-metric spaces, when these properties are met.

4.3.2 Exploiting the topological structure of scale-free graphs

Modeling a system composed of individual elements and their relationships by means of
networks allows the study of aspects such as the nature of each element, their connections

or the regularity of those connections. Many real-world topologies such as the Internet,
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the World Wide Web, citation networks, biological networks, social and collaboration
networks, among others, can be related by a number of common recurring patterns or
characteristics in their structures. Two of the most important of such characteristics are the
small-world affect [90] in the path length between pairs of elements, and the power-law
degree distribution [88]. Graphs with power-law distribution are also known as scale-free
graphs. The following results present the relationship between the number of nodes of a

scale-free graph and its expected diameter and maximum vertex degree.

Proposition 4.7 (Theorem 22.5 of [25]). Given a scale-free graph H = (V,E), the
expected diameter of H is O(log(n)).

Proposition 4.8 (Theorem 3.1 of [126]). Given a scale-free graph H = (V,E), the
expected maximum degree of H is O(;\/n).

For the Internet, these values are also true and it allows the development of new
communication protocols with optimal performance [1]. In fact, wherever it be at the
level of either Internet Router (IR) or Autonomous Systems (ASs), both models are
characterized by heavy tailed vertex degree distributions following a power-law form,
and the presence of shortcuts that connect far away parts of the network, thus reducing the
average path length of the graph, one of the main characteristic of small-world networks,
1.e., they are scale-free networks [2]. Figure 1.1 shows the actual Internet topology at the
level of ASs.

Combining the properties of scale-free graphs with the low-complexity of the BFS
algorithm for computing spanning trees of connected graphs, we claim that a GGR scheme
built on top of the proposed embedding is a scalable and distributed C-GGR scheme for
this kind of networks. The complexity analysis of this GGR scheme, which proves our

claim, is summarized in the following five theorems:

Theorem 4.6. Given a scale-free graph H = (V,E), a GGR scheme built on top of the
proposed greedy embedding produces vertex labels of size O(log?(n)).

Proof. For any vertex, the number of generators in its label is bounded by tree-depth of
the computed spanning tree. Since we are using the BFS algorithm, then the tree-depth of
Ty is at most O(D(H)) by Proposition 4.6. In addition, we have O(D(Ty)) < O(D(H)) <
O(log(n)) by Proposition 4.7. On the other hand, Ay is bounded by O(n'/2) following
Proposition 4.8, and therefore each generator can be represented by at most O(log(n))
bits. By replacing these values in Theorem 4.2, the label complexity is bounded by
O(log*(n)). O

Theorem 4.7. Given a scale-free graph H = (V,E), a GGR scheme built on top of the
proposed greedy embedding produces RTs of size O(n'/? - 1og?(n)).
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Proof. By Theorem 4.6, any vertex label in H will require O(log?(n)). Since the expected
maximum vertex degree is O(nl/ 2) by Proposition 4.8, then any vertex will require at most
O(n'/?-1og?(n)) bits to store its RT. O

Theorem 4.8. Given a scale-free graph H = (V,E), a GGR scheme built on top of the
proposed greedy embedding has a stretch bounded by O (log(n)).

Proof. Note that O(D(H)) < O(log(n)) and therefore O(D(Ty)) < O(log(n)) by
Proposition 4.7. By replacing this result in Theorem 4.4, we obtain O (log(n)). O

Theorem 4.9. Given a scale-free graph H = (V,E), a GGR scheme built on top of the
proposed greedy embedding takes routing decisions in O (n-log(n)) steps.

Proof. By replacing the values of O(D(Ty)) by O(log(n)) (Proposition 4.7) and Ay by
O(n'/?) (Proposition 4.8) in Theorem 4.5, the result follows. O

Theorem 4.10. Given a scale-free graph H = (V,E), Algorithm 1 performs a greedy
embedding f : H — F(S) in O(log(n)) steps, it uses O(n+ log(n) - m) messages of size
O(log?(n)) and requires and additional space of O(n'/? - log(n)) bits.

Proof. Using the distributed BFS algorithm proposed by [122], we have that O(D(H) - m)
messages of size O(1) are needed to construct the BFS tree, and it takes only O(D(H))
steps (See Table 4.1). Replacing O(D(H)) by O(log(n)) (Proposition 4.7) and Ay by
O(n'/?) (Proposition 4.8), we obtain O(log(n) -m) messages to build the BFS spanning tree
in O(log(n)) steps. The maximum degree computation and labeling process on Ty can be
performed using an asynchronous broadcast and convergecast algorithm, which requires
O(n) messages and O(D(H)) steps (Section 15.3, [127]). The size of the message in each
case is O(log(n)) (the maximum vertex degree) and O(log?(n)) (the maximum size of
any vertex label), respectively. Combining the space, message and time complexity of the
BFS construction together with the maximum degree computation and labeling process,
the result follows. Finally, in the proof of Theorem 4.5 we showed that the required space
to store the CRS is O(Ay - log(An)), and therefore, the complexity to store the CRS is
bounded by O(n'/? - log(n)), if the input graph is a scale-free graph. O

In summary, our GGR scheme for scale-free graphs is scalable (because our auxiliary
structures do not require more space than the RT itself), distributed and time optimal
[122], and solves the Compact Routing Problem (CRP) for scale-free graphs according to

the definition given in Section 3.1.
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44 A Compact GGR scheme in WM spaces for Cayley
Graphs

In general, the stretch of a graph embedding in tree metrics depends on the tree-like
structure of the input graph [128]. Note that the proposed scheme has stretch 1 if the
input graph is a tree. This is because the word-metric space generated by the free group
is a tree metric, and the embedding is an isometry. But, is it possible to perform and
isometric embedding of any graph into a word-metric space? The answer is yes.

Qin et. al. proved in [129] that any connected graph H = (V,E) with n vertices
and m edges has an isometric embedding in the Cayley Graph of an elementary abelian
2-group G of order 2". However, the number of generators S C G is Q(m) and the CRS for
the resulting abelian sub-group has Q(m) reduction rules [130]. In other words, the CRS
requires at least the same space complexity as any routing scheme based on a shortest
path algorithm. Although for general graphs the isometric embedding in word-metric
spaces is too expensive, many families of Cayley Graphs, which are a word-metric space
themselves, have a short CRS. Since many Cayley Graphs are used as underlying graphs
for Data Center topologies, a shortest path GGR scheme can be built on top of the proposed
embedding.

Theorem 4.11. Given a finite and connected graph H = (V,E) with underlying Cayley
Graph I'g 5, Algorithm 1 (using a BFS spanning tree) performs an isometric embedding
f:H—G.

Proof. Note that the vertex exploration strategy of a BFS algorithm gives us an ordering
<pgrs on V (Theorem 2, [131]). This ordering is called a BFS ordering. Let L be set of
strings over S which are the representatives of the equivalent classes of elements in G
under the shortlext ordering <; (see Definition 2.42). Therefore, the map 7 : L — G is a
bijection by Theorem 2.8. However the enumeration of elements of G using a shortlext
ordering is in fact a BFS ordering (Section 13.1.2, [41]). Therefore, the enumeration of
V and L using a BFS strategy gives a natural mapping @ : V — L with @(v;) = w;, for all
veVand we L. Because G =TI s = (S|R) by Theorems 2.7 and 2.4, and G = L by
Theorem 2.8, then I'g ¢ = L. The last isomorphism implies that the mapping @ : V — L
is an isometry, i.e., d(v,u) =d(®(v),0(u)), forall vu € V. O

Among the many existing models for CGs (e.g.,[6, 132—-134]), we have selected the
following six well-known families for our theoretical analysis: Hypercube, Butterfly,
Transposition, Bubble-Sort, Star and Pancake. Table 4.2 summarizes the main topological

properties of them (see Subsection 5.2.1 for a more detailed description).
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Graph Family Nodes (n) Degree Diameter
Hypercube H (k) 2k k k
Butterfly BF (k) k-2k 4 13(k)/2]
Transposition 7 P (k) k! ) k—1
Bubble-Sort BS(k) k! k—1 )
Star ST (k) k! k—1 13(k—1)/2]
Pancake P(k) k! k—1 17k/16 < Diameter < (5k+5)/3

Table 4.2: Main properties of some well-known DC topologies based on Cayley Graphs.

The isometric embedding performed by Algorithm 1 together with the CRS of
the algebraic group representing the CG define a GGR scheme for any topology with
underlying CG. In fact, this is a general-purpose GGR scheme that guarantees the shortest
path on any CG topology. With respect to the complexity of the scheme, it will depend on
each graph itself. For the previous six CG-based DCs we have anayzed the complexity and

the result is the following:

Theorem 4.12. Given any graph from Table 4.2, a GGR scheme built on top of the
proposed greedy embedding (using a BFS spanning tree) has a vertex label complexity of
O(log(n)-log(log(n))) bits, RTs of size O(log*(n) -log(log(n))) and the routing decisions
take O (log3 (n)) steps. In addition, such embedding can be constructed in a distributed
way in O(log(n)) steps with O(n+log(n) - m) messages of size O(log*(n)).

Proof. By using the Stirling’s approximation [135], we obtain that the diameters and
maximum (regular) degree of all these graphs are O(log(n)). Therefore, by replacing
D(Ty) < D(H) =log(n) and Ay = O(log(n)) in Theorem 4.2, Theorem 4.3 and Theorem
4.5, the first part of the result follows. On the other hand, following a procedure similar
to the one described in the proof of Theorem 4.10, we can obtain the last part of the
result. 0

Unlike free groups, which have a very short CRS of size O(|S|) equations, finite groups
can have up to O(n) equations. However, there exist many finite groups that have a short
CRS, i.e., the number of rules is bounded by O(1/|G|)[136]. In the next chapter we will
evaluate through simulation the size of the CRS and the size of other structures that can
be used to solve the MWP (which is the same as the shortest path problem) for the graphs
presented in Table 4.2.
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4.5 Summary and conclusions

In this chapter we have presented a simple and novel embedding of any finite connected
graph into a WM space, i.e., a metric space generated by algebraic groups, and we have
proved that any GGR scheme built on top of this embedding guarantees the packet delivery
(the embedding is greedy). Then, we have proposed the following three GGR schemes:

e A GGR scheme for any kind of graph, with stretch of O(D(Ty)), O(D(Ty) -
log(Am)) bits per vertex label, RTs of size O(Ay - D(Ty) - log(Ap)) and routing
decisions that take O (A%, - D(Ty)) steps.

e A C-GGR scheme for scale-free graphs (which include many real-world topologies
such as Internet), with stretch of O (log(n)), O(log?(n)) bits per vertex label, RTs of
size O(n'/? - log?(n)) and routing decisions that take O (n-log(n)) steps.

e A C-GGR scheme for Cayley Graphs (which are used as a model for Data Center
interconnection networks), with shortest paths, O(log(n) - log(log(n))) bits per
vertex label, routing tables of size O(log?(n) - log(log(n))), and routing decisions
that take O (log®(n)) steps.

While the first GGR scheme works for any kind of graph and its complexity depends
on the parameters D(Ty) and Ag, the two C-GGR schemes are specialized, and their
complexity only depends on n. In addition, these C-GGR schemes can be constructed in a
distributed way in O(log(n)) steps, using O(n +log(n) - m) messages of size O(log?(n))
and O(Ap -log(n)) bits of additional storage to build the RT, i.e., not only the RT is scalable

but also the routing scheme itself following the definition given in Section 3.1.



Chapter 5

Experimental Evaluation Through

Simulation

In the previous chapter we proposed a greedy embedding of graphs into a Word-Metric
space together with three Greedy Geometric Routing (GGR) schemes (one for any kind
of graph and two specialized Compact Routing ones) built on top of this embedding,
and we proved their algorithm complexities. This chapter presents and discusses the
experimental evaluation through simulation of our specialized schemes, firstly the GGR
scheme for scale-free networks and secondly the GGR scheme for Cayley Graph (CG)
topologies. The goal is to assess how far the experimental results are from the theoretical

upper bounds for our schemes and other related works.

5.1 Evaluation of the C-GGR scheme for scale-free

network topologies

In Section 4.3 we have designed a GGR scheme built on top of the proposed embedding
for scale-free graphs into the Word-Metric (WM) space generated by the Free Group
F(S) (with |S| = Ay). The embedding process is performed by Algorithm 1 using a
Breadth-First Search (BFS) spanning tree, while the distance computation is performed by
the Confluent Rewriting System (CRS) of the F(S). In this section, we evaluate through
simulation the main performance metrics of a routing scheme in order to verify that this

is a Compact Routing (CR) scheme for scale-free networks.

5.1.1 Measured parameters and metrics

The theoretical complexity upper bounds for the proposed GGR scheme for scale-free

networks have shown that this is a specialized CR scheme that exploits the structural and

54
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statistical properties of this family of graphs. Table 5.1 summarizes the complexity upper
bounds of the routing scheme (see Section 3.1 for the description of the metrics). In
order to evaluate and compare our Compact Greedy Geometric Routing (C-GGR) scheme
in WM spaces for scale-free graphs, we have implemented the Greedy Geometric Routing
in H? (GRH2) [32] and the traditional Shortest Path Routing on Trees (SPRT). We have
selected these schemes for the following reasons: both algorithms are well-known routing
schemes and they can be easily implemented and verified in simulators; their time and
space complexity are closely related to the computation of a spanning tree of the input
graph, and therefore the efficiency of these algorithms can be easily compared; finally,
GRH2 is one of the most efficient GGR algorithms (in terms of space and time complexity),
and the drawbacks with respect to its vertex label size and stretch upper bound can be
mitigated by limiting the size of the evaluated topologies and its diameter.

To ensure a fair comparison among schemes, the same spanning tree constructed
by Algorithm 1 is used in the other two schemes. The computed BFS tree is rooted
in the vertex with the highest degree in the topology. Because we want to verify (by
experimental) that our scheme remains below the upper bound of a specialized CR scheme,
we will use as the comparison metrics the vertex label complexity, Routing Table (RT) size
and stretch. On the other hand, the other metrics are not used since we are using the same
spanning tree for the three evaluated schemes. Finally, for the experimental vs theoretical
comparison of the WM algorithm upper bounds, the value of the logarithmic function is
taken as logs(n) C O (log(n)) and for the square root is 2-n'/2 C O (log(n)).

Upper Bounds
Vertex Label
. 0 (log*(n))
Complexity
Routin.g Table 0 <n1 N log? (n))
Size
Stretch O(log(n))
Memory Space 0 <n1 /. log? (n))
Complexity

Routing Decision

. 0 (n-log(n))

Time
. O (log(n))
Complexity

M
essage 0 (log2 ()

Complexity

Table 5.1: Complexity upper bounds of the proposed C-GGR for scale-free graphs.
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5.1.2 Network topologies

We have selected 3 families of topologies with an incremental number of nodes. Two
of them are synthetic ones, while the third one is obtained from a data set of real-world
scale-free topologies. Each family of the synthetic topologies consists of graphs of size
25, 50, 75, 100, 250, 500, 750 and 1000 nodes. For each size, we have generated 10
different graphs using different seeds, and then we have run the routing algorithms on
these topologies. We have used the mean values of the measurements and we have
verified that their Confidence Interval (CI) is low in order to ensure the reliability of
them. The description of the selected synthetic topologies and the statistics to validate the

simulations runs are presented below.

Barabasi-Albert preferential attachment (BA)-based topologies

This a model widely used to successfully describe the scale-free nature of many networks.
The BA model [88] starts with a connected graph with mg vertices, then a graph of n
vertices is grown by attaching at each step, a new vertex with mg edges. These myg
edges are attached to existing vertices, preferentially to those with high degree. All the
topologies have been created by setting my = 2. In Table 5.2 we show the main topological
characteristics of the generated graphs, together with the diameter and depth of the
spanning tree computed by Algorithm 1 using BFS. Table 5.3 shows the statistical values
of both the mean and 95% CI of the stochastic topological parameters. By understanding
that a large value of CI implies more uncertainty about the evaluated parameter (and
vice versa), the 95% CI remains below 15% of the mean value. In other words, if we
generate other BA topologies, the expected value of the stochastic topological parameters

will remain very similar among all the generated graphs with the same number of vertices.

Degree BFS Tree
Vertices | Edges | Diameter | Maximum | Minimum | Average | Diameter | Depth
25 46 4 14 1 3.68 4 3
50 96 5 12 1 3.84 6 5
75 146 6 34 2 3.89 6 5
100 196 6 31 2 3.92 6 6
250 496 6 35 2 3.97 8 5
500 996 7 57 2 3.98 8 6
750 1496 7 70 2 3.99 8 5
1000 1996 7 98 2 3.99 8 6

Table 5.2: Properties of the BA graphs and the diameter of the computed BFS tree.
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Vertex Degree BFS Tree

Diameter Maximum Minimum Diameter Depth

Vertices | mean | CI (+/-) | mean | CI (+/-) | mean | CI (+/-) | mean | CI (+/-) | mean | CI (+/-)

25.0 4.0 0.2 14.0 1.7 1.0 0.1 4.0 0.4 3.0 0.3

50.0 5.0 0.2 12.0 1.1 1.0 0.0 6.0 0.7 5.0 0.1

75.0 6.0 0.1 34.0 24 2.0 0.1 6.0 0.3 5.0 0.3

100.0 6.0 0.4 31.0 1.6 2.0 0.1 6.0 0.4 6.0 0.4

250.0 6.0 0.1 35.0 4.4 2.0 0.0 8.0 0.7 5.0 0.4

500.0 7.0 0.4 57.0 5.5 2.0 0.2 8.0 0.5 6.0 0.5

750.0 7.0 0.9 70.0 4.9 2.0 0.1 8.0 0.3 5.0 0.3

1000.0 7.0 0.7 98.0 11.0 2.0 0.2 8.0 0.2 6.0 0.1

Table 5.3: Mean and 95% CI of the stochastic topological parameters of the BA
topologies.

Holme-Kim preferential attachment (HK) with clustering based
topologies

Although the BA model generates graphs with small-world effect and power-law degree
distribution, it can not provide an important feature of real-world topologies: the presence
of clusters, i.e., a set of nodes more connected to each other than to other nodes. This
feature is usually measured by the clustering coefficient of a node, which is computed
as the ratio of edges among its neighbors which are actually realized compared with the
number of all possible edges. Holme and Kim presented in [137] a model for scale-free
networks with high clustering. It is essentially the BA model with an extra step where
each added node has a probability p of making an edge to one of its neighbors too.
We use my = 2 and p = 0.3. The main properties of the created graphs and both the
diameter and the depth of the computed BFS tree (td(H)) by Algorithm 1 are presented
in Table 5.4. Table 5.5 shows the statistical values of both the mean and 95% CI of the
stochastic topological parameters. As the BA model, the 95% CI remains below 10%
of the mean, i.e., the stochastic topological parameters of the generated graphs remain
very stable, among all the generated graphs with the same number of vertices. Therefore,
the number of simulation runs and the stochastic topological models used in this section

provide enough statistical robustness to verify the performance of the schemes.
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Degree BFS Tree
Vertices | Edges | Diameter | Maximum | Minimum | Average | Diameter | Depth

25 46 4 11 2 3.68 5 4

50 96 5 12 2 3.84 6 4

75 146 6 23 2 3.89 7 5

100 196 5 27 2 3.92 7 4

250 496 7 45 2 3.97 9 6

500 996 8 51 2 3.98 10 8

750 1496 7 68 2 3.99 9 6

1000 1996 8 108 2 3.99 8 7

Table 5.4: Properties of the HK graphs and the diameter of the computed BFS tree.
Vertex Degree BFS Tree
Diameter Maximum Minimum Diameter Depth
Vertices | mean | CI (+/-) | mean | CI (+/-) | mean | CI (+/-) | mean | CI (+/-) | mean | CI (+/-)

25.0 4.0 0.3 11.0 0.6 2.0 0.2 5.0 0.3 4.0 0.0
50.0 5.0 0.2 12.0 0.6 2.0 0.0 6.0 0.4 4.0 0.1
75.0 6.0 0.2 23.0 1.3 2.0 0.2 7.0 0.3 5.0 0.1
100.0 5.0 0.4 27.0 1.9 2.0 0.2 7.0 0.3 4.0 0.3
250.0 7.0 0.2 45.0 4.5 2.0 0.0 9.0 0.8 6.0 0.0
500.0 8.0 0.5 51.0 33 2.0 0.2 10.0 0.9 8.0 0.5
750.0 7.0 0.6 68.0 5.8 2.0 0.0 9.0 0.2 6.0 0.2
1000.0 8.0 0.5 108.0 9.1 2.0 0.2 8.0 0.4 7.0 0.6

Table 5.5: Mean and 95% CI of the stochastic topological parameters of the HK

topologies.

Internet Router (IR)-level topologies

Internet topology can be viewed as an undirected graph, where a vertex represents either a

router (IR level topology) or an Autonomous System (AS) (AS level topology). Although

both models are different, their statistical and structural properties at large-scale make

that both models are scale-free [2, 138]. In this experimental evaluation we have selected

4 1R level topologies from the Rocketfuel data set [139]. The properties of each IR level

topology and both the diameter and the tree depth of the computed HS! (HS!) tree by

Algorithm 1 are presented in Table 5.6.
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Degree BFS Tree
AS | Vertices | Edges | Diameter | Maximum | Minimum | Average | Diameter | Depth
1755 957 1409 14 36 1 2.94 18 12
3257 1223 1550 16 90 1 2.53 16 11
3967 1480 2688 15 101 1 3.63 21 13
6461 | 2720 3824 12 162 1 2.81 15 13

5.1.3 Results in BA-based topologies

Stretch

Table 5.6: Graph properties of the evaluated AS topologies.

In Figure 5.1 we show the Cumulative Distribution Function (CDF) of the resulting path

stretch for our WM scheme and for GRH2 and SPRT schemes running on a BA graph with

1000 nodes. As in the case of GRH2, the routes chosen by our WM scheme also follow

many non-tree edges (shortcuts), thus reducing the stretch with respect to the SPRT. Note

that for our WM scheme, around 70% of the routes have an strecht 1, which improves over

the other two schemes, and around 92% have an stretch < 1.3. The stretch of our WM

scheme is only 4, the same for GRH2, while for SPRT is 8. In general our WM scheme

achieves a better performance than the other two ones.
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Figure 5.1: Stretch CDF for WM, GRH2 and SPRT on a BA graph with 1000 nodes.

Figure 5.2 and Figure 5.3 show the dependence of the stretch and the average path

stretch values with respect to the number of network nodes in BA topologies for the three
schemes. Table 5.7 shows the mean and 95% CI of the stretch. Note that in all cases the CI

remains below 15% of the mean, i.e., the reliability of the computed stretch is very high.
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The resulting stretch is well below the theoretical upper bound of logy(n) C O (log(n)),
while it also scales with the size of the network. In addition, we can see in Figure 5.4
that the 90% of the routes have stretch < 1.5 and over the 98% of them have an stretch
less than 2, in all the evaluated network sizes. Again, our routing scheme has a better

performance than the other two schemes in almost all the network sizes.

GRH2 WM SPRT

Vertices | mean | CI (+/-) | mean | CI (+/-) | mean | CI (+/-)

25.0 2.0 0.23 1.5 0.20 4.0 0.22

50.0 3.0 0.33 3.0 0.26 6.0 0.59

75.0 2.5 0.25 2.5 0.28 5.0 0.38

100.0 3.0 0.23 3.5 0.37 6.0 0.44

250.0 3.5 0.36 3.0 0.27 7.0 0.70

500.0 4.0 0.36 4.0 0.37 8.0 0.85

750.0 4.5 0.26 3.5 0.29 8.0 0.86
1000.0 4.0 0.49 4.0 0.38 8.0 0.99

Table 5.7: Mean and 95% CI of stretch in the BA topologies.
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Vertex label size and RT size

61

We have also analyzed the dependence of both the vertex label size and RT with respect

to the number of network nodes in BA graphs for our WM scheme. In Figure 5.5 we

show the maximum length (in bits) of the vertex labels obtained in the simulations

compared with the theoretical upper bound. Note that Algorithm 1 produces labels of size
O(D(Ty)-log(Ap)) by Theorem 4.2. In fact, the exact value of the vertex label size can be

computed by td(Ty) - log(An ), where td(Ty) is the tree depth of the computed spanning

tree. The results show that the experimental values remain well below the theoretical

ones in all the range of number of network nodes. Moreover our WM scheme achieves
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a succinct representation of labels since log3(n) C O (log*(n)), i.e., the label vertex size
grows poly-logarithmically in n. In addition, we show in Figure 5.6 that the RT grows
sub-linearly in n (recall that a RT in a Shortest Path (SP) scheme grows linearly in n),

while it remains below the theoretical upper bounds.
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Figure 5.5: Theoretical upper bound vs experimental vertex label size on BA graphs.
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5.1.4 Results in HK-based topologies
Stretch

In Figure 5.7 we show that the resulting CDF of the stretch for our WM scheme has a better

performance than the other two evaluated schemes on a HK graph with 1000 nodes. The
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number of routes with stretch 1 is over the 70% in our scheme, which improves over the
results of the other ones, and over the 91% of the routes have stretch < 1.25. In fact,
more than 99% of the computed routes have a stretch at most 2 in our scheme. The lowest
stretch 3.5 was obtained by WM, while GRH2 and SPRT reached a stretch of 4.5 and 8,

respectively.
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Figure 5.7: Stretch CDF for WM, GRH2 and SPRT on a HK graph with 1000 nodes.

Figure 5.8 and Figure 5.9 show the dependence of the stretch and the average path
stretch values with respect to the number of network nodes in HK topologies for the three
schemes. Table 5.8 shows that the 95% CI of the stretch remains below 15% of the
mean in all cases, which ensures a high reliability of the computed stretch in this model
topology. In both cases, the stretch and the average path stretch values are the lowest
ones in WM. Compared with the theoretical upper bound, our scheme remains below it.
In addition, we see that both values tend to be constant (or grow very slowly) when the
number of vertices is incremented. In Figure 5.10 we show that the 90% of the routes
obtained by our scheme in all the evaluated topologies have stretch < 1.3 and over the
99% is less than 2.
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GRH2 WM SPRT
Vertices | mean | CI (+/-) | mean | CI (+/-) | mean | CI (+/-)
25.0 2.00 0.29 2.50 0.36 5.00 0.50
50.0 2.50 0.38 2.50 0.20 6.00 0.40
75.0 3.50 0.23 3.50 0.28 7.00 0.31
100.0 3.50 0.26 3.50 0.19 7.00 0.89
250.0 3.50 0.23 3.50 0.24 7.00 0.81
500.0 5.00 0.31 4.00 0.35 10.00 | 0.93
750.0 4.00 0.36 3.50 0.24 8.00 0.84
1000.0 | 4.50 0.21 3.50 0.24 8.00 0.94

Table 5.8: Mean and 95% CI of stretch in the HK topologies.
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Vertex label size and RT size

In Figure 5.11 we show the maximum length (in bits) of the vertex labels obtained by
our WM scheme in the simulations compared with the theoretical upper bound, when the
number of network nodes in the HK topologies is increased. The results show that the
experimental values remain well below the theoretical ones in all the range of number of
network nodes. Again, our WM scheme achieves a succinct representation of labels since
log3(n) C O (log*(n)). In Figure 5.12 we show that the RT grows sub-linearly in n, while
it remains below the theoretical upper bounds.
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5.1.5 Results in IR-level topologies
Stretch

In Figure 5.13 we show the CDF of the resulting stretch for our WM scheme and for GRH2
and SPRT schemes running on the IR level topology of the Internet AS 3257. As in the case
of GRH2, the routes chosen by our WM have low stretch compared to SPRT. The number
of routes with stretch 1 is the 82% in our scheme, over the 95% of the routes have stretch
< 1.25 and more than the 99% of them have an stretch < 2. In addition, the stretch of our
proposal is only 3.5 as for GRH2, while SPRT reaches a stretch of 7.
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In Figure 5.14 we compare the CDF of the resulting stretch for our WM scheme in the
topologies shown in Table 5.6. The 95% of the computed routes have a stretch < 1.7,
and more than the 99% of them have an stretch < 2, in all the evaluated topologies.
Finally, Table 5.6 presents the experimental value of the stretch, which remains below the
theoretical upper bound of our scheme in scale-free networks.
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Figure 5.13: Stretch CDF for WM, GRH2 and SPRT on the AS 3257 (at IR-level topology).
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Figure 5.14: Stretch CDF for WM on several ASs (at IR-level topology).

In Table 5.9 we show the stretch with respect to the number of nodes in the IR
level topologies for our scheme. The resulting stretch of our scheme WM is below the
theoretical upper bound of log,(n) C O (log(n)), in all the evaluated topologies.
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AS
Stretch
3967 | 3257 | 1755 | 6461
Maximum | 6,50 | 3,50 | 4,50 | 4,00
Experimental
Average 1,18 | 1,04 1,15 1,10
Theoretical 9,90 | 10,26 | 10,53 | 11,41

Table 5.9: Theoretical vs experimental stretch in the evaluated IR level topologies.

Vertex label size RT size

In Table 5.10 we show the resulting vertex label size in the evaluated IR level topologies.
Similarly to the synthetic topologies, the resulting vertex label of our scheme on
real-world Internet topologies is succinct and it remains below theoretical upper bound.
In addition, we show in Figure 5.11 that the RT grows sub-linearly in n, while it remains
very close to the theoretical upper bounds. Therefore, these results together with the low

stretch of our scheme prove that it can be seen as a CR scheme for Internet topologies.

Vertex Label Size
AS Experimental | Theoretical
td(H) -loga(Aw) | logs(n)
1755 63 99
3257 72 106
3967 87 111
6461 96 131

Table 5.10: Experimental vs theoretical maximum vertex label size in the evaluated IR
level topologies.

Experimental Theoretical Shortest Path
AS Ap-td(H)-loga(An) | 2-n'/?-logl(n) | n-log(n)
1755 2268 6126 9477
3257 6480 7414 12544
3967 8787 8541 15587
6461 15552 13665 31034

Table 5.11: Theoretical vs experimental vs Shortest Path RT size in the evaluated IR level
topologies.
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5.2 Evaluation of the C-GGR scheme for Cayley Graphs
topologies

Section 4.4 showed that any network with underlying CG can use Algorithm 1 to perform a
GGR scheme with shortest path guarantee. However, the required space for the CRS or any
structure to compute the distance between vertices depends on the topological properties
of the graph itself. This section evaluates the impact of memory consumption of such

structures in some well-known families of CG.

5.2.1 Topologies

Among the many existing models for CGs (e.g., [6, 132-134]), we have selected the
following six: Hypercube, Butterfly, Transposition, Bubble-Sort, Star and Pancake.

e The Hypercube graph H (k) is the graph with vertex set V(I') = {xjxp...x; : x €
{0,1}}. Two vertices (ajas...a;) and (b1b...by) are adjacent if and only if a; = b;
for all but one i, 1 <i < k. This graph is the CG on the group Z,% with generator set
S =1{(0,...,0,5;,0,...,0) : s5; = 1,1 < i < k}. It has 2¥ vertices and both its diameter

and degree are equal to k.

e The Butterfly graph BF (k) is the CG with vertex set V(I') = Z x Z7. Any vertex
(i,x) € V(I'), where x = (x1xp...x¢) and 1 < i <k, is connected to the vertices
(i+ 1,x) and (i+1,x(i)) where x(i) denote the string which is derived from x by
replacing x; by 1 —x;. All operations on i are made modulo n. This graph is
isomorphic to the CG on the subgroup of the Symmetric Group Sym,; generated
by S = {(123...2k)?,(123...2k)?(12)}. It is a 4-regular graph of n-2* vertices and
diameter |3(k)/2].

e The Transposition graph 7 P(k) on Sym, has generation set S = {(i, j) € Symy, 1 <
i < j <k}, where (i, j) transposes the ith and jth elements of a permutation by right
multiplication. This graph is a bipartite (g) -regular graph of order k! and diameter
k—1.

e The Bubble-Sort graph BS(k) on Symy is generated by the set of transpositions
S={(i,i+1) € Sym,1 <i<n}, where (i,i + 1) interchanges the ith and (i + 1)th
elements of a permutation when multiplied on the right. The order of this graph is

k!. It is also a bipartite (k — 1)-regular and its diameter is (]5)

e The Star graph ST (k) is the Cayley Graph on Sym; with the generating set of
transpositions S = {(1,i) € Symy, 1 <i <k}, where (1,i) interchanges the first and
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ith elements of a permutation by right multiplication. This graph has k! vertices, it
is a bipartite (k — 1)-regular with diameter [3(k—1)/2].

e The Pancake graph P(k) on Sym; is generated by the set S = {r; € Symy,2 <i <k}
for all prefix-reversal r; that reverses the order of any sub-string [1,i], 2 <i <k
of a permutation 7 by right multiplication. In other words, [} ... Ty ... W] 1
= [m...mmy1...m). Itis a (k— 1)-regular graph with k! vertices and satisfies
17k/16 < Diameter < (5k+35)/3.

Note that for all cases, the number of vertices of the graphs depends on the value of
k. So, for each model, we have generated six instances of graphs with different number
of vertices for our analysis. For comparison purposes, the generated graphs have similar
number of nodes in every of the six different instances. Therefore, there are six instances
composed by one graph from each graph family. The values for £ and the number of

vertices for each one them in each family are presented in Table 5.12.

Cayley Graph Instance | k | Number of Vertices
1 6 64
2 9 512
3 10 1024
H (k)
4 12 4096
5 16 65536
6 18 262144
1 4 64
2 6 384
3 7 896
BF (k)

4 9 4608
5 12 49152
6 14 229376
1 4 24
2 5 120
3 6 720

TP(k),BS(k),ST (k),P(k) 4 ; 5040
5 8 40320
6 9 362880

Table 5.12: The value of n and the resulting number of vertices for H(k), BF (k), TP(k),
BS(k), ST (k) and P(k).



CHAPTER 5. EXPERIMENTAL EVALUATION THROUGH SIMULATION 71

5.2.2 Measured parameters and metrics

In addition to the CRS, we have also evaluated experimentally the required space of the
structures presented in sub-section 2.3.6, which can be used to compute distances in the

word-metric of a CG. These structures are the following:
e CRS
e CRS+Index Automaton (IA)
e Word-Differences Automaton (WD)
e General-Multiplier Automaton (GM)

To compare the space requirements of the mentioned structures with respect to a RT
generated by a SP Routing Scheme, it is necessary to define the size of an Equivalent
Routing Table (ERT) for those structures. Since all structures (except CRS) are Finite State
Automata (FSA), they can be stored as graphs. Therefore we consider for each FSA, the
required space for its ERT is bounded by O(¢), where # is the number of states of such FSA.
In general, for a network of size |G| = |V(I')|, the space complexity is O(z - |V(I')|). In
the case of CRS, we also define its ERT as O(¢), where ¢ is the number of equations of the
CRS.

We compare the ERTs size of our WM scheme with the RT size of a general-purpose
shortest-path routing scheme for CGs presented in [116]. The space complexity of this
algorithm is bounded by O(|V(I')|?). Based on it, we define the metric Reducing Table
Ratio (RTR) as RTR = g(t'W(F)D — o)

(IvmP) — o(vD)))
structures. If cp > 1, it indicates that the ERT consumes equal or more space than the one

to evaluate the efficiency of the implemented

generated by the scheme used for comparison. Otherwise, the evaluated structure is more

space-efficient.

5.2.3 Results

In Figures 5.15 to 5.20 we compare the RTR metric for different structures and different
models (increasing in sizes) in logp-scale. The H(k), BS(k) and TP (k) models present
the best RTR metric. Their RTR have an exponential decrease (tending to zero) in all the
instances of such models. The only exception is the GM structure that has a RTR over 1 in
the first instance of both BS(k) and T P(k) models. On the other hand, BF (k), ST (k) and
P(k) models have a slow decrease in the RTR value. However, after the second instance,
the BF (k) and ST (k) models obtain a RTR less than 1 in all the structures, except the GM
one. In general, the P(k) model has the worst behavior with RTR over 1 in all the structures

with the exception of its WD.
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Among the evaluated structures, the WD has the smallest size. Figure 5.21 shows the
RTR of such structure for each CG model, when the number of vertices increases. In all
the instances, this combination performs better in terms of space requirements compared
with the scheme used for comparison. Note that the BF (k) and ST (k) models obtain a
fast decrease of the RTR with this structure. GM structure will have more states than WD
structure because it is more complex, which is a consequence of the Shortlex Automatic
Structure (SAS) definition.
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We have also analyzed the fast decrease of the RTR metric of H(k), BS(k) and TP (k)
models with respect to the other three CG models. By analyzing their respective SAS (see
[40], Lemma 2.3.2), we saw that the exponential decrease of the size of its structures
is because the k-fellow-traveler property. Figure 5.22 shows the value of k for all the
instances of each family of graphs. For H(k), BS(k) and T P(k) the value of k is constant
in all their instances. It means that their ERT always have an entry, or equivalently an
state in the FSA, for each vertex in the ball around the identity vertex with constant ratio
k. On the contrary, the value of k for the BF (k), ST (k) and P(k) models is not constant
and it depends on the number of nodes. Therefore, the SAS size (and the size of their

intermediate structures) also increases with k.
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Figure 5.22: The k-fellow property of each family of graphs.
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5.3 Summary and conclusions

We have presented and discussed the experimental evaluation through simulation of
our two specialized schemes, the C-GGR scheme for scale-free networks and the C-GGR
scheme for CG topologies.

In the experiments for scale-free graphs we have measured the stretch, the RT size
and the vertex label size. The performance results of the C-GGR schemes for scale-free
graphs on two synthetic networks (the Barabasi-Albert and the Holme-Kim models) and
one real-world network (IR level topologies) have shown that the three metrics remain
well below the theoretical upper bounds. The stretch obtained by our scheme grows very
slow (less than log(n)) and improves over the results obtained by the Greedy Geometric
Routing in H? scheme proposed in [32] and the traditional Shortest Path Routing on
Trees scheme. The vertex label size shows a logarithmic growth while the RT size
grows sub-linearly in the number of nodes of the network. In other words, we have
confirmed experimentally it is an specialized CR scheme for scale free graphs (which
includes Internet-like networks).

In the experiments for CG-based Data Center topologies we have measured the space
complexity (the size of the CRS and other structures) and we have compared it with other
structures that allow the distance computation in CGs models. The WD structure is the one
with less space complexity and its size is smaller than a RT computed by a shortest path
routing scheme for the same model, in all the performed experiments. We have observed
the fast decrease of the size of such structure in several of the CG models, and we have
seen that the exponential decrease is caused by the k-fellow traveler property, which is
an intrinsic topological property of each CG model. We have also shown that for a lower
or constant value of k, the size of the CRS and the SAS (and the size of their intermediate
structures) is very small compared to the RT itself or any RT constructed by a shortest path

routing scheme.



Chapter 6
Conclusions and future work

In this chapter we summarize the main contributions of this work and point out possible

directions for future research.

6.1 Summary and conclusions

This thesis explored the use of the Greedy Geometric Routing (GGR) schemes to solve
the Compact Routing Problem (CRP) in Internet-like networks and several families of
Data Centers (DCs) architectures. Our main objective was to design GGR schemes that
have low time and space complexity, and that achieve routes as close as possible to the
shortest ones (low stretch), suitable for general graphs and also specialized for these two
types of networks. We have detected that the GGR schemes proposed so far experience
one or more of the following problems: 1) they do not guarantee packet delivery, 2) they
produce vertex labels of size linear (or higher) in n, 3) they can not be implemented in a
distributed way, 4) they require a full knowledge of the network topology, or 5) they have
unbounded stretch.

GGR schemes are composed by two procedures, the vertex labeling, through the
embedding of the graph in a metric space, and the packet forwarding based on the
Greedy Forwarding (GF) strategy, which selects the closest neighbor to the destination.
The GF procedure requires a mechanism to determine the distance between vertices in the
metric space of the embedding. In order to design GGR schemes with low time and space
complexity in both procedures and that do not experience the problems mentioned above,
we have proposed a simple and novel embedding of any finite connected graph into a
Word-Metric (WM) space (i.e., a metric space generated by algebraic groups). Then we
have proved that any GGR scheme built on top of this embedding guarantees the packet
delivery (i.e., the embedding is greedy).

We have proposed three GGR schemes by combining word processing in algebraic

77
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groups with graph search algorithms: a GGR scheme that works on any kind of graph,
whose computational complexity depends on the parameters D(7y) and Ay, and two
specialized Compact Greedy Geometric Routing (C-GGR) schemes for Internet-like
networks and several families of DCs architectures, whose computational complexity only

depends on n. Specifically, we have proposed the following three GGR schemes:

e A GGR scheme for any kind of graph, with stretch of O(D(Ty)), O(D(Ty) -
log(Ap)) bits per vertex label, Routing Tables (RTs) of size O(Ay -D(Ty) -log(An))
and routing decisions that take O (A%, - D(Ty)) steps.

e A C-GGR scheme for scale-free graphs (which include many real-world topologies
such as Internet), with stretch of O (log(n)), O(log?(n)) bits per vertex label, RTs of
size O(n'/? -1og?(n)) and routing decisions that take O (1 - log(n)) steps.

e A C-GGR scheme for Cayley Graphs (which are used as a model for Data Center
interconnection networks), with shortest paths, O(log(n) - log(log(n))) bits per
vertex label, routing tables of size O(log?(n) - log(log(n))), and routing decisions
that take O (log(n)) steps.

The main advantage of the GGR scheme for any kind of graph is its simplicity.
However, since this scheme depends on topological parameters, its performance is limited
by the input graph itself. In the worst-case, the complexity of the vertex label and the RT
size 1s similar to the complexity of either the point-to-point or the source routing scheme
with shortest paths, while the stretch grows linearly in . On the other hand, the two C-GGR
schemes solve the limitation of the first scheme by exploiting the topological properties
of several families of networks.

The Internet topology at the level of either Internet Router (IR) or Autonomous
Systems (ASs), can be modelled as a scale-free network (low diameter and power-law
vertex degree distribution), while the family of DCs based on Cayley Graph (CG) has
low diameter and constant degree. In order to exploit such topological properties, we
have shown that the construction of the spanning tree 7y plays a fundamental role in the
complexity and performance of these schemes. We have studied the following issues with

respect to the spanning tree computation:

1. How the selection of the vertex root would affect the structure of the resulting

spanning tree.

2. How the maximum vertex degree would affect the complexity of the label

description and RT size.
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3. How the exploration strategy to create such spanning tree, specifically the diameter
of the resulting spanning tree, would affect the stretch of the resulting routing

scheme.

We have shown that the selection of the root has a minimum impact in the structure of
the computed spanning tree, and that the resulting stretch of the greedy embedding in tree
metrics is almost independent of the degree of such root. Therefore, the main parameter
to be considered for selecting a spanning tree is the tree depth. We have analyzed the time
and space complexity of several spanning tree construction algorithms. We have shown
that the Breadth-First Search (BFS) algorithm maintains the topological properties (degree
and diameter), thus enabling the specialization of the routing schemes, and moreover, it
has low time and space complexity. As a result of combining the topological properties of
Internet-like networks and the family of DCs based on CG, with the BFS algorithm, we have
constructed two GGR schemes built on top of the proposed embedding that are scalable
and distributed. The complexity analysis of both C-GGR schemes have shown that our
scheme do not experience the five problems previously mentioned. However, the cost our
schemes must pay is that the routing decision time grows linearly with respect to n, for
Internet-like networks, and polylog in n for CG-based DCs.

In the experimental evaluation through simulation of our two specialized schemes, the
main goal has been to assess how far the experimental results were from the theoretical
upper bounds and the comparison with other related works. For Internet-like graphs we
have measured the stretch, the RT size and the vertex label size, on two synthetic networks
(the Barabasi-Albert and the Holme-Kim models) and one real-world network (IR level
topologies). We have shown that the three metrics remain well below the theoretical
upper bounds. The stretch obtained by our scheme grows very slow (less than log;(n))
and overcomes the results obtained by the Greedy Geometric Routing in H? [32] and the
traditional Shortest Path Routing on Trees (SPRT) scheme. We have observed that almost
the 70% of the routes computed by our scheme have a stretch 1, and almost the 99%
have a stretch lesser than 2, in all the evaluated topologies. The vertex label size have
shown a logarithmic growth while the RT size grows sub-linearly in n. In other words, our
proposed C-GGR scheme solves the CRP for Internet-like networks.

In the experiments for CG-based DC topologies we have measured the space
complexity (the size of the Confluent Rewriting System (CRS) and other structures) and we
have compared it with other structures that allow the distance computation in CGs models.
The Word-Differences Automaton (WD) structure is the one with less space complexity
and its size is smaller than the size of the RT computed by a shortest path routing scheme
for the same model, in all the performed experiments. We have observed the fast decrease

of the size of such structure with respect to n in several CG models, and we have seen that
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the exponential decrease is caused by the k-fellow traveler property, which is an intrinsic
topological property of each CG model. We have also shown that for a lower or constant
value of k, the size of the CRS and the Shortlex Automatic Structure (SAS) (and the size of
their intermediate structures) is very small compared to the size of the RT itself or any RT
constructed by a shortest path routing scheme. In conclusion, our proposed GGR scheme

guarantees the shortest paths and solves the CRP for any CG-based DC.

6.2 Future work

There are several future research lines in which our research work on GGR schemes in

Word-Metric spaces can be continued in the future:

e Designing GGR schemes on top of the proposed greedy embedding specialized for

other families of graphs.

e Reducing the complexity of the routing decision time by reducing the time
complexity of the distance computation using CRS or other structures that solve the
minimum-length word problem (MWP) more efficiently and with a space complexity

up to the size of the resulting RTs.

e Designing a C-GGR scheme on top of the proposed greedy embedding for any graph
and comparing its performance with other universal Compact Routing (CR) schemes
and C-GGR schemes.

e Analysing the behavior and effects of network dynamics in the proposed schemes

and proposing strategies to mitigate such effects.

e Studying other algebraic groups and their WM spaces such that the properties
of small-world effect and the power-law vertex degree distributions of scale-free

graphs can be exploited more effectively.

e Studying other automatic groups, their topological properties and its automatic
structures in order to design new CG-based DCs with high efficient and scalable

routing schemes.
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