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Abstract 

Geological formations containing sulphates are commonly associated with the development of 

severe expansions when they are involved in tunnel excavation. The intensity of the observed 

expansive behaviour in these materials is greater than in other expansive soils and rocks free 

of sulphates. Swelling in sulphated formations can also occur in the rock mass although no 

tunnel is excavated, and also within fills made of compacted material from excavations in 

sulphated rocks. The functionality and stability of engineering works are affected in the 

majority of the cases. 

The prediction of strains and swelling pressures in sulphated formations is a difficult task. On 

that direction, the Thesis analyses and describes the mechanisms and conditions leading to 

expansions in sulphated rocks through the detailed investigation of three exceptional cases of 

damage induced by expansions involving sulphated formations in Spain.  

Lilla tunnel, the first case-history analysed, was excavated in Tertiary anhydritic claystone. 

Expansions developed led to severe tunnel floor heaving and to very high pressures against 

tunnel lining. The second case, a bridge founded on piles within an anhydritic claystone, Pont 

de Candí bridge, experienced an unexpected and sustained heave of the central pillars as a 

consequence of the development of swelling strains below the deep pile foundations. The 

third case, the compacted access embankments to another bridge, Pallaressos embankments, 

experienced a very significant volumetric expansion. As a result, the bridge was axially 

compressed and damaged. 

Mechanisms leading to swelling in tunnels in sulphated rocks have been described in the 

literature; however, an alternative interpretation is proposed. In the first two cases the 

development of swelling phenomena is explained by the precipitation of gypsum crystals in 

rock discontinuities. The presence of anhydrite plays a central role in the phenomenon 

because its dissolution leads to supersaturation conditions of groundwater in calcium sulphate 

with respect to gypsum, which will result into gypsum precipitation. The process of 

precipitation of gypsum in discontinuities is thought to act as local jacks inducing swelling 

strains. The maximum pressure exerted by crystal growth has been estimated under a 

thermodynamical point of view. 



 

 

Expansions in the third case analysed are a result of massive growth of ettringite and 

thaumasite minerals in embankments reinforced by Portland cement due to sulphate attack to 

cementitious materials. Mineralogical analysis and the simulation of the chemical reactions 

involved in sulphate attack have shown that expansions in this type of embankments would 

proceed for a long time because of the availability of the necessary components for ettringite 

and thaumasite formation. A finite element model of embankment swelling developed has 

shown that great loads can be generated due to swelling against rigid structures restraining the 

expansion in some direction. 

A coupled Hydro Mechanical and Chemical model formulated in a porous media has been 

developed to simulate volumetric expansions explained by gypsum precipitation. The model 

is consistent with field and laboratory observations and describes the kinetics of precipitation 

and dissolution of gypsum and anhydrite, the solute transport and the development of strains 

induced by crystallization. The model has been applied to interpret and simulate the heave 

experienced by Pont de Candí viaduct. Modelling capabilities were checked against the long 

term history of viaduct heave and also, against the foundation response when the vertical load 

from a surface embankment was added to counteract swelling. 



Resumen 

Las formaciones geológicas que contienen sulfatos están asociadas tradicionalmente al 

desarrollo de expansiones severas cuando son atravesadas por túneles. La intensidad del 

comportamiento expansivo observado en estos materiales es mayor que en otras rocas y 

suelos expansivos libres de sulfatos. El hinchamiento asociado a formaciones sulfatadas 

también puede ocurrir en el macizo rocoso aunque no se excave un túnel, y también en 

rellenos construidos con material compactado procedente de excavaciones en rocas sulfatadas. 

En la mayoría de casos la funcionalidad y estabilidad de las obras de ingeniería se ven 

afectadas. 

La predicción de deformaciones y presiones de hinchamiento en formaciones sulfatadas es 

una tarea difícil. En este sentido, la Tesis analiza y describe los mecanismos y las condiciones 

que conducen a expansiones en rocas sulfatadas, a través de la investigación detallada de tres 

casos excepcionales de daño debido a expansiones que involucran formaciones sulfatadas en 

España.  

El túnel de Lilla, el primer caso analizado, se excavó en arcillita anhidrítica. El desarrollo de 

expansiones condujo a un levantamiento severo de la solera y a presiones contra el 

revestimiento muy altas. El segundo caso, un puente cimentado en pilotes en una arcillita 

anhidrítica, el viaducto de Pont de Candí, experimentó un levantamiento inesperado de los 

pilares centrales debido al desarrollo de hinchamientos por debajo de las cimentaciones 

profundas. En el tercer caso, los terraplenes de acceso a otro puente, los terraplenes de 

Pallaressos, experimentaron una expansión volumétrica muy significativa y el puente resultó 

comprimido axialmente y dañado. 

Los mecanismos que conducen al hinchamiento en túneles en rocas sulfatadas se han descrito 

en la literatura; sin embargo, se propone una interpretación alternativa. La precipitación de 

cristales de yeso en discontinuidades de la roca explica el desarrollo de fenómenos de 

expansión en los dos primeros casos. La presencia de anhidrita juega un papel central en el 

fenómeno expansivo porque su disolución conduce a condiciones de sobresaturación del agua 

del macizo en sulfato cálcico respecto el yeso, que resulta en la precipitación de yeso. Se cree 

que el proceso de precipitación de yeso en discontinuidades actúa como gatos locales 



 

 

 

generando deformaciones. La presión máxima ejercida por crecimiento de cristales se ha 

estimado desde un punto de vista termodinámico. 

Las expansiones en el tercer caso son el resultado del crecimiento masivo de los minerales de 

etringita y thaumasita en terraplenes estabilizados con cemento Portland debido al ataque 

sulfático a los materiales cementantes. Ensayos mineralógicos y la simulación de las 

reacciones químicas involucradas en el ataque sulfático han mostrado que las expansiones en 

este tipo de terraplenes continuarían durante un periodo de tiempo largo, debido a la 

disponibilidad de los componentes necesarios para la formación de etringita y thaumasita. Un 

modelo de elementos finitos del hinchamiento del terraplén ha mostrado que estas 

expansiones pueden generar presiones muy altas contra estructuras rígidas. 

Se ha desarrollado un modelo acoplado Hidro-Mecánico y Químico formulado en medio 

poroso para simular expansiones volumétricas explicadas por la precipitación de yeso. El 

modelo es consistente con observaciones de campo y laboratorio y describe la cinética de la 

precipitación y disolución, el transporte de soluto y el desarrollo de deformaciones inducidas 

por cristalización. El modelo se ha aplicado para interpretar y simular el levantamiento 

experimentado por el viaducto. La capacidad de modelación se ha verificado frente a las 

medidas de levantamiento del viaducto en el tiempo y también, frente a la respuesta de las 

cimentaciones a la construcción de un terraplén en superficie para contrarrestar el 

hinchamiento. 
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Notation 

a : activity 
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b : parameter defining i  

b : vector of body forces 

uc : undrained strength 

D : diffusion coefficient 
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sE : elastic modulus of steel 

e : void ratio 

ckf : characteristic compressive cylinder strength of concrete at 28 days 

wf : sink or source of water 

sG : specific gravity 

w
lj : total mass flux of water 

K : intrinsic permeability 

0K : at rest pressure coefficient 

L : length 

anhm : precipitated mass of anhydrite 

gypm : precipitated mass of gypsum 

aMV : molar volume of anhydrite 

gMV : molar volumes of gypsum  

PI: plasticity index 

p : pressure applied on the crystals 
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,c bp : pressure experience by the crystal at zone b 

dp : pressure exerted by a crystal against pore walls, reaction pressure against crystal 
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lp : liquid pressure 

sp : swelling pressure 
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gR : ideal gas constant 

rS : degree of saturation 

T : temperature 

T : absolute temperature (in equations) 

t : time 

u : solid displacements 
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Lw : liquid limit 

pw : plastic limit 
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cl : interfacial energy at the crystal-solution interface 
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 : kinetic constant 
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Introduction 

 

 

1.1 Interest of the Thesis 

Severe expansive phenomena often occur in excavations performed in sulphated claystone 

just after the end of the excavation. These phenomena cause great displacements at non 

confined surfaces; or important swelling pressures against structural elements. Two 

interesting characteristics of these problematic phenomena are the sudden occurrence and 

their uncertain evolution in time, without an apparent stabilisation of swelling pressures and 

deformations. Therefore, the expansion occurring in this type of rocks is a phenomenon 

capable of severely affect the stability and functionality of excavations. 

A rock mass can swell due to two reasons:  

 Because it contains intrinsically expansive minerals, like montmorillonite or chlorite, 

and, besides, if one of the following additional circumstance takes place: 

 The interstitial water in the rock is under suction, which means, in stress terms 

that its pressure is negative. The suction decreases in the presence of free water 

(that can have different origins), and that facilitates the hydration of the expansive 

minerals. 



Introduction 

2 

 

 The rock was cemented under stress. Or, as Bjerrum (1967) would say, the rock 

acquires a “frozen” energy by deformation (“strain energy locked in”). The stress 

changes induced by the excavation break the bonds of the matrix rock and release 

its expansive potential, which in general also requires the presence of water to 

allow the hydration of clay minerals. 

 Because it contains soluble salts capable of being dissolved in water and precipitate as 

crystals in joints or voids in the rock. The sulphated rocks are, in general, affected by 

this mechanism; therefore expansion is related to the precipitation of gypsum crystals, 

or ettringite and thaumasite crystals. Apparently the most dangerous and extreme cases 

of swelling occur in sulphated clayey formations, and the Thesis dedicates the attention 

to them. 

Heave and structural damage in natural formations containing sulphate species have often 

been associated with tunnelling when gypsum (CaSO4·2H2O) and anhydrite (CaSO4) are 

present in the rock. Triassic claystone formations containing sulphates in Central Europe 

(Baden-Wütemberg, in Germany; Jura Mountains, in Switzerland) have been crossed by 

tunnels for decades. A significant proportion has experienced severe heave problems as a 

result of expansions within the material below tunnel floor, which have been described by 

several authors (Kovári et al., 1988; Wittke 1990, 2006; Anagnostou 1993, 2007; Madsen et 

al., 1995; Wittke-Gattermann & Wittke 2004; Anagnostou et al., 2010). 

In Spain there are three well-known tunnels affected by extreme sulphate-related heave. They 

belong to the high-speed railway from Madrid to Barcelona: Camp Magré, Lilla and Puig 

Cabrer. They were excavated through Tertiary claystone formations containing gypsum and 

anhydrite. Lilla tunnel is the one that experienced the most damaging expansive behaviour. At 

the end of summer of 2002, an increasing heave of the floor of the tunnel was detected during 

the construction of Lilla tunnel, just a few months after the end of the excavation, and this led 

rapidly to the failure of the concrete flat slab (Figure 1.1). The heave rates in Lilla were very 

high in some points (600mm/year!). A total of 1500 m out of the total tunnel length (2000 m) 

was severely affected by a rapid development of heave. The distribution of the intensity of 

swelling was not homogeneous along the total length of the tunnel. Some stretches 

experienced extreme expansions while in others heave was barely measured. The exceptional 

ground expansions in Lilla led to a total reconstruction of the tunnel in a highly reinforced 
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circular structure made up with a high characteristic strength concrete, with a cost that tripled 

the initial prevision of the project. Later, high swelling pressures against the lining of Lilla 

tunnel, which exceed 6 MPa at some points, have been measured.  

(a) (b) (c) 

Figure 1.1. Heave and failure of the tunnel flat-slab at chainage 411+880: (a) March 2003; (b) May 

2003; (c) September 2003 

A case of development of swelling in a deep sulphated formation not related with tunnelling 

has been detected recently in Spain. This is the case of the significant heave of Pont de Candí 

bridge for the high-speed railway link Madrid-Barcelona, located next to Lilla tunnel, in the 

province of Tarragona. The heave mainly concerned the two central pillars, which reach a 

height of 56 m over foundations. The central pillars of the bridge were founded on a hard 

anhydritic Tertiary claystone of Tertiary age by means of large diameter (1.65 m) 20 m long 

bored piles. As it will be described in detail later, the measured sustained heave rates ranging 

from 5 to 10 mm/month were found to be a result of the development of expansions in depth, 

within a sulphated formation located below the tips of the piles. 

Some similarities with the heave affecting Pont de Candí bridge can be found in the problems 

reported in relation to two European towns. Lately, an area of the French town of Lochwiller 

in Alsace and the historic town of Staufen in Germany are experiencing damaging heave 

apparently related with the development of swelling within an anhydritic formation.  

The origin of the swelling phenomena in sulphated formations inducing severe heave in 

tunnels in Central Europe above mentioned, has often been described as a transformation of 

anhydrite (CaSO4) into gypsum (CaSO4  2H2O). At a molecular level the two added water 

molecules imply a theoretical increase of 62% in volume, which is then made responsible for 

the observed heave (Sahores, 1962; Einfalt & Götz, 1976; Einstein, 1979, 1996; Wittke & 
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Pierau, 1979; Serrano et al., 1981; Zanbak & Arthur, 1986; Wittke, 1990 and 2006; Madsen & 

Nüesch, 1991; Kolymbas, 2005).  

However, this explanation has been challenged by some authors arguing that the 

orthorhombic crystals of anhydrite cannot be distorted to become the monoclinic crystals of 

gypsum (Holliday, 1970; Ortí, 1977). Other authors (Pina et. al., 2000; Krause, 1976; 

Pimentel, 2003) reject also the direct transformation of anhydrite to gypsum as the basic 

expansion mechanism. On the other hand, the analysis of field and laboratory observations 

indicates that the development of expansions is related with the precipitation of gypsum 

crystals. In fact, evaporation processes at the excavation boundaries of Lilla tunnel were the 

explanation initially given to the development of swelling in the expanding active layer below 

the tunnel floor, and hence the mechanism leading to swelling behaviour in tunnels. 

Evaporation of sulphated water produces supersaturated conditions in calcium sulphate. 

However, this interpretation doesn’t fit the swelling deformations found at depth below the 

piles of Pont de Candí bridge. No evaporation process is possible to occur at those depths.  In 

this Thesis a different interpretation is suggested for the swelling phenomenon. 

Expansions involving calcium sulphated materials can also be found when sulphate attack to 

cement or lime treated sulphated clay material occurs. This process has been found to be 

capable of inducing high swelling pressures against rigid structures and important heave when 

the attack affects massively to layers of certain thickness. In those cases, precipitation of 

ettringite and thaumasite are involved. An example is the phenomenal swelling of two railway 

embankments located in Spain, Pallaressos embankments. The scale of the reaction of 

sulphate attack in these embankments is considered to be quite unique. 

In a natural way, a civil engineering work involves the performance of cuts and fills. 

Commonly the material used to build the embankments and fills comes from previously 

excavated nearby cuts. Then, embankments consisting on compacted marls containing 

gypsum will be probably built along civil engineering works involving sulphated rocks. 

Therefore, the danger of development of sulphate attack to those embankments and fills, if 

they are treated with lime or cement, has to be taken into account during their design and 

construction. In addition, transition wedges close to a more rigid structure placed next to an 

embankment is a common practice. Frequently, cement is used in the design of the transition 
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wedges, this situation may result in sulphate attacks. These are the reasons explaining the 

interest of studying this phenomenon. 

Calcium sulphated rock formations are common in extensive regions of Spain in Tertiary 

formations in sedimentary basins and in Triassic formations. They are found in outcrops 

covering the 7.2% of the surface of Spain. That is a large area. However, sulphated formations 

are present at depth in a significantly larger extension. Therefore, sulphated formations can be 

apparently quite often involved in underground excavations and foundations, and therefore a 

certain evidence of a high potential risk of development of sulphate-related swelling in 

possible future excavations exists in Spain. However, experience indicates that not all tunnels 

and bridge foundations in anhydritic or gypsiferous rocks develop expansive phenomena. This 

is also the case of embankments or compacted layers performed with the material excavated 

from cuts in anhydritic gypsiferous formations. The reasons for differences in behaviour are 

not clear. Identifying the conditions leading to a critical swelling problem is not an easy task. 

The main characteristics of the expanding phenomenon are well known from the reported 

cases of tunnels affected by expansions. However, the knowledge of the consequences and 

phenomenology of the expansive behaviour of sulphated rocks and soils doesn’t correspond 

with the insufficient knowledge about the basic mechanisms that generate and control it.  

In view of the high presence of sulphated formations in Spain, having the capability for 

predicting the swelling development and estimating the intensity of the expansions is 

fundamental for the proper design of tunnels, excavations and embankments or fills in 

sulphated materials, capable of coping with the requirements of functionality and safety of the 

structure but also capable of resisting the swelling exerted against structures. In addition, 

knowing the maximum pressure that could be exerted by expansions related to precipitation of 

crystals is also necessary because it would be used during the design or repair of the tunnel 

cross-section shape and lining characteristics. 

The design criteria adopted in Lilla tunnel for the final solution (to resist high swelling 

pressures up to 4.5 MPa for the most critical distribution of applied pressure against the 

external surface of the tube) have been adopted as a reference in the recent design of other 

tunnels simply because they will cross rock formations containing gypsum and anhydrite. A 

reference is made here to Oliola tunnel in the Segarra-Garrigues canal; Albertia and 
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Montezkue tunnels in Álava, in the high-speed railway Madrid-Valladolid-Norte and Sorbes 

tunnel in the railway Alicante to Almería. 

Questions often raised when an underground work has to be built in sulphated geological 

formations are typically: 

 Will swelling phenomena occur? 

 Will the expanding phenomena be intense? 

 Which is the convenient excavation and building methodology to avoid or mitigate the 

development of swelling? 

 Which values of maximum swelling pressure against the lining have to be considered in 

the design of the resisting cross sections in tunnels? 

All these questions must be answered in order to build safety infrastructures and to avoid 

expensive overdesigned structures. However, it is not possible to answer those questions if the 

fundamental mechanisms that lead to expansions are not well known. The economic impact of 

these questions is very high. 

The knowledge on the mechanisms involved during the development of swelling and the 

conditions in the rock mass leading to the triggering of the phenomenon will probably allow 

defining practical criteria valuable for the identification of the swelling potential from field 

investigation, for the design of tunnels and foundations and for the definition of construction 

procedures to minimize or avoid the development of expansions. 

A better knowledge of the fundamental mechanisms of crystal growth is also required to 

develop computational methods useful for predicting the occurrence of sulphate-related 

swelling phenomena, quantifying its intensity and selecting design and construction processes 

to avoid or resist swelling deformations and pressures. 

 

1.2 Objectives of the Thesis  

The analysis of the existing knowledge on the phenomenology of expansions in anhydritic 

gypsiferous claystone prior to the Thesis allowed extracting that: 

 The phenomenon of expansion is well described in tunnels built through these materials 

due to the reported cases in the literature form Central Europe, and also thanks to the 
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wide instrumentation installed in Lilla tunnel and the characterization performed on the 

materials crossed by the excavation in Lilla. 

 There is a certain indication that precipitation of crystals explains the swelling in 

sulphated rocks. 

However, a number of gaps related to the phenomenology of expansions in sulphated 

claystones, which still haven’t being clarified, exist, as mentioned before, and demonstrate 

that it is worthwhile to investigate further this subject. 

 

1.2.1 Gaps found in the available knowledge 

a) Gaps in practice 

Although the swelling phenomenon in Lilla tunnel could be described well thanks to 

field observations, the phenomenon couldn’t be predicted. No methodology existed for 

predicting the occurrence of swelling, with the extreme severity observed in Lilla, 

from the results of a usual field reconnaissance programme (and from the associated 

laboratory tests). 

A relationship between the measured extreme expansive phenomena at floor level and 

the large swelling pressures against the lining in Lilla, and the information collected 

during the field investigation prior to the excavation could not be established.  

b) Gaps at theoretical level 

Predicting and quantifying tools for swelling didn’t exist; therefore the development 

of a general swelling model was needed. 

The modelling of swelling phenomena requires the formulation of each of the 

mechanisms involved in the development of expansions and the conditions leading to 

precipitation of crystals.  

 

1.2.2 Detailed objectives of the Thesis 

The previous comments guided the definition of the objectives of the Thesis. The main 

objective of the Thesis is to develop methodologies for the prediction of the occurrence of 

swelling in the excavations when sulphated rock masses are involved. These methodologies 
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should be able to be applied by designers and contractors dealing with excavations in these 

materials. 

The Thesis will pursue the following specific objectives to achieve the main goal: 

 Identify precisely the mechanisms that take place during the development of swelling 

phenomena related to sulphate formations. 

 Identify the conditions triggering the development of expansions. 

 Estimate the maximum pressure that could be exerted by expansions induced by 

precipitation of crystals. 

 Develop practical criteria for the prediction of both the development of swelling 

behaviour and the estimation of the intensity of expansions from a field geotechnical 

reconnaissance. 

 Develop a general theoretical model for simulating precipitation of crystals and the 

resulting swelling deformations and pressures consistent with field and experimental 

observations. 

 Develop a general computational tool which could be used at design as well as at 

construction and operation stages of a given infrastructure involving sulphated rocks.  

 Validate the model developed against the real case of heave of Pont de Candí Bridge. 

 Understand the phenomenon of massive sulphate attack to large embankments and its 

effect on structures such as bridges. 

 

1.3 Methodology applied in the Thesis 

The search for criteria to estimate swelling risk and the identification of the mechanisms 

involved in expansions, related with the presence of gypsum and anhydrite in the rock mass, 

has been conducted along two ideas: the collection of case records showing the presence or 

absence of swelling phenomena in tunnels in sulphated formations in Central Europe and in 

Spain; and the detailed field investigation of the recent experiences of swelling problems in 

Lilla tunnel and heave of the Pont de Candí Bridge. Investigations in Lilla and Pont de Candí 

have led to a modification of some commonly accepted swelling mechanisms in sulphate 

rocks. Alternative processes have been observed in the field and in the laboratory. It was 
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thought that understanding their origin may result in better identification criteria, improved 

designs and in more efficient remedial actions. 

The first case, Lilla tunnel, was investigated in detail in research works carried out at the UPC 

previous to the present Thesis. These works have consisted in a Doctoral Thesis performed by 

Iván Berdugo ( 2007), and three Geological Engineering final degree Thesis performed by 

Daniel Tarragó (2006), Álex Plaza (2008) and Amadeu Deu (2008). In the present Thesis the 

outcomes of these works have been analysed and reviewed. 

Lilla tunnel offered a good opportunity to solve the uncertainty in the development of 

swelling when anhydrite and gypsum are present. This is a case with excellent data in the 

tunnel itself but the few information on the rock mass that could be related to the 

heterogeneous occurrence and intensity of swelling found along the tunnel was limited. A 

new field investigation has been performed to give some insight, in particular, to the different 

behaviour observed along the tunnel, but also to the observed fact that the presence of gypsum 

and anhydrite in the rock mass does not automatically lead to the development of swelling 

phenomena in tunnelling. The new field investigation consisted in the detailed analysis of two 

boreholes drilled from the natural ground surface at different locations along Lilla tunnel. One 

borehole was placed at a position where high expansions were detected and the other one was 

drilled in a stretch where no significant swelling was observed. 

In addition, the behaviour of the tests sections and the performance of the final reinforced 

circular cross-section in Lilla tunnel, including recent measurements, have been analysed to 

obtain practical criterion for the design of cross-sections in tunnels with a risk of development 

of expansions. The fracturing and mineralogy along the length of the tunnel and the rainfall in 

the area of Lilla tunnel have been taken into account in the analysis. 

The second case investigated, the heave of Pont de Candí bridge, was detected recently, some 

years after the case of Lilla tunnel. The engineers in charge of the viaduct provided the 

opportunity of defining a wide investigation programme during this Thesis to study and 

analyse the expansions resulting in the heave being experienced by the bridge. The initial 

research campaign performed in the area of the bridge was widened in several occasions and 

the new results were interpreted. 

The observed development of swelling deformations in depth in Pont de Candí bridge, 

challenged the initial explanation for the swelling phenomena related to crystal precipitation 
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in Lilla. It became clear that evaporation of sulphated water couldn’t occur at the deep active 

expanding layer in Pont de Candí bridge. The field investigations in Pont de Candí provided 

remarkable information on the development of swelling, and resulted in an alternative 

interpretation for the mechanism leading to expansions. 

A revision of the published work on the precipitation and dissolution of gypsum and anhydrite 

crystals has been performed. It was concluded that precipitation of gypsum is possible without 

evaporation when anhydrite is present. Saturation conditions of sulphated groundwater have 

been also verified by means of simulations of the chemical composition of natural 

groundwater.  

The development of swelling pressures due to crystal growth has been studied under a 

thermodynamic point of view and provided the estimation of upper boundary values of 

swelling pressure.  

Once the mechanisms involved in expansions were identified, they were formulated and 

included in the general Thermo-Hydro-Mechanical (THM) framework offered by the 

available code of the program CODE_BRIGHT (DIT-UPC, 2002) for general THM coupled 

analysis in porous media. In addition, some modifications of the balance equations had to be 

done. The literature review performed on crystal growth and the processes of dissolution and 

precipitation of crystals allowed formulating kinetic equations for describing the precipitation 

and dissolution of anhydrite and gypsum crystals, taking into account the pressure acting on 

crystals. 

The instrumentation installed in the area of Pont de Candí provided the evolution of heave and 

deep expansions over time necessary for the simulation of heave of Pont de Candí bridge. The 

boundary conditions in the rock mass of Pont de Candí bridge have been simulated, as well as 

the development of expansions. 

The real cases of cement stabilized railway track bases and Pallaressos embankments have 

been analysed to investigate the development of swelling behaviour due to growth of 

ettringite and thaumasite crystals in artificial soil affected by high sulphate content. A field 

and laboratory investigation campaign was designed. The laboratory campaign proposed has 

consisted not only on standard tests. Original procedures for sample testing have been defined 

in view of the heterogeneity of the material in the cases studied. A literature review on the 

chemical description of sulphate attack processes and on reported real cases affected by 
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sulphate attack has been performed. The swelling pressure exerted by the massive expansion 

of the embankment has been estimated by modelling the heave measured at the surface of the 

embankments. The chemical interaction at the interface between the cement and the 

compacted soil has been studied through geochemical calculations. 

 

1.4 Content and organization of the Thesis  

The content of the Thesis is organised in nine Chapters as follows: 

Chapter 1 constitutes the introductory Chapter of the Thesis and Chapter 9 is the closing one. 

The main work carried out along the Thesis research is described in Chapters 2 through 8, and 

partial conclusions derived from the work described in each particular Chapter are presented 

at the end of them. 

Chapter 1 describes the motivation and interest of the Thesis. Then as an introduction for the 

objectives of the Thesis, the gaps in knowledge related to expansions in sulphated materials 

are described. The content and organization of the Thesis in Chapters is detailed and the 

relevant publications derived from the research work performed during the Thesis are 

presented. 

Chapter 2 describes the presence and the main characteristics of sulphated rocks in Central 

Europe where several tunnels affected by expansions have been reported in the literature. A 

summary of the expansive behaviour observed in Central Europe is presented. The Chapter 

includes a review of the calcium formations present in Spain to highlight the wide presence of 

sulphated rocks existing in Spain and therefore the potential risk of development of swelling 

affecting infrastructures. The Chapter ends with a description of the current alternatives to 

design tunnel lining in expansive sulphated rocks. 

Chapter 3 describes the extreme expansive phenomena occurred in Lilla tunnel. The 

geological framework, design and construction of the tunnel is described, as well as the 

chronology, the characteristics of the expansions observed and the ground properties found 

during field and laboratory investigations. Some observations made in cores, relevant for the 

understanding of the mechanisms involved in expansions are also described. Then, the 

performance of different cross-sections built, including testing sections and the final 
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reinforced circular cross-section is analysed from the measurements obtained by 

instrumentation. 

Chapter 4 concentrates on the case of heave of Pont de Candí bridge. The design of the 

bridge; the geological background of the location of Pont de Candí and the geotechnical 

properties obtained from initial geotechnical field reconnaissance at the bridge design stage 

and from the new investigations defined once the heave was detected, are described. The field 

investigation designed to give insight in the development of heave is described and the results 

are analysed. In-situ tests results and observations found in recovered cores, that provided an 

explanation of the expansions occurring at depth, are highlighted in the Chapter. The remedial 

measures performed to counteract the heave and the response of the expanding deep 

phenomena are described at the end of the Chapter. 

The description of swelling mechanisms due to gypsum crystal growth and the analysis of the 

factors triggering expansions in sulphated materials are collected in Chapter 5. A series of 

situations and characteristics of the rock mass that may eventually result in, or trigger, severe 

expansive phenomena are identified from a review done on a number of tunnels crossing 

gypsum formations in Spain and Central Europe. Also, a detailed analysis of the cores 

recovered from two boreholes drilled close to the position of Lilla tunnel at two locations 

experiencing either high or no expansions provided additional information. The explanation 

of swelling phenomena given by several authors that report expansions in tunnels in Central 

Europe is reviewed, and a different interpretation of the mechanisms dealing to expansions is 

suggested in this Chapter. Plausible scenarios for heave and swelling in Pont de Candí bridge 

and Lilla tunnel are set out. 

Chapter 6 describes the studies performed to evaluate theoretically the pressure induced by 

crystal growth. Relevant aspects are the role of interfacial pressure and pore structure on 

crystal growth and soil expansion. 

Chapter 7 describes the model developed capable of simulating gypsum crystal growth 

processes and swelling behaviour. The formulation is detailed in Appendices included at the 

end of the Chapter. The method is applied to the modelling of Pont de Candí bridge heave and 

expansions at depth. A sensitivity analysis on the model parameters is included in the 

Chapter. 
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Chapter 8 concerns the swelling mechanism in sulphated materials induced by ettringite and 

thaumasite crystals. The Chapter concentrates on the analysis of massive sulphate attack to 

cement treated railway embankments and track bases made of compacted clay. A review of 

the phenomena of sulphate attack reported in the literature is summarized. The design of the 

railway embankments and the initial observed development of damage are described. The 

research work, and field and laboratory investigations defined to study the problem are 

presented and the results obtained are analysed. The geochemical calculations performed 

allow a deeper understanding of the sulphate attack reactions in the treated clay materials. The 

Chapter describes also the modelling of the heave observed at the embankments, the stress 

response of the embankment and the pressure exerted against bridge abutments. The remedial 

measurements performed are briefly summarized.  

Chapter 9 points out the main conclusions derived from the research and propose future 

research work. 

 

1.5 Papers published during the development of the Thesis 

The research work carried out in the Thesis has resulted in the following publications: 

Journal papers: 

Alonso, E. E. and Ramon, A. (2013). Heave of a railway bridge induced by gypsum crystal 

growth: field observations. Géotechnique 63, No. 9, 707 – 719,  

[http://dx.doi.org/10.1680/geot.12.P.034] 

Ramon, A and Alonso, E. E. (2013). Heave of a railway bridge: modelling gypsum crystal 

growth. Géotechnique 63, No. 9, 720 – 732, [http://dx.doi.org/10.1680/geot.12.P.035] 

Alonso, E.E., Berdugo, I.R. and Ramon, A. (2013). Extreme expansive phenomena in 

anhydritic-gypsiferous claystone: the case of Lilla tunnel. Géotechnique 63 No. 7, 584 – 

612, [http://dx.doi.org/10.1680/geot.12.P.143] 

Alonso, E. E. and Ramon, A. (2013). Massive sulfate attack to cement-treated railway 

embankments. Géotechnique 63, No. 10, 857 – 870, 

[http://dx.doi.org/10.1680/geot.SIP13.P.023]  
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Chapter of a book: 

Alonso, E., Ramon, A. and Berdugo, I. (2011). Túneles en terrenos expansivos. Chapter of the 

book: Manual de túneles y obras subterráneas. pp: 1097-1154. Universidad Politécnica 

de Madrid (UPM). ISBN: 978-84-96140-36-3 Legal deposit: M. 16.764-2011. 

Papers published in Conferences, Symposiums and Workshops: 

Alonso, E. E., Berdugo I., R., Tarragó, D. & Ramon, A. (2007). Tunnelling in sulphate 

claystones. Invited Lecture. Proc. 14th European Conference on Soil Mechanics and 

Geothecnical Engineering, Madrid, 1, 103122. 

Ramon, A., Alonso, E.E. and Romero, E. (2008). Grain size effects on Rockfill constitutive 

Behaviour. In: Proceedings of the I European Conference on Unsaturated Soils, 

Durham 2008, 341-347. 

Ramon, A. (2008). Mecanismos de expansión de rocas yesíferas y su influencia sobre las 

excavaciones. Diploma of Advanced Studies, UPC. Barcelona. 

Ramon, A. (2008) Expansive phenomena in tunnels through anhydritic-gypsiferous 

claystones. Lessons learned from a case study. In: Proceedings of the 19th European 

Young Geotechnical Engineers’ Conference (EYGEC), Györ, 268-276. 

Ramon, A, Olivella, S and Alonso, E.E. (2009). Swelling of a gypsiferous claystone and its 

modelling, In: Proceedings of the 17th International Conference on Soil Mechanics and 

Geotechnical Engineering, Alexandrie, 1, 730-733. 

Ramon, A., Alonso, E. and Olivella, S. (2009). Modelo hidro-mecánico acoplado de 

expansión por cristalización. In: Proceedings of the Métodos Numéricos en Ingeniería 

2009, Barcelona, 185-186. 

Alonso, E. and Ramon, A. (2009). Interacciones hidrodinámicas y químicas en el 

comportamiento y patología de terraplenes. In: “Terraplenes y pedraplenes en 

carreteras y ferrocarriles”, 1-40. Chapter of the course syllabus “Terraplenes y 

pedraplenes en carreteras y ferrocarriles”, organized by Instituto técnico de la vialidad y 

del transporte (INTEVÍA), Madrid. 

Ramon, A. (2010) Modelling of deep foundation heave induced by crystal growth. Alert 

Workshop 2010, Aussois, 1-2.  
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Alonso, E. and Ramon, A. (2010). Fenómenos de expansión en estribos. Chapter of the course 

syllabus “Muros, Estribos y Transiciones” organized by Instituto técnico de la vialidad 

y del transporte (INTEVÍA), Barcelona, 1-49.  

Alonso, E. and Ramon. A. (2011). El túnel de Lilla. Invited lecture In: Túneles en terrenos 

salinos y expansivos. Barcelona, 57-88. Aula Paymacotas – UPC. 

Ramon, A. and Alonso, E. (2011). Heave of a piled foundation on a sulphated claystone. In: 

Proceedings of the 15th European conference on soil mechanics and geotechnical 

engineering: geotechnics of hard soils, weak rocks, Athens, 909 - 914. IOS Press, ISBN 

978-1-60750-800-7. 

Ramon, A and Alonso, E. (2011). Gypsum crystal growth in tunnels. In: Harmonising Rock 

Engineering and the Environment: 12th ISRM International Congress on Rock 

Mechanics. Beijing, 1797 - 1802. CRC Press. Taylor & Francies Group. 

Ramon, A and Alonso, E. (2011). Hinchamiento en túneles por crecimiento de cristales y su 

modelación. In: Proceedings of the “Jornada de recerca i innovació a l'Escola de 

Camins: resum de les ponències”, Escola de Camins. Barcelona, 1-4.  

Sauter, S., Alonso, E.E. and Ramon, A. (2012). Efecto de la expansión profunda sobre 

cimentaciones por pilotes. In: Proceedings of the 9º Simposio nacional de Ingeniería 

Geotécnica. Cimentaciones y excavaciones profundas, Sevilla, 385-397. 

Ramon, A. and Alonso, E. E. (2012). Thaumasite and ettringite massive crystal growth in two 

railway embankments. In: Proceedings of the workshop CRYSPOM III. Crystallization 

in porous media, 57-58. Extended abstract. 

Alonso, E. E. and Ramon, A. (2012). Gypsum crystal growth under bridge foundations. In: 

Proceedings of the workshop CRYSPOM III. Crystallization in porous media, 17-18. 

Extended abstract. 

Ramon, A.; Alonso, E."Crystal growth under bridge foundations". In: W(H)YDOC 12: 4th 

International Workshop of Young Doctors in Geomechanics, Paris,. 61 - 66. 2012. 

Ramon, A.; Alonso, E. E. (2013). Modelling swelling behavior of anhydritic clayey rocks. In: 

Proceedings of the 3rd International Symposium on Computational Geomechanics : 

COMGEO III : Krakow, Poland, 2013. 348 - 358. International Centre for 

Computational Engineering. 

Ramon, A.; Alonso, E. E. (2013). Analysis of ettringite attack to stabilized railway bases and 

embankments. In: Proceedings of the 18th International Conference on Soil Mechanics 
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and Geotechnical Engineering: Challenges and Innovations in Geotechnics: Actes du 

18e Congrès International de Mécanique des Sols et de Géotechnique: Défis et 

Innovations en Géotechnique, Paris, 785 - 788. 

Ramon, A.; Alonso, E. E. (2013). Coupled hydro-chemo-mechanical modelling of a 

foundation heave due to gypsum crystal growth. In: Computational Methods for 

Coupled Problems in Science and Engineering V: Proceedings of the V International 

Conference on Computational Methods for Coupled Problems in Science and 

Engineering held in Ibiza, Spain 17-19 June 2013, 1 - 2. International Center for 

Numerical Methods in Engineering (CIMNE). Extended abstract. 

Ramon, A.; Alonso, E. (2013). "Modelling crystal growth". In: Proceedings of the 5th 

Workshop of CODE-BRIGHT Users, 1 - 4. 

Ramon, A. & Alonso, E.E. (2014) Crystal Growth and Soil Expansion: The Role of 

Interfacial Pressure and Pore Structure. In: Unsaturated soils: Research & Applications 

(UNSAT 2014), Sydney, 875-881. 

Ramon, A. & Alonso, E. (2014). Modelling swelling phenomena in Lilla tunnel. Extended 

abstract. In: Proceedings of  The 4th international workshop on crystallization in porous 

media (CRYSPOM IV), Amsterdam, 47. Abstract. 
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CHAPTER 2 

Sulphated rocks in Central Europe and Spain and 

tunnel experience 

 

 

This Chapter describes the main formations from Central Europe known for their capability to 

develop severe swelling phenomena affecting tunnels. The expansive behaviour in those 

formations containing sulphate species is presented and compared with expanding behaviour 

in other swelling materials. Later, the main calcium sulphated formations in Spain are 

reviewed to demonstrate that coming across an excavation in a sulphated formation that may 

be affected by expansions is a real possibility in Spain. The experience gained from tunnelling 

in Central Europe and from the case of Lilla tunnel in Spain is summarized. 

 

2.1 Introduction 

Tunnels excavated in anhydritic-gypsiferous claystones have often experienced severe 

swelling phenomena. Within Europe, Triassic sulphate rocks found in Baden-Württemberg 

(Germany) and in Jura Mountains (Switzerland) have been repeatedly mentioned when 

gypsum-related swelling problems in tunnels have been reported. Recent contributions to the 
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study of swelling in tunnels crossing these materials have been made by Kovari & 

Descoeudres, 2001; Amstad & Kovari, 2001; Wittke, 2006 and Anagnostou, 2010. 

Gypsum-rock formations are also common in other countries and, in particular, in extensive 

regions of Spain. However, the number of reported cases of swelling in Spain up to now is 

substantially lower than in Central Europe. This was substantiated by a review of tunnels in 

sulphated formations showing the presence and absence of swelling behaviour that will be 

described in Chapter 5. A recent case has been Lilla tunnel excavated through the Lower Ebro 

Basin, an evaporitic deposit. Another recent case is the Albertia tunnel built close to Vitoria in 

the high-speed railway Madrid-Valladolid-Norte in Spain. It crosses highly tectonized 

sulphated rocks containing gypsum and anhydrite with a sedimentary origin (Lower 

Cretaceous). Moderate expansions were recorded during its construction.  

Once the tunnel is built, the tunnel operation has to cope with the swelling pressures and 

deformations affecting the tunnel. The design of the tunnel lining can be performed according 

to the principles of resisting or/and yielding support taking into account the intensity of the 

expected expansive phenomenon, the possible limitations associated with the difficulty to 

build a lining stiff enough to support the expected pressures, and the limitations derived from 

the operation of the tunnel (railway or road tunnel). 

The swelling behaviour in sulphated rocks in Central Europe and Spain is not limited to 

tunnels. Expansions involving stratums of anhydrite formations have been reported recently in 

relation with the surface heave experienced in the historic town of Staufen in Germany (Sass 

& Burbaum, 2010) and in the French town of Lochwiller. The heave of a railway bridge 

located in Spain, Pont de Candí viaduct, is another case of different nature compared with 

tunnels affected by expansions. This case will be described in detail later in Chapter 4. 

The present Chapter starts with a short description and a summary of main data concerning 

swelling phenomena reported in tunnels excavated in Central Europe. Then, the 

characteristics of sulphate rock formations in Spain are described. Finally, this Chapter 

concludes with the analysis of the alternatives to select tunnel lining at the design stage or 

during repairing works. This analysis is based on the experience obtained in tunnels affected 

by expansions crossing sulphated claystone in Central Europe and in the field investigations 

performed in circular testing sections during the investigation of the expansion affecting Lilla 

tunnel.  
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2.2 Expansive sulphated rocks in Central Europe 

This section will describe the Triassic sulphate-bearing rocks from Baden-Württemberg and 

Jura Mountains and its expansive behaviour. 

 

2.2.1 The Anhydritgruppe and the Gipskeuper 

Most tunnels in Baden-Württemberg (South-western Germany) and Jura Mountains 

(Northeastern Switzerland) affected by severe expansive phenomena have been excavated 

through Triassic hard rocks from the Anhydritgruppe (Middle Muschelkalk) and the 

Gipskeuper (Middle Keuper) with a high content in sulphates. Both materials are 

heterogeneous mixtures of anhydrite and gypsum in a hard clayey matrix. Images of these 

materials and their mean mineralogical composition are presented in Figure 2.1 and Table 2.1, 

respectively. 

     
                           (a)                    (b) 

Figure 2.1. Undisturbed samples from (a) the Anhydritgruppe (Middle Muschelkalk) (Madsen & 

Nüesch, 1990), and (b) the Gipskeuper (Middle Keuper) (Amstad & Kovári, 2001) 

 

Table 2.1. Mean mineralogical composition properties of the Anhydritgruppe and the Gipskeuper 

Material 
Mineralogical composition (%) 

A G C CO3 Q F 

Anhydritgruppe 
45 

90 

1 

4 

2 

50 

1 

25 

1 

15 

1 

5 

Gipskeuper 
30 

75 

1 

20 

5 

20 

0 

20 

5 

20 

1 

5 

A: anhydrite, G: gypsum, C: clay, CO3: carbonates, Q: quartz, F: Feldspars 
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The Anhydritgruppe mainly consists of evaporites (gypsum, anhydrite and halite) and 

dolomite. On the other hand, the Gipskeuper is a sequence ranging from clays and silts to 

dolomitic marls showing a wide range of colours. Red to violet sediments indicate oxidizing 

environments while grey to greenish sediments corresponds to reducing environments. 

Evaporation of saline sea water led to the formation of anhydrite, gypsum and halite 

pseudomorph crystals (Aigner, 1990).  

In Baden-Württemberg a distinction is made between two different geological levels 

associated with the Middle Gipskeuper: (i) the upper leached gypsiferous level and (ii) the 

unleached anhydritic level. This distinction is illustrated in Figure 2.2 using the case of 

Wagenburg North tunnel (Stuttgart) as reference. Above the unleached anhydritic level, the 

anhydrite has been converted into gypsum in geological times. In the leached gypsiferous 

level, the gypsum has been dissolved and transported away by the groundwater (Wittke, 

2000). Prommersberger & Kuhnhenn (1989) point out that the rock shows very limited 

stability problems when opening a cavity in the leached zone. On the other hand, below the 

anhydritic level the rock can be considered essentially impervious. The material is compact 

and of sufficient stability for tunnel excavation. 
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Figure 2.2. Geological longitudinal section of Wagenburg North tunnel in Stuttgart (Nagel, 1986; Paul 

& Wichter, 1996 and Amstad & Kovári, 2001) 

Information related with chemical composition of groundwater in tunnels excavated in the 

Anhydritgruppe and the Gipskeuper is not complete. Some data of sulphate content have been 

reported by Amstad & Kovári (2001), but only regarding to the possibility of sulphate attack 

to concrete. Isolated values of sulphate content in water from Belchen tunnel, built in Jura 

Mountains and affected by expansions, were reported by Grob (1972) and Werder (1989). The 

occurrence of macroconstituents as calcium, magnesium, sodium and potassium -which may 
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have an essential role in the interaction between sulphated waters and sulphate-bearing rocks-, 

is, in general, not reported in the German and the Swiss literature on the subject. Values of 

sulphate content reported by some authors are presented in Table 2.2. 

Table 2.2. Sulphate content in groundwater from some tunnels excavated in the Gipskeuper and the 

Anhydritgruppe (extracted from Amstad & Kovari, 2001) 

Tunnel SO4 (ppm) Reference 

Weinsberg up to 1500 Gremminger & Spang (1978)  

Kappelesberg 1957 - 2755 Krause & Wurm (1975) 

Adler 2990 Chiaverio & Hürzele (1996) 

Belchen up to 6000 Grob (1972) 

Belchen 1290 Werder (1989) 

Freudenstein up to 5600 Berner (1991) 

Engelberg Base > 8600 Kuhnhenn et al. (1979) 

 

Expansive clay minerals, particularly corrensite, are isolated components of the host clayey 

matrix in the Gipskeuper in Baden-Württemberg (Götz, 1972; Henke, 1976; Lippmann, 

1976). Corrensite is a 1:1 regular interstratification of trioctahedral chlorite and trioctahedral 

smectite, also called “swelling chlorite”; however, illite and chlorite are also present in the 

Gipskeuper as illustrated in Figure 2.3. In general, non-expansive clays have been detected as 

principal clay matrix components in many tunnels excavated through the Anhydritgruppe and 

the Gipskeuper [i.e. Adler, Belchen, Hauenstein and Sissach tunnels (Grob, 1972, 1976; 

Madsen et al., 1995; Nüesch et al., 1995; Hauber, 1996; Nüesch and Ko, 2000); Kappelesberg 

tunnel (Krause, 1976; Kurz and Spang, 1984); Freudenstein tunnel (Kirschke, 1987; Kirschke 

et al., 1991)]. 

 

2.2.2 Expansive behaviour of the Anhydritgruppe and the Gipskeuper  

In general, swelling in gypsiferous-anhydritic claystones far exceeds the expansivity threshold 

of most hard soils and rocks, which are well-known because of their high expansive potential. 

Figure 2.4 shows the magnitude of extreme heave and swelling pressures measured during 

construction and operation in some tunnels from Baden-Württemberg and Jura Mountains. 
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Figure 2.3. Lithology and composition of clay matrix of the Gipskeuper in Baden-Württemberg 

(modified after Schlenker, 1971) 

 

The distinction between sulphate claystones and other expansive clayey materials facilitates a 

first assessment of the complex phenomena studied in this Thesis. Figure 2.4 points out that 

under similar conditions of construction and operation, heave and swelling pressures in 

sulphate claystones could be one order in magnitude greater than in expansive clayey 

materials.  

Swelling in tunnels excavated in sulphate rocks evolves at high rates and, in some cases, a 

limit value for displacements or pressures cannot be clearly defined. This situation is 

illustrated in Figure 2.5 using long-term observations in some tunnels and test galleries from 

Baden-Württemberg and Jura Mountains. Some laboratory observations reveal the same 

behaviour in undisturbed samples of sulphate claystones. Figure 2.6 illustrates this aspect by 

means of a comparison between the typical swelling behaviour of some expansive rocks (Esna 

shale, Al-Qatif shale and Opalinus clay) -characterized by a clear limit for both swelling strain 

and swelling pressure-, and the non-asymptotic swelling response of samples from the 

Gipskeuper and the Anhydritgruppe. 
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Figure 2.4. Extreme expansive phenomena in tunnels, caverns, deep excavations and foundations in 

swelling rocks and soils, compiled in Berdugo, 2007: (A) Krause (1976), (B) Amstad & Kovári 

(2001), (C) Einstein (1979), (D) Krause& Wurm (1975), (E) Grob (1972), (F) Nagel (1986), (G) Grob 

(1976), (H) Wittke-Gattermann (1998), (I) Paul & Wichter (1996), (J) Alonso et al (2004), (K) 

Berdugo et al (2006), (L) Bischoff & Hagmann (1977), (M) Dhowian (1984), (N) Young (2004), (O) 

Abduljauwad et al (1998), (P) Steiner (1993), (Q) Huder & Amberg (1970), (R) Wichter (1985), (S) 

Wittke (2000), (T) Fecker (1992), (U) Noher et al (2006) 
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            (a)                                                (b) 

Figure 2.5. Floor heave and swelling pressure evolution in tunnels excavated in swelling rocks, 

compiled in Berdugo, 2007: (a): (1) Wagenburg NT E 391 -Gipskeuper- (Nagel, 1986), (2) Bözberg -

Anhydritgruppe- (Grob, 1976), (3) Wagenburg ST E 387 -Gipskeuper- (Paul & Wichter (1996); (b): 

(I) Wagenburg ST E 409 -Gipskeuper- (Paul & Wichter,1996), (II) Wagenburg TT I -Gipskeuper- 

(Wichter, 1985), (III) Freudenstein TG Block VIII  -Gipskeuper- (Fecker, 1992) 
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           (a)                                                                            (b) 

Figure 2.6. Examples of (a) swelling strain and (b) swelling pressure evolution over time (both are 

normalized with respect to the maximum value) for swelling rocks obtained in laboratory tests, 

compiled in Berdugo, 2007: (1) Esna shale (Wüst & Mclane, 2000), (2) Al-Qatif shale (Abduljauwad 

et al, 1998), (3) Opalinus clay (Grob, 1976), (4) Gipskeuper (Madsen et al, 1995), (5) 

Anhydritegruppe (Madsen & Nüesch, 1990) 

 

2.3 A review of main calcium sulphated formations in Spain 

Calcium sulphate rocks occur in extensive zones of the Iberian Peninsula and Balearic Islands 

as outcrops and buried formations. According to Riba & Macau (1962) gypsiferous rocks 

outcrop in 7.2 % of the Spanish territory, and they are mainly located in the eastern part of the 

country (Figure 2.7). This is, certainly, a very large area of the territory in surface; however 
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the extension is greater in depth. Taking into account buried formations -particularly the 

materials from the Keuper-, the relevance of calcium sulphate rocks in the infrastructures of 

Spain increases substantially. In fact, tunnelling works in Spain affect sulphate formations 

relatively often. Therefore, a proper knowledge of main characteristics of these formations is 

essential to evaluate their behaviour in tunnels. 

 

 

Figure 2.7. Schematic distribution of gypsiferous outcrops in Spain, including materials from the 

Triassic to the Neogene (Riba & Macau, 1962) 

Calcium sulphate formations in the Iberian Peninsula were originated basically during two 

geological periods clearly differentiated: the Triassic and the Tertiary. In both cases calcium 

sulphate appears in two different lithologies: (i) evaporitic, or (ii) veins in claystones, 

mudstones, marls or micro-carbonates. Specifically, calcium sulphate is present under two 

different minerals: anhydrite (CaSO4) -at certain depth-, and gypsum (CaSO4·2H2O) -usually 

in outcrops-. 

Several theories explain the dehydration-hydration cycle of gypsum-anhydrite during 

diagenesis and exhumation of sediments. According to Murray (1964) the gypsum-anhydrite 

division commonly occurs at depths of 400-450 m in the diagenesis phase of the cycle, and at 

depths of 150-100 m in the exhumation phase. Exhumation of anhydrite formations is often 

related with erosion or tectonic processes. During these events anhydrite is transformed into 
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gypsum (secondary gypsum), under isovolumetric conditions (Ortí, 1977; Ortí et al., 1989). 

According to this author, most of gypsum outcrops in Spain prior to the Pliocene are 

secondary gypsum. 

Gypsum in both Triassic and Tertiary formations is found in certain representative lithofacies: 

(i) nodular, (ii) massive, (iii) laminated (mm) or banded (cm) and (iv) fibrous veins. There are 

also processes that produce neoformed gypsiferous precipitations from calcium sulphate rich 

waters stored in perched water tables and aquifers. These are fibrous gypsum units and often 

fill rock discontinuities. Images illustrating these lithofacies are presented in Figure 2.8 to 

Figure 2.9.  

 

  
                                    (a)                                                                                  (b) 

  
                                 (c)                                                                             (d) 

Figure 2.8. Lithofacies of gypsum found in sedimentary rocks:(a) Oligocene micronodular gypsum 

from Sorlada (Navarra, Spain) (Salvany, 1989); (b) Miocene massive gypsum from Villalómez 

(Burgos, Spain); (c) Miocene laminated gypsum from Los Arcos (Navarra, Spain); (d) Triassic 

(Keuper) gypsum in bands from the Spanish Pyrenees ((b),(c),(d): J. M. Salvany, personal 

communication) 
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                                      (a)                                                                       (b) 

Figure 2.9. Neoformed fibrous gypsum veins filling discontinuities: (a) Triassic (Keuper) 

fibrous gypsum veins from the Spanish Pyrenees (Salvany, 1989); (b) Oligocene interbedded 

fibrous gypsum veins from Ascó (Catalunya, Spain) (O. García, personal communication) 

 

2.3.1 Triassic sulphate-bearing rocks 

Figure 2.10 illustrates the distribution of main Triassic sulphate outcrops in the Iberian 

Peninsula and Balearic Islands in which nine lithostratigraphic units have been defined 

(IGME (Spanish National Geologic Institute), 1981). 

Ibérico, Cantábrico and Pirenaico Triassic outcrops present similar litotypes with only one 

carbonate layer associated with Muschelkalk facies. The Hespérico Triassic outcrop is formed 

by a continental facies (red beds) and Mediterranean Triassic outcrops (Catalanides and 

Valenciano) include Buntsandstein, Muschelkalk and Keuper facies. Finally, the Bético 

Triassic outcrops ( Germanic facies and Alpine facies) has more Triassic types than the rest of 

outcrops (Pérez, 1991). 

Triassic gypsiferous outcrops are usually found in Keuper formations. The reason is that 

Keuper deposits in Spain often act as “sliding surfaces” in large scale tectonic motions. 

Consequently, outcrops of Triassic sulphate formations are usually associated with tectonized 

zones in which water may find easier percolation paths in fractured materials. However, 

sometimes gypsum, often tectonized, occurs in Bundsandstein (Röt) and Muschelkalk (M-2) 

formations, as well as in Liassic formations (Early Jurassic). 

The preceding observations refer to outcrops of Triassic sulphate rocks that are often 

represented as thin bands of irregular shape in the map of Figure 2.10. However, the buried 

formations occupy extensive areas. This is the case of the Keuper unit and one example is 
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given in Figure 2.11. It shows the contours of equal thickness of the “Levante” Keuper, which 

does not outcrop in the zone. This material occupies most of the territory of several provinces 

in Eastern Spain. Similar examples are found in other regions of the Iberian Peninsula, 

including the Pyrenees. 

 
Figure 2.10. Distribution of Triassic outcrops in Spain according to a map published by the IGME 

(1981). (1) Cantábrico; (2) Pirenaico; (3) Ibérico; Mediterráneo: (4) Catalanides and (5) Valenciano; 

(6) Hespérico; Bético: (7) Germanic facies and (8) Alpine Facies; and (9) Balear Islands Triassic 

 
Figure 2.11. Isopachs of the “Levante” Keuper (from de Torres & Sánchez, 1990) 
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2.3.2 Tertiary sulphate-bearing rocks 

Tertiary rocks are mainly found into four basins, which are drained by the four main rivers of 

the Iberian Peninsula: Duero, Tajo, Guadalquivir and Ebro (Figure 2.12). In Guadalquivir 

Basin no evaporitic formations are found. Often, these Tertiary basins cover Triassic rocks 

and were filled with sediments developed during the Alpine orogeny.  

The sedimentary formations, from the Eocene to the Miocene, exhibit often outcrops of 

sulphated rocks. In the Duero Basin, thick layers of Miocene sandstones, marls and 

mudstones were later covered by gypsum and gypsiferous marls, and finally capped by 

calcareous levels. Gypsum is frequent found in the Tajo Basin in which Eocene and Miocene 

deposits are often interbedded with marls frequently tectonized. In particular, Miocene 

gypsums cover the South-East of Madrid. 

The largest evaporite basin is, however, the Ebro Basin. It is bounded by three mountain 

ranges: Pyrenees, Iberian and Catalanides. Sediments, mainly clayey materials, reach in some 

locations depths in excess of 4000 m. Figure 2.13 shows a map with the main gypsiferous 

formations of the Ebro Basin. Two structural aspects explain the distribution of evaporite 

formations in this basin (Anadón et al., 1985): 

 The Pyrenean uplift caused a progressive displacement of the basin axis towards the 

south. As a result, the youngest Tertiary materials are located to the East of the basin. 

 The basement elevation at the Pyrenees tilted the basin and induced a lateral 

displacement of its lower point. 

Two broad classes of Tertiary materials may be distinguished: marine and continental 

(lacustrine) evaporites (Ortí et al., 2007). This origin is related to the salt content of the parent 

water, the local climatic conditions and the texture of rocks.  

Clays are often mixed with sulphate minerals in most of the above mentioned Triassic and 

Tertiary basins. They can have two origins. They are either deposited concurrently during the 

sedimentation process (this is the case of illite and chlorite), or they are neoformed clayey 

minerals (montmorillonite, paligorskite). 

Smectitic clays are found in young Tertiary sediments (they are found in the South of 

Madrid), but they are seldom present in older Triassic sediments, because smectitic minerals 

are sensitive to diagenetic modifications (Ayala et al., 1986). 
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Figure 2.12. Main Tertiary basins in the Iberian Peninsula (modified after Salvany, 1989) 

 
Figure 2.13. Distribution of evaporite formations in the Tertiary Ebro Basin (Ortí et al., 1989), and 

location of Lilla tunnel 

2.3.3 Sulphate-rich waters 

The groundwater in both Triassic and Tertiary formations in Spain is highly mineralized. 

Some cases from the Ebro and the Tajo basins in which deep excavations have been executed 
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or tunnels are planed were analysed in terms of saturation index for gypsum, SI, using data 

from different sources (Table 2.3). A water analysis reported by Esteban (1990) was assumed 

representative of conditions in Ascó II Nuclear Power Station (Lower Ebro Basin). In the case 

of Tunnel A two water analyses are available, and in the case of Tunnel B a data-base 

including 23 water analyses is available. 

Table 2.3. Chemical composition and properties of groundwater in two Tertiary evaporite deposits 

from Spain (Berdugo, 2007) 

Location 
Ebro Basin Tajo Basin 

Ascó (1) Tunnel A (2) Tunnel B (3) 

Constituent Concentration (mg/l) 

Sulphates 2800 3400 43017 

Bicarbonates 215 641 256 

Carbonates 40 < 0.5 - 

Chlorides 25700 6160 88827 

Calcium 202 535 1067 

Magnesium 568 185 3230 

Sodium 13486 3920 69720 

Potassium - 11.5 757 

Other properties 

pH 9.27 7.5 7.67 

E.C at 20ºC (µS/cm) 59170 16640 - 

(1) Esteban (1990), (2) Iberinsa (2006), (3) Sener (2006) 

 

Saturation index for gypsum was calculated at 25ºC (Ascó and Tunnel A), and at temperatures 

obtained during sampling in the case of Tunnel B. The results of these analyses are presented 

in Figure 2.14. SI = 0 indicates equilibrium conditions, SI < 0 reflect subsaturation and SI > 0 

reflect supersaturation. When equilibrium is not found SI indicates in which direction the 

process may go: for subsaturation dissolution is expected, and supersaturation suggests 

precipitation. 
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Precipitation of calcium sulphate, particularly of gypsum, due to supersaturation of natural 

sulphate-rich waters is possible as a result of either a fall in temperature, which causes a 

decrease in gypsum solubility, or the exposition to a ventilated dry environment, which causes 

water evaporation and, therefore, an increase in calcium sulphate concentration. 
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Figure 2.14. Saturation index for gypsum in natural waters from some Spanish evaporite deposits as a 

function of the temperature (Berdugo, 2007) 

 

2.4 Current alternatives to design tunnel lining  

A common characteristic of tunnels affected by swelling problems in sulphate expansive 

rocks is that heave displacements and damage of structural elements occur at tunnel floor 

level, and no substantial damage is detected at abutments or crown in the cases reported. 

Amstad & Kovári (2001) described typical scenarios (summarized in Figure 2.15) that can be 

originated, alone or in combination, in tunnels affected by either swelling pressures or vertical 

displacements depending on the geometry of the excavation, the rigidity of the lining, the 

intensity of the expansion and the overburden stiffness. 

There is certain evidence that the swelling displacements and pressures present a 

heterogeneous distribution along the tunnel length and also across the excavated sections. 

This seems to be a result of the heterogeneity in the distribution of fractures and in the 

mineralogical composition in the sulphated claystones. This results in a difficulty to design 

the cross-section shape and lining in a tunnel having a potential risk of being affected by 

swelling problems, and also to design repairing works in a tunnel already showing swelling 

behaviour. Because of this uncertainty there is a risk of overdesigning the lining. The case of 

Lilla tunnel, described in Chapter 3 illustrates this comment. In some cases the tunnel lining 
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structure needs to include longitudinal reinforcement, a situation seldom found in 

conventional practice. 

(a) (b) (c) 
Flexible flat-slab  

heave 
Rigid invert-arch  
heave and failure 

Rigid circular section 
heave and displacement as rigid body 

Figure 2.15. Typical scenarios associated with swelling in tunnels according to Amstad & Kovári, 

2001 

Several authors have analysed the damage and failure due to swelling phenomena in tunnels 

crossing Triassic sulphated hard rocks from Medium Keuper (Gipskeuper) and from 

Muschelkalk (Anhydritgruppe) in Baden-Württemberg (Germany) and Jura Mountains 

(Switzerland). The works of Kovári & Descoeudres (2001), Amstad & Kovári (2001), Wittke 

(1990, 2000, 2006), Anagnostou (1993, 2007, 2011), Wittke-Gattermann & Wittke (2004),  

Anagnostou et al. (2010), Sahores (1962), Grob (1972, 1976), Henke (1976), Kaiser (1976), 

Krause (1976), Einstein (1979), Wichter (1985, 1991), Nagel (1986), Fecker (1992), Steiner 

(1993), Paul & Wichter (1996), Madsen et al. (1995), Kovári et al. (1988) and others have 

provided value information on the expected swelling in anhydritic and gypsiferous hard 

claystones. 

Two alternative strategies to design or repair tunnels exposed to sulphate-related heave have 

been adopted (Kovári et al., 1988): either the expected pressure against the tunnel lining is 

resisted; or else some amount of deformation of the ground is allowed, with the purpose of 

reducing the heaving pressure, at least for a given period of time. These strategies are possible 

because of the specific nature of the tunnel structure. In fact, once it is properly designed, a 

closed circular-like structure is able to resist very high swelling-induced pressures. 

Tunnels excavated in expansive rocks and soils are often designed following the resisting 

support principle, which consists in design the lining to resist with a low deformation, the 

swelling pressures. According to Wittke and his co-workers (1979, 1990, 1998, 2000, 2004, 

2005, 2006), the advantage of the design of the resisting lining for tunnels in sulphated rocks 

is the self-sealing induced by swelling itself around the lining of the tunnel.  
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The self-sealing is a mechanism linked, among other causes, to crystal growth in porous 

media, which in the case of sulphated rocks consists in the precipitation of gypsum in relict or 

induced discontinuities. Wittke-Gattermann & Wittke (2004) and Wittke (2006) suggested 

that a limit value can be defined for swelling pressure due to self-sealing and, as a 

consequence, the thickness and the reinforcement of the lining are considerably reduced. 

The permanent damage and failure of inverts and tunnel lining designed according to the 

principle of resisting support, the prevision that a stiff tunnel lining would be unable to resist 

the expected swelling pressures, and the necessity of achieving close to zero displacements 

due to tunnel operational requirements in some tunnels (railway tunnels), motivated other 

design alternatives (Kovári et al. 1988). These alternatives include mainly the use of anchored 

plates and flexible support systems (Figure 2.16). The design criterion in flexible support 

system consists in matching the best possible equilibrium between swelling deformations and 

pressures, in order to limit both the deformation of the structure and the swelling pressure 

exerted by the rock against the lining. Two alternatives for the flexible support systems have 

been proposed to reduce the radial pressures due to swelling: the use of a yielding layer of 

deformable foam in the contact lining-rock and the opening of longitudinal slots in the lining 

to facilitate convergence. 

Three testing sections designed each one following the principle of resisting support,  yielding 

support materialized by a set of springs, or by a thick layer of foam where built in Lilla 

tunnel. The sections were instrumented with sliding micrometers and pressure cells. The 

performance of the testing sections is analysed later in Chapter 3. 

The classical design of flexible support system is the installation of a deformable zone 

(usually by means of a foam of plastic material), below the invert of the tunnel (Figure 

2.16(c)). A drainage is also included in the design of the yielding zone to avoid the 

groundwater reaching the rock above the tunnel vault and thus to prevent its swelling (Wittke-

Gattermann & Wittke, 2004). In general, the presence of the deformable (yielding) zone 

compensates the effect of swelling in the rock, leads to a reduction of the swelling pressure 

developed and, therefore, leads theoretically to a significant reduction of the thickness and 

reinforcement of the lining of the tunnel compared with the resisting support. 

The principle of yielding support was used for the first time in the middle 70’s in Buechberg 

highway tunnel in Eastern Switzerland, and afterwards in the tunnel for the Super Proton 
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Synchroton at C.E.R.N. in Geneve, (Lombardi, 1979) and Tunnel T8 Biel-Sonceboz in 

Switzerland, (Kovári et al 1988). In spite of the noticeable benefits related to the use of this 

system in clayey swelling rocks, experiences in tunnels through sulphate bearing rocks are 

limited mainly to the cases of Gasstollen Cogefar in Italy, (Amstad & Kovári, 2001), 

Freudenstein test gallery in Germany, (Kirschke, 1987; Prommesberger & Kuhnhenn, 1989, 

Fecker, 1992), Freudenstein tunnel (Kovári & Amstad, 1993; Amstad & Kovári, 2001) and 

Engelberg Base tunnel (Amstad & Kovári, 2001). Testing sections designed according to 

yielding support made of a 40 cm thick foam layer were built in Lilla tunnel and are analysed 

later in Chapter 3. 

Foam
Slots

 
(a) 

Anchoring system 
(b) 

Open space 
(c) 

Yielding support 
Foam 

(d) 
Yielding support 

Slots 

Figure 2.16. Designs of lining in tunnels in rocks (a), (b) and (c): Kovári et al., 1988; (d): Solexperts 

Wittke & Wittke (2005) and Wittke (2006) published exhaustive studies (including numerical 

modelling) on the applicability of both resisting and yielding support systems for tunnel 

excavation in the Stuttgart 21 project. According to these authors, the fundamental factors that 

allow selecting the type of support when tunnelling in sulphated rocks are the amount of 

weathering of the rock of the overburden and the position of the phreatic level. Following 

these criteria, it is convenient to use resisting support when sound rock exists above tunnel 

vault; in the opposite cases yielding foam should be used in their opinion. 

The second alternative for flexible support consists in the construction of slots and springs at 

the vault-invert interphase, as shown in Figure 2.16 and Figure 2.17. Information on the 

performance of slots and springs in tunnels is limited. The documented experiences are 

limited to Chienberg tunnel in 2006 in Jura Mountains (Thut et al., 2007), which was 

reinforced by means of highly deformable concrete modules (Solexperts HDC ®), and Lilla 
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tunnel in the Ebro river basin in Spain, which was reinforced by means of steel springs at one 

testing section, as described in Chapter 3 . 

              
(a)                                                                           (b) 

Figure 2.17. Example of modular yielding supports (slots and springs) installed in the interface vault-

invert of tunnels excavated through swelling rocks: (a) highly deformable concrete springs (Solexperts 

HDC®) in Chienberg tunnel (Jura Mountains); (b) metallic springs in a circular test section of Lilla 

tunnel (Lower Ebro Basin) (after Berdugo, 2007)  

 

2.5 Summary 

Cases of swelling in tunnels in both hard and soft anhydritic-gypsiferous clayey rocks from 

Switzerland and Germany have been presented and discussed in order to gain a better 

understanding of these phenomena and to isolate the most relevant ones. It has been shown 

that the intensity of the expansive phenomena in sulphated rocks exceeds the swelling 

phenomena observed in most hard rocks and soils, known for their high expansive potential (i. 

e. Molasse marls, Opalinus Clay, Tabuk clay, Al-Qatif clay and similar ones). The main 

phenomenological features of the observed swelling have been summarized, and also a 

description of the characteristics of the rock mass and groundwater that may have an 

important role on the expansive response have been highlighted. 

Calcium sulphated formations present in Spain have been reviewed and it has been shown that 

sulphated formations are abundant and therefore these formations may be involved in several 

infrastructures. Sulphates are common in some geological levels such as Triassic and 

Mesozoic fine sediments in evaporative environments. 

The experience on the design of tunnel lining in tunnels affected by expansions has been 

summarized. Different alternatives consisting in rigid or flexible support have been presented 

and the expected behaviour has been analysed. 



 

 

CHAPTER 3     

CHAPTER 3 

Extreme expansive phenomena in Lilla tunnel 

 

 

The study of the expansive phenomena in sulphated claystones is done, in part, through the 

analysis of the extreme swelling behaviour observed in Lilla tunnel in Spain. The Chapter 

describes the swelling phenomena affecting the tunnel during construction and subsequent 

operation. The geology of the site and the performance of alternative support designs are 

described. Field observations are analysed to identify the causes of the observed swelling. The 

original horseshoe cross-section was transformed into a circular one and a reinforced concrete 

lining was built to resist swelling pressures. Long term monitoring of the reinforced tunnel 

provided valuable data on the evolution of swelling pressures against the lining and on the 

stresses developed in the resisting structure. The highly heterogeneous distribution of swelling 

pressures against the lining explains the low strains measured in reinforcement bars despite 

the very high maximum swelling pressures recorded. 

 

3.1 Introduction 

Three tunnels on the high-speed railway from Madrid to Barcelona, excavated in anhydritic-

gypsiferous claystone, were affected by extreme expansive phenomena during construction. 

These tunnels are located in the route of the railway through the Lower Ebro basin, the largest 
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evaporite deposit in Spain. Table 3.1 provides the main characteristics of the three tunnels 

(Camp Magré, Lilla and Puig Cabrer), which were located in the vicinity of Montblanc city, 

province of Tarragona. Camp Magré had a moderate maximum cover -52 m- and was 

excavated in the upper levels of Eocene claystone, in contact with overlying limestone. It 

experienced moderate to severe expansions in a short length (200m). The Puig Cabrer tunnel 

was excavated under higher cover in much older materials (Triassic rocks). It crossed a short 

stretch of sulphated claystone and also experienced moderate swelling. The strongest and 

most damaging heave was recorded in the Lilla tunnel, entirely excavated in Eocene sulphated 

formations under an intermediate cover (90-110 m on average). First expansions were 

detected in the tunnel floor flat-slabs immediately after building. These expansions were 

quickly followed by generalised distortions in longitudinal drainage systems and, finally, by 

local failures of flat-slabs. The Lilla tunnel was selected to carry out a full-scale swelling 

study. Laboratory tests and in situ measurements were undertaken to gain knowledge on the 

swelling mechanisms and to evaluate the efficiency of alternative support designs. The 

performance of instrumented test sections built with resisting or yielding supports was 

monitored.  

Table 3.1. Data on the three tunnels experiencing swelling phenomena 

Tunnel Length 

(m) 

Maximum 

cover (m) 

Excavated  

cross-section (m2) 

Observations 

Camp Magré 954 52 140 
Excavated in upper levels of Eocene 

anhydritic claystone 

Lilla 2034 110 117 
Cover in Eocene anhydritic claystone: 

10-70 m 

Puig Cabrer 607 191 137 
Excavated in Triassic rocks (limestone, 

marls and sulphated claystone) 

 

Expansions in Lilla tunnel occurred at floor level without observable swelling signs in the 

abutments and crown. Heave evolved at high rates and, often, a limiting value for either floor 

heave or pressures could not be clearly defined. This phenomenology is well documented in 

the literature, particularly in tunnels excavated through the Gipskeuper in Baden-Württemberg 

(Germany) and the Jura Mountains (Switzerland). Contributions by Steiner (1993), Amstad & 
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Kovári (2001), Kovári & Descoeudres (2001), Wittke (2006), Anagnostou (2007) and 

Anagnostou et al. (2010) summarise these cases and suggest procedures for the analysis and 

design of tunnels in sulphate-bearing rocks.  

Differences in composition between anhydritic-gypsiferous claystone from the Gipskeuper 

and the Lower Ebro Basin are notorious and significant. The former are hard Triassic 

materials containing anhydrite and expansive clay minerals, specifically corrensite 

(Schlenker, 1971; Götz, 1972; Henke, 1976; Lippmann, 1976; Jordan & Nüesch, 1989). The 

latter, on the contrary, are soft rocks from the Tertiary age in which anhydrite occurs only in 

nodular lithofacies and the clayey matrix is composed by non-expansive clays, mainly illite 

and paligorskite (Salvany, 1989; Salvany, personal communication, 2007; Esteban, 1990). In 

both environments the groundwater is highly mineralised, with calcium (Ca2+) and sulphate 

(SO42-) as the main dissolved ions (Grob, 1972; Werder, 1989; Esteban, 1990; Amstad & 

Kovári, 2001; Alonso & Berdugo, 2005).  

This Chapter concentrates on Lilla tunnel and describes one of the most extreme cases of 

heave and swelling pressures developed in connection with tunnel construction. Besides the 

data provided by geotechnical investigations and monitoring of the tunnel initially excavated, 

the results of large scale wetting tests performed in three enlarged circular test sections built 

inside the original tunnel will be reported. In addition, once the entire tunnel was converted 

into a cylindrical heavily reinforced structure, measurements of swelling pressures against the 

lining as well as strains (and stresses) measured in steel reinforcing bars make it possible to 

evaluate the response of the lining during the first 8 years of operation of the railway line. 

 

3.2 Geology 

Lilla tunnel, running in a North-South direction, is located on the eastern side of the Tertiary 

Lower Ebro Basin (Figure 2.12 and Figure 2.13) in Catalunya, very close to the limit imposed 

to the basin by the Hercinian-Mesozoic basement. The proximity of the basin limit and an 

illustration of the local tectonism are given in Figure 3.1. The Eocene claystone formation is 

folded and compressed by the thrust exerted by Triassic and Palaeozoic rocks. 

The longitudinal geological section of Lilla tunnel is given in Figure 3.2(a). Figure 3.2 

integrates additional information which will be described later. Tunnelling involved mainly 

anhydritic-gypsiferous early Eocene claystone. This material occurs as a horizontally-oriented 
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monotonic series of brown claystone with nodular anhydrite and an intricate system of cross-

shaped moderately dipping fibrous gypsum veins (Figure 3.3(a)). Locally, grey alabastrine 

gypsum occurs in subhorizontal strips within the host clayey matrix. A singular aspect is the 

existence of a persistent system of low-angle slickensided surfaces (Figure 3.3(b)). They are 

explained by tectonic events that affected the rock formation during the Bartonian uplift.  

  

(a) 

 
                                                                                 (b) 

Figure 3.1. Simplified model of regional tectonics and representative cross-section at the site of Lilla 

and Camp Magré tunnels (based on Julivert, 1954): (a) plan view; (b) representative cross-section 

 A A’ 
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(a) 

 

(b) 

 

(c) 

 

(d) 

(e) 

 
Figure 3.2. Longitudinal section of Lilla tunnel: (a) geology; (b) profile of floor heave in October 2002 

and water conditions detected during tunnel excavation; (c) initial cross-section (horseshoe shape) and 

testing sections; (d) evolution of heave displacements of the flat-slab between October 2002 and 

December 2003; (e) maximum radial pressures recorded in the period from January 2005 to Dec. 2011 
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The slickensided surfaces are believed to have played a decisive role in triggering the 

expansive phenomena which damaged the tunnel. The reason is that the stress change 

associated with tunnel excavation is then capable of opening the discontinuities allowing the 

flow of water and the precipitation of gypsum crystals in a mechanism discussed later in more 

detail in Chapter 5. Figure 3.2(a) also shows the position of faults identified during head 

excavation. 

  
                                         (a)                                                                              (b)              

Figure 3.3. Details of the claystone formation: (a) gypsum veins in the clay matrix; (b) slickenside 

 

3.3 Design and construction  

Lilla tunnel has a length of 2034 m and the overburden varies between 32 m and 110 m. It 

originally had a conventional horseshoe cross-section (117.3 m2) (Figure 3.4). The primary 

support elements were designed by means of a Convergence-Confinement method (Panet, 

1995). Construction followed the methodology of the new Austrian tunnelling method 

(NATM). A light immediate support (sprayed concrete) was systematically applied. Sprayed 

concrete, rock bolts and steel arch ribs (HEB 160) in zones of low rock quality, were used for 

support. The final lining consisted of 300 mm thick cast in place unreinforced concrete 

(characteristic unconfined strength: fck = 25 MPa). A 300 mm thick flat-slab of unreinforced 

concrete (fck = 20 MPa) provided some bracing to tunnel abutments at floor level of the initial 

horseshoe cross-sectional shape of the tunnel. No specific precautions were taken regarding 

swelling phenomena.  

Excavation was carried out mainly by drill and blast from both portals, dividing the section 

into top heading excavation and subsequent benching. However, mechanised excavation and 
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mixed systems (roadheaders and hammers) were also used. Heterogeneous rock strength in 

the excavation face was frequent, sometimes exhibiting a competent lower part of the head 

and an upper part partially weathered that prevented the systematic use of blast. In some weak 

zones percussion of hammers was not necessary and a simple hammer dragging was sufficient 

to excavate the face. 

 

Figure 3.4. Initial representative cross-section of Lilla tunnel 

Claystone strength was reported to be heterogeneous along the excavation, from relatively 

weak stretches, excavated mechanically, to hard formations requiring drill and blast 

excavation. Unconfined compression strength was determined in cores recovered in boreholes 

performed from the tunnel floor at different locations. Continuous extensometers and 

piezometers were installed in these boreholes. Strength is represented in Figure 3.5 in terms of 

water content. Low water content values (w = 1-2%) correspond to void ratios in the range e = 

0.027-0.054. Higher w values (4-5%) are found in samples having e = 0.11- 0.135. The 

strength drops fast with increasing water content. These results provide an indication of the 

weathering susceptibility of Lilla claystone. Moderately or non-cemented claystone is 

frequently reported to exhibit a similar sensitivity to water content changes. The shotcrete 

layer applied immediately after excavation was aimed at maintaining the original water 

content of the claystone. 

In addition, swelling pressure tests were performed in oedometer cells in recovered cores. 

Tests were performed following a protocol described in ASTM D3877/80 (ASTM, 2008). 

Recorded swelling pressures for undisturbed and remoulded samples are plotted in Figure 3.6 

in terms of water content. No definite correlation with initial water content was found. 
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Swelling pressures are small if compared with recorded field pressures. Doubts on the initial 

conditions of the tested cores exist. An unexpected drying of cores before testing may explain 

the recorded swelling pressures as a result of clay hydration. However, being the first 

available information on swelling pressures, they provided a criterion to design the 

instrumented temporary curved invert described in the next section.  

 

Figure 3.5. Unconfined compressive strength measured in cores recovered in boreholes drilled from 

the tunnel floor 

No face stability incidents were reported. A central drainage was installed at the time of 

concreting the floor slab. In general, the excavation was carried out under dry conditions. 

Water leakage into the tunnel was detected in some locations (Figure 3.2(b)). Significant 

water flow was reported only in the vicinity of the south portal. The inflow was linked to 

isolated failures connecting colluviums with the excavation as well as with a change in 

stratification. Waterproofing of the excavated section was limited to portals. A geotextile of 

500 g/m2 was placed over a 1.5 mm thick polyvinyl chloride (PVC) sheet located between the 

support and the lining. The longitudinal drainage system was made of a PVC collector 

(diameter = 500 mm) located 1.4 m below the floor. Underneath, a 200 mm gravel filter layer 

was extended. Water coming from the vault was collected in box-type manifolds uniformly 

distributed along the tunnel floor. 



Chapter 3    

45 

 

 

Figure 3.6. Swelling pressure measured in samples recovered in borings drilled from tunnel floor in 

October 2002. The chemical composition of water used during the tests is unknown. Test protocol: 

UNE 103 602:1996. Depth of sampling below the flat-slab is indicated between parenthesis 

Convergence displacements measured during the heading stage were in general very low and 

only sections close to the north portal (chainage 411 + 217 to 411 + 258) exhibited small 

movements in vertical and horizontal directions, in the range from 20 to 30 mm, with a clear 

tendency towards stabilisation after 30 days. On the basis of visual observations expansive 

phenomena and, in particular; floor heave, were not observed during construction. 

 

3.4 Expansive phenomena and ground properties  

The bench was excavated only after the head construction was completed in February 

2002. Afterward, the initial flat-slab was constructed only in a short stretch of 158.8 m 

between stations 411+203.5 and 411+362.3. Therefore the unprotected (unlined) floor was 

exposed to tunnel environmental conditions (e.g. wetting and drying cycles imposed by 

both the construction works and the natural ventilation) for a few months. Floor heave was 

first detected in September 2002 at chainages 411+598, 411+685 and 412+540, just after 

the flat-slab was completed and during construction of the lining. The low values of 

horizontal relative displacements and the absence of fissures in the shotcrete and the lining 

indicated that the abutments and the crown were not affected by ground expansion. 

Figure 3.2(b) summarises the conditions in the tunnel one month after floor heave was 

detected for the first time. When floor heave started the longitudinal drainage was already 

completed. At that time the longitudinal drainage tube was already finished. A partial 

drainage of the foundation material can be expected. However some isolated strong floor 
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heave was probably capable of damaging the drainage tube which could lead to local water 

accumulation. 

Heave reached maximum values within the first kilometre of the northern side of the tunnel. 

Figure 3.2(b) also provides an indication of the water conditions met during excavation. The 

southern part of the tunnel, where some water flow into the tunnel was recorded, was not 

affected by floor heave. Later, when boreholes were drilled from the floor, without the 

addition of any water, in order to investigate the swelling phenomena, the water level in the 

borings before the installation of instrumentation, was recorded. In the cases where the 

borings remained dry, the depth of water in Figure 3.2(b) is marked at -10 m. Shallow water 

levels (with respect to the tunnel floor) were recorded in a 600 m long stretch of tunnel, 

immediate to the North portal. In this part of the tunnel heave was developing at the fastest 

rate. A shallow water level was also measured in the vicinity of the south portal in a part of 

the tunnel which did not experience any measurable floor heave.  

Heave of the floor slab evolved rapidly and it soon became clear that the adopted resisting 

cross-section was unable to cope with the observed swelling phenomena. An alternative cross-

section was required and, as a first step towards its design an investigation of ground 

conditions was set out. It was also decided to build a reinforced curved invert in a 300 m long 

stretch of the tunnel where heave rate reached maximum values. Stress cells were installed at 

the concrete-claystone interface to measure swelling pressures. The invert was designed as a 

temporary structure to gain information on the swelling potential of the ground and it was 

designed for a swelling pressure of 0.5 MPa which may be considered moderate in view of the 

values recorded later.  

In addition, boreholes 15 m long with continuous core recovery were drilled along the tunnel 

floor. Some of them were equipped with high precision “sliding micrometer” extensometers 

(Kovári and Amstad, 1982). They were arranged, in groups of three, in several cross-sections 

along the tunnel. Vibrating wire piezometers were also installed in the same monitoring 

sections, at varying depths. 

It was also decided to investigate the performance of a circular cross-section, which would 

require the excavation of the tunnel invert. The design approach was to build three cylindrical 

stretches inside the tunnel and to test them at full scale. The ring structures were equipped 

with load cells at the concrete-ground interface and the lower section was flooded during the 
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entire period of measurements making sure that, by means of holes drilled through the lining, 

water arrived freely to the claystone. The purpose of these tests was to approximate the worst 

expected swelling conditions with a view of designing the final cross-section properly. 

The investigation therefore offered the possibility of comparing three widely different cross-

sections within relatively short distances and common expansive ground conditions: an 

unreinforced flat-slab, a moderately reinforced curved invert and a circular massive lining 

under three supporting conditions: full support and two different yielding support conditions 

(Kovári et al, 1988). The position of the different support conditions along the tunnel is given 

in Figure 3.2(c). The response of the three types of support will be analysed in the next 

sections. 

Table 3.2 provides a mineralogical description of the undisturbed claystone. The table 

summarises X-ray diffraction analysis of small samples from cores taken in vertical borings 

drilled from the tunnel floor in the northern part of the tunnel. The clay matrix (illite and 

paligorskite) dominates the composition. Anhydrite is also present in a substantial proportion. 

Gypsum is also present but in small percentages. The table does not provide an accurate 

description of the complexity of the formation. Some samples were found to be pure 

anhydrite, in others anhydrite was absent and dolomite was dominant. Smectite was never 

detected, however. Therefore, clay related swelling was disregarded as a possible explanation 

for the observed heave. 

More accurate and useful information is provided by a continuous record of properties along a 

boring performed from the tunnel floor. This is shown in Figure 3.7 for the upper 10 m of a 

boring located at chainage 411 + 600 in a zone of maximum heave rate. In fact, the plot 

integrates the results of two nearby borings drilled in the same cross-section at two different 

times: October 2002 and March 2003. The figure provides information on the variation with 

depth of water content, specific gravity, total density and gypsum, anhydrite and matrix 

mineral components. In addition, vertical strains in depth measured in the same location in 

March and December 2003, are also represented.  

The strain record measured in December 2003 provides precise information on the extent of 

an upper “active” zone where swelling strains are being developed. It has a thickness of 5.5 

m. Below, in the stable zone, identification indices of claystone, including mineralogy, remain 

essentially unchanged. The active zone can also be easily identified by the evolution of water 
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content and total density. Water content increased in a period of 6 months from values found 

in the undisturbed formation (2 - 4%) to values in the range 5 - 10%. This is reflected in the 

parallel decrease in total density.  

Table 3.2. Mineralogy and geotechnical indices of undisturbed Lilla claystone 

Minerals: relative content 

Quartz: % 2 – 7 

Dolomite: % 11 – 13 

Anhydrite: % 13 – 28 

Gypsum: % 0 – 7 

Clay (Illite and Paligorskite): % 51 – 67 

Physical and mechanical indices 

Specific unit weight 2.82 – 2.90 

Water content: % 0.5 – 4.5 

Total density: Mg/m3 2.40 – 2.86 

Unconfined compressive strength: MPa 17 – 170 

 

 

Figure 3.7. Geotechnical and mineralogical characterization of the rock at the chainage 411 + 600 

(invert-arch) and vertical displacements measured by the sliding micrometer installed in the axis 
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The plot of variation of gypsum content with depth is very significant. Within the stable zone 

gypsum content is low to very low. Above the lower limit of the active zone the gypsum 

content increases progressively to values of 15-18% in the upper part. Anhydrite maintains a 

high concentration (25-50%) throughout the vertical profile although low concentrations seem 

to predominate in the active zone. The plot suggests that within the active zone gypsum 

content has increased at the expense of anhydrite. Interestingly, the occurrence of anhydrite in 

the rock was unnoticed at the design stage and all sulphate minerals were assumed to be 

gypsum (San Dimas, 2002).  

Water content is a measure of the degradation of the rock and some relation between water 

content and sulphate content, in the sense of increasing sulphate content with water content 

could be expected. This is not apparent in Figure 3.8 although Figure 3.7 shows an increase in 

gypsum solid content in the upper levels of the active layer, characterised also by a significant 

increase in water content. 

 
Figure 3.8. Variation of total sulphate content with water content within the stable and active zones  

 

3.5 Crystal growth in the active zone 

The material recovered from boreholes performed from Lilla tunnel floor was studied in 

detail. In this section some observations made in cores extracted from the active zone under 

Lilla tunnel are reviewed. They provide useful information to understand the mechanisms 

involved in the swelling phenomenon described in Chapter 5.  

Cores recovered from the active zone under the Lilla tunnel show the growth of small gypsum 

crystals in several geometrical arrangements. Some photographs have been collected in Figure 

3.9 to Figure 3.13. Figure 3.9 shows thin monoclinic gypsum crystals in a claystone 
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discontinuity crossing a core recovered from a depth of 4.2 m, inside the active zone 

identified at chainage 411 + 600, below the invert testing section. Figure 3.10 shows 

monoclinic gypsum crystals apparently developing along a discontinuity. Gypsum crystals 

were also found to group in “rosettes” as shown in Figure 3.11. The core in this case was 

recovered 20 cm below the core in Figure 3.9. On occasions rosettes were found to cover rock 

discontinuities almost completely, as shown in Figure 3.12. Rosettes, when confined between 

two planar claystone surfaces, also exhibited two planar boundaries (Figure 3.13). The 

impression is that rosettes, in their growing, were pushing apart the two planar surfaces 

forming the claystone discontinuity. 

 
Figure 3.9. Thin gypsum needles observed in a claystone discontinuity in a core recovered from depth 

4.2 m at chainage 411 + 600 

 
Figure 3.10. Gypsum needles growing in a discontinuity of the claystone 
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Figure 3.11. Gypsum “rosettes” observed in a claystone discontinuity in a core recovered from depth 

4.4 m at chainage 411 + 600 

 

 

Figure 3.12. Gypsum “rosettes” covering a discontinuity 
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Figure 3.13. Detail of a planar gypsum “rosette” deposited in a claystone discontinuity 

 

3.6 Performance of flat-slab floor 

In March 2003, six months after the initial detection of floor heave and two weeks after a 

moderate rain, a strong heave, which badly damaged the concrete slab, was detected at 

chainage 411 + 880 (Figure 1.1). The intense heave was attributed to the uncontrolled 

presence of water on the tunnel floor. It was also observed that the central longitudinal 

drainage tube was damaged and interrupted at some points. The average heave rate explaining 

the displacements observed in Figure 1.1 is close to 2 mm/day. 

In general, heave affecting the flat-slab evolved systematically at high rates, without any 

indication of stabilisation. This is shown in Figure 3.14, which indicates approximately 

constant heave rates varying between 1.2 and 2 mm/day for a few monitored points. In 

December 2003, heave displacements in the range 513-763 mm were measured at chainages 

(411 + 420, 411 + 880 and 411 + 900). Sliding micrometer measurements during ten months 

of monitoring -from February 2003 to December 2003- allowed the identification of an active 

upper zone, 4 m thick (but somewhat thicker under the tunnel axis), within the foundation 

claystone, below the flat-slab, in which expansions accumulated with time (Figure 3.15). The 

thickness of this active zone remained basically unchanged during the monitoring programme. 

In this figure a circular section that completes the circumference defining the tunnel vault has 
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been sketched. The figure suggests that the extension of the active zone may be related to the 

tunnel diameter. One of the arguments favouring the design of a new circular section as 

shown in Figure 3.15 was that the necessary excavation would remove the active zone and the 

heave phenomena would be circumvented. Unfortunately the foundation claystone reacted in 

a different manner, as described below.  

 

Figure 3.14. Evolution of the floor heave between September 2002 and December 2003 in the 

indicated tunnel sections with flat-slab 

Thirteen months after the first levelling of the tunnel floor, measured heave evolved in the 

manner indicated in Figure 3.2(d). The 300 m long zone close to the northern portal 

exhibiting small, but noticeable, displacements corresponds to the position of the curved 

invert, which was cast in place in January 2003. The curved invert was very efficient in 

reducing further floor heave.  

The maximum displacement recorded (800 mm) is very large, among the highest reported in 

tunnels built in Gipskeuper formations in Central Europe (Wichter, 1985; Nagel; 1986; 

Fecker, 1992; Paul & Wichter, 1996; Paul & Walter, 2004; Kovári, & Chiaverio, 2007; 

Steiner et al., 2011) as can be observed in Figure 2.4(a). The heave intensity decreased 

towards the southern portal. A 400 m long stretch, immediate to the south portal, did not 

exhibit any swelling. However, geological conditions were reported to be similar along the 

entire tunnel. This apparent inconsistency will be discussed in Chapter 5. 
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Figure 3.15. Relationship between the depth of the active zone below test sections with flat-slab and 

the maximum radius of excavation. 

 

3.7 Performance of curved invert 

Figure 3.16 shows the design of the curved invert built in January 2003 between chainages 

411 + 556 and 411 + 860. It has a moderate curvature and it was anchored in the two 

longitudinal concrete massifs supporting the abutments. The invert was designed to resist a 

swelling pressure of 0.5 MPa. This was close to the maximum value recorded in a swelling 

pressure test performed on an undisturbed sample recovered in October 2002 from a depth of 

2.50 m below the floor slab at chainage 411+480, which is located in a very active swelling 

zone (see Figure 3.6). The curved invert was installed in two stretches: the first one located 

between chainages 411 + 556 and 411 + 750 (194 m long) and the second one between 

chainages 411 + 750 and 411 + 860 (110 m long). The reason was to test the performance of 

two different invert thicknesses: 400 mm in the first case and 600 mm in the second case. 

Measured heave rates reduced by more than one order of magnitude but they did not show 

any indication of slowing in the measuring period of 320 days (Figure 3.17). At chainage 411 

+ 663 a maximum heave of 27 mm was measured 10 months after invert construction. In this 
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position, the mean heave rate was 0.1 mm/day. Therefore, despite the invert’s ability to 

reduce the heave, the invert did not provide a rigid reaction and the measured pressures 

against it cannot be considered “swelling pressures”, a concept which implies no volumetric 

deformations. Measured pressures against the invert will be smaller than the pressures against 

a support designed on the basis of a resistance principle (no yielding).  

 

Figure 3.16. Design of invert 

 
Figure 3.17. Evolution of floor heave between January and December 2003 in test sections with invert 

Figure 3.18 indicates the longitudinal and transverse variation of pressure, at the end of the 

measuring period (December 2003), recorded in the measuring cells. Maximum values are 
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close to 5 MPa but the distribution in a cross-section as well as along the tunnel is very 

irregular. At a given cross-section the supporting action of tunnel abutments leads to higher 

pressures than the values measured in the more deformable central position. The measured 

heave of points on the floor is also given.  

 

Figure 3.18. Pressures against stress cells and heave measured in the tunnel invert test sections during 

the period January-December, 2003 

Stress cells were regularly measured during 600 days. The pressure-time plots (Figure 3.19) 

show a general trend towards stabilisation in a natural time scale. However, several cells in 

Figure 3.19 maintained an increasing rate of pressure development at the end of the measuring 

period. The effect of the invert thickness was not apparent in the measured contact stresses.  

Sliding micrometers were also installed under the invert at chainage 411 + 600 (invert 

thickness: 400 mm). Total strains recorded in the period February-December 2003 are given 

in Figure 3.20. An active zone has again developed despite the confinement offered by the 

curved invert. Instrument EIC-1, close to one abutment, measured some compression in the 

upper part, a result to be expected under increased confinement. The thickness of the active 

zone has now reached values close to 6 m under the invert at the tunnel axis. It appears that 

the moderate excavation required to install the invert has contributed to extending the initial 

active zone, which was confined roughly inside the circular section also indicated in Figure 

3.20. 

Vibrating-wire pore water pressure sensors were installed at depths of 2 m and 5 m below the 

invert at chainage 411 + 600 inside the active layer. They reacted fast (Figure 3.21) and a 
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water level close to the invert-claystone interface was measured. The quick stabilisation of 

piezometric levels is an indication of a high permeability in the claystone within the active 

zone. 

 
Figure 3.19. Development over time of swelling pressure recorded by some stress cells under invert 

 
Figure 3.20. Sliding micrometers readings below the test section 411 + 600 with invert-arch of 400 

mm; recorded strains in the period February-December 2003. 
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Figure 3.21. Piezometer readings in the test section 411 + 600 (invert-arch 400 mm thick) 

 

3.8 Performance of circular testing sections 

Three circular testing sections were built into the tunnel in the position shown in Figure 3.2(c) 

(chainages 412 + 543 to 412 + 593). The tunnel floor had to be excavated to complete the 

circular geometry. Each one of the sections was intended to test a design criterion: a resisting 

support in which the rigid concrete lining reacts against the excavated rock (chainages 

412+543 to 412+565), a yielding support, composed by a set of springs (Figure 3.22(b) and 

Figure 2.17) (chainages 412+571 to 412+581), allowing for the shortening of the tunnel lining 

under the circumferential load imposed by the ground swelling and a second yielding support 

below the invert, built by means of a 40 cm thick foam layer (chainages 412+583 to 

412+593). Figure 3.22 shows details of the three designs. It was also accepted that the most 

critical conditions would be met if the rock under the invert could be artificially wetted. 

The circular geometry involved a maximum excavation of 4 m under the original flat-slab. It 

was argued that a positive aspect of this excavation was the removal of a large proportion of 

the active zone which had developed under the original horizontal slab floor. In addition to 

the structural advantage of a circular cross-section, the swelling activity would be reduced. In 

all three sections a careful mechanical excavation was carried out to minimise further rock 

damage. 
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           Resisting support                                                           Yielding support 

    
                       (a)                                                          (b)                                                  (c)  

Figure 3.22. Circular test sections with resisting and yielding supports: (a) rigid section; (b) section 

with springs; (c) section with foam 

The three circular sections were built between May and August 2003. Vertical holes, drilled 

through the concrete lining (Figure 3.23) allowed the free passage of water when the tunnel 

sections were partially inundated. The water used in the test was natural groundwater 

collected in the tunnel area. The composition of this water is given in Table 3.3. The sulphate 

concentration of this water is high, but it does not reach saturation conditions which, for a 

temperature of 15ºC is 2.03 g/l of calcium sulphate in the case of equilibrium in the presence 

of gypsum and 3.2 g/l of calcium sulphate in the presence of anhydrite.  

Sliding micrometers and pressure cells were also installed to monitor the performance of the 

three sections. A pervious geotextile mat was also placed at the rock - concrete contact, 

connected to the wetting holes, to facilitate a regular distribution of water on the rock surface. 

Flooding was initiated on 19 September 2003. A shallow free water level was maintained in 

the tunnel sections for 30 days. Then, the water was removed. Monitoring of instruments 

lasted an additional period of 400 days. Figure 3.24 provides the main results. The figure also 

shows the instrumentation layout which was installed in a centred cross-section of each one of 

the three designs tested: Five pressure cells at the concrete-rock interface (or concrete-foam in 

one of the yielding support designs) and two vertical micrometers, 12 m long.  

The pressure cells of the full support case immediately reached a maintained rate of pressure 

increase. Interestingly, the rise in pressure was previous to the flooding stage, which, on the 

other hand, did not have any apparent influence on the rate of increase of pressure. As 

expected, pressure records on the two cases of yielding support exhibited much lower 
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pressure values, especially in the case of springs. In the yielding sections the pressure rise 

started soon after the pressure cells were in operation and reached, in some cases, a limiting 

value. However, some of the cells also recorded a linear increase of stress with time, which 

lasted for the entire testing period. 

Table 3.3. Chemical composition of the groundwater used in the flooding test. Chainage 412 + 552; 

date 23 September 2003; water temperature 18.2 ºC 

Macroconstituent Concentration: mg/l 

Sulphates (SO4
2-) 1072.60 

Bicarbonates (HCO3-) 278.35 

Chlorides (Cl1-) 68.84 

Nitrates (NO3
1-) 4.15 

Calcium (Ca2+) 398.57 

Magnesium (Mg2+) 67.25 

Sodium (Na1+) 66.00 

Potassium (K1+) 15.40 

pH 7.74 

Electrical Conductivity at 20ºC: /S cm  2002 

 

Extensometer records indicated that a new active zone had developed under the invert of the 

circular sections. Extensometers under the foam section could not be monitored, however. 

The active zone reached a thickness varying between 4 and 6 m, a thickness also found in the 

flat and curved invert sections. Plots showing the swelling strains measured at varying depths 

within the active layer are given in Figure 3.25. Data from the resisting support and the 

yielding support (spring) are combined in the same figure. Strains increase fast initially and 

then the increase progressively slows down, although no indication of an asymptotic trend 

towards stabilisation is observed. Swelling rates are higher in the yielding support case, which 

is an important piece of information for the establishment of criteria for the design of the 

tunnel support, discussed in the next section. 
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                                                                     (a) 

    
                             (b)                   (c) 

Figure 3.23. Details of the system for the flooding test in circular sections with resisting and yielding 

supports: (a) design of cross-section and boreholes to allow wetting the rock; (b) test section before the 

start of test; (c) flooded test section 

 

3.9 Tunnel reinforcement 

Despite the smaller short term swelling pressures recorded in the yielding support designs, 

their long term performance was not so clear. The larger deformations allowed by the yielding 

support solutions could induce an additional damage to the rock in the active layer, possibly 

leading to an enhanced swelling activity. A circular lining based on the resistance principle 

was therefore selected and a reinforced circular cross-section was adopted for the entire 

tunnel. It was also appreciated that it guarantees a minimum risk of rail track displacements. 
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The new reinforced concrete tube was to be built inside the original horseshoe shaped section. 

A design swelling pressure of 4.5 MPa was also adopted. This pressure was close to the 

maximum recorded in loading cells monitoring the ground reaction against the invert testing 

section (Figure 3.19). 

 
Figure 3.24. Total radial pressures against inverts and sliding micrometers readings in circular test 

sections  
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Figure 3.25. Swelling strains in the expansive zone below circular test sections. Results are given for a 

reference depth, indicated for each of the plotted curves, and describe the strain measured in a 1 m 

interval (see inset)  

The circular structure was calculated under two-dimensional plane strain conditions. A non-

uniform distribution of pressure against the tube would induce some combination of bending 

moments, circumferential and shear loading. The conservative criterion adopted to define the 

tube thickness and its reinforcement was to select a critical length of pressure application 

against the external surface of the tube leading to the maximum amount of reinforcement. The 

ring was analysed as a circular frame supported by radial and tangential springs representing 

the existing tunnel support and the ground. Calculations were made with the help of a Finite 

Element program. Radial and tangential subgrade coefficients (3.3 x 105 kN/m3 and 1.1 x 105 

kN/m3 respectively) were proposed by Alonso & Sagaseta (2003) adopting a rock elastic 

modulus of 250 MPa. The elastic modulus of the claystone matrix was measured in 

unconfined compression tests equipped with strain gages glued to samples. Measured 

modulus ranged from 8000 to 10000 MPa. However, these are values determined in small 

samples and it was estimated that the deformation modulus of the rock mass, crossed by 
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slickensides and fissures, could amount to 20-50% of the matrix modulus. These 

considerations led to the value of 250 MPa.  

Figure 3.26(a) shows the calculated maximum axial load and bending moment in terms of the 

loading angle  , also shown in the figure. The required steel reinforcement (area of steel over 

the area of the structural section) is shown in Figure 3.26(b) for a liner thickness of 760 mm, 

an 80 MPa characteristic strength of concrete (Ec =30000 MPa) and steel grade BS500S (Es = 

210000 MPa). The selection of the high strength concrete was required to cope with the 

limitations of vault thickness, which in turn derive from the required clearance for the 

circulation of trains. The maximum reinforcement was found for  = 60º for the action of 

radial pressures of 4.5 MPa against the invert and 2.5 MPa against the vault (Figure 3.27). 

These considerations lead to the reinforced section shown in Figure 3.27. 

       
                                              (a)                                                                           (b)   

Figure 3.26. Dependence of (a) the axial force and the bending moment and (b) the total geometric 

reinforcement on the loading angle (Marí & Pérez, 2003, with permission) 

The reinforcement of Lilla tunnel with the new circular resisting support was carried out 

between July 2004 and October 2005. The construction was divided into two main stages: (i) 

excavation and construction of the invert; and (ii) lining of the vault. Due to the existence of 

the original flat-slab along an important stretch of the tunnel -as well as stretches with invert-

arches and circular sections-, it was necessary to guarantee the stability of existing vault 

supports and linings before the demolition of the tunnel floor by means of the installation of 

rock bolts in abutments. Once the abutments were anchored, the tunnel floor was demolished. 

In order to minimise the damage of the rock as a result of excavations, the circular section 

was excavated using pneumatic hammers and roadheaders. Excavated stretches were sealed 

by means of a steel fibre reinforced shotcrete installed to limit changes in water content of the 
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rock and to guarantee the temporary support of the excavation. The tunnel was not 

waterproofed. The new circular lining was concreted directly against the initial 300 mm 

lining. Therefore no geotextile or impervious membrane was placed at the interface between 

the initial lining and the added reinforced tunnel. Two contractors worked on the 

reinforcement, one from each portal. One of them decided to build the steel reinforcement 

frames outside the tunnel in modules, 2.4 m long, and then transport them through the tunnel 

using gantry cranes, before concreting. The other contractor decided to build the 

reinforcement “in situ”. Both achieved a similar performance and speed of construction.  

     
                               (a)                                          (b)                                          (c) 

 
                                                                             (d) 

Figure 3.27. Details of the tunnel geometry and reinforcement: (a) – (c): design hypothesis (Marí & 

Pérez, 2003, with permission); (d) installed reinforcement (ADIF, 2006, with permission) 

The circular section was reinforced with two layers of 8 bars per metre (dia..= 32 mm) (Figure 

3.27). In addition, shear frames and longitudinal bars were also installed. The weight of steel 
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reinforcement amounted to 10 t/m of tunnel length. Circumferential reinforcement reached 

128 cm2/m in vault and 257cm2/m in invert. An image illustrating the tunnel reinforcement is 

given in Figure 3.28.  

 

Figure 3.28. Steel reinforcement in vault and abutments of Lilla tunnel 

 

3.10 Performance of reinforced tunnel 

The reinforced tunnel was instrumented in order to measure the evolution of total radial 

pressures at the rock-lining interface and the straining of the steel reinforcement. A few radial 

pressure cells and vibrating wire strainmeters were installed in the vault (Figure 3.29) but 

most of the instrumentation was concentrated at the invert (Figure 3.29 and Figure 3.30).  

Twenty one cross-sections were instrumented along the tunnel. Significant swelling stresses 

developed in the northern part of the tunnel, from chainage 411 + 240 to chainage 412 + 700. 

The southern part of the tunnel, from chainage 412 + 700 to the southern portal was only 

slightly loaded by swelling pressures. The reason for this behaviour is discussed later in the 

Chapter 5. Maximum swelling pressures recorded by the total pressure cells in the period 

2005-2011 are plotted in Figure 3.2(e), they were recorded in cells installed at the invert, and 

maximum stresses measured in the steel reinforcement are indicated in Figure 3.31. The 

measured response of the tunnel is now discussed in more detail.  
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Figure 3.29. Typical instrumented section of reinforced tunnel with instruments in vault and invert 

 

Figure 3.30. Typical instrumented section of reinforced tunnel with instruments installed only in invert 

Pressure-time records measured at seven cross-sections, covering the period 2005 - 2011, are 

plotted in Figure 3.32 to Figure 3.38. They provide a summary of the observed behaviour. 

Recorded stresses in reinforcement bars are also given. In two cases (Figure 3.37 and Figure 
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3.38), measured hoop stresses in the concrete lining, recorded in pressure cells oriented 

radially, are also given. The figures provide the location of sensors. 

 
Figure 3.31. Maximum stresses in reinforcement recorded in the period from Jan. 2005 to Dec. 2011 

Several radial pressure records show a sudden increase in pressure around May 2005. This 

behaviour seems to be related to the concreting of the vault, which was performed once the 

entire circular tunnel invert had been built. The vault closed the circular section and offered a 

strong resistance to swelling which resulted in a rapid increase in recorded pressures. A 

second systematic increase in pressure was recorded in October 2006. No structural changes 

had taken place in the tunnel since the conclusion of the works in June 2005. The reactivation 

may be a response to a transient change to hydrogeological conditions. In fact, heavy rains 

were recorded in the area in September and October 2006. Rainfall peak intensity reached a 

value of 55.6 (l/m2)/day, the highest value recorded in a six-year period (Figure 3.39). 

In some cases the pressure records show a levelling of the pressure after a few years of 

continuous increase. However, some of them show a significant increase in pressure with time 

at the end of the measuring period represented in the figures. For instance, pressures in two 

loading cells at chainage 411 + 826 increase at a rate of 70 kPa/month. Maximum recorded 

values stay in the range from 5 to 6.7 MPa, but the records indicate that these values tend to 

be essentially stabilised.  

However, the most significant result is the extreme variability of recorded radial pressures in a 

given section. This is well illustrated, for instance, in the pressure records measured in 

sections at chainages 411 + 348, 411 + 468 and 411 + 707: One pressure cell may register 

values in excess of 5 MPa, while the remaining cells in the section, closely located, register 

very low or even no pressures. This general result is illustrated in the plots given in Figure 
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3.40. Even if some recording errors may be accepted for pressure cells in contact with the 

natural claystone and also acknowledging that six loading cells installed in a given cross-

section, at the invert, do not provide a continuous distribution of pressures, it is clear that the 

ground response is fundamentally different from the loading assumptions made at the design 

stage of the circular reinforcement. This is so not only because of the variability in the 

transversal direction, but also for the expected variability in the longitudinal direction. The 

implications are positive because the built massive reinforced concrete tube is well prepared 

to resist a three-dimensional heterogeneous distribution of “point loads” on its outer 

boundary. 

In fact, Figure 3.32(b), Figure 3.33(b), Figure 3.34(b), Figure 3.35(b), Figure 3.36(b), Figure 

3.37(d)-Figure 3.37(f) and Figure 3.38(e)-Figure 3.38(g) seem to support this positive 

conclusion. They provide the stresses calculated at several positions of the reinforcement bars. 

In the case of invert reinforcement the plots refer either to a reinforcement located close to the 

outer circular boundary or to a horizontal reinforcement close to the upper boundary of the 

invert. In almost all cases the measured stresses are compressive stresses. Their value is rather 

low: maximum values are seldom greater than 13 – 14 MPa. If compatibility of deformations 

is accepted for the reinforcement bars-concrete interface, stresses in the concrete do not reach 

2 MPa, a very small value. Stresses in the vault reinforcement bars are also very small (Figure 

3.37 (d) and Figure 3.38 (e)). 

Radial stresses against the vault (Figure 3.37(a) and Figure 3.38(a)) and hoop stresses in the 

concrete (Figure 3.37(c), Figure 3.38(c) and Figure 3.38(d)) were also measured in some 

cross-sections. Radial pressures against the vault are very small (less than 0.12 MPa), a result 

which is explained by the likely absence of water in the rock behind the vault. Hoop 

compression stresses in the vault and invert remain small: Less than 0.5MPa – 2 MPa.  

It is concluded that the heavily reinforced high strength concrete circular lining works in 

compression despite the extremely high swelling pressures recorded in some positions. The 

structure is capable of transforming the highly heterogeneous swelling pressure distribution 

into a ring of small compressive stresses. The steel reinforcement is also under compressive 

stresses at virtually all measuring points. The magnitude of the stresses is small, very far from 

yielding conditions.  
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(a)   

(b1)  

(b2) 

Figure 3.32. Monitoring results of reinforced Lilla tunnel. Chainage 411 + 348 (see also Figure 3.2): 

(a) pressure cells; (b) stresses in reinforcement 
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(a)   

(b1)  

(b2) 

Figure 3.33. Monitoring results of reinforced Lilla tunnel. Chainage 411 + 468 (see also Figure 3.2): 

(a) pressure cells; (b) stresses in reinforcement 
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(a)   

(b1)  

(b2) 

Figure 3.34. Monitoring results of reinforced Lilla tunnel. Chainage 411 + 590 (see also Figure 3.2): 

(a) pressure cells; (b) stresses in reinforcement 
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(a)   

  

(b1)  

(b2) 

Figure 3.35. Monitoring results of reinforced Lilla tunnel. Chainage 411 + 707 (see also Figure 3.2): 
(a) pressure cells; (b) stresses in reinforcement 
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(a)    

(b1)  

(b2) 

Figure 3.36. Monitoring results of reinforced Lilla tunnel. Chainage 411 + 826 (see also Figure 3.2): 
(a) pressure cells; (b) stresses in reinforcement 
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(a) 

(b)  

(c) 
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(d) 

    

(e) 

(f) 

Figure 3.37. Monitoring results of reinforced Lilla tunnel. Chainage 412 + 080 (see also Figure 3.2): 

(a) radial pressures against vault; (b) radial pressures against invert; (c) hoop stresses in vault; (d) 

stresses in vault reinforcement; (e) and (f) stresses in invert reinforcement 

 

 

 

 

 

 

Levelling of the rail tracks performed routinely since the beginning of the commercial 

operation of the railway line in February 2008 do not indicate any observable deformation in 

the Lilla tunnel. 
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(a)   

(b)  

(c) 
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(d) 

   

(e) 

(f) 

(g) 

Figure 3.38. Monitoring results of reinforced Lilla tunnel. Chainage 412+680 (see also Figure 3.2): (a) 

radial pressures against vault; (b) radial pressures against invert; (c) hoop stresses in vault; (d) hoop 

stresses in the invert; (e) stresses in vault reinforcement; (f) and (g) stresses in invert reinforcement 
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Figure 3.39. Daily rainfall measured in the vicinity of Lilla tunnel during the period January 2004 – 

January 2010. Data provided by the Servei Meteorològic de Catalunya 

 

 

Figure 3.40. Measured distributions of radial pressures in the three sections indicated in Dec. 2011 

 

3.11 Conclusions 

The case of Lilla tunnel has provided interesting information on the initiation and 

characteristics of swelling phenomena in tunnels excavated in anhydritic claystone. The 
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lessons learned support, in part, existing knowledge and experience gained in Western and 

Central Europe, as described in references given in the Chapter. The geologic formation 

involved at Lilla (a Tertiary claystone) is substantially younger than the Triassic evaporitic 

claystone described in the mentioned references. In general terms, Triassic materials have 

experienced a more intense tectonic activity than Eocene sediments. Lilla tunnel is located on 

the border of a large basin (the Ebro basin), which is dominated by horizontal layering. 

Tertiary evaporitic claystones in the central part of the basin are known to have experienced a 

limited tectonic activity after deposition. However, the border position of Lilla dramatically 

changes the situation, which has been illustrated in Figure 3.1. This is an indication of the 

relevance of internal shearing and damage of sulphated rocks in the development of swelling 

phenomena triggered by tunnelling (see Chapter 5).  

Published field heave records of tunnels may exhibit a very slow development. Berdugo 

(2007) compared data of heave measurements from different cases. This comparison indicated 

that Lilla provided one of the fastest rates of development of floor heave and swelling 

pressures against the invert. Decisions during reconstruction of Lilla tunnel were taken on the 

basis of observations extending a few years, but the collected experience in other tunnels was 

also present during the process of reinforcing the tunnel. A few years may be a relatively short 

time to investigate the swelling process but it is a long time to adopt design decisions for a 

new high speed railway line. Nevertheless, the field data obtained during the design stage was 

very relevant for design. For instance, a significant proportion of time records of swelling 

pressures exhibited trends indicating the proximity of asymptotic swelling pressure values. 

These records provided invaluable help to establish design criteria which has worked 

satisfactorily up to date as discussed in some detail in the section devoted to interpret the 

performance of the reinforced tunnel. Lining stress records reported in the Chapter are 10 

years old and they show a stressing far below the design calculations. It can be concluded that 

the reinforcement design was very conservative but this is a conclusion which could hardly be 

reached at the time of designing the reinforcement. 

The explanation of the swelling mechanisms and the conditions leading and favouring the 

expanding phenomena in sulphated rocks and in particular in the case of Lilla tunnel are 

analysed in Chapter 5.  
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Heave of a railway bridge induced by gypsum 

crystal growth: Field observations 

 

 

The investigation on the mechanisms involved in the swelling behaviour reported in several 

tunnels crossing sulphated formations was extended to another relevant case namely the heave 

experienced by Pont de Candí railway bridge, located next to Lilla tunnel North Portal.  

The central pillars of a bridge belonging to a recently built high-speed railway line 

experienced an unexpected and continuous heave after the end of construction. Pillars were 

founded on 3x3 pile groups capped by a rigid slab. The tips of piles supporting the central 

pillars reached a hard Tertiary anhydritic claystone. Deep extensometers allowed the 

identification of an active layer, 12-15 m thick, located below the pile tips. Observations in 

recovered cores suggest also that heave is induced by the growth of gypsum crystals in 

discontinuities of the anhydritic claystone. No heave was observed in gypsum rich claystones 

located above the anhydritic layer. Heave rate has been reduced to a small value by the weight 

added by an embankment 33 m high which partially fills the original valley. The geotechnical 

investigation campaign, “in situ” tests and field observations are described in this Chapter.  
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The case will be discussed again later in the Thesis. A hypothesis explaining the role of the 

bridge construction in the triggering of a dormant heave phenomenon will be described in 

Chapter 5. In Chapter 7 a model developed to consider the generation of deformations from 

the precipitation of gypsum crystals will be described in detail and the measured heave in 

Pont de Candí will be simulated. 

 

4.1 Introduction 

Soon after the end of construction, a long railway bridge, founded on large-diameter (1.65 m) 

bored piles, 20 m long, experienced a sustained heave of its central pillars. Trains are 

expected to circulate at speeds in excess of 300 km/h over the bridge, and therefore the 

problem raised by the unexpected heave was of great concern. 

The case is believed to be unique, and no reference to similar cases has been found in the 

literature. The closest case histories have been described in connection with tunnel 

performance in claystones containing sulphate species, mentioned in previous Chapters. They 

provided an interesting background for the case described here; however, it was also found 

that the understanding of the heave phenomena and the modelling capabilities were 

insufficient to explain the observations of bridge behaviour and to design remedial measures. 

Recently, a case of damage to an historic town induced by drilling through anhydrite 

formations, which has some similarities to the case described here, has been reported by Sass 

& Burbaum (2010). The French town of Lochviller is experiencing also heave which is 

apparently being related to the development of expansions in an anhydritic stratum.  

The chapter starts with a description of the problem. The bridge and its heavy piled 

foundation will be described, as well as the initial levelling measurements that triggered the 

alarm. Then, the geology and the geotechnical properties of the foundation soils and rocks 

will be given. Field observations of the ground heave at the soil surface and at depth will be 

presented and discussed as well as the results of cross-hole hydraulic tests performed. The 

basic heave mechanism has been associated with gypsum crystal growth at depth, below the 

piles tip. The origin of the swelling behaviour is a complex phenomenon, which will be 

described and supported by field observations and some laboratory tests. The chapter ends by 

describing some remedial measures adopted to reduce the heave rate experienced by the 

bridge. 
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The case is further analysed in Chapter 5 and Chapter 7, which describe a conceptual scenario 

for the heave mechanism. The problem will be cast in terms of equilibrium and conservation 

equations in a porous media whose solid component includes inert particles, as well as soluble 

components (anhydrite and gypsum) able to dissolve or precipitate. Model calculations will 

be compared with actual field heave records in Pont de Candí. 

 

4.2 Bridge performance 

One of the main bridge structures of the recently built Madrid-Barcelona high-speed railway 

in Spain is the Pont de Candí viaduct (Figure 4.1). It is located between the Camp Magré 

tunnel and the Lilla tunnel; these tunnels also experienced swelling problems (Alonso et al., 

2004, 2007). The bridge was built in the period 2001-2002. The construction of the viaduct 

finished in July 2002. The bridge deck was set in place by a pushing method. The double 

railway line is supported by a prestressed continuous trapezoidal concrete box girder, 413 m 

long, having ten spans (35 m; 8 spans of 43 m; and 34 m), which is anchored in one abutment 

(Figure 4.2). In plan view the bridge has a constant curvature radius of 7250 m and a 

longitudinal descendent constant gradient of 1.815% from abutment E1 to E2 (Figure 4.2). 

The upper deck is supported by long pillars (pillars P1 to P9); the height of the pillars varies 

from 11 m to a maximum of 55.9 m in the centre of the valley (pillar P5). The pillars have a 

rectangular box cross section of 3.5  5.9 m at the top. Each of the bridge pillars is supported 

by a group of 3  3 large-diameter (1.65 m) bored piles, 20 m long on average, as shown in 

the longitudinal profile in Figure 4.3. In pillars P1, P2 and P9, the thickness of the pile cap is 

3 m, whereas in pillars P3 to P8, the pile cap thickness is 3.5 m. 

Systematic levelling of the railway tracks, carried out by the railway administration 

immediately after construction, revealed the progressive development of vertical 

displacements of the viaduct central pillars, especially pillars P5 and P6. Heave profiles 

plotted in Figure 4.4 for two dates show the pattern of heave, which mainly affected the 

central pillars. Heave accumulated at rates ranging from 5 to 10 mm/month. 

The reason for this anomalous behaviour was not clear. The massive deep foundations of the 

pillars could hardly experience significant vertical displacements induced by a shallow 

swelling layer. In fact, the piles were socketed in a rigid stratum of anhydritic claystone, 

which could resist any swelling strains that might exist along the pile shafts. 
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Figure 4.1 The Pont de Candí viaduct in December 2007 

 
Figure 4.2. Pont de Candí viaduct: (a) longitudinal section; (b) cross-section  

Levelling records of the bridge deck indicated that pillars were also experiencing small 

rotations and not only a vertical displacement. Horizontal displacements in longitudinal and 

transversal direction were also measured at the top of central pillars (Table 4.1). The deck was 

supported by means of bearings that were free to move in the longitudinal direction. The 

observed pillar rotation was a result of the rotation of the pile cap. Table 4.1 indicates that the 
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distance between pillars P5 and P6, at the deck level, was opening at an average rate of 12 

mm/year. However, the bearings restrained the motion in the transversal direction. As a result, 

the pillar rotations led to a relative motion between deck and pillar, which was resisted by the 

restraining system of the deck bearings. The support system was close to its strength limit in 

August 2008. 

The progressive heave was compensated at the bridge deck level by shortening the bearing 

supporting structures. There is a limit to this solution, and it became clear that a geotechnical 

remedial measure had to be found. 

 

Figure 4.3. Geological profile along Pont de Candí viaduct  

 

Figure 4.4. Heave profiles in August and September 2007. Initial reading: September 2002 
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Table 4.1. Measured longitudinal and transversal movements at the top of central pillar for the period 

September 2002 to August 2007. Positive longitudinal movements follow the direction from abutment 

E1(North) to E2 (South). Positive transversal displacements go towards the East direction (Figure 4.2). 

Measurement point in pillar 

(Top of pillar, close to deck) 

Longitudinal displacement 

(cm) 

Transversal displacement 

(cm) 

P4 -9.60 5.00 

P5 -21.96 6.50 

P6 36.70 -2.10 

P7 7.30 5.00 

 

4.3 Geological background 

The valley crossed by the bridge is located in the eastern boundary of the large Ebro River 

depression. The valley is the result of intense tectonic action which resulted in faults and 

folded strata. Sediments belong to old Tertiary formations. Piles were founded on the so-

called "Red Formation", which belongs to the lower-medium Eocene. Red claystones, with 

variable contents of gypsum and anhydrite, dominate the red formation. Thin levels of 

sandstone, poorly cemented, are also present at the bottom of this formation. At the top, white 

fibrous veins of gypsum exhibiting a high lateral continuity are found. Often these veins are 

arranged in a lattice, which is the result of tectonic thrust. Covering these materials and 

partially filling the paleo-relief, alluvium and colluvium soils of moderate thickness are 

found. These Quaternary deposits are described as a mixture of a silty and sandy clay matrix, 

limestone gravels and boulders, which have not experienced long transport distances. 

Structurally the valley is located between the Ebro River depression and a mountain range, 

subparallel to the Mediterranean coast, known as the “Prelitoral” chain. Horst (elevations) and 

graben (trenches) structures affect Tertiary formations, as well as more ancient rocks. The 

Pont de Candí valley is the result of intense tectonic action, which resulted in faults crossing 

the valley and folded claystones. 

The geological profile along the bridge established with the help of data provided by the 

borings performed will now be described in more detail (from top to bottom; refer to Figure 

4.3). 
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4.3.1 Quaternary sediments 

A relatively thin mantle of colluvium soils (its average thickness is around 3 m) covers most 

of the valley slopes and bottom. Its maximum thickness is 6 m, between pillars P4 and P5. 

The colluvium is a mixture of a low plasticity silty clay matrix and subangular gravels and 

blocks whose size varies widely from a decimetre- to a meter-based scale. A stream of 

alluvium soils covers the bottom of the valley. Its composition is similar to the colluvium 

although blocks tend to be smaller and rounded; the sand/silt content of the fine matrix also 

increases. 

 

4.3.2 Tertiary formations 

An upper brown plastic clay level follows the Quaternary soils. Bridge foundations are 

entirely located in Tertiary deposits (Figure 4.3). The upper unit of brown plastic clay 

increases in thickness from the centre of the valley (510 m) to the upper levels (up to 25 m at 

the position of pillars P3 and P8). The non-clay minerals of this clayey formation include 

gypsum, dolomite, calcite and quartz. 

The profile of Figure 4.3 indicates that this clay layer rests directly on the lower claystone 

substratum in the central part of the valley. However, an intermediate gypsum layer appears 

under the valley slopes, suggesting a dissolution of gypsum under the valley bottom by 

running waters before the upper clay unit was deposited. 

The gypsum layer, eroded and dissolved in the central part of the valley, has an average 

thickness of 15 m. Note the abrupt fossilised slopes in this formation between pillars P4 and 

P5, and between pillars P6 and P7. The gypsum layer is not homogeneous. Interbedded 

centimetric clay layers are often found. These clay layers exhibit a significant lateral 

continuity (tens of metres). X-ray diffraction analysis, as well as optical analysis of thin sheets 

of samples taken from the gypsum unit also reveal the presence of dolomite, calcite and, in 

some cases, anhydrite. 

The lower hard and cemented substratum is the red claystone unit, which provides the name 

for the entire Tertiary formations. Cement is provided by sulphates and carbonates. 

Weathering intensity of upper levels is rated as II-III on a scale from I (unweathered) to VI 

(fully weathered). In a few cores recovered from the central part of the valley a more intense 

weathering has locally been reported. Gypsum is present in a network of crossing veins. 
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A continuous horizontal gypsum layer (0.62 m thick) at mean absolute elevation 263 m 

crosses the red claystone. This gypsum layer divides the claystone unit into an upper and a 

lower level. The gypsum layer was cut by all the borings performed in the area during the 

successive geotechnical investigations, except for some borings performed on the central part 

of the valley between pillars P5 and P6. This feature is interpreted as an indication of past 

dissolution of gypsum by water infiltrating through a fracture or a fault. 

The upper claystone level presents high gypsum content. Microscope analysis of thin sections 

revealed a secondary origin for the gypsum: it was the result of a previous dissolution of 

anhydrite and a subsequent precipitation of gypsum. Anhydrite was not detected in this upper 

level. This upper claystone, which has a higher water content (4 - 9%) than the lower unit, 

will be referred to in the figures as a ‘weathered’ claystone level, or a gypsiferous claystone.  

In sharp contrast, the lower claystone unit below the thin continuous gypsum level has a high 

anhydrite content, a lower water content (1.2 - 4%) and an increased strength. Pile tips of 

pillar P5 cross the dividing gypsum level and enter a few metres into the lower anhydritic 

claystone formation. Piles supporting pillar P6 reach the thin gypsum layer. The remaining 

pillars of the bridge are founded either on the upper weathered claystone formation (pillars P4 

and P7) or in the upper gypsum layer (pillars P3 and P8). 

 

4.4 Geotechnical properties 

Preliminary geotechnical investigations aimed at defining the bridge foundation started in 

October 1999. The first two boreholes were located in both bridge abutments and reached a 

shallow depth (10 m). It was initially suggested that the bridge pillars should be supported by 

means of spread footings. An additional site investigation was performed in 2001. The initial 

geotechnical report at the bridge design stage (1999-2001) was based on 12 boreholes (one 

per pillar except for pillar P1, where two borings were drilled plus two boreholes in 

abutments). Identification and strength tests (unconfined and triaxial undrained tests), as well 

as sulphate and carbonate content tests, were conducted on some of the recovered samples. 

Reference was made in the geotechnical report to an intense network of fibrous gypsum 

precipitated in a system of fractures. These fractures were linked with the horst-graben 

tectonism mentioned before. It was estimated that the network of gypsum veins provided an 

increased strength of the claystone. 
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A longitudinal geotechnical profile was developed, and the pile foundation was defined. Piles 

were conservatively designed on the basis of the undrained strength determined in tests. The 

unconfined compression strength of samples recovered in the claystone formation was often 

greater than 10 MPa. In a few cases, values in the range 0.5 – 10 MPa were measured. Pile 

length was decided to have the pile tip embedded on the gypsum layer (pillars P3 and P8) or 

in the claystone formation (pillars P4 to P7). The base resistance of the piles was defined by 

accepting a conservative undrained strength cu = 0.5 MPa. 

Once the levelling of tracks detected the progressive heave of central pillars, new 

geotechnical investigations were launched in May 2007. A campaign of levelling observations 

of pillars and readings in continuous vertical extensometers in several locations was carried 

out. The necessary borings also provided an opportunity to recover undisturbed samples, and 

to perform some specific tests. Given the nature of the problem there was a specific interest in 

knowing in more detail the distribution of sulphated species in the successive layers. The 

degree of fracturing of the deep substratum was also soon identified as a necessary target of 

the new geotechnical campaign described later. 

The presentation and discussion of results obtained are divided into two parts: the results of 

tests on recovered samples and cores and field monitoring results.  

Most of the new boreholes (Figure 4.5) were performed in the vicinity of the central pillars of 

the viaduct. However, some borings were located upstream and downstream of the central 

pillars - following the direction of the valley - at distances of 100130 m from the position of 

the pillars. In most of the boreholes, a continuous core was recovered. Some of the cores were 

paraffin coated and sent to the laboratory for testing. 

Index properties of the four main Tertiary geological units (upper brown clays, gypsum layer, 

gypsiferous claystone and anhydritic claystone) are given in Figure 4.6(a), Figure 4.6(b) and 

Figure 4.6(c), and in Table 4.2 and Table 4.3. Laboratory results of different borings have 

been collected in plots showing the variation of a given index with depth. 
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Figure 4.5. Positions of surveying boreholes and deep extensometers 

Water content (Figure 4.6(a)) provides a good index to distinguish the different layers. This 

was determined by heating samples to 60ºC to avoid the dehydration of gypsum, which might 

distort the results (gypsum dehydrates at slightly more than 100ºC). The hard claystone 

substratum has a low water content: 4.2%, on average, for the weathered claystone and 2.7%, 

on average, for the anhydritic claystone. Water content is essentially nil in the gypsum layers. 

The upper brown clay is a softer material and the water content increases rapidly when 

moving upwards. These changes are also reflected in the measured dry unit weights shown in 

Figure 4.6(b). 

The degree of saturation was calculated from the measured values of natural unit weight, 

water content and solid unit weight. The results, which are collected in Figure 4.6(c), show a 

significant scatter. Values in excess of 100% are an indication of testing errors. Values close 

to zero are concentrated in elevations where gypsum layers are found. The upper brown clay 

layer is essentially saturated; however, degrees of saturation consistently lower than 100% are 

found in the lower claystone layers. This is a significant result, which helps to define a 

scenario for the observed heave phenomena. Nevertheless, a word of caution should be given 

here, because at low natural void ratios, small changes in water content result in large changes 
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in degree of saturation. These minor changes may result from specimen storage and handling 

in the laboratory. 

(a) 

(b) 

(c) 

Figure 4.6. Variation of (a) natural water content, (b) dry unit weight and (c) degree of saturation with 

absolute elevation 

Additional identification data are collected in Table 4.2. Mean values and the range of 

measured indices are given. Almost all the Tertiary materials in the site exhibit a low 

plasticity. This fact rules out an explanation for the observed heave relying on the hydration 
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of active clay minerals. The table reinforces also the lack of saturation of the lower red 

claystone layers. 

Table 4.2. Average values and range of index tests for Tertiary formations 

Geological formation Brown clays Gypsum 
level 

Upper red claystone

(gypsiferous) 

Lower red claystone 

(anhydritic) 

Dry density, ρd 

(g/cm3) 

1.80  

(1.31-2.30) 

2.41 

(2.31-2.51) 

2.31 

(2.01-2.48) 

2.4 

(2.17-2.63) 

Water content, w (%) 
19.8 

(11.1-38.2) 
- 

4.2 

(0.3-9.2) 

2.7 

(1.3-7.2) 

Solid specific unit 
weight, s/w 

2.65 

(2.57-2.77) 
2.63 

2.70 

(2.60-2.75) 

2.70 

(2.6-2.8) 

Degree of saturation, 
Sr (%) 

~100 

(90-100) 
 

78 

(5-100) 

68 

(34-100) 

Atterberg 

limits 

wL (%) 
38.7 

(30.4-61.1) 
- 

28.1 

(22.1-42.7) 

30.5 

(23.3-62.7) 

wp (%) 
24.5 

(19-40.8) 
- 

20.1 

(14-34.5) 

22.4 

(17.4-47.6) 

Plasticity 
index (%) 

14.2 

(10-20.3) 
- 

8 

(5.6-11) 

8.1 

(5.2-15.1) 

Particle size< 2m 

(%) 

10.4 

(3.2-25.8) 
- 

7.8 

(5-13.4) 

6.7 

(1.3-13.2) 

 

Mineralogical determinations, as given by quantitative X-ray diffraction analysis, are given in 

Table 4.3. Estimations based on thin section petrographic analysis were also performed. 

Observations in thin sections indicated that, in the upper red claystone, residual anhydrite 

takes the form of inclusions within the gypsum mineral. The gypsum itself was sometimes 

identified as secondary gypsum (gypsum that results from anhydritic hydration). Secondary 

gypsum was identified by means of observation in thin sections (anhydritic prismatic 

pseudomorphs were observed at the edges of isolated secondary gypsum nodules, originally 

of anhydrite). However, gypsum found in fractures was primary precipitated gypsum mineral. 
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Table 4.3. Summary of mineralogical analysis (X- ray diffraction and thin sections)  

Geological formation Brown clays Upper red claystone 

(gypsiferous) 

Lower red claystone 

(anhydritic) 

Gypsum (%) 14 39 16 

Anhydrite (%) 0 0 43 

Phyllosilicates (%) 12 13 8 

Quartz (%) 8 9 4 

Feldspar (%) 1 1 0 

Calcite (%) 14 1 0 

Dolomite (%) 51 36 20 

 

Anhydrite is absent in the upper brown clays and the red gypsum-laden claystone (except for 

the inclusions mentioned). By contrast, it is the dominant mineral in the lower claystone.  

There is a moderate content of clay minerals in all layers. Dolomite is also ubiquitous, and it 

reaches a maximum concentration in the upper brown clays. The remaining minerals 

identified (quartz, calcite and feldspars) are present in relatively minor proportions. It turns 

out that the term "claystone" is not an accurate description in view of the mineral content 

although it will be maintained for simplicity. The soft rock is essentially a cemented 

aggregate of sulphate minerals and dolomite, with a low proportion of clay minerals. 

Concerning phyllosilicates, the following minerals were identified: illite, smectite, chlorite 

and palygorskite. 

 

4.5 Field observations 

4.5.1 Piles and pile caps 

In view of the difficulties to find an explanation for the observed upward displacements of the 

bridge deck, it was decided to investigate the foundation integrity. Attention was initially 

given to the state of the deep piles in an attempt to find a faulty pile construction. Vertical 

boreholes were drilled in a position centred with a given pile. The entire pile length was 

drilled, and concrete cores were recovered. Boreholes also penetrated a few metres into the 
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natural ground below pile tips (Figure 4.7). Twelve boreholes of this type were drilled in 

pillars P4, P5, P6 and P7 (three boreholes per pillar).  

 
Figure 4.7. Borings drilled through piles of pillar P5 

No gaps or cavities were found in any of the boreholes. However, fractures were observed in 

the cores and also in the walls of the boreholes. Boreholes were inspected by means of a high-

resolution acoustic televiewer, a multi-arm caliper and an optical video camera. A crack was 

often observed at the pile-cap contact plane in most cases. This observation was initially 

interpreted as an indication of the existence of swelling pressures acting against pile caps. The 
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swelling pressures would explain the heave of the pillars, the gap created at the pile cap 

contact and the tensile cracks observed in the pile shafts. The implicit assumption in this 

explanation, which is illustrated in Figure 4.8(a), is that the piles remained firmly anchored at 

depths where shafts were excavated in hard claystone. 

However, such a high swelling pressure cannot be attributed to the low-plasticity non-active 

brown clay layer directly in contact with the pile cap. There is an alternative explanation for 

the cap-pile cracks observed in borings, which is illustrated in Figure 4.8(b). If a non-

homogeneous heave displacement of the piles develops, originated below pile tips, a single 

pile of a group, experiencing the highest heave, would generate a tensile stress in the 

remaining piles within the group. 

Boreholes drilled through the piles were initially filled with water coming from drilling 

operations. However, once emptied, they all recovered a water level located at approximately 

7 m below the surface in piles of P 6 and 16 m in pillar P5. Chemical analysis of the water 

filling again the boreholes, once emptied after drilling, confirmed that they contained natural 

ground water. This behaviour was an additional indication of the existence of fractures in the 

pile’s shaft. It was also observed that the speed of water-level recovery in piles belonging to 

pillars P5 and P6 (those located in the bottom of the valley, and experiencing the greatest 

heave) was higher than in pillars P4 and P7. These observations may be explained by more 

severe pile cracking in pillars P5 and P6. A higher permeability of the soil/rock around piles 

in pillars P5 and P6 would also explain the difference rate of water level recovery. 

 

4.5.2 Water levels 

Two open tube piezometers were located in a borehole drilled between pillars P5 and P6 at 

depths of 14.70 m and 26 m. Water levels in all 12 boreholes drilled through the piles were 

also measured until stabilisation. Water depth measured in a number of wells located in the 

bridge area also provided valuable data. In an excavated trench located in the valley bottom, 

upstream from the bridge alignment, a significant flow rate was observed to enter the trench at 

a depth of 1.60 m (a second trench, 5 m deep, located downstream from the bridge always 

remained dry). The set of observations available indicates that a relatively shallow phreatic 

level, 5 m deep, occupies the lower part of the valley crossed by the bridge. The deep 
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piezometer also suggests that a deeper water level is found in the weathered claystone at a 

depth of approximately 14 m below the bottom of the valley. 

(a) 

 
 

(b) 

Figure 4.8. Sketches showing two alternative interpretations of foundation-heave interaction. Also 

shown is the geological profile in the vicinity of pillar P6. (a) Swelling pressure against the pile cap 

induces tensile strains in piles and lifts the pillar. A crack develops at the pile-cap contact. (b) Piles are 

pushed upwards because of heave at the deep active zone. Non-uniform heave creates a tensile gap 

between the cap and piles in most cases 
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4.5.3 Surface movements 

A network of surface topographic marks was installed on the ground surface. The network 

covers a corridor 200 m wide, centred on the viaduct axis.  

Figure 4.9 provides contours of equal vertical displacement at the ground surface measured 

from 26 November 2007 to 30 April 2008. A maximum value of 44.1 mm of accumulated 

heave was measured during the first 5 months of monitoring in a topographic mark located 30 

m upstream of the viaduct axis, near pillar P5. It corresponds to a heave rate of 8.5 

mm/month. During the first 5 monitoring months, significant ground surface heave was 

measured (9–13mm) at points located 70–90 m far away from the axis of the bridge. 

The expanding phenomenon resulted not only in the heave of piles and the viaduct itself, but 

also in a ground heave. Figure 4.9 also shows the position of levelling marks and bridge 

pillars; an interpolating program generated the plotted contours. Contours of equal heave may 

be described as irregular ellipses, whose major axis follows the direction of the valley crossed 

by the bridge. The centre of these ellipses is not located on the bridge axis, but is displaced in 

the direction of the slope of the valley bottom. This feature suggests that the natural flow of 

water in the valley controls the distribution of heave, to some extent.  

Heave contours passing through the positions of pillars P3 and P8 mark the limits of observed 

heave. The geological profile along the bridge axis (Figure 4.3) indicates that the deep 

foundation of pillars P3 and P8 does not reach the lower claystone formation. In fact, the tip 

of the foundation piles of these pillars is located within the massive intermediate layer of 

gypsum. Maximum heave (pillars P5 and P6) is recorded when the pile tips reach the lower 

anhydritic claystone. 

The closure of elliptical heave contours in Figure 4.9 in areas with no direct field information 

(levelling marks were initially located in a corridor parallel to the bridge direction) is a non-

realistic result associated with the “logic” of the interpolation program. 

In order to establish better the limits of the heave phenomena in the direction of the valley, 

additional surface markers were installed in points that followed the direction of the valley 

upstream and downstream of the bridge location. An additional 9-month period of field 

measurements provided a more accurate picture of surface heave displacements (Figure 4.10). 

Contours of equal heave rate measured between 11 July 2008 and 2 April 2009 were very 

similar to the initial heave displacement contour map given in Figure 4.9. 
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Figure 4.9. Contours of surface heave during the period 26 November 2007 to 30 April 2008  

 

Figure 4.10. Contours of equal rate of heave displacement. Heave rate established in the period 11 July 

2008 to 2 April 2009 
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A cross section of the heave contours given in Figure 4.9, following the bridge direction is 

plotted in Figure 4.11. It was also found that the pattern of surface heave is similar to the 

vertical displacements measured at the bridge deck level. Levelling of the pile caps of bridge 

pillars provided also time plots very similar to the heave records measured on levelling marks 

located on the ground surface, away from the foundation. This is shown in Figure 4.12 which 

compares the heave displacements of the pile cap of pillar P6 and the heave recorded in a 

nearby levelling mark (levelling point 6i0, Figure 4.9).The close agreement suggests that the 

massive pile foundation has no effect in restraining the surface heave. It is an indication that 

the origin of heave is located below the level of the pile tips. The deep extensometers, 

reviewed next, provided the necessary evidence in this regard.  

 

Figure 4.11. Comparison of measured heave displacements of the ground surface and the bridge deck 

 
Figure 4.12. Comparison between the measured heave at the lower part of pillar P6 and the measured 

heave at a point (6i0) on the ground surface near the pile cap of pillar P6 by means of topographic 

levelling. The position of levelling mark 6i0 is shown in Figure 4.9 
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4.5.4 Deep extensometers 

The deformation of rock at depth in the vicinity of pillars P3 to P7 was investigated by means 

of rod and continuous extensometers installed in boreholes (magnetic incremental 

extensometers, rod extensometers and sliding micrometers; Kovári & Amstad, 1982). Data 

were recorded on a weekly basis. The position of these extensometers is shown in Figure 4.5. 

Figure 4.13 shows the recorded vertical strains (mm/m) in extensometer IX-5, located in pillar 

P5. The borehole was drilled through the pile cap, and penetrated a few metres below the tip 

of the piles. Swelling strains concentrated below the pile tips, and developed in time without 

changing the swelling strain pattern. Figure 4.14 shows the recorded swelling strains in 

extensometer IX-D, located upstream of pillar P5 (Figure 4.5). 

Continuous samples were recovered along some of the boreholes drilled for extensometer 

installation. Gypsum and anhydrite content were determined by means of quantitative X-ray 

diffraction analysis. The plot of the variation of gypsum and anhydrite content against depth 

provides interesting information when compared with extensometer readings. This can be 

seen in Figure 4.13 - Figure 4.15 for extensometers IX-5, IX-D and IX-B. All of them indicate 

that the development of swelling strains starts when the anhydritic layer is crossed at absolute 

elevations around 261265 m. Above this elevation, only gypsum is present. Note also that 

the gypsum content decreases suddenly within the anhydritic layer from high concentrations 

to very low values (a few percentage units). Swelling is directly associated with the presence 

of anhydrite. No swelling is recorded if only gypsum is present. 

It is clear that the extensometer lengths, shown in Figure 4.13 - Figure 4.15, were insufficient 

to cover the whole active layer. Significant swelling strains were measured at the deepest 

levels of the extensometers. In addition, heave displacements measured at the head of the 

extensometers (ground surface), by means of conventional levelling, were higher than the 

integral of vertical relative displacements measured along the extensometer length. This is 

shown in Figure 4.16 for extensometer IX-5. In view of this inconsistency, which was 

attributed to an insufficient length of the extensometers, and with the aim of identifying better 

the position and thickness of the deep active layer, and the swelling intensity of the active 

layer, a new sliding micrometer was installed in December 2007 between pillars P4 and P5 

which reaches a depth of 58 m (SL-1; its position is shown in Figure 4.5); readings are shown 

in Figure 4.17. This extensometer detects precisely an active layer, 9 m thick, between 
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elevations 250 and 259. A small straining was also measured at deeper levels (elevations 

237243). 

 
Figure 4.13. Measurements in extensometer IX-5 in the period 4 September 2007 to 29 January 2008, 

and profiles of anhydrite and gypsum content. Reference measurement from 12 July 2007  

 
Figure 4.14. Measurements in extensometer IX-D in the period 8 October 2007 to 8 April 2008, and 

profiles of anhydrite and gypsum content. Reference measurement from 20 June 2007  

The set of installed continuous extensometers - even if the information they give concerning 

the lower boundary of the active zone is not precise - provide enough information to draw the 

approximate boundaries of the swelling zone (Figure 4.18). Question marks and dotted lines 

indicate that measured heave at the top of the extensometer exceeds the integral of swelling 
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strains measured by the extensometer. The uncertain position of the lower boundary is 

indicated in the figure. 

 
Figure 4.15. Measurements in extensometer IX-B during the period 4 October 2007 to 19 January 

2009, and profiles of anhydrite and gypsum content. Reference measurement from 20 June 2007 

 
Figure 4.16. Evolution of vertical displacements on extensometer IX-5 (See Figure 4.5). Surface 

displacements directly measured by topographic levelling (top of the tube) are compared with the sum 

of extensometer relative displacements at depth 

Expansive strains concentrate in a horizontal band, located entirely within the anhydritic 

claystone. The upper boundary is found approximately centred in elevation 263, which is the 
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position of the gypsum guide level. The thickness of this band varies between 9 and 15 m. An 

approximate lower boundary may be located at elevation 250. 

Time records of heave displacement show linear trends when plotted on a natural timescale. 

This is shown in Figure 4.19, which provides the measured vertical displacements of the 

extensometer surface points, recorded by topographic levelling. Similar linear trends have 

already been given in Figure 4.12 and Figure 4.16. Long-term linear trends of heave are not 

expected if hydration of clay minerals is the underlying swelling mechanism. In fact, time 

records of tunnel heave in sulphated formations exhibit long-term linear trends (Chapter 2 and 

Chapter 3). 

 

Figure 4.17. Vertical strains measured by sliding micrometer SL-1 

 

4.6 Gypsum precipitation in the active layer 

Cores recovered in borings crossing the active zone often showed the presence of gypsum 

crystals. Two morphologies were observed (Figure 4.20 and Figure 4.21). Crystals partially 

filling some open discontinuities of the claystone matrix grew as needles (gypsum crystallises 
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in the monoclinic system) oriented in a direction perpendicular to the plane of the 

discontinuity (Figure 4.20). Some of the crystals (thin isolated needles) seemed to be very 

recent. The open discontinuities within the active zone offered an easy route for water flow. 

Crystal growth was still far from clogging the joint opening in Figure 4.20. The second 

morphology (Figure 4.21) may be described as a set of thin warped layers of gypsum 

embedded in the rock matrix. 

 

Figure 4.18. Longitudinal section along viaduct between pillars P3 and P8. Positions of sliding 

micrometers (SL) and incremental extensometers (IX) are shown, plus the location of the active 

expanding layer 

 

Figure 4.19. Evolution of vertical displacements of cap of extensometers at ground surface, measured 

by topographic levelling 

No direct indisputable evidence of recent crystal growth in discontinuities may be claimed, 

because the crystal growth process itself was not observed. However, the cores suggest that 
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water flowing (mainly through discontinuities) is able to dissolve anhydrite and then 

precipitate gypsum in open spaces (the discontinuities). It is interpreted that the crystal growth 

acts as a local jack, capable of inducing swelling strains. This phenomenon will be reviewed 

and analysed in more detail in Chapter 5, in which laboratory observations, fundamentals of 

gypsum precipitation and additional “in situ” tests will be described. 

         
                                       (a)                                                                          (b) 

Figure 4.20. Gypsum crystal growth in needles. Observations in a recovered core from a borehole 

drilled for hydraulic cross-hole testing at depths corresponding with active layer: (a) image of a 

gypsum filled vein before opening it; (b) Gypsum crystals form needles partially filling the open vein, 

once it is opened by hand 

 

Figure 4.21. Laminar gypsum crystal growth developing inside the clay matrix. Observations in a 

recovered core from a borehole tested during hydraulic cross-hole testing at depths corresponding with 

active layer 
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4.7 Hydraulic cross-hole tests 

In order to investigate the structure, fracturing and the connectivity of discontinuities in the 

active expanding layer, a hydraulic cross-hole campaign was performed. 

Hydraulic cross-hole tests are performed in boreholes. Boreholes are first divided into isolated 

sections by means of inflatable packers. During the test, water is pumped or injected in one 

isolated stretch of one borehole and water pressures are measured in the set of isolated 

sections of similar nature, both in the “emitting” and in the nearby boreholes. Figure 4.22 

shows a scheme of the layout of a typical hydraulic cross-hole test. 

 

Figure 4.22. Layout and instrumentation used during a hydraulic cross-hole test (AITEMIN, 2009) 

Four hydraulic cross-hole tests were performed on three boreholes (S1, S2 and S3), 50 meters 

long, located downstream and close to pillar P5 (they span from elevations 237 m (end of 

boring) to 287 m (surface)). Figure 4.23 shows the position of the testing boreholes. 

Boreholes 116 mm in diameter were drilled with a double-wall core barrel. A continuous 

string of cores was recovered. Boreholes were located in an area affected by significant heave 

displacements according to the periodic topographic levelling carried out at the ground 

surface. The three drilled boreholes define two perpendicular directions, and two testing 
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distances (4 m and 8 m) (Figure 4.23(b)). This layout allows obtaining the hydraulic 

characteristics of the rock mass in two directions. As a reference, continuous extensometers in 

this area indicate the existence of an active layer, 14 m in thickness, which extends from 

elevations 246 m to 260 m. 

 

(a) 

 

(b) 

Figure 4.23. (a) Location of boreholes for cross-hole hydraulic testing; (b) layout and distances 

The boreholes were lined in the upper 20 m. On each borehole two packers isolated a central 

section about 7 m in length. Lower and upper sections were also defined; the lower one 

extended from the end of the borehole to the lower packer, and the upper one extended from 

the foot of the casing to the upper packer. Four injection tests were performed by injecting 

water from the central section of borehole S2 while maintaining always its relative distance; 

packers were lowered in steps for each successive test in order to investigate the response of 

the claystone at different depths. 

A constant flow rate of water was injected in the central section of S2, and water levels were 

monitored in time in the 3  3 = 9 sections isolated in the three borings. Pressure-time records 
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were interpreted by means of backanalysis procedures (AITEMIN, 2009). The analysis 

provides an estimation of the soil hydraulic conductivity (by dividing the estimated 

transmissivity by the length of the corresponding borehole section isolated by the pressurised 

packers). 

Of particular relevance for the work reported here are the calculated permeability values. It 

was found that no hydraulic connection could be established in a vertical direction (pressure 

changes in boreholes S3 and S1 were essentially recorded in the central section). An average 

(horizontal) permeability of 2  106m/s was calculated at depths varying between 22 m and 

34 m (elevations 265243 m, where the active layer was independently located by 

extensometers data). Very similar permeability values were found on the two directions 

tested. The horizontal permeability decreased suddenly at higher depths: it was found to be  

1–1.6  109m/s at 3339 m depth and 38  1012 m/s at depths of 3950 m. The high 

horizontal permeability values measured in the position of the active layers cannot be 

explained as matrix permeability in a claystone of low porosity.  

The measured permeability reflects the existence of open horizontal joints. In fact, the 

observations of the cores recovered from the boreholes indicated an irregular distribution of 

fractures. However, the cores presented an increased fracture density at depths of 22.5035 m. 

At higher depths the cores were massive again. 

Some of the fractures crossing the recovered core exhibited dense deposits of gypsum. One 

example is given in Figure 4.24. Despite the accumulation of gypsum, channels can be 

identified. These joints explain a relatively high permeability. 

The cross-hole testing campaign provided also a reliable information on the initial water 

levels within the claystone formation. Before cross-hole testing was started, the water level 

was measured in the three sections separated by packers, as described above. Once 

equilibrated, the water levels measured were plotted against the elevation of each one of the 

sections for each of the three boreholes. The results (Figure 4.25) show a distinct downward 

vertical gradient in all three boreholes: 0.08 m/m in borehole S2, 0.37 m/m in borehole S1 and 

0.60 m/m in borehole S3. These are high values which consistently indicate a vertical flow 

from an upper aquifer to lower levels. This natural flow is not expected in the bottom of a 

valley, which is presumably characterised by an upward flow created by higher water heads 

on the valley slopes.  
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Figure 4.24. Crystals in a core from a Cross-hole borehole 

It is also revealing to check that the piezometric head was similar in all the borings at 

elevations 243-265 m (active layer), an additional indication of the high permeability of this 

zone. These are important observations which help to define the heave scenario described in 

Chapter 5. 

 
Figure 4.25. Piezometric heads measured during cross-hole testing. Also shown are calculated 

averages of downwards gradients 

 

4.8 Remedial measures 

Remedial measures actually carried out were inspired by the belief that adding weight would 

reduce the rate of heave and eventually this added stress would be able to eliminate heaving. 

Therefore an embankment partially filling the valley was designed. It was decided to build the 
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embankment in two stages: the first would reach a height of 33 m over the lowest elevation of 

the valley. In the case that the embankment weight was not able to stop displacements, the 

embankment height would be increased to a maximum height of 48 m over the valley centre. 

The first stage of embankment construction (Figure 4.26) was built in the period October 

2009 to August 2010. Pillars and the original pile foundation were protected in the manner 

sketched in the figure. Pillars were embedded in a fill of compacted non-active material, 

which was bounded by a “ring” of loosely compacted soil to reduce the effect of the 

embankment deformations on the concrete pillar shafts. In addition, a protective cap founded 

on deep bored piles installed around the existing original foundation was built to avoid a 

direct action of the embankment on the original piles. The new piles reached depths similar to 

the original ones, and therefore their tips were located above the active layer. The new pile 

cap was not structurally connected to the pillars (a gap of 20 cm was left). Also, the pillars 

were protected by a double sheet of polyethylene membrane to minimise the friction between 

them and the surrounding compacted soil. Surface runoff waters were collected and drained 

away to limit water content changes of the embankment. 

 

Figure 4.26. Cross-section of embankment  

The construction of the embankment slowed the heave rate of the bridge deck (Figure 4.27). 

However, the expansive activity at depth has not ceased completely. This is shown in Figure 

4.28, which shows the strain variation with depth measured by sliding micrometer SL-SP5bis 

and in Figure 4.29, where the strains in depth measured by sliding micrometer SL-SP-4 are 

represented (see locations in Figure 4.5). The upper part of the micrometer experiences a 
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compression as a result of the embankment loading. However, the length of the extensometer 

crossing the active layer reveals that swelling strains still develop. Compressive strains 

dominate expansions measured in the recording period shown in Figure 4.28 and in Figure 

4.29. Compressive strains of the layers above the active band will eventually vanish some 

time after the application of embankment loading, and the evolution in time of surface (and 

pillars) displacement will again be dictated by the expansion of the active layer. This is shown 

in Figure 4.30, which shows the displacement measured by the sliding micrometer SL-5 

(Figure 4.5). The time plot of surface heave (measured total displacement) shows an initial 

sudden reversal of swelling and a subsequent net settlement, which gradually levels off. 

Eventually, heave resumes although the heaving rate is now reduced to 1 mm/month, 

substantially lower than the rate measured before embankment construction (about 7 

mm/month on average). The plot also shows that the accumulated heave on the active layer 

(integrating strains on the depth interval 25 to 40 m) increases at the rate observed on the 

surface once the transient settlement associated with the embankment construction has ended. 

 

 

Figure 4.27. Effect of embankment construction on development of vertical displacements of bridge 

deck. Levelling marks P5.1 and P5.2 are shown in Figure 4.2. Marks P6.1 and P6.2 are similarly 

located above pillar P6 
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Figure 4.28. Vertical strains measured by sliding micrometer SL-SP5bis (see location in Figure 4.5)  

 

Figure 4.29. Vertical strains measured by sliding micrometer SL-SP-4 (see location in Figure 4.5) 
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The heave rate measured on pillar P5 has been related to the vertical effective stress acting on 

the centre of the active layer under pillar P5. Maximum and minimum heave rate values 

(Figure 4.31), as well as a weighted average (weighting reflects the time interval of each of 

the measuring records selected) all decrease with applied effective stress. The plot suggests 

that heave rate may eventually stop if an effective vertical stress of 1.25 MPa is acting on the 

mid level of the active layer. Reaching this condition would require a small increase of 

embankment height (approximately 4 m). 

 

Figure 4.30. Evolution of  integral values of vertical strains measured by sliding micrometer SL-5 (see 

position in Figure 4.5) 

 

Figure 4.31. Effect of vertical confining stress on the heaving rate measured at the lower part of pillar 

P5 
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4.9 Conclusions 

The Chapter describes the heave experienced by the central pillars of a railway bridge 

founded on massive deep pile foundations. Bridge pillars are supported by bored piles 20 m 

long and 1.65 m in diameter, capped by a rigid concrete slab. 

Vertical displacements of the central pillars of the bridge accumulated at an average speed of 

7 mm/month before remedial measures. Total vertical displacements of the central pillars 

have reached values in excess of 370 mm since the end of the bridge construction. These 

displacements were corrected by modifying the supporting elements of bridge deck. An 

embankment, 33 m high over the centre of the valley, was built in 2009, in an effort to halt the 

sustained heave. The effectiveness of the added load was to reduce the recorded heave rate to 

very small rates, but the long-term performance of the central pillars is still somewhat 

uncertain. 

Field observations and, in particular, the data provided by deep continuous extensometers, 

indicate that the heave phenomenon originates in a deep active band, 12-15 m thick, located 

below the tip of the piles. This active band is located entirely within a Tertiary anhydritic-

claystone formation. No indication of heave was detected in the upper gypsum-laden Tertiary 

formations of similar age with very low or non-existing anhydrite content. Piles supporting 

the central two bridge pillars, where the heave problem is concentrated, reached this lower 

anhydritic formation. This is not the case for the adjacent pillars, whose deep foundations 

remained within the gypsum claystones. 

The similarities between the vertical displacements measured on the viaduct and the heave 

measured at the ground surface along the axis of the bridge in the same period of time were in 

agreement with the fact that the heave of the bridge was due to the swelling layer located 

below the tip of the piles of the central pillars. A pile group swelling formulation interaction 

analysis verified that the cracks in the cap-pile contacts observed in borings performed 

through some piles were the result of the development of a non-homogeneous heave 

displacement of the piles belonging to a pile group capped by a rigid slab (Sauter et al., 2012).  

The observed heave may be also interpreted as a natural phenomenon. This is very unlikely, 

however, because the heave contours are essentially centred at the position of the pillars and 

they extend only to relatively small distances in the upstream and downstream directions. A 

slow natural phenomenon would most probably affect a much larger area. 
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It is thought that the water percolated from the upper aquifer towards the lower anhydritic 

claystone as a result of changes induced by the construction of the bridge. The preferred 

explanation is that drilling of boreholes and the excavation of piles created preferential 

downward paths. On the other hand, pillars 5 and 6, the ones experiencing the maximum 

heave, are located in the centre of the valley, suggesting a relationship between the presence 

of water flow and heave. In addition, the corresponding piles are the only ones crossing the 

boundary between the upper gypsiferous claystone and the lower anhydritic claystone. This 

situation also suggests that the heave of the central pillars was essentially due to a downward 

leakage induced by the construction of piles supporting pillars 5 and 6.  

Further observations, namely the presence of newly formed gypsum crystals within the 

anhydritic layer, suggest that the crystal growth in discontinuities is at the origin of the 

observed heave. It may also be expected that in the long term, once the anhydrite has been 

totally dissolved, the flow of water, if it is maintained, will dissolve the gypsum and a 

settlement (or a karst) will eventually develop. 

Anhydrite-gypsum transformation and its impact on tunnels have often been reported. The 

singularity of the case described in this Chapter lies in the position of a very thick active layer 

buried deeply under a cover in excess of 25 m and in the limited stress changes introduced by 

the pile foundation. 

The severity and singularity of the case created concern and an active debate on the reasons 

for the unexpected heave. A plausible explanation, described here, came only after the 

installation and interpretation of comprehensive instrumentation based mainly on the drilling 

of deep boring reaching the lower anhydritic claystone. This is why no restrictions were 

initially applied to the installation of new extensometers or borings for hydraulic cross-hole 

tests. It was also realised that the existing deep piles continued to be an unavoidable path for 

downward water flow. 
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CHAPTER 5 

The swelling mechanism due to gypsum crystal 

growth 

 

 

The main characteristics of the swelling behaviour of excavations in sulphated claystones 

affected by expansions have been described in previous chapters. This has been achieved 

from the analysis of the field observations of real cases suffering expansions related with 

gypsum crystals, in particular the cases of Lilla tunnel and Pont de Candí bridge. These 

characteristics were in accordance with the observations recorded in the literature from 

tunnels affected by swelling and crossing sulphated claystone in central Europe  

The mechanisms producing the observed expansions have been reviewed in the Thesis. There 

was certain evidence that the set of factors involved in the development and triggering of the 

swelling process were not known precisely. Actually, not all excavations in sulphated rocks 

develop expansions and, in general, foretelling the potential risk of development of 

expansions in sulphated rocks on the basis of field investigation is not easy.  

This Chapter describes the conditions found in a number of recently built tunnels in Spain, 

most of them associated with the construction of high speed railway infrastructure. In 

addition, a field investigation performed in two areas of Lilla tunnel, one experiencing high 
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swelling and the other without development of expansions is analysed. Some features 

associated with observed heave (presence of water, tectonics, high sulphate content of natural 

water) have been isolated. A discussion of the mechanisms leading to field expansion is then 

made. It was found that long-term swelling in Lilla tunnel and heave in Pont de Candí Bridge 

were the result of gypsum crystal growth in discontinuities. The classical theory of anhydrite-

gypsum transformation is replaced by a mechanism of crystal growth when natural water 

reaches a condition of supersaturation. The role of the tunnel excavation and bridge 

construction in the triggering of a dormant heave and swelling phenomenon is explained. 

 

5.1 Introduction 

Excavations involving sulphated claystones are not always affected by the development of 

expansions and, in addition, the prediction of the possible future occurrence of swelling in 

those materials is a difficult task. A revision of the current mechanisms explaining the 

swelling behaviour in sulphated rocks and of the field conditions that may lead to expansions 

in sulphated rocks has been done to try to get some insight into the capabilities to predict the 

development and the intensity of expansions in sulphated claystone. 

The Chapter starts with an analysis of a number of Spanish tunnels and other tunnels in 

Central Europe crossing gypsiferous-anhydritic formations. The review made allows 

identifying a series of situations that may eventually result in severe swelling phenomena. 

Then, a field investigation carried out in the area of Lilla tunnel to give more insight in the 

field characteristics related to the development of intense or light expansions is presented. 

Later, the Chapter provides a background on gypsum crystal growth. The classical 

interpretation for swelling in sulphated format is reviewed and discussed and afterwards an 

alternative interpretation for the mechanisms causing the observed heave and swelling 

pressures is described. Then, credible scenarios for the swelling and heave phenomena in Lilla 

tunnel and Pont de Candí are described according to the interpretation of the phenomena. The 

Chapter concludes by summarising the lessons learnt from Lilla tunnel and Pont de Candí 

bridge records and from the review of the cases described in the literature. 
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5.2 An overview of tunnel behaviour in sulphate formations 

Experience indicates that not all tunnels in anhydritic or gypsiferous rocks develop expansive 

phenomena. However, the reasons for differences in behaviour are not clear. 

To examine this important issue, a review of several tunnel projects crossing gypsum 

formations in Spain has been carried out. Figure 5.1 shows the location of the analysed 

tunnels, represented on a map of gypsiferous outcrops in Spain (Riba & Macau, 1962). They 

refer mainly to tunnels in the high speed railway between Madrid and Barcelona.  

The following data, which is thought to have some relevance for the swelling phenomena, has 

been collected: cover, cross section characteristics and presence of invert, waterproofing, 

excavation process, type of gypsum formation crossed by the tunnel and gypsum lithofacies, 

occurrence of tectonic activity, occurrence of water, sulphate proportion in the solid phase, 

sulphate content of groundwater and laboratory data. The geologic and tectonic characteristics 

of the formations crossed have been completed with data from the 1:50000 geological map 

from the National Geologic Institute (IGME). 

 

Figure 5.1. Analysed tunnels crossing gypsiferous formations. (1): Lilla tunnel, (2): Camp Magré 

tunnel, (3): Hechiceras tunnel, (4): Bubierca tunnel, (5): Sagides tunnel, (6): Anchuelo II tunnel, (7): 

Anchuelo I tunnel, (8): Mejorada de Campo tunnel, (9): South By-pass M-30 tunnel, (10): Villargordo 

del Cabriel tunnel. 



The swelling mechanism due to gypsum crystal growth 

120 

 

The results of the survey performed are summarized in Table 5.1 and Table 5.2. Some 

remarks concerning the data should be given: in a significant number of cases the data is 

based on the tunnel design documents which, in turn, are based on the original geotechnical 

investigations. Data from the construction period is scarcer (one relevant exception is the Lilla 

tunnel, described in detail in Chapter 3).  

The existence or absence of swelling problems reflects the experience gained during 

construction, which was made available for this study by persons in charge. Two additional 

well known cases from the literature are added to the tables, the Swiss tunnels Belchen and 

Adler (mentioned before in Chapter 2), for comparison purposes. The tables allow extracting 

a few conclusions: 

 In most tunnel projects crossing gypsiferous formations swelling did not develop. 

 There is a good correlation between the absence of swelling and water conditions: in 

most cases water was not present.  

 The climate prevailing in some of the locations (semiarid) is the general explanation for 

the absence of established water tables. 

Figure 5.2 shows a cave encountered during the excavation of a hydraulic drift through 

massive gypsum in Madrid, with no indication of swelling during construction. The main 

construction problem in this case was the presence of a well-developed network of caverns. 

 
Figure 5.2. Caverns encountered during excavation with open shield through massive gypsum in 

Madrid. 
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It is also interesting to realise that waterproofing (by means of PVC sheets) of vault and 

abutments does not necessarily prevent the development of expansive phenomena. This is 

shown by the recorded behaviour of Camp Magré tunnel in Tarragona. However, in other 

cases waterproofing seems to contribute to avoid swelling (this is the case of Bubierca tunnel, 

which crosses sandstones and lutites from the Buntsandstein, dolomites and dolomitic marls 

from the Muschelkalk and clays, marls and gypsum from Keuper).  

It should be noted that in most of the reported cases waterproofing was installed to capture the 

water flowing into the tunnel and to drain it in a controlled manner. This was the case of 

Camp Magré and the waterproofing located on both portals of Lilla tunnel. There was no 

indication in those cases that waterproofing was designed to avoid swelling problems. In any 

case, waterproofing of the invert was not attempted in the mentioned tunnels.  

One example of geological profile of a tunnel (Villargordo del Cabriel) crossing gypsum 

formations in Keuper is given in Figure 5.3. In this tunnel the excavation remained essentially 

dry during construction. Again no gypsum related swelling developed in this tunnel. 

 

Figure 5.3. Longitudinal geological profile of Villargordo tunnel. 

Recent cases where expansive phenomena have been relevant in Spain (Camp Magré and 

Lilla tunnel belonging to the high speed railway Madrid - Barcelona) indicate a number of 

additional features which may be of significance to explain the severity of the problem: 

 The sulphate proportion (in weight of solid constituents) is high (40%). 

 Water has high sulphate content. 

 The rock is tectonized (Figure 3.1). 
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Table 5.1. Main characteristics of tunnels crossing sulphate claystones (Location given in Figure 5.1) 
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Mejorada 
del Campo 

366 110 38 Yes 
Clays interbedded with 
thin gypsum layers. M 

70 2.3 2108 1.2 

Anchuelo I 817 110 58 Yes Gypsiferous clays. M, t↓ 90 6 - - 
Anchuelo II 1154 100 42 Yes Gypsiferous clays M, t↓ 90 6 - - 

Sagides 1731 100 73 Yes 
Gypsiferous clays, 
gypsum with argillaceous 
layers Tr, t 

50 - - - 

Bubierca 2433 80 176 Yes 

Initial 300 meters: 
Buntsandstein, 
Muschelkalk and Keuper 
(clays, marls and gypsum)
Tr, t 

12 - - - 

Las 
Hechiceras 

2812 110-120 103 
Along 
660m 

Argillaceous marls with 
interbedded gypsum (cm). 
M-O 

 0.9 - 

- 
(8% max. 
swelling 
strain) 

Villargordo 2880 90 87 Yes 
Silty clays with gypsum, 
red gypsiferous clays and 
marls. Tr, t 

50 0-5 - 0.1-2.35 

South By-
pass M30 
(left 
roadbed) 

4131 
177 

Circular
60 Yes 

(1) Interbedded (cm) 
gypsum with clays. 
(2) Massive (m) gypsum. 
M 

27 6.8-11.6 174 0.7 max 

Camp 
Magré 

954 140 52 No 
Early eocenic argillaceous 
rocks containing anhydrite 
and gypsum. E, t 

75 40 - - 

Lilla 2034 117 110 No 
Early eocenic argillaceous 
rocks containing anhydrite 
and gypsum. E, t 

100 40 1783 4.5 max. 

Swiss tunnels 
Belchen 3180 85-105  Yes Gipskeuper. Tr, t 40  1290-6000  

Adler 5300 
124 

Circular
130 Yes 

Anhydrite and gypsum 
Keuper. Tr, t 

  2990 
60 (samples 
of anhydrite 

layers) 
Legend: 
O: Oligocene       M: Miocene      Tr: Triassic       E: Eocene       
t↓: Tectonized (low intensity)     t: Tectonized  



Chapter 5    

123 

 

Table 5.2. . Key features related to occurrence of swelling in tunnels crossing sulphate claystones (the 
location of tunnels is given in Figure 5.1) 

 

Name of 
the tunnel 

Occurrence 
of water 

Waterproofing/ 
drainage 

Excavation 
process 

Gypsum lithofacies 
Expansive 
problems 

Mejorada 
del Campo 

Only in a 
short length 

(5m) 

Geotextile 
Poliviline sheet 

NATM head and 
bench with a 
central counterfort. 
Heavy hammer 

▲Crystalline, filling 
discontinuities 

No 

Anchuelo I No Geotextile 
NATM with a 
central counterfort 
Boom header 

▲Crystalline, 
specular, gypsiferous 
cement. 

No 

Anchuelo II No Geotextile 
NATM with a 
central counterfort 
Boom header 

▲Crystalline, 
specular, gypsiferous 
cement. 

No 

Sagides No PVC sheet 
Head and bench 
Boom header and 
explosives 

▲            - No 

Bubierca Yes Impervious sheet Head and bench ▲             - No 

Las 
Hechiceras 

Only at west 
portal 

2 mm PVC sheet 
Geotextile 
500g/m2 

NATM Head and 
bench  
Boom header 

▲Granular, fibrous  No 

Villargordo No Only in portals  
Head and bench 
Boom header and 
hammers 

▲              - No 

South By-
pass M30 
(left 
roadbed) 

Possibly 
Backfill injection 
of lining 

EP Balance Shield 
▲(1) Tabular and 
nodular 
(2) Specular or selenite 

No 

Camp 
Magré 

Yes 

In vault and 
abutments: 
geotextile of 
500g/m2 and 
1.5mm thick PVC 
sheet 

NATM  
Advance and bench
Drill and blast 

Fibrous veins and 
nodules 
Secondary gypsum, 
anhydrite 

Yes 

Lilla Yes 

Restricted to 
portals: geotextile 
of 500g/m2 and 
1.5mm thick PVC 
sheet 

NATM  
Advance and bench
Drill and blast 

Fibrous veins and 
nodules 
Secondary gypsum, 
anhydrite 

Yes 

Swiss tunnels 

Belchen Yes 

No in original 
construction 
Yes during 
reconstruction 
works in 2001-
2003 

Invert drift+full 
cross section 
Half shield and 
hammers 

Fine veins of anhydrite 
in black marl. 

Yes 

Adler Yes Waterproof seal TBM  Yes 
Legend: 
▲: There isn’t distinction between gypsum and anhydrite 



The swelling mechanism due to gypsum crystal growth 

124 

 

5.3 Field identification of potential swelling 

A very relevant issue in practice is to evaluate the capability of a standard field 

reconnaissance by means of borings and core recovery to identify the potential for severe 

swelling phenomena as a result of tunnel construction. Lilla tunnel was designed after a 

limited field work. However, the subsequent behaviour, the intense monitoring work 

performed afterwards and the identification of the heave intensity developed along the tunnel 

opened the possibility of approaching the issue from a different perspective. If a boring is to 

be performed, from the surface, in a position of strong swelling, what will be encountered? If 

another boring is performed in a position of no swelling, what would be the differences if 

compared with the previous boring? 

These questions eventually evolved into an interesting research programme performed during 

the Thesis to contribute to the development of practical criterion from geotechnical 

investigations. The idea was to drill two borings from the ground surface with continuous 

core recovery in the position shown in Figure 5.4. Boring B1 was located at chainage 411 + 

860, in a position of maximum swelling, at a distance (in plan view) of 25 m from the tunnel 

side wall. It reached a depth of 130 m. Boring B2 was located at chainage 412 + 825, in a 

position of no swelling, at a distance (in plan view) of 30 m from the tunnel side wall. It 

reached a depth of 93 m. The two borings penetrated 10 m below the level of the tunnel invert 

to reach positions in which the active zones had developed in the nearby tunnel.  

Cores were carefully described by an experienced geologist. The description included the 

following items: the proportion of calcium sulphate (anhydrite or gypsum) in the rock; an 

estimation of the relative proportions of anhydrite and gypsum; the presence of slickensides, 

striations, shearing surfaces and discontinuities; and description of the rock matrix material 

(other than sulphated components). Figure 5.5 shows the estimated proportions of sulphates 

for the two borings, below the level of the Lilla tunnel invert. In B1 the proportion of 

sulphates is high: very often it amounts to more than 40% of the core recovery. In B2 the 

proportion is much lower: it seldom reaches 20%. Moreover, in B1, most of the sulphated 

mineral is anhydrite. Sheared surfaces were often found in borehole B1, but not so frequently 

in B2. Two examples from borehole B1 are shown in Figure 5.6. Another feature 

distinguishing boreholes B1 and B2 was a dominant ratio claystone /sandstone in B1. 
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(a) 

 
(b) 

Figure 5.4. (a) position of borings B1 and B2; (b) position marked in swelling profiles 

Summarising this information, conditions that favour the development of sulphate-induced 

heave are a significant proportion of sulphate minerals (specifically anhydrite), certain rock 

damage (in the case of Lilla the presence of sheared discontinuities) and a significant presence 

of clay. It is also clear from the nature of the gypsum precipitation that water must be present. 

The contribution of all these factors is understood except for the presence of clay, whose role 

remains still somewhat uncertain.  
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Figure 5.5. Proportion of sulphates in boreholes B1 and B2 below the invert of Lilla tunnel 

 

  

Figure 5.6. Striated discontinuities found in cores recovered in borehole B1 at depths below the 

elevation of Lilla tunnel invert  
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5.4 A classical interpretation for swelling in sulphated formations 

Early publications (see below) on swelling phenomena observed in tunnels in central Europe 

crossing Triassic anhydrite and gypsum formations attribute the observed swelling in 

sulphated claystones, when the sulphated claystones get into contact with water, to two 

uncoupled phenomena: a short term “physical” swelling associated with the expansion of clay 

minerals and a long term “chemical” swelling explained by the transformation of anhydrite 

into gypsum with a volumetric increase. If the volumetric increase is partially or totally 

inhibited in either of these mechanisms, then the corresponding swelling pressure is 

generated. The interdependence of these mechanisms is not clear; however, for some authors 

the existence of certain “optimum clay content” is assumed necessary to maximize the 

volumetric effects of the “chemical” swelling. Expansion in non-sulphated claystone (in terms 

of non-restricted swelling and swelling pressures against linings) was found to be moderate if 

compared with equivalent data for anhydritic formations. A large number of publications, 

starting in the sixties of the 20th century describe interesting case histories (Sahores, 1962, 

Einfalt, 1975, 1979; Einfalt & Götz, 1976; Einstein, 1979, 1996; Wittke & Pierau, 1979; 

Zanbak & Arthur, 1986; Madsen & Nüesch, 1991; Steiner, 1993; Amstad & Kovári, 2001; 

Kolymbas, 2005; Wittke, 2006, among others). 

The transformation of anhydrite into gypsum is commonly written 

4 2 4 22 2CaSO H O CaSO H O    (5.1) 

A calculation of the change in volume when a given mass of anhydrite transforms into 

gypsum, comparing molar volumes of gypsum (MVg) (density: 2.32g/cm3) and anhydrite 

(MVa) (density: 2.96g/cm3), and taking the anhydrite value as a reference, provides the 

following theoretical volume increase  

3 3

3
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46
a g

g
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MV cm

 
  

 
(5.2)

 

This is a very relevant volumetric expansion which was roughly consistent with the severity 

of the observed phenomena. 

The distinction between the “physical” and “chemical” swelling seems, at first sight, correct. 

The first mechanism is possible even in the absence of active clay minerals and is 

characterized by relatively low limiting values for both swelling strain and swelling pressures. 
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However, the direct transformation of anhydrite into gypsum generating a volumetric increase 

doesn’t seem to be a realistic mechanism. The theoretical volume increase of the gypsum 

molecule, if compared with the “parent” anhydrite molecule, was challenged as a convincing 

explanation for the observed volume increase when gypsum precipitates. Several authors 

(Holliday, 1970; Ortí, 1977; Madsen et al., 1995; Pimentel 2003; Pina, 2009) have concluded 

that the transformation represented by equation (5.1) is an isovolumetric process in which 

anhydrite dissolves and then precipitates as secondary gypsum. The excess of hydrated 

calcium sulphate can be transported in aqueous solution or precipitated in available open 

spaces of the host rock. On the other hand, recent contributions to the study of epitaxial 

growth confirm the impossibility of volumetric changes when anhydrite is exposed to 

sulphate-rich water since gypsum generates a protective thin surface film on the anhydrite 

(Pina et al., 2000).  

Inspections of foundation materials in Wagenburg tunnel and Kappelesberg tunnel during the 

early 70’s confirm the validity of the isovolumetric approach: «… the original anhydrite has 

converted almost completely to gypsum in the heaving floors without showing any visible 

increase in volume. Except for strongly leached sections, the sulphate rocks have remained 

essentially compact» (Krause, 1976).  

Evidence of transformation of anhydrite into gypsum was not detected in the active zone of 

Lilla tunnel. On the contrary, it was apparent in several cases that anhydrite nodules were 

covered either partially or totally by neo-formation gypsum needles configuring a surface able 

to isolate -and eventually protect-, the material from continuous dissolution. These features 

can be observed in Figure 5.7 , which illustrates the phenomenon on a sample recovered in 

May 2005 just below the flat-slab in station 411+880 during the reinforcement tasks of Lilla 

tunnel. These observations can be explained if epitaxial growth of gypsum on anhydrite is 

taken into account. 

An alternative to the explanation of the “chemical” swelling due to the isovolumetric process 

of anhydrite-gypsum transformation is the replacement of a host (anhydrite) by a guest 

(gypsum) crystal inside the rock matrix by means of a simultaneous dissolution-precipitation 

process. These phenomena were discussed by Nahon & Merino (1997), Fletcher & Merino 

(2001) and Banerjee & Merino (2011). The replacement is explained as a simultaneous 

pressure dissolution of the host crystal and a growth of the guest crystal. This replacement 
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preserves volume and shape in the examples given (which do not include gypsification of 

anhydrite). However, these transformations require high pressures and temperatures that are 

not present in the earth surface when dealing with most civil engineering works. 

 

Figure 5.7. Growth of neo-formation gypsum needles on an unleached anhydrite nodule in Lilla tunnel 

(Alonso, et al., 2007) 

It is concluded that the theoretical volume increase associated with reaction (5.1) is not a 

convincing explanation for the swelling observed in civil works when anhydrite and gypsum 

are present.  

The dependence of the transformation of anhydrite into gypsum on clay content is a 

hypothesis presented by Madsen and co-workers (Madsen and Nüesch, 1990, 1991; Madsen 

et al., 1995; Nüesch et al., 1995; Nüesch and Ko, 2000). Based on long–term swelling tests on 

various materials from the Gipskeuper and other sulphate-bearing units from Switzerland and 

Austria, these authors postulate that a certain amount of clay is necessary to generate the 

dissolution of anhydrite and the precipitation of gypsum. Specifically, «the clay content which 

in anhydritic marls produces the largest swelling parameters is about 15%» (Madsen et al., 

1995). Actually, the nucleation and growth of gypsum crystals in porous media is dependent 

on the supersaturation gradient and hence depends on the transport properties of the medium 

in which crystallization takes place (Prieto et al., 1990; Putnis et al., 1995). In other words, no 

theoretical bases exist to formulate cause-effect relationships between clay content, 

dissolution/precipitation of calcium sulphate species, and gypsum growth in porous media. 

Establish precise swelling mechanisms in sulphated chaystone is a difficult task because 

swelling mechanisms are related to the mineralogical composition and structure of the rocks, 
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and to the chemical composition of groundwater. However, it seems that the triggering factor 

is related with the degradation of the rocks due to tensional changes and also to wetting and 

drying processes. 

 

5.5 An alternative interpretation 

In the presence of sulphated claystone the swelling phenomenon appeared as a “hydration” 

phenomenon which could explain the expansion of the clay minerals or the transformation of 

anhydrite into gypsum. However, the deformations and high pressures developed in sulphated 

rocks are not directly related with the swelling processes associated with the hydration of clay 

minerals.  

Field observations made when interpreting the swelling experienced by Lilla Tunnel (Chapter 

3) and the heave at the area of Pont de Candí Bridge (Chapter 4), a review of the records of 

the tunnels affected by swelling crossing sulphated claystone in Central Europe and also some 

laboratory experiments presented below suggest that the origin of the observed swelling and 

heave is the precipitation of gypsum crystals in discontinuities. It has been observed that the 

swelling phenomenon in sulphated claystone occurs mainly in structural discontinuities and a 

common characteristic in the different cases of swelling in sulphated claystone is the presence 

of neoformation gypsum crystals in open discontinuities located in the active zone where 

expansions occur (see Figure 5.8 and Figure 5.9). However, crystal growth is far from being a 

phenomenon associated with hydration. The precipitation of gypsum crystals in 

discontinuities is a process that requires the presence of water in the host rock to be in contact 

with the anhydrite mineral. This understanding is the starting point for the analysis developed 

here. 

Gypsum crystals are originated from the precipitation of sulphates in supersaturated water. 

Therefore, gypsum precipitation requires the presence of water as it has been mentioned 

before. In an impervious claystone water percolates through discontinuities, either pre-

existent, created by the tunnel excavation or developing as a consequence of the crystal 

growth itself. Then, the existence of fissures or voids is necessary for the precipitation of 

crystals because they permit water flow, but also they are necessary because, in addition, 

fissures and voids provide available space where precipitation of crystals can occur, as it will 



Chapter 5    

131 

 

be discussed later in this Section. Gypsum precipitation also requires conditions leading to 

calcium sulphate supersaturation.  

Two mechanisms leading to supersaturated conditions of groundwater have been explored in 

connection with field observations in Lilla tunnel and Pont de Candí Bridge: (a) the 

evaporation of groundwater and (b) the supersaturation conditions created by the presence of 

anhydrite. 

 

Figure 5.8. Distribution of gypsum crystals along the degraded rock profile in Wagenburg North 

tunnel according to Krause (1977) and Nagel (1986): (1) segregate-impure gypsum crystals and 

macrocrystals; (2) segregate-pure gypsum crystals in fine sheets; (3) gypsum macrocrystals and 

fibrous gypsum; (4) transition between (1) and (2) 

 
(a)                                               (b) 

Figure 5.9.Gypsum crystal growth in fissures found in Lilla tunnel (a) gypsum needles on an open 

slickenside surface located in the active zone, (b) gypsiferous aggregations in a confined discontinuity 

located in the lower part of the active zone 
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Regarding the first mechanism, the presence of the tunnel itself, due to the relative humidity 

conditions imposed by its atmosphere, with its ventilated environment, favours the 

evaporation towards the tunnel boundary in the exposed surfaces of the rock. 

Figure 5.10 describes a simple laboratory experiment (Oldecop & Alonso, 2012), which 

illustrates the deformation (and damage) experienced by Lilla claystone when subjected to a 

flow-evaporation process, leading to the precipitation of gypsum. The test scheme is given in 

Figure 5.10(a): a rock core (117 cm in diameter, 15.1 cm long) is partially submerged in water 

(pure water or sulphate saturated water did not make any significant difference). Water is 

forced to migrate upwards, through the core, by wrapping the outer cylindrical boundary of 

the core with an impervious cellophane sheet. The evolution of the core with time is shown in 

Figure 5.10(b) and Figure 5.10(c). Figure 5.10(b) and Figure 5.10(c) show the progressive 

growth of gypsum crystals in some discontinuities during the test. The process starts at the 

upper boundary, where the upcoming water evaporates and the dissolved calcium sulphate salt 

precipitates as gypsum. Joint opening results in a moving evaporation boundary (it penetrates 

into the core) and the crystal growth process advances in a downward direction, expanding 

and damaging the claystone. The measured deformations (extracted from periodically 

controlling sample dimensions) are given in Figure 5.10(d). 

This process, namely the precipitation of gypsum in an evaporation boundary (Lilla Tunnel 

floor), was believed to be the fundamental explanation for the heave observed at Lilla. A 

description and a model for this mechanism were reported in Alonso & Olivella (2008). 

However, matching some observed heave displacements of the planar floor slab required a 

mass of precipitated gypsum much higher than the mass that could be derived from water 

evaporation, even if no restrictions to vapour transfer through the concrete slabs or lining are 

assumed. The absence of swelling in crown and walls may also be invoked to question the 

evaporation mechanism. However, walls and crown, unlike the invert, were soon covered by 

sprayed concrete. The understanding of the swelling mechanism at the time of tunnel repair 

was imperfect and swelling was attributed in general terms to the presence of water. This 

belief led to the inundation of the circular test sections described previously in Chapter 3. 

However, the case of severe heave of the deep massive foundations of Pont de Candí is a 

major obstacle to the acceptance of this interpretation. In fact, no evaporation may be 

assumed to act on the boundaries of the deep active layer, precisely identified immediately 

below the tips of the foundation piles of pillars P5 and P6. 
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(a)   (b)          (c) 

 
(d) 

Figure 5.10. Evaporation test on a claystone core: (a) test set-up; (b) initial state of core; (c) core after 

nearly 5 months of testing; (d) recorded deformation 

The second mechanism, the achievement of conditions of supersaturation in calcium sulphate 

due to the presence of anhydrite, is explained because the solubility of anhydrite (CaSO4) is 

higher than the solubility of gypsum (CaSO4·H2O) at temperatures lower than 56ºC. Consider 

in Figure 5.11 the equilibrium concentrations of dissolved sulphate in water in the presence of 

anhydrite and gypsum. For a reference temperature T = 15ºC water in contact with anhydrite 

is capable of dissolving 3.2 g/l of calcium sulphate. However, the equilibrium concentration 

in the presence of gypsum decreases to 2.0 g/l. Therefore, water in contact with the anhydritic 

claystone will tend to dissolve anhydrite until saturation conditions in calcium sulphate with 

respect to anhydrite are achieved. Then, supersaturation conditions with respect to gypsum 

will be reached and the excess of dissolved calcium sulphate will tend to precipitate in 

gypsum crystals. This mechanism has been modelled, for simplified conditions in Oldecop & 

Alonso (2012) and, in a more general case, in Chapter 7 of this Thesis. 



The swelling mechanism due to gypsum crystal growth 

134 

 

 

Figure 5.11. Equilibrium concentration of CaSO4 in calcium sulphated water with respect to anhydrite 

and gypsum. Sulphate concentrations were calculated with the PHREEQC computer program 

(Parkhurst, 1995; Parkhurst & Appelo, 1999), which simulates chemical reactions in aqueous solutions 

Experiments reported by Kontrec et al. (2002) illustrate the transformation of anhydrite into 

gypsum in aqueous media. They describe the spontaneous precipitation of gypsum from 

supersaturated solutions in equilibrium with anhydrite, without evaporation. Crystal formation 

is enhanced by the presence of gypsum crystal seeds; this is a mechanism that may lead, in 

time, to the transformation of all available anhydrite into gypsum. It requires the presence of 

water and the transformation involves an intermediate step: the precipitation of gypsum 

crystals. 

This mechanism is potentially more significant (and dangerous) for engineering works than 

the evaporation-based mechanism illustrated in Figure 5.10. In addition, it is difficult to 

control, in contrast to the first mechanism. Evaporation requires a boundary exposed to an 

atmosphere exhibiting a Relative Humidity (which is a measure of the water potential) lower 

than the water potential on the soil or rock. This is not the case of Pont de Candí deep 

foundations. Besides, evaporation rates, combined with the relatively low solubility of 

gypsum (or anhydrite) into water provide, in practice, a small mass of precipitated gypsum. 

This precipitation concentrates essentially on an evaporation surface and not in a rock 

volume. 

The precipitation of gypsum, via an aqueous solution, in the presence of anhydrite may occur 

in large volumes (this is the case of Pont de Candí); it does not require evaporation boundaries 

and in theory the process continues until all the anhydrite precipitates as gypsum. This 

mechanism is a potentially faster and more intense phenomenon than an evaporation driven 
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phenomenon. To become active within a claystone formation it requires a number of 

contributing factors: the presence of anhydrite and the existence of an initial set of fissures or 

discontinuities, water filled, in contact with anhydrite. A consequence of this interpretation is 

that small homogeneous samples, tested in the laboratory, may not provide any indication of 

swelling. In fact, a series of oedometer and triaxial tests performed on Lilla claystone in a 

classical way (wetting under some confinement), aimed at characterising the observed heave, 

did not show any significant swelling. Swelling will be controlled not only by the total mass 

of the precipitated gypsum (which may occur at a distance from the source of anhydrite 

dissolution), but also by the geometry of precipitated crystals and its interaction with the 

surrounding soil/rock. Crystals precipitate more easily if some space is available for them. 

The pores of claystones provide an extremely reduced space, and water flow is essentially 

restrained through them. But joints provide a more favourable environment for crystal growth: 

the “open” space increases dramatically, along with the flow rate.  

Scherer (1999), discussing the growth of crystals in pores stresses that cracks and pits are sites 

which favour the nucleation of crystals. Charola et al (2007) in their review of gypsum 

crystallization and its effect in the deterioration of natural stones refers to observations of 

gypsum crystal growth in natural pores. They also stress the tendency of gypsum to 

accumulate and to generate internal stresses in the rock, which enhances deterioration. They 

also mention the size of crystals as observed through microscopy and mention values in the 

range of microns. Measured pore sizes of undamaged Lilla claystone are in the range of a few 

nanometres (Pineda, 2012). However cracks, slickensides and fissures have sizes many orders 

of magnitude larger (10000nm = 10microns). These defects seem more able to “attract” 

gypsum crystallization because of their shape and size. In crystallization experiments reported 

by Oldecop and Alonso (2012) and also shown in Figure 5.10 of the present Chapter it was 

observed that gypsum crystals started to grow in pre-existing discontinuities of the rock. The 

void ratio determined in the active zone below the invert of Lilla tunnel, excavated in the 

same material, was found to increase substantially after the high swelling experienced. In 

other words, gypsum growth did not fill all the available pores. Instead, observations 

suggested that it created an increase in porosity.  

Therefore, there is certain evidence that in the materials investigated here gypsum crystals 

may precipitate in fractures. A conceptual representation of this interpretation of gypsum 

crystals precipitating and growing in fractures from supersaturated water due to the previous 
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dissolution of anhydrite is illustrated in Figure 5.12. In practice, the supersaturation is 

achieved when water flowing through discontinuities dissolves anhydrite. The process of 

precipitation of gypsum in discontinuities is thought to push apart the rock mass. That will 

tend to open the discontinuities and may contribute to generate new ones, generating new 

surfaces where gypsum can crystallise, depending on the characteristics of the rock mass and 

the flow and equilibrium conditions of the sulphated water. 

 
Figure 5.12. Conceptual model for gypsum precipitation 

The isolated processes of fracture opening will result in the development of the general 

swelling phenomenon observed. The different aggregates of crystallized gypsum would act as 

small hydraulic jacks expanding the mass of the surrounding rock, originating swelling 

pressures and deformations whose direction and intensity will be controlled by the geometry 

of fracture families. Apparently, this process would be maintained while crystallisation of 

gypsum occur, which in turn, is related to the supply of sulphated water.  

Experience in tunnels indicates that active zones concentrate under the invert. In horse-shoe 

tunnel cross-sections, points under the tunnel floor experience the highest stress release after 

excavation, and therefore the highest risk of opening new or existing discontinuities, inducing 

an increase on the permeability of the rock mass. In addition, groundwater tends to drain 

towards the tunnel floor (where collector drains are usually placed). The “drain effect” of the 

tunnel itself, and the fact that the rock has a high permeability below the floor of the tunnel, 

produce a concentration of the water below the tunnel floor and allow the triggering of the 

processes described previously. 

These observations bring another difficulty to the observed phenomena in Pont de Candí: 

since previous fissuring of the claystone rock is a requirement for crystal growth, it was 
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decided to check if there was evidence of fracturing in the active zone, identified below the 

piles tip (see Figure 4.18), by means of hydraulic cross-hole tests. The hydraulic cross-hole 

tests performed has been explained in Chapter 4 and revealed the existence of horizontal 

hydraulically connected fractures in the active layer which provided the necessary open space 

for gypsum crystals to grow and also confirmed the presence of circulating water.  

The maximum pressure capable of developing during these phenomena is unknown. An upper 

bound on the crystallization pressure is set in part by the supersaturation of the solution 

(Scherer 1999). The magnitude of the pressure induced by crystal growth will be analysed 

later in Chapter 6. In Lilla tunnel, a value close to 7 MPa has been measured in one pressure 

cell installed between the rock and the lining. This value is one of the highest measured 

pressure values in similar cases published, in particular in tunnels from Central Europe 

excavated in sulphated rocks. However, the precise distribution of pressures against the lining 

of Lilla tunnel is unknown; only values of swelling pressure at a few points were measured. 

Due to its variability it is difficult to propose specific and reliable distributions of pressures 

against the lining.  

 

5.6 Heave scenario in Pont de Candí Bridge 

The set of “in situ” observations described so far, and laboratory investigations into the 

precipitation and growth of gypsum crystals, indicate that the initiation of the mechanism 

requires two main conditions: 

 The presence of free water able to dissolve anhydrite. 

 The existence of connected voids or fissures to allow the circulation of water. The 

presence of fissures and defects favours the precipitation of gypsum.  

Although not necessary, the pre-existence of some gypsum increases the rate of precipitation 

(Kontrec et al., 2002). 

On the other hand, the scenario for the development of heave should also explain that the 

main triggering factor was the construction of the bridge. 

The favoured explanation is that the lower level of fissured anhydritic claystone received a 

water inflow as a result of the bridge construction. Borings drilled at the location of each 

pillar with the purpose of designing the pile foundation connected the upper aquifer with the 
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lower fractured anhydritic layer in a few isolated locations. Later, pile construction - 

especially for pillars 5 and 6 - crossed the reference gypsum layer separating the upper 

gypsum-claystone and the lower anhydrite-claystone (Figure 4.3). Even if the bored piles 

were filled with concrete, damage induced around the pile shaft during pile construction 

would allow a vertical transfer of water. Finally, the set of borings drilled later for monitoring 

and investigation purposes (most of them located in the vicinity of pillars P5 and P6) implied 

an additional downward water transfer. The water entrance into the horizontal open fractures 

triggered the swelling phenomena. Figure 5.13 illustrates this scenario.  

 

Figure 5.13. Scheme of water access towards the lower fractured sulphated claystone formation from 

the upper saturated materials  

It may be wondered why monitoring boreholes were drilled if they would aggravate the heave 

phenomenon. However, the reasons for the observed heave had not been agreed upon by the 
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different parties involved at the time of designing the monitoring programme. In general, no 

precaution was taken against the drilling of the necessary boreholes; in fact, the scenario 

described was developed (and supported) later on the basis of the data reported by the 

monitoring programme.  

This hypothesis is also consistent with the heave contours plotted in Figure 4.9 and Figure 

4.10. In fact, they show a displacement of the measured surface heave in the expected 

direction of natural flow in the valley, which also explains why the highest displacements are 

measured in pillars P5 and P6, whose pile foundations reached the anhydrite. 

 

5.7 Heave scenario in Lilla tunnel 

The scenario leading to the heave development in Lilla is conceived as follows: tunnel 

excavation induced a significant stress release under the horizontal tunnel floor. Blasting also 

contributed to damage the rock. Existing slickensides facilitated the opening of 

discontinuities. Groundwater regime in the vicinity of the tunnel was modified by the 

presence of the tunnel, which acts as a drain. Free water will flow mainly through open 

fissures under the tunnel invert; then anhydrite exposed in fissures will dissolve and sulphate 

concentration in water will reach values in equilibrium with anhydrite. This is a super-

saturation state for gypsum precipitation. The presence of gypsum crystals will enhance 

gypsum precipitation. Gypsum crystal growth will contribute to further rock damage and will 

result in the observed heave and swelling pressures against rigid boundaries such as the tunnel 

lining. 

The next step will be the formulation of a working model at the scale of the field problem, 

which incorporates the key aspects described.  

 

5.8 Summary of main findings 

The swelling mechanism 

Expansion is the consequence of gypsum precipitation in rock discontinuities. The 

precipitated crystals act as local jacks, opening and damaging further the rock. The process is 

accompanied by a mechanical degradation of the rock and by an increase in water content of 

the claystone matrix. Gypsum precipitates from water exhibiting a sulphate oversaturation. 
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This condition is achieved, when anhydrite is present because solubility of anhydrite in pure 

water, at temperatures in the range 0-56ºC is higher than the solubility of gypsum. Other 

possible reasons for sulphate oversaturation in water when tunnels are involved, such as the 

evaporation of groundwater towards tunnel boundaries, are probably of minor significance. 

 

Active zone in tunnels, Lilla tunnel 

Expansion concentrates below the tunnel invert. This is a consequence of the natural drainage 

of the rock mass towards the tunnel invert. Very small swelling pressures have been measured 

against the vaults and abutment walls. The active zone, which is well identified by continuous 

extensometers, seems to have a stable dimension (depth) once it has been generated. 

Expansion accumulates in the initial active zone. The active zone appears to be a direct 

consequence of the stress release associated with tunnel excavation, which was capable of 

opening the existing slikensided surfaces and also new discontinuities, allowing the flow of 

water in discontinuities of the sulphated claystone. The phenomenon of swelling in Lilla was 

a consequence of a few contributing factors: significant presence of anhydrite, existent or 

activated discontinuities and the circulation of water. These conditions were present in the 

highly tectonised Tertiary claystone in Lilla tunnel. The Lilla case shows that relatively small 

and careful (mechanical) excavations (those required to evolve from a flat floor to a curved 

invert and then to a full circular geometry) are capable of creating a new active zone. This 

behaviour is probably enhanced by relatively high K0 values (not measured in Lilla). 

Therefore, the active zone is directly related to the damage induced by the excavation. 

However, the development of swelling also requires the presence of circulating waters. 

Anagnostou (1992, 1993) describes a model for swelling rock in tunnelling that also expresses 

the development of swelling strains through an elastoplastic model for the rock behaviour. 

 

Active zone in Pont de Candí bridge 

Expansion in the area of Pont de Candí bridge concentrate in an active layer 12-15 m thick 

located at depths in excess of 25 m. The heave of the central pillars of Pont de Candí Bridge, 

which are founded on massive deep foundations socketed in sound claystone is a unique case 

that called for the combination of a few different circumstances to occur: the presence of 

anhydrite under the piles tip, the existence of a network of fissures within the anhydritic 

claystone, and a modification of the hydraulic regime of the entire foundation area. The third 
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circumstance is associated with construction works, and it is believed to be a consequence of 

the connection of an upper aquifer to the fissured claystone at depth. This connection was 

made possible by a number of reconnaissance borings but also by the pile construction itself. 

The circumstances described allowed the circulation of water through the anhydritic level, the 

dissolution of anhydrie and the precipitation of gypsum crystals in the discontinuities. 

 

Scale effects 

Swelling tests on small samples, following methodologies valid for expansive clays, seem not 

to be suitable to identify expansion phenomena in sulphated rocks. However, Pimentel (2007) 

has reported high swelling pressures in tests performed on anhydritic claystone. In Lilla 

claystone the swelling process develops at the scale of the rock mass. Its intensity and spatial 

distribution depend on the rock structure and, more specifically, on the pattern of joints and 

shearing surfaces and the intensity of stress changes. A consequence of the definite scale 

effects is that the expected spatial distribution of swelling and swelling pressures would be as 

heterogeneous as the rock mass itself. It has been shown that this characteristic behaviour 

enhances three dimensional effects, which implies beneficial effects on the performance of the 

tunnel lining. 

 

Yielding versus full support 

Yielding support leads to a short term reduction of pressures against tunnel lining. It also 

allows an increased deformation of the rock and therefore it will lead to associated rock 

damage. Although no field information is available on the long term behaviour of a yielding 

support, Lilla final lining was designed as a full support in view of the uncertainties generated 

by a yielding support design. Full support prevents movements, reduces the expected rock 

damage and limits the increase in rock permeability making more difficult the percolation of 

water through discontinuities. 

 

Field reconnaissance 

An exercise to predict the swelling potential on the basis of conventional core recovery in 

reconnaissance borings was performed with the aim of obtaining practical rules to identify 

conditions likely to result in swelling phenomena during tunnel excavation. The conditions 
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leading to swelling in the case of the Lilla rock are: a dominant and significant proportion of 

anhydrite in the rock mass and the presence of internal discontinuities in the rock, identified 

as slickensides and shearing surfaces with striations. Obviously, water should also be present.  

 



 

 

CHAPTER 6     

CHAPTER 6 

Crystal growth and soil expansion: The role of 

interfacial pressure and pore structure 

 

 

Measurements of swelling pressure against the lining of Lilla tunnel at the instrumented 

cross-sections indicate that the maximum swelling pressure recorded is close to 7 MPa. 

However, in general the measured maximum values at different cross-sections vary from 5 to 

6 MPa. The maximum swelling pressure able to be exerted from swelling sulphated claystone 

is unknown. The work described in this Chapter was performed to give some insight in that 

direction. The process of crystal growth requires water because gypsum crystals precipitate 

from supersaturated solutions of calcium sulphate. The Chapter concentrates on the 

precipitation of crystal in pores of varying geometry with the purpose of deriving theoretical 

expressions for the crystal pressure against the (assumed rigid) pore walls. The problem is 

solved by two complementary approaches: the thermodynamic requirements for the 

equilibrium of the chemical reaction of precipitation and the consideration of the surface 

energy at the crystal-solution interface. The phenomenon has strong similarities with other 

interfaces of interest in unsaturated soil mechanics which are highlighted. The expressions 

found for the crystal pressure are considered an upper bound for pressures likely to develop 

“in situ”. Several pore geometries and assumptions on the crystal geometric growth, based on 
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field observations, were analysed. The theoretical pressure derived for cylindrical pores (8.6 

MPa) is in reasonable agreement with the maximum recorded swelling pressure against Lilla 

tunnel (6.7 MPa). The analysis was based on the approach described by Scherer (1999). 

 

6.1 Introduction 

The analysis of the severe swelling phenomena that affected Lilla tunnel and Pont de Candí 

Bridge in Tarragona, Spain showed that expansions were a result of gypsum crystal growth 

(Chapter 3, 4 and 5). Crystals grew in fractured deep layers in both cases. Instrumentation 

provided values of sustained heave in time and also values of swelling pressures against the 

lining of Lilla tunnel. 

The reasons for swelling behaviour in Lilla tunnel and Pont de Candí bridge are understood in 

general terms. However, a more fundamental explanation for the development of swelling 

pressures is analysed here. Strong similarities exist between the air-water interface in an 

unsaturated porous media and the interface of the crystal-aqueous solution. The equilibrium of 

a small crystal under pressure growing from solution is described by means of a 

psychrometric-type of law which relates the crystal pressure with the curvature of the crystal 

and the concentration of the aqueous solution at the interface. 

The attention is focused on the generation of crystal pressures against the walls of the pores or 

discontinuities. Estimated values of pressure applied by crystal growth to the rock boundary 

are compared with swelling pressures measured in Lilla tunnel. 

 

6.2 Crystal growth from aqueous solutions 

Crystals precipitate and grow from supersaturated solutions of dissolved salts in water. They 

dissolve if solute concentration is lower than the limiting concentration for precipitation. 

Dissolution and precipitation can be described by a simple chemical reaction involving the 

mineral (or salt), M: 

1 1c sM M  (6.1) 

where Mc refers to the mineral in the solid state, the crystal, and Ms is the dissolved mineral, 

the solute. Equation (6.1) explains that the number of moles interchanged from the solid and 

the solution should be equal. 
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Equilibrium of chemical reactions is approached from the concept of Gibbs free energy of a 

system with n chemical components at a given temperature, T, and pressure, p: G(T, p, Ni) 

where Ni is the number of moles of component i of the reaction. A system is in equilibrium if 

G is minimum (dG=0). dG is calculated as  

1

1

n

i
i i

n

i i
i

G G G
dG dT dp dN

T p N

SdT Vdp dN





  
   
  

    




 (6.2) 

where μi is the chemical potential of component i, S is the entropy of the system and V is the 

volume of the system. At constant pressure and temperature, a chemical reaction will be in 

equilibrium if 

1 1

0
n r

i i i i
i i

dG dN
 

        (6.3) 

where νi are the stoichiometric coefficients of the reaction. Applying relation (6.3) to reaction 

(6.1) results in: 

1 1 0
s cM M     (6.4) 

which explains that the crystal will be in equilibrium in solution if the chemical potentials of 

crystal and solution are equal. 

The chemical potential of a solute having an effective concentration (or activity) as is 

(Langmuir, 1997): 

,0 lns s g sR T a     (6.5) 

where Rg is the ideal gas constant. 

Consider now the crystal. The variation of its chemical potential, in view of Gibbs-Duhem 

equation can be written (Scherer, 1999): 

c c c cd S dT dp     (6.6) 

where Sc and vc are the molar entropy and the molar volume of the crystal and dpc is the 

variation of pressure applied to the crystal. At constant temperature, integration of equation 

(6.6) results in: 

,0 ,( )c c c c c refp p       (6.7) 

At chemical equilibrium the chemical potentials (6.5) and (6.7) should be equal: 
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,0 , ,0( ) lnc c c c ref s g sp p R T a        (6.8) 

Consider now two states (1 and 2) at equilibrium: 

,0 ,1 , ,0 1( ) lnc c c c ref s gp p R T a        (6.9a) 

,0 ,2 , ,0 2( ) lnc c c c ref s gp p R T a        (6.9b) 

If state 2 is made equal to the reference state (pc,ref) equations (6.9a,b) result in: 

1
,1 ,( ) lnc c c ref g

ref

ap p R T a    (6.10) 

Equation (6.10) will be used below to find crystal pressure. 
 

6.3 Crystal pressure 

Consider a crystal immersed in a solution of a mineral (activity a0) which is taken as the 

reference state. The liquid solution is at pressure pl. Then, in view of Equation (6.10): 

0

lng
c l

c

R T a
p p

a
 


 (6.11) 

is the necessary pressure applied to the crystal to prevent crystal growth when immersed in a 

solution with activity a. 

Crystal pressure may be approached from another perspective by considering the interfacial 

energy, γcl, at the crystal-solution interface. This interfacial energy is conceptually similar to 

the familiar surface tension at the gas-liquid interfaces. It has the units of force/length and it 

may be thought also as the energy required to increase in a unit area the contact surface 

between the two components (crystal and solution). 

Following Laplace derivation, a crystal surface, in contact with a solution, having a curvature 

defined by radii r1 and r2 (Figure 6.1) will experience a pressure given by 

1 2

1 1
c l clp p

r r

 
    

 
 (6.12) 

where pl is the liquid pressure. 
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Figure 6.1. A representation of a crystal with a surface curvature defined by r1 and r2 immersed in a 

solution 

Equations (11) and (12) provide an explanation for the reference activity a0. It is the solution 

activity which prevents the growth of a flat crystal (r1=r2=∞). In equation (12) curvature radii 

are positive when the centre of curvature is located inside the crystal (convex shapes). 

Equations (11) and (12) provide an equilibrium relationship between crystal curvature and the 

activity of the solution in contact with the crystal. 

1 2 0

1 1
lng

c l cl
c

R T a
p p

r r a

 
       

 (6.13) 

Note that equation (13) is equivalent to the psychrometric relationship for air-water interfaces. 

The smaller the crystal (low curvature radii), the higher the solution activity able to stop its 

growth. In other words: a small (spherical) crystal will be more soluble than a (large) flat 

crystal. 

 

6.4 Crystal growth in pores of rock 

When a crystal approaches a solid surface (the wall of a pore or crack) a liquid film of 

solution remains at the wall-crystal interface (Figure 6.2). Scherer (1999) reports that the 

thickness of this film is a few nanometres. The liquid film is connected to the solution and its 

concentration, in equilibrium conditions, will become equal to the solution concentration. 

Therefore the film allows the growth of the crystal. However the solid wall will oppose 

crystal growth by repulsive forces. Further analysis of crystal pressures against pore walls 

requires the consideration of pore geometry. 
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Figure 6.2. A representation of a crystal immersed in a solution approaching a solid surface during its 

growth 

Three geometries will be examined: a cylindrical, a planar joint and a sphere. Connection 

between the crystal-wall film and the solution liquid is accepted. In the case of a sphere, this 

is achieved by means of a cylindrical conduct as shown in Figure 6.3(c). 

 

6.4.1 Cylinder (Figure 6.3(a)) 

A crystal growing in the pore will eventually approach the rock wall. The pore geometry will 

dictate further growth. 

The crystal will grow as a solid cylinder limited by two “caps” which will be assumed to be 

spherical. From equation (6.13) the solution activity required to prevent crystal growth will be 

given by 

1 2
0

1 1

exp
c cl

g

r r
a a

R T

  
    

  
 
 
  

 (6.14) 
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(a)

(b1) 

   

(b2) 

  

(c)

  
Figure 6.3. Pore geometries: (a) cylinder; (b) planar fissure; (c) sphere 

Consider now the zones a and b of the crystal (spherical “cap” and “long cylinder” 

respectively). If the film thickness δ is small compared with radius r, the curvature in zone a 

will be 2/r and in zone b it will become 1/r + 1/∞ = 1/r. Therefore, the solution activity 

capable of preventing the longitudinal growth of the crystal is twice as high of the activity 

required to grow against the pore walls. If the solution activity reaches the equilibrium value 

for the spherical cap, the crystal pressure in zone a will be given by (equation 6.13): 

,
1 2

1 1 2
c a l cl l clp p p

r r r

 
       

 
 (6.15) 
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In zone b, where the crystal experiences a pressure pc,b, the solution activity is the same as in 

zone a. Therefore the following two equations hold: 

zone a ,
0

2
lng

c a l cl
c

R T a
p p

a r
   


 (6.16a) 

zone b ,
0

lng
c b l

c

R T a
p p

a
 


 (6.16b) 

therefore pc,a = pc,b. 

Consider now the Laplace equation for zone b (r1 = r; r2 = ∞). A reaction pressure, pd, 

modifies the equilibrium 

rrr
ppp clcldlbc

1
γ

11
γ

21
, 








  (6.17a) 

, ,

1
c b l d c a l d clp p p p p p

r
        (6.17b) 

Therefore in view of (6.15): 

2 1 cl
cl d cl dp     p

r r r


       (6.18) 

and, taking (16a) into account 

0

lng
d

c

R T a
p

a


2
 (6.19) 

Which allows the calculation of crystal growth pressure against the wall of a cylindrical pore 

if activities a and a0 could be estimated. 

 

6.4.2 Planar fissure (Figure 6.3(b)) 

Consider the growth of a circular planar crystal in a fissure. In zone a of the crystal the 

curvature radii are R and r (r-δ). Therefore 

,
0

1 1
lng

c a l cl
c

R T a
p p

R r a
        

 (6.20) 

In the flat surface b, 

,

1 1
0c b l d clp p p          

 (6.21) 
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Therefore, from (6.20) and (6.21), knowing that pc,a=pc,b, 

1 1
0cl dp

R r
     
 

 (6.22a) 

0

1 1
lngcl

d cl
c

R T a
p

R r r a




     
 

 (6.22b) 

(if R >> r) which is twice as large as the value derived for the cylindrical pore. 

It was often found in the field, when opening fissures where gypsum crystals have developed 

(Figure 3.13) that acicular crystals stem out of a central disk. This geometry is sketched in 

Figure 6.3(b2). If the tip of these needles is spherical, the following relation holds: 

,
0

2
lng

c a l cl
c

R T a
p p

r a
   


 (6.23) 

In the flat surface b equation (21) holds and therefore 

0

2
lngcl

d
c

R T a
p

r a


 


 (6.24) 

which provides an estimation of the swelling pressure against the walls of the fissure. The two 

conditions shown in Figure 6.3(b) lead to the same crystal pressure against the walls. 

 

6.4.3 Sphere (Figure 6.3(c)) 

The small cylindrical conduit out of the spherical pore controls the maximum solution 

activity. Because of its spherical cap it can be written: 

,
0

2
lng

c a l cl
c

R T a
p p

r a
   


 (6.25) 

In zone b, the large spherical pore, of radius R 

,

2
c b l d clp p p

r
     (6.26) 

Therefore 

1 1
2d clp

r R
    
 

 (6.27) 

If R is significantly larger than r 
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0

2γ
lngcl

d
c

R T a
p

r a
   (6.28) 

 

6.5 Crystallization pressures in anhydritic rocks 

The equations given in the preceding section indicate that crystallization pressures may be 

estimated from pore size (equations 6.18, 6.22 or 6.28) but also if the degree of 

supersaturation may be estimated. In Lilla tunnel the swelling mechanism is explained by the 

dissolution of anhydrite until the massif water reaches equilibrium. This water is 

supersaturated with respect to gypsum. 

Consider the pressure against the wall of a cylindrical pore (equation 6.19). The crystal 

pressure will be given by 

3

4.36

3 4.58
,

8.31 298.151 1 10
ln ln 8.40

2 2 74.69 10
g anhydrite

d
c gypsum gypsum

cm MPa
 KR T a K  molp MPa

a cm mol






  


 (6.29) 

The values of equilibrium activity for gypsum and anhydrite dissolution considered in 

Equation 6.29 are taken from the thermodynamic database for PHREEQC (Parkhurst, 1995; 

Parkhurst & Appelo, 1999).  

In the case of crystals growing in planar or spherical discontinuities this pressure duplicates. 

This is the case of the crystals shown in Figure 6.4. The pore geometry given in Figure 6.3(b) 

is a simplified model for this type of crystal development.  

These estimations are higher than the maximum swelling pressures recorded against the rigid 

liner of the tunnel (Figure 3.40). This is coherent because the crystal growth is a local 

phenomenon that takes place in fissures, and the recorded value of pressure in the field is a 

result of the pressure exerted against the lining by the swelling rock mass, which is not rigid 

and has an heterogeneous distribution of fissures where crystal growth occurs. But the 

calculated limiting swelling pressures are not very far away from the maximum “in situ” 

recorded values, especially in the case of equation (6.29). 
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6.6 Conclusions 

The expected crystallization pressures in a fissured rock have been estimated from some 

results of chemical thermodynamic equilibrium of solution-precipitation reactions as well as 

by the implications of the solute-crystal interfacial energy. The general expressions reproduce 

known results familiar to unsaturated soil mechanics when air-water interface and capillary 

pressures are analysed. 

Simplified pore and crystal geometries allow the calculation of theoretical crystal pressures 

against the wall of pores. Three cases have been presented. Calculations have been made for 

solution activities expected in gypsum crystallization when water dissolves anhydrite. The 

calculated values are above maximum recorded pressures against the liner of Lilla tunnel. 

However, the estimations are reasonable if one considers the simplified nature of the analysis 

at the pore scale. The complexity of a rock mass, its deformability and the highly 

heterogeneous stress field resulting from local zones undergoing crystal growth may explain 

the discrepancies. The pore-based analysis seems to provide an upper bound to expected 

crystallization pressures in real cases. 

 

1 mm

 
Figure 6.4. Detail of gypsum crystal “rosettes” developing in a discontinuity 
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CHAPTER 7     

CHAPTER 7 

Modelling gypsum crystal growth and swelling 

behaviour. Application to Pont de Candí bridge 

 

 

The swelling behaviour observed in anhydritic rocks is explained by the precipitation of 

gypsum crystals in open discontinuities. Gypsum crystals growing in discontinuities 

contribute to open them and induce deformations or pressures (if the displacements are 

restrained). A model has been formulated to reproduce the observed expansive behaviour in 

sulphated rocks. It is described in this Chapter. The model developed integrates a set of 

balance equations that includes two soluble species (gypsum and anhydrite) in addition to the 

inert clay minerals, kinetic equations for dissolution and precipitation, mechanical 

equilibrium, and the effect of precipitated mass on induced volumetric strains. Most of the 

model parameters are physico-chemical constants, a positive feature that limits the effort to 

calibrate material constants. The model also keeps track of the solute transport and takes into 

account the effect of the existing load on crystal growth. As it was described in Chapters 4 

and 5, the heave of the central pillars of the railway bridge, founded on large diameter bored 

piles, is a consequence of gypsum crystal growth in an anhydritic claystone stratum 

underlying the tip of the piles. The heave mechanism is explained by the presence of 

circulating water in the fractured anhydritic level. The Chapter also describes a simulation 
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performed of the heave observed in Pont de Candí Bridge. Model calculations are compared 

with measured long-term field records of heave. The model is capable of accurate midterm 

heave prediction at the ground surface and the distribution of vertical strains measured in 

depth. It also correctly includes the effect of building a surface embankment with the purpose 

of reducing the heave rate. A sensitivity study is reported to achieve a deeper insight into the 

phenomena, and to investigate the relevance of a few controlling parameters. 

 

7.1 Introduction 

Important heave and swelling phenomena in sulphated claystone is a consequence of gypsum 

crystallisation in open fissures. Fissures may pre-exist or be induced by crystal growth itself. 

Once the process is initiated new or more developed fissures may be formed. Crystals 

precipitate from supersaturated solutions in calcium sulphate, which is a consequence of the 

presence of anhydrite. In fact, water in chemical equilibrium with anhydrite reaches 

concentrations that exceed the sulphate saturation conditions for sulphate precipitation. It has 

also been argued in Chapter 5 that the initial presence of gypsum crystals may play the role of 

seeds that facilitate the initiation and development of the phenomena. 

The Chapter describes first the formulation of a model to reproduce the expansive behaviour 

in sulphated rocks due to gypsum precipitation developed during the Thesis. Then the model 

is applied to the conditions prevailing in Pont de Candí bridge and the calculated evolution of 

heave is compared with actual measurements. The calculated distribution of swelling strains 

in depth has been compared with recorded strains below piles. A sensitivity analysis 

performed highlights the relative importance of the contributing factors to the observed heave. 

The Chapter concludes by summarising the field information necessary for the parameters 

used in the model, and stressing some open questions. 

 

7.2 A model for gypsum precipitation and heave 

Figure 7.1 shows a representative volume of the active layer under the existing total stresses. 

The precipitation of gypsum in discontinuities will tend to open them and will result in the 

development of deformations whose direction and intensity will be defined by the distribution 

of fracture families (Figure 7.1(a) and Figure 7.1(b)).  
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Figure 7.1. A “representative element” of sulphated rock for: (a) swelling in vertical direction; (b) 

swelling in two directions 

The swelling phenomenon is formulated within a general framework of hydro-mechanical 

analysis for saturated porous media. Some background references for the model, in its 

“standard” version, are Olivella et al., 1994, 1996; DIT-UPC, 2002 and DETCG, 2010.  

However, the material involved in gypsum crystal growth is not a standard medium: the 

claystone rock includes non-soluble minerals and two minerals (anhydrite and gypsum) that 

will dissolve and precipitate. Therefore, the solid mass balance equation should include the 

three solid species. The mass balance equation of inert and salt species should be formulated 

along with the mass balance of the liquid phase. In addition, the equilibrium equation should 

take into account that the crystallization of gypsum induces deformations. Also, the model has 

to keep track of the solute, which in this case is calcium sulphate ( 4CaSO ). Then, a solute 

balance equation has to be added for the transport of sulphates. The derivation of all the 

equations is described in detail in the Appendices. 

 

7.3 Mass and momentum equations 

The solid skeleton of the soil considered in the present work has been represented in the phase 

diagram of Figure 7.2. The volume fractions of the soluble species (anhydrite and gypsum) 

are denoted as anhydrite porosity ( anh ) and gypsum porosity ( gyp ). Accessible voids are 

represented by the “open” porosity,  .  
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The mass balance has to include the three different species of the solid phase: the insoluble 

clay matrix and other non-sulphate species; the soluble gypsum crystals; and the soluble 

anhydrite crystals. The mass balance equation for standard soils transforms into three balance 

equations for the insoluble solids and for the soluble species gypsum and anhydrite: 

     1 1 0s anh gyp s anh gyp

d

t dt
                     

u  (7.1) 

   gyp gyp gyp
gyp gyp

dmd

t dt dt

 
 

      
u

  (7.2) 

   anh anh anh
anh anh

dmd

t dt dt

 
 

       
u

  (7.3) 

Appendices 1, 2 and 3 provide details of derivations. 

 

Figure 7.2. Phases and species of anhydritic gypsiferous claystone porous medium 

The first equation, equation (7.1), states that the rate of change of mass of insoluble minerals 

per unit volume must be balanced by the net inflow rate of mass into the reference volume. 

, ,s gyp anh    are the densities of the insoluble minerals, gypsum and anhydrite, and u is the 

displacement vector field for the porous medium. Acknowledging that gypsum and anhydrite 

may dissolve or precipitate, a third term, namely the mass rate of precipitation or dissolution 

of sulphates, should be included in balance equations (7.2) and (7.3). 
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Combining equations (7.1), (7.2) and (7.3), isolating the rate of change of “true” porosity,  , 

and taking , ,s gyp anh    as constant values results in (Appendix 7.1): 

  1 1
1 gyps anh

gyp anh

dmD dmd

Dt dt dt dt

 
 

      
 

u
 (7.4) 

where 
     sD d

Dt t dt




 
   

u
    is the material derivative.  

The mass balance equation for the water can be written ( 

Appendix 7.2) as 

  ws l s
l l l l

D D d
f

Dt Dt dt

              
 

u
q    (7.5) 

where l  is the density of the water, lq is the flow rate of water, and wf  is any sink or source 

of water. Gypsum dissolution or precipitation contributes to this term, which is calculated 

through the mass rate of precipitation and dissolution of gypsum and the stoichiometric 

relationship (1 kg of gypsum liberates 0.21 kg of water when dissolved). However, the wf

term is negligible in the open system analysed here. The source or sink term refers to the 

water molecules captured or released by gypsum precipitation or solution. The formulation 

includes this term. It was later checked with the model that heave rates changed slightly if the 

source/sink term is eliminated. In other words, the amount of crystalline water and the rates of 

dissolution and precipitation of gypsum provide a small rate of change of water volume if 

compared with the rates associated with flow and deformation phenomena.  

Consider now the mass balance equation of solute: since, when dissolved, both anhydrite and 

gypsum originate calcium sulphate, only one solute will be considered. As a result, the 

balance equation reads (Appendix 7.3) 

   

1 1
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s l lm m m

l l l l l l

m m
gyp l l anh l l

gyp anh

Dd

dt Dt

dm dm

dt dt

 
     

   
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q D

 

 (7.6) 
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In this equation  is the mass fraction of dissolved sulphate in water (the product m
ll  is 

the concentration of sulphate in water in units of mass/volume). The term m
lD  accounts 

for the diffusive rate of flow following a Fick’s law. D  is the diffusion coefficient. 

The Mass and water balance equations (equations (7.4) and (7.5)) may be combined into a 
single equation ( 

Appendix 7.2) 

  1 1
0gyp ws l anh

l l l l
gyp anh

dmD dmd
f

Dt dt dt dt

   
 

 
          

 

u
q  (7.7) 

where changes in the density of the solid species are neglected. 

The equilibrium equation in terms of total stresses 

0  σ b  (7.8) 

where σ  is the stress tensor and b is the vector of body forces, completes the set of equations 

to be solved.  

 

7.4 Precipitation and dissolution of minerals 

The rate of precipitation or dissolution of gypsum or anhydrite mass in equations (7.5) and 

(7.6) needs to be defined by kinetic laws. Kinetic equations express the rate of mass change in 

terms of the “distance” between the current concentration of a given solute and the 

concentration for saturated conditions. In terms of mass fractions ( m
l ), the equations adopted 

in this work, modified from Lasaga (1984), are: 

 
,

1
,

sat gyp

m
gyp l

c gyp gyp m
l

dm

dt T p



  


          

 (7.9a) 

,

1
( , )

sat anh

m
anh l

c anh anh m
l

dm

dt T p



  


          

 (7.9b) 

where: 

m
l
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



 (7.10b) 

A quadratic kinetic law ( = 1;   =2) was adopted for anhydrite dissolution and gypsum 

precipitation, following experimental results described in Kontrec et al. (2002). In equation 

(7.9) the mass fractions for saturated solutions of gypsum and anhydrite are made 

theoretically dependent on the pressure applied to the crystal, p , and temperature, T . 

Dependence on temperature is well known (Figure 5.11). The effect of stress acting on the 

crystals (gypsum and anhydrite) is described by Scherer (1999) 

0 exp
sat sat

m m c
l l

g

p

R T

 
   

 

 
 (7.11) 

where, 0 sat

m
l  is the equilibrium mass fraction of dissolved sulphate in water for an unloaded 

crystal, c is the molar volume of the crystal, gR  is the ideal gas constant, and T is the absolute 

temperature. Temperature was constant in the case analysed. This is probably the situation in 

the active region below the pile’s tip. The “pressure” on the crystals, '
crystal , will be made 

equal to the effective intergranular stress acting on the solid species 

'
'

1
z

crystalp



 


 (7.12) 

The effective vertical stress is selected in this case, where swelling strains are essentially 

vertical. The formula requires three main assumptions: the fractured claystone is assumed to 

be a saturated granular medium; the effective stress (in the Terzaghi sense) is a measure of 

intergranular stresses; and all solid constituents receive the same force per unit area (of the 

solid species). The derivation is given in the Appendix 7.4. 

In equation (7.9), c is the specific surface of the species (m2 of crystal surface/m3 of 

medium) and   is a constant controlling the rate of dissolution/precipitation (kg/s·m2 of 

crystal). Finally, the term   (equation 7.10) provides a positive or negative sign to the mass 
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rate of precipitation/dissolution: a negative sign implies dissolution ( m m
l l sat  ) and a 

positive sign ( m m
l l sat  ) implies precipitation. 

A significant feature of stress-strain calculations is that precipitation of crystals induces 

deformations. A first approximation to calculate the imposed deformations is to assume that 

the precipitated mass results in a volumetric deformation equal to the crystal volume. 

However, observations in the field (see Figure 7.3, Figure 7.4, Figure 4.20 and 4.21) indicate 

that new crystals may either occupy part of the volume of an already existent open 

discontinuity, or else generate additional porosity. A simple approach is to take these effects 

into account by means of a “swelling” parameter, i , introduced to calculate strain rates ( i ) 

from precipitated gypsum mass as follows: 

gypi i

gyp

dmd

dt dt

 


  (7.13) 

where 1 = vertical (z), and 2,3 = horizontal (h). 

 

Figure 7.3. Laminar gypsum crystal growth developing inside the clay matrix in a recovered core from 

a borehole tested during the hydraulic cross-hole tests, at depths corresponding with the active layer 

It is reasonable to accept that parameters i  depend on the applied effective stress on direction 

i. The higher the effective confining stress, '
i , the lower the expected volumetric 

deformation for a given mass of gypsum precipitated. On the other hand, the function  'i i   
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should also include the possibility of a new crystal inducing additional porosity, or partially 

reducing the existing one. In the second case, subsequent precipitation of gypsum crystals 

would eventually occupy all the available open space. Under general deformation conditions, 

i  values should also account for the fact that a given volume of precipitated crystal deforms 

the rock or soil in three directions. The following equations are proposed: 

'

max
ib

i e     for ' 0i   ;  1,  2,  3i   (7.14a) 

maxi   for ' 0i  ;  1,  2,  3i   (7.14b) 

 

Figure 7.4. Gypsum crystal growth in needles in a recovered core from a borehole drilled for hydraulic 

cross-hole tests, at depths corresponding to the active layer.  Gypsum crystals form needles partially 

filling the open vein 

The maximum value max  is defined for zero confining stress. It may be suspected that 

parameters max  and b will change with spatial direction. A constant value for model 

parameters max  and b will be accepted here. Deformation rates induced by gypsum 

precipitation are treated as imposed volumetric deformations.  
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All these developments were included into the CODE_BRIGHT Finite Element computer 

code for thermo-hydro-mechanical analysis of porous media (DETCG, 2010). This program 

was used in the calculations reported below. 

 

7.5 Heave calculations. Comparison with field data 

The simulation performed concerns the central pillar P5 of the bridge, where maximum 

vertical displacements were recorded (Figure 7.5(a)). A 15 m wide and 55 m long column of 

foundation material, at pillar P5, was modelled under plane strain conditions. It was further 

assumed that the foundation material was laterally confined. 

The geometrical model, given in Figure 7.5(b), includes the presence of the active layer, 15 m 

thick, and two stable layers, one above and one below. A phreatic level was located in the 

position shown in the figure. Following the scheme plotted in Figure 5.13, a horizontal flow 

was forced in the active layer by adding two inert pervious layers on both sides of the central 

soil column (Figure 7.5 (b)). A small difference in piezometric head (1 m) between the two 

lateral layers forces an essentially horizontal flow within the active layer.  

The model requires a number of parameters, which have been collected in Table 7.1, under 

three headings: anhydritic-gypsum transformation, hydraulic parameters and mechanical 

parameters.  

Mass fractions of gypsum and anhydrite for a saturated solution in water are based on a 

calculation performed with the computer program PHREEQC (Parkurst & Appelo, 1999 and 

Parkhurst, 1995) which simulates chemical reactions in aqueous solutions. Initial volumetric 

fractions (porosities) of gypsum and anhydrite in the active layer are approximate average 

values, which reflect core descriptions made during boring operations. 

The rate constant,  , of kinetic equations has been investigated by a number of authors 

(Barton & Wilde, 1971; Jeschke et al., 2001; Kontrec et al., 2002). Dissolution is controlled 

by two processes: a chemical reaction at the crystal surface and a molecular diffusion of 

dissolved ions through a boundary layer. Therefore, flow conditions around crystals control 

also the diffusion rate. Laboratory experiments described by the authors mentioned involve 

tests on crystals in suspension in an agitated aqueous solution or dissolution of crystals 

adhered to a surface which is rotated in a solution. Following the comprehensive analysis 
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performed by Jeschke et al (2001) the gypsum dissolution rate parameter is approximately 

given by gyp  = 2.23  105Kg/m2·s. Experimental results reported by Barton & Wilde (1971) 

provide a lower value for anhydrite ( anh  = 1.49  105 Kg/m2·s). However, these authors 

describe kinetics by mathematical relations which are somewhat different from equation (7.9). 

As a result, the kinetic coefficient in equation (7.9) could not be estimated reliably from 

published data based on laboratory tests. 

(a)  

(b) 

 
Figure 7.5 (a) Position of column for Finite Element calculations; (b) mesh geometry, materials and 

boundary conditions 
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Concerning precipitation, Nancollas et al. (1973) conclude that it is very difficult for 

anhydrite to precipitate in nature, due to the high activation energy required. Freyer & Voigt 

(2003) state that precipitation of anhydrite from aqueous solutions is the most difficult one of 

all phases of calcium sulphate (gypsum, two hemi-hydrates and three anhydrite phases). 

Below a temperature of 90ºC anhydrite does not precipitate spontaneously. Kontrec et al. 

(2002) indicate that the dominant precipitation of gypsum occurs spontaneously from highly 

supersaturated solutions. However, gypsum crystallisation is possible from low supersaturated 

solutions, provided there are gypsum crystal “seeds” available. The second scenario is likely 

to prevail in the case described here. 

Table 7.1. Model parameters 

Anhydrite-gypsum transformation Hydraulic Mechanical 

Parameter Value Parameter Value Parameter Value 

Mass fraction of gypsum in 
water for saturated 
conditions, no stress 
applied, 

,0 sat gyp

m
l  

2.028·10-3 

Initial open 
porosity, 

ini
 

0.09 
Elastic 

parameter, E  
(MPa) 

1000  

Mass fraction of anhydrite 
in water for saturated 
conditions, no stress 
applied, 

,0 sat anh

m
l  

3.187·10-3
Intrinsic 

permeability 
K (m2) 

2·10-13 
Poisson’s ratio, 

  
0.2 

Initial gypsum volumetric 

fraction, gyp
ini  

0.2   

At rest, earth 
pressure 

coefficient, 0K  
2 

Initial anhydrite volumetric 

fraction, anh
ini  

0.15   

Solid specific 
unit weight,  

w/s    
2.63 

Compound kinetic 

coefficient, c   (kg/m3·s) 
3.5·10-4    

Gypsum 
density, gyp  

(Mg/m3) 

2.3  

Coefficients of kinetic law 
(10a,b) 

   = 1 
 = 2 

  

Anhydrite 

density, anh  

(Mg/m3) 

2.96  
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It follows from the short review above that the process of anhydrite dissolution and gypsum 

precipitation is a natural one under the conditions of low stresses and moderate temperatures. 

It is also consistent with “in situ” observations reported in Chapter 4. 

Equation (7.9) indicates that the rate of dissolution/precipitation is governed by the product

c  . Uncertainties in  are high because of the significant differences between a fractured 

claystone and the laboratory experiments mentioned. The specific surface c  (exposed to free 

water) is also difficult to estimate in a fractured rock mass. Therefore, the back-analysis of 

field heave records is better interpreted as providing an estimated value for the compound 

kinetic parameter, c . As a simple choice, a constant value was adopted for gypsum and 

anhydrite and a value c  = 3.5  104 kg/m3·s was found by matching the field heave 

records. If further hypotheses are made,  and c could be isolated. However, not only is the 

specific surface difficult to estimate, but the dissolution rate reported in some laboratory 

experiments corresponds to greatly idealised conditions (i.e. isolated anhydrite crystals stirred 

in a given mass of pure water). “In situ” conditions (a fractured claystone) are far from test 

set-ups, and the effect of other salts dissolved in groundwater and other solid constituents 

(clay minerals, for instance) is unknown. Therefore, before further information becomes 

available, it seems appropriate to maintain the compound coefficient, c  , as the 

fundamental rate parameter identified by back-analysis of field records of heave. 

Very simple hydraulic and mechanical models were selected because the observed 

phenomena are not believed to be much affected by them in the observed field behaviour. 

Two parameters characterise the hydraulic behaviour of the active layer: porosity and 

permeability. An average value  =0.09 was taken. This value is higher than values measured 

in some of the recovered cores to account for the open space provided by joints. In the active 

layer the horizontal intrinsic permeability found in the cross-hole tests described was imposed 

in the model (K = 2  1013 m2; above and below the active layer permeability was reduced to 

a lower value, K = 1  1016 m2). 

The entire soil/rock column was assumed to be isotropic linear elastic. Initial stresses are 

given by a geostatic stress in the vertical direction and a horizontal stress given by an at rest 

pressure coefficient  = 2. The side “auxiliary” columns in Figure 7.5(b) were given a low 
0K
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elastic modulus to better approximate a free sliding condition in the vertical direction. The 

swelling phenomenon was activated only in the active layer. 

The chemical analysis of water extracted from boreholes crossing the active layer indicated 

that it was saturated in calcium sulphate salts with respect to gypsum. This condition ( m
l  = 

2.028  103) was imposed on the water filling the pores of the active layer. 

The assumption made in the model was that (almost) pure water ( m
l  = 1  10-3) entered the 

active layer from its left boundary at the position of the active layer. This is an extreme case 

which may reproduce the inflow of water directly from surface runoff waters (see Figure 

5.13). However, the calculation shows that the water entering the active layer rapidly achieves 

a supersaturated condition as anhydrite is dissolved. There was almost no difference in results 

when the sulphate concentration of the incoming water was varied between extreme values. 

The most uncertain parameters are probably those defining the coefficient   in equation 

(7.14a). The selected values max  = 1,  = 2 result in the '
z z   relationship shown in Figure 

7.6. Selecting max  = 1 implies that no additional swelling, beyond the volume of the 

precipitated gypsum mass, is considered in the analysis.  

 
Figure 7.6. Variation of the z  with the applied effective vertical stress 

b



Chapter 7    

169 

 

Consider first the swelling displacements measured at the top of incremental extensometers 

IX-5 and IX-6, located in the vicinity of pillar P-5 (the position of these instruments is given 

in Figure 4.5). An 800-day history of heave displacements is compared with model 

calculations in Figure 7.7(a). The set of parameters leading to the good fit shown in Figure 

7.7(a) is given in Table 7.1, and will be called “base case”. The swelling coefficient, z  in 

equation (7.14), takes values varying from 0.11 (deepest point in the active layer) to 0.22 

(upper point in the active layer). The range of z  values within the active layer is marked in 

Figure 7.6. These values suggest that a substantial part of the precipitated mass of gypsum 

occupies the existing void space. 

The evolution of calculated vertical strains is given in Figure 7.8. Strains develop in a 

continuous manner in the active layer, a consequence of the porous model adopted for the 

claystone porosity.  

 
(a) 

 
(b) 

Figure 7.7. Measured and calculated surface heave: a) model validation for the first 800 days; b) 

model reaction to construction of surface embankment at t = 924 days 



Modelling gypsum crystal growth and swelling behaviour. Application to Pont de Candí Bridge 

170 

 

The calculated heave plot in Figure 7.7(a) shows an apparent linear trend of heave with time 

in natural scale; this is a consequence of the limited time span of the simulation performed. If 

time is increased (Figure 7.9), there is a progressive decay in the heave rate that eventually 

stops. Heave development goes in parallel with the depletion of anhydrite content in the 

active layer (see Figure 7.10). As the anhydrite content (volumetric fraction) decreases, the 

gypsum content increases in parallel. This is a long term process. The model indicates that if 

conditions are left unchanged, significant heave rates would develop over a period of 8 years. 

Once the anhydrite disappears, if hydraulic conditions are maintained, the model predicts a 

progressive dissolution of gypsum (Figure 7.10).  

 

Figure 7.8. Calculated vertical strains in the active layer 

The sustained heave rate of the central part of the viaduct experienced a significant reduction 

when a 29.5 m high embankment over the foundation of pillar P-5 was built on the valley 

floor (Figure 4.27). Figure 7.7(b) shows the change in swelling rate at t = 924 days when the 

embankment construction started. The heave record in Figure 7.7 was measured by surface 

levelling of the base of pillar P-5 and also by levelling the top of the two extensometers 

located in the vicinity of pillar P-5. 

The model reacted in a manner very similar to the actual behaviour, predicting a new rate of 

swelling very close to the actual values. Model parameters were calibrated on the first part of 

the swelling record (from t = 0 to t = 800 days). The model also predicts a transient settlement 

during the embankment ramp loading, which is a consequence of the stiffness assumed for the 

foundation materials. Field data is scarce during the embankment construction period and this 

prevents a more accurate analysis of the immediate effect of embankment loading. However, 
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the heave of the active layer remained at a reduced rate, well defined in subsequent 

measurements on the pillar surface. 

 

Figure 7.9. Long-term evolution of calculated heave over time 

 

Figure 7.10. Long-term evolution of gypsum and anhydrite volume fractions 

 

7.6 Sensitivity analysis 

Further insight into the swelling phenomena and the characteristics of the model developed is 

gained through a sensitivity analysis on the relative importance of controlling parameters.  

The results presented here maintain the parameters of the base case (Table 7.1) except for the 

parameters defining the effect being investigated. The analysis, in most cases, extends to the 

first 1600 days, and therefore, it incorporates the embankment loading (except for the cases 

concerning the effect of applied surface stress on heave development). 

 

7.6.1 Porosity 

Changes in porosity modify the water flow rate, which controls the sulphate concentration 

(Eq. 7.28 in Appendix 7.3), and therefore, the rate of precipitation of gypsum and anhydrite 
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dissolution. In addition, porosity variations also change the crystal effective stress, which 

controls anhydrite and gypsum solubility, as well as the swelling coefficient. Despite these 

cross-effects it turns out that its effect is of relatively minor importance, as illustrated in 

Figure 7.11. The uncertainty associated with the evaluation of the fissured volume or 

accessible porosity is therefore quite limited regarding its effect on swelling. 

 

Figure 7.11. Effect of initial porosity on surface heave 

 

7.6.2 Initial volume fractions of gypsum and anhydrite 

Volume fractions control rate effects (Eq. 7.9). For instance, equation 7.9a tells that a higher 

gypsum content results in a higher rate of gypsum precipitation. In other words, increasing the 

exposed gypsum surface facilitates further gypsum crystallization. The effect of different 

initial volumetric fractions of gypsum and anhydrite is given in Figure 7.12(a) and Figure 

7.12(b). Gypsum volumetric fraction has a small effect (Figure 7.12(a)). However, anhydrite 

content has a very significant effect on calculated swelling. This result stresses the need for a 

precise determination of anhydrite content in field investigations. 

 

7.6.3 Equilibrium concentrations 

Equilibrium concentrations at saturation are known to depend on temperature and crystal 

effective stress. The effect of temperature was illustrated in Figure 5.11. The effect of a 

relatively small change in gypsum and anhydrite values ( 0 ,

m
lsat gyp

 from 2.028  103 to 2.192  

103 and 0 ,

m
lsat anh

  from 3.187  103 to 2.848  103) is shown in Figure 7.13. These 

concentrations correspond to a change in temperature from 15ºC to 40ºC. 



Chapter 7    

173 

 

 
(a) 

 
(b) 

Figure 7.12. Calculated evolution of surface heave. Effect of: (a) gypsum content; (b) anhydrite 

content 

 

Figure 7.13. Effect of equilibrium concentrations at temperatures 40ºC and 15ºC on calculated heave 

development 

7.6.4 Stress effects 

Stress effects are substantial in the developed model for two reasons: they modify the 

concentration of saturated solutions (Eq. 7.11), and they are expected to modify the swelling 
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coefficient i  (Eq. 7.14). The combined effect is shown in Figure 7.14. Increasing the stress 

augments the solubility of anhydrite and gypsum. An increased mass of dissolved sulphate is 

available for gypsum precipitation, but the concentration threshold for precipitation has also 

increased. The result is shown in the figure: essentially, increasing the stress has a small effect 

on the development of swelling if only the effect of stress on solubility is accounted for. 

However, the direct mechanical effect on i  reduces the expected heave further. The swelling 

coefficient dominates stress effects. The three stresses indicated in the plot refer to the initial 

situation (no load applied on the surface: v  = 0), to a 33 m high embankment ( v  = 0.66 

MPa) and to a 48 m high embankment ( v  = 0.96 MPa). 

 

Figure 7.14. Effect of the external vertical stress on calculated vertical heave. The effect of stress on 

the saturation concentration of anhydrite and gypsum is small. The major effect comes from the 

“swelling” parameter, i . The curves for v  = 0 correspond to the initial situation (no load applied on 

the surface). The curves for v  = 0.66 MPa and 0.96 MPa correspond to 33 m and 48 m high surface 

embankments 

 

7.6.5 Other effects 

Parameters controlling water flow in the active layer (induced gradient, permeability) had a 

minor effect. Gradient changes result in limited changes in vertical effective stress. 

Permeability dictates the flow rate, which does not have a direct influence. It affects the time 

required for the incoming water to reach a saturated concentration of sulphate. But this 

process is rapid, at least for acceptable permeability values of the anhydritic formation, and 
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the incoming water saturates shortly after entering the active layer, even if pure water is 

injected.  

The effect of the initial state of stress (K0) depends on some modelling hypotheses. If swelling 

strains are activated only in the vertical direction (a hypothesis favoured by the horizontal 

pattern of discontinuities), the vertical stress controls the calculated swelling, and therefore K0 

has no effect. In the model, K0 and Poisson’s ratio have a definite effect. A change in swelling 

stresses '
h  implies a change in h , which in turns modifies the calculated horizontal strains 

needed to compensate the imposed horizontal displacements (zero at the boundary). The 

calculated horizontal strains result - through the Poisson’s effect - in vertical strains that 

modify the vertical swelling, although this effect is small. A constant Poisson ratio   = 0.2 

was adopted in all calculations. 

 

7.7 A simulation of the distribution of swelling strains in depth 

An attempt to reproduce the distribution of swelling strains measured in the active layer has 

been performed. The same model parameters and geometry defined in the previous sections as 

a “base case” have been considered in the calculations presented in this section. Gypsum 

precipitation occurs in open fractures. Measured vertical swelling strains accumulate over 

time in thin bands inside the active layer (Figure 4.13, Figure 4.14, Figure 4.15, Figure 4.17, 

Figure 4.28 and Figure 4.29) probably as a result of a relative higher presence of fractures at 

those depths. These bands, having a higher intensity of fractures, will have more anhydrite in 

contact with water. The distribution in depth of the initial anhydrite content at depths 

corresponding to the active layer has been chosen according to the pattern of swelling strains 

measured near the central pillar P5 (Figure 4.13 and Figure 4.28). The values of initial 

anhydrite content at different depths have been varied to adjust the calculated vertical 

displacements to the measured heave in the field (Figure 7.15). Figure 7.16 shows the 

calculated vertical strains within the active layer. The simulation reproduces the swelling 

strains measured before the construction of the embankment (Figure 7.16 and Figure 4.13). 

The comparison between the calculated heave at the surface of the column and the evolution 

of the heave measured by topographic levelling at the ground surface level is given in Figure 

7.15. The vertical strains due to crystal growth only occur in the active layer and the material 

located above the active layer is pushed upwards. The calculated vertical displacements 
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reproduce the field heave records in a four year period of observations. The construction of 

the embankment was simulated by applying a loading at the upper boundary of the column. 

The model reacts to embankment construction and the calculated vertical displacement 

reproduce the field measurements recorded after the “construction” of the embankment 

(t=924 days in Figure 7.15).  

 
Figure 7.15. Surface heave measured in the field and calculated with non-homogeneous distribution of 

anhydrite 

 

Figure 7.16. Calculated vertical strains in the active layer at different times 

Several cases characterized by different embankment heights have been calculated to examine 

the effect of the increment of load applied at the surface on the vertical calculated strains 

(Figure 7.17). The model described at the beginning of this section was considered as a “base 

case”. The rates of the vertical displacements calculated after the simulation of the 

construction of the embankment for different load increments are summarized in Figure 7.18. 

Actual observations of heave rate (Figure 4.31) compare reasonably well with calculations. 
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Figure 7.17. Calculated vertical displacements at the natural ground surface 

  

Figure 7.18. Calculated rates of vertical displacements after 70 days of application of vertical load 

 

7.8 Conclusions 

The model developed in this Chapter to reproduce the sequence of events responsible for the 

observed heave abandons the classical explanation of heave associated with direct anhydrite 
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transformation into gypsum by incorporating two water molecules. The model considers that 

swelling is a result of gypsum precipitation from supersaturated water due to a previous 

dissolution of anhydrite. 

The model developed remains within a framework of flow-deformation analysis of porous 

media. The porous media was assumed to be integrated by an insoluble species (inert rock 

matrix), two soluble species (anhydrite and gypsum) and water. Mass conservation equations 

have been formulated. They require the knowledge of kinetic equations providing dissolution 

and precipitation rates of soluble species. They have been taken from some laboratory 

experiments in aqueous solutions reported in the literature. One important aspect of the 

model, insufficiently known, is the relationship between precipitated gypsum mass and strain 

development. An equation relating both variables, depending on stress, has been introduced. 

Heave development in the field was shown to be limited to an essentially horizontal active 

layer, 12-15 m thick. A “column” of soil reproducing the stratigraphic sequence was analysed 

with the model developed. The model for heave development requires a small number of 

parameters. Some of them are physico-chemical constants (saturation concentrations of 

gypsum and anhydrite), while others define the kinetic equations. In the case described, the 

constant controlling the rate of dissolution or precipitation of anhydrite and gypsum was 

identified by matching the heave recorded before remedial measures (the construction of the 

embankment). It is also necessary to know the initial volume fraction of solid gypsum and 

anhydrite, which should be established by field investigations. The calculated response of the 

model seems to be consistent with heave records observed over a relatively long period (four 

years) and the distribution of swelling strains in depth. Once calibrated, the model is able to 

predict also the effects of adding weight to counteract the foundation heave. Heave would 

stop when anhydrite content is finally depleted to low values in an asymptotic process. This 

may take many years in the case analysed. The model also predicts the long-term dissolution 

of gypsum and therefore an increase of porosity of the active layer if flow conditions do not 

change. This increase in porosity may eventually lead to a surface settlement.  

The sensitivity analysis performed provided additional information on the relative importance 

of governing parameters. The initial content of anhydrite is a very significant parameter that 

controls the intensity of expansion. Also significant is the effect of temperature because of its 

effect on the equilibrium concentrations of gypsum and anhydrite. 
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Uncertainties remain in some of the assumptions made, especially when trying to relate the 

basic crystal growth process and its mechanical implications. The dependence of kinetic 

equations for gypsum and anhydrite precipitation and dissolution on applied stress is not 

known with certainty.  

The entire heave process develops within a fractured soft rock. This medium has been 

approximated by a porous medium in the model. Probably this is not a serious limitation in 

the case described but may prove to be too simplified in other cases. 

Despite these uncertainties, the model is able to integrate observed experimental information 

from laboratory and field in a calculation procedure, which does not enter into major 

inconsistencies. 

 

Appendix 7.1. Derivation of mass balance equation for solids (equation 7.4)  

The definition of the material derivative with respect to solid motion is: 
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Using material derivative, equations (7.1), (7.2) and (7.3) of the main text results in: 
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Combining equations (7.16), (7.17) and (7.18) the mass balance equation of solid phase is 

obtained: 
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When densities are constant it simplifies into: 
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Appendix 7.2. Derivation of mass balance equation for water transfer 

(equation 7.5 and equation 7.7) 

In a saturated regular porous media the mass balance of water is described by Olivella et al. 

(1994, 1996), DIT-UPC (2002) and DETCG (2010): 
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where, wf  is an external supply of water and jw
l

is the total mass flux of water, which 

includes the Darcy component ( l lq ) and the velocity of the solid skeleton ( l

d

dt

u ) .  

Applying the material derivative equation (7.21) transforms into: 
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The substitution of variations of porosity in time, from the solid mass balance, in equation 

(7.22) results in: 
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If changes in solid density are neglected, the mass balance of water results in:  
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Appendix 7.3: Derivation of solute mass conservation equation (equation 

7.6) 

Only one species of solute is considered because anhydrite and gypsum crystals dissolve as 

calcium sulphate.  
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The balance of solute can be written as follows: 
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The first term provides the rate of change of dissolved mass in the saturated open pores. The 

second term accounts for the advective (Darcy) and diffusive mass flow rates. The third term 

is the advective mass flow rate induced by the solid motion. The right terms express the 

solution and precipitation rates of gypsum and anhydrite. 

Using the definition of material derivative, the balance of solute equation results in: 
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Variations of porosity in time given by the solid mass balance are substituted in equation 

(7.26): 
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If the changes in porosity are neglected the mass balance of solute becomes: 
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Appendix 7.4. Derivation of the equation of the pressure acting on crystals 

(equation 7.12)  

Expression 
'

'

1
z

z anhydrite  grains


 

 
 is derived as follows: 

The first hypothesis is that the effective stress in the fractured and porous rock analysed is a 

measure of intergranular forces, z refers to the vertical direction: 
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' z,intergranular
z

T

F

A
     (7.29) 

The preceding one-dimensional simplified expression provides the effective stress acting 

normal to a reference area AT 

The objective is to find the stress acting on the particles. Therefore, 
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where: 
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It is accepted that the porosity may be expressed as area ratios: 
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Equations (7.29), (7.30) and (7.31) allow transforming equation (7.32) into:  
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A second assumption, namely that stresses that receive the solid grains (being anhydrite or 

not) are all equal, allows writing:  
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Then: 
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Isolating '
z anhydrite grains from equation 7.35 provides 
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CHAPTER 8 

Analysis of massive sulphate attack to cement 

treated railway embankments and track bases  

 

 

Expansions in soils due to crystal growth can also occur as a result of sulphate attack to 

cement or lime treated clayey compacted soil containing sulphates. This expanding process 

involves the growth of crystals of ettringite and thaumasite minerals within the cement or lime 

treated soil.  

Cuts and fills are common in engineering works. Embankments and fills made of compacted 

marls with gypsum are built when infrastructures are performed in gypsiferous rocks. 

Transition embankments treated with cementitious materials in the vicinity of a more rigid 

structure is a common practice. Therefore the risk of sulphate attack to compacted sulphated 

clay materials in engineering works has to be taken into account when sulphated formations 

are involved.  

The expanding phenomenon related to sulphate attack has been reported in the literature 

mainly in a number of cases involving compacted road bases and sub-bases stabilised with 

cement or lime. The comparison of different cases of treated compacted bases affected by 

sulphate attack indicates that the existence of water is indispensable in the development of 
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expansions. This is in agreement with the set of chemical reactions taking place for the 

formation of the minerals causing expansions, which involve dissolution and precipitation 

processes and that are presented at the Appendix of this Chapter.  

Two cases of massive sulphate attack to cement treated embankments and track base in a 

high-speed railway line have been analysed in this Chapter to study the expanding phenomena 

induced by ettringite and thaumasite crystal growth in compacted sulphated soils treated with 

cement. In the first case, two access embankments to a railway bridge experienced a 

continuous and severe heave shortly after construction. Vertical displacements reached 120 

mm in a 2 year period. The embankments were designed, by including soil-cement treated 

transition wedges. A grid of 10 m deep jet-grouting columns was also built with the purpose 

of stabilising the embankments. Instead, a sustained swelling deformation, which extended to 

depths of 8-10 m, was activated. In the second case a compacted cement treated soil was 

placed over a rigid concrete caisson. The treated layer, 1.5 m thick, expanded at a continuous 

rate of 0.9-1.3 mm/month. In both cases the compacted soil was low-plasticity clayey material 

with a variable percentage of gypsum. The embankments and the track base suffered a 

massive ettringite-thaumasite attack which was triggered by the simultaneous presence of 

cement, clay, sulphates and an external supply of water (rain). Ettringite and thaumasite 

crystals were found within the expanding levels.  

The Chapter summarises the experience on sulphate attack described in the literature, 

describes the field extensometer and inclinometer records, the long term laboratory tests 

performed, some mineralogical observations and the reactions leading to the growth of 

expansive crystals. It presents the modelling of the chemical evolution at the interface 

between a compacted sulphated clayey soil and a cement material. Also a model which 

simulates the measured heave in the embankments was developed. Forces acting against the 

bridge, which was seriously damaged, were estimated. Solutions adopted to remediate the 

created problems are briefly described.  

 

8.1 Introduction 

Cement attack by sulphates is a well-known mechanism of degradation of concrete and 

mortars made of Portland cement. The phenomenon is well-known in general terms. Portland 

cement has a dominant content (6070%) of calcium oxide (CaO), a significant proportion 



   Chapter 8    

185 

 

(2025%) of silica (SiO2), a small proportion (26%) of aluminium and iron oxides (Al2O3, 

Fe2O3) and sulphate (in the form of gypsum: CaSO4·2H2O) (15%). Gypsum is added to 

retard the paste setting. 

Sulphate attack of a hardened cement paste leads to the development of ettringite, a hydrated 

sulphate of calcium and aluminium. This mineral crystallises in bundles of elongated 

filaments which retain a high proportion of water molecules in its crystalline structure. The 

source of the attack is often described as being either “internal” (when the cement itself has 

excessive sulphate content) or “external” (when water carrying sulphate ions enters into 

contact with the hardened cement). The development of ettringite implies a destruction of the 

strength of the cement paste and a substantial swelling. The external attack progresses as an 

advancing front from the surface exposed to the sulphated water. Aluminium oxides are 

reduced to a minimum in sulphate resistant cements. In the absence of aluminium, ettringite 

does not develop. Another mineral, thaumasite, also develops as a consequence of sulphate 

attack. It is a hydrated sulphate of calcium and silicon. It may crystallise from ettringite by 

means of an isomorphous substitution of aluminium by silicon. 

Cement and lime treated soils are often used to stabilise road bases and sub-bases. When the 

soil has some proportion of gypsum, or the treated soil is exposed to sulphated waters, a 

similar attack resulting in loss of strength and significant heave has often been reported 

(Sherwood, 1962; Mitchell & Dermatas, 1992; Snedker, 1996; Rajasekaran et al., 1997; 

Puppala et al., 2003; Rajasekaran, 2005). Some of these studies discuss the minimum sulphate 

content that triggers the attack. Most of the papers point out that sulphate contents in excess 

of 0.51% (concentration of soluble sulphate in water, by weight) result in ettringite 

formation and soil swelling. 

However, lower threshold values (0.3%) have also been identified (Mitchell & Dermatas, 

1992; Snedker, 1996). It appears that the loss of strength of the treated soil and associated 

swell is related to the sulphate content. Sherwood (1962) described an unconfined 

compressive strength reduction of 24% of treated soil when the sulphate content was as low 

as 0.25%. 

Unlike “pure” cement mixtures or concrete, treated soils usually contain a certain proportion 

of clay minerals, which are a source of aluminium and silicon ions. In fact, the highly basic 

environment (pH in excess of 12) created by the hydration of cement’s calcium oxide is 
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capable of dissolving the clay minerals and releasing Al and Si atoms, ready to be integrated 

into ettringite and thaumasite molecules. The implication is that sulphate resistant cements, 

low in aluminium oxides do not necessarily guarantee the prevention of sulphate attack in 

treated soils. However, Puppala et al. (2003) report the good performance of sulphate resistant 

cement in stabilising soft and expansive clays with high sulphate content. 

Most of the geotechnical literature on sulphate attack concerns the stabilisation of compacted 

road bases and sub-bases. In those cases the treatment is applied to relatively thin layers, and 

the sulphate attack results in surface heave and reduction of soil strength. In contrast, the two 

cases affected by sulphate attack described here concern larger soil masses: an entire railway 

embankment and a 1.5 m thick treated layer in a railway track base in a high speed railway 

line. The induced swelling strains resulted not only in a surface heave but also in very high 

and unexpected forces against bridge abutments in the case of the embankments, which 

caused significant structural damage.  

The chapter first describes the two affected embankments, located on both sides of a bridge 

built recently for a high-speed railway line. Field measurements in the embankments area, 

once the heave was first identified, will be described, as well as the properties of the 

compacted material used in the construction of embankments. Then the case of the affected 

base stretch located close to the embankments is explained. Sulphate attack will be described 

in some detail, relying on some specific tests performed and on some geochemical 

calculations analysing the chemical evolution of an interface between a cement treated body 

and a compacted soil. This chemical modelling will be also presented. The embankment 

swelling was modelled, and an estimation of pressures developed against the bridge abutment 

was made. Finally, the costly remedial measures are briefly described. The case is probably 

an extreme case of sulphate attack to a large engineering structure and highlights the severity 

of the phenomenon, which may develop when several contributory factors cooperate to create 

a critical and dangerous situation. 

 

8.2 Design and construction of embankments 

Not far from the location of Pont de Candí Bridge, a 196 m long bridge, Pallaressos Bridge, 

which also belongs to the high-speed railway link between Madrid and Barcelona, was built 

in the province of Tarragona, Spain, in 2004. Figure 8.1 shows the plan view and a 
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longitudinal section of the bridge. Each one of the seven bridge spans was structurally 

resolved by two parallel box girder beams resting isostatically on the pillars. A continuous, 

cast in situ slab was extended over prefabricated slabs placed over the girder beams. Rails 

were supported by a ballast layer on top of the continuous concrete slab. Figure 8.2 shows a 

photograph of one of the embankments, the abutment and the bridge. 

 

Figure 8.1. Longitudinal profile and plan view of Pallaressos Bridge and embankments 

 

Figure 8.2. Pallaressos embankment, Lleida side. The excavated pathway on the embankment side was 

made to the allow access of drilling machines for the installation of measuring instruments 

Bridge pillars were founded on excavated piles. The two abutments, of similar design and 

dimensions, were directly founded on a hard marl of Tertiary age. They limit the two 

embankments shown in the figure, which reached a maximum height of 18 m in the proximity 

of the abutments. The thickness of the approaching embankment decreased progressively 

away from the bridge abutments. The internal design of the embankments is shown, in 
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longitudinal section, in Figure 8.3. Transition wedges of increasing stiffness were designed to 

ensure a smooth transition from the compacted soil to the rigid bridge structure when train 

approaches the stiff bridge abutments. The wedge closest to the abutment was specified as a 

cement-soil mixture. The embankment material was previously excavated in a Miocene 

natural formation: a sequence of claystones with some proportion of gypsum veins and 

interstratified sandstone layers. Some selected soil was used also as a rail track sub-base. 

 

Figure 8.3. Design of the embankment 

Once the railway line was in operation, rail levelling started on a routine basis. Results of this 

levelling for two dates: 13 December 2005 and 3 April 2006 are shown in Figure 8.4. The 

levelling performed in April 2006 shows two distinct swelling peaks in the position of the two 

abutments. No significant settlement or heave was detected along the bridge itself. Data in 

Figure 8.4 show a maximum heave of 1216 mm with respect to the initial levelling. 

Maximum heave rate, comparing the two successive levellings, is about 4.04.5 mm/month. 

Countermeasures were adopted and the rail tracks were levelled periodically by adjusting the 

thickness of the ballast layer. Since no signs of a reduction in heave rate were noticed, 

geotechnical investigations were commissioned. A difficulty for all the subsequent field 

activities was the need to keep the railway line in full operation.  

Samples taken in the first borings drilled through the two embankments indicated that the 

cement-treated soil was rather weak and prone to disintegration. It was also difficult to 

identify the expected geometry of wedges as shown in Figure 8.3. These findings were 

probably the reason behind the decision to reinforce again the embankments, in October 2006, 

by means of 1.5 m diameter jet-grouting columns, which were arranged in the manner shown 

in Figure 8.5. 
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Figure 8.4. Rail levelling after construction  

The central part of the embankment was treated. Columns reached a depth of 10 m in the 

vicinity of the abutment. The length and density of the columns were reduced as the distance 

to the abutment increased. The transition zone was extended in both embankments to an 

overall length of 30 m. 

One year after finishing jet-grouting treatment, at the end of 2007, embankment heave was 

again detected, and track profiling, by modifying the ballast cushion, had to start again. In 

May 2008 a surface-topographic survey provided precise information on the evolution of 

heave. It was found that the embankment heave had resumed and measured heave rates (4.2 

mm/month, 5.7 mm/month and 6.5 mm/month in different positions) were even higher than 

the values first observed when the problem was initially detected. Field monitoring and soil 

testing were thereafter increased.  

 

8.3 Field observations in Pallaressos embankments 

Additional surface-topographic marks were installed on the top of the embankments. They 

covered a length of 35 m in the Lleida (1) embankment (Figure 8.6) and 45 m in the 

Tarragona (2) embankment. Surface horizontal displacements were measured in the transverse 

and longitudinal embankment directions. Figure 8.7 provides the measurements of horizontal 
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and vertical surface movements in one of the abutments from 2 March 2009 to 19 April 2010. 

The records indicated that significant horizontal movements were developing in the transverse 

direction. An accumulated horizontal transverse movement of 150 mm was measured during 

the first 17.8 months of monitoring at topographic mark PR-1.5, located 10 m away from the 

Lleida abutment structure. An accumulated heave of 59 mm was measured at PR-1.5 during 

the same period. 

 
(a) 

 
(b) 

Figure 8.5. Jet-grouting treatment of embankments. (a) Position of columns in plan view; (b) 

longitudinal and cross-sections 
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Figure 8.6. Position of surveying topographic stations, levelling marks and continuous extensometers 

in Lleida embankment  

 

Figure 8.7. Evolution over time of movements measured on the embankments surface. Movements 

along three perpendicular directions were monitored by topographic surveillance 

The distribution of surface heave along distance is shown in Figure 8.8 for Abutment 1 an in 

Figure 8.9 for Abutment 2. The maximum heave occurred at a distance of 10-13 m from the 

abutments. At further distances the displacement decreased progressively. At distances in 

excess of 30 m to the abutment no movements were detected. The transverse horizontal 

movements followed the same pattern. The maximum transverse horizontal movements were 

measured at the same points where the maximum heave was recorded. 
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Both embankments exhibited a similar behaviour. The topographic monitoring also allowed to 

measure horizontal movements along the longitudinal direction of the embankments. Points 

displaced towards the bridge abutment. Longitudinal displacements were substantially lower 

than the displacements recorded in the other two directions. However, displacements reaching 

22 mm towards the abutment structure were measured during 17.8 months in topographic 

marks installed along the first 10 m from the abutment. The smaller displacements recorded in 

the longitudinal direction are explained by the confinement applied by the abutment and the 

bridge structure on one side, and by the rest of the embankment on the opposite side. 

Topographic stations and levelling marks were also installed outside the embankments, on the 

natural ground, but no movements were recorded.  

 

Figure 8.8. Distribution of heave magnitude at embankment 1, measured by topographic levelling, on 

the embankment surface plotted against the distance between the levelling mark and the abutment. 

Initial measurement: 26 May 2008 

 

Figure 8.9. Distribution of heave magnitude at embankment 2, measured by topographic levelling, on 

the embankment surface plotted against the distance between the levelling mark and the abutment. 

Initial measurement 26 May 2008 
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The evolution of vertical displacements over time at some points of both embankments is 

shown in Figure 8.10. The rate of vertical displacements has not been constant in time. The 

average rates of heave, obtained by means of different measurement procedures, have been 

plotted in Figure 8.11. The first estimation of heave rate corresponds to rail levelling which 

was available in 2006. Despite the variability of results, the plot shows that the heave rate has 

increased from values around 2-4 mm/month in 2006 to heave rates varying from 2.5 to 7.5 

mm/month in 2008. Figure 8.10 also provides the total accumulated rainfall. A relation 

between the evolution of heave and the rainfall events can be identified. Heave rate 

accelerates in periods immediately following significant rainfall events. 

 

Figure 8.10. Evolution of vertical displacements over time, measured at some levelling marks of both 

embankments and total accumulated rainfall recorded near the bridge. Rainfall data provided by the 

Servei Meteorològic de Catalunya 

 

 
Figure 8.11. Average heave rates of the embankment at different periods of time 
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Inclinometer records showed that the horizontal movements were developing in depth. Some 

results are shown in Figure 8.12. The horizontal displacements decreased gradually along the 

first 8-10 m of boring. Horizontal movements at positions deeper than 13-14 m were not 

significant. This behaviour was also observed in other inclinometers. Inclinometers measured 

a horizontal movement about 9-12 mm in the transverse direction from 31 October 2008 to 16 

January 2009. Those horizontal movements indicated that the embankment was also swelling 

in a lateral direction.  

Vertical deformation of embankments was investigated by means of continuous 

extensometers (sliding micrometers, Kóvari and Amstad, 1982) installed in boreholes. Data 

were recorded on a monthly basis. The positions of the extensometers installed in the Lleida 

embankment are shown in Figure 8.6. Continuous extensometers with lengths varying from 

18 to 48 m were installed in each embankment at distances of 8, 13 and 40 m from the 

abutments. Measured swelling strains concentrated at the first 8 m. Smaller compressive 

strains were recorded in the lower part of the embankments (Figure 8.13). Strain records 

maintained the pattern of vertical variations over time (Figure 8.13). The upper “active” level 

did not progress downwards. Micrometers installed at a distance of 40 m from abutments 

recorded only a small compression.  

The integral of strains along depth, measured in micrometers, was found to be consistently 

very close to the surface displacements measured in topographic marks. A continuous 

extensometer was also installed in natural ground at the centre of the valley to check whether 

any source of movements, other than the deformation of the embankments, was present in this 

case. No vertical displacements were measured by this instrument. The substratum was also 

shown as unstrained in all the sliding micrometers installed. 

The results described indicate the three-dimensional nature of the deformation of 

embankments as a result of an internal volumetric swelling. A significant result was the 

reduced longitudinal deformation, which implied that high horizontal loads could be acting 

against the abutments, and therefore, against the bridge itself. These forces were probably 

symmetrical, acting on both sides of the bridge. In fact, an inspection of the bridge structure 

revealed the existence of fissures and spalling damage at the contact between the abutment 

and bridge structural elements (Figure 8.14). The development of swelling in the embankment 

also induced significant damage to the communications and drainage conduits on the top of 



   Chapter 8    

195 

 

the embankments, near the abutments. A displacement of the abutment structure towards the 

bridge was noticed “de visu”. This unforeseen horizontal loading against the bridge prompted 

a thorough inspection of the structure and the adoption of various repairs which are not 

described here. An interesting observation, which shows the effect of two opposite forces 

acting on both sides of the bridge, is the pattern of bending induced cracking on the lower part 

of the pillars, which is sketched in Figure 8.15. 

 
Figure 8.12. Accumulated displacements measured at inclinometer I1T in Tarragona embankment. 

Initial measurement 25 October 2008 

There was also a concern about the possibility of strong passive stresses developing on the 

upper part of the embankments, in the longitudinal direction. A passive failure could result in 

a risk of rail distortions. An analysis of the stress state inside the embankments, reported 
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below, was performed. First, the geotechnical properties of the embankment materials will be 

described. 

(a) 

 

(b) 

Figure 8.13. Vertical displacements measured by sliding micrometer: (a) EV-1.1, initial measurement 

11 June 2009, and (b) EV-1.1B, initial measurement 25 May 209. See position in Figure 8.6 
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Figure 8.14. Damage observed near abutments 

 

Figure 8.15. Loading and deformation situation of the bridge due to the thrusts on the abutments 

 

8.4 Geotechnical data of the embankments 

Pallaressos Bridge crosses a small valley in the eastern part of the Ebro Basin, which is filled 

by Tertiary deposits of Miocene age. The substratum, a sequence of horizontally deposited 

reddish claystone layers and sandstones poorly cemented, appears close to the surface. Thin 

veins of gypsum cross the claystone at regular intervals. Limestone layers of high lateral 

continuity are also interbedded in the sequence of claystones and sandstones. Claystone levels 

dominate the sequence. When intact, it reaches unconfined compression strengths in the range 

1050 MPa. However, the claystone is very sensitive to changes in water content.  

The identification tests performed during the construction of the embankments indicate that 

the tested samples of the embankment material have sulphate contents higher than 1% in 
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general. The plate load tests during the construction of the embankments measured modules 

from 250 to 500 kg/cm2 during loading and modules from 700 to 1500 kg/cm2 during 

unloading in the embankment layers. 

Compaction data taken during construction of embankments are given in Figure 8.16. Dry 

density-water content pairs determined on embankment lifts are plotted in the figure. Also 

indicated are the determined Modified Proctor Optimum values. The fill reached quite high 

dry densities, even if the Modified Optimum dry densities were seldom reached. On the other 

hand, the compaction water content was ordinarily on the dry side of optimum. Very often the 

degree of saturation was fairly low (< 0.7). Therefore as-compacted suction was high and 

water (mainly from rainfall) would tend to progressively wet the embankment.  

One of the Modified Proctor Optimum points in Figure 8.16 shows an exceptionally high 

value of water content and a low dry density. This point was reported in the original “as built” 

documents. It was decided to maintain it, despite the large differences with respect to the 

remaining points. The plot in Figure 8.16 includes density and water content information on 

24 construction layers. Interestingly, the field densities determined for the particular layer (a 

total of eight values) showing the exceptional density and water content values of the 

Modified Proctor (MP) optimum, also exhibited abnormally low density values. It is inferred 

that the data are correct and it may be explained by the heterogeneous nature of the source 

material. 

Points above the Sr = 1 line are explained by errors in the raw laboratory data. The tests were 

performed at the time of construction by a Control Laboratory, and it was decided to include 

all of them in the plot of Figure 8.16.  

Figure 8.17 shows an exposed surface of a cut through the upper part of one of the 

embankments. The excavation was performed during the underpinning operations described 

later. The picture shows two jet-grouting columns, a cement treated soil in the lower part, and 

the reddish compacted fill with an abundant presence of gravels and small boulders.  

Samples taken in some borings were tested, and vertical profiles of some identification 

properties are given in Figure 8.18. The fine fraction is low-plasticity clay. The data suggest a 

decrease in plasticity with depth within the embankment. Water content remains below the 

plastic limit, except in one of the tested specimens, which has an abnormally high value in 

view of the compaction data given in Figure 8.16. Grain-size distribution tests provided the 
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following fractions (average value and range): gravel 35% (62.1-18.6%); sand 21% (35.1-

10.5%) and fines content 35% (69.3-7%). The mean diameter varied widely (8.0-0.0035 mm), 

with an average value of 1.6 mm. Some boulders with sizes in excess of 100 mm were 

scattered inside the fill. They had sharp edges because they were a result of blasting the 

Miocene formation. Smaller-size gravels, however, had rounded edges. The main minerals 

identified and their approximate contents, as determined in semi-quantitative X-ray 

diffraction analysis, are: Carbonates (calcite and dolomite) 52%; Gypsum 20%; Clay minerals 

(illite and kaolinite) 18% and Quartz 10%. 

 
Figure 8.16. Compaction data taken during construction of embankments. Open symbols are field 

determinations. Closed symbols are Modified Proctor (MP) optima determined in the laboratory 
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Figure 8.17. View of a cut across one of the embankments made during underpinning operations. Two 

jet-grouting columns as well as a level of cement treated material, in the lower part, are visible. 

Sandstone gravels and small boulders are scattered in the compacted marl matrix 

Relevant information is the variation with depth of soluble sulphates in the soil, given in 

Figure 8.19. It reaches values in the range 2.02.5% in the upper 8 m. At lower levels, the 

sulphate content drops to less than 0.5%. Most probably this was the result of two different 

source areas. It reflects the natural variation of gypsum content found in the natural formation. 

Data given in the introduction suggest that sulphate attack to cement is likely to develop in the 

upper 8 m of the embankment. 

 

Figure 8.18. Index properties determined in samples taken in a boring drilled in Tarragona 

embankment (data from boring ST-1) 
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Figure 8.19. Variation of sulphate content determined in samples recovered in boring S-2.1B. 

Tarragona embankment  

 

8.4.1 Swelling tests 

Samples recovered in borings were difficult to test because of the presence of gravels. The 

following procedure was followed to approximate the conditions in the embankment. Gravels 

of limestone or sandstone were removed and the remaining soil was homogenised. The 

homogenisation was carried out in disturbed samples recovered in boring lengths of 

approximately 1.20 m. The resulting "soil" was compacted to the energy of Standard Proctor 

and a water content of 10%. A dry density very close to 2 g/cm3 was achieved in four tested 

samples that extended from the surface to a depth of 4.80 m. Samples were tested in the 

plastic mould used for compaction (diameter 120 mm; height 160 mm). Silicon grease was 

previously applied to the mould inner surface. The unloaded samples were placed in a closed 

chamber at a constant temperature (8ºC) and the lower 2030 mm of each sample were kept 

in a bath under water. Water could migrate upwards by capillary gradients. Vertical 

displacements were measured on the sample top. 
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The results are shown in Figure 8.20. The initial response reflects a “standard” swelling 

associated with suction reduction and clay minerals hydration, but the long-term swelling 

observed in all samples cannot be explained by these mechanisms. In addition, the strong 

swelling measured in some samples, especially in one of them (1.202.40 m), is not expected 

in a low-plasticity soil compacted at a Standard Proctor density. The mineral content of the 

samples before testing was not determined. Therefore the measured swelling cannot be related 

to some particular distribution of constituents (the compaction water content and dry density 

were very similar in all four samples tested). The significant result is that all tests exhibited a 

long-term swelling which, despite variation from test to test, was very relevant. Again, these 

tests are an indication of the heterogeneity of fill characteristics. The sample taken from 

1.202.40 m, which developed the strongest swelling, was dismantled after 150 days of 

testing and smaller portions were subjected to X-ray diffraction and scanning electron 

microscopy (SEM) observations. Ettringite and thaumasite crystals were identified. They also 

provided strong peaks in the X-ray diffractograms. Samples collected in the embankments 

were also analysed, as described below. 

 
Figure 8.20. Long term swelling tests on compacted samples. Boring S-2.1B 

 

8.5 Design and construction of a soil treatment over underpass 

The second case concerns a rigid reinforced concrete caisson structure 11.2 m wide and 6.25 

m high, built under the railway tracks, close to Pallaressos embankments, to allow for the 
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crossing of an aqueduct. The structure was capped by a layer of cement treated soil, 1.5 m 

thick. Above, base and ballast layers complete the layered system supporting the railway 

tracks. Figure 8.21 shows a cross section of the caisson. Material for the fill came from a 

nearby cut in the same railway line. The exposed slopes showed the soil formation: a Tertiary 

red claystone with abundant gypsum veins. 

Periodic track levelling detected a progressive heave of the tracks above the caisson. The 

maximum accumulated vertical displacement measured in July 2011 was about 12 cm.  

 

Figure 8.21. Cross section of the caisson of the underpass 

 

8.6 Field data 

Topographic levelling of the caisson didn’t show any vertical displacement of the structure. 

This indicated that the vertical displacements measured at the rail tracks were a result of the 

behaviour of the material placed above the concrete caisson. A convex surface, centred in the 

caisson axis, was also visible in the field (Figure 8.22). In addition, the thickness of the ballast 

layer was noticeably lower in the bulging area, because of the necessary periodic ballast 

thickness correction. Two high precision (± 0.003 mm/m) vertical continuous extensometers 

(SL-1 and SL-2), 10 m long, were installed in boreholes located in the caisson backfill 

material, close to the concrete structure. Both extensometers recorded the development of 

vertical strains at both backfills within the upper 4 m (Figure 8.23). Figure 8.24 plots the 

accumulated vertical displacements measured by the continuous extensometer SL-1 within the 

upper 4 meters. A maximum accumulated heave rate of 1.33 mm/month was measured 

between 17 February 2012 and 19 April 2012 by continuous extensometer SL-1 within the 

upper 4 metres. A heave rate of 0.91 mm/month was recorded during the same period at the 

same depths in the other backfill (SL-2).  
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Continuous cores and undisturbed samples were recovered from boreholes performed for the 

installation of extensometers. A few SPT tests were also performed in borings for the 

installation of SL-1 and SL-2, at depths of 0.6-2.50 m. The recorded values (N = 46, 25, 39, 

26, 42) reveal a compact material although the presence of gravels complicate the 

interpretation. A borehole 2.8 m long was also drilled above the caisson, centred along the 

axis of the caisson. A value N = 20 was measured in this location at a depth of 1.30-1.90 m. 

Interestingly, the material recovered from boreholes at depths varying from 1.2 to 2.75 m was 

found to be soft and wet or very wet. At those depths the existence of a heavily weathered 

material with presence of a mixture of cement and some sand was also observed. 

 

Figure 8.22. Bulge of the surface above the caisson. Observe the reduced thickness of the ballast layer 

 

Figure 8.23. Vertical strains measured in depth along the continuous extensometer SL-1 installed 

within the backfill of the concrete caisson 

Heave
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Figure 8.24. Accumulated vertical displacements measured by continuous extensometer SL-1 within 

the upper 4 metres 

 

8.7 Geotechnical data. Laboratory tests 

Identification tests were performed on samples recovered from boreholes drilled at the 

backfills and above the caisson. Sulphate and soluble salts content tests were also conducted 

on some of the recovered samples. The soluble sulphate content obtained in all samples is 

lower than 1%. The water contents in the samples tested from boreholes for the installation of 

SL-1 and SL-2 are respectively 8.4% and 11%. A maximum value of water content of 16.1% 

was measured in the laboratory in a sample recovered from the layer placed above the 

caisson. The values of dry density and water content in the tested samples indicate that the 

materials located in the upper layers in the vicinity of the caisson not only have increased in 

humidity but they had also lost density. The increase in humidity and the decrease in density 

are related to the crystal growth associated with the sulphate attack to cement.  

 

8.7.1 Swelling tests 

Free swelling tests were performed on samples prepared with the material recovered in 

boreholes. Two types of samples were tested with material coming from each location. 

Undisturbed samples as well as samples compacted at the dry density corresponding to the 

Normal Proctor test were tested. All samples were partially submerged in water and were 

placed inside a cold-storage chamber at a constant temperature of 8ºC during the test. Figure 

8.25 shows the vertical swelling strains measured during the free swelling tests performed. 

Swelling evolves in time in all the samples tested without signs of levelling off.  
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Figure 8.25. Swelling vertical strains recorded in free swelling tests 

 

8.8 Mineral growth at Pallaressos embankments and at the treated layer 

over the underpass 

8.8.1 Mineral growth at Pallaressos embankments  

Samples for mineralogical observations were taken from several positions in the field at the 

area of Pallaressos embankments: 

 core samples from boreholes instrumentation 

 samples taken from the exposed soil or jet-grouting columns on the surface of 

embankments 

 samples taken in excavations of the upper 5 m of the embankments during 

underpinning. 

They were subjected to X-ray diffraction analysis and SEM-EDS (scanning electron 

microscopy-energy dispersed spectrometry) observations. An optical microscope with a 100 

magnifying power was also employed. The results can be summarized as follows: 

 Poorly cemented soil-cement mixtures or pure cement grout had a low apparent weight, 

a wet, sometimes muddy, consistency, and a whitish colour. Ettringite and, most 

notably, thaumasite were always found (Figure 8.26) The SEM photographs in Figure 

8.27, Figure 8.29 and Figure 8.31 are characteristic patterns. The spectrums of the 
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element analysis by EDS on isolated needles corroborate the identification of ettringite 

and thaumasite crystals (Figure 8.28, Figure 8.30 and Figure 8.32). 

 The following minerals were detected in the reddish clay matrix: calcite, gypsum, 

quartz, dolomite, illite (sericite) and kaolinite. 

 Low-density thin flakes could be easily peeled off from the cement treated columns, 

which often exhibited an advanced degradation state. A white powder was observed, 

especially in fissures or holes. When observed by the SEM, it was identified as 

thaumasite crystals.  

 

Figure 8.26. X-ray diffraction spectrogram of a sample from the mud jet-grouting treated soil material 

from borehole E1.1  

 

8.8.2 Mineral growth at the treated layer over underpass 

A mineralogical analysis by means of X-ray diffraction on samples recovered from the upper 

meters of boreholes revealed the presence of ettringite and gypsum in the material recovered 

from the treated (classified as low plasticity clay and sand mixtures).Calcite, quartz, dolomite 

and illite were also found. The presence of wet material can be probably related with the 
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ettringite crystal growth because the crystalline structure of ettringite crystals content a high 

percentage of water. 

  
(a)                                                                         (b) 

Figure 8.27. Ettringite needles found in a tested sample: (a) view of an area totally occupied by 

ettringite crystals; (b) detail from area shown in (a) 

 

Figure 8.28 Spectrum of element analysis by means of EDS of crystal needles shown in Figure 8.27(b) 

 

8.8.3 Discussion 

The existence of thaumasite and ettringite at both cases point at the main cause of the swelling 

observed. Ettringite and thaumasite are rare minerals not present in the natural clay soil used 

for the construction of the embankments. Thaumasite is related to the formation of ettringite, 

which is a mineral associated with the sulphate attack to cement. The formation of thaumasite 

is considered a second stage of this attack. Actually, spectrograms of the treated soil present a 

hill shape between 2θ from 10º to 15º (Figure 8.26), which is characteristic of sulphate attack.  
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(a)                                                                         (b) 

Figure 8.29. Thaumasite crystals found in a tested sample: (a) view of an area totally occupied by 

thaumasite crystals; (b) detail of thaumasite crystals shown in (a) 

 

Figure 8.30. Spectrum of element analysis by means of EDS of crystal needles in Figure 8.29(b) 

Sulphate attack on bases stabilized with lime or cement executed from sulphated soils has 

been described in the literature (Hunter, 1988, Mitchell, 1986, Mitchell and Dermatas 1992). 

The attack to sulphated soils treated with stabilizers made of lime or cement consists in the 

degradation of the cementing agents’ structure and in the whole swelling, due to the formation 

of ettringite and thaumasite crystals. The damage due to swelling depends on the soil 

composition, the execution methods, the availability of water, the ionic migration and the 

possibility that the expansive mineral growth could be accommodated in the soil porosity 

(Simic, 2007). A chemical detailed description of the process of formation of ettringite and 

thaumasite in sulphated soils stabilised with lime or cement is presented in the following 

section. 
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8.9 Chemical reactions for the formation of ettringite and thaumasite 

minerals. Fundamental aspects 

The chemical formulae for ettringite and thaumasite are: 

 Ettringite: ܽܥ଺ሾ݈ܣሺܱܪሻ଺ሿଶሺܵ ସܱሻଷ ൉  ଶܱܪ26

 Thaumasite: ܽܥ଺ሾܵ݅ሺܱܪሻ଺ሿଶሺܱܥଷሻଶሺܵ ସܱሻଶ ൉  ଶܱܪ24

  
(a)                                                                         (b) 

Figure 8.31. Area with ettringite and thaumasite crystals found in a tested sample: (a) general view; (b) 

detail of flat crystals of thaumasite and ettringite needles shown in (a) 

 

Figure 8.32. Spectrum of the element analysis by EDS of the needles in Figure 8.31 (b) 

In both minerals, the presence of water is remarkable. Ettringite is a calcium aluminium 

sulphate hydrate. Water is predominant in its composition. Carbonates, sulphates, silicates 

and hydroxides make up the composition of thaumasite. The high proportion of water in 
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thaumasite is also remarkable; however, it is lower than in ettringite. The crystalline structure 

of ettringite and thaumasite is represented in Figure 8.33. 

(a) (b) 
Figure 8.33. Crystalline structure of: (a)ettringite; (b) thaumasite 

Thaumasite growth is regarded as a secondary process once ettringite has crystallised. The 

chemical formulae of both minerals show the formation of ettringite and thaumasite requires 

the existence of calcium, carbonates, sulphates, silicates and water. Comparing the two atomic 

compositions, thaumasite implies the substitution of Al by Si and the presence of a carbonate 

component. The development of both minerals follows a complex process, which has been 

described by Hunter (1988), Mitchell & Dermatas (1992) and Mohamed (2000). The 

sequence of chemical reactions taking place in lime stabilized sulphated soils from Hunter 

1988 and Mohamed (2000) is presented in Appendix 8.1. The chemical reactions involved in 

the formation of ettringite and the effects related with soils stabilized with cement are similar 

than in the soils stabilized with lime (Rajasekaran, 2005). 

In lime or cement stabilised soils, the process of ettringite and thaumasite crystals formation 

starts by the hydration of lime or Portland cement and the ionisation of the calcium hydroxide. 

This increases the porosity in the treated soil and produces and alkali environment, pH 

reaches values up to 12.3. The Ca+2 ions are released from the calcium cemented agents and 
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are then present in the pore solution. Dissolution of clay minerals takes place at pH higher 

than 10.5. Therefore the highly basic environment (pH > 12) dissolves clay minerals, which 

provide a source for Al and Si. High pH, higher than 9, also favours the dissolution of 

sulphate minerals from the soil, which provides ܽܥଶା and ܵ ସܱ
ଶି ions. Ettringite precipitates 

when aluminium released from clays, calcium from cement or lime, and sulphates from the 

sulphated soil (or sulphated water) combine with water molecules. Crystals develop in the 

pore solution (Deng & Tang, 1994; Mohamed, 2000). The availability of water for ettringite 

and thaumasite formations is important because it allows the transport of ions and also 

because ettringite and thaumasite are highly hydrated minerals and can’t be formed without 

an important source of water. 

Carbonic acid, present in the pore water, and the dissolution of calcite in that carbonic acid 

provide a source of carbonate ions that lead to the precipitation of thaumasite, once ettringite 

is present. The expansive potential of thaumasite formation has been questioned by Hunter 

(1988). Hunter (1988) suggests that since ettringite forms first in laboratory when alumina 

and silica are present in the solution, the change from ettringite to thaumasite may have taken 

place after the development of expansions. XRD analysis on lime stabilized sulphate bearing 

clay soils affected by severe expansions have identified only thaumasite crystals in damage 

subbases in some cases, e. g. Stewart Avenue and Owens Street in Las Vegas described by 

Hunter (1988); whereas only ettringite crystals have been identified in other cases, e. g. in 

Kansas, described by Mitchell (1986). Hunter (1988) indicates that the presence of thaumasite 

(and the absence of ettringite) in the damaged treated soil suggests that the transition of 

ettringite to thaumasite is complete. And, on the other hand, Hunter (1988) proposes that 

when only ettringite exists that means that the mineralogical study was carried out before the 

start of the transition. The dominant presence of thaumasite in the analysed samples from the 

embankment suggests an advanced state of sulphate attack. Bensted (2003) indicates that 

thaumasite can be formed by a direct reaction between calcium, sulphate, silica and carbonate 

ions in water solutions. This would lead to the idea that thaumasite may have originated the 

expansions observed in damaged soils when only thaumasite has been found. However, these 

reactions are unlikely or very slow (Köhler et al., 2006). Additionally, it has been reported 

that thaumasite crystallises only at temperatures not reaching 15ºC, a result that was recently 

challenged by Blanco-Varela et al. (2006), who found that thaumasite may develop at 

temperatures as high as 25ºC. Rajasekaran (2005) reports that ettringite appears to be more 
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stable above 15ºC. Therefore, the climate in Pallaressos and in the nearby cement treated 

stretch over caisson (a marked two-season Mediterranean environment) may explain the 

development of thaumasite as well as ettringite at all times throughout the year.  

 

8.10 Chemical modelling 

With the purpose of obtaining an improved understanding of the sulphate attack, a simulation 

of the processes taking place at the soil-cement interface was performed with the help of a 

general purpose transport and chemical reactions program, RETRASO (REactive TRAnsport 

of SOlutes: Saaltink et al., 1998, 2005). RETRASO solves the coupled hydraulic transport 

processes and the chemical reactions. Chemical equations provide the source or sink terms 

(concentrations of different species) of the mass conservation equations. The set of non-linear 

partial differential equations is solved simultaneously by iterative procedures. The included 

transport processes are advection, molecular diffusion and mechanical dispersion. The code 

handles mineral precipitation and dissolution reaction under a large set of experimental 

kinetic and equilibrium laws. Kinetic laws are included in a large database. The structure of 

the kinetic equations was proposed by Lasaga (1984). The code can handle a number of 

chemical reactions (acid-base, redox, aqueous complexation, etc.) under local equilibrium. 

A simple one-dimensional problem, illustrated in Figure 8.34(a), was analysed. Two porous 

materials, the compacted soil and a cement grout, interact through a common interface. The 

soil/cement properties and their “active” constituents are given in Table 8.1. Only diffuse 

processes are considered. 

The idea was to check whether ettringite comes out naturally as a new species, and to follow 

its distribution in space (on both sides of the interface) and time. In addition, there was an 

interest in knowing the evolution of other constituents and the pH of the medium, a key piece 

of information to explain the sulphate attack. This geometry is especially relevant for the 

attack of jet grouting columns in Pallaressos embankments. 

An initial pH in equilibrium was calculated for the soil and the cement pore water with the 

program PHREEQC (Parkhurst, 1995; Parkhurst & Appelo, 1999) considering that the 

aqueous solutions in soil and cement pores are in equilibrium with soil and cement 

respectively. PHREEQC simulates chemical reactions in aqueous solutions and allowed to 

determine the initial conditions (pH and chemical speciation), in the aqueous solutions 
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interacting at the interphase. The initial values of pH = 7.7 and pH = 12.4 were calculated for 

the soil and cement pore water respectively. Then, RETRASO was used to obtain the 

precipitated or dissolved amounts of calcite (CACO3), dolomite (CaMg(CO3)2), gypsum 

(CaSO4·2H2O), ettringite. They were calculated by equilibrium equations, because they result 

from rapid reactions. In the case of the calculation of the precipitated or dissolved amounts of 

kaolinite (Al2Si2O5(OH)4), quartz (SiO2) and portlandite (calcium hydroxide, Ca(OH)2), 

kinetic equations were used in RETRASO. Some results are given in Figure 8.34 for a 

calculation period of five years. 

Table 8.1. Initial parameters for hydro-chemical analysis 

Property Compacted soil Cement 

Porosity 0.3 0.3 

Diffusion coefficient, D 109 m2/s 109 m2/s 

Volumetric fractions 

Calcite: 0.2 Portlandite: 0.35 

Dolomite: 0.18 Quartz: 0.35 

Gypsum: 0.05  

Kaolinite: 0.05  

Quartz: 0.03  

Reactive surface 0.14 m2/m3 0.14 m2/m3 

 

The pH maintains a high value on the cement side of the interface. A plume of high pH values 

migrates progressively towards the soil (Figure 8.34(b)). In parallel, an ettringite front 

advances (Figure 8.34 (c)) in the cement medium. In 5 years, a deep penetration is calculated 

( 1.5 m). The sulphate attack started (against the treated wedge and, later, against jet-

grouting columns) in 2006, soon after the end of embankment construction. The calculated 

depth of the ettringite front in Figure 8.34 (c) suggests that the attack has currently (2014) 

affected the whole volume of the grouted columns. In fact, in all samples recovered at 

different positions, ettringite and/or thaumasite was identified.  

Two additional results are shown in Figure 8.34(d)-(e): Kaolinite is being progressively 

dissolved in the soil, starting at the interface, because of the increase of pH at the pore water 
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in the soil material. The consequence is the release of Al ions, necessary for ettringite 

precipitation. The concentration of sulphate increases at the interface and in the immediate 

vicinity, which induces the precipitation of ettringite.  

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 
Figure 8.34. Analysis of the soil-cement reactions with the program RETRASO: (a) geometry of the 

problem; evolution and distribution of: (b) pH; (c) volumes of ettringite; (d) volume of kaolinite; (e) 

concentration of sulphate 
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Even if the analysis performed is quantitative, the calculated volume fraction of precipitates 

(or dissolved species) is not believed to be representative. The real problem is exceedingly 

complex: the reactive surface is unknown (a small value, 0.14 m2/m3, was adopted in the 

calculation model), there are uncertainties on the validity of the kinetic equations, the pore 

water was probably under significant suction values for most of the time, initial volume 

fractions and diffusion coefficients were estimated, etc. Therefore, no attempt was made to 

couple the chemical calculations with the observed heave. The measured swelling strains and 

their effect on the bridge were approached in a much simpler manner, as discussed below. 

Nevertheless, the chemical analysis performed provided a good understanding of sulphate 

attack. 

 

8.11 Modelling embankment swelling 

Measured swelling strains and surface heave provided data to perform a stress analysis of the 

embankment. A suspected passive state in the upper part of the embankment caused some 

concern because of a possible instability disrupting the rail tracks. Also, there was an interest 

of structural engineers in charge of bridge rehabilitation in estimating the existing longitudinal 

forces against the bridge. 

A plane strain analysis was conducted (Figure 8.35). The embankment material was simulated 

as a Mohr-Coulomb model with parameters estimated from available design and construction 

data (E = 67MPa,  =0.3, c =5 kPa,  = 30º ). Elastic moduli were measured in loading-

reloading branches of plate-loading tests performed during embankment construction. Seven 

tests were performed, and the chosen value is close to the lower limit. Strength parameters are 

a conservative estimate of the compacted low-plasticity soil. A zero dilatancy angle was also 

imposed. 

 
Figure 8.35. Geometry of finite-element model 
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Swelling was modelled by imposing a volumetric deformation distributed in the volume 

indicated in Figure 8.35. This active zone was divided in sectors, following the data provided 

by the continuous extensometers. The imposed strains were guided by two criteria: 

reproducing the sliding micrometer data approximately, and reproducing the measured heave 

at surface level. 

Figure 8.36 shows the comparison of measured and calculated heave in the period 26 May 

2008 to 9 December 2009. Swelling strains result in a substantial change in the initial 

geostatic distribution of stresses. Horizontal stresses become major principal stresses in the 

upper part of the embankment (Figure 8.37). Calculated stresses against the fixed bridge 

abutment indicated that the essentially horizontal stresses have reached a passive state. The 

calculation provided an estimated total force of 2.32 MN/m in the transverse direction against 

the bridge abutment. A discontinuity is calculated at the boundary between the swelling layer 

and the lower non-active soil. 

Calculated stresses and forces against the bridge are most probably a lower limit to the actual 

values because of the conservative estimate of friction and effective cohesion, bearing in mind 

that the fill remains unsaturated. Increased strength would not prevent a passive state being 

reached, because the actual swelling experienced by the fill since the first warnings in 2006 is 

substantially higher than the modelled heave recorded in the shorter period analysed.  

It was concluded that, in addition to the need to provide a new and stable support for the rails, 

the stresses against the bridge abutment should also be substantially reduced. On the other 

hand, there was no hope of a reduced swelling rate for the immediate future. 

 
Figure 8.36. Calculated and measured vertical displacements, matching recorded swelling 
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Figure 8.37. Calculated principal stresses in embankments  

 

8.12 Remedial measures at Pallaressos embankments and at underpass 

Despite the signs of a mature state of the sulphate attack (hydro-chemical calculations 

described; dominant presence of thaumasite), the field swelling records suggested that heave 

of the treated embankments could continue for years at a sustained rate. Modifying the 

thickness of the ballast cushion below the rail tracks could not cope with the expected 

medium-term heave. Forces against the abutment wall were damaging the bridge, and a 

passive state of stress, threatening the rail tracks, had developed in the upper part of the 

embankments.  

It was then decided to excavate the upper 6 m of the embankments in the stretch affected by 

sulphate attack, and also to support the rail tracks by a structure founded on piles on both 

sides of the embankment. The solution is shown in Figure 8.38. Supporting piles (excavated 

piles, which reach the substratum) were first built in the position shown in the plan view of 

Figure 8.38(a). Then reinforced concrete slabs were built on the sides of the railway tracks, 

after enlarging the embankments in a lateral direction. Once the rail tracks were underpinned, 

the upper part of the embankments was excavated in stretches 9 m long, and the concrete 

slabs were slid into place. Figure 8.38(b) shows a longitudinal section of the solution. An 

open gap, 3 m thick, has been left between the lower surface of the slabs and the new upper 

surface of the embankments. 
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The solution of the heave problem above the caisson requires the removal of the cement 

treated layer and its substitution by a stable compacted granular material. 

 
(a) 

 
(b) 

Figure 8.38. Design of repair solution: (a) plan view of slabs founded on piles; (b) longitudinal section 

showing excavation, underpinning of rail tracks, supporting reinforced slabs and piles 

 

8.13 Concluding remarks 

The field swelling records suggested that heave of the treated embankments and above the 

caisson could continue for years at a sustained rate. Modifying the thickness of the ballast 

cushion below the rail tracks could not cope with the expected medium term heave. In the 

case on embankments, the pressure developed against the bridge abutment wall was capable 

of damaging seriously the bridge. In addition, the vertical heave and a state of passive 

stresses, eventually leading to a shearing failure of the upper meters of the embankments, and 
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the sustained heave over the underpass posed an additional threat to the operation of the 

railway line. 

Sliding micrometer data were conclusive in showing the extent of the swelling strains within 

the embankment. At the embankments, the upper 8 m had a sulphate content (2.5%) 

sufficiently high to explain the attack. However, solid gypsum gravels were scattered 

throughout the soil mass. They constitute, “de facto”, a substantial increase in gypsum 

content, which is not accounted for in the chemical analysis of the fine fraction of the soil. 

Gypsum was also present in the material used in the track base. The presence of cement 

treated transition wedges and, specially, the installation of jet-grouted columns within the 

embankment triggered the attack. The growth of ettringite and thaumasite requires the 

presence of sulphtes, clay, a basic environment provided by cement hydration and water. All 

of these conditions were present in the embankments. 

The potential growth of ettringite and thaumasite will continue until the exhaustion of 

sulphates. The availability of other chemical species (calcium, silicates, aluminium and water) 

seems essentially unlimited in the embankments.  

The longitudinal profile of surface heave is, in part, explained by the layout of grouting 

columns. Friction against the abutments, enhanced by the high horizontal stresses developed 

in the longitudinal direction, explain the small vertical displacements measured in the vicinity 

of the abutment wall. The restriction to vertical heave offered by the abutment also explains, 

to some extent, the settlements measured by the extensometers below the upper expanding 

volume. But there is also the possibility of a collapse of soil as rain water migrates 

downwards. The compaction data given in Figure 8.16 indicate that a significant proportion of 

the embankments was initially under high suction. The confining stress below the “active” 

upper part (vertical stresses in excess of roughly 170180 kPa) is probably enough to explain 

some collapse strains. This aspect of the embankment behaviour has not been analysed in this 

Chapter, which concentrates on the chemical changes and their consequences associated with 

the sulphate attack on cement treated materials in the presence of clay minerals and water. 

The case history described is a case of failure of the controls expected during the execution of 

earthworks for bridge abutments. The Spanish Standards indicate that soils containing 

gypsum and other salts should not be stabilised with cement. The Standards also open the 

possibility of using sulphate-resistant cement in cases of sulphate content in excess of 0.5%. 
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Many access embankments to bridges located in the very large Ebro Basin, where sulphates 

are widespread, have been built in recent years. Apparently, no similar reaction has been 

reported and no damage was observed in those cases. Standards also specify that the Director 

of Works should conduct a laboratory testing plan, whose scope is also defined, before 

authorising the initiation of fieldworks. It seems that in Pallaressos and the underpass these 

controls and provisions were not followed to the extent required in the case reported. 

 

Appendix 8.1. Sequence of chemical reactions taking place in lime stabilized 

sulphated soils 

The formation of ettringite and thaumasite requires the occurrence of the following 

summarised chemical reactions (Mohamed, 2000 from Hunter 1988). The reactions written 

below don’t take into account the presence of other salts in the soil: 

1) Lime hydration. Generation of an alkaline environment 

22 )(OHCaOHCaO   (8.1) 

2) Ionization of calcium hydroxide; pH rises to 12.3, high alkaline environment 

  )(2)( 2
2 OHCaOHCa  (8.2) 

3) Dissolution of silicate clay minerals at pH>10.5 (Montmorillonite) 

 
4 4 10 2 2 2

4 4 4 2

( ) · 2( ) 10

2 2 ( ) 4

Al Si O OH nH O OH H O

Al OH H SiO nH O





  

  
 (8.3) 

4) Dissociation of silicic acid 

  HSiOHHSiOHSiOH 2222 2
424344  (8.4) 

5) Dissolution of sulphate minerals; x=1, y=2 o x=2, y y=1 

OnHSOXMOnHSOM Y
x 2

2
424 ·    (8.5) 

6) Ettringite formation 



Analysis of massive sulphate attack to cement treated railway embankments and track bases  

222 

 

  
2 2

4 4 2

6 6 2 4 3 22

6 2 ( ) 4 3 26

( ) ·24 ( ) ·2

Ca Al OH OH SO H O

Ca Al OH H O SO H O

       


 (8.6) 

7) Formation of carbonic acid 

3222 COHOHCO   (8.7) 

8) Dissolution of calcite in carbonic acid 

  2
3

2
323 22 COHCaCOHCaCO  (8.8) 

9) Thaumasite formation due to isostructural substitution as ettringite changes to thaumasite 

  
 

2 2
6 6 2 4 3 2 2 4 3 22

2
6 6 4 2 3 2 2 4 4 22

( ) ·24 ( ) ·2 2 2

( ) ·( ) ·( ) ·24 2 ( ) 4

Ca Al OH H O SO H O H SiO CO O

Ca Si OH SO CO H O Al OH OH SO H O

 

  

   

    
 (8.9) 
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Conclusions and Future research 

 

 

9.1 Conclusions  

This Thesis deals with the expansive mechanisms induced by crystal growth that may develop 

in rocks and compacted soils containing sulphates. 

 

The risk of anhydritic rocks in engineering works 

Swelling in anhydritic formations is a widespread phenomenon well known in Central Europe 

because a high number of tunnels crossing formations containing anhydrite have been 

affected by damaging expansions taking place below tunnel floor. Anhydritic formations are 

abundant in Spain; therefore a potential risk of sulphate-related damaging expansions in 

infrastructures exists. Lilla, Camp Magré, Puig Cabrer and Albertia tunnels are recent cases in 

Spain. Damaging expansions in sulphated rocks can also appear in deep pile foundations. The 

heave of Pont de Candí bridge is a relevant and unique example. Uplifts reported very 

recently in the towns of Staufen in Germany and Lochviller in France highlight the 

widespread occurrence of these phenomena. 
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The mechanism 

The classical explanation of the direct transformation of anhydrite exposed to water into 

gypsum is not the mechanism that explains the expansions. It is really a question of reaching 

supersaturated conditions in calcium sulphate dissolved. Supersaturation resulting in gypsum 

precipitation can be achieved by the evaporation of groundwater but this is not enough to 

explain the observed magnitude of swelling. Dissolution of anhydrite results also in 

supersaturated conditions with respect to gypsum since the solubility of anhydrite is higher 

than the solubility of gypsum. This is believed to lead to large expansions observed in the 

cases described. The presence of fractures in the rock naturally existent or induced by 

excavation (tunnelling) favours the precipitation of gypsum when water and anhydrite are 

present. 

 

Main observations in Lilla tunnel and lessons learned. 

The development of extreme heave in Triassic sulphated rocks is known from other European 

tunnels; however record values of swelling pressures were reached in Lilla tunnel excavated 

in Tertiary Eocene clay rock deposits. Expansions in the tunnel occur mainly below the invert. 

Precipitation of gypsum takes place in open discontinuities induced by the stress relief 

generated by the excavation of the tunnel. A circular reinforced cross-section was adopted to 

repair the tunnel and recent measurements in the reinforced section have shown that the 

expansive phenomenon hasn’t stopped although it is slowly reaching stationary conditions 

after an 8 year period of observations. The measurements in the reinforced tunnel show that 

the swelling phenomenon is heterogeneous, which favours the resisting capability of the 

circular cross section. In addition, the expansion phenomenon observed is very three-

dimensional, which also helps the lining to resist stresses. Field investigation pointed out the 

importance of rock mass fracturing in the development of swelling. 

 

Main observations in Pont de Candí bridge and lessons learned 

Heave in Pont de Candí demonstrates that the swelling mechanism is developed if the 

required conditions for the occurrence of expansions are present. This is a very singular case 

of expansions below a deep pile foundation due to the precipitation of gypsum in 

discontinuities. Gypsum precipitation in fractures was found at depths where the development 
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of expansions in time was measured. The triggering of expansions has been associated with 

the construction of the bridge. The embankment built in the area of Pont de Candí has 

demonstrated that an increase of the effective stress applied to crystals reduces crystal growth. 

 

Modelling gypsum crystallization at a large scale 

A model has been developed for simulating the expansions in sulphated rocks due to gypsum 

crystal growth. The presence of soluble sulphated minerals and the occurrence of precipitation 

and dissolution of crystals have been considered in the formulations. The sensitivity analysis 

performed indicated that the initial anhydrite and gypsum content, solubility of gypsum and 

anhydrite and, especially, the confining stress have a relevant effect on the swelling strains 

calculated. The simulation of gypsum precipitation and expansions has been successful in 

Pont de Candí. The tool developed is believed to constitute a step forward in the analysis and 

prediction of swelling phenomena in sulphate bearing clay rocks 

 

Sulphate attack in embankments 

Although sulphate attack is known in treated compacted layers with lime or cement, the 

phenomenon has been analysed in the case of a massive attack to embankments, which 

implies large pressures against bridge abutments. The development of expansions due to the 

precipitation of ettringite and thaumasite is essentially unlimited because of the availability of 

the necessary components for its formation in the compacted embankments and track bases.  

 

9.2 Future research 

The mechanisms involved in the swelling behaviour are well understood, however the 

following topics have been selected to clarify some remaining uncertainties: 

Mechanism of swelling: 

Several uncertainties remain related to the control that some variables, may exert on the 

process of crystal growth and therefore on the swelling mechanism: 

 The effect of the composition of water: there might be an effect of the chemical 

characteristics of the rock/soil and groundwater chemical composition, the 

coexistence of other dissolved salts, on the precipitation of gypsum, ettringite or 



Conclusions and Future research 

226 

 

thaumasite, on the inhibition of crystal growth of those minerals and also on the 

kinetics of the process. Laboratory tests may be conducted to study these effects 

in an attempt to provide kinetic equations of precipitation and dissolution of 

crystals. 

 The effect of the structure of the rock mass: the influence of pore size distribution 

and the presence of discontinuities is not completely clear in the occurrence and 

the dynamics of crystal growth. Laboratory tests may be designed and performed 

to identify the relevance of these variables on crystal growth and associated 

effects (swelling strains and swelling pressure). 

 The effect of the non soluble clay matrix, present in the anhydritic rock analyses 

is not fully understood. 

Modelling: 

 The model developed for the simulation of expansions due to gypsum crystal 

growth may be generalised to include the knowledge obtainded from the 

investigation proposed previously in order to improve the predicting capabilities. 

The presence of fractures and development of discontinuities as a result of 

construction processes (i.e. tunnel excavation) may be also included in the model 

as well as the precipitation of crystals due to evaporation of sulphated water. 

 The chemical proccesses of dissolution and precipitation of minerals involved in 

the precipitation of ettringite and thaumasite may be included within a numerical 

model in a coupled manner with the mechanical effects generated. 
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