
 
 
 
 

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha 
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats 
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats 
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la 
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita 
de parts de la tesi és obligat indicar el nom de la persona autora. 
 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha 
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos 
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción 
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. 
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). 
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus 
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la 
persona autora. 
 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the 
titular of the intellectual property rights only for private uses placed in investigation and teaching 
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability 
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the 
TDX service is not authorized (framing). This rights affect to the presentation summary of the 
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate 
the name of the author 





CONTRIBUTIONS
CONTRIBUTIONS TO THEVOLUME MODELS

OF

OF MEDICAL VOLUME MODELS. CONTRIBUTIONS TO
THE INTERACTIVE

TO THE

CONTRIBUTIONS OFTO THE
OFTO THE

X n
2i = X n−1

i + Y n−1
i

B :[ MIN ( eM ,µ +1 . 5 · σ,e M − λ U )]

OF MEDICAL VOLUME MODELS. CONTRIBUTIONS TO
THE INTERACTIVEB :[ MIN ( eM ,µ +1 . 5 · σ,e M − λ U )]

B :[ MIN ( eM ,µ +1 . 5 · σ,e M − λ U )]

Y n− 1
i =( X n

2i − X n
2i+1 ) / 2 X n

2i = X n−1
i + Y n−1

i

C N(H Dynam1(V ))= C (H Dynam1(V ))=3 · C ( VR)

C N(H Dynam1(V ))= C (H Dynam1(V ))=3 · C ( VR)

CONTRIBUTIONS
CONTRIBUTIONS TO THEVOLUME MODELS

OF

THE INTERACTIVE

TO THE

CONTRIBUTIONS OFTO THE
OFTO THE

X n
2i = X n−1

i + Y n−1
i

B :[ MIN ( eM ,µ +1 . 5 · σ,e M − λ U )]

OF MEDICAL VOLUME MODELS. CONTRIBUTIONS TO
THE INTERACTIVEB :[ MIN ( eM ,µ +1 . 5 · σ,e M − λ U )]

B :[ MIN ( eM ,µ +1 . 5 · σ,e M − λ U )]

TO THE INTERACTIVE VISUALIZATION MEDICAL VOLUMES MODELS

Y n− 1
i =( X n

2i − X n
2i+1 ) / 2 X n

2i = X n−1
i + Y n−1

i

C N(H Dynam1(V ))= C (H Dynam1(V ))=3 · C ( VR)

C N(H Dynam1(V ))= C (H Dynam1(V ))=3 · C ( VR)

OFTO THE

Y n− 1
i =( X n

2i − X n
2i+1 ) / 2 X n

2i = X n−1
i + Y n−1

i
UNIVERSITAT POLITÈCNICA
DE CATALUNYA
BARCELONA TECHUPC





CONTRIBUTIONS TO THE INTERACTIVE VISUALIZATION
OF MEDICAL VOLUME MODELS

IN MOBILE DEVICES

PhD Programme in Computing
Doctoral Thesis

LAZARO CAMPOALEGRE VERA
ADVISORS: ISABEL NAVAZO AND PERE BRUNET



Acknowledgements

I would like to thank to my advisors Pere Brunet and Isabel Navazo. Their
guide has been the guarantee to conclude this thesis. They have been exemplars,
constants and patients. I cannot express enough gratitude to them, in front
of the personalized attention, how they motivated me, and their unconditional
support.

I also want to thank the UPC for the PhD formation Grant. I leave the UPC with
the experience of the rigor, the familiarity, organization, and also the commitment
that the institution puts in our hands for the development of our countries.

I would like to thank all the friends I found in this wonderful Barcelona. They
opened me to their culture, they made me to love their languages and fanned
my desire to explore the world. I also want to include in this acknowledgments
the Cuban friends who maintained our friendship identically alive despite the
distance; thanks to the worries and the sincere wishes of successes I got all the
time. I have felt sheltered by all of them.

I want especially thank Jose Díaz and Eva Monclús for their experience and their
technical support.

I would also like thank my great friend Pablo, for his patience in supporting my
ideas and the dedication in the designing of this book cover.

Thank to my parents and sisters for the motivation they gave to me since the
beginning of my studies, for their permanent emotional support and constant
communication. This allowed me to close my eyes many times and feel I was at
my own home.

I dedicate this thesis to my aunt Maria Esther, a woman who provided me the
most pure and unconditional love until her last breath. This a very simple tribute
to alleviate the nostalgia of her absence.





ABBREVIATIONS AND SYMBOLS

Abbreviations

CT Computer Tomography
CTA Coherent Traversal Algorithm
CTT Coherent Traversal Tree
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DPCM Differential Pulse Code Modulation
DVR Direct Volume Rendering
FT Fourier Transform
FTT Fast Fourier Transform
GUI Graphical User Interface
HDR-VDP High Dynamic Range-Visual Difference Predictor
IWT Integer Wavelet Transform
LOD Level of Detail
MC Marching Cubes
MRI Magnetic Resonance Images
PET Positron Emission Tomography
PSNR Peak Signal-to-Noise Ratio
PVTC Packed Volume Texture Compression
RC Ray Casting
ROI Region of Interest
RLE Run Length Encoding
RMS Root Mean Square
TF Transfer Function
VTC Volume Texture Compression
VQ Vector Quantization



viii

Symbols

b bit
B Bit stream.
Bl Vector of Bits. Representation of Octree nodes

at level l.
C() Function to compute size in KBytes.
CN() Function to compute size of the transmitted data in KBytes.
Dl Vector of gradient and materials for each node

of the Octree at level l.
D Octree Data.
D(n) Pointer to associated data.
Dr Vector of data at the deepest level r.
DR Data respresentation of the ROI Volume.
DRr Compact representation of the ROI Volume.
e Error matrix values.
e′ Quantized error values.
em Minimum of error values.
eM Maximum of error values.
EF Group of matrices which share one face with the low

frequency matrix.
EE Group of matrices sharing one edge with the

low frequency matrix.
EV Matrix sharing one vertex with the

low frequency matrix.
f(n) Pointer to the parent node.
G(V ) Gradient Octree of the volume V .
GR(V ) Restriction of G(V ) to the ROI.
H(V ) Hybrid Model.
HStat(V ) Static Information of the Hybrid Model.
HDynam1(V ) Dynamic information of the Hybrid Model using DR.
HDynam2(V ) Dynamic information of the Hybrid Model using DRr .
l Level in the tree.
l(n) Level of a node.
L Laplacian filter.
LB(n) Labeling function to represent nodes as bits.
LD(n) Labeling function when t(n) = 1.



ix

λT Smoothing Factor in the Laplacian Filter.
λU Scalar to define pieces of the Uniforming Function U.
Ml Number of grey nodes at level l.
n Node.
Ol Vector of indexes to the son nodes at level l.
σ Standard Deviation.
p Point of the original volume model.
P Perceptual Metric.
Q Quantization.
Q−1 Dequantization.
R Rendering Function.
r Resolution of the volume model V .
S Segmentation Transformation.
sm Pointer to son nodes.
S Octree structure.
SN List of octree structure arrays Bl transmitted

over the network.
SE

R Segmented regions of volume V.
T Wavelet Transform (Chapter 3) and Gradient computation

plus hierarchical downsampling (Chapter 4).
TS Planar Section.
t(n) Node type, 0 or 1.
t Transfer Function in TFk.
tr Tree root.
T−1 Inverse of T.
{TFk} Set of Transfer Functions.
U Piecewise Linear Uniforming Function.
U−1 Inverse of the Piecewise Linear Uniforming Function.
V Volume Model.
Vc Vole with quantized Wavelet coefficients.
VE Edge Volume Model.
VT Volume Transformed.
VR Volume of the ROI.
V E

R Edge volume.
V

′ Reconstructed Volume.
V t Transformed and quantified volume.



x

W 3D Haar Wavelet Transform.
W−1 Inverse of the 3D Haar Wavelet Transform.
wl Number of Wavelets reconstruction steps.
WN Transmitted information in the Wavelet region

for the hybrid model.



Summary

With current medical imaging improvements, specialists are being able
to obtain correct information of the anatomical structures of the human
organism. By using different image visualization techniques, experts can
obtain suitable images for bones, soft tissues, bloodstream among others.
Present algorithms generate images with better and better resolution and
information accuracy. Medical doctors are being more familiarized with
three-dimensional structures reconstructed from bi-dimensional images. As a
result, hospitals are becoming interested in tele-medicine and tele-diagnostic
solutions. Client-server applications allow these functionalities. Sometimes
the use of mobile devices is necessary due to their portability and easy
maintenance. However, transmission time for the volumetric information
and low performance hardware properties make quite complex the design of
efficient visualization systems on these devices.

The main objective of this thesis is to enrich user experience during the inter-
active visualization of volumetric medical models in low performance devices.
To achieve this, a new transfer-function aware compression/decompression
mechanism adapted to transmission, reconstruction and visualization has
been studied. This work proposes several schemes to exploit the use of
transfer functions (TFs) to enhance volume compression during data trans-
mission to mobile devices. As far as we know, this possibility has not been
considered by any of the described approaches in the previous work.

The Wavelet-Based Volume Compression for Remote Visualization approach
is a TF-aware compression scheme. It supports inspection of complex volume
models with maximum level of detail in selected regions of interest (ROIs).
It uses a GPU-based, ROI-aware ray-casting rendering algorithm in the
client, with a limited amount of information being sent over the Network,
decreasing storage size in the client side.
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Regarding the Remote Exploration of Volume Models using Gradient Octrees
scheme, we have shown that this technique can efficiently encode volume
datasets. It supports high-quality visualizations with Transfer Functions
from a predefined TFs set. In the present implementation, Transfer Function
sets can encode up to ten different volume materials. Gradient Octrees are
multi-resolution, supporting progressive transmission and avoiding gradient
computations in the client device. That is, Gradient Octrees encode pre-
computed gradients to save costly computations in the client, and support
illumination-based ray-casting without extra computations in the client
GPU. The proposed scheme presents a minimum loss of visual quality as
compared to the state of the art ray-casting renderings. The octree struc-
ture is compacted into a small volume array and a set of texture-coded
arrays, with only one bit per octree node. The proposed scheme supports
planar volume sections which are visualized with high-resolution volume
information, besides interactive extrusion of specific structures.

As a final contribution, a Hybrid ROI-based Visualization Algorithm has
been proposed. It inherits the advantages of the previously described
contributions while keeping a good performance in terms of bandwidth
requirements and storage needs in client devices. The scheme is flexible
enough to represent several materials and volume structures in the ROI area
at high resolution with a very limited information transmission cost. The
Hybrid approach has been proved to be specially well suited in the case of
large models. Experimental results show that this Hybrid approach is a
scalable scheme, with compression rates that decrease when the size of the
volume model increases.



Resumen

Los adelantos actuales en imagenes médicas están permitiendo a los especial-
istas obtener información cada vez más precisa de las estructuras anatómicas
del organismo humano. Mediante la utilización de diferentes técnicas de
visualización, los expertos pueden obtener imágenes de calidad para los
huesos, tejidos blandos, torrente sanguíneo, entre otros.

Los actuales algoritmos de procesamiento de imágenes garantizan el equi-
librio entre la resolución y la exactitud de la información. Paralelamente,
los médicos están más familiarizados con las estructuras tridimensionales
reconstruidas a partir de imágenes en dos dimensiones. Por otro lado, los
hospitales están incorporando la tele-medicina y el tele-diagnóstico entre
sus soluciones técnicas. Las aplicaciones cliente-servidor permiten estas
funcionalidades. En ocasiones el uso de dispositivos móviles es necesario
debido a su fácil mantenimiento y a su portabilidad. Sin embargo, el tiempo
de transmisión de la información volumétrica así como el bajo rendimiento
del hardware en estos dispositivos, hacen que el diseño de sistemas eficientes
de visualización sea todavía una tarea compleja.

El objetivo principal de esta tesis es enriquecer la experiencia del usuario
en la visualización interactiva de modelos volumétricos de medicina en
dispositivos de bajo rendimiento. Para conseguir esto, se ha puesto en
práctica la implementación de un mecanismo de compresión/descompresión
que depende de funciones de transferencia para optimizar la transmisión,
reconstrucción y la visualización en estos dispositivos. Esta tesis, por lo
tanto, propone varios esquemas para aprovechar el uso de las funciones
de transferencia (TFs) e incrementar el ratio de compresión del volumen
durante la transmisión a los dispositivos móviles. De acuerdo con nuestros
conocimientos, ninguna de las técnicas descritas en los trabajos presentados
anteriormente ha considerado esta posibilidad.
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El esquema de compresión de volumen basado en Wavelets para la visual-
ización remota, es una propuesta para compresión que tiene en cuenta la
función de transferencia. Permite la inspección de modelos de volumen com-
plejos con máximos niveles de detalles en regiones de interés seleccionados.
El rendering ejecuta un ray-casting adaptado a modelos con regiones de
interés orientado a la GPU en el cliente con una cantidad de información
muy limitada que se envía por la red.

La otra contribución de esta tesis es la implementación de un esquema para la
exploración remota de modelos volumétricos mediante Gradient Octrees.
Esta técnica codifica de manera eficiente datos de volumen mientras garantiza
visualizaciones de alta calidad con funciones de transferencias predefinidas
en un determinado conjunto. La actual implementación permite codificiar
hasta 10 materiales diferentes en los datos de Volumen. Gradient Octrees
es una técnica multi-resolución, permite la transmisión progresiva y evita los
cálculos del gradiente en el dispositivo cliente. En efecto, esta aproximación
codifica gradientes previamente calculados para reducir el coste de los
cálculos en la GPU del cliente y garantizar el ray-casting con iluminación en
la GPU del dispositivo. En comparación con las propuestas estudiadas la
pérdida de la calidad visual en los Gradient Octrees es mínima. La estructura
del octree es compacta, compuesta de un pequeño vector de volumen y un
conjunto de vectores de texturas codificadas, que utilizan sólo 1 bit por
nodo del octree. El esquema soporta además secciones planas de volumen
que contienen información de alta resolución, además de la extrusión de
estructuras en los modelos visualizados.

La contribución final de esta tesis se concentra en regiones de interés. La
propouesta aprovecha las ventajas de la implementación de un algoritmo de
visualización híbrida de datos de volumen basado en regiones de interés. La
propuesta incluye las ventajas de las contribuciones anteriores y mantiene
un correcto rendimiento en términos de ancho de banda y capacidad de
almacenamiento en el cliente. El esquema es lo suficientemente flexible como
para representar varios materiales y estructuras de volumen en la región
de interés con alta resolución; garantizando el bajo coste del proceso de
transmisión.
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An introduction to our research methods and proposed
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1.1 Motivation

With the evolution of medical image techniques, specialists are being able
to obtain correct information of the anatomical internal structures of the
human organism. By using different image visualization techniques, experts
can obtain suitable images for bones, soft tissues, bloodstream among others.
At present, these systems generate images with better and better resolution
and information accuracy. Handling these images allows the interpretation
of large volume data sets. The standard DICOM (Digital Imaging and
Communication in Medicine) allows portability and manipulation of these
data, easing visualization and interaction with models.

Visualization of some damaged tissues and tumors helps the treatment in
patients with oncological pathologies. A key use in chemotherapy is to
know whether the tumor is growing or shrinking. The application of current
visualization algorithms can improve the highlighting of these pathologies
during medical examination.

Recently, several important research areas in three-dimensional techniques
for multimodal imaging have appeared. Applications include neurologi-
cal imaging for brain surgery [1], tissues characterization, medical school
teaching, plastic surgery, surgical simulators [2] and others. At the same
time, scientists are more familiarized with three-dimensional structures
reconstructed from bi-dimensional images.

Volumetric models are generally achieved by using voxel datasets. A voxel
representation consists of a three-dimensional array of voxels, each voxel
being a cube which is the basic element in a volume representation. According
to the medical structure to be highlighted during the visualization, a transfer
function is applied to assign color and opacity to the values which represent
the voxel properties. For large volume datasets, interactive visualization
techniques require last generation graphic boards, due to the intensive
calculation and memory requirements during rendering.

Nowadays, hospitals are more interested in tele-medicine and tele-diagnostic
solutions. Tele-medicine [3] [4] is defined as the use of medical information
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exchanged from one site to another via electronic communications to improve
the clinical health status of patients. This concept includes a growing
variety of applications and services using two-way video, email, smart
phones, wireless tools and other forms of telecommunications technology.
Clinically oriented specialities can capture and remotely display physical
findings, transmit specialized data from tests and carry out interactive
examinations [5].

Tele-diagnostic is allowed by using tele-medicine, known as a process whereby
a disease diagnosis, or prognosis, it is made by the electronic transmission
of data between distant medical facilities.

Some applications for the remote visualization of medical images can be
considered as tele-medicine approaches. The handling of three-dimensional
information requires efficient systems to achieve fast data transmission and
interactive visualization of high quality images.

Client-server applications allow these functionalities. Sometimes the use
of mobile devices is necessary due to their portability and easy mainte-
nance. However, transmission time for the volumetric information and
low performance hardware properties make quite complex the design and
implementation of efficient visualization systems on these devices.

1.2 Thesis statement

The objective of this thesis is to enrich user experience during the
interactive visualization of volumetric medical models in low performance
devices, by studying new transfer-function aware compression/decompression
mechanisms adapted to transmission, reconstruction and visualization in
those devices.
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1.3 Formal Framework

Our initial hypothesis is to exploit the use of standard transfer functions
as a way to compress datasets. What we want to achieve while visualizing
medical images in mobile devices, is to obtain the best possible image
quality with an acceptable size of data in a suitable time. This therefore is
a Constrained Optimization Problem, as shown in what follows:

Let us assume that we have a volume model V . Let us consider a rendering
function R(V, t), which generates rendered images from the original model
V through a specific transfer function t. The compression in the server is
based on three operators (S, T and Q) that work on V :

V t = Q ·T ·S(V, t) (1.1)

A first segmentation S transforms the data to minimize the loss of visual
quality during rendering (R). We will note S(V, t) the result of segmenting
V by using the transfer function t. After that, a transformation T is applied
followed by a quantization scheme Q.

The first segmentation transformation, S, filters those details in V that will
not appear in the rendered images. The goal of S is to achieve:

R(S(V, t), t) ' R(V, t) (1.2)

with S(V, t) being less complex than V . The transformed and quantified
volume V t is then transmitted to the client, where a reconstruction V ′ is
computed:

V ′ = T−1 ·Q−1 ·V t (1.3)

The inverse transformations of T and Q being simple enough to support
their real time execution in the client.

Our intention is to achieve the highest perceptual quality rendering in the
client device. Assuming a perceptual metric P and naming C(V ) the spatial
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complexity (memory requirements in KBytes) of a volume model V , the
first goal is to maximize P :

Max [P (R(V ′, t), R(V, t))] | C(V ′) ≤ Max Size (1.4)

Where P compares the rendered images of V in the server and of V ′ in
the client with values between 0 and 1, with P=1 meaning a maximum of
perceptual similarity. The maximization is subjected to the constraint of a
bounded C(V ′). C(V ′) must be small enough in the client to allow proper
user interaction.

We want to send the whole volume model on demand and in a compressed
way to the client device. This ensures full interaction facilities in the client
without further server-client communication. We must therefore consider
network transmission as a further constraint. If we name CN (V ) the amount
of information that is transmitted over the network, we must also consider
CN(V ) in our final goal. Hence, the final objective is:

Max

[
(1− λ)P (R(V ′, t), R(V, t)) + λ ·

(
1− CN (V )

C(V )

)]
| C(V ′) ≤ Max Size (1.5)

where λ is a normalization constant.

We propose two basic techniques to achieve this objective, both based
on perceptual metrics and transforming the pre-processed volume in a
hierarchical multi-resolution volume data representation.

- In Chapter 3: S is a Laplacian Filter and T the Wavelet transform.
The Laplacian Filter is a smoothing operator that is applied in seg-
mented regions defined by a transfer function. It forces voxel density
values to remain in the interval of density values defining this region.
After smoothing, the volume is subdivided in blocks to independently
compute a Haar Wavelet (which is the transform T in the previous
scheme) and it is quantized through a well-suited Q algorithm.

- In Chapter 4: S is a volume segmentation process V → VE and T
includes the gradient computation plus a hierarchical downsampling.
The volume segmentation process is induced by each transfer function
of the predefined set of transfer functions to create an Edge Volume
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VE, which contains the basic information for the construction of a
multiresolution voxel model by means of a hierarchical downsampling.
This process computes and compresses the vector gradient for grey
nodes of this representation.

1.4 Contributions

Medical doctors usually adopt standard transfer functions to visualize
anatomical structures, this being a common practice in radiology. Based
on this fact, the thesis presents two transfer function-aware schemes for
remote interactive inspection and expressive visualization of volume models
in client-server architectures. These approaches codify volume models from
CT (Computed Tomography) data.

The main contribution of this thesis is the analysis and use of:

• Transfer Function-aware Compression Schemes: The proposed
schemes exploit the use of standard transfer functions to compress the
volume dataset during its transmission to mobile devices. As far as we
know, this possibility has not been considered by any of the described
approaches in the previous work, (see Chapter 2).

This main contribution develops into the following specific contributions:

• A Wavelet-Based Volume Compression for Remote Visualiza-
tion Scheme: A Wavelet-based, structure-aware compression scheme
for 3D voxel models is proposed. It is designed for client-server archi-
tectures and offers interactive volume visualization on mobile devices.
The scheme is block-based, supporting adaptive visualization in the
client. Decompression is simple enough to be run in real time in the
client side. A two-level ray-casting allows focusing on small details on
targeted regions while keeping bounded memory requirements on both
the CPU and the GPU of the client.
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◦ The contributions of this scheme resulted in the publication of the
paper [6]: Lázaro Campoalegre, Pere Brunet and Isabel Navazo. In-
teractive visualization of medical volumes in mobile devices. Personal
and Ubiquitous Computing, Volume 17, Issue 7, 2013.

• A Remote Exploration of Volume Models using Gradient Oc-
trees: A transfer function-aware scheme for remote interactive in-
spection of volume models in client-server architectures is proposed,
with the objective of supporting multi-resolution, avoiding gradient
computations in the client device and sending a very limited amount
of information through the network. The novel GPU-oriented data
representation (named Gradient Octrees) can be progressively trans-
mitted to the client in a compact way while achieving a minimum
loss of visual quality as compared to state of the art ray-casting ren-
derings. It is based on the concept of Coherent-Traversal Trees and
Coherent-Traversal Algorithms (CTA). Visual volume understanding
can be complemented by showing 2D sections of the original volume
data on demand, and by a number of additional interactive tools.

◦ The contributions of this scheme resulted in the publication of the
paper [7]: Lázaro Campoalegre, Pere Brunet and Isabel Navazo. Gra-
dient Octrees: A new Scheme for Remote Interactive Exploration of
Volume Models. Proceedings of the CAD/Graphics, Hong Kong, 2013.

• A Hybrid ROI-based Visualization Algorithm: A technique
that inherits the advantages of the previous contributions while keeping
a good performance in terms of bandwidth requirements and storage
needs in client devices is also proposed. The scheme is flexible enough
to represent several materials and volume structures in the ROI area
at high resolution using Gradient Octrees, all in all at a very limited
information transmission cost. The rest of the volume is represented
by the Wavelet-based approach.

◦ The contributions of this scheme resulted in the paper [8]: Lázaro
Campoalegre, Isabel Navazo and Pere Brunet. Hybrid, ROI-Based
Inspection of Medical Volume Models in Mobile Devices. Spanish
Conference on Computer Graphics, CEIG 2014.
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1.5 Organization of the Manuscript

The remainder of this document is organized as follows:

Chapter 2 describes and compares current client server architectures for
volume visualization and discusses the status of the visualization in low-end
devices. Chapter 3 presents a wavelet-based approach for volumetric medical
images visualization. Chapter 4 describes the Gradient Octrees approach
and its contributions to the remote exploration of medical volume models.
In Chapter 5 the Hybrid visualization approach and a comparison among
the previously studied techniques are presented. Finally, Chapter 6 includes
the thesis conclusions and future work.





CLIENT-SERVER VOLUME VISUALIZATION

2
This chapter briefly describes and compares current client
server architectures for volume visualization  and volume
compression techiques.
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2.1 Introduction

The term client-server refers to a popular model for computer applications
that utilizes client and server devices each designed for specific purposes.
This kind of applications can be used on internet settings or local network
as well [9].

Client-server architectures have grown in popularity since many years ago as
personal (PCs) computers became an alternative to mainframe computers.
Therefore, client devices are typically PCs with network software applications
installed that request and receive information over the network [10]. Mobile
devices as well as desktop computers can both function as clients.

A server device typically stores files and databases. These devices often
feature higher-powered central processors, more memory, and larger disk
drives than clients.

For computer graphics applications the mechanism is the same, a pow-
ered machine works as server while low-performance devices are used as
client [11] [12].

In this chapter we present a state of the art describing and comparing
some recent and significant papers related to the client-server architecture
proposals for volume visualization.

Remote visualization of medical images is a highly selected area for scientists
during the last years [13, 14, 15]. Many authors have published research
results in the remote volume visualization area. However there is still scarce
specific bibliography for volume visualization in mobile devices. The majority
of the proposals use known algorithms like Ray-Casting, 2D Textures,
and isosurface modeling to render volume data. In general, in order to
compensate limitations in low performance devices or to reduce costs, high
number of client-server schemes have been proposed.
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2.2 Client-Server Architectures

A wide study and revision of the published work have allowed us to identify
four principal schemes of client-server architectures for volume rendering.
Basically we classify them according to the way they reduce volume in-
formation for transmission: volume compression, image compression, data
partitioning or volume pre-processing.

Sending the compressed volume: In the first group of approaches (see
Figure 2.1), the dataset is compressed in the server side and sent to the
client where the transfer function is applied after decompression and before
rendering the recovered data. We also include in this group the approaches
that send the whole volume to the clients, without compression.

Concerning this mechanism, Callhan et al. [16] presented an isosurface based
method for hardware assisted progressive volume rendering. Their approach
seeks to minimize the size of the data stored in the final client in each step
during data sending. The approach sends a compressed vertex array to the
client during the reconstruction of the model.

Moser and Weiskopf [17] proposed a 2D texture-based method which uses
compressed texture atlas to reduce interpolation costs. The approach pro-
poses a hybrid high/low resolution rendering, to combine volume data and
additional line geometries in an optimized way. By doing this, they achieve
interactive frame rates. The technique runs on a mobile graphics device
natively without remote rendering. Mobeen et al. [18] proposed a single-pass
volume rendering algorithm for WebGL platform. They built an application
with a transfer function widget which enables feature enhancement of struc-
tures during the rendering. To avoid 3D texture limitations of some devices,
they mapped the volume into a single 2D texture to develop an application
able to run in any modern device with a basic graphic processor.

A recent application developed by Balsa et al. [19] allows interacting with
volume models using mobile devices hardware. They are able to apply
different transfer functions to volumes while selecting among 2D, 3D, and
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ray-casting methods according to the hardware capabilities. Their scheme
is not compressing the volume data.

Figure 2.1: Client-Server Architecture, Case A: the dataset is sent to the client in
a compressed or uncompressed way. The client applies the transfer function after
decompression and before rendering.

Sending compressed 2D rendered images: In the schemes where the
transmitted data is a compressed image [20], [21], (see Figure 2.2), the
transfer function is applied at the beginning of the pipeline, followed by a
2D rendering on a texture, all done in the server side. A compressed image
is sent to the client where decompression and image rendering take place.
This scheme is frequently named Thin Clients [22].

Engel et al. [23] developed an approach that uses Open Inventor Application
which provides a scene graph programming interface with a wide variety
of 3D manipulation capabilities. The application renders images off-screen,
encodes images on-the-fly and transmits those images to the client side. Once
in the client, images are decoded and copied into a framebuffer. The client
interface also provides a render drawing area with mouse event handling
capabilities to display images.

A new remote visualization framework is proposed in [24], here the dataset
is loaded into slicing tool in the client side. The designed tool allows axial,
coronal and sagittal direction inspections of medical models. The application
allows the selection of a sub-region by using object aligned textures. Volume
data is transferred to the server side to increase visualization quality. In a
similar way to other techniques, the server first renders images off-screen,
compress the image and the result is sent to the client. Once in the client
side, the image is decompressed and rendered. Mouse and GUI events are
sent to the server for re-rendering operations. Qi et al. [25] designed a
medical application to send images in a progressive way. The approach
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creates a reference image of the entire data by applying transforms. The
encoding scheme allows the gradual transmission of the encoded image,
which is reconstructed on-the-fly during the rendering in the client side.

Constantinescu et al. [26] implemented an application that incorporates
Positron Emission Tomography/Computer Tomography (PET/CT) data
into Personal Health Record for remote use on internet-capable or handheld
devices. It is a client/server application designed to display images in final
low-end devices as mobile phones. Users can control brightness and contrast,
apply color look up table and view the images in different angles. The
approach allows the transmission of images with a enough refresh rate to
achieve interactive exploration of 2D images.

Figure 2.2: Client-Server Architecture, Case B: the transfer function is applied in the
server, which also renders the volume data. The information sent to the client consists
on compressed 2D images.

Jeon and Kaufman [27] implemented a virtual colonoscopy application using
wireless with a Personal Digital Assistant (PDA) as client device. In this
scheme the server performs a GPU-based direct volume rendering to generate
an endoscopy image during the navigation, for every render request from
the client.

An explorable images technique is proposed by Tikhonova et al. [28]. The
approach converts a small number of single-view volume rendered images
of the same 3D data set into a compact representation. The mechanism
of exploring data, consists in interact with the compact representation in
transfer function space without accessing the original data. The compact
representation is build by automatically extracting layers depicted in com-
posite images. Opacity and color are achieved by the different combination
of layers.

Partitioning the volume data: Some approaches achieve a reduction
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of the sent information by partitioning the rendered volume (see Figure
2.3). This kind of proposals perform a partition of the volume to be sent to
the client, where the composition of the entire volume and the rendering is
applied.

Bethel. [29] proposes to subdivide and render volumes in parallel. The
resulting set of 2D textures is sent to a viewer which uses 2D texture mapping
to render the stack of textures, and provides interactive transformations.

Figure 2.3: Client-Server Architecture, Case C: the server partitions the volume into a
set of 2D slices, represented as 2D textures. The information sent to the client consists
on a stack of 2D textures.

Sending compressed multiresolution volume information: In some
proposals data preprocessing ensures the reduction of the information, com-
bined with different techniques for quantization, encoding and multiresolu-
tion representation. (see Figure 2.4)

In this group of approaches, a networking application is proposed by Lippert
et al. [30]. Here, a local client with low computational power browses
volume data through a remote database. The scheme allows the treatment
of intensity and RGB volumes. A Wavelet based encoding scheme produces
a binary output stream to be stored locally or transmitted directly to the
network. During rendering, the decoded Wavelet coefficients are copied into
the accumulation buffer inside GPU. The bandwidth of the network and the
frame rate control the transmission of the Wavelet coefficients in significance
order to guarantee the rendering quality.

Boada et al. [31] proposed an exploration technique where volume data
is maintained in the server in a hierarchical data structure composed of
nodes. The server receives the user parameters to select the correct list of
nodes to be rendered in the client side according to its hardware capabilities.
As a second rendering possibility, the user can select a region of interest
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Figure 2.4: Client-Server Architecture, Case D: the server enriches the volume dataset
by computing a multiresolution volume hierarchy, which is then compressed and sent to
the client.

(ROI) of the entire volume. To achieve this, the server transmits data in an
incremental fashion. Recently Gobebtti et al. [32], proposed a progressive
transmission scheme to send compact multiresolution data from the server
to the client stage. The technique allows fast decompression and local access
to data according to the user interaction in the client side.

Table 2.1 shows a description of the studied proposals. The columns show
for each approach, the above client-server schemes which applies, the kind of
data sent through the network and the compression technique implemented
to compact the data. It also shows where a mobile device is used as client,
and an estimation (based on the fps of the clients) of latency and interactivity
of the implemented approaches.

A simple analysis of this table, shows that few techniques were designed
to run on mobile devices as final clients. Although techniques presented
in [17, 18] achieve visualizations in mobile devices, the limited size of the
models and the lack of advance lighting shading implementations leave a
gap for further research in the area.

Latency and interactivity are strongly associated concepts in client-server
architectures for volume visualization. The ability of achieving interactive
frame rates depends on the transmission procedure and the rendering algo-
rithm implemented in both servers and clients. Some techniques achieve a
good combination of this properties by applying progressive transmission
schemes[16] and adaptive rendering algorithms[17, 32]. But unfortunately
this techniques are still quite complex to be run in low-end devices.
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2.3 Compression Techniques for Volume Models

As we have mentioned above, dataset transmission from servers to final
clients is considered a very important stage in client-server architectures
for volume visualization. Efficient schemes require optimized algorithms to
reduce the data and to send them through the networks. The algorithms
must achieve the maximum compression possible while allowing an easy
decompression in the client side, where sometimes hardware and memory
constraints decrease performance.

Compression algorithms can be classified in lossless and lossy [35, 36]. These
are terms that describe whether or not all the original data can be recov-
ered when the information is decompressed. With lossless compression,
data that was originally in the file, is recovered after the entire informa-
tion is uncompressed. On the other, lossy compression schemes reduce
data by permanently eliminating certain information, especially redundant
information.

Some recent and relevant compression techniques for volume visualization
have been studied, few of them have been included in client-server architec-
tures solutions. In Table 2.2, we present a comparison among these proposals.
Columns show the stage of the pipeline where decompression takes place,
whether the compression is lossless or lossy, and the applied compression
technique. We also specify those techniques designed for medical image
applications [37] and whether progressive transmission is allowed. The last
columns show an estimation of the compression ratio as well as a qualitative
measure of the reconstruction quality.

Wavelets and Vector Quantization are popular techniques for those ap-
proaches in which decompression takes place in CPU. Wavelet transforms
offer considerable compression ratios in homogeneous regions of an image
while conserving the detail in non-uniform ones. The idea of using 3D
Wavelets for volume compression was introduced by Muraki [38]. One of
the limitations of this approach was the cost to access individual voxels.
In [39] a lossy implementation of 3D Wavelets transform was applied to a
real volume data generated from a series of 115 slices of magnetic resonance
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images (MRI). By applying a filtering operation three times, the approach
obtains a multiresolution representation of a volume of 1283 voxels. Using
the coefficients from the Wavelet functions, they reconstructed a continuous
approximation of the original volume at maximum resolution. The rendering
technique prevents an interactive scheme, due to the cost of finding the
intersection point of the ray with a complexm 3D function, and consumes a
considerable amount of time. Ihm and Park [40] proposed an effective 3D
163-block-based compression/decompression Wavelet scheme for improving
the access to random data values without decompressing the whole dataset
and allowing volume render.

Focusing now on those techniques where decompression takes place in
GPU, Guthe et al. [41] proposed a novel algorithm that use a hierarchical
Wavelet representation. The Wavelet filter is locally applied and the resulted
coefficients are the basic parameters for a threshold quantization based
scheme. During rendering, the required level of the Wavelet representation is
decompressed on-the-fly and rendered using graphics hardware. The scheme
allows the reconstruction of final images without noticeable artifacts.

Current bottlenecks of Wavelet based volume compression schemes are
the lack of locality and the complexity of the decompression in low-end
devices. Moreover, present approaches are always compressing the whole
volume, even if the TF is forces most of the medical structures to become
invisible. In the first group of approaches (see Decomp. Stage: In CPU,
from table 2.2) most of the implementations are lossy due to the application
of quantization/encoding schemes (see also table 2.3). Nguyen et al. [42]
proposed a block based technique to compress very large volume data sets
with scalar data on a rectilinear grid. The method works in Wavelet domain.
By using different quantization step sizes, the technique encodes data at
several compression ratios. Although they ensure that compared to similar
proposals their approach achieves better reconstruction quality, the resulting
images show the existence of small blocking artifacts due to the block based
coder. Furthermore, they can only perform two compression steps with too
limited multiresolution capabilities.

Many methods try to maintain genuine volumetric data during the quanti-
zation stage. Rodler [43] proposes instead, to treat two dimensional slices in
position or time and draw on results developed in the area of video coding.
The first step of their encoder removes the correlation along the z-direction,
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assuming that two-dimensional slices are divided along this direction. A 3D
Wavelet decomposition should be ideal to further remove correlation in the
spacial and temporal directions. But in order to decrease computational
costs, they adopt as second step a 2D Wavelet transform to handle the
spacial redundancy. Finally, the quantization continues by removing in-
significant coefficients to make the representation even sparser. The method
is capable of providing high compression rates with fairly fast decoding
of random voxels. They achieve high compression rates with notable cost
in the decompression speed. The approach in [25] works on 3D medical
image sets, but it is finally a 2D visualization scheme to be performed in
CPU. The proposal has also been restricted to Magnetic Resonance Images
(MRI) datasets with relative large distance between slices. Even though
authors say the approach is a lossless compression scheme; the averages and
thresholds performed to the images, result on an accuracy reduction of the
information and therefore in a lossy compression approximation. Although
the working with slices has the advantage that memory format is identical
to that of the final 3D texture used for rendering, this comes at the cost of
losing spatial coherence.

Vector Quantization [44] is one of the most explored techniques for volume
compression. Basically consists on decreasing the size of volumetric data
by applying a specific encoding algorithm. The basic idea of this lossy
compression method is to code values from a multidimensional vector space
into values of a discrete subspace of lower dimension. Ning and Hesselink [45]
were the first ones in applying vector quantification to volume models. In
their scheme, the volume dataset is represented as indexes into a small
codebook of representative blocks. The approach is suitable for a CPU-
based ray-casting render. The proposed system compresses volumetric data
and renders images directly from the new data format. A more efficient
solution was proposed in [46], here the volume dataset is presented as
indexes into a small codeboook of representative blocks. This structure,
allows volume shading computations to be performed on the codebook, and
image generation is accelerated by reusing precomputed block projections.
Schneider and Westermann [47] implemented a Laplacian pyramid vector
quantification approach that allows relatively fast volume decompression
and render on the GPU. However this method does not allow using the
linear filtering capabilities of the GPU and the render cost increases when
using high zoom factors. Eric B. Lum et al. [48] propose a palette-based
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decoding technique and an adaptive bit allocation scheme. This technique
fully utilizes the texturing capability of 3D graphics card.

Bricking techniques subdivide large volumes into several blocks, named
bricks, in such a way each block fits into GPU. Bricks are stored in main
memory, then they are sorted either in front-to-back or back-to-front order
with respect to the camera position, depending on the rendering algo-
rithm [49, 50].

The idea in multiresolution model schemes [51, 52, 53] is to render only a
region of interest at high resolution and to use progressively low resolution
when moving away from that region. Both bricking and multiresolution
approaches need a high memory capacity on the CPU for storing the original
volume dataset. Moreover, bricking requires a high amount of texture trans-
fers as each brick is sent once per frame; multiresolution techniques have
been built for CPU purposes and its translation to GPUs is not straightfor-
ward due to the required number of texture fetching. As Table 2.2 shows,
different techniques allow multiresolution. An old technique proposed by
Ghavamnia et al. [54], consists in the use of the Laplacian Pyramid com-
pression technique, which is a simple hierarchical computational structure.
By using this representation, a compressed volume data can be efficiently
transmitted across the network and stored externally on disk.

Progressive transmission has become an important solution for client-server
architectures, allowing sending large volume dataset to the clients according
to the rendering possibilities as well as hardware and network constraints in
both servers and clients [55]. Xiaojun Qi et al. [25] propose a progressive
transmission capable approach. Here the information reduction addresses the
transmission scheme. The approach basically compresses data by reducing
noise outside the diagnostic region to each image of the 3D image set.
They also reduce the inter-image and intra-iamge redundancy adjusting
pixel correlations between adjacent images and within a single image. By
applying a Wavelet decomposition feature vector, they select a representative
image from the representative subset of the entire 3D medical image set.
With this reference image, they achieve good representation of all data with a
best contrast and anatomical feature details. The encoding technique (Table
2.3 ) ensures the progressive transmission scheme. The codified version of the
reference image is transmitted gradually from the coarse version to the fine
one. In medical applications, radiologists can determine during transmission
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whether the desired image is reconstructed and stop the sending of the
information before the transmission of the entire image set. Menmann et
al. [56] present a hybrid CPU/GPU scheme for lossless compression and
data streaming. By exploiting CUDA they allow the visualization of big
out-of-core data with near-interactive performance.

More recently, Suter et al. [57] have proposed a multiscale volume representa-
tion based on a Tensor Approximation within a GPU-accelerated rendering
framework. It can be better than Wavelets at capturing non-axis aligned
features at different scales. Gobbetti et al. [32] have proposed a different
multi-resolution compression approach using a sparse representation of voxel
blocks based on a learned dictionary. Both approaches allow progressive
transmission and obtain good compression ratios, but they are lossy and
require huge data structures and a heavy pre-process.

Table 2.3 summarizes the compression pipeline for the techniques presented
in Table 2.2. The studied approaches have not been designed to use in mobile
devices as clients, and none of them are transfer-function aware. Some of
these techniques are not even designed for client-server architectures, but
for compressing data from disk or to decrease bandwidth limitations.

Compression quality is usually measured by computing rate distortion curves
for representative datasets. A common measure in image compression is
the Peak Signal-to-Noise Ratio (PSNR) [58]. Fout et al. [59] designed a
hardware-accelerated volume rendering using the GPU. The approach is
a block-based transform coding scheme designed specifically for real-time
volume rendering applications. An efficient decompression is achieved using
a required data structure that contains 3D index volume to the codes and
codebooks textures. Guitián et al. [60] implemented a complex and flexible
multiresolution volume rendering system capable to interactively drive large-
scale multiprojector. The approach exploits view-dependent characteristics
of the display to provide different contextual information in different viewing
areas like field displays. The proposal achieves high quality rendered images
in acceptable frame rates.
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2.4 Visualization on Low-End Devices

The display resolution, the lack of power capacity, as well as memory and
storage capability constraints, make mobile devices to be qualified as low-end
devices in client-server architecture implementations [72]. Low performance
computers are also in this group of devices when comparing to sophisticated
computers designed to run complex graphics applications.

The advance of the mobile telephony and mobile devices in general, encourage
the developing and updating of visualization algorithms, most of them for
video games. Besides libraries updating, new software and platforms for
embedded systems have also appeared. These properties as well as the easy
maintenance and portability make mobile devices the preferred alternative
for scientists and developers. Because of this, their limitations are becoming
a strong field of discussion for computer graphics researchers [72].

In parallel, volume models have grown continuously during the last years.
The amount of memory of modern GPUs is also growing, but unfortunately
the increasing rate of the size of volumetric data sets is much higher surpass
it.

Most of the recent approaches for volume visualization in mobile devices have
been implemented using OpenGL ES [17, 18, 19], which is an application
programming interface for advanced 3D graphic target at handheld and
embedded devices. This library addresses some device constraints like
preprocessing capability and memory availability, low memory bandwidth,
sensitivity to power consumption , and the lack of floating-point hardware.
However the scarce amount of proposals and effective solutions in the area,
as well as the user interaction requirements for this kind of applications
make volume visualization algorithms in mobile devices a new challenging
problem for research.
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2.5 Conclusions and Discussion

The study of client-server architectures for volume visualization is nowadays
a wide area of research for computer graphics scientists . We have made a
comparative analysis of some relevant approaches in the area. But of course
it is impossible to fully cover all published in this work.

Although there have been interesting practical solutions in the last years, a
lot of open problems remain for further investigation.

Sending the whole volume model in a compressed way to the client device
is still a challenging problem. This ensures full interaction facilities in the
client without further server-client communication. Many proposals achieve
good results, but the small allowed size of models and network latency
during real time visualization, decrease interaction capabilities.

As an alternative most techniques transmit images through the network,
but this falls in the lack of volume information in the client side, decreasing
performance when new data is demanded and affecting image quality when
reconstruction takes place in clients.

Compressed volume rendering method is a good solution to render those
models whose size exceeds current hardware capabilities. But performance
during decompression is being still a field needed of improvements. Although
some proposals decompress data using CPU, the current trend is to move
all the decompression to the last part of the graphic pipeline. This way the
data gets compressed to the GPU, which result in less memory consumption
and better exploiting available bandwidth.

Data transformation, quantization, encoding and progressive transmission,
are concepts strongly united. Some approaches convert volume data into
compact data structures ready to be gradually sent from servers to clients.
In cases where no client-server architectures are implemented, compact data
structures are used to transfer data between CPU and GPU or also to
efficiently perform out-of-core methods.

Medical visualization requires a special treatment. Current solutions propose
novel improvements without fully exploiting the fact that doctors usually
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adopt standard transfer functions. This fact can be a new tool to compress
even more the datasets. Moreover, low-end devices as mobiles are being
preferred due to it easy maintenance and portability but their limitations
demand a further revision of client-server algorithms to optimally increase
interactivity while inspecting large volume models.





WAVELET-BASED VOLUME COMPRESSION FOR 
REMOTE VISUALIZATION

3
This chapter presents a Wavelet-based transfer-function
dependent approach for interactive volume visualization in
small mobile devices
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3.1 Introduction

The complexity of present volume models in medical applications is continu-
ously increasing, therefore increasing the gap between the available models
and the rendering capabilities in low-end mobile clients. New and efficient
rendering algorithms and interaction paradigms are required for these small
platforms.

In this Chapter, we propose a transfer-function aware compression and
interaction scheme for client-server architectures, with visualization on
standard mobile devices. The scheme is block-based, supporting an adaptive
ray casting in the client. A two-level ray-casting allows focusing on small
details on targeted Regions of Interest (ROIs) while keeping bounded memory
requirements in the GPU of the client. The approach includes a Transfer
Function-aware compression scheme based on a local Wavelet transformation,
together with a bricking scheme that supports interactive inspection and
levels of detail in the mobile device client. We also use a quantization
technique that takes into account a perceptive metrics of the visual error.

Specifically, the approach includes a compression scheme based on a previ-
ously defined Transfer Function and on a local Haar Wavelet transformation
that works on individual 16× 16× 16 blocks of the volume. Unlike previous
scheme, the compression technique allows on-the-fly decompression in the
client and saves memory requirements in the model transmission.

Results show that we can have full interaction with high compression rates
and with transmitted model sizes that can be of the order of a single
photographic image.
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3.2 Preliminaries

3.2.1 Volume Transformations

Real functions in Computer Graphics and Geometric Modeling are usually
defined on a 3D domain space or in domains of lower dimension subspaces.
They map values from the domain D into the real line <, f : D ∈ <n → <

Analytical functions defined in one dimensional domain can be written in
the way y = f(x) where y ∈ < and x ∈ D ⊂ <. In general, the necessary
information to represent a general function can be unbounded (infinite),
as Hilbert spaces which have an infinite dimension. In order to represent
and use them in a computer, an approximation is required. Functions can
be approximated by their coefficients in a finite set of basis functions, or,
simply, by sampling them at a finite (most times uniformly spaced) number
of values x0...xn, see an illustrative example in Figure 3.1. The function
f(x)-(Figure 3.1-(a)), can be represented by the coefficients [c0...cN ], or it
can be defined by the values [f0...fN ]. In both cases, f(x) is approximated
by a one-dimensional array of coefficients or values. In Figure 3.1-(b)
the function y = f(x) is represented by the discrete set of values f0...fN

or f(x0)...f(xN) or f̄ = [f0...fN ]T , where xk = x0 + kḣ means that it is
approximated by a finite number of samples.

The Nyquist-Shannon Sampling theorem [73] tells that a function f(x)
will be completely determined by a discrete sampling with an spacing h
( like f(x0)...f(xN), where xk = x0 + kḣ), only if it contains no details of
frequency greater or equal than 1/(2h) and if N →∞. In other words, we
can never recover details with period smaller than 2h. Any sampling looses
information.

Functions approximated by arrays can be transformed by standard linear
transformations represented as (N + 1)× (N + 1) matrices [T ], f̄T = [T ] · f̄ .
Non-singular linear transformations represent invertible function transforma-
tions. Examples include the Discrete Fourier Transform (DFT) [74], having
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Figure 3.1: The function f(x) in (a), defined by the values [f0...fN ] in (b) and represented
by [c0...cN ] in (c).

an efficient FFT computation algorithm, and kinds of different Wavelet
transforms (Haar, Daubechies, and others, see [75]).

A wide range of mathematical transformations, are important tools for
reducing data. One of the most used techniques to compress data is Vector
Quantization [44], which is a lossy compression scheme. The basic idea is to
code values from a multidimensional vector space into values from a discrete
subspace of lower dimension. Because the lower-space vector requires less
storage space, data gets compressed. The transformation into the subspace
is either achieved through projection or by using a codebook.

The Discrete Cosine Transform (DCT) [76] maps sequences of scalars into
single scalar indices. This is a compression method that transforms data
into a set of coefficients that are then quantized to create a more compact
representation.

3.2.2 Wavelet Volume Transformations

Wavelets are transformations which work by analyzing data components
with a variable scale resolution. These transformations satisfy certain
mathematical requirements and are used to represent data and time signals
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[75]. Wavelets started by moving from the previous notion of frequency
to the notion of scale analysis, and by exploring orthogonal systems and
the Fourier convergence. Therefore, Fourier Transform (FT) [77] can be
considered as an ancestor of the Wavelet Transform. The ability of analyzing
functions through their frequency content makes Fourier Transform a very
important tool. Since the Fourier coefficients of the transformed function
represent the contribution of sine and cosine functions at each frequency,
the signal can be analyzed through its frequency content [78].

Figure 3.2: Wavelet Transform of a signal. From [78].

Figure 3.2 shows the continuous Wavelet Transform of a time signal in which
the axes represent translation and scale, instead of time and frequency. In
time signals, translation is strictly related to time, and it indicates where
Basis Wavelet functions are located. In our proposal, we use transforms in
the discrete domain to efficiently transform 3D volume signals while keeping
a bounded complexity of the transformed data.

During a Wavelet transformation the signal goes through a number of
high pass and low pass filters, which prune out either high frequency or
low frequency portions. With a correct selection of the Wavelet function
and truncating the coefficients below a threshold, data can be compactly
represented, this possibility makes Wavelets to be an excellent tool for
compression. The different Wavelet families make different trade-offs between
how compactly the basis functions are localized in space and how smooth they
are. Haar Wavelets [79], Daubechies [80], Biorthogonal [81], Coiflets [82],
Symlets [83], Morlet [84] and Mexican hat [85] are some of the Wavelet
schemes that have been used in different applications [75].
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Transform, quantization and encoding are the three basic components of
a typical Wavelet compression algorithm. During the transform stage, the
input data is separated into different bands of frequencies using Wavelet
filters. These filters are usually linear. They can be represented as constant
matrices which transform a 1D data array Xn of dimension 2n into a half-size
data array of size 2n−1. Given a data array coefficient vector Xn, classical
Wavelets use a rectangular matrix A2n to compute

Xn−1 = A2n

Xn (3.1)

and an accompanying matrix B2n to capture details

Y n−1 = B2n

Xn (3.2)

These two matrices (called analysis filters) have independent columns, and
the process can be inverted using the synthesis filters An

R and Bn
R:

Xn = An
RX

n−1 +Bn
RY

n−1 (3.3)

without loss of information. Furthermore, the space required to store Xn−1

and Y n−1 is the same as the required for Xn. This process can be iterated
yielding a multiresolution scheme (with each level using half as much detail),
which can be stored using the same space as Xn: It stores the approximation
X0 and a sequence of detail vectors Y 1, Y 2, Y 3, ..., Y n−1.

The quantization step restricts the values of the coefficients. Then, the
encoding step phase represents the results of the quantization as efficiently
as possible with minimum loss.

A three dimensional Wavelet approximation for volume data sets was pre-
sented by Shigeru Muraki [38]. In this approach, a 3D Orthogonal Wavelet
Basis is built by using a tensor product of one dimensional basis functions.
This Wavelet transform can be applied to volume data [39]. The authors
remove the insignificant coefficients and only use the remaining coefficients
to reconstruct an approximation of the original data. E. Schiavi and C.
Hernandez [86] presented an study that shows the advantages of using 3D-
Wavelets Functions for medical image visualization. Our proposal uses this
Wavelet Transform.
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3.2.3 Truncated 3D Haar Transformations

The Haar Wavelet Transform has a very small local support. It is very
efficient in applications that require fast decomposition and reconstruction,
since it can be implemented by a few additions, subtractions and shift
operations.

For a simple understanding of Haar Wavelet Functions, let us consider a
sampled array:

Xn = Xn
i | 0 6 i < 2n (3.4)

with a power of two size. A new array:

Xn−1
i = (Xn

2i +Xn
2i+1)/2 | 0 6 i < 2n−1 (3.5)

is obtained by averaging (down-sampling) each sample pair from Xn. This
new array can be regarded as a coarser representation of Xn with half of
the original size [40]. By applying a Haar Wavelet transform, part of the
information gets lost during the down-sampling. Therefore, to recover the
original array, detail information is computed in a second array as:

Y n−1 = Y n−1
i | 0 6 i < 2n−1 (3.6)

where:
Y n−1

i = (Xn
2i −Xn

2i+1)/2 (3.7)

The 2n−1 averages and 2n−1 differences (or detail coefficients) are obtained
by applying 2-channel subband filters: the smoothing filter and the detail
(or Wavelet) filter respectively. The reconstruction of the original samples
can be achieved by reversing the operations:

Xn
2i = Xn−1

i + Y n−1
i

Xn
2i+1 = Xn−1

i − Y n−1
i

 0 6 i < 2n−1 (3.8)

Decomposition can continue until we obtain the global average X0 = X0
0 and

a sequence of detail arrays Y 0, Y 1, Y n−1. During the reconstruction of the
original data at any resolution, a number of additions and subtractions are
applied to detail coefficients according to the desired level of compression.
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In short, the first step of the Haar Wavelet transformation of a one-
dimensional data array X with N = 2n components, computes a filtered
and smoothed data array of dimension N/2 by simply adding (or averaging)
each odd-element of X with its next, even element. The footprint of the
k step of a specific discrete Wavelet transform is defined as the number of
data elements of the initial 1D array Xn which are used in the computa-
tion of any single element of Xn−k. The footprint of the first step of the
Haar Transformation is 2, while other Wavelet schemes like Daubechies
and Coiflets have a footprint of N = 2n. The second step of this Haar
Wavelet transformation will average every two neighbour (odd and even)
elements of the array computed in the first step to generate a smoothed
data array of dimension N/4, with a footprint of 4. The complete Haar
Wavelet transformation requires log2(N) steps and ends up with a single,
scalar value. The footprint after k steps is 2k, meaning that computations
are local with respect to a 2k-blocked partition of the original data. In other
words, if the original array X of dimension N is partitioned into a set of
non-overlapping 2k intervals, the first k steps of the Haar Transformation
make completely independent computations within each of these intervals.
The complete Haar Wavelet transformation obviously involves the whole
initial data and uses no blocked partitions, however. The same argument
applies to 3D volume data, but now independent block supporting local
computations after k iterations are non-overlapping volume bricks of size
2k × 2k × 2k.

Truncated 3D Haar Transformations are Haar transformations that stop
after k transformation steps. They do not use inter-brick information, and
stop after reducing the volume by a factor of 2k in each spacial dimension.
They are not explicitly encoding low frequency volume information such
as the overall average density, but they are in fact local approximations
of the volume, and this is a very attractive property for transmission,
multi-resolution and interaction purposes. Unfortunately, other Wavelet
basis like Daubechies, Coiflets or Spline-based Wavelets are global, their
truncated versions being not local and not supporting spatial subdivisions.
In what follows, we will restrict ourselves to truncated 3D Haar Wavelet
Transformations.
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3.2.3.1 Truncation Levels in the 3D Haar Transformation Wavelet

As discussed, the footprint of the 3D Haar Wavelet Transformation depends
on the number of Wavelet steps. Several options have been analyzed in the
framework of our volume compression application:

• Constraining the 3D Haar Wavelet Transformation to 2 steps results
on a footprint with volume blocks of size 4× 4× 4.

• Constraining the 3D Haar Wavelet Transformation to 3 steps results
on a footprint with volume blocks of size 8× 8× 8.

• Constraining the 3D Haar Wavelet Transformation to 4 steps results
on a footprint with volume blocks of size 16× 16× 16.

• 3D Haar Wavelet Footprints smaller than 8× 8× 8 result on Wavelet
matrices difficult to quantize (so compress), due to the relevance of
the information that they encode. We have therefore discarded these
options.

• 3D Haar Wavelet Footprints larger than 16×16×16 result on a slightly
better Wavelet approximation, but the spatial subdivision is too coarse
for practical interaction purposes. When Regions of Interest (ROI)
with high quality volume visualizations are to be supported they must
include a certain number of full blocks of the volume, to ensure that
every volume block can be reconstructed at a different and suitable
level of detail (LOD). This is due to the fact that any block acts as a
reconstruction-unit, all block voxels having to be reconstructed at the
same and identical LOD.

We use a block size of 16 together with a 4-steps Haar Transform, being rather
efficient in compression and still offering acceptable interaction facilities
(see Section 3.8). We preferred a 4-steps scheme instead of a 3-steps Haar
Wavelet Transform in order to maximize the compression rate and the final
visual quality in the client. Using a 4-steps Haar Transform means that
any volume block will have four possible LODs during reconstruction. The
four-level reconstruction of a block generates a full piece of 16 × 16 × 16
voxels that represent the corresponding part of the volume. Reconstructions
of the same block at three, two or one levels generate pieces of 8× 8× 8,
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4× 4× 4 or 2× 2× 2 voxels, representing the same part of the volume at
lower resolutions.

Figure 3.3: A 16 × 16 × 16 block of the original volume (left). One of the 2 × 2 × 2
atomic subregions for Wavelet computation (center). The resulting low frequency matrix
(in red) together with the seven error (or high-frequency) matrices (right).

Figure 3.4: Generation of the four levels of the 3D Haar Wavelet Transformation in
a 163 block. In (a), the result of applying one Wavelet step as explained in Figure 3.3.
Same process is done for the second Wavelt step (b), third Wavelt step (c), and the fourth
Wavelet step (d). The result in (e) shows the four-step Haar Transform applied to the
initial 163 block.

To compute the Wavelet transformation, we have implemented an approach
similar to [40]. After the subdivision of the volume in blocks of 16× 16× 16
voxels, we then subdivide each block in sub-regions of 2× 2× 2 voxels as



48 3. Wavelet-based compression approach

shown in Figure 3.3. Then, we compute the 8 possible linear combinations
(with coefficients +1 or −1) among the 8 values inside a 2 × 2 × 2 voxel
subregion to compute the Haar Wavelet Transformation. After that, each
one of the computed values is distributed inside the 16 × 16 × 16 voxels
block to create one low frequency matrix and seven high frequency matrices.
This process is then repeated for the second, third and fourth steps of the
Wavelet transform, see Figure 3.4. The whole computation is performed in
the integer domain, to avoid rounding errors (data generated in each of the
four Wavelet steps gets multiplied by 8, 64, 512 and 4096 respectively).

In what follows, we will refer to the high frequency or error matrices according
to their location with respect to the low frequency matrix in each level of
transformation. Therefore we call EF the group of matrices which share
one face with the low frequency matrix, EE the group of matrices sharing
one edge and EV the matrix sharing only one vertex with the low frequency
matrix. In Figure 3.3, EF matrices are painted yellow and green, the EV

matrix is painted pink, and the rest are EE matrices. After four Wavelet
steps (see Figure 3.4) we get a hierarchy with 12 groups of error matrices:
EF1 , EE1 , EV1 , EF2 , EE2 , EV2 , EF3 , EE3 , EV3 , EF4 , EE4 , EV4 (the index
indicates the Wavelet step).

3.2.3.2 Statistical Analysis of 3D Haar Error Matrices

This Section presents a statistical study of the Wavelet coefficients behavior,
which will drive the design of the quantization scheme (see Section 3.5).
Figure 3.5 shows the models we used for analyzing data. The Skull model
(left) with a 256 × 256 × 112 resolution, a foot model of 256 × 256 × 256
resolution and a jaw model of 512× 512× 48 resolution. The amount of 163

blocks in these models is (16 × 16 × 7), (16 × 16 × 16) and (32 × 32 × 3)
respectively. Density values are between [0...255], each voxel being codified
using 1 byte.

We made an study of the statistical behavior of the error matrices for each one
of the four 3D-Haar Wavelet Transformation steps. Our conclusion is that
there exists a statistical similarity among matrices in the same group (EF ,
EE or EV ). In fact, this is a direct result from the properties of 3D Wavelets
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Figure 3.5: The three volume datasets used in our experiments.

and the isotropy of the medical volume models: EF matrices result from
applying 1D Wavelet transform to the volume in each of the three spatial
directions (x, y, z), while EE matrices result from applying two orthogonal
1D Wavelet transforms (x-y, x-z, y-z) to the volume. The resulting evidence
is that the statistical behavior of the values of the elements of matrices in the
same group is similar. Figure 3.6 shows, for instance, the histogram of the
values of 20 random EF matrices. We observe a Gaussian behavior in their
element values. Matrices EE and EV have the same Gaussian behavior.

Figure 3.6: Histogram of the values in 20 EF error matrices, randomly chosen. A clear
Gaussian behaviour can be observed.
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3.3 Overiew

In this Section we briefly introduce the general framework of our client-server
approach, which is shown in Figure 3.7. In the next paragraphs we first
define the concepts of transfer function, blocks and region of interest.

Figure 3.7: Overview of the transformations in the server side. The transformed volume
VT is obtained from the initial volume V by using a constrained Laplacian transformation
L. Then, VT is partitioned into 163 blocks, and the quantization Q of the Wavelet
transformation W is tuned according to a precomputed estimation of the visual errors.
The compressed volume VC is sent over the network. In the client side, the user interaction
drives the model reconstruction followed by an adaptive Ray Casting-based rendering
algorithm.
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Let V be a volume model with voxels representing scalar densities. Let TF
be a rendering transfer function defined as a function of one variable: TF
assigns opacity and color values for any value of the volume density. The
region of interest (ROI) is usually defined as the user-defined region where
the maximum resolution and detail is required during interactive inspection.
Our approach supports regions of interest consisting on a connected set of
blocks. The user will usually accept a lower resolution outside the ROI while
requiring the maximum resolution in the areas inside the ROI. Choosing a
suitable block size is a compromise. Large n values support more wavelet
steps but result on too rough ROI shapes. On the other hand, small n
values produce nice and flexible ROI shapes at the cost of too few wavelet
steps and poor multiresolution behaviour in the client, as discussed in item
2 below. We conclude that the two most performing options are n = 3 and
n = 4.

We divide the volume into equal-sized bricks, which we call blocks in what
follows. We use the property that Haar wavelets are local in 2n-sized blocks:
applying n steps of the Haar transformation to V gives the same result as
locally applying these n Haar steps to each of the individual blocks (this is
not true for n + 1 steps, as the Haar transform would require volume data
from neighbour blocks).

In our scheme (see Figure 3.7), the server builds a TF-dependent compressed
model file by following these steps:

1. A TF-aware smoothing is applied to V . The objective of this prepro-
cess is to remove local features in V that would unnecessary increase
the size of the compressed file. This smoothing algorithm is presented
in Section 3.4. By using prior knowledge on the Haar Wavelet trans-
form, we succeed in decreasing the size of the compressed file while
maintaining a reasonable visual quality.

2. The next step is the subdivision of the obtained volume data set VT

in blocks of 16× 16× 16. This granularity with n = 4 supports four
independent Wavelet transformation steps, which is a good compromise
between interaction performance and compression rate, as discussed
in Section 3.5. Each block is independently transformed, allowing
independent decompression, when required, in the mobile device. The
option of using 8 × 8 × 8 blocks, with n = 3, would result in a
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more flexible definition of the regions of interest. However, it would
only support three wavelet steps, which we consider too limited for
multiresolution purposes.

3. Nil blocks are detected and tagged. Nil blocks are irrelevant for the
specific TF being used, and can easily be detected by simulating the
final rendering in the server. A particular block B is Nil if render(VT )
is equal to render(VT − B) (we use the notation VT − B to represent
volume VT without block B). Nil blocks can contain parts of the
volume with zero opacity, or they can be fully occluded by other
visible, opaque blocks (anatomical structures inside a cavity, which are
invisible from any viewpoint). Nil blocks are not wavelet-transformed:
their identifiers are the only information that will be sent from the
server to the client.

4. After that, four Haar Wavelet transformation (W ) steps are applied
to every non-Nil block, and Wavelet coefficients are quantized (see
Section 3.5). Quantization is optimized based on a specific visual error
metrics with threshold values obtained from a user study. As a result,
the compressed volume file VC is obtained.

The compressed volumetric information is sent to the client side, where an
adaptive decompression is efficiently performed in its CPU according to the
camera and region of interest (ROI), see Section 3.7. By only decompressing
the required blocks, we obtain significant memory savings in the client, being
able to show areas of interest at the maximum resolution. Finally, the client
performs a ray-casting based rendering which accesses an implicit multi-
resolution volume model represented by bricks of different resolutions.

3.4 Transfer-Function Dependent Volume Transformation

In this Section, we explain the Smoothing Laplacian Preprocess L which is
performed previously to the Wavelet transform (see Figure 3.7).

We start from the volume data V and a certain transfer function TF (see
Figure 3.7). Then, the server transforms V by computing a TF-aware
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smoothing. By using the well-known property that linear scalar fields result
in constant error coefficients in their Haar Wavelet transform, we succeed in
decreasing the size of the compressed file while maintaining the final visual
quality.

We assume standard piecewise linear transfer functions [49] (see Figure 3.7).
By using a piecewise linear opacity function, we virtually segment the
volume V in as many regions as linear segments defined by TF . Voxels
with a density d such that TF.Opacity(d) = 0 belong to Nil regions. The
rest of the voxels belong either to ramp regions (when d belongs to one of
the slanted linear segments of TF.Opacity) or to constant regions (when d
belongs to one of the constant value intervals in TF.Opacity). The total
number of constant and ramp regions equals the number of segments in the
TF opacity function.

We implement a TF-aware smoothing algorithm as a constrained Laplacian
filter in each of the regions: we perform a Laplacian smoothing for each
volume voxel (Vi,j,k) in each region and then force it to remain in the interval
of density values defining this region. In constant regions, this smoothing has
obviously no visual effect; however, it spatially smoothes the field, tending to
produce spatially linear density fields. In ramp regions, Laplacian smoothing
is also generating linear density fields, as desired. However this smoothing
leads to small visual artifacts as we are locally smoothing the opacity. To
minimize these effects, we use a more conservative Laplacian filter for ramp
regions:

Li,j,k = λTVi,j,k + (1− λT )
6 (Vi+1,j,k + Vi−1,j,k + Vi,j+1,k + Vi,j−1,k + Vi,j,k+1 + Vi,j,k−1)

(3.9)

where λT = 0 in constant regions and λT = 0.5 in ramp regions. In order to
guarantee the filter isotropy, at each Laplacian filter iteration we compute
a second array L, then we clamp the density values in L to the interval
values of their initial regions, and finally assign L to the smoothing volume
VT which will be Wavelet transformed. In our implementation, the total
number of iterations is set to some value between 400 and 800 to maintain a
good compromise between compression rate and quality, see Section 3.8.
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3.5 Block-Based Volume Compression and Quantization

After smoothing, we subdivide the volume VT in blocks, and use them to
independently compute a Haar Wavelet transform. We then quantize the
obtained coefficients and sent them (VC) to the client. The advantage of
having a block-based computation with independent block transformation
and quantization is two-fold: we can use stronger, localized quantization
policies in the server, and the client can implement a block-based render-
ing acceleration and use block-aware interaction paradigms. As already
mentioned, our implementation uses a block size of 16 together with a 4-
steps Haar transform, being rather efficient in compression and still offering
acceptable interaction facilities.

Once transformed with the above TF-aware Laplacian smoothing algo-
rithm, the volume VT is subdivided into non-overlapping 16 × 16 × 16
blocks (or bricks) which are transformed through a four-step classical Haar
Wavelet transformation. The algorithm is straightforward, as observed
in Section 3.2.3.1, only requiring additions and subtractions. After four
Wavelet steps we obtain a hierarchy with 12 groups of error matrices for
every 16×16×16 block of VT : EF1 , EE1 , EV1 , EF2 , EE2 , EV2 , EF3 , EE3 , EV3 ,
EF4 , EE4 , EV4 , where the index indicates the Wavelet step (see Figures 3.3
and 3.4).

The design of our quantization algorithm derives from the above-mentioned
properties of the error matrices (see Section 3.2.3.2). Our intention is to
increase the compression rate while maintaining a correct user perception
after the reconstruction of the model in the client. The process starts by
spreading in a uniform way the values in the matrices of the first two steps,
EF1 , EE1 , EV1 , EF2 , EE2 , EV2 . We consider the Gaussian behavior of these
error matrices and compute, the mean and standard deviation values for
all of them. Then, we transform their error matrix values by applying a
piecewise linear uniforming function U that approximates the accumulated
Gaussian probability function. The function U is shown in Figure 3.8,
depending on three parameters: λU , A and B.

To compute U we need the mean µ and the standard deviation σ of the
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Figure 3.8: Piecewise linear uniforming function U . U is designed in a way such that
the statistical distribution of the error matrix values U(e) is approximately uniform.

error matrix values e. We do this as follows:

µ =
[∑N

k=1 e

N

]
| N = 3 · 2n (3.10)

σ =
[∑N

k=1 (e− µ)2

N

]
| N = 3 · 2n (3.11)

Where N is the number of components of each processed error matrix. Error
matrices are parametrized by their µ and σ values, plus the maximum
and minimum values of their elements eM = Max{e}, em = Min{e}. To
approximate a cumulative Gaussian distribution, the parameters defining U
are computed as:

λU = 0.0567 · (eM − em) (3.12)

A : [MAX(em, µ− 1.5 ·σ, em + λU)] (3.13)

B : [MIN(eM , µ+ 1.5 ·σ, eM − λU)] (3.14)

Transforming error values by U , obviously results in a much more uniform
distribution of these values along their range. We name U a uniforming
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function because U tends to separate dense elements around the mean value,
while grouping those that are far from the mean and producing a more
uniform distribution. The result is an increment in the overall compression
rate. We have however observed that this uniforming function U is not
required for the error matrices of the third and fourth Wavelet steps, because
of the lower significance of their error values.

After applying U , the final compression step consists of a Uniform Scalar
Quantization Q [42] (see Figure 3.7). The main parameter of our quantization
scheme is the vector of intervals Ii, that drives this Q step. Ii is 12-
dimensional, each element being the number of quantization intervals for the
corresponding group of error matrices. Before quantization, the server tunes
the elements of Ii to guarantee that we will get a maximum compression rate
with a minimum loss of visual quality, as will be discussed in Section 3.6.
Having the above described parameters, the final quantization formulas
are:

e′ = U(e) (3.15)

q =
[(

e′ − em

eM − em

)
· Ii

]
| q ∈ [0, Ii − 1] (3.16)

Quantized values are finally Run-Length encoded (RLE) and sent to the
client together with the transfer function TF .

In the client, blocks are processed individually, under request. The client
keeps the list of compressed blocks. Dequantization of specific blocks takes
place in the CPU of the client after RLE decoding and before Wavelet recon-
struction. The client decompression of any block works by computing the
inverse of the above three functions: W−1(U−1(Q−1(CompressedBlock))).
Dequantization and de-uniforming are simple and efficient operations in-
volving linear scaling and piecewise linear transformations of the quantized
values q:

e′ =
[(
q + 1

2
Ii

)
· (eM − em) + em

]
(3.17)

e = U−1 · e′ (3.18)
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Wavelet decompression is performed by simply adding and subtracting
elements of 2× 2× 2 submatrices, [63].

3.6 Error Metrics for Perceptual Quantization

We use a perceptual metrics to automate the compression technique. To set
up a reasonable set of perceptual parameters for the vector Ii of intervals,
we devised an experiment to compute the perceptual accuracy for each of
the 12 error matrices in the Interval Encoding Quantization.

The test involved 16 users that were presented a total of 720 images (3
cameras, 2 zooms, 12 quantized error matrices, with 10 images in each
case). The Skull volume model was selected for the experiments. Figure 3.9
presents the interface for producing these test images. The interface shows
the quantization values in the left column, a reference view of the initial
model and a view of the quantized and reconstructed model (bottom right of
the interface). The two interface examples shown in Figure 3.9 respectively
present a case with a fine quantization (with the quantization intervals set to
their maximum possible values) and a second case with too small values for
the quantization intervals and poor visual quality. Users were presented a
number of layouts with 10 images each, see images in Figure 3.10. Each layout
corresponded to one of the 12 sets of matrices and to one of the 6 camera-
zoom settings. Images in a particular layout were sorted in a descendent
visual quality order, based on the values in the quantization intervals vector
Ii. This decreasing visual quality can be observed in the image sequences
in the layout shown in Figure 3.10. The only parameter changing along
the images in a certain layout was the value of the corresponding element
of the vector Ii; the other elements were set to maximum values to avoid
disturbances. Users had to select the first one of these 10 images which
was perceptually different from the original model image in each case. For
the selected image, we computed the Root Mean Square Error RMS [87],
the Laplacian error (computed as the RMS between the Laplacians of the
two images), a weighted average between these two errors (WErr), and the
HDR-VDP-2 [88] error metrics between the original image and the selected
image.
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Figure 3.9: Interface of the perceptual test.

The results of our experimental test are shown in Figures 3.11 and 3.12.
The number of quantization intervals (elements of the vector Ii) which were
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Figure 3.10: One of the layouts shown to the users during the perceptual experiment.
Images are sorted in descendent visual quality order.

required to reach a perceptually correct visual quality was coherent with the
expected results. We observed that a finer quantization is required in the
error matrices of the first Wavelet step, with interval values around 350 for F1,
160 for E1 and 70 for V1. The number of quantization intervals is uniformly
decreasing within each Wavelet step (values are always larger for F matrices,
smaller for E matrices and even smaller for V error matrices). They are
also uniformly decreasing when we move from the first Wavelet step to the
second and afterwards to the third and fourth. Moreover, we observed that
uncertainty follows the same rule: it decreases along the components of the
vector Ii, with more and more similar quartile values. In short, the optimal
subjective quantization values and their quartile distribution behaves in
a smooth and predictable way. Observe that this quartile distribution is
identical in all four images in Figures 3.11 and 3.12.

We also computed the image-quality measure for the median values of the
quantization intervals in each case of the diagrams in Figures 3.11 and 3.12.
These Figures show the values of the Root Mean Square error, the Laplacian
error, an average between RMS and Laplacian, and the HDR-VDP-2 error.
The values should be constant, as they correspond to quantization scenarios
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Figure 3.11: Results of the Perceptual Quality Test. Top: RMS error. Bottom:
Laplacian error. The quartile values of each of the 12 error matrices are shown, together
with the image-quality error measure between the original image and the image quantized
with the median value of the quantization intervals in each case.
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Figure 3.12: Results of the Perceptual Quality Test. Top: Weighted error (WErr).
Bottom: HDR-VDP-2 error. The quartile values of each of the 12 error matrices are
shown, together with the image-quality error measure between the original image and
the image quantized with the median value of the quantization intervals in each case.
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that were perceived as equally acceptable by our test users. We therefore
concluded that the best error metrics for our purposes is HDR-VDP-2.

As a conclusion, we have an automatic way to adjust the quantization
parameters in the server, before quantizing and sending the compressed
volume to the client. The server sets up an initial set of quantization
parameters, quantizes the model and next, it simulates the dequantization
and decompression of the client. The server can finally render several
views of the model, computing the value of the HDR-VDP-2 error metrics.
Quantization parameters can be automatically adjusted until reasonable
visual errors are obtained, according to the values presented in the bottom
image in Figure 3.12. This automatic iterative refinement of the quantization
parameters will produce acceptable perceived visual qualities in the final
visualization in mobile clients. However, to speed up the encoding process
in the server, in our implementation we simply use the median of the
quantization intervals in Figure 3.12-bottom. Although a logic option would
be the selection of values adapted to each model and TF, we use always
median values from Figure 3.12-bottom as described before.

3.7 Volume Rendering with Regions of Interest

Once the volume model is sent to the client, it is stored as a list of compressed
blocks. Nil blocks are stored as a simple Nil flag, whereas non-Nil blocks
are represented by their run-length encoded, quantized expression. Block
reconstruction takes place in the client CPU, on demand, depending on
the local interaction requirements. The reconstruction of any of the blocks
within the entire volume can be performed at one, two, three or four Wavelet
levels. The four-level reconstruction of a block generates a full piece of
16 × 16 × 16 voxels that represent the corresponding part of the volume.
Reconstructions of the same block at three, two or one levels generate pieces
of 8× 8× 8, 4× 4× 4 or 2× 2× 2 voxels, representing the same part of the
volume at lower resolutions. This local treatment allows multiresolution and
bricking, by applying region-based reconstruction as described below. We
achieve strong memory savings in the CPU of the client by only storing the
3D textures of the reconstructed blocks in a dynamic way, see Section 3.8.
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The interaction interface allows the user to perform basic camera interactions
like rotation and zooming. During zooming in a region of interest in a model,
the highest resolution can be retrieved and displayed. The algorithm also
allows both resolutions displayed at once in areas selected by the user.

A usual interactive session starts by inspecting the whole volume model
at a low resolution. All blocks are reconstructed at one or two Wavelet
levels (see Figure 3.23, column 1 and 2), the corresponding 3D Texture is
computed in the CPU of the client, sent to its GPU and ray-casting rendered.
Observe that the size of this 3D texture, in the case of two reconstruction
levels, is 1/64 of the size of the original volume model V. In the case of only
one reconstruction level, its size is 1/512 of the size of the original volume
model.

The user can then select a Region of Interest, ROI, and zoom-in to this
region. In this case, the blocks of the ROI are reconstructed at four levels,
the corresponding 3D Texture is computed in the CPU of the client, sent to
its GPU, and ray-casting rendered. In this case, the size of the 3D texture
is also small but depends on the extend of the selected ROI.

Figure 3.13: The Skull model with the ROI at the maximum level of detail. The low
resolution region outside the ROI rendered at 1 (a), 2 (b) or 3 (c) Wavelet reconstruction
steps.

Alternatively, the user can decide to inspect the whole volume model at
a low resolution (two levels of reconstruction, for instance) with the ROI
rendered at the maximum level of detail (Figure 3.13-(b)). To achieve this
last interactive visualization, two 3D textures have to be sent to the client
GPU where an adaptive ray-casting algorithm is performed, as detailed
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below (see Algorithm 1). Since the whole model is available at the client
side, rotation and zooming operations can be autonomously performed in
the client without any further transmission from the server. If a region of
the model needs to be detailed, the higher resolution can be displayed on
demand.

Summarizing, our implemented ray-casting algorithm allows:

1. Visualizing the entire model in one of the four possible resolutions, by
creating a 3D texture from the decompressed data. That is, we apply
wl reconstruction steps, 1 ≤ wl ≤ 4 , as explained in Section 3.2.3.1.
If (Rx ×Ry ×Rz) is the spatial resolution of the initial volume V , the
reconstruction creates a 3D texture (V olumeLow texture) of: 2wl Rx

16 ×
2wl Ry

16 × 2wl Rz

16 .

2. Visualizing a selected region of interest at maximum resolution, by
creating a 3D texture from the decompressed data. Selected regions of
interest must contain a subset of the volume bricks, as shown in Fig-
ure 3.14. Blocks (corresponding to the initial 16×16×16 blocks) are our
atomic multi-resolution and rendering structures. In this case, we apply
four reconstruction steps wl = 4. Let (imin, imax, jmin, jmax, kmin, kmax)
be the block range defining the selected ROI (see Figure 3.14 Then,
the 3D texture (V olumeHigh texture) which represents the volume
data within the ROI has a dimension of: ((imax− imin + 1) · 16, (jmax−
jmin + 1) · 16, (kmax − kmin + 1) · 16).

3. Visualizing the model in two resolutions at once, with areas that need
to be detailed in high resolution and the rest of the areas in low
resolution (Figure 3.13 ). To achieve it, we compute and send to the
GPU both 3D textures (the V olumeLow and V olumeHigh textures).

The rendering algorithm is based on a classical GPU-Based Ray-Casting [89,
90]. The fragment shader algorithm is presented in Algorithm 1. We show its
most complex version, visualizing two resolutions at once. For simplicity we
only show the code related to the ray traversal. Previously, the EntryPoint
of the ray in the volume, the maximum distance to travel (LengthMax)
and the DeltaV ector which defines the advancing along the ray have been
computed.
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Algorithm 1 The Adaptive Raycasting Algorithm
1: position← EntryPoint
2: lenght← 0
3: while length < LengthMax & color.a < 1 do
4: k ← texture3D(BlocksID, position).r
5: HighPosition← k × getHighCordinates(position,HighResolutionSize)
6: scalarLow ← texture3D(VolumeLow, position).r
7: wLow ← 0.5
8: scalarHigh← texture3D(VolumeHigh, HighPosition).r
9: wHigh← 1.0

10: scalar ← k × scalarHigh+ (1− k)× scalarLow
11: W ← k × wHigh+ (1− k)× wLow
12: colorSample← getColor(TF, scalar)
13: alphaSample← getOpacity(TF, scalar)
14: {Front-to-back compositing}
15: color ← color + (1− color.a)× colorSample× alphaSample×W
16: color.a← color.a+ alphaSample× (1− color.a)×W
17: {Advance Ray Position}
18: position← position+DeltaV ector
19: length← +Delta

Figure 3.14: The block structure of the model, a region of interest (in orange) and the
specification of the BlocksID texture (shown in 2D, for clarification).

In the simultaneous visualization of two resolutions, the algorithm must
detect if the ray intersects the ROI (raya in Figure 3.14) or if it only traverses
the low-resolution region (as rayb, in Figure 3.14).

In the first case, and depending on the block we are traversing, we must
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Figure 3.15: The Skull, Foot and Jaw models with the ROI at the maximum level of
detail. The low resolution has been rendered after applying 2 Wavelet reconstruction
steps in all cases.

sample the V olumeLow 3D texture or the V olumeHigh one. After many
experiments, we concluded that having a driving 3D texture was much more
efficient than including an if clause in the shader algorithm. Our solution
consists on having a small 3D texture (called BlocksID in what follows)
with no linear interpolation (the access is defined as NEAREST) which
characterizes blocks in the ROI from blocks outside the ROI. This texture
has one texel per block of the initial volume, with a single bit information per
texel. In a 256× 256× 256 volume model, the size of the BlocksID texture
is therefore 16×16×16. When a ROI is selected on the mobile device by the
user, the BlocksID texture is constructed accordingly. Figure 3.14 shows
the values in this texture: k = 0 outside the ROI, k = 1 inside the ROI. A
simple access to this texture in the fragment shader retrieves the value k,
which is afterwards used as a weighting factor between the V olumeHigh
and V olumeLow values and avoids the use of if clauses.

The Algorithm 1 computes HighPosition so that ray positions within the
ROI are scaled in accordance to the V olumeHigh texture coordinates,
and multiplies it by the factor k to avoid out-of-range texture fetch. The
density values (scalarLow and scalarHigh) on the textures V olumeLow
and V olumeHigh are then retrieved, being weighted according to the k
value. A second weighting factor W is computed to enhance accumulated
values in the ray positions inside the ROI (the values wLow and wHigh
can be tuned by the user to better enhance the high resolution details).
Then, the colorSample and alphaSample values are computed according to



3.8. Experimental Results and Discussion 67

the transfer function, and they are accumulated with the standard volume
ray-casting discrete equations. The final steps of the fragment shader loop
are devoted to updating the position in the ray and the traversed distance
(length) along it.

Figure 3.15 shows some snapshots of the interaction with the models we
used during our experiments. In this case the ROIs are rendered at the
maximum level of detail, while the low resolution has been rendered after
applying two wavelets reconstruction steps.

3.8 Experimental Results and Discussion

We have performed different experimental tests to evaluate the compression,
quality and efficiency of our approach.

Table 3.1 summarizes the compression results obtained for the three models
used in our tests (views of the models are presented in Figure 3.5). Model
resolutions spread from 256× 256× 112 to 512× 512× 48. Compression
rates are computed with 800 iterations of the initial Laplacian transfer
function-aware smoothing. The initial sizes of the models are 6 MB (Skull),
16 MB (Foot), and 12 MB (Jaw). The sizes of the compressed files if the U
uniforming function is not used, are 3 MB, 5.5 MB and 5.06 MB. However,
it can be observed that higher compression rates are achieved when both the
uniforming function U and the Laplacian smoothing L are used: the sizes of
the compressed volume in this case are 1.91 MB, 2.3 MB, 3.06 MB and 5.4
MB respectively. They correspond to compression rates of 32%, 14%, and
25%, with compressed file sizes that in some cases are of the order of a single
photographic image. Table 3.1 also shows the model sizes corresponding to
intermediate Wavelet steps.

Figures 3.16 and 3.17 show the effect of Laplacian smoothing as a function
of the number of iterations in the server. Compression rates of the order of
90% (size of the compressed file of the order of the 10% of the initial volume
model size) are obtained when 800 smoothing iterations are performed.
The Figure shows that the model size is monotonically decreasing when
this number of iterations increases. Perceived visual quality (Figure 3.17)
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Table 3.1 Resolution and compression rates for tested models. The first column
for each model (marked as U +L) presents the final model sizes (in MB) when the
Uniforming function and the Laplacian Smoothing are applied. The Mark (5) in
the second column corresponds to the case where neither Uniforming function nor
Laplacian Smoothing are applied. Dequantization and de-uniforming parameters
(see Section 3.5) are classified as Other. The sizes confirm the almost insignificant
influence of this data in the models data streams.

Model Skull Foot Jaw
U + L 5 U + L 5 U + L 5

Data Size
MB 6 16 12

Resolution 256× 256× 112 256× 256× 256 512× 512× 48

Step 1 1.2 2.1 1.1 2.3 1.8 3.0
MB

Step 2 0.5 0.8 1.0 1.2 1.0 1.8
MB

Step 3 0.09 0.1 0.2 0.2 0.2 0.2
MB

Step 4 0.01 0.01 0.03 0.03 0.03 0.03
MB

Other 0.01 0.01 0.03
MB

Total 1.91 3 2.3 5.5 3.06 5.06
MB
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Figure 3.16: Laplacian smoothing. Perceived Visual Quality computed with the HDR-
VDP-2 error (green curve shows the visual error) and Compression Rates (black curve
represents the model size) for the Skull model.

Figure 3.17: Visualization of the Skull model after 50 (a), 100 (b), 200 (c), 400 (d) and
800 (e) iterations of the Laplacian filter and with Phong illumination. The artifacts in
cases with higher iterations (and higher visual error measures) result from poor gradient
estimation.
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is however decreasing because of smoothing in semi- transparent volume
regions and subsequent poor gradient estimation. We have observed that a
good compromise is achieved between 400 and 800 Laplacian iterations.

Renders in Figure 3.20 use ROI and context region at different decompression
Wavelet transform. Figure 3.20-(a) low-resolution 3D textures of 32×32×14
and high-resolution 3D textures of 64× 64× 64. The corresponding memory
requirements in the GPU of the client are 115 KB and 197 KB, respectively.
In Figure 3.20-(b), the low-resolution 3D texture has a resolution of 64×
64× 28 and high-resolution 3D textures are 64× 64× 64. The corresponding
memory requirements in the GPU of the client are 230 KB and 197 KB,
respectively. Finally, Figure 3.20-(c) shows a low-resolution 3D texture
of 128 × 128 × 56 and high-resolution 3D texture of 64 × 64 × 64. These
resolutions require 345 KB and 197 KB respectively. Presented values are
significantly lower than the 7.34 MB required when the whole 3D Skull
model is ray-casted.

Images in Figure 3.21 show the Skull model after applying two and three
wavelet reconstruction steps using a TF to simulate the skin.

Renders in Figures 3.13, 3.22 and 3.23 have been obtained on a HTC One
smartphone. Models were transmitted to the mobile client device, individual
blocks were decompressed on demand in the CPU of the client and they
were ray-casting rendered in its GPU. The server was an Intel Core Duo
CPU with 2.33 GHz and a GeForce 9600 GT Graphic Card of 512 MB of
memory.

The curves in Figure 3.18 show the interaction Frames per second (fps) for
different Wavelet reconstruction steps in both a PC and a mobile client, for
the models in Figure 3.5. The fps decreases while better resolutions are
selected with more Wavelet reconstruction steps (W−1).

Figure 3.19 shows some snapshots of the interaction with the Skull, Foot and
the Jaw model after applying planar sections to achieve a better analysis of
internal regions in both ROIs and low resolution portion of the models.

Our visualization scheme uses ray-casting rendering in order to support
multiresolution. Ray-casting algorithms strongly facilitate the visualization
of different regions at several levels of details, supporting different sampling
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Figure 3.18: Frame rates of the interaction with the studied models. Frame Per Seconds
(fps) for the Skull and Foot model at three different Wavelet reconstruction steps and the
fps for the Jaw model at four different Wavelet reconstruction steps.

Figure 3.19: Planar sections in a multiresolution rendering of the Skull, Foot and the
Jaw model. The plane selected is the one defined by the red points in each case.

rates in neighbor regions. They provide a higher performance in multiresolu-
tion models, when compared to slicing-based techniques. Schemes like [91]
and [19] use texture slicing and do not support neither multiresolution
nor decompression in the mobile device. It is therefore difficult to further
compare our results with those in previous papers, although our scheme
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could also be used in a texture slicing rendering context in cases where
multiresolution is not required.

According to our experiments, the use of illumination algorithms avoids
user interaction in the client side. Therefore, it is recommended to apply
illumination only in cases where static images are required. Instead, we used
a weighting factor W to enhance accumulated values in the ray position
inside the ROI. As is explained in Section 3.7.

Figure 3.20: Multiresolution rendering of the Skull model. The selected transfer function
shows the semi-transparent skin to visualize the Skull bones and the teeth. An eighth
resolution model (one Wavelet reconstruction step) with a ROI at maximum resolution,
column (a). A quarter resolution model (two Wavelet reconstruction steps) with maximum
resolution ROI, column (b) and a half resolution model (three Wavelet reconstruction
steps) with a maximum resolution ROI, column (c).

Figure 3.21: Multiresolution rendering of the Skull model. A quarter resolution model
(left) and a half resolution model (right), with a transfer function applied to represent
skin. In the second column, the RGBA simulates the skin tone without ilumination.
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Figure 3.22: Rendering of the Skull, Foot and Jaw models in the HTC One Smartphone.
The four columns show these models without illumination and two Wavelet reconstruction
steps, without illumination and four reconstruction steps, with Phong illumination and
two reconstruction steps, and with Phong illumination and four Wavelet reconstruction
steps.
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Figure 3.23: Rendering of the Skull, Foot and Jaw models in the HTC One Smartphone.
The four columns show these models with Phong illumination and after applying one,
two, three and four Wavelet reconstruction steps, from left to right respectively.
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3.9 Conlusions

We have presented a new scheme for interactive volume in small mobile
devices which has a number of new and unique features. Clients receive
the whole model, compressed with a proposed TF-aware scheme which
is able to achieve high compression rates. Decompression in the CPU of
the client is efficient and can be performed on the fly during interaction.
Our compression scheme is local, block-based and uses a Haar-Wavelet
approach together with perceptual-based quantization. The consequence of
this particular choice is that the size of the 3D textures in the mobile device
is significantly smaller. Inspection of complex volume models with maximum
level of detail in selected regions of interest becomes feasible: our scheme
supports model sizes that otherwise could not be handled. The ray-casting
algorithm in the GPU of the client is adapted to the block structure, being
able to simultaneously deal with regions having different levels of detail.

One of the present limitations of this approach is that the preprocess in
the server depends on the transfer function TF. Modifications of this TF
require a new transmission of the model to the client. We think that this
aspect is not critical, as the standard workflow in medical diagnose is usually
based on a small number of pre-established transfer functions that enhance
particular structures. Moreover the rendering frame rate slows down when
Phong illumination is used in the ray-casting algorithm, because of the extra
texture queries for gradient computations.





REMOTE EXPLORATION OF VOLUME MODELS 
USING GRADIENT OCTREES

4
This chapter presents a transfer function-aware scheme
for the remote interactive inspection of volume models in
client server architectures.
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4.1 Introduction

In this Chapter, we present a transfer function-aware scheme for remote
interactive inspection of volume models in client-server architectures with the
objective of supporting multi-resolution, avoiding gradient computations in
the client device and sending a very limited amount of information through
the network. Our novel data representation (named Gradient Octrees) can
be progressively transmitted to the client in a compact way while achieving
a minimum loss of visual quality as compared to state of the art ray-casting
renderings. Visual volume understanding can be complemented by showing
2D sections of the original volume data on demand, and by a number of
additional interactive tools. The main contributions of our approach are:

• An octree, multi-resolution volume data representation for client-server
architectures. Our representation is based on a predefined set of
transfer functions and succeeds in producing good quality expressive
visualizations in the client with a limited loss of visual quality.

• An efficient compression algorithm which encodes gradients and mate-
rial properties, together with a data transmission scheme which is able
to progressively send deeper octree levels with a minimum amount
of octree structure information (one bit per son node). A recovering
algorithm that succeeds in reconstructing a full copy of the octree in
the client from the received information.

• A GPU-oriented encoding of the proposed hierarchical data structure
with explicit volume gradient information in octree nodes, to avoid
gradient computations during GPU ray-casting.

• An interaction paradigm in the client which supports planar volume sec-
tions with high resolution volume information and interactive extrusion
of specific structures.

In Section 4.2 we start by presenting a general framework (named Coherent-
Traversal Trees) for the coherent maintenance of identical copies of hierar-
chical data structures in different computers. Gradient Octrees are then
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introduced in Section 4.3 as a particular case of Coherent-Traversal Trees
for multiresolution volume representation.

4.2 Coherent-Traversal Trees

Distributed and client-server applications may require hierarchical data
structures that must be shared among different computers. The usual goal
is to maintain identical copies of the trees in all platforms while sending a
minimum amount of information over the network. To fulfil this purpose, in
this Section we present a special kind of hierarchical data structures which
we name Coherent-Traversal Trees (CTTs in what follows).

Although the Coherent-Traversal Trees concept is general and can be used
for any hierarchical data structure, let us illustrate it in the case of a four-
level quadtree space subdivision, as shown in the example in Figure 4.1.
Relevant data is in the red region in (a). By adopting a clockwise ordering
of son nodes as shown in the top, the resulting quadtree structure is the
quadtree in (b). Nodes are labeled as "0" if they encode a void region (White
nodes) or "1" if they encode a region with relevant data. Type "1" nodes
in all levels except the deepest one are Grey nodes, whereas type "1" nodes
at the deepest level are Terminal Grey nodes that point to localized data
in the corresponding voxel. Node circles have been omitted in the last two
tree levels for clarity.

Hierarchical data structures can be classified into Maximal Subdivision Trees
and General Trees. In Maximal Subdivision Trees, type "1" nodes with
relevant data are always subdivided and refined until reaching the deepest
level. The case shown in Figure 4.1 corresponds to a Maximal Subdivision
tree. Maximal Subdivision Trees are well suited for multiresolution volume
representations, as any voxel with relevant data (as shown in (a) in Figure 4.1)
can be represented at different levels of detail when its tree ancestors are
visited in a bottom-up way, see the tree structure (b) in Figure 4.1. On
the other hand, General Trees can have type "1" nodes with relevant data
at any level, without requiring them to be further subdivided. In General
Trees, branches can end up in void regions (White nodes), in regions with
relevant data not requiring further refinement, or regions corresponding to
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Figure 4.1: A four- level quadtree space subdivision. Relevant data (a). Quadtree
structure (b). Bit stream B when a per level CTA is performed (c). Bit sequence of the
preorder traversal of the CTA (d) and (e).

the deepest tree level. An example of General tree is shown in Figure 4.2.
In what follows, nodes with relevant data not requiring further refinement
in General Trees (named as Black nodes) will be noted as type "1" nodes
with all their sons being of type "0", to remark that they mark the end of
the corresponding tree branch. The example in Figure 4.2 shows one of
these Black nodes. It represents a set of 4 voxels in Figure 4.1 (a) which we
assume that can share a common joint representation.

Let us start with some definitions. Without loss of generality, in what
follows we will assume that trees are represented as a list (or array) of
individual nodes. Nodes contain structural information and, in some cases,
pointers to data information. Structural information of any node n includes
the node type t(n) (in our proposal, 0 or 1) and information about its
location in the tree and related nodes. We will consider verbose m-ary trees
with well-defined node functions that encode the level l(n) of the node, the
set of m pointers to its son nodes s1(n), .., sm(n), a pointer f(n) to its parent,
and a pointer D(n) to its associated data. The level of any node is 1 plus its
parent level, the level of the root node being zero by definition. The depth of
the tree is the maximum level of its nodes. The tree root tr has f(tr) = nil.
In Maximal Subdivision trees, the node n is a tree leaf iff sk(n) = nil ∀k.
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In General trees, however, leaves include nodes fulfilling sk(n) = nil ∀k
and nodes having only White sons, sk(n) = 0 ∀k. In hierarchical space
subdivision trees, sibling nodes are ordered by following a pre-established
geometric order, like the clockwise sorting used in Figure 4.1. In what
follows, tree information will be classified into two different data structures:
the tree structure S and the tree data D. The tree structure S includes basic
information allowing to retrieve t(n), l(n), f(n), s1(n), .., sm(n) and D(n) for
all tree nodes n. Tree data D is a repository of application-dependent node
data, as pointed by D(n). For the sake of simplicity, in what follows we will
consider that D has an array structure, D(n) being indexes to specific D
elements. Depending on the application, D(n) can be defined for all nodes n
with t(n) = 1, or only for a subset of them. For instance, in Figure 4.1, we
could consider that all Grey and Terminal Grey nodes have a well-defined
D(n) with associated data, as in multi-resolution trees. Alternatively, we
could consider that only leaf nodes have associated data and a well-defined
D(n). Nodes with undefined D(n) will be assumed to have D(n) = nil.
Anyway, and without loss of generality, in what follows we will consider that
D(n) is well defined for all nodes n with t(n) = 1.

Coherent-Traversal Trees are trees that use a common Coherent Traver-
sal Algorithm (CTA), implicitly shared by all computers in a distributed
application (or by client and server). Identical copies of the Coherent-
Traversal Tree are maintained in distant machines by sending compact bit
streams B everytime the tree (or a subtree) structure S is modified in one of
the computers. The bit stream B contains one bit per tree node, encoding
its type t(n). The sequence B is t(n0), t(n1), ..., t(nN) where N is the
total number of tree nodes and the ordering n0, n1, ..., nN is given by the
Coherent Traversal Algorithm. We will name bk the bit bk = t(nk), the index
of the bit bk being k from now on. The sender computes B = CTA(S).
Then, under certain conditions, the receiver will be able to reconstruct
the new tree structure S by using a CTA-based reconstruction algorithm,
S = RCT A(B).

Figure 4.1-(c) shows the bit stream B in (c) for our illustrative example
when a per-level CTA is performed (the root node is considered Grey
and it is not included in B). Sibling nodes are underlined to facilitate
reading. In this case 4.1-(c) , we start visiting nodes at level l just when all
l − 1-level nodes have been visited in a left-to-right constant-level traversal
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of the representation in Figure 4.1-(b). Figure 4.1-(d) and Figure 4.1-(e)
show the resulting bit sequence when a preorder CTA is performed. In
(d), parenthesis containing the son nodes for every Grey node have been
included for clarification. The bit stream B in Figure 4.1-(e) is exactly the
same as in Figure 4.1-(d), with parenthesis removed.

Figure 4.2 shows an additional example with a General tree. It presents
results from the same CTAs as Figure 4.1, in a different case with a smaller
data region, resulting from clipping the data in Figure 4.1. In Figure 4.1,
the bit stream in (c) is 7 Bytes long, while the bit stream in the case (c) of
Figure 4.2 is 4 Bytes.

Figure 4.2: A 4-level, General quadtree. Initial scene (a). Quadtree structure (b). Bit
stream B when a per level CTA is performed (c). Bit secuence of the preorder traversal
of the CTA (d) and (e).

The number of required bits to send the tree structure S over the network
depends on the particular CTA being use. Bit streams resulting from per-
level CTAs in Maximal Subdivision trees are exactly as long as the number
N of nodes in the tree, with one bit in S per tree node. This is due to the
fact that in this case S is self-informative, as shown in Figures 4.1-(c) and
4.2-(c). For m-ary trees, the bit stream can be read iteratively in blocks
through a per-level traversal, the number of bits to be read at each level
being m times the number of "1" bits contained in the block read in the
previous iteration. This is clear in Figure 4.1-(c), for instance. The first 4
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bits of the stream correspond to level one. The second iteration will read
a block of 4 · 4 = 16 bits, which correspond to the complete level 2 of the
quadtree. Finally, the third iteration will read a block of 4 · 9 = 36 bits, as
the previous block contains a total of nine "1" bits. Bit streams resulting
from per-level CTAs in General Trees are however longer, see Figure 4.2.
In our proposal, these Bit streams for General m-ary Trees are as long as
N +m ·NB where N is again the number of nodes in the tree and NB is the
number of Black nodes in the tree (NB = 1 in Figure 4.2). In both Maximal
Subdivision and General trees, reading bit streams with a per-level CTA has
an automatic checking mechanism, as the end of the bit stream must occur
exactly after the last block has been read, but never during a block reading
operation.

Unfortunately, other CTAs do not have this automatic checking mechanism,
as it can be observed from Figures 4.1 and 4.2. The main problem of
preorder sequences is that the bit stream does not provide any distinction
between Grey nodes and Terminal Grey nodes in General trees, and an
explicit encoding of the tree depth in Maximal Subdivision trees. This means
more formally, and given a bit bk with a bk = 1 value in the stream, its
subsequent bit bk+1 can either represent the first son node s1(nk) of the node
nk corresponding to bk, the next sibling of nk or even a quite distant node in
the tree: just observe the corresponding node locations in Figure 4.1-(b) of
the two "1" bits in Figure 4.1-(e) that correspond to the sub-sequence "1))1"
in Figure 4.1-(c), or similarly, the sub-stream corresponding to the piece
"0))1" in Figure 4.1-(c). In other words, the bit stream in Figure 4.1-(c) is
unambiguous, whereas the one in Figure 4.1-(e) is ambiguous. The general
solution for disambiguating the bit stream in Figure 4.1-(e) is including
the information lost in the transformation from (d) to (e), which basically
requires a separate encoding for Grey and Terminal Grey nodes in General
Trees and an explicit encoding of the tree depth in Maximal Subdivision trees.
This means doubling the length of the bit sequence by having two-bit node
encoding in General Trees. In short, we can state the following property:

Property 1: Per-level CTAs in Maximal Subdivision trees are minimal, in
the sense that they are able to send a tree structure S over the network
with the most compact possible bit stream: one bit per tree node. Any
other CTA requires extra information on the tree structure which must be
included in the bit stream.
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In Maximal Subdivision trees like the one shown in Figure 4.1, non per-level
CTAs require an explicit distinction between Grey and Terminal Grey nodes,
which basically forces the bit stream to have a two-bit encoding of the
tree nodes. In other words, per-level CTAs are able to encode Maximal
Subdivision tree structures S in bit streams with one bit per node, while
other CTAs must be encoded in bit streams with at least two bits per
node. On the other hand, and using our proposed Black node encoding, we
have seen that the per-level CTA bit stream of a General Tree will have
N +m ·NB bits, while the length of a preorder CTA will be 2 ·N . Per-level
CTAs will be minimal for General Trees in all cases where NB � N/m,
which is a reasonable and common hypothesis.

Property 2: Given a CTA being shared between two distant applications
and a bit stream B = CTA(S) computed in one of them, the receiver
application can reconstruct S from B.

In the rest of this paragraph, we prove it in the case of per-level CTAs by
showing that the information in the bit stream can drives an algorithm to
generates the complete required information for any node in the tree. As
every bit in the stream corresponds to a tree node, reconstructed nodes nk

can be labeled with the index of their bit bk in the stream, LB(nk) = k, LB()
being the labeling function. We will also define a second label LD(n) for
nodes n such that t(n) = 1. In this case, LD() is defined as LD(nk) = ∑k

i=1 bi.
Now, observe that iterated block reading of the bit stream as defined above
is automatically providing the level of all tree nodes, as L(nk) = Iter(bk)
where Iter(b) is the iteration count of the block in which the bit b has been
read. Moreover, t(nk) = bk. The tree structure S can be then completed
by defining parent and son indexes f(nk) and sl(nk). Given the bit blocks
Bli and Bli+1 corresponding to two subsequent iterations of the bit stream
reading loop, and defining Bli+1,j as the sub-blocks of consecutive m bits in
Bli+1, we will say that two bits b1 ∈ Bli and b2 ∈ Bli+1 are related if the
the index j2 of the sub-block Bli+1,j2 containing b2 is j2 = ∑k

i=1 bl, where
k is the index of b1 within Bli and bl represent bits of Bli. Parent and
son indexes are immediately derived from couples (b1, b2) of related bits,
as the parent of the node corresponding to b2 is the node associated to b1.
Similarly, son nodes of the node corresponding to b1 are all nodes associated
to bx such as that (b1, bx) are related, their ordering being the ordering of
the bits bx in the block Bli+1.
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We will now show that bit sequences generated by CTAs contain the necessary
information to reconstruct the tree structure S, and that this is true for
Maximal Subdivision trees and for General trees.

Terminal Grey nodes are easily identified as the nodes n of the deepest tree
block Bld having t(n), and Black nodes of levels l < d are the ones having an
associated bit b1 such that bx = 0 for all related couples (b1, bx). Moreover,
in the general case where D(n) is defined for all nodes n with t(n) = 1, D
can be represented as a compact array with dimension equal to the number
of Grey nodes in the tree, as stated by the following property:

Property 3: In trees where D(n) is defined for all nodes n with t(n) = 1,
the labeling LD(n) can be used to define a compact set of pointers (indexes)
to D. By simply defining D(n) = LD(n), data in D can be efficiently
represented during tree encoding in a compact array without null elements.
The sender machine must only obtain the sequence of labels LD(n) from
the CTA-based bit stream. Then, data elements can be suitably organized
in the D array.

Moreover, per-level CTAs can also be used in the case of optimized partial
tree updates, by computing and sending bit streams of subtrees BS =
CTA(SS). In this case, SS is the structure of the updated subtree and BS
is the transmitted bit sequence.

A similar property can be stated for trees in which D(n) is only defined on
Terminal Grey nodes, as they all belong to the deepest tree block Bld and
they can be enumerated.

In fact, it must be observed that per-level CTAs are able to send tree
structures S over the network with less bits than tree nodes, simply by
compressing the bit streams B with any lossless compression scheme.

4.3 Gradient Octrees

Our main objective is to compress an initial volume model V , send it to the
client device, and generate visualizations in this client device which have
good visual quality when compared with Direct Volume Rendering (DVR)
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of V see Figure 4.5. More specifically, our goal is to design a hierarchical,
multi-resolution volume data structure supporting compact progressive
transmission to the clients together with decompression and high-quality
rendering in the client GPU.

In this Section, we present a new representation of a voxel model which
fulfills the properties of the Coherent Traversal Trees, so that it may be
compactly transmitted by the server and easy to decompress at the client
side.

Figure 4.3: Encoding Gradient Octrees on a compact volume V32, a set of index arrays
Ol and a multi-resolution set of node data arrays Dl. Ol octree arrays are not send to
the client. They are reconstructed from the more compact set of arrays Bl.

The Gradient Octree is a multi-resolution representation of a segmented
volume VE. Segmented volumes will be discussed in the next Section. Its
name comes from the fact that its Grey nodes contain information on the
volume gradient at different resolutions. It is based on a standard octree
space subdivision, being computed in a bottom-up way. The depth of
the Gradient Tree is defined by the resolution of VE and the leaves of the
Gradient Octree are voxels of VE. Nodes in the Gradient Octree can be
either Grey or Nil. Grey nodes store gradient and material information,
encoding 3D cubical relevant regions of VE. Nil nodes represent 3D cubical
regions which after segmentation, only contain void voxels.

A Gradient Octree of depth d can be represented as d different lists of nodes,
one of them per each tree level. Any octree level l is represented as a list of
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its Grey nodes. Grey nodes in level l list contains their gradient vector, an
index to its materials and eight indexes to their son nodes. Indexes to Nil
son nodes are set to zero, while indexes to Grey son nodes point to their
location (component) in the list of the next octree level. The cardinality Ml

of the level l list is exactly the number of Grey nodes at this octree level l.
For the sake of simplicity, we represent the Grey node list corresponding to
any tree level l by two separate arrays with Ml elements each: the octree
array Ol and the data array Dl. Ol stores indexes to the eight son nodes,
while Dl stores node gradient and materials index.

The Gradient Octree is a Coherent Traversal Tree (CTT), (see Section 4.2)
being the structure S on the Gradient Octree is the set of all Ol arrays,
while the set of arrays Dl form the Gradient Octree data D.

However, lists at coarser levels of the tree are too small and it is wise not to
store them. The final Gradient Octrees representation consists on a small
volume model V32 and two sets of per-level arrays, Ol and Dl.

Figure 4.3 shows an illustrative example of a complete octree representation
of a volume V of resolution r = 512, with gradient and materials stored in
the data array D512.

For the sake of clarity, octree levels in Figure 4.3 and in what follows will
be identified by their resolution. Data arrays of coarser octree levels (D256,
D128, D64 and D32) store gradient and materials data of Grey octree nodes
at these levels. But, instead of storing data at levels coarser than D32, we
directly address D32 from the 32×32×32 volume array V32. V32 elements are
either Nil (if the corresponding node of level 32 is Nil) or contain a two-byte
index i32 to the data of this Grey node in the D32 array. This index i32 also
indentifies the component of O32 which stores the information (indexes) to
access the data of its sons in D64 and O64.As it will shown in Section 4.5
pruning Gradient Otrees at resolution 32 saves texture addressing steps
in the client GPU at a very limited overhead, the size of V32 being only
32 · 32 · 32 · 2 = 65 KBytes. In other words, we will start by sending V32 and
D32 to the client, which represent a volume of resolution 323 that can already
be ray-casted. Having a low-resolution volume model V32 in the client GPU
will also facilitate ray traversal at rendering time, as shown in Section 4.5.
To refine the octree one further level up to resolution 64, arrays O32 and D64
must be sent to the client. We use a two-Bytes encoding for Ol indexes when
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the number of gray nodes in D2l is below 216, and a three-Bytes encoding
otherwise. This process must be repeated for all subsequent levels, the
deepest level in the example in Figure 4.3 being reached when O256 and
D512 are sent to the client.

Gradient Octrees are generated in the server and must be transmitted to
the clients for its visualization. By using a Coherent Traversal Tree scheme
with a per-level CTA, we compact the Ol arrays of the Gradient Octree in a
lossless way. Instead of sending the arrays O32, ..., O256, we send a set of
arrays B32, ..., B256 with one byte per component as shown in red in Figure
4.3. Note that this is equivalent to store and transmit only one bit per
node: the components in Bl simply represent the type of each son in one
bit (0 if Nil, 1 if Grey) as already discussed in Section 4.2. We compute the
compressed arrays Bl in the server, send them to the client, and reconstruct
again the set of octree arrays Ol in the client from the information in Bl. Let
us represent the j-index stored in the Ol[i] element as Ol[i][j]. The algorithm
is based on the CTA invariant, known by both server and client: taking into
account that indexes in Ol[i][j] (i=1..Ml, j=0..7) are either Nil or relevant
indexes to son nodes, the subsequence of relevant indexes is the sequence of
Natural numbers {1, 2, .. Ml+1} when Ol[i][j] is traversed through an outer
i loop and an inner j loop. Then, in the encoding step and for the i-Grey
element in the list represented in Ol, the j-bit of the component Bl[i] is
set to one iff Ol[i][j] is relevant, and it is zero iff Ol[i][j] is Nil. The client
can reconstruct Ol from Bl by simply traversing all bits in Bl and counting.
First, all Ol[i][j] are initialized to Nil. Then, every 1 in the j-bit of Bl[i] is
translated into an increment of one in a global counter of Grey nodes which
is then assigned to Ol[i][j]. Note that instead of sending indexes, we simply
send bits.

Progressive transmission of the Gradient Octree to the client device consists
on initially sending the volume V32, its data array D32 and the materials
look-up table, followed by the transmission of a progressive sequence of
array pairs Bl, D2l representing individual levels of the octree for l=32, 64,
128, .. r/2 where r is the resolution of VE. For every received level, the
client generates a Bl-driven, increasing sequence of indexes to create a local
copy of the array of indexes to son nodes, Ol. Note that Ol indexes point
simultaneously to D2l and O2l. The volume V32 is sent to the GPU as a 3D
texture, whereas arrays Ol and Dl are encoded as 1D textures.
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Moreover, for transmission and storage purposes, Grey node data (gradient
vectors and materials) is compressed to 3 Bytes. Consequently, Dl arrays
contain elements of 3 Bytes each. Gradient vectors are lossly encoded by
their dominant orientation and by the quantized value of the two remaining
coordinates. Let us consider a cube centered at the origin, having a 512 x
512 grid in each of its six faces. Given a gradient vector, it stabs a grid
cell in one of the cube faces. We encode the gradient by storing the index
(0, .., 5) of the stabbed face and the two coordinates of the grid cell in
the cube face. As these two coordinates require 9 + 9 bits, we use the
remaining 6 bits to store the cube face and the node materials as a single
value v = f + 6 ∗m where f is the index of the face and m is an index to a
look-up table of (up to ten) material pairs. If more materials/structures are
needed to store the information of the segmented volume VE we can increase
from three to four the number of Bytes per element in the Dl arrays, but we
have experimentally found that supporting 10 different boundaries between
segmented regions is reasonable in most practical cases (see Section 4.4).

Figure 4.4 shows the main steps of our approach. First, the preprocess in
the server where volume representation VE is generated. Then, a compact
Gradient Octree is created. Then, it is progressively sent to the client as a
sequence of arrays with compressed information (see Figure 4.4). The client
enlarges the received information in order to reconstruct a local copy of
the Gradient Octree. Gradient decompression and ray-casting rendering is
directly performed in the client GPU, as described in Section 4.5. Interaction
in the client drives its GPU visualization, sends queries to the server to
request further levels of the Gradient Octree and sends planar section queries
when interactive cuts of the volume must be filled out with original volume
information to fully understand the original data in V . In this last case, the
sections server generates a texture with the appropriate sliced information
from V , and sends it to the client. Section 4.6 details how these section
textures are handled in the GPU. Interaction is autonomous and no further
information is needed from the server, except when a new planar section is
required.
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Figure 4.4: Overview of the proposed scheme. First the preprocess in the server
generates the VE(TFk). Then, the Gradient Octree G(V ) is created from the initial
volume data V and the predefined set {TFk}. G(V ) is progressively sent to the client as
a sequence of arrays of compressed data. The client enlarges the received information
in order to reconstruct a local copy of G(V ). Gradient decompression and ray-casting
rendering is directly performed in the client GPU. Interaction in the client drives its GPU
visualization, sends queries to the server to request further levels of the gradient tree and
sends section queries when interactive planar cuts of the volume must be filled out with
original volume information. In this last case, the sections server generates a texture
with the appropriate sliced information from V and sends it to the client. Interaction is
autonomous and no further information is needed from the server, except when a new
planar section is required.
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Note that our approach includes three compression steps. The first, is
transfer-function aware and uses V and TFk to compute the segmented VE.
On a second step, we compress gradient information to a total of three Bytes
per Grey tree node (including material information) in Dl arrays. Finally,
we succeed in sending the tree structure Ol with only one bit per node and
in a lossless way through a CTT scheme. By adding these three ingredients,
we are able to send multi-resolution volume information to the clients in a
strongly compact way, as shown in Section 4.7.

4.4 Transfer Function Dependent Models: Edge Volumes

In this Section, we present a simple approach to compute a segmented
volume useful to visualize models in a remote way.

Figure 4.5: (a) We start from an initial volume model V and a set of transfer functions S,
to create a (b) segmented volume model VE(TFk). Gradient Trees (c) are multi-resolution
representations of VE(TFk) which can be progressively sent to client devices in a very
compact way. Clients are able to reconstruct a copy of the Gradient Tree and ray-cast it
in their GPU to interactively inspect volume structures, (d). Clients can perform planar
sections (e) and render them with high-res information from the initial volume V , even
adding offset structures in front of the section plane (f).

We start from the observation that in the clinical practice DVR visualizations
are mostly based on well established transfer functions which enhance specific
tissues and organs. Transfer functions are able to assign a color c(p) and
an opacity value o(p) to any point p in a volume model V according to
its properties. Transfer functions can be based on the density value of the
scalar field V or they can be functions of densities, gradient values and other
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attributes [92]. Our compression scheme is based on a predefined set {TFk}
of transfer functions, TFk = {t1, t2, ..., tn}, each TFk in {TFk} being able
to classify a certain specific material in V . In our approach, the goal is to
minimize the loss of information and quality when using transfer functions
from the set {TFk}, at the cost of having removed volume information that
could have been relevant for TFs not in {TFk}. Our approach is lossy in a
selective way, as it tries to maximize the visual quality when using any of
the transfer functions in {TFk}.

Figure 4.6: In (a), the initial volume model V . In (b) the set {TFk} of transfer functions
which generate the segmented volume in (c). The Edge Volume model VE(TFk) (with an
Edge and a Nil voxel) is presented in (d), whereas (e) shows the gradient and materials
stored in an Edge voxel of VE(TFk) (a green triangle is shown for figure clarification).

Given a volume model V (Figure 4.6-a), let us consider the segmentation
induced by each transfer function TFk in {TFk}, Figure 4.6-b. The seg-
mented region SE

R (Figure 4.6-c) is defined by assigning all volume points p
having an opacity o(p) > ε to the region SE

k corresponding to TFk, where
ε is a given threshold. Alternatively, any other segmentation algorithm
could be used to segment the same structure. In SE

R , voxels can be classified
as Uniform voxels or Edge voxels. A voxel in V E

R is Uniform iff its eight
vertices belong to the same segmented region SE

k . A voxel in V E
R is an Edge

voxel iff its eight vertices come from two different regions SE
j and SE

k .

Note that Uniform voxels in SE
R are redundant, as SE

R can be reconstructed
from its set of Edge voxels. We therefore can define a compact auxiliary
representation for SE

R , named Edge Volume VE (Figure 4.6-d). Uniform
voxels in SE

R are stored as Nil voxels in VE, while Edge voxels contain an
index to a look-up table storing attribute information of the materials pair (
SE

j , SE
k ), plus the normalized gradient of V at the voxel center. As we have

already introduced in Section 4.3, we store gradients in order to avoid extra
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computations in the client GPU. VE is a lossy compressed representation
of V based on TFk. Given a volume V and a set {TFk}, its {TFk}-based
representation VE(TFk) can be defined (Figure 4.6, d and e) as the union
of all VE:

VE(TFk) = V 1
E ∪ V 2

E ∪ ... ∪ V n
E (4.1)

This union operation is performed in a voxel per voxel basis. Union between
two Nil voxels is Nil, whereas the union between a Nil and an Edge voxel is
an Edge voxel. An attempt to perform a union between two Edge voxels
shows that V contains structures which are too narrow for the current voxel
resolution. In this case, the resolution of the voxel model VE(TFk) should be
increased. Gradient Octrees are then generated from VE(TFk) by recursive
bottom-up simplification.

Node information in any upper level of the Gradient Octree is computed as
the result of applying a simplification downsampling function to its eight
son nodes.

The downsampling function must consider two different cases. Nodes in
the upper level having only Nil son nodes are assigned a Nil node type.
Otherwise, when at least one son node is not Nil, the gradient of the parent
node is computed by applying a SetGradient function to the gradients of
its non-Nil son nodes. One option for SetGradient could be to average
the gradients of the son nodes, but this algorithm produces artifacts in
upper tree levels when region boundaries with almost opposite gradients
are merged. In our implementation, we concluded that the best option
was to use a selection algorithm. We estimate an importance weight for
each son gradient vector g.s1, .. g.sn, and then copy the gradient of the
most important one to its parent’s gradient. This is then repeated for the
material information: we copy the materials pair of the most important son
to the parent. After several experiments, we concluded that importance
weights could be estimated in a suitable way as the width of the visibility
cone of the node cube when observed from different view directions. As the
exact computation of visibility cones may be slow, we have finally used a
more simple heuristics: we compute the average of the son gradient vectors
after removing outlier sons (outliers are sons being too different from their
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average) and estimate importances by the scalar product between the node’s
gradient and this average.

4.5 Rendering Gradient Octrees

The proposed rendering algorithm is base on a standard ray casting algo-
rithm in the client GPU, the only difference with classical algorithms being
that rays traverse a virtual volume model with the same resolution r as
VE(TFk), instead of traversing VE(TFk) itself. In Figure 4.7, an example
with resolution r = 512 is shown. Ray-casting proceeds as usual by advanc-
ing along rays rk from the observer with a uniform sampling of the volume
along rk. Then, for each sample s of rk addressing a virtual voxel (i, j, k) of
VE(TFk), its volume information is found in the corresponding Dl.

Given a virtual voxel (i, j, k) the search of its data is based on the octree
addressing properties. It is driven by the base-2 representation of i, j and k,
as shown in Figure 4.7. In this case, their first 5 binary digits indicate the
corresponding voxel in the low-res texture V32. The index i32 found in this
V32 voxel element points to the low resolution data in D32 (which we don’t
use if a higher resolution is required) and also to the array of its eight son
indexes in O32. A well-known property of binary octree subdivision ensures
that next "three bit columns" in the binary representation of (i, j, k) are in
fact son indexes sl. Son indexes point to deeper octree levels and are able
to drive the octree traversal to the right element in Dr containing the data
of the virtual (i, j, k) voxel. Subtree traversal from the low-res voxel in V32
to the virtual voxel data is based on the recursion equation,

i2l = Ol[il][sl] (4.2)

for l=32, 64, 128, .. r/2 The final index i512 points to the high-res data in
D512, but tree traversal can stop earlier if the virtual voxel is void and any
index il in the chain is found to be zero (void voxel).

Let’s assume that ray rk is crossing voxel i = 171, j = 312, k = 237 in the
virtual volume, Figure 4.7-left. In this case, Figure 4.7-right, the octree
search starts in the voxel (10, 19, 14) of V32 and is then driven by four son
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Figure 4.7: The virtual volume (left) and the low-res volume texture V32 (right), as
used by the ray-casting algorithm in the client GPU. Octree addressing is based on the
binary representation of voxel coordinates in the virtual volume.

indexes: s32 = 7, s64 = 1, s128 = 4 and s256 = 5 which recursively generate
the indexes i64, i128, i256 and i512. Reaching the deepest level information
in a Gradient Octree of resolution r = 512 involves a maximum of six
texture queries, to V32, O32, O64, O128, O256 and finally to D512. Obviously,
everything also works when lower resolution virtual volumes are considered,
for multiresolution visualization.

After retrieving high-res data in D512, materials and the gradient vector
are decompressed on the fly in the GPU. The gradient face f , the two
grid-coordinates of the gradient and the material index are decoded through
simple bitwise operations and by one division by 6 to decouple f and the
material index. Final gradient decompression involves specific computations
for each of the six possible values of f , where the coordinate in the direction
of the f normal vector is assigned a value 1 or −1 and the other two
coordinates are linearly dependent on the coordinates of the grid cell within
the cube face, followed by gradient normalization.
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4.6 Interaction in the Client Device

In this Section, it is presented the user interaction facilities supported by the
Gradient Octrees model in the client side. We will show that the interaction
in the client is efficient and does not depend on further communication with
the server, except when new planar sections are requested (see Figure 4.4).

Users can play with the camera by rotating around the volume and zoom
in. They can also render the volume at different resolutions, if necessary. In
this case, ray-casting rendering stops the Gradient Octree traversal before
reaching its deepest level. Moreover, users are able to:

• Select transfer functions from the predefined set {TFk} to only visualize
specific materials.

• Perform planar sections of the volume and enrich them with a visual-
ization of the corresponding section of the initial volume V , if needed.
To support this functionality, we have implemented rendering of 2D
sections of the original volume data on demand.

• Render the cut volume from any viewpoint.

• Visualize offset structures in front of the section plane, and change its
offset distance. In his case, we use the algorithm from [93].

• Change opacities of any of the visualized volume structures and render
them as partially transparent.

Planar sections are managed by the ray-casting algorithm in a straightfor-
ward way. Section textures TS of the original volume V are sent to the
client by the Sections Server, on request (see Figure 4.4). The GPU shader
receives the normalized section plane equation a ·x+ b · y + c · z + d = 0 as
four uniforms (a, b, c, d), together with the texture TS. The alpha channel
of TS texels which correspond to external air is set to zero, to ensure trans-
parency through air in external areas, as discussed in Section 4.7. Then, as
the rendering algorithm is casting a ray, the signed distance to the section
plane is computed for each sample. Samples on the plane (computed with a
tolerance ε) are assigned the corresponding value of the texture TS. Opacity
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in non-transparent texels is set to the maximum value, to ensure that struc-
tures behind the plane will be occluded. Samples with a negative signed
distance are processed in the standard ray-casting way. Moreover, samples
having a positive signed distance sd are only considered when some selected
structures have been assigned a non-zero offset distance od. In this case, the
ray-casting algorithm processes Grey octree nodes if sd < od and otherwise
skips them.

4.7 Experimental Results and Discussion

We have tested the proposed multiresolution visualization approach with
a number of volume models and transfer function. Results presented here
correspond to the Thorax model with a (5123) resolution and the Head
model with a resolution of (512 × 512 × 485). Their initial volume sizes
are 121 and 128 MBytes respectively, as shown in Table 4.1 . Tests have
been run on a server with 6 GB of RAM, Intel Core 2 Duo at 3.16 GHz
and a client with 4 GB of RAM, Intel Core 2 Duo at 3.06 GHz and Nvidia
GeForce GTX z80.

Figure 4.8: Quality of the proposed gradient compression scheme. The Head model
without (left) and with (right) gradient compression is shown.

Rows in Table 4.1 correspond to resolutions from 32 to 512, showing the
number Grey octree nodes, the size of textures Bk and Dk in KBytes, the
amount of information (stream) sent over the network and the client storage
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requirements for the Gradient Octree. As shown in Table 4.1, the most
complex case (Thorax with skin, bones and lungs) requires 100 KBytes for
sending the octree data at resolution 32, plus 165 KBytes for the 64-res
octree level plus 738 KBytes for the 128-res octree level. The octree at
256-resolution requires sending 100 + 165 + 738 + 3217 = 4.22 MBytes,
whereas the full octree at the highest resolution requires 17.59 MBytes,
equivalent to 3.4% and 13.5 % of the initial data size respectively. For the
model with skin and bones in Table 4.1, these ratios are 2.4% and 10%,
whereas the percentage values for the model in Table 4.1-(bottom) are 2%
and 8.4%. High-res sections of the initial volume V , which are sent on
demand, require less that 200 KBytes each. This is a drastic improvement
over thin-client schemes which must send one image per frame. In short,
compressed volumes at a 256-resolution require between 2 and 3.3 percent
of the initial data, whereas these percentages grow up to values between 8.4
and 14.5 at the highest resolution.

We succeed in sending the tree structure S in a lossless way and with only
one bit per node, through a sequence of compact arrays Bk. To the best of
our knowledge, this outperforms all previous octree-based schemes, including
[94], [95], [57] and [32]. Moreover, compressing gradients and materials
in three Bytes is efficient, supports GPU decompression and suffers from a
very limited loss in visual quality, as shown in Figure 4.12. In Figure 4.8,
illumination renders when using the gradient vector itself instead of normal
vectors are shown. Results with uncompressed gradients (left) are rather
similar to renderings with compressed gradients (right).

Progressive model transmission and multi-resolution rendering is shown in
the different columns of Figure 4.9. Some artifacts appear in resolutions
lower than 256, but these coarse octrees are only used for approximate model
rendering during progressive transmission. Anyway, artifacts can be avoided
by using more sophisticated downsampling functions during the generation
of the Gradient Octree, as already discussed in Section 4.4.

Figure 4.15 shows some snapshots of the interaction results in the client
with different transfer functions. Images show planar sections with high-res
information of the initial volume V , the bottom row presenting two images
with offset structures in front of the section plane.

Preprocess times in the presented examples have always been between three
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Figure 4.9: Progressive model transmission and multi-resolution rendering. The three
columns show the Head and the Thorax models with two different transfer functions
each, at resolutions of 128, 256 and 512.
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Figure 4.10: Snapshots of the interacion in the server side with six different structures
of the Thorax model. Bones with three materials (a). Sectioned model, representing
bones, lungs and intestinal gas (b). Ribs, backbone, kip, lungs, intestinal gas and the
skin (c). Semi-transparent skin visualization (d).

and five minutes with a non-optimized code. Inspection and ray-casting in
the client is fully interactive, as shown in Figure 4.14.

The curves in Figure 4.14, show the frame rates (fps) for the interaction
with the Thorax and Head models in the server side. In the Thorax case,
six tissues and structures were visualized during the user interaction (see
Figure 4.10), while in the Head model interaction included: the skin and
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Figure 4.11: Two snapshots of the interaction in the client with different transfer
functions. Images show planar sections with high-res information of the initial volume V .

Figure 4.12: Ray casting of the original volume V a predefined transfer function (left)
in {TFk} (left), compared to Gradient Tree ray casting in the client device (right).

skull bone.

Our compression results are better than similar client-server schemes for
volume rendering, and compare favorably to Marching Cubes, MC -based
approaches. While these last schemes must send an average of three triangles
per voxel in segmented volumes like VE(TFk), we succeed in encoding octree
nodes at a rate of 3 Bytes/node, which is much lower than using MC
triangles.
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Figure 4.13: Interaction in the server application. The Thorax model sectioned by a
cut plane (left) and a zoom of the alveolar region (right).

Figure 4.14: Frame rates of the interaction with the studied models (Head: 512×512×485
resolution, and 2 tissues; Thorax: 512×512×512 resolution, with 6 tissues). The viewport
resolution was 817× 534 pixels.

Although out tests have been performed on a client with a PC architecture,
in the next future we plan to migrate the decompression and interactive
rendering algorithms to mobile devices.

Table 4.2 presents a study of the information transmitted from server to
client when the base volume is V16, V32 and V64 respectively, for the Head
model. It can be observed that the main difference in all cases is the size of
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the base volume model. Table 4.3 contains the most significant data from
Table 4.2 in a compact way, and shows a comparison among the streamed
data when using different base volume sizes. Starting the transmission with
V64 increases in 437 KB the size of the data stream, whereas starting from
V16 increases the amount of texture access during ray casting due to the
inclusion of an unnecessary resolution level, without significantly decreasing
the total amount of streamed information. A base volume V32 is adopted as
a compromise in all our test and examples.

Table 4.4 shows a comparison among our approach and two recent client-
server proposals for volume rendering [94], [32]. The comparison assumes
that the same transfer function has been applied in all cases. The compar-
ison has been made on the Thorax model with a resolution of 5123. We
conclude that our approach outperforms these two previous algorithms both
in streaming the octree structure and the corresponding volume data.

The main limitation of the proposed approach is that the visualization in the
client is restricted to the medical structures which have been pre-defined in
the set {TFk} of transfer functions. We think that this should be acceptable
in most practical cases, as medical doctors usually adopt standard transfer
functions to enhance specific tissues and organs. Anyway, we are enhancing
visual volume understanding by showing 2D sections of the original volume
data on demand and by a number of additional interactive tools (see Figures
4.10,4.15 and 4.13). Any strong volume compression must be lossy and
specific details are always lost. Our proposal focuses on respecting features
which are visible with the TF ’s of the predefined set and on displaying real
sections of the initial volume, on demand.
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Figure 4.15: Some snapshots of the interaction in the client with different transfer
functions. Images show planar sections with high-res information of the initial volume V ,
and three images show offset structures in front of the section plane.
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Table 4.1 The Thorax model at resolution 5123 with an initial size of 128MB,
and the Head model at resolution 512× 512× 485 with an initial size of 121MB.

Thorax

Tissues: Skin, Bones, Lungs

Resolution Grey B D Stream Client
Nodes Storage

KB KB KB KB
32 11489 0 34.5 100 100
64 51126 11.5 153.3 165 337.3
128 229203 51.1 687 738 1504.6
256 995610 229 2988 3217 6652
512 4123820 996 12372 13368 28308

Tissues: Skin, Bones

Resolution Grey B D Stream Client
Nodes Storage

KB KB KB KB
32 8816 0 26.4 92 92
64 38028 8.8 114 123 255
128 170394 170 510 548 1422
256 737342 737 2211 2381 6291
512 2988561 2989 8967 9704 26655

Head

Tissues: Skin, Bones

Resolution Grey B D Stream Client
Nodes Storage

KB KB KB KB
32 5641 0 16.8 81.3 81.3
64 29541 5.6 88.5 94.1 178.1
128 135964 29.5 405 434 877
256 577888 135 1731 1866 3891
512 2390093 577 7170 7747 16402



4.7. Experimental Results and Discussion 109

Table 4.2 The Head model at resolution 512x512x485. Data transmission starting
from V16, V32, V64. The uncompressed model size is 121MB.

Tissues: Skin, Bones

Base Volume: V16

Resolution B D V16 Size Stream
KB KB KB KB

16 0 3.2 8.2 11.4
32 1.1 16.8 - 17.9
64 5.6 88.5 - 434
128 29.5 405 - 434
256 135 1731 - 1886
512 577 7170 - 7747

Base Volume: V32

Resolution B D V32 Size Stream
KB KB KB KB

32 0 16.8 64.5 81.3
64 5.6 88.5 - 94.1
128 29.5 405 - 434
256 135 1731 - 1866
512 577 7170 - 7747

Base Volume: V64

Resolution B D V64 Size Stream
KB KB KB KB

64 0 88.5 524.2 612.7
128 29.5 405 - 434
256 135 1731 - 1866
512 577 7170 - 7747
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Table 4.3 Size of the data streamed when transmission starts from V16, V32 or
V64.

Stream

Vector Total Octree Total Data Total

V16 760 KB 9411 KB 10171 KB

V32 829 KB 9394 KB 10223 KB

V64 1354 KB 9306 KB 10660 KB

Table 4.4 Comparison of the octree structure and data size among our technique
and two previous approaches, for the Thorax model at 5123 with a size of 134
MB.

Stream

Approaches Octree Structure Data

Crassin et al.2009[94] 5.2 MB 65 MB

Gobbetti et al.2012 [32] 31 MB 48 MB

Our approach 1.3 MB 16 MB
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4.8 Conlusions

We have presented a transfer function-aware scheme for the remote in-
teractive inspection of volume models in client-server architectures. Our
approach aims at supporting progressive transmission, avoiding gradient
computations in the client device and sending a very limited amount of
information through the network. Our multi-resolution volume representa-
tion, Gradient Octrees can be progressively transmitted to the client in a
compact way while achieving a minimum loss of visual quality as compared
to state of the art ray-casting renderings. To offer users the possibility of
fully understanding the volume data, the scheme supports planar volume
sections which are shown with high-resolution volume information, besides
interactive extrusion of specific structures. Interaction is autonomous and
no further information is needed from the server, except when a new planar
section is required.

Gradient Octrees are suitable for client-server architectures where non-low
performance clients are used. Instead, the proposal that will be presented in
Chapter 5, exploits the advantages of this technique in the design of a hybrid
scheme that guarantees full interactive visualization of volume models in
mobile devices.





HYBRID ROI-BASED VISUALIZATION

5
This chapter describes a Hybrid volume representation
scheme, that inherits advantages of the techniques presented
in Chapters 3 and 4 as well as a benchmark to compare the
proposed schemes with previous approaches.
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5.1 Introduction

This chapter starts by discussing current relevant previous work in hybrid
visualization approaches for volume models, Section 5.2. In Section 5.3, a
hybrid approach that inherits the advantages of the algorithms presented in
chapters 3 and 4 while keeping a good performance in terms of bandwidth
requirements and storage needs in client devices is presented. Then, 5.4
presents a benchmark which compares the proposed schemes with three
existing approaches: a classical volume visualization platform [96] [97], a
scheme that sends the whole volume model to the client [19], and a thin-client
application that performs volume rendering tasks in the server and sends 2D
images to the client devices. These two last schemes correspond to cases A
and B in Figures 2.1 and 2.2. Tests have been performed with two different
volume data sets. We analyze the schemes regarding the compression rate,
the amount of data being sent over the network, the rendering efficiency,
the client requirements, the frame rate during interaction, and whether the
techniques support multi-resolution and progressive transmission.

5.2 Hybrid Schemes for volume visualization

The majority of current volume rendering schemes are based on Direct
Volume Rendering (DVR) algorithms. By applying this technique, images
result from computing the contributions of all the voxels in a volumetric
representation. On the other hand, Indirect Volume Rendering (IVR) is
based on iso-surface extraction from the volume data.

The combination of DVR and IVR allows representing mixed models with
surface and volume data. This merge conveys better understanding of
models, providing better perception of the visualized structures, as well as
the relationship among them. This fact increases the applicability in real
environments such as medical applications.
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Most of the presented techniques for volumetric hybrid visualization, use
hybrid models that combine volume data and geometrical data together
in the same volume dataset. Our proposal however, exploits the use of
Gradient Octrees to reduce information while highlighting structures, also
using volume data in the graphic pipeline.

Although combining both surfaces (polygons) and volume data is not the only
hybrid scheme for volume rendering, it has been widely used by researchers.
Several approaches can be identified to integrate surface and volume render-
ing. Some of them transform both types of data to a uniform representation.
In some proposals a voxelization of data is applied, by performing a scan-
conversion from geometric data into volumetric form [98] [99].

When the objective is to convert volumetric data into a polygonal represen-
tation, algorithms such as Marching Cubes are used to perform iso-surface
extraction [100] [101]. These approaches require binary classification of
volume data and may result in distorted structures in form of disconnected
or missing features and surfaces.

By considering that ray casting can handle simultaneously different models
by merging their contributions along the ray, many authors have developed
ray casting-based hybrid visualization algorithms. Marc Levoy [102], was the
first one in casting a set of polygons and volume data during the rendering
algorithm. In the approach, samples of each type of data are at equally
spaced intervals along the rays, while colors and opacities are composed in a
depth sorted order. Following this concept other schemes have implemented
ray casting-based hybrid rendering algorithms [103, 104, 105, 106]. The
algorithm described in [107] optimizes the classical ray casting technique
for direct volume rendering applied to both, volume and geometry data for
volume visualization.

A more recent hybrid approach [108], uses 3D texturing to render opaque
and translucent polygons together with semitransparent volumes. In order
to preserve a correct depth composition, the technique renders alternatively
the translucent polygons clipped at the boundary of the blocks defined by
two consecutive slices and the volume data at each slice. Boada et al. [109]
proposes a hybrid octree approach where the texture associated to the
volume can be generated at different levels of resolution. This fact simplifies



5.2. Hybrid Schemes for volume visualization 119

the sorting of surface polygons between slices and achieves interactive hybrid
volume visualizations.

Jainek et al. [110] also uses texture slices to implement a technique that
interleaves illustrative meshes and volume rendering at interactive frame
rates. To achieve this, they split the scene into different layers that are
rendered individually, stored in intermediate textures and composed to
generate the final image. With the objective of achieving a clear and concise
output, the proposal includes some render styles such as silhouette rendering
and ambient occlusion shading. These features increase hardware require-
ments and constrain the use of the approach to specific and sophisticate
devices. Meyer et al. [111] developed a 3D texture-map-based framework to
interactively render medical data sets derived from CT and MRI scanners
as well as geometric data from CAD systems.

Other techniques employ independent Z-buffer processes for mixed surfaces
and combine the image buffers according to their associate depths [112] [113].

Zakaria et al. [114] describes a new approach for extending the shear-warp
rendering to simultaneously handle polygonal objects. The scheme integrates
scan conversion with shear-warp rendering of run-length encoded volume
data to obtain quality images in real time.

Other techniques advocate the use of hybrid region-based volume rendering,
by applying different shading algorithms inside the volume model [115, 116,
117], or by implementing multiresolution region-based schemes [6] [109]. Luo
et al. [118] developed a technique for focusing on a user-driven ROI while
preserving context information. The approach uses a distance function to
define the region of interest. This function controls voxel opacity, exploits
silhouette enhancement and non-photorealistic shading.

Few techniques employ hybrid schemes to achieve remote visualization of
volume data. Block based compression schemes, progressive transmission
and multiresolution algorithms are needed to fullfill the requirements of
these systems. An approximated solution to these problem was proposed by
Sun k Yoo et al. [119]. The approach uses VRML (Virtual Reality Modeling
Language) to represent compressed 3-dimensional images and to represent
them through polygon reduction in web browsers.
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In contrast to the previously mentioned schemes, we propose a hybrid frame-
work that exploits the use of standard transfer functions as an alternative
to compress volume dataset. Our scheme is hybrid based and transfer
function-aware. It combines Wavelet preprocessed volumetric data to re-
duce information in non-interest regions, and highlighted segmented data in
regions of interest (ROI), through a Gradient Octree scheme. Instead of a
traditional iso-surface extraction stage, our technique applies the advantages
of the algorithm presented in Chapter 4.

5.3 Hybrid, ROI-Based Approach

Let us assume that we are interested in inspecting a volume data model V
which is too large in terms of network transmission and/or client storage fa-
cilities. The Wavelet compression algorithm presented in Chapter 3 supports
block-based regions of interest (ROIs) while gradient octrees (Chapter 4)
can be rendered with advanced illumination models and at a higher visual
quality level. Both approaches have advantages and drawbacks:

• The TF-aware Wavelet compression scheme succeeds in sending to
the clients a very limited amount of information in the areas outside
the region of interest (ROI). The high quality volume information
in the ROI is also compact, because the 3D texture is smaller and
restricted to the blocks in the ROI area. Ray-casting visualization
in the client uses two compact 3D textures which are suitable for
many client devices. The main drawback of this approach, however,
is twofold. It is restricted to a single Transfer Function and volume
material, and it is not well suited for illumination computations that
would require too many texture fetching.

• Gradient Octrees overcome these limitations by supporting multiple
Transfer Functions and materials (up to 10 in our present implementa-
tion) and by precomputing gradients in the server. Gradient Octrees
support advanced illumination models, thus achieving a higher visual
quality level. However, they are not direct candidates for ROI-based vi-
sualization paradigms, as their low level volume representations present
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a flat-face appearance with poor gradients. These representations at
coarse tree levels are well suited for progressive transmission but they
perform worse than similar-quality low-level Wavelet reconstructions.

A hybrid scheme which inherits the best of both approaches can also be
devised by using the Gradient Octree representation for the ROI and a
Wavelet representation for the context. In this case, apart from the volume
model V , the user must supply a set of Transfer Functions {TFk} which
identify the desired anatomical structures/materials and select one of them
as a canonical transfer function. Without loss of generality, in what follows
we will consider that the canonical TF is TF1.

The server starts by computing the Gradient Octree G(V ) (Figure 5.1 ) from
V and the set {TFk}, and it also computes the quantified representation
W (V ) of the Wavelet transform of V with TF1. Given G(V ), W (V ) and
a ROI, the corresponding hybrid model H(V ) is the union of W (V ) and
GR(V ), where GR(V ) is the restriction of G(V ) to the ROI. Let us note as
VR the subvolume corresponding to the ROI portion, with VR ⊂ V .

G(V ) includes three parts, as shown in Chapter 4: The base volume V32, the
octree structure S and the octree data D, where S and D are lists of pointers
and data arrays, with a pair (Ol,Dl) per octree level as defined in the previous
Chapter. In other words, S = {O32, O64, ..Or/2} and D = {D32, D64, ..Dr}.
Observe that the last array Dr represents the deepest octree level, its
resolution r is the resolution of the initial volume V ; whereas the last
S array, Or/2, represents the octree level previous to the deepest one, as
pointers are unnecessary in the deepest octree level. In what follows, r2
will be used as a short name for r/2 and we will also write rl instead of r/l.
The list of octree structure arrays Bl that is sent over the network will be
noted as SN = {B32, B64, ..Br2}, and WN (V ) will represent the transmitted
information in the Wavelets case, after compression and quantization.

Although ROI-dependent S and SN could be defined, we have observed that
the corresponding compression improvements (mainly in SN ) are negligible.
In what follows, we will therefore consider that the hybrid model H(V )
is the union of W (V ) and GR(V ), where GR(V ) inherits the structure S
of G(V ). However GR(V ) and G(V ) are different regarding their D lists.
Data arrays DR of GR(V ) are defined as the restriction of D to the ROI
volume.
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The H(V ) information can be sent from the server to the client (or clients)
in two parts:

• The static information is sent only once, at the beginning of the
interaction session. It consists on a low-resolution version WN(V ) of
the Wavelet-compressed volume (in our implementation and in most
results presented in Section 5.4, we have used a Wavelet compression
with two levels wl = 2 of compression, wl = 2), the 32×32×32 pointers
volume V32 of the Gradient Octree, the set SN of arrays which encode
the G(V ) octree structure and the materials table of the Gradient
Octree. The size of this last table is very small and will be omitted in
the next paragraphs.

• The dynamic information is sent on demand (when a new ROI is
defined) and consists on the subset DR of the data arrays D of the
Gradient Octree, as we know in advance that only voxels in the ROI
will be retrieved.

In the client side, a low-resolution volume model VW is reconstructed by
de-quantization and wl = k Wavelet steps in each block, whereas the
hierarchical structure of octree pointers (the set S) is generated from the
compact arrays in SN . The only difference with the algorithm presented
in Chapter 4 is that octree pointers in the Ok arrays must support direct
access to dynamic and ROI-dependent subsets in DR representing ROI 3D
sub-volumes, as discussed below.

Let us first discuss the size of the static information that must be transmitted
over the network for the hybrid approachH(V ). We use the notations defined
in Section 1.3, writing the memory requirements of a model m in KBytes as
C(m), and the size of the transmitted information for this model m (also in
KBytes) as CN(m). Assuming, for the sake of simplicity and without loss
of generality, that V is a cubic volume of resolution r and that the initial
density values are 1-Byte with a range between [0..255], we can obviously
write,

C(V ) = r3 (5.1)
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And we also know that V32 has two-byte pointer elements,

CN(V32) = 2 · (323) = 65 KBytes (5.2)

If we use a 2-level Wavelet compression outside the ROI with wl = 2, our
lossy data reduction during quantization (see Section 3.5) ensures that,

CN(W (V )) = C(WN(V ))� 1
64 ·C(V ) (5.3)

Finally,
CN(S) = C(SN ) = α.C(V ) (5.4)

being α the compactness of the transmission of the octree structure. From
the experiments presented in Chapter 4 we can experimentally observe that
α is between 0.005 and 0.01. Therefore, CN(S) . 0.01 ·C(V ). We use the
symbol "." to remark that this is an experimentally based inequality.

We can conclude that the total volume of static information (independent
on the ROI) is bounded by a 2.5% of the initial volume size C(V ):

CN(HStat(V )) = CN(V32) + CN(W (V )) + CN(S) . 0.025 ·C(V ) (5.5)

Regarding the dynamic information in H(V ), let us first assume that we are
only interested on gradient octree data at the deepest octree level r. Then
let us consider two cases: sparse and compact DR data.

(a) Sparse DR data

A simple and efficient option is to translate the gradient octree Ok indexes
to son data in D at the deepest octree level into triplets (i,j,k) of indexes
to the gradients and materials of the voxels of the ROI sub-volume VR. As
defined, any element Or2[k] of the deepest Or2 array is a sub-array with
structural information on its 8 sons, Or2[k][0] .. Or2[k][7]. The elements
Or2[k][m] can be either Nil or a certain triplet (i, j, k). In the first case, the
corresponding leaf node will be considered transparent by the ray-casting
algorithm, whereas in the second case, Or2[k][m] contains the indexes to
the voxel of the maximum resolution volume that contains the desired data
(this data includes material information and gradient, see Section 4.3). We
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can provide direct access to data in the 3D volume in the ROI, at the
cost of having a non-compact DR data representation of the ROI volume:
the compact Dr array of the gradient octrees has been translated onto a
standard voxel representation DR of the whole 3D ROI volume. DR can
be now represented as a sparse 3D array (represented as its 1D scan-line
traversal). Storage requirements are usually rather limited, as shown in the
next paragraphs.

In conclusion, the size C(VR) of the dynamic information in this case is
obviously three times (the Dr array contains 3 Bytes per voxel) the number
of ROI high-resolution voxels. In other words,

CN(HDynam1(V )) = C(HDynam1(V )) = 3 ·C(VR) (5.6)

and

CN(H(V )) = CN(HStat(V )) + CN(HDynam1(V )) . 0.025 ·C(V ) + 3 ·C(VR)
(5.7)

Observe that the octree structure information S in the client device is
ROI-dependent, and that it must be reconstructed (in the client) from SN
anytime the ROI is changed (see Figure 5.1). The bounding box information
of the new ROI is used to traverse the B arrays in SN while generating the
Ok arrays in S in a way that Ok contain triplets (i, j, k) indexing voxels
withing the ROI data.

(b) Compact DR data

There is a second option, regarding the dynamic information in H(V ).
Instead of sending the complete ROI volume data as a 1D scan-line traversal
of DR, we can send a compact DR array only containing those voxels with
a non-Nil gradient value.

Let us define an octree traversal CTA algorithm which numerates only
non-Nil voxels in VR and that is shared by the server and the client: non-Nil
voxels in VR are assigned sequential Natural numbers while non-Nil voxels
in V but outside VR are simply skipped. An interesting observation is
that any such CT Algorithm can produce a compact DRr array that can
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afterwards be successfully accessed by the client, provided that this client
has reconstructed S from SN through the same CTA. In this case as VR is
sparse, obviously:

CN(HDynam2(V )) = C(HDynam2(V ))� 3 ·C(VR) (5.8)

and

CN(HDynam2(V ))� C(HDynam1(V )) (5.9)

Sending compact DR arrays as dynamic information is better than sending
the subvolume VR, as:

However, sending less dynamic information comes at the cost of creating a
new octree structure S from SN in the client at every ROI change during
the user interaction, as S depends on the specific CTA being used, and CTA
are ROI-dependent.

By considering that C(HDynam1(V )) is reasonable small (according to our
experimental tests) we have finally chosen the first option with sparse DR

data in our implementation and in the discussion in the rest of the present
Chapter. Investigation of the use compact DR arrays are a potential avenue
for future research.

Multi-resolution DR data at upper octree levels could be considered and
managed in a similar way, but in this case Ok arrays should have double
sets of pointers to son nodes, as pointers to O2k will obviously differ from
pointers to DR data in O2k.

The deduced equations and bounds for CN (H(V )) obviously depend on the
size of the ROI. To show their real values in some cases, let us consider a
cubic volume model V with a 256× 256× 256 resolution, r = 256. The size
of the uncompressed model is C(V ) = 16 MBytes, being too high for smooth
network transmission. The static information includes 4096 blocks of Wavelet
coefficients which, at a two-level Wavelet compression, result on a maximum
of CN(W (V )) = 262 KBytes of information. The pointers volume of the
gradient octree V32 requires a fix amount of 65 KBytes, whereas the S arrays
encoding the tree structure can be successfully transmitted by using 170
KBytes. The size of the materials table is irrelevant, as already mentioned.
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Figure 5.1: Overview of the Hybrid Scheme, Showing the preprocess in the server, the
data transfer through the network and the data structures in the client device.

The amount of required static information that must be sent through the
network is therefore 262 + 65 + 170 = 497 KBytes, a 3% of the initial volume
data information. The amount of dynamic information depends of the ROI
size. For a ROI of 48× 48× 32 voxels (as defined in Chapter 3), the total of
dynamic information will be bounded by 48 · 48 · 32 · 3 = 221 KBytes, a 1 %
of the initial volume data information. The client will be able to visualize
the hybrid volume representation with a total of transmitted information
(static+dynamic) of 497 + 221 = 718 KBytes, a 4.5% of the initial data
size.

In the case of a cubic volume model with a resolution of 512× 512× 512
resolution, the size of the initial model V is 128 MBytes. The static
information includes 32768 blocks of Wavelet coefficients which, at a two-
level Wavelet compression, result on a maximum of CN (W (V )) = 2 Mbytes
of information. The pointers volume V32 of the gradient octree requires a
fix amount of 65 KBytes, whereas S requires 1.36 MBytes. The amount
of required static information that must be sent through the network is
therefore 3.43 MBytes, a 2.6% of the initial volume data information. For
a ROI also of 48× 48× 32 voxels, the total of dynamic information is 221
KBytes, a 0.17% of the initial volume data information. The total of the
transmitted information is 3.65 MBytes, less than a 3% of the initial data
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size.

The main conclusion from the above figures is that the hybrid scheme is
flexible enough to represent several materials and volume structures in the
ROI area at a very limited static and dynamic information transmission
cost, as discussed in Section 5.4.

5.3.1 Rendering of the Hybrid Scheme

The ray casting algorithm to render the Hybrid approach is similar to the one
explained in Section 4.5 for the Gradient Octrees, where rays traverse a low
resolution 3D texture representing the whole virtual volume (see Figure 5.2).
For samples along the ray that do not belong to the ROI, the ray-casting
uses density values from the low-resolution model VW . Ray casting within
the ROI is based on the octree addressing properties described in Section 4.5.
The octree seach of any virtual voxel (i, j, k) is directly driven by the base-2
representation of i, j and k, as shown in Figure 5.2.

Samples in the ROI retrieve densities from a virtual volume with the same
resolution R as VR, instead of traversing VR itself. After retrieving high-res
data in Dr, materials and the gradient vector are decompressed on the fly in
the GPU. The gradient face f , the two grid-coordinates of the gradient and
the material index are decoded as in Section 4.5 for the Gradient Octrees
model.

Figure 5.3 shows two snapshots of an interaction session with the hybrid
scheme. The resolution of the volume models are 256× 256× 112 (Skull)
and 5123 (Thorax), ROIs are 128× 128× 64 and 2563 blocks, respectively.
The total size of the static information is 349 KBytes and the size of the
dynamic information is 0.99 MBytes. The compression rate is 18 %, as the
total size of the volume data is 7.34 MBytes.
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Figure 5.2: The block structure of the model, a region of interest (in white) and the
specification of the BlocksId texture (shown in 2D, for clarification).

5.4 Comparison with Previous Schemes

This Section presents a comparison between the volume representation
schemes proposed in this thesis and several previous approaches for Remote
Volume Rendering. We have chosen three accessible applications to achieve
this comparative study: The VrMed Viewer which is a classical volume
visualization platform, the Volume Viewer, a scheme that sends the whole
volume model to the client (case A, Figure 2.1) and the VrMed-Thin Client
platform that performs volume rendering tasks in the server and sends 2D
images to the client devices.
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Figure 5.3: Hybrid Visualization. Snapshots of an interaction with two models in the
server application. In (a), the Skull model after applying wl = 2 in the low resolution
region, while the ROI with a resolution of 128 × 128 × 64 shows the skin. In (b), the
Thorax model after applying wl = 2 in the low resolution region while the ROI, with a
resolution of 256× 256× 256 is highlighting four different anatomical structures.

5.4.1 Previous Schemes

VrMed Viewer: Is a volume application, designed to achieve interactive
visualization in PCs and Virtual Reality Systems [96] [97]. It has been
developed by the MOVING research group from the UPC.

Volume Viewer: Is an Android based application, implemented to run on
mobile devices as tablets and smart phones. It allows interactive visualization
of models with a transfer function editor with easy handling, specially
designed for small screens. Moreover, the software generates benchmarks
that allow analyzing performance of moderns GPU by implementing three
classical algorithms for volume rendering [19].

VrMed-Thin Client: The approach is based on [120]. It achieves remote
visualization of volume models with basic user interaction tools in mobile
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devices. A server running VRMed Viewer on Linux operative system, renders
images which are sent to the client through the network. Clients generate
control commands as OpenGL parameters which are sent to the server using
a TPC/IP socket.

5.4.2 Comparative analysis

Figure 5.4: Models used during data analysis with the hybrid scheme. The skull model
with a resolution of 256 × 256 × 112 (left), and the thorax model with a resolution of
5123 (right).

Figure 5.4 shows the two models that we have used for the performance anal-
ysis. The skull model (left) with a 256× 256× 112 resolution and the thorax
model of a 5123 resolution. Density values are in the rang [0...255], hence
each voxel is codified using only 1 byte. The total memory requirements of
the volume models are 7.4 MBytes and 128 MBytes respectively.

Tables 5.1 and 5.2 show a comparison among the three remote visualiza-
tion approaches proposed in this thesis (Wavelet-based scheme, Gradient
Octrees and Hybrid-based approach) and the three platforms described
in Section 5.4.1, using the previously described models. Table rows show
for each scheme whether multi-resolution and progressive transmission is
allowed and the compression rate achieved for each case. Both Tables also
show the size of the transmitted data through the network and the client
requirements to performs volume rendering followed by an estimation of the
average frame rates in two cases: rendering in the PC server and rendering
in the mobile device.
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The server application runs on PC with 6 GB of RAM, Intel Core 2 Duo at
3.16 GHz and the PC client is a 4 GB of RAM , Intel Core 2 Duo at 3.06
GHz and Nvidia GeForce GTX z80. Client tests were also performed on the
HTC One smartphone whith a screen resolution of 1080 x 1920 pixels 2 GB
RAM and an Adreno 320 Graphics processor.

The size of the ROI in Tables 5.1 and 5.2 is 128 × 128 × 64 voxels. A
ROI-based visualization has been considered in the Wavelets-based scheme
and in the Hybrid approach, while in the rest of columns, the whole volume
V has been rendered without ROI. Zoom has been adjusted in a way that
the total amount of rendered ROI pixels in the application viewport is a 25%
of the total of viewport pixels. The amount of ROI pixels in the viewport is
relevant, as it measures the total amount of required high-quality casted rays
during ray-casting rendering. Compression rates correspond to the amount
of data sent over the network with respect to the original volume size. The
compression rate for the hybrid approach has been computed by adding the
compression achieved in the low resolution (wl = 2) representation of the
model, plus the compression rate represented by the Gradient Octree in the
region inside the selected ROI.

In contrast to the previous schemes, our proposed techniques allow multi-
resolution rendering with progressive transmission of volume data. The
average frame rate in the mobile device is between 8 and 16 fps as shown in
the tables 5.1 and 5.2. As already discussed, the Wavelet-based rendering
requires a client GPU being able to manage 3D textures.

In case of the Gradient Octree approach, data includes the octree structure
plus material and gradient information at its deepest, maximum resolution
level. In the Hybrid scheme, the information over the network represent both
the necessary data to reconstruct two levels of Wavelet compression for the
low resolution model and the nodes representing the Gradient Octree leaves
in the selected region of interest (ROI). This approach also requires a client
GPU being able to manage 3D textures for rendering. The compression rate
in this case is between 20% and 22%.

The Hybrid approach as presented in Section 5.3 results in a compression
rate which is between 4% and 18%, with an average frame rate in the mobile
device between 8 and 16 fps when wl = 2. It also requires a client GPU
being able to manage 3D textures.
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The VrMed viewer is presented for comparison purposes. Some of the
parameters in the Tables do not apply to this case, as VrMed is a stand-
alone application without network transmission. The average frame rates, 48
and 20 fps, are obviously higher than those in the previous cases but these
figures show that our proposed approaches are performing within reasonable
efficiency limits.

The Thin Client based approach sends a maximum of 0.18 MB of data
through the network per frame during an interactive session with a single
client (of course, the total amount of transmitted data depends on the
number of interaction frames). This is due to the fact that the technique
requires the transmission of renderized images from the server when the
user interacts with the model in the client side. This fact makes this scheme
a full-time network dependent, with frame rates which decrease in network
congestion cases. We have observed that our architecture becomes useless
when the number of clients is above 8. On the other side, this scheme does
not require sophisticated client GPUs, as clients must only decompress and
show pre-rendered images. This can be an advantage for basic client devices,
but result on a under-utilization of client GPUs in the case of most present
devices.

Figure 5.5: Hybrid multiresolution visualization of the skull model. Skin visualization
in both low resolution and ROI (left). Semi-transparent skin in ROI (middle). Bone
visualization in both, low resolution and ROI.

Comparing Thin clients to Wavelets, Gradient Octrees and the Hybrid
approach, we can define the break-even interaction period as the number
of frames required to have an equivalent amount of information sent over
the network. In the case of the skull model in Table 5.1, this break-even
is 11 frames for Wavelets, 21 frames for Gradient Octrees and 11 frames
for the Hybrid approach. In the case of the thorax model in Table 5.2, the
break-even is 51 frames for Wavelets, 79 frames for Gradient Octrees and 17
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frames for the Hybrid approach. By considering the number of frames per
second in each case, we can conclude that the information we are sending
is equivalent to the total information sent by the Thin Client approach
during an interaction period in between 1 and 10 seconds. In the case of
the Hybrid approach, break-evens are 11 frames and 17 frames, meaning
this Hybrid scheme as proposed in Section 5.3 will outperform Thin Clients
in interaction sessions longer than 17 frames. This is due to the fact that
break-evens are computed as the ratio between the size of the compressed
model as sent over the network in our approaches and the size of a single
Thin client frame image.

The Volume Viewer approach as presented in the last column of both Tables
does not require sophisticated client GPUs, as clients are rendering stacks of
2D textures. Frame rates in the client are reasonable. The main drawback in
this case, however, is the amount of information being sent over the network,
which makes it unusable in the case of large volume models.

Some snapshots of the interaction with the thorax model using the Hybrid
approach are shown in Figure 5.6. In all cases two Wavelet reconstruction
steps (wl = 2) have also been applied without lighting computation, in the
low resolution area: ROI showing ribs and lungs (a), internal gases and
lungs (b) and Skin, ribs and lungs (d). The snapshot in (e) shows the alveoli
in the ROI, magnified in (f) by interacting with zoom and a section plane.
In these cases Wavelets are precomputed after applying to the model a TF
covering all structures in the low resolution area. The snapshot in (c), shows
a TF for bones visualization in both, the low resolution area, and the ROI.
Image in (d) shows a zoom-in of (c) for showing up the quality of the hybrid
model.

The asterisks in the Thin client column in Tables 5.1 and 5.2 mean that
data sizes are per frame sizes. The compression rates obviously depend on
the number of transmitted frames.

The Hybrid approach is specially well suited in the case of large models. The
comparison between Tables 5.1 and 5.2 show that this is a scalable scheme,
with compression rates that decrease when the size of the volume model
increases. The corresponding frame rates are larger than in the case of
Gradient Octrees, being of the same order of magnitude than Thin Clients.
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Table 5.1 Comparison among the approaches presented in this paper and some
previous schemes for remote visualization of volume models. Study of the Skull
model with a resolution of 256× 256× 112 and 7.3 MB of uncompressed size and
a TF showing bone and skin. The value of CN in the case of the Thin Client
application corresponds to the size of the transmitted data per frame. The Marks
in the two first rows, indicate whether the described functionalities are supported
(3) or not (5) by the presented techniques.

Wavelets Gradient Hybrid VrMed VrMed Volume
Sheme Octrees Approach Viewer Thin Client Viewer
[6] [7] [8] [96] [120] [19]

M
ul
tir

es
ol
ut
io
n

3 3 3 5 5 5

P
ro
gr
es
si
ve

Tr
an

sm
is
si
on

3 3 3 5 5 5

C
om

pr
es
si
on

ra
te

(%
) 32 22 18 - ∗ 100

C
N
(M

B
)

1.91 3.8 2.04 - 0.18* 7.3

C
lie

nt
re
qu

ire
m
en
ts

3D Tex 3D Tex 3D Tex - Image Stack

Fr
am

e
ra
te
s

(P
C

ve
rs
io
n)

52 24.12 46.53 48.24 48.24 -

Fr
am

e
ra
te
s

(m
ob

ile
)

24.2 - 16.32 - 20.23 17.0



5.4. Comparison with Previous Schemes 135

Table 5.2 Comparison among the approaches presented in this paper and some
previous schemes for remote visualization of volume models. Study of the Thorax
model with a resolution of 5123 and 128 MB of uncompressed size and a TF
showing bone and skin. The value of CN in the case of the Thin Client application
corresponds to the size of the transmitted data per frame. The Volume Viewer
does not support this Thorax model in the mobile device due to its large model size.
The Marks in the two first rows, indicate whether the described functionalities
are supported (3) or not (5) by the presented techniques.
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Figure 5.6: Hybrid Visualization. Interaction with the Thorax model. ROI size:
416× 224× 224 (a), 256× 160× 256 (b), 96× 128× 480 (c), and 256× 512× 256 (d), (e)
and (f). Images in (d) and (f) Show zooms of local regions in (c) and (e).
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5.5 Conclusions

We have proposed a Hybrid volume representation that inherits the advan-
tages of the models presented in Chapters 3 and 4 while keeping a good
performance in terms of bandwidth requirements and storage needs in client
devices. Information over the network is classified into static information (be-
ing only set once) and dynamic information. Dynamic information must be
re-sent anytime the ROI is redefined by the user. The complexity (memory
and data transmission requirements) of the static and dynamic information
has been analyzed, and two different dynamic information options have been
discussed and compared. The main conclusion is that the hybrid scheme
is flexible enough to represent several materials and volume structures in
the ROI area at a very limited static and dynamic information transmission
cost.

We have also presented a benchmark to compare the proposed schemes
with three existing approaches: a classical volume visualization platform, a
scheme that sends the whole volume model to the client and a thin-client
application that performs volume rendering tasks in the server and sends 2D
images to the client devices. Tests have been performed with two different
volume data models. The compression rate, the amount of data being sent
over the network, the rendering efficiency, the client requirements, the frame
rate during interaction, and the support of multi-resolution and progressive
transmission have been compared and discussed.

The break-even interaction period is between 11 frames and 79 frames in
the presented examples. This is between one and 10 interaction seconds in
all cases. In the case of the Hybrid approach, break-evens are 11 frames
and 17 frames, meaning this Hybrid scheme as proposed in Section 5.3
will outperform Thin Clients in interaction cases longer than around 20
frames.

The Hybrid approach has been proved to be specially well suited in the case
of large models. The presented experimental Tables show that the Hybrid
approach is a scalable scheme, with compression rates that decrease when
the size of the volume model increases. Corresponding frame rates are larger
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than in the case of Gradient Octrees, being of the same order of magnitude
than Thin Clients.



CONCLUSIONS

This chapter presents the conclusions and the future work of
the thesis.

6
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6.1 Conclusions

The main objective of this thesis has been to enrich user experience on
interactive visualization of volumetric medical models in low performance
devices, by studying new transfer-function aware compression/decompression
mechanisms adapted to transmission, reconstruction and visualization in
those devices. Several schemes have been proposed to exploit the use of
transfer functions to enhance the volume compression during its transmission
to mobile devices. As far as we know, this possibility has not been considered
by any of the described approaches in the previous work.

The study of client-server architectures for volume visualization is nowadays
a wide area of research for computer graphics scientists. We have made a
comparative analysis of some relevant approaches in Chapter 2. Although
there have been interesting practical solutions in the last years, a lot of open
problems remain for further investigation. In case where no client-server
architectures are implemented, compact data structures can be used to
transfer data between CPU and GPU and also to efficiently implement out-
of-core solutions. Sending the whole volume model in a compressed way to
the client device is still a challenging problem. This ensures full interaction
facilities in the client without further server-client communication. Many
proposals achieve good results, but small storage client capacity and network
latency during real time visualization decrease interaction performance. As
an alternative, some techniques transmit images through the network, but
this falls in the lack of volume information in the client side, decreasing
performance when new data is demanded and sometimes affecting image
quality. Some approaches convert volume data into compact data structures
ready to be gradually sent from servers to clients. Compressed volume
rendering is a good solution to render models whose size exceeds current
hardware capabilities, but performance during decompression is still a field
requiring of improvements. Although some proposals decompress data in
the client CPUs, the current trend is to move decompression to the GPU.
In this case, data gets compressed to the client GPU, resulting in less
memory consumption and better exploiting available bandwidth. Our main
conclusions from Chapter 2 are:
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• Low-end mobile devices are being preferred due to easy maintenance
and portability but their hardware limitations demand a further revi-
sion of client-server algorithms to optimally increase the interactivity
while visualizing volume models. Small storage client capacity and
network latency during real time visualization decrease interaction
performance and require novel and specific solutions.

• Current solutions are not fully exploiting the fact that medical doctors
usually work with a restricted set of standard transfer functions (TFs).
This fact can be a new tool to further compress volume datasets.

• Efficient solutions should take advantage of novel hardware architec-
tures in current mobile GPUs, like 3D texture handling.

In Chapter 3, a new scheme for interactive volume in small mobile devices
has been presented, having a number of novel features. Clients receive the
whole model, compressed with a TF-aware scheme which is able to achieve
high compression rates. Decompression in the CPU of the client is efficient
and can be performed on the fly during interaction. Our compression
scheme is local, block-based and uses a Haar-Wavelet approach together
with perceptual-based quantization. The consequence of this particular
choice is that the size of the 3D textures in the mobile device is significantly
smaller. Inspection of complex volume models with maximum level of
detail in selected regions of interest becomes feasible: our scheme supports
model sizes that otherwise could not be handled. The ray-casting algorithm
in the GPU of the client is adapted to the block structure, being able to
simultaneously deal with regions having different levels of detail. Conclusions
of Chapter 3 can be summarized as:

• A new Wavelet-based, TF-aware compression scheme has been pro-
posed. It supports inspection of complex volume models with maximum
level of detail in selected regions of interest (ROIs). It uses a GPU-
based, ROI-aware ray-casting rendering algorithm in the client, with a
limited amount of information being sent over the network and stored
in the clients.

• One of the present limitations of this Wavelet-based approach is that
the preprocess in the server depends on the transfer function TF.
Modifications of this TF require a new transmission of the model to
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the client. This aspect may not be critical, as the standard workflow in
medical diagnose is usually based on a small number of pre-established
transfer functions that enhance particular structures. Anyway, the new
proposals in Chapters 4 and 5 have been designed with the objective
to overcome this limitation.

Chapter 4 presents a second Transfer Function-aware scheme for the remote
interactive inspection of volume models in client-server architectures. This
approach aims at supporting progressive transmission, avoiding gradient
computations in the client device and sending a very limited amount of
information through the network. Our multiresolution volume representation
(Gradient Octrees) can be transmitted to the client in a compact way while
achieving a minimum loss of visual quality as compared to state of the art
ray-casting renderings. To offer users the possibility of fully understanding
the volume data, our scheme supports planar volume sections which are
shown with high-resolution volume information, besides interactive extrusion
of specific structures. Interaction is autonomous and no further information
is needed from the server, except when a new planar section is required.
Our main conclusions from this Chapter are:

• Gradient Octrees can efficiently encode volume datasets. They support
high-quality visualizations with Transfer Functions from a predefined
TFs set. In our present implementation, Transfer Function sets can
encode up to ten different volume materials.

• Gradient Octrees are multiresolution, supporting progressive transmis-
sion and avoiding gradient computations in the client device. They
encode precomputed gradients to save costly computations in the client,
and support illumination-based ray-casting without extra computa-
tions in the client GPU. The proposed scheme presents a minimum loss
of visual quality as compared to state of the art ray-casting renderings.

• Gradient Octrees send a very limited amount of information through
the network. The octree structure is compacted into a very small
volume array and a set of texture-coded arrays, with only one Bit per
octree node.

• The proposed scheme supports planar volume sections which are shown
with high-resolution volume information, besides interactive extrusion
of specific structures.
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In Chapter 5, we have proposed a Hybrid approach that inherits the advan-
tages of the algorithms presented in Chapters 3 and 4 while keeping a good
performance in terms of bandwidth requirements and storage needs in client
devices. Our Hybrid approach uses Gradient Octrees with high-resolution
rendering in user-defined regions of interest (ROIs) while visualizing the rest
of the volume in low resolution with the approach presented in Chapter 3.
Information over the network is classified into static information (being only
set once) and dynamic information. Dynamic information must be re-sent
anytime the ROI is redefined by the user. The complexity (memory and
data transmission requirements) of the static and dynamic information is
analyzed, and two different dynamic information options have been discussed
and compared. The main conclusion is that the hybrid scheme is flexible
enough to represent several materials and volume structures in the ROI area
at a very limited static and dynamic information transmission cost. We have
also presented a benchmark to compare the proposed schemes with three
existing approaches: a classical volume visualization platform, a scheme that
sends the whole volume model to the client and a thin-client application that
performs volume rendering tasks in the server and sends 2D images to the
client devices. Tests have been performed with two different volume data
models. The compression rate, the amount of data being sent over the net-
work, the rendering efficiency, the client requirements, the frame rate during
interaction, and the support of multiresolution and progressive transmission
have been compared and discussed. The break-even interaction period (as
defined in 5) is between 11 and 79 frames in the presented examples. This
means between 1 and 10 interaction seconds in all cases. In the case of the
Hybrid approach, break-evens are 11 frames and 17 frames, meaning that
this Hybrid scheme as proposed in Section 5.3 will outperform Thin Clients
in interaction sessions longer than around 20 frames. The Hybrid approach
has been proved to be specially well suited in the case of large models. The
presented experimental Tables show that the Hybrid approach is a scalable
scheme, with compression rates that decrease when the size of the volume
model increases. Corresponding frame rates are larger than in the case of
Gradient Octrees. Conclusions of Chapter 5 can be summarized as:

• A Hybrid approach that inherits the advantages of the algorithms
presented in Chapters 3 and 4 while keeping a good performance in
terms of bandwidth requirements and storage needs in client devices
has been proposed. The scheme is flexible enough to represent several
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materials and volume structures in the ROI area at high resolution
and very limited information transmission cost.

• A benchmark has been presented to compare the proposed schemes
with three existing approaches. Tests have been performed with two
different volume data models.

• The Hybrid approach has been proved to be specially well suited in
the case of large models. Experimental results show that this Hybrid
approach is a scalable scheme, with compression rates that decrease
when the size of the volume model increases.

In conclusion, this thesis has proposed and discussed several transfer-function
aware compression/decompression mechanisms for volume model transmis-
sion, reconstruction and visualization in small client devices. We consider
that they may enrich the user experience during the inspection of volume
medical models in these low performance devices.

6.2 Future Work

Some aspects of the presented work can be further investigated and ex-
tended:

• Current mobile graphics boards are notably less powerful than the
complex desktop graphic devices. However during the last years, an
important improvement of these capabilities have been appeared on
smartphones and tablets. For the wavelet-based approach, a future
study of block-aware rendering acceleration algorithms could be im-
proved through paralelizable implementations in GPU like CUDA.

• Related to the Gradient Octrees based approach, we would like to
investigate local algorithms for octree-based gradient filtering, by taking
into account gradient information in the parent node. Besides this, a
good avenue for further research is to optimize thresholds during the
generation of the edge volume (SE

R ) generation to minimize the visual
error between the ray-casting renderings of V and SE

R for any viewing
direction and for any TF.
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• The proposed improvements for the previous schemes could also up-
grade the Hybrid ROI-Based scheme. However, the study of ROI-
dependent inspection of Coherent-Traversal Trees could also be a
starting point for future research in this field. We would like to inves-
tigate Coherent-Traversal Trees with compact data representations D
trying to reach an optimized compromise between storage requirements
in the client GPU and the number of texture fetching during the ray
casting algorithm.
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