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Abstract 

This thesis has been pursued in three papers whose nexus is the use of statistical 

copulas for the purpose of assessing dependence in the field of agrofood 

economics. The first paper aims at determining how the introduction of 

agricultural revenue insurance contracts in Spain will affect the cost of purchasing 

insurance, relative to yield insurance schemes. The empirical analysis focuses on 

the apple and orange sectors in Spain. Statistical copulas are used to jointly model 

price and yield perils. Monte Carlo simulation methods are employed to simulate 

premium rates both under revenue and yield insurance. Results indicate that 

revenue insurance is likely to reduce the price of agricultural insurance in Spain, 

which may result in higher acceptance and demand for agricultural insurance 

programs. 

The second paper aims to study dependence between producer and 

consumer prices for millet markets in Niger. Links between prices considered are 

assessed by cointegration analysis and statistical copula methods. Results indicate 

a positive link between producer and consumer prices, which is stronger the closer 

the markets are. Evidence of asymmetric price behavior is also found.  

The last paper assesses price transmission along the Egyptian tomato food 

marketing chain in the period that followed the Arab Spring. Static and time-

varying copula methods are used for this purpose. Results suggest a positive link 

between producer, wholesaler and retail tomato prices. Such positive dependence 

is characterized by asymmetries during extreme market events, which lead price 

increases to be transferred more completely along the supply chain than price 

declines.  
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Resumen 

Esta tesis se compone de tres artículos científicos cuyo nexo de unión es el uso de 

copulas estadísticas para analizar dependencia en el ámbito de la economía 

agroalimentaria. En el primer artículo, se estudia cómo la introducción de los 

contratos de seguro de ingresos agrícolas en España puede afectar el coste de la 

contratación de un seguro, en comparación con el tradicional seguro de 

rendimientos agrícolas. El análisis empírico se centra en los sectores de la 

manzana y la naranja en España. Las cópulas estadísticas se utilizan para modelar 

la dependencia entre los precios y  los rendimientos agrarios. Los métodos Monte 

Carlo se utilizan para simular del importe de las primas del seguro de ingresos y 

del seguro de rendimientos. Los resultados indican que es probable que el seguro 

de ingresos reduzca el costo de los seguros agrarios en España, lo que puede 

conllevar una mayor aceptación y demanda de programas de seguros agrícolas. 

El segundo artículo tiene como objetivo estudiar la dependencia entre los 

precios al productor y al consumidor en el mercado del mijo en Níger. Los 

vínculos entre los precios considerados son evaluados mediante un análisis de 

cointegración y el método estadístico de cópula. Los resultados sugieren la 

existencia de una relación positiva entre el precio del productor y del consumidor, 

la cuál aumenta cuanto más próximos se encuentren los mercados. También se 

han hallado evidencias de asimetría en el comportamiento de los precios. 

El último artículo evalúa la transmisión de precios a lo largo de la cadena 

de comercialización alimentaria egipcia del tomate. El estudio se centra en el 

período posterior a la Primavera Árabe. Métodos de copula estática y dinámica se 

utilizan con este propósito. Los resultados sugieren la existencia de una relación 

positiva entre los precios al productor, mayorista y vendedor al detalle. Esta 

dependencia positiva presenta asimetrías durante los eventos extremos del 

mercado, que conllevan que el aumento de los precios se transfiriera de manera 

más completa a lo largo de la cadena de suministro que las disminuciones de 

precio.  
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CHAPTER 1 

Introduction 

 

 



Assessment of dependence between variables is key to research analysis in any 

scientific discipline. In agricultural economics, scholars have devoted a great deal 

of attention to study dependence between a myriad of data, including agricultural 

yields, market prices, agricultural input use, etc. Conventional analyses of 

dependency between multiple random variables are constrained by the availability 

of statistical tools and mainly rely on multivariate normal or student’s t 

distributions. These distributions have been shown to usually misrepresent the 

data studied. Kurtosis, skewness and non-normality have been generally found to 

characterize food prices and agricultural yields. Further, dependency between 

variables may be stronger in the tails of the distribution than in the centre, and be 

characterized by asymmetries. This calls for the need to use flexible statistical 

instruments to represent multivariate distribution functions.  

Statistical copulas provide flexibility in evaluating dependence between 

variables. A copula function is a multivariate distribution function defined on the 

unit cube [ ]0,  1 n , with uniformly distributed marginals. Copulas are based on the 

Sklar's (1959) theorem that implies that, in multivariate distribution functions, the 

univariate margins and the multivariate dependence structure can be separated and 

the dependence structure represented by a copula. The Sklar's theorem allows the 

researcher to focus on modeling univariate distribution functions, which usually 

leads to the construction of better models (Patton, 2006). The dependence 

structure is fully represented by the copula. Copulas allow flexible 

characterization of dependence between random variables and are especially 

useful if no obvious choice for the multivariate density function exists. The use of 

copulas in the economics literature is rather recent and most empirical 

applications are found within the financial economics literature (see, for example, 
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Patton, 2004 and 2006; or Parra and Koodi, 2006). More recently Goodwin and 

coauthors have applied copula-based models to appraise systemic risk in U.S. 

agriculture. Serra and Gil (2012) have used copulas to study dependence between 

crude oil and biofuel prices. The use of copulas to assess dependency in the 

agricultural sector, constitutes the guiding theme of this PhD Thesis. 

This thesis is composed by three main core chapters that constitute three 

independent scientific articles. The first article assesses how the introduction of 

revenue insurance in Spain will affect the cost of purchasing insurance, relative to 

yield insurance. A sound implementation of revenue insurance requires reliable 

assessment of price and yield dependency.  With the launching of agricultural 

revenue insurance programs, which was specially relevant in the US by the end of 

the past century, the modeling of dependence between prices and yields has 

received increasing research attention within the agricultural economics field 

(USDA, 2001). The relevance of joint consideration of risks is manifest in that 

periods of low yields may be accompanied by high prices. This would lead to 

lower fair premium rates than if declines in both yields and prices occurred at the 

same time. In short, to design a revenue insurance contract it is necessary to 

understand the usually negative relationship between agricultural yields and 

prices. If this relationship is ignored, risk will likely be over-estimated. While 

numerous research articles have been published on the proper modeling of 

agricultural yield risk, the literature focusing on price and yield risk dependence is 

relatively new (Tejeda and Goodwin, 2008; Zhu et al., 2008; Woodard et al., 

2010; Ghosh et al., 2011).  The apple and orange sectors in Spain are the focus of 

the empirical analysis. The research is based on annual average prices and yields 
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from the Spanish Ministry of Agriculture, Food and Environment (MAGRAMA, 

2010) for the period from 1954 to 2010, which yields a total of 57 observations. 

The second and third research articles focus on assessing dependency of 

prices along the food marketing chain, from producers to final consumers in less 

developed countries (LDCs). Understanding price behavior along the food 

marketing chain is very useful to assess the functioning of food production, 

processing and distribution markets, their competition and integration level. 

Vertical price transmission analyses can help identifying market failures and are a 

good indicator of the degree of competitiveness and effectiveness of market 

performance. Competitive behavior is rare in LDCs due to different market 

characteristics such as excessive governement intervention, corruption, defficient 

infrastructures, etc. Price formation is usually poorly understood in these 

countries. Since prices drive resource allocation and production decisions, price 

transmission information is useful for economic agents when taking their 

economic decisions, policy makers and competition regulatory authorities. Hence, 

the link between different prices at different levels of the food marketing chain is 

a very interesting research topic in LDCs. The interest grows if we consider the 

scarcity of price transmission analyses in these countries, which bears strong 

connection with data availability problems. 

The second scientific article aims at understanding how millet prices are 

transmitted across millet markets in Niger. Niger agriculture is overly influenced 

by a harsh climate and geography. Rough climatic conditions and market price 

volatility bring instability to food supply, exacerbating chronic food insecurity 

and poverty. This has an impact on prices. Data to conduct research on Niger 

millet markets were made available by Intermon Oxfam (2012) and consist of 
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monthly millet producer and consumer prices in Maradi and Tillabéri, two 

relevant millet markets, for the period from 1990 to 2011. While Maradi 

represents a region where there is excess millet production, Tillabéri is a deficit 

zone.  

The third research article examines food price transmission along the 

marketing chain in Egypt. The analysis is conducted for the period around the 

revolution of January 25, 2011, that came to accentuate economic hardships and 

food price inflation in this country. The tomato market is the focus of this research 

article. Tomato production is a very relevant economic activity within Egypt. The 

analysis is based on weekly price data for tomatoes, observed from the first week 

of April 2011 to the last week of March 2014, leading a total of 155 observations. 

Prices at different levels of the marketing chain have been collected: the price 

received by producers and wholesalers and the price paid by consumers. The three 

series are obtained from the Egyptian cabinet information and decision support 

center (IDSC, 2014).  

The thesis, that is structured in a journal article format, consists of five 

chapters. The three scientific articles described above follow this introduction. 

Integrative conclusions are provided in Chapter 5, where I pull together all the 

work described in the core chapters of the thesis (i.e., chapter 2 to chapter 4) and 

relate this back to the issues raised in the Introduction. Chapter 2 (the first 

scientific article) entitled “Economic analysis of the introduction of agricultural 

revenue insurance contracts in Spain using statistical copula” is currently under 

third-round review in the Agricultural Economics journal. Chapter 3 (the second 

scientific article) entitled “Price volatility of food staples .The case of millet in 

Niger” is being considered for publication (second-round review) in the 
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Australian Journal of Agricultural and Resource Economics.  Chapter 4 (third 

article) entitled “Vertical price transmission in the Egyptian tomato sector after 

the Arab Spring”, is under review in the Applied Economic Perspectives & Policy 

journal.  
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CHAPTER 2 

Economic analysis of the introduction of 

agricultural revenue insurance contracts in Spain 

using statistical copulas1

1 Publication information: Ahmed, O., Serra, T., 2013. Economic analysis of the introduction of 

agricultural revenue insurance contracts in Spain using statistical copulas. Agricultural Economics, 

forthcoming. 
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2.1. Introduction 

The agricultural sector usually faces a combination of risks rarely found in other 

enterprises. Two of the major risks affecting agriculture are climatic and natural 

risks that influence agricultural yields, and market risks that may lead to 

agricultural price fluctuations. Recent dismantling of public commodity price 

stabilization mechanisms leading to increased dependence of prices on global 

markets, may have increased price risk (Antón and Kimura, 2011; Gilbert and 

Morgan, 2010). Since the 2008 financial crisis, changes in both food price levels 

and volatility are more the norm than the exception. Food price volatility is likely 

to persist in the upcoming years (European Commission, 2011). This has 

renovated the interest in risk management tools for the agricultural sector.  

To develop sound risk management strategies, it is important to understand 

the nature of risk: its origin, distribution and correlation with other risks, and the 

capacity of several instruments to reduce it (Hardaker et al., 1997). A non-

exhaustive list of risk management instruments that agriculture can use includes 

marketing contracts, derivatives, diversification, storage, or agricultural insurance. 

We focus on the latter. Different agricultural insurance schemes comprise: yield, 

price and revenue insurance. Yield insurance protects against production risks 

(climatic and other natural risks) and triggers indemnity payments if yields fall 

below a pre-defined level. Price insurance protects against agricultural price risk 

(KANG, 2007). Price insurance is specially useful for livestock producers who, 

contrary to crop producers, are more affected by price fluctuations. An example is 

the United States (US) livestock risk protection program.  

Revenue insurance provides joint price and yield coverage, to guarantee 

farmers a minimum income level. The probability of loss depends on the joint 
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probability distribution of prices and yields. Defining an actuarially fair premium 

rate is key to any insurance program if an efficient resource allocation is pursued. 

Under and overvalued premium rates will distort the demand and supply of 

insurance, the adoption of risk management strategies, the economic sustainability 

of different insurance programs, and may motivate the introduction of inefficient 

public policies. Undervalued premium rates are likely to bias insurance demand in 

favor of the most expensive programs and the highest coverage levels. It may also 

be detrimental to other risk management products and may compromise economic 

viability of insurance companies, unless inefficient public subsidies are launched 

to support the industry. Further, inadequate premium rates may distort farmers’ 

production choices (Babcock, 2012; Westcott and Young, 2002), which may have 

implications for both the agrofood industry and food consumers.  

While revenue insurance has been successfully implemented in countries 

such as the US (through different programs such as Crop Revenue Coverage 

(CRC), Income Protection (IP), Revenue Assurance (RA), or Revenue Protection 

(RP)),2 Spain is considering its implementation. Agroseguro, the pool of the 

agricultural insurance companies in Spain, has recently funded a series of studies 

to assess how these insurance programs should be implemented. The main 

challenge of implementing revenue insur5ance is the computation of an 

actuarially fair insurance premium taking into consideration dependence between 

price and yield risks. The relevance of joint consideration of risks is manifest in 

that periods of low yields may be accompanied by high prices. This would lead to 

2 In 2011 the CRC, RA and IP programs in the US, were merged and updated mostly to the 

Revenue Protection and Revenue Protection with the Harvest Price (RP with HP) exclusion 

programs. The latter excludes coverage against harvest price declines. 
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lower fair premium rates than if declines in both yields and prices occurred at the 

same time. Dependence between prices and yields has received increasing 

research attention in the agricultural economics field (USDA, 2001). Recent 

research in this area has proposed the use of statistical copulas as flexible 

instruments that soundly capture the joint distribution function of yields and 

prices. Copulas are statistical instruments that combine univariate distributions to 

obtain a joint distribution (multivariate distribution) with a particular dependence 

structure. This is important given the scarcity of multivariate distributions 

available from the statistical literature. 3 

This research aims at evaluating the economic impacts of implementing 

revenue crop insurance in Spain. We study how insurance premium rates will 

change under such scheme, relative to yield insurance schemes. For such purpose, 

we apply copula modeling to assess dependence between prices and yields in the 

orange and apple sectors. As noted, shedding light on this issue is especially 

relevant for policy makers, insurance companies and farmers, but also to the food 

industry and consumers. This analysis is especially useful at a time where revenue 

insurance is being considered for its implementation in Spain.   

 The paper is organized as follows. In the next section, a brief description 

of agricultural insurance programs in the European Union (EU) and in Spain is 

offered. We then present the main characteristics of the orange and apple sectors 

in Spain. A literature review of risk modeling in agricultural insurance is offered 

in section 4. The methodological approach is described in the fifth section. The 

sixth and seventh sections are devoted to the empirical implementation and a 

3 Other approaches to building bivariate distributions with given marginals include mixture models 

(Marshall and Olkin, 1988; Genest and Mackay, 1986). 
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Monte Carlo simulation to assess the economic consequences of implementing 

revenue insurance, respectively. The article closes with concluding remarks. 

 

2.2. Agricultural insurance in the EU and in Spain 

The Barometer of Agricultural Insurance (Ikerfel, 2008) identifies agricultural 

producer main risk concerns. Hail is the most relevant, except for viticulturists 

who identify frost as the most relevant risk. Price declines are placed either in the 

second or third position in the ranking. Livestock producers differ from 

agricultural producers in perceiving price drops as their main source of risk, 

followed by the main animal diseases (Ikerfel, 2008). Despite the relevance of 

price risk, EU agricultural insurance schemes mainly focus on yield protection. 

Calamity funds, mutual funds and insurance contracts are the most 

relevant agricultural risk management tools in the EU (Bielza et al., 2009). 

Publicly regulated calamity funds provide aids when catastrophes are declared. 

Mutual funds, in contrast, are privately owned and organized by farmers. 

Agricultural insurance schemes are specially interesting when a country’s legal 

framework precludes public payments (e.g. calamity funds) to damages that are 

subject to be insured. While yield insurance programs predominate within the EU, 

revenue insurance programs enjoy widespread diffusion in the US.  

Different coverages lead to different premium rates, which are, on average, 

close to 4% in Europe and 9% in the US.4 The US and the EU also differ in terms 

4 While yield insurance in the US is an all comprehensive insurance, a poli-risk insurance which 

covers just a few risks predominates in the EU. Comprehensive yield insurance exists only in a 

few EU countries such as Spain, Austria, and more recently also in Italy and France. 
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of adoption of insurance schemes: while about 80% of the major crop (corn, 

wheat, soybean, cotton and peanuts) values are insured in the US, this percentage 

(FAPRI, 2010) falls to 23% within the EU (Bielza et al., 2009). 

Agricultural insurance programs in Spain have been evolving during the 

20th century under public, private and mixed initiatives. Since private initiatives 

usually focus on specific risks and clients, universalization of agricultural 

insurance has required some form of government intervention. In 1978, a mixed 

approach was adopted in Spain that aimed at integrating all the interested parties 

(farmers, insurance companies and society at large). A co-insurance panel led by 

Agroseguro was built and opened to the participation of insurance entities willing 

to do so. The public administration, on the other hand, regulates insurance 

schemes and supports the contracting of insurance plans. Finally, an insurance 

compensation consortium reinsures the system (Antón and Kimura, 2011). 

 

2.3. Orange and apple markets in Spain  

To evaluate the economic consequences of revenue insurance programs, we focus 

on orange and apple fruit sectors in Spain, which are affected by different natural 

perils such as frost, hail, freeze, insects, etc., that can reduce yields, as well as by 

price risks. Spain is a world leading producer of fruits: by output volume, it ranks 

fifth after China, the US, Brazil, and Italy. Jointly with Spain, these countries 

represent nearly 50% of the global fruit output (MAGRAMA, 2011). Oranges, 

mandarins and peaches are the main fruits produced in Spain. They represent, 

respectively, 32%, 24% and 14% of total fruit output and are followed by lemons, 

apples, and pears with a share of 9%, 8% and 6%, respectively (FAOSTAT, 

2010). In year 2010, the orchard area in Spain was 1.6 million hectares yielding a 
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production of 15.6 million tons (FAOSTAT, 2010). The Spanish orchard area 

represents more than a fifth of the EU’s fruit harvested area.  

According to FAOSTAT (2005 and 2010) data, the orange sector is the 

most relevant Spanish fruit sector. After banana and apple, orange is the third 

most relevant fruit production in the world. Global orange production expanded 

from 63.1 billion tons in 2005 to 69 billion tons in 2010. In 2010, international 

exports and imports of oranges were estimated to be 6.5 and 6.1 million tons, 

respectively. In the same year, Spain was the largest orange exporter in the world, 

with 20% of global exports, most of which went to the EU. Worldwide orange 

production is distributed among more than 100 countries, being Spain the sixth 

most relevant one, after Brazil, USA, China, and Mexico, and the first EU 

producer. Spanish production represented 4.5% of global orange output in 2010. 

In 2005, Spanish production was 2.4 million tons and grew to be 3.1 million tons 

in 2010, an increase of around 131%.The orange sector is very important for EU 

economies that in 2010 devoted 312.5 thousand hectares to produce 6.5 million 

tons. EU exports (imports) of orange were estimated to be on the order of 2.4 (2.9) 

million tons in 2010. EU largest harvested orange area is found in Spain with 

153.6 thousand hectares (representing a 110.5% growth rate since 2005). Spain 

concentrated 48% of all oranges produced in the EU in 2010.  

The apple sector is one of the most relevant non-citrus Spanish fruits by 

output volume and the first fruit sector within the EU. With 533.4 thousand 

hectares that yield 10.7 million tons of output, apple is the most relevant fruit 

cultivated within the EU. It represents 9% of the EU’s fruits harvested area and 

18.2% of the EU’s fruits production. Spain produced 646.2 thousand tons in 2010, 

being the per capita production the 11th highest in the world and the 4th highest in 
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the EU (FAOSTAT, 2010). Spanish consumer preferences regarding fruit place 

oranges in the first position and apples in the second (11.8% of total fruit 

consumption). While 63.9% of apple consumption in Spain is produced 

nationally, 36.1% is imported. Spain exports apples especially to other EU 

countries, being the most relevant target markets France, Italy, Portugal and 

Germany. North Africa, the Persian Gulf and South America also import Spanish 

apples (MAGRAMA, 2010).  

The Spanish fruit sector is relevant for agricultural insurers. In 2010, 

60,118 insurance contracts were signed in this sector, 23 % of the agricultural 

insurance pool, covering around 111.2 thousand hectares of fruits area, 1.8% of 

total insured agricultural land. Costs of fruit insurance were 205.4 million euros 

(43% of total agricultural insurance costs). Fruit producers received 79.5 million 

euros indemnity insurance (45.56% of total Spanish farmer indemnities, 

MAGRAMA, 2012a, 2012b). In the Spanish citrus sector, 37 thousand insurance 

contracts were signed in 2011 (14.3% of total fruit insurance contracts) covering 3 

million tons (56.6% of the total amount of insured fruits). Citrus farmers incurred 

insurance costs on the order of 57.2 million, 26.5% of total fruit insurance costs. 

The indemnities received were on the order of 739 thousand euros (1.27% of 

indemnities received by the fruits sector) (MAGRAMA, 2012a). In 2011, 998 

apple insurance contracts were signed in Spain, 4.6% of total fruit insurance 

contracts. Insurance covered 65.7 tons of apples (1.19% of the total amount of 

insured fruits). Apple farmers incurred insurance costs on the order of 2.58 

million, 1.19% of total fruit insurance costs. The indemnities received were on the 

order of 739 thousand euros (1.27% of total indemnities received by the fruits 

sector) (MAGRAMA, 2012b). 
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2.4. Literature review 

Revenue insurance programs have not been popularized until recently. While 

numerous research articles focus on the proper modeling of agricultural yield risk, 

the literature on price and yield risk dependence is relatively new. Goodwin and 

Ker (1998) model yield risk using nonparametric methods and assess the 

consequences of doing so on the actuarial performance of Group-Risk Crop 

Insurance Contracts (GRP). Nonparametric kernel densities are more flexible than 

parametric specifications. Results confirm the flexibility of the non-parametric 

estimates and show these estimates to improve the actuarial performance of the 

GRP program (Goodwin and Ker, 1998). Ozaki et al. (2008) estimate yield 

density using both parametric (normal and beta densities) and nonparametric 

statistical modeling (nonparametric kernel estimator) and evaluate the 

implications of doing so for pricing crop insurance contracts for corn, soybean and 

wheat in Brazil. Rates are higher under the nonparametric approach and authors 

advise insurance companies to charge premium rates according to the 

nonparametric technique.  

Tejeda and Goodwin (2008) model prices through a Burr distribution, 

while a Beta distribution is used to model yields. Correlation between crop prices 

and yields is assessed using copula method and found to be negative. Such 

negative correlation reduces the likelihood of indemnity payouts, relative to the 

case where prices and yields are assumed to be independently distributed. Zhu et 

al. (2008) aim at providing the necessary instruments to design an efficient whole 

farm insurance contract. This requires deep understanding of revenue risk that 

derives from changes in multi-output random prices and yields. Beta and log-
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normal marginals are used to model individual yields and prices, respectively, 

while dependency is studied using copula techniques. Pooling all farm risks 

within a single insurance contact is found to provide coverage at lower rates than 

the alternative of insuring each risk individually.  

Ghosh et al. (2011) consider different copula models and their mixtures in 

order to assess the dependence structure between yields and prices in agriculture. 

Copula mixtures are construed by assigning weights to each single copula 

function. Results show the potential of copula mixtures to perform better than 

individual copulas. More specifically, results show that the mixture between 

Archimedean copulas is capable of improving insurance pricing. Widespread 

adoption of revenue insurance programs in the US explains why most of the 

literature on this topic focuses on US insurance markets. Our paper contributes to 

the preceding literature by studying the dependency between the crop prices and 

yields for apple and oranges fruit in Spain,5 a country that is currently considering 

the introduction of revenue insurance programs. 

 

2.5. Methodology 

The use of copulas in the economics literature is recent and most empirical 

applications are found within the financial economics field (Patton, 2004 and 

2006; Parra and Koodi, 2006). Copulas allow flexible characterization of 

dependence between random variables, being especially useful if no obvious 

choice for the multivariate density function exists. A copula function is a 

5 Estavillo et al. (2005) focus on determining reference price for revenue insurance in the Spanish 

potato sector. Bielza et al. (2002) assess dependency between prices and yields in the olive oil 

sector in Spain by using the Spearman correlation coefficient.  
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multivariate distribution function defined on the unit cube[ ]0,  1 n , with uniformly 

distributed marginals. Let  and F G  be univariate continuous distribution 

functions of two random variables ( , )x y . The unconditional copula of ( , )x y  is 

the joint distribution function of ( )u F x=  and ( )v G y= , where u and v are the 

probability integral transforms of  x and y that are distributed as Unif(0,1) (Fisher, 

1932). According to the Sklar’s (1959) theorem, there exists a unique copula C  

that can be expressed as (Embrechts et al., 2001): 

 

( , ) ( ( ), ( )) ( , )H x y C F x G y C u v= = .                                                          (1) 

 

where ( 1) ( 1)( , ) ( ( ), ( )), ( , ) [0,1] [0,1]C u v H F u G v u v− −= ∀ ∈ ×  is a bivariate 

distribution function with marginal distributions F  and G , being ( 1)F −  and ( 1)G −  

the quasi-inverses of the marginal distributions. The joint bivariate density 

function can be expressed as: 

 

( , ) ( ) ( ) ( ( ), ( ))h x y f x g y c F x G x= , (2) 

 

where c  is the copula density and ( )f x  and ( )g y  univariate density functions.  

The copulas and marginal distributions are specified such that parameters 

can be estimated in two different stages (Patton, 2006). Appendix 2.1 discusses 

model specification. In the first stage of the estimation, marginal distribution 

parameters are obtained by optimizing the marginal log likelihoods independently 

of each other. In the second step, copula parameters are estimated by optimizing 
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the corresponding copula log likelihood, conditional on the results from the first 

step (see Appendix 2.2 for further details).  

Elliptical copulas are copulas of elliptical distributions such as the 

Gaussian and the Student’s t. While being very practical, they do not have closed 

form expressions and are restricted to have radial symmetry. Another class of 

copulas includes the Archimedean, that are popular because they can be expressed 

in terms of a single argument generator function, the generator function depends 

on one or few parameters, which allows to model dependence in high dimensions 

with only one or a reduced set of parameters (Nelsen, 2006; Joe, 1997). Another 

advantage that has been attributed to Archimedean copulas is that, in contrast to 

Elliptical copulas, they allow assessing dependence in extreme tails of the 

distribution. Copulas may also be categorized as static and time-varying. A static 

copula implies parameter constancy over time, while a dynamic copula allows the 

parameters to change with changing environment (Okhrin et al., 2009).  

Different copula specifications represent different dependence structures. 

In order to select the copulas that better fit our data, a series of time-varying 

dependence, model selection and goodness of fit (GoF) tests are conducted (see 

Appendices 2.3 and 2.4). According to time-varying dependence test results, time-

varying copulas are excluded from the analysis. The range of static copulas 

considered is initially wide and the four copulas with the highest log-likelihood 

value are chosen for further detailed analysis. These are the Gaussian, the 

Student’s t, the Clayton and the Plackett copula. Model selection and GoF tests 

are applied on these copulas in order to select the optimal. A bivariate Gaussian 

copula can be expressed as: 
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where 12R  is the correlation coefficient of the bivariate normal distribution, 

12 11 R <− < , and Φ  denotes the univariate normal distribution. A drawback of the 

Gaussian copula is that it assumes that variables u  and v  are independent in the 

extreme tails of the distribution. It thus represents dependence in the central 

region of the distribution. A bivariate Student’s t copula can be expressed as:  

 

( ) ( )
1 1

( 2)/2
2 2( ) ( ) 12

, 22
1212

21( , ) exp 1
12 1

t u t vt
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r R rs sC u v drds
RR

γ γ

γ

γ γπ

− −

− +

−∞ −∞

  
 
 

− += +
−−

∫ ∫ ,            (4) 

 

where 12R  is the correlation coefficient of the corresponding bivariate t-

distribution with γ  degrees of freedom ( 2γ >  for the correlation to be defined 

(Embrechts et al., 2001)), and t
γ

 denotes the bivariate distribution function. 

When 30γ > , the Student’s t copula tends to the Gaussian copula (Goodwin, 

2012).  

While copulas model dependence, the strength of overall dependence has 

been measured through robust copula-based measures such as the Kendall’s tau. 6  

6 The use of linear correlation coefficients as a measure of dependence strength can be rather 

misleading if the dependence cannot be modeled through an elliptical distribution. Copula-based 

dependence measures are more robust (Embrechts et al., 2002; Joe, 1997). 

 

 

22 
 

                                                           



For both the Student’s t and the Gaussian copula, the correlation coefficient 12R  is 

connected to the Kendall’s tau according to: 12
2 arcsin Rτ
π

= . Neither the 

Gaussian, nor the Student t copulas allow for dependence in the extreme tails of 

the distribution. Such dependence may be relevant and differ from dependence in 

central areas of the distribution. Tail dependence may be key from a risk 

management point of view, i.e., insurance companies might be more interested in 

the dependence of yields and prices during extreme weather or market events than 

during more frequent and less drastic events. The Clayton copula can be expressed 

as: 

 

( ) 1/
1( , )c u vC u v θ θ θ

φ
− − −
+ −= . (5)  

 

This copula does not have right tail ( 0rλ = ) dependence, but allows for left tail 

dependence which can be expressed as 1/2l
θλ −= . Parameter θ  is related to the 

Kendall’s tau as follows 
2

θτ
θ

=
+

. The Plackett copula can be defined as 

(Manner, 2007): 

 

21 1 ( 1)( ) (1 ( 1)( )) 4 ( 1) ,
2( 1)

( , )P u v u vC u v uvθ θ θ θ
θ

  + − + − + − + − −   −
=       (6)                                     

  

where (0, )θ ∈ ∞ . The Plackett copula covers a wide range of dependence: from 

perfect lower tail dependence ( 0θ = ), to perfect upper tail dependence (θ = ∞ ). 
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One of the most important features of copula functions is that marginal 

distributions do not necessarily have to come from the same families. Marginal 

models filter the information contained in univariate distributions and allow 

deriving i.i.d. residuals from the filtration. The i.i.d. residuals are then transformed 

to (0,1)Unif  using the non-parametric empirical cumulative distribution function 

(CDF). The empirical CDF method is especially convenient when the true 

distribution of the data is not known.   

Copulas apply to stationary time-series. The augmented Dickey and Fuller 

(1979) and KPSS (1992) tests for unit roots support the presence of a unit root in 

all price and yield series. First differenced data are thus used. The following lines 

describe how we determine price and yield shocks. Univariate models for apple 

and orange prices are specified following previous research (Bollerslev and 

Mikkelson, 1996; Diebold, 2004; Patton, 2013; Mohammadi and Su, 2010) as an 

ARIMA-GARCH, According to parsimony and statistical significance an 

ARIMA(1,1,0)-GARCH(1,1) is used for apple prices, and an ARIMA(2,1,0)-

GARCH(1,1) for orange prices. The latter can be expressed as: 

  

, ,1 , 1 2 , 2i t ipc ip tip i t ip i tP P Pα α α ε− − +∆ = + ∆ + ∆ ,  (8) 

2 2 2
, 1 , 1 2 , 1− −= + +i t ipc ip i t ip i tσ ω ω ε ω σ ,                                                                  (9) 

 

where , ,i i a oP =∆  is the first differenced logged price. Subindex i  takes values a 

and o to represent apples and oranges, respectively, ipcα  is the constant of the 

conditional mean model, 1ipα  and 2ipα  are the coefficients representing the 

autoregressive component, ,ip tε  is normally distributed error term, ipcω  is the 
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constant in the conditional volatility model, being 1ipω  and 2ipω  the coefficients 

representing the lagged square residuals and variance, respectively. Log-

likelihood methods assuming normally distributed errors are used in model 

estimation. Along the lines of Goodwin and Ker (1998), the univariate models for 

orange and apple yields ( , ,iY i a o= ) adopt an ARIMA (1, 1, 0) specification: 

 

, 1 , 1 ,i t iyc iy i t iy tY Yα α ε−∆ = + ∆ +                                                                       (10)           

 

where , , ,i tY i a o∆ =  are first-differenced apple yields, iycα  is the constant, 1iyα  

the coefficient of lagged yield changes and ,iy tε  a normally distributed error term.  

 

2.6. Empirical analysis 

To assess the economic impacts of implementing revenue insurance in Spain, the 

US RA program is used as a reference. RA schemes protect farmers against 

declines in yields, prices or both, leading to a decline in revenue. RA indemnities 

can be computed according to (Zhu et al., 2008): ( )max ,0 ,e
i i iR Rλ −   ,i a o= , 

where *i i iR Y P=  is total annual revenue, ( )e
i iR E R=  is the expected revenue and 

(0,1)iλ ∈  is the coverage level percentage, which is previously agreed between 

the insurer and the farmer. If e
i i iR Rλ≤  the farmer will receive from the insurer 

the amount of ( )e
i i iR Rλ − . An actuarially fair insurance premium, which is the 

cost to purchase insurance, is equal to the expected loss of the contract: 
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( ) ( )( ) e e
i i i i i i iEL R E R R I R Rλ λ = − ≤  , (11) 

 

being ( )e
i i iI R Rλ≤  an indicator equal to one if indemnities are paid, and zero 

otherwise. 

The dataset used for the analysis includes annual Spanish average prices 

and yields for apple and orange for the period from 1954 to 2010, yielding 57 

observations. Apple and orange prices yields are expressed in constant 2010 euros 

per 100 kilogram, and yields in tons per hectare (figures 2.1 and 2.2). Data were 

obtained from the Spanish Ministry of Agriculture, Food and Environment 

(MAGRAMA, 2010). Unit root tests show that none of the series is stationary 

(Table 2.1). Since copula modeling can only be applied to stationary data, we take 

the logged prices in first differences and yields in first differences. Summary 

statistics for first-differenced data are presented in Table 2.1. Implicit in the mean 

and standard deviation is a rather large fluctuation in annual yields, specially 

relevant in apple production: the average coefficient of variation of apple (orange) 

yields is 34.1 (9.3). Price volatility is much less relevant than yield volatility with 

a coefficient of variation of 4 and 3 for the apple and orange market, respectively. 

With the exception of orange yield data, skewness characterizes our data. Excess 

kurtosis characterizes apple yields and prices. The Doornik-Hansen (2008) 

normality test supports normally distributed data. The next stage consists of 

estimating marginal price and yield models.  

The Akaike’s information criterion (AIC) and Bayesian information 

criterion of Schwarz’s (BIC) are used to choose the optimal marginal model 

specification (Table 2.2). Table 2.3 presents the results of estimating an ARIMA 

(1, 1, 0)-GARCH (1, 1) model for apple prices and an ARIMA (2, 1, 0)-GARCH 
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(1, 1) for orange prices. The apple price conditional mean model shows that 

current price changes are negatively affected by past price changes. Univariate 

GARCH (1, 1) model parameters are all positive, which indicates that past market 

shocks as well as past volatility cause higher current volatility. Since 

1 2 1+ <p pω ω , we conclude that the GARCH process is weakly stationary, being 

the unconditional long-run variance equal to 0.057 (Engle, 2001). The orange 

price conditional mean model shows that current price changes respond negatively 

to lagged changes. The orange price volatility is affected by past market shocks, 

but not by past volatility. GARCH parameters lead to an unconditional variance 

2
oσ = 0.055 (or 0.074 if the non-significant parameter 2pω  is ignored). Table 2.4 

presents the results of the model fit to apple and orange annual first-differenced 

yield data. Current yield changes are found to be negatively affected by past yield 

changes. 

Time-varying dependence tests described in Appendix 2.3 recommend the 

use constant copulas for both apple and orange (Table 2.5). In order to select 

constant copulas that better fit our data, a series of model selection and goodness 

of fit (GoF) tests are conducted and results offered in Tables 1.6-1.7. We first 

present the log likelihood values for a wide range of copulas (Table 2.6). Those 

copulas yielding the highest log likelihood values are chosen for a more in depth 

analysis. These copulas are the static Gaussian copula, Student’s t copula, Clayton 

copula, and Plackett copula for both apples and oranges. The Chen and Fan (2006) 

model selection tests (Table 2.7) choose the Student´s t copula as a first choice 

and the Gaussian copula as the second choice for apple, and the Student´s t copula 

as a first choice and the Plackett copula as the second choice for orange (Gaussian 

is the third choice for orange). Results of GoF (Table 2.8) suggest selected models 
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correctly fit the data. According to test results, our analysis focuses on the 

Student’s t copula for both apples and oranges. The Gaussian copula is also 

considered, since it is a benchmark copula in economics. Parameter estimates for 

these two copulas are presented in Table 2.9.7 By using Canonical Vine Copulas, 

Gaussian and Archimedean copulas, Goodwin (2012) finds that Gaussian models 

underprice the risk between US corn and soybean yields and their prices. By using 

Canonical Vine Copulas, Gaussian and Archimedean copulas, Goodwin (2012) 

finds that Gaussian models underprice the risk between US corn and soybean 

yields and their prices.  Copula results show that prices and yields are negatively 

correlated. Hence, during good crop years, prices tend to decline, while during 

bad crop years, prices tend to be higher. Correlation estimated by Gaussian copula 

is around -0.55 and -0.32, corresponding to a kendall’s tau of -0.37 and -0.21, for 

apple and orange, respectively. Correlation estimated by Student’s t copula is 

around -0.57 and -0.36, corresponding to a kendall’s tau of -0.39 and -0.23, for 

apple and orange, respectively. In addition, the degree of freedom for Student’s t 

copula considered is 5.780 and 5.848 for apple and orange, respectively. This 

implies substantial joint fat tails. 

 

2.7. Monte Carlo Simulation Study and policy Implication 

 

A Monte Carlo exercise is conducted to simulate yields, prices and revenues, and 

derive the actuarially fair premium rate of implementing RA programs for apple 

7 By using Canonical Vine Copulas, Gaussian and Archimedean copulas, Goodwin (2012) finds 

that Gaussian models underprice the risk between US corn and soybean yields and their prices.  

 

28 
 

                                                           



and for orange in Spain. This premium rate is compared with the fair rate of a 

yield insurance scheme. Different scenarios consisting of different coverage levels 

(75% and 80%, represented as iλ  in equation 11) are considered and year 2010 is 

taken as the reference to conduct the simulation. The 2-dimensional static 

Student´s t copula is used to draw 100,000 revenue series. These draws represent 

the dependence structure between prices and yields, and are used to compute the 

expected loss and premium rate at different coverage levels. 

Simulated prices and yields can be obtained by undoing the differencing 

operation specified in equations (8) and (10). This produces expected yields and 

log prices. The exponential operator is used to derive price levels. The expected 

revenue is computed as the product of expected yields and 

prices ,2010 ,2010 ,2010*e e e
i i iR Y P= . Actual annual revenue is given 

by ,2010 ,2010 ,2010*i i iR Y P= .  The expected revenue loss and premium for a revenue 

insurance contract can be computed according to the formula: 

( ) ( ),2010 ,2010 ,2010 ,2010 ,2010( ) e e
i i i i iEL R E R R I R Rλ λ = − ≤  , where ( ),2010 ,2010

e
i iI R Rλ≤  is an 

indicator function that takes the value of 1 if the actual revenue is below the 

insured level, which will trigger insurance payments equal to ( ),2010 ,2010
e

i i iR Rλ − . 

The actuarially fair premium rate is the ratio between the expected loss and the 

liability. Both the expected loss and fair premiums are also computed for a yield 

insurance scheme. To maintain consistency, the same apple and orange yields 

obtained from the price revenue scheme are used and then multiplied by the 

predicted 2010 price to derive their euro value. The expected yield loss is given 

by: ,2010( )iEL Y = ( ) ( ),2010 ,2010 ,2010 ,2010 2010*e e e
i i i iE Y Y I Y Y Pλ λ − ≤   (see Goodwin and 

Ker 1998). 
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   As can be appreciated in Table 2.10, and compatible with our expectations 

and previous research, revenue insurance programs result in lower expected losses 

and lower premium rates than yield insurance programs. At a 75% coverage level, 

the actuarially fair premium rate for a revenue (yield) program for apple is 1.4% 

(2.8%). The actuarially fair premium rate for a revenue (yield) program for orange 

is 5.2% (5.4%).When coverage levels increase to 85%, premium rates for apple 

become 3.2% for revenue and 6.3% for yield insurance, and premium rates for 

orange become 8.7% for revenue and 9% for yield insurance. These rates are 

among the ranges provided in Bielza et al. (2009) for European agricultural 

insurance. From these results, we conclude that when shifting from yield 

insurance to a revenue insurance contract, the price of insurance will decline. 

Hence, launching revenue insurance programs in Spain may result in higher 

acceptance and demand of agricultural insurance programs.  

 

2.8. Concluding remarks 

While Spain is one of the EU countries with more advanced agricultural insurance 

schemes, it has not yet promoted revenue insurance that protects against revenue 

losses due to either yield or price declines. This article studies the economic 

consequences of launching agricultural revenue insurance contracts in Spain. 

Specifically it assesses whether agricultural revenue assurance (RA) contracts are 

likely to reduce the cost of purchasing insurance relative to yield insurance 

schemes. We focus our empirical analysis on the apple and orange sectors.   

Determining the actuarially fair insurance premium for any revenue 

insurance program requires joint modeling of the perils covered, i.e. price and 

yield risks. In this article, yields and price distributions are modeled 

30 
 



independently, and the Student´s-t and Gaussian copulas are used to capture the 

dependence structure between the two. Research results show a negative 

correlation between yields and prices. Monte Carlo Simulation allows deriving 

simulated yields, prices, expected losses and premium rates. Revenue insurance 

premium rates are compared to those of yield insurance. At the same coverage 

level, the former is found to be cheaper than the latter. Hence, launching revenue 

insurance programs in Spain may result in higher acceptance and demand for 

agricultural insurance programs. 
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Table 2.1.Unit root testing and summary statistics for first differenced logged 

price and yield series 

Unit root testing 

 Apple Orange 

 Prices Yields Prices Yields 

Augmented Dickey-Fuller test  

(p-value) 

-2.045 

(0.977) 

-2.109 

(0.980) 

-1.424 

(0.920) 

-2.837* 

(0.996) 

KPSS test  

(p-value) 

2.531*** 

(0.010) 

1.624*** 

(0.054) 

2.505*** 

(0.011) 

1.740*** 

(0.044) 

Summary statistics for first-differenced data 

 Apple Orange 

 Prices Yields Prices Yields 

Mean -0.019 0.081 -0.015 0.013 

Variance 0.077 2.760 0.045 0.121 

Standard Deviation 0.277 1.661 0.028 0.046 

Skewness  

(p-value) 

0.363 
(0.280) 

0.657* 
(0.051) 

0.621* 
(0.099) 

0.014 
(0.966) 

Excess kurtosis  

(p-value) 

1.049 
(0.132) 

1.243* 
(0.075) 

0.459 
(0.863) 

0.365 
(0.600) 

Doornik-Hansen test  

(p-value) 

4.260 
(0.119) 

4.996 
(0.082) 

3.314 
(0.191) 

1.288 
(0.525) 

Number of observations 57 

Note: *(**) (***) denotes statistical significance at the 10% (5%) (1%) level. The skewness and 

kurtosis and their significance tests are from Kendall and Stuart (1958). The Doornik–Hansen 

(2008) is the well-known test for normality, based on the skewness and kurtosis of univariate data.
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Table 2.2.AIC and BIC information criteria for univariate model selection for first differenced logged price and yield series 

 Yields Apple Yields Orange  Price Apple Price Orange  

 AIC BIC AIC BIC  AIC BIC AIC BIC 

 ARIMA(1,1,0) 203.239* 207.289* 11.437* 17.488*  ARIMA(1,1,0)-GARCH(1,1) 475.088* 479.139* 429.607* 433.658* 

ARIMA(2,1,0) 204.575 210.651 11.969 18.045 ARIMA(2,1,0)-GARCH(1,1) 476.295 482.371 430.474 436.550 

ARIMA(3,1,0) 205.383 213.484 12.490 20.592 ARIMA(3,1,0)-GARCH(1,1) 475.719 483.820 432.466 440.568 

ARIMA(4,1,0) 207.354 217.480 14.222 24.349 ARIMA(4,1,0)-GARCH(1,1) 477.0039 487.130 433.522 443.649 

ARIMA(5,1,0) 206.546 218.698 12.605 24.757 ARIMA(5,1,0)-GARCH(1,1) 478.67890 490.830 434.819 446.972 

          Note: *indicates the optimal model selected by the AIC and BIC criterion 
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Table 2.3.Parameter estimates for the univariate price models for apples and 

oranges 

Parameter Coefficient Standard error t-statistic 

 Apple - ARIMA(1,1,0)-GARCH(1,1) 

apcα  -0.015 0.029 -0.587 

1apα  -0.380 0.099 -3.806** 

apcω  0.024 0.006 3.702** 

1apω  0.222 0.112 1.967* 

2apω  0.358 0.108 3.297** 

 Log Likelihood  1.207 

 Orange - ARIMA(2,1,0)-GARCH(1,1) 

opcα  -0.039 0.024 -1.666 

1opα  -0.191 0.141 -1.355 

2opα
 

-0.161 0.027 -5.915** 

opcω  0.040 0.016 2.576** 

1opω  0.460 0.262 1.759* 

2opω  -0.182 0.142 -1.284 

 Log Likelihood  7.393 

Note: *(**) denotes statistical significance at the 10% (5%) level.  
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 Table 2.4.Parameter estimates for the univariate yield models for apple, and 

oranges 

Parameter Coefficient Standard error t-statistic 

Apple - ARIMA(1,1,0) 

ycα  0.109 0.200 0.545 

1yα  -0.493 0.121 -4.072** 

Log Likelihood -99.619 

Orange - ARIMA(1,1,0) 

ycα  0.017 0.037 0.462 

1yα  -0.615 0.102 -6.014** 

Log Likelihood -6.363 

Note: *(**) denotes statistical significance at the 10% (5%) level.  
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Table 2.5.Tests for time-varying dependence between differenced logged prices 

and differenced yields 

Sup test for rank correlation 

break 

ARCH LM test 

Anywhere p=1 p=5 p=10 

Apple 

0.099 0.310 0.776 0.862 

Orange 

0.741 0.507 0.683 0.236 

Note: This Table presents p-values from one-time break correlations and autocorrelation (AR) 

tests for time-varying dependence using 1000 bootstrap replications. The left panel test focuses on 

rank correlation breaks between u and v at some unknown date. The right panel is the ARCH LM 

test for time-varying volatility proposed by Engle (1982) that focuses on autocorrelation in 

dependence.  
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Table 2.6.Log likelihood values for static copulas 

 Apple Orange 

 Log Likelihood Log Likelihood 

Gaussian  10.051 2.943 

Clayton  -0.002 -0.001 

RotatedClayton  -0.002 -0.001 

Plackett  8.536 3.141 

Frank  -0.004 -0.001 

Gumbel  -3.659 -2.695 

RotatedGumbel  -3.543 -2.206 

´Student s t  10.409 3.282 

 Symmetrised Joe Clayton−  -0.964 -0.591 
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Table 2.7.Chen and Fan model comparison tests for Copula models 

 Gaussian  Clayton  Plackett  ´Student s t  

 Apple 

Gaussian  _    

Clayton  -2.359 _ _ _ 

Plackett  -2.459 -4.618 _ _ 

´Student s t  0.421 2.139 2.236 _ 

logCopula likelihood  10.051 -0.002 8.536 10.409 

Rank 2 4 3 1 

 Orange 

Gaussian  _    

Clayton  -1.239 _   

Plackett  -1.359 -2.601 _  

´Student s t  0.321 1.067 1.178 _ 

logCopula likelihood  2.943 -0.001 3.141 3.282 

Rank  3 4 2 1 

Note: This Table presents t-statistics from Chen and Fan (2006) model comparison tests for 

Copula models. 
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Table 2.8.The results from goodness of fit tests for copula models 

 CKS  CCvM  

Apple 

Gaussian  0.270 0.310 

´Student s t  0.250 0.250 

Clayton  0.030 0.000 

Plackett  0.260 0.550 

Orange 

Gaussian  0.960 0.930 

´Student s t  0.970 0.860 

Clayton  0.190 0.060 

Plackett  0.980 0.710 

Note: this Table presents p-values from GoF tests using 100 bootstrap replications. CKS and 

CCvM tests refer to the Kolmogorov-Smirnov and Cramer-von-Mises tests, respectively applied 

to the empirical copula of the standardized residuals.  
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Table 2.9.Gaussian and Student´s t copulas parameter estimates 

Parameter Coefficient Standard error t-statistic 

 Apple 

Gaussian  -0.553 0.099 -5.600** 

 log likelihood  10.051 

´Student s t  -0.570 0.101 -5.645** 

γ  5.780 1.517 3.810** 

 log likelihood  10.409 

 Orange 

Gaussian  -0.319 0.144 -2.204** 

 log likelihood  2.943 

´Student s t  -0.359 0.132 -2.716** 

γ  5.848 1.298 4.505** 

 log likelihood  3.282 

 Note :*(**) denotes statistical significance at the 10% (5%) level. 
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Table 2.10.Actuarially fair premium rate at 75% and 80% coverage. Student´s t  

copula. 

 75% coverage  80% coverage 

 Expected loss 

(Premium rate)  

(€ per ton) 

Premium rate 

(%) 

Expected loss 

(Premium rate)  

(€ per ton) 

Premium rate 

 (%) 

Apple Yields 58.224 2.777 132.042 6.294 

Apple Revenue 55.594 1.424 126.706 3.245 

Orange Yields 56.324 5.364 94.948 9.044 

Orange Revenue 40.772 5.203 68.352 8.723 
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Figure 2.1.Annual apple yield expresssed in tons per hectare and price data expressed in constant 2010 € per 100 kilogram (fig.A. Yield data; 

fig.B. Price data) 
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Figure 2.2.Annual orange yield expresssed in tons per hectare and price data expressed in constant 2010 € per 100 kilogram (fig.A. Yield data; 

fig.B. Price data) 
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Appendix 2.1. Specification of the copula and marginal distributions 

We specify the copula and marginal distributions in such a way that the parameters are 

estimated in different stages (Patton, 2006). This requires first, that parameters in one 

marginal distribution do not appear in another marginal distribution. Second, no cross-

equations can be imposed on these parameters. Under these assumptions, parameter 

estimation proceeds in two stages. Marginal distribution models are estimated in a first 

stage and the copula model in the second stage. Let’s parameterize the joint distribution 

function as follows: ( ) ( ( ), ( ); )x yH C F Gξ φ φ θ= , where ( , , )x yξ φ φ θ=  is the vector that 

contains both the marginal parameters ( , )x yφ φ , and the parameters characterizing 

dependence θ . The parameterized joint density can be expressed as: 

( , ; ) ( ; ) ( ; ) ( ( ; ), ( ; ); )x y x yh x y f x g y c F x G yξ φ φ φ φ θ= . The log likelihood function can be 

derived by taking logarithms of expression ( , ; )h x y ξ  and summing across observations 

( 1,...,=j T ): 

( )
1

( ; ) log ( ; ) +log( ( ( ; ), ( ; )1( , ; ) log ; ))t x t y t x

T

y
t

tf x g y c Fx x G yy
T

φ φ φ φ θξ
=

+= ∑ .  (A1.1) 

If parameters are indeed separable for the first and second margins and the copula, 

(A1.1) can be decomposed into marginal log likelihoods and the copula likelihood 

(Patton, 2006):  

( , ; ) ( ) ( ) ( , ; )x y x yx y ξ φ φ φ φ θ= + +    , (A1.2) 

where 
1

1( ) log ( ; )
T

x t x
t

f x
T

φ φ
=

≡ ∑ ,  
1

1( ) log ( ; )
T

y t y
t

g y
T

φ φ
=

≡ ∑ , and ( , ; )x yφ φ θ ≡  

1
log( ( ( ; ), ( ; ); )1 )t x t

t
y

T

c F x G y
T

φ φ θ
=
∑ .   
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Appendix 2.2. The two-stage copula estimation 

 

The optimization processes corresponding to the first and second stages are presented as 

follows:  



1
argmax log ( ; ),1

xx
T

xt
t

f xTφφ φ
=

= ∑  



1
argmax log ( ; ),1

yy
T

yt
t

g yTφφ φ
=

= ∑                       (A2.1) 



1
argmax ( ( ; ), ( ; ); ).log1

t x t y

T

t
F x G ycTθθ φ φ θ

=
= ∑  (A2.2) 

where xφ , yφ  are the parameter estimates of the marginal distributions of the variables 

x  and y , respectively. θ  is the copula estimated parameter vector. Following Patton 

(2013), Chen and Fan (2006) method is used to derive standard errors for our 

semiparametric copula models. 

 

Appendix 2.3.Time-varying dependence tests 

 

Two types of time-varying dependence tests are considered (Patton, 2013). The first 

type focuses on rank correlation breaks between u and v at some unknown date. We use 

the “sup” test statistic as recommended by Patton (2013), which can be computed as: 

* * *sup 1, 2,
,

max
L U

t t
t t t

B ϑ ϑ
 ∈ 

= − ,           (A3.1)                                                                          

 where 
*

* 1*1,
1

12 3
t

t t tt
t

u v
t

ϑ
=

≡ − −∑  and 
*

* 1*2,
1

12 3
t

t t tt
t

u v
T t

ϑ
=

≡ − −
− ∑  . In order to have enough 

observations to estimate the pre- and post-break parameters, the interval * *[ , ]L Ut t  is 

usually defined as [0.15 ,0.85 ]T T , where T is the number of observations. The critical 
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value of supB  can be determined through a bootstrap process defined in Patton (2013). 

The second time-varying dependence test that we apply is the ARCH LM test for time-

varying volatility proposed by Engle (1982). This test focuses on autocorrelation in 

dependence, captured by an autoregressive model such as the following: 

0
1

p

t t i t i t i t
i

u v u v eα α − −
=

= + +∑ , where te  is the error term. The null of a constant copula 

implies 0, 1i iα = ∀ ≥  , which can be tested through the following statistic.                                                  

( ) 1ˆ ˆˆ ˆpA R RV R Rαα α
−

′ ′= , where 0ˆ ,......, pα α α ′ ≡   , 10 p pR I× =    and V̂α   is the OLS 

estimate for the covariance matrix. A bootstrap process described in Patton (2013) is 

used to determine the test critical values.  

 

Appendix 2.4.The CvM and KS Goodness of Fit tests 

GoF tests assess to what extent an estimated copula model is different from the 

unknown true copula. Following Genest and Rémillard (2008), Genest et al. (2009) and 

Rémillard (2010), the Kolmogorov-Smirnov (KSc) and the Cramer-von-Mises (CvMc) 

tests are used in order to compare the estimated with the unknown copula. These tests 

can be expressed as follows:  

 

ˆ ˆmax ( , ; ) ( , )T Tt
KSc C u v C u vθ= − ,             (A4.1) 

 

{ }
2

1

ˆ ˆ( , ; ) ( , )
T

T T
t

CvMc C u v C u vθ
=

= −∑ . (A4.2)  
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3.1. Introduction 

The 2012 Human Development Index (HDI) ranked Niger 186 out of 187 

countries (UNDP, 2013). In 2010, subsistence rain-fed agriculture and stock rearing 

represented 41% of the Niger Gross Domestic Product (GDP), being the second most 

relevant economic activity after services and employing more than 80% of working-age 

adults (World Bank, 2013). FAO (2012) food security indicators suggest severe food 

security issues in Niger. The World Bank (2013) ranking of sources affecting Niger 

food production and security places drought and locus pests in the first instance, and 

price spikes in the second. The abandonment, during the 1980s, of interventionist 

policies that regulated cereal prices in Niger, jointly with severe market imperfections, 

worsened price stability and food security (Cornia et al., 2012). 

This article analyzes monthly millet producer and consumer price behavior in two 

relevant Niger millet markets: Maradi and Tilláberi for the period from 1990 to 2011. 

Millet has strategic relevance for both food security and Niger economy. It represents 

almost one-third of Niger cultivated land and around 40% of total Niger food supply 

(Cornia and Deotti, 2008), being thus a very relevant crop for food security in one of the 

poorest economies of the world (Brown et al., 2006). Millet is also key to household 

economies, since most Niger farm households are net buyers of millet and rely on their 

own production to partially meet their consumption needs. Hence, the impacts of millet 

price spikes on poor households can be relevant. 

Since price behavior can affect food producers and consumers differently, we 

assess how millet price changes are transmitted along the food marketing chain, from 

farmers to food consumers. While changes at the producer price level will affect farm 

household income, consumer price changes will impact on consumers’ purchasing 

capacity. The relevance of information on market price behavior has been shown both at 
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the theoretical (Stigler, 1961; MacMinn, 1980) and at the empirical level for grain 

markets in Niger (Aker, 2008a). Since Sen’s (1981) seminal work, scholars have 

devoted substantial attention to provide an explanation of how food crises can be 

prevented or mitigated by means of a better knowledge of the functioning of the 

markets.  

Guaranteeing availability and access to food is vital in less developed country 

(LDC) economies, and can be enhanced in a number of different ways. Local food 

reserves, for example, have been promoted by different organizations and small 

producer federations with the objectives of increasing farm income and food security. 

Despite their potential to promote food security, there is an important failure rate of 

local food reserve initiatives in LDCs. Guaranteeing sustainability of these reserves 

requires profound knowledge of producer and consumer markets, which are indicative 

of the purchase and sale prices of food reserves (Oxfam, 2012). This information is also 

key to different socio-economic agents such as producer and consumer associations, 

policy makers, or non-governmental organizations (NGOs). 

The World Bank (2013) and Cornia et al. (2012)  distinguish between two 

different time frames, characterized by different Niger millet price behavior. Interannual 

millet price changes are found to be relatively small. In contrast, price changes are 

substantial within a crop year. Relevant millet price spikes occur in the short-term and 

in a sequence of two to three years. Distinguishing between short and long term price 

behavior is thus relevant from a public policy and private management perspectives. 

Some economic and political instruments allow coping with short-run price fluctuations, 

but have limited applicablity as a long-term solution: seasonal export controls, food 

distribution by agencies and public reserves. In contrast, other more systematic and far-

reaching mechanisms are more suited to influence long-run price patterns. These 
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include supply side policies such as land reform policies that change land availability 

and distribution; promotion of high -yield varieties, fertilizers or irrigation mechanisms; 

commodity trade agreements; or buffer stocks. Demand-side interventions such as 

transfers to food consumers and other policies to increase the incomes of social groups, 

also shape log-run prices.  

Our price transmission analysis assesses dependence between producer and 

consumer markets both in the long and in the short-term. Inter-annual millet price 

stability in Niger (World Bank, 2013; Cornia et al., 2012) suggests the existence of a 

long-run parity between the prices. Well known cointegration and error-correction 

techniques are used to identify this equilibrium, to assess response to disequilibriums 

from this parity, and to study weak exogeneity with respect to the long-run equilibrium 

in order to identify price leaders and followers. Through error-correction modeling, the 

deviation of the current prices from their long-run relationship is fed into the short-run 

dynamic models. Short-run millet price instability recommends the use of flexible 

analysis instruments that soundly capture the joint distribution function of producer and 

consumer prices. Correlation techniques such as the Spearman’s rank and Kendall’s tau 

correlation coefficients have been widely used to study dependence. An important 

limitation intrinsic to these techniques is that a single correlation coefficient is not 

usually enough to characterize dependence over the whole range of the distribution. For 

example, dependence in the extreme tails of the distribution may be different from 

dependence in the central areas and may be more relevant from en economic 

management point of view, i.e., economic agents and policy makers might be more 

interested in the dependence of prices during extreme weather or market events than 

during more frequent and less drastic changes.  
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Recent research has suggested the use of statistical copulas to assess dependence. 

Copulas are statistical instruments that combine univariate distributions to obtain a joint 

distribution (multivariate distribution) with a particular dependence structure. A key 

advantage intrinsic to copulas is that they are based on univariate distributions, instead 

of multivariate ones. This is specially important given the scarcity of multivariate 

distributions available from the statistical literature. These multivariate distributions 

include the normal and the t-Student and have been shown as inappropriate to assess 

behavior of the type of data we intend to study.     

This paper is organized as follows. In the next section, a brief description of the 

millet market in Niger is offered. In section 3, a literature review of vertical price 

transmission analyses using time-series econometric techniques is presented. In section 

4, the methodological approach is described. The fifth section is devoted to the 

empirical implementation to assess dependence between producer and consumer prices. 

The last section in this article offers the concluding remarks. 

 

3.2. Millet market in Niger  

The global financial crisis has led to a global economic recession and to increased 

and unsTable commodity prices. This has exacerbated food security problems that have 

hit poor countries specially hard. Around 60 % of Niger population lives below the 

poverty line (Geesing and Djibo, 2006). Niger population relies on subsistence 

agriculture which has deteriorated in recent years and that satisfies 30 % of the 

country’s needs (WHO, 2006). Food purchases represent 63 % of total household 

expenses (SANOGO, 2009). In 2012 about 40 % (6.4 million people) of Niger’s 

population was food insecure (UNOCHA, 2013) and undernourishment affected 12.6 % 

of the population (FAO, 2012).  
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Cereals constitute the most relevant world food staple. World production of 

cereals in 2010 was 2.5 billion tons on an extension of land of 693 million hectares.  In 

the same year, global cereal exports and imports were on the order of 340.3 and 336.3 

million tons, respectively (FAOSTAT, 2010). In 2010, Africa produced 163 million 

tons, representing an increase on the order of 15 % relative to 2005 and less than 7 % of 

worldwide production. In the same year, African cereal exports and imports were 4 and 

66.4 million tons, respectively, evidencing the continent’s deficit in food production 

(FAOSTAT, 2010). Among the African countries, Niger cereal production expanded 

from 3.7 million tons in 2005 (FAOSTAT, 2005) to 5.2 million tons in 2010, 

representing an increase of around 71 % (FAOSTAT, 2010) and around 3 % of all 

cereals produced in Africa.  

Millet is the staple food for more than one-third of the world's population, and 

the sixth most relevant cereal in world production (FAOSTAT, 2012). Global millet 

production expanded from 31 million tons in 2005 (FAOSTAT, 2005) to 32.5 million 

tons in 2010 (FAOSTAT, 2010). In 2010, international exports and imports of millet 

were estimated to be 357.3 and 470 thousand tons, respectively (FAOSTAT, 2010). 

Millet is extremely important for African economies that in 2010 devoted 21.5 million 

hectares to produce 16.7 million tons (FAOSTAT, 2010). Millet production is 

distributed among 37 countries, being Niger the third largest global producer after India 

and Nigeria. These three countries represent around 12 % of total world millet 

production (FAOSTAT, 2010). The largest African producers are Nigeria (31.3 %), 

Niger (23.3 %) and Mali (8.3 %) (FAOSTAT, 2010). The largest harvested millet area 

is found in Niger with 7.3 million hectares (representing 24 % growth rate since 2005), 

Nigeria with 4.4 million hectares and Sudan with 2.0 million hectares. African exports 
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(imports) of millet were estimated to be on the order of 4.4 (141.3) thousand tons in 

2010 (FAOSTAT, 2010).  

Millet represents the most relevant food staple for Niger’s population of more 

than 16 million people. It is further the largest cereal crop produced in the country, 

representing 73 % of all cereals in 2010 (FAOSTAT, 2010).  In 2005, Niger production 

was 2.7 million tons and grew to be 3.8 million tons in 2010, an increase of around 69 

%. In the same year, millet consumption was around 3.8 million tons as well (USDA, 

2010). Niger is the third largest world importer of millet, after Sudan and Philippines, 

with around 43 thousand tons. 

Our study focuses on millet price behavior in two Niger markets: Maradi and 

Tillabéri. While Maradi represents a region where there is excess millet production, 

Tillabéri is a consumption zone (Oxfam, 2013).  Maradi’s population is around 3.3 

million people (MAE, 2012), 16.2 % of which suffers from acute malnutrition 

(UNWFP, 2012). Maradi market is the first largest producer and consumer market of 

cereals in Niger, with 1.2 million tons and 767 thousand tons, respectively (MAE, 

2012). Millet, the first cereal in terms of Maradi production, reached 807 thousand tons 

(68 % of total cereal production) and 1.5 million hectares in 2012 (MAE, 2012). 

Tillabéri has a population of 2.7 million people (MAE, 2012) and around 16.6 % of the 

population suffers from acute malnutrition (UNWFP, 2012). Tillabéri production of 

cereals is 821 thousand tons.  Millet production in Tillabéri reached 692 thousand tons 

in 2012, grown on an area of 1.4 million hectares (MAE, 2012).       

The most relevant actors in the Niger cereal marketing chain are: farmers and 

traders (including retailers, intermediaries, wholesalers and semi-wholesalers), 

transporters and consumers. Local food supply is usually transferred from farmers to 

intermediaries and to local wholesalers. Through a system of traditional markets, 

60 
 



production is then sold to wholesalers, retailers and consumers (Aker and Fafchamps, 

2013). Around April, local supplies are depleted and traders usually start importing 

from neighboring countries such as Nigeria, Mali, Burkina Faso and Benin, at prices 

usually above Niger domestic prices. Only during the pre-harvest period import prices 

can be cheaper than the domestic prices (Aker, 2008b). Defficient infrastructures, costly 

export procedures and scarce product availability for export, explain the meager 

relevance of the international millet market and the scarce influence of this market on 

Niger millet prices.  

Grain traders usually trade outputs, not inputs, and only store for short periods of 

time (less than a month). Costly search, information asymmetries and price dispersion 

across markets characterize the millet market in Niger (Aker, 2008a). Based on a survey 

of traders in Niger, Aker (2008a) computes the four-firm concentration ratio (CR4). 

Results suggest a rather competitive structure of Niger grain markets, with most markets 

having CR4 below 25%.  

       

3.3. Literature review 

Many empirical analyses have studied how prices are transmitted from producers 

to final consumers. Two main methodological approaches have been followed for such 

purpose: structural analyses that rely on economic theory, and time-series empirical 

analyses that identify empirical regularities in the data. Our work will follow the second 

methodological approach. Sound econometric analysis of time series data requires 

investigating their statistical properties. Empirical research has found that these data 

often violate the most common assumptions of conventional statistical inference 

methods, which may lead to obtaining completely spurious results. Time-series data 

have usually been found to be non-stationary and, when related, to share a tendency to 

61 
 



co-move in the long-run (Myers, 1994). Cointegration and error correction models 

(ECM) have been introduced in the literature (Engle and Granger, 1987) to characterize 

nonstationary and cointegrated data and inform both on their short and long-run 

dynamics. Time-varying and clustering volatility, another common characteristic of 

time-series, is typically modeled through generalized autoregressive conditional 

heteroskedasticity (GARCH) models. 

The work by Chang (1998) relies on Engle and Granger (1987) cointegration 

techniques, to study long run relationships among Australian beef prices at the farm, 

wholesale and retail levels. Evidence is found that all three prices are non stationary and 

maintain a long-run equilibrium relationship, being the retail price, the one that drives 

price patterns. Price time series may also be characterized by asymmetric adjustment to 

long-run equilibrium. Recent literature in this area has relied on smooth or discrete 

threshold time-series models that usually allow for autoregressive and error correction 

patterns. The work by Abdulai (2002) analyzes the relationship between producer and 

retail pork prices in Switzerland, by employing threshold cointegration tests. Results 

indicate that price transmission between producer and retail levels is asymmetric, since 

increases in producer prices are transferred more rapidly to retailers than producer price 

declines. Using an asymmetric error-correction model, Von Cramon-Taubadel (1998) 

obtains the same results for the German pork market. Vavra and Goodwin (2005) use 

threshold vector error correction models (TVECM) to assess the links between retail, 

wholesale and farm level prices for the US beef, chicken and egg markets. Research 

results indicate that there are significant asymmetries in response to positive and 

negative price shocks. Asymmetries are apparent both in terms of speed and magnitude 

of the adjustment.  
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Evidence of asymmetric price transmission along the food marketing chain is 

found by Seo (2006), Saikkonen (2005), Goodwin and Holt (1999), Serra and Goodwin 

(2003), Meyer and von Cramon-Taubadel (2004), among others. TVECM are used by 

Pozo et al. (2011) to examine price transmission among farm, wholesale and retail US 

beef markets. Results show that there is no evidence of asymmetric price transmission 

in any of the models. To the best of our knowledge, the work by Gervais (2011) is the 

first paper focusing on potential nonlinearities in both the long- and short-run price 

dynamics within a cointegration framework. Gervais (2011) studies the US pork 

marketing chain, from farm to consumer markets. Results indicate the importance of 

testing for linearity in the long-run relationship between prices. Results also show that a 

decrease in farm prices is eventually transferred to consumers. 

More recently, other methodological approaches based on the use of statistical 

copulas have started to gain interest among economists interested in price transmission 

analyses. These methods rely on direct examination of the joint probability distribution 

function of the variables that are being studied and pay special attention to the nature of 

jointness between these variables. The work by Serra and Gil (2012) studies dependence 

between two pairs of prices: crude oil and biodiesel blend prices, and crude oil and 

diesel prices in Spain, with a special focus on this dependence during extreme market 

events. Statistical copulas are used for such purpose. Results prove asymmetric 

dependence between crude oil and biodiesel prices, which protects consumers against 

extreme crude oil price increases. Diesel prices, in contrast, equally reflect crude oil 

price increases and decreases. The work by Goodwin et al. (2011) studies the joint 

distribution of four North American lumber prices in different markets (Eastern Canada, 

North Central US, Southeast US, Southwest US). Copula models are used to obtain the 

correlation between prices at the geographical locations considered. Results indicate 
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that market adjustments are generally larger in response to large price differences which 

reflect more substantial disequilibrium conditions. 

The unpublished article by Qiu and Goodwin (2013) relies on the application of 

static and dynamic copula models to the empirical study of links between farm-retail 

and retail-wholesale prices for US hog/pork markets. Results indicate that farm and 

wholesale markets are more closely related to each other, while retail price adjustment 

is less dependent on the other two markets. Farm-retail and retail-wholesale price 

adjustments have relatively constant dependence structures. Also, results confirm the 

existence of dynamic and asymmetric behavior in price co-movements between the 

farm and retail markets. Positive upper and zero lower tail dependencies provide 

evidence that big increases in farm prices are matched at the retail level, while negative 

shocks at the farm level are less likely to be passed on to consumers. Our paper 

contributes to the literature by examining the dependence between producer and 

consumer markets in Niger, a country characterized by its insufficient food production 

and where food security issues are very relevant, using statistical copulas. To our 

knowledge, this is the first attempt to study vertical price transmission in LCD countries 

using this methodology.  

 

3.4. Methodology 

This analysis uses statistical copulas to characterize dependency along the food 

marketing chain in Niger millet markets. While the use of copula functions is common 

within the financial economics literature (see, for example, Patton, 2006 and 2012; or 

Parra and Koodi, 2006), empirical studies that use copulas to assess dependency along 

the food marketing chain are very scarce. Copulas provide a natural way to measure 

dependency between two or more variables. A copula function is a multivariate 
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distribution function defined on the unit cube [ ]0,  1 n , with uniformly distributed 

marginals. Copulas are based on the Sklar’s (1959) theorem that shows that multivariate 

distribution functions characterizing dependence between n variables, can be 

decomposed into n univariate distributions and a copula function, the latter fully 

capturing the dependence structure between variables. This contrasts with the use of 

correlation coefficients between random variables as a measure of dependence. While 

correlations are highly popular due to the ease with which they can be calculated, they 

can be very misleading if random variables are not jointly elliptically distributed.  

By focusing on modeling univariate distributions, the Sklar's theorem usually 

leads to the formulation of better models (Patton, 2006). Let xF  and yF  be the univariate 

distribution functions of 2 random variables ( , )x y . H  is assumed to represent the joint 

distribution function. According to the Sklar’s theorem, there exists a copula ( ).C  that 

can be expressed as (Embrechts et al., 2001) 

 

( , ) ( ( ), ( )) ( , )x yH x y C F x F y C u v= = . (1) 

 

where ( ).C  is an 2-dimensional distribution function with uniformly distributed 

margins (0,1),  1,...,=iu Unif i n . The joint density function can be defined as: 

 

( , ) ( ) ( ) ( , )x yh x y f x f y c u v= , (2) 

 

where c  is the copula density and ( )xf x  and ( )yf y  are the univariate density functions 

of the random variables. 
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Different copula specifications represent different dependence structures. Our 

analysis will consider both elliptical (Gaussian copula) and Archimedean (Symmetrized 

Joe-Clayton-SJC copula) copulas. Elliptical copulas are based on the elliptical 

distribution, while Archimedean are a group of associative copulas that have the 

advantage of reducing dimensionality issues during the estimation process.  Copulas 

may also be categorized as static and time-varying. A static copula implies parameter 

constancy over time, while a dynamic copula allows the parameters to change with 

changing environment. In order to ensure that the copulas correctly fit our data, a series 

of time-varying dependence and goodness of fit (GoF) tests are conducted.  

Tests for time-varying dependence are used to determine whether time-varying 

copulas need to be considered. Two types of time-varying dependence tests are applied 

(Patton 2013). The first focuses on rank correlation breaks between u and v at some 

unknown date and is based on the “sup” test statistic (Patton, 2013): 

 

* * *sup 1, 2,
,

max
L U

t t
t t t

B ϑ ϑ
 ∈ 

= − ,           (3)                                                                          
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ϑ
=

≡ − −
− ∑  . In order to have enough 

observations to estimate the pre- and post-break parameters, the interval * *[ , ]L Ut t  is 

usually defined as [0.15 ,0.85 ]T T , where T is the number of observations. The critical 

value of supB  can be determined through a bootstrap process defined in Patton (2013). 

The second test is the ARCH LM test for time-varying volatility (Engle, 1982). This test 

focuses on autocorrelation in dependence, captured by an autoregressive model such as 

the following: 0
1

p

t t i t i t i t
i

u v u v eα α − −
=

= + +∑ , where te  is the error term. The null of a 
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constant copula implies 0, 1i iα = ∀ ≥  , which can be tested through the following 

statistic: ( ) 1ˆ ˆˆ ˆpA R RV R Rαα α
−

′ ′= , where 0ˆ ,......, pα α α ′ ≡   , 10 p pR I× =    and V̂α   is 

the OLS estimate for the covariance matrix. A bootstrap process described in Patton 

(2013) is used to determine the test critical values.  

Copulas considered in our empirical analysis are restricted by the time-varying 

dependence test results, providing evidence in favor of static copulas. To model price 

dependency along the food marketing chain, the Gaussian copula, the benchmark copula 

in economics, is considered. As noted in the literature review above, many authors have 

suggested the presence of asymmetries in vertical price transmission within the food 

marketing chain. These asymmetries tend to be more pronounced as we move to 

extreme tails of the distribution (i.e., when price increases or declines are larger), which 

we capture through the static symmetrized Joe-Clayton (SJC) specification. SJC allows 

for asymmetric dependence in any direction and nests symmetry as a special case (Ning, 

2010). 

Since our analysis is based on price pairs (producer and consumer Niger millet 

markets), 2n = . A bivariate Gaussian copula can be expressed as: 

 

   
( ) ( )12

1 1
( ) ( )

2 2
12

22
1212

( , ; ) ( 2 )1 exp
2 12 1

− −Φ Φ

−∞ −∞

 
 
 
 

=
− − +

−−
∫ ∫

u vGa
R Ru v r R rs sC drds

RRπ
, (4)         

          

where 12R  is the correlation coefficient of the corresponding bivariate normal 

distribution, 12 11 R <− < , and Φ  denotes the univariate normal distribution function. A 

drawback of the Gaussian copula is that it assumes that variables u  and v  are 

independent in the extreme tails of the distribution. Hence the Gaussian copula does not 
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have lower and upper tail dependence. It thus represents dependence in the central 

region of the distribution.  

The Symmetrized Joe-Clayton (SJC) copula is an extension of the Joe-Clayton 

copula which can be expressed as  

 

( ) ( )
1/

,

1/

1 1 1 1 1 1( , ) 1
−− −                  

− − − + − − −= −U L
k k

k

jc u vC u v
γγ γ

τ τ
  (5)  

   

where 21/ log (2 )Uk τ= − , 21/ lo ( )g= − Lγ τ , (0,1)Uτ ∈ , and (0,1)Lτ ∈ . Joe-Clayton 

copula has two parameters, Uτ and Lτ , that measure the upper and lower tail 

dependence, respectively. This copula characterizes tail dependency, i.e., it models price 

behavior during extreme events. More specifically, it models the probability that 

relevant increases (declines) in the prices studied occur together. The Joe-Clayton 

copula implies an asymmetric dependence, even when Uτ = Lτ . The Symmetrized Joe-

Clayton (SJC) copula allows overcoming this problem (Patton, 2006) and can be 

specified as: 

 

( ), , ,
( , ) 0.5 ( , ) (1 ,1 ) 1U L U L U L

sjc jc jcC u v C u v C u v u vτ τ τ τ τ τ= + − − + + − .                    (6) 

 

Patton (2006) shows that consistent and asymptotically normal copula 

parameters can be obtained through a two-stage estimation procedure. In the first stage, 

marginal distribution models are specified and estimated. In the second stage, 

parameters of the copula model are estimated conditional upon the results from the first 

step. The two-stage estimation technique can be formalized as follows (Patton, 2012b):  
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where xφ  and yφ  represent the parameter estimates of marginal distributions. θ  is 

the copula estimated parameter vector. The most attractive feature of copula functions is 

that the marginal distributions do not necessarily have to come from the same families. 

Marginal models allow deriving standardized, independent and identically distributed 

( . . )i i d  residuals from the filtration. The . .i i d  residuals are then transformed to 

(0,1)Unif  using the non-parametric empirical cumulative distribution function (CDF). 

The empirical CDF method is specially convenient when the true distribution of the data 

is not known.   

 The theory of copula applies to stationary time-series. The Dickey and Fuller 

(1979), Perron (1997) and KPSS (1992) tests used to test for unit roots are run on our 

data. Results support the presence of a unit root in both millet producer and consumer 

prices. The price pairs considered are also found to maintain equilibrium parity by 

implementing the Johansen (1988) cointegration test. The univariate models for the 

producer and consumer price pairs considered (Pp, Pc) are consequently specified as an 

error-correction type of model (ECM) (equations 9 and 11). Model residuals are 

modeled by means of a GARCH (1,1) specification in order to allow for time-varying 

and clustering volatility (equations 10 and 12).  

 

69 
 



2 2

1
1 1

, ,, ,x t xxi xyi
i i

xx t x tx t i y t iP P Pδα λ α α ε−
= =

− −∆ = + + ∆ + ∆ +∑ ∑            (9) 

2 2 2
, 1 , 1 2 , 1xx t x x t x x tσ ω ω ε ω σ− −= + +                                                               (10) 

 

2 2

1
1 1

, ,, ,y t yxi yyi
i i

yy t y tx t i y t iP P Pδα λ α α ε−
= =
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2 2 2
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where , ,jt j x yP =∆  is the first difference of logged consumer and producer prices, 

, , , , ,j n i j n x yα =  are short-run dynamic parameters that measure the influence of past 

price differences on current differences. The error correction term derived from the 

long-run equilibrium relationship is represented by tδ , thus , ,j j x yλ =  measures the 

long-run price dynamics. , ,jt j x yε =  are normally distributed error terms.  

Conducting goodness of fit tests on the marginal models is essential for copula 

model estimation. The LM tests of serial independence of the first four moments of 

tU and tV  are estimated by regressing ( )k

tu u− and ( )k

tv v−  on 10 lags for each price 

series, for k= 1,2,3,4. We also use the Kolmogorov-Smirnov (KS) test to make sure that 

the transformed series are (0,1)Unif .  
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3.5. Empirical analysis 

Intermon Oxfam made available monthly millet producer prices in Maradi ( MyP ) 

and consumer prices in Maradi and Tillabéri ( MxP , TxP , respectively) for the period from 

January 1990 to December 2010, yielding a total of 252 observations. Consumer prices 

for millet are available for both markets, given their economic relevance as 

consumption centers. However, producer  price data are only available for the Maradi 

market. Conversations with Oxfam experts in Niger economy, recommended to take the 

Maradi producer price as representative of producer prices in both Maradi and Tillabéri, 

and asses the links between two pairs of prices: Maradi producer price – Maradi 

consumer price ( MyP , MxP ) and Maradi producer price – Tillabéri consumer price 

( MyP , TxP ). We follow this recommendation. Prices are expressed in Central African 

Francs (CFA) per kilo and studied in pairs. Logarithmic transformations of price series 

are used in the empirical analysis. Table 3.1 presents summary statistics for first 

differenced logged prices series. Standard unit roots tests were carried out and results, 

available from authors upon request, show that price time series are non-stationary.  

Johansen’s (1988) cointegration tests are used to assess the existence of an 

equilibrium relationship between the pairs of prices studied. Test results suggest that 

there is a long-run relationship between producer prices in the Maradi millet market, 

with Maradi and Tillabéri consumer prices (see Table 3.2). This is compatible with 

Aker 2008b) who found high integration levels among Niger cereal markets. Existence 

of cointegration suggests the existence of trade flows from producing areas to 

consumption markets, or from surplus to deficit markets, which helps combating food 

security. Since prices are expressed in logarithms, cointegration parameters can be 

interpreted as price elasticities. Price transmission elasticities are specially strong in the 
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Maradi market (0.96). The price transmission elasticity between the Maradi producer 

and Tillabéri consumer markets is lower and equal to 0.73. It is not surprising to find 

higher correlation when producer and consumer markets coincide geographically. In 

such a scenario, transaction costs (including transportation costs) are likely to be lower, 

facilitating price transmission. Hence, consumers in surplus areas are more likely to be 

affected by long-run supply shifts causing price-level changes, than consumers located 

in deficit areas. A chi-square test of weak exogeneity for long-run parameters within the 

Johansen’s framework, shows that consumer prices are responsible for maintaining such 

equilibrium by responding to the deviations that can occur (results are available from 

authors upon request). The fact that Maradi producer price causes Tillabéri consumer 

price is also compatible with Aker (2008b) and Araujo et al. (2010) findings that 

markets located in surplus regions are useful for predicting price changes in other 

markets. As a result, producer prices may be considered as price leaders and consumer 

markets should be classified as price-followers. This is indicative that the estimated 

models are useful to predict consumer price behavior, but not producer price patterns. 

These results also suggest that supply enhancing policies are likely to be more effective 

in mitigating food security and price instability issues than demand policies. This is in 

contrast with the functioning of most developed country food markets, where producer 

prices are usually found to be endogenous, while consumer prices are weakly 

exogenous (Goodwin and Holt, 1999; Heien, 1980; Ward, 1982; Lloyd et al., 2001; 

2006; Serra and Goodwin, 2003). 

 Marginal models are specified as univariate error-correction type of models. 

Results from univariate ECM-GARCH model estimation are presented in Tables 3.3 

and 3.4 for the pairs of prices considered. Short-run parameters show that current 

changes in Maradi producer prices have a relevant autoregressive component. As noted 
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above, Maradi producer prices are exogenous for long-run parameters. The conditional 

variance equation shows that past market shocks contribute to increase Maradi producer 

price volatility. GARCH(1,1) model parameters are all positive, which indicates that in–

sample and out–sample variance estimates are positive.  Since 1 2 1Mp Mpω ω+ < , we 

can conclude that the GARCH process is stationary, being the unconditional long-run 

variance ( )2
1 2/ (1 )Mp Mp Mp Mpσ ω ω ω= − −  around 0.015. 

Current changes in the Maradi consumer prices are explained by past changes in 

the Maradi producer market, as well as by the deviations from the long - run equilibrium 

(Table 3). It is thus the retail market that makes the necessary short-run price 

adjustments so that the millet market is in equilibrium. The conditional variance 

equation shows that both past market shocks and volatility contribute to destabilize the 

consumer market in Maradi. The univariate GARCH (1,1) model process provides 

evidence of a stationary volatility process, and GARCH parameters lead to an 

unconditional variance 2
Mcσ = 0.013. Price volatilities in producer and consumer 

markets are thus very similar. 

In the next lines, we discuss Tillabéri millet price behavior derived from the ( MyP , 

MxP ) price pair analysis, presented in Table 3.4 Tillabéri consumer price level changes 

depend on their own lags, as well as on disequilibrium from the long-run parity. 

Relative to Maradi consumer price adjustment, Tillabéri consumer price changes show a 

slow adjustment to disequilibrium, which is again indicative that geographical distance 

slows price transmission. Supply shortage characterizing Tillabéri market is probably 

the underlying reason of high consumer price instability: the unconditional long-run 

variance for Tillabéri consumer prices is 2
Tcσ = 0.025.  
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The Ljung-Box test results presented in Tables 3.3 and 3.4 allow accepting the 

null of no autocorrelated residuals. The LM tests (Table 3.5) implemented to test for the 

independence of the first four moments of the transformed variables provide evidence 

that the models are well specified. We also applied the Kolmogorov–Smirnov (KS) test 

that confirms that the transformed series are Unif (0,1) (Patton, 2006). Table 3.6 

presents results of the two time-varying dependence tests described above, which 

recommend the use constant copulas for both pairs of prices. Parameters estimated for 

the constant copulas are presented in Tables 3.7 and 3.8. 

Copulas are a flexible modeling alternative to assess short-run dependency 

among the two pairs of prices considered. The parameters from static Gaussian copula 

(Table 3.7) measure dependency in the central region of the bivariate distribution. They 

provide evidence that there is a positive short-run correlation between prices at different 

market levels.  As a result, an increase in Maradi producer prices leads to an increase in 

Maradi and Tillabéri consumer prices, being the link specially relevant when the two 

markets are geographically close. This is compatible with cointegration and error-

correction model results.  

Previous research on vertical price transmission shows that retailers tend to pass 

price increases on to consumers more quickly and completely than price declines, 

specially when the magnitude of the changes is relevant. The SJC studies dependency in 

the extreme tails of the distribution and allows for asymmetric price behavior. The 

upper and lower tail dependence parameters show dependency during extreme increases 

and extreme decreases of prices. ( MyP , MxP ) price pair shows a stronger dependence 

during market price increases (the correlation coefficient is 10 % higher for market 

upturns, relative to downturns), i.e., price increases are more likely to occur together 

than price declines. Hence, retailers are more likely to increase prices than to reduce 
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them. Upper and lower tail dependence displayed by the ( MyP , TxP ) price pair are both 

statistically significant (see Table 3.8), being the lower tail 36 % higher than the upper 

tail. Hence, increases in Maradi producer prices will be passed on to Tillabéri 

consumers more slowly than price declines. Geographical distance is further found to 

increase the size of the asymmetries. 

 

3.6. Concluding remarks  

Developing countries’ population suffers from poverty, food insecurity and 

nutritional deficiencies. While food price-level transmission along the marketing chain 

in developing economies has been widely assessed by previous research, less attention 

has been paid on less developed countries, mainly due to a lack of price data. Since the 

food price crisis in 2007/2008, economic research has paid substantial attention to food 

price behavior, given the significant impacts that it has at the political, economic and 

social levels. Our work focuses on characterizing millet price behavior along the Niger 

food marketing chain. 

The contribution of this paper to the literature is twofold. On the one hand, it 

studies price behavior of food staples in less developed countries, thus enlarging a 

literature that is rather scarce due to data limitations. Second, it does so by using 

statistical copulas, a method that has just started to be used in vertical price analysis. An 

attractive feature of copula models is that they are specially suited when no obvious 

choice for the multivariate density characterizing price dependence exists. Copulas 

allow researchers to focus on modeling univariate distributions instead of the 

multivariate ones, which usually leads to the construction of better models. 

The analysis focuses on the dependence between two pairs of prices: Maradi 

producer and consumer markets, and Maradi producer and Tillabéri consumer markets. 
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While Maradi represents a region where there is excess millet production, Tillabéri is a 

deficit zone. Results from the long-run price behavior analysis show that Niger millet 

markets are dominated by producer markets instead of consumer prices. Retail prices 

are the prices that guarantee maintenance of the long-run equilibrium relationship. This 

contrasts with market price behavior in developed countries, usually found to be 

dominated by retail chains. These results also suggest that supply enhancing policies are 

likely to be more effective in mitigating food security and price instability issues than 

demand policies. Geographical distance between producer and consumer markets may 

however reduce the effectiveness of the adopted policies. Price dependency in the short-

run is also positive and declines with geographical distance. While consumers in Maradi 

face price increases more quickly than price declines, consumers in Tillabéri benefit 

from an asymmetry that favors quicker price declines. The already high food prices in 

non-producing areas are likely to underlie this behavior. Results also show that 

asymmetries affect short-run price dependencies, with the characteristics of these 

asymmetries depending on the markets studied. 

76 
 



References 

Abdulai, A., 2002. Using Threshold Cointegration to Estimate Asymmetric Price 

Transmission in the Swiss Pork Market. Applied Economics 34, 679-687. 

Aker, J., 2008a. Does Digital Divide or Provide? The Impact of Cell Phones on Grain 

Markets in Niger. Bureau for Research and Economic Analysis of Development 

(BREAD) Working Paper No. 177. 

Aker, J., 2008b. Rainfall Shocks, Markets and Food Crises: Evidence from the Sahel. 

Working paper no 157. Washington DC: Center for Global Development. 

http://www.cgdev.org/publication/rainfall-shocks-markets-and-food-crises-

evidence-sahel-working-paper-157. Accessed September 2013. 

Aker, J., Fafchamps, M., 2013. Mobile Phone Coverage and Producer Markets: 

Evidence from West Africa. Centre for the Study of African Economies (CSAE) 

Working Paper Series 201-09. University of Oxford, United Kingdom. 

Araujo, C., Araujo-Bonjean, C., Brunelin, S., 2010. Alert at Maradi: Preventing Food 

Crises in West Africa by Using Price Signals. Paper presented at the 2011 

European Association of Agricultural Economists, Zurich, Switzerland, August 

30 - September 2, 2011. 

Brown, M.E., Pinzon, J.E., Prince, S.D., 2006. The Effect of Vegetation Productivity on 

Millet Prices in the Informal Markets of Mali, Burkina Faso and Niger. Climatic 

Change 78, 181-202. 

Chang, H.S., Griffith, H., 1998. Examining long-run relationships between Australian 

beef prices, The Australian Journal of Agricultural and Resource Economics 42, 

369-387. 

77 
 

http://www.cgdev.org/publication/rainfall-shocks-markets-and-food-crises-evidence-sahel-working-paper-157
http://www.cgdev.org/publication/rainfall-shocks-markets-and-food-crises-evidence-sahel-working-paper-157


Cornia, G.A., Deotti, L., 2008. Niger’s 2005 Food Crisis: Extent, Causes and 

Nutritional Impact. EUDN/WP Working Paper 2008-15. Namur: European 

Development Research Network. 

Cornia, G.A., Deotti, L., Sassi, M., 2012. Food Price Volatility over the Last Decade in 

Niger and Malawi: Extent, Sources and Impact on Child Malnutrition. Working 

paper no 2012-002. New York: United Nations. 

Dickey, D.A., Fuller, W.A., 1979. Distribution of the estimators for autoregressive time 

series with a unit root. Journal of the American Statistical Association 74, 427-

431. 

Embrechts, P., Lindskog, F., McNeil, A., 2001. Modeling Dependence with Copulas 

and Applications to Risk Management. Department of Mathematics, Zurich.  

Engle, R.F., 1982. Autoregressive conditional heteroscedasticity with estimates of the 

variance of UK inflation. Econometrica 50, 987-1007. 

Engle, R.F., Granger, C.W.J., 1987. Cointegration and Error Correction: Representation, 

Estimation, and Testing, Econometrica 55, 251-276. 

FAO,  2012. Food Security Indicators. http://www.fao.org/economic/ess/ess-fs/fs-

data/en/#.UpIAF-KRLc4. Accessed April 2013. 

FAO, WFP, IFAD, 2012. The State of Food Insecurity in the World 2012. Economic 

growth is necessary but not sufficient to accelerate reduction of hunger and 

malnutrition. Rome, FAO. 

FAOSTAT, 2010. Food and Agriculture Organization of the United Nations. Dataset. 

http://faostat3.fao.org/faostat-gateway/go/to/download/Q/*/E. Accessed June 

2013. 

78 
 

http://www.fao.org/economic/ess/ess-fs/fs-data/en/%23.UpIAF-KRLc4
http://www.fao.org/economic/ess/ess-fs/fs-data/en/%23.UpIAF-KRLc4
http://faostat3.fao.org/faostat-gateway/go/to/download/Q/*/E


FAOSTAT, 2005. Food and Agriculture Organization of the United Nations. Dataset. 

http://faostat3.fao.org/faostat-gateway/go/to/download/Q/*/E. Accessed June 

2013. 

Geesing, D., Djibo, H., 2006. Niger: Country Pasture/Forage Resource. FAO. Technical 

University of Munich. Germany. 

Gervais, J-P., 2011. Disentangling Non-linearities in the Long- and Short-run Price 

Relationships: An Application to the US Hog/Pork Supply Chain. Applied 

Economics 43, 1497-1510. 

Goodwin, B.K., Holt, M.T., Onel, G., Prestemon, J.P., 2011. Copula-Based Nonlinear 

Models of Spatial Market Linkages. Working Paper.  

Goodwin, B.K., Holt, M.T., 1999. Asymmetric Adjustment and Price Transmission in 

the US Beef Sector. American Journal of Agricultural Economics 79, 630-637. 

Heien, D.M., 1980. Markup pricing in a dynamic model of the food industry. American 

Journal of Agricultural Economics 62, 11-18. 

Johansen, S., 1988. Statistical analysis of cointegration vectors. Journal of Economics 

Dynamics and Control 12, 231-254. 

Kwiatowski, D., Phillips, P.C.B., Schmidt, P., Shin, Y., 1992. Testing the Null 

Hypothesis of Stationarity Against the Alternative of a Unit Root:  How Sure 

Are We That Economic Time Series Have a Unit Root?. Journal of 

Econometrics 54, 159-178. 

Lloyd, T., McCorriston, S., Morgan, C.W., Rayner, A.J., 2001. The Impact of Food 

Scares on Price Adjustment in the UK Beef Market. Agricultural Economics 25, 

347-357. 

79 
 

http://faostat3.fao.org/faostat-gateway/go/to/download/Q/*/E


Lloyd, T.A., McCorriston, S., Morgan, C.W., Rayner, A.J., 2006. Food Scares, Market 

and Price Transmission: the UK BSE Crisis. European Review of Agricultural 

Economics 33, 119-147. 

MacMinn, R.D., 1980. Search and market equilibrium. Journal of Political Economy 

88, 308-327. 

Myers, R. J., 1994. Time Series Econometrics and Commodity Price Analysis: A 

Review, Review of Marketing and Agricultural Economics. Australian 

Agricultural and Resource Economics Society 62(02). 

MAE, 2012. Ministère de l'Agriculture et de l'Elevage, Direction des statistiques 

Novembre, Rapport du Niger evaluation préliminaire des récoltes de la 

campagne Agricola d'hivernage 2012 et résultats provisoires 2012-2013. 

http://www.reca-niger.org/IMG/pdf/Evaluation_Preliminaire_Oct_2012_VF.pdf. 

Accessed September 2013. 

Meyer, J., von Cramon-Taubadel, S., 2004. Asymmetric Price Transmission: A Survey. 

Journal of Agricultural Economics 55, 581-611. 

Ning, C., 2010. Dependence structure between the equity market and the foreign 

exchange market–A copula approach, Journal of International Money and 

Finance, doi:10.1016/j.jimonfin.2009.12.002. 

Oxfam, 2013. Viability of a price stabilization fund for cereal storage facilities in Mali 

and Niger. Working Paper. Part of the project in the FSRWA program (Food 

Security and Resilience in West Africa).   

Oxfam, 2012. First line of defense: assessing the potential of local food reserves in the 

Sahel. Oxfam Research Report, January 2013. 

Parra, H., Koodi, L., 2006. Using conditional copula to estimate value at risk. Journal of 

Data Science 4, 93–115. 

80 
 

http://www.reca-niger.org/IMG/pdf/Evaluation_Preliminaire_Oct_2012_VF.pdf


Patton, A.J., 2006. Modeling asymmetric exchange rate dependence. International 

Economic Review 47, 527–556. 

Patton, A.J., 2012. A Review of Copula Models for Economic Time Series. Journal of 

Multivariate Analysis 110, 4-18. 

Patton, A.J., 2013. Copula methods for forecasting multivariate time series, in G. Elliott 

and A. Timmermann (eds.), Handbook of Economic Forecasting, 2, Elsevier, 

Amsterdam, Holland, 899-960. 

Perron, P., 1997. Further evidence on breaking trend functions in macroeconomic 

variables. Journal of Econometrics 80, 355-385. 

Pozo, V.F., Schroeder T.C., Bachmeier, L.J., 2013. Asymmetric Price Transmission in 

the US Beef Market: New Evidence from New Data. Proceedings of the NCCC-

134 Conference on Applied Commodity Price Analysis, Forecasting, and Market 

Risk Management. St. Louis, MO. 

Qiu, F., Goodwin, B. K., 2013. Measuring Asymmetric Price Transmission in the US 

Hog/Pork Markets: A Dynamic Conditional Copula Approach. Proceedings of 

the NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, 

and Market Risk Management. St. Louis, MO. 

Sanogo, I., 2009. The global food price crisis and household hunger: a review of recent 

food security assessments. Humanitarian Exchange Magazine. The 

Humanitarian Practice Network at Overseas Development Institute (ODI), 

London, United Kingdom. http://www.odihpn.org/humanitarian-exchange-

magazine/issue-42/the-globalfood-price-crisis-and-household-hunger-a-review-

of-recent-food-security-assessments. Accessed September 2013. 

Saikkonen, P., 2005. Stability Results for Nonlinear Error Correction Models. Journal 

of Econometrics 127, 69-81. 

81 
 

http://www.odihpn.org/humanitarian-exchange-magazine/issue-42/the-globalfood-price-crisis-and-household-hunger-a-review-of-recent-food-security-assessments
http://www.odihpn.org/humanitarian-exchange-magazine/issue-42/the-globalfood-price-crisis-and-household-hunger-a-review-of-recent-food-security-assessments
http://www.odihpn.org/humanitarian-exchange-magazine/issue-42/the-globalfood-price-crisis-and-household-hunger-a-review-of-recent-food-security-assessments


Sen, A., 1981. Poverty and famines: an essay on entitlement and deprivation. Oxford, 

Clarendon Press. 

Serra, T. Gil, J.M., 2012. Biodiesel as a motor fuel price stabilization mechanism. 

Energy Policy 50, 689-698. 

Serra, T., Goodwin, K.B., 2003. Price Transmission and Asymmetric Adjustment in the 

Spanish Dairy Sector. Applied Economics 35, 1889–1899. 

Seo, M., 2006. Bootstrap Testing for the Null of No Cointegration in a Threshold 

Vector Error Correction Model. Journal of Econometrics 134, 129-150. 

Sklar, A., 1959. Fonctions de répartition à n dimensions et leurs marges. Publications de 

l’Istitut Statistique de l’Université de Paris, 8, 229-231. 

Stigler, G., 1961. The economics of information. Journal of Political Economy 69, 213-

225. 

United Nations Development Program (UNDP), 2013. Human development report 2013 

– The rise on the south: human progress in a diverse world. New York: UNDP. 

United Nations Office for the Coordination of Humanitarian Affairs (UNOCHA), 2013. 

SAHEL REGIONAL STRATEGY, Mid-Year Review 2013. 

https://docs.unocha.org/sites/dms/CAP/MYR_2013_Sahel_Regional_Strategy.pdf

. Accessed September 2013. 

United Nations World Food Programme (UNWFP), 2012. Overview - Niger. Fighting 

Hunger Worldwide. http://www.wfp.org/countries/niger/food-security. Accessed 

September 2013. 

USDA, 2010. United States Department of Agriculture. Dataset. 

http://www.indexmundi.com/agriculture/?country=ne&commodity=millet&grap

h=production. Accessed  June 2013. 

82 
 

https://docs.unocha.org/sites/dms/CAP/MYR_2013_Sahel_Regional_Strategy.pdf
https://docs.unocha.org/sites/dms/CAP/MYR_2013_Sahel_Regional_Strategy.pdf
http://www.wfp.org/countries/niger/food-security
http://www.indexmundi.com/agriculture/?country=ne&commodity=millet&graph=production
http://www.indexmundi.com/agriculture/?country=ne&commodity=millet&graph=production


 Vavra, P.,Goodwin, B. K., 2005. Analysis of Price Transmission Along the Food 

Chain, OECD Food, Agriculture and Fisheries Papers , No. 3, OECD Publishing. 

von Cramon-Taubadel,  S., 1998. Estimating asymmetric price transmission with the 

error correction representation: An application to the German pork market, 

European Review of Agricultural Economics 25, 1-18.  

Ward, R.W., 1982. Asymmetry in retail, wholesale, and shipping point pricing for  fresh 

vegeTables. American Journal of Agricultural Economics 64, 205-212. 

WHO, 2006. country cooperation strategy at a glance. African Region: Niger statistics 

summary.http://www.who.int/countryfocus/cooperation_strategy/ccsbrief_ner_e

n.pdf. Accessed June 2013.   

World Bank, 2013. Agricultural Sector Risk Assessment in Niger: Moving from Crisis 

Response to Long-Term Risk Management. Washington DC, TheWorld Bank. 

83 
 

http://www.who.int/countryfocus/cooperation_strategy/ccsbrief_ner_en.pdf.%20Accessed%20June%202013.
http://www.who.int/countryfocus/cooperation_strategy/ccsbrief_ner_en.pdf.%20Accessed%20June%202013.


Table 3.1.Summary statistic for first log-differences prices series. 

 Maradi 

producer 

Maradi 

consumer 

Tillabéri 

consumer 

Mean 0.005 0.004 0.002 

Standard Deviation 0.007 0.008 0.008 

T-statistic 0.617 0.582 0.256 

Skewness -1.126 -1.014 -0.247 

Kutosis (excess) 3.271** 3.122** 4.777** 

Jarque-Bera statistic 164.936** 144.986** 241.268** 

ARCH LM statistic 8.109** 17.977** 17.661** 

Number of observations 251 

Note: **indicates rejection of the null hypothesis at the 5% significance level. The 

skewness and kurtosis and their significance tests are from Kendall and Stuart (1958). 

The Jarque-Bera is the well known test for normality. The ARCH LM test of Engel 

(1982) is conducted using 2 lags. 
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 Table 3.2.Johansen traceλ  test for cointegration and cointegration relationship 

Maradi producer -  

Maradi consumer 

Maradi producer -  

Tillabéri consumer 

0H  
Ha  traceλ  P value−  0H  Ha  traceλ  P value−  

0r =  0r >  52.791 0.000 0r =
 

0r >  37.870 0.000 

1r ≤  1r >  6.034  0.195  1r ≤  1r >  4.828 0.313 

Cointegration :  

Maradi producer - 

Maradi consumer 

Cointegration: 

 Maradi producer - 

Tillabéri consumer 

,(-47.098) (-2.751)
0.963** 0.256**=Mx My MxMy tP P ν− −  ,(-17.330) (-8.573)

0.732** 1.657**=Tx My TxMy tP P ν− −  

Note: r is the cointegration rank. ** denotes statistical significance at the 5% level. 
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Table 3.3.Result for the univariate ECM-GARCH (1, 1) model for price pair ( MyP , MxP ) 

Variable Maradi producer Maradi consumer 

, 1My tP −∆  0.329** 

(0.060)         

0.211** 

(0.062)   

, 1Mx tP −∆  -0.117** 

(0.042)  

-0.079 

(0.066) 

,MxMy tδ  0.015 

(0.057 )  

-0.481** 

(0.072)       

iω  
0.008** 

(0.001) 

0.009** 

(0.001)   

1iω  0.421** 

(0.131)   

0.086** 

(0.049)  

2iω  0.059 

(0.055)   

0.215** 

(0.044) 

Ljung-Box Q(10) 12.689 11.677 

Note: ** denotes statistical significance at the 5% level. 
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Table 3.4.Result for the univariate ECM-GARCH (1, 1) model for price pair ( MyP , TxP ) 

Variable Maradi producer Tillabéri consumer 

, 1Tx tP −∆  0.223**   

(0.076)     

0.434** 

(0.025)  

, 1My tP −∆  -0.016  

(0.065)       

-0.029 

(0.041)    

,TxMy tδ  -0.045 

(0.051)   

-0.240 ** 

(0.036) 

iω  
0.008**  

(0.002) 

0.005** 

(0.001)   

1iω  0.377**  

(0.127) 

0.650** 

(0.069) 

2iω  0.055 

(0.118)   

0.155**  

(0.039)  

Ljung-Box Q(10) 13.047 27.547 

Note: ** denotes statistical significance at the 5% level. 
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Table 3.5.Results for tests on the transformed variables 

 Maradi producer - Maradi consumer 

 Maradi producer Maradi consumer 

First moment LM test 0.561 0.924 

Second moment LM test  0.215 0.390 

Third moment LM test 0.371 0.570 

Fourth moment LM test 0.421 0.731 

KS test 0.809 0.871 

 Maradi producer - Tillabéri consumer 

 Maradi producer Tillabéri consumer 

First moment LM test 0.116 0.417 

Second moment LM test  0.124 0.712 

Third moment LM test 0.222 0.874 

Fourth moment LM test 0.349 0.853 

KS test 0.401 0.535 

Note: this Table presents p-values from LM test of serial independence (Patton, 2006) 
of the first four moments of tU and tV  and Kolmogorov–Smirnov (K-S) tests.  
 

88 
 



 

Table 3.6.Tests for time-varying dependence between differenced logged prices and 

differenced yields 

Sup test for rank correlation 

break 

ARCH LM test 

Anywhere p=1 p=5 p=10 

Maradi producer - Maradi consumer 

0.384 0.257 0.287 0.106 

Maradi producer - Tillabéri consumer 

0.487 0.352 0.297 0.272 

Note: This Table presents p-values from one-time break correlations and autocorrelation 

(AR) tests for time-varying dependence using 1000 bootstrap replications. The left 

panel test focuses on rank correlation breaks between u and v at some unknown date. 

The right panel is the ARCH LM test for time-varying volatility proposed by Engle 

(1982) that focuses on autocorrelation in dependence.  
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 Table 3.7.Results for static Gaussian copula 

 Maradi producer - 

Maradi consumer 

Maradi producer - 

Tillabéri consumer 

ρ  0.765** 

(0.011) 

0.361** 

(0.058) 

Copula log likelihood 110.192 17.425 

Note: ** denotes statistical significance at the 5% level. 
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Table 3.8.Results for static SJC copula 

 Maradi producer - 

Maradi consumer 

Maradi producer - 

Tillabéri consumer 

U
τ  0.710** 

(0.044) 

0.139** 

(0.080) 

L
τ  0.640** 

(0.072) 

0.218** 

(0.081) 

Copula log likelihood 140.907 17.290 

Note: ** denotes statistical significance at the 5% level. 
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CHAPTER 4 

Vertical price transmission in the Egyptian tomato 

sector after the Arab Spring9 

 

 

 

 

 

 

 

9Publication information: Ahmed, O., Serra, T., 2014.Vertical price transmission in the Egyptian tomato 

sector after the Arab Spring. Canadian Journal of Agricultural Economics (first-round review). 
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4.1. Introduction 

The prevailing economic situation in Egypt before the 2011 Arab Spring was 

challenging and partly characterized by high unemployment rates, specially among 

youth, unfair wage structures, and high food and energy prices. The revolutions 

accentuated economic precariousness: GDP growth rates decreased from 5.1% in 2010 

to 2.2% in 2012, while inflation measured through the consumer price index grew by 

9.5% in 2013 (World Bank, 2013). Price increases are bigger if a longer time span is 

considered: from the 1st week of January 2011 till the 1st week of December 2013, 

Egyptian food prices increased by 17.7% (Egyptian Food Observatory, 2013).  

This economic downturn led to food price instability, food shortages and higher 

poverty. In 2013, more than 79% of family income was spent on food and more than 

80% of Egyptian population earned insufficient income to cover consumption needs. 

According to the Egyptian Center for Economic and Social Rights (ECESR, 2013), the 

poverty rate increased from 21.6% in 2008/2009 to 26.3% in 2012/2013. Rising poverty 

worsened food insecurity that increased from 14% of the Egyptian population in 2009 to 

17.2% (13.7 million people) in 2011 (ECESR, 2013). Undernourishment, on the other 

hand, represented more than 5% of Egyptian population in the 2011-2013 period (Africa 

Food Security and Hunger, 2014). 

Egyptian consumers have used different strategies to cope with recent food price 

increases: food purchases have been curbed down by 12.2% and more than 26% of 

consumers have opted for lower quality food products at cheaper prices (Egyptian Food 

Observatory, 2013). Prevention of malnutrition implies ensuring access to food at fair 

consumer prices. Assessing food consumer price formation requires analyzing how food 

prices are transmitted along the food marketing chain, from agricultural producers to 
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final consumers. The objective of this research article is to shed light on this matter by 

focusing on the tomato sector in Egypt. 

Understanding price behavior along the food marketing chain is very useful to 

assess the functioning of food production, processing and distribution markets, their 

competition and integration level. Vertical price transmission analyses can help 

identifying market failures and are a good indicator of the degree of competitiveness 

and effectiveness of market performance. Competitive behavior is rare in less developed 

countries (LDCs) due to different market characteristics such as excessive governement 

intervention, corruption, defficient infrastructures, etc. Since prices drive resource 

allocation and production decisions, price transmission information is useful for 

economic agents when taking their economic decisions, policy makers and competition 

regulatory authorities. Hence, the link between different prices at different levels of the 

food marketing chain is a very interesting research topic in LDCs. This article 

characterizes the relationship between producer and wholesaler price levels, and 

between wholesaler and consumer price levels of tomato markets in Egypt. The analysis 

is of a pair-wise nature. Pair-wise analyses are usual in the price transmission literature 

and represent a natural avenue for studying price relationships (Goodwin and Piggott, 

2001).  Lack of food price data in LDCs is the reason underlying the scarcity of studies 

on price behavior in these countries. This makes the contribution of the proposed 

analysis an even more appealing one.   

Sound assessment of price links requires knowledge of the joint distribution of the 

prices considered. Under the assumption that the joint price distribution is Gaussian or t-

Student, methods such as vector autoregressive or error correction type of models have 

been widely used. Univariate distributions of economic time series are usually found to 

be characterized by excess kurtosis, skewness and nonnormality. Further, related price 
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series may show asymmetric dependence, which is an indicator of multivariate 

nonnormality (Patton, 2006). As a result, the Gaussian and the t-Student distributions 

have been shown as inappropriate to assess behavior of the type of data we intend to 

study. Inadequate assumptions of multivariate distributions will lead to biased 

parameter estimates. Further, since the range of available multivariate distributions is 

limited, this limits how multivariate dependence can be modeled (Parra and Koodi, 

2006). 

Assessment of dependence between producer, wholesaler, and retailer levels 

should be based on flexible instruments that soundly capture the joint distribution 

function of the variables considered. Recent research has suggested the use of statistical 

copulas as an alternative. Copulas are statistical instruments that combine univariate 

distributions to obtain a joint distribution (multivariate distribution) with a particular 

dependence structure. A key advantage intrinsic to copulas is that they are based on 

univariate distributions, instead of multivariate ones. This is specially important given 

the scarcity of multivariate distributions available from the statistical literature.     

This paper is organized as follows. In the next section, a brief description of the 

tomato market in Egypt is offered. In section 3, a literature review of vertical price 

transmission analyses using time-series econometric techniques is presented. In section 

4, the methodological approach is described. The fifth section is devoted to the 

empirical implementation to assess dependence between producer and wholesaler, and 

between wholesaler and retailer prices. The last section in this article offers the 

concluding remarks. 
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4.2. Tomato market in Egypt 

World production of vegetables in 2012 was 1.1 billion tons on an extension of land of 

57.2 million hectares. Africa produced 74.1 million tons, representing an increase on the 

order of 86.5% relative to 2006 and more than 6.5% of worldwide production 

(FAOSTAT, 2012). Among African countries, Egypt vegeTable production expanded 

from 18.3 million tons in 2006 (FAOSTAT, 2006) to 19.8 million tons in 2012, 

representing an increase of around 8.2% (FAOSTAT, 2012) and around 26.7% of all 

vegeTables produced in Africa. According to the International Trade Center (ITC), in 

2011 edible vegeTables global exports and imports were on the order of 66.5 and 65.4 

million tons, respectively (ITC, 2011). In the same year, African vegeTables exports 

and imports were 4.6 and 6.1 million tons, respectively (FAOSTAT, 2011).  

Tomato is the most relevant vegeTable in terms of world production and 

consumption (FAOSTAT, 2012). Global tomato production expanded from 131.3 

million tons in 2006 (FAOSTAT, 2006) to 161.7 million tons in 2012 (FAOSTAT, 

2012). More than 30% of tomato production is used by the processing industry. In 2012, 

international exports and imports of tomato were estimated to be 7.1 and 6.9 million 

tons, respectively (ITC, 2012). Tomato production is distributed among 170 countries, 

being Egypt the fifth largest global producer after China, India, United States, and 

Turkey. These five countries represent around 62% of total world tomato production 

(FAOSTAT, 2012). Tomato is extremely important for African economies that in 2012 

devoted 21.5 million hectares to produce 17.9 million tons, representing 24.19% of the 

vegeTables produced in Africa (FAOSTAT, 2012). African exports (imports) of tomato 

were estimated to be on the order of 535.3 (60) thousand tons in 2011 (FAOSTAT, 

2011).  
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Tomato is the first vegeTable in terms of consumption and production in Egypt. 

While food consumption patterns involve a frequency of vegeTables consumption of 6.5 

days a week, tomato is consumed, on average, 5.8 days a week (Egyptian Food 

Observatory, 2013). In 2012, tomato harvest in Egypt exceeded 8.6 million tons, grown 

on more than 216 thousand hectares, representing 28% of the area cultivated with 

vegeTable crops (FAOSTAT, 2012). Egypt, with half of tomato production, is the 

largest producer in Africa (FAOSTAT, 2012). Egyptian exports of tomato were 62.2 

thousand tons in 2011, and the main destinations were the Kingdom of Saudi Arabia, 

Netherlands and United Kingdom. Egyptian tomato imports were 5.3 thousand tons 

(ITC, 2012). More than 30% of the domestic tomato production is processed by 14 

companies into tomato paste and other products      

Income derived from tomatoes fluctuates highly, mainly due to price 

instabilities. Net returns in 2007 were on the order of 170 US$ per feddan. In winter 

2011/2012, net returns increased to 3,000 US$ per feddan, and decreased to be 1,200 

US$ feddan in the summer 2012 (USDA, 2014). While tomatoes are grown in Egypt 

throughout the year in different regions, most production occurs in the Upper Egypt, 

especially in the governorate of Qena (SIS, 2013). Most production is channeled 

through two main wholesale markets in Egypt: El Abour market in Cairo and El Hadra 

market in Alexandria, and subsequently distributed to retail markets after tomatoes have 

been sorted, processed, and repackaged. 

Small and poor tomato producers suffer from low yields and high income 

instability. Further, they often rely on the black market, where prices are usually very 

high, to acquire their inputs (Boutros, 2014). After the implementation of the public-

private partnership between USAID, ACDI-VOCA, Heinz International and 13 

domestic tomato processors, in order to improve economic sustainability of small 
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tomato producers, producers sell 30% of their production through forward contracts to 

processor companies. This increases the range of market outlets reducing wholesaler 

market power (USDA, 2014). 

 

4.3. Literature review 

According to their methodological approach, price transmission analyses can be 

classified into structural and non-structural studies. While structural models rely on 

economic theory, non-structural analyses identify empirical regularities in the data. Our 

approach to studying price transmission along the Egyptian marketing chain is based on 

non-structural time-series models. Time series data often violate the most common 

assumptions of conventional statistical inference methods, which may lead to obtaining 

completely spurious results. Cointegration and error correction models (ECM) have 

been introduced in the literature (Engle and Granger, 1987) to characterize 

nonstationary and cointegrated data and inform both on their short and long-run time-

variation. Time-varying and clustering volatility, another common characteristic of 

time-series, is typically modeled through generalized autoregressive conditional 

heteroskedasticity (GARCH) models. 

The work by Chang (1998) relies on Engle and Granger (1987) cointegration 

techniques, to study long run relationships among Australian beef prices at the farm, 

wholesale and retail levels. Evidence is found that all three prices are non stationary and 

maintain a long-run equilibrium relationship, being the retail price the one that drives 

price patterns. Price time series may also be characterized by asymmetric adjustment to 

long-run equilibrium. Recent literature in this area has relied on smooth transition or 

discrete threshold time-series models that usually allow for autoregressive and error 

correction patterns. The work by Abdulai (2002) analyzes the relationship between 
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producer and retail pork prices in Switzerland, by employing threshold cointegration 

tests. Results indicate that price transmission between producer and retail market levels 

is asymmetric, since increases in producer prices are transferred more rapidly to 

retailers than producer price declines. Using an asymmetric error-correction model, Von 

Cramon-Taubadel (1998) obtains the same results for the German pork market. Vavra 

and Goodwin (2005) use threshold vector error correction models (TVECM) to appraise 

the links between retail, wholesale and farm level prices for the US beef, chicken and 

egg markets. Research results indicate that there are significant asymmetries, both in 

terms of speed and magnitude of the adjustment, in response to positive and negative 

price shocks. Evidence of asymmetric price transmission along the food marketing 

chain is also found by Seo (2006), Saikkonen (2005), Goodwin and Holt (1999), Serra 

and Goodwin (2003), Meyer and von Cramon-Taubadel (2004), among others.  

TVECM are used by Pozo et al. (2011) to examine price transmission among 

farm, wholesale and retail US beef markets. Results show that there is no evidence of 

asymmetric price transmission in any of the models. To the best of our knowledge, the 

work by Gervais (2011) is the first paper focusing on potential nonlinearities in both the 

long- and short-run. Gervais (2011) studies the US pork marketing chain, from farm to 

consumer markets. Results indicate the importance of testing for linearity in the long-

run relationship between prices. Results also show that a decrease in farm prices is 

eventually transferred to consumers.  

There are few studies that have addressed vertical price transmission along the 

food chain in developing countries. Guvheya et al. (1998) assess vertical price 

transmission in Zimbabwe tomato market using causality and Houck (1977) methods. 

Price transmission between farm and wholesale market levels is characterized by price 

asymmetries, but price transmission from wholesale to retail markets is symmetric. Iran 
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horticultural markets (date and pistachio) have been studied by Moghaddasi (2008). 

Houck (1977) approach is used to characterize the pistachio market and ECM the date 

market. Results indicate that there is asymmetry in price transmission from farm to 

retail markets. Granger and Lee (1989) asymmetric ECM is used by Acquah (2010) to 

examine and confirm existence of asymmetry in price transmission between wholesaler 

and retailer maize prices in Ghana.  

Negassa (1998) focuses on vertical price transmission in grain markets in 

Ethiopia by using correlation coefficients and casualty methods and finds evidence of 

symmetries. Minten and Kyle (2000) examines price asymmetry in urban food markets 

in Zair. Evidence is found that prices are symmetrically passed between producer and 

wholesaler market levels, but transmitted asymmetrically between wholesaler-retailer 

markets. Alam et al. (2010) apply an ECM on rice market prices in Bangladesh. Prices 

along the chain are positively linked and wholesalers set market prices. Evidence of 

asymmetric price transmission is also found. 

More recently, other methodological approaches based on the use of statistical 

copulas have started to gain interest among economists interested in price transmission 

analyses. These methods rely on direct examination of the joint probability distribution 

function of the variables that are being studied and pay special attention to the nature of 

jointness between these variables. The work by Serra and Gil (2012) studies dependence 

between two pairs of prices: crude oil and biodiesel blend prices, and crude oil and 

diesel prices in Spain, with a special focus on this dependence during extreme market 

events. Statistical copulas are used for such purpose. Results prove asymmetric 

dependence between crude oil and biodiesel prices, which protects consumers against 

extreme crude oil price increases. Diesel prices, in contrast, equally reflect crude oil 

price increases and decreases. The work by Goodwin et al. (2011) studies the joint 
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distribution of North American lumber prices in different markets (Eastern Canada, 

North Central US, Southeast US, Southwest US). Copula models are used to obtain the 

correlation between prices at the geographical locations considered. Results indicate 

that market adjustments are generally larger in response to large price differences which 

reflect more substantial disequilibrium conditions. 

The unpublished article by Qiu and Goodwin (2013) relies on the application of 

static and time-varying copula models to the empirical study of the links between farm-

retail and retail-wholesale prices for US hog/pork markets. Results indicate that farm 

and wholesale markets are closely related to each other, while retail price adjustment is 

less dependent on the other two markets. Farm-retail and retail-wholesale price 

adjustments have relatively constant dependence structures. Also, results confirm the 

existence of time-varying and asymmetric behavior in price co-movements between 

farm and retail markets. Positive upper and zero lower tail dependencies provide 

evidence that big increases in farm prices are matched at the retail level, while negative 

shocks at the farm level are less likely to be passed to consumers.  

Our paper contributes to the literature by assessing dependence between 

producer-wholesaler and wholesaler-retailer price levels in tomato markets in Egypt. 

During the political transition period, Egypt suffered from food insecurity and food 

price instability. It is thus important to pay special attention to extreme upturns and 

downturns of the tomato market, as these are likely to have a stronger impact on food 

security and economic issues. Since we assess a period of important changes, not only 

static, but also time-varying copulas are used in order to allow for changes in price 

patterns. To our knowledge, this is the first attempt to study vertical price transmission 

in LCD countries using this methodology.  
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4.4. Methodology 

Multidimensional copula functions are used to assess dependence between prices at 

different levels along the tomato supply chain in Egypt.  While copulas have been 

widely used in the financial economics literature (Patton, 2006, 2012; or Parra and 

Koodi, 2006), empirical studies that use copulas to assess dependency along the food 

marketing chain are more scarce, even more so in developing economies. Statistical 

copulas have the advantage of allowing high flexibility when studying correlation 

between two or more variables. A copula function is a multivariate distribution function 

defined on the unit cube [ ]0,  1 n , with uniformly distributed marginals. Copulas are based 

on the Sklar’s (1959) theorem that shows how multivariate distribution functions 

characterizing dependence between n variables, can be decomposed into n univariate 

distributions and a copula function, the latter fully capturing the dependence structure 

between variables.  

Recall our analysis is of a pairwise nature. Let xF  and yF  be the univariate 

distribution functions of two random variables ( , )x y . ( , )H x y  is assumed to represent 

the joint distribution function. According to the Sklar’s theorem, there exists a copula 

( ).C  that can be expressed as (Embrechts et al., 2001): 

 

( , ) ( ( ), ( )) ( , )x yH x y C F x F y C u v= = , (1) 

 

where ( ).C  is a 2-dimensional distribution function with uniformly distributed margins 

(0,1) and (0,1)u Unif v Unif  . The joint density function can be defined as: 

 

( , ) ( ) ( ) ( , )x yh x y f x f y c u v= , (2) 
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where c  is the copula density and ( )xf x  and ( )yf y  are the univariate density functions 

of the random variables. 

Different copula families and specifications represent different dependence 

structures. Our analysis will consider both elliptical (Gaussian and Student’s t copulas) 

and Archimedean (Gumbel, Symmetrized Joe-Clayton-SJC copulas) copulas. Elliptical 

copulas are based on the elliptical distribution, while Archimedean are a group of 

associative copulas that have the advantage of reducing dimensionality issues during the 

estimation process. Copulas may also be categorized as static and time-varying. A static 

copula implies parameter constancy over time, while a time-varying copula allows the 

parameters to change with changing environment. In order to ensure that the copulas 

correctly fit our data, a series of time-varying dependence and goodness of fit (GoF) 

tests are conducted. As a result, price dependency along Egyptian tomato marketing 

chain is modeled using four copulas. The Gaussian copula is selected for being the 

benchmark copula in economics. The Gumbel, the Student’s t, and the SJC copula are 

selected based on statistical selection criteria (the log-likelihood value and goodness of 

fit statistics described below).  

The bivariate Gaussian copula can be expressed as: 

 

   
( ) ( )12

1 1
( ) ( )

2 2
12

22
1212

( , ; ) ( 2 )1 exp
2 12 1

− −Φ Φ

−∞ −∞

 
 
 
 

=
− − +

−−
∫ ∫

u vGa
R Ru v r R rs sC drds

RRπ
, (3)         

          

where 12R  is the correlation coefficient of the corresponding bivariate normal 

distribution, 12 11 R <− < , and Φ  denotes the univariate normal distribution function. A 
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drawback of the Gaussian copula is that it assumes that variables u  and v  are 

independent in the extreme tails of the distribution. Hence, the Gaussian copula does not 

allow for lower and upper tail dependence. It thus represents dependence in the central 

region of the distribution. The implication for our analysis is that the Gaussian copula 

assumes that price transmission along the food market chain does not occur for very 

high/low market prices. A bivariate student’s t copula can be expressed as:  

 

( ) ( )
1 1

( 2)/2
2 2( ) ( ) 12

, 22
1212

21( , ) exp 1
12 1

t u t vt
R

r R rs sC u v drds
RR

γ γ

γ

γ γπ

− −

− +

−∞ −∞

  
 
 

− += +
−−

∫ ∫ ,             (4) 

 

where 12R  is the correlation coefficient of the corresponding bivariate t-distribution 

with γ  degrees of freedom (as explained by Embrechts et al. 2001, 2γ >  for the 

correlation to be defined), and t
γ

 denotes the bivariate distribution function. When 

30γ > , the Student’s t copula tends to the Gaussian copula (Goodwin, 2012). The 

student’s t copula assumes positive and symmetric lower and upper tail dependence. 

The Gumbel copula can be expressed as (Manner, 2007): 

 

( )( ) ( )( )
1/

ln ln( , ) expGu u vC u v
θθ θ

φ
  − − + −   

= .      (5)  

 

This copula measures right tail dependence, which can be expressed as 1/2 2r
αλ = − , but 

assumes left tail dependence to be 0lλ = . In terms of our case analysis, this copula 

relies on the assumption that price transmission between different market levels only 

takes place for high market prices. The Joe-Clayton copula can be expressed as:  
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jc u vC u v
γγ γ

τ τ
  (6)  

   

where 21/ log (2 )Uk τ= − , 21/ lo ( )g= − Lγ τ , (0,1)Uτ ∈ , and (0,1)Lτ ∈ . Joe-Clayton 

copula has two parameters, Uτ  and Lτ , that measure the upper and lower tail 

dependence, respectively. This copula characterizes tail dependency, i.e., it models price 

behavior during extreme events. As noted in the literature review above, evidence of 

asymmetries in vertical price transmission within the food marketing chain is abundant. 

These asymmetries tend to be more pronounced as we move to extreme tails of the 

distribution (i.e., when price increases or declines are larger), which we capture through 

the static symmetrized Joe-Clayton (SJC) specification. More specifically, this copula 

models the probability that relevant increases (declines) in the prices studied occur 

together. The Joe-Clayton copula implies asymmetric dependence, even when Uτ = Lτ . 

The Symmetrized Joe-Clayton (SJC) copula allows overcoming this problem (Patton, 

2006) and can be specified as: 

 

( ), , ,
( , ) 0.5 ( , ) (1 ,1 ) 1U L U L U L

sjc jc jcC u v C u v C u v u vτ τ τ τ τ τ= + − − + + − .                    (7) 

 

Use of time-varying copulas was seen to be necessary after some testing 

procedures that will be discussed below. Hence, dependency during the period studied 

was not found to remain constant. The dynamic Student’s t copula and SJC copula were 

chosen, on the basis of the highest log-likelihood values, to capture dependency 
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changes. Time-varying versions of Student’s t copula define the correlation parameter to 

evolve through time as shown in equation (8) below (Patton, 2006):  

 

( ) ( )
1

10
1 1

1

1
10tt t i t i

i
t u t vρ ρ ρ γ γρ ω β ρ α

−

− −
− −

=

 = Λ + + 
 

∑                                                           (8) 

 

where 1tγ
−  is the inverse of the t distribution of tε  with γ  degrees of freedom, and 

1(1 )− −Λ = + xe  is the modified logistic function. The time-varying version of the SJC 

copula is defined following Patton (2006): 

 

1

10

1

1
10t

U U
t U U U t i t i

i
u vτ ω β τ α

− − −
=

 = Λ + + − 
 

∑ ,  (9) 

1

10

1

1
10t

L L
t L L L t i t i

i
u vτ ω β τ α

− − −
=

 = Λ + + − 
 

∑                                                                      (10) 

 

where 1(1 )− −Λ = + xe  denotes the logistic transformation that keeps the upper and lower 

tails ( U
tτ , L

tτ ) in the (0, 1) range. 

Copulas can be estimated through two stage estimation processes. The first stage 

consists of estimating marginal models that filter information contained in univariate 

distributions and allow deriving standardized, independent and identically distributed 

(i.i.d.) residuals from the filtration. The copula is estimated in a second stage either 

through parametric or non-parametric methods. We use the latter, that consist of 

transforming the i.i.d. residuals into (0,1)Unif  using the non-parametric empirical 

cumulative distribution function (EDF). The empirical EDF method is especially 

convenient when the true distribution of the data is not known. The maximum 
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likelihood method is applied on the uniform residuals to estimate copula parameters. 

The two-stage estimation technique can be formalized as follows (Patton, 2012):  

 




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

1
argmax ( ( ; ), ( ; ); ).log1

j u j v

T

j
F u F vcTθθ φ φ θ

=
= ∑  (12) 

 

where uφ  and vφ  represent parameter estimates of marginal distributions and θ  is the 

copula estimated parameter vector. Since the theory of copulas applies on stationary 

time-series, tests for unit roots are run on our data. Results support the absence of a unit 

root in producer, wholesaler and retailer prices.  

Univariate ARMA(pa,qa)-GARCH(pg,qg) marginal models capture univariate 

price patterns with pa representing the number of autoregressive parameters of the 

ARMA model; qa the number of moving average components, pg the number of 

autoregressive terms in the GARCH specification and qg the number of lags of squared 

innovations. ARMA models price-level behavior as a function of autoregressive and 

moving average terms. Residuals are modeled through GARCH specification in order to 

allow for time-varying and clustering volatility:  

 

1 2
1 1

pa qa

i i t
i i

t t i t iP c Pη η ε ε
= =

− −= + + +∑ ∑            (13) 

1 1

2 2 2
2 1

pg qg

i i
t i t i t ii iσ ω ω σ ω ε

= =
− −= + +∑ ∑                                                               (14) 
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where tP  are the prices considered, c  is the constant of the conditional mean model, 

1iη  is  the coefficient representing the autoregressive component, 2iη  is the coefficient 

representing the moving average component, being tε  a normally distributed error 

term, iω  is the constant in the conditional volatility model, being 1iω  and 2iω  the 

coefficients representing the lagged square residuals and variance, respectively.10 Log-

likelihood methods assuming normally distributed errors are used in model estimation.  

Two types of time-varying dependence tests are used to determine whether time-

varying copulas need to be considered (Patton, 2013). The first focuses on rank 

correlation breaks between u and v at some unknown date and is based on the “sup” test 

statistic (Patton, 2013): 

 

* * *sup 1, 2,
,

max
L U

t t
t t t

B ϑ ϑ
 ∈ 

= − ,           (15)                                                                          

 

 where 
*

* 1*1,
1

12 3
t

t t tt
t

u v
t

ϑ
=

≡ − −∑  and 
*

* 1*2,
1

12 3
t

t t tt
t

u v
T t

ϑ
=

≡ − −
− ∑  . In order to have enough 

observations to estimate the pre- and post-break parameters, the interval * *[ , ]L Ut t  is 

usually defined as[0.15 ,0.85 ]T T , where T is the number of observations. The critical 

value of supB  can be determined through a bootstrap process defined in Patton (2013). 

The second test is the ARCH LM test for time-varying volatility (Engle, 1982). This test 

focuses on autocorrelation in dependence, captured by an autoregressive model such as 

the following: 

 

10 The univariate model was specified according to parsimony and statistical significance. 
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 0
1

p

t t i t i t i t
i

u v u v eα α − −
=

= + +∑ ,                                                                                     (16) 

 

where te  is the error term. The null of a constant copula implies 0, 1i iα = ∀ ≥  , which 

can be tested through the following statistic:  

 

( ) 1ˆ ˆˆ ˆpA R RV R Rαα α
−

′ ′= ,                                                                                              (17) 

 

where 0ˆ ,......, pα α α ′ ≡   , 10 p pR I× =    and V̂α   is the OLS estimate for the covariance 

matrix. A bootstrap process described in Patton (2013) is used to determine the test 

critical values. 

Goodnes of fit (GoF) tests are used to assess to what extent an estimated copula 

model is different from the unknown true copula. Comparison of estimated with 

unknown copula is made through the Kolmogorov-Smirnov (KSc) and the Cramer-von-

Mises (CvMc) tests (Genest and Rémillard, 2008, 2009; and Rémillard, 2010). These 

tests can be expressed as follows: 

 

ˆ ˆmax ( , ; ) ( , )T Tt
KSc C u v C u vθ= −        (18)                                                              

{ }
2

1

ˆ ˆ( , ; ) ( , )
T

T T
t

CvMc C u v C u vθ
=

= −∑ .                                                                             (19) 

 

The empirical copula has been often used to provide a nonparametric estimate of 

the true unknown copula. However, the empirical copula is not a valid approach when 

the true underlying copula is time-varying. The problem can be addressed by using the 
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fitted copula to derive a Rosenblatt (1952) transform of the data that yields a vector of 

i.i.d. mutually independent Unif (0,1) variables. The GoF tests are then computed as: 

 

ˆ ˆmax ( , ; ) ( , )T Tt
KSr C u v C u vθ= −       (20)                                                                

{ }
2

1

ˆ ˆ( , ; ) ( , )
T

T T
t

CvMr C u v C u vθ
=

= −∑                                                                              (21) 

 

where u  and v  are the Rosenblatt transformations. Rémillard (2010) proposes a 

bootstrap process in order to determine the critical values for tests KSc  and CvMc . 

Patton’s (2013) recommendation is followed to obtain the critical values of KSr  and 

CvMr .  

Conducting goodness of fit tests on the marginal models is essential for copula 

model estimation. In order to make sure that the residuals obtained from univariate 

models have no autocorrelation, the Ljung-Box tests are used. The LM tests of serial 

independence of the first four moments of tu  and tv  are estimated by regressing 

( )k

tu u− and ( )k

tv v−  on 10 lags for each price series, for k= 1,2,3,4. We also use the 

Kolmogorov-Smirnov (KS) test to make sure that the transformed series are 

(0,1)Unif (see Patton, 2006 for further details).  

 

4.5. Empirical analysis 

The analysis is based on weekly tomato price data expressed in euro/kg, and observed 

from the first week of April 2011 to the last week of March 2014, leading a total of 155 

observations. Prices at different levels of the marketing chain have been collected: the 

price received by producers and wholesalers and the price paid by consumers. The three 
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series are obtained from the Egyptian cabinet information and decision support center 

(IDSC, 2013). Prices are expressed in Egyptian pound per kilo and studied in pairs. 

Standard unit root tests show that the series are stationary (Table 4.1). Table 4.2 

presents summary statistics for price series. These statistics provide evidence of non-

normal price series, characterized by skewness, kurtosis and ARCH effects. 

Results from univariate ARMA-GARCH model, whose specification is chosen 

through the Akaike’s information criterion (AIC) and Bayesian information criterion of 

Schwarz’s (BIC), are presented in Table 4.3. An ARMA (1,4)-GARCH(1,1) model is fit 

to producer and wholesaler prices, while an ARMA(2,2)-GARCH(1,1) better represents 

retailer prices. Conditional mean model results suggest that current price levels are 

positively influenced by price levels during the last week. Univariate GARCH (1, 1) 

model parameter estimates are all positive for the three prices considered, which 

indicates that past market shocks as well as past volatility bring higher current volatility 

levels. Since 1 2 1i iω ω+ < , we can conclude that the three GARCH processes are 

stationary, being the unconditional long-run variance ( )1 2
2 1i i ii ω ω ωσ = − −  around 

0.022, 0.143, and 0.176 for producer, wholesaler, and retailer prices, respectively. 

Hence, in the Egyptian tomato market, consumer prices have long-run volatilities that 

are above the volatilities at the producer and wholesale price level. 

The Ljung-Box test results presented in Table 4.3, allow accepting the null of no 

autocorrelated residuals. The LM tests (Table 4.4) implemented to check for the 

independence of the first four moments of the transformed variables, provide evidence 

that the models are well specified. The Kolmogorov–Smirnov (KS) test confirms that 

the transformed series are Unif (0,1) (Patton, 2006). Time-varying dependence tests in 

Table 4.5 support the use of time varying copulas for both pairs of prices. In Table 4.6, 

we present the log likelihood values for a wide range of copulas. Those copulas yielding 

112 
 



the highest log likelihood values are selected for a more in depth analysis. Gumbel, 

Student-t, and SJC copula are chosen to represent dependency between both pairs of 

prices (producer - wholesaler and wholesaler - retailer). The Gaussian copula is also 

chosen for both pairs of prices, as the benchmark model in economics. 

Results of CKS  and CCvM  GoF tests (presented in Table 4.7) for producer – 

wholesaler pair of prices suggest the Student´s t constant copula as the one providing 

the best fit, being the second best fit provided by the Gaussian and the SJC constant 

copulas. In the wholesaler – retailer case, the SJC constant copula offers the first best fit 

and Student´s t constant copula the second best. For time varying copulas the GoF tests 

suggest that the Student´s t better fits the data relative to SJC copula for both pairs of 

prices. Given these results, static Gaussian, static and dynamic Student´s t, and static 

SJC copulas are considered in our analysis. Static copula results are presented in Table 

4.8 and dynamic copula findings in Table 4.9, respectively. 

Results of Gaussian and Student´s t copula presented in Table 4.8 imply a positive 

short-run correlation between prices at different market levels. The association is 

stronger between producer and wholesale prices, than between wholesale and retail 

prices. Furthermore, the inverse of the degrees of freedom of Student’s t copulas are 

0.170 and 0.216 for producer – wholesaler and wholesaler - retailer pairs of prices, 

respectively. This implies strong dependence in the tail, which is not captured by the 

Gaussian copula. It is thus relevant to estimate a copula that allows for dependency for 

very high/low market prices. 

Results of SJC copulas provide support for asymmetric dependency during 

extreme market events. The SJC copula for the producer – wholesaler price pair shows 

stronger (52% higher) upper than lower tail dependency, which suggests that price 

increases tend to be passed from producers to wholesalers more completely than price 
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declines. For the wholesaler - retailer price pair, the lower tail is not statically different 

from zero. Conversely, the upper tail is statistically significant and on the order of 0.13, 

which implies that while price increases will be transferred from wholesalers to 

retailers, price declines will be not. Hence, retailers are more likely to increase prices 

than to reduce them, which reflects the degree of market power that retail chains have in 

Egypt.  

Time varying student’s t copula shows how dependency among the pairs of prices 

considered changes over time. Estimation results are presented in Table 4.9 and graphed 

in Figure 4.1 for the producer-wholesaler price pair, indicating that dependence from 

April 2011 to March 2013 was relatively low and fluctuated around 0.4. In the period 

from March 2013 to December 2013, dependence increased reaching values around 0.8. 

Such increase is likely to be related to the project involving USAID, ACDI-VOCA, 

Heinz International and 13 domestic tomato processors, to promote high quality and 

consistent tomato production. Another aim of this partnership is to increase trust 

between producers and tomato processors and stabilize their relationships through 

forward contracts. Under these contracts, more than 30% of tomato production is 

currently sold to processor companies, increasing tomato market outlets and reducing 

wholesaler market power in Egypt (USDA, 2014). This has led wholesalers to offer 

higher prices to entice producers to sell tomatoes to them. The reduction of wholesaler 

market power has led to increased dependency between producer and wholesaler market 

levels, which is an indicator of more competitive market behavior. Time varying 

Student’s t tail dependence displayed in Figure 4.2 shows a low dependency between 

wholesaler and retailer market levels, which is on the order of 0.2, that fluctuates over 

the period studied, mainly in the range from 0 to 0.4. Low dependency between 

wholesaler and retailer prices may be explained by lack of a competitive structure 
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linking wholesalers and retailers. Fluctuations are not surprising given the economically 

tumultuous period studied. 

 

4.6. Concluding remarks  

Food price analyses along the food chain have started to gain relevance in developing 

economies as data are becoming available. These analyses are of high political, social 

and economic interest, especially in light of low income levels and chronic poverty 

affecting these countries. Egypt suffers from high food prices since the food price crisis 

in 2007/2008. The revolution of January 25, 2011 came to accentuate price increases. 

Our analysis focuses on tomato prices dependency along the Egyptian supply 

chain. To do so, we use flexible methods that do not require assumption of restrictive 

multivariate distribution functional forms. Copula techniques represent a flexible way to 

study price dependency. In this context, we apply static and time-varying statistical 

copulas to assess co-movements between two pairs of prices: producer – wholesaler and 

wholesaler – retailer prices, both in the central and in the extreme regions of the 

distribution. Results for the producer – wholesaler price pair, involve positive 

dependence in the central region of the distribution. Further, extreme increases in 

tomato producer price will be passed on to wholesaler price more completely than 

producer price declines. Results from wholesaler – retailer price model also show a 

positive dependence in the central region of the bivariate distribution, though less strong 

than the one holding for the producer-wholesale price pair. Regarding dependency 

during extreme market events, asymmetric dependence has been found by which 

extreme increases in wholesale prices are passed on to retailer prices, while declines are 

not. As a result, food consumers will not benefit from extreme declines in prices at 

upper levels of the food chain, but they will have to endure extreme price increases. 
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Policies, such as provision of inputs at subsidized prices, or the promotion of 

adoption of technological advances in the production of tomatoes, may imply reduced 

production costs. Due to the presence of asymmetries, it is not however warranted that 

this decline in costs will be transferred down the marketing chain until reaching 

consumers. In order to combat food security in a country where famine is worrisome, 

further actions down the marketing chain are required in order to increase the 

competitive behavior of this chain and facilitate smooth price transmission. The lack of 

competitive behavior in the nexus wholesaler - retailer levels is evidenced by a lower 

degree of dependency between these two market levels. In this regard, initiatives that 

reduce wholesaler and retailer market power will be useful, which involves increasing 

the number of outlets both for unprocessed raw and processed tomatoes. 
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Table 4.1.Unit root tests for producer, wholesaler, and retailer tomato price series 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 t-test Critical 

values: 

1% 

Critical 

values: 

5% 

Critical 

values: 10% 

Dickey-Fuller test for unit root 

With intercept  

Producer prices  -3.834 -3.474 -2.880 -2.577 

Wholesaler prices -4.898 -3.474 -2.880 -2.577 

Retailer prices -4.573 -3.474 -2.880 -2.577 

Augmented Dickey-Fuller test for  unit root 

With intercept  

Producer prices  -5.177 -3.460 -2.880 -2.570 

Wholesaler prices -7.051 -3.460 -2.880 -2.570 

Retailer prices -4.574 -3.460 -2.880 -2.570 
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Table 4.2.Summary statistics for producer, wholesaler, and retailer tomato prices 

 Producer prices Wholesaler prices Retailer prices 

Mean 1.609 1.887 2.820 

Standard Deviation 0.018 0.038 0.083 

T-statistic 88.295 49.643 33.909 

Skewness 4.050* 3.023* 1.413* 

Kutosis (excess) 18.764* 12.386* 1.909* 

Anderson-Darling Test 28.386* 13.091* 6.383* 

ARCH LM test 38.300* 14.615* 62.980* 

Number of observations 155 

 

Note: *indicates rejection of the null hypothesis at the 5% significance level. The 

skewness and kurtosis and their significance tests are from Kendall and Stuart (1958). 

The Anderson-Darling is the well known test for normality. The ARCH LM test of 

Engel (1982) is conducted using 10 lags. 
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Table 4.3.Univariate ARIMA-GARCH model for producer, wholesaler, and retailer 

tomato prices 

Variable Producer prices Wholesaler prices Retailer prices 

Conditional mean 

C  0.609** 

(0.161) 

0.681 ** 

(0.138) 

0.126** 

(0.048) 

1φ  0.621** 

(0.099) 

0.629 ** 

(0.071) 

1.781** 

(0.059) 

2φ  ___ ___ -0.826** 

(0.051) 

1θ      0.291** 

(0.106) 

0.046** 

(0.098) 

-0.574** 

(0.095) 

2θ      0.054 

(0.085) 

0.232** 

(0.087) 

-0.296** 

(0.089) 

3θ  0.440** 

(0.078) 

0.067** 

(0.084) 

___ 

4θ  0.380** 

(0.088) 

0.282** 

(0.081) 

___ 

Conditional variance 

iω  
0.002** 

(2.509e-07) 

0.005** 

(1.439e-06) 

0.041** 

(0.001) 

1iω  0.325** 

(0.026) 

0.413** 

(0.017) 

0.437 

(0.031) 

2iω  0.582** 

(0.009) 

0.554** 

(0.004) 

0.329** 

(0.016) 

Ljung-Box Q(10) 8.929 11.199 7.759 

Note: *(**) denotes statistical significance at the 10% (5%) level. 
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Table 4.4.LM tests on the transformed prices ( tu and tv ) 

 Producer prices Wholesaler prices Retailer prices 

First moment LM test 0.869 0.627 0.784 

Second moment LM test 0.984 0.627 0.912 

Third moment LM test 0.997 0.767 0.966 

Fourth moment LM test 0.880 0.862 0.982 

KS test 0.317 0.318 0.531 

Note: this Table presents p-values from LM test of serial independence (Patton, 2006) 
of the first four moments of tu and tv  and Kolmogorov–Smirnov (K-S) tests.  
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Table 4.5.Time-varying rank correlation between prices 

Price pair Break AR(p) 

0.20 0.50 0.85 Anywhere 1 5 10 

Producer - 
wholesale 

0.075 0 0.285 0.002 0.002 0 0.008 

Wholesale- 
retail 

0.066 0 0.298 0.002 0.002 0 0.008 

Note: this Table presents p-values from tests for time varying dependency by using one-
time break correlations and autocorrelation (AR) tests, based on 1000 bootstrap 
replications.   
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 Table 4.6.Log likelihood values for static copulas 

 Producer -Wholesaler  Wholesaler - Retailer  

 Log Likelihood Log Likelihood 

Gaussian 12.151 3.363 

Clayton 8.217 1.774 

Rotated Clayton 12.966 4.726 

Plackett 11.034 2.726 

Frank 10.792 2.426 

Gumbel 13.659 4.822 

Rotated Gumbel 11.265 2.938 

Student’s t  13.431 4.919 

Symmetrised Joe Clayton 14.662 4.919 
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Table 4.7.Goodness of fit tests for copula models 

 CKS  CCvM  RKS  RCvM  

 Producer - Wholesaler  

Gaussian 0.120 0.030   

Gumbel 0.020 0.050   

SJC 0.030 0.110   

Student’s t 0.120 0.130   

Time-Varying SJC   0.820 0.360 

Time-Varying Student’s t   0.880 0.430 

 Wholesaler - Retailer 

Gaussian 0.190 0.410   

Gumbel 0.050 0.220   

SJC 0.300 0.590   

Student’s t 0.200 0.470   

Time-Varying SJC   0.180 0.150 

Time-Varying Student’s t   0.320 0.460 

Note: this Table presents p-values from goodness of fit tests for four different copula 
models using 100 bootstrap replications. CKS  and CCvM  tests refer to the 
Kolmogorov-Smirnov and Cramer-von Misses tests respectively, applied to the 

empirical copula of the standardized residuals. RKS and RCvM  tests refer to the 
Kolmogorov-Smirnov and Cramer-von Misses tests respectively, applied to the 
empirical copula of the Rosenblatt transform of these residuals. 
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Table 4.8.Results from static copulas 

Producer - Wholesaler  

Gaussian 0.381** 
(0.074) 

Log likelihood 12.151 

SJC( , )L Uτ τ   0.141** 
(0.081) 

   

0.297** 
(0.095) 

Log likelihood 14.662 

Student’s t 
1

( ), −ρ ν   0.388** 
(0.071) 

0.170** 
(0.101) 

Log likelihood 13.431 

Wholesaler - Retailer  

Gaussian   0.206** 
(0.087) 

Log likelihood   3.363 

SJC( , )L Uτ τ  0.002 
 (0.002) 

0.174** 
(0.089) 

Log likelihood   4.919 

Student’s t 
1

( ), −ρ ν  0.191** 
(0.091)    

0.216** 
(0.108) 

Log likelihood 4.919 

 Note :*(**) denotes statistical significance at the 10% (5%) level. 
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Table 4.9.Time varying Student’s t copula 

  Producer - Wholesaler  Wholesaler -Retailer  

Student’s t ω  0.056  

 (0.042) 

0.459** 

 (0.105) 

α  0.190 **  

(0.043) 

0.446** 

(0.155) 

β


   0.950** 

 (0.026) 

0.102** 

 (0.179) 

1γ −  0.213** 

 (0.063) 

0.168** 

 (0.129) 

Log likelihood 18.651 6.598 

Note :*(**) denotes statistical significance at the 10% (5%) level. 
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Figure 4.1.Time varying Student t copula for Producer - Wholesaler price pair 
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Figure 4.2.Time varying Student t copula for Wholesaler - Retailer price pair 
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CHAPTER 5 

Conclusion 

 

 

 

 

 



The guiding theme of this thesis is the use of statistical copulas as an instrument to 

model dependence between variables in the agrofood sector. While widely used in the 

financial economics literature, copulas have been rarely applied in the food economics 

field. Statistical copulas are applied to three different case studies, each constituting one 

of the three key chapters of the thesis. Each of these analyses addresses dependence 

between variables whose univariate distribution cannot be satisfactorily represented by a 

Gaussian or a Student t distribution. Hence, their joint distribution function cannot be 

easily characterized by any of the existing multivariate distribution functions. Under this 

framework, it is recommendable to use alternative statistical tools to assess dependence. 

One of the main advantages of copulas is that they rely on univariate distributions and 

do not require specification of a multivariate distribution. Further, and relative to non-

parametric techniques, copulas have the advantage to produce parameters that 

summarize dependence between the variables considered.  

The objective of the first analysis is to evaluate whether the introduction of 

agricultural revenue assurance (RA) contracts in Spain will imply a reduction in the 

price of purchasing agricultural insurance.  The work focuses on the apple and orange 

sectors in Spain. In order to define a fair price of purchasing insurance, one needs to 

characterize dependence between prices and yields, which is done using statistical 

copulas. Monte Carlo simulation methods are used to simulate premium rates under 

revenue and yield insurance. Empirical results show a negative correlation between 

these two variables. This implies that revenue insurance is likely to reduce the price of 

agricultural insurance in Spain, which may result in higher acceptance and demand for 

agricultural insurance programs. 

The second and third research articles focus on assessing price transmission along 

the food marketing chain, from producers to final consumers, in less developed 
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countries (LDCs). After the food price crisis in 2007/2008, food prices increased 

significantly, specially in (LDCs) countries. Given the significant impacts that 

expensive food has at the political, economic and social levels, price analyses have 

proliferated since then, aiming at providing a better understanding of the causes and 

consequences of recent food price increases. Continued food price increases will worsen 

poverty rates, food insecurity and nutritional deficiencies, especially in poor countries.  

In this regard, the second article contributes to the assessment of vertical price 

transmission from producers to consumers in Niger millet markets. Two markets are 

considered: Maradi and Tillabéri. While Maradi represents a region where there is 

excess millet production, Tillabéri is a deficit zone. Cointegration analysis is considered 

to examine the long-run relationship between producer and consumer millet prices. 

Copulas are used to examine short-run dependence. Results show that Niger millet 

markets are dominated by producer markets. Positive correlation is found to 

characterize producer and consumer price dependence, a correlation that declines with 

an increase in the physical distance between producer and consumer markets. Further, 

research results suggest an asymmetric dependence between the prices considered. For 

the Maradi market, this dependence involves that producer price increases are more 

likely to be transferred along the food market chain than price declines. In contrast, 

results for the Tillabéri market imply that extreme price increases will not be passed 

along the chain, which protects consumers in Tillabéri against price increases in the 

producer market. Evidence of asymmetric price behavior may point to non-competitive 

behavior. 

Our third study focuses on vertical price transmission in the Egyptian tomato 

sector after the Arab Spring. Results show that, given the tumultuous period covered by 

the analysis, dependence changes over time, which requires the use of time-varying 
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copulas. Positive dependence is found to characterize the link between producer and 

consumer prices. Dependence is less strong when it comes to wholesaler – retailer 

prices. Research results also suggest an asymmetric dependence between wholesaler – 

retailer prices, whereby extreme increases in wholesale prices are passed on to retailer 

prices, while declines are not. As a result, food consumers will not benefit from extreme 

declines in prices at upper levels of the food chain, but they will have to endure extreme 

price increases. 

In conclusion, statistical copulas assess dependence between variables in a much 

more flexible form than other well known statistical tools. This thesis shows how 

statistical copulas can become a relevant instrument in the food economics field. When 

drawing policy implications based on copula results, one should however be cautious 

since copulas are non-structural models. While structural models are founded on 

economic theory, non-structural analyses identify empirical regularities in the data.  

This work could be extended in a number of different ways. A systematic 

comparison of the results derived from copulas and other conventional methods such as 

parametric and non-parametric time-series econometric techniques would shed light on 

the differences between the two. Recent research has combined pure copulas using 

finite mixture models, in order to increase statistical modeling flexibility. Mixture 

copulas have been shown to perform better than pure copulas in applied analyses 

(Melanie and Volker, 2012;  Vrac et al., 2012; Ghosh et al., 2011; Ouyang et al., 2009). 

Comparison of our results with the ones produced through mixture copulas offers scope 

for further research. Pure and mixture copulas, however, are difficult to apply to 

multivariate data. A bivariate approach has been adopted in this thesis to overcome this 

shortcoming. Vine copulas have been devised to appraise multivariate dependence. D-

vine copulas, for example, have multiple parameters to study the dependence through 
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iterative construction of pair copulas (Kim et al., 2013). Vine copulas have accelerated 

the use of copulas as an instrument to depict dependence for multivariate data. The use 

of vine copulas would allow assessing dependence, for example, between consumer, 

wholesaler and producer prices, which is another path to extend the analysis presented 

in this thesis. 
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