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Abstract

The specification of the vertebrate limb skeleton is a classical model to study pat-

tern formation during development. Two different theories have been proposed to

explain this process: the Turing mechanism and the Positional Information model.

This thesis uses computational modeling to explores to which extent these two the-

ories can be combined to explain digit patterning. The main result of this work is

a computational model of digit patterning that suggests that a Turing mechanism

modulated by Hox genes and Fgf-signaling underlies digit specification. By com-

paring simulations and experimental data we show that the Turing mechanism is

implemented by Bmps, Sox9 and Wnts. The model shows that a combination of

Positional Information and Turing can implement an extremely reliable patterning

mechanism and suggests that Fgf-singling coordinates patterning and growth.

Resum

L’especificació de l’esquelet de las extremitats dels vertebrats és un model clàssic

per estudiar la formació de patróns durant el desenvolupament. Dues diferents

teories van propusarse per explicar aquest procés: el mecanisme de reacció-difusió

de Turing i el model de Positional Information. Aquesta tesi utilitza modelos com-

putacionals per explorar si aquestas dues teories es poden combinar per explicar

el patron dels dits. El resultat principal és un model computacional que suggereix

que un mecanisme de Turing modulat per Hox genes i Fgfs controla l’especi-

ficació dels dits. Comparant simulacions amb dades experimentals aconseguim

demostrar que el mecanisme de Turing és implementat per Bmps, Sox9 i Wnts. A

mes, el model mostra que una combinació de un mecanisme de Turing i Position-

al Information aconsegueix especificar al patró de manera extremadament fiable i

suggereix que els Fgfs coordinen la formació del patró amb el creixement.
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Chapter 1

INTRODUCTION

Modern Developmental biology is rooted on fundamental questions raised by an-

cient Greek philosophy. As early as the eight century B.C., Greek philosophers

had already established a field called “generation” that focused on the study of the

origin of organisms. Aristotle in the fourth century B.C. was already performing

classical embryology experiments by opening chicken eggs at different times to

observe the progressive development of the embryo [Balme, 2002]. Aristotle was

the first to challenge the preformationist theories that believed that a miniature ver-

sion of the embryo (“Homunculus”) was preexisting in the father’s semen. Strong

of his observations in chick, he proposed an alternative model called “epigenesis”

that described the embryo as a mass of undifferentiated substance where the parts

were created in a nested hierarchical order. Over the centuries, various philoso-

phers and scientists supported Aristotle’s view and found conceptual problems

deriving from preformationism notions. A well- known problem of preformation-

ism was the recursive application of the “Humunculus” assumption that implied

that every embryo contained an infinite series of Russian-doll “Homonculi”. Also

Leonardo Da Vinci in the 15th century raised doubts against preformationism by

highlighting the evidence that both parents contributed almost equally to a child’s

aspect. However, it took a two thousand years long debate to accept Aristotle’s

“epigenesis” and eventually his theory was only revived in 1759 by the German

zoologist C.F Wolff.

During the nineteenth century with the development of cell theory and the

discovery of the mammalian ovum by Karl Ernst von Baer the study of embryo-

genesis was revolutionized. It was then clear that the germ cells of both parents

contributed equally to form the zygote that by successive cell divisions generated

all the somatic cells of the embryo. These concepts founded the basis of modern

developmental biology and lead to a main questions of the field: How does a

complex multicellular organism with different organs and tissues develops form a

single fertilized cell? How cells differentiate and achieve spatial organization?
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This process is known as pattern formation and is the main topic of this study.

This thesis is focused on the early development of the vertebrate limb and in par-

ticular on the molecular mechanisms that drive the specification of the digits. The

final outcome of this work is a computational model of limb development which

provides evidence that a Turing mechanism modulated by Positional Information

specifies the periodic pattern of the digits. An interesting aspect of this this study

is the use of a systems biology approach to the study morphogenesis and pattern-

ing, which shows that a combination of experiments and modeling is a convenient

way to handle the spatio-temporal complexity of development.

The thesis is organized as follows:

• The first chapter provides a general overview on pattern-formation, mor-

phogenesis and limb development. Each section of this chapter is concluded

with a summary that helps the reader to contextualize the literature with my

original work. The first section focuses on pattern formation and gives an

historical introduction on Turing mechanisms and Positional Information. I

give particular attention to Turing mechanisms which forms the basis of the

two models of digit patterning presented in the third chapter. This section is

best understood by people with a mathematical background. Readers with a

biological background may want to go directly to the last three subsections

that include the first article presented with my thesis, which reviews the

Turing models that have been proposed to study development. The second

section introduces the concept of morphogenesis and its relation to pattern-

ing. Finally, the last section provides an introduction to limb development

with a particular emphasis on the theoretical and computational models of

digit patterning.

• The second chapter gives a brief summary of the goals and results of this

thesis.

• The third chapter presents the original contributions of my work. The chap-

ter starts with the second article included with my thesis, which provides

the first strong evidence that a Turing mechanism controls digit patterning.

This work is done in collaboration with the laboratory of Marian Ros at

the University of Cantabria and shows that Distal Hox Genes modulate the

wavelength of the Turing mechanism that patterns the digits. The chapter

follows with the third article included in this thesis, which concerns the de-

velopment of a realistic model of limb growth based on mouse clonal data

and experimental mouse limb morphologies. The last section presents the

main result of my thesis, which is a model of digit patterning that considers

accurate limb growth, experimental gene expression data, Positional Infor-

mation gradients and a three-reactant Turing model derived from molecular
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data. By comparing the model against experimental data we provide the

first evidence that Bmps, Sox9 and Wnts form the Turing gene network

responsible for digit patterning.

• Finally, the fourth chapter provides a discussion and elaborates on the future

directions of limb development modeling.

1.1 Pattern Formation

One of the first theories that was proposed to explain the early patterning of the

embryo is the Mosaic Model proposed by Weissman in 1880s. In his model,

Weissman hypothesized the presence of a number of determinants in the zygote

nucleus that after cell division were unequally distributed among cells. A certain

combination of factors represented a particular cell identity and a series of asym-

metric cell divisions would be responsible for the spatial asymmetries. A first

confirmation of this model came from the experimental work done by Willhem

Roux in frog, where destruction of one cell at the two-cell stage of the zygote re-

sulted in a half embryo. However, successive experiments from H. Driesch in sea

urchins and the famous work by Spemann and Mangold revealed that cells had the

plasticity to be respecified by cells located in instructive regions of the embryo like

the Spemann organizer. At the same time the chromosomal theory of development

had established and the interest on genes was growing. One of the first scientist

that tried to reconcile the concept of genes and organizers was Waddington. In his

book “genes and organizers” [Waddington, 1940] he stated that Development was

a path from genotype to phenotype and believed that embryology had to be study

under the light of genetics. After the 1950s, with the discovery of the DNA and

advances in the field of molecular biology, developmental biology focused on the

relation between genes and morphological changes trying highlight which genes

determine each morphological change in the embryo. However, it was still not

clear how cells communicated to achieve spatial organization.

1.1.1 Self-organizing reaction-diffusion model

Alan Turing, a British electrical engineer famous for establishing the foundations

of computer science and for being a code breaker during the Second World War,

was among the first to use mathematical models to study biology [Murray, 2012].

In 1952 he published a seminal paper called “The Chemical basis of Morphogen-

esis” [Turing, 1952] where he described a simple model based on diffusible sub-

stances that were able to self-organize in a periodic stable pattern. His mathemat-

ical analysis showed that under certain reacting conditions two or more diffusible
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substances, that he called morphogens, could stabilize in a periodic spatial pattern

due to diffusion and stochastic fluctuations. He proposed that this diffusion-driven

instability could be responsible for the generation of spatial asymmetries during

morphogenesis. Turing’s theory was published only one year before the discovery

of DNA structure and did not provide an exact meaning for the nature of mor-

phogens. In his paper Turing relates the morphogens to the evocators proposed by

Waddington [Waddington, 1940] but also proposes that genes and hormones may

also be considered as morphogens because they function similarly to chemical

reactants and control the production of other morphogens.

1.1.1.1 Turing’s original reaction-diffusion model

In the model presented by Turing each cell contains a number of morphogens (M
morphogens) that can diffuse and react according to normal law of diffusion and

reaction. If this system is well-stirred, both reaction and diffusion depend only on

the concentrations of the M morphogens and the state of a whole systems made

of N cells can be describe by N ×M numbers. If each cell is in the same state,

namely they have same M concentrations, and the system is completely symmet-

rical (like in the spherical symmetry of the Blastula embryo stage) nothing will

happen. However, if the system has some deviations from homogeneity (some

irregularities) it may reach a state where these deviations tend to grow and form

a new stable equilibrium with broken asymmetry. To explain how this phenom-

ena can take place Turing used a simple example of two initially homogeneous

cells with two morphogens X and Y . The production reactions for X and Y are

governed by the following equations:

(X) = 5X − 6Y + 1 (1.1)

(Y ) = 6X − 7Y + 1 (1.2)

and X diffuses at rate 0.5 (for unit difference of concentrations between cells)

and Y diffuses at rate 4.5.

According to (1.1) and (1.2) if X = 1 and Y = 1 the system remains un-

changed because both production terms are zero and no diffusion occurs. How-

ever, if we suppose that the morphogen concentrations in the cells are slightly

perturbed:

X1 = 1.06 Y1 = 1.02 in the first cell

X2 = 0.94 Y2 = 0.98 in the second cell

the rate of production for X and Y becomes respectively +0.18 and +0.22 in the

first cells and −0.18 and −0.22 in the second cell, and the amount of diffusion
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from the first cell to the second is 0.6 and 0.18 for X and Y respectively. There-

fore, by summing both diffusion and reaction we have a flow from the second

cell to the first cell of 0.12 and 0.04, for X and Y respectively, that increases the

difference between the two cells. This difference increases exponentially at every

step drifting away from the equilibrium condition and accentuating the asymmetry

between the two cells.

Turing, extended this simple example to a system made by a ring of N cells

with generic production equations for X and Y . In this more general example,

for each cell r with 1 6 r 6 N there could be diffusion with the two neighboring

cells r− 1 and r+1. He denoted concentration of X and Y in a r cells as Xr and

Yr and wrote the equations defining their evolution over time as:

∂Xr

∂t
= f(Xr, Yr) + µ(Xr+1 − 2Xr +Xr−1) (1.3)

∂Yr

∂t
= g(Xr, Yr) + ν(Yr+1 − 2Yr + Yr−1) (1.4)

where f(X, Y ) and g(X, Y ) are production function with a general form and µ
and ν are diffusion constant of X and Y respectively.

The behavior of the system was analyzed considering a perturbation of the

equilibrium steady state f(h, k), g(h, k) = 0 that writes Xr = h+xr, Yr = k+yr.
In this state close to equilibrium f(h + x, y + k) can be approximated as a linear

combination of x and y that writes ax + by. Similarly, g(h + x, y + k) can be

approximated to cx+ dy and the system can be rewritten as:

∂xr

∂t
= axr + byr + µ(xr+1 − 2xr + xr−1) (1.5)

∂yr
∂t

= cxr + dyr + ν(yr+1 − 2yr + yr−1) (1.6)

Turing solved this system analytically and found four types of spatial waves

(four different behaviors) that the system can exhibit as the parameters a, b, c, d, µ, ν
are changed:

(a). Stationary homogeneous (extreme long wave-length)

The cells are all the same, there is no flow from one cell to the other and they

behave like isolated. Example of parameters: µ = ν = 1
4
, b = c = 1, a = d

(b). Oscillatory (extreme long wave-length)

The system oscillates homogeneously.

Example of parameters: µ = ν = 1
4
, b = −c = 1, a = d
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(c). Stationary waves (extreme short wave-length)

Cells have alternated identities like in a chessboard pattern or in a lateral

inhibition pattern (E.g Notch-Delta signaling).

Example of parameters: µ = 1, ν = 0, b = −c = 1, d = I, a = I − 1,

(d). Stationary waves (finite wave-length)

Cells show a periodic stationary wave pattern in space. The number of peaks

formed depends on the radius of the ring of cells and the diffusion constants.

Example of parameters: µ

µ′
= ν

ν′
= ( N

2πρ
)2, ν = 0, a = I − 2, b = 2.5, c =

−1.25, d = I + 1.5

With the addition of a third morphogen two other behaviors were possible, namely:

(e) Traveling waves and (f) Out phase oscillations; and these are all the possible

behaviors that can be obtained by a reaction-diffusion mechanism. The behav-

ior (d) is the main result of Turing and is usually referred as Turing instability or

diffusion-driven instability. Figure 1.1 shows A Turing’s original numerical simu-

lations that forms a diffusion-driven instability starting from homogeneous initial

conditions.

Figure 1.1: Concentration of Y in a numerical simulation performed by Turing.

The horizontal dash line is the starting homogeneous steady state, the continuous

line is the final state. The line highlighted by oblique lines is an intermediate state

(Figure taken from [Turing, 1952]) .

Interestingly, by the time when Turing published his paper, a Russian sci-

entist named Boris Belousov was struggling to publish his results regarding a
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chemical reaction that could oscillate between two states, see Figure 1.2. The

work of Belousov was considered too controversial and was rejected twice for

publication because it showed that chemical reactions could behave according

to non-equilibrium thermodynamics. At the time, the work of Alan Turing was

largely unknown to the scientific community and no connection between the Be-

lousov’s work and the reaction-diffusion models type (b) was made. Eventu-

ally, Belousov’s work was published in a non reviewed journal [Belousov, 1959]

and re-discovered only in the early sixties by a graduate student named Anatol

Zhabotinsky [Zhabotinsky, 1964]. In the following three decades, a number of

theoretical models like the Brusselator [Prigogine and Lefever, 1968] and the

Oregonator [Field and Noyes, 1974] were developed to explain such chemical

oscillations. Moreover it was also recognize that the dynamics behind chemical

oscillations were the same as those exhibited by the predator-prey model of Lotka

and Volterra [Lotka, 1910] published at beginning of the century. This anecdote

highlights the initial resistance that Turing and others had to face to convince the

scientific community. Nevertheless, Turing’s and Belusov’s work were just the

beginning of a long series of models and experiments that would confirm the im-

portance of reaction-diffusion in biology and chemistry.

Figure 1.2: A stirred Belousov-Zhabotinsky reaction mixture showing changes in

color over time (oscillations). (Figure taken from [Wikipedia, 1])
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1.1.1.2 Reaction diffusion models after Turing

The reaction-diffusion models that were published in the two decades following

Turing’s paper focused either on type (d) models (periodic patterns) or on type (b)

models (oscillations) based on the idea of Belousov and Zhabotinsky. Eventually,

these two schools converged and many of the type (b) oscillating models were

re-analyzed for their type (d) behavior and vice versa.

A famous contribution regarding type (d) reaction diffusion models is the work

by Gierer and Meinhardt [Gierer and Meinhardt, 1972] that proposed more real-

istic models made of two morphogens: one acting as an activator and another

having an inhibitory effect. According to Gierer and Meinhardt [Gierer, 1981,

Gierer and Meinhardt, 1972, Meinhardt, 1982] two qualitative phenomena are re-

quired to obtain a diffusion-driven instability: (a) short range auto-activation, (b)

long range lateral inhibition. The first phenomena implies that the activator has

to promote its own activation locally to allow some local initial advantages to de-

velop in an activated region. The second, means that the inhibitory effect has to

spread on a wider area than the activator in order to limit its over-all expansion.

Gierer in [Gierer, 1981] provided a more formal description of these two concepts

as follows, given a system of two reaction diffusion equations:

∂u

∂t
= f(u, v) +Du(u) (1.7)

∂v

∂t
= g(u, v) +Dv(v) (1.8)

where Du(u) and Dv(v) describe the diffusion of the morphogens, for example

in the one dimensional continuous case thy are: Du(u)=ku
∂2u
∂x2 Du(u)=kv

∂2v
∂x2

to get stable pattern formation, the uniform solution f(u0, v0) = g(u0, v0) = 0 has

to be: stable for uniform distributions of u and v (including their spatial averages

when there are small perturbations) and unstable for local deviations. According

the Gierer, this happens when the following conditions are satisfied:

• u has to auto-activate itself.

• v has to cross-inhibit u to prevent u explosion and to maintain average u
and v near the uniform steady state.

• The inhibition from v has to be strong enough to maintain the stability of

the uniform steady state.

• The inhibition from v has to be relatively fast compare to the activation.
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• The half decay length of u, that is
√

ku/µu (where µu is a first order decay

of u), has to be lower than the domain size.

• The half decay length of v, that is
√

kv/µv (where µv is a first order decay

of v), has to be large in comparison with the one of u.

Following these assumptions, if the reaction-diffusion equations are re-written to

consider explicitly production Pu, Pv and degradation Qu, Qv terms:

∂u

∂t
= Pu(u, v)−Qu(u, v) +Du(u) (1.9)

∂v

∂t
= Pv(u, v)−Qv(u, v) +Dv(v) (1.10)

and if we assume the terms can be approximated as:

Pu ∼ ui1vi2 ; Qu ∼ ui3vi4 ; Pv ∼ ui5vi6 ; Qv ∼ ui7vi8

models that respect the diffusion-driven instability conditions presented above can

be generated considering the term orders ik, k = 1..8 as follows:

• i1 > i3 to make sure that u manages to auto-activate itself

• i8 > i6 to make sure that v grows to cross inhibit

• i2 < i4, i5 > i7 to ensure cross-inhibition or alternatively i2 > i4, i5 < i7 to

implement the inhibition by depletion of v by u and activation of u by v.

Using these criteria Gierer and Meinhardt developed two class of models:

• the Activator-Inhibitor (AI) model with conditions i2 < i4, i5 > i7, where

an activator u auto-activate itself and stimulates the production of its own

inhibitor v. This model is equivalent to the original model presented by

Turing and a popular version of its equations is:

∂u

∂t
= ρu

u2

(1 + kuu2)v
− µuu+ σu +Du∇2u (1.11)

∂v

∂t
= ρvu

2 − µvv + σv +Dv∇2v (1.12)

where the term u2

(1+kuu2)v
in equation (1.11) represents the u auto-activation

(u2), the inhibition from v (that is at the denominator) and a saturation on

the auto-activation depending on ku. Starting from the homogeneous steady

state (case with no diffusion) in a one-dimensional row of thirty cells a
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periodic pattern of u and v emerges, see the left panel in Figure 1.3. In the

final pattern, peaks of high concentration of u and v are in the same place,

the two patterns are in phase.

Gierer and Meinhardt were also the first to show two-dimensional com-

puter simulations of a diffusion-driven instability. In two dimensions the

Activator-Inhibitor model showed two different types of patterns: spots or

stripes, see the right part of Figure 1.3. The former developed when the

auto-activation did not saturate (ku = 0) and an activated region could

freely grow and promote enough inhibitor to make a stable spot configu-

ration. This is easy to understand as a natural extension of a 1D model to

every 2D direction. Stripes were instead formed when the auto-activation

saturated (ku > 0). According to [Scholarpedia, 1] stripes develops because

the activator peak height can no longer increase but the spatial extension of

a region carrying a high activator concentration can still increase. Since

the mechanism is based on lateral inhibition, a stripe-like distribution is

preferred and each activated cell will have activated neighbor but also non-

activated neighbors in the vicinity to dumped inhibitor.

• the Substrate-Depletion (SD) model, with conditions i2 > i4, i5 < i7 where

an activator u auto-activate itself by depleting a substrate v. One of the

implementations of this model is the following:

∂u

∂t
= ρu

u2v

(1 + kuu2)
− µuu+ σu +Du∇2u (1.13)

∂v

∂t
= −ρv

u2v

(1 + kuu2)
+ σv +Dv∇2v (1.14)

where the term u2v
(1+kuu2)

in both equations (1.13) and (1.14) represents the

fact that u auto-activate itself (u2) by consuming the substrate v with a sat-

uration that depends on ku. A one-dimensional simulation in a row of thirty

cells shows again an emerging periodic pattern of u and v, see left panel in

Figure 1.4. However, this time the peaks of u are spatially complementary

to those of v, the two patterns are out-phase. This happens because where

u grows v is consumed. Similarly to the previous case the peaks of v are

wider than those of u due to its greater diffusion constant.

In two dimensions, the model exhibited a behavior similar to the Activator-

Inhibitor model, see right panel in Figure 1.4. As in the AI model, when

there was no saturation (ku = 0) the pattern of u showed spots. With this
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Figure 1.3: On the left: a 1D simulation on a row of 30 cells (long 500 space units)

of the Activator-Inhibitor model proposed by Gierer and Meinhardt. The activator

u is shown by continuous line and the inhibitor v by dashed line. Four different

time points corresponding to t=0 (initial conditions), t=1000, t=2000 t=50000 are

shown. On the right: same time-points for simulations on a 2D circular domain

made of 7272 triangles with radius of 250 space units. High concentrations are

shown in black color and low concentration in white, the minimum, medium and

maximum concentration values are provided. The left part shows the simulation

with no saturation ku = 0: spots are formed. The right part shows the simulation

with saturation ku > 0: a labyrinthine pattern is formed. All the simulation show

that u and v have an in-phase pattern and that v is spatially more extended.
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parameters the model converged more quickly than the AI model to a regu-

lar spot configuration. This is due to the fact that the substrate v has a pat-

tern of highly-connected stripes (rather than spots) and quickly organizes in

a hexagonal-like honey bee pattern. When there was saturation and ku > 0
a labyrinth-like pattern of stripes was created for both u and v. In both cases

the patterns of u and v were out of phase (complementary patterns).

In parallel to the work of Gierer and Meinhardt, a number of models inspired

by the oscillations of the Belousov-Zhabotinsky reaction were modified to con-

sider diffusion and extended into Turing models:

• Brusselator - The first theoretical model was proposed by Prigogine [Pri-

gogine and Lefever, 1968] at the Université Libre de Bruxelles and was

named Brusselator after the city where it was developed. This model was

made to capture the oscillating dynamics of the following hypothetical re-

actions:

A
k1−→ X

B +X
k2−→ Y +D

2X + Y
k3−→ 3X

X
k4−→ E

where X and Y are internal reactants with variable concentration and A,B
and D are external reactants with fixed concentrations

from these reactions, the following Ordinary Differential Equations (ODEs)

governing the systems can be derived for X and Y :

dX

dt
= k1A− k2BX + k3X

2Y −K4X (1.15)

dY

dt
= k2BX − k3X

2Y (1.16)

Prigogine described analytically the limit cycle behavior (oscillations) that

this system can exhibit. Successively, Nicolis in [Nicolis, 1970] highlighted

that a remarkable characteristic of systems far of equilibrium, like the Brus-

selator, is the capacity to form a new type of instability that can generate
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Figure 1.4: On the left: a 1D simulation on a row of 30 cells (long 500 space units)

of the Substrate-Depletion model proposed by Gierer and Meinhardt. The activa-

tor u is shown by continuous line and the substrate v by dashed line. Four different

time points corresponding to t=0 (initial conditions), t=300, t=600 t=25000 are

shown. On the right: same time-points for simulations on a 2D circular domain

made of 7272 triangles with radius of 250 space units. High concentrations are

shown in black color and low concentration in white, the minimum, medium and

maximum concentration values are provided. The left part shows the simulation

with no saturation ku = 0: u forms spots and v forms an hexagonal-like honey

bee pattern. The right part shows the simulation with saturation ku > 0: for both

u and v a labyrinth-like pattern of stripes is formed. All the simulation show that

u and v have an out of phase pattern (complementary).
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non-equilibrium structures. Such structures are maintained trough the con-

tinuous exchange of energy and matter from the outside world and for this

reason he call them “dissipative structures”. Systems capable of diffusion-

driven instabilities are typical examples of dissipative structures and indeed

the Brusselator model itself can be transformed in a set of Partial Differen-

tial Equation that behaves like a reaction-diffusion type (d) model [Nicolis

and Prigogine, 1977]. For example, equation (1.15) and (1.16) can be con-

veniently rewritten and transformed in PDEs as following:

by considering the following transformation

X = u, Y = v, t = tk3,
Dx

k3
= Du,

Dy

k3
= Dv, α = Ak1

k3
, β = B k2

k3

∂u

∂t
= α− (β + 1)u+ u2v +Du∇2u (1.17)

∂Y

∂t
= βu− u2v ++Dv∇2v (1.18)

this system has homogeneous steady state (u0, v0) = (α, β

α
) and shows type

(b) behavior for β > 1 + α2 and Turing diffusion-driven type (d) instability

when β > (1 + α
√

Du

Dv
)2. This system shows an out of phase pattern for u

and v similar to the Substrate-Depletion model of Gierer Meinhardt. An in-

teresting aspect of this model is that when the type (d) instability condition

is satisfied, by changing the parameter α the pattern can smoothly change

from a configuration where u shows spots and v shows stripes, to the op-

posite configuration where v show spots and u show stripes. In between

these two configurations there exist one that resembles the one of Substrate-

Depletion model with ku > 0 and where both u and v show stripes.

• Oregonator - Another famous reaction-diffusion type (b) model is the Oreg-

onator presented by Field and Noye in [Field and Noyes, 1974] at the Uni-

versity of Oregon just few years after the Brusselator. This model was not

just inspired by the Belusov-Zhabotinsky system but aimed to explicitly

mimic its reactions. The original model was derived from a set of five reac-

tions:
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A+ Y
k1−→ X + P

X + Y
k2−→ 2P

A+X
k3−→ 2X + 2Z

2X
k4−→ A+ P

B + Z
kc−→ 1

2
fY

where X, Y, Z are internal reactants with variable concentration and A,B
and P are external reactants with fixed concentrations

from these reactions the following Ordinary Differential Equations (ODEs)

system can be derived for X , Y and Z:

dX

dt
= k1AY − k2XY + k3AX − 2k4X

2 (1.19)

dY

dt
= −k1AY − k2XY +

1

2
kcfBZ (1.20)

dZ

dt
= 2k3AX − kcBZ (1.21)

This system gives rise oscillations and traveling waves that are consistent

with the experiments of Belusov and Zhabotinsky. Moreover, it can be

transformed in a system of PDEs that can form stationary type (d) Turing

Patterns [Becker and Field, 1985]. A simplified version of the Oregonator

model known as the two-variable Oregonator [Nicolis and Prigogine, 1977]

writes:

∂u

∂t
=

1

ε
(u− u2 − fv

u− q

u+ q
) +Du∇2u (1.22)

∂v

∂t
= u− v +Dv∇2v (1.23)

the system has steady state u0 = v0 =
1−f−q+

√
(1−f−q)2+4q(1+f)

2
and shows

type (b) behavior when 0 < ε < 1 and Turing diffusion-driven type (d)

instability when ε = 1. This system shows an in phase pattern for u and

v. Similarly to the case of the Brusselator by changing the parameter f the

pattern can smoothly change from a configuration where u shows spots and

v shows stripes, to the opposite configuration, v show spots and u show

stripes.
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• Schnakenberg - A more general study on the chemical reactions that can

exhibit reaction-diffusion type (b) behavior was made by Schnakenberg in

[Schnakenberg, 1979]. The purpose of this study was to find the simplest set

of reactions capable of a limit cycle behavior. Schnakenberg demonstrates

analytically that the simplest system (even simpler than the Brusselator) that

is capable of oscillation writes:

2X + Y → 3X

A → Y

X ⇄ B

where X and Y are internal reactants with variable concentration and A,B
are external reactants with fixed concentrations

from these reactions the following ODEs can be derived for X and Y :

dX

dt
= X2Y −X − B (1.24)

dY

dt
= −X2Y + A (1.25)

Such system exhibits a type (d) oscillations behavior when 0 < B ≪ A and√
2 − 1 < A < 1 and can be extended with diffusion to a system of PDEs

as following:

∂u

∂t
= u2v − u− β +Du∇2u (1.26)

∂v

∂t
= −u2v + α +Dv∇2v (1.27)

where X = u, Y = v, α ∼ A and β ∼ B

the system has homogeneous steady state (u0, v0) = (α + β, α
(α+β)2

) and

can produce Turing diffusion-driven (d) instability [Iron et al., 2004]. The

pattern of u and v is out of phase as in the Substrate-Depletion model of

Gierer and Meinhardt. Again by changing the parameters α and β it is pos-

sible to smoothly change a configuration where u shows spots and v shows

stripes, to the opposite configuration, v show spots and u show stripes.
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• Gray Scott - A more recent model capable of reaction-diffusion type (b)

behavior was proposed by Gray and Scott in [Gray and Scott, 1985]. Again

the starting point of the model is a set of hypothetical reactions that highly

resemble the minimal set of reactions proposed by Schnakenberg:

Y + 2X
k1−→ 3X

X
k2−→ A

where X and Y are internal reactants with variable concentration and A is

an external reactant product

from these reaction the following ODEs can be derived for X and Y :

dX

dt
= k1X

2Y − k2X + kf (x0 −X) (1.28)

dY

dt
= −k1X

2Y + kf (y0 − Y ) (1.29)

where (x0, y0) is the steady state and kf = 1
tres

and tres is the mean

residence time

Such system shows a limit cycle behavior with oscillations and can be trans-

formed in a non-dimensional version of PDEs as shown in [Pearson, 1993]:

∂u

∂t
= u2v − (F + k)u+Du∇2u (1.30)

∂v

∂t
= −u2v + F (1− v) +Dv∇2v (1.31)

where X = u, Y = v

this system has homogeneous steady state (u0, v0) = (0, 1) and can produce

a range of different behaviors by varying the two control parameters F and

k, including oscillations and reaction-diffusion type (d) Turing instability.

An extensive numerical study of the patterns produced by this model was
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presented by Pearson in [Pearson, 1993]. In previous reaction-diffusion nu-

merical studies a slight perturbation of the homogeneous steady state was

used as initial condition. Pearson instead used a strong squared perturbation

in the center of the domain with value (u, v) = (0.25, 0.3). This perturba-

tion grows and spread on the whole domain producing the different patterns

as F, k are varied. The pattern of u and v is out of phase as in the Substrate-

Depletion model of Gierer Meinhardt. Turing patterns can range from con-

figuration where u shows spots and v stripes to the opposite configuration.

Interestingly, the excitation induced by the initial perturbation is also able

to produce propagating stripe-like structures and replicating spots. This

phenomena are qualitatively different from a stable Turing patterns and are

related e to the reaction-diffusion type (e) behavior. In this configuration the

initial excitation produces a dissipative structures (as named by Prigogine)

that behave as a propagating waves. An example of such propagating waves

are the traveling waves created by the action-potential neuronal model of

the Fitzhugh-Nagumo equations [Fitzhugh, 1961], see also the discussion

about waves in excitable media presented in [Murray, 1989]. The behavior

of this kind of structures is also referred as autosolitons or dissipative soli-

tons and has been extensively characterized by Kerner and Osipov [Kerner

and Osipov, 1994].

1.1.1.3 General conditions for diffusion-driven instability

In conclusion, both the studies that followed the work of Turing and those that

followed the work Belusov and Zhabotinsky converged to models made of two

reactants (two species) that showed similar reaction-diffusion type (d) behaviors.

Indeed, by the end of the eighties a more general theory that could be applied

to all these models was developed by Murray, see the reaction-diffusion stability

analysis in [Murray, 1989]. In this study Murray formalized the two conditions for

a diffusion-driven instability that were originally given by Turing and successively

by Gierer:

• the system has to be linearly stable in the case of no diffusion

• the system has to be unstable for spatial perturbations

The first condition was formalized as follows:

given the reaction-diffusion system

∂u

∂t
= γf(u, v) +∇2u (1.32)

∂v

∂t
= γg(u, v) + d∇2v (1.33)
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with zero flux boundary condition: r on ∂B where B is the boundary

the system can be linearized around the homogeneous steady state solution (u0, v0)
in the following way:

w =

(

u− u0

v − v0

)

(1.34)

when the vector |w| (the fluctuations) is small, the system (1.32),(1.33) can be

written in matrix form as

∂w

∂t
= γAw, A =

(

fu fv
gu gv

)

u0,v0

(1.35)

A is called the stability matrix and fu, fv, gu, gv are the partial derivative of f and

g at steady state. Let’s consider the solution w of the system as proportional to eλt

where λ is the vector of eigenvalues. The steady state w = 0 is linearly stable if

the real part of the eigenvalues λ satisfies λ < 0. The eigenvalues λ are calculated

as:

|γA− λI| =
∣

∣

∣

∣

γfu − λ γfv
γgu γgv − λ

∣

∣

∣

∣

= 0

⇒ λ2 − γ(fu + gv)λ+ γ2(fugv − fvgu) = 0

⇒ λ1, λ2 =
1

2
γ[(fu + gv)±

√

(fu + gv)2 − 4(fugv − fvgu)]

(1.36)

according to (1.36) the real part of the eigenvalues λ satisfies the condition λ < 0
when

fu + gv < 0, fugv − fvgu > 0 (1.37)

condition for the stability of the homogeneous steady state

The second condition required for a diffusion-driven instability is to be unstable

for spatial perturbations. This was formalize as follows:

again the whole system (including diffusion) is linearized around the steady state

w = 0:

∂w

∂t
= γAw +D∇2w, D =

(

1 0
0 d

)

(1.38)
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to solve this system with zero-flux boundary conditions, let’s first consider the

solution W(r) associated with the following eigenvalue problem:

(Note: an eigenvalue problem is the problem of finding an eigenvector v that

satisfies Av = λBv where A and B are matrices and λ the eigenvalue of A,B )

∇2W = k2W (1.39)

where k is the eigenvalue

For example in a 1D domain 0 ≤ x ≤ a, a solution W of this system that satisfies

the zero flux boundary conditions is proportional to cos(k) where k = nπx
a

with n
being an integer. k is usually referred as wavenumber and is inverse proportional

to the wavelength ω = 2π
k

. For this eigenvalue problem a discrete number of k
will exist. Let’s consider Wk(r) as the eigenfunction of a k number, the solution

of the whole system (1.38) can be written as:

w(r, t) =
∑

k

cke
λtWk(r) (1.40)

for the whole system to be unstable to spatial perturbations, the real part of the

solution λ(k) has to satisfy λ(k) > 0. It can be shown (see [Murray, 1989]) that

this is satisfied when following conditions are true:

dfu + gv > 0
(dfu + gv)

2

4d
> |A| (1.41)

condition for the instability to spatial perturbations

In conclusion Murray in [Murray, 1989] showed that a system in the form (1.32),(1.33)

can undergo diffusion-driven instability when (1.37) and (1.41) are satisfied. In

summary, putting together (1.37) and (1.41), a diffusion-driven instability is pos-

sible when:

fu + gv < 0, fugv − fvgu > 0

dfu + gv > 0, (dfu + gv)
2 − 4d(fugv − fvgu) > 0

(1.42)

condition for diffusion-driven instability

the conditions (1.42) imply that:

• fu > 0 and gv < 0, this means that u has to have a positive influence on

itself and that v has to have a negative influence on itself.
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• d > 1, that means that v has to diffuse more than u.

• fv has to have opposite sign to gv. This leaves with two possibilities fv >
0, gu < 0 or fv < 0, gu > 0, see the two A matrices in Figure 1.5. In-

terestingly these are the two possibilities found by Gierer and Meinhardt.

The first fv > 0, gu < 0 corresponds to the Activator-Inhibitor model and

will produce periodic in-phase patterns of u and v. The second corresponds

to the Substrate-Depletion model and will produce periodic out-of-phase

patterns of u and v. In summary the two matrices A capable to produce a

diffusion-driven instability are:

A =

(

fu fv
gu gv

)

AI model =

(

+ +
− −

)

, SD model =

(

+ −
+ −

)

(1.43)

Figure 1.5: The two A matrices derived by Murray and the corresponding two

class of models: AI models with in-phase pattern of u and v and SD models with

an out of phase pattern of u and v.

More recently, starting from the theory proposed by Murray, Barrio and col-

leagues derived in [Barrio et al., 1999] a general Turing model by expanding with

a Taylor series the two functions f and g that respected the conditions (1.42). The

equations derived were the following:

∂u

∂t
= αu(1− r1v

2) + v(1− r2u) + d∇2u

∂v

∂t
= βv(1 +

αr1
β

uv) + u(γ + r2u) +∇2v
(1.44)

when α = −γ this system has homogeneous steady state at (u0, v0) = (0, 0).
The conditions for the stability the homogeneous steady state (1.37) are satisfied

when:
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α > 0, β 6 −α

or

α 6 0, β 6 −1

The condition for the instability to spatial perturbation (1.41) are satisfied when:

α− 2
√
αd > βd

By changing α, β and d different modes (wave-numbers) could be obtained. For

example the following set of parameters α = 0.899, β = −0.91, D = 0.516, that

respects the conditions presented above, gives a wavenumber k = 0.42. The other

two parameters r1 and r2 in (1.44) represent the strength of the different non-linear

terms: r1 is the strength of cubic term and favors stripes while r2 is the strength of

the quadratic term and favors spots. This system produces an in-phase pattern of u
and v similar to the Activator-inhibitor model proposed by Gierer and Meinhardt.

In biological terms, the most interesting result of the linear stability analysis

of Murray are the two matrices showed in (1.43) that represent the only two alter-

natives topologies capable of a reaction-diffusion type (d) behavior in a network

of two reactants. These two topologies show different qualitative patterns: the AI

topology shows an in phase pattern for u and v and the SD topology shows an out

of phase pattern for u and v, see Figure 1.5. All the two-species models presented

in the previous section can be related to one of these two topologies, see Figure

1.6.

1.1.1.4 Reaction-diffusion and levels of abstraction

As Turing also admitted in the conclusion of his paper, even if simple reaction-

diffusion models capture some biological aspects of pattern formation, a biologi-

cal implementation of a diffusion-driven instability will not be as simple as a two-

reactant network. A real system will probably have a big number of reactants that

interact with several feedbacks. Nevertheless, fewer reaction-diffusion models

with more than two reactants can be found in literature. Gierer in [Gierer, 1981]

was the first to formalize some of the conditions required for diffusion-driven in-

stability in a general system made of N reactants. More recently, a formal deriva-

tion of the conditions required for diffusion-driven instability in system of N reac-

tants that interact according to simple linear terms was presented [Satnoianu et al.,
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Figure 1.6: In the upper part, the two core topologies derived from the conditions

for diffusion-driven stability derived by Murray. The topology on the left corre-

spond to the Activator-Inhibitor model (AI), the one one the right to the Substrate-

Depletion model (SD). Green arrows show the interactions that are common to

both core-topologies. Red and Blue interactions represent the cross-regulation

terms that are inverted in the two core topologies. On the lower part, the different

implementation of these two core topologies.
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2000]. Murray in [Qian and Murray, 2001] formalized the conditions required for

a diffusion-driven instability in general systems made of three reacting species.

However, a robust theory to easily derive the conditions for diffusion-driven in-

stability of general systems made of N reactants is still missing. For this reason

a limited number of Turing models with more than two species can be found in

literature. The few examples include ecological models, see [White and Gilligan,

1998], and models developed by Meinhardt in [Meinhardt, 2004] .

This is due to the fact that as the number of species (reactants) increases the

derivation of the conditions required for a diffusion-driven instability becomes

more challenging. Moreover, when a complex system is studied, as it is often the

case in biology or in physics, it is usually preferable to develop the simplest model

that is able to reproduce a desired behavior. This strategy is sometimes referred

as coarse-grained modeling and it consists in using a high level of abstraction.

On one side, this is a safe and conservative strategy to develop models with the

minimum number of “ingredients” required to explain a behavior. On the other

side, a minimal model has a reduced number of parameters and it is usually easier

to study. However, abstract models have also limited prediction capabilities and

are more difficult to compare with reality.

To explain better how different levels of abstractions can affect biological

modeling, I will use an example of the Drosophila circadian clock that has a well-

known underlying biological network. The biological interactions that drive the

Circadian clock in Drosophila depend on protein phosphorylation states, trans-

location of proteins in the nucleus, protein complex formation, protein degrada-

tions and gene regulation, see the schema in Figure 1.7A. This schema can be

entirely translated into a model, see for example [Leloup et al., 1999], and we

will obtain a model with at least ten ordinary differential equations and with more

then twenty parameters. With the right set of parameters this model will exhibit

oscillations of the proteins Per and Tim that reflect the Circadian clock. However,

we could also build a model with a greater level of abstraction that captures only

key interactions: for example the fact that Per and Tim form a protein complex

that eventually inhibits their own expression, see Figure 1.7B. In this case, the

model would have only five ordinary differential equations but again, with the

right parameters set, the model will exhibit oscillations. The level of abstraction

could be further increased by considering that the dynamics of the two proteins

Per and Tim are coupled, see Figure 1.7C. Finally, we could even consider the sim-

plest model capable of oscillation by approximating proteins and mRNAs with a

single reactant and by implementing the negative feedback with a single delayed

self-inhibition, see Figure 1.7D.

Each of this models is capable of oscillations and it is correct under the as-
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Figure 1.7: (A) A schema of the biological network responsible for the Circadian

rhythm in Drosophila (adapted from [Hardin, 2005]), the concentrations of Per

and Tim oscillate over time. A detailed model that mimics all these interactions

with a set of ten differential equation was presented in [Leloup et al., 1999]. (B)

A more abstract schema of the Circadian clock that considers only protein and

mRNA concentrations of Per and Tim. The two proteins form a complex that

inhibits the mRNA production. (C) An increasingly abstract schema that couples

the concentration of Per and Tim because they depend on the same feedback.

(D) A schema that approximate mRNAs and proteins with a single reactant. The

feedback on transcription is implemented with a delayed auto-inhibition. This is

the highest level of abstraction that can capture the oscillating behavior.
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sumption that are taken. Nevertheless, from the biological point of view not all

the models allow to address the same type of questions. For example if we are

interested in predicting the effects of a reduction in the Dbt protein or if we want

to predict the concentration of a specific nuclear protein complex, only the more

detailed model will be suitable. However, even the simplest model showed in

Figure 1.7D, that contains only a delayed negative feedback, can provide some

unintuitive predictions about the real system. For example, it allows us to predict

in which way the basal production of the proteins versus the degree of delay in the

negative feedback can affect the period of the oscillations.

To conclude, regarding reaction-diffusion systems, Turing provided an ab-

stract model for pattern formation, in the Circadian clock example corresponds

to the model in Figure 1.7D, and the current challenge is to develop more realis-

tic models that reflects the biology that underlies development, corresponding to

Figure 1.7A in the Circadian clock example. In this thesis, I take a step towards

this direction by developing a more realistic three-species Turing model that aims

to explain limb skeletal patterning. The model is presented in the third section of

the Results chapter and a more detailed discussion on the level of abstractions of

Turing models is presented in the last chapter.

1.1.1.5 Experimental evidences

Although theoretical models predicted that the oscillating Belousov-Zhabotinsky

reaction could in principle produce a diffusion-driven instability, later studies

found that the diffusion coefficients that were required contrasted with the phys-

ical constrains of the systems [Rovinskii, 1987]. The first experimental evidence

for a stable reaction-diffusion type (d) pattern was found only a few years later

at the University of Bordeaux [De Kepper et al., 1991]. In this study, De kepper

and colleagues observed the emergence of a stationary Turing pattern in a tiny

gel reactor in which malonic acid was added to a variation of the chlorite-iodide

reaction which was known to have a rich dynamic behavior. This system, usually

referred as CIMA, produced a series of parallel stripes that eventually broke into

spots, see Figure 1.8A. Following studies, see [Szalai et al., 2012] for a review,

confirmed the impressive correlation between the patterns produced by the CIMA

reaction and those produced by a Turing system, see Figure 1.8B.
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Figure 1.8: (A) an example of Turing pattern obtained in the original chlorite-

iodide malconic acid reaction (CIMA). (B) Different types of Turing pattern that

can be obtained by playing with the parameters of the CIMA reaction. Figures

taken from [Szalai et al., 2012].

The CIMA systems was the first demonstration that Turing patterns could in-

deed be formed by simple chemical reactions. This reconfirmed the relevance of

Turing mechanisms for patterning in development. However, only in recent years

it has been shown that various developmental systems behave like Turing models.

In the following paper I review some of these developmental systems.

1.1.1.6 First article: Turing Patterns in Development: What About the

Horse Part?
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1.1.1.7 Conclusions and discussion

In this section, I presented the original reaction-diffusion model proposed by Tur-

ing and I gave an historical overview of the reaction-diffusion models that were

proposed after him. I presented the mathematical conditions derived by Murray

that have to be satisfied to form a Turing pattern. I showed that these two con-

ditions correspond to the two informal requirements introduced by Gierer and

Meinhardt: local auto-activation and long range lateral inhibition. According to

these conditions, two minimal models made of two reactants can generate a Turing

pattern: the Activator-Inhibitor model (AI) the Substrate-Depletion model (SD).

In the first model, the two reactants form periodic spatial patterns that are in phase

(overlapping), while in the second model they develop periodic spatial pattern that

are out of phase (complementary). I also showed that all the reaction-diffusion

models presented after Turing can be related to one of these two core models.

I continued the section with a discussion about the different level of abstraction

that can be used to model biological systems. In particular, I showed that depend-

ing on the abstraction level, only certain biological questions can be addressed. In

the following section, I presented an overview of the biological systems that are

currently believed to be patterned by Turing models. Although, several studies

showed a striking correlation between abstract Turing models and experimental

patterns, in most cases the Turing molecules have not yet been identified. Only

two recent studies have developed more realistic models by considering specific

signaling molecules: the lung branching model presented in [Menshykau et al.,

2012] and the model of hair follicle formation presented in [Klika et al., 2012].

The first study reproduced the qualitative behavior observed during lung branch-

ing but it was not tested against experimental perturbations. The second study

demonstrated that, in contrast to what was previously reported, a model imple-

mented by Eda and Bmp-signaling was not able to produce a stable Turing pat-

tern. This negative result highlights that the development of more realistic models

can indeed be key to identify the molecules may implement the Turing network.

In this thesis, I propose two Turing models to elucidate the mechanisms that

underlie digit patterning in the vertebrate limb. The first model is based on an

abstract Activator-Inhibitor model and it is used to show that a combination of

reaction-diffusion and Positional Information underlies digit patterning. The sec-

ond model is derived from literature and experimental perturbations and it is used

to show that a Turing network implemented by Bmps, Wnts and Sox9 controls the

patterning of the digits.

35



1.1.2 Positional Information model

At the beginning of the XX century most of the work in embryology was focused

in understanding how regional specificity was induced during development. In-

spired by the work of Driesch, two Swedish scientists, Runnström and Hörstadius,

were interested to find the mechanism that induced cell fates during sea-urchin de-

velopment [Hörstadius, 1936, Olsson, 2007]. Experiments performed by Hörsta-

dius showed that at early stages of development, the cell fates were specified in

graded manner: cells in the anterior pole of the embryo had a graded fate of an-

imalness (epidermal determination) and those in the posterior pole had a graded

fate of vegetalness (endodermal determination). From this evidence the two scien-

tists concluded that cell fates had to be controlled by two opposing gradients. This

idea was further developed by Grunenberg [Grüneberg, 1951] and Child [Child,

1941] that proposed the controversial idea of a morphogenetic field that depended

on the concentration of a graded inducer.

1.1.2.1 French Flag Problem

In the late sixties, the idea of a gradient as inducer was formalized and extended

by Lewis Wolpert, a British scientist that was interested in understanding the in-

duction of cell fates in Hydra and sea-urchin. Wolpert in [Wolpert, 1968, 1969]

proposed a model based on a graded inducer that was called the French Flag Prob-

lem and that later will be known as the Positional Information Model. The model

described a mechanism of cell fate induction that consisted in two phases:

• Specification: In a first phase a gradient of a substance, that Wolpert calls

morphogen using the term introduced by Turing, is established along the

space. The gradient can be formed by alternative mechanisms, for example

by local production and diffusion or by active transport. Different mech-

anism can produce different gradient profiles. The original example pre-

sented by Wolpert in [Wolpert, 1968] was based on local morphogen pro-

duction at one extreme coupled with local sink at the other extreme and

diffusion. According to Wolpert when the morphogen concentrations at the

production site and at the sink side are fixed a linear gradient is formed, see

Figure 1.9A. More recent implementations of the gradients are inspired by

biological examples and assume local production, uniform first order decay

and diffusion to generate an exponential gradient profile, see Figure 1.9B.

• Interpretation: In a second phase the gradient acts as a coordinate system

for the cells and drives their differentiation. In particular, the genome of the

cells encodes a mechanisms that react differently according to different mor-

phogen concentrations. In this way different thresholds of the morphogen,
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for example α1 and α2 in Figure 1.9, can be interpreted to form a spatial

pattern, see the French Flag example in Figure 1.9 .

Figure 1.9: Positional Information model. The two graphs show morphogen pro-

file along the space, α1 and α2 are two morphogen thresholds. The colored region

in red, white and blue represent three different cell fates. A) A linear morphogen

gradient created by local morphogen production at one extreme and a local sink

at the other extreme. B) An exponential gradient created by local production,

uniform first order decay and diffusion.

It is worth of attention, that the first phase (specification) requires diffusion

or cell communication, while the second phase (interpretation), in the simple for-

mulation proposed in [Wolpert, 1968, 1969], is cell-autonomous. Positional Infor-

mation Models are commonly referred as ”hierarchical mechanism“ to highlight

that in their simple formulation the interpretation phase is usually considered cell

autonomous and does not feedback to the specification gradient.

1.1.2.2 Experimental evidence

The first experimental evidences that supported the Positional Information model

was found in the chick limb. First, Summerbell and Wolpert [Summerbell et al.,

1973] showed that a gradient coming the distal ectoderm of the limb (the Api-

cal Ectodermal Ridge) provided positional values to pattern the proximal-distal

axis. However, they proposed that the interpretation phase relied on a timing

mechanism rather than a simple threshold-response. Successively, Tickle and col-

leagues [Tickle et al., 1976, 1975] showed evidence that the posterior region of the

limb emanated a gradient that was responsible for the specification of the digits,

when the gradient was duplicated a mirror duplication of the digits occurred. The
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Proximal-Distal (P-D) and the Anterior-posterior (A-P) patterning of the limb are

discussed in more detail in section 1.3. Another classical model that was studied

in the context of Positional Information was the regeneration of Hydra [Wolpert

et al., 1972].

While evidence existed for the involvement of gradients in early embryo pat-

terning, the dynamics of the specification phase (formation of the gradients) re-

mained largely unknown. The system in which the specification phase is best un-

derstood is the determination of the basic body plan of Drosophila during the blas-

todermal stage [Johnston and Nüsslein-Volhard, 1992]. Several studies [Frohnhöfer

and Nüsslein-Volhard, 1986, Johnston et al., 1989] identified that a maternal gene

called Bicoid (Bcd) was expressed in a graded manner along the Anterior-Posterior

axis of the Drosophila egg and that was responsible for the patterning of the body

plan. Many parameters of this morphogen are currently known, for example its the

decay rate [Drocco et al., 2011, Liu et al., 2011, Liu and Ma, 2010] and its diffu-

sion constant [Abu-Arish et al., 2010, Porcher et al., 2010], and it is clear that Bcd

forms a negative exponential gradient from maternal deposited mRNA. It is how-

ever still controversial to which extent the gradient reaches a steady state [Porcher

and Dostatni, 2010] and it has been proposed that pre-steady sate dynamics may

be relevant for the interpretation phase [De Lachapelle and Bergmann, 2010].

The Drosophila body plan determination is also a classic system to study the

interpretation phase. The patterning mechanisms that are best understood are the

Dorso-Ventral (D-V) patterning and the segmentation of the Anterior-Posterior

axis (A-P). The first is based on the interpretation of the Dorsal (Dl) morphogen

to pattern the embryonic germ layers [Morisalo and Anderson, 1995, Moussian

and Roth, 2005]. The second is based on the interpretation of the Bcd gradient and

posterior determinants to pattern gap, pair-rule and segment polarity genes [Akam,

1987, Ingham, 1988]. This system is the best example of hierarchical system and

consists of consecutive and independent steps that are responsible for segment

patterning: from the initial maternal gradient to segment polarity gene expression,

see Figure 1.10A . The step that is better described is the gap gene network system,

that implements the first interpretation phase to drive the expression of broad non-

overlapping gap gene domains from the morphogen concentrations [Jaeger, 2011].

In recent years a model of the gap gene network was reversed-engineered from

data [Reinitz et al., 1998] and it was showed that it could replicate the gap gene

dynamics by interpreting the morphogens in a purely cell-autonomous manner

(without cell-communication). This model also managed to show that the spatial

shift of gap gene domains, that is known to occur over time, could be explained

only with cell-autonomous mutual inhibitions [Jaeger and Martinez-Arias, 2009],

see Figure 1.10B . This result highlighted that a cell-autonomous model based on

the original threshold-response postulated by Wolpert could indeed account for

the complex gene expression dynamics observed during development.
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Figure 1.10: A) The segmentation network of the Drosophila. From to bottom, the

consecutive step that allow to interpret the maternal gradients to express the seg-

ment polarity genes. B) The first step of interpretation that drives the expression

of the gap gene system. The graph on top shows the interpretation of the Bcd gra-

dient to express three gap genes: Hunchback in red, Krupple in white and Knirps

in blue. On the bottom, the gene network that drive such interpretation. The mu-

tual inhibitions highlighted with black colored lines are the one responsible for

the anterior shift of the gap genes.

However, recent studies [Kerszberg and Wolpert, 2007, Nahmad and Stathopou-

los, 2009, Ochoa-Espinosa et al., 2009] have challenged the original Positional In-

formation model proposing that in many system a morphogen gradient would be

too noisy and unable to drive precise and reliable patterning based on thresholds.

It was instead proposed that the interpretation phase may involve temporal inte-

gration and that therefore different patterning regions could be specified according

to the morphogen exposure time. A recent study provided good experimental ev-

idence that such temporal integration is indeed involved in the interpretation of

Sonic Hedge Hog to pattern the five different regions of neural tube [Balaskas

et al., 2012]. Finally, also in limb development, classic positional information

systems as the Proximal-Distal (P-D) and the Anterior-Posterior (A-P) patterning

are being extended to consider growth and temporal integration [Towers et al.,

2008], this is discussed in detail in section 1.3.

To conclude, the four decades of experiments that followed the initial model

proposed by Wolpert have provided good evidence that morphogen gradients are
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involved in the patterning of the embryo. However, they have also raised doubts

against the simple interpretation based on morphogen thresholds. This simple

model was often found to be unable to account for the precision and robustness

that is observed in development. For this reason, the field in currently propos-

ing models with more sophisticated interpretation-phases that consider growth or

temporal integration.

1.1.2.3 Conclusions and discussion

In this section I presented the Positional Information model of Lewis Wolpert

[Wolpert, 1969]. The two phases that are at the base of the Positional Informa-

tion model were described: the specification phase, namely the formation of a

morphogen gradient trough cell-communication (E.g diffusion), and the interpre-

tation phase, that describes the way in which cells react to different morphogen

concentration. I showed that in the simplest Positional Information formulation

the interpretation phase is based on morphogen thresholds and is cell-autonomous.

Several studies have shown that a simple threshold response model was unable to

account for robustness and precision of patterning. For this reason more com-

plex models that involve more sophisticated interpretation dynamics are currently

being developed.

Positional Information models are often described as hierarchical mechanism,

highlighting the fact that the interpretation-phase is usually cell-autonomous and

does not feedback to the specification phase (the spatial coordinates). This con-

stitutes the mayor difference between Positional Information and Turing models.

Conceptually, the Positional Information model relies on a pre-existing asymme-

try to explain how the breaking asymmetry takes place (E.g an organizing region

releasing a morphogen). The recursive application of this assumption invokes

eventually the presence of some pre-existing asymmetries already in the egg, that

encode the information at the base of the whole development, see for example

the maternal gradient of Bicoid (Bcd) in the segmentation network in Drosophila

(Figure 1.10). In contrast, a Turing model does not require prior asymmetries and

the specification can occur only trough the amplification of random initial fluctu-

ations coupled with cell communication. This fact does not imply however that

Turing mechanism and Positional Information can take place together.

Interestingly, already in the late eighties [Wolpert, 1989] Wolpert describes

the possibility that a wave-like pre-patterning mechanism (Turing) could work in

combination with Positional Information. Wolpert analyzes the pro and cons of

the two models and recognizes that for isomorphic periodic patterns, like the dig-

its in the limb, a wave-like pre-patterning mechanism would be more robust and

easier to evolve. One argument that Wolpert uses in favor of Turing system, is that

for the formation of N identical structures the Positional Information model would
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Figure 1.11: A) To specify three isomorphic fates along the space (blue regions)

the positional information model require to interpret 6 thresholds, α1 to α6. B) A

Turing mechanism produces an isomorphic periodic pattern along the space. The

three blue regions can be interpreted with only one threshold α1.

require the ability to interpret at least 2N thresholds of the morphogen gradient,

see Figure 1.11. Moreover, to perform the interpretation robustly, a Positional

Information model will require a large number of interactions that are less likely

to be evolved than a wave-like pre-patterning mechanism ”ab initio“. Therefore,

Wolpert suggests that a combination of a wave-like spacing mechanism with the

Positional Information model may be more suitable to explain the variety of pat-

terns shown in the embryos. In the case of digits for example, a Turing mechanism

could specify the presence of the digits (periodic pattern) and a Positional Infor-

mation model based on an Anterior-Posterior gradient could be responsible for

digit identity. More Recently the idea of combining a Turing mechanism and the

Positional-Information model to explain development has gained new popularity

[Kondo and Miura, 2010, Miura, 2013].

It is becoming increasingly clear that the developmental program that drives

the patterning of the early embryo is more complex that we previously thought

and often relies on a combination of Positional Informations, Turing mechanisms

and morphogenetic events, all being orchestrated to account for robustness and

precision. The model of limb development that I propose in last section of the Re-

sults chapter represents a first attempt to combine a Turing mechanism, Positional

Information signals and realistic growth to explain patterning. We show that such

model can robustly reproduce the dynamics of digit patterning.

In the next section I introduce the concept of morphogenesis and I discuss its

relation to the Positional Information model and the Turing mechanism.

41



1.2 Morphogenesis

Scientists have always been fascinated by the variety of morphologies that are

produced during development. The first attempt to formalize the general princi-

ples that underlie morphogenesis were made at the beginning of the XX century

by D’Arcy Thompson [D’Arcy, 1963]. Traditionally, the term morphogenesis

referred to the whole process of creation of organs an tissues, including the pat-

terning events that lead to cellular differentiation. In recent years however, with

the advance of imaging technology, the study of morphogenesis has mainly fo-

cused on describing the cellular behavior that drive tissue movements observed in

development [Bénazéraf et al., 2010, Keller, 2013, Wyngaarden et al., 2010].

There are two types of quantitative data that describe tissue movements [Sharpe,

2011]: tracking data, where tissue points are tracked over time with live mi-

croscopy, and fate maps, that consist in labeling a population of cells (or a single

cell) and to follow its spatial evolution over time. The fist type of data can be used

to extract the displacement vectors (or velocity vector field) of the tissue points

over time, see Figure 1.12A . The second type of data provides information about

the local deformations that a part of tissue undergoes, see Figure 1.12B. Studies

of the morphogenesis in Arabidopsis [Kuchen et al., 2012, Rolland-Lagan et al.,

2003] have shown that these two type information are mathematically related. In

particular, when the time between the fate map labeling and its observation is

small, the deformations of the labeled populations become a good approximation

for the tensors of the correspondent velocity vector field. In other words, from

tracking data it is possible to derive the displacement velocity vectors and from

fate maps it is possible to derive its tensors, see Figure 1.12.

When the imaging technique provides singe-cell resolution of the whole or-

gan, it is possible to track the behavior of each individual cell. This is the ideal

scenario to study morphogenesis and it is the best way to relate single cell behav-

iors with the final morphology of the organ. However, it is commonly the case

that the tracking data has a much lower spatio-temporal resolution and provides

only a description of the global tissue movements. In this case, the associated ve-

locity vector field abstracts the underlying cellular behaviors and represents only

global tissue movements. These global movements can be obtained by different

cellular behaviors, for example the velocity vector field associated with directional

outgrowth can equally result from directed cell divisions or from cell migration.

Fate maps and its tensors provide instead relative/local information and are

easier to relate to local cell-behaviors. A tensor contains three types of informa-

tion: growth, anisotropic deformation and rotation, see Figure 1.12B. The first is
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Figure 1.12: Two types of tissue movement data: an example is shown for the

two-dimensional case. A) Tracking and live imaging can be used to derive the

displacement velocity vector field (the arrows and corresponding function u). The

red point and the arrows highlight the tracking of a single tissue point over time.

B) Left: on top cell populations are labeled at an early time in development, on

the bottom the labeled cell population have deformed because of morphogenesis.

Right: different characteristic of the deformed labeled populations encode for the

various tensor components of the velocity vector field, growth, anisotropy and

rotation. The first component relates with cell proliferation, cell death or cell

density. The last two components relate with directional cell behaviors like cell

migration, oriented cell division or intercalation.
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often related with cell proliferation or cell density, while the last two behaviors

can be obtained by different directed cellular behavior like oriented cell-division,

intercalation or migration, see Figure 1.12B.

1.2.1 Morphogenesis and patterning: Morphostatic vs Mor-

phodynamic

It is quite common to consider morphogenesis and patterning as two distinct parts

of development [Wilkins, 2002]. The first is assumed to deal with the change

of cellular arrangements that drive shape change, the second is focused on the

molecular interaction that drive the change of cell states (gene expression). How-

ever, it is clear that in most developmental systems both processes are happening

simultaneously and are tightly coupled. In this cases, even if a very short devel-

opment times are considered it appears that no temporal hierarchy between these

two processes can be established. Developmental systems where a clear hierarchy

between patterning and morphogenesi can be traced (it is commonly assumed that

patterning comes first) have been called Morphostatic, systems where an interplay

between the two exists have been called Morphodynamic [Salazar-Ciudad et al.,

2003]. These two class of systems are profoundly different, in Morphostatic sys-

tems the change in form is basically a read-out of the change in cell- states while

in Morphodynamic systems the change in form and the change in cell-states feed-

back into each other, see Figure 1.13.

Morphodynamic developmental systems can only be study by analyzing both

morphogenesis and patterning simultaneously.

1.2.2 Mutliscale-Modeling

Although morphogenesis and patterning are very often simultaneous, the timescale

at which considerable morphological or cell-state changes happen can differ greatly.

It is often the case, that changes in cellular behavior are slower that changes in

gene expression. In addition, cell-states or morphological events can have dif-

ferent impacts at different spatial scale: cells, tissues or organs. For this reason,

computational models of development have to deal with different time and spatial

scales. This type of modeling is known as multiscale-modeling [Grima, 2008]

and in recent years has gained increasing popularity. The main challenges of

multiscale-modeling are computational and technical. It is indeed computational

expensive to model the whole system at the lowest spatial and temporal scales.

Therefore, multiscale-modeling is the art of finding the best trade-off between

spatio-temporal precision, right abstraction level and computational load.
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Figure 1.13: Examples of Morphostatic and Morphodynamic systems. A) The

Droshophila segmentation is a Morphostatic process. Segment polarity genes are

specified first and morphogenetic events occur after. B) Limb development is a

Morphodynamic system: Fgfs promote proliferation that changes the limb shape.

The cell that experiment Fgf-signaling continuously change overtime because of

growth. The arrows represent the continuous feedback between morphogenesis

and cell-states.
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1.2.3 Positional Information and growth

In section 1.1.2, I presented the original Positional Informational Model proposed

by Lewis Wolpert. In its simple formulation this model considers a Morphostatic

scenario where the cells receive positional values by a steady state gradient. How-

ever, already in his original work [Wolpert, 1969] Wolpert was concerned with

the coordination between positional information and growth and in particular with

problem of scale-invariance, that is how embryos with different sizes could pro-

duce similar patterns with likely the same Positional Information system. Wolpert

suggests that smaller organism would have shorter gradients and bigger organism

gradients with longer ranges. In addition, the interpretation along one axis could

be coupled with the level of a morphogen along another axis in order to maintain

the overall proportions, see the left part in Figure 1.14A.

In flies, experimental evidence that the Bcd maternal gradient has longer range

in bigger flies and shorter range in smaller flies was indeed found [Gregor et al.,

2005]. However, other studies showed that the position of gap genes was less

dependent on Bcd dose variation than expected [Houchmandzadeh et al., 2002,

2005]. It was therefore proposed that scaling could be obtained by specific gap

gene interactions [Vakulenko et al., 2009] but this hypothesis has never been vali-

dated experimentally.

Finally, the French Flag Problem also predicts that if the parameters are un-

changed and the domain is increased no structure will be formed behind the last

interpreted threshold, see the left part in in Figure 1.14B.

1.2.4 Turing mechanism and growth

Turing mechanisms from a pattern with an intrinsic length-scale (wavelength) that

depends on the parameters. The length-scale determines the spatial periodicity of

the pattern and therefore the number of peaks that are formed in a spatial do-

main. Similarly to the case of Positional Information, scale invariance in reaction-

diffusion system can be obtained by decreasing the wavelength in smaller organ-

ism and increasing the wavelength in bigger organism. This can be done by cou-

pling the parameters that control the wavelength with domain size. The advantage

of Turing mechanisms on Positional Information models is that the maintenance

of proportions along the different axis is inherently provided, see right part 1.14B.

If the parameters are unchanged and the domain is increased, more peaks are

formed, see right part in Figure 1.14B. If the domain is growing continuously new

peaks are formed either by peak insertion or by peak splitting. In one dimension

this has been shown to depend on the speed of growth [Crampin et al., 1999]
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Figure 1.14: A) Left column: on top, a Positional Information model specifies a

pattern along two axis with characteristic lengths l1 and l2 obtained by interpret-

ing two independent morphogens, α1, β1 represent the interpreted thresholds; on

bottom, to obtain a smaller pattern with the same proportions, the two interpreted

thresholds α1, β1 have to change in a combined manner such that the characteris-

tic lengths are reduced proportionally. Right column: on top, a reaction-diffusion

model forms stripes in two dimension (blue stripes), the pattern has an intrinsic

wavelength ω; on bottom, scale invariance on a smaller domain can be obtained

by reducing the wavelength ω and proportions are automatically maintained. B)

Left: when the domain is increased in the Positional Information case, no pattern

is formed behind the last interpreted threshold α3. Right: when the domain is

increased the Turing mechanism forms additional stripes.
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and in the models proposed by Gierer and Meinhardt [Meinhardt, 1982] on the

saturation of the auto-catalysis, see Figure 1.15.

Figure 1.15: Reaction diffusion simulations inside one-dimensional growing do-

mains. Top row: peak splitting as highlighted by the black arrow happens with

the Substrate-Depletion model (left) or with exponential growth (right). Bottom

row: peak insertion as highlighted by the black arrow happens with the Activator-

Inhibitor model (left) or with linear growth (right).
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1.2.5 Conclusions and discussion

In this section I introduced the concept of morphogenesis and the two types of

data that can be used to study tissue movements: tracking data and fate maps. I

showed, that these two data type can be respectively described by velocity vector

field and by tensors and that the two descriptions are mathematically related. A

velocity vector field can be used to describe either single-cell tracking data or a

global tissue movements. In the second case the velocity vector field abstracts

from the underlying cell behaviors.

Successively, I introduced the difference between Morphostatic and Morpho-

dynamic systems highlighting that in Morphodynamic systems patterning and

morphogenesis have to be study simultaneously. Multi-scale modeling was pre-

sented as a way to handle the complexity of models that combine both patterning

and morphogenesis. Finally, I showed how Positional Information and Turing

models react when coupled with growth and I discussed the problem of scale-

invariance.

In the third section of the Results chapter, I present a multi-scale Morphody-

namic model of limb development that combines Positional Information gradients,

a Turing model and realistic growth to explore digit patterning. It is showed that

this model captures the dynamics of digit patterning and it is able to maintain

proportions and account for scale-invariance.
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Figure 1.16: On the left, a mouse embryo at 10 days post fertilization, the limb

bud (outlined with a black line) protrudes from the body flank as a bulge of undif-

ferentiated mesenchymal cells covered with an ectodermal layer. In the middle,

a schema of the limb bud: the three main axis P-D, A-P, D-V and the organizer

AER, ZPA, body flank (RA) and dorsal ectoderm (Wnt7a) are highlighted. On the

right, a mouse embryo at 13 days post fertilization, the limb bud (outlined with a

black line) has developed to form tendons, skeleton and nerves.

1.3 Limb development

Vertebrate Limb development is a classical system to study patterning and mor-

phogenesis and has contributed to various seminal discovery in developmental

biology. Its development begins with the protrusion, from the flank of the em-

bryo, of a bulge of undifferentiated cells known as the limb bud, shown Figure

1.16. The limb bud is a precursor of the adult limb made of mesenchymal cells

covered with an ectodermal layer, which in the mouse appears around 9.5 days

post fertilization and in less than 72h is able to growth and form most of the tis-

sues that are present in the adult limb: tendons, skeleton, and nerves. This process

happens along three axis: the Proximal-Distal axis (P-D) the Anterior-Posterior

axis (A-P) and the Dorso-Ventral axis (D-V), see Figure 1.16 .

Over the last fifty years, various organizing regions have been identified in

the limb. The first organizer to be discovered was the Apical Ectodermal Ridge

(AER) [Saunders, 1948] a thickening of the ectoderm at the distal tip which pro-

duces Fibroblast Growth Factors (Fgs) that are essential for growth and patterning.
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Figure 1.17: A typical skeletal of a tetrapod limb. From left two right the three

segments common to all tetrapod: stylopod with one element, zeugopod with two

elements and autopod with five digits. The digits are identified with progressive

numbers from anterior to posterior.

Another important organizer of the limb is the Zone of Polarizing Activity (ZPA)

[Saunders and Gasseling, 1968] a region of cells in the posterior part of the limb

that produces Sonic Hedge Hog (SHH) [Tickle et al., 1975] and is important for

the correct A-P patterning of the limb. The body flank is another region of cells

that is known to participate in patterning and it is believed to produce Retinoic

Acid (RA) that is involved in P-D patterning. Finally, it was discovered that the

dorsal ectoderm of the limb is important for correct D-V patterning [Geduspan

and MacCabe, 1987, Geduspan and Maccabe, 1989, Saunders and Reuss, 1974]

and that the difference between the dorsal and the ventral part of the limb is

established early in development by restricting Wnt-signaling to the dorsal part

[Loomis et al., 1996, Parr and McMahon, 1995, Riddle et al., 1995, Vogel et al.,

1995]. This early asymmetry also defines a boundary that divides the limb in two

compartments along D-V axis [Arques et al., 2007]. A summary of the organizing

regions is shown in Figure 1.16.

1.3.1 Limb skeletal patterning

The Tetrapod limb skeleton can be considered as divided in three segments: the

stylopod, that consists of one element (humerus in forelimb and femur in hind

limb), the zeugopod made of two elements (radius and ulna in forelimb and tibia

and fibula in hind limb) and the autopod that contains wrist and digits, see Figure

1.17. The specification of the skeleton is know to happen in a proximal to distal

manner as the limb grows [Summerbell et al., 1973]: the stylopod is specified fist,

then the zeugopod and finally the autopod.

Most tetrapods are pentadactyl and their digits have been identified according

to the A-P position: fingers are numbered from 1 to 5 starting from the anterior
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part of the limb, the thumb is digit 1 and the little finger digit 5, see Figure 1.17.

In most tetrapods (E.g mouse and human) digit 1 has only two phalanges while

the other have three. Other tetrapod systems like the chick wing, have only three

digits with different phalanx numbers. In this case digit identity has often been

asserted by counting the number of phalanges.

1.3.1.1 P-D patterning

The progressive appearance of more distal elements during limb development was

originally discovered in chick by removing the AER at different developmental

stages [Summerbell et al., 1973]. Depending on the time of AER removal more

severe skeletal truncation were observed: early removal lead to limbs with only

the stylopod and later removals to limbs with only stylopod/zeugopod or with all

the three segments. This experiment was the base for the first historical model of

limb patterning: the Progress Zone Model [Summerbell et al., 1973]. This model

postulated that a permissive signal coming from the AER maintained a clock in

the underlying mesenchymal cells. As the limb grew cells exited the region under

the influence of the AER (Progress Zone) and according to the time they had

spent inside the Progress Zone acquired different P-D fates: the longer they staid

inside this zone the more distal fates they acquired, see Figure 1.18A. Another

classic experiment that supported the Progress Zone model consisted in irradiating

the chick limb mesenchyme with X-ray at different developmental stages: early

irradiation lead to loss of proximal structure and late irradiation to more distal

structure [Wolpert et al., 1979]. In the context of the Progress Zone Model, it was

interpreted that the X-ray irradiation affected the pool of undifferentiated cells

in the Progress Zone and therefore compromised the development of more distal

structures as time was passing.

Fibroblast Growth factors (Fgfs), that are expressed in the AER and are able to

rescue growth after AER removal, were successively identified as good candidates

for the AER signal. There are four Fgf ligands expressed in the limb: Fgf8 and

Fgf4-9-17, the first is expressed along the whole AER and the last three begin to

be expressed posteriorly and expand to the anterior part as the limb grows [Martin,

1998].

The genetic removal of Fgf8 [Lewandoski et al., 2000, Moon and Capecchi,

2000] exhibited an unexpected loss of the stylopod alone. It was successively

showed that when Fgf8 was missing, Fgf4 was up-regulated and the transient loss

of proximal structure related to the time required for Fgf8 compensation [Lu et al.,

2006, Sun et al., 2002]. Consistently, mutants that lack both Fgf8 and Fgf4 were
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Figure 1.18: Three different models of P-D patterning. A) Progress Zone Model:

as the limb bud grows cells exit from the Progress Zone (yellow region): the

more time cells spend inside the Progress zone the more distal fates they assume.

In this way the three P-D segments are progressively specified. B) Early Spec-

ification Model: the three P-D segments are specified early in development and

successively expand due to proliferation. C) Overlapping Gradient Model: a bal-

ance of Fgf-signaling (in red) and RA signaling (in green) specify the three P-D

segments as marked by genetic markers: Meis1/Meis2 mark the stylopod, Hoxa11

the zeugopod and Hoxa13 the autopod.
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unable to develop a normal limb [Boulet et al., 2004, Sun et al., 2002]. However,

transient expression of Fgf8 and Fgf4 at early stages was enough to correctly

pattern the Proximal-Distal axis of the limb.

These results were difficult to explain with the Progress Zone Model. In ad-

dition, a recent re-evaluation of the classic X-ray irradiation experiments showed

that lost of skeletal elements is not a patterning defect but it is rather due to loss of

the skeletal progenitors that are necessary to form condensation [Galloway et al.,

2009]. This lead to the idea that a different mechanism was responsible for the

dynamic specification of the three P-D segments. It was proposed that the spec-

ification of the three P-D segments could happen at early stages of limb devel-

opment and that the segments successively expanded because of growth [Dudley

et al., 2002], see Figure 1.18B. This hypothesis was called the Early Specification

model and was used to re-interpret the phenotype of the AER removal by showing

that a 300µm long distal region, that was assumed to progressively overlap with

less P-D segments, was undergoing apoptosis when the AER was removed. The

X-ray irradiation experiment was instead interpreted assuming that at later stages,

when the autopod becomes larger, the probability to lose distal structures became

higher. Finally, this model was also supported by experiments that showed a rel-

atively early ability of cells to sort out according to their P-D identity [Barna and

Niswander, 2007].

The Early Specification Model proposed a new time window for the definition

of the P-D segments but did not provide an explanation for how the regional-

ization was implemented. A more mechanistic model was proposed only later

[Mercader et al., 2000] by showing that a gradient of RA coming from the body

flank promoted proximal fates and that Fgf-signaling coming from the AER pro-

moted distal fates. As the limb grew, an interplay between these two gradients

was proposed to drive the specification of the P-D segments and three genetic

markers: Meis1/Meis2, Hoxa11 and Hoxa13 were proposed as read-outs for the

three segments [Mercader et al., 2009], see Figure 1.18C. The model was succes-

sively named the Overlapping Gradients Model [Tabin and Wolpert, 2007] and it

was proposed that degree of overlap and dose of the gradients could underline the

patterning of the three markers.

1.3.1.2 A-P patterning

The study of the patterning along the Anterior-Posterior limb axis has mainly fo-

cused on the digits. This has been historically motivated by the pioneering discov-

ery in chick that a mirror-image duplication of the digits was induced when a por-

tion of the posterior mesenchyme, called the Zone of Polarizing Activity (ZPA),

was graft in the anterior part of the limb [Saunders and Gasseling, 1968]. This

experiment was proposed as the first strong evidence that a Positional Information
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Figure 1.19: The classic ZPA grafting experiment in chick forms the basis for the

Positional Information model responsible for digit patterning. On top, the Zone

of Polarizing Activity (ZPA) in the chick wing provides a gradient along the A-P

axis that instructs the tissue to form the different digits (French flag colors). On

bottom, when part of the ZPA is grafted anteriorly, the specification gradient is

duplicated and a mirror image duplication of the digits occurs.

gradient patterned the digits according to the French Flag problem proposed by

Lewis Wolpert [Tickle et al., 1975], see Figure 1.19. Since then, several studies

have focused in finding the morphogen gradient and its interpretation rules, see

[Tickle, 2005] for a review. Nevertheless, evidence supporting Sonic Hedge Hog

(Shh) as the morphogen came only twenty years after the discovery of the ZPA

[Riddle et al., 1993].

Traditionally, limb development experiments were conducted in chick limb,

where it was easier to perform manipulations. The chick wing and hind limb have

respectively three and four digits with different number of phalanges. Digits in

the wing were traditionally numbered from anterior to posterior as digit 2, digit 3

(both with two phalanges) and digit 4 (that has only one phalanx). However, in a

recent study [Carkett et al., 2011] the digits of the wing have been re-numbered

as digit 1, digit 2 and digit 3. Digits of the chick hind limb are numbered from
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Figure 1.20: Difference between digit specification and digit identity specifica-

tion. A) Digit specification defines the sequence of digital (blue) versus interdigi-

tal (white) fate along the A-P axis. B) Digit identity specification defines the fates

along the A-P axis (different blue colors) that drive the specification of phalanx

number and the final digit morphology, showed on the right.

anterior to posterior as digit 1 and digit 2 (that have three phalanges), digit 3 (that

has four phalanges) and digit 4 (that has five phalanges). Because of the different

number of phalanges, even in the case of ectopic digit formation, it was always

easy to assess digit identity. For this reason, even though Wolpert had already

discussed the difference between digit identity and digit specification (see section

1.1.2.3 and Figure 1.20), for a long time these two concepts were conceptually

coupled. In other words, for a long time Positional Information models based on

Shh were not only assumed to be responsible for digit identity but also for the

specification of the digital vs inter-digital fates.

Recent genetic manipulation in mouse, highlighted that the first asymmetry

that is established along the A-P axis of the limb is the anterior expression of

Gli3R and the posterior expression of Hand2 [Ros et al., 1996]. These two genes

mutually repress one each other [te Welscher et al., 2002] and several studies

have shown that Hand2 is required for Shh activation [Cohn, 2000]. 5’ Distal

Hoxd genes (including the zeugopod marker Hoxa11 and the autopod marker

Hoxd13) have also been shown to be essential for Shh activation [Tarchini et al.,

2006] and there is evidence that they may act by directly enhancing Shh expres-

sion [Capellini et al., 2006]. This suggests that in the onset of limb development

Hand2 may promote or interact with 5’ Distal Hoxd genes to promote Shh. Once

expressed in the posterior part of the limb, Shh forms a gradient along anterior

posterior axis and signals by activation of Gli1 and Gli2 and repression of Gli3R,
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Figure 1.21: On the left, the presence of only one element in the zeugopod and

autopod in the Shh mutant is consistent with the Positional Information model

based on a Shh gradient. The only digit that is formed is commonly considered

to be digit 1. On the right, when both Shh and Gli3 are genetically removed

eight digits without identity are formed supporting a Turing mechanism for the

specification of the periodic digital A-P patterning.

the repressing form of Gli3 [Varjosalo and Taipale, 2008]. Shh signaling is im-

portant for the maintenance of 5’ Hoxd Genes and when a bead soaked in Shh

is implanted anteriorly, 5’ Hoxd Genes are ectopically expressed. Consistently

with its role as A-P organizer, when Shh is genetically removed the zeugopod and

the autopod form only one element that are usually interpreted as being Shh in-

dependent [Chiang et al., 2001, Kraus et al., 2001], see Figure 1.21. In addition,

Shh deficient mouse have smaller limbs because the increase in Gli3R is known

to inhibit cell-proliferation.

Gli1 and Gli2 deficient mouse form normal limbs suggesting that the main Shh

signaling pathway goes trough the repression of Gli3R formation from Gli3 [Lit-

ingtung et al., 2002]. Unexpectedly, mouse that lack Gli3 form bigger limbs with

eight un-patterned digits and the same result is observed when both Gli3 and Shh

are removed [Litingtung et al., 2002], see Figure 1.21. This important result sug-

gests that Shh signaling is not required for digit specification. In agreement with

this experiment, previous theoretical studies [Newman and Frisch, 1979, Wolpert,

1989] proposed that the isomorphic pattern of digital vs interdigital fates could

be specified by a Turing mechanism (see section 1.1.2.3) and that the main roles

of Shh was to provide identity to already specified digits. When the space is in-

creased a Turing mechanism predicts the formation of additional peaks (see sec-

tion 1.2.4) and this could explain why bigger limbs lacking Gli3 would form more

digits (polydactyly). The proposal that a self-organizing Turing mechanism is re-

sponsible for digit specification also helps to explain another classic manipulation
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experiment: the re-aggregation experiment, that shows a capacity of the limb mes-

enchyme to self-regulate [Zwilling, 1964]. This experiment consists in removing

and mixing limb mesenchymal cells from a donor limb bud and to graft them in-

side another ectodermal layer to a neutral side of the embryo. The re-aggregated

limb buds in chick form relatively normal limbs with two digits, showing that cells

that have already received positional cues form organizers are able to re-assemble

and to be respecified, see Figure 1.22A. The same experiment in Xenopus lead

to to the astonishing formation of limbs with up to 30 digits [Yokoyama et al.,

1998]. This not only confirmed the self-regulatory capacity of the mesenchyme

but provided a strong evidence for a periodic pattern formation of digits. Finally,

another evidence that shows that the limb mesenchyme is able self-organize is the

formation of periodic structures in the Micromass culture system [Cottrill et al.,

1987], a culture of limb mesenchymal cells that spontaneously forms a chondro-

genic periodic pattern reminiscent of a two dimensional Turing simulation, see

Figure 1.22B.

While substantial evidences existed for a reaction-diffusion mechanism re-

sponsible for digit specification, most studies focused on the extension of the

classical Positional Information model to account for the phenotypes observed

upon Shh perturbations. The first extension was based on fate-mapping exper-

iments that showed that the descendant of the Shh expressing cells in the ZPA

overlapped with the half of the limb encompassing digit 5,4 and 3 [Harfe et al.,

2004]. It was proposed that the time of Shh expression rather than Shh-signaling

thresholds was the important factor for digit specification. This model was named

temporal-spatial-gradient model [Zeller, 2004] and by comparing the Shh express-

ing region with its progeny it was proposed that cells that expressed Shh for a short

time formed digit 3, while cells that progressively expressed Shh for longer time

formed digit 4 and digit 5. Finally, since digit 1 was considered to be the Shh-

independent digit observed in the Shh mutant, the model considered that digit 2

was the only digit to be patterned exclusively by Shh signaling, while digit 3 was

somehow patterned by a combination of Shh-signaling and time of Shh expres-

sion. This model was supported by experiments that showed a lack of digit 2 in

mouse mutants that had reduced Shh signaling range [Scherz et al., 2007]. The

temporal-spatial-gradient Model implicitly assumed that Shh not only specified

digit identity but that had at least a permissive role for digit formation. A second

extension to the classic Shh Positional Information model was based on the se-

quence of digit loss observed upon Shh removal at progressively later times. In

these experiments digit loss order was opposite to the normal order of digit spec-

ification: digits 3 was lost first, than digit 5, successively digit 2 and finally digit
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Figure 1.22: A) Re-aggregation experiment in chick limb. From left to right,

the mesoderm (red) is removed from a donor limb bud (gray), cells are mixed

and re-aggregated (red points), the re-aggregated mesenchymal cells are placed

inside another ectodermal jacket (yellow) and graft to a neutral side of the em-

bryo. Eventually, a limb with two digits forms. B) On the left, a Micromass cul-

ture system after 20h, a labyrinth-like pattern of condensations showed by Sox9

immuno-staining (left) is reminiscent of a Turing simulation (right).
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4. This evidence was used to formulate a model where in an initial phase, Shh

specified digits and their identity, and in a second phase it was required for the

maintenance of sufficient digit progenitors to form condensations. The order of

digits loss was therefore assumed to be the sequence with which condensations

took place [Zhu et al., 2008]. Again an implicit requirement for Shh as permissive

signal for digit formation contrasted the dispensability of Shh [Litingtung et al.,

2002]. Finally, a third model that integrated proliferation and digit specification

was formulated by observing that the application of a Shh inhibitor at progres-

sively earlier stages resulted in the loss of more posterior digits and that inhibition

of proliferation lead to limbs with only posterior digits. The model was called the

Growth-Morphogen model [Towers et al., 2008] and assumed that the duration

and dose of Shh exposure was coupled with growth to specify the digits.

In general, the studies mentioned above assumed that digit specification and

digit identity specification happen at similar developmental stages. However, ex-

periments performed in chick have provided evidence that digit identity is spec-

ified much later in development [Dahn and Fallon, 2000]. In late phases of limb

development when fingers have already been specified, a region of high Bmp-

signaling activity, known as Phalanx Forming Region (PFR), is established at the

digit tips. The level of Bmp activity is specified in a graded manner along the

A-P axis and determines the number of phalanges that are formed. For each digit,

the posterior neighboring part of interdigital tissue determines the Bmp activity

level and there is evidence that also Fgf-signaling participates in the regulation of

phalanx number [Sanz-Ezquerro and Tickle, 2003], see Figure 1.23.

Figure 1.23: On the left, posterior interdigital regions (different blue colors) mod-

ulate the activity of the Phalanx Forming Regions - PFR (green) at the digit tips.

This results in the specification of different digit identities that drive the formation

of the final digit morphologies showed on the right.
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1.3.2 Sox9 regulation and skeletal patterning

One of the earliest markers of skeletal patterning is the Sox9 transcription factor

[Akiyama, 2008, Akiyama et al., 2002, Chimal-Monroy et al., 2003]. At early

times after Sox9 expression, cells are still undifferentiated but their fate is com-

mitted to form the skeleton or soft tissue. Conditional inactivation of Sox9 in

the limb results in a complete lack of patterning and chondrogenic differentiation

[Akiyama et al., 2002] suggesting that Sox9 plays a central role in both processes.

However, the genetic network that control Sox9 expression is not fully understood.

Secreted molecules of the Tgf-β family have been identified as important

chondrogenic regulators. Among them Tgf-βs, Activins and Bone Morphogenetic

Proteins (Bmps) are known to promote chondrogenesis [Barna and Niswander,

2007, Ganan et al., 1996, Leonard et al., 1991, Merino et al., 1999, Miura and Sh-

iota, 2000, Montero et al., 2008, Pizette and Niswander, 2000]. Three Bmp’s are

expressed in the limb bud, Bmp2, Bmp4, and Bmp7 [Robert, 2007], and their sig-

naling is mediated by two Bmp receptors, BmpRIA that is ubiquitously expressed

and BmpRIB that is expressed in the digital region [Bandyopadhyay et al., 2006].

Conditional knockout of BmpRIA results in the absence of digits and severe de-

fects in Sox9 expression [Ovchinnikov et al., 2006], while mutants that lack Bm-

pRIB show normal Sox9 expression but defects in later chondrogenic events [Yi

et al., 2000]. Bmp2/Bmp4 double mutants lack Sox9 expression and patterning

in the most posterior digits (2 in forelimb, 3 in hindlimb) [Bandyopadhyay et al.,

2006]. In contrast, over-expression of Bmp2 and Bmp4 in chick limb lead to an

increased volume of cartilage elements [Duprez et al., 1996]. It has been proposed

that Bmp-signaling promotes Sox9 expression through p38 pathway and that the

Smad pathway is necessary for Sox9 activity [Pan et al., 2008].

Other important regulators of chondrogenesis and of Sox9 are the genes of

the Wnt family [Day et al., 2005, Hens et al., 2005, Hill et al., 2005, Hu et al.,

2005]. Seven different Wnts are expressed in the limb [Parr et al., 1993, Sum-

merhurst et al., 2008] and their signaling is mediated by Frizzled and LRP re-

ceptors [Mikels and Nusse, 2006]. The canonical Wnt pathway is transduced by

stabilization of Beta-catenin that accumulates in the nucleus and binds LEF/TCF

transcription factors to regulate target genes [Nelson and Nusse, 2004]. Besides

the importance of Beta-catenin as a transcription factor, complexes between Beta-

catenin and cadherins participate in the formation of adherents junctions at the

cell wall that are involved in cell to cell interactions during mesenchymal conden-

sation [Delise and Tuan, 2002, Hülsken et al., 1994, Kemler, 1993]. In the limb,

conditional Beta-catenin gain of function results in arrest of chondrogenesis and

down-regulation of Sox9 expression, while loss-of-function mutations increase

chondrogenesis and up-regulate Sox9 [Hill et al., 2005]. Similarly, Beta-catenin

knock out in Micromass culture increase expression of Sox9, while Beta-catenin
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gain-of-function inhibit Sox9 expression and suppress chondrogenesis [Grigoryan

et al., 2008]. Ectodermal Wnts in the limb inhibit chondrogenesis and Sox9 ex-

pression and they promote proliferation [ten Berge et al., 2008]. Finally, it has

been showed that Sox9 inhibits Beta-catenin activity in chondrocytes and stimu-

lates Beta-catenin degradation in the nucleus [Akiyama et al., 2004, Topol et al.,

2009].

1.3.3 Limb outgrowth

In mouse, limb outgrowth starts around 9 days post fertilization at specific sites

along the lateral plate mesoderm (LPM). Current evidence supports Retinoic Acid

(RA) as the mayor signaling that specifies the position of limb initiation sites

[Niederreither et al., 1999, 2002]. RA drives the expression of different Hox genes

along the LPM that in turn promote the expression of specific T-box family genes

in the putative limb regions: Tbx5 marks the forelimb and Tbx4 marks the hind

limb [Gibson-Brown et al., 1996, Logan, 2003, Minguillon et al., 2005]. Limb bud

initiation is then established by canonical WNT signaling that restricts the expres-

sion of Fgf10 in the limb initiation site. Fgf10 is a Fibroblast growth factor that

is expressed in the mesoderm and signals to the neighboring ectoderm driving

expression of WNT ectodermal genes that promote Fgf8 expression and forma-

tion of the AER [Barrow et al., 2003, Kawakami et al., 2001]. Once the AER is

formed, the limb begins to growth preferentially in the distal direction resulting

in limb bud elongation. Several cellular behaviors have been proposed to underly

limb outgrowth. For a long time, the most prominent hypothesis was that a pro-

liferation gradient promoted by the AER was responsible for the growth in the

distal direction [Ede and Law, 1969, Searls and Janners, 1971]. However, a recent

computer simulation based on careful quantification of limb bud shape and cell

cycle times has showed the implausibility of this hypothesis [Boehm et al., 2010].

This study showed that the difference in cell cycle along the P-D axis was minimal

and proved that a model that was based only on cell proliferation would required

very drastic differences to achieve elongation. Moreover, evidence that cells close

to the ectoderm were polarized suggested the possibility that directed cell behav-

iors could instead be responsible for limb elongation. Single cell tracking and

live imaging were successively used [Wyngaarden et al., 2010] to confirm this hy-

pothesis and it was proposed that Wnt5a could be responsible for cell polarization

[Gros et al., 2010]. To conclude, it is currently believed that growth anisotropies

derive from directed cell behaviors rather than differences in cell proliferation.
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Figure 1.24: The feedback responsible for the coordination between AER and

ZPA. Bmp promotes its own inhibitor Gremlin1 (blue interaction) and initiate that

positive feedback loop between Shh, Gremlin1 and Fgfs (green interactions) that

drives Fgfs expansion and growth. Finally Fgfs grow beyond a certain threshold

and inhibit Gremlin1 (red interaction) and terminate the positive feedback.

1.3.4 Coordination between the P-D and the A-P axis

Classic ZPA grafting experiments [Tickle, 1981] showed that ZPA grafts had

stronger effects when placed close to the AER. This revealed that AER and ZPA

activities were coupled and suggested that these two organizers could cross-talk

to implement coordination between P-D and A-P development. A first confirma-

tion of this hypothesis was provided by showing that in the absence of the AER,

Fgf beads were able to rescue Shh expression and that Shh beads were able to

induce the AER and Fgf expression [Niswander, 2002, Tickle, 2005]. Succes-

sively, it was discovered that the positive feedback loop between mesenchymal

ZPA cells and epithelial AER cells was mediated by Gremlin1, a Bmp antagonist

expressed in the mesoderm [Khokha et al., 2003, Michos et al., 2004]. Gremlin1

mutants showed smaller limb buds, lack Fgf4-9-17 and had a reduced expression

of Fgf8 and Shh. It was therefore proposed that the reduction of Bmp Activity by

Gremlin1 was essential for the maintenance of the positive feedback loop between

Shh and Fgfs [Bénazet et al., 2009, Michos et al., 2004]. Counterintuitively, Bmp

signaling was known to be required for early AER induction [Ahn et al., 2001]

but it was also known to promote Gremlin1 expression [Nissim et al., 2006] and

to reduce Shh expression that promotes Gremlin1 [Bastida et al., 2009]. It has

been proposed, that the negative feedback implemented by Gremlin1 allows the

initial up-regulation of Fgfs and it is responsible for the initiation of the positive

feedback loop between Fgfs and Shh [Bénazet et al., 2009], see Figure 1.24.
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Successively, Shh, Fgfs and Gremlin form a positive feedback loop that is

terminated when Fgfs increase beyond a certain threshold and lead to Gremlin1

inhibition [Scherz et al., 2004, Verheyden and Sun, 2008], see Figure 1.24. This

complex self-regulatory network coordinates the patterning along the A-P and P-

D axis and controls limb growth to achieve typical limb shape and size.

1.3.5 Models of Limb Development

Not only limb development has lead to pioneering discoveries in developmental

biology but it is also the earliest complex biological organ that has been simulated

in a computer. In this chapter, I will review in chronological order most of the

computational and mathematical models that have been developed to study limb

development. These models come in all sort of flavors and focus on different

aspects of limb patterning and morphogenesis. In order to facilitate the reader,

each model is accompanied with a label that summarize its characteristics:

• Dimensionality can be either 1D, 2D or 3D.

• The model can consider only limb morphogenesis Mor, only limb patterning

Pat or both MorPat.

• The model can use abstract limb shapes AbsShp or realistic/experimental

limb shapes RealShp.

• The model includes experimental data ExpDat or is purely theoretical Theo.

• The model is based on a Positional Information model PI, a reaction-diffusion

model RD, both PIRD or none (label not present).

An example of label is 2D-Morp-AbstShp-Teo-PI and represents a two-dimensional

(2D) model that is focused on morphogenesis (Morp), that uses abstract limb

shapes (AbsShp), that is purely theoretical (Theo) and it is based on a Positional

Information model (PI). Models that are particularly important for this thesis have

been highlighted with a *. The goal of this review is to give an overview of the

state of the art and to highlight the different questions that have been investigated

with modeling. All the figures included in this section are adapted from the corre-

spondent studies. A summary and a discussion is given at the end of the section.

1.3.5.1 A brief history of limb models

1969 - 2D-Mor-RealShp-Theo

Already in the late 60s, a Scottish scientist called Donald Ede and his colleagues

had developed a pioneering computer simulation of limb morphogenesis [Ede and
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Figure 1.25: A) On top, the results of the Cellular Automaton model proposed to

explain limb growth: on the left a young limb bud shape, on the right the final limb

bud shape obtained by simulating cell-proliferation and cell-movements. On the

bottom, similar shapes are observed in real chick limb bud. B) On top, when cell-

movements are decreased in the simulation a shorter and fatter limb is obtained.

On the bottom, a similar limb shape is observed in the Talpid chick mutant.

Law, 1969] to study if directional behaviors were required to achieve limb elon-

gation. The model was based on a Cellular Automaton that simulated growth by

considering two cellular behaviors: cell proliferation and cell movements. Simu-

lation were used to find which combination of cellular behaviors could reproduce

better the shape change observed in the real limb, see Figure 1.25A. The model

proved that directed cell movements were necessary to drive limb elongation and

proposed that the shorter and fatter limb bud of the Talpid chick mutant [Davey

et al., 2006] could be obtained if directed cell behaviors were diminished, see

Figure 1.25B.

1975 - 1D-Mor-AbsShp-ExpDat

Another model of Limb elongation was proposed in [Lewis, 1975] to investigate to

which extent a proliferation gradient could drive limb elongation. The model used

the quantitative data of cell proliferation and cell density presented in [Hornbruch

and Wolpert, 1970, Summerbell and Wolpert, 1972] and predicted with a simple

mathematical formulation a one-dimensional time-course of fate maps along P-D
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Figure 1.26: On the right, a one dimensional time-course of simulated fate maps

extrapolated from experimental mitotic index and cell density data

axis, see Figure 1.26. In contrast with experimental fate maps, the predicted fate

maps expanded quite uniformly over the P-D axis. This study concluded that dis-

crepancies were due to the limited spatial and temporal resolution of the approach

and supported the cell proliferation gradient as the mayor force driving elonga-

tion. The main limitation of this model was the one-dimensional approximation

that did not took into consideration tissue movements along the D-V and A-P axis.

1975 - 1D-Pat-AbsShp-ExpDat-PI

A one dimensional model [Summerbell and Lewis, 1975] was also developed to

test the validity of the Progress Zone Model proposed by Lewis Wolpert. This

model described with partial differential equations the change in P-D positional

values as a function of time and distance from the AER (Progress Zone). The

model was used to show that the Progress Zone Model could predict the outcome

of the grafting experiments.
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1975 - 2D-Pat-RealShp-Theo-RD *

The first genuine two-dimensional simulation that focused on limb skeletal pat-

terning was presented in [Wilby and Ede, 1975]. This study proposed a self-

organizing Cellular Automaton model reminiscent of a Turing mechanism to ex-

plain skeletal patterning along the P-D and the A-P axis of the limb. In contrast

to a normal reaction-diffusion mechanism, this model considered only one dif-

fusible morphogen that induced cells to act either as morphogen producer or as

a morphogen sink. By default cells were all morphogen producers but when a

certain morphogen threshold was reached they switched the behavior to become

morphogen sinks. When coupled with noise, this mechanism produced periodic

patterns that were similar to those that could be obtained by a Turing mecha-

nism, with the only difference that cell states were irreversible (once cells became

morphogen sink could not revert their state). Similarities between this Cellular

Automaton model and a Turing mechanism can be traced by observing that the

two ingredients required to form a diffusion-driven instability are implemented

in the following way: local auto-activation is implemented by the fact that the

morphogen stimulates cells to produce more morphogen, lateral inhibition is im-

plemented by cells acting as morphogen sink. Moreover, the two cell-states im-

plements two behaviors that correspond to the two reactants of a typical abstract

Turing model. The model was simulated inside a series of two-dimensional Cel-

lular Automaton grids that corresponded to different P-D parts of the limb, see

Figure 1.27A. The different grids were obtained by partitioning a realistic chick

limb shape and reflected the assumption that during limb development patterning

was only active in a narrow distal region. When the results of the simulations

were re-composed together a series of skeletal elements that was in agreement

with the skeletal of the chick was observed, see Figure 1.27B. Moreover when a

limb shape corresponding to the polydactyly Talpid mutant was used, the model

produced more digits due to the increased A-P size of the limb, see Figure. Fi-

nally, the model was also used to show that different skeletal patterns in evolution

could be obtained by varying limb morphologies.

1977 - 1D-Mor-AbsShp-ExpDat

Two years later, the mechanisms underlying distal limb elongation were studied

again with a one-dimensional simulation, but this time a more sophisticated Cel-

lular Automaton model was employed [Wilby, 1977]. This model considered that

cells along the P-D axis could divide with a probability related to the concentra-

tion of a morphogen gradient. The morphogen gradient was formed by ubiquitous

production, diffusion and a local sink at the distal tip of the limb. The resulting
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Figure 1.27: A) On the left, a chick limb is divided in several parts along the P-D

axis. In each part, a Cellular Automaton simulation produces a periodic array of

elements. On the right, the simulation recapitulates as a whole the skeletal pattern

of the chick limb. B) When a similar simulation is performed in the morphology

the Talpid chick mutant more digits are formed.

gradient was higher in the proximal region and lower in the distal part. Cell could

randomly divide in any direction and when they divided along the A-P or D-V

axis no change was introduced since the simulation considered only the P-D ex-

pansion. In addition, directed cell behavior were implemented by considering that

a higher bias for P-D cell divisions existed where the morphogen had higher con-

centrations. By Comparing predicted growth rates with experimental data, this

model was able to show that directed cell-behaviors were necessary to achieve

enough elongation.

1979 - 2D-Pat-AbsShp-Theo-RD *

Another two-dimensional reaction-diffusion simulation of digit patterning was

proposed in [Newman and Frisch, 1979]. This time a genuine Turing model was

used to simulate limb skeletal patterning inside a squared limb shape. Like in the

Cellular Automaton model presented four years before the overall skeletal pattern

was simulated by dividing the limb in different parts along the P-D axis. How-

ever, this time only three P-D profiles that corresponded to stylopod, zeugopod,

and autopod were considered. For each profile a two-dimensional simulation that

corresponded to an AP-DV section was performed, see Figure 1.28A. As in the

previous model, this choice underlies the assumption that skeletal patterning was

active only in a very narrow region distal region. The model showed that if the

right parameter was changed over time the Turing model could form one element

in the stylopod, two elements in the zeugopod and three elements in the autopod,

see Figure 1.28B.
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Figure 1.28: A) Reaction-diffusion simulation inside three two-dimensional

squares corresponding to three AP-DV sections. B) The varying parameter in

each section produced one element in the stylopod section, two elements in the

zeugopod section and three elements in the autopod section.

Figure 1.29: From left to right, a graph showing a simulated morphogen gradient

in the wild type, a graph showing the morphogen gradient when another ZPA is

grafter anteriorly and a graph showing the morphogen gradient when less ZPA cell

are grafted anteriorly. By fitting digit threshold to the wild type case, the model

was used to produce semi-quantitative prediction in the other cases.

1981 - 1D-Pat-AbsShp-Theo-PI

A more simple one-dimensional model was used to show that a formalized ver-

sion of the French Flag Model proposed by Wolpert could account for the digital

patterns observed in different ZPA grafting experiments [Wolpert and Hornbruch,

1981]. By Simulating the gradients of different ZPA grafting situations, the model

predicted the qualitative patterns of perturbations, see Figure 1.29.

1983-88 - 2D-Pat-AbsShp-Theo

Another self-organizing two-dimensional patterning model [Oster et al., 1983]

proposed that cellular behaviors, rather than changes in cell-state, could drive the

formation of skeletal elements. The model considered various cellular behaviors

like random cell movements, cell division rates and cellular haptotaxis (tendency

of cells to move towards region of more cell density) and showed that if these
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Figure 1.30: A) On top a Mechanochemically model based on cell movements,

cell divisions and haptotaxis predict the spontaneous creation of one high cell

density cluster. On bottom, if the space is doubled two clusters are formed. B)

The same model was used to explain how branching bifurcations (on the left) and

axial bifurcation (on the right) could arise in evolution.

processes were coupled in the right way, points of higher cell density (skeletal

elements) could arise. Similarly to the case of reaction-diffusion (RD) models,

simulations were used to show that if the space increased more elements were

formed, see Figure 1.31A. A following study [Murray et al., 1988] suggested that

this model could also explain the two type of skeletal element branching that were

observed during limb evolution, see Figure 1.31B. This type of models were called

Mechanochemical (MC) models and for a while competed with Turing models to

explain skeletal patterning [Maini, 1991, Murray and Maini, 1989]. However,

subsequent theoretical work showed that the abstract mathematical formulation

of RD and MC models was equivalent [Maini and Solursh, 1991] and supported

the idea that in the absence of more concrete knowledge about cell-behaviors and

cell-states, RD models offered a general framework to study pattern formation

based on local-autoactivation and lateral-inhibition.

1992 - 1D-Pat-AbsShp-Theo-PIRD *

The first model that formalized the idea that Positional Information and Turing

models could work in conjunction was presented in [Maini et al., 1992]. In this

study, a global gradient was used to modulate the parameters of a one-dimensional

Schnakenberg Turing system. The width of the peaks that were formed by the

model varied according to the morphogen concentration, see Figure 1.31. Sim-

ilarly to ZPA grafting experiments in real limbs, duplication of the morphogen

gradient produced duplication of the peaks, see Figure 1.31. This study not only
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Figure 1.31: A model that combine a morphogen gradient (in red) with a Tur-

ing mechanism (in black). On the left, the gradient scales in a concentration-

dependent manner the reaction-diffusion peaks by controlling one reaction-

diffusion parameter. On the right, if the gradient is duplicated like in ZPA grafting

experiments the peaks are also duplicated.

provided a first concrete example of how to combine Positional Information and

a Turing mechanism but also showed that the randomness exhibited by Turing

patterns could be overcome by modulating reaction-diffusion parameters in a

graded manner. Successively, other studies proposed that similar effects could

be achieved with boundary conditions [Dillon et al., 1994] or growth [Crampin

et al., 1999].

1999 - 2D-MorpPat-RealShp-ExpDat-PI *

The first model that combined realistic simulation of morphogenesis and pattern-

ing was developed in [Dillon and Othmer, 1999]. In this study a grid that rep-

resented and early limb bud was deformed by simulating each grid point as a

visco-elastic material that could generate mass by cell proliferation. Cell prolif-

eration was governed by signals coming from the AER and the ZPA, that were

tuned to obtain realistic limb shape changes, see Figure 1.32. In addition, springs

running along the A-P axis were used to provide a containing force that simulated

the ectoderm. Limb elongation was therefore achieved by combining two assump-

tions: the proliferation gradient hypothesis and the assumption that the ectoderm

provided physical containing forces to the mesenchyme. The first hypothesis was

ruled-out years later (See section 1.3.3) the second assumption had been in fact

already confuted by ectoderm-removal experiments [Saunders, 1948]. Despite

the discrepancies with real limb outgrowth, the comparison between experimental

fate maps and the growth model was assumed to be qualitatively correct. Succes-

sively, the model was used to predict which interpretation of the AER and the ZPA
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Figure 1.32: A) Signals from the AER and the ZPA (showed with contours) pro-

mote growth in a visco-elastic model. The model produces realistic limb shape

change. B) Tracking of tissue movement points over time. C) Simulated Hoxd

genes patterns deriving from hypothetical interactions with AER and ZPA sig-

nals. On the left the Hoxd genes are promoted by the AER and on the right are

promoted by the ZPA.

signals was able to reproduce the experimental expression pattern of Hox genes,

see Figure 1.32. The advantage of this pioneering Morphodynamic model was

that fates of different part of tissue could be traced over time and compared with

gene expression patterns.

2004 - 2D-Pat-AbsShp-Theo-RD

More recently, a partial differential equation model that used a combination of

a Turing mechanism and a Mechanochemical model [Hentschel et al., 2004] was

developed to simulate limb skeletal patterning in a way that was reminiscent of the

early work done by Frisch and Newmann [Newman and Frisch, 1979]. This study

considered a general Schnakenberg model that drove changes in Fgf receptors and

in cell density. Simulations were performed in a two-dimensional squared limb

shape where the skeletal patterning was active only in an narrow distal region, see

Figure 1.33. Similarly to the model presented two decades earlier when the right

parameter was changed more elements could be form to account for the formation

of the two elements of the zeugopod and three elements of the autopod, see Figure
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Figure 1.33: Simulation of a reaction-diffusion model coupled with a

Mechanochemical model simulated on a squared limb shape. On the left, the

squared limb shape is divided in three zones: frozen, active and apical. Skele-

tal patterning occurs only in the active-zone that shrinks over time. On the right,

the final skeletal pattern that is obtained with a simulation where a parameter is

changed over time to form one element in the stylopod, two elements in the zeu-

gopod and three in the autopod.

1.33. The change in cell density was in effect only a downstream read-out of the

Turing molecule concentrations.

2004 - 2D-Pat-AbsShp-Theo-RD

In the same year, a more sophisticated model that simulated the behavior of single

cells by using a Cellular Potts Model [Graner and Glazier, 1992] was presented in

[Izaguirre et al., 2004]. This model recapitulated and extended the results of the

Turing model presented in [Hentschel et al., 2004] to explicitly consider cell con-

densations. Again an abstract squared-like limb shape was used for the simulation

but growth this time was implemented by adding new cells to the distal end of the

limb, see Figure 1.34.

2004 - 2D-Pat-AbsShp-Theo-RD

Other three studies ulteriorly extended the model presented in [Hentschel et al.,

2004]. A first study aimed to reduce its complexity by showing that the en-

tire Turing-Mechanochemical model could be reduced to a Morphostatic model

that did not include cellular behaviors [Alber et al., 2008]. Other two studies

[Chaturvedi et al., 2004, Cickovski et al., 2005] extended the model in three di-

mension. In both studies the three-limb axis were in effect approximated by a

series of two-dimensional AP-DV sections over time, see Figure 1.35A, but in [Ci-

ckovski et al., 2005] a genuine three-dimensional Cellular Pots Model was used
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Figure 1.34: A Reaction-diffusion model coupled with a Cellular Potts Model that

simulates cell condensations. Top row, simulated cells condense to form skeletal

elements and are added to the distal part of the squared-limb to account for growth.

Middle and bottom row show respectively the concentrations of the activator and

the concentrations of the inhibitor in the reaction-diffusion model.

to simulate condensations1.35B. However, along the P-D axis both approaches

consider a one-dimensional active-zone that corresponded to the AP-DV sections

that were simulated.

2006 - 1D-Pat-AbsShp-Theo-RD

A more simple one-dimensional Turing model was used to explain the thin-thick

digit alternation observed in the Doublefoot mouse mutant [Miura et al., 2006].

The model employed a set of reaction-diffusion equations implemented with sim-

ple step-like functions and was simulated inside a growing domain. It was showed

that certain parameters made the system more prone to the thick-thin digit alter-

nation, see Figure 1.36.

2007-08 - 2D-Mor-AbsShp-Theo

A Cellular Potts Model was also used to simulate limb growth and elongation

[Popławski et al., 2007]. Like done two decades before [Dillon and Othmer,

1999] the model explored if limb elongation could be obtained by a gradient of

cell-proliferation promoted by AER signals. The model simulated the behavior

of each single cells and was able to produce elongation by promoting prolifer-

ation in a narrow distal region under the AER, see Figure 1.37. Similar results
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Figure 1.35: A) A Turing-Mechanochemical model simulated in a series of two-

dimensional simulation that reflect AP-DV sections. The number of skeletal ele-

ments is increased by varying one parameter in the model. B) A three-dimensional

Cellular Potts model simulation of the same model.

Figure 1.36: A one-dimensional Turing simulation in a growing domain, the black

color corresponds to regions of high concentration. On the left, a normal Turing

pattern with peaks of the same width is formed. On the right, with certain param-

eters a mixed-mode Turing pattern arises and thin stripes are formed as pointed by

the black arrows. This behavior is reminiscent of the Doublefoot mouse mutant.
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Figure 1.37: A) Top row, a growing limb simulated with a Cellular Potts Model.

Bottom row, a similar simulation implemented with a spring model. B) In both

models a proliferation gradient promoted by the AER is assumed to be responsible

for limb elongation. Top and bottom figures show the simulated AER signals in

the two models respectively.

where obtained one year later with a different formalism [Morishita and Iwasa,

2008]. However, later studies [Boehm et al., 2010] quantified cell proliferation

and showed that the extreme difference in cell-proliferation along the P-D axis

required for elongation was unrealistic.

2009-10 - 2D-Pat-AbsShap-Theo-RD

Two of the most recent models of limb patterning [Zhu et al., 2010, 2009] are again

based on the idea that a Turing mechanism responsible for skeletal patterning is

active only in a very narrow region close to the AER. As it has been proposed in

previous models, these studies consider a general Turing model which parameters

vary over time to produce one peak in the stylopod, two peaks in the zeugopod

and three peaks in the digits, see Figure 1.38A. However, this time the models

define an active patterning region that can growth and deform producing different

morphologies. Similarly to the work done in the pioneering model presented in
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Figure 1.38: A) A Reaction-diffusion simulation in a squared limb shape. Simi-

larly to previous models, the patterning Turing mechanism is active only on in a

narrow distal region (colored region), over time by more elements are obtained by

changing the relevant parameters. B) The active-region is deformed over time to

produce different limb morphologies and patterns. A sketch of the limb morphol-

ogy of the Ichtyosaur fossil (on the right) is compared with a simulations (in the

middle). On the right, another simulation produces a different morphology that

correspond to the limb of the Sauripterus fossil.

[Wilby and Ede, 1975], different limbs fossil morphologies were simulated and it

was proposed that morphological changes could underly limb skeletal evolution,

see Figure 1.38B.

2010 - 3D-Mor-RealShap-ExpDat

The first genuine three-dimensional model based on quantified limb shapes was

presented in [Boehm et al., 2010]. Like previous studies, this work aimed to check

if limb elongation could be explained by a P-D gradient of cell-proliferation. To

this extent cell-cycle times across different limb region were carefully quantified

in three-dimension and were given in input to a visco-elastic three-dimensional

model similar to the two-dimensional model propose in 1999 [Dillon and Othmer,

1999]. An experimental three-dimensional limb shape obtained with Optical Pro-

jection Tomography (OPT) was used as starting point for the growth simulation.
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Figure 1.39: A) A three-dimensional model of limb growth based on a realistic

cell-proliferation gradient. The first column shows a 3D quantification of cell-

proliferation coming from BrdU/IddU labeling. Second and third column show

the initial experimental 3D shape used for the simulation (white shapes), the pre-

dicted velocity vector field (green arrows) and final limb shape (green shape). The

fourth column compares the predicted limb shape (green) with an experimental

limb shape at the same stage (blue).

The final simulated shape was then compared with an experimental shape at a sim-

ilar stage, see Figure 1.39. As it was proposed almost four decades earlier [Ede

and Law, 1969] the simulation confirmed that a proliferation gradient alone was

not enough to explain elongation and that directed cell-behaviors were required.

2011 - 2D-Pat-AbsShap-ExpDat-PI

A more recent model [Probst et al., 2011] of limb patterning used a growing two-

dimensional simulation to study the signals that control the distal progression of

limb development. The model approximated growth as a simple stretching limb

shapes and simulated the interaction between Fgf, Shh and RA, see Figure 1.40.

The simulations were compared with molecular data and the model was used to

replicate the increase in RA production observed in the Shh mutant, see Figure

1.40.
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Figure 1.40: Simulations of distal limb developmente patterning at stage E9.5

and stage E10.5. A) Simulated wild type expression patterns for Rarb, an enzyme

that produces Retinoic Acid, and Cyp26 which is promoted by Fgf . B) Simulated

expression patterns for Rarb and Cyp26 in the Shh mutant.
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Figure 1.41: A) Simulation of a reaction-diffusion model based on Bmps and

their receptors inside a stretching limb bud. The simulation shows the regions

of high Bmp-signaling. B) Experimental patterns of Sox9 are compared with the

simulation.

2012 - 2D-Pat-AbsShap-ExpDat-RD *

The most recent model of limb development [Badugu et al., 2012] is a genuine

two-dimensional Turing model that focuses only on digit patterning rather than

on the whole skeletal pattern. Similar to the model presented in [Probst et al.,

2011] a simple stretching limb bud shape was used to simulate growth. Inside,

this two-dimensional growing domain a reaction-diffusion mechanism based on

hypothetical interactions between Bone Morphogenetic Proteins and their recep-

tors was simulated. The model produced a two-dimensional spot pattern which

progressive appearance was related to the progressive patterning of Sox9, see Fig-

ure 1.41.
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Figure 1.42: A) Periodic chondrogenic patterns in Micromass cultures: on the left

a normal situation, on the right increase chondrogenesis after Tgf-β2 addition. B)

On the left, a reaction-diffusion simulation with a bead of Activator. On the right,

a bead of Tgf-β2 is added to the Micromass culture. In both cases inhibition is

observed in the region surrounding the bead.

1.3.5.2 Models of Micromass culture

While most skeletal patterning models focused on limb development, few other

studies focused in modeling the spontaneous pattern formation that was observed

in the Micromass culture system, see Figure 1.22B. The striking correlation be-

tween the periodic chondrogenic Micromass patterns and Turing patterns has been

repeatedly used to suggest that a self-organizing Turing mechanism was underly-

ing skeletal patterning [Newman, 1996]. The first study that investigated this hy-

pothesis [Leonard et al., 1991] provided experimental evidence that a transform-

ing growth factor called Tgf-β1 acted as an activator in a Turing system. Another

study [Miura and Shiota, 2000] used a combination of experimental work and

modeling showed that another growth factor, this time Tgf-β2, satisfied the condi-

tions required to be an activator. This study showed that ectopic addition of Tgf-

β2 increased chondrogenesis and explained the counterintuitive fact that Tgf-β2

beads inhibited chondrogenesis as an increase in lateral inhibition promoted by the

”Activator“, see Figure 1.42. In addition, this study showed that cell-sorting was

occurring both in-vitro and in-vivo and proposed that the self-organizing chondro-

genic patterns were likely to be made by cell-sorting behaviors under the control

of a Turing pre-pattern.

The idea that both a Turing mechanism and cell-rearrangements were responsible

for the final Micromass pattern was further developed in [Kiskowski et al., 2004]

with a combination of modeling and experiments. The model presented in this

study was based on an Activator-Inhibitor model implemented by Tgfβ and one

hypothetical inhibitor. In addition, random cell movements were modeled using a
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Figure 1.43: Left column: on top, condensation patterns in a Micromass culture,

on bottom, a simulation produces similar condensations. Right column: on top,

condensations in a Micromass culture with 15% cell dilution, on bottom, a similar

pattern is obtained in a simulation with 50% less cell density.

Cellular Automaton formalism. High Tgf-β concentrations were coupled with a

reduction of random cell movements that was assumed to result from an increase

in Fibronecting (FN). This model was able to explain the Micromass Cultures

patterns that were obtained when different initial densities were used, see Figure

1.43.

In the same year, another study [Miura and Maini, 2004] revealed that addition

of ectopic Fgf4 increased the speed of pattern appearance and reduced chondro-

genesis in Micromass cultures, see Figure 1.44. A comprehensive mathematical

analysis showed that this behavior was consistent with an increase in lateral inhi-

bition strength in a Turing model.

Finally a more recent study [Christley et al., 2007] extended and improved the CA

model presented in [Kiskowski et al., 2004] and showed that with certain parame-

ters the simulation could produce oscillating behaviors but so far no evidence for

oscillations have been found in the limb.

1.3.6 Conclusion and discussion

In this section I presented a brief overview of limb patterning and limb morpho-

genesis. I reviewed the main limb organizers and their role in pattern formation

and growth. I gave particular attention to the skeletal patterning as it is the first

asymmetry that is establish in the limb mesenchyme and is the main topic of this
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Figure 1.44: Left column, Micromass condensation patterns in control situation

at 18h (visualized with phase contrast) and at 120h. Right column, Micromass

condensation patterns when Fgf4 is added. The pattern appears already at 18h

compared to control and the final pattern (120h) shows reduced chondrogenesis.

thesis. I reviewed the different P-D patterning models and showed that current evi-

dence supports the dynamic specification of the three P-D segments of the skeleton

via an interplay between RA and Fgf-signaling. The A-P patterning was mainly

discussed in the context digit patterning in the autopod. In particular, I reviewed

the distinction between digit specification and digit identity, the first being the

sequence of isomorphic digital vs interdigital fates along the A-P and the second

the specification of the different digit morphologies. I discussed how these two

concepts have been coupled in the classic Positional Information models based on

Shh and reviewed the evidence for a Turing self-organizing mechanism responsi-

ble for digit specification. Finally, I presented the current knowledge about limb

bud initiation, limb bud termination and control of limb outgrowth.

Next, I reviewed and categorized the existing models of limb development,

the review highlights three different observations. First, most of the early mod-

els focused on limb morphogenesis and in particular on the cellular mechanisms

underlying limb elongation. This topic returned in fashion only in recent years

motivated by the appealing idea to model limb growth at the cellular level. Para-

doxically, the earliest model [Ede and Law, 1969] was more successful that its

successors to suggest that cell-proliferation alone was unable to drive limb elon-

gation. The most recent and most complete three-dimension model of limb growth

traced similar conclusions. Secondly, only one model [Dillon and Othmer, 1999]

combined limb growth and patterning. However, this work was limited to the

study of distal Hoxd genes and did not focus on the skeletal patterning.

In general, the models that focused on skeletal patterning were theoretical and
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did not considered realistic growth, realistic limb shapes or experimental data.

Even recent models simulate skeletal patterning inside squared limb shapes that

elongates in one direction over time. Moreover, the patterning mechanism is often

set to be active only in a very narrow region of the limb, that in practice correspond

to reduces most of the two-dimensional models to one-dimensional models plus

time. Similarly to the case of morphogenesis, the oldest patterning model [Wilby

and Ede, 1975] was under certain aspects more advance that its successors as it

used geometries that were derived from experimental limb shapes. Turing mod-

els are very sensitive to the spatial domain that is considered, therefore the quasi

one-dimensional approximation given by a narrow active region can cover some

important aspects of the real skeletal patterning in the limb. For example, a Tur-

ing model produces peaks in a one-dimensional domain but in a two-dimensional

domain can produce either spots or stripes depending on the parameters. When

stripes are formed, they are usually randomly oriented and create a labyrinthine

pattern. Therefore any two-dimensional simulation that forms stripes has to con-

sider the problem of stripe orientation. However, if the spatial domain is one-

dimensional (or very narrow) the orientation becomes irrelevant and for this rea-

son none of the simulations presented in this review had to deal with this problem.

The most recent Turing model [Badugu et al., 2012] is the only one that consid-

ers a complex two-dimensional geometry were the patterning mechanism is active

everywhere. However, it considers a Turing system that produces spots, therefore

it does not suffer from the orientation problem mentioned above but that is also

more difficult to re-conciliate with the obvious stripy pattern of Sox9, see Figure

1.41.

Third an last, only one study explored with one-dimensional simulations the

idea of combining Turing mechanism and Positional Information gradients. This

study provided evidence that a combined model was able to produce a more ro-

bust Turing pattern that was less dependent on random fluctuations. Similar results

were discussed in [Crampin et al., 1999] were it was shown that different type of

growth could also stimulate a more robust pattern formation.

I continued this section by reviewing the mathematical models and the exper-

iments that were developed to study the chondrogenic patterns formed in Micro-

mass Cultures. In all studies, a comparison between experiments and simulations

was used to strengthen the hypothesis that a Turing mechanism was responsible

for the periodic condensations observed in vivo. Two studies [Miura and Shiota,

2000] and [Miura and Maini, 2004] were able to provide good molecular evidence

in vitro that Tgf-β2 and Fgf4 may be involved in the underlying Turing mecha-

nism. Tgf-β2 promoted chondrogenesis and was prosed to act as an Activator in

an Activator-Inhibitor Turing model. Fgf4 instead inhibited chondrogenesis but at

the same time increased the speed of pattern appearance. A mathematical analysis
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revealed that this behavior was consistent with a stronger lateral-inhibition in the

Turing model.

In conclusion, limb development has a long tradition of mathematical and

computational models that have mostly focused on exploring theoretical questions

regarding patterning and morphogenesis. Recent studies are gradually starting to

include more experimental data into the models. In the study of morphogenesis,

this strategy has been key to resolve a long-standing debate on the practicability

of the cell-proliferation gradient hypothesis. In the study of skeletal patterning,

models are only recently starting to consider realistic abstraction for limb geom-

etry and patterning events. For this reason, despite the large number of Turing

models, the almost thirty years old hypothesis that skeletal patterning is driven by

a Turing mechanism has been difficult to test. In this thesis I present two models

of limb development. The first model is focused only on skeletal patterning and

combines Positional Information signals with an abstract Turing model to pro-

vide the first strong evidence that a Turing mechanism is responsible for the digit

patterning in vivo. Following the notation used in this section, the model label

is 2D-Pat-RealShap-ExpDat-PIRD. The second model can be seen as an exten-

sion of this first model to consider realistic limb growth, a three-reactant Turing

model based on molecular data and experimental data encoding Positional Infor-

mation signals, its label writes 2D-MorPat-RealShap-ExpDat-PIRD. The model

is compared against experimental data and is able to capture the dynamics of digit

patterning as shown by the expression pattern of the Sox9 skeletal marker.
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Chapter 2

OBJECTIVES OF THIS WORK

The aim of this thesis is to study the molecular mechanism that underlie the pat-

terning of the digits in the vertebrate limb. Two alternative theories have been

proposed to explain patterning in development: the Positional Information model

and the Turing mechanism. In the limb, these two theories have been traditionally

seen as competing but have been both used with success to explain different as-

pects of skeletal patterning. The main goal my thesis is to to explore if these two

models can be reconciled to explain the spatio-temporal dynamics of digit pat-

terning. This is done by developing a computational model of limb development

that combines a Turing mechanism with Positional Information and limb growth

to recapitulate the dynamics of the skeletal marker Sox9. The model is developed

in three incremental steps.

First, I develop a simple Turing model of digit patterning simulated inside a

static limb shape morphology. In collaboration with the laboratory of Marian Ros,

I show that this model provides evidence that Distal Hox Genes and Fgfs modulate

the Turing mechanism by changing its wave-length. For the first time we show

that a Turing mechanism can be combined with Positional Information gradients

to obtain reliable digit patterning.

Successively, I develop a novel way to model limb growth that uses experi-

mental limb morphologies and clonal data. This allows me to address questions

related to proximal-distal (P-D) patterning and supports the dynamic specification

of the three P-D segments of the limb.

Finally, I build a model of limb development that combines realistic growth,

experimental gene expression data, a simulated Positional Information gradient

and a Turing mechanism to produce digit patterning dynamics that reflect the ex-

pression of the skeletal maker Sox9. This model together with descriptive and

functional experiments allow us to identify some of the signaling molecules that

form the Turing gene-network responsible for digit patterning. To conclude, I

show that the model predicts that Fibroblast Growth Factors (Fgfs) in the limb act
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as coordination signals to orchestrate growth and patterning.
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Chapter 3

RESULTS

This chapter presents the main results of my thesis. The chapter is organized as

following: in the first two sections I present two of my published articles and

in the third section I present un-published work. The first paper consists in a

static model of digit patterning that combines Positional Information and a Tur-

ing mechanism to investigate the phenotype of Distal Hox genes mutants. The

second article introduces a limb growth model based on experimental data that in-

vestigates the relation between the patterning of the Proximal-Distal axis and limb

outgrowth. Finally, the un-published work presented in the last section concerns

the development of a digit patterning model that combines a Turing mechanism

with Positional Information and limb growth to investigate the spatio-temporal

regulation of Sox9. This final model is the main result of my PhD and combines

the ideas presented in the previous two articles to develop a dynamic simulation of

digit patterning. Together with experiments performed in our laboratory by Jelena

Raspopovic, this model helps to identify the signaling molecules that implement

the Turing network that drives digit patterning.

3.1 Second article: Hox Genes Regulate Digit Pat-

terning by Controlling the Wavelength of a Turing-

Type Mechanism
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Sheth R, Marcon L, Bastida MF, Junco M, Quintana L, Dahn R et al. Hox genes 
regulate digit patterning by controlling the wavelength of a Turing-type 
mechanism. Science. 2012 Dec 14; 338(6113): 1476-80. DOI: 10.1126/
science.1226804
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3.2 Third article: A Computational Clonal Analysis

of the developing Limb Bud
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Abstract

A comprehensive spatio-temporal description of the tissue movements underlying organogenesis would be an extremely
useful resource to developmental biology. Clonal analysis and fate mappings are popular experiments to study tissue
movement during morphogenesis. Such experiments allow cell populations to be labeled at an early stage of development
and to follow their spatial evolution over time. However, disentangling the cumulative effects of the multiple events
responsible for the expansion of the labeled cell population is not always straightforward. To overcome this problem, we
develop a novel computational method that combines accurate quantification of 2D limb bud morphologies and growth
modeling to analyze mouse clonal data of early limb development. Firstly, we explore various tissue movements that match
experimental limb bud shape changes. Secondly, by comparing computational clones with newly generated mouse clonal
data we are able to choose and characterize the tissue movement map that better matches experimental data. Our
computational analysis produces for the first time a two dimensional model of limb growth based on experimental data
that can be used to better characterize limb tissue movement in space and time. The model shows that the distribution and
shapes of clones can be described as a combination of anisotropic growth with isotropic cell mixing, without the need for
lineage compartmentalization along the AP and PD axis. Lastly, we show that this comprehensive description can be used
to reassess spatio-temporal gene regulations taking tissue movement into account and to investigate PD patterning
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Introduction

The cellular processes by which a field of cells develops into a

spatially-organized tissue have traditionally been split into two

distinct questions: pattern formation and morphogenesis. The first

focuses on the regulatory mechanisms underlying spatial and

temporal cell fate specification. The second focuses on the cellular

behaviors that physically drive growth and shaping of multicellular

structures. While these two processes can indeed be considered to

be conceptually separated, in practice they usually occur

simultaneously and are believed to be tightly coordinated. The

vertebrate limb is an excellent model system to study how these

two processes work in combination [1]. In mouse, limb

development starts around 9 days post fertilization with the

protrusion of a mass of undifferentiated mesenchymal cells from

the lateral plate mesoderm of the embryo. This structure, known

as the limb bud, is able to grow and organize itself in less than 3

days to determine most of the structures found in the adult limb

(tendons, skeleton, dermis etc.). Growth and patterning occur

along three major axes: the proximal-distal axis (PD) that goes

from the body to the finger tip; the anterior-posterior axis (AP)

going from the thumb to the little finger and the dorsal-ventral axis

(DV), going from the palm to the dorsal part of the limb.

Important signaling centers of the limb, like the apical ectodermal

ridge (AER) and the zone of polarizing activity (ZPA), are known

to regulate both growth and patterning [2–4] and their activities

are known to be highly coupled [5]. Moreover there is increasing

evidence that tissue growth could play an important role for

patterning [6]. Therefore a crucial step to better understand both

limb morphogenesis and patterning is to accurately map tissue

movements over space and time.

Several studies in chick [7–9] have produced fate maps which

provide an important overview of the tissue movements in the

mesenchyme and in the AER. In mouse, where in utero labeling is

required, a first study was made in [10] by carbon particles

injection and only more recently a first clonal analysis was

performed by using a tamoxifen-inducible Cre reporter line to

obtain cell labeling in the embryo [11]. However, the goal of these

studies was not to build quantitatively-accurate maps of tissue

movements, but rather to address specific questions about (a) the

timing and mechanisms of regional fate determination, and (b) the

possible presence of lineage-restriction compartments. It has been

possible to draw clear conclusions regarding the second question: a

clear compartment boundary restricting cells along the DV axis

was found in [11], while no evidence for compartments along the

other two axes was found (PD and AP). Indeed, both in chick and

mouse a high degree of overlap was found between clones of the

three PD regions corresponding to the stypolod, zeugopod and
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autopod. However, regarding the first question, experimental

results have led to conflicting interpretations. For example, the

relationship between PD patterning and the underlying tissue

movement remains unclear. On one hand, limb tissue movement

data has been used to support the idea that the three PD segments

are specified at early stages of limb development [12] and

subsequently only expand because of growth. On the other hand,

comparisons between fate maps and the expression of distal

markers like Hox genes [9,13] have been used to support the idea

that the PD patterning relies on complex spatio-temporal gene

regulation coordinated with growth [14,15].

Discrepancies between different interpretations of tissue move-

ment data are due to a few specific limitations of previous studies

which we aim to address through the modeling framework

presented here. Firstly, quantitative details matter. Although

alternative hypotheses may be qualitatively different from each

other (such as the Progress Zone Model (PZM) [16] versus the

Early Specification Model (ESM) [12]), the empirical evidence that

could distinguish them will often depend on quantitative details of

timing. Previous projects have revealed the overall pattern of

movements, but have not mapped out the quantitative details.

Secondly, all real data sets are sparse – they provide observations

about a discrete collection of positions in space and time. It is non-

trivial to extrapolate from these observations to a comprehensive

prediction of how any piece of tissue will move at any point in

time. Thirdly, many projects have employed a large time interval

between labeling the cells and assessing the distribution of

descendants. The shapes of the final labeled regions are therefore

the result of an accumulated history of different tissue movements

over time. Again, deconstructing the full sequence of local

movements which lead to the final result is non-trivial. In

particular, a recent study [17] showed that the tissue movements

that drive limb morphogenesis are more complex than previously

thought and depend on anisotropic forces. This and other studies

[18,19] also highlighted that limb mesenchymal cells have a

complex shape and are capable of a wide range of cellular

behaviors including oriented cell division and cell migration.

As an important step beyond the general overview given by

previous fate maps, a formal numerical description of limb tissue

movements over time would be of immense help to analyze the

complex morphogenesis of the limb. Such a description could be

defined by the velocity vectors defining the displacement of each

tissue point in a fixed coordinate system. Ideally, the collection of

these vectors, known as velocity vector field, would be directly

measured by tracking tissue points during growth by time-lapse

imaging. However, despite recent advances in live imaging of the

mammalian limb bud [20,21], it is a challenging technique and a

complete description of tissue movements is still not available. In

plants, clonal analysis has been explored as an alternative to live

imaging for studying the growth of 2D leaves and petals. Local

growth tensors were derived directly from shapes of clones and

these data were combined into a computational model to recreate

a full map of the global tissue movements (the velocity vector field)

over time [22]. Unfortunately, in the mouse limb most of the

available fate maps and clonal analyses have been performed with

a long time-interval between labeling and analysis. This is ideal for

the more common purpose of fate-mapping, as it reveals the final

positions and tissue types of cells which were labeled during their

early patterning phase. However such long-term clone shapes are

not suitable for directly inferring local growth tensors – instead

labeled populations should have undergone only enough growth to

reveal local anisotropies, i.e. a short time-interval between labeling

and analysis [23]. Another complication compared to the 2D plant

case is the extensive mixing of mesenchymal cells that leads to a

strong dispersal of the cells over space. A velocity vector field alone

would therefore be insufficient to fully describe cell movements.

Due to this lack of quantitative data on tissue movements, most

of the existing 2D mathematical models of limb growth have been

used as theoretical tools to explore possible cellular hypothesis

explaining limb outgrowth [24,25]. These studies relied on the

existing literature to suggest the underlying mechanics of limb

growth, and consequently predicted tissue movement maps

consistent with the proliferation gradient hypothesis [26], in

which tissue expansion is concentrated at the distal tip. However,

a recent simulation which performed a more rigorous compar-

ison of this hypothesis against quantitative data on proliferation

rates, has demonstrated the implausibility of this concept [17].

Since it is now clear that the cellular mechanics underlying

outgrowth are complex and not well understood [19,27], we

therefore wished to create a model of tissue movements which is

based not on a mechanistic hypothesis, but which instead acts as

a numerically-descriptive framework within which to integrate

information from real clonal experiments. In particular we have

developed a methodology which is not restricted to short-term

clonal data, and which can interpret the available long-term

clonal and predict cell movements across the full spatio-temporal

extent of mouse limb bud development. The model is able to use

2 sources of data as empirical constraints to define a biologically-

accurate tissue movement map: (i) a temporal sequence of

experimental limb bud morphologies – a numerical shape

description for every hour of development over a 72 hour

period, and (ii) a collection of clonal data generated by a

tamoxifen-inducible Cre transgenic mouse line.

The paper is organized as follows. In the first two sections of

the results we introduce the new computational approach that

was developed to explore different limb tissue movement maps

matching experimental change in limb morphology. In the

subsequent two sections we present a mouse clonal analysis of

early limb development (from 9 to 12 days pf.) and we show how

the tissue movement map that better matched the distribution

and shapes of clones was selected. In the following section, the

tissue movement map is modified to match the experimental

degree of cell mixing observed in the experimental clones. In the

Author Summary

A comprehensive mathematical description of the growth
of an organ can be given by the velocity vectors defining
the displacement of each tissue point in a fixed coordinate
system plus a description of the degree of mixing between
the cells. As an alternative to live imaging, a way to
estimate the collection of such velocity vectors, known as
velocity vector field, is to use cell-labeling experiments.
However, this approach can be applied only when the
labeled populations have been grown for small periods of
time and the tensors of the velocity vector field can be
estimated directly from the shape of the labeled popula-
tion. Unfortunately, most of the available cell-labeling
experiments of developmental systems have been gener-
ated considering a long clone expansion time that is more
suitable for lineaging studies than for estimating velocity
vector fields. In this study we present a new computational
method that allows us to estimate the velocity vector field
of limb tissue movement by using clonal data with long
harvesting time and a sequence of experimental limb
morphologies. The method results in the first realistic 2D
model of limb outgrowth and establishes a powerful
framework for numerical simulations of limb development.

A Computational Clonal Analysis of the Limb Bud
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last section of the results we characterize the tissue movement

map and relate it to traditional PD patterning hypothesis. Finally

in the Discussion section we summarize the study and present the

future applications of the model.

Results

We present here a new computational method that estimates the

velocity vector field of limb tissue movement by using 2

experimental constraints: a sequence of experimental limb mor-

phologies, and long-term clonal data. The main idea underlying the

method is to generate a set of hypothetical velocity vector fields that

are consistent with the first constraint (the experimental morpho-

logical changes), and then to select the one responsible for real limb

outgrowth by comparing simulated fate maps with the second

constraint (the experimental clonal data). In this respect our

approach is analogous to a ‘‘reverse-engineering’ method, as the

data cannot lead to a direct calculation of tissue movements but can

only constrain the possible forward simulations. The resulting

velocity vector field was then used to derive the tensors of the

velocity gradient which describe the local behaviors of the tissue

movement. As an application of the model, a reverse version of the

tissue movement map was generated to provide a relative estimate

of the degree of mixing between the progenitors of three PD

segments. Finally, by mapping a time course of Hoxd13 gene

expression into the model, we were able reveal the contribution of

tissue movement to the expansion of the Hoxd13 domain.

From 2D experimental morphologies to velocity vector
fields
The shape of the limb bud at any point in time can be defined by

a spline curve, but clear morphological features along this line are

absent – the limb displays a smooth rounded shape. This lack of

landmarks means that even a very precise knowledge of the shapes

over time is insufficient to define the underlying tissue movements.

This is true both for the internal tissue and also the limb boundary

itself, as a particular point of tissue (or landmark) could slide along

the boundary spline without altering the shape. Figure 1 illustrates

the nature of the problem: a well-defined shape change is given

(panel A), but numerous different tissue movement maps are all

equally compatible with this observation, each of which has

different combinations of local tissue speed and directionality (B–

E). Despite these degrees-of-freedom, the temporal sequence of

boundary shapes does nevertheless act as an important constraint

on the full range of growth possibilities. To capture an accurate

numerical description of these shape changes we therefore took

advantage of a morphometric analysis performed in [28]. In that

work, 600 limb buds of different ages were photographed in a

standard orientation, cubic splines were fitted to the boundaries,

average shapes were calculated for key timepoints, and shape

interpolation was performed to calculate the intermediate shapes

[28]. The result is an hour-by-hour sequence of 72 shapes which

represents a standard trajectory of limb bud morphology over

developmental time (from approximately E9 to E12) – see Figure

S1. Each shape corresponds to a morphometric stage that is named

as mEdd:hh, where dd is the morphometric embryonic day and hh is

the morphometric embryonic hour. It is important to note that the

morphometric stage notation is different from the standard

embryonic day notation, for example the standard notation E10.5

translates into the morphometric stage mE10:12.

For this study we had to develop software that would allow the

exploration of a set of possible velocity vector fields that can each

reproduce the same observed boundary changes. In particular,

different tissue movement maps are equivalent to considering the

2D limb shape as a rubber sheet or mesh, with different distributions

of elastic deformation (e.g.. the various mesh deformations shown in

Figure 1B–E). To cover the whole temporal sequence of

development, a single complete map would include a sequence of

slightly changing hour-by-hour deformations across all 72 shapes.

We thus spatially discretized each of the limb bud shapes using an

unstructured triangular grid. An example of the type of grid

generated is given in Figure 2C. We then sought a convenient

approach to parameterize the variety of possible mesh deformations

across time, and devised a two-step method – the first step dealing

with boundary, and the second with the internal tissue movements.

For the first step, in effect we must define a series of landmarks

which explicitly map points in each boundary shape to their

Figure 1. Different ways to make the same shape. (A) A simple
semi circle (first column) grows into a defined shape (second column).
The two shapes are aligned at their left boundary (third column). (B) A
velocity vector field pointing in the distal direction with a vector
magnitude distribution that leads to a uniform expansion. (C–E) A
variety of velocity vector fields which can all create the same boundary
shape change. The first magnitude distribution (C) defines uniform
expansion, the second (D) defines a greater distal expansion and the
third (E) a greater proximal expansion.
doi:10.1371/journal.pcbi.1001071.g001
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positions in the next shape (equivalent to controlling the blue and

red triangles in Figure 1). To maximize the flexibility of the system

we devised the concept of user-defined boundary control splines. A

graphical user interface was developed to allow arbitrary positioning

of these control splines onto the sequence of limb shapes (an

example is shown in Figure 2B). Intersections between control

splines and limb shapes (the green points in Figure 2B) determined,

for each pair of contiguous limbs, a set of control vectors which

defined how to displace points on a young limb shape in order to

match a point on the next older one. Due to the intrinsic smooth

curvature of these splines over space, they are a convenient method

for defining smooth boundary movements over time (Figure 2B).

Since the resulting control vectors were defined for arbitrary points

of the limb boundaries they were interpolated onto all the mesh

boundary points using radial basis functions (RBFs) with Gaussian

basis. For each limb mesh, the N control vectors ~VVi, i [ 1::N
(calculated from the intersection between the spline curves the limb

morphologies) were used to derive two radial basis function

interpolations fx(P) and fy(P) with the formula:

f (P)~
Xn

i~0

wiw(EP{ciE) ð1Þ

where the Gaussian basis w(r)~e({br2) and ci is the origin of the

control vector Vi. Coefficients wi were estimated using the matrix

methods of linear least squares to fit the x components of the control

vectors ~VVi in the case of fx(P) and the y components of the control

vectors ~VVi in the case of fy(P). Interpolated velocity vectors~vvP were

thus calculated as~vvP~ffx(P),fy(P)g for all the points on the mesh

boundaries. This results in a series of velocity vector fields (the red

arrows in Figure 2B) which define how to displace the boundary points

of each limb mesh in order to match the following in the chronological

sequence. We have thus created a method by which the user can

conveniently define a variety of different mappings for the boundary,

which are all consistent with the experimental shape changes.

For the second step we had to devise a way of defining the internal

tissue movements (the velocity vector field), and in particular a

method for exploring some variations on these maps. The internal

movements must be consistent with a given boundary mapping

(defined above) and we therefore chose to calculate internal velocity

vectors using an edge spring analogy algorithm which can smoothly

propagate a given set of displacements from the boundary into the

internal points of eachmesh. Spring analogy algorithms are a popular

approach to deform mesh elements by modeling edges as lineal

tension springs [29], Figure 2D. Although this approach is sometimes

used to model the elastic mechanics of a tissue, in our case we are not

assuming that it correctly represents the physical properties of the

tissue – it is simply an efficient method for defining hypothetical

displacement maps. The algorithm prevents node element collisions

and for small deformations it ensures that the quality of mesh

elements is maintained. In our model this approach exhibits

particularly good performance due to the small time differences

between contiguous limb morphologies (differing by just one hour of

development). Moreover the smooth propagation of displacements

translates into a smooth spatial distribution of tissue expansion in

accord with the limb proliferation maps presented in [17].

Furthermore, since each spring in the mesh can be given a stiffness

coefficient, it also presents a convenient method to explore variations

to the tissuemovement map, simply by varying the spatial distribution

of the stiffness (explained in more detail below).

Our spring analogy method was implemented as follows: given

a mesh Mk defined as Mk~(Vk,Bk,B
l
k,Ek), where Vk are the

mesh points, Bk the points on the mesh boundary, Bl
k the points

on the left-most boundary and Ek the edges of the mesh, our

algorithm proceeds as follows:

1. the displacement of all the boundary points on the left-most

boundary are set to zero (representing the deep internal tissue

of the body) and the displacements of the remaining mesh

boundary points is set to the velocity vectors calculated with the

radial basis function interpolation described above in equation

(1):

Vvi [ B
l
k,di
!

~f0,0g

Vvi [ Bk ^ vi [=B
l
k,di
!

~ffx(vi),fy(vi)g

ð2Þ

where ~ddi is the displacement vector of the vertex vi:

2. The following iterative formula is used to equilibrate the forces

h times until the displacements are close to zero,

(limh??dhi
!

~0):

Vvi [ Vk ^ vi [=Bk,d
hz
�!

1
i ~

P
vi

j~0

aijd
h
i

!

P
vi

j~0

aij

ð3Þ

where aij is the stiffness coefficient of the edge eij that connects

the point vi and vj of the mesh.

3. Eventually the new vertex positions are calculated as:

Vvi [ Vk,vi~vizdi
!

ð4Þ

A small graphical example of the algorithm is shown in Figure 2D.

A variety of alternative movement maps which all fit to the

given boundary displacements, can now easily be generated by

altering the spatial distribution of the stiffness coefficient aij .

Figure 2. From morphologies to velocity vector fields. (A) A sequence of limb photos at different developmental stages. (B)The chronological
sequence of limb morphologies derived from [28] (blue color) is overlaid by the boundary control splines (black lines). Intersection points between
control splines and limb morphologies (green dots) define a set of control vectors that are interpolated using radial basis functions (RBF) onto the
boundary mesh points. In this way a series of velocity vector fields is obtained (red arrows) which define how to displace the boundary mesh points
to match the following mesh in the sequence. (C) Starting from the boundary displacement, a velocity vector field that displaces internal mesh points
(red arrows) is calculated by using an edge spring analogy. (D) An example of deformation obtained with an edge spring analogy. 1) A deformation is
applied to the boundary points of the mesh (red points) and the displacements of mesh points of the left-most boundary are fixed to zero (green
points). 2) Edge springs of the triangles close to the deformation exercise tension forces to the neighboring triangles. 3) Relaxation of the forces to
reach equilibrium provides a smooth deformation of the mesh. (E) A mesh (blue mesh) is deformed to match the next mesh in the sequence (green
mesh). A triangle (red triangle) of the deformed mesh is split into the overlapping triangles of the next mesh by considering the respective areas of
overlap (seven red segments on the right). (F) An example of virtual fate map. A triangular element is labeled with a green dye (probability equal to
one) at early stages of development and its fate is simulated using the sequence of deformations and interpolations.
doi:10.1371/journal.pcbi.1001071.g002
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In conclusion, we can define a velocity vector field for each

mesh in the chronological sequence (the red arrows in Figure 2C)

representing a hypothetical tissue movement map connecting each

pair of contiguous morphologies in the sequence, see Video S1.

The displacements on the boundary can be altered through the

use of the boundary control splines, while the internal displace-

ments can be altered through changes in the spatial distribution of

spring stiffness. The collection of 9 different maps explored

extensively in this paper are described later.

Triangle interpolation map and virtual fate maps
In this section we wish to generate virtual clone experiments,

which can later be compared to real clonal data. Although the

velocity vector fields defined above are smooth across time, to

create virtual clones the resulting hour-by-hour mesh deformations

must be linked together to allow tracking the fates of individual

tissue regions over time.

Each of the 72 velocity vector fields defines how to deform a limb

mesh in order to match the following mesh in the sequence, and the

complete set of fields describes a hypothetical computational tissue

movement map that matches the entire sequence of experimental

morphologies. To track a region of tissue over the full 72 hours, we

must determine how the triangular elements of each mesh will map

to the different set of triangles of the 1-hour older mesh. In

particular, we must calculate a triangle-interpolation map from

mesh to mesh. A graphical representation of this process is provided

in Figure 2E. On the left of this panel, a blue mesh is deformed

according to its velocity vector field (red arrows), in the second

column of the figure, the deformed blue mesh is perfectly

overlapping the next green mesh in the sequence. On the right of

the panel, a triangle of the blue mesh (red labeled triangle) is split in

7 parts. Each of these parts represents the area of overlap between

the original triangle of the blue mesh and a triangle of the next green

mesh. In the course of a numerical simulation, numerical values

associated with the triangle of the blue mesh are transferred to the

triangles of the next green mesh according to the area of overlap.

Repeating this operation for each pair of contiguous meshes, we

generate a correspondence map that defines the fate of each

triangle of the first mesh in the sequence (stage E9) with respect to

a set of triangles on the last mesh in the sequence (stage E12). This

map is a computational implementation of an experimental fate

map. The interpolation is conservative and is based upon the

velocity vector fields that define the whole virtual tissue movement.

A virtual fate map can be performed by marking a triangle with a

‘‘virtual clonal dye’’ – in practice by assigning the triangle a

probability of one and then following the evolution of the

probability distribution over time, see Figure 2F and Video S2.

Experimental clones can be seen as a stochastic simulation of these

probability distributions. (Further details on the use and meaning

of this map are provided in Text S3).

This approach has also a more general application, since it

defines the basis for any kind of numerical simulation on a growing

triangular mesh representing limb growth. Indeed, by interpolat-

ing numerical values on a newly generated mesh at every hour of

development we are effectively implementing a global re-meshing

scheme that avoids the large element deformations that a grid

would undergo over the whole 72 hours of limb development. It is

well known that frequent re-meshing introduces a source of spatial

diffusion in numerical solutions [30,31]. This is not however a

problem in the context of virtual fate maps of the limb bud –

clonal data of mouse and chick show a high degree of cell mixing

even for short time intervals after clone induction. In the virtual

fate maps, the probability distribution represents the local density

of labeled cells, with a value of one corresponding to a region

where every cell is labeled. The local decrease of labeled cell

density which is modeled as diffusion therefore corresponds to cell

mixing. Determining the appropriate levels of cell diffusion/

mixing for the model is discussed in a later section.

Mouse clonal data
In this section we present a mouse clonal analysis of early hind

limb development, which will subsequently be used to compare

with hypothetical virtual clones. These experimental results are

compared with previously published fate maps in chick and

implications on PD patterning are discussed.

We used the tamoxifen inducible Cre-line presented in [11] to

conduct a mouse clonal analysis from stage E9 to stage E12 of

development. The clones were induced by injecting low tamoxifen

concentration at E8 (0.10mg) so that random recombination

events would produce single cell labeling events within the

embryos. 24 hind-limbs showing suitable monoclonal labeling

were used for the clonal analysis. To compensate for the variation

in development between embryos of the same litter and the

uncertainty of the injection day, we staged each limb using the

staging system presented in [28] and adjusted the estimation of the

injection day accordingly. The PD and AP clone lengths relative to

the maximum PD and AP length of the limb were measured as

shown in Figure 3A (See also Figure S2). From the quantification

of clone lengths, two graphs representing respectively PD and AP

clone expansion were produced, an example is shown in Figure 3B.

All clone lengths were mapped at stage E12 by considering

prospective or retrospective lengths as shown in Figure 3B. PD and

AP lengths at E12 were visualized representing each clone as a

rectangle centered in its AP and PD midpoint (in Figure 3C). In

this way we were able to cluster the clones in two groups according

to their position and shape: a) isotropically expanding clones in the

proximal and distal part of the limb that showed similar AP and

PD expansion rate (highlighted in blue), b) anisotropic clones that

expanded more along the PD axis than the AP axis (highlighted in

green and red). Plotting the ratio between PD and AP lengths a

similar behavior was revealed (Figure 3D). In accord with a

previous study [11] we found no clear evidence for AP and PD

compartments. Indeed, a high degree of cell mixing was observed

across the whole limb. Consistently with previous studies in chick

[8,9] we found that clones expanded across one or two PD

segments but never span across the whole PD axis of the limb, see

Figure 3E. Remarkably, no clones were found restricted to the

zeugopod alone – all clones found in this zone also overlapped

with the autopod or the stylopod regions.

Tissue movement map estimation
Now that we have (i) a method for generating virtual clones on

hypothetical growth maps, and (ii) a suitable set of experimental

clone data, the next task is to use the latter to infer a biologically-

realistic growth map for the mouse limb bud. This task can be split

into two parts: firstly defining a suitable set of hypothetical velocity

maps, and secondly developing a method to systematically

compare each map against the experimental clone data.

The space of all possible movement maps is highly multidi-

mensional and potentially very large, (as exemplified in Figure 1).

Exhaustively exploring all theoretically-possible maps would have

a prohibitive computational cost, and the challenge is therefore to

find a good match in an efficient manner. However, when

experimentally-derived assumptions about limb development are

considered – for example that tissue never moves backwards

towards the body, and that the distribution of tissue growth varies

smoothly over space – in fact the available options reduce to a

basic set of possible asymmetries, as summarized by the following
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questions: Is there asymmetric growth along the AP axis? E.g. does

the posterior tissue expand faster or slower than the anterior

tissue? Similarly, does the distal region expand faster or slower

than the proximal region? Finally, does the tissue grow fairly

straight distally, or alternatively does it fan-out along the AP axis

into the autopod?

Figure 3. Clonal analysis. (A) Four clones showing the quantification of the AP and PD clone lengths. (B) In order to compensate for the variation
in developmental stage between different embryos each limb was staged and the tamoxifen injection time was adjusted accordingly. Large triangles
represent the AP and PD clone expansion over space and time. PD and AP lengths were mapped at E12 (red line) considering prospective (dotted
line) or retrospective lengths. (C) Each rectangle represents the AP and PD length of one clone. Clones were clustered into two groups: isotropically
expanding clones, with comparable AP and PD length (blue rectangles), and an-isotropically expanding clones having the PD length greater than AP
length (red and green rectangles). (D) A graph showing the degree of clone anisotropy in the limb, PD length over the AP length. Blue means low
anisotropy and red high anisotropy. (E) Top: In-situ of Sox9, a known early skeletal marker showing the position of the three PD segments
(S = stylopod, Z = zeugopod, A= autopod) Bottom: 16 clones showing the degree of overlap between clones spanning across different PD segments.
doi:10.1371/journal.pcbi.1001071.g003
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Using the two levels of manual control described in a previous

section of results (the boundary control splines, and the spring

stiffness distribution) we were able to create a collection of 9 maps

which represent the main plausible asymmetries in limb bud

development (Figure 4). Since the control splines are oriented

substantially along the PD axis, varying their positions primarily

affects the AP distributions of growth. We were thus able to choose

3 sets of these control splines, which define either a fairly straight

distally-oriented growth (Maps 1–3), a strong fanning-out

movement into the distal autopod region (Maps 4–6), or a

posteriorly-biased map in which growth is preferentially twisted

into the posterior region (Maps 7–9). Using the second level of

control – the spring stiffness distribution – we could vary the PD

growth pattern. The stiffness coefficient for each edge of the mesh

was given a spatial distribution in the following way:

Veij [ Ek,aij~
1

lij
P(exij) ð5Þ

where aij is the stiffness coefficient of the edge eij that connects the

point vi and vj of the mesh, lij is the length of the edge eij and

P(exij) is a scaling function used to vary the distribution of the

stiffness coefficients according to exij , the x coordinate of the edge.

We explored a number of scaling functions, P(exij) in equation (5),

to vary the stiffness coefficients along the PD axis (the x axis), and

chose 3 which display different degrees of bias towards the distal end

of the limb. The first function used was an inverted sigmoid (with

respect to x) that defined lower stiffness coefficients in the distal part

of the limb (Maps 1, 4, 7), i.e. allowing greater expansion of distal

tissue. The second function was a constant value defining no change

in stiffness along the PD axis (Maps 2, 5, 8). The third function was a

sigmoid that defined higher stiffness coefficients in the distal part of

the meshes (Maps 3, 6, 9), i.e.. restricting distal growth along the PD

axis. The combination of the 3 AP variations, and the 3 PD

variations resulted in 9 maps to be explored in detail. Additional

details regarding the maps and the scaling functions are provided in

Text S1. As an important control, proliferation patterns were

derived from the velocity vector gradients of each map and the

ranges were ensure to be biologically realistic, see Figure S3.

The second step was to evaluate which of the 9 hypothetical

tissue movement maps best fitted the experimental data. We

mapped the 13 clone pictures having better contrast and best

capturing the main features of the clonal data set onto the last

triangular mesh in the sequence (stage E12). This was done by

manually aligning the limb morphologies of the thresholded clone

pictures on the last mesh boundary. Results are shown in Figure

S4. Next we implemented an algorithm to systematically compare

all possible virtual clones for a given map with the 13 experimental

clones. The youngest timepoint (E9) is represented by a mesh with

3156 triangles, and so this is also the number of virtual clones

which could be calculated for each of the 9 maps. Evaluating the

score of a given map therefore involved over 40 thousand clonal

comparisons, which were calculated in the following way:

Given a set of triangles representing a virtual clone v and a set of

triangles representing an experimental clone e, each virtual clone was

scored with the formula:

Sc(v)~
XN

i~1

pi
XN

i~1

1

M
ð6Þ

where N is the number of common triangles between e and the

virtual clone v, pi is the probability value associated with the triangle i

of the virtual clone and M is the number of triangles of the

experimental clone e. The first part of the scoring function represents

the probability that the experimental clone is obtained from the

spatial probability distribution of the virtual clone. The second part

acts as a penalty for cells founds outside the domain of the virtual

clone. It calculates a score between 0 and 1 describing the proportion

of triangles of the experimental clone contained in the virtual clone.

Figure 5A shows the positions that scored the best for three

experimental clones on three different maps. Experimental clones

are shown in white while virtual clones are visualized with colored

Figure 4. A collection of tissue movement maps. (A) Initial conditions used for the comparison between the tissue movement maps. Clones are
positioned on a grid along the AP and PD axis and are colored according to the PD position, from proximal to distal: blue, green,red, green and blue.
(B) Virtual fate maps resulting from 9 different maps obtained combining different stiffness coefficient distributions and spline curves (described in
more detail in the main text). The left column shows the control spline curves. The stiffness of the distal springs is increasing from left to right. The
tissue movement map outlined in red (Map6) is the one that best matched the mouse clonal data.
doi:10.1371/journal.pcbi.1001071.g004
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contour lines that define three regions of probability: the area

enclosed by the red line contains the 50% of the clone probability,

the area between the green and the red contour the 30% and the

area between the blue and the green contour the 20%. Detailed

clone scores for map are shown in Figure S5. The total score for

each map was calculated by using the formula:

Sj
m~ P

13

i~1
Sij
c ð7Þ

where Sij
c is the best score found for the clone i on the map j using

the formula (6). We calculated the product between the clone

scores (Sc) in order to give higher score to the maps that better

matched all the experimental clones. Figure 5B shows the total

score for each map. In conclusion, Map6 scored almost two-fold

better than the other maps and was therefore selected as the one

the best represented hind-limb tissue movement. As a test of

robustness of this result, we chose to remodel the tissue movements

of Map6, but on a finer mesh (starting with 5678 triangles at E9,

instead of the previous 3156). These results (shown in Text S2)

highlight that the same positions and orientations of virtual clones

were obtained irrespective of the mesh resolution.

Cell mixing estimation
As mentioned in the previous sections, the hourly global re-

meshing process introduces an inherent source of diffusion to the

Figure 5. Virtual clone scores. (A) The left column shows pictures of experimental clones. The remaining columns show numerical comparisons
between the experimental clones (white shapes) and the best matching virtual clone (colored contour lines). The comparison is made for three different
maps (Map1, Map6, Map7). The contour lines define three regions of probability of the virtual clones: the area enclosed by the red line contain the 50%
of the clone probability, the area between the green and the red contour the 30% and the area between the blue and the green contour the 20%. The
number in white is the score value for each virtual clone. Limb shapes at stage E9 show the initial triangle associated with the virtual clone. (B) A
comparison between the total scores of the 9 virtual tissue movement maps. Map6 scores almost 2-fold better than all the other maps.
doi:10.1371/journal.pcbi.1001071.g005
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numerical simulation, which we consider equivalent to the

redistribution in the density of labeled cells. This is in agreement

with our clonal data that clearly shows a decrease of labeled cell

density during early phases of clone expansion resulting from the

mixing between labeled and non-labeled mesenchymal cells, see

Figure 6A. An accurate quantification of the degree of mixing

between mesenchymal cells would require a larger collection of

clonal data, but we nevertheless wished to provide a rough

estimate of the experimental degree of cell mixing and compare it

with the amount of cell mixing introduced by the re-meshing

process. Taking advantage of our model, we decided to estimate

cell mixing by quantifying the degree of overlap between the

experimental clones. The quantification was performed in two

steps.

First, we estimated the spatial probability distribution of three

different clones. This was done by applying a mean filter to the

experimental clones as they were mapped into the mesh at stage

E12. The mean filter averaged the value of each triangle with its

direct neighbors and normalized the overall spatial distribution to

1. By iteratively applying the filter we smooth the distribution of

the labeled triangles until the data did not present any spatial

discontinuities. The estimated probability distributions of three

experimental clones is presented in the second column of

Figure 6B.

Secondly, we defined a score to quantify the degree of overlap

between clone probabilities distributions. Given two clones c1

and c2, the score was defined as:

So(c1,c2)~
XN

i~1

pc1i zpc2i ð8Þ

where N is the number of common triangles between the two

clones, pc1i is the probability value associated with the triangle i

of the clone c1 and pc2i is the probability value associated with

the triangle i of the clone c2. The overlap between two pairs of

experimental clones was quantified using this formula

(Figure 6B, second column). Results were then compared with

the quantifications of the overlap between the correspondent

virtual clones of Map6, see the third column in Figure 6B. Our

estimations of overlap suggested that the amount of cell mixing

introduced by the global re-meshing process was not enough to

mimic the real degree of clone overlap consistent with the

experimental data.

We therefore introduced an additional diffusion term that

would model a higher degree of cell mixing. The quantification of

the clone overlap was repeated multiple times with different

degrees of extra-diffusion. In this way we were able to provide a

rough estimate of the diffusion constant that better fitted the

experimental clone overlap (see the two columns on the right in

Figure 6B), and importantly to show that the unavoidable diffusion

introduced by our global re-meshing scheme must in fact be

augmented with extra diffusion to reach biologically-realistic

levels.

In conclusion, the refined version of Map6 with the extra-

diffusion not only matched the shape and distribution of the clonal

data but was also matched the relative positing and spatial

extension of the clones. A qualitative comparison between the

experimental and the virtual clones obtained with this map is

shown in Figure 7A. A simulation showing a number of clones that

match the distribution and shape of the experimental clonal data is

shown in Figure 7B and Video S3.

Applications of the model
In this section we present some applications of the growth model

that highlight the power of mathematical modeling in character-

izing limb outgrowth in space and time.

Figure 6. Re-meshing and cell mixing. (A) A picture showing the degree of cell mixing observed at early times after clone induction. (B) The first
column shows 3 experimental clones used for this analysis. The second column shows the estimated probability distributions of experimental clones
obtained by a mean filter. The second and the third row of this column show a quantification of the overlap between pairs of experimental clone
distributions – C6-C7 and C6-C2. The number in white is the score representing the amount of overlap. In the three right-hand columns the overlap
between the correspondent virtual clones from Map6 is calculated by considering different amount of additional diffusion: no additional diffusion
(first column), a diffusion constant of 0.03 (second column) and a diffusion constant of 0.08 (third column). It can be seen that addition of some
diffusion improves the score (compare with the ‘‘Estimated overlap’’ column), while too much extra diffusion makes the scores worse again.
doi:10.1371/journal.pcbi.1001071.g006
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A first interesting application of the model was to derive and

visualize the local tissue behaviors that contributed to the global

tissue movement responsible for limb outgrowth. In the model,

local tissue behaviors can be represented by the growth tensors

associated with each mesh triangle. Tensors were derived from the

spatial gradient of the velocity vector field and provided three

useful pieces of information: tissue growth rate, anisotropy and

rotation [32]. The first of these can be directly related to

proliferation and we translated these values into cell cycle time by

considering the time required to double the area of a triangle. A

similar approach was taken in [17] by assuming that the cell cycle

time was equivalent to the time required to double the volume of a

tetrahedron in a 3D limb tetrahedral mesh. Tensors were

calculated for each time point and expansion rates were visualized

using heat maps, see Figure 8B. Our model predicted a

proliferation distribution with shorter cell cycle times in the distal

region, with an average value of 9h, and longer cell cycle times on

the proximal part of the limb, with an average value of 24h. The

difference between the two regions was more evident from the

stage E11 onwards with an average maximum difference of 12h in

agreement with published experimental proliferation maps [17].

The other two components of the tensor were visualized using

ellipsoids that were scaled and rotated according to the anisotropy

and the rotation, see Figure 8C. The model predicted an initial

relatively uniform anisotropy (until stage mE10.18) that was

oriented towards the distal tip of the limb. This reflected the initial

phase of elongation and protrusion of the limb and confirmed the

results presented in [17] that showed that the elongation of the

limb bud cannot depend only on differential isotropic cell

proliferation but has to depend on anisotropic tissue movement.

The model also revealed a second late phase, after mE10.18, in

which the anisotropy under the distal ectoderm close to the AER

was higher than in the central tissue. Interestingly, within the most

distal/central region of this sub-ridge mesenchyme the direction of

anisotropy was parallel to the AER, whereas it was perpendicular

to the AER in more anterior and posterior regions. Taken together

these results suggested the possibility that during autopod

expansion, signals coming from the distal AER could act

promoting a higher proliferation rate and an anisotropic behavior

of the cells that result in the expansion of the autopod along the AP

axis.

The second application of the model focused on the PD

patterning of the limb. In particular we used our model to address

a matter of debate for the last two decades: that is to identify at

which stage the three PD segments of the limb can be specified.

The problem has been addressed numerous times in the chick by

creating fate maps to study two different aspects: the degree of

mixing between cells of the prospective segments, and to follow the

lineage of cells expressing markers of the three PD segments, like

Hoxa13 and Hoxd13 for the autopod. An early study using both

Figure 7. The matching map. (A) A direct comparison between experimental clones (white background) and simulated clones (black background).
Experimental clones have been thresholded and the clone shape has been highlighted. (B) A collection of clones matching the distribution and shape
of the experimental clonal data. Blue clones expand isotropically on the PD and the AP axis, and green and red clones expand more on the PD axis.
On the left, the initial conditions of the fates are shown.
doi:10.1371/journal.pcbi.1001071.g007
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approaches [7] concluded that the degree of mixing between the

prospective PD segments was low and that the anterior expansion

of the distal marker Hoxa13 was mainly due to growth. In other

words this study suggested that the distal segment was specified

early during development and that it subsequently expanded due

to growth. A similar idea was further developed in [12] where it

was proposed, based on the observation that early fate maps were

almost always confine to a single segment, that the three segments

were specified early in development and that their expansion was

again mainly due to limb growth. This idea became known as the

Early Specification Model. In contrast, a more recent study in

chick [9] concluded that the mixing between zeugopod and

autopod was higher than that between stylopod and zeugopod at

early stages. This together with analysis of Hoxa13 and Hoxa11

expressions suggested that the two more proximal segments were

specified early while the distal segment was specified later during

development. However, another study in chick [8] found no strict

barriers between all the three segments at early stages. Recent

results in mouse [13] also supported a similar view by showing that

cells expressing known markers of three segments were capable of

altering their expression to match the local environments where

they were moved. This supported the idea proposed in [14,15]

that identities were progressively specified over time by active

regulation along the entire limb despite cell transit between the

segments.

Considering some of the controversies mentioned above we

decided to use our model in two ways: firstly to give an estimation

of the degree of mixing along the PD axis, and secondly to

estimate the extent to which limb tissue movement could be

responsible for the expansion of the Hoxd13 domain, one of the

known distal marker of the autopod.

For the first question we used the model to compute a reverse

version of the tissue movement map. This would allow us to start

by marking the three PD segments at the oldest timepoint (E12),

and then work backwards to determine which regions of the young

limb bud could contribute to the 3 segments. Importantly, this is

not equivalent to running a clonal experiment backwards in time.

As in a traditional heat diffusion problem, individual virtual clones

cannot be reverse simulated to discover where they came from. On

the contrary, if a clone was reverse simulated from its final spatial

distribution back to the young limb bud the corresponding region

on the young shape will be proportionally larger than the final

clone. This is clearly the opposite of the normal forward

simulation, which starts with a region much smaller than the final

clone – a single triangle. This distinction is explained in more

detail in Text S3. The purpose of this reverse map is therefore

instead to find the full distribution of possible progenitor regions

for a given final PD zone, e.g. to find the possible distribution of all

zeugopod progenitors at E10. Due to the effective diffusion caused

by cell mixing, the potential progenitor region for a given segment

Figure 8. Derivation of growth tensors. (A) The velocity vector field of the map that best recapitulates limb tissue movement. Velocities have
been normalized for clarity. (B) A heat map visualizing the expansion rate of each triangle. Red corresponds to high expansion rate (low cell cycle time
of 10h) and blue to low expansion rate (high cell cycle 42h). Average cell cycle times of distal (1/3 of the PD axis from the tip) and proximal parts
(remaining 2/3 of the PD axis) are shown for each time point. (C) Ellipses visualizing the anisotropy and rotation of different parts of the tissue. During
an initial phase of development the anisotropy is relatively uniform (until stage mE10.18) and oriented towards the distal tip of the limb. After this
stage the anisotropy is non-uniformly distributed, and is higher in the region under the influence of the AER. In the central sub-ridge region the
direction of the anisotropy is parallel to the AER, while in more anterior or posterior regions it is perpendicular to the AER.
doi:10.1371/journal.pcbi.1001071.g008
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will always be proportionally larger than the final segment. As an

example, if diffusion was high enough there would be a moment in

the early limb bud when any single cell across the whole bud could

provide descendants contributing to all 3 PD zones of the late bud.

In other words, the progenitor region for any point of the older

limb would be the whole young limb.

The positions of the PD segments at E12 were determined by

the expression of the Sox9 skeletal marker, see Figure 9B. Based

on the degree of cell mixing seen in real clones, our reverse model

revealed the existence of regions having high probability to

contribute to two or three segments at early stages of development

(around stage E10 in Figure 9C) when most of the fate maps

discussed above have been performed. In other words, assuming a

spatially-uniform cell mixing that matches the observed overlaps of

experimental clones, our model clearly suggests that the degree of

mixing between the three PD segments does not allow an early

specification of the PD identities even as late as E10.

For the second analysis of PD patterning we investigated the

possible contribution of tissue movement to the known expansion of

the Hoxd13 distal marker. First we mapped into the model a gene

expression time course of Hoxd13 that was obtained from in-situ

hybridization at 7 different developmental stages, see Figure 10A.

This was done by staging each limb with the morphometric staging

system presented in [28] and by mapping the domain of expression

into the correspondent time point of the model. Secondly, we used

the model to expand or shrink each experimental domain of

expression into the following or the previous experimental time

point, see Figure 10B,C. By computing the difference between the

predicted and the experimental domains we were able to disentangle

the active regulation of Hoxd13 from the underlying tissue

movement. Our model showed that there were periods of growth

during which the change in Hoxd13 domain was fairly consistent

with the underlying tissue movements. However, two particular

periods stood out from this trend during which there was strong

active up-regulation of the gene. The first period was from stage

mE10:15 to stage mE10:19, when the Hoxd13 domain undergoes a

quick expansion from the posterior to the anterior part of the limb,

and the second period was from stage mE11:1 to mE11:18, when the

gene was up-regulated proximally. Interestingly, these phases

seemed to correlate well with (a) the up-regulation of some of the

FGFs expressed by the AER that have been described to expand

from the posterior to anterior part of the distal ectorderm in an initial

phase around E10.5, and (b) a later phase when FGFs expression is

up-regulated around stage E11:5. These observations also fitted with

the model proposed in [14] where FGF signaling was proposed as a

candidate for the regulation of distal markers like Hoxa13.

In conclusion, our model predicts that the degree of mixing

observed in mouse is too high to support the Early Specification

Model as a realistic description of PD region specification.

Moreover we have also shown that the expansion of the Hoxd13

domain, one of the genes proposed as a distal marker of the limb,

cannot be explained considering tissue movement only but has to

involve active up-regulation in at least two distinct phases of the

development.

Discussion

In this study we present a novel computational method which

combines a sequence of experimental 2D limb morphologies and

clonal data to estimate a comprehensive description of the tissue

movement map responsible for limb morphogenesis. We present a

mouse clonal analysis of early hind limb development and show

how this allows us to estimate a 2D descriptive model of limb

outgrowth that fits the experimental data. In practice, our

approach is a reverse-engineering method. It is important to note

that the spring analogy algorithm is used as a convenient tool for

creating a variety of different hypothetical growth maps, but is not

employed to represent the mechanical properties of the tissue.

A major advantage of our model over previous fate maps is the

resulting comprehensive prediction of tissue movements over time

and space. Previously, the behavior of a point of tissue had to be

inferred by manual comparison to its closest experimental clone.

Figure 9. PD segments progenitors. (A) A reverse tissue movement map was calculated in order to identify the progenitor regions for the three
PD segments. In the graphs, the stylopod is highlighted in red, the zeugopod in green and the autopod in blue. (B) On the top, the initial position of
the three PD segments is specified as shown by an in situ hybridization at stage E12 of the Sox9 skeletal marker, on the bottom. (C) Graphs showing
the retrospective probability to belong to the three segments along the proximal distal axis. The regions having a high probability to belong to more
than one segment are highlighted with diagonal black lines.
doi:10.1371/journal.pcbi.1001071.g009
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By contrast, in our new map the movement of every piece of tissue

is described numerically across the whole period of development.

A related advantage is the temporal accuracy – the state of any

hypothetical clone can be predicted at any intermediate time point

– not only at the beginning or end of a virtual clonal experiment.

The spatio-temporal comprehensiveness of the model gives it the

power to make more concrete predictions about PD patterning.

To the best of our knowledge, this is the first comprehensive 2D

model of limb outgrowth derived from experimental data.

Many aspects of our clonal analysis agree with previous results

in mouse [11] and with fate maps in chick [9], in particular that

clones expand across one or two PD segments but never span

across the whole PD axis of the limb. By measuring the degree of

overlap between clones at different PD position we found that

clones spanning the zeugopod had a higher degree of overlap – in

fact not a single zeugopod-restricted clone was found. A

quantification of the ratio between AP and PD clone lengths

highlighted a range of behaviors, but which could be broadly split

into two type: isotropic clones on the distal and proximal part of

the limb, and anisotropic clones in the bulk of the tissue showing

greater PD length than AP length (Figure 3). Interestingly, in

contrast to fate maps in chick [8,9], we found that some distal

clones expanded more on the AP axis than the PD axis (e.g. C2 in

Figure 5A). This was also reflected in the fitting of the hypothetic

growth maps to the clonal data. The map which fitted best (Map6)

displayed specific features regarding AP and PD growth: along the

PD axis it was one of the maps with a distally-restricted PD

elongation. On its own, this information would appear to

contradict the knowledge that proliferation rates are highest

distally, however Map6 was also the one with a strong distal

‘‘fanning-out’’ movement along the AP axis (central row in

Figure 4B). This compensates the low PD expansion resulting in a

strong AP-oriented anisotropy, such that predicted proliferation

rates are maintained at high levels in this region (see Figure 8).

Interestingly, although this feature may be stronger in mouse than

chick (resulting in a wider mouse autopod) recent reports have

suggested that the AP expansion of the chick and gecko autopod

could be driven at least in part by AP-oriented cell divisions [33].

Taking advantage of our computer model we can calculate the

growth tensors directly revealing the AP anisotropy of the distal

tissue. However, the tensors also show that tissue movements of

the most anterior and the most posterior regions of the sub-ridge

mesenchyme are perpendicular to the AER, rather than parallel

(Figure 8C). This is an unexpected observation that will require

more attention in future studies.

Another interesting observation regards the general construc-

tion of our model. By representing the local density of labeled cells

as a probability distribution which can diffuse through a smoothly

deforming mesh, we shows that biologically-realistic tissue

movements can be captured through the combination of

anisotropic velocity vector field, with isotropic diffusion. This

could suggest that the cellular properties which govern mixing,

such as cell-cell adhesion, may not themselves display any cell

polarity. In other words, it is theoretically plausible that cells are

subject to two types of activity: directional movements (such as

oriented cell divisions or convergent extension) which are

responsible for the tissue-level shape changes, and non-directional

cell mixing. However, in reality, alternative scenarios may also be

equally compatible with our model. For example, it is likely that

oriented movements naturally lead to the intercalation and

therefore to the mixing of cells, such that directional movement

and cell mixing cannot be conceptually uncoupled.

Figure 10. Hoxd13 domain expansion. (A) Top row: a sequence of 7 in-situ hybridizations of Hoxd13 with corresponding stage given by the
morphometric staging system [17]. Bottom row: the thresholded gene expressions (limb with white background) are mapped into the triangular
meshes of the model (limb with black background). (B) A set of distinct simulations (gray rectangles) showing how the gene expression domains of
each time point would change if only passively carried along by tissue movements, i.e. with no active cellular up-regulation. (C) A similar set of
simulations, but this time in reverse for each time point. (D) Differences between the experimental patterns and the ‘‘growth-only’’ simulated patterns
in the correspondent column. The green regions are predicted to be up-regulated and the magenta regions to be down-regulated. This indicates that
the Hoxd13 domain expansion requires active up-regulation on the anterior part around stage mE10.19 (phase 1) and on the proximal part around
sage mE11:18 (phase 2).
doi:10.1371/journal.pcbi.1001071.g010
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Finally, we used the model to clarify the relation between mouse

limb tissue movement and the existing PD patterning hypothesis.

Firstly we showed, by using a reverse version of the model, that there

is a considerable degree of mixing between the progenitors of the

three PD segments (Figure 9). In contrast to the Early Specification

Model, our model predicts that at early stages there are regions

where cells have a high probability to contribute to more than one

PD segment. Secondly we showed, by mapping a time course of

Hoxd13 expression in the model, that the expansion of the Hoxd13

domain cannot be explained only by tissue movement but requires

active gene regulation, Figure 10. The model gave specific

predictions of the type of spatial and temporal active regulation of

Hoxa13 required suggesting, as proposed in [14], that distal markers

could be under the control of the FGF signaling coming from the

AER. Taken together these two results prove that limb growth

modeling is a valuable resource to extract maximum information

from clonal data and to make specific predictions about the spatio-

temporal dynamic of limb morphogenesis.

To conclude, the software that we developed will allow us to

easily integrate, inside a realistic 2D model of limb growth,

numerical simulations of gene regulatory networks and morpho-

gen gradients taking a big step forward in the study of limb

development by using a systems biology approach.

Materials and Methods

Ethics statement
All animals were handled in strict accordance with good animal

practice as defined by the relevant national and/or local animal

welfare bodies, and all animal work was approved by the

appropriate committee.

Clonal data
The clonal data was produced using the tamoxifen inducible

Cre-line presented in [11]. Lineage tracing at clonal resolution was

obtained by injecting low dose of tamoxifen (0.10mg) to reduce the

probability of polyclonal origin as described in [11]. Female

pregnant females were injected at approximately 8 days pf. and

embryos were extracted at 12 pf. LacZ clone staining was

performed as described in [34] and embryos were post-fixed in 4%

para-formaldehyde (PFA) and stored in 80% glycerol, 4% PFA.

Limb morphologies
72 limb morphologies were extracted from an extended version

of the standard morphological trajectory presented in [28]. Each

limb morphology was represented by an array of curvature values

that were averaged from more than 600 outlines of real limb buds

at different stages. We geometrically reconstructed 72 limb shapes

from the standard morphological trajectory and added an artificial

body of 150|610mm to each shape, see Figure S1. We thus

spatially discretized each of the limb bud shapes using the

unstructured triangular mesh generator presented in [35]. The

meshes used to build the 9 tissue movement maps in Figure 4 were

obtained with an element length of 8mm and the finer version of

the meshes in Figure S2 with an element length of 6mm.

Gene expression data
The Hoxd13 gene expression time course in Figure 10 and the

Sox9 expression in Figure 3 were made using C57Bl/6J mouse

embryos, fixed in 4%PFA and dehydrated into MetOH. Whole

Mount In situ hybridizations were stained using NBT/BCIP and

performed using a Hoxd13 antisense probe, kindly provided by

Denis Duboule, and a Sox9 antisense probe.

Virtual tissue movment maps
Software to generate the virtual tissue movement maps was

written in Java and used the free visualization library vtk [36] to

implement the graphical user interface that allowed the user to

specify the boundary control splines. Virtual tissue movement maps

were stored on a re-usable data structure called MorphoMovie that

was defined by a series of velocity vector fields and a series of

triangle interpolation maps, one for each triangular mesh in the

sequence. We developed a generic partial differential equation

solver that was able to simulate virtual clones on a given

MorphoMovie. The solver used an Euler method for time

discretization and a Finite Volume Method [37,38] on unstruc-

tured triangular meshes for the space discretization.

Supporting Information

Figure S1 Standard morphological trajectory. The 72 experi-

mental limb bud morphologies describing mouse hind-limb

development from stage E9 to stage E12.

Found at: doi:10.1371/journal.pcbi.1001071.s001 (0.33 MB PDF)

Figure S2 Analysis of the clonal data (PD and AP length

measurement). The clonal data that was generated using the

tamoxifen inducible CRE transgenic mouse line. Clones are divided

in two groups: isotropically expanding clones and an-isotropically

expanding clones. The PD and AP clone lengths relative to the

maximum PD and AP length of the limb are measured. Colored

triangles represent the AP and PD clone expansion.

Found at: doi:10.1371/journal.pcbi.1001071.s002 (1.17 MB PDF)

Figure S3 Proliferation patterns of the maps shown in Figure 4.

The proliferation patterns of the 9 virtual tissue movement maps

in Figure 4. Triangle expansion rate are converted to cell cycle

time and are visualized by using a heat map, red corresponds to

low cell cycle times (11h) and blue to high cell cycle times (43h).

Found at: doi:10.1371/journal.pcbi.1001071.s003 (0.40 MB PDF)

Figure S4 Experimental clone registration. The collection of 13

experimental clones that were mapped into the last triangular

mesh of the sequence (stage E12).

Found at: doi:10.1371/journal.pcbi.1001071.s004 (0.66 MB PDF)

Figure S5 Clone scores of the tissue movement maps in Figure 4.

For each of the 9 virtual tissue movement maps, the collection of

virtual clones that best matched the 13 experimental clones.

Virtual clones are shown with colored contour lines and

experimental clones are shown in white color. The text in white

color is the virtual clone score. Finally, a bar diagram summarizing

the clone scores.

Found at: doi:10.1371/journal.pcbi.1001071.s005 (1.68 MB PDF)

Text S1 Description of the tissue movement maps in Figure 4. A

description of the spline curves and stiffness distributions used to

generate the 9 virtual tissue movement maps in Figure 4.

Found at: doi:10.1371/journal.pcbi.1001071.s006 (0.04 MB PDF)

Text S2 Simulation with a refined triangular mesh. The 13

virtual clone positions in Map6 that best matched the experimen-

tal data were used to simulate virtual clones on a version of Map6

with a refined mesh.

Found at: doi:10.1371/journal.pcbi.1001071.s007 (0.46 MB PDF)

Text S3 Forward and backward maps. A description of the

different information that can be extrapolated from a virtual tissue

movement map: fate maps vs progenitor regions. The PD segment

progenitor prediction shown in Figure 9 is also recalculated by

using Map6 without additional diffusion.

Found at: doi:10.1371/journal.pcbi.1001071.s008 (1.00 MB PDF)
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Video S1 Mesh deformation video. Part of the sequence of

triangular meshes that was derived from the experimental limb

bud morphologies. Each mesh is deformed to match the next mesh

in the sequence from which the simulation continues.

Found at: doi:10.1371/journal.pcbi.1001071.s009 (5.46 MB AVI)

Video S2 Virtual fate map video. A video showing a virtual fate

map. The spatial probability distribution of the fate is colored with

a heat map, red represents a high probability and blue a low

probability. A discrete number of triangle-interpolation steps can

be appreciated in the video.

Found at: doi:10.1371/journal.pcbi.1001071.s010 (3.21 MB AVI)

Video S3 Video of the simulation in Figure 7B. A video showing

a number of clones that match the distribution and shape of the

experimental clonal data. Blue clones expand isotropically on the

AP and the PD axis, red and green clones expand more on the PD

axis.

Found at: doi:10.1371/journal.pcbi.1001071.s011 (2.70 MB AVI)
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Figure S1:  The standard morphological trajectory – from E9 to E12
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Figure S2: Analysis of the clonal data (PD and AP length measurement) 
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Figure S3: Proliferation patterns of the maps shown in Figure 4
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Figure S4: Experimental clone registration, triangular mesh at E12
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Figure S5: Clone scores of the tissue movement maps in Figure 4
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Text S1: Description of the tissue movement maps in Figure 4

Tissue movement maps were generated by varying the directionality and the
relative magnitude of the velocity vectors. A total of 9 maps (shown in Figure 4)
were generated by using three different sets of spline curves and three different
distributions of stiffness coefficients along the proximal-distal axis.

The three maps in the first row of Figure 4 (Map1, Map2, Map3) were ob-
tained by using a set of spline curves that defined velocity vector fields with
direction bias to the distal tip of the limb. The three maps of the second row
(Map4, Map5, Map6) were obtained using a set of spline curves that defined
velocity vectors that were progressively spreading-out more along the anterior-
posterior axis of the limb. Finally, the spline curves that were used to generate
the maps of the third row (Map7, Map8, Map9) defined a more asymmetric
velocity vector field with posterior vectors bending to the posterior part of the
limb and anterior vectors biased distally.

For each triangular mesh in the chronological sequence, edge stiffness coeffi-
cients were calculated using the formula:

αij =
1

lij
P (eijx ) (1)

where lij is the length of the edge connecting the vertex i and the vertex j
and P (eijx ) is a scaling function P calculated on the x coordinate of the edge
midpoint eijx .

The three maps in the first column of Figure 4 (Map1,Map4,Map7) were
generated using an inverted sigmoid as the scaling function P :

P (x) =
1

(1 + e−Ks∗(−x+(mx−dx)))
(2)

whereKs is a constant defining the steepness of the sigmoid, mx is the maximum
x coordinate of the mesh and dx is a parameter used to translate the sigmoid
proximally. This scaling function defined lower stiffness values for edges that
were located distally, therefore allowing greater deformations on the distal part
of the limb mesh.

The three maps in the second column of Figure 4 (Map2,Map5,Map7) were
generated considering no change in stiffness coefficients along the proximal-distal

1
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axis (P (x) = 1).
Finally, the three maps in the third column of Figure 4 (Map3,Map6,Map9)

were generated using a sigmoid function P that was defined similarly to the
scaling function (2) as:

P (x) = 1 +
1

(1 + e−Ks∗(x−(mx−dx)))
(3)

This scaling function defined higher stiffness coefficients for edges located dis-
tally, therefore allowing greater deformations on the proximal part of the mesh.

We also performed simulations using exponential and linear scaling function
with similar monotonic behaviors to equations (2) and (4) and found similar
mesh deformations in the first case but almost no change in mesh deformation
from the constant fucntion (P (x) = 1) in the second case. This suggested that a
non-linear scaling of the stiffness was essential to obtain a substantial difference
in the mesh deformation.

The simulations that are shown in Figure 4 were performed using Ks = 0.05
and dx = 30 and similar values of Ks and dx showed little effect on the type of
final deformation that was obtained. In addition in all the cases we also specified
a greater stiffness for the part of the meshes correspondendt to the body. The
space unit was µm and the maximum PD length given by the last mesh in the
sequence was of 786µm.

2
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Text S2: Simulation with a refined triangular mesh

A version of Map6 with a finer mesh was generated. Using the initial positions that were optimized for 

the version of Map6 obtained with a coarser mesh, we computed and evaluated the 13 virtual clones on 

the  finer mesh. Results were in agreement with the virtual clones obtained with the original mesh.

A) Example of clone generated with the Map6 on a finer Mesh and with Map6 on a finer mesh plus an additional 

diffusion term increasing cell mixing. B) Clone scores and Total score for  Map6 on the finer mesh with and 

without diffusion.
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The above figure illustrates the type of information that can be obtained from a virtual tissue movement 

map. Inside the central circle, a tissue movement map is represented by a simplified mapping of 5 

young-mesh triangles to 9 old-mesh triangles, based on their geometric overlap. This triangle map was 

generated  starting  from  a  velocity  vector  field  of  a  hypothetical  growth  transform  and  provides 

information about the fate of each part of tissue (triangles) in the period of development between the 

two morphologies. 

A tissue movement map of this type can be read in two different ways: 

By reading it forward (upper left-hand panel) virtual fate maps can be performed by marking young-

mesh triangles with a virtual dye and then observing the dye redistribution into the old-mesh triangles. 

In other words we use the map to explore the question: where can tissue in a triangle of the young mesh 

end up in the old mesh? In the specific example 2 triangles have been mapped with a red dye and 1 

with a green dye. The map predicts that the red region will expand to occupy 5 triangles of the old 

mesh and the green region will grow into 3 triangles on the old mesh, one of which is in common 

between the two (yellow triangle). In biological terms the yellow triangle will contain cells labeled with 

green and red dye.

Conversely by reading it backwards (upper right-hand panel) progenitor regions can be identified by 

marking with a virtual dye a tissue region on the old mesh and then using the reversed triangle map to 

reveal the triangles from which this part of tissue could descend. In other words we are exploring the 

question: from which young triangles can an old triangle possibly descend? In the specific example, 

four triangles have been marked in the old mesh with a red dye and three triangles with a green dye. 

Redistributing the dye by using the reversed triangle map three triangles are predicted as the possible 

progenitors of the green marked tissue and three triangles as the possible progenitors of the red marked 

tissue, one of the triangles (in yellow) could be a progenitor of both regions.   

These  two  interpretations  are  based  on  same  triangle  map  but  address  two  profoundly  distinct 

questions. It is important to highlight that the reverse map does not provide a way to reverse a fate map, 

but only provides a way to identify progenitors. The fact that these are two different concepts becomes 

quite evident with another specific example: In the figure below, if we map the green triangles (old 

mesh) obtained by a fate map (on the left) into the old mesh of the backward map (on the right), we 

will find that the possible progenitor region identified is much broader than the original labeled region 

from which the fate map originated – 3 green triangles instead of 1.
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In addition the tissue movement map can also be read forward and backward considering additional 

levels of diffusion / cell mixing:

By reading it forward with additional diffusion (lower left-hand panel) fate maps can be computed as 

explained above but considering a higher degree of mixing between the cells. In the specific example 

(which represents only one of the 72 steps of mesh interpolation) the diffusion allows the dye values to 

spread into neighbouring triangles, during the 1 hour period when the younger mesh is being stretched, 

before the interpolation is  performed. By diffusing the dyes before the interpolation a  greater  mix 

between fates is obtained. Similarly the same procedure can be performed in reverse (lower right-hand 

panel).

As an extra control for the conclusions made in Figure 9, we have also re-done the reverse simulation 

without  diffusion  –  to  shown  that  these  results  do  not  depend  on  the  extra  degree  of  diffusion 

considered  previously.  Below  we  show  the  results  of  this  “triangle-mapping-only”  version  of  the 

reverse map (bottom row), in comparison to the previous version from Figure 9 (top row). Although the 

sizes of progenitor overlap regions are slightly smaller, they are still clearly evident, supporting our 

general conclusion that early specification of all PD zones is not an accurate description of limb bud 

development.

A considerable degree of mixing is observed also in the reverse map without diffusion. The black 

arrows highlight the major differences between the two reverse maps at E10. 
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3.3 A Turing model based on Bmps and Wnts ex-

plains Sox9 digit patterning

In section 3.1 we provided the first strong evidence that a Turing-type mecha-

nism controls digit patterning. In particular, we showed that the polydactyly of

various Distal Hox mutants could be explained as a change in wavelength of the

Turing mechanism that specifies the periodic pattern of the digits. Which genes

implement the Turing mechanism remains to be elucidated.

In this section, I combine experimental work with modeling to propose that

Bmps, Sox9 and Wnts are the main components of this Turing network. The

experimental work is done by Jelena Raspopovic another PhD student in our lab-

oratory. My contribution to this work is the development of a new model of digit

patterning that extend our previous results with realistic limb growth and a three-

reactant Turing network based on molecular data. Similarly to the static model

presented in section 3.1, the new model combines a Turing mechanism with Po-

sitional Information provided by Fgf-signaling and Hox genes. I show that this

model robustly re-produces the experimental patterns of Sox9 inside a growing

simulation.

This section is organized in the following way. In the first subsection, I present

the evidence that supports Sox9 as being part of the Turing network. In the follow-

ing subsection, I use experimental data and a mathematical analysis to develop a

novel three-reactant Turing network based on Bmps, Sox9 and Wnts. In the third

and fourth subsection, I characterize the effect of the different parameters in the

model and I introduce an Fgf-signaling gradient and Hoxd13 experimental pat-

terns into the growing model. These two signals are used to modulate the Turing

network to obtain digit patterning dynamics that agree with the experimental ex-

pression of Sox9.

Finally in the last subsection, simulations are compared with experimental

perturbations. A comprehensive discussion of the model is provided in the next

chapter.

3.3.1 Sox9 is part of the reaction-diffusion mechanism

In the mouse the Sox9 expression pattern is the earliest asymmetry that reflects

the skeletal pattern of the limb, see section 1.3.1. If a self-organizing Turing

mechanism is responsible for digit-patterning, then the periodic digital pattern of

Sox9 must be a direct reflection of this self-organizing process, see Figure 3.1.

172



Figure 3.1: The progressive appearance Sox9 is a direct reflection of the self-

organizing mechanism that drives digit patterning. Top row: Sox9 in-situ hy-

bridization patterns scanned with OPT, Sox9 in red and the limb auto-fluorescence

in green (a z-stack of the DV axis is showed). Bottom row: Sox9 concentration

A-P profiles as shown by the dashed line above. The black arrows hilight digit 4

in the posterior part, Sox9 shows a periodic pattern along the AP-axis of the limb.

Two alternative scenarios can be formulates: either Sox9 is a readout of the Turing

mechanism, see Figure 3.2A, or Sox9 itself is part of the Turing mechanism, see

Figure 3.2B.

Figure 3.2: Two scenarios for the Sox9 skeletal marker. A) Sox9 is a simple

readout of the Turing mechanism (represented by the gray nodes). B) Sox9 is

involved in the main feedbacks of the Turing mechanism.

The complete lack of other skeletal markers (or morphological changes that reflect

the digits) in the Sox9 mutant supports the second scenario (see section 1.3.2).

Indeed, if Sox9 mediates the main reaction-diffusion feedbacks, its disruption will
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result in a complete loss of patterning. In addition, the polydactyly observed in

Sox9 mis-expression experiments [Akiyama et al., 2007] ulteriorly supports the

fact that Sox9 feeds back on the Turing network.

If Sox9 is involved in the main feedback of the Turing mechanism, then its

expression must be dynamically regulated as the digit pattern emerges. Evidence

supporting this hypothesis comes from the fate mapping experiments presented

in [Akiyama et al., 2005] where it was showed that the population of cells that

express Sox9 is much broader that the Sox9-expressing population in later devel-

opmental stages. In other words, this result highlighted that over time Sox9 was

dynamically down-regulated in the interdigital region. A similar observation can

be made by comparing a virtual fate map of Sox9 with an experimental expres-

sion pattern (as it was done for Hoxd13 in the article presented in section 3.2), see

Figure 3.3.

Figure 3.3: On the left, an experimental Sox9 pattern at mE11:7 is mapped into

the growing model. On the right, a virtual fate map of Sox9 is computed at mE12

and compared with an experimental Sox9 pattern. In the region outlined by the

white dashed line, Sox9 has to be down-regulated.

This degree of plasticity is in agreement with the dynamic regulation that is re-

quired to achieve self-organization in a Turing mechanism. To further confirm that

Sox9 is dynamically regulated during patterning, we performed a Micromass cul-

ture with mesenchymal cells obtained from autopods of the Sox9-EGFP mouse, a

mutant that carries an EGFP knock-in under the Sox9 promoter. By monitoring

the culture we were able to observe for the first time the progressive appearance

of the Sox9 pattern, see Figure 3.4A.

We compared the dynamics of Sox9 with a two-dimensional simulation of a

simple Substrate-Depletion model that writes:
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∂a

∂t
= αa + k1a+ k2s− a3 +Da∇2a (3.1)

∂s

∂t
= αs − k3a− k4s+Ds∇2a (3.2)

where a and s are respectively the concentrations of the activator and the

substrate and αa, αa their production terms. The negative cubic term −a3 is

introduced to have stable dynamics.

When this system is simulated inside a squared domain (edge length=1000) with

reaction parameters values are k1 = 0.6, k1 = k3 = k4 = 1, αa = αs = 0.1
and diffusion constants Da = 250, Ds = 2500, a labyrinthine pattern gradually

emerges, see Figure 3.4B. The patterning dynamics of the reaction-diffusion sys-

tem highly resembled those of Sox9 in the Micromass culture.

To confirm that the periodic expression of Sox9 was formed by a dynamic

molecular patterning system, we performed Micromass cultures using FACS-sorted

mesenchymal cells. When the culture was initiated with non-expressing Sox9

cells, the pattern still formed in less than 15 hours. Monitoring individual cells

revealed that the pattern was established by a genuine spatially-controlled up-

regulation of Sox9, see Figure 3.5A, rather than cell sorting. More strikingly,

when the culture was initiated with highly-expressing cells, a similar periodic

pattern emerged by spatially-controlled Sox9 down-regulation see Figure 3.5B.

These experiments support the idea that Sox9 is dynamically regulated by a self-

organizing Turing system based on cell-cell communication.
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Figure 3.4: A) Bottom row: a time-lapse of a 20h Sox9-EGFP Micromass cul-

ture, a periodic chondrogenic pattern marked by Sox9 arises over time. Top row:

graphs showing the Sox9-EGFP intensity along the profiles marked by the dashed

white lines. B) A time course showing the concentration of the activator (a) in a

two-dimensional simulation of a Substrate-Depletion Turing model.
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Figure 3.5: Micromass culture initiated with Sox9-EGFP FACS-sorted autopod

cell, green and red circles track two cells which develop respectively low and

high levels of Sox9. Graphs show Sox9 intensity change over time for both cells

in each case. A-B) 15h time-lapse of a Micromass culture initiated with Sox9

negative cells and Sox9 positive cells, a periodic pattern is formed respectively by

spatially-controlled up-regulation and down-regulation of Sox9.
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Figure 3.6: Genes that implement the Turing network will have a pattern that

is either in-phase or out-of-phase with Sox9. On the left the experimental pe-

riodic expression pattern of Sox9. In the middle and on the right respectively:

the Activator-Inhibitor (AI) topology and the Substrate-Depletion (SD) topology.

The AI topology forms in-phase patterns and the SD topology forms out of phase

patterns.

3.3.2 Identification of Turing molecules

In the previous section we provided several evidence that support Sox9 as being

part of the Turing network. However, Sox9 is a non-diffusible transcription factor

and at least two diffusible molecules are required to implement a minimal Turing

model. The general conditions for diffusion-driven instability (see section 1.1.1.3)

describe two minimal Turing topologies: the Activator-Inhibitor topology, where

in-phase periodic patterns are formed by an auto-catalytic activator that promotes

its own inhibitor, and the Substrate-Depletion topology, where out-of-phase pat-

terns are formed by auto-catalytic activator that depletes a substrate. This means

that genes that may implement the reaction-diffusion network in conjunction with

Sox9 have to be diffusible molecules (E.g signaling molecules) that have either an

in-phase of an out-of-phase pattern with Sox9, see Figure 3.6.

A detailed spatio-temporal characterization of the Sox9 pattern, see Figure 3.1,

reveals that the periodic digital pattern appears for the first time around stage

E11.5. To identify possible Turing-molecules, we dissected and FACS-sorted sev-

eral limb autopods form E11.5 Sox9-EGFP specimens and performed a compar-

ative microarray analysis to revel differentially expressed genes between Sox9

positive and Sox9 negative cells.
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Figure 3.7: A) Microarray analysis that highlights identify differentially expressed

genes between Sox9 positive (red) and Sox9 negative cells (green). Color intensity

corresponds to fold change. The three major signaling pathways show a consid-

erable number of differentially expressed genes: Bmp, Wnt and Fgf. Sox9 and

its direct target Wwp2 are provided as a control. Genes highlighted by a rectan-

gle were analyzed by in situ hybridization. B) Whole mount in situ hybridization

time-courses to validate the microarray data. Three stages per gene are shown

E11, E11.5 and E12.5. Digit 4 is highlighted with a black arrow.
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Based on the number of differentially expressed genes and the fold-change

magnitude, the pathways most strongly implicated in digit patterning were the

Wnt, Bmp and Fgf pathways, see Figure 3.7A. Not all genes with a strong fold-

change in the microarray will have a pattern completely in-phase or out-of-phase

with Sox9. For example, Shh is strongly expressed in Sox9-negative cells but this

is due to its restriction to the posterior mesenchyme outside the Sox9 domain. A

second level of verification is thus required. We therefore analyzed the expression

time-course of several genes by whole mount in-situ hybridization (WMISH) to

check which patterns are genuinely in-phase or out-of-phase with Sox9, see Figure

3.7B. As a positive control, we checked the Sox9 target Wwp2, which scored

highly in the microarray and is indeed expressed in-phase with Sox9, see Figure

3.7B. Regarding previously proposed candidate Turing molecules, neither Tgf-β2,

nor any of the Galectins, showed strong differential expression in the microarray.

We verified the negative microarray results for Tgf-β2, showing that its digital

pattern only develops by E12.5, which is too late to participate in early patterning

events. This suggests that Tgf-β2 is primarily involved in late chondrogenesis

and differentiation events, despite its ability to induce extra digits when applied

ectopically.

3.3.2.1 BMPs as a substrate in an SD system

Bone Morphogenetic Proteins (Bmps), are obvious Turing-molecule candidates as

they are known to play an important role in skeletogenesis [Wan and Cao, 2005,

Yoon and Lyons, 2004]. Our microarray analysis shows that Bmp2, Bmp4 and

Bmp7 are highly expressed in Sox9 negative cells (Fig. 3.7A). Consistently, anal-

ysis of their expression patterns reveals that they are highly expressed in the distal

mesenchyme surrounding the Sox9 domain. Moreover, Bmp2 has an expression

pattern that is strikingly complementary to Sox9 at each stage of digit patterning

(Fig. 3.7B). Although this is in agreement with the known role of Bmp-signaling

as regulators of interdigital apoptosis [Zuzarte-Luis and Hurle, 2005], evidence

also exist that Bmp-signaling promotes Sox9 and chondrogenesis [Bandyopad-

hyay et al., 2006, Pan et al., 2008, Zehentner et al., 1999]. At first glance, this

seems difficult to reconcile with the complementary expression patterns of Bmps

and Sox9. However, this non-intuitive behavior can be explained by considering

that Sox9 and Bmps form a substrate-depletion model, in which Bmps acts as the

substrate and Sox9 act as the activator. This would indeed result in complemen-

tary patterns despite the positive influence of Bmps on Sox9. In this model, Bmp

activates Sox9 that in turn would represses Bmp expression, in this way final pe-

riodic pattern where Sox9 and Bmps are out of phase is formed, see the SD model

in Figure 3.6 and Figure 3.8.
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Figure 3.8: On top, a Substrate-Depletion model (SD), A is the activator and S is

the substrate. On the bottom, a network where Bmp promotes Sox9 that in turn

inhibits Bmp, this motif implements the right part (light gray background) of the

SD model. To implement the other part (dark gray) Another diffusible molecule

U that interacts with Sox9 is required (red node and arrows).

This hypothesis predicts that Bmp-signaling should be present in the digi-

tal tissue that expresses Sox9. To test this idea we assessed a time-course of

canonical Bmp-signaling by performing immuno labeling against phosphorylated

Smad1/5/8 (pSMAD) on cryosections of Sox9-EGFP limbs. By double-labeling

for pSMAD and Sox9 (anti-EGFP), we found that Bmp-signaling activity cor-

relates with the digital Sox9 expression pattern (starting with digit 4, and then

including digit 3 and 2), see the Figure 3.9 that display the in-phase patterns of

pSMAD and Sox9 along the A-P axis, together with the out-of-phase pattern of

Bmp2 expression (mapped from an in-situ time-course). SMAD signaling is also

known to be active in the distal phalanx forming regions at later stages, but this

is long after the digits are already patterned [Montero et al., 2008, Suzuki et al.,

2008].

To further test the positive influence of Bmps on Sox9, we used the Sox9-

EGFP mouse to perform a number of manipulative experiments in limb and Mi-

cromass cultures. When Bmp2 protein-soaked beads were implanted into the in-

terdigital region at E11.5, we observed a local up-regulation of Sox9 in less than
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Figure 3.9: The first row shows Bmp2 expression at E10.5, E11 and E11.5. The

second two rows show the same cryosections double-labeled for Sox9 (Anti-

EGFP) and Bmp-signaling activity (Anti-pSMAD1/5/8). Digit 4 is highlighted

with a white arrow, proximal is on the left and posterior is on the bottom. Graphs

show AP-profiles of Bmp2 expression and fluorescence intensities. When the digit

pattern starts to appear (E11) Bmp-signaling co-localizes with Sox9 while Bmp2

expression is out-of-phase at the level of the digits.
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6 hours and similar result are observed when Bmp2 is added to the medium of

Micromass cultures, see Figure 3.10A. In contrast when the Bmp-signaling in-

hibitor LDN-193189 (LDN) was added the medium of limb and Micromass cul-

tures Sox9 was down-regulated, Figure 3.10B. Interestingly, in limb culture the

down-regulation of Sox9 is mostly in the digital region Figure 3.10B. This in

agreement with the phenotype of the Smad4 conditional mutant [Bénazet et al.,

2012], where impairment of canonical Bmp-signaling in the limb mostly affects

the autopod region and results in the absence of digits. Analysis of the expression

pattern of Sox9 and Bmp2 in this mutant, reveals that while Sox9 expression is

down-regulated, Bmp2 expression is up-regulated in comparison with the wild-

type, see Figure 3.10C. This agrees with the hypothesis that Sox9 and Bmps from

a Substrate-Depletion Turing mechanism where Bmp-signaling promotes Sox9

that in turns represses Bmp expression (topology in Figure 3.10C).

These functional experiments together with the complementarity of Bmp2 and

Sox9 expression patterns provide evidence that Bmp2 act as a substrate and Sox9

as an activator in a Substrate-Depletion Turing model. However, a minimum

of two diffusible molecules is required to produce a diffusion-driven instability.

Since, Sox9 is a non-diffusible transcription factor, a third diffusible component

is required. The experimental evidence supports the idea that Sox9 is involved

in the main feedbacks of the reaction-diffusion network, therefore this third dif-

fusible component has to interact with Sox9, see Figure 3.8. In the next two

subsections, I develop a linear-stability analysis of a three-component reaction-

diffusion system. This analysis reveals the possible topologies that can give rise

to a diffusion-driven instability and help us to identify the third component.
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Figure 3.10: A) Top row: bead experiments in Sox9-EGFP limb cultures after

22h, a control PBS-soaked bead (left) and a Bmp2-soaked bead which promotes

local Sox9 up-regulation (right). Bottom row: addition of BMP2 in the medium of

Micromass culture up-regulates Sox9 in comparison with control. B) Addition of

LDN in 22h Sox9-EGFP Micromass and limb cultures show a down-regulation

of Sox9 and digit patterning loss. C) OPT scans of Sox9 and Bmp2 expres-

sion patterns in WT (left) and in the Prx1-CRE-Smad4fl/fl mutant [Bénazet et al.,

2012] (right). In the Smad4fl/fl mutant abrogation of canonical Bmp-signaling

causes loss of digit patterning with down-regulation of Sox9 (red arrow) and up-

regulation of Bmp2 (green arrow). This behavior is consistent with deletion of

Bmp-signaling (red cross) in a Substrate-Depletion network where Bmp activates

Sox9 that in turns represses Bmp, network diagram on the right.
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3.3.2.2 Linear stability analysis

In this subsection, I apply the linear-stability analysis presented in [White and

Gilligan, 1998] to a reaction-diffusion system that represent the interactions be-

tween Bmp, Sox9 and an unknown diffusible molecule u. Let consider the fol-

lowing general reaction-diffusion equations for Bmp, Sox9 and u:

∂sox9

∂t
= f(sox9, bmp, u) +Dsox9∇2sox9

∂bmp

∂t
= g(sox9, bmp, u) +Dbmp∇2bmp

∂u

∂t
= h(sox9, bmp, u) +Du∇2u

(3.3)

we can linearize the system around the steady

f(sox9∗, bmp∗, u∗) = g(sox9∗, bmp∗, u∗) = h(sox9∗, bmp∗, u∗) = 0
by setting the one-dimensional case with zero-flux boundary condition to:

sox9(x, t) = sox9∗ + εsox9(x, t)

bmp(x, t) = bmp∗ + εbmp(x, t)

u(x, t) = u∗ + εu(x, t)

where εsox9(x, t), εbmp(x, t), εu(x, t) define small partial perturbations written

as:

εsox9(x, t) = sox90e
σt+ikx

εbmp(x, t) = bmp0e
σt+ikx

εu(x, t) = u0e
σt+ikx

the linearized system can be rewritten in matrix form (without considering

terms that are of order higher than linear) as:





σ − fsox9 +Dsox9k
2 −fbmp −fu

−gsox9 σ − gbmp +Dbmpk
2 −gu

−hsox9 −hbmp σ − hu +Duk
2









sox90
bmp0
u0



 = 0,

where the terms in the form fsox9 denote the partial derivatives ∂f

∂sox9
of f, g and h

evaluated at steady state and the matrix on the left is the stability matrix A.
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This system has solutions if det(A) = 0 which writes:

σ3 + a1(k
2)σ2 + a2(k

2)σ + a3(k
2) = 0, (3.4)

where the terms a1(k
2), a2(k

2), a3(k
2) are:

a1(k
2) = −fsox9 − hu − gbmp + (Dsox9 +Dbmp +Du)k

2

a2(k
2) = fsox9hu + fsox9gbmp + gbmphu − hbmpgu − fbmpgsox9

− fuhsox9 − k2(Dugbmp +Dbmphu +Dsox9hu

+Dsox9gbmp +Dbmpfsox9 +Dufsox9)

+ k4(DbmpDu +DbmpDsox9 +Dsox9Du)

a3(k
2) = −fsox9gbmphu + fsox9hbmpgu + fbmpgsox9hu − fbmphsox9gu

− fugsox9hbmp + hsox9gbmpfu + k2(Dufbmpgsox9

−Dbmphsox9fu −Dsox9hbmpgu +Dsox9gbmphu +Dbmphufsox9

+Dugbmpfsox9)− k4(DbmpDsox9hu +Dsox9Dugbmp

+DbmpDufsox9) + k6Dsox9DbmpDu,

Similarly to a two-reactant system, see section 1.1.1.3, a diffusion-driven in-

stability is formed when two conditions are satisfied:

• the system has to be linearly stable in the case of no diffusion

• The system has to be unstable for spatial perturbations

These two conditions correspond respectively to the existence of a negative and a

positive real part in the solution σ of (3.4), that write:

Re(σ(k2 = 0))) = 0 (3.5)

Re(σ(k2 > 0))) = 0 (3.6)

By using the Routh-Hurwitz criteria [Murray, 1989] we can show that the

condition (3.5) is satisfied when:

a1(0) > 0, a3(0) > 0, a1(0)a2(0)− a3(0) > 0 (3.7)

and the condition (3.6) is satisfied when at least one of the Routh-Hurwitz

terms becomes negative for some k2 > 0:

a1(k
2) < 0 ∨ a3(k

2) < 0 ∨ a1(k
2)a2(k

2)− a3(k
2) < 0 (3.8)
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The second condition (3.8) cannot be solved analytically but can be simplified

if one of the species is not diffusible [White and Gilligan, 1998]. If for example

Dsox9 = 0, the complex term a3(k
2) can be simplified to:

a3(k
2) = −DbmpDufsox9k

4 + k2(Dbmp[hufsox9 − hsox9fu] (3.9)

+Du[gbmpfsox9 − fbmpgsox9]) + a3(0) (3.10)

In this case, sufficient conditions that satisfy (3.8) by making a3(k
2) < 0 can be

derived according to the sign of fsox9 :

if fsox9 > 0,then a3(k
2) → −∞ (no diffusion-driven instability) (3.11)

if fsox9 = 0,then a3(k
2) < 0 if Dbmphsox9fu +Dufbmpgsox9 > 0 (3.12)

if fsox9 < 0,then a3(k
2) < 0 if F1 < 0F2 > 0 (3.13)

where

F1 = Dbmp[hufsox9 − hsox9fu] +Du[gbmpfsox9 − fbmpgsox9], (3.14)

and

F2 = (Dbmp[hufsox9 − hsox9fu] +Du[gbmpfsox9 − fbmpgsox9]

+ 4DbmpDufsox9a3(0) > 0,
(3.15)

To summarize, in a three-component reaction-diffusion system with one non

diffusible molecule (Dsox9 = 0) the conditions (3.7)(3.12)(3.13) are necessary

and sufficient to form a diffusion-driven instability.

3.3.2.3 Eight core topologies

Now that we have derived the necessary and sufficient conditions for a diffusion-

driven instability in a three-component Turing system with one non-diffusible

molecule, we can develop a simple linear model with a minimal number of in-

teractions for Sox9,Bmp and u by defining f, g, h in (3.3) in the following way:

f(sox9, bmp, u) = k1bmp+ k2u

g(sox9, bmp, u) = αbmp + k3sox9− µbmpbmp

h(sox9, bmp, u) = αu + k4sox9− µuu

(3.16)

were αbmp, αu and µbmp, µu are respectively production and first-order decay

terms that provide stable dynamics to the system. The four constants k1, k2, k3, k4
define the strength of cross-regulation terms. A graphical representation of the

systems is showed in Figure 3.11A. For simplicity I have ignored cross-regulation
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terms between Bmp and u and I considered the simplest case where sox9 does not

regulate itself.

This system has homogeneous steady state:

(sox9∗, bmp∗, u∗) = (− k1µuαbmp + k2µbmpαu

k2k4µbmp + k1k3µu

,

− −k2k4αbmp + k2k3αu

k2k4µbmp + k1k3µu

,

− k1k4αbmp − k1k3αu

k2k4µbmp + k1k3µu

)

Since fsox9 = 0, necessary and sufficient conditions for diffusion-driven insta-

bility can be obtained by combining (3.7) and (3.12), which nicely reduce to eight

cases depending on d =
Dbmp

Du
and on the signs of k1, k2, k3, k4.

Let us define K as:

K =

(

k1 k2
k3 k4

)

if µbmp = µu, according to (3.7) and (3.12) a diffusion-driven instability occurs in

any of the eight cases:

K =

(

+ +
− +

)

and k1 > −k2k4
k3

and d > −k1k3
k2k4

(3.17)

K =

(

+ −
− −

)

and k1 > −k2k4
k3

and d > −k1k3
k2k4

(3.18)

K =

(

− +
− −

)

and k1 > −k2k4
k3

and d < −k1k3
k2k4

(3.19)

K =

(

− −
− +

)

and k1 > −k2k4
k3

and d < −k1k3
k2k4

(3.20)

K =

(

− +
+ +

)

and k1 < −k2k4
k3

and d > −k1k3
k2k4

(3.21)

K =

(

− −
+ −

)

and k1 < −k2k4
k3

and d > −k1k3
k2k4

(3.22)

K =

(

+ +
+ −

)

and k1 < −k2k4
k3

and d < −k1k3
k2k4

(3.23)

K =

(

+ −
+ +

)

and k1 < −k2k4
k3

and d < −k1k3
k2k4

(3.24)
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Conditions from (3.17) to (3.24) correspond to eight topologies that are able

to produce all the different in-phase/out-of-phase periodic patterns for sox9, bmp
and u, see Figure 3.11B.

Figure 3.11: A) The linear three-component reaction-diffusion system presented

in equations (3.16) B) Left column: the eight topologies capable of diffusion-

driven instability in the sox9, bmp, u reaction-diffusion system. Right column:

one-dimensional simulations showing the in-phase/out-of-phase periodic patterns

of sox9, bmp and u. The first two-topologies that show out of phase patterns for

sox9 and bmp are highlighted.
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3.3.2.4 Wnt and Sox9 mutual inhibition

In section 3.3.2.1 we showed that Bmps promote Sox9 and that the expression

patterns of Bmp2 and Sox9 are complementary. The only topologies that fit these

observations are topology 1 and topology 2 in Figure 3.11B, that correspond re-

spectively to conditions (3.17) and (3.18). Therefore, our mathematical analysis

restricts the search for the third Turing molecule u to a diffusible molecule that

participates either in a mutual activation or a mutual inhibition with Sox9. More-

over, it shows that in the first case the unknown molecule would have a pattern in

phase with Sox9 and in the second case a pattern out-of-phase with Sox9.

Several studies, see section 1.3.2, show that Wnt-signaling inhibits chondro-

genesis and participate in Sox9 regulation. For this reason, it is not surprising

that components of the Wnt signaling pathway are highly represented in our mi-

croarray analysis, see Figure 3.7A. Unexpectedly, none of the Wnt ligands in the

limb appears to be differentially expressed. We formulate the hypothesis that if

Wnts are involved in the Turing network, regulation of their activity rather than

their expression must be involved in the patterning process. Since the evidence

in literature supports the idea that Wnt-signaling inhibits Sox9, in accord with the

second topology presented in Figure 3.11B, Wnt-signaling should have a pattern

out-of-phase of Sox9. Consistently with this hypothesis, we found that Twist1,

Axin2, Mycn and Lef1, which are well known Wnt-signaling target genes, are

highly expressed in Sox9-negative cells, see Figure 3.7B.

However, none of these genes showed an obvious complementary pattern at

E11.5 as in the case of Bmp2. Since Wnt-signaling is a complex pathway with

many receptors and rich dynamics, we chose to analyze Wnt-signaling activity

more directly by immuno-labeling of β-catenin, which in the presence of Wnt-

signaling accumulates in the cytoplasm and the nucleus to regulate target genes.

We found a clear evidence that as soon as the digits are patterned, canonical Wnt-

signaling activity was stronger in the interdigital region and formed a pattern that

was complementary to Sox9 at all stages of development, see Figure 3.12.

To test the negative influence of Wnt-signaling on Sox9 we performed manip-

ulative experiments in limb and Micromass cultures using the Sox9-EGFP mouse.

When Wnt3a protein-soaked beads were implanted in the autopod at E11.5, we

observed a local down-regulation of Sox9 within 6 hours, see Figure 3.13A. Simi-

larly, when Wnt3a or BIO (6-bromoindirubin-3’-oxime) (an activator of β-catenin

Wnt pathway) were added to Micromass cultures a general reduction of the Sox9
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Figure 3.12: Series of cryosections double-labeled for Sox9 (Anti-EGFP) and

Wnt-signaling (Anti-TBC) at E10.5, E11 and E11.5. Graphs show that canonical

Wnt-signaling is out-of-phase with Sox9 as soon as the digit pattern appears. On

the left dorsal view cryosections (left=proximal, bottom=posterior) and on the

right distal view crysections (left=dorsal, bottom=posterior).
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Figure 3.13: A) Top row: bead experiments in Sox9-EGFP limb cultures after 22h,

a control PBS-soaked bead (left) and a Wnt3a-soaked bead which promotes local

Sox9 down-regulation (right). Bottom row: addition of Wnt3a in the medium of

Micromass culture down-regulates Sox9 in comparison with control. B) Top row:

addition of IWP2 in Sox9-EGFP limb cultures up-regulates Sox9 in the interdigi-

tal region resulting in loss of digit patterning at 22h. Bottom row: this is consistent

with a Turing model where a mutual-inhibition between Sox9 and Wnt-signaling

is necessary for digit patterning.

levels was observed, see Figure 3.13A. Strikingly, addition of IWP2 in limb cul-

ture, which is an inhibitor of Wnt processing and secretion, causes a clear up-

regulation of Sox9 in the interdigital region, resulting in the loss of the periodic

digit pattern, see Figure 3.13B.

These experiments suggest that normal digit patterning requires interdigital

inhibition of Sox9 by Wnt-signaling. Together with previously published genetic

manipulations and our mathematical analysis, this suggests that Wnt-signaling

participate in the Turing network by implementing a mutual-inhibition (double

negative feedback) with Sox9.

3.3.3 The Bmp-Sox9-Wnt Turing model

Descriptive and functional experiments together with our mathematical analysis

propose that Bmps, Sox9 and Wnts are the key players of the Turing network re-
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sponsible for digit patterning. The network considers promotion of Sox9 by Bmp-

signaling, repression of Bmp expression by Sox9 and a mutual inhibition between

Wnt-signaling and Sox9, see Figure 3.14A. The reaction-diffusion equations of

the model writes:

∂sox9

∂t
= k1bmp− k2wnt

∂bmp

∂t
= αbmp − k3sox9− µbmpbmp+Dbmp∇2bmp

∂wnt

∂t
= αwnt − k4sox9− µwntwnt+Dwnt∇2wnt

(3.25)

with the parameters showed in Table 3.1.

αbmp αwnt µbmp µwnt k1 k2 k3 k4 Dbmp Dwnt

0.1 0.1 0.1 0.1 0.5 0.5 5.5 1 5000 500

Table 3.1: The parameter set used in the limb development simulations

Similarly to the static model presented in section 3.1, we add a negative cubic

term (sox93) to the reaction term of Sox9 to limit the unbounded growth of the

system. In one dimension, this model produces a periodic pattern where the peaks

of Sox9 are out of phase of both Bmp and Wnt peaks, see Figure 3.14B. In a two-

dimensional simulations, complementary labyrinth-like patterns are formed for

the three species, see Figure 3.14C. This patterns are reminiscent of the periodic

chondrogenic patterns observed in Micromass culture, see for example the striking

similarity between a simulation and the complementary periodic patterns of Sox9

and Bmp (Figure 3.14D).

3.3.4 A Morphodynamic Turing model of digit patterning

In the previous sections I derived a Turing model with a topology that fits the

qualitative patterns of Bmp-signaling, Wnt-signaling and Sox9, and that is con-

sistent with experimental perturbations. In this section I develop a realistic model

of limb development that recapitulates the experimental spatio-temporal dynam-

ics of Sox9. This on one side shows that the Turing network presented in (3.25) is

indeed able to drive the specification of the digits and on the other side provides

perfect tool to predict the effect of perturbations. The model includes experimen-

tal data of the main factors that influence a Turing mechanism: growth (see section

1.2.4) and the geometry of the patterning field [Barrio et al., 1999, Crampin et al.,

1999].
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Figure 3.14: The Bmp-Sox9-Wnt reaction-diffusion model, Sox9 is showed in

red, Bmp in green and Wnt in blue. A) The graphical representation of the model

showed in equations (3.25) B) A one-dimensional simulation of the model, Bmp

and Wnt are out of phase of Sox9. C) A two-dimensional simulation labyrinth-like

pattern are formed. D) On the left a two-dimensional simulation showing Bmp

(green) and (Sox9). On the right a Micromass Culture grown for 20h is stained

for Sox9 (immuno-labeling against EGFP) and Bmp2 (in-situ hybridization).
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Two different approaches can be used to develop a model based on experi-

mental data: by using a reverse-engineering approach to fit the model to the data,

see for example [Reinitz et al., 1998], or by using a step by step approach to

build a model that captures the qualitative aspects of the data, see for example

[Rolland-Lagan et al., 2003]. The first approach has the advantage of being com-

pletely unbiased because constrains the model trough an automatic process of

optimization. However, for complex two-dimensional or three-dimensional sys-

tems, like vertebrate limb development, the optimization becomes impracticable

because it requires prohibitive computational power and a large amount of quanti-

tative data. The second approach consists of progressive model refinements which

aim to identify the minimum number of ”ingredients“ required to reproduce cer-

tain qualitative aspects of the experimental data. In the next subsections, I use

this approach to build in a step by step manner a model that reproduces the main

qualitative features of the Sox9 expression pattern. As a first step I simulate the

system (3.25) inside the limb growth model presented in section 3.2. Successively,

I restrict the model to the digital region by using experimental expression patterns

of Hoxd13 as autopod markers. Similarly to the static model presented in section

3.1, I find that a graded modulation of the wavelength is required to avoid dis-

tal bifurcations of the digits. Therefore, I explore the effect of spatially varying

parameters in a static model and I introduce a graded modulation on the grow-

ing limb simulation by using an Fgf-signaling gradient. To conclude, I develop a

model in which both Hoxd13 and Fgf-signaling modulate the Turing mechanism

creating a pattern that captures the spatio-temporal dynamics of Sox9 both in the

wild type and in perturbation.

All the numerical simulations presented in the next sections have zero-flux

boundary conditions, use an adaptive time step for the numerical integration,

start from the homogeneous initial conditions (sox9∗, bmp∗, wnt∗) = (0, 1, 1)
and have a 1% of Gaussian multiplicative noise added to Sox9, Bmp and Wnt at

each time step. One time unit in the simulation corresponds to one minute in real

developmental time. On a 2.30GHz CPU of an Intel Core i7-3610QM with 4GB

of ram, a Turing simulation on a growing limb model with coarser meshes take

approximately 1h (average δt ≈ 0.026) and takes 6h on with finer meshes (aver-

age δt ≈ 0.011). All the simulation showed in the following sections use finer

meshes which have a resolution that is high enough to avoid deviations from the

real solution. Similar results are indeed also obtained with coarser meshes. The

low and high resolution growing limb models (MorphoMovies) are presented in

Figure 3.15.

195



Figure 3.15: The two MorphoMovies used in the simulations. On top a Mor-

phoMovie with coarse meshes and on the bottom the MorphoMovie with high

resolution. The P-D length of the body and the AP/PD length of the limb bud

shape at E12.5 are given.
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3.3.4.1 Inside the growing limb model

As a first step, I test the behavior of the system (3.25) inside the growing limb

model. In particular, I explore how the tissue movements specified by the Mor-

phomovie can affect the Turing pattern. The influence of the Morphomovie will

depend on the relative speed between the tissue movements and the reaction-

diffusion patterning events. For this reason I rewrite the system (3.25) to consider

a scaling factor λ that sets the speed of the reaction-diffusion mechanism:

∂sox9

∂t
= λ(k1bmp− k2wnt− sox93)

∂bmp

∂t
= λ(αbmp − k3sox9− µbmpbmp+Dbmp∇2bmp)

∂wnt

∂t
= λ(αwnt − k4sox9− µwntwnt+Dwnt∇2wnt)

(3.26)

This system is simulated inside the growing model for 2880 time units (min-

utes) that represent 48h of development in the period from E10.5 to E12.5. By

changing λ, the speed of the reaction-diffusion system can be modified with re-

spect to the speed of limb growth. I use the parameters presented in table 3.1 that

according to the conditions derived in section 3.3.2.2 produce a diffusion-driven

instability. The reaction-diffusion speed is changed by using three different values

of λ: λ = 0.25, λ = 1 and λ = 4, see Figure 3.16

The simulations reveal a general trend where the faster is the Turing mech-

anism the more independent is the pattern with respect to limb growth. Indeed,

when λ = 0.25 or λ = 1 the direction of the stripes is biased to the distal tip of the

limb. This is due to the anisotropies that drive elongation in our growing model,

see the top row in Figure 3.16. When λ = 4, the fast reaction-diffusion rates allow

the pattern to re-arrange quickly at every time-point and the bias given by the tis-

sue movement is lost. In this case the pattern depends only on the limb shape and

on noise. Due to the lack of experimental information about the reaction-diffusion

speed I perform the following simulations using the intermediate case with λ = 1,

see Figure 3.17.
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Figure 3.16: White ellipses show the anisotropies of the limb growth model (top

row). The concentrations of Sox9 for the three simulations of the system (3.26)

with λ = 0.25, λ = 1 and λ = 4 are shown in red color. When λ is high, the

orientation of the stripes becomes more independent from the tissue movement,

see the white arrow.

Figure 3.17: Left, a representation of the experimental limb growth model used in

the simulations. Right, simulation of the Turing network inside the growth model

with λ = 1. Sox9 concentrations (high values in red) show a labyrinthine pattern

with stripes oriented towards the distal tip.
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3.3.4.2 Using Hoxd13 as autopod marker

Distal Hox genes manipulations (see section 3.1), mutants of Bmp-signaling [Bénazet

et al., 2012] and classic grafting experiments [Tickle et al., 1982] all suggest that

digit patterning is relatively independent from the rest of the skeleton. There-

fore it is reasonable to assume that the activity of the Turing mechanism may

be restricted to the patterning of the digital region. I restrict the diffusion-driven

instability to the autopod by mapping a time-course of experimental Hoxd13 ex-

pression patterns into the model, which marks the digit-forming region. This is

done by manually segmenting a time course of in-situ hybridizations of Hoxd13

using the software Gimp [Gimp, 1] to remove the background and obtain a black

and white images. Successively, the expression patterns are interpolated with the

JavaMorph software [JavaMorph, 1] to derive patterns for the missing time-points.

Then, each time-point is staged using the Morphometric staging system presented

in [Boehm et al., 2011] and the expression patterns are mapped into the corre-

sponding triangular mesh of the MorphoMovie by using the Vtk library [VTK, 1].

Finally, each expression pattern is normalized between 0 and 1. An overview of

the whole pipeline is shown in Figure 3.18.

Scalar values associated with the expression of Hoxd13 can then be used to

vary the reaction parameters of the system (3.25). To restrict the activity of the

Turing mechanism to the autopod, I set the parameters to default values that do

not produce a diffusion-driven instability and I move the system into the diffusion-

instability space by using Hoxd13, see Figure 3.19.

This is be done by rewriting the system (3.25) as following:

∂sox9

∂t
= k1bmp− k2wnt− sox93

∂bmp

∂t
= αbmp − (k3 − k1

hoxhoxd13)sox9− µbmpbmp+Dbmp∇2bmp

∂wnt

∂t
= αwnt − (k4 + k2

hoxhoxd13)sox9− µwntwnt+Dwnt∇2wnt

(3.27)

with the parameter set presented in Table 3.1 except for k3 = 7, k4 = 0.45
and with k1

hox = 1.5, k2
hox = 0.55. Simulations reveal that as Hoxd13 expands

proximally and anteriorly, see the left part in Figure 3.20, distally oriented stripes

are formed starting from the posterior part of the limb, see the right part of Fig-

ure 3.20. Moreover, the progressive expansion of Hoxd13 drastically reduces the

variability of the patterns across different simulation runs, see Figure 3.21.
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Figure 3.18: The first row shows a time course of Hoxd13 in-situ hybridization,

the second row shows segmented expression patterns. In the third row, on the left

an example of interpolated patterns obtained with JavaMorph and on the right an

example of expression pattern mapped into the triangular mesh.

Figure 3.19: On the left, a graph shows the diffusion-driven instability region

when k3 and k4 are varied (gray color) according to conditions derived in section

3.3.2.2. The black dashed line represents the change in k3 and k4 promoted by

Hoxd13 to go from a region with no diffusion-driven instability (A) to a region

with diffusion-driven instability (B). On the right, an Hoxd13 expression mapped

into the model shows where the system move from (A) to (B).
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Figure 3.20: Left, experimental Hod13 expression mapped into the 2D growth

model are shown with a blue to red color map (blue=0 and red=1). Right, a sim-

ulation with the Turing network active only in the Hoxd13 expressing region:

concentration of Sox9 (red) reproduces a digit pattern but at mE12:10 the pattern

forms new distal peaks (black arrow).

However, as the autopod expands along the AP-axis to produce its typical

paddle shape, stripe splitting and stripe bifurcations are observed at the distal

tip, see the black arrow in Figure 3.20. In the article presented in section 3.1,

we showed that this behavior is naturally obtained when a Turing mechanism is

simulated inside a static autopod-like geometry and we demonstrated that it could

be avoided by scaling the wavelength in a PD-graded manner with Fgf-signaling.

In the next section I extend this idea to the dynamic growing simulation.

Figure 3.21: Two simulation runs with Hoxd13 that defines the autopod re-

gion where the diffusion-driven instability occurs. The progressive expansion of

Hoxd13 creates a similar pattern in each simulation, see the black arrows.
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3.3.4.3 Avoiding bifurcations by spatial modulation with Fgfs

To introduce a graded wavelength modulation in the limb growing model, I first

need to gain a general overview of how the different reaction parameters affect the

behavior of the system (3.25). To this end, I perform a number numerical simula-

tions on a squared static mesh. Finally, I extend my observations to the dynamic

growing simulation by introducing an Fgf-signaling gradient to vary parameters

in a spatially graded manner.

The static simulations are performed setting d =
Dbmp

Dwnt
= 10 and considering

the following initial parameter values:

αbmp αwnt µbmp µwnt k1 k2 k3 k4
0.1 0.1 0.1 0.1 0.5 0.5 2 0.5

Table 3.2: The parameter set used as a starting point for the analysis of spatially

varying parameters

with these parameters the system has homogeneous steady state:

(sox9∗, bmp∗, wnt∗) = (0, 1, 1) (3.28)

In the analysis of the two-reactant model presented in section 3.1, for each pa-

rameter couple I calculated the variation of the maximum eigenvalue λmax and

the wavelength ω. The analytical derivation of these two quantities is not possible

in the three-components system (3.25). As an alternative, numerical simulations

inside a squared domain where one parameter is changed along the x direction

and other along the y direction can provide an overview of the qualitative patterns

that are formed across the parameter space (E.g wavelength, spots vs stripes). A

similar approach was taken in [Pearson, 1993] to sample the behavior of the Gray-

Scott Turing model. The simulations have the homogeneous steady state (3.28) as

initial conditions, have zero-flux boundary conditions and consider a 1% of mul-

tiplicative Gaussian noise that is added to the three species over time. The final

results can be represented with a single plot for each parameter couple that in-

cludes the final time point of the numerical simulation overlapped with the Turing

instability region, see Figure 3.22 and Figure3.23. These simulations also provide

an idea of the effect of spatially varying parameters (E.g. if a graded parameter

along x is able to align the stripes).

In agreement with (3.7) and (3.12) the static simulations reveal that the con-

stant production rates αbmp and αwnt do not affect the capacity of the system to

form a diffusion-driven instability, see Figure 3.22. However, they are key for the
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type of spatial pattern that is formed: when αwnt ≫ αbmp spots are formed, when

αwnt ≪ αbmp reverse spots are formed and when αwnt ∼ αbmp stripes are formed,

see the top row in Figure 3.22. An analysis of the effect of the decay rates µbmp

and µbmp predicts that if µwnt ≫ µbmp or µbmp ≫ µwnt the system exits from

the diffusion-driven instability region, see the bottom row in Figure 3.22.

Regarding the main reaction parameters k1, k2, k3, k4, see Figure 3.23, numerical

simulations are in agreement with the analytical derivation of the Turing spaces

and show that within the diffusion-instability parameter space the system always

produces stripes. As in the case of the two-reactant model presented in section 3.1

this is due to the reverse asymmetry provided by the cubic saturation term on the

auto-activating reactant (sox93).
In addition, I found that either a decrease in k1 or k3 or an increase in k2 or

k4 increase the wavelength. When k1 or k2 are varied the stripes align parallel

to the direction of change, while when k3 and k4 are varied the opposite aligning

effect is observed: the stripes align towards to the direction of change (towards

the gradient), see the simulations highlighted with a red outline in Figure 3.23 .

In summary, these numerical simulations suggest that k3 and k4 are the best

parameter to achieve modulation of wavelength and to promote alignments of the

stripes towards the gradient. To test these predictions inside the growing limb

I modulate in a spatially graded manner the reaction parameters with a gradient

that represents Fgf-signaling. The gradient is simulated by defining on each mesh

of the Morphomovie two boundary regions that correspond to the parts of the

AER that express Fgf8 and Fgf4-9-17. In the case of Fgf4-9-17 we use in-situ

hybridization of Fgf4 as representative patterns, see the red line in Figure 3.24.

These boundary regions are then used to simulate a gradient of Fgf signaling,

see Figure 3.24. The gradient is formed by local production, diffusion and decay

according to the following equations:

∂fgfsig

∂t
= αfgf8 + αfgf4 − µfgffgfsig +Dfgf∇2fgf (3.29)

where µfgf = 0.1, Dfgf = 30000 and the two production terms αfgf8, αfgf4 are

set to αfgf4 = 0.7 and αfgf4 = 0.3 in the triangles underneath the Fgf8 and

Fgf4 expressing region (they are equal to 0 elsewhere). Eventually, the gradient

is normalized between 0 and 1, results are showed in Figure 3.24.
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Figure 3.22: Analytically derived Turing spaces (white dashed line) are over-

lapped with the final time-point of a numerical simulations where one parameter

varies along the x direction and another parameter along the y direction. Con-

centrations of sox9, bmp and wnt are showed respectively in red, green and blue.

Top row: variation of the production rates αbmp and αwnt. Starting from the pa-

rameters in Table 3.2, the systems always produce a Turing instability (the dashed

line includes the entire space). However, different qualitative patterns are ob-

served: when αwnt ≫ αbmp spots are formed, when αwnt ≪ αbmp reverse spots

are formed and when αwnt ∼ αbmp stripes are obtained. Bottom row: variation

of the decay rates µbmp and µwnt, when µbmp ≫ µbmp Sox9 is very low and no

pattern is formed, this region is outside the Turing space (white dashed line).
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Figure 3.23: The behavior of the system when k1, k2, k3, k4 are changed (six pa-

rameter couples are shown). Outlined in red: the parameters that align the stripes

towards the direction of change.
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Figure 3.24: On the top row in-situ hybridizations for Fgf4. The dashed red line

highlights the region along the AER where Fgf4 is expressed. On the bottom row,

the black line shows the region under the AER where αfgf8 > 0, while the dashed

red line shows the region where αfgf4 > 0. The colored pattern represent the

simulated Fgf signaling gradient obtained by diffusion of a cumulative term that

considers both production terms.

The simulated fgfsig gradient is used to change the reaction parameters of

the system (3.25) in a spatially graded manner. As in the case of the two-reactant

model presented in section 3.1, the Fgf-signaling gradient is used as a Positional

Information signal that modulates the Turing system along the space. Such mod-

ulation is implemented by setting the reaction parameters to default values that do

not produce a Turing pattern and by using fgfsig to move the system inside the

diffusion-driven instability region, see Figure 3.25. In agreement with the static

simulations, the numerical simulations on the MorphoMovie reveal that k3 and k4
are the best parameter to achieve modulation of wavelength to align the stripes

towards the gradient.
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Figure 3.25: On the left, a graph shows the Turing instability region (gray color)

as k3 and k4 are varied. The black dashed line represents the change in k3 and k4
promoted by fgfsig to go from no-Turing instability (A) to a Turing instability

(B), an intermediate point (A’) is showed. On the right, an example of simulated

fgfsig, the points (A) (A’) (B) are highlighted along the gradient.

The modulation is implemented by rewriting the system (3.25) as follows:

∂sox9

∂t
= k1bmp− k2wnt− sox93

∂bmp

∂t
= αbmp − (k3 − k1

fgffgfsig)sox9− µbmpbmp+Dbmp∇2bmp

∂wnt

∂t
= αwnt − (k4 + k2

fgffgfsig)sox9− µwntwnt+Dwnt∇2wnt

(3.30)

with the parameter in table 3.1 except for k3 = 7, k4 = 0.45 and the new param-

eters k1
fgf = 2.5 and k2

fgf = 1.25. The simulation on the growing model shows

that when k3 is increased and k4 is decreased, the wavelength is increased in a

P-D graded manner and the stripes align towards distal tip assuming a radial con-

formation, see Figure 3.26. However, the pattern that is formed shows a greater

variability in comparison with the case where Turing activity was restricted by

Hoxd13, see Figure 3.27.

In the next section I develop a model where both Fgf-signaling and Hoxd13

modulate the Turing mechanism.
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Figure 3.26: Left, an Fgf-signaling gradient (blue=0, red=1) is simulated by dif-

fusing Fgfs from the regions that express Fgf8 (full line) and Fgf4-9-17 (dashed

line). Right, simulated Sox9 concentrations (red) show a distally-oriented pattern

with bigger wavelength towards the distal tip.

Figure 3.27: Two simulation runs with the Fgf-signaling gradient that modulate

the Turing mechanism. Although distal bifurcation are prevented and the patterns

align radially, a high degree of variability in the pattern is observed, see the black

arrows.
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3.3.4.4 Using Hoxd13 and Fgfs together

The simulations presented in the previous sections revealed that when the Turing

mechanism is modulated by Hoxd13 a reproducible arrangement of the pattern

is obtained. However, when the A-P expansion of the autopod increases stripe

bifurcations occur at the distal tip. Conversely, when the system is modulated by

Fgf-signaling, distal bifurcations are prevented but the arrangement of the pattern

is more variable. In this section I develop a model which combines Hoxd13 and

Fgf-signaling to avoid distal digit bifurcations and to obtain reliable patterning.

The model produces digit patterning dynamics that capture most of the features of

the experimental Sox9 expression patterns.

Similarly to the model presented in the article in section 3.1, I rewrite the

equations of system (3.25) as following:

∂sox9

∂t
= k1bmp− k2wnt− sox93

∂bmp

∂t
= αbmp − (k3 − k1

hoxfgfhoxd13fgfsig)sox9− µbmpbmp+Dbmp∇2bmp

∂wnt

∂t
= αwnt − (k4 + k2

hoxfgfhoxd13fgfsig)sox9− µwntwnt+Dwnt∇2wnt

(3.31)

with the parameter set presented in Table 3.1 except for k3 = 7, k4 = 0.45
and the two new parameters k1

hoxfgf = 2.5 and k2
hoxfgf = 1.25. As expected,

this model forms a reproducible pattern with stripes that aligns radially and in-

crease the wavelength in a P-D graded manner. The patterns highly resemble the

expression of Sox9 in the digital region up to E12. However, in later points the

pattern disorganizes and shows proximal bifurcations and/or stripe bending, see

Figure 3.28A. Intriguingly, this behavior correlates with the proximal expansion

of Hoxd13, see the graphs in Figure 3.28A, suggesting the hypothesis that to re-

produce the experimental pattern of Sox9 until late developmental stages (E12.5),

Fgf-signaling must be up-regulated in coordination with the proximal expansion

of Hoxd13. This idea is consistent with the fact that Fgfs are progressively up-

regulated in the AER by the Shh-Grem-Fgf positive feedback loop [Bénazet et al.,

2009, Sun et al., 2002, Verheyden and Sun, 2008], and fits with the hypothesis

that the Fgf-signaling is involved in P-D patterning [Mercader et al., 2000, Tabin

and Wolpert, 2007] by directly or indirectly promoting the expression of Hoxd13.
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Figure 3.28: Simulated Sox9 concentrations (white), Fgf-signaling (green) and

Hoxd13 (red) at E12 and E12.5. A) Case with constant Fgf production: the Sox9

pattern orients radially (see white arrows at E12) and distal bifurcations are pre-

vented, but at E12.5 when Hoxd13 expands and Fgf-signaling remains constant

(see graph) the pattern disorganizes. B-C) Case with Fgf production increasing

over time (see green arrows in the graphs): the Sox9 pattern orients radially even

at E12.5
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To validate this hypothesis, I simulate a new Fgf-signaling gradient by pro-

gressively increasing fgf8 and fgf4 in later time points. This is done by rewrit-

ing the terms αfgf8 and αfgf4 in equation (3.29) as follows:

αfgf8 = 0.7 + ∆fgf8
t− t1
t2 − t1

αfgf4 = 0.3 + ∆fgf4
t− t1
t2 − t1

(3.32)

where t is the current time in the simulation, t1, t2 define the temporal interval

when the productions are increased and ∆fgf8,∆fgf4 define the strength in Fgf

increase. Using an Fgf-signaling gradient obtained with ∆fgf8 = ∆fgf4 = 0.15,

t1 = 17200 (E12) and t2 = 18000 (E12.5), stripe bending at later time points is

indeed prevented, see Figure 3.28B. Strikingly, by combining these Positional In-

formation signals with the Turing mechanism a highly reproducible arrangement

of the pattern that reflects the experimental expression of Sox9 is obtained, see

Figure 3.28C

To summarize, when Hoxd13 and Fgf-signaling are coordinated to modulate

the Turing system (see Figure 3.29A), results that agree with the experimental

patterns of Sox9 are obtained at all stages of development. This can be seen by

comparing the simulated Sox9 pattern in Figure 3.29B, with the experimental ex-

pression patterns of Sox9 in Figure 3.29C. In particular, the simulation reproduces

the progressive formation of digits in the anterior part of the autopod, the final for-

mation of digit 1 and digit 5 (black arrows in Figure 3.29B), the radial orientation

of digits at later stages and the complementary patterns between Sox9, Bmps and

Wnt.
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Figure 3.29: A) The Fgf-signaling gradient and Hoxd13 patterns modulate the re-

action parameters of the Turing model by increasing k4 and decreasing k1, shown

by the network diagram on the left. In this way the system moves into the Turing

instability region, see the graph on the right where the dashed line shows the ac-

tion of Fgf-signaling and Hoxd13 to move the system into the Turing space (gray

region). B) Concentrations of Bmp2 (green), Wnt (blue) and Sox9 (red) in the

simulation with Fgf-signaling and Hoxd13 that modulate the Turing network. C)

Experimental expression pattern of Sox9 (red) scanned with OPT. The simulated

Sox9 pattern recapitulates the main features of the experimental Sox9 digit pattern

(outlined by the white dotted line). Black arrows mark the late appearance of digit

5 and digit 1 in the simulation and in experimental patterns.
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Figure 3.30: Control situations: 48h of Sox9-EGP limb culture with DMSO added

to the medium (left) and simulation of the system 3.31 (right).

3.3.5 Model predictions vs experimental perturbations

A critical test to evaluate the final model (3.31) is to check whether it can pre-

dict the spatio-temporal dynamics of digit patterning under different experimental

perturbations. Limb cultures of Sox9-EGFP mouse are a perfect tool to monitor

the expression of Sox9. By culturing E11.5 limbs for 48h, the progressive ap-

pearance of the digital pattern could be observed in-vitro for the first time (Figure

3.30). Similar cultures were performed with several experimental perturbations

and compared with simulated perturbations from E11.5.

When LDN, an inhibitor of Bmp-signaling, was added in limb culture a pro-

gressive down-regulation of Sox9 in the autopod which resulted in complete dis-

appearance of the digits by 48h (Figure 3.31A), was observed. Similarly when

Bmp-signaling was prevented in the simulation by setting k1 = 0 at E11.5, the

digital pattern progressively disappeared over time (Figure 3.31A). Consistently,

when Bmp-signaling was locally increased by implanting Bmp2 soaked beads in

limb culture a rapid local up-regulation of Sox9 was observed (Figure 3.31B).

Similar results were obtained by placing virtual beads that released Bmp in the

simulation (Figure 3.31B).

Virtual beads were defined by taking advantage of the triangle correspondence

map provided by our limb growth model, which allows us to track a part of tissue

from E10.5 to E12.5 (virtual fate map). By marking a set of triangles at E10.5 and

realistically tracking their fates until E12.5, I defined a region that represented a

Bmp bead where the system (3.31) was modified as:

∂sox9

∂t
= 0

∂bmp

∂t
= 0.6

∂wnt

∂t
= 0

(3.33)
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Figure 3.31: Simulated Sox9 concentrations (red) are compared with Sox9-EGP

limb cultures (black and white pictures) in various perturbations. The Turing sys-

tem (3.31) is used in all cases. A) Addition of the LDN, a Bmp-signaling in-

hibitor, shows a down-regulation of Sox9 and loss of the digital pattern by 48h.

A simulation with impaired Bmp-signaling shows a similar gradual loss of digit

patterning. Dashed lines highlight the outline of the limb. B) Implantation of a

Bmp2-soaked bead (white dashed circle) shows progressive local up-regulation

of Sox9. In the simulation, a virtual bead (green) that releases Bmp induces a

similar progressive Sox9 up-regulation. C) Addition of IWP2, an inhibitor of Wnt

secretion, promotes Sox9 up-regulation and expansion of the digits, which fuse to

form a continuous domain of Sox9 expression in the autopod by 48h. When Wnt

production is reduced in the model, remarkably similar dynamics are observed.

D) Implantation of a Wnt3a-soaked bead (white dashed circle) shows progressive

local down-regulation of Sox9. A virtual bead (blue) that releases Wnt stimulates

a similar progressive Sox9 down-regulation.
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When IWP2, which inhibits Wnt secretion, was added to limb cultures we ob-

served an up-regulation of Sox9 and a progressive expansion of each digit that re-

sulted in a continuous Sox9 domain by 48h (Figure 3.31C). Strikingly, when Wnt

production is reduced in the simulation by setting αwnt = −3 at E11.5, similar

spatio-temporal dynamics are obtained (Figure 3.31C). Both in the experiments

and in simulations, interdigital Wnt-signaling is an essential part of the Turing

system, without which digit patterning is lost. Consistently, when Wnt-signaling

was locally increased by implanting Wnt3a soaked beads in limb culture, a pro-

gressive down-regulation of Sox9 was observed over time (Figure 3.31D). Similar

results were obtained in the simulation by placing virtual beads that released Wnt

(Figure 3.31D) by modifying the system (3.31) as:

∂sox9

∂t
= 0

∂bmp

∂t
= 0

∂wnt

∂t
= 1.5

(3.34)

Finally, in agreement with the study presented in section 3.1 the model pre-

dicts that a reduction of the Hox dosage reduces the wavelength. Our previous

study showed that the effect of Distal Hox genes removal was more evident when

growth deficiencies were rescued by using the Gli3-/- background (where growth

of the handplate is increased). I compare simulations of the new model with a

distal Hox mutant with the Gli3+/- background, which has an handplate A-P size

that is comparable to the wildtype situation. In the dynamic simulation, the exper-

imental expression patterns of Hoxd13 are used to represent the effect of both

Hoxa13 and Hoxd13, which are known have redundant functions [Fromental-

Ramain et al., 1996]. I therefore model the Gli3+/- Hoxa13+/- Hoxd11-13-/- mu-

tant with a general reduction in Hoxd13 obtained by rewriting hoxd13 as hoxd13
2

,

see Figure 3.32A.

The dynamic model also predicts that an increase in Fgf-signaling should pro-

mote a bigger wavelength. Since alteration of Fgf-signaling in the limb would

cause a change in limb growth which would compromise interpretation of the re-

sults, we tested the effect of Fgf-signaling in Micromass culture. When progres-

sively more Fgf4 was added to the medium we observed an increase in wavelength

that was in close agreement with simulations inside a squared domain (Figure

3.32B). Because simulations of the Micromass culture situation had no experi-

mental expression patterns of Hoxd13 and Fgf-signaling, I implemented the ef-

fect of Fgf-signaling by mimicking the change in k3 and k4 as in the dynamic
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Figure 3.32: A) Top, Sox9 expression (red) in the WT and in the Gli3+/-

Hoxa13+/- Hoxd11-13 -/- mutant. As shown in section 3.1, reduction of Hox

dosage promotes the formation more thinner digits. Bottom, when Hoxd13 is

reduced in the simulation (Khox=0.5) the model forms an increased number of

thinner digits. B) Micromass cultures of Sox9-EGP autopod cells with increasing

concentration of Fgf4 added to the medium, create patterns with increasing wave-

length. Two-dimensional simulations of the model with increasing Fgf influence

produce Sox9 patterns (red) with increasing wavelength.

limb simulation according to the following equations:

∂sox9

∂t
= k1bmp− k2wnt− sox93

∂bmp

∂t
= αbmp − (k3 − kfgf1.75)sox9− µbmpbmp+Dbmp∇2bmp

∂wnt

∂t
= αwnt − (k4 + kfgf0.875)sox9− µwntwnt+Dwnt∇2wnt

(3.35)

By varying kfgf these equations defined parameter sets that lay in the same tra-

jectory promoted by the Fgf-signaling in the wild type limb simulation.
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3.3.6 Robustness of the model

The linear stability analysis presented in section 3.3.2.2 shows that when fsox9 = 0
and Dsox9 = 0 the Turing instability condition (3.8) is relaxed to (3.12). This

implies that the Turing model (3.25) has particularly large diffusion-driven insta-

bility parameter space and suggests that it should implement a very robust Turing

mechanism. To test this hypothesis I perform numerical simulations with differ-

ent amount of Gaussian noise on Bmp, Sox9 and Wnt. The model (3.25) can be

written as a system of stochastic partial differential equation (SPDEs) as follows:

∂sox9

∂t
= f(sox9, bmp, wnt) + η(t, sox9)

∂bmp

∂t
= g(sox9, bmp, wnt) +Dbmp∇2bmp+ η(t, bmp)

∂wnt

∂t
= h(sox9, bmp, wnt) +Dwnt∇2wnt+ η(t, wnt)

(3.36)

where f(sox9, bmp, wnt), g(sox9, bmp, wnt), h(sox9, bmp, wnt) the reaction terms

presented in equation (3.31) and η(t, sox9), η(t, bmp), η(t, wnt) are noise terms

written as:
η(t, sox9) = υ sox9 W s

t

η(t, bmp) = υ bmp W b
t

η(t, wnt) = υ wnt Ww
t

(3.37)

with W s
t ,W

b
t ,W

w
t that represent random Wiener processes and υ that is a con-

stant between 0 and 1 that defines the amount of multiplicative noise (intrinsic

noise) in the system. At every integration step, the system of SPDEs is solved

similarly to the Euler Maruyama method as follows: let define ∆tn as the time-

step used by the numerical integration method at the iteration n, the noise terms

η(t, sox9), η(t, bmp), η(t, wnt) can be calculated by sampling the normally dis-

tributed random variables W s
n,W

b
n,W

w
n with expected value 0 and variance ∆tn.

This random variables represent the change in concentration given by the Wiener

processes in the interval ∆tn (E.g. W s
t+∆tn

−W s
t ).

By varying υ different amount of noise can be introduced, see Figure 3.33.

Remarkably, the model is able to form a digit pattern even when υ = 0.5, that

represents 50% of multiplicative noise, see Figure 3.33. Strikingly, in this ex-

tremely noisy scenario the stereotypical spatio-temporal dynamics of Sox9 are

highly compromised but a normal Sox9 digit pattern is formed at the final time-

point (E12.5).

In the next chapter I discuss this dynamic Turing model and its limitations.
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Figure 3.33: Simulation with progressively increasing noise, Sox9 concentration

in red. The model produces a correct digit pattern even with υ = 0.5 that corre-

sponds to 50% of multiplicative noise.
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Chapter 4

DISCUSSION

Understanding the mechanisms that underlie the development of organs and tis-

sues from an homogeneous population of cells is one of the main goals of de-

velopmental biology. Two alternative theories have been proposed to explain this

phenomena: the Positional Information model of Lewis Wolpert and the reaction-

diffusion model of Alan Turing. Traditionally, these two theories have not been

considered as alternative explanations for the same patterning task. The Wolpert

model was proposed to be mostly relevant to regionalization (e.g. positioning the

head at one end of the embryo, and the tail at the other), while Turing mecha-

nisms were considered relevant to repetitive, periodic patterns (such as the zebra’s

stripes). In the vertebrate limb, digit patterning has been explained using both

models and for a long time these two theories were seen as competing against each

other. On one hand, the mirror image duplication observed upon anterior graft-

ing of the ZPA was proposed as a paradigmatic example to support the positional

information model. On the other hand, the formation of relatively normally pat-

terned digits in re-aggregated limbs (up to thirty in Xenopus) strongly supported

a self-organizing Turing mechanism.

In this study, I used computational modeling to explore to what extent these

two models could be reconciled to explain digit patterning. Although, digit pat-

terning had traditionally been explained by a positional information gradient of

Sonic hedgehog (Shh), it was also proposed that a Turing mechanism could be

responsible for the establishment of the digital vs inter-digital fates along the A-P

axis. Nevertheless, in many of the developmental systems where Turing mecha-

nisms were proposed to play a role, the repeated periodic patterns did not have a

stereotypical arrangement (E. g. feather buds, hair follicles, fish stripes).

How could a Turing mechanism, which produces highly variable patterns, be

responsible for the reliable specification of the digits?
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An answer to this question came by analyzing the Distal Hox mutants pro-

duced by the laboratory of Marian Ros at the University of Cantabria. The pro-

gressive removal of Distal Hox genes, revealed that Hox dosage negatively corre-

lated with the number of digits and the probability of distal digit bifurcations. In

particular, we found that as Hox genes were removed a supernumerary number of

thinner digit was formed, up to fourteen digits in one limb, and digit bifurcations

were often observed in the distal part of the limb. These results were very difficult

to reconcile with the Positional Information model and suggested that Distal Hox

genes could act as modulators of a Turing mechanism responsible for the peri-

odic digit pattern. By developing a simple Turing model that would confirm this

hypothesis, I found that to avoid distal digit bifurcations the wavelength of the

Turing mechanism had to be modulated in a proximal-distal (P-D) graded man-

ner. An extensive computational analysis revealed that increasing the wavelength

in P-D graded manner with an AER-signal was not only able to avoid digit bifur-

cations but also helped to obtain a reproducible digit pattern. Because there was

no evidence for a P-D graded Hox expression, the simplest interpretation of this

model was that the wavelength had to be modulated by both the Hox genes (ex-

plaining the global reduction in wavelength in the mutants) and fibroblast growth

factor (FGF) signaling (explaining the P-D gradient). A Simulation of Hox dosage

reduction in this combined model was indeed able to reproduce the polydactyly

and the digit bifurcations observed upon Distal Hox removal.

As discussed in section 1.1.2.3, the idea of combining Positional Information

with a Turing mechanism was already proposed thirty years ago by Lewis Wolpert

[Wolpert, 1989] and has recently been re-proposed in several studies [Kondo and

Miura, 2010, Miura, 2013]. Our study however, represents the first concrete ex-

ample of a model that combines these two theories and implements a reliable

patterning system.

Lewis Wolpert in his original work was also intrigued by another question:

how could embryos of different sizes produce similar patterns with likely the same

positional information system?

Wolpert proposed that this problem, known as scale-invariance, could be solved

by coupling the positional-information gradients with growth, for example by hav-

ing shorter-range gradients in smaller organism and longer-range gradients in big-

ger organism, see section 1.2.3. In addition, he proposed that not only the pat-

terning systems had to be re-scaled according to the embryo size, but that such

re-scaling had to be coordinated along the different axis to maintain the propor-

tions. To solve this problem, Wolpert suggested that the interpretation of the gra-

dients could be coupled along the different axis, see section 1.2.3. In Drosophila,

some of Wolpert’s hypothesis have been confirmed, however the mechanism that
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control scale-invariance and maintenance of proportion during development re-

main largely unknown. Limb development is a Morphodynamic system in which

digit patterning and limb outgrowth are happening simultaneously. This makes

the problem of scale-invariance and proportion maintenance not only relevant for

the final digital pattern but also for the early patterning phases when the digit pat-

tern is being formed. In the limb, both concepts can be seen as part of the more

general problem of ”coordination between patterning and growth“.

To explore the mechanism that may achieved such coordination in the limb, I

extended my digit patterning model to consider an accurate simulation of limb

growth. This comprehensive Morphodynamic model considered a new set of

Turing equations derived from molecular data, a time-course of Hoxd13 expres-

sion patterns and a simulated Fgf-signaling gradient based on experimental ex-

pression of Fgf4 and Fgf8. Similarly to the model presented in our previous

study, the Hoxd13 expression defined the region where the patterning mecha-

nism was active while Fgf-signaling promoted a P-D graded wavelength to avoid

digit bifurcations. Strikingly, to obtain patterning dynamics in agreement with the

spatio-temporal expression of Sox9, the simulated Fgf-signaling gradient had to

be highly coordinated with the experimental expression pattern of Hoxd13 at all

stages of development. In particular, I found that to avoid proximal and distal

bifurcations, Fgf-signaling had to be up-regulated in coordination with the proxi-

mal expansion of Hoxd13 and the A-P expansion of the autopod, see the section

3.3.4.4. According to our model, the expression of Fgfs has to increase over time

and has to be strongly coupled with the molecular marker which defines the dig-

ital region (Hoxd13) and with limb growth. In agreement with this hypothesis,

previous studies have shown that Fgfs promote growth [Martin, 1998] and pro-

mote the specification of the distal P-D segment [Mercader et al., 2000, Tabin

and Wolpert, 2007]. Moreover, it has been proposed that the positive feedback

between Fgf and Shh increases AER-Fgf concentration during limb outgrowth.

Taken together, these observations suggest that Fgfs have three parallel roles:

they promote growth, they promote the proximal expansion of autopod markers

(Hoxd13) and according to our model they also increase the wavelength of the

digits, see Figure 4.1. I propose that these three roles implement an effective co-

ordination between patterning and growth (Figure 4.1A, right). On one side, this

mechanism explains the normal dynamic patterning of Sox9 (Figure 4.1B), and

on the other side it implements an Fgf-based strategy to achieve scale-invariance

in embryos of different size (Figure 4.1C).

This idea represents the first concrete example of a digit patterning mecha-

nism that is able to maintain the proportions along different axis. In the origi-

nal hypothesis of Wolpert the maintenance of proportions along the different axis
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Figure 4.1: A) Left, a scheme summarizes the three roles of Fgfs proposed by

previous work and by our model: Fgfs promote growth, they promote distal P-D

markers (E.g Hoxd13) and they promote a larger wavelength by modulating the

Turing network. Right, according to these roles, when increasingly stronger Fgf-

signaling gradient are considered (red weak, green medium, blue strong) the digit

pattern scales simultaneously along the A-P (bigger-wavelength) and along the

P-D (more extended Hoxd13). This suggests that Fgfs orchestrates patterning and

growth. B) Our simulations suggest that patterning and growth are coordinated by

progressively stronger Fgf-signaling during limb development. C) Modulations of

Fgfs to control both growth and AP-PD patterning is a perfect strategy to maintain

proportions and scale the digit patterns across embryos of different sizes.
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was achieved by coupling the interpretation of independent Positional Informa-

tion systems, see Figure 1.14. Intriguingly, according to our model, in the limb

the proportions are maintained by considering two different interpretation mecha-

nisms under the same Positional Information gradient, the Fgf-signaling. On one

side, the Fgf-signaling acts as as a positional information gradient for a simple

threshold-response mechanism that regulates the expression of Hoxd13 and there-

fore the digital region. On the other side, the Fgf-signaling gradient modulates the

wavelength of an interpretation mechanism based on a Turing model. In this way,

a simple regionalization along the Proximal-Distal (P-D) axis and more complex

isomorphic pattern along the Anterior- Posterior (A-P) axis are coordinated by the

same signaling gradient which also controls growth. The final pattern, not only

is simultaneously scaled along the P-D and the A-P axis as the signaling gradi-

ent changes (see Figure 4.1A), but it is also arranged in a extremely reproducible

radial manner along the two axis. Furthermore, as shown in section 3.3.6, this ra-

dial disposition is extremely robust to noise. Obtaining these stereotypical curved

digit morphologies with a more classical threshold-response Positional Informa-

tion system would required a large number of gradients and a very complex set of

interpretation rules.

This study not only explored the mechanism that underlie the coordination

between growth and patterning, but it also helped to identify which molecules

implement the Turing network. A key strategy to identify the Turing molecules

was to restrict the possible candidates by defining temporal and spatial constrains.

Firstly we ensured that candidate molecules were patterned as soon as the skeletal

marker Sox9 showed a digital pattern. Secondly, a mathematical analysis deter-

mined which topologies and which spatial patterns were compatible with the for-

mation of a Turing pattern. By comparing these constraints with descriptive and

functional experiments we provide evidence that Bmps, Sox9 and Wnts form the

Turing network that controls digit patterning. Our study reveals the main feed-

backs involved in digit patterning, however other regulatory links could confer

extra redundancy or robustness to the system. For example it is well known that

ligands of the Tgf-β family can form homo and hetero-dimers [Lin et al., 2006]

which may confer extra specificity to their signaling. In addition, other diffusible

molecules like Activin and Tgf-βs can modulate Smad-signaling during chondro-

genesis [Montero et al., 2008]. These complex signaling dynamics may underlie

the non-trivial redundancy between Bmp2, Bmp4 and Bmp7 that leads the loss of

only the posterior digits in Bmp2/4 double mutants and in syndactyly/polydactyly

in the case of Bmp4/7 and Bmp2/7 double mutants [Bandyopadhyay et al., 2006].

Our network also suggests a mechanistic link between the molecular pattern-

ing of the digits and the onset of mesenchymal condensations. It is known that

complexes between Beta-catenin and cadherins at the cell wall promote mes-

enchymal condensations [Hülsken et al., 1994, Kemler, 1993], but the frequency
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of these complexes is reduced in response to Wnt signaling [Bienz, 2005]. The

Bmp-Sox9-Wnt Turing network forms a periodic pattern where Wnt-signaling

activity is higher in the interdigital tissue. This suggests that together with the

specification of the digits a rapid difference in adhesivity between digital and in-

terdigital cells may develop to drive the formation of digital condensations.

4.1 Limitations of the models and future directions

An obvious limitation of the models presented in this thesis is their high abstrac-

tion level. A considerable part of my work has been to create a more realistic Tur-

ing model made of a three-reactant Turing network with a non-diffusible compo-

nent (Sox9). Several further improvements can be introduced to make the model

more realistic, but while they will be extremely useful to elucidate the molecular

basis the Turing mechanisms, they will also prevent most analytical approaches.

A key aspect to further improve the model will be to find the best trade-off be-

tween introducing additional details and having a model that can be managed

analytically.

Nevertheless, if we just concentrate on the possible extension that can make a

Turing model more realistic, we can envision many different possibilities. If we

take for example a simple Activator-Inhibitor model (AI), showed in Figure 4.2A,

a number of alternative implementation can be imagined.

A first extension can be formulated by considering that, although most Tur-

ing models (including those developed in this study) abstract cell-communication

with a simple diffusion process, most biological systems implement cell to cell

communication with cell signaling. Therefore, a more realistic AI model can be

formulated by considering ligand-receptor dynamics. This would require mod-

eling the production of ligands inside the cells, their transport to the external

environment and they binding with receptors to trigger a specific signaling cas-

cade on another cells. Such changes could be implemented by transforming the

AI network presented in 4.2A into the network showed in the left part of Figure

4.2B. The model requires at least six reactants: two diffusible signaling molecules

uout, vout, two transcription factors uin, vin and two receptors RU,RV . The free

diffusion of u and v across the cells, which approximates the developmental field

as a continuum, is substituted with extracellular diffusion and cell-signaling medi-

ated by the ligands uout, vout and their receptors RU,RV . The signaling promotes

expression of the transcription factors uin, vin that interact in way that mirrors the

classic AI model.

This new formulation increases the complexity of model but at the same time

opens a whole new set of possible implementations for the main feedbacks of

the Turing network. For example, an alternative implementation for the auto-
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Figure 4.2: A) A schematic representation of the classic Activator-Inhibitor

model: the activator (u) activates its inhibitor (v), cell communication is im-

plemented by the free diffusion of u and v between cells. B) An extension to

the classic Activator-Inhibitor model to consider ligand-receptor dynamics: the

freely diffusible molecules u and v are replaced with two non-diffusible transcrip-

tion factors (uin, vin) and two diffusible ligands (uout, vout), cell-communication is

triggered when ligands bind to the correspondent receptors (RU,RV ). C) Another

possible implementation for an Activator-Inhibitor model with ligand-receptor dy-

namics: the autoactivation of u is implemented by the positive feedback between

uin and RU , the negative feedback of v on u is implemented by the sequestra-

tion of uout when it is bound with vout. D) It has been proposed that models

with high cooperativity can form a Turing pattern even when the diffusion con-

stants are very similar [Engelhardt, 2001]. Following this idea, the formulation

of Activator-Inhibitor model with ligand-receptor dynamics can be extended to

consider cooperativity between the molecules ku and kv that regulates uin, vin at

the promoter level.
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activation of u can be achieved by a positive feedback on the receptor and the

inhibition of u can be obtained with sequestration of uout by vout (assuming that

vout ≫ uout), see Figure 4.2C. Very few example of Turing models that explicitly

consider ligand-receptor dynamics can be found in literature [Klika et al., 2012,

Rauch and Millonas, 2004] and none of them has been confirmed experimentally.

Another alternative to the classic AI model can be formulated by consider-

ing that in real biological systems the difference between the diffusion of the two

ligands uout, vout is limited by the fact that most signaling molecules have compa-

rable diffusion coefficients. In this case, following the study presented in [Engel-

hardt, 2001] we may imagine that the conditions that are required for a diffusion-

driven instability can be achieved by high cooperativity in the regulation terms

rather than a big difference in diffusion constants. High cooperativity levels could

be obtained by explicitly representing the regulation of uin, vin at the promoter

level. Additional reactants, for example the kinases ku and kv, could act in a syn-

ergistic manner to regulate the production of uin, vin, see Figure 4.2D. Modeling

this process would introduce regulation terms with higher non-linearities that al-

low to obtain a diffusion-driven instability even with smaller differences between

the diffusion coefficients.

Ligand-receptor dynamics is not the only alternative to the communication

based on free diffusion across cells. Another possibility is to consider direct cell

to cell communications. Very recently, it has been showed that in the limb Sonic

Hedge Hog (Shh) is diffused by active transport between cells [Sanders et al.,

2013] trough filopodia contacts that are established between mesenchymal cells.

An alternative implementation to the ligand-receptor signaling can be therefore

formulated by considering a systems where the diffusion of uout, vout is substi-

tuted by a propagating cascade of cell to cell communications, see Figure 4.3.

This alternative implementation opens interesting possibilities because it provides

a plausible biological basis for the regulation of the communication processes.

For example, it is easier to imagine that the different communication range re-

quired to form a Turing pattern could be effectively implemented by a difference

in filopodia extension rather than a difference in diffusion coefficients. Another

interesting possibility is that cells can be polarized and can protrude the filopo-

dia in a preferential direction. This implies that the communication process can

happen along one preferential direction which will ultimately reduce to a Turing

models with anisotropic diffusion. Various two-dimensional numerical studies

[Bose and Chaudhuri, 1997, Shoji and Iwasa, 2003] revealed that Turing models

with anisotropic diffusion exhibit interesting properties like the ability to orient

the stripes in a specific direction.
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Figure 4.3: First row: an example of free diffusion between cells, a cell in the

center (light blue cell) diffuses a signal (blue) that spreads over the developmental

field and is received by the other cells. Second row: an example of direct cell to

cell communication, a cell in the center (light blue cell) communicates with its

neighbors by extending filopodia, the neighbors propagate the signal by protrud-

ing filopodia. Eventually, the signal spreads over the developmental field.
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The alternative implementations discussed above all require cells to be ex-

plicatively represented in the model. While this is indeed extremely useful to

investigate the cellular behaviors that can affect a Turing mechanism, it also re-

quires a simulation formalism that models the tissue at the cellular level. Finite

element simulations like those presented in this study, usually consider that each

triangle represents a piece of tissue which contains a number cells. Modeling

single cells requires the use of another formalism, for example the Cellular-Potts

model [Graner and Glazier, 1992] or physical models based on strings [Weliky

and Oster, 1990]. These model have been used with success to model develop-

mental systems with epithelium-like tissues where cells were densely packed in

grid conformation. However, to the best of my knowledge there is no formal-

ism that has been proposed to explicitly represents mesenchymal cells that can

protrude filopodia and can mix with their neighbors.

Another limitation of the Morphodynamic model presented in this study is that

the patterning events do not feedback into the growth model. In section 1.2.1, I

showed that in a full Morphodynamic system, morphogenesis and patterning can

feedback into each other. In the Morphodynamic model presented in this study,

I used an accurate limb growth model derived from clonal data and experimental

limb morphologies. This growth model allowed me to explore the influence of

morphogenetic events on the patterning system and in particular to explore how

the Turing model behaved when the limb was growing. However, it did not allow

me to explore the opposite influence, that is how the patterning system could affect

growth. This is due to the fact that the limb growth model was given in input to the

patterning simulation as a fixed growth map (the MorphoMovie). To consider a

complete Morphodynamic model, it would be necessary to develop a real dynamic

simulation of limb growth that would be executed in parallel to the patterning

process.

This type of model will also be crucial to investigate the mechanism of scale-

invariance and maintenance of proportion that have emerged from this study.

4.2 Conclusions

In summary, this study has presented a possible implementation for some of the

hypothesis that have been proposed to explain limb development in the last thirty

years. In particular, it has addressed three main points: i) it has shown a pos-

sible way in which the Positional Information model can be combined with a

Turing mechanism to specify the digits, ii) it has proposed a way to coordinate

digit patterning and limb growth to achieve scale-invariance and maintenance of

proportions, iii) together with the experimental work of Jelena Raspopovic, it has

identified the main genes that implement the Turing network and the Positional
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Information that drive digit patterning.

A common theme behind these topics has been the use of computational mod-

eling, which has mainly served as a modern version of a classic cartoon of devel-

opmental biology rather than a tool to make quantitative predictions. The models

presented in this work do not pretend to be an exhaustive representation of reality,

as Turing once said, models are “a simplification and an idealization, and conse-

quently a falsification”[Turing, 1952]. It is a common misconception nowadays

to consider that computational models have to be able to make extremely precise

quantitative predictions in order to be useful. This study has showed that models

can also be extremely useful to formulate formal qualitative descriptions of our

hypothesis, which in contrast to cartoons and descriptions in natural language can

be evaluated and confuted with simulations.

To conclude, it is often quoted that our assumptions are as good as our data

and I like to think that in the near future it will be quite common to say that our

hypotheses are as good as our models.
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Embryonic retinoic acid synthesis is required for forelimb growth and antero-

posterior patterning in the mouse. Development, 129(15):3563–3574.

Nissim, S., Hasso, S. M., Fallon, J. F., and Tabin, C. J. (2006). Regulation of grem-

lin expression in the posterior limb bud. Developmental biology, 299(1):12–21.

Niswander, L. (2002). Interplay between the molecular signals that control ver-

tebrate limb development. International Journal of Developmental Biology,

46(7):877–882.

243



Ochoa-Espinosa, A., Yu, D., Tsirigos, A., Struffi, P., and Small, S. (2009).

Anterior-posterior positional information in the absence of a strong bicoid gra-

dient. Proceedings of the National Academy of Sciences, 106(10):3823–3828.

Olsson, L. (2007). A clash of traditions: the history of comparative and experi-

mental embryology in sweden as exemplified by the research of gösta jägersten
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Appendix

Important acronyms:

AER = Apical Ectodermal Ridge

AI = Activator-Inhibitor

A-P = Anterior-Posterior

Bmp = Bone Morphogenetic Protein

D-V = Dorsal-Ventral

Fgf = Fibroblast Growth Factor

LPM = Lateral Plate Mesoderm

MC = Mechanochemical

P-D = Proximal-Distal

PI = Positional Information

RA = Retinoic Acid

RD = Reaction-Diffusion

SD = Substrate-Depletion

WT = Wild Type

ZPA = Zone of Polarizing Activity
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