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CHAPTER 1 

 

INTRODUCTION 

 

 

 

 

 

 

 

The constant technology development has brought us amenities that have increased 

our quality of life to standards unthinkable only few generations ago, and this 

increase seems to be continued in the future. Obviously, this fact is associated to an 

increase of resources consumption, such as raw materials and electricity. Nowadays, 

the rise in electrical consumption can be supplied by the current energy sources. 

However this will mean an increase of pollution, causing many problems around the 

world, since nowadays most of the energy that we use comes from non-renewable 

sources.  
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Among others, photovoltaics have the potential to become a big part of the solution 

to this problem. In past decades, solar cells have started to be introduced gradually 

into the wide group of energy sources. We have now from big power plants that can 

supply thousands of homes to small devices for little toys. However photovoltaics still 

represents a small percentage of the total amount of generated electrical energy, 

even if we only consider the renewable energy sources. This even happens in 

countries with a high solar irradiation such as Spain, as it is shown in Figure 1.1 [Red 

Eléctrica de España-2013]. One of the main problems is that photovoltaics technology 

is still not profitable compared with the rest of energy sources. Solar grade silicon and 

other materials that are constituents of solar cells are expensive. Also these devices 

have many limitations of where they can be placed, since for big powers we need big 

rigid structures.  

 

Figure 1.1 Electric energy sources in Spain (mainland) in 2013 [Red Eléctrica de 

España-2013]. (1) Pumped-storage non-included, (2) Non-renewable thermal power 

and fuel/gas included. 
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One promising solution can be organic solar cells (OSC), developed in recent years. 

The interest of this kind of solar cells lies in the unique properties of the materials 

that conform them: the organic semiconductors. In contrast to the inorganic 

semiconductors, like silicon, the organic ones need much less thickness to absorb the 

maximum sunlight. This fact causes that the resulting devices can be flexible, as they 

can be very thin, and much cheaper, since although organic semiconductors are 

expensive they are used in small quantities. Furthermore, with a spread of the 

technology, a decrease in mass production cost of the organic substances can be 

expected. The organic semiconductor properties allow OSC to be used in many 

situations where inorganic cell cannot, such as in complex surfaces (more flexible), as 

windows coating (thinner so partially transparent) or on indoor applications (higher 

efficiencies for low light intensities). These facts give OSC the possibility to fill a niche 

where inorganic solar cells are weak, avoiding to compete with such a mature 

technology. However, this technology stills needs to be developed. 

 

Organic solar cells differ from inorganic ones in the photovoltaic conversion process. 

For the inorganic case, when photons are absorbed the material is able to generate 

electron-hole pairs that become free charges directly at room temperature. But for 

the organic case these electron-hole pairs remain in an intermediate state called 

exciton that needs to be dissociated to obtain the free charges. Excitons move by 

diffusion and to dissociated they need to reach the exciton dissociation interface, 

which corresponds to the union of the different organic semiconductors that 

conforms the cell (Donor–Acceptor, D–A, interface). Unfortunately, the exciton 

diffusion length of the organic materials is very short, been only of few nm. So, only 

those excitons generated close to the D–A interface will contribute to the 

photogenerated current. This fact is a very big restriction in OSC efficiency. One 

solution has been to mix the different organics materials in an interpenetrating blend. 

So anywhere an exciton is created will be close enough to the dissociation interface. 
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However, as a blend it is always complex to control, other solutions have been 

developed. In this thesis we focus on the interdigitated approach. 

 

In the interdigitated approach, the different organic semiconductors are joined in a 

complex structure, where one of the materials forms pillars and the other fills the 

interpillar space. To avoid exciton dissociation losses, the junction between them 

should be in the scale of the exciton diffusion length. A method to fabricate this kind 

of structures has been developed in our facilities in the Nano-Electronic and Photonic 

Systems (NePhoS) group of the Universitat Rovira i Virgili [Santos-2010; Balderrama-

2014]. By using the template-assisted synthesis method with nanoporous anodic 

alumina templates, nanopillars with a hexagonal lattice distribution have been 

manufactured. However, such small sizes are complex to work with and require long 

times to be manufactured. So a way of reducing times is crucial to help to develop 

and to optimize this kind of OSC. 

 

In many fields, numerical simulation models have helped to develop many 

technologies and understand their mechanisms. They are able to predict results 

without the need to fabricate real devices. This fact allows reducing development 

times, since simulations are usually faster than a device fabrication, and costs, since 

we can reduce material waste by avoiding the fabrication of non-optimal devices. 

Since many years ago, several accurate models exist for the case of inorganic cells, 

however the behaviour of OSC is still not perfectly known. Additionally, it is difficult to 

know a priori if the existing models for OSC will be suitable and accurate enough for 

the small geometries of the interdigitated organic devices. So, there is still work to do 

to obtain a precise numerical simulation model for OSC.      
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The main objectives of this thesis are: 

 

• Develop a complete model to simulate the different steps of the photovoltaic 

conversion process in interdigitated organic solar cells. This model will be 

based on the finite element method, which can give us information of every 

magnitude as a function of the position. Most of the existing models consider 

the active region of the devices as a uniform material from the point of view of 

light interaction. This simplification is not important when we have an 

interpenetrating blend, but it may affect the final results in the case of 

interdigitated cells  

• Show that this model can be used to make a systematic study of interdigitated 

OSC that will help to predict which geometrical characteristic will be better to 

optimize this kind of devices and how to increase their efficiency   

• Validate the model with experimental results of real devices obtained in our 

facilities and, if necessary, improve, adjust or correct the model  

• Demonstrate that the developed method can simulate correctly different 

devices and structures, by making some adaptations, and not only 

interdigitated full organic solar cells 

 

To achieve these objectives, this thesis is organized as follows: 

 

In Chapter 2 we introduce the basic concepts of organic photovoltaics. From the 

organic semiconductors properties, which work in a different way than the inorganic 

ones, to the photovoltaic conversion process in OSC. The different types of organic 

semiconductors (electron donors and electron acceptor) are introduced, with also the 

concept of exciton and what this state represents to the photovoltaic conversion 

process. Then, a detailed description of the different architectures that exist for OSC 
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and their evolution since the first organic semiconductors where discovered is given. 

Finally, a state of the art of the existing simulation models completes this chapter.       

 

Chapter 3 is focused on the numerical method developed in this work. By using the 

finite element method (FEM), we introduce a model where the different magnitudes 

related to the photovoltaic conversion process can be calculated as a function of the 

position. The complete Maxwell equations, the exciton diffusion equation and the 

drift-diffusion model are solved within the same numerical framework. The model can 

be divided into two main parts: the optical and the electrical behaviour. The results of 

each step of the photovoltaic conversion process are used as an input of the 

subsequent step, in all cases as function of the position.  

 

In Chapter 4, we present the results of this numerical simulation method applied to 

the interdigitated OSC. By varying the devices geometry of the dissociation interface 

in a wide range of values, we present a systematic study. Several conclusions can be 

extracted from the results that can be used as an optimization guide to help to 

improve experimental devices obtained in our facilities and to increase its efficiency 

reducing times and costs. After this study, a validation of the simulation method with 

experimental results, manufactured in our facilities, is presented. By using the 

template-assisted synthesis method with nanoporous anodic alumina templates 

(NAAT) we have obtained functional devices that can be compared with our models. 

This devices have the structure of ITO/PEDOT:PSS/P3HT/PCBM/Ag. Some parameter 

adjustments are also presented to totally fit the model to the real devices.   

 

Chapter 5 is devoted to the application of the improved numerical simulation 

procedure to organic solar cells with the same structure but with different 

nanostructured D‒A junctions. By varying the D‒A interface geometry, we have 

modelled planar bilayer, nanopillars, nanowells and nanopyramids D‒A junctions. The 
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purpose of this chapter is to compare these kinds of nanostructured junctions in OSC 

for the two existing configurations, the conventional and the inverted one. An optical 

and an exciton diffusion study are carried out to check which configuration is better in 

terms of efficiency for each case. In this study, the exciton diffusion length is used as a 

parameter since it can vary due to the nanoconfinement of polymer chains. 

 

Chapter 6 discusses about the application and adaptation of the simulation method to 

other devices and structures to demonstrate and to show that it can work correctly 

not only for the full organic solar cells that we have previously seen. The simulation 

model is applied to two situations: hybrid solar cells and gold nanospheres pyramids. 

For case of the hybrid solar cell, we have that the active region is a blend of the 

different organic semiconductors and has a nanostructured TiO2 electrode. Several 

modifications of the method presented in Chapter 3 are explained here to adapt the 

model to this different technology. Simulation results are also compared with 

experimental data provided from the group of Dr. Monica Lira-Cantu (from the 

Laboratory of Nanostructured Materials for Photovoltaic Energy, CIN2, Barcelona).  

After this comparison, a final parameter fit completes this adapted simulation model. 

Regarding the gold nanospheres pyramids, a work about the simulation of the 

plasmonic effect in gold nanospheres pyramids is shown. This kind of structures is 

intended to provide cheap ultrasensitive and ultrafast sensors with surface-enhanced 

Raman scattering (SERS) spectroscopy as the transducer, in our case, to develop a 

handheld reversible SERS sensor for the live monitoring of carbon monoxide in the 

atmosphere. The aim of this chapter is to demonstrate that the optical part of the 

simulation procedure can be used to model different effects in geometries in the 

range of the nm so it is not only restricted to solar cells. 

 

Finally, Chapter 7 completes the thesis with the summary of what we have seen, the 

final conclusions and some tips for possible related future work.  
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CHAPTER 2 

 

FUNDAMENTALS OF ORGANIC 
PHOTOVOLTAICS 
 

 

 

 

 

 

 

 

In this chapter we introduce the basic concepts of organic photovoltaics. The interest 

of organic solar cells (OSC) lies in the unique properties of the materials that conform 

them: the organic semiconductors. In contrast to the inorganic semiconductors, like 

silicon, the organic ones need much less thickness to absorb the maximum sunlight 

[Würfel-2009]. This fact causes that the resulting devices can be flexible, as they can 

be very thin, and much cheaper, since although organic semiconductors are expensive 

they are used in small quantities. OSC also differ from inorganic ones in the 

photovoltaic conversion process. For the inorganic case, when photons are absorbed, 
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the material is able to generate electron-hole pairs that become free charges directly 

at room temperature. But for the organic case these electron-hole pairs remain in an 

intermediate state called exciton that needs to be dissociated to obtain the free 

charges. These properties and characteristics come from the physical and chemical 

characteristics of the organic semiconductors, that will be explained in this chapter. 

Then, a detailed description of the different architectures that exist for OSC and their 

evolution since the first organic semiconductors where discovered is given. Finally, a 

state of the art of the existing simulation models completes this chapter.       

 

 

 2.1.- ORGANIC SEMICONDUCTORS 

 

  2.1.1.- FUNDAMENTALS OF ORGANIC SEMICONDUCTORS 

 

The main difference between the organic solar cells and the inorganic ones is the 

material used for the active region. Instead of using inorganic semiconductors as 

constituents, such as silicon, cadmium telluride, gallium arsenide (GaAs), or copper 

indium gallium selenide (CIGS) for instance, OSC are made of organic materials. This 

kind of semiconductors has several differences if compared with the inorganic ones. 

However, we can find some analogies too. In organic photovoltaics an equivalent 

nomenclature to the inorganic is used. Instead of the conduction band the equivalent 

concept is the LUMO level (Lowest Unoccupied Molecular Orbital), and instead of 

valence band there is the HOMO level (Highest Occupied Molecular Orbital). The 

energy difference between these two parameters is the band gap of the material.     

 

Organic semiconductor properties come from the atypical carbon atom properties. 

Among other configurations, the carbon atom can form the sp2 hybridization. Here, 

the sp2 orbitals form a triangle in a plane while the pz orbitals are perpendicular to 
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such plane. Then, with the superposition of two sp2 orbitals in two neighbouring 

carbon atoms, a bond σ can be formed as it can be seen in Figure 2.1A. The energy 

difference between the bonding orbitals (σ− or σ in Figures 2.1B and 2.2 respectively) 

and the antibonding orbitals (σ+ or σ* in Figures 2.1B and 2.2 respectively) is quite 

high, being much beyond the visible spectrum range. Consequently, longer bonded 

carbon atom chains will form a material with a high bandgap, so this material will 

have the characteristic isolator behaviour of organic materials. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Orbital and bonds scheme (A), and energy levels for the different bounds (B) 

for two carbon atoms in sp2 hybridization. 

B 

A 
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However, in the sp2 hybridization, the pz orbitals also form additional bonds of π type. 

These bonds have a much lower energy difference between the HOMO and the LUMO 

levels, as it can be seen in Figures 2.1B and 2.2 (π− - π+, π - π* respectively). So, the 

weaker excitations of the conjugated molecules will be the π - π* transitions, with a 

typical energy between 1.5 and 3 eV [Brütting-2005]. This allows the organic materials 

to have a high light absorption or emission in the visible spectrum range, or close to it, 

and to show semiconductor properties. 

  

         

 

Figure 2.2 Simplified scheme of the energy levels for the different orbitals in two 

bonded carbon atoms in sp2 hybridization.  
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 2.1.2.- TYPES OF ORGANIC SEMICONDUCTORS 

 

There exist two main categories of organic semiconductors: 

 

 Conjugated polymers: macromolecules formed by the union of 

repetitive structural units.  

Deposition techniques from a solution: spin-coating or imprinting  

 

 Small molecule: low molecular weight.  

Deposition techniques from gas: sublimation or evaporation 

 

The optical and the electrical properties of these two types of organic semiconductors 

are very similar, being the deposition technique to obtain thin layers the main 

difference between them. 

 

Unlike inorganic semiconductors, the organic ones do not need to be doped since its 

nature depends on the electronegativity of the material. So, organic semiconductors 

can be electron donors, if they show a low electronegativity, or electron acceptors, 

when they have a high electronegativity. 

 

Following the analogy with the inorganic semiconductors, we have that the organic 

semiconductors of electron donor type act and have the characteristics and the 

behaviour of the inorganic p-type. This is because they have a higher hole mobility 

than electron mobility. In Figure 2.3 it is shown several electron donor materials used 

as constituents of OSC. 
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Figure 2.3 Molecular structure of several electron donor materials used as 

constituents of OSC. (A), (B) and (C) are conjugated polymers, on the right there are 

their derivates, and (D) and (E) are small molecule ones.  

B 

A 
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To end with the analogy with the inorganic semiconductors, on the other hand the 

organic semiconductors of electron acceptor type act and have the characteristics and 

the behaviour of the inorganic n-type. So, in this case the materials have a higher 

electron mobility than the hole one. In Figure 2.4 it is shown several electron acceptor 

materials used as constituents of OSC. 

 

 

 

 

Figure 2.4 Molecular structure of several electron acceptor materials used as 

constituents of OSC. All of them are small molecule type.  
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  2.1.3.- EXCITONS 

 

There is also an important difference between the organic semiconductors and the 

organic ones regarding the free charge generation. In both cases, for organic and 

inorganic semiconductors, the absorption of a photon by the material does not cause 

the generation of free an electron-hole pair directly. This happens because the 

electron and the hole attract each other due to their opposite charge. This entity, 

where the electron and the hole are still bounded by Coulomb forces, is called 

exciton. This quasiparticle can travel through the semiconductor and it is electrically 

neutral. 

 

Since the exciton is very similar to the hydrogen atom, which consists only in a proton 

(positive charge) and an electron (negative charge), the same model can be used to 

analyze it. Hence, we can consider the exciton binding energy a special case of the 

one of an electron in the hydrogen atom [Würfel-2009]: 
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where mred is the exciton reduced mass,   the relative permittivity of the material, 

0  the vacuum permittivity, )/(h 2  the reduced Planck constant, *

em  the 

electron effective mass and *

hm  the hole effective mass. 
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This energy is the minimum required to separate the whole in the different parts, in 

our case to dissociate an exciton into a free hole and an electron. For most of 

inorganic semiconductors, the binding energy is much smaller than kT at room 

temperature (25.85 meV at 300 K). This is due to the high relative permittivity of the 

inorganic materials, typically   over 10 [Würfel-2009], and to a lower electron and 

hole effective masses than their real ones. As a consequence of this, in the inorganic 

semiconductors excitons only exist at low temperature due to the thermal 

dissociation that affects them. At room temperature, the electron and the hole are 

free just after the exciton generation due to the photon absorption. So, there is no 

need to make a difference between the minimum energy that a photon needs to 

generate in the material an electron-hole pair and the minimum energy to dissociate 

this pair.  

 

This does not happen in organic semiconductors, as they consist of molecules that are 

weakly bonded to each other by van der Waals forces. As a result, they have a low 

relative permittivity and a high electron and hole effective masses. From Equation 2.1, 

it can be deduced that this fact will increase the exciton binding energy.   Additionally, 

this also reduces the exciton radius to values in the range of interatomic distances. 

For these sizes, Equation 2.1 is not accurate enough and the real binding energies will 

be even higher that the predicted mathematically. In some cases, these energies can 

achieve tenths of eV. Such values are much higher than kT at room temperature, so 

there will not be exciton thermal dissociation in the materials. In the next table it is 

shown some binding energies for organic semiconductors. As it can be seen, all the 

values are higher than the binding energy for silicon and than kT at 300 K.      
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Material Binding energies (eV) 

Si 0,0147 

Alq3 1,40 

CuPc 0,60 

MEH-PPV 0,35 

PPV 0,05−1,10 

PTCDA 0,80 

 

Table 2.1 Silicon and several organic semiconductors binding energies. Data from 

[Monestier-2008; Knupfer-2003].  

 

Hence, for the case for organic semiconductors, most of the absorbed photons will 

result in generated excitons. In contrast, the direct frees charge generation will be 

extremely low. Consequently, the solar energy conversion process for organic devices 

will need to include an additional step, which it is not considered for the inorganic 

cells, in order to ensure exciton dissociation and that will require additional energy. 

   

 

 2.2.- STEPS OF THE SOLAR ENERGY CONVERSION PROCESS 

 

In the previous section we have seen that in the organic semiconductors the pairs 

electron-hole remain in the bonded form of excitons instead of becoming free charge 

as it happens for the case of inorganic devices. To separate this union, that is to 

dissociate the exciton, a system Donor–Acceptor (D–A) is required. In Figure 2.5A it is 

shown this system. This structure is formed with a layer of an electron donor material 

and another of electron acceptor material. When an exciton reaches the 
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donor/acceptor interface, the electron is transferred to the material with a higher 

electronegativity, that is the acceptor material, and the hole will be accepted by the 

semiconductor with the lower electronegativity, in this case the donor material.  

 

The complete solar energy conversion process, which starts with the photon 

absorption by the material and ends with the extraction of free charges trough the 

electrodes, is depicted in Figure 2.5:  

 

 First, a photon is absorbed by the electron donor material (Figure 

2.5B), this causes the generation of an exciton.  

 

 This exciton diffuses trough the material and eventually reaches the 

D–A interface (Figure 2.5C).  

 

 There, the electron will be transferred to the acceptor material and 

the hole will remain in the donor one (Figure 2.5D). In this moment, 

even being its components in different materials, the exciton is still 

bonded and it will be necessary to be dissociated into free charges.  

 

 After that process, electrons and holes will be transported through 

the corresponding semiconductor until they reach the electrodes 

(Figure 2.5E). 

 

 Finally, there the free charges will be collected and extracted to an 

external circuit (Figure 2.5F).    
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Figure 2.5 Scheme of a D–A system (A) and the steps of the solar energy conversion 

process in OSC (B-F). White dots stand for holes and black dots stands for electrons. 
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 2.3.- OTHER FACTORS INFLUENCING THE ENERGY CONVERSION PROCESS 

 

The energy conversion process can present several losses in every step that will 

reduce the overall efficiency of an organic solar cell. These losses are caused by the 

limitations of the organic semiconductors. Figure 2.6 displays some of the most 

common losses mechanisms. The first issue is that the active layer will not absorb all 

the incident photons (Figure 2.6-1). Organic materials do not absorb the entire solar 

spectrum due to their high bandgap. Once created, excitons can decay if they do not 

reach the dissociation interface quickly, i.e., the Donor–Acceptor interface (Figure 2.6-

2). Due to the short exciton diffusion lengths in organic semiconductors, this loss 

mechanism is a big issue for organic photovoltaics and it is a key limitation. The 

germinate recombination (Figure 2.6-3) is related to the amount of free charge 

carriers that recombine after the electron transference but before the exciton 

dissociation. Finally, a portion of the free charges will recombine during their path to 

the electrodes (Figure 2.6-4). It is the so-called bimolecular recombination. 

 

Figure 2.6 Scheme of the steps of the solar energy conversion process showing several 

loss mechanisms. Non-absorbed photons (1), exciton decay (2), germinate 

recombination (3), and bimolecular recombination (4).   
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 2.4.- REVIEW OF ORGANIC SOLAR CELLS ARCHITECTURE EVOLUTION 

 

Since its invention, organic materials have always been considered as insulators. The 

first use of this kind of materials in solar cells appeared in the 1950’s, however they 

only were used due to their photoconductive properties (organic dyes) [Spanggaard-

2004]. It was not until the 70’s that chemists started to investigate the possibility of 

controlling the mechanical, optical and electrical properties of the organic materials 

by modifying their chemical structure. With the discovery of the first conductive 

inorganic polymer, the sulfur polynitride (with a conductivity of 103 S/cm), this 

research was intensified [MacDiarmid-1976; Monestier-2008].   

 

In 1977, Heeger, MacDiarmid and Shirakawa demonstrate that polyacetylene (C2H2)n 

can be doped to form a new class of conducting polymers in which the electrical 

conductivity can be systematically varied in a range of eleven orders of magnitude. So 

it was able to change its behaviour from an isolator to a conductive material with 

tunable conductivity properties in between, that means passing through the 

semiconductor regime [Chiang-1977]. Their experiments showed this huge increase in 

electrical conductivity of the polyacetylene when doped with controlled amounts of 

the halogens chlorine, bomine, or iodine, and with arsenic pentafluoride (AsF5).  
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Figure 2.7 Electrical conductivity of trans-(CH)x as a function of AsF5 dopant 

concentration. Reproduced from [Chiang-1977].   

 

The discovery and development of the conductive polymers was laureate with the 

Nobel Prize on Chemistry in 2000 [Nobel Foundation-2000]. With this event a new 

field in research was opened that was able to bring us materials with the 

optoelectronic and semiconductor properties of the inorganic materials and the 

advantages of organic materials such as transparency, flexibility and cost. These new 

materials would be applied to solar cells. 
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  2.4.1.- SINGLE LAYER  

 

The first OSC were based on single thermally evaporated molecular organic layers 

sandwiched between two metal electrodes of different work functions (Figure 2.8). 

The rectifying behaviour of these devices can be explained by the metal-insulator-

metal (MIM) model (for insulators) or by the formation of a Schottky barrier (for 

doped materials) between the metal with the lower work function and the p-type 

(electron donor) organic layer [Hoppe-2004]. 

 

In Figure 2.8B there is a scheme for the case of a Schottky junction at the aluminium 

contact. Close to the contact, in the depletion region W, the resulting band bending 

from the Schottky contact is shown. This is due to that the difference between the 

two work functions of the electrodes generates an electric field in the organic 

material. This corresponds to an electric field in which excitons can be dissociated. 

This electric field allow excitons to be dissociated so that the free charges are then 

pushed to the respective electrodes to be collected. 

 

 

 

 

 

 

 

 

Figure 2.8 Scheme of a single layer OSC architecture (A) and of the exciton diffusion 

and dissociation process in a single layer device with a Schottky contact at the 

aluminium contact (B) [Hoppe-2004].  

 

B) A) 
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In this architecture, the photogenerated excitons can only be dissociated in the 

depletion layer W localized close to the electrode. This region is very thin so the 

exciton dissociation efficiency will be very low. Additionally, the generated electric 

field is very weak, being usually not enough to dissociate all the excitons. Hence this 

architecture has too many losses to be an efficient method to build a profitable OSC.     

 

Several authors reported results of OSC with this architecture, in all cases with very 

low efficiency in the solar energy conversion process. P.H. Fang obtained an efficiency 

in the order of 10-5% in devices where the organic material was tetracene in 1974 

[Fang-1974], and Merritt and Hovel reported an efficiency of 0.1% in cells based on 

hydroxy squarylium in 1976 [Merritt-1976]. However, we had to wait until 1978 to 

find a remarkable efficiency of 0.7%, with a device manufactured by Ghosh and Feng 

[Ghosh-1978]. The structure of this OSC consisted of a layer of merocyanine 

embedded between one electrode of aluminium and another of silver, with a total 

area of 1cm2 approximately. This work represented a big increase in the efficiency of 

OSC. Nevertheless with this kind of devices it was not possible to achieve high 

efficiencies, so a new architecture needed to be developed.  

 

 

  2.4.2.- PLANAR BILAYER  

 

To solve the problems of the previous architecture and to help to increase the 

efficiency of OSC, a bilayer structure was developed. In devices with this kind of 

architecture, organic semiconductors of two different types (electron donor and 

electron acceptor) are joined together in a planar interface. This junction is 

embedded between two electrodes with appropriated energy levels to the donor (D) 

HOMO and the acceptor (A) LUMO levels to ensure an efficient charge extraction 

(Figure 2.9). The donor contacts the higher work function metal and the acceptor the 
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lower one to achieve good hole and electron collection, respectively. With this 

architecture, excitons dissociate in the D–A interface because of the differential of 

electron affinity of the materials, instead of a built-in electric field in a space-charge 

region. The solar energy conversion process in this kind of OSC is the one that all the 

nowadays OSC follows (see section 2.2 for more details). 

 

This architecture was developed for the first time in 1986 by the research group of Dr. 

Tang, who achieved and efficiency of 1% [Tang-1986]. Their device was based on a 

planar bilayer structure with two different organic semiconductors, one with a high 

hole mobility (donor) and the other with a high electron mobility (acceptor). In this 

case the donor material was copper phthalocyanine (CuPc) and the acceptor material 

was a perylene tetracarboxylic derivative (PV).  

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Scheme of a planar bilayer OSC architecture (A) and of the exciton 

dissociation and charge transport (B) [Hoppe-2004]. 

 

B) A) 
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Figure 2.10 Schematic of Dr. Tang’s device, where it can be seen the two organic 

semiconductor layers of different type [Tang-1986]. It was the first OSC with the 

planar bilayer typology. 

     

In the case of the single layer cells, the photovoltaic properties of the devices strongly 

depend on both electrode characteristics. In contrast, in the planar bilayer 

architecture these properties depend on the D–A interface. As a result, higher 

efficiencies could be achieved. One of the characteristic parameters of the solar cells 

that had a higher improvement was the Fill Factor (FF), which was very low in single 

layer OSC. The introduction of this new architecture, with a behaviour totally different 

from the previous cases and with the most efficient solar energy conversion process 

until today, can be considered the most important progress in Organic Photovoltaics. 

 

Despite being this structure an important improvement, it had still a very important 

limitation: the short exciton diffusion length of the organic materials. As seen before, 

if an exciton is not created close enough to an exciton dissociation interface (the D–A 

interface), there is a high probability of recombination before it can contribute to the 
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photocurrent. So the active region of the planar bilayer OSC should have a thickness 

comparable to the exciton diffusion length of the material. However, such thin layer 

will not be able to absorb all the photons that otherwise it would absorb if it were 

infinitely thick. Hence, the active region must be also thick enough from the point of 

view of light absorption. So the optimal thickness for this architecture should be a 

trade-off of these two opposite conditions. This fact limits the efficiency of planar 

bilayer OSC.     

 

 

  2.4.3.- BULK HETEROJUNCTION 

 

To try to compensate the issue that the short exciton diffusion length of the organic 

semiconductors represents to the efficiency of the devices, a new architecture was 

developed. It was the bulk heterojunction (BHJ) configuration. The principle of 

operation of this architecture is the same than that of the planar bilayer. Excitons are 

dissociated in the D–A interface and each free carrier is transported though the 

corresponding semiconductor to the electrodes. But now, the donor and the acceptor 

materials are blended together in an interpenetrating mixture instead of being two 

different layers (Figure 2.11). 

 

An important advantage of this kind of structure is that here the D–A exciton 

dissociation interface is much more extensive than in the planar bilayer architecture. 

The blend is so interpenetrated that, ideally, all the generated excitons will be able to 

dissociate by finding the D–A interface before recombine since distances will be lower 

that the main exciton diffusion lengths of the materials. So, with this architecture it 

was expected to achieve high efficiencies.  
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Figure 2.11 Scheme of a bulk heterojunction OSC architecture (A) and of the exciton 

dissociation and charge transport (B) [Hoppe-2004]. 

 

The BHJ configuration was reported for the first time in 1995 by Yu et al. [Yu-1995]. 

Their devices used poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4- phenylene vinylene) 

(MEH-PPV, a conjugated polymer) as the electron donor, and buckminsterfullerene 

(C60, a fullerene) derivatives as the electron acceptor. Due to problems of solubility 

and crystallization during the formation of thin films of pure C60, they used the C60 

derivatives [5,6]-PCBM and [6,6]-PCBM to improve the results. In Figure 2.12 it is 

shown the molecular structure of the organic semiconductors and the schematic of 

the complete device.  

 

With this architecture they achieved an efficiency of 1.45% for the case of a blend 

MEH-PPV:[6,6]-PCBM with a concentration of 1:4. From then, the BHJ configuration 

became one of the most studied architectures and, with small modifications, the one 

that had bring higher efficiencies.       

 

 

 

 

B) A) 
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Figure 2.12 Charge transference process at the D–A interface in the blend MEH-

PPV:C60 and the molecular structure of this organic semiconductors used by Yu et al. 

(A). Schematic of the resulting blend of the two materials and of the complete device 

(B) [Yu-1995].    

 

Soon, organics photovoltaics started to get more interest from researchers and its 

development started to accelerate. In 2004 Xue et al. overcame the barrier of the 5% 

[Xue-2004]. They manufactured a device with a tandem configuration, which means 

putting different cells one over the previous to absorb a broader range of the solar 

radiation. In this case, they used two subcells in a series association. Here, the 

absorption of the incident light is maximized by locating the subcell tuned to absorb 

long-wavelength light nearest to the transparent anode, and tuning the second 

subcell closest to the reflecting metal cathode to preferentially absorb short-

wavelength solar energy. The achieved efficiency was 5.7%, with an open circuit 

voltage (Voc) as high as 1.2 V due to this series association. 

 

 B)  A) 

UNIVERSITAT ROVIRA I VIRGILI 
DESIGN AND MODELLING OF INTERDIGITATED AND NANOSTRUCTURED POLYMER SOLAR CELLS 
Pedro Granero Secilla 
Dipòsit Legal: T 891-2015 



                  Fundamentals of organic photovoltaics 

 

 

31 
 

Figure 2.13 Schematic of the tandem cell of Xue et al. (A) and a graph of the EQE as a 

function of the wavelength. It also can be seen the contribution of each subcell (B). 

The asymmetric spectral responses from the two subcells result from the placement of 

the layers within the asymmetric tandem cell structure [Xue-2004]. 

 

Another example of the good results of the tandem configuration is the work 

reported by Kim et al. [Kim-2007] in 2007, who manufactured the devices shown in 

Figure 2.14A. This OSC consist in two subcells, each one with an architecture BHJ with 

semiconducting polymers as electrons donors and fullerene derivatives as electron 

acceptors. By choosing organic materials with different and complementary 

absorption spectra, it is possible to absorb a broader range of the solar radiation. A 

transparent titanium oxide (TiOx) layer separates and connects the two sections. This 

TiOx layer serves both as an electron transport and recollection layer for the frontal 

subcell and as a support to fabricate the back subcell. With this configuration they 

achieved an efficiency of 6.7% in the solar energy conversion process. 

 

 

B) A) 
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Figure 2.14 Schematic of the tandem devices of Kim et al. (A) an the graph of 

absorbance as a function of the wavelength for each subcell and for the complete 

device (B).    

 

Nowadays, one of the most promising ways to increase the efficiency in BHJ OSC is by 

creating new organic semiconductors or improving already existing ones. Special 

attention has been put in the electron donor material, which are usually conjugated 

polymers. Ideally, these materials should have a high hole mobility for a proper 

charge transport, and an extended absorption spectrum for a high exciton generation 

rate. Additionally, the energy levels of the materials should be appropriated to the 

electron acceptors. This includes a high HOMO level (absolute value), to produce a 

high Voc, and a LUMO level with a proper offset with respect to the electron acceptor, 

to maximize charge carriers separation. Finally, the electron donor should allow an 

interpenetrating blend with the electron acceptor in the range of the exciton diffusion 

length.  

 

In this line, Liang et al. [Liang-2010] developed a new family of semiconducting 

polymers based on alternating ester substituted thieno[3,4-b]thiophene and 

B) A) 
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benzodithiophene units in 2010. These polymers have a very interesting combination 

of properties from the point of view of organic photovoltaics: 

 

• Relatively low bandgap (1.6 eV), to take advantage of a broad solar 

spectrum.  

 

• Good hole mobility, for an efficient charge carriers transport. 

 

• Good solubility in organic solution and suitable miscibility (ability of being 

mix in any ratio producing a homogenous solution) with the fullerene 

acceptor, to allow a correct blend formation. 

 

• High HOMO level (absolute value), for a high Voc.  

 

All these characteristics make the PTBs family a good choice for the donor material in 

BHJ OSC. Among all of them, PTB7 showed the best results in terms of efficiency. 

Blended together with PC71BM as the electron acceptor to form a BHJ structure, an 

efficiency of 7.4 % was achieved. 

 

         

 

Figure 2.15 Molecular structure of PTB7. 
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Nowadays, the highest reported and confirmed efficiency in an OSC was achieved by 

Mitsubishi Chemical in 2011, being of 11.1% [Service-2011; Green-2014]. Although 

the BHJ architecture is still the most efficiency configuration, it has some issues that 

limit the potential of the OSC. For the case of the planar bilayer configuration, we 

have that the donor and the acceptor materials connect the anode and the cathode 

respectively through direct paths selectively. This not always happens for the BHJ 

configuration, since in this case we have a disordered blend. If the blend is not 

perfectly bicontinuous and interpenetrated, some regions of the donor and the 

acceptor materials can easily become isolated without direct paths for the charge 

carriers to the respective electrodes. These carriers will not contribute to the 

photocurrent and will be lost due to recombination. Hence, to achieve high 

efficiencies with BHJ devices, we must control perfectly the blend morphology. 

However this constraint is not easy to achieve.   

 

 

  2.4.4.- INTERDIGITATED APPROACH 

 

One promising alternative to the BHJ architecture is the interdigitated heterojunction 

approach. Developed in recent years, this architecture provides devices with a 

widespread D–A interface. The advantage over the bulk heterojunction approach is 

that the interdigitated cells provide uninterrupted direct paths for charge carrier 

collection to the electrodes [Hoppe-2004]. However, this advantage is achieved at the 

expense of a reduced D–A interface area and longer average paths for excitons from 

the generation point to this interface in comparison with the bulk heterojunction 

structure. Previous works have shown that the improvements in the electrical 

behaviour of the interdigitated heterojunction cells can lead to an increase in their 

efficiency [Kim-2010; Yang-2005; Yu-2011; He-2011; Zheng-2009; Wiedemann-2010]. 
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The interdigitated D–A interface can be obtained with the template-assisted synthesis 

method since it allows obtaining nanometer scale structures [Kim-2010; Baek-2009; 

Kim2-2010; Santos-2010; Palacios-2008; Balderrama-2014]. In previous works, our 

research group (Nano-Electronic and Photonic Systems, NePhoS, group from the 

Universitat Rovira i Virgili) demonstrated the possibility of obtaining polymer 

nanopillars onto indium-tin-oxide (ITO)/coated glass substrates from nanoporous 

anodic alumina templates (NAAT) [Santos-2010; Balderrama-2014]. Once the NAAT 

are made [Masuda-1997], the polymer is inserted in the template with a combination 

of the spin-coating and the melt-assisted template wetting methods. Finally, the 

NAAT is dissolved in a solution of sodium hydroxide (NaOH), obtaining the polymer 

nanopillars [Santos-2010; Balderrama-2014]. The detailed process to obtain a 

complete OSC with a structure Glass/ITO/PEDOT:PSS/P3HT-

Nanopillars/PC70BM/Ca/Ag is showed in Figures 2.16 and 2.17. 
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Figure 2.16 Detailed process to obtain an interdigitated heterojunction OSC with a 

structure Glass/ITO/PEDOT:PSS/P3HT-Nanopillars/PC70BM/Ca/Ag (first part) 

[Balderrama-2014]. Thk stands for thickness. 
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Figure 2.17 Detailed process to obtain an interdigitated heterojunction OSC with a 

structure Glass/ITO/PEDOT:PSS/P3HT-Nanopillars/PC70BM/Ca/Ag (second part) 

[Balderrama-2014]. Thk stands for thickness. 

 

The geometrical features of the NAAT such as pore diameter, interpore distance, 

porosity, degree of hexagonal pore arrangement and thickness are rather controllable 

by the anodization parameters (anodization voltage, temperature, and type and 

concentration of the acid electrolyte) [Masuda-1997]. Figure 2.18 shows two 

environmental scanning electron microscopy (ESEM) images of poly(3-

hexylthiophene) (P3HT) nanopillars obtained by using NAAT manufactured under 

different anodization conditions. Figure 2.18A shows nanopillars with an average 

height of 380 nm, a diameter of 180 nm and an interpillar distance of 490 nm. The 
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nanopillars are standing on a 220 nm thick P3HT base layer, which is in contact with 

the ITO-coated glass. Figure 2.18B shows P3HT nanopillars on a 260 nm thick base 

layer and with 100 nm height, 70 nm diameter and 100 nm interpillar distance.  

 

 

     

Figure 2.18 Environmental scanning electron microscopy (ESEM) cross section image 

of P3HT nanopillars with 380 nm high, 180 nm diameter and 490 nm interpillar 

distance (A) and of P3HT nanopillars with 100 nm high, 70 nm diameter and 100 nm 

interpillar distance (B). 

 

B) 

A) 
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Although nowadays the BHJ architecture is still reaching the higher efficiencies, an 

optimization of the interdigitated D–A interface and a better understanding of this 

kind of structures can contribute to increase the efficiency in OSC and, possibly, will 

lead to the next technological leap in organic photovoltaics.       

 

 

 2.5.- REVIEW OF NUMERICAL MODELLING METHODS FOR ORGANIC SOLAR CELLS 

 

In many fields, numerical simulation models have helped to develop many 

technologies and understand their mechanisms. They are able to predict results 

without the need to fabricate real devices. This fact allows reducing development 

times, since simulations are faster than a device fabrication, and costs, since material 

waste from fabricating non-optimal devices can be reduced. Since many years ago, 

several models exist for the case of inorganic cells, however the behaviour of OSC is 

still not perfectly known. We can find some studies reporting OSC models [Pettersson-

1999; Barker-2003; Paulus-2012; Koster-2005; Andersson-2008; Dennler-2007; 

Kirchartz-2008; Shang-2011; Kotlarski-2008; Yang-2008; Meng-2010; Kim-2011; Raba-

2014]. Nevertheless, most of them correspond to the planar bilayer or the bulk 

heterojunction architecture. For the case of the interdigitated approach, the topic of 

this thesis, it is more difficult to find previously reported work [Yang-2008; Meng-

2010; Kim-2011; Raba-2014]. 

 

The cases of the bulk heterojunction architecture models [Koster-2005; Andersson-

2008; Dennler-2007; Kirchartz-2008; Shang-2011; Kotlarski-2008] are difficult to 

compare with the interdigitate ones since the active regions are blends of the 

different organic semiconductors. These blends are usually considered effective 

mediums of the two materials that conforms them. On the other hand, we have that 

the planar bilayer architecture is closer to the interdigitated one, since in both cases 
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the donor and the acceptor materials are not mixed together [Pettersson-1999; 

Barker-2003; Paulus-2012].  

 

Regarding interdigitated OSC models, Yang et al. [Yang-2008] have simulated the 

photocurrent generation in interdigitated devices by using a dynamical Monte Carlo 

model that includes the generation and transport properties of both excitons and free 

charges. They compare planar and planar-mixed heterojunction structures, 

homogeneous and phase-separated Donor–Acceptor (D–A) mixtures, idealized 

structures composed of D–A pillars, and nanocrystalline D–A networks. Despite their 

extensive study, only values for the internal and external quantum efficiencies are 

calculated while the achievable energy conversion efficiencies are only estimated by 

using typical experimental values for the open circuit voltage and the Fill Factor.  

 

The method proposed by Meng et al. [Meng-2010] method describes the main 

processes (the generation, diffusion, and dissociation at the interface of the excitons; 

and the drift, the injection from the electrodes, and the collection by the electrodes 

of the charge carries) in the OSC also by the dynamic Monte Carlo approach. In their 

simulations, excitons are created at randomly chosen sites in either the hole or 

electron conducting polymer at constant rate, neglecting light wave features such as 

diffraction and interferences.  

 

Figure 2.19 Models used in Yang et al. study. (A) Planar bilayer, (B) bulk 

heterojunction, and (C) interdigitate configurations. 

A) B) C) 
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Figure 2.20 Models used in Meng et al. study. M1 is a planar bilayer, M2 and M3 are 

blends, and M4 is an interdigitated structure. 

 

A more accurate model has been presented by Kim et al. [Kim-2011]. In their 

approach the absorbed light in the active layer was computed by considering the 

wave nature of light with Maxwell’s equations and the photocurrent density was 

calculated by considering the generation, diffusion, and dissociation of excitons 

following the exciton diffusion equation. However, the electron and hole transport in 

the polymer materials were computed using an equivalent circuit model. 
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Figure 2.21 Model used in Kim et al. study. The interdigitated D–A interface geometry 

was variable.  

 

Raba et al., [Raba-2014], proposed a mathematically rigorous approach to generate 

the current density–voltage (J–V) characteristics of OSC. Their model includes charge 

transfer (CT) states as intermediate states between the excitons and the free carriers. 

The CT state was assumed to be pinned at the interface between the donor and 

acceptor domains and is thus explicitly considered as a 2D species. Consequently, 

their model allows taking into account the morphology of the active layer, contrarily 

to the 1D models commonly used. The rigorous derivation of the boundary conditions 

associated with the interface between the donor and acceptor domains, a critical 

point for models that treat the interface as a 2D surface, is also detailed and entails 

an integral formulation. Despite the complex and detailed electrical modelling in their 

work, they used a constant exciton generation rate, avoiding the use of an optical 

model.  
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Figure 2.22 Model used in Raba et al. study. 

 

The novelty of the work presented in this Ph. D. dissertation, if compared with these 

examples of previous reported studies, is that in our case we develop a numerical 

model, based on the finite elements method, for the complete simulation of 

interdigitated heterojunction full organic solar cells. We integrate in the same model 

the different steps of the solar energy conversion process: light propagation and 

absorption, exciton diffusion, and charge carrier transport. The main advantages of 

such approach is that it allows evaluating all the relevant magnitudes as a function of 

position and that the result of each step can be used seamlessly as the input for the 

next step. This method will be explained in next chapter. 
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CHAPTER 3 

 

NUMERICAL SIMULATION OF THE 
STEPS OF THE SOLAR ENERGY 
CONVERSION PROCESS IN   
ORGANIC SOLAR CELLS 
 

 

 3.1.- THE FINITE-ELEMENT METHOD 

 

In mathematics, the finite-element method (FEM) is a numerical technique for finding 

approximate solutions to boundary value problems for partial differential equations. 

It uses subdivision of a whole problem domain into simpler parts, called finite 

elements, and variational methods from the calculus of variations to solve the 

problem by minimizing an associated error function. Analogous to the idea that 

connecting many tiny straight lines can approximate a larger circle, FEM encompasses 

methods for connecting many simple element equations over many small 

subdomains, named finite elements, to approximate a more complex equation over a 

larger domain [Reddy-2005]. 
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The subdivision of a whole domain into simpler parts has several advantages: 

 

 Accurate representation of complex geometry 

 Inclusion of dissimilar material properties 

 Easy representation of the total solution 

 Capture of local effects 

 

A typical work out of the method involves (1) dividing the domain of the problem into 

a collection of subdomains, with each subdomain represented by a set of element 

equations to the original problem, followed by (2) systematically recombining all sets 

of element equations into a global system of equations for the final calculation. The 

global system of equations has known solution techniques, and can be calculated 

from the initial values of the original problem to obtain a numerical answer. 

 

In the first step above, the element equations are simple equations that locally 

approximate the original complex equations to be studied, where the original 

equations are often partial differential equations (PDE). To explain the approximation 

in this process, FEM is commonly introduced as a special case of Galerkin method. The 

process, in mathematical language, is to construct an integral of the inner product of 

the residual and the weight functions and set the integral to zero. In simple terms, it is 

a procedure that minimizes the error of approximation by fitting trial functions into 

the PDE. The residual is the error caused by the trial functions, and the weight 

functions are polynomial approximation functions that project the residual. The 

process eliminates all the spatial derivatives from the PDE, thus approximating the 

PDE locally with: 
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 a set of algebraic equations for steady state problems 

 a set of ordinary differential equations for transient problems 

 

These equation sets are the element equations. They are linear if the underlying PDE 

is linear, and vice versa. Algebraic equation sets that arise in the steady state 

problems are solved using numerical linear algebra methods, while ordinary 

differential equation sets that arise in the transient problems are solved by numerical 

integration using standard techniques such as Euler's method or the Runge-Kutta 

method. 

 

In step (2) above, a global system of equations is generated from the element 

equations through a transformation of coordinates from the subdomains' local nodes 

to the domain's global nodes. This spatial transformation includes appropriate 

orientation adjustments as applied in relation to the reference coordinate system. 

The process is often carried out by FEM software using coordinate data generated 

from the subdomains. 

 

FEM is best understood from its practical application, known as finite element 

analysis (FEA). FEA as applied in engineering is a computational tool for performing 

engineering analysis. It includes the use of mesh generation techniques for dividing a 

complex problem into small elements, as well as the use of software program coded 

with FEM algorithm. In applying FEA, the complex problem is usually a physical system 

with the underlying physics such as the Euler-Bernoulli beam equation, the heat 

equation, or the Navier-Stokes equations expressed in either PDE or integral 

equations, while the divided small elements of the complex problem represent 

different areas in the physical system. 
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FEA is a good choice for analyzing problems over complicated domains (like cars and 

oil pipelines), when the domain changes (as during a solid state reaction with a 

moving boundary), when the desired precision varies over the entire domain, or when 

the solution lacks smoothness. For instance, in a frontal crash simulation it is possible 

to increase prediction accuracy in important areas like the front of the car and reduce 

it in its rear (thus reducing cost of the simulation). Another example would be in 

numerical weather prediction, where it is more important to have accurate 

predictions over developing highly nonlinear phenomena (such as tropical cyclones in 

the atmosphere, or eddies in the ocean) rather than relatively calm areas. 

 

Our work has been carried out on the basis of the finite-element method by using 

COMSOL Multiphysics®. This commercial software is a finite element analysis, solver 

and simulation software / FEA Software package for various physics and engineering 

applications, especially coupled phenomena, or multiphysics. The packages are cross-

platform (Windows, Mac, Linux). In addition to conventional physics-based user 

interfaces, COMSOL Multiphysics® also allows for entering coupled systems of partial 

differential equations (PDE). The PDE can be entered directly or using the so-called 

weak form [COMSOL-2010]. 

 

The main product in COMSOL Multiphysics® is COMSOL Desktop which is an 

integrated user interface environment designed for cross-disciplinary product 

development with a unified workflow for electrical, mechanical, fluid, and chemical 

applications. The add-on modules blend into COMSOL Desktop, and the way of 

operation of the software remains the same no matter which add-on products are 

engaged. COMSOL Multiphysics® also provides application programming interfaces 

(APIs). The COMSOL API for use with Java comes included with COMSOL 

Multiphysics®, and provides a programmatic way of driving the software through 
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compiled object oriented code. LiveLink for MATLAB allows to work with COMSOL 

Multiphysics® in combination with MATLAB. 

 

The Physics Builder, which is included in COMSOL Desktop, allows creating custom 

made physics interfaces accessible from the COMSOL Desktop with the same look-

and-feel as the built-in physics interfaces. In the case of the Physics Builder, no 

programming is needed as it works in the COMSOL Desktop from the Physics Builder 

Tree, defining new user interface components. The Applications Builder is also 

available with COMSOL Desktop and allows saving models as specialized applications 

for use without going into the details of the simulations model. Two editors are 

available for designing applications; using drag-and-drop tools, in the Form Editor, or 

by programming using the Method Editor. There is scope to include specific features 

from the model or introduce new ones through programming using the Method 

Editor. 

 

Several add-on products are available for COMSOL Multiphysics®, each one related to 

one specific field. These modules have been categorized according to several 

applications areas (Figure 3.1):  

 

 Electrical  

 Mechanical 

 Fluid  

 Chemical 

 Multipurpose 

 Interfacing 
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Figure 3.1 Add-on products available for COMSOL Multiphysics®. These have been 

categorized according to several applications areas: Electrical, Mechanical, Fluid, 

Chemical, Multipurpose, and Interfacing. Reproduced from COMSOL Multiphysics® 

website (http://www.comsol.com).  

 

 

Figure 3.2 Example of application of the FEM by using COMSOL Multiphysics®. Mesh 

of calculation points (A) and the resulting map of the amplitude of the electric field, 

|E| in V/m, for three gold nanospheres when an incident light is applied (B). 

A) B) 

UNIVERSITAT ROVIRA I VIRGILI 
DESIGN AND MODELLING OF INTERDIGITATED AND NANOSTRUCTURED POLYMER SOLAR CELLS 
Pedro Granero Secilla 
Dipòsit Legal: T 891-2015 

http://www.comsol.comn/


                  Numerical simulation of the steps of the solar energy conversion process in OSC 

 

 

51 
 

Figure 3.2 shows an example of application of the FEM by using COMSOL 

Multiphysics®. In this figure it is depicted the defined mesh of calculation points 

(Figure3.2A) and the resulting map of the amplitude of the electric field, |E| in V/m, 

of three gold nanospheres when an incident light is applied (Figure3.2B). As 

mentioned above, the aim of the FEM is to divide the simulation domain into simpler 

parts. The use of a mesh of calculation points allow this. 

 

In our work the possibility of using this mesh, which in COMSOL Multiphysics® can be 

controlled and adapted by the user, is exploited to develop a numerical simulation 

procedure of the photovoltaic conversion process with all the magnitudes calculated 

as a function of the position. The complete Maxwell equations, the exciton diffusion 

equation, and the drift-diffusion model are solved within the same numerical 

framework. The model can be divided into two main parts: the optical and the 

electrical behaviour. The results of each step of the photovoltaic conversion process 

are used as an input of the subsequent step, in all cases as a function of the position.  

 

 

 3.2.- OPTICAL MODELLING: LIGHT ABSORPTION 

 

  3.2.1.- OPTICAL SIMULATION PROCEDURE 

 

This step of the photovoltaic conversion process has been modelled by using the RF 

Module of COMSOL Multiphysics®. This module is required to model electromagnetic 

fields, currents and waves for radio frequency (RF), microwave, optical, and other 

high-frequency devices [COMSOL RF-2010].  

 

The finite-element method allows the simulation of light propagation inside the cell 

nanostructure and the computing of the absorbed light power as a function of the 
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position. This magnitude, obtained by solving the complete Maxwell equations, is 

expressed as the total power dissipation density (Q). At any position r


 in the 

structure, such dissipation Q( r


;), expressed in W/m3, for a monochromatic wave of 

wavelength  is defined as follows [Andersson-2008]: 

SrQ


);(                               (3.1) 

where S


 is the Poynting vector, which represents the energy flux (in W/m2) of an 

electromagnetic field [Born-Wolf-1999]. The total power dissipation density that will 

contribute to exciton generation is obtained by integrating Q over the entire active 

area.  

 

However, we only have considered the excitons generated in the donor material layer 

(in our case P3HT) since the contribution to the photocurrent of the ones generated 

in the acceptor material (in our studies PCBM) will be very small. The exciton diffusion 

length in the acceptor material is very short so most of the excitons will recombine 

before reaching the dissociation interface [Burkhard-2009; Cook-2009]. This happens 

even for the case of the bulk heterojunction approach where the internal quantum 

efficiency (IQE) is very low for the wavelengths where PCBM absorbs and P3HT does 

not (around 700 nm) [Brabec-2004; Dennler-2007]. In addition, light absorption in the 

PCBM is weak at these wavelengths [Defranoux-2010]. Hence, in order to reduce 

computational times, we have neglected the excitons generated in the PCBM. So only 

the total power dissipation density in the P3HT layer will be analyzed: 

 

   
HTP

dVrQQ
3

;


.                              (3.2) 

 

Then, by summing it for all wavelengths, we obtain the total light absorption of a 

device for the incident light source: 
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 
i

iTotal QQ  .                              (3.3) 

 

 

  3.2.2.- MODEL VALIDATION 

 

In the simulation studies it is always important to know if the implemented numerical 

procedure is reproducing in an accurate manner the real devices behaviour. A usual 

way to procedure is by comparing the obtained results with the ones obtained with a 

different simulation tool for the same device model. In our case we have make a 

comparison between our numerical procedure and the program OpenFilters for the 

case of bulk heterojunction organic solar cells. 

 

OpenFilters is an open-source program, under the GNU General Public License, an 

open-source license, for the design of optical filters. It is programmed in Python and 

C++, and the graphical user interface is implemented with wxPython. It allows 

creation of multilayer and graded-index filters and calculation of reflection, 

transmission, absorption, phase, group delay, group delay dispersion, colour, 

ellipsometric variables, admittance diagram, circle diagram, electric field distribution, 

and generation of reflection, transmission, and ellipsometric monitoring curves. It 

also provides the refinement, needle, step, and Fourier transform methods 

[Larouche-2008]. 

 

This program has been developed to simulate optical filters, which are devices that 

selectively transmit light of different wavelengths, usually implemented as plane glass 

or plastic devices in the optical path which are either dyed in the bulk or have 

interference coatings. Optical filters are completely described by their frequency 

response, which specifies how the magnitude and phase of each frequency 
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component of an incoming signal is modified by the filter. The different layers of the 

bulk heterojunction (BHJ) organic solar cells (OSC) can be considered optical filters, 

since they also transmit light selectively depending on the wavelength of the incident 

light. 

 

In this section we have calculated the light absorption of bulk heterojunction OSC 

with the structure ITO/PEDOT:PSS/P3HT:PCBM. The ITO and the PEDOT:PSS layers 

thicknesses are 180 nm and 45 nm, respectively, while the thickness of the 

P3HT:PCBM blend have been varied in a range of values. The optical properties of the 

materials have been modelled by using the refractive index (n) and the extinction 

coefficient (k) of the complex index of refraction (ñ = n + ik), which have been 

obtained from the literature [Synowicki-1998; Pettersson-2002; Monestier-2007]. 

 

Figures 3.3 and 3.4 show light absorption for a structure of 

ITO/PEDOT:PSS/P3HT:PCBM for several blend thicknesses for the results obtained by 

using COMSOL Multiphysics® and OpenFilters. The trend of the absorption curves are 

very similar between them for any P3HT:PCBM thickness for the cases of the 

simulations with COMSOL. The curves have a noticeable absorption peak for 

wavelengths at around 350 nm and then an abrupt decrease of the absorption for 

wavelengths above the 600 nm. It can be seen also that as the thickness of the 

P3HT:PCBM increases the light absorption increases too. The same behaviour can be 

observed in the results given by OpenFilters, with only minor differences. Hence, it 

can be concluded that our numerical simulation procedure is working correctly since 

the same results have been achieved with two different simulation methods. 
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Figure 3.3 Light absorption for a structure of ITO/PEDOT:PSS/P3HT:PCBM for a blend 

thickness of 60 nm (A and B) and 100 nm (C and D). Results have been obtained by 

using COMSOL Multiphysics® (A and C) and OpenFilters (B and D). 

A) B) 

C) D) 
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Figure 3.4 Light absorption for a structure of ITO/PEDOT:PSS/P3HT:PCBM for a blend 

thickness of 140 nm (A and B) and 200 nm (C and D). Results have been obtained by 

using COMSOL Multiphysics® (A and C) and OpenFilters (B and D). 

 

 

  3.2.3.- COMPARISON BETWEEN 2D AND 3D MODELLING 

 

An issue of the FEM is that the computation times increase when increase the amount 

of calculation points of the mesh. For the case of a complex 3D structure, such as the 

interdigitated Donor–Acceptor interface of the studied OSC, the resulting 

computation times can be too large to make systematic studies. So it is necessary to 

make simplifications in order to obtain acceptable computational times.   

A) B) 

C) D) 
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In this section, we compare the absorbed light, from a standard AM1.5 light source 

model, in the P3HT layer of interdigitated OSC by using two models: a 2D and a 3D 

one. The 2D one (Figure 3.5A) is a simplification of a real 3D device where the 

nanostructured interface is composed of alternating blocks of each organic material. 

The advantages of this model over the 3D one are an easier geometry definition, 

shorter computing times and smaller simulation files. On the other hand, since it is a 

2D definition, nanopillars are actually grooves. A more realistic 3D model is presented 

in Figure 3.5B, where a more complex geometry represents the nanopillars. In both 

cases we model a structure of indium tin oxide (ITO), Poly(3,4-

ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), P3HT, PCBM and a 

back contact of aluminium (Al). The parameters under study are α (nanopillar 

diameter), β (structure period, 2D, or interpillar distance, 3D, where β = 2α) and T 

(nanopillar height including the supporting base).   

 

 

Figure 3.5 Schematic unit cell (periodic conditions) of the structure 

ITO/PEDOT:PSS/P3HT/PCBM/Al for (A) the 2D and (B) the 3D models. 
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Figure 3.6 Total absorbed light power (QTOTAL) in the P3HT layer of the 2D model as a 

function of the nanopillars height (T) for several nanopillar diameters (α). 

   

Figure 3.7 Total absorbed light power (QTOTAL) in the P3HT layer of the 3D model as a 

function of the nanopillars height (T) for several nanopillar diameters (α). 
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Figure 3.6 shows the total absorbed light power (QTOTAL) in the P3HT layer as a 

function of the nanopillars height (T) for several nanopillar diameters (α) for the 2D 

model. We can see that all the curves have a similar trend with two local maxima for T 

around 80 nm and 230 nm. A local minimum for T close to 130 nm is also present in 

all cases. The maximum absorption is achieved for α = 12.5 nm while the lower 

absorption is clearly for α = 125 nm. Figure 3.7 shows the total absorbed light power 

(QTOTAL) in the P3HT layer as a function of the nanopillars height (T) for several 

nanopillar diameters (α) for the 3D model. In this case we can see that the curves also 

follow a similar trend but with some differences. For α = 12.5 nm and 50 nm the 

maximum absorbed light take place for T = 70 nm and 260 nm while there is a local 

minimum for T = 150 nm. However, for the biggest diameters the local maxima are 

achieved for a pillar height of 50 nm and 190 nm, and the minimum QTOTAL take place 

for T = 110 nm. The amount of absorbed light for each height is also a bit different, 

being higher for the 3D model.  

 

So, if we compare the results of the two models we can find some discrepancies. 

These differences come from the fact that in one model we have grooves while in the 

other there are actual nanopillars. Despite these differences, the two models follow a 

similar trend and both results are within the same order of magnitude. Hence, a 2D 

model of a real 3D interdigitated OSC can be a first accurate approximation to make a 

systematic analysis. However, we should keep in mind that it is not accurate enough 

to replace totally a 3D model. 
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  3.2.4.- ANALYSIS OF THE INFLUENCE OF THE ANGLE OF POLARIZATION OF  

               THE INCIDENT LIGHT 

 

Simulation models need to be as much as accurate as possible. However it is difficult to 

take into account all the possible parameters since it will increase computational times 

to unviable times, so simplifications must be applied. A simplification that can be 

applied in our numerical simulation procedure is to consider that the incident light in 

solar cells is linear polarized while sunlight is not. However simplifications must be 

checked if they can be applied without losing accuracy in the results. In this section we 

investigate light absorption in interdigitated heterojunction full OSC for the case of 

P3HT/PCBM devices. The aim of this study is to determinate if the angle and the 

polarization of the incident light must be taken in account in the optical simulation 

models or it can be neglected for a simplified analyse and to reduce computational 

times.  

 

From the NAAT templates we can obtain devices where the P3HT layer consists of a 

regular hexagonal distribution of nanopillars. Our computational domain is a 3D 

model of one of this hexagonal unit cells (Figure 3.8). The model consists of a 

structure of indium tin oxide (ITO), poly(3,4-ethylenedioxythiophene) 

poly(styrenesulfonate) (PEDOT:PSS), P3HT, PCBM and aluminium (Al). In order to 

determinate if the angle of polarization of the incident light () must be taken in 

account in the optical simulation models or it can be neglected, we have performed 

simulations of different light source configurations. The incident light is assumed to 

be normal to the surface of the devices and incident from the ITO side. It has been 

modelled as a set of monochromatic waves with a planar wavefront. Since the 

hexagonal unit cell is symmetric, we only have to check the light polarization in one of 

the quadrants of the geometry, as it is displayed in Figure 3.9. The polarization angle 
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ranges from 0 to π/3 radians in intervals of π/12 radians. The optical properties of the 

materials have been modelled by using the refractive index (n) and the extinction 

coefficient (k) of the complex index of refraction (ñ = n+ ik). We also have varied the 

nanopillar diameter (ØNP) and the diameter of the circle that circumscribes the 

hexagon (ØHEX) to determine if the possible variations in the amount of absorbed light 

depend on the unit cell geometry. The rest of the geometry remains fixed. 

 

 

 

Figure 3.8 Schematic unit cell (periodic conditions) of the structure 

ITO/PEDOT:PSS/P3HT/ PCBM/Al. Cross section (A) and top view (B) showing the 

geometrical characteristics and the variables under study. The residual layer of the 

nanopillar is 10 nm thick. 
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Figure 3.9 Schematic unit cell (periodic conditions) of the structure 

ITO/PEDOT:PSS/P3HT/PCBM/Al. Cross section showing the unit cell height (z-direction) 

along the centre of the nanopillar in red (A) and top view showing the polarization 

angle () (B). 

 

Figure 3.10 shows the total power dissipation density as a function of the unit cell 

height (z-direction) along the centre of the nanopillar for several angles of 

polarization (), for several ØNP and ØHEX, for a wavelength of 450 nm: (A) ØNP = 100 

nm, ØHEX = 500 nm; (B) ØNP = 100 nm, ØHEX = 300 nm; (C) ØNP = 100 nm, ØHEX = 150 nm; 

(D) ØNP = 50 nm, ØHEX = 500 nm; (E) ØNP = 200 nm, ØHEX = 500 nm; (F) ØNP = 350 nm, 

ØHEX = 500 nm. In all six cases the curves show a similar trend. Until the 180 nm, which 

corresponds with the ITO layer, the amount of absorbed light is very low. This changes 

in the PEDOT:PSS layer, 180 to 225 nm, which shows a higher power dissipation. 

However, most of the light is absorbed in the P3HT region, especially in the first tens 

of nm due to the high absorption coefficient of this material at this wavelength, 

showing a very high peak. In the following layers the amount of absorbed light is 

lower since most of the incident light has been absorbed in the P3HT region. In 

Figures 3.10A, B, C and D we also can see a peak of amount of absorbed light centered 

on the 400 nm. This height corresponds to the round top of the nanopillar.   
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Figure 3.10 Total power dissipation density as a function of the unit cell height (z-

direction) along the centre of the nanopillar for several angles of polarization (), for 

several ØNP and ØHEX, for a wavelength of 450 nm: (A) ØNP = 100 nm, ØHEX = 500 nm; (B) 

ØNP = 100 nm, ØHEX = 300 nm; (C) ØNP = 100 nm, ØHEX = 150 nm; (D) ØNP = 50 nm, ØHEX = 

500 nm; (E) ØNP = 200 nm, ØHEX = 500 nm; (F) ØNP = 350 nm, ØHEX = 500 nm. 

A) B) 

C) D) 

E) F) 
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Regarding the angle , we can observe a very similar behaviour in each case, 

especially for the geometries of Figures 3.10 B, E and F. For the other cases, we can 

find some differences in the amount of the absorbed light for each . However, most 

of these small dissimilarities occur out of the active region, P3HT volume, that goes 

from z = 225 to 435 nm. Additionally, the differences that occur inside the active 

region, as we can see especially in Figures 3.10A and C, are very small. So, they will 

not affect the exciton generation rate and they can be neglected.  

 

Figure 3.11 shows the total power dissipation density as a function of the unit cell 

height (z-direction) along the centre of the nanopillar for several angles of 

polarization (), for several wavelengths, and for ØNP = 100 nm and ØHEX = 500 nm: (A) 

λ = 350 nm; (B) λ = 420 nm; (C) λ = 475 nm; (D) λ = 550 nm; (E) λ = 600 nm; (F) λ = 650 

nm. Since here we have varied the wavelength of the incident light, the curves are 

very different between them since the absorption coefficient of the different 

materials strongly depends of the wavelength. For Figure 3.11A, B and C, most of the 

light absorption occurs on the P3HT region. For longer wavelengths, Figure 3.11D and 

E, the absorbed light in the PCBM layer is comparable to the P3HT one. Finally for a 

wavelength of 650 nm (Figure 3.11F) most of the light is absorbed in the back metal 

contact since both organic materials, P3HT and PCBM, have a very low absorption in 

the red-infrared range.      

 

Regarding the polarization angle , as in Figure 3.10, we can observe a very similar 

behaviour in each case. This angle seems to not affect the amount of absorbed light 

as only minimum differences between the curves can be observed, mainly in Figure 

3.11E around z = 400 nm. So will not modify the amount of absorbed light for the 

spectrum range that we have to consider to simulate an OSC.  
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Figure 3.11 Total power dissipation density as a function of the unit cell height (z-

direction) along the centre of the nanopillar for several angles of polarization (), for 

several wavelengths, and for ØNP = 100 nm and ØHEX = 500 nm: (A) λ = 350 nm; (B) λ = 

420 nm; (C) λ = 475 nm; (D) λ = 550 nm; (E) λ = 600 nm; (F) λ = 650 nm. 

 

A) B) 

C) D) 

E) F) 
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Hence, we can conclude that a single angle computation is enough to obtain good 

optical simulations for interdigitated OSC with a regular hexagonal lattice distribution. 

This fact allows reducing computation times being sure that we are not going to lose 

accuracy in the results and that them will be as much as possible close to experimental 

studies data. 

 

 

 3.3.- ELECTRICAL MODELLING: EXCITON DIFFUSION, AND CHARGE TRANSPORT  

          AND EXTRACTION 

 

  3.3.1.- LINK BETWEEN THE OPTICAL AND THE ELECTRICAL MODEL 

 

One of the advantages of the FEM is that it is possible to obtain the calculated 

magnitudes as a function of the position. COMSOL Multiphysics® allows extracting 

them in a text file to facilitate a later use [COMSOL-2010]. In the numerical simulation 

procedure of this Ph. D. thesis, once an optical simulation is finished the light 

absorption maps as a function of the position are extracted. They are obtained also as 

a function of the incident light wavelength. Then, by summing them all, the resulting 

light absorption map is entered as a part of the exciton generation rate (excgen) to 

solve the exciton diffusion equation. In Figure 3.12 it is depicted an example of 

summation of light absorption maps for the absorption wavelength range of P3HT.  
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Figure 3.12 Example of the resulting map for an organic solar cell obtained by 

summing several light absorption maps for different wavelengths. Units are in W/m3.   

 

  3.3.2.- ELECTRICAL SIMULATION PROCEDURE  

 

As seen in the previous subsection, the total exciton generation rate can be obtained 

at every point of the P3HT layer by summing the exciton generation rate 

corresponding to each wavelength. However, in OSC only those excitons that reach 

the dissociation interface will contribute to photocurrent, hence it is also necessary to 

estimate the exciton flux to this interface. After being generated, excitons diffuse 

around their neighbourhood and eventually dissociate into free charges or recombine 

following the exciton diffusion equation. So the exciton density as a function of time 

at a position r


can be set as follows:    
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where Dexc = L2/τ is the diffusion constant of the excitons, being L and τ the exciton 

diffusion length and mean lifetime respectively, h the Planck constant, and i the 

wavelengths of the considered incident plane waves.  

 

The photogenerated current density (JPHOTO) is proportional to the exciton flux at the 

dissociation interface (JEXC) [Pettersson-1999]: 

 

EXCPHOTO JqJ                            (3.6) 

 

where θ is the efficiency of exciton dissociation at the interface and q is the elementary 

charge. By assuming a 100% efficiency in exciton dissociation and in charge collection, 

we can obtain the maximum attainable JPHOTO. This magnitude gives a first 

approximation of the amount of absorbed light that it is actually effective.  

 

To obtain the complete current density–voltage (J–V) characteristics we have used the 

drift-diffusion model. This model uses the general semiconductor drift-diffusion 

equations for electrons and holes to describe charge transport [Kirchartz-2008; Barker-

2003; Shang-2011]. We assume that the transport properties of the organic materials 

can be modelled by mobility, density of states (DOS), and doping levels together with a 

free charge generation and a bimolecular recombination terms. 
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The continuity equations for electrons and holes set as follows: 
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In Equations 3.7 and 3.8, the current density expressions for electrons and holes, Jn and 

Jp respectively, are: 
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where n and p are the electron and the hole densities, D the diffusion constant of the 

free carriers, μ the carriers mobility, and ψ the electrostatic potential.  

 

The free charge generation rate )(rG


is given by the exciton flux able to reach the 

dissociation interface. Since in OSC excitons only dissociate in the D–A interface, it is in 

this region were carriers will be generated. We have modelled a very thin generation 

zone in this interface to model this effect. For the recombination rate )(rR


 we have 

used the bimolecular recombination definition since in OSC it is one of the most crucial 

charge carrier loss mechanism [Shang-2011]: 
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where ni is the intrinsic carrier density of electrons or holes, and ε is the product of the 

vacuum permittivity ε0 and the relative permittivity εr of the organic materials. All the 

parameters have been obtained from the literature [Würfel-2009; Hadziioannou-

Malliaras-2007; Wang-2011; Monestier-2007]. 

 

Together with the continuity equations, the Poisson’s equation also needs to be 

solved: 
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Equations 3.7, 3.8 and 3.12 are solved in an iterative loop (Figure 3.13). To reduce the 

number of iterations needed to solve the three dependent equations, an initial value 

for ψ for the Poisson’s equation must be supplied: 
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where Vt is the thermal voltage, ninit and pinit the charge concentration at the interfaces 

of the active layer and the electrodes, Ndoping the doping concentration,  the electron 

affinity and Egap the effective band gap between the lowest unoccupied molecular 

orbital (LUMO) of the acceptor and the highest occupied molecular orbital (HOMO) of 

the donor. In our case ninit and pinit are set as follow: 
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Figure 3.13 Flow chart of the electrical model simulation process. It starts with an 

initial value for the potential and the carrier densities. The steady state is obtained by 

solving the Poisson’s and the continuity equations iteratively. 

 
To obtain a unique solution for this system of equations, it is necessary to specify the 

carrier densities and the potential at both contacts, i.e., the boundary conditions. The 

contact at x = 0, where x denotes the position within the device, corresponds to the 

top contact and the contact at x = L, where L is the device thickness, corresponds to 

the bottom contact. The top contact is assumed to line up with the conduction band 
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of the semiconductor and is therefore Ohmic. Using Boltzmann statistics, the 

boundary conditions are set as follows for this contact [Koster-2005]: 

 


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where Nc is the effective density of states of both the conduction and valence band. 

This implies that the contacts are in thermodynamic equilibrium, in contrast to the 

rest of the device. Since the exact values of the effective densities of states of valence 

and conduction band are not known and are of little importance, one value for both 

bands is used [Koster-2005]. Similarly, the bottom contact is assumed to be hole 

Ohmic, thus: 
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Finally, in order to obtain the solution of the continuity and the Poisson’s equations, 

the effective band gap (Egap) sets the boundary condition for the electrostatic 

potential: 

 

agap VqEL  /)()0(                          (3.18) 

 

where Va is the applied external voltage. 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
DESIGN AND MODELLING OF INTERDIGITATED AND NANOSTRUCTURED POLYMER SOLAR CELLS 
Pedro Granero Secilla 
Dipòsit Legal: T 891-2015 



                  Numerical simulation of the steps of the solar energy conversion process in OSC 

 

 

73 
 

  3.3.3.- CHARACTERISTIC PARAMETERS OF SOLAR CELLS 

 

The purpose of a solar cell, no matter which technology is behind, is to convert the 

sunlight radiation in to usable electricity by following the solar energy conversion 

process. To compare a solar cell with another and determinate which is better, it is 

necessary to know the amount of electricity that each device can generate for a given 

illumination, i.e. the efficiency of the cell. This information can be extracted from the 

characteristic current density–voltage (J–V) curves of the devices, which are obtained 

by applying different voltages to a solar cell and by measuring the obtained current 

density in the output. 

 

Figure 3.14 shows a simple equivalent circuit model for a solar cell. The behaviour of a 

photovoltaic cell can be approximated by an ideal current source Iph in a parallel 

association with a diode, which come from the photogenerated current and the pn 

junction, respectively. In order to describe more precisely the behaviour of a solar 

cell, two resistances are usually added to the circuit model: the shunt (Rsh) and the 

series (Rs) resistances. Rsh and Rs are equivalent resistances in a parallel association 

and in a series association with the source, respectively. Both resistances reproduce 

unwanted effects in a device. Hence, ideally, Rsh will be an open circuit and Rs will be a 

short circuit. High values of Rsh and low values of Rs will be present in good quality 

devices. 
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Figure 3.14 Simplified equivalent circuit model for a solar cell. 

 

A solar cell works in the quadrant where the voltage is positive and the current is 

negative. In the ideal model (Rsh =   and Rs = 0), the generated photocurrent density 

can be expressed as follows: 
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where e is the elementary charge, k is the Boltzmann constant, T is the temperature 

expressed in K and I0 stands for the reverse saturation current. 

 

The experimental current–voltage (I–V) curves are obtained by exposing a solar cell to 

a constant light radiation at a constant temperature. Then, while the value of a load 

resistance (RL) is varied, the produced photogenerated current is measured. By 

modifying this load resistance, two important characteristic parameters of the solar 

cells can be obtained (Figure 3.15):    
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 Short circuit current (Isc), or current density (Jsc): It is the generated current, 

or current density, when the terminals of the cell are in short circuit. In this 

case, the voltage is zero. The associated RL is zero.   

 

 Open circuit voltage (Voc): It is the voltage for the condition of open circuit, 

i.e., when the current is zero. This case corresponds to a RL =  . 

 

These characteristic parameters can be calculated mathematically by using the 

equation 3.19 by considering different constraints:  

 

 If V = 0  →  I  =  Isc 

 If  I = 0  →  V = Voc 

 

The open circuit voltage and the short circuit current are related and they can be 

expressed one as a function of the other with the following expression: 
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Apart from these two extreme points of the characteristic I–V curves, it also can be 

obtained the so called maximum power point (Pm). This point determines the 

operating point that will make that the delivered power to the load resistance will be 

the highest possible. The corresponding values of current and voltage are Im and Vm, 

respectively (Figure 3.15). 
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Figure 3.15 Simplified equivalent circuit model which includes a load resistance (R), 

and the characteristic I–V curve of a solar cell. In the curve there are depicted several 

characteristic parameters of the solar cells.   

 

Another important characteristic parameter of the solar cells that determines its 

quality is the Fill Factor (FF < 1). This parameter is defined as follows:  

 

scoc

mm

IV

IV
FF




                   (3.21) 

 

This parameter is strongly affected by the Rsh and the Rs resistances. In an ideal case 

(Rsh =   and Rs = 0) the FF will achieve a value of one, however this will never be the 

case due to the losses in the real devices. High values of Rsh and low values of Rs will 

make that the FF will achieve a value close to unity. Fill Factors with a value close to 

one will indicate that the solar cell is close to be ideal and that the maximum power 

that will deliver to the load will be higher than for the case of devices with a low FF. 

Finally, the yield of a solar cell to convert the energy received from the solar radiation 

into electricity can be quantified through the Power Conversion Efficiency (PCE or η). 
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This parameter can be defined as the relation between the maximum power delivered 

by the cell (Pm) and the power received from the sun (Pin): 
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where A is the illuminated area and in  the incident light intensity in W/area units. 

The improvement of this efficiency is a key point in the research of the field of 

photovoltaics that can help to make this energy source at least as profitable as the 

traditional polluting energy sources.     
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CHAPTER 4 

 

ANALYSIS AND OPTIMIZATION       
OF INTERDIGITATED ORGANIC 
SOLAR CELLS 
 

 

 

 

 4.1.- STUDY OF THE INFLUENCE OF NANOSTRUCTURING IN LIGHT ABSORPTION 

AND CHARGE CARRIER GENERATION IN INTERDIGITATED OSC 

 

In this section light absorption and charge carrier generation of organic 

nanostructures are studied by means of finite-element modelling for a wide range of 

structuring widths, periods and heights for poly(3-hexylthiophene):1-(3-

methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (P3HT:PCBM) structures [Granero2-2013]. 

Since the structuring size range includes values of the order of magnitude of the 

incident light wavelength, some kind of light trapping and, with this, a possible 

increase in light absorption with respect to planar equivalent bilayer models can be 
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expected. It is also possible to await that for particular characteristic dimensions the 

nanostructure will start to behave like an effective medium. Exciton diffusion has also 

been studied to evaluate the effective amount of absorbed light contributing to 

photocurrent. This study can be used to optimize experimental devices, which can be 

achieved via nanoporous anodic alumina templates. After these theoretical studies, a 

validation of the simulation method with experimental results, manufactured in our 

facilities, is presented in section 4.3. Some parameter adjustments are exposed to 

totally fit the model to the real devices.   

 

 

  4.1.1.- COMPUTATIONAL DOMAIN 

 

To evaluate the influence of the structural features on light absorption and on charge 

carrier generation in interdigitated BHJ OSC, in this section we have chosen to model 

only the organic structure in a 2D-computational domain, with size 5x5 μm2, as shown 

in Figure 4.1. To avoid unwanted reflections from the light source at the domain 

boundaries we have used the Scattering Boundary Condition provided by COMSOL RF 

module. A boundary defined with this condition is transparent for an incoming plane 

wave [COMSOL RF-2010]. So, it will act as a perfectly absorbing boundary. 

 

The structures under analysis are located to the right of the computational domain. 

They are 4 μm-width (y-direction) with a variable thickness (x-direction) that ranges 

from 30 to 100 nm. Such small thickness has been chosen because of two reasons: a) 

the small exciton diffusion length, and b) the very high absorption coefficient that the 

organic materials have. Because of a), in thicker layers the produced excitons would 

be too far from the dissociation interface. On the other hand, because of b), thinner 

layers would make the nanostructuring effects nearly negligible. 
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Figure 4.1 Diagram, not to scale, of the computational domain used in simulations 

displaying the light source and the cell under study positions. It also shows the 

geometrical features of the nanostructuring and the coordinate system. 

 

Model cells are composed of three layers. The first layer (left), onto which light is 

incoming, is composed of poly(3-hexylthiophene) (P3HT) and has a thickness of 10 

nm. The second layer (middle) corresponds to the nanostructured region, consisting 

of alternating blocks of P3HT and PCBM with α width and height T. Consequently, as it 

is indicated in Figure 4.1, the period is 2α. Finally, the third layer (right) is composed 

of 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (PCBM) an also has a thickness of 

10 nm.  

 

The parameter α has been varied in a range of values from 1.25 to 2000 nm (see Table 

4.1). Only those values of α that allow an integer number of blocks of each material 

have been considered. In this way, since both P3HT and PCBM blocks are identical in 

size, there will be the same amount of each organic semiconductor and the same 1:1 

proportion for all α. Thus any differences in the absorption properties can be 
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attributed to nanostructuring. The parameter T takes the values of 10, 20, 40 and 80 

nm. From here this parameter will be indicated as the geometrical ratio to the fix 10 

nm-thick planar layer, becoming the selected values 1:1, 1:2, 1:4 and 1:8. The results 

of the nanostructured materials will be compared with that of a reference that 

consists of a planar bilayer structure with the same amount of each organic material 

as the nanostructured devices for each geometrical ratio. This structure consists of 

two layers, being the first (left) of P3HT and the second (right) of PCBM. 

 

In our case we have modelled the optical features of the involved materials by using 

the refractive index (n) and the extinction coefficient (k) of the complex index of 

refraction (ñ = n + ik) obtained from Ref. [Defranoux-2010]. 

 

 (nm) Period (2) (nm)  (nm) Period (2) (nm) 

1.25 2.5 80 160 

2.5 5 100 200 

5 10 125 250 

10 20 200 400 

12.5 25 250 500 

20 40 400 800 

25 50 500 1000 

40 80 1000 2000 

50 100 2000 4000 

62.5 125   

 

Table 4.1 List of the used nanostructuring sizes, width (α) and periodicity (2α). 
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The light source has been modelled with the Scattering Boundary Condition since it 

can also be used to simulate an incoming wave from an outer boundary of the 

domain. This light source is placed to the left of the computational domain and it 

emits a right-propagating monochromatic linear polarized wave, with Ex = Ey = 0, and 

Ez ≠ 0. The wavefront is planar and 4-μm width. In order to obtain the absorption 

spectrum, simulations for wavelengths in the range from 250 to 650 nm in intervals of 

5 nm have been carried out. We have chosen this wavelength range because it 

corresponds to the absorption range of P3HT. 

 

 

  4.1.2.- LIGHT ABSORPTION STUDY 

 

Figure 4.2 shows the relative light absorption in the P3HT material of the 

nanostructured devices if compared with that of the reference planar bilayer 

structure (Q(λ)/QRef(λ)) as a function of wavelength (λ) for a geometrical ratio of 1:2. 

Our results can be divided into four groups, each one corresponding to one of the 

different behaviours that we have observed as a function of α. Figure 4.2A 

corresponds to the range of α from 1.25 to 12.5 nm. It can be observed that for 

wavelengths above 375 nm there is an important increase in the absorption if 

compared with the reference cell. However, for short λ there is a decrease instead. 

This is in agreement with other studies that also have reported this same behaviour in 

light absorption spectra [Kim-2010; Van Dijken-2011; He-2011]. From Figure 4.2A it 

can be also observed that all the curves follow the same behaviour showing very little 

differences between them. This fact suggests that the nanostructured region of these 

cells behaves as an effective medium, given the very small values of α if compared 

with λ.  
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Figure 4.2 Relative light absorption in the P3HT material of the nanostructures if 

compared with that of the reference planar bilayer device (Q(λ)/QRef (λ)) as a function 

of wavelength for α from 1.25 to 12.5 nm (A), 20‒100 nm (B), 125‒250 nm (C), and 

400‒2000 nm (D) for a geometrical ratio of 1:2. 

 

To check the validity of this hypothesis, we show in Figure 4.3 the absorption maps 

(total power dissipation density in W/m3) of the nanostructures for different values of 

α and for λ = 450 nm. Figure 4.3A corresponds to a structure where the 

nanostructured layer has been replaced by a homogeneous layer simulating an 

effective medium. The optical constants (n and k) of this middle layer have been 

obtained as an average of the P3HT and the PCBM optical constants. Figure 4.3B 

corresponds to α = 1.25 nm. In this case, materials boundaries are not displayed for a 

better comparison. Finally, the structure in Figure 4.3C corresponds to α = 12.5 nm. It 

A) B) 

C) D) 
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can be seen that the absorption maps show the same distribution in the three cases, 

which indicates that for such a fine nanostructuring the central layer behaves as an 

effective medium. 

 

 

 

Figure 4.3 Absorption maps for λ = 450 nm for the cell which nanostructured region is 

an effective medium (A), α = 1.25 nm (B), α = 12.5 nm (C), α = 125 nm (D), α = 200 nm 

(E), α = 250 nm (F), the planar bilayer reference cell (G), α = 400 nm (H) and α = 2000 

nm (I) for a geometrical ratio of 1:2. Units are in W/m3 for the power dissipation and 

in m for the geometry. For α = 1.25 nm the boundaries of the nanostructuring are not 

displayed for a better comparison with the effective medium reference cell. 
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The results for α between 20 and 100 nm are shown in Figure 4.2B. For increasing α, 

the behaviour of Q(λ)/QRef(λ) begins to differ from that of an effective medium. The 

absorption of the nanostructured cell for λ between 375 and 600 nm decreases with 

increasing α and it can even be lower than for the planar bilayer structure at certain 

wavelengths for the highest values of α. Instead, the trend is the opposite for 

wavelengths below 325 nm, with an especially important increase when α is 80 or 100 

nm. This change in the behaviour can be explained by the fact that the 

nanostructured layer does not longer behave as an effective medium and effects 

related to the size of the nanostructuring begin to take place. Furthermore, these 

results are in agreement with previously reported experimental work. Kim et al. [Kim-

2010] reported an enhancement in absorption in the range of 450‒600 nm and a 

decrease for short wavelengths. Their cells had a 50 nm-width and 100 nm periodicity 

nanostructuring. However, Wiedemann et al. [Wiedemann-2010] did not find any 

significant differences between nanostructured (α = 40 nm) and bilayer films. 

Nevertheless, they did not report complete information concerning to light 

absorption. 

 

The graph of Figure 4.2C shows the relative absorption of the P3HT layer for α = 125, 

200 and 250 nm. For α = 125 nm the behaviour of the cell follows the same trend as 

with Figure 4.2B: Q(λ)/QRef(λ) decreases for long wavelengths and it increases for 

short ones if compared with smaller nanostructuring geometries. For α = 200 nm, we 

can observe a trend that differs from the previous ones. In this case the increase in 

light absorption for short wavelengths is less pronounced. However, the increase near 

400 nm is close to 50%, the greatest obtained value. Another important difference for 

α = 200 nm is the decrease of Q(λ)/QRef(λ) at long wavelengths, which becomes lower 

than unity in the λ range from 500 to 600 nm. Finally, for α = 250 nm we can observe 

another behaviour. As for α = 200 nm, there is a maximum of absorption at λ = 400 

nm but now is less pronounced, and the decrease from this maximum is slower with a 
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plateau around 475 nm. For α = 250 nm a range with relative absorption below unity 

is also present although it is red-shifted with respect the case of α = 200 nm. The 

behaviour observed in this graph indicates that a nanostructuring with a period (2α) 

in the range of λ influences critically the light absorption properties. The 

nanostructured layer behaves like a subwavelength diffraction grating that 

contributes to trap the normally incident light in the plane of the structures. 

Depending on α and on the wavelength, the incident light can be concentrated in a 

proper region of the P3HT layer with this grating effect, leading to an increase in 

absorption. This can be seen in Figures 4.3E, e and F, where the absorption maps of 

the three structures for λ = 450 nm are shown. For α = 125 nm, the highest light 

absorption takes place in the thinner regions of the P3HT layer, while for the other 

two structures absorption is concentrated in the thicker parts. Thus, we can expect a 

higher amount of absorbed light for these two α values. 

 

Finally, the results for α between 400 and 2000 nm are shown in Figure 4.2D. As in the 

case of the first group of values of α, the curves are very similar between them. Little 

differences can only be observed at the maximum of λ = 400 nm and at wavelengths 

close to 450 nm. The highest relative absorption is achieved for α = 2000 nm. For this 

group of sizes, it is also remarkable that the relative absorption is always above unity. 

The absorption maps for the reference cell (Figure 4.3G), α = 400 nm (Figure. 4.3H), 

and α = 2000 nm (Figure 4.3I) can help us to explain these results. The absorption in 

the P3HT structures is not uniform as it shows regions with higher absorption than 

the reference structure while others with lower absorption. These variations indicate 

that the device is acting as a diffraction grating, although not a subwavelength one. 

Thus, even though there exist some propagative modes that are transmitted, there 

are still modes that become coupled to the structure and absorbed efficiently. 
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Although these results are very promising, we should keep in mind that not all the 

absorbed light will be actually profitable. Figure 4.4 shows the Ref

TotalTotal QQ /  of the 

total absorbed power as a function of α for the different geometrical ratios. All the 

curves follow the same trend but at different levels. It can be observed that the best 

total absorptions are achieved for high α values, with a local maximum at around α = 

250 nm. Instead, for small α values the absorption is constant and begins to decrease 

for α above 10 nm, reaching a local minimum at around α = 100 nm. As it can be 

expected, for the shallower structures (ratio 1:1) the relative absorbed light is close to 

unity for all α. Then, as the structure height increases, there is an increase in the 

relative absorbed light up to the ratio 1:4. However, for a ratio of 1:8, there is an 

important decrease in Ref

TotalTotal QQ / for all the structures sizes instead. 

        
Figure 4.4 Relative light absorption in the P3HT layer of the nanostructures, if 

compared with that of the reference planar bilayer device, as a function of α for the 

different geometrical ratios considering the complete P3HT layer. The inset shows the 

total absorbed light for the nanostructures (QTotal) and for the equivalent planar 

bilayer reference ( Ref

TotalQ ) as a function of the geometrical ratio for α = 250 nm. 

UNIVERSITAT ROVIRA I VIRGILI 
DESIGN AND MODELLING OF INTERDIGITATED AND NANOSTRUCTURED POLYMER SOLAR CELLS 
Pedro Granero Secilla 
Dipòsit Legal: T 891-2015 



                  Analysis and optimization of interdigitated organic solar cells 

 

 

89 
 

So, we have that if the structure height T is too short, the structure still behaves like 

the planar architecture and there is no significant increase in light absorption. On the 

other hand, if T is too high, the total absorbed light will be lower than the one of the 

planar equivalent reference. This can be explained by examining separately the total 

absorbed light for the ordered bulk heterojunction and for the equivalent planar 

bilayer reference, at a given α, as it is plotted in the inset of Figure 4.4 for α = 250 nm. 

In all cases, the total absorbed light increases with increasing amount of P3HT. 

However, the light trapping effect of the structured cells allows absorbing more light 

in the P3HT, provided its height does not exceed a given value corresponding to the 

intersection of the curves in the inset of Figure 4.4. 

 

 

  4.1.3.- EXCITON DIFFUSION AND MAXIMUM ATTAINABLE  

               PHOTOGENERATED CURRENT DENSITY 

 

Figure 4.5 depicts the maximum attainable photogenerated current density (JPHOTO) of 

the nanostructured devices as a function of α for the different geometrical ratios. All 

the curves follow approximately the same trend: maximum currents are achieved for 

the smallest α, with a decrease with increasing α and a slight recover at α = 250 nm. 

However, as the geometrical ratio increases the relative JPHOTO also increases, 

achieving a maximum for a structure height of 80 nm, despite having this value the 

lowest relative absorbed light. The dependence of JPHOTO with the geometrical ratio is 

different for the smaller α than for the bigger. This is illustrated in the inset of Figure 

4.5, where the JPHOTO as a function of the geometrical ratio is presented. For small a 

JPHOTO increases with increasing structure height, while this trend is inverted for big α. 

The graph includes also the JPHOTO of the corresponding reference planar cells, which is 

in all cases smaller than for the nanostructured cells and decreases as the thickness 

increases. 
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Figure 4.5 Maximum attainable photogenerated current density (JPHOTO) of the 

nanostructured devices as a function of α for the different geometrical ratios. The 

inset shows JPHOTO for the nanostructures and for the equivalent planar bilayer 

reference (PBL) as a function of the geometrical ratio for several α. 

 

Thus, for devices with big values of α many of the extra absorbed light does not 

contribute to charge generation. On the other hand, although for small α values the 

increase in light absorption is more modest, nearly all the P3HT layer will be close 

enough to the dissociation interface and more of the generated excitons will produce 

free charge carriers. A higher geometrical ratio will also give better results in terms of 

relative JPHOTO since the planar equivalent structures will be too thick for an efficient 

exciton dissociation. With an optimal geometry, this increment in the relative 

photocurrent can be more than a factor 6. The observed improvement in the 

behaviour of the devices with the nanostructuring of the interface can be attributed 

to two factors: i) the light trapping from the nanostructuring, and ii) the extended 

dissociation interface of nanostructured cells if compared with the planar bilayer 
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device. From our results, it is clear that the second factor is much more determinant 

since light trapping only can be noticed in the relative maximum around α = 250 nm. 

 

 

 4.2.- STUDY OF THE INFLUENCE OF NANOSTRUCTURING IN THE EFFICIENCY OF 

INTERDIGITATED OSC 

 

In this section we analyze the influence of the nanostructured dissociation interface 

geometry on the overall efficiency of interdigitated heterojunction full organic solar 

cells (OSC). A systematic analysis of light absorption, exciton diffusion, and carrier 

transport, all in the same numerical framework, is carried out to obtain their 

dependence on the interface geometrical parameters: pillar diameter and height, and 

nanostructure period. Cells are constituted of poly(3-hexylthiophene) (P3HT) and 1-

(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (PCBM) [Granero-2013]. Unlike in the 

previous section, which focused on the behaviour of only the organic semiconductors, 

in this case we aim at modelling the complete devices since the different layers and 

the electrodes directly affect the cells’ efficiency. It is possible that this study results 

will reveal similar conclusions than in the previous one, since the short exciton 

diffusion length of organic materials is a strong limitation in this kind of cells. 

However, charge transport must be take into account to obtain accurate results that 

can be compared to experimental data.  

 

 

  4.2.1.- COMPUTATIONAL DOMAIN 

 

Since in this section we are going to compute the overall efficiency of OSC, it is not 

enough to only consider the organic part of the devices as previously. Here, our 

model is a 2D simplification of a complete real 3D device. It consists of a structure of 
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ITO, poly(3,4-ethylenedioxythio-phene) poly(styrenesulfonate) (PEDOT:PSS), P3HT, 

PCBM, and a back contact of aluminium (Al) as it is shown in Figure 4.6. This 

simplification implies that the cell is nanostructured in the form of interpenetrating 

P3HT and PCBM grooves. The ITO, PEDOT:PSS, and Al thicknesses are fixed while the 

variables are the P3HT groove width α, (equivalent to the nanopillar diameter in a 3D 

nanostructure), the period β (equivalent in 3D to the interpillar distance), the ratio of 

the groove width to the period (γ = α/β), and the nanopillar height including the fix 

base layer (T). In our case, β ranges from 25 nm to 4000 nm, γ takes the values of 

0.25, 0.50, and 0.75, and T is in the range from 30 to 250 nm in intervals of 10 nm 

with an additional value of 500 nm. The optical properties of the materials have been 

modelled by using the refractive index (n) and the extinction coefficient (k) of the 

complex index of refraction (ñ = n + ik), which have been obtained from the literature 

[Defranoux-2010; Synowicki-1998; Pettersson-2002; Rakic-1995]. As reference, the 

results are compared with an equivalent planar bilayer cell with the same amount of 

the different materials for each case. 

   

Figure 4.6 Schematic unit cell model of the structure ITO/PEDOT:PSS/P3HT/PCBM/Al 

showing the fixed parameters and the variables under study. 
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The incident light is assumed to be normal to the surface of the devices and incident 

from the ITO side. It has been modelled as the superposition of a set of 

monochromatic linear polarized waves with a planar wavefront, and with a direction 

that is parallel to the nanopillars. The amplitudes of these plane waves follow the 

standard AM1.5 spectral distribution of the solar radiation. To obtain the complete 

spectrum, simulations have been carried out for wavelengths in the range from 280 to 

650 nm in intervals of 10 nm. We have chosen this wavelength range because it 

corresponds to the absorption spectrum of P3HT, the material where most of the 

excitons will be generated. 

 

 

  4.2.2.- LIGHT ABSORPTION STUDY 

 

Figure 4.7 shows the total absorbed light power (QTotal) in the P3HT layer as a function 

of the period β for γ = α/β = 0.5. All the curves show a similar behaviour with two local 

maxima for T around 80 nm and 230 nm. A local minimum for T close to 130 nm is 

also present in all cases. The maximum absorption is achieved for β = 25 and 4000 nm 

while the lower absorption is clear for β = 250 nm. Since it can be expected that a 

higher light absorption will lead to a higher photocurrent, at least for small periods 

(β), we focus the following electrical calculations on T = 80 nm and on T = 230 nm as it 

will be showed in the next section. 
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Figure 4.7 Total absorbed light power (QTotal) in the P3HT layer as a function of the 

period β for γ = α/β = 0.5. 

 

 

  4.2.3.- ELECTRICAL STUDY 

 

Figure 4.8 shows the obtained JPHOTO as a function of β, for the two considered 

thicknesses, for the interdigitated devices. The JPHOTO for equivalent planar bilayer 

cells (planar BL, cells with the same amount of P3HT and PCBM than the 

interdigitated ones but in planar configuration) are indicated as horizontal lines for 

reference. For all the range of considered β, except for β = 25 nm, JPHOTO for T = 80 nm 

is bigger than for T = 230 nm, even though T = 230 nm corresponds to the highest 

light absorption. We can also observe that as β increases the difference between 

JPHOTO for T = 80 and for T = 230 nm also increases. This fact can be explained by the 

short exciton diffusion length of organic materials. 
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Figure 4.8 Maximum attainable photogenerated current density (JPHOTO) as a function 

of β for the two pillar heights at which the absorbed light is maximum, T = 80 nm and 

T = 230 nm, and for γ = 0.50. The horizontal lines correspond to the JPHOTO of the 

equivalent planar bilayer cells. 

 

To this end, Figure 4.9 depicts the steady state exciton concentration map of an 

interdigitated cell for α = 250 nm, β = 500 nm, and T = 250 nm (A), and of its 

equivalent planar bilayer form (B). It can be seen that in the interdigitated cell 

excitons reach up to a certain depth in the P3HT, limited by the exciton diffusion 

length. In the planar equivalent cell, this limitation results in a low concentration 

gradient of excitons near the Donor–Acceptor interface, which leads to the low JPHOTO 

observed. This argument supports the results that can be observed in Figure 4.8, 

where an improvement in JPHOTO with respect to the bilayer cell can be observed only 

for β below 100 nm. Also it can be seen that the exciton concentration gradient is 

higher over the nanopillars lateral walls than over the remaining interfaces. This 

further examination of the concentration map in Figure 4.9A explains also why JPHOTO 
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decreases with increasing β: as the width of the pillar becomes bigger, less excitons 

are generated close to the lateral interface, where most of them dissociate. 

 

Figure 4.10 shows the complete current density–voltage (J–V) curves for several β 

with γ = 0.5, and for the reference planar bilayer cell for the two thicknesses of 

interest (T = 80 and 230 nm). In this graph, we can see that the open circuit voltage 

(Voc) of the different devices is in a range from 0.5 to 0.6V. Another important 

parameter of solar cells, the short circuit current density (Jsc), shows a higher variation 

between cells, ranging from 0.25 to more than 4.5mA/cm2. These values of Jsc show a 

good correlation with the JPHOTO displayed in Figure 4.8, especially for T = 80 nm. This 

indicates a high charge carrier collection efficiency and that this process is not 

strongly influenced by the geometrical characteristics of the interdigitated interface. 

 

    

Figure 4.9 Exciton concentration map of an interdigitated cell for β = 500 nm, γ = 0.50, 

and T = 250 nm (A), and of its equivalent bilayer form (B). 
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Figure 4.10 Current density–voltage (J–V) curves for several β with a fix γ = 0.50. The 

J–V curves of the reference planar bilayer cells for the two thicknesses of interest (T = 

80 and 230 nm) have also been included. 

 

Figure 4.11 shows the J–V characteristics for T = 80 nm for several β and for different 

γ = α/β. As in Figure 4.10, the Voc for the different cells ranges from 0.5 to 0.6V while 

the Jsc values are distributed over a wider range and show a different trend for 

different β. For β = 25 nm, when γ increases Jsc increases in a similar proportion. 

However, for bigger β, the increase of Jsc with γ is less noticeable. A higher γ implies a 

higher ratio of P3HT, and therefore, more absorbed light. However, not in all cases, all 

this supplementary amount of absorbed light will be actually effective because of the 

short exciton diffusion length of P3HT. 
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Figure 4.11 J–V curves for T = 80 nm for several β and for different γ = α/β. 

 

From the J–V characteristics, we have also obtained the Fill Factor (FF), which is 

shown in Figure 4.12 as a function of γ = α/β for T = 80 nm and several β. We can see 

that while for β = 25 nm the FF decreases when γ increases, there are no significant 

changes for the rest of β when γ varies. If we compare the FF between the different β, 

we can observe that it decreases as the period of the nanostructures increases. This 

parameter is one of the most representing factors in the performance of a solar cell 

since it gives information on the charge transport and recombination mechanisms. 

The analysis of this parameter reveals that, in the case of study, the exciton diffusion 

is a more limiting factor than the charge transport, since when the exciton 

dissociation starts becoming a limitation (large β and γ) the FF decreases. These 

results are in good agreement with our previous interpretations from the analysis of 

the JPHOTO as a function of the geometrical parameters. 
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Figure 4.12 Fill Factor (FF) as a function of γ = α/β for T = 80 nm and several β. 

 

Table 4.2 shows the efficiency (η) corresponding to the devices referred to in the 

previous figures. We can observe that a bigger quantity of donor polymer does not 

always mean better results. Efficiencies are higher for T = 80 than for T = 230 nm for 

the same γ, and a higher γ only represents a noticeable increase in the efficiency for β 

= 25 nm. The increase in β causes a decrease in the efficiency leading to for β as big as 

β = 500 nm, the interdigitated cell efficiencies are lower than that of the equivalent 

planar bilayer. The maximum efficiency is achieved for β = 25 nm, T = 80 nm, and γ = 

0.75, with an efficiency 3.6 times higher than the best planar bilayer reference device. 

This optimal planar cell is the equivalent, in amount of each organic material, for an 

interdigitated cell of T = 60 nm and γ = 0.50 and presents an efficiency of 0.69%. 
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CELLS EFFICIENCY (%) 

 

T = 80 nm, 

γ = 0.25 

T = 80 nm, 

γ = 0.50 

T = 230 nm, 

γ = 0.50 

T = 80 nm, 

γ = 0.75 

β = 25 nm 1,18 1,76 1.72 2,49 

β = 100 nm 0,85 0,95 0.81 0,95 

β = 500 nm 0,34 0,35 0,21 0,38 

BEST PLANAR BILAYER REFERENCE CELL (T = 60 nm):   0,69 

 

Table 4.2 Efficiencies of representative cells obtained from the J–V curves from Figures 

4.10 and 4.11. These values should be compared with the maximum efficiency that 

has been obtained with a planar bilayer reference cell, which is η = 0.69%. 

 

The results of our work show a good agreement with previous reported studies. Yang 

and Forrest [Yang-2008] reported that the absorption by the organic layers limits the 

optimal cell thicknesses to between 200 and 300 nm, a range that includes one of our 

optimized nanopillar height. They also achieved the highest external quantum 

efficiencies with an interdigitated network when the domain size was equal to or 

smaller than the exciton diffusion length. Meng et al. [Meng-2010] found that the 

optimal energy conversion efficiency can be achieved when the feature size is around 

10 nm, a value close to its exciton diffusion length. In the study of Kim et al., [Kim-

2011] they state that for a sufficient light absorption the active layer thickness should 

be greater than the 50% of the photon mean free path, which is the inverse of the 

absorption coefficient (~100 nm for organic materials [Würfel-2009]). However, as in 

our results, extremely high pillars for a complete light absorption do not give the 

highest efficiencies. 
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The results of our study are also in good agreement with reported experimental work 

of several authors. Kim et al. [Kim-2010] reported an increase of 6.6 times in the 

efficiency of P3HT-C60 interdigitated devices if compared with a planar bilayer 

reference cell. Although this improvement factor is bigger than the one we obtain, 

they do not report details about their reference device. He et al. [He-2011] increased 

the efficiency 2.4 times with cells of 25 x 25 nm of nanorod size, 80 nm of nanorod 

height, and 50 nm of structure period, also in good agreement with our results. 

Furthermore, these authors also consider a wide range of nanorod sizes and they find 

the same trend for the Jsc and the efficiency as we do. Other experimental reported 

works also show a good correlation with our study such as Zheng et al. [Zheng-2009] 

with two-fold efficiency increase in 20 nm diameter and 40 nm long nanopillars, and 

Wiedemann et al. [Wiedemann-2010] with an improvement of about 80% in 40 nm-

width and 80 nm-periodicity structures. 

 

 

 4.3.- EXPERIMENTAL VALIDATION 

 

Although the results reported in the previous sections are very promising and can 

help to optimize OSC and to increase their efficiency, they are still theoretical work 

that needs to be linked to real experimental data. The aim of this subsection is to 

validate the proposed simulation scheme by trying to reproduce experimentally 

measured characteristic values of interdigitated devices manufactured in our 

facilities. The Nano-Electronic and Photonic Systems (NePhoS) group of the 

Universitat Rovira i Virgili has developed a method to fabricate polymer nanopillars 

that can be applied to manufacture OSC [Santos-2010]. By using the template-assisted 

synthesis method with nanoporous anodic alumina templates (NAAT) we have 

obtained functional devices that can be compared with our models. Here we use cells 
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with a structure of ITO/PEDOT:PSS/P3HT/PCBM/Ag. To totally fit the model to the real 

devices some adaptations and parameter adjustments have been performed.   

 

 

  4.3.1.- STRUCTURE DEFINITION AND EXPERIMENTAL RESULTS 

 

The structure of the analyzed interdigitated OSC is shown in Figure 4.13. The 

geometrical features of the manufactured devices, such as the thickness of each layer 

and the nanopillar dimensions, are depicted in Table 4.3. To be consistent with the 

previous nomenclature we have that the nanopillar diameter (groove width) is α = 60 

nm, the interpillar distance (period) is β = 100 nm, the ratio of the groove width to the 

period (γ = α/β) is γ = 0.6 nm, and the nanopillar height (excluding the support base 

layer) is T = 80 nm. If this device is compared with the previous modelled ones, we 

can find some differences. In this case the P3HT nanopillars support base layer is 

considerably thicker that the previous one (45 nm instead of 10 nm). Also we have 

now a back silver (Ag) electrode instead of an aluminium (Al) one as in the previous 

cases. With these differences, the model will need little a priori modifications.  

 

         

Figure 4.13 Schematic model of the interdigitated OSC analyzed in this subsection with 

the structure ITO/PEDOT:PSS/P3HT/PCBM/Ag. Reproduced from [Balderrama-2014]. 
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LAYER  THICKNESS (nm) NANOPILLARS FEATURES Value (nm) 

ITO 120 P3HT SUPPORT LAYER 45 

PEDOT:PSS 40 HEIGHT (T) 80 

PCBM 35 DIAMETER (α) 60 

Ag 100 INTERPILLAR DISTANCE (β)  100 

 

Table 4.3 Geometrical features of the analysed device showing the thickness of each 

layer and the nanopillars dimensions. In this case the parameter T does not include the 

support base thickness. 

 

Several complete devices were manufactured in our facilities in the same fabrication 

process. This allows, in principle, obtaining cells with the same constituent materials. 

However, we always can find differences between the cells regarding their behaviour 

due to small variations of temperature, pressure or material properties during the 

fabrication process. In our case we obtained eleven working devices with a similar 

behaviour but with a little deviation in the results. Figure 4.14 depicts an average J–V 

curve of the analyzed experimental interdigitated OSC. The inset table shows the 

average characteristic parameters of this device. 
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Figure 4.14 Average J–V curve of the analyzed experimental interdigitated OSC. The 

inset table shows the average characteristic parameters of this device. 

 

 

  4.3.2.- MODEL APPLICATION TO INTERDIGITATED OSC 

 

   4.3.2.1.- FIRST APPROXIMATION 

 

The first step to reproduce the experimental results has been to apply directly our 

theoretical simulation model and to check the obtained results in each stage. So first, 

the device structure has been defined with the geometrical features previously seen. 

Then, by applying the optical simulation method, taking into account that now the 

back metal contact is silver, we have obtained the exciton generation rate as a 

function of the position.  After it, the exciton diffusion equation was solved to obtain 
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the maximum attainable photogenerated current density (JPHOTO) and we have 

compared this value with the average Jsc from the real device: 

 

• JPHOTO–SIMULATION  =   1.61 mA/cm2 

• Jsc–EXPERIMENTAL     =   6.25 mA/cm2 

 

As it can be seen, the obtained JPHOTO is much lower (close to four times) than the 

experimental value. Considering that JPHOTO is a maximum ideal current, the final 

current given by the cell will be lower than this value, we have that in our model the 

exciton generation rate is lower than it should be or that exciton losses are very high. 

So the model needs to be checked to solve this issue. 

 

 

   4.3.2.2.- MODEL ADAPTION AND PARAMETER FITTING 

 

The exciton generation rate in an OSC depends on the amount of light that it can 

absorb, specifically in the active region (P3HT layer). Hence, to increase this rate it is 

mandatory to increase somehow light absorption there.  

 

The first thing done was to check the layers that are above the P3HT one, since they 

are the first ones to receive the incident light. From here we got that the PEDOT:PSS 

layer was absorbing too much light. One of the characteristics of this polymer is that 

is nearly transparent so it can be used in photovoltaics. However, as it can be seen in 

Figure 4.15B, we choose non-optimal optical constants for it. The used PEDOT:PSS has 

a high extinction coefficient for wavelengths were P3HT is more absorbent, with 

peaks around 350nm and 550 nm. So we had to change the optical constants for 

PEDOT:PSS [Hoppe-2002].   
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Figure 4.15 Original and modified values of the refractive index (n) (A) and extinction 

coefficient (k) (B) of the complex index of refraction (ñ = n + ik) of the PEDOT:PSS 

considered in the simulations. *Modified values taken from literature [Hoppe-2002]. 

B) 

A) 
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Our previous optical computations were restricted to a wavelength range of 280 – 

650 nm, since it is the usual considered absorption range of P3HT. However, some 

works [Nolasco-2010] report that P3HT can show a bandgap of up to 1.7 eV. That 

means that this material can exploit photons from a light source with a wavelength up 

to 730 nm. For the range of wavelengths of 650 – 730 nm P3HT is slightly absorbent. If 

such additional absorption range is considered, the total amount of absorbed power 

predicted by the model would increase.   

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

   

Figure 4.16 Scheme showing how the P3HT chains are randomly arranged inside a film 

type layer (A) and scheme showing the arrangement of the P3HT chains inside the 

nanopillars after the NAATs infiltration (B). Reproduced from [Santos-2010].  

 

B) 

A) 
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Regarding exciton losses, we have that one of the most limiting keys in organic 

photovoltaics is the small exciton diffusion length (LD) of the organic materials. A 

higher LD will increase significantly the photogenerated current density of a device. In 

our previous simulation analysis, we have used a LD of 11 nm, hence, by increasing 

this length it can be possible to get closer to the experimental current densities 

values. However we cannot increase this parameter in an arbitrary way.      

 

In previous works, the Nano-Electronic and Photonic Systems (NePhoS) group of the 

Universitat Rovira i Virgili has shown that high-density arrays of P3HT nanopillars have 

a higher conductivity than thin films of the same polymer [Santos-2010]. By means of 

μ-X-ray diffraction, it has been demonstrated that there is nanoconfinement of 

polymer chains into the pores during the template-assisted process. This implies a 

high alignment of such chains into the nanopillars bulk (Figure 4.16) and, thus, an 

increase of conductivity. It is possible that this chain alignment can also favour exciton 

diffusion, hence P3HT LD can be larger than expected. So to use a higher value for LD in 

our simulation is justified.   

 

By applying the modifications explained above (the adapted optical constants of the 

PEDOT:PSS, the extended incident light wavelength range, and the variation of the 

exciton diffusion length of P3HT) we have been able to achieve current densities as 

high as the experimental values as it can be seen in the Table 4.4. With this issue 

solved, it is possible to proceed to obtain the complete J–V characteristics. 
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Jsc 

EXPERIMENTAL 

JPHOTO         

SIMULATION 

EXCITON DIFFUSION 

LENGTH (LD) 

6.25 mA/cm
2
 6.25 mA/cm

2
 15.34 nm 

 

Table 4.4 Experimental short-circuit current density (Jsc), maximum attainable 

photogenerated current density (JPHOTO) obtained from the simulations, and the exciton 

diffusion length (LD) needed to achieved this current. 

 

Finally, by varying the free charge mobilities, it is possible to modify the form of the J–

V curve, specially the knee. This allows adapting the curve to match the FF and the 

shunt and series resistances to the experimental data. The hole mobility in P3HT can 

range from 10-5 to 10-2 cm2/(V·s), with a typical value of 2·10-4 cm2/(V·s), and the 

electron mobility in PCBM can range from 2·10-3 to 2·10-2 cm2/(V·s), with a typical 

value of 3·10-3 cm2/(V·s) [Monestier-2007]. The final used values were:  

 

• Hole mobility in P3HT          =   2·10-4 cm2/(V·s) 

• Electron mobility in PCBM =   3·10-3 cm2/(V·s) 

 

Figure 4.17 shows the average J–V curve of the analyzed experimental interdigitated 

OSC (green circles) and the final simulation reproduction (black triangles). It can be 

seen that both curves are quite similar. However they do not totally match, having the 

biggest discrepancies between Va = 0.2 V and 0.4 V where the simulation curve 

achieves lower values than the experimental one. The inset table shows the average 

characteristic parameters of the experimental device and the ones obtained via 

simulation. Despite the obtained values from the simulation differs from the 

experimental ones, the experimental data were average values and the differences 

are within the standard deviation range. 
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Figure 4.17 Average J–V curve of the analyzed experimental interdigitated OSC (green 

circles) and the simulation reproduction (black triangles). The inset table shows the 

average characteristic parameters of the experimental device and the ones obtained 

via simulation. 

 

 

 4.4.- SUMMARY AND CONCLUSIONS 

 

In this chapter we have presented two studies about the analysis and the 

optimization of interdigitated OSC, one simulating only the active region and another 

considering the complete device. In the first one, we have analyzed the influence of 

the nanostructured dissociation interface on the light absorption properties and on 

the charge carrier generation of interdigitated nanostructures. We have considered a 

wide range of nanostructuring periods, from very small values as compared with the 
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incident solar light wavelengths (λ) to much bigger values, and several geometrical 

ratios between the fix 10 nm-thick support planar layer and the structure height. We 

have restricted the study to P3HT and PCBM as constituents of the OSC and we have 

considered light absorption only in the active region of the structures (P3HT layer) 

and for its absorption spectrum range. The study has been carried out on the basis of 

finite-element simulations with the COMSOL software, hence magnitudes are all as a 

function of the position. This is an important consideration, since nearly all the similar 

studies always consider uniform approximations of several magnitudes, such as light 

absorption or exciton generation rate, inside the materials. 

 

Regarding light absorption, results can be divided into four groups, depending on the 

magnitude of the nanostructuring characteristic size (α). For sizes smaller than 12.5 

nm we have observed that the nanostructures behave as an effective medium. This is 

especially remarkable since although the optical performance of the layer is the same 

as that of an effective medium material, the two components of the structure are 

actually separated. This means that the nanostructured P3HT is absorbing more light 

as the electric field is enhanced by the close proximity of the PCBM, which has a 

higher refractive index. The second group corresponds to sizes in between those of 

the first group and sizes of the order of magnitude of λ/2. The absorption properties 

for these sizes show a transition in the behaviour between these two groups, with a 

decrease in the total absorption with increasing nanostructuring sizes. When α is of 

the order of magnitude of λ/2, the nanostructure acts as a subwavelength diffraction 

grating which couples light into the nanostructured layer resulting in an increased 

light absorption due to light trapping. The absorption spectra exhibit a wavelength 

dependence clearly different from that of the P3HT. This dependence varies critically 

with the nanostructuring size showing maxima at different wavelengths depending on 

α. For structuring sizes bigger than λ/2, we have observed that the structured 
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interface also acts as a diffraction grating giving rise to some amount of light trapping. 

Although for this case the spectra are not influenced by the structuring features. 

 

We have also estimated the amount of absorbed light that actually contributes to 

charge generation. By solving the exciton diffusion equation, using the previously 

calculated absorption maps as inputs, we have obtained the exciton flux at the 

dissociation interface and, from there, the maximum attainable photogenerated 

current density of the complete OSC. In this case, the smallest nanostructuring sizes 

give rise to the biggest JPHOTO with respect to the planar bilayer reference structures. 

That means that even though the amount of absorbed light is not the maximum, a 

higher amount of it is contributing to photocurrent. The reason of this behaviour can 

be attributed to the poor transport properties of the organic semiconductors and to 

their short exciton diffusion length. For the smallest nanostructuring periods, nearly 

all the excitons are generated close enough to the dissociation interface and they are 

able to dissociate. This not happens for the bigger sizes, so we have higher losses due 

to exciton recombination. The decreasing trend of the JPHOTO is only changed for 

nanostructuring sizes of the order of magnitude of λ/2, where the effect of light 

trapping is noticeable. 

 

The height of the nanostructures is also an important factor in the performance of the 

structures. As the geometrical ratio between the support planar layer and the 

structure height increases the JPHOTO also increases despite having the higher 

structures (big values of T) a lower relative total absorbed light. This fact can also be 

attributed to the short exciton diffusion length of the involved materials. A thick 

planar bilayer structure will absorb a higher amount of light, however most of the 

generated excitons will recombine before reaching the Donor‒Acceptor interface and 

dissociate. On the contrary, in high nanostructured interfaces excitons will still find a 

dissociation interface before recombination, provided the period is small enough. 
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The most remarkable conclusion of this study is that for all nanostructuring sizes an 

improvement with respect to the reference planar devices is observed. We have 

obtained that for an optimal structure thickness and period the increment in the 

photocurrent can be more than a factor 6. Hence, the nanostructured dissociation 

interface of interdigitated OSC can be considered a source of both optical and 

electrical behaviour enhancement. The conclusions of this study, in addition with 

future analysis, can be helpful to improve and to optimize the design of interdigitated 

devices. 

 

In the second study, we analyzed the influence of the nanostructured dissociation 

interface on the overall efficiency of interdigitated heterojunction full organic solar 

cells. Also by means of finite-element numerical modeling, we performed a 

systematic and complete analysis of light absorption, exciton diffusion and carrier 

transport, all in the same numerical framework, and for a 2D model of such cells. With 

this, we obtain their dependence on the cell geometrical parameters: pillar diameter 

and height, and nanostructure period. The donor and the acceptor materials of our 

cells are also P3HT and PCBM, respectively. The aim of this study is to develop a more 

accurate model than the one of the previous study for this kind of cells, which can be 

used for their optimal design. 

 

From the point of view of light absorption, results show that the maximum amount of 

light is absorbed only for two specific values of the nanopillar height, T = 80 nm and T 

= 230 nm, independently of the nanopillar diameter. This suggests that it is due to 

light interference effects. For these nanopillar heights, the maximum absorption is 

achieved by nanostructures with a period of β = 25 nm. Due to the presence of 

additional layers, these results are a little different in magnitude from the ones of the 

first study. However, the trend seems to be similar, light absorption increases when 
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nanopillar height increases until a certain point. Nevertheless, in the first case we did 

not consider nanopillar heights as big as in this case.   

 

By simulating the exciton diffusion process the maximum attainable photocurrent 

density (JPHOTO) can be determined. Results show that to obtain a higher JPHOTO than 

that of the better planar bilayer structure, small nanostructure periods, up to 100 nm, 

should be used. This result is in good agreement with the one of the previous study, 

where we obtained higher JPHOTO with small geometries. However, in that case in all 

the interdigitated models we get higher currents than in the planar bilayer equivalent 

one. By examining the exciton diffusion maps, we can conclude that small nanopillars 

favor the excitons to reach the Donor–Acceptor interface and that the upper limit of 

the nanopillar height is directly related to the limited exciton diffusion length. 

 

Finally, from the J–V characteristics, we obtain the overall efficiency of the cells. We 

observe that there is a direct correlation between the JPHOTO and the cell efficiency, 

which indicates that the charge transport has a lower influence on the overall charge 

collection efficiency. Thus, in order to increase the efficiency, the exciton diffusion 

process is the key limiting factor and this process is better for the smaller nanopillar 

diameters, as we also have conclude from the first study. For β = 25 nm, the efficiency 

depends strongly on the ratio of the nanopillar diameter to the nanopillar period (γ) 

being bigger for higher values of it. Instead, if β values above 100 nm are considered, 

then the efficiency is essentially independent of the γ since the increase in light 

absorption is almost compensated by the exciton recombination losses. Best results 

have been achieved for β = 25 nm, T = 80 nm, and γ = 0.75, with an efficiency that is 

3.6 times higher than the best planar bilayer reference device. 

 

An optimal interdigitated structure should find a compromise between a high 

proportion of electron donor to increase light absorption and a small pillar diameter 
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to ensure an extended D–A interface for exciton dissociation. Due to the short exciton 

diffusion length of organic materials, big nanopillars diameters will result in cells with 

an efficiency even lower than the one of planar bilayer equivalents. The method 

developed in this work can be useful to design optimal full organic solar cells, taking 

into account technological parameters and constraints. 

 

After these theoretical studies, a validation of the simulation method with 

experimental results, manufactured in our facilities, has been presented. By using the 

template-assisted synthesis method with nanoporous anodic alumina templates 

(NAAT) we have obtained functional devices that can be compared with our models. 

These devices have the structure of ITO/PEDOT:PSS/P3HT/PCBM/Ag. To totally fit the 

model to the real devices, some adaptations and parameter adjustments have been 

performed. The adaptations have included the use of modified optical constants for 

the PEDOT:PSS layer, an extended solar spectrum range, a modified exciton diffusion 

length for P3HT, and free charge mobilities adjustments. After these adaptations, the 

simulated results were in good agreement with the experimental data. 
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CHAPTER 5 

 

ANALYSIS AND COMPARISON OF 
DIFFERENT NANOSTRUCTURES       
IN ORGANIC SOLAR CELLS 
 

 

 

 

This chapter is devoted to the application of the improved numerical simulation 

procedure to organic solar cells with the same structure but with different 

nanostructured D‒A junctions. By varying the D‒A interface geometry, we have 

modelled planar bilayer (PBL), nanopillars (NP), nanowells (NW) and nanopyramids 

(NPYR) D‒A junctions. The purpose of this chapter is to compare these kinds of 

nanostructured junctions in OSC for the two existing configurations, the conventional 

and the inverted one. A light absorption and an exciton diffusion study are carried out 

to check which configuration is better in terms of efficiency for each case. In this 

study, the exciton diffusion length (LD) is used as a parameter since, as we have seen 

in the previous chapter, can vary due to the nanoconfinement of polymer chains. 
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 5.1.- DEFINITION OF THE STUDIED JUNCTION MORPHOLOGIES AND CELL  

   ARCHITECTURES. 

 

  5.1.1.- DONOR‒ACCEPTOR JUNCTION 

 

The different Donor‒Acceptor (D‒A) junction morphologies that have been modelled 

are shown in Figure 5.1, where it can be seen the used D‒A nanostructured junctions: 

planar bilayer (PBL) (Figure 5.1A), nanopillars (NP) (Figure 5.1B), nanowells (NW) 

(Figure 5.1C), and nanopyramids (NPYR). The only difference between the NW and 

the NPYR junctions is which form acquires the P3HT layer. If this layer is formed by 

wells and the PCBM one by pyramids (like in Figure 5.1C) we have a NW junction. If it 

is the opposite way (pyramids in the P3HT layer and wells in the PCBM one) we have a 

NPYR junction. For all cases, the structure of the devices follows the layers 

distribution ITO/PEDOT:PSS/P3HT/PCBM/Ag.  

 

In Table 5.1 and in Figure 5.2 it can be seen the values of the dimensions for the 

different nanostructured D‒A features. These values have not been chosen arbitrarily, 

but have been taken from experimental devices manufactured by the NePhoS group 

of the Universitat Rovira i Virgili. The NP junction has been obtained by using the 

template-assisted synthesis method with nanoporous anodic alumina templates 

(NAAT) explained in Chapter 2. The NW and the NPYR junctions have been obtained 

by using the nanoimprint lithography (NIL) method. In this method, a predefined 

pattern is replicated into a deformable material coated on a surface. The predefined 

pattern is usually created on a rigid material (master stamp) that can be used directly, 

or serve as template from which elastomeric stamps (soft stamps) are molded 

[Avnon-2011]. 
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Figure 5.1 Scheme of the simulated devices (A) planar bilayer (PBL), (B) nanopillars 

(NP), and (C) nanowells (NW). The only difference between the NW and the NPYR 

junctions is which form acquires the P3HT layer. 

A) 

B) 

C) 
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Parameter (nm) 
Planar Bilayer 

(PBL) 

Nanopillars 

(NP) 

Nanowells  

(NW) 

Nanopyramids 

(NPYR) 

ITO layer* 120 120 120 120 

PEDOT:PSS layer* 40 40 40 40 

P3HT layer* 130 45 45 45 

PCBM layer* 40 35 50 50 

Ag layer* 100 100 100 100 

PILLAR/WELL/PYR 

height 
- 80** 100*** 100*** 

PILLAR/WELL/PYR 

width 
- 60** 130*** 130*** 

PILLAR/WELL/PYR 

period  
- 100** 230*** 230*** 

 

Table 5.1 Dimensions for the different nanostructured D‒A features. *Layer total 

thickness, ** Figure 5.2A, ***Figure 5.2B.  
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Figure 5.2 Scheme of the features for the nanopillar (NP) structure (A), and for the 

nanowells (NW) one (B). For the NPYR case the P3HT and the PCBM layers geometry 

are swapped. 

 

 

  5.1.2.- CONVENTIONAL AND INVERTED CONFIGURATIONS 

 

In most conventional OSC, a PEDOT:PSS hole transport layer and a low work function 

metal electrode, such as aluminium or calcium, are generally used. However, the 

strong acidic property of the PEDOT:PSS layer is detrimental to the ITO electrode, and 

the low-work-function metal can be easily oxidized in air, both degrading the device 

performance easily in air and leading to a poor stability of the cell [de Jong-2000; 

Greczynski-2001; Pacios-2006; Kyaw-2008; Lin-2013]. A promising solution to improve 

the air stability of OSC is to use the inverted configuration [Hau-2008;  Chen-2009; Xu-

A) 

B) 
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2009; Hau-2010] (Figure 5.3), where an n-type metal oxide film is used as the electron 

transport layer on a ITO substrate (cathode) and a high work function metal, such as 

silver or gold, is used as the top anode. In the inverted configuration, both the low-

work-function metal and the ITO/PEDOT:PSS interface can be avoided so it is possible 

to enhance the device air stability, i.e., to increase the cell durability.  

 

To obtain an efficient device for the inverted configuration, it is crucial to choose a 

proper electron transport layer: it should work as a high conductive path for efficient 

electron extraction while exhibiting good hole blocking capability. Among others, 

titanium dioxide (TiO2) has shown good results due to its superior air stability as 

compared to other semiconductor oxides [Lin-2013]. In our simulation study we 

model a thin film of TiO2 (10 nm) as the electron transport layer for the inverted 

configuration for each type of D‒A interface nanostructuring. 

       

Figure 5.3 Structure schemes of the conventional (A) and the inverted (B) 

configurations in OSC. For the conventional configuration, the ITO/PEDOT:PSS layers 

act as the anode and the Al one acts as the cathode. For the inverted case, the 

ITO/TiO2 layers act as cathode and the Al one acts as the anode instead. 

B) A) 
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 5.2.- INFLUENCE OF THE JUNCTION MORPHOLOGY IN LIGHT ABSORPTION 

 

Figures 5.4 and 5.5 shows the amount of absorbed light in W/m (Total power 

dissipation density) in the P3HT layer as a function of the wavelength for all the 

considered structures. These results are grouped in four graphs, one for each type of 

D‒A nanostructuring.  For both the conventional and the inverted configurations and 

for all nanostructure kinds the curves follow a similar trend: most of the light is 

absorbed in the wavelength range between 350 nm and 650 nm, which corresponds 

to the absorption band of the P3HT. It can be also observed that for all nanostructure 

kinds, the conventional cells absorb a higher amount of light up to a cut-off 

wavelength, at which the inverted configuration absorption overcomes the 

conventional one. The cut-off wavelength is only slightly dependent on the kind of 

nanostructure: for the PBL and the NP structures is 575 nm while for NW and NPYR is 

625 nm. Above this cut-off, the absorption for the inverted PBL and NP structures 

becomes again smaller than the conventional above 800 nm.  

 

The reduction of absorption in the low wavelength range for the inverted 

configuration is undoubtedly caused by the absorption in the PCBM acceptor layer, 

which is highly absorbent below 550 nm. Nevertheless, this reduction is compensated 

up to a certain amount by the increase above the cut-off. In summary, the reduction 

of absorbed energy in all the spectral range in the inverted configurations is 23.90 % 

for PBL, 14.37% for NP, 37.55 % for NW and up to 39.72% for NPYR. It is also worth to 

note that the graphs in Figures 5.4 and 5.5 are in the same scale and that the plots 

have similar heights and widths. This means that the total absorbed energy is similar 

for the conventional structures on one side, or the inverted structures on the other, 

and that the different nanostructuring of the acceptor/donor interface has a little 

impact in the absorption of light. 
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Figure 5.4 Amount of absorbed light in W/m (Total power dissipation density) in the 

P3HT layer as a function of the wavelength for PBL (A) and NP (B). 

A) 

B) 
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Figure 5.5 Amount of absorbed light in W/m (Total power dissipation density) in the 

P3HT layer as a function of the wavelength for NW (A) and NPYR (B). 

A) 

B) 
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 5.3.- INFLUENCE OF THE JUNCTION MORPHOLOGY IN EXCITON DIFFUSION 

 

Figure 5.6 depicts the maximum obtainable photogenerated current density (JPHOTO) as 

a result of the diffusion of the photogenerated excitons. The results correspond to the 

different kinds of nanostructured D‒A interfaces, in conventional and inverted 

configuration, and for a LD = 17.5 nm. For the case of PBL, NP and NW it can be 

observed that higher currents densities for the inverted configuration are obtained, 

while NPYR the result is the opposite. The higher difference in current density 

between conventional and inverted configurations occurs for the PBL while the 

highest absolute current densities are obtained for the NP.  These results 

demonstrate that the use of inverted configurations is justified by a much better 

efficiency in the collection of excitons, which compensates and overcomes the 

reduction in light absorption. This better efficiency is caused by the fact that excitons 

are created closer to the Donor–Acceptor interface. The simulations also show that 

the nanopillar structure it the most efficient in the collection of the photogenerated 

excitons, almost doubling that of the planar bilayer, while the NW and NPYR 

structures show a smaller improvement. It is also interesting to note, that not all kinds 

of nanostructures are able to perform this compensation as it happens for the NPYR 

structures. All these findings should be taken into account in the design of 

nanostructured interfaces. 
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Figure 5.6 Maximum obtainable photogenerated current density (JPHOTO) as a result of 

the diffusion of the photogenerated excitons. The results correspond to the different 

kinds of nanostructures, in conventional and inverted configuration, and for a LD = 

17.5 nm. 

 

In order to examine the exciton collection efficiency of the different nanostructuring 

we show in Figures 5.7 and 5.8 the maximum obtainable photogenerated current 

density (JPHOTO) as a function of the exciton diffusion length (LD) for all the considered 

structures. Figures 5.7A, 5.7B, 5.8A and 5.8B show this magnitude for the PBL, the NP, 

the NW and the NPYR cases respectively. Each graph displays curves for each of the 

conventional and inverted configurations and includes the maximum possible current 

density (JMAX) that would be attained in the absence of exciton recombination. The 

ratio between the value in the curve to this value at a given LD is an indication of the 

exciton collection efficiency of the nanostructured interface.  
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For the PBL structure, the increase of the JPHOTO with LD is linear, with a higher value of 

the inverted structure, and with the two curves converging at the highest LD. If 

comparing with the JMAX, it is clear that the inverted structure has much higher exciton 

collection efficiency at these exciton diffusion lengths. As the inverted configuration 

JMAX is lower than for the conventional, at some point (probably slightly above LD = 

60nm) the two curves intersect and the inverted PBL structure becomes less efficient 

in the whole process of light absorption and exciton collection. Instead, for the 

nanopillars, the increase has a convex shape with a steeper slope at small LD, which 

then stabilizes. The inverted structure shows better JPHOTO in the range of investigated 

LD, and in this case, as JMAX is nearly the same for both configurations, JPHOTO is also 

virtually the same above LD = 60 nm. This means that this structure is optimized both 

for light absorption and exciton collection. 

 

For the nanowell D‒A interface structure (Figure 5.8A) the cross point of the JPHOTO 

curves appears at a lower LD  = 30nm while for the nanopyramid D‒A interface 

structure (Figure 5.8B) the intersection is even inexistent and the JPHOTO of the inverted 

configuration is smaller irrespectively of LD. By comparing the curves with the 

corresponding JMAX values, it can be seen that even though the nanopyramid has the 

smaller JPHOTO of the nanostructured interfaces, it has better exciton collection 

efficiency than the nanowell structure. 
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Figure 5.7 Maximum obtainable photogenerated current density (JPHOTO) as a function 

of the exciton diffusion length (LD) for the PBL (A) and the NP (B) cases. Each graph 

displays also the maximum possible current density (JMAX) that would be attained in 

the absence of exciton recombination. 

B) 

A) 
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Figure 5.8 Maximum obtainable photogenerated current density (JPHOTO) as a function 

of the exciton diffusion length (LD) for the NW (A) and the NPYR (B) cases. Each graph 

displays also the maximum possible current density (JMAX) that would be attained in 

the absence of exciton recombination. 

A) 

B) 
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Figure 5.9 Exciton concentration maps (mol/m3) for the case of NP for the 

conventional (A) and the inverted (B) configurations for LD = 11.02 nm. 

  

To help to explain the fact that, in most cases, the inverted configuration gives higher 

photocurrents despite absorbing lower amounts of light, we show in Figure 5.9 the 

exciton concentration maps. In this figure there is depicted the NP case for the 

conventional (Figure 5.9A) and the inverted (Figure 5.9B) configurations. It can be 

seen that the conventional configuration has higher exciton concentrations (warmer 

colours) due to the higher amount of absorbed light. However, most of these excitons 

are quite far from the D‒A interface, where excitons will dissociate, so the losses due 

to exciton recombination will be high. Meanwhile, the inverted configuration has 

lower exciton concentrations, but the exciton concentration close to the dissociation 

interface is comparable to the conventional case. Hence, the inverted configuration 

makes better use of the excitons and can generate similar or even higher 

photocurrents than its conventional equivalent. 

 

 

A) B) 
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 5.4.- SUMMARY AND CONCLUSIONS 

 

In this chapter, OSC with different nanostructured Donor‒Acceptor junctions have 

been modelled by applying the developed numerical simulation procedure. By varying 

the D‒A interface geometry, we have performed simulations for planar bilayer (PBL), 

nanopillars (NP), nanowells (NW) and nanopyramids (NPYR) D‒A junctions. Two 

configurations, the conventional and the inverted one, have been used in this study. A 

light absorption and exciton diffusion study has been carried out, with the exciton 

diffusion length (LD) used as a parameter, to analyze the influence of the D‒A junction 

geometry and the configuration type (conventional or inverted) in the behaviour of 

the devices.   

 

Results have shown that there is an important reduction of the amount of absorbed 

light by the active region (P3HT layer) in the inverted configuration if compared with 

the amount absorbed by the conventional one. This fact can be attributed to the 

different layer stacking of each configuration. For the conventional case, light arrives 

to the P3HT layer by only crossing through the ITO and the PEDOT:PSS layers, which 

are nearly transparent. For the inverted configuration, light have to cross the PCBM 

layer instead. This material absorbs in a similar range than the P3HT. So the amount 

of light that arrives to the active region will be lower. 

 

However, the exciton diffusion study have shown that despite absorbing less light, 

and as a consequence having a lower exciton generation rate, the inverted 

configuration can generate higher photocurrents in all cases except for the NPYR D‒A 

interface. The exciton concentration maps have shown that for the inverted 

configuration excitons are distributed in a proper way, i.e close to the D‒A interface 

to dissociated, so losses due to exciton recombination are reduced. This is an 

interesting fact since the inverted configuration has the advantage of having a higher 
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stability and durability when exposed to the oxygen and to the water of the 

atmosphere without degrading than the conventional one. Hence, this configuration 

can be a promising solution to increase the efficiency and the lifetime of OSC.        
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CHAPTER 6 

 

 STUDY OF NANOSTRUCTURED    
TiO2 ORGANIC SOLAR CELLS         
AND PLASMONIC GOLD       
PYRAMID ARRAYS 
 

 

 

 

 

 

 

The motivation of this chapter is to apply and to adapt the developed numerical 

simulation method to other devices and structures to demonstrate and to show that 

it can work correctly not only for the full organic solar cells that we have previously 

seen. The simulation model is applied to two situations: hybrid solar cells and gold 

nanosphere pyramids. 
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For case of the hybrid solar cell, we have that the active region is a blend of the 

different organic semiconductors instead of separated materials and has a 

nanostructured titanium dioxide (TiO2) electrode. Several modifications of the 

method presented in Chapter 3 are explained here to adapt the model to this 

different technology, also with the problems that have appeared and how they have 

been solved. Simulation results are also compared with experimental data provided 

from the group of Dr. Monica Lira-Cantu (from the Laboratory of Nanostructured 

Materials for Photovoltaic Energy, CIN2, Barcelona) for nanostructured and flat TiO2 

layers.  A parameter adjust it is also depicted to fully fit the simulation results with the 

experimental data to complete this adapted simulation model. Finally, we also try to 

help to understand why one kind of configuration offers a better efficiency and which 

mechanisms are involved by varying several geometrical parameters of the 

nanostructured TiO2 and the P3HT:PCBM layers. 

 

Regarding the gold nanosphere pyramids, we present a work about the simulation of 

the plasmonic effect in pyramids formed by layers of gold nanospheres. This kind of 

structures is intended to provide cheap ultrasensitive and ultrafast sensors with 

surface-enhanced Raman scattering (SERS) spectroscopy as the transducer, in our 

case, to develop a handheld reversible SERS sensor for the live monitoring of carbon 

monoxide in the atmosphere. The aim of this study is to demonstrate that the optical 

part of the simulation procedure introduced in Chapter 3 can be used to model 

different effects in geometries in the range of the nm so it is not only restricted to 

solar cells. The basics of this study can also be useful to future work related with the 

use of metallic nanoparticles in solar cells to enhance its efficiency. 
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 6.1.- NUMERICAL SIMULATION OF NANOSTRUCTURED TiO2 ORGANIC SOLAR 

  CELLS 

 

  6.1.1.- NANOSTRUCTURED TiO2 ORGANIC SOLAR CELLS 

   

The hybrid solar cell studied in this section is depicted in Figure 6.1A, where it can be 

seen that it has the structure ITO/TiO2/P3HT:PCBM/PEDOT:PSS/Ag. It is therefore an 

inverted configuration where the ITO/TiO2 layers act as cathode and the Ag one acts 

as the anode, similar to the devices studied in Chapter 5. However, there are now two 

important differences between the cells of this section and the previous analyzed 

ones: the active region is a blend of the different organic semiconductors instead of 

separated materials (bulk heterojunction architecture) and the TiO2 electron 

collecting layer is nanostructured. The motivation of this nanostructured electrode is 

to try to increase the device efficiency, if compared with cells with flat TiO2 layers, by 

increasing light absorption and improving charge collection.  

 

Several authors have obtained promising results. For instance, Baek et al. [Baek2-

2009] reported P3HT:PCBM devices with highly ordered nanoporous TiO2 layers to 

improve the performance of the cells. The nanostructured devices showed a higher 

power conversion efficiency if compared with reference ones with flat TiO2 layers, 

1.49% instead of 1.18%. In their conclusions they state that this increase in the 

efficiency comes from an enhanced charge separation and collection due to the 

increasing of the interface area between the TiO2 and the active layer. Their results 

also showed that light absorption in the nanoporous TiO2 devices was slightly higher 

than that on flat ones, especially for wavelengths between 500 and 600 nm. 
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Figure 6.1 Inverted hybrid nanostructured TiO2 solar cell studied in this section. 

Structure scheme (A), scanning electron microscope (SEM) images of the nanoimprint 

lithography (NIL) TiO2 layer, and naked eye images of the NIL TiO2 layer and of a 

finished cell (C). Courtesy of Dr. Monica Lira-Cantu from the Laboratory of 

Nanostructured Materials for Photovoltaic Energy, CIN2, Barcelona. 

 

The research group of Kim et al. presented a highly uniform and predesigned zinc 

oxide (ZnO) nanostructure used as the electron transport layer for inverted bulk 

heterojunction devices [Kim-2013]. Together with TiO2, ZnO has shown good results 

for inverted OSC [Liao-2008]. In Kim et al. study, the device configuration was 

ITO/ZnO/active layer/PEDOT:PSS/Ag, where the ZnO layer followed a groove 

A) 

B) 

C) 
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nanopattern. The groove width and height of this layer were 125 nm and 135 nm, 

respectively, and the period was 800 nm (approximate values). Their results showed 

that the devices with the nanostructured ZnO layer had always a positive effect on 

the OSC performance compared with the reference cell with a planar ZnO thin film, 

including a significant improvement of the Jsc and FF. However, the Voc remained 

similar to that of the reference device. Kim et al. state that the nanopatterned ZnO 

layer worked as an improved electron carrier transport path to the ITO electrode by 

shortening the electron diffusion distance from the active layer, and thus the electron 

collection efficiency was enhanced. 

 

In our case of study, to manufacture the inverted cell the nanoimprint lithography 

(NIL) method has been used. In this method, a predefined pattern is replicated into a 

deformable material coated on a surface. The predefined pattern is usually created on 

a rigid material (master stamp) that can be used directly, or serve as template from 

which elastomeric stamps (soft stamps) are molded [Avnon-2011]. In our case, the 

master stamp is the nanostructured TiO2 layer (Figure 6.1B), which is not removed 

since it is a constituent of the device, and the deformable material is the P3HT:PCBM 

blend. In Figure 6.1C it is shown a naked eye images of the NIL TiO2 layer and of a 

finished cell manufactured by the research group of Dr. Monica Lira-Cantu from the 

CIN2, Barcelona.    

 

Figure 6.2 shows the average current density–voltage (J–V) curves, from 5 samples, 

for the flat and the NIL-TiO2 devices obtained by the research group of Dr. Monica 

Lira-Cantu from the CIN2 (Barcelona). By comparing the two architectures, it can be 

seen that the NIL-TiO2 provides higher currents. However, it seems that there are not 

significant differences between the two devices for the other parameters, such as the 

Voc or the FF. In Table 6.1 it is depicted the characteristic parameters for the two 

architectures obtained from the J–V curves from Figure 6.2. It is also shown the 
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difference in percentage between the two architectures for each parameter. Indeed, 

it can be seen that the NIL-TiO2 devices produce higher currents, while the other 

parameters only vary slightly. This increase in the Jsc leads to higher efficiencies in the 

nanostructured devices, which achieve an improvement of more than 36% if 

compared with the flat reference cells.  

 

These results are in good agreement with Kim et al. ones [Kim-2013], where the ZnO 

nanostructured devices achieved higher Jsc if compared with the reference planar cell.  

In both cases, the nanostructured electron transport layer seems to improve the 

electron carrier transport to the ITO electrode since the increased area shortens the 

electron diffusion distance from the active layer. So, as a result, higher currents can 

be achieved. However, an optical enhancement could also be possible in this kind of 

devices due to light scattering effects. This effect will be analyzed in the following 

sections.        

             

Figure 6.2 Average current density–voltage (J–V) curves for the flat and the NIL-TiO2 

devices obtained from 5 samples. Courtesy of Dr. Monica Lira-Cantu from the 

Laboratory of Nanostructured Materials for Photovoltaic Energy, CIN2, Barcelona. 

UNIVERSITAT ROVIRA I VIRGILI 
DESIGN AND MODELLING OF INTERDIGITATED AND NANOSTRUCTURED POLYMER SOLAR CELLS 
Pedro Granero Secilla 
Dipòsit Legal: T 891-2015 



                  Study of nanostructured TiO2 organic solar cells and plasmonic gold pyramid arrays 

 

 

141 
 

PARAMETER FLAT-TiO2 NIL-TiO2 DIFFERENCE (%) 

Jsc (mA/cm
2
) 8.60 11.54 34.17 

Voc (V) 0.5278 0.5285 0.13 

FF 40.95 41.53 1.44 

PCE (%) 1.86 2.53 36.28 

 

Table 6.1 Characteristic parameters for the flat and the NIL-TiO2 devices obtained 

from the J–V curves from Figure 6.2. It is also shown the difference in percentage 

between the two architectures for each parameter. 

 

 

  6.1.2.- SIMULATION CONDITIONS AND COMPUTATIONAL DOMAIN 

 

In order to reproduce the experimental results for nanostructured and flat TiO2 

devices and analyze them, the numerical simulation model exposed in Chapter 3 has 

been used. This procedure has been thought to model OSC where the electron donor 

and the acceptor materials are actually in two separated regions [Granero-2013]. 

However in the devices studied in this chapter the active region is a blend of the two 

organic semiconductors, so some modifications need to be done. 

 

To turn the P3HT/PCBM bilayer into a monolayer blend of P3HT:PCM we have 

replaced these two layers with only one that will act as the blend. The optical 

constants of this new layer, the refractive index (n) and the extinction coefficient (k) 

of the complex index of refraction (ñ = n + ik), have been obtained from the literature 

[Monestier-2007]. This blend layer will act as a hypothetical semiconductor with the 

LUMO level of the acceptor (PCBM) and the HOMO level of the donor (P3HT), with 

the difference between the two energy levels being the bandgap of this 
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semiconductor [Koster-2005]. The electrical parameters of the blend, such as the hole 

and the electron mobilities, have also been taken from published articles [Nakamura-

2005; Mihailetchi-2006; Monestier-2007]. As it has been done in Chapter 4 with the 

experimental validation of interdigitated OSC, these parameters will varied and used 

to adapt the J–V curves to match the FF and the shunt and series resistances to the 

experimental data. 

 

Other modifications of the numerical simulation model refer to the different 

behaviour that the blend layer has if compared with the bilayer D–A case. In the bulk 

heterojunction architecture, the donor and the acceptor materials are blended 

together in an interpenetrating mixture. This fact affects mainly three steps of the 

solar energy conversion process: the exciton generation, the exciton recombination 

and the free charge transport.   

 

The total exciton generation rate is obtained at every point of interest of the devices 

from the amount of absorbed light (total power dissipation density Q). Due to the 

mixture of the donor and the acceptor materials, in a bulk heterojunction architecture 

this amount of absorbed light needs to be considered in the entire blend.  So, at any 

position r


 in the structure, such magnitude Q( r


;), in W/m3, for a monochromatic 

wave of wavelength  is defined as follows: 

 

   
BLEND

dVrQQ  ;


.                      (6.1) 

 

Then, by summing it for all the considered wavelengths, we obtain the total light 

absorption of a device for the incident light source: 
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 
i

iTotal QQ  .               (6.2) 

 

Ideally, in a bulk heterojunction cell all the generated excitons will be able to 

dissociate by finding the D–A interface before recombine since distances are lower 

that the main exciton diffusion lengths of the materials. To model this effect the 

exciton diffusion equation can be modified by removing the recombination term. 

Hence the exciton density as a function of time at a position r


will be set now as 

follows:    
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           (6.3) 

 

Finally, for the case of the bulk heterojunction approach, free charges can travel 

through the entire active region since the blend acts as a semiconductor with good 

hole and electron mobilities. This did not happen in the previous case, where each kind 

of semiconductor had a good hole or a good electron mobility but not both. 

 

Regarding the computational domain, Figure 6.3 shows a scheme of the two models, 

with the structure ITO/TiO2/P3HT:PCBM/PEDOT:PSS/Ag, used in the simulations: the 

NIL-TiO2 and the FLAT-TiO2. Our model is a 2D simplification of a real 3D device. Since 

the NIL TiO2 layer is nanostructured in the form of interpenetrating grooves, this 

simplification will be accurate enough. The values of the geometrical parameters, the 

size of the nanostructured TiO2 region and the layers thicknesses, have been 

estimated from scanning electron microscope (SEM) pictures provided by Dr. Monica 

Lira-Cantu from the CIN2 (Barcelona). TFLAT, TNIL, WNIL, BTiO2 and PTiO2 are defined as 

variables that will take different ranges of values in the simulation analysis of the 
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following sections. The initial values for these geometrical parameters to reproduce 

the experimental results of the NIL and the flat devices are shown in Table 6.2. 

 

    

Figure 6.3 Schematic drawing of the models used in the simulations. The values of the 

geometrical parameters have been estimated from scanning electron microscope 

(SEM) pictures provided by Dr. Monica Lira-Cantu from the CIN2 (Barcelona). TFLAT, TNIL, 

WNIL, BTiO2 and PTiO2 are defined as variables that will take different ranges of values in 

next section. The period of the nanostructured TiO2 is 1 μm.  
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PARAMETER SIZE (nm) 

BTiO2 50 nm 

PTiO2 200 nm 

WNIL 200 nm 

TNIL 200 nm 

TFLAT 200 nm 

 

Table 6.2 Initial values for the geometrical parameters of the P3HT:PCMB and the TiO2 

layers to reproduce the experimental results of the NIL and the flat devices. 

 

 

  6.1.3.- SIMULATION RESULTS OF FLAT AND NANOSTRUCTURED TiO2 OSC 

 

The simulation analysis of the flat and the NIL-TiO2 OSC is divided into two parts. The 

first one consists in to reproduce the experimental results and, by adjusting several 

parameters, to adapt the J–V curves to match the simulation results with the 

experimental data. In the second part, several geometrical parameters of the 

nanostructured TiO2 and the P3HT:PCBM layers are varied in order examine their 

influence on the device properties. 

 

 

   6.1.3.1.- EXPERIMENTAL RESULTS REPRODUCTION 

 

As it has been done in Chapter 4 with the experimental validation of interdigitated 

OSC, the free charge mobilities had been used to adapt the J–V curves to match the 

simulation results with the experimental data. By varying these electrical parameters, 
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it is possible to modify the form of the J–V curve, specially the knee, and the amount 

of current density that can be extracted from the device. This allows adapting the 

curve to match the FF and the Jsc to the experimental data. 

 

The hole mobility in P3HT can range from 10-5 to 10-2 cm2/(V·s), with a typical value of 

2·10-4 cm2/(V·s), and the electron mobility in PCBM can range from 2·10-3 to 2·10-2 

cm2/(V·s), with a typical value of 3·10-3 cm2/(V·s) [Monestier-2007]. After the fitting 

process, the final used values were:  

 

• Hole mobility in P3HT:PCBM            =   6·10-5 cm2/(V·s) 

• Electron mobility in P3HT:PCBM     =   6·10-4 cm2/(V·s) 

 

As it can be observed, the obtained values for each mobility are an order of 

magnitude lower than the obtained for the case of the interdigitated devices (hole 

mobility in P3HT = 2·10-4 cm2/(V·s) and electron mobility in PCBM = 3·10-3 cm2/(V·s)). 

However, the hole and the electron mobilities of the materials in blend form are 

expected to be lower than in pure materials [Nakamura-2005], so these values are in 

concordance. 

  

Finally, Figures 6.4 and 6.5 show the average current density–voltage (J–V) curves of 

the analyzed experimental (green circles) and the resulting simulated (black triangles) 

FLAT-TiO2 and NIL-TiO2 OSC devices, respectively. 
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Figure 6.4 Average current density–voltage (J–V) curve of the analyzed experimental 

FLAT-TiO2 OSC (green circles) (Courtesy of Dr. Monica Lira-Cantu from the CIN2, 

Barcelona), and the simulation reproduction (black triangles). 

     
Figure 6.5 Average current density–voltage (J–V) curve of the analyzed experimental 

NIL-TiO2 OSC (green circles) (Courtesy of Dr. Monica Lira-Cantu from the CIN2, 

Barcelona), and the simulation reproduction (black triangles).  
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PARAMETER 
FLAT-TiO2 

EXP 

FLAT-TiO2 

SIM 

NIL-TiO2 

EXP 

NIL-TiO2 

SIM 

Jsc (mA/cm
2
) 8.60 8.63 11.54 11.37 

Voc (V) 0.5278 0.5130 0.5285 0.5250 

FF 40.95 41.27 41.53 41.20 

PCE (%) 1.86 1.82 2.53 2.46 

Table 6.3 Average characteristic parameters of the experimental FLAT-TiO2 and NIL-

TiO2 devices and the ones obtained via simulation. 

 

By observing these two figures, it can be seen that for both configurations the fitting 

of the simulation results with the experimental data is quite good. Current densities 

match for most of the considered applied voltages (Va). However the fitting for Va > 

Voc is less accurate, having little differences between curves, especially in the case of 

the FLAT-TiO2. Nevertheless, the global fitting seems to be accurate enough. In Table 

6.3 it can be seen the average characteristic parameters of the experimental FLAT-

TiO2 and NIL-TiO2 devices and the ones obtained via simulation. Due to the good J–V 

curve fitting, none of the parameters from the simulations have a relative error 

(Equation 6.4) above the 3% if compared with the experimental ones. 

 

                                      (6.4) 

 

 

   6.1.3.2.- OPTICAL AND ELECTRICAL ANALYSIS 

 

In this section, several geometrical parameters of the nanostructured TiO2 and the 

P3HT:PCBM layers are varied in order examine their influence on the device 

100
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
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properties and response. The parameters of interest are TFLAT, TNIL, WNIL, BTiO2, and 

PTiO2, which have been defined as variables when the devices structure was defined in 

the computational domain (see Figure 6.3). The simulation study includes light 

absorption, exciton diffusion, and electrical simulations of several FLAT-TiO2 and NIL-

TiO2 devices. 

 

The ranges of values for the geometrical parameters have been chosen on the basis of 

SEM estimates from actual devices provided by Dr. Monica Lira-Cantu from the CIN2 

(Barcelona). For two of the geometrical parameters, i) the thickness of the 

P3HT:PCBM layer in FLAT-TiO2 devices (TFLAT) and ii) the thickness of the base 

P3HT:PCBM layer in NIL-TiO2 devices (TNIL), the simulations have been carried out for a 

range of values. The chosen range for TFLAT has been from 135 nm to 155 nm, while 

for TNIL the range was from 145 nm to 170 nm. Besides, simulations for two different 

values of the width of the P3HT:PCBM grooves have been considered, WNIL = 270 nm 

and WNIL = 280 nm. For each of these values, corresponding dimensions for the 

thicknesses BTiO2 and PTiO2 have been used, as indicated in Table 6.4. 

 

The incident light is assumed to be normal to the device surface and incident from the 

ITO side. It has been modelled as the superposition of a set of monochromatic linear 

polarized waves with a planar wavefront. The amplitudes of these plane waves follow 

the standard AM1.5 spectral distribution of the solar radiation. To obtain the 

complete spectrum, simulations have been carried out for wavelengths in the range 

from 280 to 700 nm in intervals of 10 nm. This wavelength range corresponds to the 

absorption spectrum of P3HT, which is the material where most of the excitons are 

generated [Burkhard-2009]. 
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PARAMETER WNIL = 270 nm WNIL = 280 nm 

BTiO2 75 nm 100 nm 

PTiO2 75 nm 50 nm 

TNIL 145 nm ‒ 170 nm 145 nm ‒ 170 nm 

 

Table 6.4 Values of the nanostructured TiO2 thicknesses for the two considered groove 

widths. The period of the nanostructured TiO2 is 1080 nm.  

 

 

Figure 6.6 Exciton generation rate for two of the considered structures, one flat (left) 

and one NIL (right). The nanostructured interface permits more excitons, and carriers, 

to be generated near it. 

 

The first step to analyze the behaviour of the devices is to obtain the amount of 

absorbed light as a function of the position. With this, the exciton generation rate can 

be calculated, since both magnitudes are directly related. The exciton generation rate 

obtained with the finite-element method for two of the simulated structures, one flat 

(TFLAT = 135 nm) and one NIL (TNIL = 170 nm, WNIL = 270 nm, BTiO2 = 75 nm, and PTiO2 = 

75 nm), is depicted in Figure 6.6. In the structures, light is incident from the left on the 
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ITO layer. In both cases, it is shown that the carriers are mainly generated near the 

TiO2-blend interface. This is due to the strong absorption of the blend that attenuates 

light away from such interface. Because of the nanostructured geometry of the TiO2, 

the interface area is increased and consequently a greater amount of carriers is 

generated near the interface. It also can be seen that the NIL-TiO2 cell achieves a 

higher exciton generation rate than the FLAT-TiO2 near the TiO2-blend interface 

(warmer colours), which comes from a higher light absorption. 

 

By solving the exciton diffusion equation, the maximum attainable photogenerated 

current density (JPHOTO) can be obtained. Figure 6.7 shows JPHOTO as a function of the 

geometrical parameters for the different cells. As it can be seen, as the thickness of 

the P3HT:PCBM layer increases, the JPHOTO slightly improves for both the flat and the 

NIL cells. This result can be explained by the fact that this magnitude takes only into 

account the generation of carriers, directly related to the absorption of light. Thus, a 

bigger thickness, TFLAT or TNIL, is translated in a bigger amount of absorbed photons. 

However, the influence of the thicknesses TFLAT or TNIL on the JPHOTO is small, especially 

for the NIL structures. It has to be noted that the two horizontal axes (top and 

bottom) are in the same scale. For all the considered cases, the NIL structures show a 

better JPHOTO. This demonstrates that the nanostructuring of the ITO and of the blend 

layer helps increasing the amount of absorbed photons. The difference in JPHOTO 

between the two structures, for the considered parameter ranges, is up to 23.34%.  
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Figure 6.7 Maximum attainable photogenerated current density (JPHOTO) as a function 

of the blend thickness for the flat and the NIL structures. 

 

Finally, to obtain the complete current density–voltage (J–V) characteristics, the drift-

diffusion model is applied. Figure 6.8 shows the J–V curves of two cells, one flat (TFLAT 

= 150 nm) and one NIL (TNIL = 150 nm, WNIL = 270 nm, BTiO2 = 75 nm, and PTiO2 = 75 nm). 

The two curves have a similar Fill Factor (45.69 for the flat cell and 43.02 for the NIL 

one), thus indicating that this factor is not substantially affected by the 

nanostructuring of the TiO2. However, there is an increase in the short-circuit current 

(JSC), and equivalently in efficiency, of 33.13%. This increase can be attributed to two 

effects of the nanostructured interface: the increase in the number of absorbed 

photons discussed above, and also the increase of interface area that improve carriers 

collection. 
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Figure 6.8 J–V curves of two cells, one flat (TFLAT = 150 nm) and one NIL (TNIL = 150 nm, 

WNIL = 270 nm, BTiO2 = 75 nm, and PTiO2 = 75 nm). 

 

In order to confirm this point, Figure 6.9 shows the calculated JSC for the different 

cells. In contrast with the JPHOTO, this magnitude shows a decrease with increasing TFLAT 

or TNIL, with a bigger decrease rate for the flat structure. The decrease is explained by 

the fact that, even though there is an increase in generated carriers, these carriers are 

generated further from the TiO2-blend interface causing a decrease in their collection 

efficiency. This result demonstrates that the nanostructuring of the TiO2 helps 

improving the charge collection efficiency. This improvement can be quantified by the 

ratio JSC/JPHOTO, represented in the inset of Figure 6.9. In the graph it is clear that, for 

all the considered geometries, the collection efficiency of the NIL-TiO2 devices is 

better than in the FLAT-TiO2 configurations. 
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Figure 6.9 Short-circuit current density (JSC) as a function of the blend thickness for the 

flat and the NIL devices. The inset shows the ratio JSC/JPHOTO for the same considered 

devices. 

 

 

 6.2.- NUMERICAL SIMULATION OF PLASMONIC GOLD PYRAMID ARRAYS 

 

  6.2.1.- PLASMONIC GOLD PYRAMID ARRAYS 

   

The surface plasmon resonance (SPR) is an optical phenomenon which occurs when 

the collective coherent oscillations of free electrons in the conduction band of a metal 

are excited by the interactive electromagnetic field at a metal/dielectric interface. The 
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resonance condition is established when the frequency and momentum of light 

photons matches the natural frequency and momentum of surface electrons 

oscillating against the restoring force of positive nuclei. The created charge density 

oscillations, called surface plasmon polaritons (SPPs), will then form an electric field 

that exponentially decays into its surrounding medium with a penetration depth in 

hundreds of nanometers range. As a result, this evanescent field is highly sensitive 

towards the refractive index change of the surrounding medium. Thus, when the 

refractive index of the sensing medium changes the SPR excitation occurs for slightly 

different characteristics of the incident beam, such as the angle, the wavelength, or 

the phase [Maier-2007; Zeng-2014]. 

 

SPR is the basis of many standard tools for measuring adsorption of material onto 

planar metal (typically gold and silver) surfaces or onto the surface of metal 

nanoparticles (localized SPR, LSPR). It is the fundamental principle behind many 

colour-based biosensor applications and different lab-on-a-chip sensors. SPR sensors 

are the most commonly used optical sensors due to their unique ability for real-time 

monitoring the molecular binding events [Hoa-2007; Shalabney-2011; Bedford-2012]. 

However, their sensitivities are insufficient to detect trace amounts of small 

molecular weight molecules such as cancer biomarkers, hormones, antibiotics, 

insecticides, and explosive or dangerous materials which are important for early-stage 

disease diagnosis, food quality control, environmental monitoring, and homeland 

security protection [Zeng-2014]. To overcome this issue of the SPR sensors, many 

sensitivity enhancement methods have been proposed [Zeng-2014]. Among others, 

the surface-enhanced Raman scattering (SERS) spectroscopy has proved to be orders 

of magnitude more sensitive than normal Raman spectroscopy. The enhancement 

factor can be as high as 109-1010, which means that with this technique it is possible to 

detect single molecules [Stiles-2008].  
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The fundamental requirement for SERS is a substrate that supports a surface plasmon 

resonance. However, not all the possible substrates are acceptable. The ability to 

control the shape and orientation of nanoparticles on a surface has reduced many of 

the complex variables related to SERS and has greatly enhanced both the 

understanding and the application of this phenomenon. So now it is known that it is 

necessary a highly organized photonic structure, that provides a high electromagnetic 

field enhancement in a reproducible geometry, to obtain a maximum signal 

enhancement [Stiles-2008; Alvarez-Puebla-2011]. Many surfaces have being reported 

during the past few years [Félidj-2004; Aroca-2005; Baker-2005; Kneipp-2006]. Other 

examples of the fabrication of organized particles have also been reported, such as 

the use of preformed colloids to create large crystalline organized entities known as 

supercrystals [Alvarez-Puebla-2011; Henzie-2012; Pazos-Perez-2012]. 

 

The latter approach provides optical platforms with unprecedented plasmonic 

properties that can be exploited for the design of cheap ultrasensitive and ultrafast 

sensors with SERS spectroscopy as the transducer. In our case of study, a template-

assisted method based on the stamping of colloidal particles for the large-area 

fabrication of organized pyramidal supercrystal periodical arrays is used. This 

plasmonic platform is then exploited for the development of a handheld reversible 

SERS sensor for the live monitoring of carbon monoxide (CO) in the atmosphere [Alba-

2013]. The method used for the preparation of the nanostructured pyramidal arrays is 

illustrated in the Figure 6.10.  
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Figure 6.10 Schematic representation of the fabrication of the macroscale 

nanostructured pyramidal arrays. Reproduced from [Alba-2013]. 

 

First, inverted pyramidal templates are prepared by direct laser writing lithography on 

oxidized p-type silicon wafers, followed by a chemical etching process. This method 

produces periodically patterned surfaces with homogenous inverted pyramids with 

geometrical features that can be tuned from 1 to 10 μm as a function of the etching 

time. In this study, pyramids with sides of 4.5 μm and a height of 3.3 μm have been 

generated with a periodicity of 8 μm. Before the deposition of the nanoparticles 

(NPs), the surfaces are cleaned with oxygen plasma. A concentrated solution of gold 

NPs is then cast on the template and allowed to dry. Finally, the NPs are transferred 

to the surface of poly(dimethylsiloxane) films to yield a periodic array of square 

pyramids derived from the compact packing of plasmonic particles. Final results show 

A) 

B) 

C) 
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nanoparticles pyramids, with high homogeneity in all directions, with side lengths of 

4.4 μm and a height of 3.0 μm, as it can be seen in Figure 6.11. 

 

The aim of this section is to reproduce, through numerical simulations, qualitatively 

the plasmonic effect in the pyramids formed by layers of gold nanospheres that has 

been demonstrated experimentally. With this, it could be tested if the optical part of 

the simulation procedure explained in Chapter 3 can be used to model different 

effects in geometries in the range of the nm so it is not only restricted to solar cells. 

 

   

Figure 6.11 High-resolution scanning electron microscope (SEM) images of the gold 

nanosphere pyramids, and transmission electron microscopy (TEM) image of the gold 

nanoparticles building blocks. Reproduced from [Alba-2013]. 
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  6.2.2.- SIMULATION CONDITIONS AND COMPUTATIONAL DOMAIN 

 

Our optical study has been carried out on the basis of finite-element simulations with 

the COMSOL Multiphysics® software presented in Chapter 3. Previous studies have 

demonstrated that the finite-element method allows computing plasmonic effects in 

nanoparticles with a good accuracy [McMahon-2009; Repän-2014]. The COMSOL RF 

module [COMSOL RF-2010] has been used to solve the complete Maxwell equations 

by considering the optical constants of the involved materials as a function of the 

wavelength and by using the scattered field formulation [Repän-2014]. In our case we 

have modelled the optical features of the gold nanoparticles by using the refractive 

index (n) and the extinction coefficient (k) of the complex index of refraction (ñ = n + 

ik) obtained from literature [Palik-1985]. The surrounding medium has been 

considered to be air with a constant n = 1. 

 

The simulated structure of this section reproduces the top part of one gold 

nanosphere pyramid, that is the higher layers of nanospheres. We chose to model the 

last four ones. To follow the shape of the pyramids used experimentally [Alba-2013], 

the peak of the pyramid has to form an angle of 54.74°. With this constrain, related 

pyramid heights and side lengths can be fixed. In this study, two kinds of nanospheres 

distributions have been analyzed: a contacting and a non-contacting one (Figure 

6.12). In the contacting distribution, the gold nanospheres are touching each other. 

On the other hand, in the non-contacting distribution there is a distance between 

nanospheres of 30 nm (x and y direction). Taking into account the angle that the 

pyramid peak have to form, the pyramid height and side length of four layers of 

nanospheres have to be 220.4 nm and 280 nm, respectively, for the contacting 

distribution. For the non-contacting distribution case the pyramid height and side 

length are 280 nm and 370 nm, respectively. In both distributions the spheres 

diameter has been set to 70 nm. An additional simulation structure has been 
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described, to check the validity of the simulations, for the simple case of the 

plasmonic effect in only one sphere of 50 nm.   

 
  

 

 

 

Figure 6.12 Computational domain showing the four top layers of the gold 

nanosphere pyramids for the side face (A) and the top view (B) of the contacting 

distribution, and for the side face (C) and the top view (D) of the non-contacting 

distribution. 

 

 

The incident light in the experimental study is a laser line excitation (λexc) with 

wavelengths of 633 nm and 785 nm. In the simulations, this light source has been 

A) B) 

C) D) 
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modelled with linear monochromatic polarized waves with a planar wavefront parallel 

to the z axis with a different wavelength for each case. In all cases the light comes 

from above, reaching first the top of the pyramid. 

 

 

  6.2.3.- SIMULATION RESULTS OF SINGLE NANOSPHERE PYRAMIDS  

  

   6.2.3.1.- METHOD VALIDATION: SINGLE SPHERE CASE 

 

Light incident on small metal nanoparticles can excite collective excitations of 

electrons, which is the localised surface plasmon resonance (LSPR) mentioned above. 

Typically, these excitations consist on dipolar oscillations, as it can be seen in Figure 

6.13 [Maier-2007]. Figure 6.14 shows the simulation results for one isolated gold 

nanosphere with a diameter of 50 nm for an incident light with a wavelength of 575 

nm. In these maps of the amplitude of the electric field, |E|, it can be appreciated the 

expected theoretical dipole due to the plasmonic effect. It also can be seen that the 

results for the cross (Figure 6.14A) and the top sections (Figure 6.14B) are very 

similar. This effect can be attributed to the spherical symmetry of the gold 

nanoparticle. From these results it can be concluded that the applied numerical 

simulation method is able to reproduce, at least in a qualitatively way, the plasmonic 

effect in a metal nanoparticle. Hence, it can be expected that the following 

simulations of gold nanosphere pyramids will be correct.  
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Figure 6.13 Scheme of the localized surface plasmon resonance effect in a metallic 

nanoparticle. 

 

Figure 6.14 Maps of the amplitude of the electric field, |E|, in V/m for one isolated 

gold nanosphere with a diameter of 50 nm for an incident light with a wavelength of 

575 nm. Cross (A) and top sections (B). 

 

 

   6.2.3.2.- NUMERICAL RESULTS: EXCITATION OF 633 nm and 785 nm 

 

Figures 6.15 and 6.16 show the amplitude of the electric field, |E|, maps in V/m for a 

gold nanosphere pyramid for the contacting and the non-contacting distributions for 

A) B) 
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a laser line excitation of 633 nm. In Figure 6.15 it can be seen that in the top of the 

pyramid there is an important concentration of the electric field. This field reaches its 

highest value in the contact point of the top nanosphere with the ones of the second 

layer (Figure 6.15D indication). There are also other important field concentrations in 

the rest of contact points between nanospheres. For the case of the non-contacting 

distribution (Figure 6.16) it is clear that the electric field is concentrated in the top of 

the pyramid, specifically around the equator of the top nanosphere, while in the rest 

of the nanostructure this field is weak. 

 

 

Figure 6.15 Maps of the amplitude of the electric field, |E|, in V/m for a gold 

nanosphere pyramid for the contacting distribution for a laser line excitation of 633 

nm. Side face without gold nanospheres (A), side face with gold nanospheres (B), and 

top sections (C). It is also displayed the crossing plane of the top section (red line) (D).  

A) B) 

C) D) 
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Figure 6.16 Maps of the amplitude of the electric field, |E|, in V/m for a gold 

nanosphere pyramid for the non-contacting distribution for a laser line excitation of 

633 nm. Side face without gold nanospheres (A), and side face with gold nanospheres 

(B). 

 

Figures 6.17 and 6.18 show the amplitude of the electric field, |E|, maps in V/m for a 

gold nanosphere pyramid for the contacting and the non-contacting distributions for 

a laser line excitation of 785 nm. As for the previous laser line excitation, it can be 

observed important electric field concentrations in the contact points between 

nanospheres. However, now we have the highest concentrations close to the third 

nanospheres layer. For the case of the non-contacting distribution (Figure 6.18) it can 

be seen again that there is an important electric field concentration in the top of the 

pyramid, specifically around the equator of the top nanosphere. However, now there 

is also another important field concentration in the third nanospheres layer. The 

global field concentration is also higher than for the laser line excitation of 633 nm. 

 

 

 

 

 

B) 

A) B) 
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Figure 6.17 Maps of the amplitude of the electric field, |E|, in V/m for a gold 

nanosphere pyramid for the contacting distribution for a laser line excitation of 785 

nm. Side face without gold nanospheres (A), side face with gold nanospheres (B), and 

top sections (C). It is also displayed the crossing plane of the top section (red line) (D). 

 

 

A) 

C) D) 

A) B) 

B) 
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Figure 6.18 Maps of the amplitude of the electric field, |E|, in V/m for a gold 

nanosphere pyramid for the non-contacting distribution for a laser line excitation of 

785 nm. Side face without gold nanospheres (A), and side face with gold nanospheres 

(B). 

 
 

 

Figure 6.19 Optical image and SERS imaging of several gold nanosphere pyramids. The 

SERS image shows enhancement mapping with higher signals concentrated around 

the center of the pyramids. Reproduced from [Alba-2013]. 

 

A) B) 
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In Figure 6.19 it can be seen the optical image and SERS imaging of several 

experimental gold nanosphere pyramids. The SERS image shows enhancement 

mapping with higher signals concentrated around the center of the pyramids. If we 

compare these results with the simulation ones, the first conclusion that it can be 

extracted is that the non-contacting spheres distribution reproduces better the 

experimental data, since with this distribution the electric filed is concentrated clearly 

in the top of the pyramid. However, although with the contacting distribution the 

electric field is concentrated in a lower position, the highest field concentrations are 

still close to the pyramid top.        

 

 

 6.3.- SUMMARY AND CONCLUSIONS 

 

In this chapter, the developed numerical simulation method exposed in Chapter 3 has 

been applied and adapted to other devices and structures to demonstrate that it can 

work correctly not only for the full organic solar cells that we have previously seen. 

The numerical model has been used to simulate two different cases: hybrid solar cells 

and gold nanosphere pyramids. 

 

The hybrid solar cell studied in this chapter has the structure 

ITO/TiO2/P3HT:PCBM/PEDOT:PSS/Ag, having therefore an inverted configuration 

where the ITO/TiO2 layers act as the cathode and the Ag one acts as the anode. Unlike 

the previous studied devices, in this cell the active region is a blend of the different 

organic semiconductors instead of separated materials (bulk heterojunction 

architecture) and the TiO2 electron collecting layer is nanostructured. The motivation 

of this nanostructured electrode is to try to increase the device efficiency, if 

compared with cells with flat TiO2 layers, by increasing light absorption and improving 

charge collection.  
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Several modifications of the method presented in Chapter 3 have been done to adapt 

the model to this different technology. To turn the P3HT/PCBM bilayer into a 

monolayer blend of P3HT:PCM we have replaced these two layers with only one that 

will act as the blend. The optical constants of this new layer, the refractive index (n) 

and the extinction coefficient (k) of the complex index of refraction (ñ = n + ik), have 

been obtained from the literature. The electrical parameters of the blend, such as the 

hole and the electron mobilities, have also been taken from published articles. 

Following the approach exposed in Chapter 4, we have been able to reproduce 

experimental results with a relative error in the characteristic parameters below the 

3%. The experimental data have been provided by the group of Dr. Monica Lira-Cantu 

(from the Laboratory of Nanostructured Materials for Photovoltaic Energy, CIN2, 

Barcelona).   

 

Finally, several geometrical parameters of the nanostructured TiO2 and the 

P3HT:PCBM layers have been varied in order examine their influence on the device 

properties and response. The simulation study has included optical, exciton diffusion, 

and electrical simulations of several FLAT-TiO2 and NIL-TiO2 devices. The ranges of 

values for the geometrical parameters have been chosen on the basis of SEM 

estimates from actual devices.  

 

From the obtained exciton generation rate maps, it can be concluded that the carriers 

are mainly generated near the TiO2-blend interface due to the strong absorption of 

the blend. It also have been demonstrated that the NIL-TiO2 cells achieve higher 

exciton generation rates than the FLAT-TiO2 near the TiO2-blend interface, which 

comes from a higher light absorption since this magnitude and the exciton generation 

rate are directly related. From the exciton diffusion analysis, it has been shown that 

for all the considered cases the NIL structures showed higher JPHOTO. This 

demonstrates that the nanostructuring of the TiO2 and of the blend layer helps 
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increasing the amount of absorbed photons. The difference in JPHOTO between the two 

structures, for the considered parameter ranges, is up to 23.34%. Finally, the 

electrical analysis has demonstrated that the increase in the efficiency of the NIL-TiO2 

devices with respect the flat ones comes basically from an increase in the short-circuit 

current (JSC). This increase can be attributed to two effects of the nanostructured 

interface: the increase in the number of absorbed photons discussed above, and also 

the increase of interface area that improve carriers collection efficiency. 

 

Regarding the gold nanosphere pyramids, we have presented a work about the 

simulation of the plasmonic effect in pyramids formed by layers of gold nanospheres. 

This kind of structures is intended to provide cheap ultrasensitive and ultrafast 

sensors with surface-enhanced Raman scattering (SERS) spectroscopy as the 

transducer, in our case, to develop a handheld reversible SERS sensor for the live 

monitoring of carbon monoxide in the atmosphere. The aim of this study has been to 

demonstrate that the optical part of the simulation procedure can be used to model 

different effects in geometries in the range of the nm so it is not only restricted to 

solar cells.  

 

Our optical study has been carried out on the basis of finite-element simulations with 

the COMSOL Multiphysics® software exposed in Chapter 3. By solving the complete 

Maxwell equations considering the optical constants of the involved materials as a 

function of the wavelength and by using the scattered field formulation, the 

plasmonic effects in nanoparticles have been modelled. The simulated structure of 

this section reproduces the top part of one gold nanosphere pyramid, that is the four 

higher layers of nanospheres.  

 

Before modelling the gold nanosphere pyramids, a single gold nanosphere has been 

simulated to check the validity of the procedure. From these results, we have 
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concluded that the applied numerical simulation method is able to reproduce, at least 

in a qualitatively way, the plasmonic effect in a metal nanoparticle. Hence, it can be 

expected that the simulations of gold nanosphere pyramids will be correct.  

 

Results have shown that in the distribution where the gold nanospheres are non-

contacting between them, the electric field is concentrated more in the top of the 

pyramid, like in the experimental case. However, despite the electric field is 

concentrated in a lower position in the case where there is not space between 

nanospheres, it can be considered that this lower position it is still the top of the 

pyramid. Hence, the optical activity of these pyramidal supercrystals has been 

demonstrated both experimentally and theoretically, with the results matching in a 

qualitatively way. 

 

A further development of this simulation approach can lead to a proper modelling of 

metallic nanoparticles as constituents of solar cells to enhance its efficiency. 
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SUMMARY AND CONCLUSIONS 

 

 

 

 

 

 

 7.1.- SUMMARY AND CONCLUSIONS 

 

In many fields, numerical simulation models have helped to develop many 

technologies and understand their mechanisms. They are able to predict results 

without the need to fabricate real devices. This fact allows reducing development 

times, since simulations are usually faster than a device fabrication, and costs, since 

we can reduce material waste by avoiding the fabrication of non-optimal devices. 

Since many years ago, several accurate models exist for the case of inorganic cells, 

however the behaviour of organic solar cells (OSC) is still not perfectly known. 

Additionally, it is difficult to know a priori if the existing models for OSC will be 
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suitable and accurate enough for the small geometries of the interdigitated organic 

devices. So, there is still work to do to obtain a precise numerical simulation model 

for OSC. 

 

The main objectives of this thesis have been: 

 

 Develop a complete model to simulate the different steps of the photovoltaic 

conversion process in interdigitated organic solar cells. The model has been 

based on the finite-element method (FEM), which can give us information of 

every magnitude as a function of the position. Most of the existing models 

consider the active region of the devices a uniform material from the point of 

view of light interaction. This simplification is not important when we have an 

interpenetrating blend, but it may affect the final results in the case of 

interdigitated cells. 

 Show that this model can be used to make a systematic study of 

interdigitated OSC that will help to predict which geometrical characteristic 

will be better to optimize this kind of devices and how to increase their 

efficiency.  

 Validate the model with experimental results of real devices obtained in our 

facilities and, if necessary, improve, adjust or correct the model. 

 To demonstrate that the developed method can simulate correctly different 

devices and structures, by making some adaptations, and not only 

interdigitated full organic solar cells. 

 

The numerical simulation procedure exposed in this Ph. D. thesis has been developed 

by using the finite-element method (FEM) in COMSOL MULTIPHYSICS® software. This 

method allows computing the different magnitudes related to the photovoltaic 
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conversion process as a function of the position. The complete Maxwell equations, 

the exciton diffusion equation and the drift-diffusion model are solved within the 

same numerical framework. The model can be divided into two main parts: the 

optical and the electrical behaviour. The optical part includes light absorption and 

exciton generation, while the electrical one includes exciton diffusion, and free charge 

generation, transport and collection. The results of each step of the photovoltaic 

conversion process are used as an input of the subsequent step, in all cases as 

function of the position. 

 

In the systematic theoretical study of interdigitated OSC we analyzed the influence of 

the nanostructured dissociation interface on the overall efficiency of the devices. We 

performed a systematic and complete analysis of light absorption, exciton diffusion 

and carrier transport, all in the same numerical framework, and for a 2D model of 

such cells. With this, we obtain their dependence on the cell geometrical parameters: 

pillar diameter and height, and nanostructure period. The donor and the acceptor 

materials of our cells are P3HT and PCBM, respectively. From the point of view of light 

absorption, results show that the maximum amount of light is absorbed only for two 

specific values of the nanopillar height, T = 80 nm and T = 230 nm, independently of 

the nanopillar diameter. This suggests that it is due to light interference effects. For 

these nanopillar heights, the maximum absorption is achieved by nanostructures with 

a period of β = 25 nm. 

 

By simulating the exciton diffusion process the maximum attainable photocurrent 

density (JPHOTO) can be determined. Results show that to obtain a higher JPHOTO than 

that of the better planar bilayer structure, small nanostructure periods, up to 100 nm, 

should be used. By examining the exciton diffusion maps, we can conclude that small 

nanopillars favour the excitons to reach the Donor–Acceptor (D–A) interface and that 
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the upper limit of the nanopillar height is directly related to the limited exciton 

diffusion length.  

 

Finally, from the current density–voltage (J–V) characteristics, we obtain the overall 

efficiency of the cells. We observe that there is a direct correlation between the JPHOTO 

and the cell efficiency, which indicates that the charge transport has a lower influence 

on the overall charge collection efficiency. Thus, in order to increase the efficiency, 

the exciton diffusion process is the key limiting factor and this process is better for 

the smaller nanopillar diameters. Best results have been achieved for β = 25 nm, T = 

80 nm, and γ (ratio of the nanopillar diameter to the period) = 0.75, with an efficiency 

that is 3.6 times higher than the best planar bilayer reference device.  

 

An optimal interdigitated structure should find a compromise between a high 

proportion of electron donor to increase light absorption and a small pillar diameter 

to ensure an extended D–A interface for exciton dissociation. Due to the short exciton 

diffusion length of organic materials, big nanopillars diameters will result in cells with 

an efficiency even lower than the one of planar bilayer equivalents. The method 

developed in this work can be useful to design optimal full organic solar cells, taking 

into account technological parameters and constraints.  

 

To validate the used simulation method, it has been applied to experimental 

interdigitated devices manufactured in our facilities. Here we used cells with a 

structure of ITO/PEDOT:PSS/P3HT/PCBM/Ag. To totally fit the model to the real 

devices, some adaptations and parameter adjustments have been performed. The 

adaptations have included: 
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 The use of modified optical constants for the PEDOT:PSS layer 

 An extended solar spectrum range 

 A modified exciton diffusion length for P3HT  

 Free charge mobilities adjustments 

 

After these adaptations, the simulated results were in good agreement with the 

experimental data. 

 

After the experimental validation, different kinds of OSC have been modelled. By 

varying the D–A interface geometry, we have performed simulations for planar bilayer 

(PBL), nanopillars (NP), nanowells (NW) and nanopyramids (NPYR) D–A junctions. Two 

configurations, the conventional and the inverted one, have been used in this study. 

An optical and exciton diffusion study have been carried out with the exciton diffusion 

length (LD) used as a parameter.  

 

Results have shown that there is an important reduction of the amount of absorbed 

light by the active region (P3HT layer) in the inverted configuration if compared with 

the amount absorbed by the conventional one. This fact can be attributed to the 

different layer stacking of each configuration. For the conventional case, light arrives 

to the P3HT layer by only crossing through the ITO and the PEDOT:PSS layers, which 

are nearly transparent. For the inverted configuration, light have to cross the PCBM 

layer instead. This material absorbs in a similar range than the P3HT. So the amount 

of light that arrives to the active region will be lower.  

 

However, the exciton diffusion study have shown that despite absorbing less light, 

and as a consequence having a lower exciton generation rate, the inverted 

configuration can generate higher photocurrents in all cases except for the NPYR D‒A 
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interface. The exciton concentration maps have shown that for the inverted 

configuration excitons are distributed in a proper way, i.e. close to the D–A interface 

to dissociated, so losses due to exciton recombination are reduced. This is an 

interesting fact since the inverted configuration has the advantage of having a higher 

stability and durability when exposed to the oxygen and to the water of the 

atmosphere without degrading than the conventional one. Hence, this configuration 

can be a promising solution to increase the efficiency and the lifetime of OSC.     

 

In the last part of this Ph. D. thesis, the developed numerical simulation method has 

been applied and adapted to other devices and structures to demonstrate that it can 

work correctly not only for the full organic solar cells that we have previously seen. 

The numerical model has been used to simulate two different cases: hybrid solar cells 

and gold nanosphere pyramids. 

 

The studied hybrid solar cell has the structure ITO/TiO2/P3HT:PCBM/PEDOT:PSS/Ag, 

having therefore an inverted configuration where the ITO/TiO2 layers act as the 

cathode and the Ag one acts as the anode. Unlike the previous studied devices, in this 

cell the active region is a blend of the different organic semiconductors instead of 

separated materials (bulk heterojunction architecture) and the TiO2 electron 

collecting layer is nanostructured. The motivation of this nanostructured electrode is 

to try to increase the device efficiency, if compared with cells with flat TiO2 layers, by 

increasing light absorption and improving charge collection.  

 

Several modifications of the numerical procedure have been done to adapt the model 

to this different technology. To turn the P3HT/PCBM bilayer into a monolayer blend 

of P3HT:PCM we have replaced these two layers with only one that will act as the 

blend. The optical constants of this new layer, the refractive index (n) and the 

extinction coefficient (k) of the complex index of refraction (ñ = n + ik), have been 
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obtained from the literature. The electrical parameters of the blend, such as the hole 

and the electron mobilities, have also been taken from published articles. Following 

the approach used to reproduce the experimental values of the interdigitated OSC, 

we have been able to reproduce experimental results with a difference in the 

characteristic parameters below the 3%.  

 

Finally, several geometrical parameters of the nanostructured TiO2 and the 

P3HT:PCBM layers have been varied in order examine their influence on the device 

properties and response. The simulation study has included light absorption, exciton 

diffusion, and electrical simulations of several FLAT-TiO2 and NIL-TiO2 devices. The 

ranges of values for the geometrical parameters have been chosen on the basis of 

SEM estimates from actual devices.  

 

From the obtained exciton generation rate maps, it can be concluded that the carriers 

are mainly generated near the TiO2-blend interface due to the strong absorption of 

the blend. It also have been demonstrated that the NIL-TiO2 cells achieve higher 

exciton generation rates than the FLAT-TiO2 near the TiO2-blend interface, which 

comes from a higher light absorption since this magnitude and the exciton generation 

rate are directly related. From the exciton diffusion analysis, it has been shown that 

for all the considered cases the NIL structures showed higher JPHOTO. This 

demonstrates that the nanostructuring of the TiO2 and of the blend layer helps 

increasing the amount of absorbed photons. The difference in JPHOTO between the two 

structures, for the considered parameter ranges, is up to 23.34%. Finally, the 

electrical analysis has demonstrated that the increase in the efficiency of the NIL-TiO2 

devices with respect the flat ones comes basically from an increase in the short circuit 

current (Jsc). This increase can be attributed to two effects of the nanostructured 

interface: the increase in the number of absorbed photons discussed above, and also 

the increase of interface area that improve carriers collection efficiency. 
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Regarding the gold nanosphere pyramids, we have presented a work about the 

simulation of the plasmonic effect in pyramids formed by layers of gold nanospheres. 

This kind of structures is intended to provide cheap ultrasensitive and ultrafast 

sensors with surface-enhanced Raman scattering (SERS) spectroscopy as the 

transducer, in our case, to develop a handheld reversible SERS sensor for the live 

monitoring of carbon monoxide in the atmosphere. The aim of this study has been to 

demonstrate that the optical part of the simulation procedure can be used to model 

different effects in geometries in the range of the nm so it is not only restricted to 

solar cells.  

 

By solving the complete Maxwell equations considering the optical constants of the 

involved materials as a function of the wavelength and by using the scattered field 

formulation, the plasmonic effects in nanoparticles have been modelled. The 

simulated structure reproduces the top part of one gold nanosphere pyramid, that is 

the four higher layers of nanospheres, in two distributions: one with non-contacting 

gold nanospheres and another with contacting gold nanospheres.  

 

Before modelling the gold nanosphere pyramids, a single gold nanosphere has been 

simulated to check the validity of the procedure. From these results, we have 

concluded that the applied numerical simulation method is able to reproduce, at least 

in a qualitatively way, the plasmonic effect in a metal nanoparticle. Hence, it can be 

expected that the simulations of gold nanosphere pyramids will be correct.  

 

Results have shown that in the distribution with the non-contacting gold 

nanospheres, the electric field is concentrated more in the top of the pyramid, like in 

the experimental case. However, despite the electric field is concentrated in a lower 

position in the case where there is not space between nanospheres, it can be 

considered that this lower position it is still the top of the pyramid. Hence, the optical 
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activity of these pyramidal supercrystals has been demonstrated both experimentally 

and theoretically, with the results matching in a qualitatively way.  

 

A further development of this optical simulation approach can lead to a proper 

modelling of metallic nanoparticles as constituents of solar cells to enhance its 

efficiency. 
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