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SUMARI 

 

La tecnologia glicosintasa ha esdevingut una eina important per a la síntesi d’oligosacàrids, 

polisacàrids i glicoconjugats. Les glicosintases són glicosidases mutades desproveïdes d’activitat 

hidrolítica però capaces de catalitzar eficientment la formació d’enllaços glicosídics amb 

rendiments elevats en fer ús d’un donador glicosídic activat. A més a més, el donador activat i el 

seu producte de transglicosidació poden actuar com acceptors donant lloc a l’autocondensació del 

donador o a l’elongació del producte de transglicosidació, produint polisacàrids. 

En el present treball es pretén sintetitzar nous polisacàrids artificials funcionalitzats amb 

estructures definides mitjançant l’ús de la tecnologia glicosintasa. D’una banda, s’ha intentat 

augmentar la massa molecular dels polisacàrids fent ús d’un mòdul d’unió de carbohidrats 

(CBM). Aquest mòdul podria millorar la solubilitat dels nous polímers a mesura que es van 

sintetitzant durant la reacció de polimerització. L’efecte en el grau de polimerització ha estat 

estudiat tant pel mutant glicosintasa en presència de CBM com per la proteïna de fusió 

glicosintasa-CBM. D’altra banda, s’han sintetitzat polisacàrids artificials funcionalitzats a partir 

de donadors disacarídics activats on la funcionalització desitjada ha sigut prèviament introduïda 

a la posició C-6’. Aquests donadors funcionalitzats actuen com a substrat pel mutant glicosintasa 

que catalitzarà la reacció d’autocondensació. El grup azido va ser escollit com a un grup funcional 

adequat donada la seva versatilitat i mida, suficientment petit com per a ser acceptat per l’enzim. 

Els donadors fluorur de 6’-azidolaminaribiosa i fluorur de 6’-azidocel·lobiosa han estat 

sintetitzats i avaluats com a substrats per les reaccions glicosintasa amb el mutant E134S de la 

1,3-1,4-β-glucanasa de Bacillus licheniformis  i el mutant E197A de la cel·lulasa d’Humicola 

insolens, respectivament. 

S’han sintetitzat 6-azido i 6-amino-6-deoxicel·luloses artificials amb una seqüència de 

funcionalització alternada. De forma oposada a la modificació química de cel·luloses on la 

seqüència de substitució és intrínsecament aleatòria, la polimerització catalitzada per 

glicosintases de donadors glicosídics modificats apropiadament, permet accedir a noves 

cel·luloses funcionalitzades amb seqüències de substitució definides i regulars. 
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SUMARIO 

 

La tecnología glicosintasa se ha convertido en una herramienta importante para la síntesis de 

oligosacáridos, polisacáridos y glicoconjugados. Las glicosintasas son glicosidasas mutadas 

desprovistas de actividad hidrolítica pero capaces de catalizar eficientemente la formación de 

enlaces glicosídicos con rendimientos elevados utilizando un dador glicosídico activado. Además, 

el dador activo y su producto de transglicosidación pueden actuar como aceptores dando lugar a 

la autocondensación del dador o a la elongación del producto de transglicosidación, produciendo 

polisacáridos. 

En el presente trabajo se pretenden sintetizar nuevos polisacáridos artificiales funcionalizados con 

estructuras definidas mediante el uso de la tecnología glicosintasa. Por un lado, se ha intentado 

aumentar la masa molecular de los polisacáridos utilizando un módulo de unión de carbohidratos 

(CBM). Este módulo podría mejorar la solubilidad de los nuevos polímeros a medida que se van 

sintetizando durante la reacción de polimerización. El efecto en el grado de polimerización ha 

sido estudiado tanto para el mutante glicosintasa en presencia de CBM como para la proteína de 

fusión glicosintasa-CBM. Por otro lado, se han sintetizado polisacáridos artificiales 

funcionalizados a partir de dadores disacarídicos activados donde la funcionalización deseada ha 

sido introducida previamente en la posición C-6’. Estos dadores funcionalizados actúan como 

sustrato para el mutante glicosintasa que catalizará la reacción de autocondensación. El grupo 

azido fue escogido por ser un grupo  funcional adecuado dada su versatilidad y tamaño, 

suficientemente pequeño como para ser aceptado por el enzima. Los dadores fluoruro de 6’-

azidolaminaribiosa y fluoruro de 6’-azidocelobiosa han sido sintetizados y evaluados como 

sustratos para las reacciones glicosintasa con el mutante E134S de la 1,3-1,4-β-glucanasa de 

Bacillus licheniformis  y el mutante E197A de la celulasa de Humicola insolens, respectivamente. 

Se han sintetizado 6-azido y 6-amino-6-deoxicelulosas artificiales con una secuencia de 

funcionalización alternada. De forma opuesta a la modificación química de celulosas donde la 

secuencia de sustitución es intrínsicamente aleatoria, la polimerización catalizada por 

glicosintasas de dadores glicosídicos modificados apropiadamente, permite acceder a nuevas 

celulosas funcionalizadas con secuencias de sustitución definidas y regulares. 
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SUMMARY 

 

The glycosynthase technology has become a powerful enzymatic tool for the synthesis of 

oligosaccharides, polysaccharides and glycoconjugates. Glycosynthases are mutated glycosidases 

devoid of hydrolase activity but able to efficiently catalyze the formation of glycosidic bonds in 

high yields when using an activated glycosyl donor. In addition, the activated donor and its 

transglycosylation product, can both act as acceptors leading to the autocondensation of the donor 

or to the elongation of the transglycosylation product leading to polysaccharides. 

The present work aims to synthesize novel artificial functionalized polysaccharides with defined 

structures by the use of the glycosynthase technology. On the one hand, an increase in the 

molecular weight of the polysaccharides is attempted by the use of a carbohydrate binding module 

(CBM). This module might improve the solubility of the new polymers that are synthesized during 

the polymerization reaction. The effect on the polymerization degree has been studied for both 

the glycosynthase mutant in the presence of CBM and for the fusion protein glycosynthase-CBM. 

On the other hand, functionalized artificial polysaccharides have been synthesized from activated 

disaccharidyl donors where the desired functionalization has been introduced at position C-6’. 

These functionalized donors act as a substrate for the glycosynthase mutant that will catalyze the 

autocondensation reaction. The azido group was chosen as a suitable functional group given its 

versatility and its size, small enough to be accepted by the enzyme. Donors 6’-azidolaminaribiosyl 

fluoride and 6’-azidocellobiosyl fluoride have been synthesized and evaluated as substrates for 

the glycosynthase reactions by the E134S 1,3-1,4--glucanase mutant and the E197A cellulase 

mutant from Humicola insolens, respectively. 

Artificial 6-azido- and 6-amino-6-deoxicelluloses with an alternating functionalization pattern 

have been produced. As opposed to chemically modified celluloses where the substitution pattern 

is intrinsically random, the glycosynthase-catalyzed polymerization of properly modified 

glycosyl donors gives access to novel functionalized celluloses with defined and regular 

substitution patterns.  
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 CARBOHYDRATES AND GLYCOSCIENCE 

Carbohydrates participate in almost every biological system and, in essence, life itself. They have 

multiple biological functions such as serving as energy sources for cells and living organisms, or 

as structural components of cell walls. Carbohydrates are part of the DNA and RNA molecules, 

furthermore they are mediators of cell-cell interactions, being central components in many 

important biological recognition processes such as cell adhesion and signaling, cancer 

progression, host-pathogen interactions, and immune responses.1,2,3,4,5 Carbohydrates can be 

found as monosaccharides, oligosaccharides, polysaccharides or forming part of glycoconjugates 

(glycoproteins, glycolipids, glycosylated metabolites, etc). The biological processes in which 

carbohydrates are involved are typically associated to oligosaccharide structures of 

glycoconjugates and polysaccharides.  

Glycoscience is an interdisciplinary field of research focused on the study of structures and 

functions of carbohydrates (glycans and glycoconjugates) and their relationship to other 

molecules in biological systems.6 Glycobiology and glycochemistry are two main and usually 

intertwined subareas of glycoscience that study the structure, biosynthesis, and biology of glycans 

and their derivatives.7 

Glycomics is part of analytical glycoscience and a subset of glycobiology. It consists on an 

emerging scientific discipline which studies the functions of glycomes (the set of glycans and 

glycoconjugates that the cells produce under specified conditions of space, time and environment) 

in biological systems.7 

Glycomics focuses on glycans just as genomics is focused on nucleic acids and proteomics in 

proteins.8 Each cell type has its own distinct glycome governed by local rules and cell’s internal 

state.7  

The glycome can be described at many hierarchical levels of complexity. The simplest level 

would be the deconstruction of glycome into an inventory of glycan structures. Next level would 

define which glycans are associated with individual proteins or lipids. A third level of complexity 

would determine which glycans or glycoconjugates are expressed on specific cells or tissues. 

Finally, the last and most complicated level would visualize how glycoconjugates are actually 

organized relative to each other within the cell, at the cell surface, and in the extracellular matrix.  

Similar to the development in genomics and proteomics, high-throughput glycomics projects to 

decipher the role of carbohydrates in health and disease9,10,11 and it is experiencing a rapid 

development as a result of advances in technologies for analyzing glycan structure, unraveling 

glycan-protein interactions and establishing the functional significance of glycans. Many aspects 
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of glycobiology will probably be understood with systems-level analysis by comparing data that 

define the glycome, genome, transcriptome and proteome of biological processes. 

Glycobiology research has attracted increasing attention because glycosylation is the most 

complex and most frequently occurring post-translational modification in the biosynthesis of 

proteins with significant effects on protein folding, conformation, distribution, stability and 

activity.12 During the glycosylation reaction a glycosyl donor is attached to an acceptor molecule 

(it can either be a glycosyl acceptor or another organic molecule such as a protein or a lipid) 

forming a glycosidic bond. This reaction works via the displacement of a leaving group on the 

donor with a free hydroxyl group from the acceptor. 

Synthetic tools to access natural and non-natural glycosides and glycoconjugates have become a 

central issue in glycochemistry and glycobiology. Both for industrial applications in diverse fields 

such as medicine, pharma, food, cosmetics, etc, as well as in biological research in functional 

glycomic studies, there is the need for efficient synthetic approaches for structurally defined 

oligosaccharides and glycoconjugates. The development of efficient methodologies for the 

synthesis of oligo- and polysaccharides has been constantly explored and improved with the aim 

of studying biological activities and for its use as new biomaterials in biomedical applications. 

Polymers from natural sources are particularly useful as biomaterials given their similarity to the 

extracellular matrix and other polymers in the human body. Due to this biocompatibility they are 

nontoxic, relatively stable and degrade within the body as a result of natural biological processes, 

eliminating the need to remove them later. New natural-based biomedical polymers are interesting 

for applications such as implantable biomaterials, controlled-release carriers for local delivery of 

drugs, hormones, enzymes or growth factors. They can also be used as three dimensional scaffolds 

for tissue engineering or as polymer capsules in gene delivery systems, engineered to secrete a 

therapeutic agent for the therapy of a wide variety of diseases.13  

The surfaces of these polymer-based biomaterials are chemically well-defined, have unique 

physicochemical properties and can be chemically modified to improve their functionality and 

suit specific needs.14,15 Chemical synthesis is complicated due to the difficulty that results from 

trying to control the regioselective protection of polyhydroxyls by the use of suitable orthogonal 

protecting groups and anomeric stereoselective assembly of glycosidic linkages. This involves 

protection and deprotection steps, resulting in multi-step reactions with typically a low overall 

yield.16 

In nature, enzymes are responsible of the synthesis of glycosidic bonds. Enzymatic synthesis, 

without the need of protecting groups, is characterized by a high catalytic activity, lack of 

undesirable side-reactions, mild reaction conditions, and high regio- and stereoselectivity.17
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 GLYCOSIDIC BOND FORMATION 

There are two main carbohydrate active enzymes in nature involved in the synthesis of glycosidic 

bonds: glycosyltransferases and transglycosidases.  

1.2.1. Glycosyltransferases  

Glycosyltransferases catalyze the transfer of a sugar moiety from an activated glycosyl donor 

(nucleoside phosphate, phosphate, or lipid phosphate groups) to an acceptor forming a glycosidic 

bond. They have been widely studied and have been classified into more than 90 families 

(CAZymes, www.cazy.org).18 When glycosyltransferases accept nucleotides as glycoside donors, 

the enzymes are termed Leloir glycosyltransferases, whereas if they accept non-nucleotide donors 

(sugar phosphates) then are termed non-Leloir glycosyltransferases.  

Leloir glycosyltransferases have a high degree of specificity, many of them catalyzing the 

formation of a unique linkage. However, this type of glycosyltransferases are often membrane-

bound proteins, present in low concentrations, difficult to isolate and purify, and unstable once 

they are isolated.  These enzymes are also produced by recombinant technology but to date few 

commercial glycosyltransferases are available at high prices. In the case of Leloir 

glycosyltransferases which are extremely regio- and stereoselective, the need of glycosylated 

donors activated with nucleotides increases the already high cost of the reaction.19  

Two main stereochemical outcomes exist for glycosyltransferases: inverting glycosyltransferases 

involve an inversion of the anomeric configuration of the carbohydrate while a retention of the 

anomeric configuration is observed with retaining glycosyltransferases (Figure 1. 1). 

The mechanism of the inverting reaction is widely accepted and is mechanistically 

straightforward; the acceptor hydroxyl acts as a nucleophile and approaches the anomeric carbon 

from the opposite side to the donor-nucleoside linkage eventually resulting in inversion of 

anomeric stereochemistry as the nucleoside leaves (direct displacement SN2-like reaction). On the 

contrary, the mechanism for retaining glycosyl transfer stereospecificity has been for a long time 

a matter of debate. They were broadly classified as proceeding with primarily dissociative (SN1) 

or primarily associative (SN2) character. The analysis of the structures, together with literature 

data from NMR, MS, kinetics, and computational studies, point to the orthogonal mechanism for 

retaining glycosyltransferases as both the simplest and the most consistent with the available data. 

The term ‘‘orthogonal’’ refers to a process involving the nucleophile and the leaving group on 

the same side (“front-side’’ attack) where the approach of the nucleophile is approximately 

orthogonal to the breaking bond axis, and proceeding in a single step from reactants to products 

without an intermediate.20,21 
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Figure 1. 1. Reaction mechanisms of inverting (A) and retaining (B) glycosyltransferases. R is an acceptor sugar 
molecule. 

 

Phosphorylases, catalyze the phosphorolysis of polysaccharides. The reaction is reversible and 

these enzymes are also able to form glycosidic linkages using glycosyl phosphates as donors 

(Figure 1. 2).  
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Figure 1. 2. Polysaccharide biosynthesis by a phosphorylase. 
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Phosphorylases are classified as members of glycosyl hydrolases families or glycosyltransferase 

families (CAZy). Like glycosyltransferases and glycosidases, phosphorylases can act with 

retention or inversion of configuration (Figure 1. 3).  
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Figure 1. 3. Reaction mechanisms of phosphorylases: a) retaining phosphorylases, b) inverting phosphorylases. 

 

Phosphorylases can be used for oligosaccharide synthesis via the reverse reaction (Figure 1. 4). 

Inverting glycosidases are highly regiospecific and O-glycosidic oligosaccharides are typically 

obtained with high regioisomeric purity.22,23 The strict recognition of specific sugar 1-phosphate 

excludes substitution and modification of donor substrates, therefore, molecular design of novel 

phosphorylases is needed to obtain phosphorylases with altered donor specificity.24,25 Sugar 1-

fluoride proved to be an alternative to the donor sugar 1-phosphate making the reaction 

irreversible as no phosphate is released which can act as a general base catalyst in phosphorolysis 

of the obtained oligosaccharide product.  
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Figure 1. 4. Oligosaccharide synthesis via reverse reaction of inverting phosphorylases. 

 

The number of existing phosphorylases is still low and therefore there are a few studies of these 

type of enzymes.7 However, new phosphorylases have been discovered lately spreading the tools 

for oligosaccharide synthesis.26  

1.2.2. Glycosidases 

Glycosyl hydrolases or glycosidases are degrading enzymes that catalyze the stereospecific 

hydrolysis of a glycosidic bond in oligosaccharides, polysaccharides or glycoconjugates. Their 

hydrolytic activity is reversible under appropriate conditions and they can catalyze the synthesis 

of glycosides through transglycosylation reactions under  appropriate conditions. Glycosyl 

hydrolases are a widespread group of carbohydrate active enzymes, with more than 130 families 

based on amino acid sequence similarities.27 They are easy to produce, very stable and the 

required glycosyl donors are cheap and relatively easy to produce in large scale.  

1.2.2.1. Endo/Exo glycosidases 

Glycosidases can be classified in exo- or endo-enzymes depending on the position of the 

hydrolyzed glycosidic bond in the substrate chain. Exo-glycosidases remove a monosaccharide 

(or disaccharide) from one of the ends of the chain (most commonly from the non-reducing end), 

whereas endo-glycosidases act on internal glycoside bonds within the oligosaccharide chain 

(either randomly or processively).  This regiospecificity for bond cleavage is a consequence of 

the active site topology. The carbohydrate binding site structure is reduced to three basic 
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topologies (Figure 1. 5): pocket, encountered in exo-glycosidases and optimal for recognition of 

a saccharide on the chain end;  cleft, where an open grove structure allows binding of several 

sugar units in polymeric substrates and is commonly found in endo-acting enzymes; and tunnel, 

derived from the cleft topology with long loops that cover part of the cleft, as those found in 

cellobiohydrolases, where the resulting tunnel enables a polysaccharide chain to be theaded 

through it.28  

 

 

Figure 1. 5. The three different active sites found in glycosidases. At the upper side of the image, the molecular surface 
diagrams can be observed while at the lower side there are the secondary structure of the same proteins. Catalytic 
residues can be distinguished in yellow. A. The pocket (-glucosidase from Thermus thermophilus HB8). B. The cleft 
(1,3-1,4--glucanase from Bacillus licheniformis).29 C. The tunnel (endo-glucanase Cel6 from Mycobacterium 
tuberculosis).30 

 

1.2.2.2. Retaining/Inverting glycosidases  

Glycosyl hydrolases operate by general acid-base catalysis involving Asp, Glu or Tyr as catalytic 

residues, but differ in their mechanisms as a consequence of their active site topology.31,32,33,34 

Depending on their catalytic mechanism, glycosidases can act with retention or inversion of 

anomeric configuration.  

For retaining glycosidases, the hydrolysis of the glycosidic bond is normally catalyzed by two 

amino acid residues of the enzyme: a general acid residue acting as a proton donor and a general 

base which acts as a nucleophile. A third catalytic residue is often involved in the modulation of 

the pKa of the acid/base residues. Retaining glycosidases follow a double-displacement reaction 

via formation and hydrolysis of a glycosyl-enzyme intermediate, and have the catalytic residues 
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closer to each other at c.a. 5.5 Å (Figure 1. 6a). In the first step (glycosylation) the amino acid 

residue acting as a general acid protonates the glycosidic oxygen while the deprotonated 

carboxylate functioning as a nucleophile attacks the anomeric center with concomitant C-O 

breaking of the scissile glycosidic bond leading to a covalent glycosyl-enzyme intermediate. The 

second deglycosylation step involves the attack by a molecule of water assisted by the conjugate 

base of the general acid residue which renders the free sugar with overall retention of 

configuration, and the enzyme returns to its initial protonation state.28 

Some retaining glycosidases catalyzing glycoside bond hydrolysis in 2-acetamido sugars (i.e. 

GH18 chitinases, GH20 hexosaminidases, GH52 hyaluronidases, and GH85, endo-β-

acetylglucosaminidases)  follow a variation of the retaining mechanism (Figure 1. 6b); they lack 

the enzyme’s catalytic nucleophile and operate by substrate-assisted catalysis, where the N-acetyl 

group of the susbtrate acts as internal nucleophile forming an oxazolinium intermediate, which is 

then attacked by a water molecule assisted by the conjugate base of the general acid residue to 

yield the product with net retention of the anomeric configuration.35 In this case, an auxiliary 

residue that hydrogen bonds with the NH- of the acetamido group assists the formation of the 

oxazolinium intermediate. 

By contrast, inverting glycosidases operate by a single-step mechanism in which a water molecule 

(with general base catalysis) effects a direct displacement at the anomeric center with protonic 

assistance by the general acid residue on the departing glycosidic oxygen. The catalytic residues 

are located at approximately 10 Å apart to each other allowing binding of the substrate and a 

water molecule in a ternary productive complex (Figure 1. 6c).34  
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Figure 1. 6. Glycosidase mechanism: a) retaining glycosidase with enzyme nucleophile, via a glycosyl-enzyme 
intermediate in the two-step displacement mechanism, b) retaining glycosidase by substrate-assisted catalysis, via an 
oxazolonium ion intermediate. c) inverting glycosidase. 

 

1.2.2.3. Glycosidases as synthetic tools 

Retaining glycosidases are employed as biocatalysts in the preparation of diverse 

oligosaccharides and glycoconjugates. Classical approaches with wild type retaining glycosidases 

are based on reversal of their hydrolytic action. This is achieved either by displacing the 

equilibrium towards glycoside bond formation (thermodynamically controlled synthesis) or by 

using activated glycosyl donors (kinetically controlled transglycosylation). 

Thermodynamically controlled reverse hydrolysis involves the shift of the equilibrium towards 

products by altering the reaction conditions minimizing the water activity in the reaction by 

adding water-miscible organic co-solvents (Figure 1. 7). The hydrolysis-synthesis equilibrium is 

balanced by approximately 4 kcal·mol-1 towards bond cleavage under aqueous conditions. 

Reactions at higher temperatures and the use of higher substrate concentrations also favor the 

transfer to the acceptor molecule and have proved to increase the synthetic yields. Reverse 

hydrolysis in nonaqueous solutions are not generally useful since the sugar substrates become 

insoluble. Most of the reported examples by the thermodynamic approach are for the preparation 
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of simple glycosides (mainly disaccharides) or glycosides of hydrophilic alcohols using exo-

glycosidases.36,37 

Glycosyl-OH  R-OH Glycosyl-OR  H2O
 

Figure 1. 7. Thermodynamically controlled reverse hydrolysis where R = sugar nucleophile or hydroxylated 
compound. 

Kinetic control (transglycosylation) involves a more rapid trapping of the glycosyl-enzyme 

intermediate by a glycosyl acceptor acting as a nucleophile rather than by water. This approach 

relies on the fast formation of the reactive intermediate from a donor substrate with a good leaving 

group such as an aryl glycoside or a glycosyl fluoride. Under appropriate conditions, a 

nucleophilic acceptor other than water can intercept the glycosyl-enzyme intermediate and form 

a new glycosidic bond (transglycosylation product) with the same anomeric configuration in the 

product than in the glycosyl donor (overall retaining reaction). Although glycoside bond 

formation may be favored kinetically, hydrolysis always remains favored thermodynamically, 

because the product itself is a substrate for the enzyme, and the equilibrium is slowly shifted 

towards hydrolysis. The competing hydrolysis over transglycosylation is often referred as two 

processes: primary hydrolysis, meaning the hydrolysis of the glycosyl-enzyme intermediate 

(water attack in the deglycosylation step), and secondary hydrolysis, meaning hydrolysis of the 

transglycosylation product that is a substrate for the hydrolase activity of the enzyme (Figure 1.8 

A). In the case of retaining glycosyl hydrolases (GH) acting by substrate-assisted catalysis (Figure 

1.8. B) wild-type enzymes are also able to catalyze kinetically controlled transglycosylation using 

a -GlcNAc-sugar substrate or preferable, activated sugar oxazolines as glycosyl donors which 

bind to the enzyme to form directly the reaction intermediate.   
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Some other strategies were designed to maintain the displacement towards transglycosylation and 

avoid hydrolysis such as removal of the transglycosylation product from the reaction mixture, 

immobilization of the enzyme allowing re-use of the enzyme or the use of lipid-coated 

glycosidases which are stable in organic solvents and active in organic media and insoluble in 

buffer solutions.38 

In 1991, Kobayashi produced in vitro artificial cellulose by using a cellulase to catalyze the 

polycondensation of -cellobiosyl fluoride in acetonitrile/acetate buffer.39 When a crude cellulase 

(mixture of enzymes) was used, the morphology of the obtained product consisted in the stable 

cellulose II allomorph with anti-parallel-chain packing. However, metastable crystalline cellulose 

I with parallel chain packing was obtained when using purified cellulases. In 2001, Kobayashi 

demonstrated that the relative intermolecular direction of growing glucan chains was controlled 

in the propagating process of enzymatic polymerization.40,41 Therefore, it supposed a new method 

for the preparation of new higher-order molecular assemblies.  

Other oligo- and polysaccharides such as maltooligosaccharides,42 xylan,42 chitin,43 an hybrid 

cellulose-xylan44 or mixed linked -1,3 and -1,4 glucans45 were synthesized by enzymatic 

transglycosylation using different glycosidases, substrates and strategies. In all these cases, 

enzymes used glycosyl fluoride donors and the degrees of polymerization of the produced 

polysaccharides did not exceed 10 – 30 monosaccharide units.17 Final yields rarely exceeded 50% 
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since the products become substrates of the enzyme since hydrolysis always remains favored 

thermodynamically and the equilibrium is slowly displaced.  

Larger polysaccharides with higher DPs (6 – 80) which depended on the reaction conditions were 

synthesized by substrate-assisted catalysis. Homopolysaccharides such as chitin, chitosan and 

derivatives (chitanases derivatives in which C-2II was functionalized with hydroxyl, amino or 

sulfonamide, C-3 was functionalized with a methyl group or C-6 was functionalized with 

carboxylate and fluorine groups) and heteropolysaccharides such as hybrids chitin-chitosan, 

cellulose-chitin, chitin-N-sulfonated chitosan. Hyaluran and chondroitin derivatives with 

different N-acyl groups and even a hybrid hyaluronic-chondroitin polysaccharide were 

successfully produced.17  

 Glycosynthases 

In 1998, Withers and co-workers46 engineered the first exo-glycosynthase, mutant of an exo-

glycosidase, while Planas and co-workers47 introduced the glycosynthase concept for endo-

glycosidases. The new technology was developed to avoid the hydrolysis of the 

transglycosylation products by mutating the nucleophilic residue of the glycosidase, replacing it 

by an inert amino acid residue while using substrates such as glycosyl fluorides, with the opposite 

anomeric configuration to that of the natural substrate imitating the intermediate glycosyl-

enzyme.  In a one-step inverting mechanism, the remaining catalytic residue acts as a base to 

deprotonate the acceptor, activating it as a nucleophile that will attack the glucosyl donor in the 

active site creating the new glycosidic bond (Figure 1.9. A).  

Most glycosynthases are derived from retaining glycosidases. 17 retaining glycosyl hydrolases, 

both exo- and endoglycosidases, have been converted into glycosynthases. Endo-glycosynthases 

typically exhibit high substrate specificity and regioselectivity and their products have higher 

degree of polymerization than exo-glycosynthases which are less regio- and stereoselective and 

produce shorter oligosaccharides.48  

1.3.1. Activated substrates for glycosynthases 

Most endo- and exo-glycosynthases use -glycosyl fluorides as activated donors which imitate 

the glycosyl-enzyme intermediate synthesizing β-linkages (Figure 1. 9A). Some of the already 

known endo-glycosynthases (families GH 18 and GH 85) use activated oxazoline glycans as 

donors for the transglycosylation of 2-acetamido--glycans (Figure 1.9. B).49,50,51,52,53 A few exo-

glycosynthases from -glycosidases can use a azido donor as an activated substrate synthesizing 

-linkages instead of -glycosyl fluorides because of their higher stability (Figure 1.9. C).54 These 

glycosynthases were engineered with the objective of synthesizing -L-fucosylated 
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oligosaccharides, molecules that exhibit prebiotic properties on cultured infant microbiota and 

might have potential application in biomedicine. -glycosynthases were prepared from the GH29 

-L-fucosidases from S. solfataricus (Ssa-fuc) and Thermotoga maritima, and from the GH36 -

galactosidase from T. maritima.55  

O
H

R
O

OO

R'

O

OHO

OR

R'

A) Retaining glycosynthases (from exo- and endo-glycosidases)

B) Retaining glycosynthase (from endo-glycosidases), substrate assisted

OHO
O

HN

OH OO

O
O
H

R
OHO

O
NH

OH

OR

O

OHO

F

HF
XO XO

C) Exo-glycosynthases from retaining glycosidases (azido donor)

O R
H

O

R'

O

R'

N3
HO HO

O O

N3
OR

O OH

OOH

HOHO
OHOR

O O
H

R'

O
H

O
OOH

HOHO
OHROH

O
H

O
OOH

OHO
OHOR

H

O O

R'

OOH

HOHO
OHO

OOH

HO
OHOR

R'

O OH

D) Exo-glycosynthases from retaining glycosidases (formate rescue)

E) Inverting glycosynthase

O
H

R
O

OO

R'

O
OO

OR

R'
F

HF
XO XO

O H
H

H
O

OO

XO

ROH

OH

R'

Slow

nucleophile

nucleophile

nucleophile

general acid/base

nucleophile

 

Figure 1. 9. Glycosynthase enzymes: a) nucleophile mutant of a retaining glycosidase with glycosyl fluoride donor, b) 
mutant at the assisting residue of a retaining glycosidase acting by substrate-assisted catalysis and a sugar oxazoline 
donor, c) nucleophile mutant of a retaining exo-glycosidase (thermophilic) with an azido donor, d) nucleophile mutant 
of a retaining glycosidase (thermophilic) with in situ generation of the glycosyl donor and exogenous nucleophile, e) 
glycosynthase-like mutant derived from an inverting glycosidase (general base mutant of an inverting -glycosidase in 
the example). 
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The conventional glycosyl fluoride donor is unstable at high temperatures, therefore, some 

retaining glycosynthases from hyperthermophile exo-glycosidases, use formate/formic acid 

buffer as an external nucleophile to rescue the active site of the enzyme (Figure 1.9. D)56,57,58. The 

mutant E387G of GH1 exo--glycosidase from Sulfolobus solfataricus (Ssb-gly) functioned as 

glycosynthase by formate rescue of the substrate.57  

In 2006, the first glycosynthase-like enzyme from an inverting glycosidase was engineered by 

mutating the nucleophilic catalytic residue and using an activated donor with the same anomeric 

configuration as the normal hydrolysis product. As inverting glycosidases operate by a single 

displacement mechanism, enzyme engineering for glycosynthesis in this case is based on a similar 

but slightly different concept.  However, the normal hydrolytic process is substantially slowed 

but still significant59. An alternative approach was proposed by Honda et al 2008 by mutating a 

neighboring residue that holds the nucleophilic water molecule that interacts with the general base 

while keeping the general base residue intact (Figure 1.9. E) 60. Higher transglycosylation yields 

where obtained because of the reduced hydrolysis. Since then, three more glycosynthases–like 

enzymes derived from three different families of inverting glycosidases have been reported.61,62,63  

1.3.2. Synthesis of glycoconjugates and glycans 

1.3.2.1. Glycoconjugates 

Glycolipids and glycoproteins 

Several endo-glycosynthases have been engineered lately using them in glycolipid and 

glycoprotein formation for a better understanding of their biological function avoiding the 

complex chemical synthesis. 

The synthesis of the neurogenic ganglioside LLG-3 from Linckia laevigata, a tetrasaccharide 

present in starfish, was recently performed chemoenzymatically in high yields and with high 

regio- and stereospecificity in a minimum of synthetic steps by Rich and Withers64 for the study 

of the influence of subtle structural alterations on the function of GSLs. The glycosynthase from 

endo-glycoceramidase II (EGCase) from Rhodococcus sp. transferred oligosaccharide fluorides 

to a diverse set of sphingolipids with transglycosylation yields over 70%.65  

Since 2008, glycosynthases have been used to modify N-glycosylation sites making possible the 

preparation of homogeneous glycoforms for the study of the structural and functional roles of the 

attached glycans.49 The glycoprotein of study has to be first hydrolyzed by the use of an endo--

N-acetylglucosaminidase (ENGase) in order to remove its native glycans, only leaving the 

terminal GlcNAc residue. Then, an ENGase glycosynthase mutant is responsible of transferring 
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the oxazoline derivative of a homogenous N-glycan to the protein. Five mutants from ENGases 

have been reported so far: Endo-M, Endo-A, Endo-D, Endo-S and the new Endo-F3.  

The mutant Endo-M from Mucor hiemalis transfers complex type N-glycans onto a synthetic 

peptide Saposin C58 on a five nanomole scale with a yield of 64%. Endo-A glycosynthase from 

Arthrobacter protophormiae was used to couple Man9GlcNAc and Gal1Glc1Man9GlcNAc to 

Ribonuclease B with yields over 78% producing 0.5 – 1.3 mg of glycoprotein. Endo-D from 

Streptococcus pneumoniae  has a strict substrate specificity and it partially (because of the 

substrate specificity) catalyzes the transfer of Man3-GlcNAc oxazoline onto IgG-Fc. Endo-S from 

Streptococcus pyogenes removes the heterogeneous N-glycan from the Fc domain of the 

therapeutic antibody rituximab, leaving either the Fuc1,6-GlcNAc core or a single GlcNAc 

residue after treatment with a fucosidase. They then transferred the derivative oxazoline from a 

fully sialylated N-glycan or an azido-tagged glycoform onto the fucosylated protein 

quantitatively, and an asialylated N-glycan on to the nonfucosylated protein quantitatively, as 

well. The homogeneous nonfucosylated G2 glycoform displayed an increase in rituximab receptor 

affinity, which should translate to better activity in vitro. 

Recently, several mutants of the endo-β-N-acetylglucosaminidase from Elizabethkingia 

meningosepticum, Endo-F366 were recently developed by site-directed mutagenesis. They 

transferred complex N-glycans to GlcNAc-peptide/protein. Unlike the other four ENGase 

glycosynthases, Endo-F3 was able to use triantennary glycan oxazolines as substrates for 

transglycosylation. Giddens et al synthesized CD52 antigen and efficiently remodeled Fc 

glycosylation of monoclonal antibody rituximab. This chemoenzymatic approach also provided 

an efficient synthesis of core fucosylated bi- and tri-antennary glycopeptides. 

Glycosaminoglycans 

Glycosaminoglycans (GAGs) are long unbranched polysaccharides composed of repeating 

disaccharide units which combine one uronic acid and one hexosamine (D-glucosamine or D-

galactosamine). At least one of the monosaccharidic units contains a minimum of one sulfate or 

carboxylate group negatively charged. GAGs are located primarily on the surface of cells or in 

the extracellular matrix (ECM). Along with the high viscosity of GAGs comes low 

compressibility, which makes these molecules ideal for a lubricating fluid in the joints. At the 

same time, their rigidity provides structural integrity to cells and provides passageways between 

cells, allowing for cell migration. Apart from their structural importance to the integrity of the 

ECM, GAGs are also fundamental modulators of various biological processes at the level of cells 

(i.e., adhesion, signaling and proliferation), tissue (i.e., inflammation, wound repair, tissue 

morphogenesis and organogenesis) and organism (i.e., cancer and developmental processes).67 
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The majority of GAGs in the body are linked to core proteins, forming proteoglycans (also called 

mucopolysaccharides).68 

Traditionally, GAGs were obtained from mammalian tissues mainly generated in slaughterhouse 

but as a consequence of the concern due to the bovine spongiform encephalopathy (BSE) and 

other food chain crisis, the exploration of microorganism and marine organisms as source of those 

glycoconjugates or the synthetic preparations have received increasing attention.69,70 

Nevertheless, chemical synthesis of these polymers is particularly challenging and the use of 

enzymes recently showed remarkable successes.71  

The glycosynthase derived from the -glucuronidase from Thermotoga maritima (GH2) was able 

to transfer both glucuronic and galacturonic acid residues, main components of different GAGs.72 

This -glucuronylsynthase recognized a great variety of acceptors (xylosides, glucosides, 

glucuronides, and disaccharide derivatives) and it was highly regiospecific producing in all cases 

-(1,3) linkages with yields up to 83%. This exo-glycosynthase provided a promising way to 

synthesize GAG building blocks. However, it could not synthesize products longer than DP = 4 

with yields not higher than 10%. 

1.3.2.2. Glycans 

Glycan inhibitors 

Glycosynthases allow to produce a family of oligomeric products when searching for enzyme 

inhibitors. Goddard-Borger and co-workers73 studied the production of xylanase inhibitors with a 

glycosynthase mutant from GH52 -xylosidase from Bacillus halodurans. An -xylosyl fluoride 

was used as a donor and several different inhibitory monosaccharides as acceptors creating 

inhibitors with different degrees of polymerization varying from 1 to 3. The produced 

trisaccharides were much more potent competitive inhibitors than their disaccharide counterparts. 

Polymers 

The use of glycosynthases increases the reaction yields if compared to transglycosylation yields 

of wild-type enzymes. One of the principal uses of glycosynthases is their use in the synthesis of 

polysaccharides by self-condensation of a glycosyl fluoride substrate that serves at the same time 

as donor and acceptor. This enzymatic polymerization is mainly catalyzed by endo-

glycosynthases due to their extended active site which can accept larger complex oligosaccharides 

producing polysaccharides with high degrees of polymerization.  

Eleven endo-glycosynthases out of the nineteen current endo-glycosynthases which use glycosyl 

fluorides as substrates have been able to polymerize their corresponding glycosyl donor.  
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Furthermore, there is one exo-glycosynthase from a retaining GH1 -glycosidase from Oryza 

sativa and an endo-glycosynthase from an inverting GH19 -glycosidase from Bryum coronatum 

able to autocondensate glycosyl fluoride donors as well. These polysaccharides have a higher 

degree of polymerization than the ones obtained with wild-type glycosidases under kinetic 

transglycosylation. 

1.3.3. Glycosynthase-catalyzed synthesis of artificial polysaccharides  

The glycosynthase reaction proved to be able to produce artificial polysaccharides by the use of 

E134 mutants of 1,3-1,4-glucanase from Bacillus licheniformis.74 Other complex and 

homogenous glycopolymers using structurally diverse polysaccharides as acceptors have been 

produced as well by the use of other endo-xyloglycosynthases.75,76  

Biologically relevant polymers like cellulose (E197 mutants of cellulose Cel7B from Humicola 

insolens), chitin, xylan (glycine mutants of several xylanases),77 curdlan (E231 mutants of -

(13)-glucanase from barley) and functionalized derivatives have been synthesized with DP up 

to 30. Only few examples have yet been reported, but this is an emerging field for the preparation 

of new biomaterials with defined structures that either mimic natural polysaccharides or have 

unnatural structures and functionalities. 

1) Mixed-linked -glucans 

It was shown in our laboratory that the endo-glycosynthase from Bacillus licheniformis -1,3-

1,4--glucanase catalyzed the polymerization of glycosyl fluoride donors (Glcβ4)nGlcβ3GlcαF 

(n = 0 – 2) leading to artificial mixed-linked β-glucans with regular sequences and variable β-1,3 

to β-1,4 linkage ratios (Figure 1.  10).78,74  With the E134A glycosynthase mutant, polymers had 

average molecular masses (Mw) of 10-15 kDa, and the morphology of the water-insoluble 

polysaccharides was dependent on the repeating unit. With the more active E134S glycosynthase 

mutant, polymerization led to high molecular mass polysaccharides, where Mw was linearly 

dependent on enzyme concentration. Remarkably, a homo-polysaccharide 

[4Glcβ4Glcβ4Glcβ3Glc]n with Mw as high as 30 kDa (n ≈ 42) was obtained, which contained a 

small fraction of products up to 70 kDa, a value that is in the range of the molecular masses of 

low viscosity cereal 1,3-1,4-β-glucans, and among the largest products produced by a 

glycosynthase.78 It was demonstrated that the polysaccharide morphology depended on the -1,3-

linkage ratio content. Highly porous spherulitic crystalline polysaccharides composed of platelets 

were obtained when the disaccharide and tetrasaccharide fluoride donors n = 0, 2 were used as 

substrates whereas an amorphous precipitate was obtained after self-condensation of the 

trisaccharyl fluoride n = 1.78 
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Figure 1. 10. Glycosynthase-catalyzed polymerization to produce -1,3-1,4 mixed-linked glucans. 

 

2) Cellulose 

The E197A mutant of endo-cellulase Cel7B from Humicola insolens was shown to polymerize 

-cellobiosyl fluoride to produce an insoluble crystalline β-1,4-glucan that was consistent with 

low molecular mass cellulose II.79 This enzyme was able to polymerize, as well, cellobiosyl 

fluorides modified at the C-6II position with amino, bromide or thioglycosyl functional groups 

generating functionalized polysaccharides. These chemical functionalities opened up possibilities 

to later modify and graft the polysaccharides with other biomolecules. The degree of 

polymerization of the generated polysaccharides was rather low (DP≈30) due to product 

insolubility.  

3) -1,3-curdlan 

Crystalline β-1,3-linked polysaccharides were synthesized by the use of a glycosynthase derived 

from a barley β-1,3-glucan endo-hydrolase. The solid products from the polymerization of 

laminaribiosyl fluoride by the E231G glycosynthase mutant obtained with a DP of 30 were 

structurally similar in all respects to the recrystallized β-1,3-curdlan. Interestingly, 3-

thiolaminaribiosyl fluoride (a β-1,3-S-linked disaccharide) was a suitable substrate for the 

glycosynthase and oligosaccharides with alternating S- and O-linkages between the sugar residues 

were obtained. The rate of formation and the degree of polymerization were lower than those of 

the homologous homo-polysaccharide but these novel hetero-polymers were much more resistant 

to enzymatic hydrolysis by 1,3-glucanases.80  

4) Xylanases  

Glycosynthases from GH10 xylanases from four different bacterial sources are able to produce 

polymeric -1,4-linked xylopyranoside (DP≈30) efficiently using -xylobiosyl fluoride (X2F) as 

donor, as well as from GH52 β-xylosidase.77  

5) Xylan  

Xyloglucan polymers have also been obtained by different glycosynthases. The Humicola 

insolens GH7 glycosynthase, HiCel7B E197S, is capable of synthesizing non-galactosylated, 
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XXXG-based homo-xyloglucan up to Mw 60000 Da [G=Glcβ(1→4); X=Xylα(1→6)Glcβ(1→4); 

L=Galβ(1→2)Xylα(1→6)Glcβ(1→4)]. More complex xyloglucans have been achieved by the 

glycosynthase based on the GH16 xyloglucan hydrolase from Tropaeolum majus (TmNXG1) 

which is capable of synthesizing XLLG-based xyloglucan oligosaccharides, but not higher 

polymers.81 Interestingly, the glycosynthase derived from GH5 Paenibacillus pabuli endo-

xyloglucanase catalyzes regio- and stereospecific homo- and hetero-condensations of -

xylogluco-oligosaccharyl fluoride donors XXXGF and XLLGF producing high molecular 

mass xyloglucan polymers with regular sidechain substitution patterns not available in nature.82 

The product range could be further extended by combination with an α(1→2)-fucosyltransferase 

to achieve the in vitro synthesis of fucosylated xyloglucans typical of dicot primary cell walls.82  

Altogether, these glycosynthases provide a versatile method for the preparative synthesis of 

homogeneous xyloglucans with regular substitution patterns not available in nature. 

In Table 1. 1, 1. 2 and 1. 3 all the glycosynthases engineered since the introduction of the 

technology in 1998 until June 2014 are presented with a breve description of each one. 
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Parental glycosidase  
Famil

y 
Mutated 
residue 

Reaction 
C(1)/P(2) 

Linkage formed 
Referen

ce 

Exo-glycosidases (fluoride donors)           

Agrobacterium sp. β-glucosidase GH 1 E358 C β-1,4 (β-1,3) (3) [46] 

Sulfolobus solfataricus β-glycosidase GH 1 E387 C β-1,3/4/6 [83] 

Thermosphaera aggregans β-glycosidase GH 1 E386 C β-1,3/4/6 [58] 

Thermus thermophilus β-glycosidase GH 1 E338 C β-1,3 [84] 

    (β-1,6) (3,4) [85] 

     [86] 

Streptomyces sp. β-glucosidase GH 1 E383 C β-1,3  (β-1,4) (3,4) [87] 

Oryza sativa β-glucosidase GH 1 E414 C / P β-1,4  (β-1,3) (4) [48] 

     [88,89] 

Thermus non-proteolyticus GH 1 E338 C β-1,3, β-1,4 (4) [90] 

Thermotoga neopolitana GH 1 E349 C β-1,3/4/6 (3) [91] 

Cellulomonas fimi β-mannosidase GH 2 E519 C β-1,3, β-1,4 (3,4) [92] 

Escherichia coli β-galactosidase GH 2 E537 C β-1,6 [93] 

Thermotoga maritima β-glucuronidase GH 2 E476 C β-1,4 [72] 

Escherichia coli β-glucuronidase GH 2 E504 C β-alcohol [94] 

Saccharopolyspora erythraea β-glucosidase GH 3 D257  β-1,2 [95] 

Candida albicans GH 5 E292 C β-1,6/3/4 (3) [96] 

Schizosaccharomyces pombe α-glucosidase GH 31 D481 C α-1,6/4  [97] 

Bacillus circulans GH 35 E233 C -1,3 [98] 
Geobacillus stearothermophilus β-
xylosidase GH 52 E335 C β-1,4 (β-1,3) (3) [99] 

Bacillus halodurans β-xylosidase GH 52 E334 C β-1,4  (β-1,3) (3,4) [73] 

Exo-glycosidases (formate rescue)      

Sulfolobus solfataricus β-glycosidase (*) GH 1 E387 C β-1,3/4/6 [83] 

Pyrococcus furiosus β-glycosidase GH 1 E372 C β-1,3 [58] 

Thermoplasma acidophilum α-glucosidase GH 31 D408G C α-1,4 [100] 

          [56] 

Exo-glycosidases (azide donor)      

Sulfolobus solfataricus α-fucosidase GH 29 E242 C α-1,3 (α1,4/6/2) (3) [54] 

Thermotoga maritima α-fucosidase GH 29 D224 C α-1,3, α-1,4 [54] 

Thermotoga maritima α-galactosidase GH 36 D327 C α-1,2/3/4/6 (3) [101] 
 

Table 1.  1. Retaining glycosynthases from exo-glycosidases. (1) Donor and acceptor condensation, and eventually, 
product elongation leading to short oligomers. (2) Polymerization by donor self-condensation to produce artificial 
polysaccharides. (3) Depending on the acceptor, mixture of both linkages are obtained (4) Regioselectivity changes 
depending on the acceptor. 
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Parental glycosidase  Family 
Mutated 
residue 

Reaction 
C(1)/P(2) 

Linkage 
formed 

Referen
ce 

Endo-glycosidases (fluoride donor)           

Rhodococcus sp. Glycoceramidase GH 5 E351 C β-1,1 [102] 
  E351/D324 C β-1,1 [64] 

Clostridium cellulolyticum Cel5A GH 5 E307 C β-1,3, β-1,4 [103] 
Paenibacillus pabuli xyloglucanase GH 5 E323 C / P β-1,4  [82] 

Humicola insolens cellulase GH 7 E197 C / P 
β-1,4, β-1,3 
(4) [79] 

Trichoderma reesei cellulase GH 7 E196 C β-1,4 [104] 
Clostridium stercorarium 1,4-β-
xylanase GH 10 E293 C / P β-1,4 [77] 
Bacillus halodurans 1,4-β-xylanase GH 10 E301 C / P β-1,4 [77] 
Cellulomonas fimi Cex 1,4-β-xylanase GH 10 E233 C / P β-1,4 [77] 
Thermotoga maritima 1,4-β-xylanase  GH 10 E259 C / P β-1,4 [77] 
Cellulomonas fimi CFX 1,4-β-xylanase GH 10 E235 C β-1,4 [105] 
Geobacillus stearothermophilus 1,4-β-
xylanase GH 10 E265 C / P β-1,4 [99] 
Bacillus licheniformis xyloglucanase GH 12 E155 C unknown [81] 
Bacillus licheniformis 1,3-1,4-β-
glucanase GH 16 E134 C / P β-1,4 [47] 

Pyrococcus furiosus 1,3(4)-β-glucanase GH 16 E170 C 
β-1,4, β-1,3 
(4) [106] 

Pttxyloglucan endo-transglycosylase GH 16 E85 C / P β-1,4  [107] 
Tropaeolum majus xyloglucanase GH 16 E94 C / P β-1,4 [81] 
Phanerochaete chrysosporium 
laminarinase GH 16 E115S C β-1,3 [108] 
Hordeum vulgare 1,3-β-glucanase GH 17 E231 C / P β-1,3 [80] 
Cellvibrio japonicus β-mannanase GH 26 E320 C β-1,4 [109] 

Endo-glycosidases (oxazoline)           

Streptococcus pyogenes  GH 18 D233 C β-1,4 [49] 
Endo-β-N-acetylglucosaminidase 
(Endo-S)      
Mucor hiemalis  GH 85 N175 C β-1,4 [50] 
Endo-β-N-acetylglucosaminidase 
(Endo-M)      
Arthrobacter protophormiae  GH 85 N171 C β-1,4 [52] 
Endo-β-N-acetylglucosaminidase 
(Endo-A)      
Streptococcus pneumoniae  GH 85 N322 C β-1,4 [51] 
Endo-β-N-acetylglucosaminidase 
(Endo-D)      
Elizabethkingia meningosepticum GH 18 D126 C β-1,4 [66] 
Endo-β-N-acetylglucosaminidase 
(Endo-F)          

Table 1.  2. Retaining glycosynthases (from endo-glycosidases). (1) Donor and acceptor condensation, and eventually, 
product elongation leading to short oligomers. (2) Polymerization by donor self-condensation to produce artificial 
polysaccharides. (3) Depending on the acceptor, mixture of both linkages are obtained (4) Regioselectivity changes 
depending on the acceptor. 
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Parental glycosidase  Family
Mutated 
residue 

Reaction 
C(1)/P(2) 

Linkage 
formed 

Reference 

Exo-glycosidases (fluoride donors)           

Bacillus halodurans GH 8 Y198 C -(1,4) [59] 

Eschericia coli GH 63 E727/D324 C β-1,3/4/6 (3) [62] 

Bifidobacterium bifidum  GH 95 D766 C -(1,2) [63] 

Endo-glycosidases (fluoride donors)      

Bryum coronatum GH 19 S102/E70 C/P -(1,4) [61] 
 

Table 1.  3. Inverting glycosynthases. (1) Donor and acceptor condensation, and eventually, product elongation leading 
to short oligomers. (2) Polymerization by donor self-condensation to produce artificial polysaccharides. (3) Depending 
on the acceptor, mixture of both linkages are obtained. 

 

 Aim of the thesis: new artificial polysaccharides  

The use of polysaccharides as biomaterials has evolved over the past several decades finding 

applications in many fields of human life and activities. Polymers from natural sources are 

particularly useful as biomaterials given their similarity to the extracellular matrix and other 

polymers in the human body. Due to this biocompatibility they degrade within the body as a result 

of natural biological processes, eliminating the need to remove them later. The most intensely 

developing investigations on the design and application of polymer materials are related to 

biomedical and functional engineering materials. The surface of these polymer-based 

biomaterials is chemically well-defined, have unique physicochemical properties and can be 

chemically modified to improve their functionality and suit specific needs.14,15 Implantable 

biomaterials such as coronary stents, vascular grafts and heart valves among other, controlled-

release carriers for local delivery of drugs, hormones, enzymes or growth factors, or three 

dimensional scaffolds for regenerative medicine (artificial skins to treat burn victims, cardiac 

patches to regenerate cardiac muscle damaged by a heart attack) are applications that are 

transforming lives and improving the quality of living. The development of new functionalized 

artificial polysaccharides opens a large field of applications taking advantage of their specific 

properties, in particular, renewability, biodegradability and biological activity for some of 

them.110,111,112,113 It is vitally important to control their surface properties so that they integrate 

well with host tissues. 

1.4.1. Control of length 

Polysaccharides have fundamental biological roles that depend on their length. Those 

polysaccharides that form macromolecular structures having structural or energy storage 



Chapter 1. LITERATURE REVIEW: New artificial polysaccharides 

 

23 
 

functions (cellulose, hyaluronic acid (HA), starch, etc.) require physical and chemical properties 

that arise from high degrees of polymerization. However, polysaccharides that function in 

signaling tend to be shorter presumably because signaling depends on the recognition of distinct 

epitopes. Short HA polymers of only 100 monomeric units induce inflammatory responses and 

activate parts of the immune system, whereas full-length HA mediates the opposite effects. 

Therefore, control of length is critical for proper biological functions.  

Carbohydrate polymers are synthesized by enzyme-catalyzed chain-growth polymerization 

reactions in which monomer units add successively to the growing end of an acceptor. The 

mechanism of length control depends on the mechanism of elongation, and elongation can occur 

by either a distributive or a processive mechanism. During distributive polymerizations the 

elongated polysaccharides are released into solution after each catalytic addition of monomer unit, 

whereas during processive polymerizations the elongated polysaccharides are retained through 

multiple catalytic rounds of monomer addition. In a distributive polymerization, product lengths 

occur statistically in a Poisson distribution. In a processive polymerization, however, product 

lengths are determined by when the enzyme releases the growing polymer into solution. 

In the work developed by Planas and co-workers different glycosynthase mutants were evaluated 

in the synthesis of -1,3 and -1,4 mixed-linked -glucans demonstrating that the DP can be 

modulated by the enzyme activity.78 As the glycosynthase reaction takes place in solution, the 

polymerization can proceed until the products become insoluble and precipitate. The rate of 

polysaccharide formation and the amount of high molecular mass polymers produced at high 

donor and enzyme concentrations led to oversaturated solutions that entrapped the lower 

molecular mass polymers when precipitating, with the result of an insoluble polymer with a 

bimodal profile. Therefore, by increasing the rate of condensation (i.e., more active 

glycosynthase), polymerization can be extended above the solubility limit as long as the product 

remains in solution due to oversaturation. 

With the aim of obtaining more homogeneous polysaccharides, larger if possible, avoiding a fast 

initial precipitation and decreasing the PDI, the use of a carbohydrate binding module in 

combination with a glycosynthase mutant is proposed in this thesis.  
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Figure 1. 11. CBMs in nature. (a) Cel7A binding to cellulose, (b) recognition of a reducing end of a cellulose chain, 
(c) initial threading of the cellulose chain into the catalytic tunnel, (d) threading and formation of a catalytically active 
complex, (e) hydrolysis in a processive cycle and (f) product expulsion and threading of another cellobiose (shown in 
yellow in e and f).114 

 

Non-catalytic carbohydrate-binding modules (CBMs) play a critical role in the action of glycosyl 

hydrolases by localizing the appended catalytic domains onto the surface of insoluble 

polysaccharide substrates. Even nature selects these non-catalytic protein domains for important 

tasks such as the efficient and biotechnological conversion of cellulosic biomass (Figure 1. 11).115 

We envisioned the possible use of a CBM to enhance the solubility of the polysaccharide in the 

reaction medium becoming a tool to spread out the reaction time of glycosynthase-catalyzed 

polymerizations avoiding early precipitation of high polydispersed polysaccharides, improving 

their homogeneity and probably having an effect on their Mw. 

1.4.2. Functionalization and derivatization 

Biodegradable polymers with hydrolyzable chemical bonds are researched extensively for 

biomedical, pharmaceutical and ‘green’ chemistry applications.111 Modifications and introduction 

of functionalizations into such polymers are often necessary in order to get polysaccharide-based 

functional biomaterials.  Chemical modification is still an important route to structure and hence 

property design.116 However, when working with polysaccharides chemical modification is 

challenging due to the similar reactivity toward electrophiles of the hydroxyl groups composing 

the polysaccharide. Esterification and etherification, as well as oxidation and nucleophilic 

displacement reactions are the most common reactions utilized in the modification of 

polysaccharides. Different chemical and enzymatic strategies are continuously being investigated 

to conveniently introduce direct modifications on the polysaccharides with high regioselectivity.  
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The azido group is a relatively small and versatile functional group, inert in most biological 

processes, that can undergo highly selective chemical reactions such as the Staudinger reduction 

from azides to amines (Figure 1. 12) or the [3+2] cycloaddition with activated alkynes. These 

reactions have been exploited for the selective labeling of azido-functionalized biomolecules, 

such as proteins, sugars and lipids. 

R N3

PPh3, THF

H2O
R NH2 + O PPh3

 

Figure 1. 12. Staudinger reduction of azides to amines. 

Click chemistry (Figure 1. 13) was introduced in 2001 by Sharpless et al to describe 

experimentally simple reactions developed in mild reaction conditions, needing no protection 

from oxygen, requiring only stoichiometric amounts of starting materials with nearly quantitative 

yields.117 The 1,3-dipolar cycloaddition of an azide moiety and a triple bond (Huisgen reaction) 

has rapidly become the most popular click reaction to date.118,119 The Copper-catalyzed Azide - 

Alkyne Cycloaddition (CuAAC) allows the synthesis of the 1,4-disubstituted regioisomers 

specifically. This reaction features an enormous rate acceleration of 107 to 108 compared to the 

uncatalyzed 1,3-dipolar cycloaddition. The reaction succeeds over a broad temperature range, is 

insensitive to aqueous conditions and a pH range from 4 to 12, and tolerates a broad range of 

functional groups. Pure products can be isolated by simple filtration or extraction without the 

need for chromatography or recrystallization. The active Cu(I) catalyst can be generated from 

Cu(I) salts or Cu(II) salts using sodium ascorbate as the reducing agent. Addition of a slight excess 

of sodium ascorbate prevents the formation of oxidative homocoupling products.120 

R N3 + R'

N

N

N

R'

R

CuI

 

Figure 1. 13. Huisgen 1,3-dipolar cycloaddition of azides and terminal alkynes.  

 

Different polysaccharides chemically modified with the azido functional group such as cellulose, 

starch, dextran, chitosan, hyaluronan, etc. have been already modified by the use of click 

chemistry for the synthesis of new materials and gels, new therapeutic or diagnostic agents, or to 

understand the reactivity and roles of glycan structures in living organisms. It has also been used 

for the synthesis of dendrimers121 or the modification of proteins.122 Click chemistry is becoming 
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a promising path for polysaccharide modification and it is broadening the structural diversity of 

polysaccharides yielding compounds that are not accessible via etherification, esterification, and 

the most commonly applied reactions.  

 

Click chemistry with (13)--D-glucans 

(13)--D-glucans have interesting structural features such as a rigid and triple-stranded helical 

structure,123,124,125 pharmaceutical effects (anticancer activity),126 and binding properties (with 

polynucleotides, single-walled carbon nanotubes).127,128,129 Hasegawa et al synthesized a series of 

artificial (13)--D-glucans with various functional appendages in order to facilitate access to 

various polysaccharide-based materials (Figure 1. 14).  

O
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N
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N

N

alkyne-terminated functional modules

CuBr2, ascorbic acid, propylamine
RT, 12h

 

Figure 1. 14. Chemoselective coupling between 6-azido-6-deoxycurdlan and alkyne-terminated functional modules. 

 

For instance, 6-azido-6-deoxycurdlan with different alkyne-terminated modules such as a -

lactoside (a strong ligand for asialo-glycoprotein receptors on hepatocytes), ferrocene (a redox-

active unit), pyrene (a chromophore with strong fluorescence) and porphyrin (an essential 

component of native light-harvesting and oxygen-binding systems allowed the obtention of the 

correspondent derivatives. These new polymers had low cytoxicity and long blood circulation 

time, providing potential promise for biomedical application. Interactions between curdlan 

derivatives and polycytidylic acid formed stable macromolecular complexes that showed strong 

and specific lectin affinity, beneficial to use as polynucleotide carriers.130 

Click chemistry with cellulose  

The copper-catalyzed Huisgen reaction was first performed with cellulose in 2006 when Liebert 

et al studied different “click” reactions between 6-azido-6-deoxycellulose and methyl propiolate, 

2-ethynylaniline and 3-ethynylthiophene131 proving to be a very selective reaction. A novel 

cellulose-based hydrogel was synthesized by Heinze et al. by reacting carboxymethylated 

cellulose derivatives bearing azide and alkyne moieties and applying the CuAAC for the cross-

linking.132 The new gel contained up to 98.4% water and after lyophilization, a spongy material 
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with a porous structure was obtained. Cross-linking through ‘click chemistry’ between azido-

polycaprolactone and undecynoate cellulose (DS 0.1) with a terminal alkyne developed 

biodegradable multilayer films with interesting properties for their application in drug delivery 

and tissue engineering.133 A photobactericidal tissue was created in 2009 after direct cellulose 

azidation, followed by ‘click’ chemistry reaction in THF and water with acetylenic porphyrin.134 

Interestingly, the product displayed antibacterial activity agains E. coli and S. aureus under 

irradiation with visible light. Cellulose glycoclusters with improved water solubility were 

synthesized by grafting O-N-linked -maltoside or -lactoside containing a terminal alkyne onto 

C-6 positions of 6-azido-6-deoxycellulose. The product bound to carbohydrate-binding proteins 

in a non-specific manner.135 Recently, the synthesis of ferrocene-modified cellulose for use as 

docking spot for cyclodextrin was performed by coupling 6-azido-6-deoxycellulose and 

ethynylferrocene via copper-catalyzed click-type cycloaddition under microwave-assisted 

conditions.136 Rame-β-cyclodextrin could be supramolecularly attached to cellulose becoming a 

redox-sensitive system that could be switched by electrochemical stimuli and make it accessible 

to other guest molecules.137 

With the aim of obtaining new functionalized artificial polysaccharides for a future use as 

biomaterials, in this work we address a powerful approach, whereby enzyme-catalyzed 

polymerization of properly modified building blocks is introduced as a simple route affording 

polysaccharides with controlled sequence and functionalization pattern (Figure 1.15).  

 

Figure 1. 15. Synthesis of new biomaterials. Versatility of the azido functional group. The azido functionalized 
polysaccharide surface might be reduced to amines or reacted by click chemistry attaching bioactive molecules such as 
growth factors, receptors, etc. 
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OBJECTIVES 

Given the important role of biomaterials in medicine, the glycosynthase-catalyzed synthesis of 

new functionalized artificial polysaccharides with a regular substitution pattern and sequence 

control could be an alternative new source of biocompatible materials for biomedical applications.  

Three main objectives are presented in this work taking advantage of the glycosynthase 

technology and with the aim of improving the properties of the new artificial polysaccharides. 

1. The degree of polymerization of polysaccharides produced by glycosynthase-catalyzed 

polymerization is limited by product solubility. Can a carbohydrate binding module have 

an effect on solubility and degree of polymerization? 

Objective 1: Analyze the effect of a carbohydrate binding module (CBM11) upon the 

solubility and the length of artificial 1,3-1,4-mixed-linked glucans produced by the 

E134S glycosynthase mutant of the 1,3-1,4-β-glucanase.  

2. Mixed-linked -glucans are among the artificial polysaccharides obtained by the 

glycosynthase technology with higher molecular weight and defined structure. Next step 

is the ability to introduce functionalized groups.  

Objective 2: Synthesize functionalized donors and acceptors of the glycosynthase 

reaction in order to study the subsite acceptance of the E134S mutant.  

3. Selective modification of cellulose hydroxyl groups is a common way to achieve 

functionalized cellulose conferring new properties, such as better solubility or miscibility, 

interesting for use as biomaterial. So far, these modifications have been always 

introduced randomly on the polysaccharide surface. Glycosynthases can provide 

polysaccharides with controlled sequence and functionalization pattern. 

Objective 3: Synthesize azido-functionalized artificial cellulose via self-condensation of 

functionalized substrates with a glycosynthase derived from a GH-7 cellulase and 

derivatize them via ‘click chemistry’ or by reduction to amines.
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2.1. INTRODUCTION 

Non-catalytic carbohydrate-binding modules (CBMs) are components of multi-modular 

polysaccharide degrading enzymes where they play critical roles in the recognition of plant cell 

wall polysaccharides such as cellulose, β-glucans or insoluble storage polysaccharides.1,2 CBMs 

promote the association of the enzyme with the substrate and this proximity effect enhances the 

activity of their cognate catalytic module and provides efficient hydrolysis.3 Removal of CBMs 

greatly reduces the activity of the truncated enzymes against insoluble substrates.4 In addition, 

there are examples where CBMs are components of substrate-binding sites or even the active site, 

playing a critical role in substrate specificity.5,6,7 

To date, CBMs are classified in 71 families according to the CAZY database (Carbohydrate 

Active Enzymes, www.CAZY.org).8 Some CBM families, typically those that recognize 

crystalline polysaccharides, present invariant ligand specificity, while other families cover a 

broad range of carbohydrate specificities. 6 protein domains from families 2, 4, 6, 11, 39 and 54 

are able to accept -1,3-1,4 linkages. Carbohydrate Binding Module 11 (CBM11) with a binding 

domain of CtLic26A-Cel5E from Clostridium thermocellum was selected as a suitable candidate 

for our experiments. It has a beta-sandwich structure with a concave side forming a substrate-

binding cleft that displays affinity for both beta-1,4- and beta-1,3-1,4-mixed linked glucans.9 

Mimicking the role of CBMs in polysaccharide hydrolysis in nature, we propose that CBMs may 

assist in vitro glycosynthase-catalyzed polymerization reactions. Glycosynthases, mutated 

glycosyl hydrolases lacking the catalytic nucleophile, have become powerful biocatalysts for the 

efficient synthesis of oligosaccharides and glycoconjugates.10,11,12,13  They are able to catalyze 

glycosyl transfer from glycosyl fluoride donors, with opposite anomeric configuration to the 

natural substrate of the parental hydrolase, to an acceptor substrate with high yields of glycoside 

bond formation since products cannot be hydrolyzed. Our group extended the glycosynthase 

technology to polysaccharide synthesis.14 Self-condensation of the laminaribiosyl donor by the 

E134A glycosynthase derived from Bacillus licheniformis 1,3-1,4-β-glucanase led to insoluble 

polymers with a regular structure of alternating -1,3 and -1,4 linkages [4Glcβ3Glcβ]n (Figure 

2.  1).14 
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Figure 2.  1: Glycosynthase-catalyzed polymerization to produce 1,3-1,4--glucans. 
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With different glycosyl fluoride donors (Glcβ4)mGlcβ3GlcαF (m = 0-2), artificial mixed-linked 

β-glucans with different ratios and patterns of -1,3 and -1,4 linkages were obtained.15 

Polysaccharide morphology depended on the repeating unit. Thus, (4Glcβ3Glcβ)n and 

(4Glcβ4Glcβ4Glcβ3Glcβ)n generated polysaccharides that were crystalline spherulites, while 

(4Glcβ4Glcβ3Glcβ)n polymers formed amorphous precipitates. The degree of polymerization 

(DP) with the original E134A glycosynthase was approximately constant and independent of 

donor and enzyme concentrations leading to polymers of average molecular mass (Mw) of 10-12 

kDa. However, a linear dependence of Mw with enzyme concentration was observed with the more 

active E134S glycosynthase mutant. Polysaccharides with Mw of 30 kDa (DP 188) containing a 

small fraction of products up to 70 kDa were obtained, presenting a high polydispersity index. As 

the glycosynthase reaction takes place in solution, the polymerization can proceed until the 

products become insoluble and precipitate. The rate of polysaccharide formation and the amount 

of high molecular mass polymers produced led to oversaturated solutions and the resultant 

precipitation of the product entrapped the lower molecular mass polymers. Thus the insoluble 

polymer had a bimodal profile. Therefore, by increasing the rate of condensation relative to the 

rate of precipitation (i.e., more active glycosynthase), polymerization can be extended above the 

apparent solubility limit as long as the product can remain in solution. 

With the goal of extending the degree of polymerization, we proposed that CBMs could enhance 

solubility of the new polymers formed during the polymerization reaction by preventing inter-

chain glycan-glycan interactions leading to increased turn-over of the enzyme and insoluble 

polymers of higher molecular mass that, probably, have low polydispersity indexes. Therefore, 

CBMs able to bind 1,3-1,4--glucans were considered among families 2, 4, 6, 11, 39 and 54, 

selecting the CBM11 domain from Clostridium thermocellum Lic26A-Cel5E.9 This multimodular 

enzyme contains GH5 and GH26 catalytic domains that display beta-1,4 and 1,3-1,4--mixed 

linked endoglucanase activity respectively, and a CBM11 with a beta-sandwich structure with a 

concave face that forms a substrate-binding cleft that displays affinity for both beta-1,4- and beta-

1,3-1,4-mixed linked glucans.9 

Here we investigate the effect of CBM11 on the polymerization reaction catalyzed by the E134S 

glycosynthase to test the hypothesis that these modules can increase the DP of the product by 

reducing premature product precipitation. This will be studied by first adding CBM11 at different 

concentrations to the glycosynthase reaction, and next, the fusion protein E134S-CBM11 where 

the CBM11 is appended to the catalytic E134S enzyme through a linker spacer. 
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 EXPERIMENTAL 

2.2.1. Reagents and substrates 

The donors Glc3GlcF and Glc4Glc3GlcF were prepared as previously reported,16,17 by 

treatment of peracetylated laminaribiose and 3-O--cellobiosyl--D-glucose with hydrogen 

fluoride in pyridine, purification of the peracetylated -glycosyl fluorides by flash 

chromatography, and de-O-acetylation with sodium methoxide in methanol. 

2.2.2. Bioinformatics 

The fusion protein composed of the E134S glycosynthase domain and the CBM11 domain linked 

by a (PT)7P was designed. Secondary structures of each domain at N-terminus or C-terminus of 

the fusion protein were predicted using the Secondary Structure Prediction Server (Jpred)29  and 

compared with their crystal structures (PDB codes 1GBG and 1VOA for β-glucanase from 

Bacillus licheniformis and CBM11 from Clostridium cellulolyticum Lic26A-Cel5E enzyme). 

3D structure models based on the construct E134S-linker-CBM11 were generated by means of 

homology modelling and simulated annealing. The models were based on templates from Bacillus 

licheniformis beta-glucanase (PDB code 1GBG) (98.6% sequence identity to E134S domain) and 

from familly 11CBM of Clostridium thermocellum Cel5E 1V0A (98.2% sequence identity to 

CBM11 domain). No structural template was used for the (PT)7 linker. A pool of 25 3D structures 

was generated with MODELLER v. 9.8 using a slow level refinement scheme based on simulated 

annealing molecular dynamics19. Those models in which E134S and CBM11 domains laid closer 

were selected for further analysis. Figures were generated using VMD20.  

2.2.3. Bacterial strains and plasmids 

The E. coli strains and plasmids used in this study are listed in Table 2. 1. DH5 was used as host 

strain for routine cloning experiments and BL21 (DE3) Star® as expression strain. Plasmids 

pET16b and pET21a were used as cloning vectors. Plasmid pET16b-E134S was the source of 

1,3-1,4--glucanase gene with the E134S mutation (Addington et al., 2009)21 (E134S Mw of 24.3 

kDa) while plasmid pET21a-CBM11 provided the gene encoding the family 11 carbohydrate-

binding module (CtCBM11) from Clostridium thermocellum9 (Mw of 18.4 kDa). Plasmid pUC57 

was the source of the synthetic gene E134S-linker-CBM, synthesized by GenScript.  
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Gene, plasmid or 
E. coli strain 

Relevant characteristic(s) Reference or source 

Strains     

DH5 
Host strain for routine cloning 

experiments 
InvitrogenTM 

BL21 (DE3) Star® 
Strain used to express and purify 

proteins; derived from K-12 
InvitrogenTM 

Genes     

E134S 1,3-1,4--glucanase mutant 
(glycosynthase) 

E. coli 

CBM11 Carbohydrate binding module  Clostridium thermocellum 

E134S-CBM11 Fusion protein 
In situ synthesis, previously 

undescribed 
Plasmids     
pET16b Expression vector; pBR322 origin, Apr Novagen 

pET16b-E134S 
pET16b carrying 1,3-1,4-β-glucanase 

gene with the mutation E134S 
T. Addington21 

pET21a Expression vector; pBR322 origin, Apr Novagen 
pET21a-CBM11 pET21a carrying CBM11 H. Gilbert9 
pUC57 Expression vector; pMB1 origin GenScript 
pET16b-E134S-
CBM11 

pET16b carrying the fusion protein 
E134S-CBM11 

This work 

Table 2.  1. Genes, plasmids and E. coli strains used in this study. Apr: ampicillin resistant 

 

2.2.3.1. Construction of E134S-CBM11 

The E134S-CBM11 fusion protein was designed to contain: 

1) 10xHisTag sequence 

2)  E134S sequence (214 aa) 

3) 15 aa (PT)7P linker 

4) CBM11 sequence (167 aa) 

The synthetic gene was cloned into pUC57 with flanking XhoI and BlpI restriction sites. E. coli 

DH5 cells were transformed and positive transformants were verified by DNA sequencing. E. 

coli BL21 (DE3) Star® cells were transformed with the plasmid for protein expression.  

2.2.4. Culture conditions and growth media 

For DNA manipulation and strain constructions, cultures were grown at 37 ºC in LB medium 

(Sigma). Ampicillin at 100 g·mL-1 was added when it was appropriate. Recombinant E. coli 

BL21 DE3 star strains were also cultured overnight at 37 ºC in LB medium.  
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2.2.5. Protein expression and purification 

Escherichia coli BL21 DE3 Star cells harboring the E134S plasmid were grown in 500 mL LB 

medium (100 g/mL ampicillin, 2% glucose) for 8 h at 37 ºC and 250 rpm until late exponential 

phase. The medium was changed to 500 mL LB containing 1mM IPTG and 100 g/mL ampicillin 

for protein expression (16 h at 25 ºC). Cells were harvested by centrifugation and resuspended in 

100 mL phosphate buffer 50 mM, pH 7.0, 0.1mM CaCl2 containing 1 mM PMSF. Cells were 

lysed in a cell-disrupter (Constant Systems, UK) and centrifuged at 23,000 x g. The supernatant 

containing the His-tagged protein was purified by immobilized metal ion affinity chromatography 

loading it onto a HiTrap 1mL column (GE Healthcare) previously equilibrated with loading buffer 

(50 mM phosphate pH 7.0, 0.1 mM CaCl2). The column was rinsed to remove unbound proteins 

and then eluted with a gradient of 0.5 M imidazole in 50 mM phosphate pH 7.0, 0.1 mM CaCl2 

for 60 minutes. Protein fractions were dialyzed twice against 50 mM phosphate pH 7.0, 0.1 mM 

CaCl2, followed by a last dialysis against water containing 0.1 mM CaCl2.  

The fusion protein E134S-CBM11 was expressed and purified in a similar way, however, some 

conditions were modified. The growth was done at 37ºC for 8 hours and the induction of the 

protein expression was done at 20 ºC for 6 h (final conditions) and the elution buffer consisted on 

phosphate buffer 50 mM, pH 7.0, 200 mM NaCl, 0.1 mM CaCl2.  

CBM11 was cloned in a pET16b vector. E. coli BL21 DE3 Star cells harboring the plasmid were 

grown in 500 mL LB medium (50 g/mL ampicillin, 2% glucose) for 12 h at 37 ºC and 250 rpm 

until late exponential phase. The medium was changed to 500 mL LB containing 1 mM IPTG and 

50 g/mL ampicillin for protein expression (5.5 h at 21ºC). The cells were harvested by 

centrifugation and resuspended in 75 mL TALON buffer (50 mM Tris-HCl pH 8.0, 300 mM 

NaCl) containing 1 mM PMSF. Cells were lysed in a cell-disrupter (Constant Systems, UK) and 

centrifuged at 23,000 x g. The His-tagged protein was purified by immobilized metal ion affinity 

chromatography. The supernatant was loaded onto a HiTrap 5 mL column (GE Healthcare) 

previously equilibrated with loading buffer (TALON). The column was rinsed to remove unbound 

proteins and then eluted in a three step-gradient with 10%, 30% and 100% 100 mM imidazole in 

TALON buffer. Protein fractions were dialyzed three times against TALON buffer.  

In all three cases the proteins were >95% homogeneous as judged by SDS-PAGE. The 

concentration of E134S was determined by absorbance at 280 nm using an extinction coefficient 

of 3.53·105 M-1 cm-1. For the fusion protein E134S-CBM11 and for CBM11 the concentration was 

determined by Bradford and BCA. E134S and E134S-CBM11 were lyophilized for storage and 

redissolved prior to use. No degradation of the fusion protein was observed after lyophilization 
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conserving the same activity than the non-lyophilized one. However, CBM11 had to be expressed 

and purified before its use and it was conserved in solution at 6 ºC. 

2.2.6. Enzyme Kinetics for the E134S glycosynthase mutant and the E134S-CBM11 

fusion protein 

The trisaccharidyl fluoride (Glc4Glc3GlcF) donor (0.05 – 2.00 mM) and the 4-nitrophenyl 

-D-glucoside acceptor (20 mM) were dissolved in phosphate buffer (50 mM, pH 7.0) and CaCl2 

(0.1 mM). The reaction was developed in a 96 wells plate. After pre-incubation of the plate at 35 

ºC for 5 minutes, reactions were initiated by addition of the enzyme (1.58 M) and kept at 35 ºC. 

Aliquots were withdrawn at regular time intervals, diluted 1:10 with formic acid 2% (v/v) and 

analyzed by HPLC (Agilent equipment, Nova-Pak® C18 column, 4 µm, 3.9 × 150 mm from 

Waters, 1 mL/min, 14% MeOH in water, UV detector at 300 nm). Chromatographic peaks were 

assigned by co-injection with independent standards. Initial rates (vo) were obtained from the 

linear progress curve of product formation (normalized area vs time) and expressed as vo/[E] in  

s-1. Kinetic parameters kcat, KM, and kcat/KM were calculated by nonlinear regression to the 

Michaelis – Menten equation. 

2.2.7. Enzymatic Polymerization Reactions 

Reaction mixtures (0.4 mL) consisted of 30 mg donor substrate (290 mM laminaribiosyl fluoride 

or 150 mM trisaccharyl fluoride), 80 µL of phosphate buffer (100 mM phosphate, pH = 7.7, and 

0.1 mM CaCl2), 160 µL of E134S or E134S-CBM11 protein fusion in their phosphate buffer 

solution and finally, 150 µL of CBM11 in Talon buffer or TALON buffer. The reactions were run 

at pH 7.2, 37 ºC and 250 rpm in a microcentrifuge tube for one or three days as indicated. A 

precipitate was formed during the reaction and the presence of unreacted donor or hydrolysis 

product was checked by TLC (CH3CN/H2O 8:2). The precipitated product was isolated by 

centrifugation at 27,000 x g for 3 minutes, and it was thoroughly washed with cold water. Finally, 

the product was freeze-dried to yield water-insoluble polymers as white powders. Supernatants 

were also lyophilized to recover soluble oligomers. The products were analyzed by HPSEC to 

determine the polymer parameters (Mw, Mn, Mp, DP, PDI). 

2.2.8. Polymer analysis by HPSEC and SEM 

2.2.8.1. HPSEC  

HPSEC analyses to determine molecular mass profiles were performed on an Agilent 1100 HPLC 

system equipped with a refractive index detector using a PSS Gram column (8.0 x 300 mm, 100Å, 

10 m) and a PSS GRAM pre-column (9.0 x 50 mm, 100 Å, 10 m) thermostated at 50ºC, and 
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DMSO with lithium bromide (5 g/L) as eluent at a flow rate of 0.5 mL/min. The calibration curve 

was obtained with dextrans as standards (American Polymer Standards Corporation DXT1 – 

DXT55 kDa, see Appendix A3. 5). Freeze dried polymers and standards were dissolved in DMSO 

and filtered. From the chromatograms, Mp (molecular mass of the peak maximum), Mw (weight 

average molecular mass), Mn (number average molecular mass), DP (degree of polymerization), 

and PDI (polydispersity index) were calculated. 

2.2.8.2. SEM 

For SEM experiments, the dried product was fixed on a graphite tape, coated with gold/palladium 

by ion-sputtering, and observed at an accelerating voltage of 10 kV and working distance of 16 

mm using a JEOL JSM-5310 microscope. 
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 RESULTS AND DISCUSSION 

The E134S glycosynthase mutant from B. licheniformis produced polysaccharides with high 

molecular weights due to its high catalytic efficiency.11 For this reason, this mutant was selected 

as glycosynthase biocatalyst to explore the CBM11 effect on polysaccharides synthesis. E134S 

glycosynthase mutant was expressed as C-terminus His-tagged protein while CBM11 was 

expressed as N-terminus His-tagged protein. They were both obtained with the expected 

molecular weights of 27 kDa (23 mg/L culture) and 19.6 KDa (22 mg/L culture) respectively. 

A starting study of the effect of CBM11 on polymerization reactions catalyzed by the E134S 

glycosynthase was developed using two different substrates. Different concentrations of CBM11 

were added to the reactions in order to see the independent effect of this protein domain on the 

polysaccharide sizes and morphologies. After detecting a relation between the addition of CBM11 

and an increase of solubility of the new polysaccharides, a new fusion protein was designed, 

cloned, subcloned, expressed, purified and finally characterized. Then, the polysaccharides 

produced by the new fusion protein E134S-CBM11 and the ones produced by the glycosynthase 

E134S were compared. Finally, reactions with different ratios of fusion protein and additional 

CBM11 were studied. 

2.3.1. Effect of the CBM11 protein domain on polymerization reactions catalyzed 

by the glycosynthase E134S 1,3-1,4-β-glucanase 

Polymerization reactions were carried out with laminaribiosyl fluoride (Glcβ3GlcαF) and 3-

O--cellobiosyl--D-glucopyranosyl fluoride (Glcβ4Glcβ3GlcαF) donors at different 

E134S/CBM concentration ratios (Table 2.  2 and Table 2.  3). As expected, insoluble polymers 

were obtained with mixed -1,3--1,4 linkages corresponding to (4Glc3Glc)n and 

(4Glc4Glc3Glc)n when using the donors Glcβ3GlcαF and Glcβ4Glcβ3GlcαF, respectively, 

consistent with the specificity of the enzyme (Figure 2. 2). 
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Figure 2.  2. Glycosynthase-catalyzed polymerization to produce 1,3-1,4--glucans (polymers 1 and 2).  
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 (4Glc3Glc)n, E134S/CBM 

Using the disaccharide donor and low enzyme activity, insoluble polymer yields did not exceed 

70% after 1 and 3 days in all cases (polymers 1-5, Table 2.  2). The soluble fraction contained 

soluble polymers and laminaribiose from donor hydrolysis. Molecular mass distributions of the 

insoluble polymers presented bimodal profiles (Figure 2. 3). Polymer 1 obtained without CBM11 

showed two peaks with a molecular mass Mp of 16 kDa (DP 100) and 42 kDa (DP 260), 

respectively, corresponding to Mw of 16 kDa with a degree of polymerization of about 100 

glucosyl units. In the presence of equimolar amount of CBM11 (polymer 2) and in excess with 

respect to E134S (polymers 3 and 4) Mp values were shifted to 21 and 44 kDa respectively. The 

resulting average Mw value was about 20 kDa, which corresponds to insoluble polymers of DP 

123 glucosyl units.  

 

    Glcβ3GlcF 1 day  

Entry 
Molar Ratio 

E134S/CBM11 
Mw  (kDa) n (DP)a Mn    

(kDa) 
Yield   
(%) 

PDI 
Mp      

(kDa) 
1 1:0 16 50 (100) 11 45  1.6 42, 16 
2 1:1 17 53 (105) 10 48 1.7 43, 15 
3 1:2 23 70 (140) 18 52  1.4 40, 21 
4 1:3 20 62 (123) 11 69 1.5 44, 21 

    Glcβ3GlcF 3 days  
5 1:0 17 53 (105) 9 56 2.0 44, 17 

 

Table 2.  2. Polymerization reactions of donor Glc3GlcF by E134S/CBM. a n: number of disaccharyl donor units in 
the polymer, DP: degree of polymerization expressed as glucosyl units. Conditions: [Donor] = 290 mM. E134S: 0.21 
U (for the reference glycosynthase reaction Glcβ4Glcβ3GlcF + GlcpNP), [CBM11] = 0 – 360 M), phosphate buffer 
pH 7.0, 0.1 mM CaCl2, 37 ºC. Products analyzed after 1 or 3 days of reaction. 

.  

 

 



Chapter 2. CARBOHYDRATE BINDING MODULE ASSISTING GLYCOSYNTHASE‐CATALYZED 
POLYMERIZATIONS: Results and discussion 

46 
 

 

Figure 2.  3. HPSEC chromatograms of (Glc3Glc)n polymers 1 – 5 obtained under different conditions with 
E134S/CBM. Labels correspond to entries in Table 2. 2 and Mp values (maximum of the peaks) are indicated in kDa.  

 

Moreover, the presence of CBM11 had an important effect on morphology (Figure 2.  4). Polymer 

1 revealed the characteristic spherulitic morphology of polymers synthesized from laminaribiosyl 

fluoride, with an average diameter of 7-10 m.14 The spherulite formation is a spontaneous self-

assembling process during the enzymatic polymerization since spherulites are directly observed 

by SEM after filtration and lyophilization of the precipitate. Polymer 2, produced with an 

equimolar concentration of E134S and CBM, presented a similar morphology. However, when 

increasing the ratio of CBM, less spherulites were observed in polymer 3, and polymer 4 

contained no spherulites but an amorphous morphology. Therefore, the CBM extends the 

glycosynthase-catalyzed polymerization yielding up to 25% larger polymers probably due to 

disruption of the interaction between nascent polysaccharides resulting in increased solubility of 

the products. In addition to obtaining larger insoluble polymers, the CBM interferes with 

polysaccharide assembly to form spherulites. This in vitro effect resembles the disruption of the 

structure of crystalline polysaccharides by some CBMs. This function was first documented for 

the N-terminal family 2a CBM of Cel6A from Cellulomonas fimi.22 The CBM mediated non-

catalytic disruption of the crystalline structure of cellulose and enhanced the degradative capacity 

of the catalytic module. This function has not been described for CBM11 with respect to -

glucanase hydrolytic activity. 

20 m 

20 m 
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Figure 2.  4. SEM micrographs of freeze-dried polymers (Glc3Glc)n 1 - 4 (A - D). 

 

 
 (4Glc4Glc3Glc)n, E134S/CBM 

Using the trisaccharyl donor, insoluble polymers 6 – 11 were obtained under the same 

conditions (Table 2.  3). As expected, due to the higher reactivity of the trisaccharyl donor 

compared to disaccharyl donor, yields of insoluble polysaccharides by E134S were higher 

reaching 82% yield after one or three days either at high or low enzyme activity (entries 6 

and 9, respectively). The molecular mass distribution of these two polymers presented 

bimodal profiles with Mp values of 20 and 40 kDa (Figure 2.  5). The Mw was 18 kDa (PDI 

1.9) which corresponds to insoluble polymers with a degree of polymerization of about 110 

glucosyl units. The liquid fraction after the reaction contained a small amount of soluble 

polymers, with no donor trisaccharide (Glcβ4Glcβ3GlcαF or Glcβ4Glcβ3Glc) evident, 

indicating that transglycosylation was complete and no hydrolysis occurred.  Interestingly, 

with a 1:4 E134/CBM ratio the percentage of soluble polymers increased to 46% after 24 

hours (entry 8) and by three days, most of the polymers were found in the insoluble form 

(entry 10). With E134S/CBM ratios from 1:0 to 1:4, the amount (yield) of insoluble 

polysaccharides decreased with a corresponding increase in the yield of soluble 

polysaccharides. After longer incubation times (3 days) most of the polysaccharides became 

insoluble (yields of 90%). The transient solubility of the synthesized polymers, after one day, 

did not affect the molecular mass of the polymers. With excess of CBM (entries 10 and 11), 

A B

C D

20 m 

20 m 

20 m 20 m 
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insoluble polymers had Mw values of around 20 kDa which is similar to polymer 9 produced 

in the absence of CBM. Most probably the trisaccharide donor was quickly self-condensed 

by the enzyme, polymers were elongated very fast and, although they remained soluble 

(oversaturated) due to the presence of CBM11 for one day, the reaction was already 

complete. The appearance of insoluble polysaccharides after three days reflected the gradual 

displacement of CBMs from the polymers, which was mediated by interactions between the 

glucan chains.  

 

    Glcβ4Glcβ3GlcF 1 day (E = 2.6 U) 

Entry 

Molar 
Ratio 

E134S/
CBM 

Insoluble fraction Soluble fraction 

Mw 
(kDa) 

n 
(DP)a 

Mn 
(kDa)

yield 
(%) 

PDI Mp 
Mw 

(kDa)
n 

(DP)a
Mn 

(kDa) 
yield 
(%) 

PDI 

6 1:0 18 
37 

(111) 
11 82 1.9 20, 40 20 

41 
(123) 

6 8 3.4 

7 1:1 18 
37 

(111) 
11 79 1.7 21, 40 13 

27 
(80) 

4 9 3.2 

8 1:4 17 
35 

(105) 
11 51 1.5 18 16 

33 
(99) 

8 46 1.6 

    Glcβ4Glcβ3GlcF 3 days (E = 0.21 U) 

9 1:0 19 
39 

(117) 
11 82 1.7 22, 40 - - - 6 - 

10 1:4 22 
45 

(136) 
13 92 1.8 20, 40 - - - 4 - 

11 1:6 18 
37 

(111) 
11 92 1.6 18 - - - - - 

 

Table 2.  3. Polymerization reaction of donor Glcβ4Glcβ3GlcF by E134S/CBM11. a n: number of trisaccharyl donor 
units in the polymer, DP: degree of polymerization expressed as glucosyl units. Conditions: [Donor] = 150 mM; for 
polymers 6 – 8, E134S: 2.6 U (for the reference glycosynthase reaction Glcβ4Glcβ3GlcF + GlcpNP), for polymers 9 
– 11, E134S: 0.21 U, phosphate buffer pH 7.0, 0.1 mM CaCl2, 37 ºC.    
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Figure 2.  5. HPSEC chromatograms of (4Glcβ4Glcβ3Glcβ)n polymers 6 – 12 obtained under different conditions with 
E134S/CBM. Labels correspond to entries in Table 2. 3 and Mp values (maximum of the peaks) are indicated in kDa.   

 

In conclusion, the addition of CBM11 to the polymerization reaction by E134S has several 

consequences. Polymerization of the slow-reacting disaccharyl donor gave insoluble polymers in 

50-70% yields with 25% higher DP in the presence of CBM, where spherulite formation was 

clearly prevented (Figure 2. 6). Polymerization reactions with the fast-reacting trisaccharyl donor 

gave insoluble polymers in higher yields; the presence of CBM slowed down the kinetics of 

precipitation but had no effect on the molecular mass of the final polymers. 

 

Figure 2.  6: SEM micrographs of freeze-dried polymer 11 (4Glcβ4Glcβ3Glcβ)n (E134S, CBM). 
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2.3.2. Fusion protein  

2.3.2.1. Design 

Since CBMs are often appended to glycosyl hydrolases, the fusion protein consisting of a chimeric 

enzyme on which the glycosynthase was a appended to a single CBM11 module was designed. 

We hypothesize that the CBM in the fusion protein may accommodate the polymer as it is 

synthesized and achieve longer polysaccharides before their precipitation.  

The linker between E134S and CBM11 was the first consideration in the fusion protein design. 

Although proteolysis is observed within protein domains, it is known to occur far more frequently 

within flexible or less compact regions of the folded polypeptide chain.22 Inter-domain linkers are 

particularly susceptible to proteolysis. Unprotected and flexible regions of long linkers might be 

susceptible to proteolytic cleavage during recombinant protein expression whereas shorter linkers 

might overcome problems associated with protease degradation. Considering this facts, the design 

of the linker sequence was based on previous studies of Gustavsson et al.23 and Kavoosi et al.24 

On the one hand, Gustavsson designed new proteolytically stable linkers to connect a lipase to a 

CBM. They considered different candidates with sequences that resembled different naturally 

occurring linkers. The results showed similar lipase hydrolytic activity for all the fusion proteins 

and concluded that unless an application is dependent on high flexibility, the use of short linkers 

should not become a problem. They finally selected a 13 amino acid long linker, composed of 

prolines and threonines.  

On the other hand, Kavoosi studied the fusion between a GFP (Green Fluorescence Protein) and 

a CBM9, and analyzed the stability of 7 different linkers towards the proteolysis in the E. coli 

host. The protease specificity database MEROPSTM25 developed to identify potential cleavage 

sites using genome-based assignment of peptidases and their associated putative specificities26 

was used to screen the linker sequences and assess their proteolytic stability. They concluded that 

the design of an effective linker had to consider proteolytic stability27,28 as well as thermodynamic 

stability and spatial positioning of the fused proteins/domains that may alter expression levels and 

influence the overall performance of the fusion tag. Kavoosi’s best spot consisted on a 15 proline-

threonine (PT)7P sequence linker. We decided to use this (PT)7P linker for the design of our fusion 

protein due to its suitable properties.  

Most of the CBMs are found in the C-terminus but before designing and cloning it, structural 

predictions of the fusion protein with E134S or CBM at the N-terminus were performed with the 

Secondary Structure Prediction Server (Jpred)29 and compared to the crystal structures of the 

single proteins. 
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Visual Molecular Dynamics (VMD) was used to study the three dimensional structure of the 

protein domain CBM11 from Clostridium cellulolyticum (pdb: 1VOA), the E134S β-glucanase 

mutant from Bacillus licheniformis (pdb: 1GBG) and the complex composed of -glucanase from 

Bacillus macerans crystallized with a trisaccharide in the active center (pdb: 1U0A30).  

Figure 2. 7 shows the ribbon representation of the three-dimensional structure of CtCBM119. It 

shows the active-site cleft with only one ligand-binding region containing three Tyr residues at 

positions 22, 53 and 129 involved in the adhesion of the CBM11 to the glucan polysaccharides. 

 

Figure 2.  7: 3D structure of CBM11 protein domain where the calcium ion can be distinguished in green. 

Figure 2. 8 shows different views of -glucanase from Bacillus licheniformis. The active-site cleft 

of the enzyme presents three main residues that form the catalytic triad: a glutamate acting as a 

nucleophile and an aspartate and another glutamate acting as acid-base residues. 

 

Figure 2.  8: Crystallographic structure of -glucanase from Bacillus licheniformis with the catalytic cleft. 

 

In Figure 2. 9 the structure of -glucanase from Bacillus macerans is represented with a 

tetrasaccharide substrate binding to the active-site cleft. 
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Figure 2.  9: Crystallographic structure of -glucanase from Bacillus macerans binding to a tetrasaccharide substrate. 

  

Figure 2. 10 shows the crystallographic structure of CBM11 and Figure 2. 11 shows the prediction 

of the secondary structure of CBM11. 

 

 

Figure 2.  10: Crystallographic structure of CBM11 where SCOP corresponds to a classification of protein structural 
domains based on similarities of their structures and aa sequences, in this case Endoglucanase H. DSSP assigns the 
secondary structure to the aa of a protein. Site Record specify residues comprising catalytic, co-factor, anti-codon, 
regulatory or other essential sites or environments surrounding ligands present in the structure. PDB shows the amino 
acid sequence of the protein. 
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Figure 2.  11: Prediction of the secondary structure of CBM11. QUERY shows the aa sequence of the protein. Jnetpred 
shows the prediction of the secondary structure of the protein domain regions. JNETCONF indicates the probability of 
the prediction. 

 

In the crystallographic structure of CBM11 (Figure 2. 10) 12 beta-sheets and 1 alpha-helix are 

identified. In the prediction of the secondary structure (Figure 2. 11), 11 out of the 12 -sheets 

are observed (positions of -sheets at Table 2. 4) and the -helix at position 120 is not detected. 

In conclusion, the results of the prediction program were fair enough and it could be used to 

predict the secondary structure of the fusion protein E134S-CBM11.  

 

β-sheet 1 2 3 4 5 6 

Crystal 48 1721 2532 3744 5055 6774 

Prediction 57 15 2531 3944 5055 6873 

β-sheet 7 8 9 10 11 12 

Crystal 8290 96104 111116 121122 142149 155165 

Prediction 8188 99104 110116 ------ 142148 155165 

 

Table 2.  4: Comparision of -sheeet structure positions of CBM11 in the crystal structure vs the prediction. 

 
The crystallographic structure of the -glucanase (wild-type) from Bacillus licheniformis is 

presented in Figure 2. 12. 
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Figure 2.  12: Crystallographic structure of -glucanase.  

 

The prediction of the secondary structure of the E134S glycosynthase mutant is presented in 

Figure 2. 13. 

 

Figure 2.  13: Prediction of the secondary structure of E134S. 
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In the crystallographic structure of -glucanase (Figure 2. 12), 16 -sheets and 3 -helices are 

detected. 15 out of 16 -sheets were predicted (positions of -sheets at Table 2. 5), however, -

helices at position 38, 98 and 191 were no predicted. Still, the correct prediction percentage was 

good enough.  

 

 

 
94 



 

 

Table 2.  5: Comparision of -sheeet structure positions of the -glucanase in the crystal structure vs the prediction. 

 

The two possible designs of the new fusion protein consisted of a first construct containing the 

E134S glycosynthase at the N-terminus, followed by the linker and finally the CBM at the C-

terminus or vice versa, a second construct consisting of the CBM11 at the N-terminus, followed 

by the linker and the E134S at the C-terminus. The fusion protein sequence had a total length of 

396 amino acids. Predictions with the two possible fusion protein constructs were analyzed 

comparing them to the secondary structures of CBM11 (Figure 2.  11) and E134S (Figure 2. 13).    

In Figure 2. 14 the secondary structure of the fusion protein composed of the E134S at the N-

terminus is presented, followed by the linker and the CBM11 at the C-terminus. The comparison 

of this fusion protein structure vs the already predicted secondary structures of the glycosynthase 

and the CBM11 separately yields four differences: the absence of the three alpha-helices and one 

beta-sheet is still missing and new differences are not detected. These differences had been 

already detected when analyzing the predicted glycosynthase secondary structure of the E134S 

and the corresponding crystallographic structure of the beta-glucanase. 

 

 

β-sheet 1 2 3 4 5 6 7 8 

Crystal 68 1820 3334 3941 4755 5866 7380 8795 

Prediction 58 1820 3233 3941 4651 6080                      88  

β-sheet 9 10 11 12 13 14 15 16 

Crystal 104111 117123 132135 145152 155160 163169 178185 202213 

Prediction 105111 117123 ------ 145151 155161 164169 179185 202213 
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Figure 2.  14: Prediction of the secondary structure of the fusion protein composed of E134S (N-terminus), 15 aa linker 
and CBM11 (C-terminus).  

 

By contrast, when analyzing the secondary structure of the fusion protein composed of the 

CBM11 at the N-terminus, followed by the linker and the E134S at the C-terminus some 

important changes were detected in the secondary structure of the CBM11 protein domain (Figure 

2. 15). More specifically, -sheets 1 and 2 (table 2. 4) disappear and an -helix structure replaces 

them instead (from amino acid number 7 to 15). Furthermore, there is a decrease in the number 

of amino acids that compose the sequence involved in the formation of -sheet 7.  
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Figure 2.  15 Prediction of the secondary structure of the fusion protein composed of CBM11 (N-terminus), 15 aa 
linker and E134S (C-terminus).  

 

In both models the linker sequence was predicted to keep an extended conformation without 

adopting any secondary structure. Therefore in the fusion protein the E134S glycosynthase and 

CBM11 were located at the N- and C-termini, respectively (Figure 2.  16). The fusion protein was 

expressed as an N-terminal His6-Tagged protein in good yield with a molecular mass of 47089 

Da (confirmed by MALDI-TOF MS, demonstrating that no inter-domain occurred during protein 

expression or purification). 

 

Figure 2.  16. Synthetic gene. 

 

Furthermore, the 3D structure of this construct (E134S-linker-CBM11) was predicted by means 

of homology modelling (see methods). The structure of the single E134S and CBM11 domains 

are confidently solved. However, since the linker region is intrinsically disordered, a pool of 

structures were obtained with different relative orientations between the two domains. Two 

structures compatible with the catalytic activity of this construct are reported in Figure 2.17. The 

first model shows the shortest distance between the centers of masses of the domains E134S and 
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B)A) 

CBM11. This distance between domains is similar to Orzya sativa Chitinase I (PDB: 2DKV) 

which has a chitin binding domain linked to a GH19 hydrolytic domain through a nonresolved 

(PT)4P(PS)2 linker. The second model shows the shortest distance between substrate pockets of 

the E134S and CBM11 domains both facing each other.  

.  

Figure 2. 17: E134S-(PT)7-CBM11 3D structure. A)  Model #1 (Contracted linker configuration); B) Model #18 
(Extended linker configuration).  

 

2.3.2.2. Fusion protein E134S-CBM11. Vector construction 

Cloning 

The synthetic gene which codified for the fusion protein E134S-CBM was prepared and supplied 

by GenScript in a pUC57 vector between XhoI and BlpI restriction sites. It consisted of a 

10xHisTag sequence at the N-terminus end, the E134S glycosynthase composed of 214 aa (from 

the initial Q to the terminal R), the linker sequence composed of 15 aa (PT)7P and the 167 aa 

sequence of the CBM11 (from the initial A to the terminal A). 

 

Subcloning 

The synthetic gene from pUC57 gene was amplified by PCR using the primer pair FUP and RUP. 

The PCR-amplified fragment was composed of 1340 bp (lanes 2 and 4, figure 2. 18, A). 
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Figure 2.  18: 1% Agarose gels. A) Synthetic gene amplification from pUC57. Lane 1, DNA molecular weight marker 
III. Lane 3: DNA molecular weight marker XIV. Lanes 2 and 4: PCR-amplification product at Tm = 53ºC. B) Midiprep 
of vector pET16b. Lane 3, DNA molecular weight marker III. Lanes 1 and 2, purification product. 

 

After PCR-amplification and further purification through DNA band extraction from the agarose 

gels, the fragments containing the synthetic gene and the pET16b plasmid were digested with 

Xho I and Blp I restriction enzymes. A first digestion was performed with Xho I overnight 

followed by a second 12 hours-long digestion with Blp I. The result after both digestions is 

presented in Figure 2. 19. The agarose gel shows a band of 1200 bp (Figure 2. 19, lane 1) 

corresponding to the digested synthetic gene. Another band of 5650 bp corresponds to the digested 

pET16b vector (Figure 2. 19, lane 2). Both bands were removed from the agarose gel and were 

purified by use of a Miniprep kit GenElute. 

 

 

Figure 2.  19: 1% Agarose gel. Lane 3, DNA molecular weight marker III. Lane 1, insert digestion. Lane 2, vector 
digestion. 2 L of simple were loaded to check the results of the digestion. 
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Both vector and insert were mixed and ligated using the T4 ligase. Different vector/insert ratios 

were performed (See table 2. 6) and following ligation, chemically component E. coli cells were 

transformed and the resulting transformant colonies were screened for insertion by PCR using 

primers (T7 promoter and pET16b-Reverse) flanking the insertion site (Figure 2. 20). 

PCR of colonies-Ligation analysis 

Ligation Vector/Insert 
Number of transformant 

colonies 
Number of colonies 

with insert 
1 1:3 1 1 
2 1:5 11 0 

3 1:6 4 2 

4 1:7 0 - 

5 1:10 0 - 

Table 2.  6: Screening of ligation by PCR.  

 
 
 

 
Figure 2.  20: 1% Agarose gel of flanking primer insertion screen of the 16 transformant colonies. Lanes 1 – 8 and 10 
-16, transformant colonies. Lane 9, DNA molecular weight marker III. Note gene insertion bands in lanes 12, 13 and 
14. 

 
The colonies with insert (Figure 2. 20, lanes 12, 13 and 14) presented a band corresponding to 

1360 bp. One of these colonies was obtained after ligation with a ratio of vector/insert 1:3 and 

two of the colonies with a ratio 1:6. Colonies screened positive for the synthetic gene insertion 

were subsequently bulked up for DNA purification and nucleotide sequence. The three ligations 

were confirmed by performing two different digestion strategies. On the one hand, a digestion 

with Xho I and Blp I restriction enzymes and on the other hand, a digestion with Xho I and Hind 
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III yielding a fragment of 1442 bp composed of the synthetic gene and a first part of the vector 

and another fragment of 5416 bp that corresponds to the remaining vector. 

The plasmidic DNA of the three colonies containing the insert was sequenced to confirm the 

correct sequence of the nucleotides corresponding to the vector pET16b-synthetic gene. The 

sequencing reaction was performed with the kit BigDye® Terminator v3.1 and the resulting 

fragments were analyzed by capillary electrophoresis at the Sequencing Service of the Parc 

Científic of the University of Barcelona. The sequence of the fusion protein was confirmed (See 

Appendix, Fusion protein sequence). The vector from colony 14 was further used for the fusion 

protein expression and purification. 

2.3.2.3. Expression and purification of the fusion protein 

E. coli BL21 (DE3) competent cells were used as a host for the production of the fusion protein. 

Transformants were grown for 9 hours at 37 ºC and 250 rpm in 1 L LB medium containing           

100 μg/mL ampicillin in a 2 L Erlenmeyer flask. The volume of the culture was splitted in three 

and expression was induced by addition of IPTG and continued at 20 ºC and 150 rpm for 6, 9 and 

16 hours respectively. Cells were harvested by centrifugation, resuspended in phosphate buffer 

50 mM, pH 7.5, 200 mM NaCl, 0.1 mM CaCl2, and after lysed with a cell-disrupter, centrifuged 

at 23,000 x g. The pellets were analyzed to determine if the overexpression of fusion protein 

generates insoluble fractions of protein (Figure 2. 21). 

 

Figure 2.  21: 14% SDS-PAGE with Coomassie stain of 3 the insoluble fractions obtained during the expression of the 
fusion protein. Lane P, fusion protein from the supernatant obtained after the lysis. Lanes 1-3, insoluble fraction from 
6 hours of induction. Lanes 4-6, insoluble fraction from 9 hours of induction. Lanes 7-9, insoluble fraction from 16 
hours of induction. 

 

No protein was observed in the insoluble fraction at 6 hours of induction. After 9 hours, though, 

the overexpression of the protein caused the precipitation of a considerable amount of protein 

losing yield. To avoid protein loss, 6 hours was set as the best induction time. 
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To purify the fusion protein, an IMAC purification was performed by the use of a 1 mL HisTrapTM 

column. The intracellular soluble fraction was then injected into a precharged Ni2+ Sepharose 

HisTrapTM 1 mL column. The column was subsequently washed with phosphate buffer 50 mM-

0.1 mM CaCl2-200 mM NaCl and then a linear imidazol gradient ranging from 0 to 500 mM for 

60 minutes was applied. Subsequent elution of the bound fusion protein is shown by 

chromatogram below (Figure 2. 22). Note that the primary elution peak is of nonspecifically 

bound proteins whereas the secondary elution peak is of the fusion protein E134S-CBM11. 

 

 
 

Figure 2.  22: Chromatogram of the fusion protein E134S-CBM11 affinity chromatography purification. The blue line 
represents 280nm absorbance units while the green line shows the linear imidazole gradient. The elution tube number 
are shown in red. Note the primary elution peak at 64 mL that corresponds to non-specifically bound proteins whereas 
the secondary elution peak at 68 mL corresponds to the fusion protein. 

 
In order to evaluate the His-tag purification efficiency, samples of each of the purification steps 

were saved for subsequent analysis by SDS-PAGE with Coomassie stain (Figure 2. 23). 
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Figure 2.  23: 14% SDS-PAGE with Coomassie stain of the E134S-CBM11 protein purification shown in the 
chromatogram above (Figure 2. 22). Left lane, low range protein standard. Lane P, impure positive sample, Lane 1, 
impure protein standard, Lane 2, column flow-through, Lanes 3-5, primary elution peak (tubes 12, 13 and 14), Lanes 
6-10, correspond to secondary elution peak (tubes 16, 18, 21, 27 and 37, respectively). Lane 11, blank. 

 

Samples of tubes 16 – 21 (lanes 6 -8, Figure 2. 23) containing the fusion protein were dialyzed in 

3 x 1L 50 mM phosphate buffer-0.1 mM CaCl2-200 mM NaCl at pH 7.5. The quantity of fusion 

protein was calculated by Bradford assay, resulting in 64 milligrams of purified protein from a 1 

liter culture. The protein sample was analyzed by MALDI-TOF (See appendix, Figure A2. 1). 

The chromatogram shows a peak of 47089 Da that corresponds to the monocharged fusion 

protein. A second peak of 23549 Da corresponds to the doubly charged protein.  

2.3.2.4. Fusion protein characterization.  

The fusion protein E134S-CBM11 was characterized by performing the glycosynthase reaction 

between the donor Glcβ4Glcβ3GlcαF and the acceptor GlcβPNP (Figure 2. 24).  
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Figure 2.  24: Formation of the glycosidic bond during the activity assay. Conditions: 20 mM GlcPNP, 2 mM 
Glcβ4Glcβ3GlcF, 35 ºC, 50 mM phosphate buffer-0.1 mM CaCl2, pH 7.0. 
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Transglycosylation rates at constant acceptor concentration (20 mM) and different donor 

concentrations (0 – 2 mM) showed that tetrasaccharide product formation followed saturation 

kinetics (Figure 2. 25) with an apparent kcat value of 16.6 min-1  and KM of 0.25 mM (kcat/KM of 

66.2 min-1 mM-1) (Table 2.  7). Compared to E134S, the kcat of fusion protein is two-fold lower 

and the KM value is 2.5-fold higher, resulting in a 7-fold decrease in kcat/KM. Therefore, the fusion 

protein is active but this construct could be optimized.  

 

Figure 2.  25. Reaction kinetics of the fusion protein E134S-CBM11 (1.58 M). Cellobiosyl fluoride donor and 4-
nitrophenyl -D-glucopyranoside acceptor (20 mM), 50 mM phosphate buffer-0.1 mM CaCl2 at pH 7.2 and 35 °C. 

 

Enzyme  kcat (min‐1)  KM (mM)  kcat/KM (M‐1 s‐1) 

E134S  40.8 ± 0.6  0.09 ± 0.01  7.55∙103 

E134S‐CBM11  16.6 ± 0.98  0.25 ± 0.06  1.10∙103 
 
Table 2.  7: Kinetic parameters for the glycosynthase reactions Glcβ4Glcβ3GlcF + GlcpNP catalyzed by E134S and 
E134S-CBM11 fusion protein. Conditions: 0.1 – 2.0 mM Glcβ4Glcβ3GlcαF donor, 50 – 100 mM phosphate buffer pH 
7.2, 0.1 mM CaCl2 and 35 ºC. For E134S, 7.8 mM GlcPNP acceptor and 0.1 M enzyme were used. For E134S-
CBM11, 20 mM GlcpNP acceptor and 1.58 M enzyme were used.  

 

2.3.2.5. E134S-CBM11 vs E134S 

Polymerization reactions of the trisaccharyl donor with E134S-CBM11 and E134S were 

compared, using enzyme activities standardized against the glycosynthase reaction between 

Glcβ4Glcβ3GlcαF and GlcPNP (Table 2. 8).  

Insoluble polysaccharides synthesized by E134S were obtained in 60% yields after one day (Table 

2.  8, entries 12 and 14). Since the enzyme concentration used was relatively low if compared to 

reaction 6 (Table 2. 3), soluble polymers and unreacted donor were recovered. The molecular 

mass distribution presented a bimodal profile (polymers 12 and 14, Figure 2. 26) at Mp values of 

17 kDa and around 7 KDa. The Mw value of 15 kDa corresponds to insoluble polymers with DP 
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of 90 glucosyl units. Interestingly, reactions catalyzed by E134S-CBM11 gave insoluble 

polysaccharides in 68% yield at low enzyme activity but quantitative yield at high enzyme activity 

(Table 2. 8, entries 13 and 15). Molecular mass distribution of polymer 15 presented a bimodal 

profile (Mp of 39 and 21 kDa) resulting in a Mw value of 20 KDa composed of 121 glucosyl units 

(Figure 2. 26). In these conditions, E134S-CBM11 generated slighly longer insoluble 

polysaccharides compared to E134S (≈33%; 14). But the effect of the CBM11 appended to the 

E134S is not conclusive since these DP values were also obtained at higher E134S concentrations 

(polymers 6 and 9). The morphology of polymer 15 (Figure 2. 27) showed the typical amorphous 

precipitate of the (4Glcβ4Glcβ3Glcβ)n structures obtained by E134S.15,14  

Entry Enzyme 
activity 
(U)a 

Mw  
(kDa) 

n (DP)b Mn 
(kDa)

Yield 
(%) 

PDI 
Mp  

(kDa) 

12 E134S 0.38  15 30 (90) 8 57 1.7 17, 4 
13 E134S-CBM11 0.35  18 37 (110) 9 68 1.9 39, 19  

14 E134S 0.94  15 30 (90) 9 60 1.7 17, 7 
15 E134S-CBM11 0.85  20 40 (121) 10 100 2.0 39, 21  

 

Table 2.  8. Polymerization reactions of donor Glcβ4Glcβ3GlcF by E134S vs E134S-CBM11 fusion protein. a enzyme 
activity for the reference glycosynthase reaction Glcβ4Glcβ3GlcF + GlcpNP. bn: number of trisaccharyl donor units 
in the polymer, DP: degree of polymerization expressed as glucosyl units. Conditions: [Donor] = 150 mM, phosphate 
buffer pH 7.0, 0.1 mM CaCl2, 37 ºC, 24 h. 

 

 

 

Figure 2.  26. HPSEC chromatograms of (4Glcβ4Glcβ3Glcβ)n polymers 12 – 15  where the reactivity of E134S and 
E134S-CBM11 are compared under the same specific activity. Polymers 12 and 14 were synthesized with E134S while 
polymers 13 and 15 were obtained with E134S-CBM11. Labels correspond to entries in Table 2. 8 and Mp values 
(maximum of the peaks) are indicated in kDa. [Donor] = 150 mM. 
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Figure 2.  27: SEM micrographs of freeze-dried polymers (4Glcβ4Glcβ3Glcβ)n where A corresponds to polymer 15 

 

2.3.2.6. Effect of the CBM11 protein domain on polymerization reactions catalyzed by 

the fusion protein E134S-CBM11 

When CBM11 was added to the polymerization reactions performed by E134S-CBM11, no 

significant change in product profile was observed with respect to DP, Mp, Mw, and morphology 

(Table 2. 9, Figure 2. 28 and Figure 2. 29).  

 

 

  Glcβ4Glcβ3GlcαF 1day 

Entry 
Molar Ratio 

E134S-CBM11 
/CBM11 

Mw  
(kDa)

n (DP)a Mn    
(kDa) 

Yield   
(%) 

PDI 
Mp       

(kDa) 

16 1:1 17 35 (105) 9 91 1.9 

39, 18 17 1:2 17 35 (105) 12 87 1.9 

18 1:3 16 33 (99) 8 81 1.9 
  Glcβ4Glcβ3GlcαF 3 days 

19 1:3 18 37 (111) 9 80 1.9 
39, 18 

20 1:6 17 35 (105) 8 91 2.0 
 
Table 2.  9. Polymerization reactions by E134S-CBM11 fusion protein with added CBM11 (Glcβ4Glcβ3GlcF donor). 
a n: number of trisaccharyl donor units in the polymer, DP: degree of polymerization expressed as glucosyl units. 
Conditions: [Donor] = 150 mM, enzyme 0.5 U (for the reference glycosynthase reaction Glcβ4Glcβ3GlcF + GlcpNP), 
phosphate buffer pH 7.0, 0.1 mM CaCl2, 37 ºC, 24 or72 h. 
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Figure 2.  28. HPSEC chromatograms of (4Glcβ4Glcβ3Glcβ)n polymers 16 – 20. Labels correspond to entries in Table 
2.  9. 

 

 

Figure 2. 29. SEM micrographs of freeze-dried polymers (4Glcβ4Glcβ3Glcβ)n where B corresponds to polymer 17 
and A to polymer 20; (E134S-CBM11/CBM).  

 

All insoluble polymers obtained by self-condensation of the trisaccharyl donor are quite similar 

when yields are over 80%. Polysaccharides with Mw of 17-20 kDa (DP 100-120) are obtained 

when the reaction is either catalysed by the E134S mutant or by E134S-CBM11, with or without 

extra addition of CMB11 (Tables 2.  3 and 2.  9). The rates of polymerization were high, thus 

there was not sufficient time for inter-chain interactions to occur, which leads to polymer 

precipitation around these Mw values. By contrast, when yields do not reach 80% due to lower 

rate of polymerization, addition of CBM11 or the fusion protein enable longer insoluble 

polysaccharides to be generated compared to the E134S-catalyzed reaction. Here the CBM11 
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prevented the nascent polymers from interchain interactions enabling continued polymerization 

of these molecules in solution before the reaction was termined by product precipitation. 
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 CONCLUSIONS 

We explored the effect of a CBM on glycosynthase-catalyzed polymerization to generate mixed-

linked 1,3-1,4-β-glucans with regular sequences. The observed effect is dependent on the rate of 

polysaccharide formation. When the rate of polymerization is high, polymer yields are higher 

than 80% and CBM11, either as a discrete protein or appended to E134S, had no effect on the 

DP. In contrast, when the rate of polymerization was low and polymer yields were below 80%, 

the CBM11 facilitated oversaturation of the polymers and longer insoluble polysaccharides were 

obtained. Moreover, in the case of the alternating polysaccharide (4Glcβ3Glcβ)n, the presence of 

the CBM disrupts the crystallinity of the insoluble polymer obtained yielding amorphous 

precipitates instead of the characteristic spherulite morphology. 

For the system studied, the observed effect on DP is small but significant, probably reflecting the 

non-processive behavior of endo-1,3-1,4-β-glucanase. For a truly processive glycosynthase it 

might be expected that the synthesized oligomeric chain protruding from the active site binds the 

CBM which may keep the polymer in solution during chain extension. For a non-processive 

enzyme, polymer extension occurs by association and dissociation of intermediate products into 

the active site, and the concentration of the intermediate polymers in solution is higher than the 

concentration of CBM (in the rage of enzyme concentration). Therefore the solubilization effect 

provided by the CBM is not as extensive as it would be expected for a processive enzyme. The 

effect on DP increase here observed for slow polymerization reactions agrees with this hypothesis.  

In conclusion, CBM assists glycosynthase-catalyzed polymerizations to achieve longer 

polysaccharides, potentially being a general strategy in the design of efficient glycosynthases 

aimed at the production of artificial polysaccharides. 
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APPENDIX  

Figure A2. 1: MALDI-TOF spectrum of the fusion protein E134S-CBM11 

Figure A2. 2: MALDI-TOF spectrum of the protein domain CBM11 

Figure A2. 3: MALDI-TOF of the glycosynthase mutant E134S 

Figure A2. 4: Fusion protein sequence (Number of amino acids: 422 Molecular weight: 

47241.3) 

Figure A2. 5: HPSEC dextran standards 

Table A2. 1: Determination of the retention time (tr) of dextran standards 

Figure A2. 6: HPSEC. Calibration line 
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Figure A2.  1: MALDI-TOF spectrum of the fusion protein E134S-CBM11 

 

 

 

Figure A2.  2: MALDI-TOF spectrum of the protein domain CBM11 

 

  



Chapter 2. CARBOHYDRATE BINDING MODULE ASSISTING GLYCOSYNTHASE‐CATALYZED 
POLYMERIZATIONS: Appendix 

75 
 

 

 

Figure A2.  3: MALDI-TOF of the glycosynthase mutant E134S 
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Figure A2. 4. Fusion protein sequence (Number of amino acids: 422 Molecular weight: 47241.3) 
 

 

 
 
 
atgggccatcatcatcatcatcatcatcatcatcacagcagcggccatatcgaaggtcgt 
 M  G  H  H  H  H  H  H  H  H  H  H  S  S  G  H  I  E  G  R  
catatgctcgagcagaccggcggctccttctacgaaccgtttaacaactacaacacgggc 
 H  M  L  E  Q  T  G  G  S  F  Y  E  P  F  N  N  Y  N  T  G  
ctgtggcaaaaagcagatggctactcaaatggtaatatgtttaattgcacgtggcgcgca 
 L  W  Q  K  A  D  G  Y  S  N  G  N  M  F  N  C  T  W  R  A  
aacaatgtttcaatgacctcgctgggtgaaatgcgtctgagtctgaccagcccgtcttat 
 N  N  V  S  M  T  S  L  G  E  M  R  L  S  L  T  S  P  S  Y  
aataaattcgattgtggcgaaaaccgcagcgtgcagacctatggctacggtctgtacgaa 
 N  K  F  D  C  G  E  N  R  S  V  Q  T  Y  G  Y  G  L  Y  E  
gttaatatgaaaccggcgaaaaacgtgggtattgtgagcagctttttcacctatacgggt 
 V  N  M  K  P  A  K  N  V  G  I  V  S  S  F  F  T  Y  T  G  
ccgacggacggtaccccgtgggattccattgacatcgaatttctgggtaaagataccacg 
 P  T  D  G  T  P  W  D  S  I  D  I  E  F  L  G  K  D  T  T  
aaagttcagttcaactcttataccaatggcgaaggtaaccatgaaaaaattgtgaatctg 
 K  V  Q  F  N  S  Y  T  N  G  E  G  N  H  E  K  I  V  N  L  
ggctttgatgcggccaacagttatcacacctacgcattcgactggcagccgaactccatc 
 G  F  D  A  A  N  S  Y  H  T  Y  A  F  D  W  Q  P  N  S  I  
aaatggtatgtggatggtcaactgaaacatacggctaccacgcagattccgcaaaccccg 
 K  W  Y  V  D  G  Q  L  K  H  T  A  T  T  Q  I  P  Q  T  P  
ggcaaaatcatgatgaacctgtggaatggcgcgggtgtcgatgaatggctgggtagctat 
 G  K  I  M  M  N  L  W  N  G  A  G  V  D  E  W  L  G  S  Y  
aatggcgtgacgccgctgtatgcccactacaactgggttcgctacaccaaacgtccgacc 
 N  G  V  T  P  L  Y  A  H  Y  N  W  V  R  Y  T  K  R  P  T  
ccgacgccgacgccgaccccgaccccgacgccgaccccggcggtcggcgaaaaaatgctg 
 P  T  P  T  P  T  P  T  P  T  P  T  P  A  V  G  E  K  M  L  
gatgactttgaaggtgtgctgaattggggcagttactccggcgaaggtgccaaagtcagt 
 D  D  F  E  G  V  L  N  W  G  S  Y  S  G  E  G  A  K  V  S  
acgaaaattgtgtccggtaaaaccggcaacggtatggaagttagctatacgggcaccacg 
 T  K  I  V  S  G  K  T  G  N  G  M  E  V  S  Y  T  G  T  T  
gatggttattggggcaccgtctactctctgccggatggtgactggtcaaaatggctgaaa 
 D  G  Y  W  G  T  V  Y  S  L  P  D  G  D  W  S  K  W  L  K  
atctcgttcgatatcaaaagcgtggacggctctgcaaatgaaattcgtttcatgatcgct 
 I  S  F  D  I  K  S  V  D  G  S  A  N  E  I  R  F  M  I  A  
gaaaaatcaattaacggcgttggtgacggcgaacattgggtctactcgatcacgccggat 
 E  K  S  I  N  G  V  G  D  G  E  H  W  V  Y  S  I  T  P  D  
agttcctggaaaaccattgaaatcccgttttcatcgttccgtcgccgtctggattatcag 
 S  S  W  K  T  I  E  I  P  F  S  S  F  R  R  R  L  D  Y  Q  
ccgccgggtcaagacatgagcggcaccctggatctggacaatattgattctatccacttt 
 P  P  G  Q  D  M  S  G  T  L  D  L  D  N  I  D  S  I  H  F  
atgtacgcaaataacaaaagcggtaaattcgtcgtggacaacattaaactgattggtgcc 
 M  Y  A  N  N  K  S  G  K  F  V  V  D  N  I  K  L  I  G  A  
taagctgagc 
 -  A  E   
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Figure A2.  5: HPSEC dextran standards 

 

Mp Standards log Mp tr (min) 

1000 3.0000 20.1384 

2800 3.4472 18.5688 

3400 3.5315 17.9028 

4440 3.6474 17.2008 

9900 3.9956 15.8400 

20500 4.3118 15.0048 

50200 4.7007 13.7808 
 

Table A2.  1: Determination of the retention time (tr) of dextran standards 

 

Figure A2.  6: HPSEC. Calibration line
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3.1. INTRODUCTION 

Biocompatibility, biodegradability and stability are the main characteristics of polymers used as 

biomaterials. Complex carbohydrate structures containing functional groups have been 

extensively investigated for a wide range of biomedical applications. Further functionalizations 

have aimed to improve solubility and miscibility allowing the binding of the polymers to target 

compounds and improve their efficiency as drug delivery systems.1 Successful examples are the 

cationic polysaccharides obtained by modifying polymers that are reported to efficiently 

encapsulate proteins and DNA and enhance gene transfection such as cellulose, schizophyllan, 

curdlan and chitosan.2,3,4,5,6,7 The modifications can be performed chemically on natural 

polysaccharides by functionalizing C-6 positions with amine side chains or azido groups that later 

can be reduced to amines or can be reacted by click-chemistry.8,9  

Alternatively, enzymatic synthesis have provided artificial polysaccharides that mimic natural 

polysaccharides in an efficient way. It takes advantage of the regio- and stereoselectivity of 

enzymes to form new linkages and provide polysaccharides with perfectly regular and 

homogenous structures that are impossible to obtain from natural sources.  

The glycosynthase technology has been expanded to the synthesis of artificial polysaccharides by 

promoting the donor self-condensation reaction.10,11 The glycosynthase approach provides a new 

generation of polysaccharides with different polymerization and functionalization properties than 

those obtained by chemical modification routes. Therefore glycosyl donors containing functional 

groups can be suitable candidates to synthesize this in situ-modified polysaccharides by the use 

of glycosynthases. The introduction of a functionality in substrates that will fit in the donor and 

acceptor subsites might be determinant for the enzyme having a different effect in every subsite. 

This effect will depend on the interactions between the enzyme and the new functionalized 

substrate. 

In this context, our goal is to evaluate the chemoenzymatic synthesis of functionalized artificial 

mixed-linked 1,3-1,4--glucans.  

The crystal structure of 1,3-1,4--D-glucan 4-glucanohydrolase from Bacillus macerans,12 from 

the hybrid Bacillus -glucanase H(A16-M),13  and from Bacillus licheniformis14 were solved in 

an effort to reveal the degree of redundancy to which the three-dimensional structure of protein 

domains is encoded by the amino acid sequence.15 These 1,3-1,4--glucanases are homologous 

enzymes having a similar -sandwich structure with a compact jellyroll domain. In 2006, Gaiser 

et al. reported the high-resolution crystal structure of the hybrid 1,3-1,4--glucanase             
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H(A16-M)E105Q/E109Q in complex with a -glucan tetrasaccharide Glc4Glc4Glc3Glc covering 

donor subsites from subsite -1 to -4 (Figure 3.  1).16  

The catalytic residues of Bacillus 1,3-1,4--glucanases were identified by means of mutational 

analysis, affinity labeling, and X-ray crystallography. Ten active-site residues Asn26, Glu63, 

Arg65, Phe92, Tyr94, Glu105, Asp107, Glu109, Asn182 and Trp184 (Bacillus macerans 

numeration) form a network of hydrogen bonds and hydrophobic stacking interactions with the 

substrate. We had previously shown that these residues are significant for stabilization of the 

enzyme–carbohydrate complex17 and mutational analyses on the Bacillus licheniformis and           

B. macerans enzymes identified Glu105 and Glu109 as the catalytic nucleophile and the general 

acid/base, respectively18 (H(A16-M), Bacillus macerans numbering).  

In -glucans two neighboring glucopyranosyl units linked by a -1,3 bond have the orientation 

with the 6-CH2-OH side-chains on the same side of the glucopyranosyl rings. In the complex, 

binding of a laminaribiosyl unit in subsites –2 / -1 is accomplished by strong hydrogen bond 

interactions of Asn26 and Glu63 with the O6
  hydroxyl of Glc-2, as well as Trp184 N1

 and Gln109 

with the O6
 hydroxyl of Glc-1 in the catalytic subsite (Figure 3. 1). 

 

Figure 3. 1: Scheme of enzyme–carbohydrate interactions in subsites -1 to -4. Schematic depiction of hydrogen bond 
and hydrophobic stacking interactions in the enzyme–ligand complex. Glc-1 to Glc-4 mark glucosyl residues bound in 
subsites -1 to -4. Amino acid side-chains are shown with their functional groups. Hydrogen bonds with donor-acceptor 
distance below 3.5 Å are shown as broken lines (numbers are donor-acceptor distances in Å). Water molecules 
mediating hydrogen bonds are depicted as black balls. Hydrophobic interactions are also indicated. Note that the -1,3 
linkage between Glc-2 and Glc-1 positions both 6-CH2-OH glucosyl side-chains on the same side of the tetrasaccharide. 
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Asn121 and Glu131 were proposed as potential interaction partners for the O6
 hydroxyl group of 

the glucosyl residue bound in subsite +1. Interestingly, the side-chain functional group of Gln109 

is nearly parallel with the glucopyranosyl ring in subsite -1 and allows interactions with both the 

glycosidic oxygen of the scissile bond and the O6
 hydroxyl.19,16,20  The direct interaction of the 

acid/base catalyst with the O6
 hydroxyl group of Glc-1 appears to be an important feature of 

catalysis.16  

Therefore, the introduction of a functional group at C-6 could compromise the enzyme-substrate 

binding. By contrast C-6’ seems less restrictive despite the interaction of O6 and Asn 26 and Glu 

63 (Asn55 and Glu92 for Bacillus licheniformis numeration) through hydrogen bonds.  

We tentatively proposed 6’-azido-6’-deoxy--D-laminaribiosyl fluoride (6’N3-Glc3GlcF) as a 

functionalized substrate for the further production of in situ-modified 1,3-1,4--glucan by the use 

of the glycosynthase derived from 1,3-1,4--glucanase from B. licheniformis as a model enzyme 

(Figure 3. 2).  

We chose the azide functional group as a highly versatile functionality which can be later either 

reduced to amine, or be functionalized by click chemistry as it has been done for a broad variety 

of chemically modified polysaccharides. Furthermore, it is a relatively small functional group 

which will probably not affect the binding of the substrate increasing the probability of acceptance 

of the functionalized substrate by the enzyme. However, direct evolution of the enzyme will be 

probably needed in the future in order to improve the enzyme activity with this azido-substrate. 

To the best of our knowledge, no direct and selective azidation of laminaribiose on the primary 

hydroxyl positions has been described before in the literature. The functionalities introduced in 

the glycosyl donors will be inherited in the resulting heteropolymer and should confer new 

properties while retaining the biodegradability given by its unaltered sugar backbone.  

 

Figure 3. 2: Synthesis of alternating 6-azido-6-deoxy-1,3-1,4--glucan by glycosynthase-catalyzed polymerization of 
the 6’-azido-6’-deoxylaminarbiosyl fluoride donor. 

 

In the polymerization reaction the same glycosyl donor binds in the donor and acceptor subsites. 

As the introduction of the new functionality might affect the acceptance of subsites -2 and +1, 
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different donors and acceptors have been synthesized in this work to study the independent effect 

of the azido group on the different subsites by using the glycosynthase reaction. On the one hand, 

6N3-GlcPNP was synthesized as an acceptor for the acceptance study of subsite +1. On the other 

hand 6’N3-Glc3GlcF was synthesized for the study of subsite -2 (Figure 3. 3).  

 

Figure 3.  3: Study of subsites. A) Study of the introduction of the azide in subsite -2. B) Study of the introduction of 
the azide in subsite +1. 

 

We present here the synthesis of the functionalized acceptor p-nitrophenyl 6-azido-6-deoxy--D-

glucopyranoside and two different approaches for the synthesis of the 6’-azido-6’-

deoxylaminaribiosyl fluoride donor. The first ‘Total synthesis’ approach (Figure 3. 4) starts from 

individual monosaccharides where the different positions are easily differentiated before its 

chemical coupling to obtain the disaccharide. By properly choosing orthogonal protecting groups, 

the functionality was either introduced first in the disaccharide product after glycosylation (‘Total 

synthesis 1’, Figure 3.  4A) or in the donor before glycosylation (‘Total synthesis 2’, Figure 3.  

4B). Alternatively, the ‘Polymer approach’ (Figure 3.  5) takes advantage of a natural raw material 

to easily access to a disaccharide where position C-6’ can be selectively modified. 
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Figure 3.  4: A) ‘Total synthesis 1’: introduction of the azide after glycosylation of a glycosyl donor and acceptor. B) 
‘Total synthesis 2’: introduction of the azide in the glycosyl donor before glycosylation. LG = leaving group; P = 
Protecting group. 
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Figure 3.  5: Polymer approach: degradation of curdlan and further functionalization. 
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3.2. RESULTS AND DISCUSSION 

The effect of the introduction of the azide functional group was evaluated studying subsite -2 

using donors 6’N3-Glc3GlcF and Glc3GlcF as a reference. In addition, the effect on subsite 

+1 was studied using acceptors 6N3-GlcPNP and GlcPNP as a reference (Figure 3.  3).  

3.2.1. Synthesis of the glycosynthase donors 

3.2.1.1. Total synthesis: design 

Several glycosyl donors were designed for the synthesis of the target azido laminaribiosyl 

derivative. In order to generate a -(1→3) linkage during the glycosylation reaction, the synthesis 

of alpha glucosyl donors was required. 2,3,4,6-tetra-O-acetyl--D-glycopyranosyl bromide (5) 

was chosen as the best donor candidate for the introduction of the azide after glycosylation. 

However, if the azide was to be introduced before glycosylation, it should be introduced at C-6 

of glucose (previous tosylation) before the formation of the trichloroacetimidate on the anomeric 

carbon (Figure 3.  6, compound 14). By contrast, if the introduction of the bromide group on the 

anomeric carbon of acetyl 6-azido-6-deoxy-2,3,4-tri-O-acetyl-D-glucopyranoside was attempted, 

the azido group would be displaced by the bromide and dibrominated glucose would be obtained. 

O
AcO

AcO

Br
AcO

AcO

5

OAcO
AcO

O
AcO

N3

NH

CCl3

14  

Figure 3. 6: Design of glycosyl donors. 2,3,4,6-tetra-O-acetyl--D-glucopyranosyl bromide 5 (for further introduction 
of the azide) and 6-azido-6-deoxy-2,3,4-tri-O-acetyl--D-glucopyranosyl trichloroacetimidate 14. 

 

In order to generate a -(1→3) linkage during the glycosylation reaction, the synthesis of glucosyl 

acceptors with a free hydroxyl at C-3 acting as a nucleophile was required. The other hydroxyls 

of the acceptor had to be protected in order to avoid side-reactions. Several acceptors were 

designed with a methoxy (OMe) or a p-methoxyphenyl (pMP) group protecting the anomeric 

carbon, a benzylidene or an isopropylidene group protecting C-4 and C-6, and an allyl, a benzyl 

or a benzoyl group protecting C-2 (Figure 3. 7).  
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Figure 3.  7: Design of glucosyl acceptors. 3) Methyl 2-O-allyl-4,6-O-benzylidene--D-glucopyranoside. 23) Methyl 
2-O-benzoyl-4,6-O-benzylidene--D-glucopyranoside. 24) Methyl 2-O-benzyl-4,6-O-isopropylidene--D-
glucopyranoside. 29) p-methoxyphenyl 2-O-allyl-4,6-O-benzylidene--D-glucopyranoside. 25) Methyl 2-O-benzyl-
4,6-O-benzylidene--D-glucopyranoside. 

 

Two preferential approaches were designed by combining different donors and acceptors. The 

first approach (Figure 3. 4A, ‘Total synthesis 1’) consisted in the condensation of 2,3,4,6-tetra-

O-acetyl--D-glucopyranosyl bromide (5) with the acceptor methyl 2-O-allyl-4,6-O-benzylidene-

-D-glucopyranoside (3). In this case, the azide would be further introduced into the disaccharide 

and the target product could be obtained after further deprotection of benzylidene, allyl and 

methyl protecting groups. On the other hand, the second approach (Figure 3. 4B, ‘Total synthesis 

2’) introduces first the azido group on glucose and then forms the trichloroacetimidate 

synthesizing the 6-azido-6-deoxy-2,3,4-tri-O-acetyl--D-glucopyranosyl trichloroacetimidate 

(14). This donor could condensate with an acceptor by the Schmidt glycosylation reaction and the 

target product could be further obtained. There are different possible ways to introduce the azide 

in the target molecule. As Figure 3. 8 shows, in these approaches the azide is introduced after 

previous tosylation of C-6. 
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Figure 3.  8: Synthesis of 6’-azido-6’-deoxy--D-laminaribiosyl fluoride. Aproach ‘Total synthesis I’ (left, conditions 
in red). a) PhCH(OMe)2/CSA/Bz; b) (Bu3Sn)2O/AllBr; c) HBr/AcOH; d) HgBr2/Hg(CN)2; e) NaOMe/MeOH; f) 
TsCl/py; g) Ac2O/py; h) NaN3/DMF. Approach ‘Total synthesis II’ (right, conditions in purple). a) TsCl/py; b) 
NaN3/DMF; c) Ac2O/py; d) Hydrazine acetate/DMF; e) Cl3CCN/DBU/CH2Cl2; f) PhCH(OMe)2/CSA/Bz; g) 
(Bu3Sn)2O/AllBr; h) TMSOTf/CH2Cl2; i) PdCl2/NaOAc/AcOH; j) H+; k) HF/py; l) NaOMe/MeOH. 
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3.2.1.2. Total synthesis: results 

In ‘Total synthesis 1’ a glucosyl bromide donor was first synthesized in high yield whereas in 

‘Total synthesis 2’ the azido group was first introduced through tosylation. However, the 

trichloroacetimidate group was introduced in the anomeric carbon in lower overall yields. 

Therefore, ‘Total synthesis 1’ was selected for the synthesis of substrate 6N3-Glc3GlcF using 

the glucosyl bromide as donor and exploring five different glucosyl acceptors with the aim of 

choosing the best conditions for a straightforward synthesis in the highest possible yields (Figure 

3. 8).  

The synthesis of acceptor 24 (Figure 3. 9) proved to be trickiest than expected due to the obtention 

of a mixture of isomers, one containing the benzyl group at C-2 and the other one at C-3, both 

products showing the same Rf on TLC.  
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Figure 3.  9: Synthesis of acceptor 24. 

Therefore, the isolation of methyl 2-O-benzyl-4,6-O-benzylidene--D-glucopyranose became a 

challenge as no eluent nor mixture of eluents was found to separate the isomers. As 24 could not 

be isolated, it was not considered as a possible acceptor for the glycosylation reaction. 

The syntheses of 2,3,4,6-tetra-O-acetyl--D-glucopyranosyl bromide donor (5) and the methyl 2-

O-allyl-4,6-O-benzylidene--D-glucopyranoside acceptor (3) as precursors for glycosylation 

according to ‘Total synthesis 1’ were successfully performed (Figure 3. 8) (see characterization 

of the products in the Experimental section).  

The synthesis of the methyl 2-O-allyl-4,6-O-benzylidene--D-glucopyranose acceptor (3) was 

accomplished in two steps with an overall yield of 53% (Figure 3. 10). 
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Figure 3.  10: Synthesis of acceptor 3. 
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The 2,3,4,6-tetra-O-acetyl--D-glucopyranoside bromide donor (5) was synthesized from 

peracetylated glucose quantitatively and once it was synthesized, it was immediately used in the 

glycosylation reaction to avoid the hydrolysis of the bromide (Figure 3. 11).  
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Figure 3.  11: Synthesis of donor 5. 

 

The donor was activated during the glycosylation reaction with mercury salts and the 

glycosylation reaction was performed under strict anhydrous conditions (nitrogen atmosphere) in 

the presence of molecular sieves and the laminaribiosyl derivative 6 was obtained in 55 % yield 

(Figure 3. 12) (see characterization of the product in the Experimental section). Some hydrolysis 

of the benzylidene protecting group occurred always after glycosylation. However, the 

benzylidene group could be easily reintroduced. The disaccharide acetyl groups were removed by 

performing the Zemplen reaction of 6.  
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Figure 3.  12: Schmidt glycosylation reaction. Synthesis of 6. 

 

The synthesis of 8 was performed by tosylation and further azidation (Figure 3. 13) (see 

characterization of the product in the Experimental section). Due to the preference of tosyl groups 

for primary hydroxyls, it was easily introduced at C-6’ and further substituted by the azido 

functional group by the use of NaN3 in DMF. Finally, acetylation of C-2’, C-3’ and C-4’ allowed 

a better chromatographic purification. 
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Figure 3.  13: Introduction of the azide. Synthesis of 8 (25% yield, 4 steps). 

 

Before the introduction of the fluoride on the anomeric carbon, the removal of the remaining 

protecting groups of 8 was needed. The allyl group could be removed by a reaction of 8 with 

PdCl2, NaOAc and AcOH. Previous results from Lohman and Seeberger21 commented the 

possibility of removing the allyl group in the presence of benzyl, benzoyl, methoxy and acetyl 

groups in 85% yield. During the reaction, the substrate reacts with equimolar or slightly higher 

amounts of PdCl2 in aqueous acetic acid in the presence of sodium acetate at temperatures 

between 25 – 70 ºC. Following this procedure the allyl group at C-2 was removed and a new 

acetyl was introduced instead (Figure 3. 14). 

Methoxy and benzylidene groups can be generally removed by the use of acidic conditions. It was 

found in the literature22 that the methoxy group of the anomeric carbon of methyl 3,4-di-O-acetyl 

2-O-(2,3,4-tri-O-acetyl--L-rhamnopyranosyl-)--D-fucopyranoside could be deprotected by 

dissolving it in a mixture of acetic anhydride and 1.5% (v/v) sulfuric acid-acetic anhydride, 

stirring it at RT for 3.5 hours without hydrolyzing the glycosidic bond and obtaining the -anomer 

in 42% yield and the β-anomer in 37% yield. Therefore, these conditions were applied on the 

deallylated intermediate disaccharide in order to obtain 10. However, the laminaribiosyl 

derivative was hydrolyzed in these acidic conditions and two monosaccharides were obtained. 

Different ratios of acetic anhydride – sulfuric acid were tested and it was found that when using 

lower amounts of sulfuric acid the benzylidene could be removed but the methoxy group stayed 

at the anomeric position. Even when the disaccharide was hydrolyzed the methoxy group was 

present in one of the monosaccharides (Figure 3. 14). 
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Figure 3.  14: Deprotection of the allyl group and test of deprotection of the methoxy and benzylidene groups. 

 

 

 



Chapter 3. TOWARDS THE SYNTHESIS OF ARTIFICIAL FUNCTIONALIZED 1,3‐1,4‐‐GLUCANS: Results and 
discussion 

90 
 

Extensive bibliography search about removal of methoxy groups was performed and only 

reference reactions on monosaccharides were found. A lot of bibliography described protic acid 

deprotections of methoxy groups. For instance, Greene’s group23 described the methoxy group as 

a very stable group in front of other reactants. They suggested its removal in aqueous conditions 

at pH < 1, at high temperature or with a Lewis acid in different conditions (AlCl3, 25 – 80 ºC; 

SnCl4, 25 ºC, BF3 · Et2O). None of these reactions worked in our hands, though. 

In the work of Kumar et al.24 the authors proposed a mild and chemoselective procedure in order 

to hydrolyze the methoxy group at anomeric positions in the presence of other protective groups 

such as benzyls, acyls, amides and carbamates. They could deprotect the methoxy group from 

methyl 2,3,4,6-tetra-O-benzyl--D-glucopyranoside when dissolving it in dichloromethane and 

adding trityl tetrafluoroborate at RT under stirring for 8 hours in yields up to 78%. Unsuccessful 

results were obtained when testing this reaction with our substrate. 

Some other authors described the deprotection of methoxy groups with trifluoroacetic acid on 

molecules containing azides. Bird et al.25 deprotected the methoxy group of methyl 5-azido-5-

deoxy-2,3,6-tri-O-benzyl-D-glucofuranoside by stirring it in aqueous trifluoroacetic acid (79 eq) 

for 6 hours in 83% yields. Dauban et al.26 could perform a similar deprotection under similar 

conditions (70 eq trifluoroacetic acid and longer reaction times, 70 hours) when working with a 

methyl D-ribose derivative containing an azido group. Instead of testing these conditions directly 

on our disaccharide, the first experiments were assayed on the monosaccharide methyl 2,3,4,6-

tetra-O-acetyl--D-glucopyranoside (Figure 3. 15).  
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Figure 3.  15: Methoxy group deprotection: obtention of isomers. 

 

The evolution of the reaction was followed by TLC and after 70 hours only traces of deprotected 

glucose (mixture of isomers) were obtained. The starting product was recovered in 71 % yield, 

2,3,4,6-tetra-O-acetyl--D-isomer in 20% and the deprotected β-isomer in 9% yield. Better results 

were obtained when doubling the equivalents of trifluoroacetic acid from 70 to 140 eq. Then, the 

starting product was recovered in 20 % yield and a mixture of isomers alpha/beta (1:1) was 

obtained in 80% yields. Given the difficulties on the removal of the methoxy group on the 
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monosaccharide and the mixture of anomers that was recovered when working with the 

monosaccharide, the experiments with this protecting group were stopped.  

Alternatively, the aromatic p-methoxyphenyl group was chosen as the new protecting group for 

the anomeric carbon of the acceptor due to its milder deprotection conditions. pMP was 

introduced on 2,3,4,6-tetra-O-acetyl--D-glucopyranose and a deprotection test was first 

performed to confirm the straightforward removal of the aromatic pMP. This deprotection 

reaction was performed successfully with ammonium cerium (IV) nitrate in 

toluene/acetonitrile/water (1:1:1) (Figure 3. 16).  
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Figure 3.  16: pMP deprotection test. 

 

Therefore, the synthesis of acceptor 29, containing a p-methoxyphenyl group (pMP) at the 

anomeric position was designed and its synthesis developed (Figure 3. 17). First, the pMP is 

introduced at the anomeric carbon, then positions O-4 and O-6 are protected with a benzylidene 

group and finally, O-2 should be protected with an allyl group. However, the introduction of the 

allyl on the acceptor occurred at the two free hydroxyls (O-2 and O-3) and an equimolar mixture 

of isomers always with the same Rf in different solvents was obtained. Due to the difficulty in the 

isolation of p-methoxyphenyl 2-O-allyl-6-azido-6-deoxy-β-D-glucopyranoside no glycosylation 

reaction was further performed with this acceptor. 
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Figure 3.  17: Synthesis of acceptor 29. a) p-methoxyphenol, TMSOTf, DCE;  b) NaOMe/MeOH;  c) Benzaldehyde 
dimethyl acetal, CSA, benzene;  d) AllBr, (Bu3Sn)2O, toluene. 

 

In conclusion, two different ‘Total synthesis’ approaches were designed. The good results in the 

synthesis of the bromide glucosyl donor (Total synthesis 1) and further glycosylation comparing 

to the results obtained in the synthesis of the trichloroacemidate donor (Total synthesis 2) brought 
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us to focus on ‘Total synthesis 1’ for the synthesis of substrate 6’N3-Glc3GlcF. This approach 

allowed the synthesis of methyl O-(6-azido-6-deoxy-2,3,4-tri-O-acetyl--D-glucopyranosyl)-

(1→3)-2,4,6-tri-O-acetyl--D-glucopyranoside (9). Removal of the methoxy group at the 

anomeric position of 9 was not possible after testing several deprotecting reaction conditions. 

Consequently, acetylation and further activation of the disaccharide with a fluoride for the 

synthesis of the alpha 6’N3-Glc3GlcF (11a) substrate was not possible. Therefore, our efforts 

focused on the ‘Polymer approach’ where the degradation of the polysaccharide curdlan allowed 

the direct obtention of laminaribiose and, after several protection/deprotection steps, the target 6’-

azido-6’-deoxy--D-laminaribiosyl fluoride 11a could be obtained.  

 

3.2.1.3. Polymer approach: design 

Figure 3. 18 delineates the synthesis of the functionalized donor 11a starting from laminaribiose 

(16). This disaccharide was previously obtained in our group by acetolysis of sclereoglucan 

affording the corresponding laminaribiose octacacetate in 23% yield.27 After the survey of 

different chemical28,29 and enzymatic degradation methods30,31,32,33 we considered the enzymatic 

hydrolysis of curdlan by a kitalase from Rhizoctonia solani to synthesize laminaribiose in 51 % 

yields as reported by Wang.32  
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Figure 3.  18: Synthesis of the 6’-azido-6’-deoxy--D-laminariobyl fluoride donor (11a). a) Kitalase/NaOAc 10 
mM/pH 5.0, 6 h, 42 ºC; b) Ac2O/py; c) NaOMe/MeOH; d) TrCl/py; e) Ac2O/py; f) FeCl3 · 6H2O/CH2Cl2; g) If  R = 
OTs, TsCl/py; If  R = Br, NBS/PPh3/DMAc; h) NaN3/DMF; i) HF/py; j) NaOMe/MeOH. 

 

The ‘Polymer approach’ was designed in order to allow a quick and direct obtention of 

laminaribiose (Glc3Glc) 16. The degradation of curdlan, a polymer composed of glucoses linked 

by -1,3 linkages, with a kitalase (enzyme preparation of culture filtrates of Rhizoctonia solani 

containing exo and endo-(1,3)--glucanases) would allow an easy isolation of the target 

disaccharide avoiding the synthetic glycosylation step.32  

Once in possession of the disaccharide building block, the introduction of the azide into position 

6’ of the molecule would become the most important step in the synthesis of the target substrate 

11a. A selective reaction able to differentiate the two primary alcohols (OH-6’ and OH-6) would 

be needed (Figure 3. 18) and different strategies were studied and evaluated in this work prior to 

the final synthesis.  
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Many works describe the substitution of all the primary hydroxyl groups by azides to achieve 

polyazides either in mono-, di-, oligo- or polysaccharides.  

6-Azido-6-deoxy--D-glucopyranose was first prepared by selective tosylation (2 days at 20 °C; 

55% yield) with a subsequent displacement with azide after isolation of the 6-O-tosylate.34 In 

1972, Hanessian et al. studied the selective halogenation reaction of primary hydroxyl groups by 

treatment of a solution of a polyhydroxy compound in DMF with two equivalents per alcohol of 

PPh3 and two equivalents of the appropriate N-halosuccinimide per alcohol under rigorously 

anhydrous conditions25 (55 – 65 % yield). Later on, they published the extension of this reaction 

to the preparation of primary azides by carrying out the halogenation reaction, and the subsequent 

conversion of the intermediate halogen derivative into the corresponding azide, in a single flask36 

(70% yield). Direct azidation reaction of several monosaccharide methyl glycopyranosides with 

NaN3 in the presence of PPh3-CBr4 yielding the primary azidodeoxy compounds in quantitative 

yields was reported by Jimenez-Blanco et al. in 1997.26 Moreover, direct azidation of unprotected 

carbohydrates was performed in a similar way by Gouin et al. in 2007 demonstrating that 

modulation of the number and position of azido groups on different saccharides was possible 

when varying the number of equivalents of reagents.38 

In 1964, Dutton et al. synthesized several 6’-substituted maltoses (Glc4Glc), the 6’-azido 

derivative among them.39 Tritylation of 1,6-anhydrous--maltose yielded only the 6'-O-trityl 

derivative (40%). Acetylation, followed by detritylation with aqueous acetic acid gave a 

pentaacetate with only the 6'-hydroxyl free (97%). Subsequent p-toluenesulfonation yielded the 

acetylated 1,6-anhydro-6’-O-tosyl--maltose in high yield (82%) and a final replacement of the 

sulfonate with azide yielded acetylated 1,6-anhydro-6’-azido-6’-deoxy--maltose in 87% yield.  

The ratio of halogenating mixture (PPh3/NBS) and the reaction time and temperature proved to 

play an important role in determining whether mono- or dibromination occured at the primary 

positions of ,-trehalose. Although the formation of a certain proportion of dibromo derivative 

could not be avoided even with a deficiency of halogenating agent, a reproducible procedure  

yielding 6’-bromo-6’-deoxy-,-trehalose was developed (37 – 40 % yields).40   

Gouin et al.38 extended their methodology to unprotected di- and trisaccharides: maltose, lactose 

and maltotriose. They observed differences on the reactivity and selectivity between lactose and 

maltose that indicated the importance of the spatial orientation of the hydroxyl groups. When 

using 2 eq PPh3/CBr4 per monosaccharide unit, first azidation occurred at C-6 position for maltose 

and maltotriose whereas a complex mixture of side-products was obtained for lactose. When 

increasing the reagent to substrate ratio, all substrates gave substituted derivatives containing 

azides at both anomeric and primary positions. The  anomers of glycosyl azides were 
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preferentially or exclusively formed obtaining a single isomer for lactose in 13% yield and the 

corresponding derivative from maltose in 49% yield.  

Thiebault et al. performed the synthesis of 6’’-6’-6-trideoxy-6’’,6’,6-trichloromaltotriose and 6’’-

6’-6-trideoxy-6’’,6’,6-triiodomaltotriose derivatives by direct chlorination of totally unprotected 

maltotriose.41 They found that ratio of PPh3/maltotriose and CCl4/maltotriose was crucial for the 

complete halogenation of all the primary positions. The use of less than 9 equivalents of each 

reagent lead to the mixtures of di- and trihalogenated maltotriose derivatives. Triiodomaltotriose 

was prepared in 85% yield from acetylated 6-deoxy-6-trichloromaltotriose. A broad range of 

halogenous reagents were tested finding that couples of PPh3/CBr4, PPh3/NBS, PPh3/CI4 or 

PPh3/NIS under various conditions of temperature and time gave only traces of a monohalogeno 

derivative.  

The discrimination between the two primary hydroxyl groups of a -1,3-linked disaccharide is 

particularly tricky since reactivities of 4-OH and 6-OH are similar. Several procedures to 

selectively introduce a functional group at C-6’ on a disaccharide have been described. Bulky 

groups such as triphenylmethyl (trityl), tert-butyldimethylsilyl, thexyldimethylsilyl (2,3-

dimethyl-2-butyl) are known preferentially to block the readily accessible primary hydroxyl 

groups. Among these groups, the trityl moiety appears to provide the greatest regioselectivity. 

Klemm et al.47 used a trityl group to modify C-6 positions on cellulose. Later, Kern et al.48 used 

p-methoxytrityl with the same purpose for the synthesis of 2,3-di-O-methylcellulose due to its 

better reactivity and a more rapid deprotection. Tritylation of laminaribiose followed by further 

acetylation was reported by Wang et al.39 who obtained a mixture of 6’-O-trityl-, 6,6’-di-O-trityl- 

and 6-O-trityl- in a 5:2:1 ratio respectively.  

To obtain the target 6’N3-Glc3GlcF (11a), the selective tritylation reaction was deeply studied 

in this work as it is shown in Figure 3.  18. As direct substitution of the trityl group with the azide 

is not possible, several studies of deprotection and further halogenation and esterification 

reactions were analyzed for the final introduction of the azide and the results are presented in this 

work.  

3.2.1.4. Polymer approach: results 

First, using the same conditions as Wang,32 the reaction with curdlan (37) (300 mg) and a kitalase 

(4.5 mg, 9 U) at pH 5.0, 42 ºC at 250 rpm was monitored for 20 h in order to optimize the 

production of laminaribiose (Figure 3. 19). Aliquots were withdrawn and after enzyme 

inactivation, the soluble fraction was freeze-dried and acetylated before TLC analysis.  
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Figure 3.  19: Enzymatic degradation of curdlan. 

 

A mixture of peracetylated mono-, di- and trisaccharides was present along the reaction and the 

disaccharide maximum yield of 40% was reached between 4 and 6 hours. At that moment, the 

ratio of mono-, di- and trisaccharides was 47:39:14 respectively (Figure 3.  20). After 6 hours of 

reaction, laminaribiose started to be hydrolyzed and the production of glucose increased 

remarkably.  

 

Figure 3.  20: Degradation of curdlan reaction. 

The enzymatic reaction was scaled up, followed by further acetylation and purification affording 

the peracetylated laminaribioside (15) in 45% yield (see characterization of the product in the 

Experimental section), the peracetylated glucoside (46%) and higher oligosaccharides (9%). 

Finally O-deacetylation by Zemplen afforded laminaribiose (16) in quantitative yields.  
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First attempts of direct tritylation of laminaribiose were carried out by using 1.2 equivalents of 

trityl chloride in pyridine containing DMAP at room temperature for one week similarly to the 

conditions reported by Wang (Figure 3. 21). The bulky group preferred the C-6’ position than C-

6 in a 1.3:1 ratio, however, the desired product 17 (6’-Tr) was only obtained in 20% yield and 

mainly laminaribiose 16 (64%) was recovered after acetylation and further purification (see 

characterization of 17 in the Experimental section). A tritylation study was done in order to 

improve the reaction yields. Therefore, reactions with laminaribiose and different trityl chloride 

equivalents followed by acetylation were performed, the products  were purified, quantified and 

analyzed to determine the ratio of 6’-trityl (17), 6-trityl (17i) and 6,6’-ditrityl (17ii) compounds.  
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Figure 3.  21: Tritylation reaction. 

 

In Figure 3.  22 it can be seen how the starting laminaribiose decreases as it reacts with TrCl to 

form the tritylated products. The higher the amount of TrCl added, the higher the ratio of 

monotritylated (6’-Tr and 6-Tr) and ditritylated products synthesized. With TrCl additions higher 

than 4.25 equivalents, the ratio of monotritylated product decreases while the ditritylated 

increases.  

We found that the ratio of trityl chloride/disaccharide was crucial for the complete protection of 

the primary positions. The maximum yield of monotritylated products was found when using 2.5 

– 4.5 equivalents of trityl chloride, whereas at lower amounts of TrCl, laminaribiose still 
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unreacted was the main product recovered. Higher amounts of TrCl (≥ 4.5 eq.) mainly led to the 

ditritylated compound. In the optimum conditions, the monotritylated products were obtained in 

50 – 60% yields. With additions of 2 – 4.5 equivalents of TrCl the target 6’-Tr product was 

obtained in 30 – 37% yields. There was a preferential regioselectivity for 6’-tritylation vs 6-

tritylation (average ratio of 2 – 2.5:1 respectively) and typically 6-Tr was obtained in 10 – 17% 

yields.  

 

Figure 3.  22. Ratio of tritylated products vs equivalents of TrCl. 

 

Detritylation of compound 17 was first performed in 80% aqueous acetic acid at 70 ºC. After 5 

hours, detritylation was complete. However, unexpectedly if compared to the good results 

obtained by Wang et al., three new products were formed (Figure 3. 23). Additionally to 

compound 18, two other products were obtained in similar ratios due to migration of acetyl groups 

after the deprotection of C-6’ as commented in literature.49,50 No re-insertion of trityl nor any 

other possible side-reaction was observed.  
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Figure 3.  23: Detritylation reaction. Acetyl migrations. 

 

The facile migrations of acyl groups in partially acylated polyhydroxylic compounds were first 

noted by E. Fischer and Ohle between 1920 – 1924. They observed the conversion of 3-O-

benzoyl-1,2-O-isopropylidene--D-glucofuranose into the 6-O-benzoyl isomer under the 

influence of traces of alkali. Since this observation, these migrations have been observed under 

neutral, basic, and acidic conditions, and have been reported to originate at all positions except 

C-6 in the hexose series. As a consequence, the number of reactions that may be carried out in 

partially acetylated sugars without affecting the acetylated positions is severely limited because 

of acyl migrations.51  

It has been suggested that those acyl migrations which span a large number of carbon atoms may 

proceed via a series of consecutive migrations each spanning fewer carbons (i.e., C2→C6 via 

C4→C6, C3→C4, and C2→C3) and each involving ortho acid ester intermediates of smaller ring 

size.47  

With the idea of improving the yields by avoiding acyl migrations, we studied two more 

detritylation procedures. On the one hand, the use of 2 equivalents of iron chloride per trityl group 

and short reaction times was known to detritylate quantitatively mono- and disaccharide 

derivatives47 as well as trisaccharides derivatives without acetyl migration.39 On the other hand, 

Ogawa et al also described the absence of migrations in detritylations of 1,6-disaccharide 

derivatives with aq. acetic acid in the presence of NaI at 80 ºC.48 While this last reaction was the 

fastest, producing compound 18 in 2.5 hours and avoiding migrations in the next synthetic steps, 

detritylation was always incomplete and not reproducible. By contrast, the use of FeCl3·6 H2O 

allowed the complete detritylation of compound 17 (87% yield) in higher yields. 
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The introduction of the azide was performed following two different approaches (Figure 3. 24). 

Several reactions were studied introducing two different leaving groups (tosyl and bromide) at C-

6’in order to displace them with the desired azido group.  
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Figure 3.  24: Introduction of the azide. 

 

Our studies on the tosylation reaction demonstrated that sequential tosylation was completely 

necessary for the development of the reaction. However, migration was observed when compound 

18 was obtained by detritylation with FeCl3 ·6 H2O (see characterization in the Experimental 

section) and two main products with Rf 0.36 (Compound 19i, 50% yield) and Rf 0.27 were 

obtained always in a reproducible way eluted in EtOAc/Toluene (1:1). Further substitution of 19i 

with NaN3 yielded the target acetylated 6’N3-Glc3Glc (compound 19ii) in 24% yield (two steps 

of reaction: tosylation and azidation). We also performed halogenation of compound 18 with NBS 

produced several brominated products. 6’Br-Glc3Glc (8bii) (Rf 0.49 eluted in EtOAc/Toluene 

(1:1)) was later azidated with NaN3 synthesizing 19ii in 17% yield (two steps of reaction). The 

signal at  51 ppm of the 13C NMR spectrum verified the presence of the azido group at C-6’ in 

compound 20. The total yield from laminaribiose (16) to acetylated 6’N3-Glc3Glc (20) was in 

average of 7% (for the five steps). In all cases, an anhydrous conditions was required, and the 

reactants and solvents must be of high purity. Finally, the activated donor was synthesized by 

fluorination with HF/py (yields around 25 – 35%) (see characterization of 11b in the Experimental 

section) and further deacetylation. In this way, the target compound 11a was obtained (Figure 3. 

25).  
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Figure 3.  25: Synthesis of 11a. Introduction of the fluoride in the anomeric position and further deacetylation. 

 

In summary, the main bottleneck of this process was the differentiation of the two primary 

hydroxyl groups at C-6 and C-6’. The tritylation reaction was deeply studied and its yield was 
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improved. However, the introduction of the azide involved a previous introduction of a leaving 

group. Therefore, tosylation and bromination reactions were studied but in all cases, several 

functionalized products were obtained due to acetyl migrations, altogether decreasing the yield of 

the isolated target compound. The functionalized donor 6’N3-Glc3GlcF 11a was successfully 

achieved using the ‘Polymer approach’. 

3.2.2. Synthesis of acceptors for the glycosynthase reaction 

As Figure 3.  3 shows, the other target was p-nitrophenyl 6-azido-6-deoxy--D-glucoside (6N3-

GlcPNP, 35) that will act as an acceptor in the glycosynthase reaction for the subsite acceptance 

study. As far as we know this compound was not synthesized before. Therefore, we designed a 

simple set of reactions for the synthesis of 35 presented in Figure 3.  26. It could be obtained after 

regiospecific tosylation of p-nitrophenyl -D-glucoside (GlcPNP, 31) and further substitution 

by sodium azide with an overall yield of 50% (see characterization of the products in the 

Experimental section).  
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Figure 3.  26. Synthesis of the acceptor 6N3-GlcPNP (35). 

 

3.2.3. Enzyme characterization: docking and kinetics. 

3.2.3.1. Docking 

Docking approaches directly model physical interactions focusing on the final configuration of 

the complex. They become useful tools for a first structural analysis of the active site of the 

enzyme. In order to study the effect of the new functional group on subsites –2 and +1 the binding 

of different susbtrates (GlcPNP and 6N3-GlcPNP) to the active site of the E134S glycosynthase 

mutant of the 1,3-1,4--glucanase from Bacillus licheniformis was predicted by means of 

computational docking. The 3D structure of the enzyme was taken from the Protein Data Bank, 

accession code 1UOA, which corresponds to an enzyme complex with the tetrasaccharide 

Glc4Glc4Glc3Glc. From this structure, the Glc3GlcF and 6N3-Glc3GlcF were 

manually built and kept in the same position as in the X-ray structure. The structures of the two 

acceptors to be tested (GlcPNP and 6N3-GlcPNP) were generated from the coordinates of a 

GlcPNP molecule taken from the PDB (accession code: 3AI0).  
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The study of subsite +1 is illustrated in Figure 3.27 where Glc3GlcF is located in the donor 

subsites and 6N3-GlcPNP is in the acceptor subsites. There is apparently enough room in the 

active site for the azido group to fit in the active site. Moreover, the distance between the anomeric 

carbon of the donor (see the fluoride in green, figure 3. 27A) and the nucleophilic 3-OH of the 

functionalized acceptor is less than 4 Å. It seems that the acceptor substrate should be able to get 

activated through general base catalysis and perform the reaction.  

 

Figure 3. 27: Close up to the active site of the E134S glycosynthase mutant of 1,3-1,4--glucanase from Bacillus 
licheniformis. 6N3-GlcPNP (35) is located at +1 and +2 subsites and Glc3GlcF (36) at -2 and -1 subsites. Figure A 
shows the active site at molecular surface. In Figure B the protein surface is represented as well.  

 

On the other hand, in Figure 3. 28 the subsite -2 is evaluated using the donor 6’N3-Glc3GlcF 

and the acceptor GlcPNP. In this case, the donor containing the azido groups fits in the active 

site placing the azide outwards the active site. The position that the backbone of both acceptors 

(31 and 35) adopt in the active site is exactly the same in Figures 3. 27 and 3. 28, and the distance 

between the anomeric carbon of the donor and the nucleophilic 3-hydroxyl of the acceptor slightly 

higher than 4 Å. Therefore, after the two computational docking studies, it looked like the 

functionalized molecules could bind to the active site and should be able to react and develop 

synthase activity. 
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Figure 3. 28: Close up to the active site of the E134S glycosynthase mutant of 1,3-1,4--glucanase from Bacillus 
licheniformis. Figure A:  GlcPNP (31) has been located at +1 and +2 subsites and 6N3-Glc3GlcF (26) at -2 and -1 
subsites. In Figure B the protein surface is represented as well. 

3.3.3.2. Kinetics 

Condensation reactions between laminaribiosyl fluoride donors (Glc3GlcF and 6’N3-

Glc3GlcF) and p-nitrophenyl glucoside acceptors (GlcPNP and 6N3-GlcPNP) were 

performed (Figure 29) in order to study the acceptance of the new functionality by the enzyme.  
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Figure 3. 29. E134S glycosynthase subsite studies. Conditions: 5 mM R2GlcpNP, 1 mM Glc3GlcF, 35ºC, 50 mM 
phosphate buffer pH 7.0. [E134S] = 0.1 M. 

 

Reaction was performed at saturating donor concentrations according to KM of Glc3Glc (1mM). 

To avoid the self-condensation of the donor, an excess of acceptor was used in all reactions with 

a ratio donor-acceptor of 1:5 and reaction conditions of pH 7, 35 ºC. The reference reaction to 

study the acceptance of the subsites was Glc3GlcF + GlcPNP (16 + 31) yielding the 

Glc3Glc4GlcPNP trisaccharide. On the one hand, to evaluate subsite -2, 6’N3-Glc3GlcF 

and GlcPNP were used as a donor and as an acceptor respectively (16+35) introducing the azide 

in the laminaribiosyl donor and yielding the 6’N3-Glc3Glc4GlcPNP trisaccharide. On the 

other hand, to study subsite +1 Glc3GlcF and 6N3-GlcPNP were used (11a+31) introducing 

the azide in the p-nitrophenyl acceptor and yielding the Glc3Glc4-6N3-GlcPNP trisaccharide. 

The specific activity of the enzyme (E134S) when studying subsite +1 was of 64 min-1, exactly 

Reaction R1  R2  s.a. (%) 

16 + 31  OH  OH  100 

16 + 35  OH  N3  100 

11a + 31 N3  OH  0.15 

A 
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the same value obtained for the reference reaction. When studying subsite -2 with 6’N3-

Glc3GlcF (11a) and GlcPNP (31), the specific activity was 629 times slower than the reaction 

Glc3GlcF + GlcPNP.  

These results reflect that E134S can accommodate a functionalized azido substrate in both 

subsites, but with very low activity when placing the azido group in the -2 subsite. This fact is 

very typical for both endo- and exo- glycosidases where the donor subsite is more restrictive than 

the more promiscuous acceptor subsite.  

In other endo-glycosynthases, promiscuity of subsite -2 has been observed. Fort et al. described 

the chemosenzymatic synthesis of a variety of regioselectively modified -(1,4)-oligo- and 

polysaccharides by the use of the E197A glycosynthase mutant from the retaining cellulase 

endoglucanase I from Humicola insolens.49 After first examining the information given by the X-

ray structures of wild type and mutated cellulases they rationally designed different modified 

donors and acceptors for the glycosynthase reaction. Their results confirmed those of the X-ray 

structure of the complexed wild type enzyme in which the 6-OH and 2-OH of the glucosyl unit 

in subsite +1 were not involved in key polar interactions. When using -lactosyl fluoride as a 

donor and a 6,6’-dibrominated -cellobiosyl fluoride as an acceptor for the glycosynthase 

reaction the corresponding functionalized tetrasaccharide was obtained in 80% yields. These 

results demonstrated that subsites -1 and -2 could accept the new functionalizations at C6. 

Furthermore, in subsite -2, 6-OH was extremely solvent exposed and frequently disordered and 

this lack of steric restriction on the C6-OH interactions was exploited for the synthesis of 

substituted -(1,4)-glucans.  

Therefore, despite the low activities obtained with donor 11a, the polymerization reaction is 

expected to occur. However, it is not studied in this work and it is open for future research. The 

reaction yields will probably be low and directed evolution will be needed to optimize the enzyme 

and improve substrate recognition. 
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3.3. CONCLUSIONS 

The synthesis of 6’N3-Glc3GlcF, donor for the glycosynthase reaction and not synthesized 

before, was achieved after exploring different approaches (‘Total synthesis 1 and 2’ and ‘Polymer 

approach’). The polymer approach afforded laminaribiose after enzymatic digestion and the 

substrate was synthesized chemically after several protection and deprotection steps with low 

overall yield. The critical differentiation between C-6 and C-6’ of laminaribiose was approached 

by the use of trityl chloride (sequential addition) which had a preference for C-6’ (tritylation ratio, 

C-6’vs C-6 of 2 – 2.8 to 1). The best tritylation conditions were achieved when using 4.5 

equivalents of TrCl (37% yield of 6’-trityl derivative). After the detritylation reaction with iron 

chloride, the introduction of the azide was achieved by displacement of a leaving group (tosyl or 

bromide). However, acetyl migration occurred after detritylation. In the future, the overall process 

should be redesigned in order to increase the reaction yields. 

When working in the ‘Total synthesis 1’ approach different donors and acceptors were explored. 

However, due to problems in the protection and deprotection of some groups of the acceptors that 

could not be overcome, the desired 6’N3-Glc3GlcF donor could not be achieved through this 

chemical path. 

Computational docking studies allowed a first approximation structural analysis of the active site 

of the E134S glycosynthase mutant. The effect of the new functional group, an azide introduced 

in a C-6 position of different substrates, was studied at subsites -2 and +1. The results predicted 

the binding of the functionalized molecules to the active site of the enzyme and the syntheses of 

a functionalized acceptor (6N3-GlcPNP) and a functionalized donor (6’N3-Glc3GlcF) were 

performed. 

Condensation reactions between laminaribiosyl fluoride donors (Glc3GlcF and 6’N3-

Glc3GlcF) and p-nitrophenyl glucoside acceptors (GlcPNP and 6N3-GlcPNP) catalyzed by 

the E134S mutant yielded in both cases the corresponding functionalized trisaccharides. Subsite 

+1 is not affected by the presence of the new functional group. However, subsite –2 is affected 

the enzyme activity decreases 629 times vs the non-functionalized donor. Therefore, the enzyme 

should be modified for better results if self-condensation of the donor is going to be performed in 

the future for the production of artificial alternating azido -glucans.
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3.4. EXPERIMENTAL 

3.4.1. Materials 

Benzene (anhydrous), methyl α-D-glucopyranoside and acetyl 2,3,4,6-tetra-O-acetyl--D-

glucopyranoside were purchased from Sigma-Aldrich. (±)-camphor-10-sulfonic acid was 

purchased from Sigma-Aldrich and was recrystallized twice from dried EtOAc.  

Cyclohexane, chloroform and DCM were distilled over CaCl2. In some cases DCM was distilled 

a second time over P2O5 for a higher desiccation. Ethyl acetate was distilled over K2CO3. DMF 

was purified by drying overnight over KOH pellets and distilling later from BaO. Pyridine was 

distilled over KOH. 1,2-dichloroethane was first dried with MgSO4 and further distilled over 

P2O5. HgBr2 and Hg(CN)2 were dried at 70 ºC in a desiccator for 12 hours before their use. 

Molecular sieves were activated in the oven at 450 ºC for 3 - 4 hours. Celite was washed with 

sodium bicarbonate before filtration of the product of glycosylation. 

Curdlan was purchased from Wako Pure Chemical Industries, Ltd. and kitalase (300 units/g) from 

Wako Chemicals USA, Inc. N-bromosuccinimide (NBS, Sigma) was recrystallized from boiling 

water and dried for two days under reduced pressure over anhydrous calcium chloride. 

Triphenylphosphine (PPh3, Sigma) was recrystallized from boiling ethanol and dried overnight 

under reduced pressure over anhydrous calcium chloride. Dimethylacetamide (DMAc, Fisher 

Scientific) was kept over 4 Å molecular sieves and stored under dry nitrogen after the first use. 

DMF and pyridine were freshly distilled before its use over BaO or MgSO4 and KOH respectively. 

 

3.4.2. Synthesis of glycosynthase donors  

3.4.2.1.Total synthesis 1 

Methyl 4,6-O-benzylidene--D-glucopyranoside (2) 

A mixture of methyl α-D-glucopyranoside (1a) (10.50 g, 51.70 mmol), ,-dimethoxytoluene (25 

mL, 169 mmol), (±)-10-camphorsulfonic acid (0.21 g, 1.00 mmol)  and anhydrous benzene (500 

mL) was heated under reflux for 6 hours under nitrogen atmosphere. Most of the solvent was 

evaporated under reduced pressure and the resulting crude was dissolved in DCM and washed 

with saturated aq. NaHCO3, saturated aq. NaCl and water. The organic layer was dried over 

MgSO4, concentrated and the residue was triturated with hexane to give after filtration compound 

2 (11.90 g, 42.40 mmol) in 82% yield. 
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1H NMR (400MHz, CDCl3) 7.49 – 7.35 (m, 5H, ArH), 5.53 (s, 1H, CHPh), 4.80 (d, 1H, J1,2 = 

3.9 Hz, H-1), 4.29 (dd, 1H, J6a,6b = 9.7, J5,6b = 4.3 Hz, 1H, H-6a), 3.93 (t, 1H, J3,4 = 9.2 Hz, H-3),  

3.84 – 3.71 (m, 2H, H-5, H-6b), 3.63 (dd, 1H, J1-2 = 3.6 Hz, J2,3 = 9.0 Hz, H-2), 3.49 (t, 1H,  J3,4 = 

9,2, H-4), 3.46 (s, 3H, OMe).  



Methyl 2-O-benzoyl-4,6-O-benzylidene--D-glucopyranoside (23) 

Imidazole (5.78 g, 0.08 mol) was dissolved in purified chloroform (150 mL), and benzoyl chloride 

(4.93 mL, 0.04 mol) was added slowly with cooling. The suspension was filtered to remove 

imidazole hydrochloride and the filtrate was added to 2 (11.99 g, 0.04 mol) in chloroform (200 

mL) and heated for 13 hours at reflux. After being extracted with sodium hydrogen carbonate 

solution (50 mL) and two portions of saturated sodium chloride solution (50 mL), the solution 

was dried with magnesium sulfate and concentrated to give crude 23 which was recrystallized 

from acetone-water (8.67 g, 0.02 mol) in 57% yield.  

 
1H NMR (400MHz, CDCl3) 8.11 – 7.37 (m, 10H, ArH), 5.58 (s, 1H, CHPh), 5.08 (d, 1H, J1,2 = 

3.8 Hz, H-1), 5.04 (dd, 1H, J2,3 = 9.5, J1,2 = 3.8 Hz, H-2), 4.38 – 4.31 (m, 2H, H-3, H-6b), 3.90 

(dd, 1H, J5,6a = 9.9 Hz, J4,5 = 4.7 Hz, H-5), 3.80 (t, 1H, J6a,6b = 10.2 Hz, H-6a), 3.63 (t, 1H, J4,3 = 

9.4 Hz, H-4), 3.40 (s, 3H, OMe). 

 

Methyl 2-O-benzyl-4,6-O-benzylidene--D-glucopyranoside (25) 

Compound 2 (0.45 g, 1.59 mmol) was dispersed in toluene (30 mL) in a flask fitted with a Dean-

Stark apparatus. One third of the toluene was distilled off and the required quantity of (Bu3Sn)2O 

(1.8 mL, 3.02 mmol) was added. More toluene (half of the remaining volume) was removed by 

distillation, the Dean-Stark assembly was replaced with a condenser, and the mixture was refluxed 

for 3 hours. The mixture was concentrated, the syrupy residue was dried thoroughly and then the 

mixture was treated with benzyl bromide (4.0 mL, 33.6 mmol) and stirred under N2 at 90 ºC for 

48 hours. Then, the reaction mixture was introduced in an ice-bath and MeOH (40 mL) was slowly 

added to eliminate the excess of benzyl bromide. The syrupy product was transferred onto a dry 

silica gel column and purified by flash chromatography (gradient 1:3 → 1:2 EtOAc - 

cyclohexane) obtaining 25 (0.52 g, 1.40 mmol) in 89% yield.  

 
1H NMR (400MHz, CDCl3) 7.46 – 7.31 (m, 10H, ArH), 5.47 (s, 1H, CHPh), 4.76 – 4.65 (m, 

2H, CH2Ph), 4.57 (d, 1H, J1,2 = 3.6 Hz, H-1), 4.22 (dd, 1H, J6a,6b = 10.0, J5,6a = 4.7 Hz, H-6a), 4.11 

(t, 1H, H-3), 3.80 – 3.74 (m, 1H, H-5), 3.66 (t, 1H, J6a,6b = 10.0 Hz, H-6b), 3.47 – 3.41 (m, 2H, H-

4, H-2), 3.33 (s, 3H, OMe).  
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Methyl 2-O-allyl-4,6-O-benzylidene--D-glucopyranoside (3) 

Compound 2 (12.29 g, 43.54 mmol) was dispersed in toluene (487 mL) in a flask fitted with a 

Dean-Stark apparatus. One third of the toluene was distilled off and the required quantity of 

(Bu3Sn)2O (38 mL, 63.74 mmol) was added. More toluene (half of the remaining volume) was 

removed by distillation, the Dean-Stark assembly was replaced with a condenser, and the mixture 

was refluxed for 3 hours. The mixture was concentrated, the syrupy residue was dried thoroughly 

and then the mixture was treated with allyl bromide (sequential addition of 35 mL, 673.9 mmol) 

and stirred under N2 at 100 ºC for 15 hours. Then, the reaction mixture was introduced in an ice-

bath and MeOH (50 mL) was slowly added to eliminate the excess of allyl bromide. The syrupy 

product was transferred onto a dry silica gel column and purified by flash chromatography 

(gradient 1 → 1:2 → 2:1 → 1:5 cyclohexane – EtOAc) obtaining 3 (9.89 g, 30.68 mmol) in 70% 

yield. MS m/z 667.2766 [2M+Na]+. 

1H NMR (400MHz, CDCl3) 7.51 – 7.35 (m, 5H, ArH), 6.01 – 5.91 (m, 1H, CH2-CH=CH2), 5.54 

(s, 1H, CHPh), 5.32 – 5.24 (m, 2H, CH2-CH=CH2), 4.84 (d, 1H, J1,2 = 3.5 Hz, H-1), 4.29 (dd, 1H, 

J6a,6b = 10.0, J5,6a = 4.4 Hz, H-6a), 4.22 (m, 2H, CH2-CH=CH2, H-5), 4.12 (m, 1H, H-3), 3.86 – 

3.80 (m, 1H, CH2-CH=CH2), 3.74 (t, 1H, J6a,6b = 10.0 Hz, H-6b), 3.53 (t, 1H, J4,3 = 9.3 Hz, H-4), 

3.47 – 3.43 (m, 1H, H-2), 3.45 (s, 3H, OMe).  

 

Methyl 2-O-benzyl-4,6-O-isopropylidene--D-glucopyranoside (24) 

Synthesis of methyl 4,6-O-isopropylidene--D-glucopyranoside  

A mixture of methyl α-D-glucopyranoside (1) (2.45 g, 12.6 mmol), 2-dimethoxypropane (7.7 

mL, 63 mmol), p-toluenesulfonic acid (159 mg, 0.84 mmol)  and anhydrous DMF (120 mL) was 

stirred at room temperature for 1.5 hours. Et3N (4 mL) was added to the mixture and the solvent 

was evaporated under reduced pressure. The resulting crude was purified by flash 

chromatography (CHCl3/EtOAc/MeOH, 5:2:1) obtaining the desired methyl 4,6-O-

isopropylidene--D-glucopyranoside (3.11 g, 13.28 mmol) in 100 % yield. 

1H NMR (400MHz, CDCl3) 4.78 (d, 1H, J1,2 = 4.0 Hz, H-1), 3.89 (dd, 1H, J6a,6b = 10.8, J5,6b = 

5.2 Hz, 1H, H-6b), 3.82 – 3.74 (m, 2H, H-3, H-5), 3.67 – 3.52 (m, 3H, H-6b, H-4, H-2), 3.44 (s, 

3H, OMe), 1.53 (s, 3H, CH2C isopropylidene), 1.46 (s, 3H, CH2C isopropylidene). (Figure A3. 

5). 

Methyl 4,6-O-isopropylidene--D-glucopyranoside (3.11 g, 13.28 mmol) was dispersed in 

toluene (230 mL) in a flask fitted with a Dean-Stark apparatus. One third of the toluene was 

distilled off and the required quantity of (Bu3Sn)2O (15 mL, 29.50 mmol) was added. More 
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toluene (half of the remaining volume) was removed by distillation, the Dean-Stark assembly was 

replaced with a condenser, and the mixture was refluxed for 2.5 hours. The mixture was 

concentrated, the syrupy residue was dried thoroughly and then the mixture was treated with 

benzyl bromide (33 mL, 280.6 mmol) and stirred under N2 at 90 ºC for 48 hours. Then, the 

reaction mixture was introduced in an ice-bath and MeOH (40 mL) was slowly added to eliminate 

the excess of benzyl bromide. The syrupy product was transferred onto a dry silica gel column 

and purified by flash chromatography (gradient 1 → 2:1 cyclohexane - EtOAc) obtaining a 

mixture of benzylated isomers (methyl 4,6-O-benzylidene--D-glucopyranoside benzylated at C-

2 and C-3) with the same Rf (1.34 g, 4.13 mmol) in 31% yield. NMR data of the mixture of 

isomers was obtained showing that the isomer benzylated at C-2 was majoritary (Figure A3. 6). 

13C NMR (CDCl3, 100 MHz) δ 79.6 (C-2, 3-OBn), 79.0 (C-2, 2-OBn). 

 

p-methoxyphenyl 2-O-allyl-4,6-O-benzylidene--D-glucopyranoside (29) 

Synthesis of p-methoxyphenyl 2,3,4,6-tetra-O-acetyl--D-glucopyranoside 

To a solution of acetyl 2,3,4,6-tetra-O-acetyl-β-D-glucapyranoside (10.0 g, 25.62 mmol) and p-

methoxyphenol (4.8 g, 38.67 mmol) in dried dichloroethane (80 mL) was added TMSOTf (0.5 

mL, 2.76 mmol) at 0 ºC. The mixture was kept at 0 ºC and stirred under inert conditions (N2) for 

4.5 hours, diluted with EtOAc (120 mL), washed with aq satd NaHCO3 (3 x 40 mL) and water (3 

x 40 mL). The organic layer was dried with MgSO4, filtered and concentrated. The crude was 

purified by flash chromatography (5:1 toluene – EtOAc) and p-methoxyphenyl 2,3,4,6-tetra-O-

acetyl--D-glucopyranoside (6.20 g, 13.63 mmol) was obtained in 30 % yield. 

1H NMR (400MHz, CDCl3) 6.96 – 6.83 (2 m, 4H, Aromatics), 4.93 (d, 1H, J1,2 = 7.4 Hz, H-1), 

4.30 (dd, 1H, J6a,6b = 12.0, J6a,5 = 2.3 Hz, 1H, H-6a), 3.76 (s, 3H, OMe), 2.09, 2.08, 2.05, 2.04 (s, 

12H, 4Ac). 

Test of deprotection of the p-methoxyphenyl group 

To a solution of p-methoxyphenyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside (0.4 g, 0.88 mmol) 

in 1:1:1 toluene – ACN – water (89 mL) was added ammonium cerium nitrate (6.0 g, 10.94 

mmol). The mixture was stirred for 30 minutes, diluted with EtOAc (100 mL) and washed with 

aqueous saturated NaHCO3 (3 × 30 mL) and water (3 × 30 mL). The solution was dried with 

MgSO4, filtered and concentrated.  

Synthesis of p-methoxyphenyl 4,6-O-benzylidene--D-glucopyranoside 

To a solution of p-methoxyphenyl 2,3-di-O-acetyl--D-glucopyranoside (3.1 g, 6.86 mmol)  in 

methanol (40 mL) was added of methanolic NaOMe 1M (0.345 mL) was added and the solution 
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was stirred overnight at room temperature. Then, Amberlyst® 15 resin was added to neutralize 

the mixture and it was filtered and concentrated to give p-methoxyphenyl -D-glucopyranoside.   

The crude p-methoxyphenyl -D-glucopyranoside was dissolved in dry DMF (22 mL). 

Benzaldehyde dimethyl acetal (1.1 mL, 7.33 mmol) and p-toluensulfonic acid (30 mg, 0.16 mmol) 

were added to the mixture and it was stirred overnight. The mixture was neutralized with 

Amberlyst® 21 resin, filtrated and concentrated. The crude was purified by flash chromatography 

(5:1 DCM – acetone) obtaining p-methoxyphenyl 4,6-O-benzylidene--D-glucopyranoside (1.57 

g, 4.19 mmol) in 61% yield. 

1H NMR (400MHz, CDCl3) mC6H5CH), 7.04 – 6.83 (2 m, 4H, C6H4OCH3), 

5.58 (s, 1H, C6H5CH), 4.89 (d, 1H, J1,2 = 7.7 Hz, H-1), 3.78 (s, 3H, OMe).  

Synthesis of p-methoxyphenyl 2-O-allyl-4,6-O-benzylidene--D-glucopyranoside 

(29) 

p-methoxyphenyl 4,6-O-benzylidene--D-glucopyranoside (6.13 g, 16.37 mmol) was dispersed 

in toluene (460 mL) in a flask fitted with a Dean-Stark apparatus. One third of the toluene was 

distilled off and the required quantity of the (Bu3Sn)2O (17 mL, 28.78 mmol) was added. More 

toluene (half of the remaining volume) was removed by distillation, the Dean-Stark assembly was 

replaced with a condenser, and the mixture was refluxed for 2 hours. The mixture was 

concentrated, the syrupy residue was dried thoroughly and then the mixture was treated with allyl 

bromide (sequential addition of 32 mL, 613.3 mmol) and stirred under N2 at 100 ºC for 16 hours. 

Then, the reaction mixture was introduced in an ice-bath and MeOH (50 mL) was slowly added 

to eliminate the excess of allyl bromide. The syrupy product was dried, concentrated and 

transferred onto a dry silica gel column and purified by flash chromatography (gradient 1 → 1:2 

→ 2:1 → 1:5 cyclohexane – EtOAc) obtaining 29 (4.46 g, 10.61 mmol) in 65% yield. 1H NMR, 
13C NMR, COSY and HSQC spectra showed a mixture (50:50) of p-methoxyphenyl 2-O-allyl-

4,6-O-benzylidene--D-glucopyranoside and p-methoxyphenyl 3-O-allyl-4,6-O-benzylidene--

D-glucopyranoside. 1H NMR (400MHz, CDCl3) 4.95 (d, 1H, J1,2 = 7.6 Hz, H-1, isomer 1), 4.91 

(d, 1H, J1,2 = 7.6 Hz, H-1, isomer 2).  

 

Synthesis of the donor 2,3,4,6-tetra-O-acetyl--D-glucopyranosyl bromide (5) 

Methyl 2,3,4,6-tetra-O-acetyl-α-D-glucopyranoside (4.11 g, 10.51 mol) was slowly added upon 

hydrobromic acid solution (33 wt. % in acetic acid) (13 mL, 70 mmol) and stirred for 1.5 hours 

under anhydrous conditions. The resulting solution was poured into ice-water (50 mL), the white 

solid that precipitated was filtered off and extracted with CHCl3 (4 x 20 mL), and the solution 
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washed with saturated aq. NaHCO3 (3 x 25 mL) until neutral pH, followed by water. After drying 

over MgSO4 and filtering, evaporation of the solvent afforded compound 5 as a white amorphous 

solid (4.11 g, 9.98 mmol) in 95 % yield. 

1H NMR (400MHz, CDCl3) 6.61 (d, 1H, J1,2 = 4.0 Hz, H-1), 5.56 (t, 1H, J3,4 = 9.7 Hz, H-3), 5.16 

(t, 1H, J4,3 = 9.6 Hz, H-4), 4.84 (dd, 1H, J2,3 = 10.0 Hz, J2,1 = 4.1 Hz, H-2), 4.35 – 4.29 (m, 2H, 

H-6a, H-5), 4.15 – 4.12 (m, 1H, H6b), 2.11, 2.10, 2.06, 2.04 (4s, 12H, 4Ac). 

Synthesis of methyl O-(2,3,4,6-tetra-O-acetyl--D-glucopyranosyl)-(1→3)-2-O-allyl-

4,6-O-benzylidene--D-glucopyranoside (6) 

Compound 3 (2.00 g, 6.20 mmol), HgBr2 (11.04 g, 30.63 mmol), Hg(CN)2 (7.78 g, 30.81 mmol), 

powdered 4 Ǻ molecular sieves (3.56 g), and DCM1 (20 mL) were mixed and stirred in the dark 

under Ar for 1 h. Compound 5 (6.90 g, 16.79 mmol) in DCM (60 mL) was added and the mixture 

was stirred for 37 h with rigorous exclusion of light and moisture, then filtered over Celite, 

extracted with DCM, and washed with saturated aqueous saturated NaHCO3 and water. After 

drying over MgSO4 and evaporating the solvent, the residue was purified by flash 

chromatography over silica gel (gradient 65:35 → 50:50 → 35:65 → 1:5 Cy – EtOAc) to yield 

compound 6 (2.21 g, 3.38 mmol) in 55 % yield (Rf = 0.57, 2:1 EtOAc – cychlohexane). MS m/z 

675.2280 [M+Na]+.  

1Η ΝΜR (CDCl3, 400 MHz) δ 7.47 – 7.34 (m, 5H, aromatic), 5.95 – 5.85 (m, 1H, CH2-CH=CH2), 

5.52 (s, 1H, CHPh), 5.30 – 5.19 (m, 2H, CH2-CH=CH2), 5.13 – 4.99 (m, 3H, H-3II, H-4II, H-2II), 

4.81 (d, 1H, J1II,2II = 8.0 Hz, H-1II), 4.75 (d, 1H, J1I,2I = 4.0 Hz, H-1I), 4.24 (dd, 1H, J = 9.6 Hz, J 

= 4.2 Hz, CH2-CH=CH2), 4.20 – 4.10 (m, 2H, H-5II, H-6Ia), 4.06 – 4.00 (m, 2H, H-6IIa, H-6Ib), 

3.84 (dd, 1H, J5II,6IIb = 12.2 Hz, J6IIa,6IIb = 2.4 Hz, H-6IIb), 3.78 (dd, 1H, J4I,3I = J4I,5I =9.4 Hz, H-4I), 

3.73 (t, 1H, J = 9.6 Hz, CH2-CH=CH2), 3.60 (t, 1H, J3I,4I = J3I,2I = 9.2 Hz, H-3I), 3.46 (dd, 1H, 

J2I,1I = 3.8 Hz, J2I,3I = 9.3 Hz, H-2I), 3.42 (s, 3H, OMe), 3.41 – 3.38 (m, 1H, H-5I), 2.04, 1.97, 

1.96, 1.95 (4s, 12H, 4 Ac). 

13C NMR (CDCl3, 100 MHz) δ 170.48, 170.16, 169.31, 169.18 (CO), 134.46 (CH2-CH=CH2), 

128.98, 128.08, 125.85 (Aromatic), 118.07 (CH2-CH=CH2), 101.21 (CHPh), 100.69 (C-1II), 98.59 

(C-1I), 80.36 (C-3I), 78.27 (C-2I), 77.89 (C-5II), 73.01 (C-3II), 72.87 (C-6I), 71.71 (C-2II), 71.55 

(C-5I), 68.85 (CH2-CH=CH2), 67.97 (C-4II), 61.93 (C-4I), 61.57 (C-6II), 51.14 (OMe), 20.65, 

20.52, 20.45, 20.40 (CH3). 
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Some hydrolysis of the benzylidene protecting group occurred after glycosylation and 0.721 g 

(1.159 mmol) (Rf = 0.16, 2:1 EtOAc – Cychlohexane) of the disaccharide deprotected at C-4 and 

C-6 were recovered (See Appendix Figure A3.11 and Figure A3.12). However, the benzylidene 

group could be easily reintroduced. 

1Η ΝΜR Methyl O-(2,3,4,6-tetra-O-acetyl--D-glucopyranosyl)-(1→3)-2-O-allyl--D-

glucopyranoside (CDCl3, 400 MHz) δ 5.95 – 5.85 (m, 1H, CH2-CH=CH2), 5.32 – 5.18 (m, 3H, 

CH2-CH=CH2, H-3II), 5.08 – 5.02 (m, 2H, , H-4II, H-2II), 4.80 (d, 1H, J1I,2I = 3.6 Hz, H-1I), 4.76 

(d, 1H, J1II,2II = 8.0 Hz, H-1II), 4.19 – 4.11 (m, 1H, CH2-CH=CH2), 4.03 (dd, 1H, J = 12.8 Hz,        

J = 6.4 Hz, CH2-CH=CH2), 3.94 – 3.74 (m, 4H, H-6Ia, H-3I, H-6Ib, H-5II), 3.63 – 3.59 (m, 2H, H-

6IIa, H-4I), 3.51 (t, 1H, J = 9.2 Hz, H-5I), 3.43 (s, 3H, OMe), 3.42 – 3.37 (m, 2H, H-6IIb, H-2I), 

2.08, 2.04, 2.03, 2.01 (4s, 12H, Ac).  

13C NMR (CDCl3, 100 MHz) δ 169.58, 169.13, 168.42, 168.32 (CO), 133.46 (CH2-CH=CH2), 

117.22 (CH2-CH=CH2), 100.14 (C-1II), 96.64 (C-1I), 82.41 (C-3I), 76.62 (C-2I), 71.86 (C-3II), 

71.17 (CH2-CH=CH2), 70.78 (C-5II), 70.32 (C-4II), 69.88 (C-4I), 68.35 (C-5II), 67.39 (C-2II), 

66.92 (C-6II), 61.41 (C-6I), 54.16 (OMe), 19.74, 19.57, 19.54, 19.53 (CH3).  

Synthesis of methyl O-(6-azido-6-deoxy-2,3,4-tri-O-acetyl--D-glucopyranosyl)-

(1→3)-2-O-allyl-4,6-O-benzylidene--D-glucopyranoside (8) 

To a solution of 6 (1.07g, 1.64 mmol) in methanol (40 mL) was added of methanolic NaOMe 1M 

(0.570 mL) was added and the solution was stirred for 7 hours at room temperature. Then, 

Amberlyst® IR 120 acid resin was added to neutralize the mixture and it was filtered and 

concentrated to give methyl O-(-D-glucopyranosyl)-(1→3)-2-O-allyl-4,6-O-benzylidene--D-

glucopyranoside. 678 mg of the previous crude were dissolved in dry pyridine (18 mL) and TsCl 

(1.34 g, 6.97 mmol) was slowly and sequentially added to the mixture and it was securely 

stoppered and stirred for 18 hours at room temperature. Acetic anhydride (20 mL) and DMAP 

(30 mg) were directly added to the solution in order to acetylate the tosylated laminaribiosyl 

derivative. The mixture was stirred for 24 hours at room temperature. Finally, methanol (50 mL) 

was added to quench the reaction and after evaporation until dryness, the crude was redissolved 

with ethyl acetate, washed with water, dried and concentrated. 2.03 g (2.65 mmol) of crude O-(6-

O-tosyl-2,3,4-tri-O-acetyl--D-glucopyranosyl)-(1→3)-2-O-allyl-4,6-O-benzylidene--D-

glucopyranoside was dissolved in dry DMF (40 mL). Sodium azide (689 mg, 10.59 mmol) was 

added to the solution and stirred at 80 ºC for 12 hours. Saturated sodium bicarbonate and ethyl 

acetate were added to the solution and the organic phase was finally washed with water, dried, 

concentrated and purified by flash chromatography (toluene-ethyl acetate 20:1).  Compound 8 

(0.246 g, 0.393 mmol) was obtained in 25 % yield. 
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1Η ΝΜR (CDCl3, 400 MHz) δ 7.51 – 7.35 (m, 5H, aromatic), 5.99 – 5.84 (m, 1H, CH2-CH=CH2), 

5.53 (s, 1H, CHPh), 5.31 – 5.14 (m, 2H, CH2-CH=CH2), 5.09 (t, 1H, J3II,4II = 9.2 Hz, H-3II), 5.02 

– 4.93 (m, 2H, H-4II, H-2II), 4.88 (d, 1H, J1II,2II = 7.7  Hz, H-1II), 4.76 (d, 1H, J1I,2I = 3.8 Hz, H-

1I), 4.24 (dd, 1H, J = 9.8 Hz, J = 4.4 Hz, CH2-CH=CH2), 4.19 – 4.01 (m, 3H, H-5II, H-6Ia, H-6Ib), 

3.83 – 3.63 (m, 2H, H-4I, CH2-CH=CH2), 3.58 (t, 1H, J3I,4I = 9.2 Hz, H-3I), 3.46 (dd, 1H, J2I,1I = 

3.7 Hz, J2I,3I = 9.4 Hz, H-2I), 3.42 (s, 3H, OMe), 3.41 – 3.38 (m, 1H, H-5I), 3.18 (dd, 1H, J5II,6IIa = 

13.2 Hz, J6IIa,6IIb = 6.4 Hz, H-6IIa), 2.96 (dd, 1H, J5II,6IIb = 13.6 Hz, J6IIa,6IIb = 2.8 Hz, H-6IIb), 2.04, 

1.98, 1.97 (3s, 9H, 3 Ac).  

13C NMR (CDCl3, 100 MHz) δ 170.29, 169.47, 169.40 (CO), 134.60 (CH2-CH=CH2), 129.10, 

128.22, 126.25 (Aromatic), 118.27 (CH2-CH=CH2), 101.60 (CHPh), 100.38 (C-1II), 98.67 (C-1I), 

80.41 (C-3I), 78.81 (C-2I), 77.47 (C-5II), 73.02 (C-3II), 73.01 (C-6I), 72.10 (C-5I), 71.97 (C-4II), 

69.52 (C-2II), 68.99 (CH2-CH=CH2), 62.12(C-4I), 55.30 (OMe), 50.93 (C-6II), 20.80, 20.62, 20.60 

(CH3). 

Synthesis of methyl O-(6-azido-6-deoxy-2,3,4-tri-O-acetyl--D-glucopyranosyl)-

(1→3)-2-O-acetyl-4,6-O-benzylidene--D-glucopyranoside  

Compound 8 (500 mg, 0.78 mmol), PdCl2 (618 mg, 3.53 mmol), and NaOAc (588 mg, 7.17 mmol) 

were dissolved in AcOH (6.69 mL) and water (0.37 mL) and stirred for 7 hours.  NaHCO3 (250 

mL) was added to the mixture and the product was extracted with EtAcO (3 x 250 mL), washed 

with water, dried over MgSO4 and concentrated. The crude was purified by flash chromatography 

obtaining compound methyl O-(6-azido-6-deoxy-2,3,4-tri-O-acetyl--D-glucopyranosyl)-(1→3)-

2-O-acetyl-4,6-O-benzylidene--D-glucopyranoside (228 mg, 0.36 mmol) in 45 % yield. 

1Η ΝΜR (CDCl3, 400 MHz) δ 7.53 – 7.36 (m, 5H, aromatic), 5.56 (s, 1H, CHPh), 5.10 (t, 1H, 

J3II,4II = 9.2 Hz, H-3II), 5.00 – 4.94 (m, 2H, H-4II, H-2II), 4.89 – 4.87 (m, 2H, H-1I, H-2I), 4.82 (d, 

1H, J1I,2I = 7.8 Hz, H-1II), 4.30 – 4.24 (m, 2H, H-5I, H-6Ia), 3.87 – 3.74 (m, 2H, H-4I, H-6Ib), 3.69 

– 3.65 (m, 2H, H-3I, H-4I), 3.52 – 3.47 (m, 1H, H-5II), 3.40 (s, 3H, OMe), 3.28 (dd, 1H, J5II,6IIa = 

6.9 Hz, J6IIa,6IIb = 13.3 Hz, H-6IIa), 3.06 (dd, 1H, J5II,6IIb = 2.7 Hz, J6IIa,6IIb = 13.3 Hz, H-6IIb), 2.17, 

2.04, 2.00, 1.99 (4s, 12H, 4 Ac). (Figures A3. 15 and A3. 16). 

13C NMR (CDCl3, 100 MHz) δ 169.30, 169.14, 168.41, 168.19 (4 CO), 128.06, 127.16, 125.23, 

(Aromatic), 100.55 (CHPh), 99.06 (C-1II), 96.42 (C-1I), 78.75 (C-3I), 74.06 (C-5I), 72.18 (C-5II), 

71.96 (C-2I), 71.81 (C-3II), 70.72 (C-4II), 68.48 (C-2II), 67.78 (C-6I), 61.38 (C-4I), 54.31 (OMe), 

50.00 (C-6II), 19.84, 19.58, 19.57, 19.51 (CH3). (Figures A3. 15 and A3. 16). 
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3.4.2.2.Polymer approach 

2,3,4,6-tetra-O-acetyl--D-glucopyranosyI-(13)-1,2,4,6-tetra-O-acetyl-D-

glucopyranose (15) 

A suspension of curdlan 37 (10.0 g) in 10 mM sodium acetate buffer (pH 5.0, 500 mL) containing 

kitalase (150 mg, 2000 units/g) was incubated for 6 h at 42 ºC32. Then the kitalase was deactivated 

by heating the mixture for 30 min at 100 ºC. The reaction mixture was filtered and lyophilized. 

To a solution of the residue was added acetic anhydride/pyridine (200 mL, 1:1 v/v) and 4-

dimethylaminopyridine (10 mg, 0.08 mmol). After 12 hours, methanol was poured into the 

mixture once cold and after concentration, diluted with ethyl acetate. The organic layer was 

washed with saturated aq. NaHCO3 and water. After drying over MgSO4 and evaporation of the 

solvent, the residue was purified by flash chromatography (ethyl acetate/toluene 5:1 v/v) to give, 

in order of elution: peracetylated glucose (11.8 g, 58%), peracetylated laminaribiose 15 (9.4g, 

28%) and a mixture of higher oligosaccharides (14%).  

Laminaribiose octaacetate 3 (/, 1:1):1H NMR (400MHz, CDCl3)  6.24 (d, 0.5H, J1,2 = 3.6 Hz, 

H-1I), 5.62 (d, 0.5H, J1,2  = 8.3 Hz, H-1I), 5.18 – 4.99 (m, 3H, H-3II, H-4 II, H-2 I), 4.90 (t, 1H, J = 

8.4 Hz, H-2II), 4.65 (d, 0.5H, J1,2 = 8 Hz, H-1II), 4.60 (d, 0.5H, J1,2 = 8.4 Hz, H-1II), 4.42 – 4.36 

(m, 1H, H-6Ia), 4.30 – 4.04 (m, 4.5H, H-6Ib, H-6IIa, H-6IIb, H-4I, H-3I), 3.94 (t, 0.5H, J3,4 = 9.6 Hz, 

H-3I), 3.81 – 3.77 (m, 1H, H-5II), 3.76 – 3.67 (m, 1H, H-5I), 2.36 – 1.97 (m, 24H, CH3). 

13C-NMR (400MHz, CDCl3)  170.72-168.68 (8C, CO), 100.93, 100.77 (C-1II), 91.73 (C-1I), 

89.18 (C-1I), 78.84 (C-3I), 76.11 (C-3I), 72.85 (C-3II), 72.79, 71.84 (C-5II, C-5I), 71.29, 71.17 

(C-2I, C-2II), 69.89 (C-4I), 68.03 (C-4II), 61.67, 61.65 (C-6I, C-6II), 21-43-20.29 (8C, CH3).  

Acetyl O-(2,3,4-tri-O-acetyl-6-O-trityl--D-glucopyranosyl)-(13)-2,4,6-tri-O-

acetyl-D-glucopyranose (17) 

Freshly prepared sodium methoxide (1M in methanol, 100 µL) was added to a stirred solution of 

15 (300 mg, 0.44 mmol) in anhydrous methanol (10 mL), and the mixture was stirred at RT for 

12 hours. The reaction mixture was neutralized with Amberlite® IR-120 (H+) resin, filtered and 

the filtered and lyophilized to give deacetylated laminaribiose (16) in quantitative yield. 

A solution of 16 (1.60 g, 4.70 mmol) in pyridine (75 mL) containing DMAP (10 mg) was treated 

with additions of trityl chloride (234 mg, 0.84  mmol, 0.2 eq) every 12 hours until a final 

concentration of 2 eq. The mixture was stirred at room temperature for 5 days. After addition of 

acetic anhydride (75 mL), the mixture was stirred at room temperature overnight, poured into ice-

water, and extracted with ethyl acetate. The organic layer was washed with brine and water, dried 

over Na2SO4, and concentrated. The residue was purified by flash chromatography (toluene – 
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ethyl acetate 9:l v/v) to afford, in order of elution: 6,6’-ditritylated sugar (903 mg, 0.84 mmol, 

25%), 6’-tritylated derivative 17 (HR-MS: m/z: 896.3331 [M+NH4]+) (1.20 g, 1.37 mmol, 34%), 

6-tritylated derivative (HR-MS: m/z: 901.2927 [M+Na]+) (432 mg, 0.49 mmol, 12%) and 

peracetylated laminaribioside 15 (1.40 g, 2.06 mmol, 29%).  

Acetyl O-(2,3,4-tri-O-acetyl-6-O-trityl--D-glucopyranosyl)-(1→3)-O-2,4,6-tri-O-acetyl-D-

glucopyranoside 17 (/, 1:1): 1H NMR (400MHz, CDCl3)  7.45 – 7.18 (m, 15H, Ar), 6.26 (d, 

0.5H, J1,2 = 3.6 Hz, H-1I), 5.66 (d, 0.5H, J1,2  = 8.0 Hz, H-1I), 5.19 – 4.95 (m, 3H, H-3II, H-4 II, 

H-2 I), 4.87 – 4.81 (m, 1H, H-2II), 4.68 (d, 0.5H, J1,2 = 6.4 Hz, H-1II), 4.66 (d, 0.5H, J1,2 = 6.4 Hz, 

H-1II), 4.29 – 4.03 (m, 4H, H-3I, H-6Ia, H-6Ib, H-4I), 3.84 – 3.79 (m, 1H, H-5I), 3.56 – 3.47 (m, 

1H, H-5I), 3.41 – 3.37 (m, 1H, H-6IIa), 3.23 – 3.12 (m, 1H, H-6IIb), 2.13 – 1.73 (m, 21H, CH3). 

13C-NMR (400MHz, CDCl3)  170.72 - 168.67 (CO), 143.41 (CPh3), 128.78, 127.83, 127.29 

(aromatic),  100.51, 100.30 (C-1II), 91.81 (C-1I), 89.37 (C-1I), 77.53 (C-3I), 74.79 (C-3I), 

73.59, 73.26, 73.16 (C-5I, C-5II, C-3II), 71.97, 71.66, 71.42 (C-2I, C-2II), 70.29, 69.12, 68.91, 67.19 

(C-4I, C-4II), 62.49, 62.19, 61.79, 61.75 (C-6I, C-6II), 20-93-20.39 (CH3).  

Acetyl O-(2,3,4-tri-O-acetyl--D-glucopyranosyl)-(13)-2,4,6-tri-O-acetyl-D-

glucopyranose (18) 

Method A: A solution of 17 (0.75 g, 0.85 mmol) in 80% aq. acetic acid (70 mL) was heated at 70 

ºC for 5 hours, then cooled and concentrated to dryness. TLC analysis (ethyl acetate) confirmed 

the reaction was complete and the presence of three new products without trityl group. The 

mixture was extracted with ethyl acetate, washed with saturated aq. NaHCO3 and water, dried 

over MgSO4 and concentrated. 

Method B: To a solution of 17 (2.90 g, 3.40 mmol) in 60 mL of CH2Cl2 was added solid 

FeCl3·6H2O (1.80 g, 6.90 mmol, 2 eq). After 2 hours at RT, the reaction was complete and three 

detritylated products were present. After addition of water and extraction with CH2Cl2, the organic 

layer was dried over MgSO4, concentrated and purified by filtration through silica using toluene 

100% and later ethyl acetate 100%. 1.10 g of mixture containing 18 (HR-MS: m/z: 654.2251 

[2M+NH4]+) (53% yield) was obtained. 

Acetyl O-(2,3,4-tri-O-acetyl--D-glucopyranosyl)-(1→3)-O-2,4,6-tri-O-acetyl-D-

glucopyranoside 18 (/, 1:1):1H NMR (400MHz, CDCl3)  6.24 (d, 0.5H, J1,2 = 3.6 Hz, H-1I), 

5.61 (d, 0.5H, J1,2  = 8.4 Hz, H-1I), 5.14 – 4.95 (m, 3H, H-2I, H-3 II, H-4II), 4.84 (dd, 1H, J2,1
 = 

8.0 Hz, H-2II), 4.61 (d, 0.5H, J1,2 = 8.0 Hz, H-1II), 4.56 (d, 0.5H, J1,2 = 8.0 Hz, H-1II), 4.26 – 4.03 

(m, 4.5H, H-6Ia, H-6Ib, H-4 I, H-3I, H-5II), 3.93 (t, 0.5H, J = 9.6 Hz, H-3I), 3.81 – 3.77 (m, 1H, H-

5I), 3.57 – 3.46 (m, 2H, H-6IIa, H-6IIb), 2.19 – 1.97 (m, 21H, CH3).  
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Functionalization of C-6’. Synthesis of compounds 19i and 19ii 

Several approaches were studied in order to functionalize C-6’. Compound 18 was co-evaporated 

with toluene and dried under vacuum at room temperature overnight prior to use in all cases. 

Method A (tosylation). Synthesis of Acetyl O-(2,3,4-tri-O-acetyl-6-O-tosyl--D-

glucopyranosyl)-(1→3)-2,4,6-tri-O-acetyl-D-glucopyranose (19i) 

 A solution of 18 (120 mg, 0.17 mmol) in 1.2 mL of pyridine was cooled in an ice bath. A second 

solution of TsCl (48 mg, 0.25 mmol, 1.3 eq) in 1.2 mL of pyridine was prepared and added 

dropwise to the first solution. The mixture was stirred for 30 minutes at 0 ºC and afterwards at 

RT. Sequential additions of TsCl (0.6 eq/addition) were added into the mixture every 12 hours at 

RT until reaching a total of 3.5 equivalents of TsCl in the mixture. Extractions were done with 

EtOAc, HCl 1N, saturated NH4CO3 and water and the organic phase was dried over MgSO4 and 

dried under diminished pressure. A mixture of 51.6 mg of tosylated products containing 

compound 19i was obtained. A small fraction was purified through preparative thin layer 

chromatography (EtOAc/toluene (1:1)). Compound 19i (Rf 0.36) was the main product with a 

HR-MS: m/z: 808.2327 [M+NH4]+.  

Acetyl O-(6-O-tosyl-2,3,4-tri-O-acetyl--D-glucopyranosyl)-(1→3)-2,3,4,6-tetra-O-acetyl-D-

glucopyranoside 19i (/, 1:1): 1H NMR (400MHz, CDCl3)  7.78 (d, 2H, J = 8 Hz, Aromatic), 

7.38 (d, 2H, J = 8 Hz, Aromatic), 6.24 (d, 0.5H, J1,2 = 4.0 Hz, H-1I), 5.61 (d, 0.5H, J  = 8.4 Hz, 

H-1I), 5.14 – 4.91 (m, 3H, H-2I, H-3 II, H-4II), 4.83 (dd, 1H, J2,1
 = 9.6 Hz, H-2II), 4.65 (d, 0.5H, 

J1,2
  = 8.4 Hz, H-1II), 4.58 (d, 0.5H, J1,2

  = 8.0 Hz, H-1II), 4.26 – 4.03 (m, 5H, H-6Ia, H-6Ib, H-6IIa, 

H-6IIb, H-4I, H-3I), 3.92 (t, 1H, J3,4 = 9.2 Hz, H-3I), 3.83 – 3.73 (m, 2H, H-5I, H-5II), 2.47 – 1.92 

(m, 21H, CH3). 

Method B (bromination). Synthesis of Acetyl O-(2,3,4-tri-O-acetyl-6-bromo-6-deoxy--D-

glucopyranosyl)-(1→3)-2,4,6-tri-O-acetyl-D-glucopyranose (19ii) 

PPh3 (549 mg, 2.09 mmol) was dissolved in 1.7 mL (324 mg/mL) of dry DMAc, and a second 

solution was prepared containing 373 mg NBS (2.09 mmol, 4 eq) in an additional 1.7 mL (220 

mg/mL) of dry DMAc. The PPh3 solution is added dropwise to another solution containing 

compound 18 (331 mg, 0.52 mmol) in 14 mL DMAC), followed by the dropwise addition of the 

NBS solution. The reaction solution is heated to 70 ºC under nitrogen. After 1 hour, the product 

was isolated by adding the reaction mixture slowly to 250 mL of a 50:50 (v/v) mixture of methanol 

and deionized water. Methanol was removed and extractions were done with EtOAc and water. 

The organic phase was dried with MgSO4 and concentrated.  
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Acetyl O-(2,3,4-tri-O-acetyl-6-azido-6-deoxy--D-glucopyranosyl)-(1→3)-2,4,6-tri-

O-acetyl-D-glucopyranose (20) 

A solution of crude 19i or 19ii (51.6 mg) with sodium azide (16.3 mg, 0.24 mmol, 3 eq) in DMF 

(2 mL) was allowed to react at 80 ºC for 6 h. TLC analysis (toluene/ethyl acetate 1:1) showed one 

of the three tosylated sugars disappeared. After dilution with ethyl acetate, the mixture was 

washed with water, dried over MgSO4 and evaporated to dryness.  

A) When coming from tosylation: Purification by flash chromatography (toluene/ethyl acetate 2:1 

→ 1.5:1) afforded a mixture of azidated products. Compound 20 was isolated by flash 

chromatography obtaining 26.6 mg (0.04 mmol) in 24% yield (two step reaction yield, tosylation 

and azidation).  

B) When coming from bromination: purification by flash chromatography (EtOAc/cyclohexane, 

1.5:1) afforded compound 20. When starting from 0.52 mmol of compound 18, 58.4 mg (0.09 

mmol) of compound 8 were obtained in 17% yield (two steps yield, bromination and azidation).  

1Η ΝΜR (CDCl3, 400 MHz) δ 6.23 (d, 0.5H, J1,2 = 3.7 Hz, H-1I), 5.63 (d, 0.5H, J1,2 = 8.3 Hz, H-

1I), 5.18 – 4.83 (m, 4H, H-3II, H-4II, H-2I, H-2II), 4.73 (d, 0.5H, J1,2 = 8.1 Hz, H-1II), 4.67 (d, 

0.5H, J1,2 = 8.1 Hz,  H-1II), 4.26 – 3.95 (m, 4H, H-6Ia, H-6Ib, H-4I, H-3I), 3.78 – 3.64 (m, 2H, H-

5II, H-5I), 3.45 – 3.38 (m, 1H, H-6IIa), 3.26 – 3.22 (m, 1H, H-6IIa), 2.19 – 1.98 (m, 21H, CH3). 

13C-NMR (400MHz, CDCl3)  170.68 - 168.76 (CO), 100.44, 100.27 (C-1II), 91.68 (C-1I), 89.18 

(C-1I), 78.08 (C-3I), 75.30 (C-3I), 73.36, 73.27 (C-5I, C-5II), 72.60, 71.47, 71.33, 70.07, 67.14 

(C-3II, C-2I, C-2II, C-4I, C-4II), 61.59 (C-6I), 51.14 (C-6II), 20-91-20.30 (CH3).  

2,3,4-tri-O-acetyl-6-azido-6-deoxy--D-glucopyranosyl-(13)-2,4,6-tri-O-acetyl--D-

glucopyranosyl fluoride (21).  

A solution of compound 20 (67 mg, 0.10 mmol) in HF-pyridine (2 mL, 7:3 v/v, 0.08 mol HF) was 

stirred at 0 °C for 3 hours in a plastic vial. The mixture was diluted with DCM (4 mL) and poured 

into an ice-cold aqueous solution of NH3 3M (10 mL); the organic layer containing 21 was washed 

with saturated aqueous NaHCO3 (3×) and water, dried over MgSO4 and concentrated under 

diminished pressure. Purification by flash chromatography yielded compound 21 (MS m / z 

639.2155 [M+NH4]+) (23 mg, 0.037 mmol) in 37% yield.  

1Η ΝΜR (CDCl3, 400 MHz) δ 5.58 (dd, 1H, J1,2 = 2.8 Hz, J1,F = 53.1 Hz, H-1I), 5.10 – 4.78 (m, 

4H, H-3II, H-4II, H-2I, H-2II), 4.67 (d, 1H, J1,2 = 8.0 Hz, H-1II), 4.18 – 4.03 (m, 4H, H-6Ia, H-6Ib, 

H-4I, H-3I), 3.69 – 3.58 (m, 2H, H-5II, H-5I), 3.34 (dd, 1H, J5,6 = 7.4 Hz, J6a,6b = 13.3 Hz, H-6IIa), 

3.19 (dd, 1H, J5,6 = 2.5 Hz, J6a,6b = 13.4 Hz, H-6IIb), 2.15 – 1.91 (m, 18H, CH3). 
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13C-NMR (100MHz, CDCl3)  170.78 – 169.18 (6 CO), 104.19 (d, JC,F = 226 Hz, C-1I), 100.59 

(C-1II), 75.09 (C-3I), 73.49, 72.85, 72.46 (d, JC,F = 24 Hz, C-2I), 71.58, 70.44 (d, JC,F = 4 Hz, C-

5I), 69.61 (C-5II, C-5I, C-2I, C-2II, C4II, C-4I), 61.49 (C-6I), 51.36 (C-6II), 20.94 – 20.50 (6 CH3).  

6-Azido-6-deoxy--D-glucopyranosyl-(13)--D-glucopyranosyl fluoride (6N3-

Glc3GlcF) (22).  

Freshly prepared sodium methoxide (1M in methanol, 10 µL) was added to a stirred solution of 

21 (6.3 mg, 0.010 mmol) in anhydrous methanol (252 L), and the mixture was stirred at RT for 

4 hours. The reaction mixture was neutralized with Amberlite® IR-120 (H+) resin, filtered and 

lyophilized obtaining compound 22 (2.0 mg, 0.005 mmol) in 53% yield. 

Laminaribiosyl fluoride donor (6N3-Glc3GlcF) (36)  

Glc3GlcF is prepared as previously reported50 by treatment of peracetylated laminaribiose with 

hydrogen fluoride in pyridine (70%), purification of the peracetylated -glycosyl fluoride by flash 

chromatography, followed by de-O-acetylation with sodium methoxide gives 36 in quantitative 

yields.  

1Η ΝΜR (MeOD, 400 MHz) δ 5.67 (dd, 1H, J1,2 = 2.8 Hz, J1,F = 53.0 Hz, H-1I), 5.18 – 5.05 (m, 

2H, H-3II, H-4II), 4.98 – 4.88 (m, 2H, H-2II, H-2I), 4.66 (d, 1H, J1,2 = 7.9 Hz, H-1II), 4.37 (dd, 1H, 

J6a,6b = 4.5 Hz, J6,5 = 12.4 Hz, H-6Ia), 4.23 – 4.11 (m, 4H, H-4I, H-6Ib, H-5II, H-6IIa), 4.08 (dd, 1H, 

J6a,6b = 2.3 Hz, J6,5 = 12.4 Hz, H-6IIb), 3.71 – 3.69 (m, 1H, H-5I), 2.20 – 1.99 (m, 21H, CH3). 

13C-NMR (400MHz, CDCl3)  170.44-168.85 (8C, CO), 104.99, 102.73 (C-1I), 100.63 (C-1), 

75.45 (C-3I), 72.74 (C-3II), 71.93 (d, JC,F = 24.5 Hz, C-2I), (C-5II), 71.60 (C-2II), 69.92 (d, JC,F = 

4 Hz, C-5I), 67.78 (C-4II), 66.59 (C-4I), 61.47, 61.21 (C-6I, C-6II), 20.57-20.15 (8C, CH3). 

Synthesis of acceptors for the glycosynthase reaction p-nitrophenyl -D-

glucopyranoside (GlcPNP) (31) 

Triethylamine (1.79 mL, 12.81 mmol) was added to a solution of peracetylated -D-

glucopyranoside (26) (10.00 g, 25.62 mmol) in dry DCM under nitrogen atmosphere. BF3·OEt2 

(8.04 mL, 64.05 mmol) was quickly introduced into the system and the mixture was stirred at 

room temperature for 96 hours. The organic phase containing the acetylated GlcPNP (compound 

30) was washed with saturated aqueous NaHCO3 and water, dried and concentrated. To a stirred 

solution of the reaction crude in anhydrous methanol (300 mL), freshly prepared NaOMe (1M in 

methanol; 6 mL) was added and the mixture was stirred for 6 hours at room temperature. Then, 

the mixture was neutralized with Amberlite® IR 120 resin (H+), filtrated and evaporated to 
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dryness. Finally, the reaction mixture was purified by flash chromatography (Acetone-DMC 5:1) 

yielding GlcPNP (31) (4.54 g, 15.06 mmol) in 60% yield.  

1Η ΝΜR (D2O, 400 MHz) δ 8.10 (d, 2H, JAr = 9.3 Hz, arom), 7.09 (d, 2H, JAr = 9.3 Hz, pNP), 

5.12 (d, 1H, J1,2 = 7.7 Hz, H1), 3.82 (dd, 1H, J5,6 = 2.2 Hz, Ja b = 12.3 Hz, H-6a), 3.63 (dd, 1H, J5,6 

= 5.7 Hz, Ja,b = 12.3 H-6b), 3.59 – 3.36 (m, 4H, H2, H3, H4, H5). 

13C NMR (D2O, 100 MHz) δ 126.0, 116.4 (pNP), 99.4 (C-1), 76.2, 75.3, 72.7, 69.2 (C-2, C-3, C-

4, C-5), 60.3 (C-6), 28.1 (CH3). 

p-nitrophenyl 6-azido-6-deoxy-2,3,4-tri-O-acetyl--D-glucopyranoside (6N3-

GlcPNP) (35) 

p-Nitrophenyl 6-azido-6-deoxy-β-D-glucopyranoside (35) was prepared by tosylation of the 6-

OH group of 31, acetylation with Ac2O/py/DMAP, substitution of the tosyl group by azide, and 

finally de-O-acetylation by reaction with sodium methoxide in methanol, as follows: 

4-Nitrophenyl-β-D-glucopyranoside (31) (2.59 g, 8.59 mmol) was dissolved in dry pyridine (26 

mL) and the solution was cooled in an ice bath. A cold solution of tosyl chloride (4.91 g, 25.78 

mmol) in dry pyridine (26 mL) was added and the reaction mixture was stirred for 22 hours under 

nitrogen atmosphere at room temperature. Acetic anhydride (52 mL) and N,N-

dimethylaminopyridine (DMAP) (25 mg) were directly added to the solution. The mixture was 

stirred for 24 hours at room temperature. Finally, methanol (100 mL) was added to quench the 

reaction and, after evaporation until dryness, the product was redissolved with ethyl acetate, 

washed with water, the organic phase dried, and the solvent evaporated under reduced pressure 

to yield 9.17 g of 4-nitrophenyl 6-O-tosyl-2,3,4-tri-O-acetyl-β-D-glucopyranoside (compound 

33). 

Compound 33 (9.17 g, 15.77 mmol) was dissolved in dry DMF (183 mL). Sodium azide (2.23 g, 

34.37 mmol) was added and the solution stirred at 80 ºC for 14 hours. A saturated aqueous 

solution of sodium bicarbonate and ethyl acetate were added, and the organic phase was washed 

with water, dried, and the solvent evaporated. The product was purified by flash chromatography 

(toluene-ethyl acetate 20:1). 4-Nitrophenyl 6-azido-2,3,4-tri-O-acetyl-β-D-glucopyranoside 

(compound 34)  (1.94 g, 4.31 mmol) was obtained in 50% overall yield from 31.  
13C NMR (CDCl3, 100 MHz) δ 170.2, 169.6, 169.3 (CO), 126.0, 116.8 (C-Ar), 98.1 (C-1), 74.0 

(C-5), 72.4, 71.0, 69.3 (C-2, C-3, C-4), 51.3 (C-6), 20.7 (CH3). 
1Η ΝΜR (CDCl3, 400 MHz) δ 8.23 (d, 2H, JAr = 9.1 Hz, arom), 7.10 (d, 2H, JAr = 9.1 Hz, arom), 

5.33 – 5.30 (m, 2H, H2, H3), 5.24 (d, 1H, J1-2 = 7.9 Hz, H1), 5.09 (m, 1H, H4), 3.85 (m, 1H, H5), 

3.44 (dd, 1H, J5,6b = 7.4 Hz, J6a,6b = 13.4 Hz, H-6b), 3.35 (dd, 1H, J5,6a = 2.7 Hz, J6a,6b = 13.4 H-

6a), 2.07-2.05 (m, 9H, CH3). ESI-MS (m/z): 470.1514 [M+NH4]+ 
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Compound 34 (200 mg, 0.44 mmol) was dissolved in methanol (7 mL) and sodium methoxide (1 

mM in methanol). The mixture was stirred for 6 hours at room temperature. Then, the mixture 

was neutralized with Amberlite IR 120 resin (H+), filtrated and freeze-dried.  4-Nitrophenyl 6-

azido-6-deoxy-β-D-glucopyranoside (35) was obtained in 98% yield.  

 

3.4.2.3.Characterization 

NMR  

1H and 13C NMR, COSY and HSQC spectra were recorded in a Varian Gemini 400 MHz 

spectrometer operated at 298 K. For 1H NMR, chemical shifts were referenced to internal TMS 

(0 ppm) for solutions in CHCl3 (H = 7.26 ppm). For 13C NMR, the central peak of the CDCl3 

triplet (77.16 ppm) was used as a reference. For 13C NMR, the central peak of the CDCl3 triplet 

(77.16 ppm) was used as a reference. When using MeOD as solvent, the central peak of the MeOD 

multiplet (49.00 ppm) was used as a reference. 

HPLC-MS  

Mass spectra were performed on a LC/MSD-TOF spectrometer from Agilent Technologies in 

positive electrospray mode. 

Chromatography 

Flash chromatography was performed on Merck Silica gel (40 – 63 µm) using eluents as specified. 

TLC was performed on Silica Gel 60 F254 aluminum plates with detection by development with 

H2O/MeOH/H2SO4 (4.5/4.5/1 v/v/v) and heating at 125 ºC and/or by visualization under UV light.  

3.4.2.4. Enzyme characterization 

Computational docking studies 

Molecular docking was performed with AUTODOCK VINA32 Protein and ligand structures were 

parameterized with autodock 4.2 atom types and gasteiger charges were computed for each atom. 

The search space was defined as a cubic box of 33 x 34 x 22 Å centered in the active site of the 

enzyme. All rotable bonds of the ligand were considered free during the docking calculations, 

whereas the whole protein structure was kept fixed. 20 different binding modes were calculated 

with an exhaustiveness criterion of 8 in the VINA algorithm. The final enzyme-ligand structures 

were taken from the lowest energy binding modes. The final structures were analyzed with the 

VMD visualization program.33 
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Protein expression and purification 

The glycosynthase mutant E134S was expressed and purified as described in Chapter 3 (section 

3.3.5). Concentration was determined by absorbance at 280 nm using an extinction coefficient of 

3.53·105 M-1 cm-1. The protein was >95% homogeneous as judged by SDS-PAGE. It was 

lyophilized for storage and redissolved prior to use. 

Enzyme kinetics. E134S subsite studies 

All reactions were performed using 5 times higher acceptor concentration (5 mM) than donor’s 

(1 mM) in order to avoid donor self-condensation. The control was defined by the reaction 

between the donor Glc3GlcF and the acceptor GlcPNP. The donor 6N3-Glc3GlcF was 

combined with GlcPNP in the study of subsite -2 while Glc3GlcF and 6N3-GlcPNP were 

used in the study of subsite +1. 

After pre-incubation of the microcentrifuge tube containing the acceptor and the donor in 

phosphate buffer 50 mM, pH 7.0 at 35 ºC for 5 minutes, the reactions were initiated by addition 

of E134S mutant (1→3,1→4)-β-D-glucanase from B. licheniformis (0.1 M, specific activity of 

17 – 64 min-1 for the reference reaction Glcβ3GlcF + GlcpNP) and kept at 35 ºC (final reaction 

volume of 0.3 mL). Aliquots were withdrawn in another microcentrifuge tube at regular time 

intervals, diluted 1:10 in formic acid 2% (v/v) to stop the enzymatic reaction and analyzed by 

HPLC [Agilent equipment, NovaPak® C18 (4 µm, 3.9 × 150 mm) column (Waters), flow rate 1 

mL/min, 16% MeOH in water when no azide was present either in donor or acceptor, and 13% 

MeOH in water in the presence of azides, UV detector at 300 nm ()]. Initial rates were obtained 

from the linear progress curves of product formation (normalized area vs time) and expressed as 

vo/[E] in inverse seconds.  
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APPENDIX  

Figure A3. 1: 1H NMR of methyl 4,6-O-benzylidene--D-glucopyranoside (2) 

Figure A3. 2: 1H NMR of methyl 2-O-benzoyl-4,6-O-benzylidene--D-glucopyranoside (23) 

Figure A3. 3: 1H NMR of methyl 2-O-benzyl-4,6-O-benzylidene--D-glucopyranoside (25) 

Figure A3. 4: 1H NMR of methyl 2-O-allyl-4,6-O-benzylidene--D-glucopyranoside (3) 

Figure A3. 5: 1H NMR of methyl 4,6-O-isopropylidene--D-glucopyranoside 

Figure A3. 6: 13C NMR of a mixture of isomers benzylated at C-2 and C-3. Methyl 2-O-benzyl-

4,6-O-isopropylidene--D-glucopyranoside (24) is the major product observed in the spectrum. 

Figure A3. 7: 1H NMR of p-methoxyphenyl 2-O-allyl-4,6-O-benzylidene--D-glucopyranoside 

(29) 

Figure A3. 8: 1H NMR of 2,3,4,6-tetra-O-acetyl--D-glucopyranosyl bromide (5) 

Figure A3. 9: 1H NMR (above) and 13C NMR (below) of methyl O-(2,3,4,6-tetra-O-acetyl--

D.glucopyranosyl)-(1→3)-2-O-allyl-4,6-O-benzylidene--D-glucopyranoside (6) 

Figure A3. 10: HSQC (above) and NOESY (below) of methyl O-(2,3,4,6-tetra-O-acetyl--

D.glucopyranosyl)-(1→3)-2-O-allyl-4,6-O-benzylidene--D-glucopyranoside (6) 

Figure A3. 11: 1H NMR (above) and 13C NMR (below) of methyl O-(2,3,4,6-tetra-O-acetyl--

D.glucopyranosyl)-(1→3)-2-O-allyl-4,6-di-O-acetyl--D-glucopyranoside 

Figure A3. 12: HSQC of methyl O-(2,3,4,6-tetra-O-acetyl--D.glucopyranosyl)-(1→3)-2-O-

allyl-4,6-di-O-acetyl--D-glucopyranoside 

Figure A3. 13: 1H NMR (above) and 13C NMR (below) of methyl O-(6-azido-6-deoxy-2,3,4-tri-

O-acetyl--D.glucopyranosyl)-(1→3)-2-O-allyl-4,6-O-benzylidene--D-glucopyranoside (8) 

Figure A3. 14: HSQC of methyl O-(6-azido-6-deoxy-2,3,4-tri-O-acetyl--D.glucopyranosyl)-

(1→3)-2-O-allyl-4,6-O-benzylidene--D-glucopyranoside (8) 

Figure A3. 15: 1H NMR (above) and 13C NMR (below) of methyl O-(6-azido-6-deoxy-2,3,4-tri-

O-acetyl--D.glucopyranosyl)-(1→3)-2-O-acetyl-4,6-O-benzylidene--D-glucopyranoside 

Figure A3. 16: HSQC of methyl O-(6-azido-6-deoxy-2,3,4-tri-O-acetyl--D.glucopyranosyl)-

(1→3)-2-O-acetyl-4,6-O-benzylidene--D-glucopyranoside 
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Figure A3. 17: MALDI of methyl 2-O-allyl-4,6-O-benzylidene--D-glucopyranoside (3) 

Figure A3. 18: MALDI of methyl O-(2,3,4,6-tetra-O-acetyl--D-glucopyranosyl)-(13)-2-O-

allyl-4,6-O-benzylidene--D-glucopyranoside (6) 

Figure A3. 19: 1H NMR (above) and 13C NMR (below) of 2,3,4,6-tetra-O-acetyl--D-

glucopyranosyl-(13)-1,2,4,6-tetra-O-acetyl-D-glucopyranose (16) 

Figure A3. 20: HSQC of 2,3,4,6-tetra-O-acetyl--D-glucopyranosyl-(1→3)-1,2,4,6-tetra-O-

acetyl-D-glucopyranose (16) 

Figure A3. 21: 1H NMR (above) and 13C NMR (below) of the laminaribiosyl fluoride donor 

(Glc3GlcF) (36) 

Figure A3. 22: 1H NMR (above) and 13C NMR (below) of acetyl O-(2,3,4-tri-O-acetyl-6-O-trityl-

-D-glucopyranosyl)-(1→3)-2,4,6-tri-O-acetyl-D-glucopyranose (17) 

Figure A3. 23: HSQC of laminaribiosyl fluoride donor (Glc3GlcF) (36) 

Figure A3. 24: HSQC of acetyl O-(2,3,4-tri-O-acetyl-6-O-trityl--D-glucopyranosyl)-(1→3)-

2,4,6-tri-O-acetyl-D-glucopyranose (17) 

Figure A3. 25:  1H NMR of acetyl O-(2,3,4-tri-O-acetyl--D-glucopyranosyl)-(1→3)-2,4,6-tri-

O-acetyl-D-glucopyranose (18) 

Figure A3. 26: 1H NMR of acetyl O-(2,3,4-tri-O-acetyl-6-O-tosyl--D-glucopyranosyl)-(1→3)-

2,4,6-tri-O-acetyl-D-glucopyranose (19i) 

Figure A3. 27: 1H NMR (above) and 13C NMR (below) of acetyl O-(2,3,4-tri-O-acetyl-6-azido-

6-deoxy--D-glucopyranosyl)-(1→3)-2,4,6-tri-O-acetyl-D-glucopyranose (20) 

Figure A3. 28: HSQC of acetyl O-(2,3,4-tri-O-acetyl-6-azido-6-deoxy--D-glucopyranosyl)-

(1→3)-2,4,6-tri-O-acetyl-D-glucopyranose (20) 

Figure A3. 29: 1H NMR (above) and 13C NMR (below) of 2,3,4-tri-O-acetyl-6-azido-6-deoxy--

D-glucopyranosyl-(1→3)-2,4,6-tri-O-acetyl--D-glucopyranosyl fluoride (21) 

Figure A3. 30: MALDI of acetyl O-(2,3,4-tri-O-acetyl-6-O-trityl--D-glucopyranosyl)-(1→3)-

2,4,6-tri-O-acetyl-D-glucopyranose (17) 

Figure A3. 31: MALDI of acetyl O-(2,3,4-tri-O-acetyl--D-glucopyranosyl)-(1→3)-2,4,6-tri-O-

acetyl-D-glucopyranose (18) 
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Figure A3. 32: MALDI of acetyl O-(2,3,4-tri-O-acetyl-6-O-tosyl--D-glucopyranosyl)-(1→3)-

2,4,6-tri-O-acetyl-D-glucopyranose (19i) 

Figure A3. 33: MALDI of acetyl O-(2,3,4-tri-O-acetyl-6-azido-6-deoxy--D-glucopyranosyl)-

(1→3)-2,4,6-tri-O-acetyl-D-glucopyranose (20) 

Figure A3. 34: MALDI of 2,3,4-tri-O-acetyl-6-azido-6-deoxy--D-glucopyranosyl-(1→3)-2,4,6-

tri-O-acetyl--D-glucopyranosyl fluoride (21) 

Figure A3. 35: Degradation of curdlan. TLC (image). Each lane shows the percentage of glucose 

(band 1), laminaribiose Glc3Glc (band 2) and trisaccharides L3 (band 3) (Table left - above) 

present in the reaction at different times (table below). 

Figure A3. 36: Tritylation study. TLC (image). Different products 6’Tr (band 1), 6Tr (band 2) 

and residual L (band 3) are present in the reaction when it is performed with 1.2 eq of TrCl. The 

image was analyzed with the program E-CAPT (table) to determine the volume of every band and 

the ratio between the different products.  

Figure A3. 37: TLC (image). Tritylation reaction. Each lane shows the percentage of Di (band 

1), 6’Tr (band 2) 6Tr (band 3) and L (band 4) (Table left - above) present when different 

equivalents of TrCl are used in the reaction (table below) 

Figure A3. 38: Tritylation study. TLC (image). Different products Di (band 4), 6’Tr (band 6), 

6Tr (band 9) and residual L (band 12) are present in the reaction when it is performed with 3.0 eq 

of TrCl. The image was analyzed with the program E-CAPT (table) to determine the volume of 

every band and the ratio between the different products. 

Figure A3. 39: Tritylation study. TLC (image). Different products Di, 6’Tr, 6Tr and residual L 

are present in the reaction when it is performed with 4.25 eq of TrCl. The image was analyzed 

with the program E-CAPT (table) to determine the volume of every band and the ratio between 

the different products. 

Table A3. 1: Translgycosylation reaction conditions (Glc3GlcF + GlcPNP). Study of 

subsites: control reaction 

Table A3. 2: Determination of vo (Glc3GlcF + GlcPNP). Study of subsites: control reaction 

Table A3. 3: Translgycosylation reaction conditions (Glc3GlcF + 6N3-GlcPNP). Study of 

subsite +1 

Table A3. 4: Determination of vo (Glc3GlcF + 6N3-GlcPNP). Study of subsite +1 
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Table A3. 5: Translgycosylation reaction conditions (Glc3GlcF + GlcPNP). Study of 

subsites: control reaction 

Table A3. 6: Determination of vo (Glc3GlcF + GlcPNP). Study of subsites: control reaction 

Table A3. 7: Translgycosylation reaction conditions (6N3-Glc3GlcF + GlcPNP). Study of 

subsite –2  

Table A3. 8: Determination of vo (6N3-Glc3GlcF + GlcPNP). Study of subsite –2 

Table A3. 9: Degradation of curdlan. Analysis lane 1 (t = 2 hours) 

Table A3. 10: Degradation of curdlan. Analysis lane 2 (t = 4 hours) 

Table A3. 11: Degradation of curdlan. Analysis lane 3 (t = 6 hours) 

Table A3. 12: Degradation of curdlan. Analysis lane 4 (t = 8 hours) 

Table A3. 13: Degradation of curdlan. Analysis lane 5 (t = 10 hours) 

Table A3. 14: Degradation of curdlan. Analysis lane 6 (t = 12 hours) 

Table A3. 15: Degradation of curdlan. Analysis lane 7 (t = 14 hours) 

Table A3. 16: Degradation of curdlan. Analysis lane 8 (t = 16 hours) 

Table A3. 17: Degradation of curdlan. Analysis lane 9 (t = 18 hours) 

Table A3. 18: Degradation of curdlan. Analysis lane 10 (t = 20 hours) 

Table A3. 19: Degradation of curdlan. Ratio of the different products at different times 

Table A3. 20: Tritylation study. Analysis lane 2.5 eq TrCl 

Table A3. 21: Tritylation study. Analysis lane 3.5 eq TrCl 

Table A3. 22: Tritylation study. Analysis lane 4.5 eq TrCl 

Table A3. 23: Tritylation study. Study of maximum formation of monotritylated product vs 

equivalents of TrCl 

Table A3. 24: Tritylation study. Different ratios of products are obtained when the reaction is 

performed with different equivalents of TrCl. 
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Figure A3. 1: 1H NMR of methyl 4,6-O-benzylidene--D-glucopyranoside (2). 

 

 

Figure A3. 2: 1H NMR of methyl 2-O-benzoyl-4,6-O-benzylidene--D-glucopyranoside (23). 
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Figure A3. 3: 1H NMR of methyl 2-O-benzyl-4,6-O-benzylidene--D-glucopyranoside (25). 

 

 

Figure A3. 4: 1H NMR of methyl 2-O-allyl-4,6-O-benzylidene--D-glucopyranoside (3). 
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Figure A3. 5: 1H NMR of methyl 4,6-O-isopropylidene--D-glucopyranoside. 

 

 

Figure A3. 6: 13C NMR of a mixture of isomers benzylated at C-2 and C-3. Methyl 2-O-benzyl-4,6-O-isopropylidene-
-D-glucopyranoside (24) is the major product observed in the spectrum.  
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Figure A3. 7: 1H NMR of p-methoxyphenyl 2-O-allyl-4,6-O-benzylidene--D-glucopyranoside (29). 

 

 

Figure A3. 8: 1H NMR of 2,3,4,6-tetra-O-acetyl--D-glucopyranosyl bromide (5). 
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Figure A3. 9: 1H NMR (above) and 13C NMR (below) of methyl O-(2,3,4,6-tetra-O-acetyl--D.glucopyranosyl)-
(1→3)-2-O-allyl-4,6-O-benzylidene--D-glucopyranoside (6). 
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Figure A3. 10:  HSQC (above) and NOESY (below) of methyl O-(2,3,4,6-tetra-O-acetyl--D.glucopyranosyl)-(1→3)-
2-O-allyl-4,6-O-benzylidene--D-glucopyranoside (6). 
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Figure A3. 11: 1H NMR (above) and 13C NMR (below) of methyl O-(2,3,4,6-tetra-O-acetyl--D-glucopyranosyl)-
(1→3)-2-O-allyl-4,6-di-O-acetyl--D-glucopyranoside. 
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Figure A3. 12:  HSQC of methyl O-(2,3,4,6-tetra-O-acetyl--D.glucopyranosyl)-(1→3)-2-O-allyl-4,6-di-O-acetyl--
D-glucopyranoside. 
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Figure A3. 13: 1H NMR (above) and 13C NMR (below) of methyl O-(6-azido-6-deoxy-2,3,4-tri-O-acetyl--
D.glucopyranosyl)-(1→3)-2-O-allyl-4,6-O-benzylidene--D-glucopyranoside (8). 
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Figure A3. 14: HSQC of methyl O-(6-azido-6-deoxy-2,3,4-tri-O-acetyl--D.glucopyranosyl)-(1→3)-2-O-allyl-4,6-O-
benzylidene--D-glucopyranoside (8). 
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Figure A3. 15: 1H NMR (above) and 13C NMR (below) of methyl O-(6-azido-6-deoxy-2,3,4-tri-O-acetyl--
D.glucopyranosyl)-(1→3)-2-O-acetyl-4,6-O-benzylidene--D-glucopyranoside. 
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Figure A3. 16:  HSQC of methyl O-(6-azido-6-deoxy-2,3,4-tri-O-acetyl--D.glucopyranosyl)-(1→3)-2-O-acetyl-4,6-
O-benzylidene--D-glucopyranoside. 
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Figure A3. 17: MALDI of methyl 2-O-allyl-4,6-O-benzylidene--D-glucopyranoside (3). 

 

 

 

Figure A3. 18: MALDI of methyl O-(2,3,4,6-tetra-O-acetyl--D-glucopyranosyl)-(1→3)-2-O-allyl-4,6-O-
benzylidene--D-glucopyranoside (a). 
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Figure A3. 19: 1H NMR (above) and 13C NMR (below) of 2,3,4,6-tetra-O-acetyl--D-glucopyranosyI-(1→3)-1,2,4,6-
tetra-O-acetyl-D-glucopyranose (16). 
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Figure A3. 20: HSQC of 2,3,4,6-tetra-O-acetyl--D-glucopyranosyI-(1→3)-1,2,4,6-tetra-O-acetyl-D-glucopyranose 
(16). 
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Figure A3. 21: 1H NMR (above) and 13C NMR (below) of the laminaribiosyl fluoride donor (Glc3GlcF) (36). 
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Figure A3. 22: HSQC of laminaribiosyl fluoride donor (Glc3GlcF) (36). 
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Figure A3. 23: 1H NMR (above) and 13C NMR (below) of acetyl O-(2,3,4-tri-O-acetyl-6-O-trityl--D-glucopyranosyl)-
(1→3)-2,4,6-tri-O-acetyl-D-glucopyranose (17). 
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Figure A3. 24: HSQC of acetyl O-(2,3,4-tri-O-acetyl-6-O-trityl--D-glucopyranosyl)-(1→3)-2,4,6-tri-O-acetyl-D-
glucopyranose (17). 
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Figure A3. 25: 1H NMR of acetyl O-(2,3,4-tri-O-acetyl--D-glucopyranosyl)-(1→3)-2,4,6-tri-O-acetyl-D-
glucopyranose (18). 

 

 

Figure A3. 26: 1H NMR of acetyl O-(2,3,4-tri-O-acetyl-6-O-tosyl--D-glucopyranosyl)-(1→3)-2,4,6-tri-O-acetyl-D-
glucopyranose (19i). 
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Figure A3. 27: 1H NMR (above) and 13C NMR (below) of acetyl O-(2,3,4-tri-O-acetyl-6-azido-6-deoxy--D-
glucopyranosyl)-(1→3)-2,4,6-tri-O-acetyl-D-glucopyranose (20). 
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Figure A3. 28: HSQC of acetyl O-(2,3,4-tri-O-acetyl-6-azido-6-deoxy--D-glucopyranosyl)-(1→3)-2,4,6-tri-O-acetyl-
D-glucopyranose (20). 
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Figure A3. 29: 1H NMR (above) and 13C NMR (below) of 2,3,4-tri-O-acetyl-6-azido-6-deoxy--D-glucopyranosyl-
(1→3)-2,4,6-tri-O-acetyl--D-glucopyranosyl fluoride (21). 
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Figure A3. 30: MALDI of acetyl O-(2,3,4-tri-O-acetyl-6-O-trityl--D-glucopyranosyl)-(1→3)-2,4,6-tri-O-acetyl-D-
glucopyranose (17). 

 

 

Figure A3. 31: MALDI of acetyl O-(2,3,4-tri-O-acetyl--D-glucopyranosyl)-(1→3)-2,4,6-tri-O-acetyl-D-
glucopyranose (18). 
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Figure A3. 32: MALDI of acetyl O-(2,3,4-tri-O-acetyl-6-O-tosyl--D-glucopyranosyl)-(1→3)-2,4,6-tri-O-acetyl-D-
glucopyranose (19i). 

 

 

Figure A3. 33: MALDI of acetyl O-(2,3,4-tri-O-acetyl-6-azido-6-deoxy--D-glucopyranosyl)-(1→3)-2,4,6-tri-O-
acetyl-D-glucopyranose (20). 
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Figure A3. 34: MALDI of 2,3,4-tri-O-acetyl-6-azido-6-deoxy--D-glucopyranosyl-(1→3)-2,4,6-tri-O-acetyl--D-
glucopyranosyl fluoride (20). 

 

 

Product  Bands 

Glc  Band 1 

Glc3Glc  Band 2 

L3  Band 3 

 

 

 

 

 

 

Figure A3. 35: Degradation of curdlan. TLC (image). Each lane shows the percentage of glucose (band 1), 
laminaribiose Glc3Glc (band 2) and trisaccharides L3 (band 3) (Table left - above) present in the reaction at different 
times (table below). 
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1 
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2 
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Figure A2. 37: Tritylation study. TLC (image). Different products 6’Tr (band 1), 6Tr (band 2) and residual L (band 
3) are present in the reaction when it is performed with 1.2 eq of TrCl. The image was analyzed with the program 
E-CAPT (table) to determine the volume of every band and the ratio between the different products.  

Figure A2. 38: TLC (image). Tritylation reaction. Each lane shows the percentage of Di (band 1), 6’Tr (band 2) 6Tr (band 3) and
L (band 4) (Table left - above) present when different equivalents of TrCl are used in the reaction (table below). 

 

Figure A3. 36: Degradation of curlan. Analysis of the lane (image). Every lane was analyzed with the program E-
CAPT (table) to determine the volume of every band and the ratio between the different products. 

 

 

  Lane 1 (1.2 eq)    Volume    Height Area  R.F. values 

6'Tr  94647  120  1475    0.083  

6Tr  75372  85  1722    0.473  

Glc3Glc = L  308666  235  2664    0.834  

 

 

 

 

 

 Product  Bands   

 
6,6'‐Tr = Di  Band 1 

 

  

 
6'Tr  Band 2 

 

  

 
6Tr  Band 3 

 

  

 
L  Band 4 

 

  

    

Lanes  Lane 1  Lane 2  Lane 3 

TrCl eq  2.5  3.5  4.5 

 

 

 

 

 

 

  Lane 1 (2h)    Volume    Height      Area  R.F. values 

  Band 1 (Glc)  177414  152  2014    0.251  

  Band 2 (Glc3Glc)  220893  162  2205    0.400  

  Band 3 (L3)  136240  132  1868    0.563  
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    Volume    Height      Area  R.F. values 

Band 4  Di  208600  147  1856    0.227  

Band 6  6'Tr  356208  168  3190    0.408  

Band 9  6Tr  151756  141  1450    0.628  

Band 12  L  357893  136  3479    0.904  
 

Figure A3. 39: Tritylation study. TLC (image). Different products Di (band 4), 6’Tr (band 6), 6Tr (band 9) and residual 
L (band 12) are present in the reaction when it is performed with 3.0 eq of TrCl. The image was analyzed with the 
program E-CAPT (table) to determine the volume of every band and the ratio between the different products. 

 

 

 

  Lane 2 (4.25 eq)    Volume    Height      Area  R.F. values 

Di  171693  144  1736    0.251  

6'Tr  228910  121  3038    0.451  

6Tr  186277  106  3410    0.634  

L  143727  95  3905    0.898  
 

Figure A3. 40: Tritylation study. TLC (image). Different products Di, 6’Tr, 6Tr and residual L are present in the 
reaction when it is performed with 4.25 eq of TrCl. The image was analyzed with the program E-CAPT (table) to 
determine the volume of every band and the ratio between the different products. 
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Final 

concentration / 
mM 

[Stock] / 
mM 

Reaction 
volume / L 

Phosphate buffer 50 mM pH = 
7.2 

50 100.00 75.0 

CaCl2 0.1 mM 0.1 10.00 3.0 

[Glc3GlcF] 1 mM 1 20.00 15.0 

[GlcPNP] 5 mM in phosphate 
buffer 

5 10.00 150.0 

E134S 0.1 M 1.00E-04 1.26E-03 23.8 

H2O - - 33.2 

Total volume - 300 
 

Table A2.  1: Translgycosylation reaction conditions (Glc3GlcF + GlcPNP). Study of subsites: control reaction. 

 

t / min A acceptor Aproduct Aa + Ap [Product] / mM 
0 5667.40 3.51 5670.91 3.10E-03 
10 5550.20 89.46 5639.66 7.93E-02 
21 5500.40 149.00 5649.40 1.32E-01 
32 5112.60 183.10 5295.70 1.73E-01 

 

Table A2.  2: Determination of vo (Glc3GlcF + GlcPNP). Study of subsites: control reaction. 

 

 

Final 
concentration / 

mM 

[Stock] / 
mM 

Reaction 
volume / L 

Phosphate buffer 50 mM pH = 7.2 50 100.00 75.0 

CaCl2 0.1 mM 0.1 10.00 3.0 
[Glc3GlcF] 1 mM 1 20.00 15.0 

[6N3-GlcPNP] 5 mM in phosphate 
buffer 5 10.00 150.0 

E134S 0,1 M 1.00E-04 1.26E-03 23.8 

H2O - - 33.2 

TOTAL - 300 
 

Table A2.  3: Translgycosylation reaction conditions (Glc3GlcF + 6N3-GlcPNP). Study of subsite +1. 

 

t / min Aacceptor Aproduct Aa + Ap [Product] / mM 
0 5449.42 4.37 5453.79 4.01E-03 
22 5418.41 181.26 5599.67 1.62E-01 
51 5264.02 357.39 5621.41 3.18E-01 

81 5065.26 483.28 5548.54 4.35E-01 
 

Table A2.  4: Determination of vo (Glc3GlcF + 6N3-GlcPNP). Study of subsite +1. 
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Final concentration / 

mM 
[Stock] / 

mM 
Reaction volume / 

L 
Phosphate buffer 50 mM pH = 

7.2 
50 100.00 112.5 

CaCl2 0.1 mM 0.1 10.00 3.0 

[Glc3GlcF] 1 mM 1 20.00 15.0 

[GlcPNP] 5 mM in phosphate 
buffer 

5 20.00 75.0 

E134S 0.1 M 2.57E-03 1.10E-02 70.1 
H2O - - 24.4 

TOTAL - 300 

Table A2.  5: Translgycosylation reaction conditions (Glc3GlcF + GlcPNP). Study of subsites: control reaction. 

 

t / min Aacceptor Aproduct Aa + Ap [Product] / mM 
0.40 5555.10 34.80 5589.90 3.11E-02 
3.45 5123.70 233.80 5357.50 2.18E-01 
7.43 4900.50 368.50 5269.00 3.50E-01 
12.90 4873.10 492.10 5365.20 4.59E-01 

20.45 4664.50 576.40 5240.90 5.50E-01 
Table A2.  6: Determination of vo (Glc3GlcF + GlcPNP). Study of subsites: control reaction. 

 

 
Final concentration / 

mM 
[Stock] / 

mM 
Reaction volume / 

L 
Phosphate buffer 50 mM pH = 

7.2 
50 100.00 112.5 

CaCl2 0.1 mM 0.1 10.00 3.0 

[Glc3GlcF] 1 mM 1 10.80 27.8 

[6N3-GlcPNP] 5 mM in 
phosphate buffer 

5 20.00 75.0 

E134S 0.1 M 2.57E-03 1.10E-02 70.1 
H2O -   11.6 

TOTAL -   300 
Table A2.  7: Translgycosylation reaction conditions (6N3-Glc3GlcF + GlcPNP). Study of subsite -2 

 

t / min Aacceptor Aproduct Aa + Ap [Product] / mM 
0.42 5736.30 0.00 5736.30 0.00E+00 
3.35 5653.80 1.20 5655.00 1.06E-03 
7.32 5610.10 1.50 5611.60 1.34E-03 

12.87 5793.50 2.10 5795.60 1.81E-03 
20.20 5599.30 2.50 5601.80 2.23E-03 

Table A2.  8: Determination of vo (6N3-Glc3GlcF + GlcPNP). Study of subsite -2. 
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  Lane 1 (2h) 
  

Volume  % 

  Band 1 (Glc)  177414  33% 

  Band 2 

(Glc3Glc)  220893  41% 

  Band 3 (L3)  136240  25% 

TOTAL  534547  100% 
 

Table A2.  9: Degradation of curdlan. Analysis lane 1 (t = 2 hours). 

 

  Lane 2 (4h) 
  

Volume  % 

  Band 1 (Glc)  230870  39% 

  Band 2 

(Glc3Glc)  224810  38% 

  Band 3 (L3)  132151  22% 

TOTAL  587831  100% 
 

Table A2.  10: Degradation of curdlan. Analysis lane 2 (t = 4 hours). 

 

  Lane 3 (6h) 
  

Volume  % 

  Band 1 (Glc)  267747  41% 

  Band 2 

(Glc3Glc)  245493  38% 

  Band 3 (L3)  133304  21% 

TOTAL  646544  100% 
 

Table A2.  11: Degradation of curdlan. Analysis lane 3 (t = 6 hours). 

 

  Lane 4 (8h) 
  

Volume  % 

  Band 1 (Glc)  283540  45% 

  Band 2 

(Glc3Glc)  230160  36% 

  Band 3 (L3)  121924  19% 

TOTAL  635624  100% 
 

Table A2.  12: Degradation of curdlan. Analysis lane 4 (t = 8 hours). 
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  Lane 5 (10h) 
  

Volume  % 

  Band 1 (Glc)  315790  47% 

  Band 2 

(Glc3Glc)  219899  33% 

  Band 3 (L3)  138734  21% 

TOTAL  674423  100% 
 

Table A2.  13: Degradation of curdlan. Analysis lane 5 (t = 10 hours). 

 

  Lane 6 (12h) 
  

Volume  % 

  Band 1 (Glc)  274217  46% 

  Band 2 

(Glc3Glc)  191419  32% 

  Band 3 (L3)  133660  22% 

TOTAL  599296  100% 
 

Table A2.  14: Degradation of curdlan. Analysis lane 6 (t = 12 hours). 

 

  Lane 7 (14h) 
  

Volume  % 

  Band 1 (Glc)  347061  53% 

  Band 2 

(Glc3Glc)  181032  27% 

  Band 3 (L3)  131298  20% 

TOTAL  659391  100% 
 

Table A2.  15: Degradation of curdlan. Analysis lane 7 (t = 14 hours). 

 

  Lane 8 (16h) 
  

Volume  % 

  Band 1 (Glc)  307780  53% 

  Band 2 

(Glc3Glc)  159262  28% 

  Band 3 (L3)  108580  19% 

TOTAL  575622  100% 
 

Table A2.  16: Degradation of curdlan. Analysis lane 8 (t = 16 hours). 
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  Lane 9 (18h) 
  

Volume  % 

  Band 1 (Glc)  336223  56% 

  Band 2 

(Glc3Glc)  144223  24% 

  Band 3 (L3)  124556  21% 

TOTAL  605002  100% 
 

Table A2.  17: Degradation of curdlan. Analysis lane 9 (t = 18 hours). 

 

Lane 10 (20h) 
  

Volume  % 

  Band 1 (Glc)  377267  56% 

  Band 2 

(Glc3Glc)  142294  21% 

  Band 3 (L3)  155577  23% 

TOTAL  675138  100% 
 

Table A2.  18: Degradation of curdlan. Analysis lane 10 (t = 20 hours). 

 

Time / h 
% 

Monosaccharide 
% 

Disaccharide 
% 

Trisaccharide 

2  33  41  25 

4  39  38  22 

6  41  38  21 

8  45  36  19 

10  47  33  21 

12  46  32  22 

14  53  27  20 

16  53  28  19 

18  56  24  21 

20  56  21  23 
 

Table A2.  19: Degradation of curdlan. Ratio of the different products at different times. 
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  Lane 1 (2.5 eq)    Volume    Height  Area  R.F. values 

Di  86832  87  1394    0.312  

6'Tr  94749  118  1341    0.498  

6Tr  51633  104  792    0.656  

L  62458  123  960    0.919  
 

Table A2.  20: Tritylation study. Analysis lane 2.5 eq TrCl. 

 

  Lane 2 (3.5 eq)    Volume    Height   Area  R.F. values 

Di  167661  186  1332    0.319  

6'Tr  148750  166  1512    0.488  

6Tr  79228  135  972    0.653  

L  75380  99  1309    0.926  
 

Table A2.  21: Tritylation study. Analysis lane 3.5 eq TrCl. 

 

  Lane 3 (4.5 eq)    Volume    Height  Area  R.F. values 

Di  160388  178  1480    0.333  

6'Tr  146462  126  1960    0.484  

6Tr  26434  82  439    0.646  

L  59281  69  1229    0.860  
 

Table A2.  22: Tritylation study. Analysis lane 4.5 eq TrCl. 

 

TrCl equiv.  M vs M+D+L  L vs M+D+L  D vs M+D+L 

1.2  0.36  0.64  0.00 

2.0  0.42  0.35  0.23 

2.5  0.50  0.21  0.29 

3.0  0.47  0.33  0.19 

3.5  0.48  0.16  0.36 

4.0  0.51  0.27  0.21 

4.25  0.57  0.20  0.24 

4.50  0.44  0.15  0.41 

4.51  0.43  0.17  0.27 

5.5  0.30  0.00  0.70 

5.8  0.46  0.46  0.08 
 

Table A2.  23: Tritylation study. Study of maximum formation of monotritylated product vs equivalents of TrCl. 
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TrCl (equivalents)  1.2  2.0  2.5  3.0  3.5  4.25  4.5  4.51  5.5 

Glc3Glc  0.64  0.35  0.21  0.33  0.16  0.20  0.15  0.20  0.00 

6'Tr  0.20  0.31  0.32  0.33  0.32  0.31  0.37  0.27  0.23 

6Tr  0.16  0.11  0.17  0.14  0.17  0.25  0.07  0.22  0.07 

Ditrityl  0.00  0.23  0.29  0.19  0.36  0.24  0.41  0.31  0.70 
 

Table A2.  24: Tritylation study. Different ratios of products are obtained when the reaction is performed with different 
equivalents of TrCl. 
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4.1. INTRODUCTION 

 
Synthetic aminopolysaccharide mimetics of natural chitosans have attracted recent interest in 

materials science to modify and improve the physicochemical and biological properties of 

chitosan-based biomaterials. Chitosan consists in a linear heteropolysaccharide of β-1,4-linked 

N-acetylglucosamine (GlcNAc) and glucosamine (GlcNH2) units and it is obtained by chemical 

or enzymatic partial de-N-acetylation of chitin, with variable degrees of acetylation and random 

distribution of cationic glucosaminyl units along the polysaccharide chain.1 The cationic nature 

of chitosans makes them versatile materials with a broad range of applications.2,3,4,5,6 They are 

biocompatible and possess mucoadhesive, bacteriostatic and hemostatic properties. The 

positively charged chitosans are able to bind and encapsulate anionic compounds such as proteins 

and DNA, and interact with negatively charged compounds found in mucus and on cell surfaces, 

which improves the cell adhesion and proliferation properties of chitosan-based scaffolds. 

However, applications in drug and gene delivery systems suffer from low transfection efficiency.7  

With the aim of mimicking and improving the biomedical properties of chitosans, different 

procedures to modify neutral polysaccharides have been reported.8 Modifications of cellulose, 

laminarin, curdlan, and other natural polysaccharides are performed by chemical procedures, i.e. 

by functionalizing the C-6 positions with amino-substituted side chains or azido groups than can 

be reduced to amines or reacted by “Click” chemistry. The properties of these functionalized 

polysaccharides will depend on their molecular weight and degree of substitution. However, they 

are polydisperse with random distribution of the functional groups, requiring new methodologies 

to produce defined and reproducible polymeric materials. 

Sequence control is one of the great remaining problems in polysaccharide synthesis. Nature 

creates polysaccharides often with a very high degree of control over sequence leading to highly 

specific biological activity, for example the active sequences of glycosaminoglycans heparin9 and 

chondroitin sulfate10 that are vital to their interactions with proteins, governing their ability to 

prevent thrombosis. Laborious, multi-step, low-yielding chemical syntheses have been necessary 

to produce even oligosaccharides of controlled sequence.11  

Enzymatic synthesis opens up access to regular and homogeneous polysaccharides by 

glycosidase-catalyzed polymerization of simple glycosyl donors with regio- and stereospecificity 

of the newly-formed glycosidic linkages. Artificial cellulose was the first example produced by 

cellulase-catalyzed polymerization of β-cellobiosyl fluoride in acetonitrile/acetate buffer.12 Few 

other polysaccharides such as amylose, xylan, mixed-linked β-glucans, alternating cellulose-

chitin and cellulose-xylan hybrids, have been prepared by kinetically-controlled 
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transglycosylation using retaining glycosidases,13,14 with moderate yields due to the intrinsic 

hydrolase activity of the enzymes. More recently, glycosynthases have proved their efficiency for 

the enzymatic synthesis of oligosaccharides, and glycoconjugates.  

As it was already commented in Chapter 3 of this work, Fort et al.15 explored the ability of the 

glycosynthase derived from the cellulase Cel7B from Humicola insolens (HiCel7B E197A) to 

accept different functionalized cellobiosyl donors. The enzyme was able to accept α-cellobiosyl 

fluorides that had functionalities at C-6’ position such as bromine, amino and thioglucosyl groups. 

This particular glycosynthase offers a broad range of synthetic applications since it has also been 

employed for the synthesis of xyloglucan oligosaccharides.16 We envisioned the glycosynthase 

technology as a potential tool for the straightforward synthesis of functionalized polysaccharides: 

simple glycosyl donors prepared with the specific modifications can be accepted and polymerized 

by the glycosynthase enzyme to produce modified polysaccharides. The glycosynthase approach 

could provide a new generation of polysaccharides with a functionalization pattern and 

polymerization degree different to those obtained by chemical modification routes. 

We here address a powerful approach, whereby enzyme‐catalyzed polymerization of properly 

modified building blocks is introduced as a simple route affording polysaccharides with 

controlled sequence and functionalization pattern (Figure 4. 1). 
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Figure 4. 1: Glycosynthase-catalyzed polymerization to produce cellulose derivatives (polymers 1 – 4) and click 
chemistry with Alexa Fluor 488 alkyne (synthesis of 12). 

 

Targeting cellulose as a versatile scaffold for novel biomaterials, we describe the preparation of 

a perfectly alternating polysaccharide with repeat unit 6’‐azido‐6’‐deoxycellobiose by a 

glycosynthase‐catalyzed polymerization using the H. insolens cellulase Cel7B E197A mutant, 

and its further functionalization to give novel modified cellulose derivatives with a regular 

substitution pattern. 
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4.2. EXPERIMENTAL 

4.2.1. Materials 

1,6-anhydro--D-cellobiose (Carbosynth) was co-evaporated with toluene and dried under 

vacuum at room temperature overnight prior to use. N-bromosuccinimide (NBS, Sigma) was 

recrystallized from boiling water and dried for two days under reduced pressure over anhydrous 

calcium chloride. Triphenylphosphine (PPh3, Sigma) was recrystallized from boiling ethanol and 

dried overnight under reduced pressure over anhydrous calcium chloride. Dimethylacetamide 

(DMAc, Fisher Scientific) was kept over 4 Å molecular sieves and stored under dry nitrogen after 

the first use.  

4.2.2. Synthesis of substrates 

4.2.2.1. 2,3,4-Tri-O-acetyl-6-bromo-6-deoxy--D-glucopyranosyl-(1→4)-1,6-

anhydro-2,3-di-O-acetyl--D-glucopyranose (6) 

1,6-anhydrous cellobiose (5) (2.50 g, 7.71 mmol) was dissolved in 100 mL DMAc under nitrogen. 

PPh3 (7.88 g, 30.84 mmol, 4 eq) and NBS (13.80 g, 30.84 mmol, 4 eq) were dissolved each one 

in 25 mL of dry DMAc under nitrogen. The PPh3 solution was added dropwise to the solution of 

5, followed by the dropwise addition of the NBS solution. The reaction solution was heated to 

70ºC under nitrogen. After 1 h, 7.30 mL (7.89 g, 77.39 mmol, 10 eq) of acetic anhydride were 

slowly added to the reaction, and the solution was stirred overnight at 70ºC.  

The product was isolated by adding the reaction mixture slowly to 400 mL of a 50:50 (v/v) 

mixture of methanol and deionized water. Methanol was removed and extractions were done with 

EtOAc and water. The organic phase was dried with MgSO4 and concentrated. The product of 

interest 6 (890 mg, 1.49 mmol) was isolated in 20% yield through flash chromatography using a 

gradient of cyclohexane / EtOAc 1.5:1 (v/v) → (1 : 1) → (1 : 1.5).  

1Η ΝΜR (CDCl3, 400 MHz) δ 5.45 (s, 1H, H-1I), 5.23 (t, 1H, J2,3 = J3,4 =9.4 Hz, H-3I), 5.18 (m, 

1H, H-3II), 5.04 (m, 2H, H-2II, H4II), 4.94 (d, 1H, J1,2 = 8.1 Hz, H-1II), 4.61 (m, 2H, H-2I, H-5I), 

3.97 (dd, 1H, J5,6 = 1.1 Hz, Ja,b = 7.7 Hz, H-6Ia), 3.81 (m, 2H, H-5II, H-6Ib), 3.57 (s, 1H, H-4I), 

3.47 (dd, 1H, J5,6 = 2.7 Hz, Ja b = 11.4 Hz, H-6IIa), 3.37 (dd, 1H, J5,6 = 6.6 Hz, Ja,b = 11.4 H-6IIb), 

2.17 – 1.01 (m, 15H, CH3).
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4.2.2.2. 2,3,4-Tri-O-acetyl-6-bromo-6-deoxy--D-glucopyranosyl-(1→4)-1,2,3,6-

tetra-O-acetyl--D-glucopyranose (7) 

A catalytic amount of triethylsilyl triflate (12 L) was added, dropwise, to a solution of 6 (947 

mg, 1.58 mmol) in acetic anhydride (12 mL) cooled at 0 ºC. The mixture was stirred at 0 ºC for 

30 minutes. Then, saturated aqueous NaHCO3 was added to quench the reaction and the products 

were extracted with DCM. The organic layers were dried, concentrated and coevaporated with 

toluene1. HBr (30% w/v in AcOH, 3.2 mL) was added to the crude anomeric mixture in DCM 

(6.4 mL) at 0 ºC. After stirring at 0 ºC for 30 minutes and then at room temperature for an 

additional hour, the reaction mixture was diluted with DCM, washed with ice-cold water and ice-

cold saturated aqueous NaHCO3 (3x), dried and concentrated. The resulting bromide and AgOAc 

(646 mg, 1.84 mmol) in a mixture of Ac2O/AcOH (16 mL, 1:1 v/v) were stirred in the dark 

overnight at room temperature. The mixture was diluted with DCM and filtered through a Celite 

bed, and the filtrate was washed with saturated aqueous NaHCO3 (3x), dried, and concentrated. 

Filtration through silica gel (EtOAc/petroleum ether 7:3 v/v) gives 7 (1.22 g, 1.67 mmol), 99 % 

three steps). 

1Η ΝΜR (CDCl3, 400 MHz) δ 5.67 (d, 1H, J1,2 = 8.2 Hz, H-1I), 5.26 (t, 1H, J1,2 = 9.2 Hz, H-3I), 

5.15 (t, 1H, J2,3 = 9.3 Hz, H-3II), 5.07 – 4.91 (m, 3H, H-2I, H-2II, H-4II) 4.54 (d, 1H, J1,2 = 7.8 Hz, 

H-1II), 4.49 (dd, 1H, J5,6 = 12.3 Hz, Ja,b = 12.2 Hz, H-6Ia), 4.14 (dd, 1H, J5,6 = 4.7 Hz, Ja,b = 12.2 

Hz, H-6Ib), 3.88 (t, 1H, J2,3 = J3,4 = 9 Hz, H-4I), 3.79 – 3.63 (m, 2H, H-5I, H-5II), 3.47 (dd, 1H, J5,6 

= 2.7 Hz, Ja,b = 11.4 Hz, H-6IIa), 3.32 (dd, 1H, J5,6 = 7 Hz, Ja,b = 11.4 Hz, H-6IIb), 2.30 – 1.98 (m, 

21H, CH3). 

13C NMR (CDCl3, 100 MHz) δ 170.4-168.9 (CO), 100.1 (C-1II), 91.8 (C-1I), 75.5 (C-4I), 73.8, 

73.7, 72.8, 72.2, 71.8, 70.9, 70.7 (C-2I,II, C-3I,II, C-5I,II, C-4II), 61.7 (C-6I), 30.4 (C-6II), 21 -20.7 

(CH3). 

4.2.2.3. Acetyl 2,3,4-tri-O-acetyl-6-azido-6-deoxy--D-glucopyranosyl-(1→4)-2,3,6-

tri-O-acetyl-D-glucopyranosyde (8a). 

Compound 7 (35 mg, 0.053 mmol) was dissolved in DMAc (1 mL) which contained sodium azide 

(15 mg, 0.230 mmol, 4.5 eq). The mixture was heated to 80 °C for 1 h and then concentrated in 

vacuo. The residue was dissolved in DCM, and the organic layer was washed with water, dried 

                                                            
1 This reaction does not work in the presence of PPh3. Compound 6 must be completely pure. 
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and concentrated obtaining the crude 8a, consisting of a mixture of / anomers (70:30) 6’-azido-

6’-deoxycellobiose determined by TLC and NMR.  

4.2.2.4. 2,3,4-Tri-O-acetyl-6-bromo-6-deoxy--D-glucopyranosyl-(1→4)-2,3,6-tri-

O-acetyl--D-glucopyranosyl fluoride (8b). 

A solution of 7 (75 mg, 0.107 mmol) in HF-pyridine (1 mL, 7:3 v/v, 3.5 mmol HF, 326 eq HF per 

disaccharide) was stirred at 0 °C for 1.5 h in a plastic vial. The mixture was diluted with DCM (2 

mL) and poured into ice-cold aqueous NH3 3M (5 mL); the organic layer containing 8b was 

washed with saturated aqueous NaHCO3 (3×), dried and concentrated.  

1Η ΝΜR (CDCl3, 400 MHz) δ 5.69 (dd, 1H, J1,2 = 2.8 Hz, J1,F = 52.8 Hz, H-1I), 5.47 (t, 1H, J2,3 = 

J3,4 = 9.6 Hz, H-3I), 5.17 (t, 1H, J2,3 = J3,4 = 9.6 Hz, H-3II), 4.99 – 4.84 (m, 3H, H-2I, H-2II, H-4II), 

4.59 – 4.55 (m, 2H, H-1II, H-6Ia), 4.19 – 4.12 (m, 2H, H-6Ib, H-5I), 3.90 (t, 1H, J4,5 = 9.7 Hz, H-

4I), 3.69 – 3.65 (m, 1H, H-5II), 3.49 – 3.46 (m, 1H, H-6IIa), 3.35 – 3.29 (m, 1H, H-6IIb), 2.15 – 1.99 

(m, 18H, CH3). 

4.2.2.5. 2,3,4-Tri-O-acetyl-6-azido-6-deoxy--D-glucopyranosyl-(1→4)-2,3,6-tri-O-

acetyl--D-glucopyranosyl fluoride (9).  

Compound 8b (524 mg, 0.813 mmol) was dissolved in DMAc (17 mL) which contained sodium 

azide (267 mg, 5.14 mmol, 6 eq). The mixture was heated to 80 °C for 1 h and then concentrated 

in vacuo. The residue was dissolved in DCM, and the organic layer was washed with water, dried 

and concentrated. Purification by flash chromatography (EtOAc – cyclohexane 1:1.5 v/v) yielded 

compound 9 (282 mg, 0.454 mmol) in 56%, two steps. 

1Η ΝΜR (CDCl3, 400 MHz) δ 5.68 (dd, 1H, J1,2 = 2.8 Hz, J1,F = 53.1 Hz, H-1I), 5.47 (t, 1H, J2,3 = 

J3,4 = 9.6 Hz, H-3I), 5.17 (t, 1H, J2,3 = J3,4 = 9.6 Hz, H-3II), 4.98 – 4.81 (m, 3H, H-2I, H-2II, H-4II), 

4.60 (d, 1H, J1,2 = 8.0 Hz, H-1II), 4.59 – 4.55 (m, 1H, H-6Ia), 4.15 (dd, 1H, J5,6 = 4.1 Hz, Ja,b = 12.2 

Hz, H-6Ib), 4.11 – 4.07 (m, 1H, H-5I), 3.90 (t, 1H, J = 9.7 Hz, H-4I), 3.66 – 3.61 (m, 1H, H-5II), 

3.39 – 3.36 (m, 2H, H-6IIa, H-6IIb), 2.15 – 1.99 (m, 18H, CH3). 

4.2.2.6. 6-azido-6-deoxy--D-glucopyranosyl-(1→4)--D-glucopyranosyl fluoride 

(6’N3-CelαF) (10).  

Compound 9 (329 mg, 0.529 mmol) was dissolved in 15 mL MeOH (30 mg/ mL). Then, 28 L 

of 5.4 M solution of NaOMe in MeOH were added and left under stirring overnight at room 

temperature. The pH should be basic after the addition of NaOMe, otherwise, more salt should be 

added. Amberlite® IR-120 acidic resin was added to neutralize the reaction mixture. The resin 
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was removed by filtration, and the filtrate concentrated. Freeze-dried compound 10 (126 mg, 

0.341 mmol) was obtained in 65% yield. 

1Η ΝΜR (MeOD, 400 MHz) δ 5.59 (dd, 1H, J1,2 = 2.8 Hz, J1,F = 53.6 Hz, H-1I), 4.50 (d, 1H, J1,2 

= 7.8 Hz, H-1II), 3.99 – 3.50 (m, 9H, H3I,II, H2I,II, H4I,II, H5I,II, H6Ia), 3.44 – 3.38 (m, 2H, H-6Ib, 

H-6IIa) , 3.29 (dd, 1H, J5,6 = 7.9 Hz, Ja,b = 8.9 Hz, H-6IIb). 

13C NMR (MeOD, 100 MHz) δ 108.7 (d, JC,F = 224 Hz, C-1I), 104.6 (C-1II), 79.8, 77.6, 76.3, 74.9, 

74.3, 74.3 (d, JC,F = 4 Hz, C-5I), 73.0 (d, JC,F = 24 Hz, C-2I), 72.7, 71.9, 61.1 (C-6I), 52.7 (C-6II). 

4.2.2.7. Cellobiosyl fluoride donor (CelF) (18) 

CelF is prepared as previously reported by treatment of peracetylated cellobiose with hydrogen 

fluoride in pyridine (70%), purification of the peracetylated -glycosyl fluoride by flash 

chromatography, followed by de-O-acetylation with sodium methoxide gives 18 in quantitative 

yields17. The spectrum of the starting acetylated cellobiosyl fluoride presented the following 

signals: 1Η ΝΜR (MeOD, 400 MHz) δ 5.67 (dd, 1H, J1,2 = 2.8 Hz, J1,F = 53.0 Hz, H-1I), 5.47 (t, 

1H), 5.18 – 5.05 (m, 2H), 4.96 – 4.84 (m, 2H), 4.54 (d, 1H, J1,2 = 7.9 Hz, H-1II), 4.37 (dd, 1H, Ja,b 

= 12.4, J5,6 = 4.5 Hz, H-6IIb), 4.17 – 4.04 (m, 4H), 3.83 (t, 1H), 3.71 – 3.65 (m, 1H), 2.15 – 1.99 

(m, 21H, CH3). 

4.2.2.8. Synthesis of the accpetors p-nitrophenyl -D-glucopyranoside (GlcpNP) 

(31) and p-nitrophenyl 6-azido-6-deoxy-2,3,4-tri-O-acetyl--D-

glucopyranoside (6N3-GlcpNP) (35) for the glycosynthase reactions  

The chemical synthesis of these two compounds can be found in Chapter 3 (Experimental). 

4.2.3. Enzymes 

The Humicola insolens Cel7B E197A enzyme was kindly provided by Novozymes (Denmark). 

The protein was >95% homogeneous as judged by SDS-PAGE. Concentration was determined 

by UV spectrophotometry (ε280= 6.68 x 105 M-1·cm-1). 

 

4.2.3.1. Kinetics of donor-acceptor condensations catalyzed by the HiCel7B E197A 

glycosynthase  

Reactions were done in 96-well microplates. Donor and acceptor substrates in 100 mM phosphate 

pH 7.0 were pre-incubated at 35ºC for 5 min, then the reactions were initiated by addition of the 

HiCel7B E197A enzyme and kept at 35 °C (final reaction volume of 0.3 mL). Aliquots were 

withdrawn at regular time intervals, diluted 1:10 with formic acid 2% (v/v) to stop the enzymatic 
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reaction, and analyzed by HPLC (Agilent HPLC equipment, NovaPak C18 (4 µm, 3.9 × 150 mm) 

column (Waters), flow rate 1 mL/min, 8.5% MeOH in water when using cellobiosyl floride donor 

(11) and 12% MeOH in water for 6-azido-cellobiosyl floride donor (10), UV detector at 300 nm). 

Initial rates (vo) were obtained from the linear progress curves of product formation (normalized 

area vs time) and expressed as vo/[E] in inverse seconds. The initial rates of transglycosylation at 

different concentrations of donor were calculated from the relative areas of transglycosylation 

product at initial reaction times (< 10% conversion, linear progress curve). Chromatographic 

peaks were assigned by co-injection with independent standards.  

For the determination of specific activities (data in Figure 4. 3), reactions were done at 1 mM 

donor (11 or 10), 7 mM acceptor (31 or 35), and 0.83 µM enzyme (specific activity of 6.2 min-1 

for the reference reaction Glcβ4GlcF + GlcpNP). For determination of kinetic parameters (data 

in Figure 4. 4), reactions were done at constant acceptor (31) concentration of 20 mM, varying 

donor (11 or 10) concentrations (0.025 to 2 mM), and 0.1 or 0.5 µM enzyme (specific activity of 

16 min-1 for the reference reaction Glcβ4GlcF + GlcpNP) for reactions with donor 11 or 10, 

respectively. Kinetic parameters kcat, KM, and kcat/KM were calculated by nonlinear fitting of v0 vs. 

donor concentration data to the Michaelis Menten model (eq. 4.1) or substrate inhibition model 

(eq. 4.2). 

 

௢ݒ ൌ 	
௞೎ೌ೟	ሾாሿሾௌሿ

௄ಾାሾௌሿ
 (eq. 4. 1) ݒ௢ ൌ 	

௞೎ೌ೟	ሾாሿሾௌሿ

௄ಾାሾௌሿା	
ሾೄሿమ

಼಺

 (eq. 4. 2) 

Equations 4.1 and 4.2. Michaelis-Menten models. 

 

4.2.4. Glycosynthase-catalyzed polymerizations 

Reaction mixtures (0.5 mL) consisting of 30 - 50 mg donor substrate (11 or 10), phosphate buffer 

(100 mM, pH = 7.7) and HiCel7B E197A enzyme (56 µM, specific activity of 16 min-1 for the 

reference reaction Glcβ4GlcF + GlcpNP) were incubated at 40 ºC and 250 rpm. A precipitate 

was formed during the reaction and no donor was observed by TLC (ACN/H2O 8:2) after 24 

hours. The precipitated product was isolated by centrifugation at 27,000 x g for 3 minutes, and 

the precipitate was thoroughly washed with cold water. Finally, the product was freeze-dried to 

yield water-insoluble polymers as white powders. Supernatants were also lyophilized to recover 

soluble oligomers. The products were analyzed by HPSEC to determine the polymer parameters 

(Mw, Mn, Mp, DP, PDI). 

 

Synthetic cellulose (1).- Compound 11 (30 mg, 0.087 mmol) was dissolved in phosphate buffer 

(0.1 M, pH 7.0, 0.5 mL) and incubated with HiCel7B E197A enzyme (56 µM) at 40 °C. After 24 
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h, the isolated water-insoluble polymer was freeze-dried obtaining a white powder (29 mg, 92% 

yield).  

Alternating 6-azido-6-deoxycellulose (2).- Compound 10 (30 mg, 0.081 mmol) was dissolved in 

phosphate buffer (0.1M, pH 7.0, 0.5 mL) and incubated with HiCel7B E197A enzyme (56 µM) 

at 40 °C. After 24 h the isolated water-insoluble polymer was freeze-dried obtaining a white 

powder (26 mg, 82% yield).  

Acetylated alternating 6-azido-6-deoxycellulose (3).- Polymer 2 (26  mg) was mixed with 

pyridine (118 µL, 20 equiv), acetic anhydride (138 µL, 20 equiv) and DMAP (1 mg). The reaction 

solution was stirred for 24 h at 80 ºC. The product was isolated by pouring the reaction mixture 

in 2 mL deionized water, followed by filtration. The precipitate was dried overnight in a vacuum 

oven at 50 °C. DS = 2.1 determined by 1H NMR spectroscopy. FTIR: 3439 cm-1 (OH), 2109 cm-

1 (N3), 1757 cm-1 (C=O). 

 

4.2.5. Functionalization of polysaccharides 2 and 3 

Conjugated alternating 6-azido-6-deoxycellulose with Alexa Fluor® 488 alkyne (12).- A solution 

of Alexa Fluor® 488 alkyne (Life Technologies) (2.0 mg, 2.56 µmol) in water (1 mL) and freshly 

prepared solution of sodium L-ascorbate (1M, 20 mL, Sigma-Aldrich) were added to a solution 

of polymer 2 (1.0 mg, 2.6 µmol/anhydrous cellobiose Unit) in DMSO (1mL). Then, 7.5% aqueous 

cupric sulfate (24 µL, 7.21 µmol) was added to the reaction mixture, which was stirred overnight 

at 24ºC. The unreacted Alexa Fluor reagent was removed by dialysis (Pur-A-LyzerTM Mega 1000 

Dialysis Kit, Sigma-Aldrich) against water. The functionalized polymer 12 (1.0 mg, 1.07 µmol) 

was obtained after lyophilization in 41 % yield.  

Acetylated alternating 6-aminocellulose (4).- Polymer 3 (20 mg) was dissolved in 2 mL of THF, 

followed by the dropwise addition of 13 µL of deionized water. Then, Ph3P (2 eq. per acetylated 

glucosyl unit) was added, and the solution allowed to react at room temperature for 12h in a sealed 

flask. The solution was transferred to a 3500 MWCO dialysis tubing that was placed in a beaker 

containing 600 mL ethanol. As the dialysis proceeded, a precipitate was slowly formed. After one 

day of dialysis, the contents inside the tubing were removed, and the precipitate was isolated by 

filtration. The precipitate (polymer 4) was dried in a vacuum oven at 50 °C. 

FTIR: 3431 cm-1 (OH, NH2), 1763 cm-1 (C=O).  

 

4.2.6. Structural characterization of the polysaccharides 

FTIR.- A Thermo Electron Nicolet 8700 FTIR was used to perform infrared spectroscopy 

analyses of the samples as pressed KBr pellets. All samples were dried in a vacuum oven prior to 

analysis to avoid moisture. In situ FTIR spectra were obtained using a Mettler Toledo ReactIR 

45M with a SiComp fiber optic ATR probe.   
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NMR.- 1H and 13C NMR, COSY and HSQC spectra were recorded on a Varian Gemini 400 MHz 

spectrometer operated at 298 K. For 1H NMR, the TMS peak (0 ppm) was used as reference. 

When using MeOD as solvent, the central peak of the MeOD multiplet (3.31 ppm) was used as a 

reference. For 13C NMR, the central peak of the CDCl3 triplet (77.16 ppm) was used as a reference. 

When using MeOD as solvent, the central peak of the MeOD multiplet (49.00 ppm) was used as 

a reference18. 

Synthetic cellulose and functionalized cellulose 13C NMR spectra were obtained on Varian 

INOVA and Varian UNITY 400 MHz spectrometers with a minimum of 5,000 scans in CDCl3. 

Chemical shifts are reported relative to the solvent peaks.  

Mass spectrometry.- MALDI-TOF spectra were obtained in a Bruker Daltonics spectrometer with 

2,5-dihydroxybenzoic acid as matrix. Reflectron, positive ion mode, 19 kV acceleration voltage, 

and 20 kV reflector voltage were used. 

Size exclusion chromatography.- HPSEC analyses to determine molecular mass profiles were 

performed on an Agilent 1100 HPLC system equipped with a refractive index detector using a 

PSS Gram column (8.0 x 300 mm, 100Å, 10 um) and a PSS Gram pre-column (9.0 x 50 mm, 100 

Å, 10 um) thermostated at 50ºC, and DMSO with lithium bromide (5 g/L) as eluent at a flow rate 

of 0.5 mL/min. The calibration curve was obtained with dextrans as standards (American Polymer 

Standards Corporation DXT1 – DXT55 kDa). Freeze dried polymers and standards were 

dissolved in DMSO and filtered. From the chromatograms, Mp (molecular mass of the peak 

maximum), Mw (weight average molecular mass), Mn (number average molecular mass), DP 

(degree of polymerization), and PDI (polydispersity index) were calculated.19  

Scanning electron microscopy.- For SEM experiments, the dried product was fixed on a graphite 

tape, coated with gold/palladium by ion-sputtering, and observed at an accelerating voltage of 10 

kV and working distance of 16 mm using a JEOL JSM-5310 microscope. 

Fluorescence microscopy.- Polysaccharide 12 was observed with a Stereoscopic microscope 

Nikon Eclipse TE 2000-U using a Piston GFP filter, excitation 450-490 nm, emission: 500-530 

nm, and images were acquired with a cooled CCD camera.
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4.3. RESULTS AND DISCUSSION 

A substrate that acts both as a good donor and acceptor can efficiently self-condense in a 

glycosynthase polymerization reaction. Structural and kinetic studies of different endo-

glycosidases on their disaccharide substrates revealed that the introduction of a functionalization 

at C-6 with an azido group could compromise the enzyme-substrate binding.20,21,22 By contrast, at 

position C-6’ interactions seem less restrictive. Therefore, we tentatively proposed that 6’N3-

CelαF could be accepted as donor as well as acceptor by the E197A glycosynthase mutant.  

4.3.1. Synthesis of azido substrates 

To explore the possibility of using HiCel7B E197A for the glycosynthase-catalyzed 

polymerization reaction of 6’N3-CelαF, we tested the enzyme on different azido substrates and 

evaluated its effect on donor and acceptor subsites. 

The synthesis of 6’-azido-6’-deoxy-cellobiosyl fluoride (6’N3-CelαF) was prepared essentially as 

reported in Fort et al.15 exploring some additional modifications (Figure 4. 2). Starting from 1,6-

anhydro--D-cellobiose (5), selective bromination was performed at position C-6’ with N-

bromosuccinimide and triphenylphosphine in dimethylacetamide for 1 hour at 80 ºC. Addition of 

acetic anhydride was added to protect the free hydroxyls of the disaccharide and isolate the 

brominated product (6). Acetolysis of the 1,6-anhydro ring was developed as in Fort et al. with 

hydrobromic acid in acetic acid and further acetylation with silver acetate yielding the β-anomer 

in quantitative yields (7). The first strategy for the synthesis of the desired donor 6’N3-CelαF 

consisted on treatment with sodium azide in DMF, acetylation followed by fluorination, but a 

mixture of 6’-azido-6-’deoxy-D-cellobiose anomers (/β 70:30) (8a) were obtained which 

decreased fluorination yields. Therefore, the beta anomer was first fluorinated (8b) and then 

azidated (9) as in Fort’s work. Finally, deacetylation with sodium methoxide in MeOH afforded 

the new glycosynthase donor 6’N3-CelαF (10) (see characterization of the products in the 

Experimental section). 
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Figure 4. 2: Synthesis of the cellobiosyl fluoride donor 6’N3-CelαF (10). 
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Acceptors p-nitrophenyl 6-azido-6-deoxy--D-glucoside (6N3-GlcpNP, 35) was obtained after 

regiospecific tosylation of p-nitrophenyl -D-glucoside (GlcpNP, 31) and further substitution 

by sodium azide with an overall yield of 50% as decribed in Chapter 3 (Figure 3.  26).  

4.3.2. Kinetic characterization of HiCel7B E197A glycosynthase for azido 

substrates  

To evaluate the ability of the HiCel7B E197A glycosynthase to accept azido-substituted 

substrates, different donor-acceptor pairs were kinetically analyzed (Figure 4. 3). With CelαF (11) 

as donor substrate, specific activities with acceptors GlcpNP (31) and 6N3-GlcpNP (35) are 

essentially the same, indicating that the azido group can be accommodated in subsite +1 of the 

enzyme’s binding cleft. With 6’N3-CelαF (10) donor and 6N3-GlcpNP (35) acceptor substrates, 

activity is just 2-fold lower than the reference 11+31 reaction, concluding that subsite -2 also 

tolerates an azido substitution.  
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Kinetics with different donor concentrations at saturating GlcpNP acceptor (31) concentration 

are plotted in Figure 4. 4. CelαF (11) follows saturation kinetics with kcat of 17 min-1, whereas 

6’N3-CelαF (10) has the same kcat (16.4 min-1) but shows substrate inhibition at high donor 

concentration. Therefore, subsites -2 and +1 accept the 6-azido substitution, a requirement to 

evaluate donor self-condensation to yield alternating 6-azido polymers.  

 

 

 

 

Reaction R1 R2   s.a. (%)1 
11 + 31 OH OH 100 
11 + 35 OH N3 102 
10 + 31 N3 OH   48 

Figure 4. 3: Donor-acceptor condensations catalyzed by the HiCel7B E197A glycosynthase. 1) Specific activities (s.a.) 
at 1 mM donor (11 or 10), 7 mM acceptor (31 or 35), 0.83 µM enzyme in 100 mM phosphate buffer pH 7.0, 35ºC.  
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4.3.3. Glycosynthase-catalyzed polymerization 

Glycosynthase-catalyzed polymerizations were performed at high donor concentration, pH 7.8 

and 40 ºC (Figure 4. 1, Table 4. 1). Polymeric products precipitated as a white powder after 24 h 

reactions. TLC analysis showed that the polymerizations proceeded quantitatively and neither 

fluoride donors nor their hydrolysis products were detected. The water-insoluble polymers were 

isolated in good yields (>90%) after centrifugation, washes with water, and lyophilization, and 

they were structurally characterized. 

Analysis of the degree of polymerization and molecular mass distribution of the insoluble 

polysaccharides by HPSEC showed that cellulose (1) (entry 1, Table 4. 1) presents a monomodal 

profile with a MW value of 4.3 kDa which corresponds to (4Glcβ4Glcβ)n, n=13, and the alternating 

6-azido-6-deoxycellulose (2) (entry 2) has a MW value of 5.8 kDa ((4[6’N3-Glc]β4Glcβ)n, n=17) 

(Figure 4. 5). Same results were obtained after acetylation of the 6-azido polysaccharide with 

Ac2O and pyridine (entry 3, polymer 3).  

 

 

 

Donor kcat 

(min-1) 
KM 

(mM) 
KI 

(mM) 
kcat/KM 

(mM-1min-1) 
18 17.1 ± 0.9 0.10 ± 0.03 -- 173 
10 16.4 ± 2.4 0.15 ± 0.04 1.5 ± 0.5 113 
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Figure 4. 4: Kinetics of HiCel7B E197A glycosynthase for donors Glcβ4GlcαF (11, ) and 6’-N3Glcβ4GlcαF (10, ) 
at saturating (20 mM) GlcpNP (31) acceptor in 100 mM phosphate buffer pH 7.0, 35 ºC. 
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Entry 
[donor] 
(mM) 

[enz]     

(M) 

yield     
(%) 

Mw     
(kDa) 

n (DP)d 
Mn     

(kDa) 
PDI  Mp

e (kDa) 

CelF            

1  174  56  92  4.3  13 (26)  2.9  1.5  3.7 

6’N3‐CelαF   
        

2  162  56  75 ‐ 90  5.8  17 (34)  4.9  1.2  4.7 

3a  162  56  88b  9c  16 (32)  7  1.2  8 

Table 4.  1: Polysaccharide parameters obtained after HPSEC. aGlycosynthase-catalyzed reaction followed by further 
acetylation. baverage yield (4 reactions). cacetylated Mw.  dn, number of condensations. (DP), number of glucosyl units 
for the weight average   molecular mass polysaccharide (Mw). eMp, molecular mass of the maximum peak in HPSEC 
chromatograms. Two values correspond to bimodal profiles. 

 

 

Figure 4. 5. HPSEC chromatograms of polymers 1 (cellulose) and 2 (alternating 6-azido-6-deoxycellulose) obtained 
under different conditions, where labels correspond to entries in Table 4. 1. Mp values (maximum of the peaks) are 
indicated in kDa. 

 

MALDI-TOF MS shows a series of peaks up to 5.5 kDa corresponding to the low molecular mass 

oligomers, peaks separated by ∆m/z of 324 and 349 for polymer 1 and 2, respectively, which 

correspond to the theoretical mass of the repeating (Glcβ4Glc) unit for polymer 1 and the (6’N3-

Glcβ4Glc) unit for polymer 2, and ∆m/z of 560 for the acetylated polymer 3 (Figure 4. 6).  
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Analysis of the acetylated polymer 3 by 1H NMR presented a degree of acetylation (DA) of 2.1 

(maximum theoretical DA = 2.5) (Figure 4. 7). 13C NMR (Figure 4. 8A) showed the formation of 

the new β-1,4 glycosidic linkage (δH 76 ppm) and disappearance of the signal at δH 69 ppm 

assignable to the unsubstituted C-4 of the nonreducing end of the cellobiosyl donor. The signal at 

δC 62 ppm corresponds to the acetylated C-6 positions while the signal at δC 51 ppm was assigned 

to the azidated C-6’ positions consistent with the presence of azido groups every two glucosyl 

units.  

 

 

Figure 4. 7: 1H NMR spectrum of alternating acetylated 6-azido 6-deoxycellulose (3). 

 

Figure 4.  6. MALDI-TOF spectra of A) synthetic cellulose (1), B) 6-azido 6-deoxycellulose (2), C) acetylated 6-
azido 6-deoxycellulose (3). 

A  B 

C
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Figure 4. 8: 13C NMR spectra of (A) acetylated alternating 6-azido-6-deoxycellulose (3), and (B) acetylated alternating 
6-amino-6-deoxycellulose (4). 

 

The FTIR spectrum of the alternating 6-azido-cellulose (2) (Figure 4. 9A) shown an intense 

stretching band of the azido group at 2110 cm-1, and the absorption band of the sugar OH groups 

at 3480 cm-1, whereas the acetylated polymer 3 (Figure 4. 9B) retains the azide band at 2110 cm-

1, a new band at 1750 cm-1 for the C=O of the acetyl groups, but still contains a small absorption 

band at 3480 cm-1 due to free hydroxyl groups resulting from the incomplete acetylation reaction.   
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Figure 4. 9: FTIR spectra of alternating 6-azido 6-deoxycellulose and their derivatives. A) 6-azido 6-deoxycellulose 
(2). B) acetylated 6-azido 6-deoxycellulose (3). C) conjugated 6-azido 6-deoxycellulose with Alexa Fluor (12). D) 
acetylated 6-amino 6-deoxycellulose (4). 

 

Polysaccharide morphologies were analyzed by SEM revealing that the 6-azido-cellulose (2) 

formed porous spherulites like the non-modified cellulose (1), although they seem to be larger, 

with 5-7 µm versus 2-4 µm average diameter, respectively (Figure 4. 10). These artificial 

polysaccharides notably differ from natural cellulose such as MCC (microcrystalline cellulose), 

whose particles of 10-50 µm are composed of aggregate bundles of multi-sized cellulose 

microfibrils.23 The spherulite morphology with variable porosity seems to be common for 

artificial polysaccharides produced by in vitro enzymatic syntheses, as previously seen in the first 

artificial cellulose obtained by transglycosylation with T.viridiae cellulase24 or alternating β-

1,3/1,4 glucan obtained by a glycosynthase-catalyzed polymerization.25,26  

 

A B 

C D 
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Figure 4. 10: SEM of the polysaccharides 4 (left) and 5 (right). 

 

4.3.4. Functionalization of polysaccharides 2 and 3 

The azido cellulose 2 and the acetylated derivative 3 are reactive intermediates for further 

modifications (Figure 4. 1). The accessibility and reactivity of the 6-azido groups was first tested 

by “click” chemistry (Figure 4. 11).27  
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Figure 4.  11: Derivatization of 6-azido-6-deoxycellulose with the fluorescent Alexa Fluor dye. 

The alternating  6-azido-6-deoxycellulose (2) was subjected to a copper-catalyzed azide/alkyne 

cycloaddition (Huisgen reaction)28 with the alkyne-functionalized Alexa Fluor dye. After 

isolation of the water soluble product (12) by dialysis and lyophilization, FTIR spectroscopy 

(Figure 4. 9C) showed the appearance of a new absorption band at 1621 cm-1 corresponding to 

the carbonyl group of the Alexa Fluor amide function, and the disappearance of the stretching 

band of the azido groups at 2110 cm-1, although some residual band was apparent due to 

incomplete reaction. The dye-labeled polymer 12 was observed as a green fluorescent solid by 

fluorescence microscopy (Figure 4. 12).  
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Next, reduction of the azido groups to amines was studied. Staudinger reduction has been recently 

applied to acylated 6-azido-6-deoxycelluloses with DS (azido) of 0.9-0.95 to selectively reduce 

the azido groups to amines in the presence of easily reducible ester groups (Figure 4. 13).30  
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Figure 4.  13: Acetylation of 6-azido-6-deoxycellulose and further reduction of the azide. 

 

The same protocol was here applied to reduce the acetylated alternating 6-azido polymer 3 with 

the aim of obtaining a novel 6-amino-6-deoxy cellulose derivative with a regular pattern of one 

amino group every two glucosyl units in the polysaccharide chain. The reaction was performed 

by reacting the acetylated polymer 3 dissolved in THF with Ph3P to form a phosphazide which 

evolves to an iminophosphorane. It is then hydrolyzed by water to produce the polymer 4 and 

triphenylphosphine oxide. Unfortunately, this new polysaccharide has poor solubility in water 

and common organic solvents, alike the reported acylated 6-aminocelluloses obtained from 

MCC.30 Due to the solubility issues, the reaction was performed in deuterated THF and the 13C 

NMR spectrum of the crude reaction mixture was directly recorded (Figure 4. 8B). The spectrum 

showed the formation of the amine (δC 43 ppm assigned to C-6’-NH2) and some residual azide 

(signal at δC 51 ppm for C-6-N3). FTIR analysis confirms the presence of the free amine (broad 

N−H stretching band at 3390 cm−1 and the N−H bend at 1570 cm−1) but shows a residual signal 

of the azide at 2110 cm-1
, while the carbonyl signal of the acetyl groups remains at 1755 cm-1 

(Figure 4. 9D).  

Substituted celluloses at C-6 have been achieved by chemical modification of MCC, where 

bromination of cellulose is completely selective at C-6,29 but further SN2 displacement of the 

bromide is limited due to the poor solubility of the 6-bromo-6-deoxycellulose. Edgar and 

coworkers30 showed that esterification of brominated cellulose broadens the applications for 

Figure 4. 12: Fluorescent-labelled 6-azido 6-deoxycellulose with Alexa Fluor® 488 (19) observed by fluorescence 
microscopy. 
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further modifications. In this way, 6-azido-6-deoxy-2,3-di-O-acyl cellulose was obtained from 

MCC resulting in a polysaccharide of DP 50 and DS (azide) of 0.92.31 The enzymatic protocol 

here reported provides access to novel structures, where azide substitutions are regularly 

distributed at C-6 every two glucosyl units on a cellulose chain with free hydroxyl groups, with 

DP of about 40 and DS (azide) of 0.5. By extension, the same strategy with homologous azido-

cellooligosaccharide donors (i.e. 6’’-azidocellotriosyl and 6’’’-cellotetraosyl fluoride donors) will 

afford other regularly functionalized celluloses with different substitution patterns. 
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4.4. CONCLUSIONS 

As opposed to chemically modified celluloses where the substitution pattern is intrinsically 

random, the glycosynthase-catalyzed polymerization of properly modified glycosyl donors gives 

access to novel functionalized celluloses with defined and regular substitution patterns.  

The glycosynthase HiCel7B E197A has been explored to act on azido functionalized substrates. 

Kinetic studies demonstrated that HiCel7B E197 accommodates the azido substitution of 6’N3-

CelαF in subsite –2 and 6N3-GlcpNP in subsite +1 reacting with similar catalytic efficiency than 

the corresponding non-functionalized substrates. We have shown that a 6’-azido-cellobiosyl 

donor is readily polymerized to give alternating 6-azido-6-deoxycellulose with a regular pattern 

of one azido group every two glucosyl units, which can be further reacted to install different 

functional groups or substituents. 

The alternating 6-azido-6-deoxycellulose was acetylated improving its solubility in organic 

solvents and the azides were reduced to amines through the Staudinger reaction obtaining the 

alternating 6-amino-6-deoxycellulose. Furthermore, the reactivity of the azido groups was also 

demonstrated by performing the copper-catalyzed azide/alkyne cycloaddition between the 

alternating 6-azido-6-deoxycellulose and a fluorescence probe (Alexa Fluor® 488 alkyne). The 

resulting fluorescent product was soluble in water and had the same Ex/Em than the attached 

fluorescent probe. In the future, the attachment of bioactive molecules might be attempted on the 

alternating 6-azido-6-deoxycellulose for further biomaterial studies.   

The glycosynthase strategy can be extended to other functionalized donors, i.e. tri- or 

tetrasaccharide donors, to afford other regularly functionalized glycopolymers with different 

substitution patterns. Likewise, other functional groups may be introduced in the glycosyl donor 

(i.e. –COOH, -CONH2, -SH) provided that the donor is accepted as a substrate by the 

glycosynthase, which otherwise can be engineered for the desired specificity by protein 

engineering and directed evolution approaches. This strategy opens the access to novel 

polysaccharide structures with promising applications. 
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APPENDIX 

Figure A4. 1: 1H NMR (above) and HSQC (below) of 2,3,4-tri-O-acetyl-6-bromo-6-deoxy--D-

glucopyranosyl-(14)-1,6-anhydro-2,3-di-O-acetyl--D-glucopyranose (6) 

Figure A4. 2: 1H NMR (above) and 13C NMR (below) of 2,3,4-tri-O-acetyl-6-bromo-6-deoxy--

D-glucopyranosyl-(14)-1,2,3,6-tetra-O-acetyl--D-glucopyranose (7) 

Figure A4. 3: HSQC of 2,3,4-tri-O-acetyl-6-bromo-6-deoxy--D-glucopyranosyl-(14)-

1,2,3,6-tetra-O-acetyl--D-glucopyranose (7) 

Figure A4. 4: 1H NMR of 2,3,4-tri-O-acetyl-6-bromo-6-deoxy--D-glucopyranosyl-(14)-

2,3,6-tri-O-acetyl--D-glucopyranosyl fluoride (8b) 

Figure A4. 5:  1H NMR 2,3,4-tri-O-acetyl-6-azido-6-deoxy--D-glucopyranosyl-(14)-2,3,6-

tri-O-acetyl--D-glucopyranosyl fluoride (9) 

Figure A4. 6: 1H NMR (above) and 13C NMR (below) of 6-azido-6-deoxy--D-glucopyranosyl-

(14)--D-glucopyranosyl fluoride (6’N3-CelαF) (10) 

Figure A4. 7: 1H NMR (above) and 13C NMR (below) of acetylated alternating 6-azido-6-

deoxycellulose (3) (CDCl3) 

Figure A4. 8: 13C NMR of acetylated alternating 6-azido-6-deoxycellulose (3) (THF) 

Figure A4. 9: 13C NMR of acetylated alternating 6-amino-6-deoxycellulose (4) (CDCl3) 

Figure A4. 10: 1H NMR (above) and 13C NMR (below) of p-nitrophenyl -D-glucopyranoside 

(GlcpNP) (31) 

Figure A4. 11: HSQC of p-nitrophenyl -D-glucopyranoside (GlcpNP) (31) 

Figure A4. 12: 1H NMR (above) and 13C NMR (below) of p-nitrophenyl 6-azido-6-deoxy-2,3,4-

tri-O-acetyl--D-glucopyranoside (6N3-GlcpNP) (34) 

Figure A4. 13: HSQC of p-nitrophenyl 6-azido-6-deoxy-2,3,4-tri-O-acetyl--D-glucopyranoside 

(6N3-GlcpNP) (34) 

Figure A4. 14: MALDI spectrum of p-nitrophenyl 6-azido-6-deoxy--D-glucopyranoside (6N3-

GlcpNP) (35) 

 



Chapter 4. SYNTHESIS OF ALTERNATING 6‐AZIDO‐6‐DEOXYCELLULOSE AND FURTHER 
DERIVATIZATIONS: Appendix 

 

190 
 

Figure A4. 15: MALDI-TOF spectrum of cellulose (1) 

Table A4. 1: Assignment of main peaks in representative MALDI-TOF spectrum of cellulose (1) 

Table A4. 2: Assignment of main peaks in representative MALDI-TOF spectrum of alternating 

6-azido-6-deoxycellulose (2) 

Figure A4. 16: MALDI-TOF spectrum of acetylated alternating 6-azido-6-deoxycellulose (3) 

Table A4. 3: Assignment of main peaks in representative MALDI-TOF spectrum of acetylated 

alternating 6-azido-6-deoxycellulose (3) 

Table A4. 4: Summary. MW repeating units determined by MALDI-TOF 

Figure A4. 17: HPSEC dextran standards 

Table A4. 5: Determination of the retention time (tr) of dextran standards 

Figure A4. 18: HPSEC. Standards calibration line  

Table A4. 6: Determination of vo (CelF + GlcpNP) 

Figure A4. 19: Determination of vo (CelF + GlcpNP). Reaction kinetics of Cel7B 

Glycosynthase. 4-nitrophenyl β-D-glucopyranoside acceptor (20 mM). Reactions performed at 

pH 7.0 and 35 °C. 

Table A4. 7: Michaelis-Menten data (CelF + GlcpNP) 

Table A4. 8: Determination of vo (6’N3-CelαF + GlcpNP) 

Figure A4. 20: Determination of vo (6’N3-CelαF + GlcpNP). Reaction kinetics of Cel7B 

Glycosynthase. 4-nitrophenyl β-D-glucopyranoside acceptor (20 mM). Reactions performed at 

pH 7.0 and 35 °C. 

Table A4. 9: Michaelis-Menten data (6’N3-CelαF + GlcpNP) 

Table A4. 10: Translgycosylation reaction conditions (CelF + GlcpNP). Study of subsites: 

control reaction 

Table A4. 11: Determination of vo (CelF + GlcpNP). Study of subsites: control reaction 

Table A4. 12: Translgycosylation reaction conditions (CelF + 6N3-GlcpNP). Study of subsite 

+1 
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Table A4. 13: Determination of vo (CelF + 6N3-GlcpNP). Study of subsite +1 

Table A4. 14: Translgycosylation reaction conditions (6’N3-CelαF + GlcpNP). Study of subsite 

-2 

Table A4. 15: Determination of vo (6’N3-CelαF + GlcpNP). Study of subsite -2 

Table A4. 16: Summary of results (Michaelis-Menten reaction and subsite studies) when [Donor] 

= 1 mM 
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Figure A4.  1: 1H NMR (above) and HSQC (below) of 2,3,4-tri-O-acetyl-6-bromo-6-deoxy--D-glucopyranosyl-
(14)-1,6-anhydro-2,3-di-O-acetyl--D-glucopyranose (6). 
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Figure A4.  2: 1H NMR (above) and 13C NMR (below) of 2,3,4-tri-O-acetyl-6-bromo-6-deoxy--D-glucopyranosyl-
(14)-1,2,3,6-tetra-O-acetyl--D-glucopyranose (7). 
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Figure A4.  3: HSQC of 2,3,4-tri-O-acetyl-6-bromo-6-deoxy--D-glucopyranosyl-(14)-1,2,3,6-tetra-O-acetyl--D-
glucopyranose (7). 
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Figure A4.  4: 1H NMR of 2,3,4-tri-O-acetyl-6-bromo-6-deoxy--D-glucopyranosyl-(14)-2,3,6-tri-O-acetyl--D-
glucopyranosyl fluoride (8b). 

 

 

 

Figure A4.  5: 1H NMR 2,3,4-tri-O-acetyl-6-azido-6-deoxy--D-glucopyranosyl-(14)-2,3,6-tri-O-acetyl--D-
glucopyranosyl fluoride (9). 
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Figure A4.  6: 1H NMR (above) and 13C NMR (below) of 6-azido-6-deoxy--D-glucopyranosyl-(14)--D-
glucopyranosyl fluoride (6’N3-CelαF) (10). 
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Figure A4.  7: 1H NMR (above) and 13C NMR (below) of acetylated alternating 6-azido-6-deoxycellulose (3) (CDCl3). 
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Figure A4.  8: 13C NMR of acetylated alternating 6-azido-6-deoxycellulose (3) (THF). 

 

 

Figure A4.  9: 13C NMR of acetylated alternating 6-amino-6-deoxycellulose (4) (CDCl3). 
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Figure A4.  10: 1H NMR (above) and 13C NMR (below) of p-nitrophenyl -D-glucopyranoside (GlcpNP) (31). 
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Figure A4.  11: HSQC of p-nitrophenyl -D-glucopyranoside (GlcpNP) (31). 
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Figure A4.  12: 1H NMR (above) and 13C NMR (below) of p-nitrophenyl 6-azido-6-deoxy-2,3,4-tri-O-acetyl--D-
glucopyranoside (6N3-GlcpNP) (34). 
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Figure A4.  13: HSQC of p-nitrophenyl 6-azido-6-deoxy-2,3,4-tri-O-acetyl--D-glucopyranoside (6N3-GlcpNP) 
(34).  
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Figure A4.  14: MALDI spectrum of p-nitrophenyl 6-azido-6-deoxy--D-glucopyranoside (6N3-GlcpNP) (35). 
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Figure A4.  15: MALDI-TOF spectrum of cellulose (1). 

 

 

Δ mass 
m/z     

experimenta
l   

# 
Glu 

[M‐
OH+Na]1+ 

Error 
%     
1Na 

[M‐
2OH+2Na]2

+ 

Error 
%     

2 Na

[M‐
2OH+H+K]2

+ 

Error 
%     
H+K 

   674.11  4  674.2  ‐0.02 680.2  ‐0.90 674.3  ‐0.03

323.24  997.35  6  999.3  ‐0.20 1005.3  ‐0.79 999.4  ‐0.21

326.28  1323.63  8  1324.4  ‐0.06 1330.4  ‐0.51 1324.6  ‐0.07

324.15  1647.78  10  1649.5  ‐0.11 1655.5  ‐0.47 1649.7  ‐0.11

324.02  1971.8  12  1974.7  ‐0.14 1980.6  ‐0.45 1974.8  ‐0.15

322.84  2294.64  13  2299.8  ‐0.22 2305.8  ‐0.48 2299.9  ‐0.23

Average 
324.11 

   Error  ‐0.13   ‐0.60   ‐0.13

 

Table A4.  1: Assignment of main peaks in representative MALDI-TOF spectrum of cellulose (1). 
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Δ mass 
m/z     

experimental  
# Glu  [M‐OH+Na]1+

Error %      
1Na 

[M‐
OH+H+K]2+ 

Error %     
H+K 

   1773.8  10  1774.6  ‐0.04  1774.7  ‐0.05 

347.5  2121.4  12  2124.7  ‐0.16  2124.8  ‐0.16 

350.1  2471.4  14  2474.8  ‐0.14  2475.0  ‐0.14 

349.7  2821.2  16  2825.0  ‐0.13  2825.1  ‐0.14 

348.7  3169.8  18  3175.1  ‐0.17  3175.2  ‐0.17 

348.2  3518.0  20  3525.2  ‐0.20  3525.3  ‐0.21 

348.1  3866.1  22  3875.3  ‐0.24  3875.4  ‐0.24 

348.7     Mean error:  ‐0.15    ‐0.16 
 

Table A4.  2: Assignment of main peaks in representative MALDI-TOF spectrum of alternating 6-azido-6-
deoxycellulose (2). 
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Figure A4.  16: MALDI-TOF spectrum of acetylated alternating 6-azido-6-deoxycellulose (3). 

 

 

Δ mass 
m/z     

experimental   
# 
Glu 

[M‐OH+Na]1+
Error %   
1Na 

[M‐
OH+H+K]2+ 

Error %   
H+K 

   3426.6  12  3427.0  ‐0.01  3429.2  ‐0.08 

551.8  3978.4  23  3987.2  ‐0.22  3989.3  ‐0.27 

549.4  4527.8  26  4547.4  ‐0.43  4549.5  ‐0.48 

584.9  5112.7  29  5107.5  0.10  5109.7  0.06 

Average 
562.0     Error  ‐0.14    ‐0.19 

 

Table A4.  3: Assignment of main peaks in representative MALDI-TOF spectrum of acetylated alternating 6-azido-6-
deoxycellulose (3). 

 

  



Chapter 4. SYNTHESIS OF ALTERNATING 6‐AZIDO‐6‐DEOXYCELLULOSE AND FURTHER 
DERIVATIZATIONS: Appendix 

 

208 
 

  
Calculated 

mass 
Δ mass 

1) Cellulose 324.11 324.11 

2) 6N3-cellulose 350.12 348.70 
3) Acetylated 6N3cellulose 560.17 562.00 

 

Table A4.  4: Summary. MW repeating units determined by MALDI-TOF. 
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Figure A4.  17: HPSEC dextran standards. 

 

Mp Standard log Mp tr (min) 

1000 3.0000 20.3688 

2800 3.4472 18.9072 

3400 3.5315 18.1692 

4440 3.6474 17.4204 

9900 3.9956 15.9948 

20500 4.3118 15.1632 

50200 4.7007 13.9392 
 

Table A4.  5: Determination of the retention time (tr) of dextran standards. 
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Figure A4.  18: HPSEC. Standards calibration line. 

 

 Donor 

  2 mM 1.5 mM  1 mM  0.9 mM 0.8 mM 0.7 mM 0.5 mM 0.2 mM 
0.05 
mM 

t / min [Product] / M 
0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3.87 2.99 2.99 2.50 2.58 2.34 0.00 0.00 0.00 0.00 
7.90 7.34 7.10 7.34 5.65 6.54 4.60 5.25 0.00 0.00 

16.30 24.54 22.76 22.36 21.15 20.34 15.17 15.66 6.54 0.00 
30.05 45.68 44.87 43.99 41.89 43.34 46.09 38.26 25.34 8.31 
42.98 59.81 62.15 65.70 62.55 63.20 68.28 55.61 47.30 14.69 

 

Table A4.  6: Determination of vo (CelF + GlcpNP). 
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Figure A4.  19: Determination of vo (CelF + GlcpNP). Reaction kinetics of Cel7B Glycosynthase. 4-nitrophenyl β-
D-glucopyranoside acceptor (20 mM). Reactions performed at pH 7.0 and 35 °C. 

 

[CelF] / mM  vo/[E] (min‐1) 

0.05  3.44 

0.2  13.65 

0.5  14.45 

0.8  15.64 

0.9  15.40 

1.0  16.10 

1.5  15.46 

2.0  15.06 
 

Table A4.  7: Michaelis-Menten data (CelF + GlcpNP). 

 

 [6’N3‐CelαF] donor 

  2 mM  1.5 mM  1mM  0.8 mM 0.5 mM 0.3 mM 0.2 mM 0.1 mM  0.05 mM

t / min [Product] / M 

0.30 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1.92 5.32 5.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3.92 11.43 13.89 15.40 17.06 15.16 15.16 16.51 14.92 11.90 
8.27 30.40 32.06 33.49 36.75 35.63 34.84 34.60 30.87 23.33 
14.83 64.92 61.67 62.46 71.35 63.89 64.60 66.27 52.70 31.59 
29.92 119.60 116.11 130.56 140.40 140.32 127.62 103.49 71.35 35.08 

44.93 149.60 151.11 166.83 175.56 166.90 139.52 114.21 73.33 34.84 
 

Table A4.  8: Determination of vo (6’N3-CelαF + GlcpNP). 
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Figure A4.  20: Determination of vo (6’N3-CelαF + GlcpNP). Reaction kinetics of Cel7B Glycosynthase. 4-
nitrophenyl β-D-glucopyranoside acceptor (20 mM). Reactions performed at pH 7.0 and 35 °C. 

 

[CelF] / 
mM 

vo/[E] (min‐1) 

0.05  3.52 

0.1  6.90 

0.2  9.16 

0.5  9.63 

0.8  9.52 

1.0  8.89 

1.5  7.92 
 

Table A4.  9: Michaelis-Menten data (6’N3-CelαF + GlcpNP). 

 

 

Table A4.  10: Translgycosylation reaction conditions (CelF + GlcpNP). Study of subsites: control reaction. 
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Desired final 

concentration / mM 
Stock / mM 

Reaction 
volume / mL 

Phosphate buffer pH =7 100 200 98 

[CelF] in H2O 1 30.8 10 

[GlcpNP] in phosphate buffer 100 
mM 

7 20 105 

Cel7B in H2O 8.30E-04 7.00E-03 35 
H2O - - 52 

TOTAL - 300 
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t / min Aacceptor Aproduct Aa + Ap [Product] / M 
0.08 7907.40 3.60 7911.00 3.21 

6.10 7867.90 36.50 7904.40 32.57 

10.00 7518.30 63.50 7581.80 56.67 

15.33 7564.20 90.20 7654.40 80.49 

25.32 7513.50 130.10 7643.60 116.10 

40.65 7457.80 168.50 7626.30 150.37 
 

Table A4.  11: Determination of vo (CelF + GlcpNP). Study of subsites: control reaction. 

 

 

Final 
concentration / 

mM 
[Stock] / mM 

Reaction 
volume / mL

Phosphate buffer pH =7 100 200 45 
[CelF] in H2O 1 30.8 10 

[6N3‐GlcpNP] in phosphate buffer 100 
mM 7 10 210 

Cel7B in H2O 8.30E-04 7.00E-03 35 
H2O - - 0 

TOTAL - 300 
 

Table A4.  12: Translgycosylation reaction conditions (CelF + 6N3-GlcpNP). Study of subsite +1. 

 

 

 

 

 

 

t / min Aacceptor Aproduct Aa + Ap [Product] / M 

0.08 8215.40 2.60 8218.00 2.05 

5.00 8367.70 34.20 8401.90 26.97 

9.00 8489.00 63.90 8552.90 50.39 

14.00 8351.60 94.60 8446.20 74.61 
24.20 8183.50 153.00 8336.50 120.66 

39.62 7993.50 212.50 8206.00 167.59 
 

Table A4.  13: Determination of vo (CelF + 6N3-GlcpNP). Study of subsite +1. 
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Final concentration / 

mM [Stock] / mM 
Reaction volume / 

mL 
Phosphate buffer pH =7 100 200 98 

[6’N3‐CelαF] in H2O 1 10 30 
[GlcpNP] in phosphate 

buffer 100 mM 
7 20 105 

Cel7B in H2O 8.30E-04 7.00E-03 35 

H2O - - 32 

TOTAL - 300 
 

Table A4.  14: Translgycosylation reaction conditions (6’N3-CelαF + GlcpNP). Study of subsite -2. 

 

t / min Aacep Aproduct 1 Aa + Ap [Product] / M 
1.98 8817.30 13.60 8830.90 11.07 

6.27 9068.60 26.70 9095.30 21.74 

8.08 9043.10 32.00 9075.10 26.05 
10.23 9034.30 38.30 9072.60 31.18 

 

Table A4.  15: Determination of vo (6’N3-CelαF + GlcpNP). Study of subsite -2. 

 

 

 
Michaelis‐ Menten (July 

2013) 
Subsite studies (November 2013) 

  

CelF + 
GlcpNP 

6’N3‐CelαF + 

GlcpNP 

Control 

(CelF + 
GlcpNP) 

Subsite ‐2 (6’N3‐
CelαF + 

GlcpNP) 

Subsite +1 

(CelF + 
N3GlcpNP) 

Donor (mM)  1  1  1  1  1 
Acceptor 
(mM)  20  20  7  7  7 
[Enzyme] 
(uM)  0.1  0.5  0.83  0.83  0.83 

vo (M/min)  1.61  4.45  5.14  2.46  5.26 

vo/E (min‐1)  16.10  8.89  6.19  2.97  6.34 
 

Table A4.  16: Summary of results (Michaelis-Menten reaction and subsite studies) when [Donor] = 1 mM. 
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CONCLUSIONS 
 
 

1. The effect of the CBM11 was explored on glycosynthase-catalyzed polymerizations to 

generate mixed-linked 1,3-1,4-β-glucans with regular sequences. The observed effect is 

dependent on the rate of polysaccharide formation. At high polymerization rates, polymer 

yields are higher than 80% and CBM11, either as a discrete protein or appended to E134S 

(fusion protein), has no effect on the DP. In contrast, when the rate of polymerization is 

low and polymer yields are below 80%, the CBM11 facilitates the polymerization 

resulting in 25% increase in DP.  

2. In the case of the alternating polysaccharide (4Glcβ3Glcβ)n, the presence of the CBM 

disrupts the crystallinity of the insoluble polymer yielding amorphous precipitates instead 

of the characteristic spherulite morphology. 

3. The production of laminaribiose from the degradation of curdlan with the kitilase from 

Rhizoctonia solani was optimized obtaining a mixture of 45% glucose, 46% laminaribiose 

and 9% trisaccharide.  

4. Selective tritylation was performed on laminaribiose to obtain the 6’-tritylated compound. 

A preferential reactivity for 6’-tritylation compared to 6-tritylation was always observed 

in ratios 2 – 2.5 to 1. The ratio of trityl chloride – disaccharide was crucial for the complete 

protection of the C-6 and C-6’ primary positions.  

5. Acyl migrations were observed after detritylation with aqueous acetic acid. The addition 

of NaI avoid acyl migrations but the reaction was incomplete and not reproducible. The 

use of FeCl3·6H2O was finally chosen for the deprotection of the trityl group despite it did 

not avoid further acyl migrations.  

6. Condensation reactions between different laminaribiosyl fluoride donors (Glcβ3GlcαF 

and 6N3-Glcβ3GlcαF) and different p-nitrophenyl glucoside acceptors (GlcβPNP and 6N3-

GlcβPNP) by the E134S glycosynthase mutant concluded that the N3 functional group can 

be accommodated at both donor and acceptor subsites. However, the specific activity with 

the 6N3-Glcβ3GlcαF donor was 0.15% compared to the unsubstituted donor. Donor 

polymerization was not studied in this work because of this low activity. Further directed 

evolution approaches will be required to improve the specific activity.  

7. The ability of the HiCel7B E197A glycosynthase to accept azido-substituted substrates 

was evaluated demonstrating that it can accommodate a functionalized azido substrate in 

both donor and acceptor subsites, with preference for subsite +1 than subsite -2.  

8. Glycosynthase-catalyzed polymerizations of 6’N3-CelF as substrates yielded water-

insoluble alternating 6-azido-6-deoxycellulose that precipitated as porous spherulites.  
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9. The alternating 6-azido-6-deoxycellulose consisted of a regular pattern of one azido group 

every two glucosyl units, which were further reacted to install different functional groups 

or substituents. In the future, the strategy opens the access to novel polysaccharide 

structures with promising applications. It can be extended to other functionalized donors 

to afford other regularly functionalized glycopolymers with different substitution patterns. 

Furthermore, other functional groups may be introduced in the glycosyl donor provided 

that the donor is accepted as a substrate by the glycosynthase, which otherwise can be 

engineered for the desired specificity by protein engineering and directed evolution 

approaches.  
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