
Chapter 5

Coronary model

This chapter deals with the building of a generic dynamic adaptive model of the

coronary tree. A semantic network (graph) is proposed and developed to obtain a

static structural model. Then, it is extended incorporating dynamic parameter of

the coronary arteries using a statistical snake approach. A new minimizing scheme

called eigensnakes is developed together with a contrast learning approach. The vessel

shape, deformation and 3D reconstruction are detected in an energy-minimization

framework applying the same active contour model (snake) technique.

5.1 Introduction

One of the key ideas of this thesis is to extract and use the information present in

the coronary motion to provide a complete model including anatomical as well as

dynamic information.

Some of the expected bene�ts and applications of the model are:

� The model can help to achieve a high degree of automation in the computer anal-

ysis/assessment of the coronary heart disease through angiography sequences.

Parameters for assisting the image processing to enable a reasonable degree of

accuracy in locating and to identify the arteries can be extracted.

� The dynamic assessment of the coronary tree enables the cardiologist to research

on new parameters of the arteries and the myocardium. This is a new �eld of

clinical research in the coronary vessel movement. The purpose is to use this

model in order to achieve spatio-temporal understanding of the cardiovascular

dynamics.

� In a second step, the model shall be incorporated into the workstation Care

Cardiology to assist in coronary vessel analysis. It is important to say that the

workstation has been evaluated in clinical daily work as part of the EU funded

project TeleRegions mainly for image review and remote consultation. There-

fore, there is a good perspective to maintain the workstation in use after some

101



102 CORONARY MODEL

changes suggested by the cardiologists, and so, the results achieved regarding

the coronary model could be easily accepted by the users as a real added value.

In order to build the model, based on coronary angiography image sequences it

is necessary to de�ne a clear methodology to achieve the desired result. The work is

presented following a bottom-up style, from low-level tasks upward to the �nal model.

� Image pre-processing: Whenever necessary the images are pre-processed to ease

the following steps. The pre-processing is strongly dependent on the imaging

devices. While modern digital equipment o�ers better quality images and hence

needs a small amount of pre-processing, older equipment needs a previous ana-

logue to digital conversion and the whole quality is often low. In such a case,

some preprocessig is required, usually contrast enhancement, light correction,

etc.. The sequences used in this thesis are coming from modern image equip-

ment, so the preprocessing done is just a low pass �ltering to obtain a smooth

image where the snake deforms without discontinuities.

� 2D Vessel Detection: A correct vessel detection and segmentation is necessary

to obtain a vessel description. A global vessel segmentation is achieved using

snakes and probabilistic learning.

Then, a tracking technique is proposed followed by a 3D reconstruction.

� Movement Learning: Using the data from the vessel detection module for each

pair of frames in a set of biplane sequences, a schema is proposed to obtain 3D

vessel trajectories. A tracking method based in statistical snakes allows for the

data collection of 2D vessel shape and trajectories.

� 3D reconstruction: Using biplane image sequences and the tracking method,

a three dimensional reconstruction is carried out to obtain 3D data. Again,

snakes are used in the reconstruction process to solve many known ambiguities.

Finally, the data structure to store the data is developed.

� Model building: After developing all the modules commented above, a data

structure is necessary to hold the model data. A generic graph structure is

developed and customized to keep the knowledge associated to the coronary

tree model.

5.2 2D Vessel Detection

This section proposes the use of deformable models for vessel segmentation. The

deformable models will be enhanced to cope with the drawbacks enumerated in section

3.2.7. When the objective is to extract boundary elements belonging to the same

structure and integrate these elements into a coherent and consistent model of the

structure, using deformable models is a natural way to regularize the ill-posed problem

of segmentation and interpretation of images.
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Conventional image feature detectors, either in a scanning or tracking strategy,

commented in chapter 3, are too general for the purpose of vessel detection in angiog-

raphy bringing too many false responses that makes diÆcult the image interpretation.

Tracking strategy relies on simple densitometric features that are not enough to dis-

criminate the vessel appearance. Moreover, the tracking strategy needs a continuous

set of image features that is a too strong constraint for angiographies.

By its own nature coronary vessels angiography shows a 
exible structure elon-

gated and curve. The special features of the vessel structure lead, naturally, to con-

sider the use of 
exible models (snakes). Models have been used to guide pattern

recognition systems, [50, 82] but all of them are dependent, sooner or later, on some

kind of conventional edge detection and, so, subject to its properties. Snakes, [50]

are of great interest since they are not rigid and have a physical explanation, where

the energy principles are used to deform a curve under external forces coming from

the image features (see chapter 3). The weak point is precisely those external forces,

usually computed by an edge or ridge detector and in a posterior step translated to

a distance map simulating potential energy for curve deformation. Level set based

ridge/valley detectors [59] o�er a very good response but they could be strongly af-

fected by the cleaning steps because in noisy images it is not guaranteed the continuity

of the detected ridge/valley, i.e. the detected feature can su�er discontinuities along

its path. When many holes are present in the path and each consecutive segment

length is shorter than the proposed threshold, one can loose a very long part of the

desired feature. The immediate consequence of large gaps in image features of interest

is the distraction of the snake usually to near, false segments coming from image noise.

Figures 5.2 illustrate the problem. Summarizing, the method inherits the properties

of the detector.

(a) Original image (b) Ridges (c) Ridges after cleaning

Figure 5.1: Image and crease detection.

To avoid the problems commented above a learning process allows obtaining an

accurate statistical vessel description to assist the detection process. Such descrip-

tion has to be 
exible enough to cope with vessel variability. With the knowledge

accumulated in the learning process the external forces can be described through a

probabilistic potential map [105].
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(a) (b)

Figure 5.2: Learning of pro�les perpendicular to the vessel direction (a) and a

pro�le from the set of training samples (b).

5.2.1 A Probabilistic Framework for Structure Learning

The statistical approach is currently used in computer vision to add knowledge in

di�erent tasks from feature extraction to tracking [36, 17]. The �rst step is, usu-

ally, learning a feature of interest. For the vessel detection purpose, we propose two

methods:

1. learning gray level pro�les of the elongated structure.

2. learning contrast coherence of the image feature and of a set of derivatives.

Learning gray level pro�les

A descriptor representation by local grey-level image pro�les perpendicular to the

vessel elongation and longer than the maximal expected linear structure width is

de�ned (�g. 5.2).

To obtain the training samples, a "classic" snake [50] that deforms on a potential

generated by a crease based distance map and corrected by the user (if necessary) is

utilized. Each pro�le is de�ned by an image coordinate point (i; j) at the center of

the structure and a direction v that indicates its orientation. The learning process is

done by choosing the central points (i; j) and orientation of pro�les v from the snake

position.

Let U; V be vectorial spaces referred to the image coordinates (i; j) and to the

orientations v respectively, where (i; j) 2 U and v 2 V . Then, we de�ne a mapping:

T : U � V ! R
d ,

relating each extended coordinate pair and orientation (i; j;v) 2 U�V , to a grey-level
pro�le:

tn 2 Rd : tn = T (i; j;v)
tn = ftn;kgk=1;:::;d; n=1;:::N

By sampling the training set of images with a pro�le length d enough to cover the

widest structure, we obtain a learning data set D = ft1; :::; tNg. All pro�les are

aligned in order to obtain as far as possible axial symmetry with respect to the
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middle structure point. An interesting consequence of such an alignment is that the

maximal probability shall be assigned to the real crease of the elongated object.

Actually, vessel pro�les are characterized by a high degree of statistic regularity

due to their morphological consistency.

Learning contrast coherence

The intrinsic image structure in a coronary angiography leads us to consider the

contrast coherence as a parameter to reinforce an accurate vessel description.

Direction of grey-level variance (Structure detection)

The structure tensor �eld, applied to an integration region �, of the regularized gra-

dient image (rI� ), under a suitable scale �, measures the similarity between the

regions and the searched structure [114].

Let K� be a gaussian function as follows:

K�(x) =
1

2��
exp

�
�jxj

2 + jyj2
2�2

�
(5.1)

and I an image under analysis. The so called structural tensor is de�ned as follows:

J� = K� � (rI�rIT� ) (� � 0) (5.2)

J� =

�
j11 j12
j21 j22

�
(5.3)

where the � in (5.2) is the convolution operator, r the gradient operator and I� an

image previoulsy smoothed with a gaussian with standard deviation � as follows:

I�(x; t) = (K� � I(:; t))(x) (5.4)

The eigenvalues �1;2 of the tensor J� (�1 � �2) describe the average contrast

variation in the eigenvectors w1;2(w1 ? w2). Equations (5.5) to (5.9) show the

formulae to compute the eigenvalues and the eigenvectors:

�1;2 =
1

2
(tr(J�)�

q
tr2(J�)� 4det(J�)) (5.5)

tr(J�) = j11 + j22 (5.6)

det(Jrho) = j11 � j22 � j12 � j21 (5.7)

w1 = fcos'; sin'g (5.8)

tan 2' =
2j12

j11 � j22
(5.9)
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(a) (b)

Figure 5.3: Eigenvectors associated with the lowest (a) and the largest (b) eigen-

value.

The eigenvector w2 associated to the lower eigenvalue �2, is the orientation of the

lowest 
uctuation, detecting the vessel 
ow 5.3(a). The �rst eigenvector describes

the direction of maximal grey-level variance, e.g. the direction coincident with the

one used to learn the pro�les, �g. 5.3(b). Figure 5.4 is another example: (a) is

a left coronary angiography, (b) and (c) illustrate the �rst and second eigenvectors

respectively. Not only the eigenvectors provide useful information. Areas with straight

edges give �1 � �2 = 0, and corners give �1 � �2 � 0.

A normalized coherence measure of local image structure is obtained as follows

[114]:

k =
(�1 � �2)

2

(�1 + �2)2
=

(j11 � j22)
2 + 4j212

(j11 + j22)2
(5.10)

The potential discontinuity corresponding to 
at image neighbours (�1;2 ! 0) is

not a problem in our case because the equality is true only in areas where the image

is 
at (constant). The possible limit case k ! 1 because �2 = 0 and �1 ! 0 is

eliminated by a next step through the likelihood.

The normalized coherence measure allows to focus on regions of interest with

signi�cant value of the coherence measure � reducing, in this way, the computational

cost of generation of a likelihood map for snake minimization.

The coherence measure shall be used for:

1. The projection of gaussian �lters along the direction of contrast coherence and

sampling the �lter responses at the features of interest (vessels).

2. To constrain the degrees of freedom of orientation pro�le vectors v, since they

can be searched from the vector �eld w1 with the biggest structural tensor

eigenvalue (�g. 5.3(b) and 5.4 (c)).
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(a)

(b) (c)

Figure 5.4: (a) Image under analysis. (b) First eigenvector. (c) Second eigenvector.
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Derivative Projections

A bank of Gaussian derivative �lters
d
k
K�

dk1
x
dk2
x

at di�erent scales � is used to obtain the

statistic vessel description ( K� is de�ned in (5.1)). Note that di�erent scales are

necessary to cope with the vessel diameter variability while using di�erent derivatives

allows us to generalize edge- crest- and valley detectors. De�ning a mapping of the

image pixels to the space of �lter responses:

I ! R
n (x; y)! F(f1; : : : ; fn) (5.11)

Each sample fi is a �lter output �kr in a vessel pixel oriented by the eigenvector

w1:

�k�(x; y) =
d
k
K�

dk1
x
dk2
x

� �(x; y) k = k1 + k2

fi = �k�(x; y) �w1 i = 1 : : : n
(5.12)

A matrix Dm�n is built where each row is a sample along the vessel. Given a set

of training points (�g. 5.5(a)) we get their �lter responses fi; i = 1 : : : n and construct

the training data matrix. In �g. 5.5 (b) �rst derivative projection with r = 9 is

showed. Fig. 5.5(c) depicts a training data matrix for the points in �gure 5.5(a). The

images were normalized to a gray level range [0; 1]. The vertical axis in �gure 5.5(c)

corresponds to the �lter outputs, axis x represents the learned points (rows of D)and

axis y represent the �lters applied to each vessel point (columns of D).

5.2.2 Vessel detection embedding a Mahalanobis distance

into the minimizing scheme: eigensnakes

The eigensnakes [107] comprises the learning, dimesional reduction and minimizing

eschema.

Dimensional reduction

The use of PCA in this work is mainly for searching for a few optimal linear combina-

tions of �lters representing the dimensionality of the feature space. The optimization

in our case is in the sense of keeping the set of variables explaining almost all the vari-

ance of the data and discarding the less important ones. Using PCA, a dimensional

reduction is carried out as follows:

� : Rn ! R
l ; l < n; f ! y

To obtain the principal components, the eigenvectors of the covariance matrix S

of Dm�n are computed. The eigenvectors are sorted according to their associated

eigenvalues (variances) and form the columns of a matrix W.

Such reduced space is used to measure the distance of an image feature to the

learned ones. The measure can be regarded as a likelihood function giving the prob-

ability of each pixel belonging to a vessel category. Fig. 5.6(a) shows the training

data projected onto the �rst two eigenvectors. Fig. 5.6 (b) shows all image features

projected onto the �rst two eigenvectors, the center of the cluster contains the learned
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(a)

x

y

z

(b) (c)

Figure 5.5: Training vessel samples (a). First Derivative directed by the �rst eigen-

vector of the image structure tensor(b). Learned data matrix (c).
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data of �g 5.6(a). Fig. 5.6(c) shows the learned data projected onto the principal

component coordinate system after dimensional reduction.

(a)

x

y

z

(b) (c)

Figure 5.6: Learned cluster (a). Image projection (b). Representation of training

image features in the feature space determined by principal axes (c).

5.2.3 A probabilistic energy-minimizing scheme

The aim is to make the snake to be attracted by image features corresponding to the

statistical description of the object. To this purpose, the external energy of the snake

is de�ned as a function of the Mahalanobis distance of the projected image features

x to the centre � of the learned cluster. The Mahalanobis distance [61] is computed
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in the reduced feature space, de�ned as follows:

Eext(v) = D2
I
(v; �) = (WFI(v)� �)T��1(WFI(v) � �) (5.13)

where � is a diagonal matrix containing the eigenvalues of the training covariance

matrix and I(v) is a vector representation of the image neighbourhood around the

snake pixels. Using (3.8) and the gradient of the probabilistic external energy in

(5.13), we get a new energy minimising scheme for the snake:

� d

ds
(�vs) +

d2

ds2
(�vss) + (cos'; sin')

dD

de1
= 0 (5.14)

where dD

de1
= (WFI(v)��)T��1(W dF

de1
I(v)) and e1 = (cos'; sin') is the �rst eigen-

vector.

5.2.4 Vessel detection using feature pro�les and

Probabilistic Principal Component Analysis (PPCA)

In the PPCA framework [14, 15] a small number of causes are considered, that acting

in combination generate the complexity of the observed data set. This leads to de�ne a

joint distribution p(x; f) over visible fxg and hidden variables ffg, the corresponding
distribution p(x) for the observed data is obtained by marginalization:

p(x) =

Z
p(x j f)p(f)df

The main goal is to �nd the parameters that maximize the joint observed data dis-

tribution i.e. the best description under a speci�c generative model.

One of the basic tools is the standard factor analysis [8], which seeks to relate

d-dimensional observed data vectors fxng corresponding to a set of q-dimensional

latent variables ffng by a linear mapping (3.40) where latent variables are distributed
into an isotropic Gaussian distribution, � N (0; I). The noise model n, or error, is

considered also Gaussian such that n � N (0;	). The (d � q) parameter matrix �

contains the factors loading, and � is a constant which, maximized the likelihood,

corresponds to the mean � of the data. Given this formulation, the model for x

is also normal N (�;�), with mean � and covariance matrix � = ��T + 	. The

corresponding probability density function is as follows:

p(x j �;�) = 1

(2�)d=2
p
det�

e�
1

2
(x��)T��1(x��) (5.15)

Assuming uniformly distributed noise over the whole image and linearity assump-

tion in (3.40) lead to the developing of a PPCA [14]. In this case 	 endows with

equal variance the principal axes (i.e. 	 = �2I). Hence, PPCA is a permissible

technique when illuminant variations problem is not analyzed from variance struc-

ture. Considering this key assumption leads to consider the conditional independence

of observed data. The underlying idea is that the dependencies between data vari-

ables x are explained by a small number of latent variables f , while n represents the
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unique variance of each observation variable. Instead, conventional PCA treats both

variance and covariance identically. The corresponding distribution of observed data

(D = fx1; :::;xNg= xn 2 Rd ) de�nes a normalized measure of distance, in a natural

way, in terms of log-likelihood:

L(�;�) = � log p(D j �;�) (5.16)

This measure called normalized Mahalanobis distance reduces the penalty on pat-

tern di�erences along cluster major directions of data distribution, instead of the

Euclidean distance [102]. At this point, the problem is centered on parameter esti-

mation, which, in practice, will be given by data observations. This leads to consider

the problem of incomplete data. For this purpose, Dempster et al. in [30] use the EM

algorithm, where each observation xn is associated to an unobserved state fn, and the

main goal is to determine which component generates the observation. In this sense,

the unobserved states can be seen as missing data and therefore the union of observa-

tions xn and fn is said to be complete data, yn = (xn; fn). In this way the likelihood

measure to be maximized is the Complete-log-Likelihood, i.e. L=
P

N

n=1 log p(xn; fn).

Maximum-likelihood formulation for PPCA also allows a closed solution for the map-

ping matrix � and the noise variance � [14]:

� = Uq

q
(�q � �2I) R; �2 =

1

d� q

dX
j=q+1

Æj (5.17)

where Uq are the �rst q eigenvectors of the data set covariance matrix, �q is a diagonal

matrix with the corresponding �rst q eigenvalues (Æi; 81 � i � N) and R is an

arbitrary rotation matrix.

Ought to the high number of pixels (samples) in any image, a dimensional space

reduction by means of PPCA is used to statistically describe the feature.

Each sample is a grey-level pro�le and the covariance matrix S of the observed

data is constructed from the learning data set:

S =
1

N

NX
n=1

(tn � �)(tn � �)T ; (5.18)

where N corresponds to the pro�le population, � is the sample mean pro�le and

tn is the n-th grey-level pro�le.

The diagonalization of the covariance matrix S allows to reach the closed solution

for the maximum likelihood estimation in (5.17). Hence, it provides the transforma-

tion between latent variables and observed data as a linear mapping Rq ! R
d , being

q the latent space dimension and d the pro�le length, de�ned by the projection matrix

� and the sample mean �.

5.2.5 Feature detection

At this stage, the main goal is to build a local likelihood map for the snake given

the image neighbourhoods projected onto the optimized space Rd . The mapping is a

probability measure of belonging to the learned structure category 
 = (�;�) for each
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coordinate pixel (i; j) and any direction v. Since the learned model is done through

the gray-level pro�les, the following functional composition to build the likelihood

map P(T (i; j;v) j 
) is de�ned:

U � V ! R
d ! R

(i; j;v) ! t ! P(T (i; j;v) j 
)

Computing this probability requires a factorization of the model covariance matrix:

��1 = (WW T + �2I)�1. This can be done with low computational cost (O(q3)
instead of O(d3)) using the Woodbury's identity:

(WW T + �2I)�1 = fI �W (W TW + �2I)�1W T g=�2

In order to detect the learned feature, the image under analysis ought to be scanned

searching pro�les like the learned ones. Hence, the main problem arises when it comes

to assign for each pixel (i; j) the pro�le orientation v. However, due to the elongated

structure of the objects it is not necessary to learn any curve shape or to scan the

image considering all directions. Instead, the pro�les are oriented with the direction

of maximal grey-level variance of image neighbourhood by a structure tensor [114].

Since pro�le orientation v is �xed for each pixel (i; j), the pro�le extraction is done

through the mapping:

(i; j;v)! t = T (i; j;v).
Then the distance map from every pro�le to the learned model is obtained as a

result of assigning its corresponding negative log-likelihood de�ned in (5.16) to each

pixel (�g. 5.7(b)). The minimal probability computed in the regions of interest is

assigned to all areas discarded by the threshold on the coherence measure � (5.10).

In �g. 5.8 bright regions correspond to the most probable crease points, i.e. corre-

sponding to the minimum distance to the learned model. Dark areas refer to regions

with a minimal probability of being part of a vessel (linear object).

5.2.6 Hybrid Snake Potential

The obtained likelihood map o�ers high responses (i.e. negative likelihood tends to

-1 in image features of interest) at centrelines of elongated objects and nearby form

strong slope towards the centreline (�g. 5.8). As a result, good convergence behaviour

is observed once the snake falls in a neighbourhood of the elongated structure. An-

other advantage of the re�ned map is the small amount of false responses (potential

points with high probability to represent learned feature and at the same time not

belonging to an elongated structure). Therefore, far from the objects of interest the

potential map consists of large 
at areas with constant 0 likelihood. In these regions,

a snake (initialised far from the objects of interest) does not su�er any external forces

to deform it. It is more e�ective having a smooth slope towards the feature. To cope

with these plain areas, the negative likelihood map is enhanced: p̂(xj
) = �p(xj
)
obtaining a hybrid potential �eld as follows:

Phybrid(xj
) =
�

p̂(x); p̂(x) 2 [�1; 0)
d(x); otherwise.
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where d(~x) is the distance to the closest potential point with non-zero probability.

As a result, the snake moves with a constant small step towards the potential zones

and converges only to the zones corresponding to learned image features. Fig. 5.7

illustrates an original image, the likelihood map according to (4), the hybrid map and

a topographic map corresponding to the black square in �g. 5.7(c).

5.3 3D vessel Reconstruction using Snakes

In this section, the physics-based model to segment and reconstruct coronary vessels

from biplane angiograms is explained. Using the snake technique to model the vessel,

the snake deforms in space to adjust its projections to the image data. In this way,

segmentation and 3D reconstruction can be uni�ed into the same procedure assuring

that only plausible vessel shapes will be detected. The method is general allowing

to reconstruct the coronary tree from any angles and distances. The results are

encouraging.

Traditionally, 3D vessel reconstruction techniques follow a bottom-up approach

based on image feature extraction and reconstruction by interactively indicating cor-

responding point projections [10, 35, 113, 112] or by exhaustive feature matching

[20, 93, 95, 115]. However, this approach can not cope with ambiguities in the im-

age interpretation (e.g. in branch or intersection points) nor the lack of precision in

determining corresponding image points. This approach proposes a top-down work

based on a 3D deformable model (B-snake) of the vessels that deforms in an active

way, adjusting its projections towards the image features. As a result, the spatial re-

construction and image segmentation are simultaneously obtained by detecting only

plausible shapes for the vessels. These shapes are constrained by the physics-based

model that implicitly incorporates spatial, continuity and structural constraints. In

3D vessel reconstruction techniques, spatial position of a vessel point can be recov-

ered by calculating the intersection of projection rays to the corresponding points in

biplane images [20]. In practice, due to systematic errors and diÆculties in precisely

determining corresponding points, a true intersection point does not exist. In these

cases, the minimum distance reconstruction method is applied [35]. The approach

followed in this thesis consists on optimizing the B-snake model, so that the distance

between projection rays for each 3D point is minimized. In addition, in the B-snake

approach all points of the vessels contribute to the 3D reconstruction instead of us-

ing a sparse set of points (usually, the bifurcation points). Furthermore, taking into

account that the isocenter is not a sharp and stable point, its position is included

in the optimization process to simultaneously re�ne global (related to the isocenter)

and local (related to the vessel co-ordinates) parameters. The 3D angiography re-

construction approach by snakes has been proposed in [66] to recover 3D catheter

paths in angiographic images. Here, this approach is extended re�ning the external

force derived from image data, generalizing the method for any angles and number of

views and including global (related to the isocenter) parameters into the optimization

scheme.
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Biplane Imaging Geometry

Standard biplane angiographic devices consist of two x-ray systems that can be rotated

independently from each other. Two rotation axes are allowed: a horizontal axis in

longitudinal direction with the table and a horizontal axis perpendicular to the table.

The left-right movement of a system with respect to the patient de�nes the rotation

angle. The angles by which a movement can be de�ned towards the head of the patient

(cranial direction) or the feet (caudal direction) represent the angulation angles [35].

The projection axes of both systems intersect in the isocenter. The distances from the

x-ray sources to the image intensi�ers are predetermined before the image acquisition

process. 3D reconstruction techniques require a global reference system. In our case,

the isocenter coincides with the origin of the co-ordinate system (see 5.9).

The x axis is horizontally directed in longitudinal direction of the table, the y axis

is horizontal directed towards the left arm of the patient and the z axis is vertically

directed and upwards. The local reference systems are chosen as left-hand oriented,

triple orthogonal systems determined as follows [35]:

k =(0; cos�; sin�)T (5.19)

l =(� cos�; sin�; cos� sin�)T (5.20)

c =(sin�; sin� cos�; cos� cos�)T (5.21)

where � and � give the angulation and rotation angles. The vector c indicates

the direction of the central beam of the x-ray cone while the vectors k and l are in

the opposite direction of the image axes x and y. There are, also, a need to calibrate

the measures to cope with the conversion between pixels and mm, and to obtain the

origin of coordinates on the images; the process is quite simple and well described

in [34]. In order to reconstruct a point in a 3D space from several projections, its

image points should be identi�ed. The intersection point of the projection rays from

the x-ray sources to the image points de�nes the 3D point. Given the acquisition

parameters (x-ray source position, isocenter position, angulation and rotation angles

and calibration factor m de�ned by the ratio of the true size of an object in mm to

its projected size in pixels), the exact 3D position can be found. Let us consider a

point D and its projections D
0

and D
00

in two image planes. The intersection point

of lines F
0

D
0

and F
00

D
00

determines the 3D position of the point D. However, in

practice, both lines do not usually intersect (see �g. 5.10) due to the limited accuracy

of the projection geometry and the calibration factor or the presence of geometric

image distortion. Then, the spatial location of the point D is computed as the point

of minimal distance to both lines by the back-projection expression for the point D

as follows [35]:

~OD = ~OF
0

+ � ~F
0

D
0

+
1

2
~S
0

S
00

(5.22)

5.3.1 3D Reconstruction by Snakes

The equation (5.22) provides an estimation of the 3D position of vessel points given

their corresponding image points. However, manually indicating each pair for all
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vessel points is very tedious and time-consuming. To facilitate the 3D reconstruction,

we utilize a snake that is represented as a 3D curve. This elastic curve is deformed

in space to adjust its projections to the image data. In this way, the segmentation

and the reconstruction processes are integrated and the 3D vessel position is directly

obtained. At the same time, only plausible shapes are recovered that agree with the

image data and the structural and smoothness constraint of the snake.

A snake is an elastic curve with associated energy:

E =

Z
Eint(Q(u)) +Eext(Q(u))du (5.23)

where Q(u) = (x(u); y(u); z(u)) is the spatial representation of the snake curve (see

chapter 3). From its initial position, the snake is iteratively updated to adjust to

the image data while maintaining a smooth shape. The convergence towards the

image data is related to the de�nition of an external energy while the smoothness

corresponds to the de�nition of an internal energy. The solution of the reconstruction

process corresponds to a 3D snake that has a minimum energy, i.e. has converged

to the closest set of image data that ful�lls the smoothness constraint. The internal

snake energy was de�ned in chapter two as a sum of the membrane energy that

operates like springs attracting successive points of the snake and the thin-plate energy

that prevents the snake from excessive twisting. The external energy of the biplane

snake was de�ned so that it reaches a minimum when it is projected into the vessel

projections in the images. To this aim, there are two approaches:

� create a potential �eld P corresponding to each image where the distance to the

closest ridge point is assigned to each point of the potential �eld.

� use statistical techniques to build the potential �eld as explained before.

In this way, the external energy is minimal when the distance of each projected snake

to the closest ridge is negligible.

Generalized 3D External Force

In its original formulation [66], the snake is a planar curve Q(x(u); y(u)) that deforms

in the image plane to match the object's contour. The snake energy is minimized by

applying the Euler-Lagrange equation that leads to the following equation [66]:

Qt+1 = (A+ 
I)�1(
Qt + Fext) (5.24)

where Fext = �rP (Q) = �(dP
dx
; dP
dy
)(Q); 
 is a damping parameter, A is a sti�ness

matrix, P is the potential. In our case, the snake is a 3D curve, in order to apply

(5.24) its 3D external force should be de�ned based on the image external forces.

We use the relations (5.19) between a local (k; l; c) and global (x; y; z) co-ordinate

systems:
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xi =� ki = cos�iy � sin�iz
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where i denotes the image view.

Taking into account the magni�cation due to the perspective projection, the mag-

nitude of the image external force is re-escaled. Considering N projection planes,

after a term reduction the following expression results for the generalized external

force of the 3D snake from the N image potential �elds:

Fx =

NX
i=1

�imi

FiDi

cos�i
@Pi

@yi
[jFiOj+ jODtj]

Fy =

NX
i=1

�imi

FiDi

(cos�i
@Pi

@xi
� sin�i sin�i

@Pi

@yi
)[jFiOj+ jODtj]

Fz =�
NX
i=1

�imi

FiDi

(sin�i
@Pi

@xi
+ cos�i sin�i

@Pi

@yi
)[jFiOj+ jODtj]

where �i is the potential weight of image i and Dt is the estimation of point D at

iteration t.

Given an initial snake located near the vessel of interest, at each iteration the

snake is projected into the image planes, the external forces from each potential �eld

are estimated, 3D external force is generalized and the iterative equation (5.24) is

applied. An example of vessel reconstruction of a left anterior descendent coronary

artery is shown in �g. 5.11. Figure 5.12 shows how a modi�cation of a control point

a�ects the 3D curve.

5.4 Final Model

5.4.1 Graph

To represent the knowledge associated to the model a generic graph able to hold

structural and dynamic data is designed.

Graph matching techniques [44, 45] have been successfully used in computer image

analysis to label an extracted coronary tree after a segmentation process in angio-

graphic images [34].



118 CORONARY MODEL

These techniques involve an anatomical representation of the coronary tree, a cost

function and a segmented image to label. The labeling consist of minimizing the cost

function matching the model against the image. Basically there are two ways for

representing the coronary anatomy through a graph:

1. The nodes are related to the branching points and the arcs are related to the

coronary segments

2. The nodes are related to the arterial segments and the arcs are related to the

relationships between the segments

The attributes generally used to characterize the coronary segments have been dis-

tances, branching level, orientation, mean lumen diameter, position, and length [34].

Applying an object-oriented paradigm and using the template mechanism for the

graph implementation is generic and eÆcient in many ways: the structure is a tem-

plate class where the data objects and the internal graph implementation details are

template parameters. Nodes and arcs are classes, both inherit from the same, com-

mon, base class, so the user of the graph can, by inheritance put any data in the

graph. The user can decide where to keep the data objets (either in the nodes or in

the arcs) at compile time. Being an object oriented approach, each node and / or

edge can store not only data but behavior associated to it (objects). So the graph can

hold both the anatomical and trajectories knowledge. The graph has been developed

in ANSI C++ using the Standard Template Library as a base [38].

5.4.2 Data kept in the graph

The semantic network (graph), is able to hold both, anatomical and motion knowledge

about a generic, average, coronary tree. The anatomical shape representation is

achieved by interpolated cubic B-splines. The motion is represented as a sequence

of 3D points keeping the average trajectory for each segment at any time. In our

graph we add to the attributes described in [34], a sequence of 3D positions for each

segment. Moreover, the points are control points to build the cubic B-splines. While

the data in [34] helps to the necessary image segmentation process, the B-splines

keep information about the movement and shape. The key idea is not to use point

information but a curve to avoid many uncertainty problems otherwise present at later

use of the model as a computer image analysis helper tool. The sequences stored in

the graph represent the 3D trajectory of the coronary tree. At any time t, a set of

3D segment points modeling the tree can be obtained traversing the graph [38].

Figure 5.14 shows the coordinate system used for the 3D points. The origin is

located at the ostium, which is the beginning of the Left Main artery, where r is the

distance to the ostium, � is the rotation angle and � is the angulation angle.

The graph can be edited to support any of the anatomies. Moreover, there can

be di�erences in branches. Some of the secondary arteries can be absent in a patient.

The graph editor cope with these di�erences. Figure 5.15 shows the user interface

of the graph editor for the model. A user can add/delete any branch and choose a

dominance. The application is able to cature the user actions and map them into the

corresponding graph operations.
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5.5 Summary and conclusions

In this chapter, the coronary model was explained. New techniques in the �eld of

snakes were developed and used to make a 3D reconstruction, detect and track the

vessels from coronary angiography image sequences. The data structure needed to

hold the model is also explained.

5.5.1 Conclusions about vessel detection and tracking

The value of the statistic basis for linear structure detection and tracking has been

established by demonstrating two methods:

1. the mechanism of PCA and Mahalanobis distances embeded into the minimiza-

tion eschema of the snakes.

2. the mechanism of the PPCA embedded into the snake framework.

Snake-based tracking of image structures is based on the minimization of a func-

tional energy term, which is usually created from the outcome of a standard feature

detector. This fact constrains the applicability of the method and reduces the classes

of image structures that can be analyzed. In order to manage complex objects and

the variability of appearance of image structures, our techniques are supported by a

learning approach to extract and detect only these "crease-like" features determined

by the training set. Learned models are used in a probabilistic framework in order to

build signi�cant energy potential, resulting in less false responses of the image feature

detector and more robust snake-based object tracking.

A new approach to potential computation using a likelihood map is formulated

and applied to the tracking of speci�c structure on angiographies: coronary vessels as

a diÆcult example of automatic analysis. As a result, the snake is less dependent on

its initialisation and once placed on the hybrid potential map it converges to image

features with high probability to represent learned object pro�les. The obtained

results and the self-training capability of the snake encourage utilizing it in di�erent

applications.

Building the likelihood maps for angioraphy image sequences, the vessels are

tracked, obtaining data about the trajectory. The data is collected as a sequence

of bspline control points. Finally the experiments carried out showed that there are

no signi�cative di�erences between the use of PCA or PPCA regarding the results

(vessel detection). The PCA are faster to compute, meanwhile PPCA o�ers a prob-

abilistic framework open to incorporate higher levels of reasoning.

Remarks about eigensnakes

The new formulation of the energy-minimising scheme allows statistically learning and

detecting image features characterising di�erent appearances of non-rigid elongated

objects. Incorporating the statistical framework, the approach can be extended to

the labelling task and to obtain the whole coronary tree using a likelihood matching.
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Remarks about the tracker using the PPCA approach

The initialization process demands only one point to the user achieved by exploiting

the coherence vector �eld and the likelihood function. Finally, the likelihood map

is modi�ed to avoid the uncertainty regions far from the detected feature using a

distance function (5.2.6) to the high likelihood regions.

In �g. 5.16 the snake tracking is illustrated for a set of consecutive frames. Using

the initial condition showed in �g. 5.7(a), the re�ned likelihood map guides the snake

along the sequence.

Conclusions about 3D reconstruction

A snake model was applied to segment and reconstruct the coronary vessels in a

semiautomatic way. The advantages of this approach are that no exact user-provided

point correspondence is necessary. The snake evolves in the space to adjust to the

image data; as a result the model provides such a correspondence between the image

points. The results showed that the technique is optimal from the point of view

of the minimal reconstruction error de�ned as the distance between the projection

rays. Furthermore, the reconstruction is improved when isocenter co-ordinates are

iteratively updated.


