
MOBILE AGENT SYSTEMS AND TRUST, A COMBINED

VIEW TOWARD SECURE SEA-OF-DATA APPLICATIONS

SUBMITTED TO UNIVERSITAT AUTÒNOMA DE BARCELONA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

by Sergi Robles

Bellaterra, July 2002

c© Copyright 2002 by Sergi Robles

Abstract

Agent technology is clearly an important enabler of new distributed applications. Mobile

agents provide a further step in this direction and make possible new types of applications,

such as sea-of-data applications or specific pervasive (ubiquitous) computing.

Nevertheless, the drawback of the new capabilities featuring this technology is the arising

of new branches of security issues. It results hard to design security solutions for applica-

tions using mobile agents, especially in sea-of-data applications.

There is not a definitive platform in which implement these applications and still offering

security and ease to program. We present the start of the development of MARISM-A,

an Architecture for Mobile Agents with Recursive Itinerary and Secure Migration. This

platform intends to observe commonly accepted agent standards FIPA and MASIF, while

providing flexibility to design secure sea-of-data applications.

We use trust to find out requirements of these new applications and present a novel model

an methodology to achieve security solutions. We apply the model to some scenarios of a

MARISM-A application. The same idea of using trust in sea-of-data applications can also

be used to solve security issues in pervasive computing.

iii

I certify that I have read this thesis and that in my opinion it

is fully adequate, in scope and in quality, as a dissertation for

the degree of Doctor of Philosophy.

Bellaterra, July 2002

Dr. Joan Borrell Viader

(Principal Adviser)

iv

To MaCarmen and my parents

v

Acknowledgements

I would like to thank my supervisor, Joan Borrell, for his invaluable support and encour-

agement. I am also grateful to John Bigham and Stefan Poslad for their valuable assistance

and helpful discussions and for supporting my research stay at Queen Mary University of

London.

I would like to thank other members of the MARISM-A project team, in particular Joan

Ametller, Mercè Lazo and Ivan Luque, for their valuable contribution to the implementation

of the MARISM-A platform.

I would also like to extend my gratitude to all the people of the Combinatorics and Digi-

tal Communication group for allowing me the opportunity to pursue the doctorate and com-

plete this degree, and especially to Quim Borges for sharing his knowledge about graphs,

and Joan Mir for his contributions to agent itinerary protection.

This work was supported by the Spanish Government Commission CICYT, through its

grant TIC2000-0232-P4, and by the Catalan Government Department DURSI, with grant

2001SGR 00219.

Publications

Some of the work described in this dissertation has been published. Most relevant

publications are [RLN+02, RB02b, RPBB01b, BHBR01, RPBB01a, BCH+00, BRSR99].

vi

Contents

1 Introduction 1

2 Agent technology and trust 7

2.1 Agents . 8

2.1.1 Mobility . 8

2.1.2 Standards for Multi Agent Systems 13

2.1.3 Security in Mobile Agent Systems 16

2.1.4 Solutions . 20

2.2 Trust . 22

3 MARISM-A 27

3.1 Introduction . 28

3.2 Platform description . 29

3.2.1 Elements . 30

3.2.2 Mobility . 30

3.2.3 Security Infrastructure . 32

3.3 Agent architectures . 34

3.3.1 Static . 35

3.3.2 Mobile with implicit itinerary . 36

3.3.3 Mobile with explicit nested itineraries 37

3.3.4 Mobile with explicit non-recursive itineraries 38

3.4 Implementation . 39

3.5 Security requirements using the BPP . 42

vii

viii CONTENTS

4 Trust Model 52

4.1 Elements . 54

4.1.1 Methodology . 55

4.2 Practical application of the model: MARISM-A 58

4.2.1 Description of the scenario . 58

4.2.2 Trust Requirements Diagram . 60

4.2.3 Trust Solution . 61

5 Ad hoc security solutions 64

5.1 A Fault-tolerant Voting Scheme based on Mobile Agents 65

5.1.1 Introduction . 65

5.1.2 Sketch of our Previous Voting Scheme 67

5.1.3 A Safe Structure . 70

5.1.4 Voting Scheme Operation . 74

5.1.5 Discussion . 78

5.2 A non-repudiation protocol to secure itinerary 80

5.2.1 Our proposal . 80

5.3 Design of a Secure Multi-Agent Marketplace 82

5.3.1 Introduction . 83

5.3.2 Marketplace . 84

5.3.3 Security issues . 92

5.3.4 Marketplace internal architecture 94

5.3.5 Synopsis . 103

6 Conclusions 104

Bibliography 107

List of Figures

2.1 Mobile Agent Systems . 9

2.2 Types of mobility . 10

3.1 Supported agents types in MARISM-A . 30

3.2 Migration Protocol . 31

3.3 Agent classes in MARISM-A . 40

3.4 Class diagram . 41

3.5 Itinerary Creation Tool, part of MARISM-A IDE 42

4.1 Trust Requirements Diagram . 61

4.2 Solutions Graph . 63

5.1 Voting scheme of [RB99] . 68

5.2 Fault-tolerant Voting Scheme . 70

5.3 Information Directory . 73

5.4 ECA Replacement Mechanism in Voting Phase 75

5.5 ECA Replacement Mechanism in Shuffling Phase 77

5.6 Environment . 81

5.7 Non-repudiation protocol . 82

5.8 Scenario . 85

5.9 Marketplace . 87

5.10 Synoptic cube . 89

ix

Chapter 1

Introduction

Trust in Allah, but tie your camel — Arabian proverb

Fortune cookie drawn few days before this writting.

This dissertation compiles the research I have done during the last 5 years in the Com-

binatorics and Digital Communication unit of the Computer Science Department. In the

beginning of this period we analysed the just then born agent technology and how it could

resolve some security related issues in voting applications, as well as other problems such

as scalability or code distribution. We soon realised that behind the seeming solution for

all problems, some deep hard serious security concerns were hidden, ignored by the main

users of the technology at the moment, and awaiting to be addressed. After some time do-

ing research to provide security to systems by using agents, we went on to the field of the

security analysis within the agents communities themselves. This is how we run into trust

as a social extension of security to face some human-like requirements of the agent world.

Some of the key points in this research have came by chance: while analysing the voting

scheme developed by my supervisor, during my research stay in the Electronic Engineer-

ing Department of the Queen Mary University of London, or applying agent technology to

some other applications. Eventually, all these different stages have been connected (related)

each other as if they were in the same plot from the very beginning. This thesis shows all

relevant stages of this research interlaced on a sole continuous scheme. During the course

of this research we have gone through many open problems, deserving each a full thesis

1

2 CHAPTER 1. INTRODUCTION

for its own. It has been difficult to crop all the branching derived from this research and

hold on to a main trunk. In this process we have always given more priority to the more

applicable lines. All these open lines are referenced along the chapters of this dissertation.

It seems sensible to start this work by wondering about one of its main grounds: secu-

rity. Security has been a big issue since the beginning of practical usage of computational

systems and the first computer networks. After more than 25 years of research and engi-

neering, network applications are still at risk: security is still one of the most difficult issues

to address while designing systems. Why is the security problem not solved yet? There

are no simple answers to this situation. Addressing the problem requires understanding the

dynamic nature of security and appreciating the need for a scientific approach. There is

no direct way of facing the problem of security, and design of security solutions is nowa-

days based on risk management. This is a familiar process in the financial and insurance

communities, but not well understood within the computer science community. In fact,

risk management as practised today, and so security design, involves more art than science.

Moreover, security solutions found in this way often result very specific. The analysis is

customised to the system and so is the solution. It is difficult to reuse these security pro-

tections except from trivial safeguards. In many complex systems it is extremely hard to

resolve the security issue by providing an scalable and flexible solution and it often results

more expensive than paying damages. As a matter of fact, the trade-off between cost and

security generally makes more profitable having systems with many security flaws.

Some factors, including last trends, have recently made even more difficult to solve

security. Firstly, we have the Internet that has been increasingly becoming an important

channel for application intra-communication and has progressively been introduced in het-

erogeneous environments. This high connectivity has seriously changed the risk environ-

ment. The use of complex interactions between multiple parties that play multiple roles and

entail transactions in multiple domains is a common feature in new applications that benefit

from Internet advantages. These interactions are often between parties with opposite inter-

ests, which is an added difficulty. Openness is also a determining factor complicating the

security design. Another factor contributing to the complexity of security design is the high

socialisation included in recent software designs such as in the e-business or data-oriented

applications. Most of the times, this socialisation is achieved though the use of distributed

3

architectures such as agent technology, where software objects autonomously act on behalf

of a principal. This has been a natural adaptation to the situation. Agent technology has

made more evident the need for interactions between autonomous domains. At the same

time, it is clearly an important enabler to underpin and to help automate all these interac-

tions. Agent technology is establishing as the dominant paradigm for the implementation

of complex systems.

Agents make feasible the easy implementation of a wider variety of applications, hard

to develop by using classic paradigms. Agents are also an enabler of new types of appli-

cations, standing out the so called sea-of-data applications. In these applications a massive

amount (sea) of information is distributed among internetworked elements and must be

accessed from a remote place to provide an outcome. A program can not just fetch the

information and process it locally because several reasons, including the ratio volume of

information / available bandwidth, the way this information is stored (it might be acquired

by a special device), or legal reasons (medical images in hospitals, for example). Agent

technology is the basis to make these applications come true. The price for this is a new

branch of open issues concerning security. This is common in agent technology, but es-

pecially tricky on mobile agent systems, where agents are not static and can migrate from

one environment to another to continue their execution. The difficulty of finding secu-

rity solutions has been considerably increased when agents have been endowed with this

mobility.

Several new security requirements emerge from this new scenario [WSB00]. The clas-

sic concept of security to support perfect and reliable protection of systems, via authen-

tication, authorisation and confidentiality is difficult to achieve in these new scenarios.

Solutions based on global infrastructures are not valid here and it is necessary to find new

paradigms that fit into the new approach. The assumption that a single security mechanism

such as public key cryptography provides security must be given up and accept a more

complex, multidimensional and dynamic natured security.

Simultaneously, similar security requirements are foreseen on a new scenario. Technol-

ogy is moving beyond the personal computer to everyday devices with embedded technol-

ogy and connectivity. Pervasive computing (also called ubiquitous computing) is the idea

4 CHAPTER 1. INTRODUCTION

that almost any device, from appliances to cars or homes, can be connected to an huge net-

work of other devices. The goal of pervasive computing is to create an environment where

the connectivity of devices is embedded in such a way that the connectivity is unobtrusive

and always available.

Actual security mechanisms address the symptoms, no the root cause, of most security

problems. In this dissertation we introduce an alternative approach to solve the issue of

security in multi-agent systems that can be applied to sea-of-data applications and pervasive

computing while observing the basic requirements of openness and generalisation. This

approach is based on trust.

Trust, used in computational systems, is usually related to many concepts without a spe-

cific word in our language and unmistakable connected with a social dimension of security.

This situation leads us to an overuse of the term which makes it difficult to split all different

semantic domains referenced in the bibliography and related to this topic. Thus, we might

find trust articles about reputation systems or trust articles about certification authorities

in public key infrastructures. The origin of this situation partially comes from the nonex-

istence of a common definition for this word. Probably, this lack of an agreed definition

for trust comes from the absence of a generic form suiting and characterising trust require-

ments from all domains. Another reason for these discrepancies seems to come from the

different main interests of the security and the artificial intelligence research communities.

Whilst the former focus on control aspects of trust (formal logics for cryptographic analysis

of protocols [BAN90], [Gam90], users and certification authorities relationships in public

key infrastructures [AR97], [BBK94], [Jøs96], [Mau96], [YKB93], or distributed secu-

rity architectures [EFL+99]), the latter do it in more social aspects and used in artificial

intelligence systems (reputation mechanisms [Mar94], [ARH00]).

How trust can be used to provide security in those special scenarios? The relationship

between trust and security is a key topic when referring to trust. If we take common ac-

cepted definitions for trust (Oxford English Dictionary, Webster English Dictionary), secu-

rity is usually defined as the quality of being out of peril, risk or fail, that can be absolutely

trusted. We can then stand that increasing the security of a system is equivalent to increase

the trust on it for peril, risk or fail absence. An absolutely secure system is that in which we

have total trust, or absolute certainty. Why we use this trust for instead of going on using

5

security if they are equivalent words? In fact, security and trust are not neither the same

nor equivalent. Whilst security is a quality (property) of the system, trust is conceived as a

relationship representing the perception of some principal about other or something. More-

over, trust can be transmitted to other parties as a mutual relationship. Using trust instead

of security will allow us to use different mechanisms, from different nature, to obtain more

secure systems not per se but for the members of the system and for its users (actors). This

is specially useful for systems based on mobile agents and pervasive computing.

With this new concept of trust we can define a plane of trust in which it is easy to

represent the relationships between all members of the system. The first step toward this

new approach is the definition of a model for trust. This is not an easy problem to solve.

Within this plane of trust it is easy to show the real trust requirements of the system, but

we must also provide a methodology to allow us to choose and combine different trust

solutions and therefore find a security solution..

The transformation from the security plane to the trust plane allows to screen the rele-

vant issues concerning security from the not so important in the specific scenario of mobile

agent applications. In this trust plane the solutions are quite more likely to be found. The

transformation back to the security plane will be trivial since the trust solutions directly

provide security (are security solutions) by definition. By using this technique, found solu-

tions will fulfil scalability, distribution and integration requirements within an unique and

holistic security/trust scheme.

Objectives

The first objective of this dissertation is to analyse the problem of security in mobile agent

environments and to contribute with mechanisms to solve particular aspects of it in agent

based applications.

A second objective is to start the implementation of Multi Agent System platform in

which it is easy to add security mechanisms. It must be as flexible as possible and compliant

with existing standards. Security requirements of this platform must be outlined using

traditional methods. The platform has to be prepared to be used as a testbed for secure

sea-of-data applications.

Trust is foreseen as an alternative way to achieve security in mobile agent applications.

6 CHAPTER 1. INTRODUCTION

Another objective of this dissertation is to characterise the concept of trust by finding out

its basic elements. This characterisation of trust must take into account different points of

view.

The last objective is to provide the definition of a model for trust to find out trust/security

requirements in mobile agent applications and apply it later to solve security issues in sea-

of-data applications. This work is not trying to find a generic definition for modelling trust

in a deductive fashion and specifically defining applicable trust solutions afterwards. This

is an open problem that requires more research and evaluation and is out of the boundaries

of this dissertation. Rather, we seek to focus on an inductive approach of the model based

on elemental components of trust. This model must allow to be used to achieve security

solutions in mobile agents systems through a methodology.

Outline of Dissertation

The rest of the dissertation is structured as follows.

Chapter 2 reviews agent technology, providing basic descriptions of elements in this

technology and highlighting security issues. Trust is also introduced in this chapter

Chapter 3 is devoted to the MARISM-A Mobile Agent System. This chapter talks about

the features and implementation of this system and analyses security requirements.

Chapter 4 shows how trust can be used to build security solutions to mobile agent

applications. In this chapter we present our trust model and a methodology to be applied.

Some scenarios from MARISM-A system, described in chapter 3, are used both to show

the application of this methodology and provide security solutions.

Chapter 5 describes some mechanisms we have developed regarding security or fault

tolerance in multi-agent systems. Some of the ideas discussed could be used in the platform

described in chapter 3 or be part of the mechanisms repository mentioned on chapter 4.

Chapter 6 concludes by showing how the research goals have been met, and our future

research road-map.

Chapter 2

Agent technology and trust

Mobile agents provide a new programming paradigm and a totally new scenario to develop

complex applications. In some cases, this technology is one of the few available (often the

only) to implement applications with special requirements, such as sea-of-data applications.

In these applications, huge amounts of distributed information process is required to have

some outcomes. Network bandwidth limitation, data acquisition mechanisms, or client

weak connection (intermittent and not guaranteed), lead to the necessity of using mobile

agents. New security requirements emerge from this new scenario. Some of them are

inherent in agent nature, many are due to mobility and other are specific to sea-of-data

applications. The first part of this chapter is devoted to review agent technology, especially

focusing on security related issues.

Classic concept of security to support perfect and reliable protection of systems is based

on the traditional taxonomy of security threats (confidentiality, integrity and availability). It

is difficult to study the protection issues in these new scenarios. Common security solutions

are unworkable due to the aforementioned restrictions (they rely on on-line connectivity to

central servers). Traditional solutions are not the definitive solution here and therefore it is

necessary to find new paradigms that fit into the new approach. An alternative is to benefit

from the high socialisation of agent systems and introduce trust as a more suitable way to

achieve security.

First part of this chapter shows a review about agent technology we did in 1999. We

have kept tracking on most security approaches since then and have updated the review

7

8 CHAPTER 2. AGENT TECHNOLOGY AND TRUST

with relevant information. Second part of the chapter introduces the concept of trust.

2.1 Agents

An agent is a software object on an execution environment that is acting on behalf of a per-

son or organisation [JW98]. The agent is reactive (it is sensible to the environment and acts

depending on its changes); autonomous (it has its own thread of execution and therefore

it can have initiative to execute tasks and control its own actions); proactive (its behaviour

is objective oriented) and it is continuous in time (it is constantly under execution). Fur-

thermore, an agent can be communicative if it can interchange messages with other parties,

learning if it is able to adapt using previous experience, or mobile if it can move (migrate)

from an execution environment to another [Whi95].

A Multi Agent System is a software environment in which software agents run. It pro-

vides support for software agents to execute, to manage their execution, to access system

resources, and to guarantee integrity and protection of agents and the platform itself. Multi

Agent Systems are implemented through agent platforms, the underlying software for the

system. The platform defines a standard around which a system can be developed. Once

the platform has been defined, software developers can produce appropriate agent applica-

tions. Platforms may provide support for migration, naming, location and communication

services. The system consists of one or more execution environments or agencies of the

system. Some authors go further and define places, independent execution environments

within agencies.

The are a large number of agent platforms. Many of them are still in a development

stage, and others are ready to be evaluated. Examples of agent platforms are listed in figure

2.1.

2.1.1 Mobility

An agent may stay at just one execution environment, communicating (locally or remotely)

with other agents, and not being able to leave the agency. These are stationary agents.

In the other hand we have mobile agents, not limited to only one execution environment.

2.1. AGENTS 9

Name Language Author
Ajanta Java U. of Minnesota, USA
ARA Tcl, C, Java U. of Kaiserslautern, Germany
AgentTcl Tcl Dartmouth College, USA
Aglets Java IBM, Japan
Concordia Java Mitsubishi, USA
CyberAgents Java FTP Software, Inc., USA
ffMAIN Tcl, Perl, Java U. of Frankfurt, Germany
FIPA-OS Java emorphia, UK
Grasshopper Java IKV, USA
Java-2-go Java U. California Berkeley, USA
Kafka Java Fujitsu, Japan
Messengers M0 U. of Zurich, Switzerland
MOA Java The Open Group, USA
Mole Java U. Stuttgart, Germany
MonJa Java Mitsubishi, Japan
Odyssey Java General Magic, USA
SOMA Java U. of Bologna, Italy
Tacoma Tcl, C, Python,... Cornell, USA i Tromsø, Norway
Telescript Telescript General Magic, USA
Voyager Java ObjectSpace Inc., USA

Figure 2.1: Mobile Agent Systems

Mobile agents can move between internetworked agencies transporting their code, data and

state information to continue their execution on different environments. There are several

methods to achieve this mobility. We will see these different mobility schemes in this

section.

Mobile agents provide many advantages. First, they reduce network overloading allow-

ing the code to be executed at data location, instead of fetching remote data from code’s

emplacement. Also, network latency is decreased. Agents can be used to execute (act) lo-

cally where the control is required, reducing latency time in real-time applications. Mobile

agents provide an asynchronous and autonomous execution which is ideal to work with in

environments with expensive or fragile network links. Heterogeneity is a natural feature

inherent in mobile agents. They are hardware and transport layer independent and hence

10 CHAPTER 2. AGENT TECHNOLOGY AND TRUST

they provide optimal conditions for an uniform system integration. Robustness and fault

tolerance are two more advantages easily provided by mobile agents.

Mobile agents provide a new network programming paradigm [GV97] to be add to the

traditional client/server paradigm, remote code invocation and code on demand. In the

client/server model, a server offers a service usually related to some resource access. The

code implementing the service is in the server side and it is executed there. In this model

execution environment, code and resources are all in the server side. The client trying

to access the resource communicates with the server providing it using a pre-established

protocol. The remote code invocation model works slightly different. The code is still at

server side, but it is used from the execution environment at client side. The client does not

use an specific protocol as the paradigm itself resolves this communication. In the code on

demand model client demand the code to execute locally. Mobile agents are an evolution of

these paradigms: the code is now going to the data and only results go back to client side.

The key aspect of the new mobile agents model lies in the distribution of code, resources

and execution environments among a set of internetworked computers. Mobile agents are

indeed a specific case of a wider concept which is out of the scope of this work: code

mobility. Java Applets and ActiveX are examples of code mobility. In these cases is the

destination itself who starts the transfer of the code.

There are several types of mobility: remote execution, weak migration and strong mi-

gration. These types are shown on figure 2.2.

Transport Migration Migration
of Code and of Code and of Code, Data and

Data Data State of Execution

→ Remote Execution →Weak Migration → Strong Migration

- ———- Mobility degree ———– +

Figure 2.2: Types of mobility

In the case of remote execution, the agent is sent before it starts to be executed. When it

arrives at destination it is executed until it finishes. In this case the agent is transfered once.

2.1. AGENTS 11

When it is executing it can use the same remote execution mechanism to start the execution

of other agents. In the remote execution the destination of the agent is determined by the

execution starter.

The agent can do a weak migration by sending its data along with its code. Usually,

the implementations of this scheme allow to choose which part of data will be transferred

to the new location of the agent. In this case, the agent programmer might design some

mechanism based on the value of agent’s data to resume the execution from some point.

Strong migration is the highest degree of mobility. Using this scheme not only agent

code and data is sent, but also the state of execution. When the agent arrives to destina-

tion, it is fully restored and its execution is resumed from the same execution point it was

just before migration. Strong migration turns to be complex, since it involves low level

internal mechanisms for execution restoring that must be standard to provide migration

transparency in heterogeneous environments.

In [GH99] we found some considerations about agent migration. In this very section we

noticed the reduction of network loading as an advantage of using agents: the agent goes

to the data and brings back the results instead of fetching a big volume of information and

process it locally. Nevertheless, we must analyse what happens if the agent itself is very

big. If applications using agent technology had big agents with lots of code inside, results

would not be as good as expected. The basic idea in [GH99] is a programming model

called FOAM (Fragmented Object Agent Model) based on the object model of AspectIX

architecture and with a communication layer, CORBA compliant, beneath. Using FOAM

an agent does not have to be completely transferred during migration, but only the required

fragment to fulfil the required tasks at the destination agency. The approach is further

detailed in [GH00].

Agent itineraries

A basic element on mobile agents is the itinerary. The itinerary is the relation of agencies

that an agent must visit to achieve its objectives. This itinerary allows to have a flexible

specification of the travel plan of an agent. This information may be implicit, in the code

of the agent, or explicit, as a separated element.

Explicit itineraries are structures containing the agencies that are going to be visited by

12 CHAPTER 2. AGENT TECHNOLOGY AND TRUST

the agent on its life cycle. This concept was first used in the Concordia system [WPW+97]

and improved in [SRM98]. [MB02] defines a flexible itinerary describing agent destina-

tions and the tasks to accomplished at each one.

Itineraries are composed by basic structures, or entities, which represent an agency, or

host, and the code and data to be used by the agent in that agency. The form of each of

these entities ei is formed by a tuple

ei = (hosti, datai + methodsi).

Entities can be arranged in sequences, sets and alternatives. These structures can be

recursively combined to build complex itineraries. In a sequence, the agent will migrate

to each agency one after the other. Formally, it is a list [e1, · · · , en] with n ≥ 1 entries

defining that the nodes specified by entry ei (1 ≤ i < n) must have been visited before the

nodes of entry ei+1 are visited. In a set, a group of agencies will be visited by the agent in

no special order, i.e. a list of entries {e1, · · · , en} with n > 1 specifying that the elements

e1, · · · , en are handled in any order as long as each element is visited exactly once. Finally,

in an alternative only one agency of those listed will be visited by an agent, depending on

some conditions. That is to say, a list < e1, · · · , en > with n > 1, in which one entry

(usually chosen by the mobile agent) is visited from the whole set of entries. Note that

set structures involve cloning of agents. If cloning is not desired then a set structure can

be replaced by an alternative with all possible sub-itineraries (permutations of entities) as

sequences randomly chosen:

{e1, · · · , en} ≡< [e1, e2, e3, · · · , en], [e2, e1, e3 · · · , en], · · · , [en, en−1, · · · , e1] >

In the following, we show the traditional example of mobile agent itinerary [SRM98]

to clarify this definition. The owner of the mobile agent is planning a romantic evening

and orders his agent to buy some flowers, a ticket to the theatre, and to reserve a table in

a restaurant. The mobile agent can choose between two theatres, and depending on the

decision it has to reserve a specific restaurant near the theatre. The sequence specifies that

the mobile agent has to go first to the theatre to buy the ticket and go afterwards to the

restaurant. The main set structure of the itinerary allow the agent to buy flowers either

before or after restaurant reservation:

2.1. AGENTS 13

I = { (BestF lowers, buyF lowers),

< [(CentralTheatre, buyT icket), (KingsInn, reserveTable)],

[(ModernArts, buyT icket), (BeefHouse, reserveTable)] >}

Mobile Agents Systems

Mobile agents paradigm is only a set of basic ideas about how software could be devel-

oped. We need some specifications and implementations to bring this programming model

to practise and get profit from its features. A mobile agent system consists of a specifi-

cation of an execution environment, an agent migration mechanism and an agent structure

specification. Furthermore, the resulting system can be endowed with other mechanisms to

achieve security or reliability.

2.1.2 Standards for Multi Agent Systems

As we have seen, there is not just one way to implement an agent system. Sometimes

there are problems with no obvious solution, such as the migration of multi threaded java

agents when there are more than one thread running during the migration. All multi agent

systems differ widely in architecture and implementation, thereby impeding interoperabil-

ity and rapid deployment of applications running in heterogeneous systems. To promote

interoperability, some aspects of agent technology need to be standardised.

There has been some initiatives to achieve a global standard for multi agent systems.

As a result of this, there are currently two standards for agent technology: The Object

Management Group’s Mobile Agent System Interoperability Facility (MASIF) [MBB+98]

and the specifications published by the Foundation for Intelligent Physical Agents (FIPA)

[FIP00].

MASIF

In 1995 the OMG started working on a standard, called Mobile Agent Facility (MAF), in

order to promote interoperability among agent platforms. In 1997, a joint submission by

14 CHAPTER 2. AGENT TECHNOLOGY AND TRUST

IBM, General Magic, The Open Group, GMD FOKUS, and etc was presented to the OMG.

And the standard’s name was changed from MAF to Mobile Agent System Interoperability

Facility (MASIF) [MBB+98]. In 1998 this specification was accepted as an OMG standard.

The current edition was issued in 2000. IKV’s Grasshopper agent system [IKV00] (version

2 available in 2000) observer the MASIF standard. It is a mobile agent and runtime plat-

form developed in Java, built upon a distributed object-oriented middleware. As submitters

of the MASIF standard, IBM and GMD FOKUS agreed to implement the MASIF spec

within their own agent platforms. (GMD stands for German National Research Center for

Information Technology, FOKUS stands for Research Institute for Open Communication

Systems.) There is another mobile agent system called Secure and Open Mobile Agent

(SOMA) System [BCS99], developed by Universitá di Bologna in Italy. SOMA has been

developed by "closely considering compliance with MASIF."

This standard provides interfaces between agents and agent systems. MASIF is limited

to the inter-working of agent systems using the same language. It does not standard local

agent operations, as agent interpretation, serialisation or execution. It basically concerns

these five topics:

• Agent Management. This comprises agent creation, suspension, resumption or fi-

nalisation.

• Agent Migration. Agents can move from agency to agency within a common in-

frastructure.

• Agent Tracking. Agencies, places and agents are registered in a region registration

component.

• Agent and Agency Naming. It standards the syntax and semantics of the names of

agents and agencies, enabling identification.

• Agent Type and Location Syntax. Agent migration can not be done if the agency

does not support the agent type. The location is standardised in order to enable to

localisation.

2.1. AGENTS 15

MASIF has a kernel consisting of two components (at the moment just interfaces):

MAFAgentSystem, defining the operations for creating, managing and transferring agents,

and MAFFinder, providing operations to register, unregister and locate agents and agen-

cies.

MASIF relies on CORBA (Common Object Request Broker Architecture) services.

This makes MASIF much simpler: for instance, it does not specify the remote interaction

between agents and agencies due they are CORBA objects. MASIF does not address the

agent communication aspect.

FIPA

The Foundation for Intelligent Physical Agents (FIPA) was formed in 1996 to produce

software standards for heterogeneous and interacting agents and agent-based systems. It

is a non-profit association formed under Swiss law. Its members include companies and

universities.

FIPA identified a list of agent technologies deemed to be specifiable in 1997 and stan-

dardisation work started. There is a set of spec called FIPA 97 and another called FIPA 98,

both are now on Obsolete Status. The current spec is FIPA 2000, half of which is in the

Preliminary Status, another half on Experimental Status.

About 16 FIPA-compliant platforms have been implemented by diverse companies,

some of which are freely accessible under open source code, such as FIPA-OS. FIPA-OS

is an agent runtime and development platform using Java.

In addition to agent management, the FIPA spec cover agent communication and agent

message transport that MASIF does not cover. FIPA developed an Agent Communication

Language (ACL). It is a high level language with a precise syntax and semantics allowing

agents to communicate. An agent message consists of two parts. The envelope conveys

information for the transportation. The message body contains the actual message. The

FIPA ACL is based on the Speech Act Theory: message are actions, or "communicative

acts", as they are intended to perform a specific action by virtue of being sent. FIPA ACL

derives from Knowledge Query and Manipulation Language (KQML).

Agentcities [AC01] is a new initiative aiming to build a worldwide, publicly accessible,

test bed for the deployment of FIPA Agent based services. Aims of Agentcities include

16 CHAPTER 2. AGENT TECHNOLOGY AND TRUST

creating a common resource for developers, providing a benchmark environment to validate

and test compliance and acting as a focus for discussion.

Comparison of MASIF and FIPA

MASIF is based on agent platforms and it enables agents to migrate from one platform to

another. FIPA spec is based on remote communication services. The former is primarily

based on mobile agents travelling among agent system via CORBA interfaces and does not

address inter-agent communication. The latter focus on intelligent agent communication

via content languages and do not say much about mobility (but see below about FIPA

2000). FIPA adopts an agent communication paradigm, which can better express the nature

of cooperation and is more suitable for integration with other AI technologies. MASIF

adopts a mobile agent paradigm which is more appropriate in situations where dynamic and

autonomous swapping, replacement, modification, and updating of application components

are required.

The are some attempts to bring FIPA and MASIF together. A FIPA 2000 spec deals

with the mobility aspect of agents. It tries to integrate FIPA and MASIF. An Annex of

the ACTS (Advanced Communications, Technologies and Services - an European research

collaborative program) baseline document analyses the possibilities of MASIF/FIPA inte-

gration. For the moment, Grasshopper-2 has been available since 2000 and is both MASIF

and FIPA compliant, through a MASIF and a FIPA add-on respectively.

2.1.3 Security in Mobile Agent Systems

Mobile agents clearly enhance the potential of static distributed systems allowing programs

to be executed in environments that are normally not administrated by their author. Obvi-

ously, some guarantees are needed to assure that none of the parties involved in the ex-

ecution will make any damage [Hoh98a]. We all bear in mind the threat of virii, worms

or Trojan horses. The owner of an execution environment does not know the nature of an

incoming program and this also happens with mobile agents. Security aspects in mobile

agents must be well understood and protected with proper mechanisms.

Nowadays there are some mechanisms to get some degree of protection. Unfortunately,

2.1. AGENTS 17

a global solution for the problem of security in mobile agents is not available yet. Many

aspects are still open and under research.

The security issue in mobile agents can be classified into three strands: between agents,

between agencies, and between agents and agencies. There exists mechanisms to prevent

attacks in the first two, since the problem is similar to traditional distributed systems. The

problem of security between agents and agencies is not symmetrical. Protecting agencies

from agents is also a known and solved problem. There are many mechanism providing

this security, such as the sandbox used in the Java architecture [Gon97]. On the other hand,

protect agents from malicious agencies is not a trivial issue.

Protecting programs, or agents, from their execution environments, or agencies, is very

complicated. The agency controls every step in the execution of the agent: it can read

every byte of code, every data and state, even interfere with the executed algorithm since

the agency itself is interpreting the code. Possible attacks include break privacy (private

keys, electronic cash), code manipulation (virus inclusion), and denial of service attacks.

This is an essential issue to use mobile agents in open systems, normally referred as the

malicious hosts problem. In [Hoh98a] and [Rob99] some of the attacks performed by a

malicious host are identified. These attacks are listed below:

1. -Code spying 8. -Agency impersonation

2. -Data spying 9. -Communication eavesdropping

3. -Flow control spying 10. -Communication manipulation

4. -Code manipulation 11. -False system calls return values

5. -Data manipulation 12. -Kill an agent

6. -Flow control manipulation 13. -Re-execution of agents

7. -Denial of execution 14. -Itinerary manipulation

The agency must read the code and data of the agent in order to execute it. Since the

code is unveiled the agency knows the strategy of execution (problems 1, 2 and 3) and

could manipulate all this information (4, 5 and 6), provide false results (11) or even deny

execution (7). This is a critical problem should the agent carries private cryptographic keys

or electronic cash, and does not admit an easy solution. Agencies might intercept agents

and execute them, doing an impersonation of the real destination agency and therefore

18 CHAPTER 2. AGENT TECHNOLOGY AND TRUST

deceiving agent (8). An agency could spy and manipulate messages sent between agents

(9, 10). Cloning agents or killing them (13, 12) may have important consequences in e-

business applications. Manipulate itinerary (14) may be critical on some applications, for

example in electronic voting [BRSR99].

We consider interesting the approach introduced in [DM01] because it lets to analyse

the problem from an external and more general point of view. [DM01] set forth many secu-

rity problems arising from the use of mobile agents through an analogy with a real-world

complex scenario, the Byzantine Princes Problem (BPP). It provides a methodology con-

sisting in finding out resemblances between the problem and the mobile agent application

to better understand security issues. In the set up of the scenario there is an old king with

a large fortune, married twice during his live and with two sons for each wive. Each of the

four princes have his own principality, run ruthlessly. The princes do not dare leave their

respective castles, for fear of being killed by their own subjects. The old king is dying, and

plans to distribute his wealth as an inheritance to the winners of a chess game. Siblings

of same mother will play together, alternating who makes the move each side. Since of-

ficials can be killed, detained or bribed, the king must devise mechanisms/procedures that

are built into the chess playing process that allow the game to continue in the face of these

unsavoury activities. If cheating is discovered, the game is continued from the point of the

last legitimate move.

Considering that the princes will not leave their castles, the king will need to send

one or more caravans and perhaps messengers through the principalities to have the game

played. The people in the caravan(s) and the messengers may change due to a number of

reasons such as death or retirement. Because of this, recognition of caravans’ personnel or

the messengers alone cannot be used as authentication that they represent the official party.

Other credentials are needed to verify authenticity.

This is the non-exhaustive ([DM01]) list of the possible misdeeds that could occur:

1. A caravan may be destroyed while in transit.

2. The board position carried by a caravan could be changed while in transit.

3. The caravan personnel may be exchanged with people with a different mission, in-

cluding ones who wish to misuse the access rights of the caravan, or want to modify

2.1. AGENTS 19

the legitimate outcome of the game.

4. The caravan personnel could be bribed to act improperly.

5. Imitators of the caravan may arrive at a castle.

6. A prince may have the caravan destroyed while it is at his castle.

7. A prince may attempt to change the board position before his move.

8. A prince may attempt to make an illegal move.

9. A prince may attempt to never make his move.

10. A prince could send a imitation caravan ahead to see what the next round of moves

would be, and then give his illegally wiser chess move to the real caravan, and send

it on.

11. The caravan could mistakenly record a prince’s move.

12. Imitation castles may be set up to deceive the caravan into visiting the wrong prince,

or someone who isn’t a prince at all.

13. A prince could send out a duplicate caravan as well as the real one, so that multiple

games are being played. At a later move, the prince or his brother may destroy the

caravan with the less favourable chess position.

14. A prince may falsely claim that an illegal move has been made to try to force a

number of moves to be taken back.

15. A prince’s subjects may lose confidence in the prince if his ineptness were revealed

by disclosure of the board’s status.

16. The caravan personnel harm the prince.

Nevertheless, we have noted that the Byzantine Princes Problem does not suit all type

of mobile agent applications. New issues not addressed in this list arise, for instance, in

the case of sea-of-data applications. All this problems will be analysed deeper in chapter

20 CHAPTER 2. AGENT TECHNOLOGY AND TRUST

3 in the framework of a Mobile Agent System. In that chapter we present a novel problem

based on BPP which addresses more issues found in general mobile agents applications.

2.1.4 Solutions

There are many solutions to specific security problems in mobile agent systems. Other

issues are so hard that some authors argue that it is impossible to find solutions. This is the

case of the malicious agency problem [HCK95]. However there are some approaches that

partially solve the problem. An added difficulty to find solutions to the malicious agency

problem is that it is not enough to show a mechanism solving it, but a formal demonstration

or verification must be provided to guarantee that it is a good solution.

Solutions can be classified into three categories: organisational approaches (avoiding

security problems assuming a closed environment), specific problem solutions (claiming to

solve some specific problems), and holistic approaches (trying to protect from any attack).

Organisational approaches

All proposals using an infrastructure of agencies controlled by one operator or allowing

migration only to restricted agencies belong to this category. The result is a restricted mo-

bile agent system, not fitting all applications. The main drawback in this type of solutions

is this loss of openness and consequent general purpose. An example is the Telescript

system [Whi94], which gets rid of some security problems only allowing the execution of

agents that come from trusted agencies. [Che97] contributes with a security infrastructure

to authenticate agents and owners using cryptography on a centralised infrastructure.

Specific problem solutions

In this category there are some proposals that try to prevent some specific attacks. Most

of them provide mechanisms for detecting data and code manipulation [Vig98],[Yee97],

[NL96] or agent re-execution [SRM98].

In [Vig98], the owner of an agent can detect and prove modification attacks a posteri-

ori. No other attacks are prevented and it is assumed a legal framework for liability when

2.1. AGENTS 21

damage is done. This framework might not exist in an open agent system, without a cen-

tral organisation. [Yee97] offers a view of other partial solutions, such as fault tolerance

techniques. An interesting method is found in [NL96], the Proof Carrying Code, which

protects data and code through the validation of proves.

[SRM98] proposes two approaches to solve two problems: agent re-execution avoid-

ance and agent persistence. No re-execution is needed when an agent’s owner has to be

certain that the agent will be run exactly once. For instance, if the agent carries out com-

mercial transactions. To avoid re-execution [SRM98] uses a protocol based on message

transactional queues. Persistence is provided by using several agencies to run an agent. A

similar solution for the re-execution problem is in [Bae98]. The proposed protocol detects

clone agents by using a central coordination element.

Some solutions have been developed to protect itineraries. In [BRSR99] we use a non-

repudiation protocol to protect the steps of the itinerary. [KAG98] bases the protection

on digital signature chaining and [Rot98] needs cooperating cloned agents to guarantee

itinerary integrity. [SRM98] and [WSB98] have also addressed this problem by using a

fault-tolerance agent system and by adding a tamper-proof hardware to each host of the

mobile agent system.

Holistic approaches

There are proposals that try to protect the agent from any attack coming from the agency.

Some of these solutions do not use any specific strategy for security since they assume

some special tamper-proof hardware beneath, such as Citadel [Pal94], a cryptographic co-

processor. This hardware performs all crytographic operations and has to be installed on

all agencies, which is a very restrictive requirement.

Other proposals achieve this protection without any special hardware [Hoh98b], [ST97],

[ST98], but not solving the problem of re-execution and persistence.

[ST97] protects the agent by using mobile cryptography. This method is based on the

execution of special functions that operate encrypted data to obtain encrypted results. Data

can not be manipulated by the agency because it does not know the secret needed to decrypt

the information. The problem is that, by the time being, only polynomial and rational

functions can be used. This is a strong limitation to program arbitrary agents. [Hoh98a]

22 CHAPTER 2. AGENT TECHNOLOGY AND TRUST

questions if this model is resistant to all attacks because a finished algorithm to make agents

was never provided. In [ST98] there is a complete description of this approach.

[Hoh98b] proposes a different scheme, applicable to any existent agent. The method is

based on a time limited agent protection against attacker analysis and hence against possible

attacks. In this approach an agent is a black box if, during a time interval, code and data are

not modifiable. This black box has a use by date. To convert an agent to a black box code

obfuscation mechanisms or cryptography are used. An attack to this approach is to analyse

output depending on the input. An agency can deduce the code by analysing the output of a

group of clone agents executed at the same time with an specially designed input. [HR99]

avoids this attack using a trusted agency to act as a register. Communication between agent

and agency must be secret and authentic. This solution depends on the calculated time of

execution of an agent. Since this time is not a constant for all platforms the technique is

not very accurate.

It seems difficult to find some approach to solve all security issues in mobile agents

applications at the same time. The variety of application domains tend to make authors

design tailored solution not valid everywhere. Instead of the search of this panacea, efforts

must focus on finding out new strategies to face the problem on a more sensible fashion.

Our contribution into this area is based on trust modelling. Trust provides a new prospect

to face this problem. Security requirements can be found from trust relationships between

entities of the system (agencies, agents, users, etc.). This approach is shown on chapter 4,

but before analysing it we need to understand trust.

2.2 Trust

One of the main problems regarding trust is that there is not a consensus about its definition.

Before using it as the basis for a model to solve the problem of security in mobile agent

systems, we must have an approximation of trust.

The lack of existence of a common definition for trust and the lack of words to define

specific aspects of trust make it harder to talk accurately about it. This situation leads to an

overuse of the term which makes it difficult to split all different semantic domains refer-

enced in the bibliography and related to this topic. This lack of a widely agreed definition

2.2. TRUST 23

for trust possibly indicates that there is no single generic form of trust that fits and char-

acterises trust requirements in all domain applications. This is partly why we focus on an

inductive approach and on a component based trust model rather than on a more deductive

approach of working from a generic trust definition through formalisms and only then to

define application specific trust solutions. Both inductive and deductive approaches are

useful and complementary and both need further research and evaluation.

There exists a lack of coherence among researchers in their definitions of trust. We

might find trust articles about reputation systems or trust articles about certification author-

ities in public key infrastructures. One of the reasons for this is the different view points

on trust derived from the primary interests is the security and artificial intelligence com-

munities. We distinguish carefully between these two approaches. The computer science

or network security approach largely focuses on a control view of trust, whereas the social

or AI view largely focuses on a more social view of trust.

Trust in the field of computer science security is often not explicitly defined. It is

usually related to many concepts without a corresponding word in our language and un-

mistakable connected with a social dimension of security. A considerable body of work

concerning trust in this field is in the area of security. These are mainly in the form of

formal logics to analyse cryptographic protocols for design flaws and correctness [BAN90]

[Gam90], or to define relationships among users and certificate authorities in public key

infrastructures [AR97] [BBK94] [Jøs96] [Mau96] [YKB93]. Trust mechanisms are also a

key requirement for mobile agent migration [WSB00], for example, trust is defined as a

policy, that is, a set of rules prescribing a principal’s behaviour for all relevant situations.

Trust in computer science mainly concerns simple public key infrastructures or distributed

security infrastructures [EFL+99].

Other work on trust in the field of computer science security is associated with being

able to authenticate the identity of someone and being able to control the access that some-

one has to some resource such as information. If you have a distributed framework or web

to control the authentication of someone and the authorisation of someone to access some-

thing, then this framework can be trusted, it is a trusted third-party and you can trust that

the results of applying the framework, i.e., you can trust that someone has the authority to

do something and that they are authenticated [EFL+99]. If you can control authorisation

24 CHAPTER 2. AGENT TECHNOLOGY AND TRUST

and authentication, then you can entrust a second party, i.e., confide in them some infor-

mation or charge them to do something. Trust in a second party frequently requires trust

in a third party [MvOS96]. More exactly, entrusting a second party requires entrusting a

third party, or rather a network of third-parties, to provide security such as authentication,

authorisation, privacy, information integrity and non-repudiation.

Other trust models are based on real world, social properties of trust, founded on work

from the social sciences [Mar94], [ARH00]. This trust is mainly used in artificial intelligent

systems. These models use are complex, based on metrics and empirical rules and are

mainly oriented to reputation mechanisms. The AI or social aspect of trust considers the

externally observable behaviour of a second party from the viewpoint of the first party and

the society in which they both operate. Various numerical models are used to classify and

accrue the observations about a party from one or more other parties. A first party can then

use a society view and personal view of the observations of the second party to evaluate

whether or not it should interact with the second party and what the risk is entrusting the

second party with specific actions or information.

A trust model spanning both low-level security aspects and high-level concepts does

not exist. Moreover, work in other trust related concepts such as liability or fairness is very

dispersed.

It is easy enough to make broad generalisations about trust, but in fact this issue is

extremely complex. Even the most superficial look at this issue raises fundamental ques-

tions about its definition. Trust is an elusive notion that is hard to define because it has

several facets and can be a matter of subjective interpretation. Trust is multi-dimensional

and definitions are domain specific. We have analysed different trust dimensions and have

discussed their dependences. Dimensions of trust include, but are not limited to:

Direct / Indirect

A clear dimension of trust is concerned with its direct/indirect character. The trust an actor

is directly confiding to an element of the system is called direct trust or immediate trust.

This type of trust allows an agent to access its own resources, or transmit information

through an environment. That is to say, is the trust used when entrusting on something.

Issues with direct trust in big and complex systems are well known. However, this type

2.2. TRUST 25

of trust is not enough to face scalability needs in new systems (take the case of pervasive

computing, for example).

The rest of the trust is indirect trust, since there are other elements involved. Indirect

trust represents the social aspect of trust. We need indirect trust when systems start ex-

panding becoming a huge interconnected network of components (it is not feasible to have

a direct trust relationship among all components), and especially when autonomous agents

are involved. Indirect trust is only required between actors of the system and it provides the

needed mechanisms for a global, scalable and distributed security solution. We are espe-

cially focused in this indirect trust because our concern in novel applications using mobile

agent technology.

Controlled / Not Controlled

We have controlled trust when there exists established entrusted mechanisms to control

actions done by all actors of a system. Any actor can verify these mechanisms and the

infrastructure comprises all involved parties. Because this type of trust is fair for all actors

as it is assured by a common entrusted mechanism, this trust it utterly objective. Delegation

and derived responsibilities are examples of this type of trust.

Non-controlled trust is the subjective opposite end of the axis representing this dimen-

sion in the trust space. It is owned by an actor of the system and can not be universally

verified. There are many types of non-controlled trust mechanisms. They are only useful

to its user. Reputation or royalty belong to this type of trust: they are defined by the actor

itself, using its own measures based on observation and/or heuristic functions.

Other dimensions

Trust must be considered on a space-time framework. Therefore, time and space must be

also considered as dimensions for trust. Any trust model has to deal with the evolution

of trust in time. Many common mechanisms are inadvertently using time. For example,

reputation: it is not the same the reputation of an actor on some time than after some days.

The space, understood as domain or scope, must also be taken into account. Trust is

valid when involved parties share a common context, when they are close enough. To

26 CHAPTER 2. AGENT TECHNOLOGY AND TRUST

extend trust into this dimension, different parties must join in a wider domain or scope by

sharing ontologies, for example.

Dimensional interactions

The aforementioned dimensions, which are not probably all of them, are not independent.

There are many interactions among them.

There are different views on how we can combine control and social (indirect) trust.

They can be considered supplementary rather than complimentary. A good trust model

must provide a broad viewpoint of electronic trust combining all views and where it is

possible to locate all different facets of trust. That is to say that all dimensions of trust must

be considered.

There are several issues here: firstly, it is almost impossible for any trusted third party

to provide perfect enterprise-wide security. Secondly, a trusted third party is often used to

provide one secure channel for communication between a first and second party, there often

exists other channels that are not secure. Thirdly, end-to-end security often doesn’t exist

rather there are islands of security, point-to-point systems that have limited integration and

supported limited dimensions of security. Fourthly, we cannot often adopt a revolutionary

approach of designing systems for total security from the ground-up, rather we need a

evolutionary approach to increase the amount of trust and security in existing systems.

Finally, although a second party can be entrusting with confidential information or charged

to do some action, there is often no direct control or verification that they will keep the

information confidential or that they have the ability and are not otherwise prevented from

carrying out the action. The second party maybe autonomous it may not be able to be

directly controlled or internally monitored.

In chapter 4 we present a new trust model that can be used to find out security require-

ments in mobile agent applications and look for solutions.

Chapter 3

MARISM-A

In this chapter we present a new secure platform for the execution of mobile agents we have

developed to answer the high demand for sea-of-data applications. It includes other desir-

able features on these environments, apart from the basic aspects found on most of them.

Furthermore of protecting different security aspects of communication and migration, the

new designed agent architecture allow the protection of agent itinerary, data and code.

This scheme has lead to a new programming paradigm based on agencies. The platform

itself, together with the specification of several mechanisms and an integrated develop-

ment environment (MARISM-A IDE), comprise the MARISM-A project, an Architecture

for Mobile Agents with Recursive Itineraries and Secure Migration [CCD02], [RMB02].

All these characteristics make MARISM-A appropriate to develop and execute sea-of-data

applications.

We will use MARISM-A as a testbed for our trust model approach in next chapter. In

fact, the trust model and MARISM-A have had a symbiotic relationship, each one having

profit from the other in their parallel construction. The rest of this chapter introduces the

setup of the MARISM-A platform and analyses its security requirements using a variation

of the Byzantine Princes problem explained in chapter 2.

27

28 CHAPTER 3. MARISM-A

3.1 Introduction

For some time now, multi agent systems have proliferated to fill the demand for applica-

tions based on this technology. In chapter 2 we have reviewed agent technology and multi

agent systems. Agents make feasible the easy implementation of a wider variety of appli-

cations, hard to develop by using classic paradigms. Agents are also an enabler of new

types of applications, standing out the so called sea-of-data applications. In these applica-

tions a massive amount (sea) of information is distributed among internetworked locations.

This information can never leave these locations, but it is needed by a program to provide

an outcome. A program can not just fetch the information and locally process it. There

are several reasons preventing this, including the ratio volume of information / available

bandwidth, the way this information is stored (it might be acquired by a special device), or

legal reasons (medical images in hospitals). Agent technology is the basis to make these

applications come true. The price for this is a new branch of open issues concerning secu-

rity. This is especially tricky on mobile agent systems, where agents are not static and can

migrate from one environments to another to be continue an execution.

Main advantages of using mobile agent systems include moving the code to the remote

data, instead of moving the data (useful when data volume is huge), the possibility for

the initial (launching) agency to be offline and access remote resources at the same time

(very useful with weak or expensive network links), or the tasks parallelisation, allowing

scalability in the processing of information. These advantages are very useful in the field

of telecommunications and massive information process, and it results indispensable for

some cryptographic applications [Rie99], [BTR+01]. MARISM-A benefits from all these

intrinsic advantages, and adds some others that make it especially suitable for sea-of-data

applications. Some of the new features include secure migration, secure agent commu-

nication and the coexistence of different agent architectures (including our new recursive

agents) in the same heterogeneous framework. The reason for this is that the MARISM-

A project is being used at the moment to implement several new technologies developed

by our research group [RLN+02], [NRB02b]. All these traits confer to the platform the

capability of easily creating new applications to solve difficult problems hardly faceable

without a framework like MARISM-A,

3.2. PLATFORM DESCRIPTION 29

FIPA/OS [FOS02], a well known multi agent system programmed in Java, has been the

starting point of MARISM-A. FIPA/OS observes most of the FIPA specifications [FIP00]

for agent communication and platform elements, and so does MARISM-A. Mobility mech-

anisms, not very concerned in FIPA specifications, have been implemented taking into ac-

count the MASIF mobility standard [MBB+98].

As a result of all of this, from MARISM-A has emerged a new paradigm for mobile

agent programming. This new programming model is agency oriented and let complex

applications with itinerant agents to be very easily coded. Furthermore, the new agent ar-

chitectures we have designed allow to independently keep secrecy on all agent components,

while preventing attacks against integrity at the same time. This is indeed one of the more

novel features of our platform. This model extends the object oriented programming to

location oriented in a highly intuitive fashion. This new programming model makes possi-

ble a new type of developing environment (IDE). In this IDE, the programmer graphically

defines the itinerary of the agent and adds the code to be executed in the nodes representing

agencies.

One of the most important things borne in mind during MARISM-A designing stage

has been flexibility and scalability. Even different types of agents, with different migration

patterns, can be embodied by programmers.

3.2 Platform description

The native language of the implementation of MARISM-A is Java. For the time being,

all components of MARISM-A are being implemented only using this language (100%

Java). This makes MARISM-A a very portable platform, essential feature in this kind

of environments. MARISM-A is still on its early stages. We have implemented secure

mobility (migration) and have simple applications running. The security framework in

the platform has been based on a Public Key Infrastructure (PKI) (described below). At

the moment we are implementing different agent architectures and mechanism to protect

agents parts, such as itineraries.

30 CHAPTER 3. MARISM-A

3.2.1 Elements

The basic element in our platform, apart from the agents, is the agency. This is the basic

environment for the execution of agents. An agency consists of a directory service, an agent

manager and a message transport service. An agent system has several agencies distributed

on a network. Each agency in controlled by an entity (its owner).

Agents are software units executing in the agencies on behalf of their owners. Agents

in MARISM-A can be mobile or static, depending on the need of the agent to visit other

agencies to fulfil its task. There are several types of mobile agents according to the char-

acteristics of its architecture: basic or recursive structure, plain or encrypted, itinerary

representation method, etc. Agents can communicate each other through the agency com-

munication service. Figure 3.1 shows different types of agent supported in MARISM-A.

Agent

Itinerary
Nested

Itinerary
Non−recursive

Itinerary
Explicit

Itinerary
Implicit

StaticMobile

Figure 3.1: Supported agents types in MARISM-A

3.2.2 Mobility

Since mobility implementation is vaguely defined in FIPA specifications, we have designed

our own migration protocols. We have tried to observe the MASIF standard as much as pos-

sible, always abiding by FIPA structures. Our mobility solution consists of a two level pro-

tocol: at message interchange level using FIPA Agent Communication Language (ACL),

and at a negotiable transport level for the transmission of the agent. The migration of the

agent is negotiated between agencies using ACL. Agent requirements about execution and

the underlying transport protocol are dealt with at this level. Since FIPA/ACL language

is supported by all FIPA compliant platforms, migration compatibility with other FIPA

3.2. PLATFORM DESCRIPTION 31

platforms is guaranteed. Platforms without the agent demanded execution capabilities or

without common transport protocols must refuse the migration request. This flexibility

makes MARISM-A able to transparently inter-operate with other platforms.

If the agent destination agency accepts the migration request then the second level of

the migration protocol will be started. At the moment, our platform is only accepting MMP

(MARISM-A Migration Protocol) over TCP/IP, a basic protocol allowing the transmission

of data and code of agents. The destination agency reconstructs the agent in the remote

side and resumes its execution. The whole migration protocol is shown in figure 3.2.

Agent
Platform

Agent
Platform

Agent
A

Agent
A’

3. Request (Move A)

4. Agree()
7. Inform()

1. Request (Move A)

2. Agree()
8. Inform()

5. Agent Transfer

9. Quit(A)

6. Execute(A)

Figure 3.2: Migration Protocol

Step 5 of figure 3.2 represents the agent transfer process. To carry out this process

we have used the reflection mechanisms of the Java language (getting information about

classes and interacting with themselves), and its capabilities for network programming.

These are the basic steps of the process:

• Agent Serialisation Data (objects) and code (classes) are converted into an easy to

transfer format that allows to have all components of the agent on just one informa-

tion structure.

• Agent Codification The agent is encoded according to the specified transfer proto-

col.

• Agent Transmission A connection with the remote agency is established and the

agent is transfered through it.

The remote agency carries out the inverse process when it receives the agent.

We have used a classic client/server scheme to implement the information transmission

task. Each MARISM-A agency has four components devoted to this process: a code server

32 CHAPTER 3. MARISM-A

and client and a data server and client. These elements make possible to have different

instances of the same agent getting into the agency. Agent classes are stored on a class

cache memory, allowing them to be downloaded only once in case or frequent use. When

the agency receives a migration request it instantiates a data and a code clients to obtain the

data and classes from the source agency (which is using the corresponding servers). These

clients use a special class loader of MARISM-A (AgentClassLoader), which is a subclass

of the default Java class loader. This new loader sees to download remote classes, while

the default class loader is still used to load local classes.

When the required code and data is obtained, the agent is reconstructed and its execution

is resumed.

3.2.3 Security Infrastructure

Security has been one of the weakest points of the FIPA standard. There is a work group

now in FIPA devoted to security, but there is not yet a consensus about how security must

be solved. The security solution we have implemented in MARISM-A is a proposal in this

direction.

Desirable features regarding security for MARISM-A include:

Secret migration Agents must be kept secrecy while transfered from one agency to an-

other. Only involved agencies have to have access to the agent.

Authentic migration Migration is only possible between authorised agencies.

Non-repudiation migration When the migration is over, none of the involved agencies

can repudiate the transmission / reception of the agent.

Secret communications between agents Established communications between agents in

the same agency have to be secret to other agents. Spy agents are not effective in this

platform.

Authentic communication between agents Agents must prove their real identities to es-

tablish communications. This is indispensable in applications where agents from a

same owner must interchange information.

3.2. PLATFORM DESCRIPTION 33

Anonymous communication between agents Sent messages between agents may have

an undisclosed source and sender, becoming anonymous messages.

Non-repudiable messages between agents After the sending or reception of a message,

a sender or receptor can not deny its action of send or receive.

Some of these features are inherent in the platform itself. For example, security in agent

communications. Because messages rely on an agency internal service, privacy and au-

thentication between agents is guaranteed against other agent attacks. The communication

system allows to hide sender identity and therefore source agent anonymity is preserved.

A subsystem for message logging in the agency makes possible the non-repudiation func-

tions. We plan to have some more complex mechanism to store proves of agent migrations,

such as a receipt repository.

Secrecy, authentication and non-repudiation during migration are basic security require-

ments for most applications. We have implemented a basic security infrastructure to fulfil

these requirements. Security requirements in MARISM-A are analysed and discussed later

in this chapter, by using a variation of the Byzantine Princes Problem methodology. The

flexible architecture of MARISM-A allows to later add specific safeguards implementa-

tions to particular security requirements. To fulfil these basic security requirements we

have used a PKI shared by all agencies in the system. All cryptographic protocols used in

MARISM-A use this PKI. A Certification Authority (CA) is the central trust element. All

needed certificates in the system are issued by this CA and stored using a directory service

(DS). Secure LDAP protocol is used to access the directory.

Secure migration protocol to transfer agents between agencies uses SSL protocol be-

neath. This will assure secrecy and authentication in the migration process. Required

cryptographic keys are obtained from the directory service and the certification authority is

used as the common trusted party. To avoid the chance of repudiation after migration some

logs are kept. We plan to use a simple protocol to prevent repudiation. The aim of this non-

repudiation protocol is to finish with the agent in one end and a receipt (or non-falsifiable

prove of reception) in the other. This protocol is detailed on chapter 5.

The usage of this PKI, jointly with the new designed agent architectures (analysed

below), allows other security PKI-based extensions for the platform, such as protection of

34 CHAPTER 3. MARISM-A

data, code and itinerary using asymmetric cryptography.

A secure mobile agent system based on a PKI presupposes, up to a certain level, a

centralisation of trust: all actors must believe in the honesty of a common certification

authority. This PKI lets have several hierarchically organised trust levels. This is not a

limitation for the potential applications of our platform, since these applications already

have an implicit hierarchic trust. Nevertheless, MARISM-A is not limited to this PKI and

other mechanisms can be applied to provide a distributed notion of trust. For example, a

Simple Public Key Infrastructure (SPKI) can be used for resource access control [NRB02a].

3.3 Agent architectures

One of the novel aspects introduced in our platform is the flexibility for agent architectures.

In chapter 2 some security solutions for mobile agents were reviewed. Most of them had

special agent requirements. Instead of focusing on a specific type of agent, we have created

different agent architectures and, which is more relevant, we have enabled MARISM-A to

accept different agent architectures. Architectures can provide their own security mecha-

nisms since they may depend on agent structure. Even mobility is a feature of only some

agent architectures. Moreover, our design allows to have several types of agents living

together in a heterogeneous environment. MARISM-A provides some predefined architec-

tures.

Most bibliographic references on agents do not make a clear distinction between dif-

ferent parts of an agent. Some of them suggest the need of considering independent some

internal parts, especially for mobile agents. This is the case of agent data in [SR98], of

agent code in [BHRS98], or agent itinerary in [BRSR99] and [KAG98]. Independence of

these parts plays an important role for some agent protection mechanisms, whereas it is

unnecessary for others. In MARISM-A, the architecture of the agent is an adaptable model

that determines the different parts in which an agent is divided and the combination of se-

curity, integrity, and other mechanisms included in it. Figure 3.1 showed different agent

architectures implemented in MARISM-A.

All mobile agent architectures share some basic aspects, such as the differentiation of

internal parts and migration mechanisms. A mobile agent consists of code, data, state, and

3.3. AGENT ARCHITECTURES 35

an implicit or explicit itinerary. Code is the set of instructions describing the execution of

the agent. Data is an information storage area that can be used by the agent at any moment

for reading and writing and goes with it all the time. Results of executions are stored in

this area, normally using some convenient protection mechanisms in such a way that only

agent’s owner will be able to read it. State is like the data part of the agent, but reserved

to store agent information regarding its state. Explicit itineraries are structures containing

the agencies that are going to be visited by the agent on its life cycle [MB02]. Just as we

reviewed in chapter 2, itineraries are constituted by several basic structures: sequences,

sets and alternatives. These structures can be combined to build complex itineraries. In

a sequence, the agent will migrate to each agency one after the other. In a set, a group

of agencies will be visited by the agent in no special order. On the other hand, only one

agency of those listed in an alternative will be visited by an agent, depending on some

conditions. Note that set structures is the only one involving cloning of agents. If cloning

is not desired it is enough to replace sets by alternatives to all possible arrangements of

the nodes, and then set the condition to a random selection. The snapshot of figure 3.5

shows an itinerary with an alternative (starting in triangle nodes), a set (semicircle nodes)

and sequences (round nodes). Our itinerary allows to use a wide range of mechanisms to

protect it (secrecy, integrity) and provide anonymity to involved agencies.

The implementation of agent management methods is included in the very agent. This

allows, for example, to delegate specific mobility functions to the agent, freeing the agency

from this responsibility. Using this implementation, MARISM-A becomes more generic,

simultaneously supporting a wider range of agent architectures. The main architectures

(types) of agents included with MARISM-A for the time being are described next.

3.3.1 Static

Static architectures are also supported by MARISM-A, as explained in previous sections.

Many system agents do not need to migrate to other systems because of the tasks they must

carry out. Whereby, they can be static. User agents can be static as well. Because agent

management code is in the very agent, it is indifferent for the platform to deal with mobile

or static agents.

36 CHAPTER 3. MARISM-A

Agenti = ControlCode, Statei, Codei, Data

There are not many words to say about security in static agents. Communication and

interface with other agents are provided by secure services of the agency. Data protection

is assured by the agency too, and there is no itinerary to protect here.

3.3.2 Mobile with implicit itinerary

This agent architecture is very similar to the static agent, except for the control code that in

this case implements mobility. There is not a separate itinerary, but it is merged in its own

code. A simple method will allow to migrate to other agency.

Agenti = ControlCode, Statei, Codei, GlobalData

The same code is executed by all agencies. Thus, there is no point in keeping it secret

(assuming a secure migration, the code it is already secret to the agencies not involved with

the execution of the agent). Data is shared by all agencies and can be protected since it is

apart.

It might be interesting to protect integrity and secrecy of data that has been written in

some agency (outcomes). In a shopping application, for instance, where agencies represent

shops and agents act on behalf of buyers, it might be necessary to protect offers from

competitors. This is a common situation in sea-of-data applications, where there exists

distrust between agencies but honesty toward users.

Some of the data area is reserved to store results from executions (Results Data). Re-

sults can be stored plain:

ResultData = R1, R2, ..., Rn

where Ri is the outcome in agency i.

If the application requires confidentiality and integrity for this information, MARISM-

A provides a protection mechanism based on hash chains [DH00], [HC02]. Results are

firstly encrypted using agent’s owner cryptographic information. Only the owner of an

agent will be able to read its results. Once the result has been written, a hash of the Result

3.3. AGENT ARCHITECTURES 37

and previous hashed information is calculated, signed and written next. This hash has in-

formation about the identity of next agency in the itinerary, therefore no agency can neither

modify the result area nor remove some result. Each agency verifies during immigration

that all hashes in the Results Data are correct. This is the format of the Results Data area:

ResultsData = Eo(nil, Id1), So(H(Eo(nil, Id1))),

Eo(R1, Id2), S1(H(Eo(R1, Id2))),

Eo(R2, Id3), S2(H(Eo(R2, Id3))), ...

Eo(Rn, Ido), Sn(H(Eo(Rn, Ido)))

where Eo(m) is an encryption of m that can only be decrypted by the owner of the

agent (o); Si(m) is a signature made by i; Ri is the result of agency i; Idi is the identity of

the next agency, i; and H() is a hash function.

3.3.3 Mobile with explicit nested itineraries

Agent code is split into several pieces when using this architecture. There is a main code

that will be executed in all agencies (Common Code), and as many code fragments as

agencies are in the itinerary, each one to be executed in a particular agency (Local Code).

This feature makes MARISM-A very useful in some types of application where execution is

dependent on the context. The agent changes after a migration (the used part is removed).

This agent aspect dynamism allows several security mechanisms to be applied. In this

architecture the agent has a recursive structure as follows.

Agenti = ControlCode, State, CommonCode, GlobalData

Itineraryi

Itineraryi = LocalCodei, Datai, Agenciesi, Itineraryi+1 | Nil

Agenciesi is the agency (or agencies, depending on the type of itinerary) the agent is

going to visit (migrate) next from i. The agent that is sent to the next hop of the itinerary

(Agenti+1) has the same structure. The last host is identified with a Nil next agent. Com-

monCode is executed by all agencies when the agent immigrates and before the specific

LocalCode. Programming is simplified by using this common code to include the agency

38 CHAPTER 3. MARISM-A

independent code only once. The control code in the agent deals with the functions of agent

management, in this case extracting the relevant parts of the agent.

This architecture can only be used with tree type itineraries. When the itinerary contains

cycles it is not feasible to do the recursive encapsulation. If a tree type itinerary is required

then some other architecture must be used, for instance the explicit non-recursive itinerary

(see next section).

This architecture allows to implement several protection mechanisms to protect results

data, in addition to the mechanism presented in the implicit itinerary architecture. Further-

more, code and itinerary are also protectable for agents using this architecture. The idea

is to take advantage of the nested structure of the agent and make available (possible to

decrypt) to an agency only the portion of the agent needed for the local execution. This is

the structure of the agent when using data, code and itinerary protection:

Agenti = ControlCode, State, CommonCode, GlobalData

Itineraryi, So(H(ControlCode, CommonCode))

Itineraryi = Ei(LocalCodei, Datai, Agenciesi,

Ei+1(Itineraryi+1)) | Nil

3.3.4 Mobile with explicit non-recursive itineraries

This architecture is similar to the previous one, but reduces its complexity by using a non-

recursive structure. Instead of a nested agent, the local code and data are at the same level

here. All parts of the agent are exactly the same.

Agenti = ControlCode, StateData, CommonCode, GlobalData,

Itinerary

Itinerary = (LocalCode1, LocalData1, Agencies1), ... ,

(LocalCoden, LocalDatan, Agenciesn)

Main differences between these last two architectures (recursive and non-recursive) lie

in the way a protection method for data, code and itinerary is applied. An agent of this type

3.4. IMPLEMENTATION 39

can be unaltered during all his time life, whilst the recursive agent makes necessary to send

a modified version of itself to the next agency. To avoid agencies attacks, agent integrity

must be guaranteed through some hash verifications:

Agenti = ControlCode, StateData, CommonCode, GlobalData,

Itinerary, So(H(ControlCode, CommonCode)),

So(H(Itinerary))

LocalStructures = E1(LocalCode1, LocalData1, Agencies1), ... ,

En(LocalCoden, LocalDatan, Agenciesn)

There are at least two variants of mobile agents with explicit non-recursive itineraries:

ordered and scrambled. In the scrambled non-recursive agent, the list of information for

agencies (Itinerary) is scrambled. This makes it not possible to know which is the part of

the agent that will be executed on some agency. Whereas in the ordered itinerary, all parts

are arranged in execution order.

This architecture allows to use itineraries containing cycles, unlike recursive architec-

tures. This is because structures forming the itinerary can be reused here. This architecture

is one of the most versatile because of its flexibility and protection capabilities. The only

drawback is that makes the number of agencies known.

All security solutions provided with agent architectures are based on the aforemen-

tioned Public Key Infrastructure (PKI). Moreover, we assume that agencies distrust each

other, and therefore they will try to modify results carried by the agent, or to gain knowl-

edge about its itinerary, to favour themselves to the detriment of the rest. We also assume

that agencies are not malicious and they do not seek to adversely affect the owner of the

agent, or the agent itself.

3.4 Implementation

The implementation of MARISM-A has been utterly done in Java and consists of three

different parts: agencies, agents, and an set of tools for developing agents, including an

IDE.

40 CHAPTER 3. MARISM-A

Different agent architectures are represented with a hierarchy. Although MARISM-A

provides some architectures already implemented, this hierarchy may be extended with

new user-defined architectures, as long as root classes are kept. Each class implements

specific features of the architecture. Classes implementing basic security mechanisms for

each architecture have also been implemented in MARISM-A basic classes.

ItineraryMobileAgent ScrambledItineraryMobileAgent

NestedItineraryMobileAgent

OrderedItineraryMobileAgent

Agent

MobileAgent

SecureNestedItineraryMobileAgent

SecureScrambledItineraryMobileAgent

SecureOrderedItineraryMobileAgent

Figure 3.3: Agent classes in MARISM-A

Below we provide some implementation details of one architecture as an example.

Mobile agent with nested itinerary

This architecture is implemented in MARISM-A class NestedItineraryMobileAgent. This

class extends ItineraryMobileAgent, as shown in the basic agent classes diagram (figure

3.3), and inherits its mobility behaviour and itinerary components. All the agencies in the

itinerary are represented with the class Node. Specific methods of these classes are shown

in figure 3.4.

A main method in the control code of the agent has the basic algorithm of itinerary

management:

3.4. IMPLEMENTATION 41

Class MobileAgent

moveTo(host:String) : String

Class Node

− possible_paths : List
− it_future : byte []
− next : String

− node_code() : Object

Class ItineraryMobileAgent

common_code() : void
+ main() : void

− it : byte[]
Class Agent # data : Object []

Itinerary
Step

1..n1

Figure 3.4: Class diagram

Agent current = decode(encodedAgent);

current.executeCommonCode();

current.executeLocalCode();

data.add(current.result);

moveTo(current.nextNode, current.nextAgent);

After agent decodification is done all components are ready to be used in this agency.

First thing to do after decodification is to execute the common code and local code, in this

order. Result of the execution is stored next in the data area. The agent is now ready to

migrate to next agency. The moveTo method has conveniently been overwritten in this class

to create the new agent (inner in the nested structure) which will travel to the next hop in

the itinerary.

In the secure version of this type of agent (subclass SecureNestedItineraryMobileAgent),

nextAgent is encrypted in such a way that only next agency in the itinerary will be able to

decrypt it. Methods to encode and decode carry out cyphering at the same time to protect

agent privacy.

Integrated Development Environment

The implementation of the Integrated Development Environment (IDE) has also been done

in Java. In this IDE, the programmer graphically defines the itinerary of the agent in the

Itinerary Creation Tool and adds the code to be executed in the nodes representing agencies.

This description of the agent can be saved (and loaded) to disk using XML. When the

programmer has finished the design the agent (java code) can be generated and used. For

the time being, we have developed a first version of this IDE and we are now integrating

cryptographic functionality. Figure 3.5 shows a screen-shot of the Itinerary Creation Tool,

42 CHAPTER 3. MARISM-A

part of the IDE. The drawn itinerary represents the classic example [SRM98] reviewed in

chapter 2, where an agent must buy some flowers and either buy a ticket for theatre and go

to a restaurant, or buy a ticket for a museum and go to other restaurant.

Figure 3.5: Itinerary Creation Tool, part of MARISM-A IDE

Each node represents a host with an specific code. The same agency can be represented

through several nodes if the agent has to execute there more than once (different code each

time). The same node is used for the same agency if the agent executes the same specific

code.

3.5 Security requirements using the Byzantine Princes Prob-

lem

[DM01] proposes a problem, the Byzantine Princes Problem (BPP), consisting on a novel-

istic setup and a non-exhaustive list of security issues that can be projected to mobile agents

applications. The BPP setup and issues are listed on chapter 2. This has been a good first

approach to determine security issues in this type of applications from a list of well known

problems on a real world scenario. Providing safeguards for this problems guarantees the

3.5. SECURITY REQUIREMENTS USING THE BPP 43

solutions for most common security issues in the mobile agents application. Nevertheless,

the problem is not broad enough to be used for any type of mobile agent application.

It is not easy to find a proper problem to do this. Requirements of a useful problem

include:

• Resources are distributed.

• It is hard, or not feasible, to move required resources.

• Users do not need to be on-line during the solution of the problem.

• Tasks may need results from previous tasks.

• Itinerary is explicit and can have alternatives.

• Some locations may need specific tasks.

• Security mechanisms are not inherent in the problem.

BPP does not fulfil all these requirements. Below we have analysed the BPP in MARISM-

A and drawbacks of the problem are highlighted afterwards. We have designed a new

problem to better represent security problems of any type of mobile agents application,

including sea-of-data, through a real world problem based on the BPP. The new approach

takes into account the problems in BPP to formulate a more convenient scenario.

This is the best correspondence between BPP elements and MARISM-A parts that we

have achieved:

King User / Authority

Castles Agencies

Princes Mobile Agent (Specific Code) / Agencies

Caravan Mobile Agent (Architecture)

Caravan Personnel Mobile Agent (Control Code)

Chess Board and Pieces Mobile Agent (Results)

<Caravan Boot> Mobile Agent (Data)

<Chess Rules> Mobile Agent (Common Code)

<inherent in the problem> Mobile Agent (Itinerary)

– Agency Resources

44 CHAPTER 3. MARISM-A

Note that some of the elements in MARISM-A correspond to one or several elements

of the BPP setup, or even to none.

Below follows the correspondence of security issues in MARISM-A with the list of

problems in [DM01] (reviewed on chapter 2).

1. A caravan may be destroyed while in transit. An agent may be destroyed during

its migration between agencies. The correspondence is not direct: destroying the

caravan still preserves some parts of the agent, such as specific and common code.

2. The board position carried by a caravan could be changed while in transit. Some

result data carried by the agent could be modified or removed during migration. In

this case there is a straightforward correspondence. However, the limitation of being

in transit obviates more realistic ad-hoc situations where result modification is more

likely to happen.

3. The caravan personnel may be exchanged with people with a different mission,

including ones who wish to misuse the access rights of the caravan, or want to

modify the legitimate outcome of the game. A third party may intercept the agent

and replace the control code to take profit from the access rights of the agent, or to

modify carried results.

4. The caravan personnel could be bribed to act improperly. The analog problem

in MARISM-A is not clear. Agent modification is considered in the previous issue,

including control code. To bride someone to do something is equivalent (but not

feasible on a real world scenario) to replace her with an exact replica person and new

mission. In MARISM-A this problem is the same as the previous one.

5. Imitators of the caravan may arrive at a castle. Imitators (clones?) of the agent

may arrive to an agency. This problem is similar to the previous two except the

original agent is still moving around.

6. A prince may have the caravan destroyed while it is at his castle. An agency may

destroy an agent when it is inside.

3.5. SECURITY REQUIREMENTS USING THE BPP 45

7. A prince may attempt to change the board position before his move. An agency

may attempt to change or remove result data obtained in other agencies before in-

serting its own.

8. A prince may attempt to make an illegal move. This is an ambiguous issue. In one

hand it can be the addition of a wrong result. In the other hand, it can be the wrong

execution of agent’s code.

9. A prince may attempt to never make his move. An agency refuses to execute the

agent, blocking it. This is a denial of execution attack. It is not clear if the prince

(agency) let the agent migrate to next castle (agency).

10. A prince could send a imitation caravan ahead to see what the next round of

moves would be, and then give his illegally wiser chess move to the real caravan,

and send it on. In the case of an itinerary with some loop, an agency may modify the

agent the second time it migrates to it to pretend it is the first time and take advantage

of previously collected results. If the itinerary has no loops, this is not applicable.

11. The caravan could mistakenly record a prince’s move. An agency could mistak-

enly create the local result information. This is not likely to mistakenly happen but

deliberately, and in the latter case the situation is covered elsewhere.

12. Imitation castles may be set up to deceive the caravan into visiting the wrong

prince, or someone who isn’t a prince at all. Not registered agencies may spoof

other agencies to let them think who they are not. Also agencies falsifying identities.

13. A prince could send out a duplicate caravan as well as the real one, so that

multiple games are being played. At a later move, the prince or his brother may

destroy the caravan with the less favourable chess position. Agencies could send

out agent clones. In case of itineraries containing loops the agency could destroy the

less convenient replica.

14. A prince may falsely claim that an illegal move has been made to try to force a

number of moves to be taken back. Agencies may falsely claim an agent has been

modified to try to force a number of hops to be taken back.

46 CHAPTER 3. MARISM-A

15. A prince’s subjects may lose confidence in the prince if his ineptness were re-

vealed by disclosure of the board’s status. Reputation of an agency may lose con-

fidence if the results of agent executions are publicly revealed by disclosure of agent

information.

16. The caravan personnel harm the prince. This is ambiguous. The agent harm the

agency or the agent is attacked..

As we have seen, BPP is not easily applied to MARISM-A and to any sea-of-data ap-

plication in general. Many important elements in this type of application do not correspond

to one element in this setup or even have no representation at all, such as the itinerary (in

the BPP the itinerary is inherent in the problem) or resource management.

Next we propose a novel problem, based on BPP, in which a wider number mobile

agents application can be identified. This is the Byzantine Princes Problem Sequel (BPP-

S).

Byzantine Princes Problem, the sequel

The Byzantine Princes Problem Sequel (BPP-S) is based on BPP and shares its setup. Let

us remember that the problem description finished with a chess game being played.

The chess game is played during months and finally a pair of siblings win the disputed

challenge. Before the princes take up the throne, their ruthlessness manners make them

constantly quarrel. The old king soon realises the impossibility of a joint reign. After

having slept on it, and advised by the wisest royal counsellors, the king resolves to organ-

ise a new and definitive challenge to decide which of the princes would become the next

sovereign of the kingdom in his succession.

The new challenge consists of solving a very hard enigma, that can be only solved

after seeking information in the depths of the realm, kept in the knowledge of witches and

wizards, looking up strange books hidden deep down lost monasteries, and consulting far

off oracles, spread out all over the ends of the kingdom. All these information sources

will cooperate with both princes to provide required answers, expecting some favour from

(or be ignored by) the future king. However, they will try to unveil as little as possible

of their secrets and knowledge and will distrust each other because of rivalry. Some of

3.5. SECURITY REQUIREMENTS USING THE BPP 47

these knowledge custodians may demand some items from other sources. For example, a

witch might need a special ingredient, only available in dragon’s lairs, to make a magic

sleep potion; or a library guardian / keeper monk may need a magic sleep potion to let the

emissary visit the library.

Although the enigma is the same for both princes, there is not a unique way to solve it.

Each prince makes a detailed plan to obtain the required information to solve the enigma,

helped by their own trusted advisors. As seen in the BPP, princes will not leave their castles

for fear of being killed by their own subjects. Thus, each prince will send an emissary with

explicit instructions to find the valuable information. These instructions contains the exact

whereabouts and the required interaction needed to obtain different clues that will allow

the prince to solve the enigma. The emissary is trained to be able to interact with all

information sources and to strictly and doubtlessly obey the prince’s instructions.

Princes will try to intercept, thieve from, and sabotage emissaries from his counterpart.

Therefore, emissary protection must be provided. Witches, monks, or oracles might betray

a prince by disclosing emissary instructions to the other prince, or even be bribed to do it.

Analysing MARISM-A with the novel BPP-S problem

BPP-S provides a more suitable scenario to be projected on more types of mobile agent

applications. All aforementioned requirements for a problem like this are met in BPP-

S. Below we try to look for the correspondence with MARISM-A (assuming agents with

explicit itinerary) and how it could be done with other applications.

48 CHAPTER 3. MARISM-A

King Authority

Prince in a Castle User

Emissary Mobile Agent

knowledge places1 LocationAgencies

knowledge2 Resources

knowledge custodians3 Resource Manager Agents (in Agencies)

Enigma Problem to solve, aim of the application

Clues carried by emissary Results

Emissary Instructions (whereabouts) Mobile Agent (Itinerary)

Emissary Instructions (what to do) Mobile Agent (Specific Code)

Emissary Training Mobile Agent (Common Code)

Emissary Pockets Mobile Agent (Data)

1 Monasteries, Caves , etc.

2 Libraries, Oracle, Ancient Knowledge

3 Monks, Wizards , etc.

With this new scenario all parts of a mobile agent are kept together. This allows a better

projection onto a real mobile agent application, without artificial elements and unnecessary

situations. Different components of code and data are intuitively found in the character of

the emissary. The architecture of the agent, which is flexible in MARISM-A, corresponds to

the way an emissary is organised, which is also flexible. Instructions can consist of different

numbered papers with a place and a list of actions to do on that place on each (nested

architecture), or just a piece of paper with text containing both places and actions (implicit

itinerary architecture). Data is also easy to distinguish between relevant clues required by

the prince (results), hidden somewhere in the emissary, and information needed during the

journey on her pockets, or hidden. Direct itinerary representation and new resource related

elements make it easier to find and to analyse new branches of security requirements.

Security issues arising from the new BPP-S problem are quite different from the BPP.

Some unreal situations (in mobile agent applications) have been removed, such as those

regarding caravan personnel having different positions at the same time (in favour and

3.5. SECURITY REQUIREMENTS USING THE BPP 49

against the prince). New security questions come from considering issues ignored in BPP

and very important in the sequel, for example regarding the itinerary of the mobile agent or

the resources. The corresponding and non-exhaustive list of situations we have found for

this new problem is set out below.

1. An emissary may be killed while in transit. An agent may be destroyed during its

migration between agencies. All its components will be lost.

2. The clues born by the emissary could be changed or removed while in transit.

Some result data carried by the agent could be modified or removed during migration.

3. The emissary may be replaced with an other with a different mission, or bribed

to act improperly. A third party may intercept the agent and replace the code to take

advantage from the access rights of the agent, or to modify carried results.

4. Imitators of the emissary may arrive at a knowledge place. Clones of the agent

may arrive to an agency. This problem is similar to the previous two except the

original agent is still moving around.

5. A monk, witch or oracle (knowledge custodian) may kill the emissary while she

is at a knowledge place. An agency may destroy an agent when it is inside.

6. A knowledge custodian may attempt to change or remove the results carried by

the emissary. An agency may attempt to change or remove result data obtained in

other agencies before inserting its own.

7. A knowledge custodian may attempt to wrongly execute an emissary’s instruc-

tions or provide a wrong clue. A Resource Manager in an agency can deliberately

provide a wrong result or wrongly execute agent’s code.

8. A knowledge custodian may deny to provide the required clue. An agency does

not insert the result of the execution in the agent.

9. If an emissary comes again to visit some knowledge custodian, the latter can

change her previous result providing now less information, depending on the

50 CHAPTER 3. MARISM-A

results of other parts (carried by the emissary) and pretend the emissary never

left her place before. In the case of an itinerary with some loop, an agency may

modify the agent the second time it migrates to it to pretend it is the first time and

take advantage of previously collected results. If the itinerary has no loops, this is

not applicable.

10. Imitation information places may be set up to deceive the emissary of the prince

into visiting the wrong knowledge place. Not registered agencies may spoof other

agencies to let them think they are who they are not. Also agencies may falsify

identities.

11. A knowledge custodian may falsely claim that the emissary is not admissible

(saying that her credentials are not correct, for instance) to try to force some

results to be rejected. Agencies may falsely claim an agent has been modified to try

to force a number of hops to be taken back.

12. A source of information may lose prestige, reputation or importance if its infor-

mation were revealed by disclosure of the results. Reputation of an agency may

lose confidence if the results of agent executions are publicly revealed by disclosure

of agent information.

13. The emissary may harm a knowledge custodian. The agent attacks some agency.

14. Itinerary of an emissary is analysed by master’s brother’s henchmen, in order

to get to the places first or to sabotage her mission. This may happen while

the emissary is in transit or in collusion with some knowledge places. Agent

itinerary is totally or partially unveiled during migration or while in some agency.

Other agencies or users might take profit from this knowledge.

15. The emissary may attempt to access forbidden knowledges. Agent may attempt

to access agency resources it is not allowed to access.

Although the number of questions in the original problem is similar than in the sequel,

they are quite different because of the context. Since all elements from the BPP-S problem

3.5. SECURITY REQUIREMENTS USING THE BPP 51

and from the mobile agent application correspond through a one to one relation, security

issues do not concern multiple issues at the same time. If it were, as in the BPP, solutions

would not be independent.

BPP-S suggests a better analogy to abstract out security requirements more suitable for

a variety of application domains, but it is not possible to claim that this list is complete.

Nevertheless, it is highly complex to find out all security requirements in this way, even

if we have a good non technological representation of the problem, like the BPP-S. It is

not feasible to make sure that the list of problems is complete. Other approaches result

more convenient to analyse security in mobile agents applications, such as our trust model

(chapter 4).

Security mechanisms in MARISM-A implemented as of today do not fulfil all these

requirements. Some described attacks are avoided by the use of cryptographic protocols

framed on a PKI, and some other are thwarted due to specific mechanisms, such as itinerary

protections. Issues number 1, 4, 5, 7, 8, 11 and 13 are not yet considered in MARISM-A.

Some of these problems are easy to take into account (problem 13, for example, can be

solved by using a sandbox execution model), while other situations described in these lat-

ter problems are not concerning the applications in MARISM-A, and this is one of the

problems with this methodology. Chapter 4 describes the usage of our trust model in

MARISM-A to find out relevant (real) security requirements by means of trust.

At the moment of this writing, MARISM-A is not yet finished. Many agent archi-

tectures are already working and some complex schemes are planned to be added soon,

such as the resource access control achieved through agent certificates over a SPKI. We

are developing a first version of the IDE in which we are now integrating cryptographic

functionality and agent generation.

Chapter 4

Trust Model

New approaches are needed to face the problem of security in multi-agent systems, for

which traditional solutions are inefficient and expensive as it has been highlighted in chap-

ter 2. This is specially convenient for recent applications using distributed architectures

and socialised behaviour, such as those based on mobile agents. We have analysed secu-

rity requirements of MARISM-A in chapter 3 by means of the Byzantine Princes Problem

Sequel. This method guarantees neither that all requirements are found nor that the prob-

lems are relevant to an specific application. In this chapter we show a new viewpoint of

the problem, considering trust as a social dimension of security and describing a model for

it. This model allows to transform the security problem in these systems through the use

of trust and easily find scalable, flexible and distributed solutions. Using trust instead of a

straightforward security approach will allow us to deploy different mechanisms, from dif-

ferent nature, to obtain more secure systems not per se but for the members of the system

and for its actors. These solutions fit specially the new security requirements in mobile

agent applications and pervasive computing.

We are not trying to find a generic definition for modelling trust in a deductive fashion

and specifically defining applicable trust solutions afterwards. Rather, we seek to focus on

an inductive approach of the model from basic components of trust enabling it to be used

in mobile agents systems [RB02b].

Our approach consists of a descriptive or conceptual model that focuses on the iden-

tification of trust problems and a methodology to derive a trust solution to apply to solve

52

53

these problems. Within this theoretic scheme trust concept appears clear and abstract which

makes easier its understanding. It also results easier to model trust requirements and look

for solutions to increase security. We introduce a plane of trust in which it is easy to rep-

resent the relationships between all members of the system. Within this plane of trust it is

easy to show the real trust requirements of the system. A methodology will be essential

to allow us to choose and combine different mechanisms to find trust solutions and finally

have security solutions. The transformation from the security plane to the trust plane allows

to screen the irrelevant issues concerning security from the most important in the specific

scenario of mobile agent applications. In this trust plane the solutions are quite easier to

find. The transformation of the results back to the security plane is trivial since the trust

solutions directly are security solutions. By using this technique, found solutions will fulfil

scalability, distribution and integration requirements within an unique and holistic secu-

rity/trust scheme.

Traditional security solutions are not incompatible with our model. These solutions

will be mechanisms in our model that could be used it a trust relationship requires it to be

fulfilled.

The methodology we have defined to apply our Trust Model on a system is threefold.

Firstly, we need to define the trust requirements and trust vulnerabilities though the iden-

tification of the elements of the model within the system. Secondly, we obtain or create

mechanisms fulfilling some of the trust relationships previously identified. These mech-

anisms are full or partial solutions to trust requirements of the system. And thirdly, we

choose and combine some of the these mechanisms to compose a trust solution that covers

the whole set of trust relationships for the system. If more than one combination of mech-

anisms exists, only one of them will be selected as the trust solution for the system. This

selection might take into account complexity (based on the number of involved agents or

external parties), required infrastructures, etc. Basically, the final solution will consist of a

collection of interrelated mechanisms to provide trust enablers for actors as safeguards to

prevent attacks.

First versions of the trust model were based on static system situations[RBB+01],

[RPBB01b], [RPBB01a]. The model has now evolved with the replacement of situations by

trust relationships, which is a more sensible approach considering the nature of the problem

54 CHAPTER 4. TRUST MODEL

to solve. This change has simplified and improved the model.

The rest of this chapter describes the elements of the model and describes the method-

ology to apply it. An example based on a scenario in MARISM-A will help to illustrate the

use of the model.

4.1 Elements

Our model is oriented to systems using mobile agents and, more generally, to open systems

with multiple participants. If consists of five basic elements: entities, actions, relationships,

messages and verification functions.

Entities The entities in our scheme are all these components involved with trust. Actors

(agents, users and resource providers) are entities that actively act and are bearers,

transmitters and receptors of trust. Resources and agencies, final objects for trust, are

also entities in the model.

Actions Actions are the events done by the actors of the system that are direct object of a

trust relationship. An action is always related with an entity at least. An example of

action is a resource access made by a mobile agent.

Relationships A trust relationship is a connection between systems entities to represent

the mutual placed trust for the accomplishment of an action. An example for this is

the relationship between two agents to access a resource owned by one of them.

Messages Communication is also a key element in our model. This communication is

shaped through the interchange of specific messages between system actors to man-

age and handle trust aspects related with actions. Main classes of messages are ap-

pointment, action delegation, obligation and prohibition.

Verification functions This element includes control functions for objective trust. The

control on subjective trust is carried out by the actors themselves, so it is not included

here. Management of delegation mechanisms is included in this part of the model.

Time dimension of trust is analysed during this verification.

4.1. ELEMENTS 55

Our model follows a non-centralised scheme based on system’s actors actions and com-

munication. The model shows several semantic domains of trust and it is open, providing a

flexible framework to represent all different associated concepts of trust without bindings to

any pre-established infrastructure. It also provides a high freedom degree for formalisation.

4.1.1 Methodology

We apply the theoretical model into practise through the design of a methodology.

The first stage of this methodology is the identification and characterisation of the ele-

ments in the model: entities, actions, relationships, messages and verification functions.

Afterwards, required trust relationships are pointed out in the Trust Requirement Dia-

gram. Trust dimension of security requirements of the system will be represented through

the trust relationships between entities.

A collection of mechanisms are selected from a mechanism repository (or especially

designed) to satisfy trust relationships.

Finally, a subset of these mechanism satisfying all relationships is chosen by solving

the Set Covering Problem. This will be the trust solution, a set of mechanisms that will

totally cover the needs of trust and will consistently be a security solution for the system.

These mechanisms must be adapted to the model to compose .

Trust Requirements Diagram

The Trust Requirements Diagram (or equivalently, the Trust Requirements Graph, TRG)

will allow to find trust requirements for a system.

Complexity of the traditional analysis of security is usually due to the risk analysis

which is done. Some authors find in risk analysis the only way to solve security prob-

lems [RHG99]. In our proposal we are using the trust plane, therefore focusing on trust

relationships between actors of the system and leaving less relevant aspects aside.

To find the TRG we define a directed graph with a vertex for each actor and trust objects

(entities). Edges in this graph are trust relationships required between entities.

TRG(E,R)

56 CHAPTER 4. TRUST MODEL

E={System entities, (e1, e2, ...)}

R={Trust relationships between entities (r1, r2, ...)}

Each one of the elements in R has the source and destination entity of a trust relation-

ship.

ri = (ej, ek), ej, ek ∈ E, ri ∈ R

All these relationships have an associated action and some attributes for that action.

The assignment is established through function A:

A : R → Actions x Attributes

ri → (ai, ti)

The action is the object for trust on a relationship. Examples of these actions are permis-

sion, obligation, designation or prohibition. Actions may have some attributes to indicate

the scope or other relevant information. The object of permission or prohibitions might be

the attributes for the respective actions.

Trust relationships in which there are more than two entries are involved can be slip

up into several one to one relationships and therefor all type of trust relationships can be

represented in the TRG.

Mechanisms

A mechanism is a a partial or complete solution to a trust requirement. It may include

cryptographic protocols, control functions or infrastructures.

Mechanisms have some common components that allow the designer to characterise

and identify them. These basic components allow to classify mechanisms, to store them on

a mechanism repository and to look up for them later.

4.1. ELEMENTS 57

Identification: A name to refer to the mechanism.

Description: A description of its operation.

Relationship: The type of trust relationship the mechanism is designed to solve.

Type: The type of mechanism indicating whether its nature is

deterrent, reducing the likelihood of the risk or the impact.

preventive, protecting, blocking the impact of a possible attack.

corrective, reducing the effects with respect to the relationship.

Dependencies: A list of required mechanisms.

Trust Solution

When all elements of the trust model have been determined and characterised we will look

for a set of mechanisms whose implementations meet the requirements imposed by trust

relationships represented in the Trust Requirements Diagram.. Each of the mechanisms has

to satisfy one or more of the edges of the Trust Requirements Graph.

In order to obtain the Trust Solution we need the symmetric bipartite Solutions Graph.

This is created using available mechanisms as vertex of one side, and indirect trust rela-

tionships as vertex of the other:

SG(V,A)

V =(V1 = {Mechanisms, (m1, m2, ...) }) ∪ (V2 = {Relationships, (r1, r2, ...) })

A={ aij|mi satisfies trust relationship rj, mi ∈ V1, rj ∈ V2 }

Edges of this graph may have a cost if the implementation complexity of the mechanism

to satisfy the relationship is known.

The Trust Solution is the set of mechanisms represented by vertex from V1 that provide

a solution for the covering problem on graph SG. If edges have a cost, then the Trust

Solution coincides with the SCP (Set Covering Problem) problem [CFT98].

The final stage of the methodology, once we have the set of mechanisms to use, is

to adapt them to use messages described in the model to manage trust relationships and

integrate them into the system. When these mechanisms are adapted, they can be added to

58 CHAPTER 4. TRUST MODEL

a library and be used again in subsequent analysis. Some examples of messages are action

delegation request and delegation grant.

4.2 Practical application of the model: MARISM-A

As we have seen in previous chapters, MARISM-A is a novel mobile agents platform espe-

cially conceived to develop secure sea-of-data applications. But far from being too depen-

dant to some type of application, it is very flexible and can be qualified as general purpose.

Thus, MARISM-A is a perfect scenario to put into practise our trust model. The use of the

trust model in MARISM-A let us to validate the model and add security to the platform

at the same time. Both MARISM-A platform and the trust model have been designed in

parallel. This symbiotic relationship that has made possible each part to profit from the

other, detecting drawbacks of the model in advance and adjusting it to a real scenario.

Along next sections we analyse how the trust model can be applied to determine trust

requirements and security safeguards in sea-of-data applications deploying MARISM-A.

As all applications of this type have common scenarios, the example shown below is appli-

cable to most of them. Different applications are often simpler that the case of sea-of-data

applications, and therefore the way of applying the trust model in the first is included in the

provided example.

We have chosen a simplified version of a real application to make a clear application of

our approach and get the essence of it.

4.2.1 Description of the scenario

Along previous chapter we have defined sea-of-data applications. A common set up often

consists of a user requiring some results that must be extracted from the analysis of a huge

amount of distributed information (data). Data providers and the user have access to a

shared network. Due to network constraints, it is not possible for the user to fetch all the

information and process it locally. Furthermore, user has a limited link with the network

and she is just intermittently on-line.

Let us consider our user to be a researcher on image classification. She is trying to

4.2. PRACTICAL APPLICATION OF THE MODEL: MARISM-A 59

evaluate an algorithm she has designed to classify tumours on medical images. In order to

do this, the algorithm has to be executed over thousands of images and the results must be

verified against traditional human classification for assessing purposes. Several hospitals

spread over the world have databases with that type of images and medical diagnosis. As

both, hospitals and the user, are connected to the Internet it seems feasible to carry out the

experiment.

Nevertheless, there are some problems that must be arranged first. The user has to face

two initial problems: her connection to the Internet is though a not very reliable 56Kbps

modem link, and hospital head office departments refuse to allow an external person to see

medical images alleging legal issues. Moreover, they are afraid of executing alien programs

due to virii threat.

Even though it seems there are no solution to the situation, mobile agent technology

may help here by means of a Mobile Agent System like MARISM-A. Low quality connec-

tion of the user, legal issues regarding medical images, and the threat of executing external

programs, all are irrelevant problems if MARISM-A is deployed. Hospitals accept to help

the user since images will not neither leave the hospital nor be unveiled to external persons.

They accept to install a MARISM-A platform because programs (agents) will be identified

with their owner, agents can not execute arbitrary code in the host computer, and the system

will allow the hospital to participate in other research projects including their own.

Thus, the user programs her algorithm on an agent. The itinerary includes the col-

laborating hospitals arranged according to the set of experiments she wants to carry out

(in the best case only some of the hospitals will be visited). All hospitals have installed

a MARISM-A platform and have connected it to the Internet. Data (medical images) are

Resources for MARISM-A, and some agents are created on each platform to allow and

control the access to these resources (Resource Provider and Resource Controller Agents).

Fortunately, MARISM-A has provided a better prospect to solve the problem. But far

from solving all the problems, a long list of them begins to worry both user and hospitals:

Is the incoming agent owned by the user it claims? Is the algorithm going to be executed

exactly as it was programmed? Are hospitals going to modify results carried by the agent

and obtained elsewhere (for instance to increase their own importance in the experiment)?

Is the itinerary going to be modified in such a way that some hospital will be skipped? Next

60 CHAPTER 4. TRUST MODEL

section will apply the trust model to find out trust / security requirements and a methodol-

ogy to provide solutions.

4.2.2 Trust Requirements Diagram

A sea-of-data application implemented in MARISM-A is a complex system regarding se-

curity requirements. Last section pointed out some of them. In chapter 2 and 3 we analysed

how resemblances with a real world problem could help to find most common security re-

quirements. As highlighted before, our approach proposes the use of trust to find these

requirements. In the example, hospitals, the user, resources and alien persons are the lead-

ing actors in the scenario and seems sensible to analyse their mutual trust needs in order

to block security attacks. Therefore, as a first step toward this goal we need to identify the

entities of the model in the example.

It is clear that the user (e1) and hospitals are entities. Hospitals are hosting agencies.

We assume for simplicity that there are only two agencies in the system: Agency 1 at user’s

home (e3) and a hospital (e4). The program with the algorithm of the user is a mobile agent

(e2). Medical images are a resource of an agency (e7) and there is a resource provider agent

(e6) to allow its accessing. This access is controlled by a resource controller agent (e5). In

order to make the example more general we will not refer to the entities with the names

in the specific example, but with the names of the parts of MARISM-A (agency, mobile

agent, resource, etc).

Figure 4.1 shows the Trust Requirements Diagram corresponding to the scenario of the

example. Entities are arranges as vertex in this graph and trust relationships are represented

with edges.

The mobile agent (e2), acting on behalf of user (e1), is executing on agency (e3). The

agent have to trust in the correct execution of its code in this agency. After this, it migrates

to another agency, (e4). This migration must be done securely, with a secret and authentic

transmission. Subsequently, the agent will try to access resource (e7), owned by resource

provider (e6). (e2) must have an access permit obtained from the resource controller agent

(e5), acting on behalf of (e6).

There are ten trust relationships (r1 and r10) between these entities. Actions associated

4.2. PRACTICAL APPLICATION OF THE MODEL: MARISM-A 61

Resource Controller
Agent

Resource
Provider

Agent
User Mobile

User

Resource

Agency 2

Agency 1
r1 r2

r3 r4

r5

r6
r7

r8

r9

r10

e1 e2 e3

e4e5e6

e7

Figure 4.1: Trust Requirements Diagram

to these relationships are assigned by the function A in the model. In this case, these are

the actions assigned with each relationship:

r1 : Code execution r2 : Code execution

r3 : Secure and authentic transmission r4 : Secure and authentic transmission

r5 : Code execution r6 : Resource access permission

r7 : Access r8 : Resource access permission

r9 : Access r10 : Access

Two from these ten relationships are direct trust: r1 and r10. A special mechanism to

fulfil trust requirements derived from these relationships is no needed. If we analyse these

two cases we notice they correspond to the special relationship between an agent and its

owner, and between a resource and its provider. In both situations each part entrusts the

other and therefore we have direct trust.

4.2.3 Trust Solution

Once we have obtained the trust requirements diagram of the problem, we have identified

all entities of the system and the trust relationships between them. Next step is to select a

set of mechanisms which could provide a way to fulfil the relationships.

If there exists a repository of mechanisms it is easy to select some from there following

some basic search criterion, such as the type of relationship they cover. If not, we need find

them by other means. We can look for mechanisms providing solutions to those specific

62 CHAPTER 4. TRUST MODEL

relationships in the bibliography or create our own. When these mechanisms are found

they must be adapted to be used under the model.

We have selected three candidate mechanisms to be used as part of the Trust Solution

in the example:

m1 : Identification: STS

Description: Secure Transmission Protocol [DOW92].

Relationship: Regarding secure transmission.

Type: Preventive.

Dependences: N/A.

m2 : Identification: SPKI Certificates

Description: Delegation System based on Simple Public Key Infrastructure (SPKI)

[EFL+99]. Certificates are used to prove authorisation to access resources.

Relationship: Regarding authorisation, delegation.

Type: Preventive.

Dependences: Depending of the use it may require a PKI.

m3 : Identification: PKI

Description: Public Key Infrastructure (PKI) [MvOS96], including a Certification

Authority to issue certificates and a Directory Service.

Relationship: Regarding identification, encryption, signing

Type: Preventive.

Dependences: N/A

From these mechanisms and the indirect trust relationships in the Trust Requirements

Diagram, we create the Solutions Graph. Edges of this bipartite graph connect a mechanism

with a covered trust relationships (figure 4.2).

To obtain the Trust solution for this scenario it is enough to solve the Set Covering

Problem for the solutions graph. In this case the solution is easy to find: m1 and m2

mechanisms are sufficient to cover all relationships. There are well known algorithms in

graph theory to solve this problem even if it has not trivial solutions [CFT98]. These two

mechanism are being implemented in MARISM-A [NRB02a], [NRB02b], [RLN+02].

4.2. PRACTICAL APPLICATION OF THE MODEL: MARISM-A 63

r2 r3 r4 r5 r6 r8 r9 r10

m1 m3m2

Figure 4.2: Solutions Graph

Last steps, when trust solution methods are already obtained, are to adapt them to the

model and the integration with the system. To adapt the mechanisms to the model, they

must use messages to manage different trust relationships. These messages will be the

links among all mechanisms and system parts to achieve a global trust. Mechanisms im-

plementing controlled objective trust must provide the correspondent verification functions.

Chapter 5

Ad hoc security solutions

In this chapter we will review three security solutions designed before year 2000. In the

time these proposals were written, our trust model did not exist yet or was still in a very

early stage. MARISM-A platform was also created after all of these proposals. This ini-

tial work showed us the problems arising from security designing and lead us toward the

definition of a general model using trust.

Our approach to find security solutions to mobile agent systems (shown in chapter

4) is based on a trust model and a methodology. Some mechanisms providing specific

solutions to cover trust relationships have to be selected as part of the methodology. A

repository is mentioned to make this selection. This repository stores known mechanisms

that can be used in later analysis. The solutions described in this chapter can be converted in

mechanisms that can be part of this repository. Therefore, they can be used in the designing

of complex security solutions using our methodology.

Apart from the use as mechanisms for our model, this former work have let us to acquire

the required background in security and applications to face the development of the trust

model and the MARISM-A platform.

Each security solution is on a separate section in this chapter and is self-contained.

First section is devoted to a fault-tolerant mobile agent based system to perform large scale

electronic voting over the Internet [RB02a]. The whole system was entirely oriented to the

e-voting application.

Second section describes a non-repudiation protocol to secure the itinerary of mobile

64

5.1. A FAULT-TOLERANT VOTING SCHEME BASED ON MOBILE AGENTS 65

agents [BRSR99]. This mechanism will be part of the MARISM-A default migration

method.

Last section shows a set of mechanisms to avoid security attacks on a multi agent sys-

tem implementing a marketplace for the selling of bandwidth in 3G telecommunication

networks [RBB+01], [BTC+00].

5.1 A Fault-tolerant Voting Scheme based on Mobile Agents

Proposed electronic voting schemes have traditionally focused on security requirements.

For instance, [RB99] fulfils the most widely accepted security requirements. However,

most of these proposals suffer from an important lack of safety as they are not fault-tolerant.

In this section we introduce a novel fault-tolerant voting scheme. To achieve this goal

we have redesigned the whole scheme of [RB99] by using mobile agents. These agents are

organised into two levels. The agents in the lower level are related to electoral functions

and the agents in the higher level to coordination tasks. We provide mechanisms to assure

both electoral agents reliability and coordination agents persistence. With this scheme the

election can be easily reorganised and resumed in case of host failure.

5.1.1 Introduction

The objective of electronic voting schemes is to allow elections to take place securely over

general-purpose and open computer networks. During the ballot collecting process, a set of

eligible voters use the computer network to cast their ballots. After some time, the system

stops accepting ballots. The counting process is initiated and, finally, the tally is published.

Different security requirements for voting schemes have been proposed. The following

list includes the most widely accepted ones [CC96, FOO92]:

Accuracy: A voting scheme is accurate if (1) it is not possible for a validated ballot to

be altered, (2) it is not possible for a validated ballot to be eliminated from the final

tally, and (3) it is not possible for an invalid ballot to be counted in the final tally.

Democracy: A voting scheme is democratic if (1) it permits only eligible voters to vote,

and (2) each eligible voter can vote only once.

66 CHAPTER 5. AD HOC SECURITY SOLUTIONS

Privacy: A voting scheme is private if (1) neither ballot collecting authorities nor anyone

else can link any ballot to the voter who has cast it, (2) no voter can prove that he or

she voted in a particular way, and (3) all ballots remain secret while the voting is not

completed.

Verifiability: A voting scheme is verifiable if voters can independently verify that their

ballots have been counted correctly.

The first privacy property, known as anonymity, is probably the cornerstone of secure

voting schemes. There are no obvious solutions to anonymity since in order to preserve the

democracy requirement, voting authorities responsible for collecting ballots should have

assurance of the identity of voters who contact them. The most widely accepted solution

to this problem found in the literature consists in assuming the existence of an external

anonymous communication channel [Cha81]. Even though current implementations of this

channel can realistically be used for anonymous e-mail communications, they have disad-

vantages when used between voters and ballot collecting authorities in voting schemes.

In [RB99] we faced up with the anonymity problem by introducing mobile agents in

the design of the voting scheme. This voting scheme is based on the concept of electronic

Electoral College (EC) introduced in [RBR97]. Moreover, this voting scheme does not

need any independent anonymous channel. Voters cast the desired ballots, specially en-

veloped, to the respective ECs during a single non-anonymous voting session. In this way,

every EC accumulates enveloped ballots in its own ballot box. The desired anonymity is

provided by shuffling ballot boxes a number of times. The process of shuffling ballot boxes

is implemented at the end of the election by a set of mobile agents (shuffling agents).

Although [RB99] fulfils all commonly accepted security requirements, it has an impor-

tant lack of safety: it is not fault-tolerant. If a host running the ballot receiving process

fails, the whole voting process results interrupted and it is not possible to resume it. Vot-

ers who have not yet voted cannot do it after this interruption and all ballots received are

lost. The shuffling process of ballot boxes done by shuffling agents is neither fault-tolerant.

Shuffling agents move following a prefixed static itinerary of hosts. If one of these hosts

fails, the shuffling processes using that host cannot continue, and their ballot boxes cannot

5.1. A FAULT-TOLERANT VOTING SCHEME BASED ON MOBILE AGENTS 67

be tallied. Recent proposals of anonymous communication channels that do not need a pre-

fixed itinerary (such as [Abe98]), may be used as a possible solution to this problem. Other

proposals that try to protect this prefixed itinerary ([BRSR99]) may be also used. However,

on both cases the number of cryptographic mechanisms is considerably increased.

We propose a protocol to solve the lack of safety described above. We redesign the

voting scheme of [RB99] extending the use of agents to all voting phases. We break off

the connection between software agents performing the voting process and the physical

systems hosting them.

We reach fault-tolerance by using two levels of agents. The agents in the lower level

are those related to electoral colleges (Electoral College Agents, ECA). The relationship

between voters and the voting scheme does not depend on one host. In our scheme, each

ECA, responsible for receiving ballots, can be executed on different hosts. If a host fails, the

voting operation is not suspended, but the ECA is re-launched to a new host. The scheme is

reconfigured and the voting operation resumes. A similar mechanism allows a fault-tolerant

shuffling process under all circumstances. The agents in the higher level (Coordination

Agents, CA), allow scheme reconfiguration. We adapt the persistence method introduced

in [SRM98] to assure the continuous running of coordination agents.

5.1.2 Sketch of our Previous Voting Scheme

In [RB99] we propose a large scale voting scheme based on the concurrent operation of

multiple electronic electoral colleges, with no need for independent anonymous channels.

Anonymity of ballots is assured by shuffling ballot boxes by a set of mobile agents acting on

behalf of a central voting authority (figure 5.1). The voting scheme is totally self-contained

and suitable to be implemented over large internets.

Ballot collecting capabilities are distributed among a set of hosts called Electoral Col-

leges. These ECs are on the bottom of a functionally hierarchical structure of elements.

Each EC host has a ballot box to store ballots casted by their voters. The Counting Centres

(CC), on a higher level, reconstruct the global tally from ECs’ local tallies. The Electoral

Authority (EA) is located at the top of the scheme. The EA is in charge of the whole elec-

tion. An Information Directory (ID) stores the electoral roll as well as other information

68 CHAPTER 5. AD HOC SECURITY SOLUTIONS

and keeps it always accessible.

EC 1,1 EC 1,n EC 2,1 EC 2,n

1CC CC 2

EA

Voter Voter Voter Voter

Host Ballot Box

ID

... ...

Figure 5.1: Voting scheme of [RB99]

Operation

Operation of [RB99] is divided into three phases: preliminary phase, voting phase and

shuffling phase. In the preliminary phase all initial information is generated, including

the electoral roll and all the needed cryptographic keys. Electoral Colleges get their keys

during this phase.

During the voting phase, each EC is responsible for collecting ballots from a reduced

set of registered voters. Every voter contacts his or her corresponding EC to cast the desired

ballot in a single session. A five-step protocol is performed between the voter and the EC

to assure the security requirements. Ballots are stored in the ballot box.

Finally, during the shuffling phase a set of mobile agents (Shuffling Agents) are launched

by the EA. These agents have a static list of ECs. They go through this prefixed sequence of

hosts shuffling ballot boxes to keep anonymity. When all ballots are shuffled, ECs decrypt

ballots and tally them. Results are sent to the CCs in order to reconstruct the global tally.

The final election results are published using the Information Directory.

5.1. A FAULT-TOLERANT VOTING SCHEME BASED ON MOBILE AGENTS 69

Safety Issues

Although [RB99] fulfils all commonly accepted security requirements, there are two critical

situations where it is specially weak: when a host fails during the voting phase, and when

a host fails in the shuffling phase. Both result in the failure of the whole voting process and

the losing of all the ballots in the ballot box.

• Host failing in the voting phase

When an Electoral College host fails, voters cannot interact with it any more. The

static structure of the scheme makes this situation irretrievable and ballots contained

in the ballot box of this EC are definitely lost. Even if the host is repaired, the election

cannot be resumed since private information of the EC has also been lost. The only

solution is to restart the voting process because if not it would be blocked forever.

• Host failing in the shuffling phase

Shuffling agents (SA) in the scheme of [RB99] follow sequential itineraries, begin-

ning and ending in the initial host they have been launched to. These itineraries are

permutations of the ECs list, settled by the Electoral Authority before the shuffling

phase starts. This fixed sequential list of hosts makes the system weak in case of host

failing: only the host running the SA is able to know the next hop in the itinerary.

When the shuffling phase starts, SAs are launched to ECs. If an EC is not respond-

ing, the SA cannot start. Moreover, all SA involved in a shuffling sequence which

contains the failed EC will be stopped, and the voting scheme is blocked. Although

the failed EC may resume its operation, the ballot box and private information have

been already lost and the voting process cannot continue.

If an EC host fails during the shuffling phase, the Shuffling Agent executing on it

disappears. The ballot box being shuffled by the SA is also lost, as well as the

shuffling sequence of the SA.

Most of this safety problems are related to the static structure used in such scheme.

This lack of dynamism unavoidably involves a fail vulnerable system.

70 CHAPTER 5. AD HOC SECURITY SOLUTIONS

Some problems arise when using static Electoral Colleges. The most important one is

that the entire system depends on each EC, and they cannot be moved to another hardware

in case of failure. Before any fault-tolerant mechanism could be used, we need to obtain

EC/hardware independence.

5.1.3 A Safe Structure

To solve these safety problems, we apply agent technology to the global design in order to

achieve a totally dynamic structure, as shown in figure 5.2. Our solution is compounded of

three elements, which are fully described in next sections.

PUA PUA PUA PUA

EAA

CA1
1

* CA 1
r CA *2

1 CA r
2

S S ECA1,nECA 1,1 S S

S

ECA 2,1 ECA2,n

... ...

...

... ...

Agent

Host

Fail-safe Ballot Box

Persistence Mechanism

ID

V
ot

in
g

E
le

m
en

ts
C

oo
rd

in
at

io
n

E
le

m
en

ts
Voter Voter Voter Voter

Figure 5.2: Fault-tolerant Voting Scheme

First, we need a set of hosts and agents. All agents are logically arranged in a hierarchy

over a network of hosts. Some of these agents are dedicated to ballot receiving tasks.

These are the “Voting Elements”. Other agents do coordination tasks to assure that the

voting scheme will always be working. These are the “Coordination Elements”.

The second component of our solution is the Information Directory (ID). This directory,

based in ITU-T X.500 standard ([ITU93]), stores the information related with all elements

5.1. A FAULT-TOLERANT VOTING SCHEME BASED ON MOBILE AGENTS 71

mentioned above, as well as the electoral roll. This directory is accessed through LDAP

[YHK95].

Last component of our scheme consists of two fault-tolerant mechanisms. The first

mechanism provides persistence of coordination elements and it is based on [SRM98]. The

second mechanism provides reliability of voting elements and it is first introduced in this

paper. With these mechanisms, the voting scheme uses the low level network of hosts to

manage a high-level dynamic fault-tolerant network of electoral agents.

Each host is made up by an execution environment that allows such host to execute

mobile agents. For instance, [SBH96] or [IKV00] agent systems can be used to achieve

this.

Voting Elements

Voting Hosts. There is sensitive information in an EC, such as private keys or ballot boxes,

that cannot be moved from one host to another. This information seems to bind the

host with the EC, and therefore with voters. Our goal is to break this binding. In

order to have a dynamic voting scheme we need a persistent information system in

voting hosts. All voting hosts have a Ballot Box. This Ballot Box must be stored in a

persistent device since it contains sensitive information (voter’s ballots) irretrievable

in case of host failure. RAID technology [PCGK89] can be used to provide this

persistent information device. We assume that all information in the Ballot Box is

cryptographically protected to preserve its secrecy and authenticity.

Proxy User Agent (PUA). This agent acts on behalf of the voter. It knows voter’s choice

and interacts with an Electoral College Agent. This agent is always on the voter side.

Electoral College Agent (ECA). ECA stores encrypted ballots from PUAs in the ballot

box. Each ECA is linked to a host. It keeps a unique cryptographic key that remains

still in the host. This agent provides an interface between the ballot box contained

in the persistent information device of the host and other agents, as only such ECA

knows how to handle this information. This agent gets the ballot from the Proxy User

Agent and puts it in the ballot box. ECA tallies the final shuffled ballot box and sends

the result to a Coordination Agent.

72 CHAPTER 5. AD HOC SECURITY SOLUTIONS

Shuffling Agent (SA). This agent moves from one host to another performing ballot box

shuffling. There is a SA for each ballot box in the system, and they are the core

mechanism of the anonymity system used.

Electoral Colleges in the original scheme have been replaced by a host, an Electoral

College Agent, and a Tallying Agent. This dynamic version of the EC provides more

flexibility to the system as described in section 5.1.4.

Coordination Elements

Electoral Authority Agent (EAA). This is a global authority of permanent nature. Func-

tions of this agent are similar to those of the Electoral Authority in [RB99], such as

launching shuffling agents. In this new scheme it has a more active role, since new

agents may be launched at any time. The EAA has an abstracted view of the phys-

ical network, using Coordination Agents and Information Directory (see subsection

5.1.3) as interface.

Coordination Agent (CA). The Coordination Agent (CA) is the key element in the new

scheme. It controls the connection between the low level network of hosts and ECAs.

It coordinates reliability mechanisms to deal with host failure and to assure Informa-

tion Directory coherence. It also updates the Information Directory when the infor-

mation of an ECA changes. Finally, it also coordinates global tally reconstruction.

All agent activity is monitored by the CA, so it knows when an ECA or an SA does

not respond.

Information Directory

All elements in the system have an entry in the Information Directory. The basic structure

of this directory is the same as that of the directory used in [RBR97] to allow large scale

elections by coordinating electoral colleges. In this section we only describe the differences

from [RBR97], introduced to provide fault-tolerant mechanisms in the voting scheme.

The entries in the Information Directory are hierarchically stored, corresponding to the

functional dependences in the scheme as shown in figure 5.3. The EAA is on the top of this

5.1. A FAULT-TOLERANT VOTING SCHEME BASED ON MOBILE AGENTS 73

structure. Under this node, CA entries are found. ECAs are in a lower level. A field in a

CA entry indicates which ECAs is controlling.

CA1 ECA 1,1

votern

ECA 1,2 votern+1

votern+o

CA2

EAA voter1

active: NO
replaced_by: ECA
extended_rolls: NULL
location: HOST1

2location: HOST

acive: YES
replaced_by: NULL
extended_rolls: ECA

1,2

1,1

Figure 5.3: Information Directory

The leaves of this tree-like structure are the voters. The set of all voter entries makes

the electoral roll. A subset of this electoral roll is assigned to each ECA, so only voters

assigned to a specific ECA could vote using it.

ECA’s entry has four fields used by fault-tolerant mechanisms: active, replaced_by,

extended_rolls and location. The active field is a flag indicating whether the ECA is running

or not. In case of host failure this flag is set off. replaced_by contains the name of the

substitute ECA in case of ECA not active. The extended_rolls field is a list of all subsets of

the electoral roll that is managing the ECA. The fourth field on the ECA entry is location.

This field holds the physical location of the element. In the original scheme each Electoral

College was on a fixed host. We break now this hard link between hardware and software,

being the location field the only connection between a host and an ECA.

Figure 5.3 shows part of the directory after a host has failed: EC1,1 is set as no active,

as this agent disappeared when the host failed, and the other fields are fulfilled to allow

ECA1,2 to replace it.

Note that because of the hierarchical arrangement of elements, each voter can be iden-

tified with a path from the top of the tree to his/her corresponding leaf. This path, called

Distinguished Name, contains the name of the ECA assigned to the voter, the name of the

CA and the name of the EAA.

74 CHAPTER 5. AD HOC SECURITY SOLUTIONS

Fault Tolerant Mechanisms

In order to have a fault-tolerant voting scheme, we need to assure CA persistence and ECA

reliability. The mechanisms we use to achieve both properties are described below.

CA persistence. A fault-tolerant protocol is used to assure CAs persistence. This protocol

was first introduced in [SRM98]. With this protocol, agents are performed in so-

called stages. Each stage consists of a number of hosts all having images (replicas)

of the agent. One of this hosts executes the CA while the other hosts in the stage

monitor its execution. In case of host/agent failure, a previously chosen host in its

stage executes its CA replica. The stage used for each CA is decided by the Electoral

Authority Agent. Stages are represented by slashed boxes in figure 5.2. Replicas are

denoted by super-indexes. On each stage the active replica is pointed out by a star

(*).

With this scheme, hosts on a stage are not dedicated to it. Hosts may be on several

stages at a time, even executing several Coordination Agents.

ECA reliability. When a voting host fails, the ECA agent suddenly disappears. When this

situation is found out, CA redirects voters to other ECA. We describe this process in

section 5.1.4. The ballot box is safely stored on the persistent data device of the host,

so it can be retrieved later. The system transfers the functionality of the failed ECA

to an existing (or new) ECA on other host.

With this mechanism, voter has a new ready ECA to vote after a short time, all

previous casted ballots are safely stored and, therefore, the election can continue.

We use the same mechanism to deal with host failure in the shuffling phase. In this

case, when a host fails its ECA moves to other host as described in section 5.1.4.

5.1.4 Voting Scheme Operation

We have redesigned the operation of the voting scheme described in [RB99] to include

safety enhancements. The operation of the voting scheme is divided into three phases. We

describe these phases below.

5.1. A FAULT-TOLERANT VOTING SCHEME BASED ON MOBILE AGENTS 75

ECA1,1 ECA 1,2CA1PUA ID

2. votingProtocolInitialize

1. getECALocation

4. verify

5. replaceRequest

6. update

7. getECALocation

8. votingProtocolInitialize

Failed

3. notifyFailedHost

Figure 5.4: ECA Replacement Mechanism in Voting Phase

Preliminary Phase

We assume that Electoral Authority Agent and Coordination Agents are already running

when the voting starts.

The first step to be undertaken during the preliminary phase consists in the creation of

the Information Directory previously described. It is the task of the EAA to decide how

many CAs the system will have, how many ECAs will be operated, and which ECA each

voter will be registered to.

When the Information Directory is ready, the EAA enquires CAs for the most suitable

set of hosts to run Electoral College Agents. Since CAs monitor their adjacent part of

the net, they know exactly where is the best place for ECAs. Then, EAA launches ECAs

altogether with their private keys to their respective hosts. If a host fails these keys are lost

although a copy always remains in the EAA. These keys are used to establish secret and

authentic communications with PUAs and to protect anonymity. These mechanisms are

76 CHAPTER 5. AD HOC SECURITY SOLUTIONS

fully described in [RB99].

Voting Phase

During the voting phase, each voter contacts the host running his/her assigned ECA. This

information is retrieved from the Information Directory (ID): the identification of the voter

contains the name of his or her ECA, and the host executing this agent is stored in the

directory. After this, the voter casts the desired ballot to the ECA in a single session.

The voting protocol executed during these voting sessions is described in detail in [RB99].

Ballots are stored in the Ballot Box.

If a host executing an ECA fails, ECA private keys are lost and the host is no longer

available. Figure 5.4 is an UML sequence diagram showing how the ECA replacement

operation is performed.

When a new PUA cannot connect to a host (step 2 in figure 5.4), it informs his/her CA

about the situation (step 3). The CA verifies the situation and (step 4) it rearranges the

voting elements, so it is possible to continue the normal operation. First, CA checks by

polling if there is an active host running a new ECA (ECAn) to substitute the failed ECA

(ECAf) (step 5). If a suitable host is found, the Information Directory is modified (step 6)

and the voters will find ECAn (steps 7 & 8): active flag in the directory entry of ECAo is

set off. Its replaced_by field is fulfilled with ECAn name and the extended_rolls field of

ECAn is fulfilled with the name of ECAo. Thus, extended_rolls allows the system to merge

existing subsets of the electoral roll. Host of ECAn is found in the location field. Figure

5.3 shows ECAs entries after an ECA replacement.

When there is not a host that can carry out the job of the failed one, a new ECA is

created. To do this, CA informs the EAA who sends an ECA to the specified host. A new

ECA entry is added in the Information Directory. The replaced_by field of the failed ECA

is set off and its replaced_by field is fulfilled with the new ECA. The name of the failed

ECA is stored in the extended_rolls field of the new ECA.

With this updates in the Information Directory the voters of the failed ECA that have

not voted yet are redirected to the substitute ECA, and this will accept them.

Private keys of the ECA in the failed host are lost. Note that these keys are not needed

by its substitute: if an existent ECA replaces the failed agent, it uses its own keys; and

5.1. A FAULT-TOLERANT VOTING SCHEME BASED ON MOBILE AGENTS 77

when a new ECA is created to replace the former, it gets new keys from the Electoral

Authority Agent. Since the ballot box remains in the failed host and it will not be used till

the shuffling phase, private keys are only needed by the Electoral Authority Agent, who

already owns them.

Shuffling Phase

At the end of the voting phase, EAA launches ECAs to those hosts that have failed during

the voting phase and have been re-established. Then, EAA launches Shuffling Agents

(SA) to all hosts running an ECA. SAs carry private keys using the cryptographic scheme

described in [RB99], so they can decrypt and shuffle ballot boxes to assure anonymity.

Host i Host j[Hosth]

[Host]j

iECA [Host]i

iECA [Host]j

ID
1. getNextHop

2. getECALocation

3. move

4. notifyFailedHost

6. createECA

7. sendECA

CA EAA

10. getECALocation

11. move

13. initializeShufflingProtocol

SA

SA

8. initialize

5. verify

9. update

12. initialize

Figure 5.5: ECA Replacement Mechanism in Shuffling Phase

Those hosts that have failed in the voting phase and are not re-established by this phase

78 CHAPTER 5. AD HOC SECURITY SOLUTIONS

are specially handled. Human operation is required to recover their ballot boxes and tally

the ballots. These results will be merged in the global tally reconstruction.

As described in section 5.1.2, SAs follow static itineraries. Whilst this static itinerary

meant a static sequence of hosts in [RB99], now we have broken off this connection. If the

next ECA in the itinerary does not respond because the host has failed, an ECA replacement

mechanism is used. Figure 5.5 shows an UML sequence diagram of this mechanism. In

particular, it shows the case of SA trying to move to Hosti when it has failed (also ECAi).

We have slightly modified the standard diagram to allow the picturing of a multi-agent

system. SA[Hosth] stands for a Shuffling Agent running on host Hosth.

SA gets the next hop of the itinerary (step 1 in figure 5.5) and then it obtains the location

(host) of the ECA by consulting the Information Directory (step 2). Then, SA tries to move

to the new host. If this host has failed (step 3), SA informs the CA (step 4). After verifying

that the host has really failed (step 5), the CA informs the EAA about the situation (step

6). In this step, CA gives EAA a suitable location to host the failed ECA. A replica of the

missing ECA is sent to the new host by the EAA (step 7) and it is initialised (step 8). CA

updates then the ID (step 9). After this, SA tries again to get ECA location from the ID

(step 10). As the Information Directory has been updated, SA obtains the new location of

the ECA. SA can move now to the host (step 11 and 12) and initiate the shuffling protocol

with the correct ECA (step 13).

If a host fails while a SA is running on it, CA notices it and notifies EAA about this.

Then, A new SA is launched to the original ECA. Note that this mechanism is feasible

since each original ballot box if preserved by ECAs.

At the end of the shuffling phase, when SA is again with its initial ECA, the ballot

box is decrypted and stored. Finally, each ECA tallies its ballot box and sends the result

to the CA. CAs coordinate tally reconstruction and final tally is stored in the Information

Directory.

5.1.5 Discussion

In this section we have presented a secure and fault-tolerant voting scheme. We started

from [RB99], a voting scheme that fulfils the most widely accepted security requirements

5.1. A FAULT-TOLERANT VOTING SCHEME BASED ON MOBILE AGENTS 79

for a secure election. We have redesigned this scheme by using mobile agents to achieve

a dynamic structure. Finally, we have added a persistence mechanism to Coordination

Agents and a reliability mechanism to Electoral College Agents. The result is a secure and

fault-tolerant voting scheme that allows an election to be easily reorganised and resumed

in case of host failure.

Persistence mechanism for CAs uses the stage concept introduced in [SRM98]. A set

of hosts is needed for each persistent agent to implement a stage. Although it seems that

the number of required hosts has been increased, these hosts can be shared by different

stages. On large schemes, differences on number of hosts between a non-fault-tolerant

version and our proposal are not significant. The only extra overhead in these hosts is the

number of running processes: for each Counting Centre in the original scheme there are n

Coordination Agents in the fault-tolerant proposal.

Regarding communication costs, both persistence and reliability mechanisms require

monitoring. Since this monitoring can be achieved by using a simple polling protocol over

UDP, network overloading is negligible. A more complex protocol is used to perform the

agent reliability mechanism, as it involves communications between all scheme compo-

nents. This protocol is only used when there is a host failure and it has seven steps in the

voting phase and twelve in the shuffling phase, which is a reasonable cost for resuming the

election.

Mechanisms used in this paper to achieve a fault-tolerant scheme can be also used to

solve similar problems in other applications. For instance, we are using the ECA/CA safety

architecture (persistence and reliability) to implement fault-tolerant Connection Agents in

connection admission to telecommunication networks schemes([BCH+00]). These mech-

anisms can be considered to be added into a mechanisms repository to be used using our

trust model based methodology of chapter 4 to provide security solutions to mobile agent

systems.

80 CHAPTER 5. AD HOC SECURITY SOLUTIONS

5.2 A non-repudiation protocol to secure the itinerary of

mobile agents

Mobile agents are software units basically consisting of code, data and itinerary. Mobile

agent systems are platforms that allow mobile agents to autonomously migrate between

different hosts. These hosts offer the runtime environment for the mobile agents. All these

concepts are introduced in chapter 2.

5.2.1 Our proposal

To protect the itinerary of mobile agents we propose a cryptographic solution which as-

sumes the existence of a Public Key Infrastructure (PKI) and a Trusted Authority (TA).

Every host Hi is provided with an asymmetric key pair with the public component ade-

quately certified. We denote host Hi’s public and private keys as, resp., Pi and Si. The

public certificates (and the certificate revocation lists) are hold in a suitable directory ser-

vice. Figure 5.6 depicts this environment.

The TA launches a number of agents that have to be executed at several hosts, following

a prearranged sequence. This sequence constitutes the agents’ itinerary. In addition, every

agent carries a set of data that may be manipulated by the hosts of the itinerary.

We consider therefore each mobile agent as a triplet:

mobileAgent = (code, itinerary, data).

The itinerary is a sequence of n encrypted simple entries Ei, randomly sorted. Follow-

ing the notation introduced in previous section, the itinerary would be denoted as:

i = [Ek, El, . . . , Et], k, l, t ∈ (1, . . . , n)

where

Ei = (hosti, private information for hosti, hosti+1)Pi

The TA launches a mobile agent to the first host in the itinerary. The host retrieves

the agent’s itinerary and tries to decrypt each of the entries until its own identification is

5.2. A NON-REPUDIATION PROTOCOL TO SECURE ITINERARY 81

Host

P , S P , S

Certification
Authority

Directory
Service

Trusted Authority

P , S

Host

1 1

A A

 n n

1 n

Figure 5.6: Environment

found in one of the decrypted entries. From this entry, the host is able to read its private

information together with the address of the next host to be visited by the agent. The

private information may contain a private key needed to perform some operation on the

data carried by the mobile agent. This process takes place at each visited host. The last

host of the itinerary is responsible for delivering the agent back to the TA, together with the

results obtained at all visited hosts.

To configure the itinerary of each mobile agent as a set of encrypted entries in random

order, has the advantage of preventing every host from knowing the identities of other

hosts of the itinerary, except previous and next hosts. This reduces drastically the chances

of fraudulent collusions of malicious hosts.

Whenever a mobile agent is passed from one host to the next, a non-repudiation protocol

[ZG96] is executed between both hosts. Non-repuditation of origin and non-repudiation of

receipt services can be used to determine the origin of an attack if the itinerary of the mobile

agent is altered. Figure 5.7 shows this non-repudiation protocol. In the figure, PR and SR

are an asymmetric key pair randomly generated by host Hi. Also, K is a symmetric key

randomly generated by host Hi.

An accurate discussion of the operation of this protocol can be found in [RBR98].

Briefly, host Hi forwards the mobile agent to host Hi+1, encrypted with key K. If and only

if Hi+1 replies with the receipt of reception in step two of the protocol, host Hi discloses

82 CHAPTER 5. AD HOC SECURITY SOLUTIONS

Trusted Authority (TA)

Hosti Hosti+1

Si(PR|EK(SR(agent)) →

← Si+1(PR)

K →

Figure 5.7: Non-repudiation protocol

key K in step three. All interchanged information has to be securely stored by both hosts.

The TA is not involved in the execution of the protocol, unless this is required by one of

the hosts. In such case, the TA is able to determine which host is attacking the itinerary of

the agent. Either the attacker is Hi+1, by stopping the protocol at step two, or the attacker

is Hi by stopping the protocol at step three (or by not starting the protocol at step one).

Moreover, the TA can eventually take the initiative of verifying the whole itinerary of

the mobile agent, or some of its steps. Since each step is individually verifiable and the

responsibilities regarding the agent moves are clear in all steps, hosts are strongly discour-

aged to disrupt the agent’s itinerary.

In this section we have described a non-repudiation protocol for protecting the itinerary

of agents. This protocol can be used in the MARISM-A platform as a mechanism to provide

itinerary protection during agent migration.

5.3 Design of a Secure Multi-Agent Marketplace for 3G

telecommunication networks

In this section we describe a security framework for a multi-agent system designed to man-

age resources in future mobile communications networks. This framework is based on a

very simple general trust model. The multi-agent system is being developed as part of the

IST SHUFFLE project. A business model appropriate for selling of bandwidth resource and

5.3. DESIGN OF A SECURE MULTI-AGENT MARKETPLACE 83

services is investigated and mechanisms to achieve a Global Trust Model to support User

Agent to Service Provider Agent and Service Provider Agent to Network Provider Agent

negotiation is outlined. Our trust model for the marketplace is based on concentric spheres

structure. The core of this onion-like model will be physical security and it is assumed that

this is provided. A security infrastructure is located in middle spheres: the internal and the

external security infrastructure. In outer spheres we will use complex aspects of trust such

as fairness, reliability, reputation and loyalty to provide a complete model of basic trust for

marketplaces. Many aspects of the model generalise to a common secure auction model to

be used by e-Business and business to business applications.

5.3.1 Introduction

The use of agent systems to support the management of resources in telecommunications

networks was first investigated in the IMPACT and FACTS projects [BHBR01]. The for-

mer successfully demonstrated the use of agents to perform real time connections to an

ATM network in the context of multiple service providers and user specified (explicitly or

implicitly) QoS requirements. Security issues associated with the IMPACT business model

have been addressed in [BCH+00]. However, the business models associated with manag-

ing future mobile communications networks raise other issues and these are the subject of

this paper. A model for the creation of a secure marketplace for bandwidth transactions is

outlined, and how this generalises to service oriented transactions in a generic marketplace

is indicated. The marketplace, as described, is in itself a multi-agent system providing a

secure e- trading and e-commerce centre oriented to business to business activities.

The resource management system can be viewed as three layers, namely the facilities

layer, the negotiation layer and the resource layer. At the base is the resource plane. Since

resource management is a real time application survivability and reliability are an impor-

tant design goal. In the resource plane all the network provider agents in an interaction

belong to the same network provider. Agents that communicate with agents not owned

by the same entity are in the negotiation plane. These autonomous agents communicate

with each other using the trusted services provided by the facilities plane. These services

84 CHAPTER 5. AD HOC SECURITY SOLUTIONS

allow agents to perform e- trading between themselves as well as establishing indirect trad-

ing relationships through the facilities in the top layer, like auctions. In next section the

concept of marketplace and instances of a marketplace is introduced. The layers in each

marketplace instance are elaborated. A method through which trust can be built into the

system using the facilities layer is described. Possible business models for the provision of

bandwidth and services in a multi service provider and network provider environment are

given. Section 5.3.3 is devoted to security issues. In section 5.3.4 the negotiation plane is

described in detail. Whilst many of the facilities plane concepts apply to many application

domains, the negotiation plane described is particular to the domain of resource manage-

ment for mobile communications networks. The need for fairness is introduced and an

illustration of the use of method through which the facilities layer can support fairness in

resource allocation is given confidence.

5.3.2 Marketplace

The purpose of this section is to briefly describe a non- discriminatory, secure environment

in which an multi-agent system could operate. This system, which we call the marketplace

exists to provide a secure trading environment in which agents may trade. In our example of

the marketplace, the commodity being traded is bandwidth. Due to the distributed nature of

this commodity, the marketplace is instantiated thousands of times. This section will first

describe the business environment motivating the marketplace and then provide a more

detailed description of it. Finally, it will address both the issues of trust and security within

the marketplace

Business Environment

As in any business arrangement, each party has its’ own interests in mind. Resources

(typically bandwidth) are provided by Network Providers (NPs) who own the physical

network. The resources are sold to customers through Service Providers (SPs). A Network

Provider may also act as a Service Provider in its own right. Such a SP is much like any

other but, depending upon regulatory constraints, may have more control options than other

5.3. DESIGN OF A SECURE MULTI-AGENT MARKETPLACE 85

SPs. The liberalisation of telecommunications networks is expected to lead to an "any-to-

any" scenario with any customer being free to buy services from any SP, who in turn could

buy network capacity from any NP.

......

......

......Customers

Service Providers

Network Providers NP1

SP1

NP m

SP n

User 1
User 2 User

k

Figure 5.8: Scenario

The scenario shown in figure 5.8 is the most general case and particularly relevant for

the future evolution of third to fourth generation mobile networks. Whilst the current sce-

nario is less flexible, mainly allowing customers access to only one SP (on one terminal)

who in turn buys network capacity from one NP. We feel that the "single SP per customer"

model is on the decline. Examples of this trend are that with the fixed telephony service,

customers can select a different SP on a call by call basis, and WAP services are available

from any service provider, just as the Internet user is free to browse any web site. SP to

SP exchange is also possible. This has the advantage of allowing SPs to offload excess

bandwidth to others who may want it and another way to buy bandwidth other than directly

through a NP. A mechanism similar to that used in bond markets has been proposed by

Bourne [Bou00] for SP-SP trading. Such medium to long-term contracts bring predictabil-

ity, stability and scalability to the market.

One method for meeting the objectives of the different parties is for the parties to enter

into a contractual arrangement called a Service Level Agreement (SLA). The areas a SLA

could cover are dependent on both the applicability and importance of a certain topic to the

86 CHAPTER 5. AD HOC SECURITY SOLUTIONS

two parties bound by the agreement. Two kinds of SLA are relevant, namely the Customer-

SP SLA and the SP-NP SLA. For brevity we concentrate on the SP-NP interaction (i.e.

business to business) though much of what is said applies to both. Factors that could be

defined in a SLA as well as sample SLAs and some URLs of some publicly available SLAs

are given in [SHU01] deliverable 4 of the project SHUFFLE. Currently, the criteria used in

defining a SLA is subjective and lacks clarity. For agent interpretation, more careful and

detailed specification is required. It is assumed here that SLAs will be agreed between trad-

ing parties, that they have a standard form and that they can be downloaded and individual

parts interpreted.

Marketplace Model

The introduction of agents goes beyond the interaction between the customer and the ser-

vice provider. As shown by the European Union ACTS projects IMPACT and FACTS,

there is a significant role for agents to play in managing the resources within and between

SPs and NPs. Combining the control of the resources of both the SP and the NP leads us to

propose an outline three layer marketplace architecture:

• The facilities plane houses the entities that ensure secure interactions in the negoti-

ation plane. Issues such as SP registration and key distribution feature in this plane.

Confidence (as determined by the facilities provided) is an important concept at this

level. Facilities are provided to allow the agents in the negotiation plane to partici-

pate in indirect trading relationships, such as blind auctions, as well as infrastructure

services. We will reserve trust to refer to the whole model built up from confidence,

reputation, loyalty, fairness, reliability and survivability.

• The negotiation plane is where all interaction between the customers, the SPs and the

NPs takes place. In this plane the service provider winning the business sets up the

connection using a network operator of its choosing. This layer offers an interface

for the agents to communicate with each other as well as with the services offered

by adjacent layers. Issues such as business models and SLAs feature in this plane.

Reputation and the maintenance of statistics for measuring reputation is an important

concept at this level to provide fast decision making.

5.3. DESIGN OF A SECURE MULTI-AGENT MARKETPLACE 87

• The resource plane is where the network operator manages its resources both across

and within individual radio cells. Reliability and survivability are important opera-

tional considerations at this level. This layer lodges all low level network services in-

cluding handover and cell selection management, cell size management and offloads

to other networks. It provides an interface to the other layers. Since the internals of

this layer are out of the scope of this paper, we will not focus on it, but depend on the

interface to its services. This layer represents the "goods" layer of the marketplace.

Facilitie
s

Negotiation

Resource

......

......

......
NPASPA

RA

Auction House Repository
SLA

Figure 5.9: Marketplace

Splitting the system into these three planes supports the definition of well-defined in-

terfaces. Different services are then more independent providing flexibility (as behaviour

of services may change), and adaptability (new services can be added without modifying

the design). Figure 5.9 shows the set up of the marketplace.

Multi-instanced marketplace

The marketplace analysed in this document can be a single marketplace or a network com-

posed of instances of a marketplace template. In the telecommunications scenario de-

scribed, the latter is the case. Each marketplace instance is situated in a different base

station. Thus, the marketplace in this case consists of a set of independent synchronised

marketplace instances (synchronised in the sense that if a norm is changed, each market-

place agent has its norm changed), sharing all the basic norms defined by the institution

88 CHAPTER 5. AD HOC SECURITY SOLUTIONS

and the members. A clear analogy exists with the object oriented paradigm terminology:

the marketplace is like a class and the instances like objects of that class. Each Regional

Network Controller (RNC) owned by a NP has an instance of the marketplace (we will also

refer to this instance as the marketplace for the rest of the paper when meaning is clear)

with the same members (buying and selling agents and facilities). As the example of a cus-

tomer request later shows, adding a new agent or facility involves an interaction with the

marketplace as a whole, not only with one instance. This cloning of the marketplace en-

sures location independence of the institution and fair threading of members (e.g. the agent

provided by a SP will have the same set of capabilities in every instance of the marketplace

in which it exists.

The aforementioned concept of marketplace with instances can be implemented in two

ways: distributed or centralised. In the distributed approach each instance is considered

to be part of the marketplace, and several mechanisms allow information to be spread and

operations to be performed (for instance, adding a new member). Using the second option,

a centralised version of the marketplace (as an institution, not as an instance) exists. Both

alternatives have pros and cons. The main advantage of using the distributed version relies

in the decentralised control of marketplace external operations, such as the inclusion of new

member or norms, and the absence of a special location. A main disadvantage is the lack of

control of the private information about the outer PKI. Although several mechanisms exist

to distribute private keys [BCH+00] [Rie99], there is the possibility of collusion of NPs

owning various RNCs. This situation can be detected a posteriori [Rif93] which allows

legal action to be undertaken, but this makes the system more complicated, unnecessarily.

On the other hand, an advantage of using a centralised marketplace is that all private infor-

mation can be in one controlled place (perhaps replicated for robustness). Disadvantages

include the need of a special location for the marketplace and the bottleneck of external

operations, if these are frequent.

Trust Model

Marketplaces in highly competitive business models should be based on a strong trust

model. Trust is recognised by many to be cardinal to information security, security policies,

accountability, reliability, business relationships, etc. At this time, there are no satisfactory

5.3. DESIGN OF A SECURE MULTI-AGENT MARKETPLACE 89

answers as to what trust is, no consensus and no well- defined models. However, some ref-

erences related to trust theory show some results linked to cryptography and certification.

The trust model we use, will allow us to represent our understanding of the word "trust"

not only in reference to the trust between agent entities, but also "trust" in regards to the

system itself. Our trust model for the marketplace is based on a concentric spheres struc-

ture. The core of this onion-like model will be physical security and it is assumed that this

is provided. We deal with this aspect in section 5.3.3, where security issues surrounding

the marketplace are discussed. A security infrastructure is located in middle spheres: the

internal and the external security infrastructure. In outer spheres we will use complex as-

pects of trust such as fairness, reliability, reputation or loyalty to provide a complete model

of basic trust for marketplaces. Figure 2 shows a synoptic cube of the trust model.

Loyalty Reputation

Fairness Reliability

Internal Security Infrastructure

insta
nces

External Security Infrastructure

Physical Security

Figure 5.10: Synoptic cube

External Security Infrastructure

The inner sphere of the trust model is the external security infrastructure. This infrastruc-

ture is only needed in multi- instanced marketplaces. Since a Public Key Infrastructure

(PKI) is a well-known security infrastructure and many security protocols are designed for

90 CHAPTER 5. AD HOC SECURITY SOLUTIONS

it, it can be used as the external security infrastructure.

A PKI basically consists of a set of algorithms to implement public key cryptography,

such as RSA, a Certification Authority (CA) to issue certificates, a certificate standard, such

as X.509v3, and an information directory to place and distribute public keys, such as X.500

with LDAP access. [Sch96] describes all these PKI elements.

The use of a PKI brings new issues to discuss. Probably, the most important issue is

the distribution of certificates: a trade-off must be found between an easy spreading system

and a fast mechanism for revoking certificates.

Security can be established through the presentation of third party certificates. This

assumes the existence of a publicly known and trusted third party as well as the need to

know other agents public keys. In mobile communication networks, a telecommunication

regulatory body can be easily imagined as a trusted authority. However, the consequent re-

quirement that a buying or selling agent reveals its identity to participate in trading activity

violates what could be considered an agent’s right for privacy (for itself and for the user of

the agent). [MS00] describes approaches where identity disclosure is not required for trust

establishment.

Nevertheless, we will adopt the centralised certification mechanism of a globally known

trusted party as it fits well with our mobile communications business environment. In most

highly competitive business environments a natural trusted third party can be identified and

thus the model of the PKI is suitable. As presented in [BCH+00], a Certification Authority

(CA) might be the weak point of the whole PKI based security system. The owner of this

CA can break all security in the system, since it is the trust in the infrastructure. Even if

we consider a presumed impartial third party, such as a telecommunication regulatory body

holding this responsibility, the institution does not perform the administrative procedures

directly, but employs technicians to do it. These persons can be bribed to reveal the secret

compromising the whole trust model. In previous work, [Rie99] [BCH+00], we have pre-

sented a distribute-controlled CA based on a secret sharing scheme. In this scheme it is

possible to detect cheaters [Rif93].

How can coherence of the institution, integrity of code and trust be kept if the market-

place is cloned in many places? The external security infrastructure will provide answer for

this. A party submitting its agent to the marketplace has to be confident that the agent is not

5.3. DESIGN OF A SECURE MULTI-AGENT MARKETPLACE 91

going to be cheated in the marketplace, but also that the integrity of the agent will persist in

all the instances of the marketplace. The solution to this problem is to have a simple PKI to

keep the cohesion, in terms of trust, of the marketplace. Who is this trusted third party all

marketplaces trust in? In the particular scenario we are managing, the telecommunications

regulatory body (e.g. Oftel in the UK) is a good candidate. Members (agents and facilities)

can enter particular instances of the marketplace (placed in different RNCs) only from this

trusted third party. An implication of this is that all instances must have the public key

of the external security infrastructure to verify signed elements and send back encrypted

information.

Internal Security Infrastructure

Every instance of the marketplace has its own internal security infrastructure. A Public Key

Infrastructure (PKI) like the one presented in the previous section is also used here. As a

requirement, the keys of the internal PKI used in every instance must be unknown to the

external security infrastructure. This avoids the owner of the marketplace controlling (read

cheating) specific instances. This is an added feature of this model of the marketplace

with instances comparing to the unique marketplace approach: if the marketplace code

is accepted all instances are trustworthy since they control themselves with private PKIs.

The Certification Authority of the PKI used in the internal security infrastructure is a key

element in the trust model since it is the hard link between this layer and upper layers.

High level trust

In the top layers of the trust model, more complex and high level concepts of trust are

managed. These concepts are described in sections about the marketplace architecture.

The main aspects include reputation, loyalty, reliability, fairness and confidence. Some of

these aspects are related to different layers of the marketplace. For example, the concept of

reliability is linked with the resource plane, while reputation or loyalty are linked with the

negotiation plane.

The implementation of the trust model in these upper layers of the marketplace (in nego-

tiations, selection processes, auctions, etc.) must be embedded in the language used, since

92 CHAPTER 5. AD HOC SECURITY SOLUTIONS

there exists a high dependency between both. The language proposed as a normative in the

FIPA specification [FIP00], namely the FIPA Agent Communication Language (ACL) for

inter-agent communication, can be used as a base of such language, but the specification is

presently incomplete.

5.3.3 Security issues

The implementation of the marketplace involves the use of a multi-agent system (MAS).

We are using FIPA OS [FOS02] as the multi agent system for implementing the market-

place. FIPA, the open standard for heterogeneous agency interaction, has defined a trust

model. This model is very weak and is thus inadvisable for use in a real application. The

lack of defences against impersonation, faults and bottlenecks are evidence of the early

stage of the FIPA trust model.

FIPA also has a standard security model [PC00]. It is based on a PKI, but it is incom-

plete, not accurately specified and with security faults such as the duplication of private

keys, that makes attacks on the system easier. No current FIPA based agent systems report

the use of this model. Furthermore, the current FIPA specifications do not provide any spe-

cific mechanisms or policy for secure ACL communications. The basic problem in FIPA

is the implicit assumption that agents are cooperative and trustworthy and that security is

performed elsewhere. This is a common problem [BCH+00].

We have used FIPA-OS to implement the marketplace, but instead of using FIPA secu-

rity and trust model, we use our own.

Security Issues Surrounding the marketplace

Due to the high competitiveness of usual scenarios of this kind of marketplace (such as

the telecommunication scenario described above), its placement is a very sensitive issue.

Security issues in applications using multi agent systems (MAS), as the marketplace, are

twofold. Firstly, there is the problem of agents attacking other agents of the system. This is

a resolved problem and many MAS include solutions to this. Secondly, there is the problem

of malicious hosts. Prevent agents from host attacks is still an open problem. Examples of

5.3. DESIGN OF A SECURE MULTI-AGENT MARKETPLACE 93

security issues in the marketplace concerning this are NP owning the MAS of the market-

place (NP has access to the internals of the system as it is placed in the RNC of the NP) and

modifying SP agents to spy or manipulate its code, denying services to specified agents or

removing some competence agents. Many references relate both problems [Hoh98a]. The

malicious host problem is especially relevant in the marketplace: It is very hard to prevent

the owner (someone that has access to the system) from manipulating the marketplace,

so who owns the MAS of the marketplace? Below we analyse different possibilities to

choose the best implementation approach. In a first approach (internal agent architecture)

the agents are all placed within a segregated area of the RNC of a NP. The interests of

the SP are represented by its Service Provider Negotiating Agent (SPNA) and the interests

of the NP by its Network Provider Negotiating Agent (NPNA). The functionality of these

agents is outside the scope of this document, but can be found in [SHU01]. The segregation

in the RNC is done to ensure that the SPNAs (an example in this domain of a competence

agent) do not have any means of accessing restricted areas of the NP. However, this layout

does not provide any form of protection to the SP. In this model the SP must trust the host

(the NP) as it is easy to see that if the host is malevolent, it could easily alter the memory

space of the SP’s agent, or any of the aforementioned attacks.

A different approach is the external distributed agent architecture. Each SP provides

it’s own "agent attachment" to the RNC. This second architecture provides not only seg-

regation, but protection of the SP from the potentially malevolent NP. However, in this

layout, it is required that every SP attach it’s agent to every RNC of every NP it wishes to

do business with. Thus this layout could very easily prove anti-competitive. Imagine the

entry of a new SP to the network market. This SP would have first find the capital to phys-

ically attach to many RNCs of at least one NP which could prove very costly (production

of agent attachment, placement of agent attachment, maintenance of agent attachment).

Furthermore, due to hardware limitations there would only be a limited number of agent

interfaces at each RNC, thus preventing entry into the market once the capacity of the RNC

has been reached. Finally, the external centralised agent approach provides an architecture

which protects both the SP’s and the NP’s interests. In this architecture, an "agent plat-

form" attachment controlled by a trusted authority is placed on each RNC of any NP. In

94 CHAPTER 5. AD HOC SECURITY SOLUTIONS

this manner both the NP and the SP ensure that others only have access to limited informa-

tion. Furthermore, the SP is protected from malevolent NPs, as the NP does not control the

attachment.

5.3.4 Marketplace internal architecture

Facilities plane

The facility plane houses all facilities used by agents to achieve indirect agent to agent

trading relationships. We call a facility any entity in the marketplace that provides a set of

similar services. A facility also provides a well-defined interface and a set of protocols to

be used by agents. Some facilities control the infrastructure of the marketplace. These form

the institution of the marketplace. Examples are the registration office and the trusted au-

thority. Other facilities provide the system with basic trading services, such as the services

of an auction house. Finally, there are facilities to help agents to perceive the environment

better and thus allowing complex architectures to have better decision- making capabilities.

Examples are the internal information office or the external information office. Some of the

possible facilities on this plane are:

• Auction House. This allows agents to participate in auctions. Different types of

auctions are supported (Dutch, English etc.) as well as different operation modes

(blind seller auction, blind buyer auction etc.). A defined auction protocol and an

objective auctioneer keep the auctions fair and safe (No seller refusing to sell, no

buyer abandoning after being awarded, etc.)

• SLA Repository. Since agreements between agents are a fundamental part of the

marketplace in the telecommunications scenario, an agreement (SLA) repository is

needed. This institution facility keeps all agreements safely stored and allows them

to be consulted in case of dispute. This avoids an agent failing showing its SLA to

other agent or institution facility. Keeping all SLAs in the same place makes them

easy to maintain as they are stored and accessed more efficiently.

• Trusted Authority. This is the central part of the trust model in the marketplace.

As described previously, a PKI has been chosen because of the special conditions

5.3. DESIGN OF A SECURE MULTI-AGENT MARKETPLACE 95

in the telecommunication scenario. The Certification Authority (CA) of the internal

security infrastructure issues all certificates needed and keeps the public information

in a directory. In our marketplace model, the Trusted Authority will be the same

entity as the CA. Agents can query public keys from it and other facilities can request

certificates.

• Registration Office and Directory. The marketplace is a closed environment. Only

authorised agents or facilities can be lodged. The registration office registers autho-

rised agents into the marketplace and requests a certificate (to the trusted authority)

for them. The registration office can also remove an agent, for instance, when it has

expired. Facilities and network services can also be added or removed. The registra-

tion office also takes care of name spacing. It provides a directory so it is possible

for an agent to know about the other agents currently in the marketplace.

• Legal Service. Agents can modify SLAs or even create new agreements. To give

legal validity to these documents a notary facility exists also in the facility plane.

When the agreement is signed by the notary and by the concerned parties, it becomes

a legal document in the marketplace. Before signing an agreement the notary reviews

it and verifies if norms are observed. All agreements, including SLA are written in the

same agreement flexible language (perhaps XML). Failing to comply with a notary

recognised agreement can result in penalties.

• Internal and External Information Service. This facility provides the marketplace

with a reliable information service that can be used by agents. The internal infor-

mation may include social indicators. As this facility belongs to the institution, its

signed information is reliable for agents. Thus, this information can be used as pa-

rameters in different selection functions.

• Connection Centre. All traded connections could be submitted to the connection

centre. At this point, the network connection could be verified with the norms of the

marketplace and with the agreements and finally it is rejected or accepted. In the

last case, the connection is made in the network layer and the economic transaction

is sent to the financial office. In the case of many small value trades (as in mobile

96 CHAPTER 5. AD HOC SECURITY SOLUTIONS

connections) such a validation, transaction by transaction, is not appropriate. Peri-

odic retrospective monitoring with respect to the SLA and other norms of the market

place are necessary, supported by an intrinsically fair mechanism for trading. This

would be the role of the connection centre here.

• Financial Office. This is where economic transactions are executed. By using this

gateway it is possible to use external economic services.

All these facilities are regulated by a set of norms. The norms of the institution are set

before any marketplace activity and depends on the scenario.

The marketplace, as described above, is in itself a multi-agent system and a secure

e-trading and e-commerce centre oriented to business to business activities.

Negotiation plane

Reputation

Agents that communicate with another entity’s agents are in the negotiation plane.

These autonomous agents can communicate with each other using the services of the facil-

ities plane. These services allow agents to perform e-trading between themselves as well

as establishing indirect trading relationships through the facilities in the top layer, like auc-

tions. The system needs to provide complex protocols to achieve this services. Agents in

the system can have complex architectures that will be able to benefit from the rich envi-

ronment offered by the marketplace. In other application domains, this layer is equivalent

to the buyers/sellers layer.

The ability to negotiate in multiple several timescales is essential in many environments,

such as in management of telecommunications networks.

Some negotiations will have very tight real time constraints (e.g. SP-NP) and others

have more relaxed constraints (e.g. SP-SP). To provide mechanisms that support fast real

time decisions we will concentrate on the use of the concept of reputation allied to negoti-

ation.

In a market where there are many small value transactions, there needs to be a method

of managing risk when there is not the time or the information to be sure of achieving the

5.3. DESIGN OF A SECURE MULTI-AGENT MARKETPLACE 97

very best deal for each transaction. One tactic is to monitor services over a given time

period. During the monitoring period each party will depend on reneging penalties and

proportions specified in a SLA to manage services. The outcome of these transactions will

feed directly into the building of a reputation model of the other parties. A Customer will

have a reputation model of each SP. A SP will have a reputation model of each NP and vice

versa. The dual of reputation can be thought of as loyalty. Each party continuously updates

its reputation model through inputs such as compliance or lack there of, with the SLA. In

the simple procedure described below, reputation of a SP is used by a Customer to select a

SP and reputation of a NP is used by a SP to select a NP. If the NP cannot provide what is

requested then subsequent connection time bilateral negotiation may be performed to see if

some satisfactory agreement can be reached at a compromise QoS. The NP can be bold or

cautious in its negotiations with an SP depending on compliance with the relevant SLA to

date. Similarly the SP can be bold or cautious depending on the same SLA and its believed

reputation with respect to the Customer and the Customer-SP SLA. A SP is unlikely to

know exactly its reputation with a Customer. So the SP needs to model what it believes

its reputation to be with respect to a Customer. Reputation can also affect NP behaviour if

the non-provision penalties are not too high, the tolerance specified in the SLA is within

bounds and the SP has a low reputation with respect to the NP then the NP may consider

taking a chance of offering the QoS without reserving the resource pending confirmation

of agreement. If the agreed penalties for non-provision is too high then still many possible

connections will not be bid for, or wasteful reservations made, under utilising the resource,

so overall performance of the system depends on the contents of the SLAs.

The selection by the SP is based on maximising utility over time, but its’ perceived

reputation with the Customer will drive it to use the best performing NP, i.e. the NP with

the best reputation. There is nothing to stop a service provider who is owned by a specific

network provider (NSP) from always choosing its owning NP first. As a business decision

a NSP may select its owning NP first and then if the required QoS cannot be offered imme-

diately without negotiation, selecting a NP with the best reputation based on its models. It

could be itself. This could also improve the stability of the system as discussed later.

Negotiation has value as it is in the interest of both parties to compromise when resource

is very scarce. This is because the cross correlation of demands for service at different SPs

98 CHAPTER 5. AD HOC SECURITY SOLUTIONS

and different NPs over time is high. So the probability of succeeding with another SP (or

NP) when demand is so high that resource is a problem (the only time of interest) is not

great. With negotiation a SP (or customer) makes a connection that could not otherwise

be made. The SP makes concessions in the context of the Customer- SP SLA and service

required (e.g. it may accept a reduced quality video link in an audio visual connection for

a period of time.) A NP uses bandwidth that may not be otherwise sellable because it is not

sufficient for full QoS. It can offer lower bit-rates, make changes in modes of hand-over,

etc. Agreement in negotiation leads to rewards in terms of reputation that can be better than

no agreement.

For example, a SP will select a NP based on the reputation of that NP with the SP. If the

NP cannot provide the requested QoS then either the SP selects another NP or the SP and

NP use what time there is to negotiate genuine trade-offs. The first step, selection by the SP,

uses information that is not dependent on the resources at this instant. The information used

includes static information and recent performance information of the NP. This information

can be updated continually by the SP. The selection gives initial commitment to the chosen

NP. In fact if the SP is to have adaptive behaviour then the needs to be some element

of randomisation in the selection so that alternative NPs are continually explored, even

though the bulk of the traffic may be with one or two NPs. (An alternative is for the SP to

periodically to have a kind of auction).

In a very simple model the reputation of NP j with SP i at time t is denoted by a real

number rij(t), 0 < rij < 1. If the NP grants the request at time t, rij(t− 1) is incremented

by δrij = αrij(t− 1) where t− 1 is the previous time rij was computed. Initially for each

SP, all NPs are allocated an identical reputation, i.e. for each i, e are all the rij(0) are all

the same, 0 < α < 1. When resources are in high demand then some concessions have to

be made. Strategies and mechanisms to perform these relaxations to improve service levels

are out of the scope of this paper, but assume that analysis has provided some relaxation

policy. (The policies adopted in SHUFFLE are outlined in [SHU01].) If an agreement

cannot be reached the SP may start again by selecting a different NP, or may just not offer

a connection to the customer and suffer its penalty in terms of the customer-SP SLA. If

no agreement can be reached then the adjustment is δrij = βrij(t − 1), −1 < β < 0. If

negotiation reaches an agreement then the adjustment is δrij = γrij(t−1) where, β < γ <

5.3. DESIGN OF A SECURE MULTI-AGENT MARKETPLACE 99

α and so lies between the positive increment for complete instantaneous satisfaction and

the negative decrement for dissatisfaction, depending on how the SP values the agreement.

This simple model does not recognise that some NPs may be more reliable for some kinds

of request than others or that coverage is not uniform for a NP. A richer model involving

request context could be considered, but that is not done here. A richer model of selection

and subsequent negotiation would more than one NP to be selected and competing bilateral

negotiations take place between different NPs. An offer from a NP has to be accepted there

and then, or a counter proposal made. So a SP can agree with an NP (to secure the resource,

and pay the corresponding charge from the time of agreement and the time of any renege)

and later renege if other concurrent negotiations find a better deal. A penalty for reneging

so quickly may have to be paid. Alternative protocols will be investigated.

Selection based on reputation is faster and less wasteful in network bandwidth than an

auction or call for proposals, but is it reasonable? Certainly an SP can use NP reputation

as feedback to use in NP selection. In this case it pays a NP to perform well and not just

perform minimally. Is the customer being treated well? The interests of the SP will possibly

bias negotiation by the SP on the customer’s behalf, however the SP has to be mindful of its

reputation with the Customer not just the constraints of the customer-SP SLA. Importantly,

whilst selection does not of course solve the problem of not being able to deliver when

resource is not available, it is potentially more efficient than an auction mechanism. In

the simplest protocol described it allows the NP to manage its resource on the assumption

of award if it meets the required QoS. The dangers of overselling when making offers to

many parties concurrently is circumvented and the equal danger of reserving what will be

unsold resource is also avoided. Radio is such a scarce resource that this is a real problem.

Suppose an auction mechanism were used, then reserving bandwidth in case an offer to

sell is accepted is almost out of the question. Not reserving could lead to large numbers of

reneges. Finding the balance is difficult because of the short time scales.

Fairness

Fairness can be an issue. For example, since one of the SPs is likely belongs to the a

NP (i.e. be a NSP), a SP could choose its owning NP, almost irrespective of current perfor-

mance, hence providing the customer with (probably) a performance adequate to meet the

100 CHAPTER 5. AD HOC SECURITY SOLUTIONS

Customer-SP SLA, but not the best service possible, or even a fair allocation of available

resource. Equally, a NP may prefer to give concessions to its NSP and preferentially reject

other SP requests for relaxations.

Given that a supplier’s performance meets the agreed SLA does a buyer have a right

to expect fairness? Arguably if a buyer is unhappy with the SLA they should negotiate

another SLA. However a problem with such an approach is that the ability to negotiate a

strong SLA depends on the relative power of the negotiators. This imbalance means that

small customers are often given take it or leave it option. Formation of co-operatives of

customers is one option, protective regulation another. Yet another is for the customer to

monitor the performance. (The monitoring and selection procedures could in practise be

software provided by another party.) The use of feedback statistics, through for example the

reputation model outlined previously, of recent NP performance with respect to the SP-NP

SLA, other SP-NP SLAs and with ideal performance (no resource constraints) and other

NPs gives the end customer the potential of a more zealous performance, rather than the

minimum specified in the SLA. Choosing a SP with the best reputation will force the SP

to choose the NP with the best performance, so there is a knock on effect. The reputation

mechanism is however not adequate to prevent collusion by all SPs or all NPs.

What if all the NPs collude in treating one SP unfairly, but still keep within the terms

of the SLAs? For example too many SPs could drive down prices as they each chase the

fixed demand, and so a cartel looking for comfortable margins may want to limit entry of

new SPs. More specifically a regulatory board may insist on the grounds of openness of

the market that NPs sell bandwidth to SPs that are not NSPs. A cartel of NPs could favour

the NSPs when resources are scarce providing poorer service to the non- NSP, but not

affecting their relative reputation. For blatant denial of service at all times, such collusion

is not stable, as if one NP breaks rank and picks the outcast SP then that NP will have a

competitive advantage. However, if service is denied to the outcast SP only when resource

is scarce and what is left is reserved to give QoS for NSPs then the commercial advantage

to the NP to stay in the cartel could exceed that of breaking it. Could such a situation be

recognised by calculating a fairness metric or circumvented by some mechanism? Notice

that this applies even if we do not work in the any to any market. If a SP is committed to a

NP it still would like to be assured of fair treatment.

5.3. DESIGN OF A SECURE MULTI-AGENT MARKETPLACE 101

Different fairness metrics can be considered. When resource is scarce and a SP is

requesting from the NP additional resource (beyond for example what may have been pur-

chased in a "block" agreement) then the SP wants to be sure that it is not being unfairly

discriminated against. It would like equal access to resource that is available under the

same mechanism. This could be a small portion of resource managed by the NP or all of it

depending on the business model of the NP. However it is an important part when demand

is high. (Notice that we anticipate that normally no resource will be 100% guaranteed

rather a probability of allocation will be guaranteed. The simpler model can be accommo-

dated.) It is possible to construct a statistic that can be used to determine whether a SP has

been provided a fair allocation. For example if we assume that units bandwidth is allocated

independently (which they are not as some connections use more bandwidth than others)

then a simple exact likelihood ratio test can be constructed or an approximate Chi squared

statistic computed.

More sophisticated statistics could be derived to allow for the fact that connections are

of different bandwidths. The key feature of such a statistic is that it can only be computed

by the NP or a third party acting as a monitor. A SP cannot compute its own statistic

because it does not know the total bandwidth demand for the NP. The statistical approach

also depends on having reasonable probabilistic model under the null hypothesis of fairness

in order to derive a sensible statistic. So whilst feasible and potentially discriminatory to

degrees of unfairness, this approach is complex and requires a third party.

Should a Customer be able to impose the wish not to use a particular SP or NP because,

for example, the NP exploits child labour? There is no problem with this even if the SP

or NP selections are blind, as long as the required attributes are visible and not used for

collusion.

Resource plane

As previously stated, the Resource Plane is the domain of the NP. The Network Provider

must manage its’ resources in order to accommodate the various SLAs that it has with all

the SPs. Depending on the NP’s model of the SP the NP may be willing to go to varying

lengths to appear "reliable" to that SP. If the NP wishes to appear very reliable to a SP,

but does not have the dedicated resources to provide the SP at that moment, the NP has a

102 CHAPTER 5. AD HOC SECURITY SOLUTIONS

variety of options. The first type of operation the NP can undertake in order to free up some

resources for the SP are called cell-scale operations. An example of a cell-scale operation

might be that at call select, a different type of cell is chosen (e.g, macro- cell rather than

a pico-cell), probably providing a lower QoS to the user. Another example of a cell-scale

operation is to forcibly handover a connection to a different type of cell (using a different

frequency band), also providing a lower QoS. In cases where cell-scale manipulations are

not adequate the NP may go one step further and perform radio resource operations. In

Shuffle the operations are classified as planning and reactive and the MAS will include a

layered model.

Examples of operation

New SP agent enters the marketplace. Who will act on the behalf of a SP when a SP

wants to register its agent in each marketplace? The SP cannot do this by itself since

there is not a trusted relationship between SP and the marketplaces (it is not feasible).

The trusted third party does, since all the instances of the marketplace trust it (have its

public key). The registration office of a marketplace is queried about the operation and

starts the process validating the origin and integrity of the new agent (e.g. digest of code

signed by the owner of the marketplace). If the agent passes these tests, the office assigns

an original name to the agent and a certificate is issued by the trusted party. The agent,

with its certificate and name, enters the marketplace and stays in the agent layer. The

directory of agents, facilities and network services is updated in the registration office and

this new is made public throw an information service. This is repeated for every instance.

Customer request. We suppose that a customer request arrives at a Service Provider Agent.

An information service facility is involved in this operation in order for the SP to know

that a user wants a connection. Each SP agent is different from other SPs: the SP owning

the request has encoded a specific private architecture so it offers unique behaviour. Let

SPAa be the SPA assigned to the user in this example. SPAa has some previous experience

dealing with network and service providers. Suppose SPAb, a new Service Provider, has

been announced. in the marketplace. SPAa experience says NPa is the best option for the

customer, but it does not fits completely the query of the customer. Observing the social

indicators provided by a Domestic Information Service, SPAa realises that the new SPAb

5.3. DESIGN OF A SECURE MULTI-AGENT MARKETPLACE 103

is trading successfully with many others SPAs. SPAa has an agreement, notary-signed,

with SPAc that allows at this moment to have a similar offer to that of NPa. A parallel

trading is started by SPAa with NPa, SPAb and SPAc. Trade ends with SPAc offering

a better deal if they sign a loyalty agreement for a period of time. They use the notary

facility to make the agreement legal in the marketplace and submit the connection query

to the connection centre. The connection centre validates the query (norms are observed

and SLAs fulfilled) and submits the query to the network layer where resource agents will

establish the connection. In this case the validation is very light as the full validation is done

by periodic retrospective monitoring. This prevents the agents to operate directly network

connections, avoiding the chance of cheating, misuse of resources or "illegal" operations

(such as establishing a connection not associated with a SLA).

5.3.5 Synopsis

A simple trust model for a multi-agent marketplace has been presented, where several

mechanisms have implemented several security requirements. We have analysed a business

environment for selling of bandwidth resource and services.

The trust model is based on concentric spheres structure, with physical security in the

core, a security infrastructure in middle spheres and complex aspects of trust in outer

spheres, such as reputation, fairness and reliability. Benefits of the partition of the trust

model into shells are adaptability, flexibility and scalability. For example, it is very easy to

add new facilities or norms or use the model in a large scale marketplace.

Chapter 6

Conclusions

Mobile Agent technology, as we have seen in chapter 2, has reduced complexity of de-

signing of complex applications with special requirements (intermittently off-lined users,

bandwidth limitations, etc.), inherently providing scalability. It has enabled new types of

applications, for example sea-of-data applications, where code execution at data location

is a requirement. One of the main aims of this dissertation was to analyse the problem of

security in Multi Agent Systems, and especially in mobile agent environments. In chapter

2 this technology has been reviewed. We have seen how agents can be used to implement

complex systems, but at the same time they introduce new security issues, with very dif-

ficult solutions. Through chapter 5 we have shown some specific security solutions we

have designed to solve particular security problems on some applications: fault tolerance

in electronic voting system based on mobile agents, non-repudiation protocol for mobile

agent migration, and security infrastructure in agent based marketplace for the selling of

bandwidth. Some of the described mechanisms can be added in a repository for later use

within a more general scheme to find security solutions (such as our proposal in chapter 4).

Although mobile agent technology allow the implementation of sea-of-data applica-

tions, none of the available platforms is capable of doing this fulfilling some basic require-

ments of security and easy to program. Even more, none of these platforms is flexible

enough to allow easy extensions to implement this. In chapter 3 we have presented the start

of the implementation of MARISM-A, a novel Mobile Agent System especially designed

to easily develop secure sea-of-data applications. MARISM-A is being designed to observe

104

105

both FIPA and MASIF standards. Most novel features in this platform include the flexibil-

ity of agent internal architecture (programmers can add their own agent architectures in run

time), and the protectability of agent itineraries and collected results. These characteristics

lead to define a new programming paradigm based on location. We have outlined major

security requirements of sea-of-data applications by using the Byzantine Princes Problem

Sequel, a problem we have designed based on the BPP problem [DM01]. With this tradi-

tional method for security requirements analysis it is not possible to assure that there are

not more requirements or even that the requirements found are relevant for the application.

MARISM-A is still at very early stages and has many needs. It is not fault-tolerance yet,

for instance, and assumes agencies can not act maliciously. Although having malicious

agencies is not the normal situation (we provide for the most common scenario of agen-

cies distrusting each other and cooperating with users), we plan to do some more research

in this direction. The Integrated Development Environment of the platform is also in its

beginnings, but it is already able to generate agents with complex itineraries. Next future

road-map includes continuing the implementation of both MARISM-A internals and API,

fitting new research results in the field of security, and a user-friendly IDE to allow rapid

application developing.

As an alternative to traditional security requirements analysis methods we have pro-

posed to use an approach based on trust. Trust provides a new prospect for the analysis and

solution of the security problem, especially in mobile agent systems. Since trust is not a

simple concept, we have characterised the concept in chapter 2, providing different points

of view and finding out its basic elements. Next step has been to define a model for trust

and provide a methodology to use it to find trust/security requirements in mobile agents ap-

plications and point out security solutions. Our trust model has tried to fill up the alarming

gap between policies and practise that it is commonly found on similar approaches. This

has been achieved by means of structures and a methodology. The model and the method-

ology have been defined in chapter 4. An application using MARISM-A has been chosen to

show how this methodology can be applied to achieve security solutions. Nevertheless, our

trust model is just described and further research must be done in this direction. The novel

idea here has been to describe a trust plane, parallel to security, in which represent trust

requirements as a transformation of security requirements in highly socialised scenarios.

106 CHAPTER 6. CONCLUSIONS

This trust model, however, does not provide security solutions for all requirements.

More mechanisms are still needed to implement security solutions and be used to fulfil re-

quirements. We plan to make use of adapted role-based access control mechanisms using

SPKI certificates to solve specific requirements of sea-of-data applications and ubiquitous

computing. [SA02] points out new directions toward security solutions in ubiquitous com-

puting using a new security policy model known as Resurrecting Duckling.

We have joined iTrust, a working group on trust management in dynamic open systems

with European funding (IST-2001-34910). In this working group we expect to contribute

with our experience in the MARISM-A project and in the computer security area and get

valuable feedback to continue the developing of our practical trust model and the imple-

mentation of different security solutions on our platform.

As shown along this dissertation, security in complex mobile agent applications, such as

those based on the sea-of-data model, does not admit an easy solution. Trust has provided

an alternative to traditional methods to find a global solution for security issues. However,

it has not solved the entire problem. Trust clearly enables a better model to find security

requirements in highly socialised applications, as shown in this dissertation. Nevertheless,

further research in the application of a trust model is still required. The seek on this topic

will lead our research in the next future. MARISM-A project has resulted very helpful

for the cohesion of several research lines. We hope it becomes a useful platform for MAS

programmers and researchers in the foreseeable future, bolstering up the developing of new

applications and security proposals. Simultaneously, MARISM-A applications will be used

as testbeds to our trust model methodology.

Bibliography

[Abe98] M. Abe. Universally Verificable Mix-net with Verification Work Independent

of the Number of Mix-Servers. In Proceedings of Eurocrypt, LNCS 1403,

pages 437–447. Springer-Verlag, 1998.

[AC01] Agentcities, 2001. http://www.agentcities.org.

[AR97] A. Abdul-Rahman. The PGP Trust Model. EDI-Forum, 1997.

[ARH00] A. Abdul-Rahman and S. Hailes. Supporting Trust in Virtual Communities.

In 33rd Hawaii International Conference on System Sciences, 2000.

[Bae98] J. Baek. A Design of a Protocol for Detecting a Mobile Agent Clone and

its Correctness Proof Using Coloured Petri Nets. Technical Report TR-DIC-

CSL-1998-002, Kwang-Ju Institute of Science and Technology, 1998.

[BAN90] M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. ACM

Transactions on Computer Systems, 8(1), 1990.

[BBK94] T. Beth, M. Borchedring, and B. Klin. A Logic of Authentication. In European

Symposium on Research in Computer Security, 1994.

[BCH+00] J. Bigham, L.G. Cuthbert, A. Hayzelden, Z. Luo, J. Borrell, and S. Robles.

Distributed Control of Connection Admission to a Telecommunications Net-

work: Security Issues. In 4th Conference of Systemics, Cybernetics and Infor-

matics, Florida, 2000.

107

108 BIBLIOGRAPHY

[BCS99] P. Bellavista, A. Corradi, and C. Stefanelli. A Secure and Open Mobile Agent

Programming Environment. In Proceedings of the Fourth International Sym-

posium on Autonomous Decentralized Systems (ISADS ’99), pages 238–245,

Tokyo, Japan, 1999. IEEE Computer Society Press.

[BHBR01] J Bigham, A.L.G Hayzelden, J. Borrell, and S. Robles. Distributed control of

connection admission. In A.L.G. Hayzelden and R.A. Bourne, editors, Agent

Technology for Communication Infrastructures, chapter 6. Wiley, 2001.

[BHRS98] J. Baumann, F. Hohl, K. Rothermel, and M. Straßer. Mole - Concepts of a Mo-

bile Agent System. Special Issue on Distributed World Wide Web Processing:

Applications and Techniques of Web Agents, 1(3):123–137, 1998.

[Bou00] R. A. Bourne. A Quote-Driven Market for Service Providers in Telecom-

munications Networks. In Proceedings of 8th International Conference on

Telecommunication Systems Modelling and Analysis, pages 205–209, 2000.

[BRSR99] J. Borrell, S. Robles, J. Serra, and A. Riera. Securing the Itinerary of Mobile

Agents through a Non-Repudiation Protocol. In IEEE International Carnahan

Conference on Security Technology, pages 461–464, 1999.

[BTC+00] J Bigham, L. Tokarchuk, L. Cuthbert, S. Robles, and J. Borrell. Towards

a Global Trust Model for a Multi-Agent System to Manage Transactions in

Future Mobile Communication Networks. In 3rd UK Workshop of the UK

Special Interest Group on Multi-Agent Systems, 2000.

[BTR+01] J. Bigham, L. Tokarchuk, D.J. Ryan, L.G. Cuthbert, J. Lisalina, M. Dinis, and

S. Robles. Agent-based resource management for 3G networks. In Second

International Conference on 3G Mobile Communication Technologies, pages

236 – 240, London, UK, March 2001. IEEE, IEEE Press.

[CC96] L.F. Cranor and R.K. Cytron. Design and Implementation of a Practical

Security-Conscious Electronic Polling System. Technical Report WUCS-96-

02, Washington University. St. Louis, 1996.

BIBLIOGRAPHY 109

[CCD02] Combinatorics and Digital Communication Research Group (CCD). An Ar-

chitecture fo Mobile Agents with Recursive Itinerary and Secure Migration

(MARISM-A). http://www.marism-a.org, 2002.

[CFT98] A. Caprara, M. Fischetti, and P. Toth. Algorithms for the Set Covering Prob-

lem. Technical Report OR-98-3, DEIS-Operations Research Group, 1998.

[Cha81] D. Chaum. Untraceable Electronic Mail, Return Addresses and Digital

Pseudonyms. Comm. ACM, 24:84–88, 1981.

[Che97] Y. Cheng. A Comprehensive Security Infraestructure for Mobile Agents. Mas-

ter’s thesis, Universitat d’Estocolm/KTH, 1997.

[DH00] J. Domingo and J. Herrera. Enhanced Hash Chains for Efficient Agent Route

Protection. Information Processing Letters, April 2000. submitted.

[DM01] D. L. Drake and K. L. Morse. Analyzing the Byzantine Princes with Trust

Models. In Proceedings of the Fourth International Conference on Elec-

tronic Commerce Research (ICECR), volume 2, pages 390–396, Dallas, USA,

November 2001.

[DOW92] W. Diffie, P.C. Van Oorschot, and M.J. Wiener. Authentication and Authenti-

cated Key Exchanges. Designs, Codes and Cryptography, 2:107–125, 1992.

[EFL+99] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI

Certificate Theory. Request For Calls 2693, 1999.

[FIP00] Foundation for Intelligent Physical Agents. FIPA Specifications.

http://www.FIPA.org, 2000.

[FOO92] A. Fujioka, T. Okamoto, and K. Ohta. A Practical Secret Voting Scheme for

Large Scale Elections. In Proceeding of AUSCRYPT’92, LNCS 718, pages

244–251. Springer-Verlag, 1992.

[FOS02] Emorphia. FIPA-OS. http://fipa-os.sourceforge.net, 2002.

110 BIBLIOGRAPHY

[Gam90] D. G. Gambetta. Can We Trust Trust? In D. G. Gambetta, editor, Trust:

Making and Breaking Cooperative Relations. Basil Blackwell, Oxford, 1990.

[GH99] M. Geier and F. J. Hauck. Scalable Migration for Mobile Agents. In MOS’99.

INRIA, 1999.

[GH00] M. Geier and F. J. Hauck. Fragmented Objects for the Implementation of Mo-

bile Agents. Technical Report TR-I4-00-05, Friedrich-Alexander University,

Erlangen-Nürnberg, Germany, 2000.

[Gon97] L. Gong. Java Security Architecture for JDK 1.2. Sun Microsystems, Inc.,

Mountain View, 1997.

[GV97] C. Ghezzi and G. Vigna. Mobile Code Paradigms and Technologies: A Case

Study. In Proceedings of the First International Workshop on Mobile Agents,

LNCS 1219, pages 39–49, Berlin, Germany, 1997. Springer-Verlag.

[HC02] J. Herrera and J. Castellà. Expanded Hash Chains for n Values Compact

Commitments. In Proceedings of the 7th Spanish Meeting about Cryptology

and Information Security., Oviedo, 2002. To appear.

[HCK95] C. Harrison, D. Chess, and A. Kershenbaum. Mobile Agents: Are they a good

idea? Technical report, IBM, IBM T.J. Watson Research Center, 1995.

[Hoh98a] F. Hohl. A Model of Attacks of Malicious Hosts Against Mobile Agents. In

Proceedings of the ECOOP Workshop on Distributed Object Security and 4th

Workshop on Mobile Object Systems: Secure Internet Mobile Computations,

pages 105–120, INRIA, France, 1998.

[Hoh98b] F. Hohl. Time Limited Blackbox Security: Protecting Mobile Agents From

Malicious Hosts. In Mobile Agents and Security, LNCS 1419, pages 92–113.

Springer-Verlag, 1998.

[HR99] F. Hohl and K. Rothermel. A Protocol Preventing Blackbox Tests of Mobile

Agents. Article acceptat pel 11. Fachtagung "Kommunikation in Verteilten

Systemen" (KiVS’99), 1999.

BIBLIOGRAPHY 111

[IKV00] IKV++. Grasshopper. The Agent Platform. Technical report, IKV++ GmbH,

Berlin, 2000. http://www.ikv.de/products/grasshopper.

[ITU93] ITU-T. Recommentadion X.500 (11/93) – Information technology – Open

Systems Interconnection – The directory: Overview of Concepts, Models and

Services, 1993.

[Jøs96] A. Jøsang. The Right Type of Trust for Distributed Systems. In New Security

Paradigms Workshop, 1996.

[JW98] N. R. Jennings and M. J. Wooldridge, editors. Agent Technology. Springer-

Verlag, 1998.

[KAG98] G. Karjoth, N. Asokan, and C. Gülcü. Protecting the Computation of Free-

Roaming Agents. In Proceedings of the Second International Workshop on

Mobile Agents, LNCS 1477, pages 194–207. Springer-Verlag, 1998.

[Mar94] S. Marsh. Formalising Trust as a Computational Concept. PhD thesis, Uni-

versity of Stirling, 1994.

[Mau96] U. Maurer. Modeling a Public-Key Infrastructure. In European Symposium

on Research in Computer Security, 1996.

[MB02] J. Mir and J. Borrell. Protecting general flexible itineraries of mobile agents.

In Proceedings of ICISC 2001, LNCS. Springer Verlag, 2002. To appear.

[MBB+98] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, et al. MASIF: The

OMG Mobile Agent System Interoperability Facility. In Proceedings of the

Second International Workshop on Mobile Agents), pages 50–67, Stuttgart,

Germany, 1998.

[MS00] Y. Mass and O. Shehory. Distributed Trust in Open Multi Agent Systems. In

Proceedings of Autonomous Agents 2000’ workshop on Deception, Fraud and

Trust in Agent Societies, pages 81–86, 2000.

112 BIBLIOGRAPHY

[MvOS96] A. Menzes, P. van Ooschor, and Vanstone S. Handbook of Applied Cryptog-

raphy. CRC Press, 1996.

[NL96] G. C. Necula and P. Lee. Proof-Carrying Code. Technical report, School of

Computer Science, Carnegie Mellon University, September 1996.

[NRB02a] G. Navarro, S. Robles, and J. Borrell. Adapted Role-based Access Control

for MARISM-A using SPKI Certificates. In 2nd. International Workshop on

Security of Mobile Multiagent Systems, Bologna, July 2002. submitted.

[NRB02b] G. Navarro, S. Robles, and J. Borrell. SPKI for Resource Access Control

in Mobile Agents Environments. In Proceedings of the 7th Spanish Meeting

about Cryptology and Information Security, Oviedo, 2002. In Spanish. To

appear.

[Pal94] E. Palmer. An Introduction to Citadel - a Secure Crypto Coprocessor for

Workstations. In Proceedings if the IFIP SEC’94, 1994.

[PC00] S. Poslad and M. Calisti. Towards Improved Trust and Security in FIPA

Agent Platforms. In Proceedings of Autonomous Agents 2000’ workshop on

Deception, Fraud and Trust in Agent Societies, pages 87–90, 2000.

[PCGK89] D. A. Patterson, P. Chen, G. Gibson, and R. H. Katz. Introduction to Re-

dundant Arrays of Inexpensive Disks (RAID). In IEEE COMPCON 89, San

Francisco, 1989.

[RB99] A. Riera and J. Borrell. Practical Aproach to Anonymity in Large Scale Elec-

tronic Voting Schemes. In Network and Distributed System Security, NDSS,

pages 69–82. Internet Society, 1999.

[RB02a] S. Robles and J. Borrell. A Fault-Tolerant Voting Scheme based on Mobile

Agents. In 6th Conference of Systemics, Cybernetics and Informatics, Florida,

2002. To appear.

BIBLIOGRAPHY 113

[RB02b] S. Robles and J. Borrell. Trust in Mobile Agents Environments. In Proceed-

ings of the 7th Spanish Meeting about Cryptology and Information Security,

Oviedo, 2002. To appear.

[RBB+01] S. Robles, J. Borrell, J. Bigham, L. Tokarchuk, and L. Cuthbert. Design of

a Trust Model for a Secure Multi-Agent Marketplace. In 5th International

Conference on Autonomous Agents, pages 77–78, Montreal, May 2001. ACM

Press.

[RBR97] A. Riera, J. Borrell, and J. Rifà. Large Scale Elections by Coordinating Elec-

toral Colleges. In IFIP SEC’97, Information Security in Research and Busi-

ness, pages 349–362. Chapman&Hall, 1997.

[RBR98] A. Riera, J. Borrell, and J. Rifà. An uncoercible verifiable electronic voting

protocol. In IFIP SEC’98, pages 206–215. Austrian Computer Society, 1998.

[RHG99] L. Rosenberg, T. Hammer, and A. Gallo. Continuous Risk Management at

NASA. In Proceedings of the Applied Software Measurement / Software Man-

agement Conference, 1999.

[Rie99] A. Riera. Design of Implementable Solutions for Large Scale Electronic Vot-

ing Schemes. PhD thesis, Universitat Autònoma de Barcelona, 1999.

[Rif93] J. Rifà. How to avoid the Cheaters succeed in the Key Sharing Scheme.

Desings, Codes and Cryptography, 3:221–228, 1993.

[RLN+02] S. Robles, I. Luque, G. Navarro, J. Pons, and J. Borrell. Secure Platform

for Mobile Agent Execution with Protectable Itinerary, Code and Data. In

Proceedings of the 7th Spanish Meeting about Cryptology and Information

Security, Oviedo, 2002. In Spanish. To appear.

[RMB02] S. Robles, J. Mir, and J. Borrell. MARISM-A: An Architecture for Mobile

Agents with Recursive Itinerary and Secure Migration. In 2nd. IW on Security

of Mobile Multiagent Systems, Bologna, July 2002. (submitted).

114 BIBLIOGRAPHY

[Rob99] S. Robles. Applying Mobile Agents Systems into Large Scale Voting System

Designing. Master’s thesis, Universitat Autònoma de Barcelona, 1999. In

Catalan.

[Rot98] V. Roth. Secure Recording of Itineraries through Cooperating Agents. In

MOS’98, pages 147–154. INRIA, 1998.

[RPBB01a] S. Robles, S. Poslad, J. Borrell, and J. Bigham. A Practical Trust Model

for Agent-Oriented Electronic Business Applications. In 4th International

Conference on Electronic Commerce Research, volume 2, pages 397–406,

Dallas, USA, November 2001.

[RPBB01b] S. Robles, S. Poslad, J. Borrell, and J. Bigham. Adding Security and Privacy

to Agents Acting in a Marketplace: A Trust Model. In Proceedings of the

35th Annual IEEE International Carnahan Conference on Security Technol-

ogy, pages 235–239, London, October 2001. IEEE, IEEE Press.

[SA02] F. Stajano and R. Anderson. The Resurrecting Duckling: Security Issues for

Ubiquitous Computing. Computer, IEEE Computer Society, Security & Pri-

vacy supplement, April 2002.

[SBH96] M. Straßer, J. Baumann, and F. Hohl. Mole - A Java Based Mobile Agent

System. In Workshop Reader ECOOP’96, Dpunkt, 1996.

[Sch96] B. Scheneier. Applied Cryptography. Protocols, Algorithms, and Source Code

in C. John Wiley & Sons, New York, 1996.

[SHU01] Shuffle. http://www.ist-shuffle.org, 2001. IST European Project.

[SR98] M. Straßer and K. Rothermel. Reliability Concepts for Mobile Agents. Inter-

national Journal of Cooperative Information Systems (IJCIS), 7(4):355–382,

1998.

[SRM98] M. Straßer, K. Rothermel, and C. Maiöfer. Providing Reliable Agents for

Electronic Commerce. In Proceedings of the International IFIP/GI Working

Conference, LNCS 1402, pages 241–253. Springer-Verlag, 1998.

BIBLIOGRAPHY 115

[ST97] T. Sander and C. Tschudin. Towards Mobile Cryptography. Technical Report

97-049, International Computer Science Institute, Berkeley, 1997.

www.icsi.berkeley.edu/ sander/publications/tr-97-049.ps.

[ST98] T. Sander and C. Tschudin. Protecting Mobile Agents Against Malicious

Hosts. In Mobile Agents and Security, LNCS 1419. Springer-Verlag, 1998.

[Vig98] G. Vigna. Cryptographic Traces for Mobile Agents. In Mobile Agents and

Security, LNCS 1419, pages 137–153. Springer-Verlag, 1998.

[Whi94] J. E. White. Telescript Technology: The Foundation for the Electronic Mar-

ketplace. White paper, General Magic Inc., 1994.

[Whi95] J. E. White. Mobile Agents. Technical report, General Magic Inc., Octubre

1995.

[WPW+97] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, and B. Peet. Concor-

dia: An Infrastructure fo Collaborating Mobile Agents. In Proceedings of the

First International Workshop on Mobile Agents, LNCS 1219, pages 86–97,

Berlin, Germany, 1997. Springer-Verlag.

[WSB98] U.G. Wilhelm, S. Staamann, and L. Buttyán. Protecting the Itinerary of Mo-

bile Agents. In MOS’98, pages 135–145. INRIA, 1998.

[WSB00] U.G. Wilhelm, S.M. Staamann, and L. Buttyán. A Pessimistic Approach to

Trust in Mobile Agent Platforms. IEEE Internet Computing, pages 40–48,

September-October 2000.

[Yee97] B. Yee. A Sanctuary for Mobile Agents. In DARPA Workshop on Foundations

for Secure Mobile Code Workshop, March 1997.

www.cs.nps.navy.mil/research/languages/statements/bsy.ps.

[YHK95] W. Yeong, , T. Howes, and S. Kille. Lightweight Directory Access Protocol.

RFC 1777, 1995.

116 BIBLIOGRAPHY

[YKB93] R. Yahalom, B. Klein, and T. Beth. Trust Relationships in Secure Systems - A

Distributed Authentication Perspective. In Symp. on Research in Security and

Privacy, Oakland, 1993. IEEE.

[ZG96] J. Zhou and D. Gollmann. Observations on Non-Repudiation. In Asiacrypt’96,

LNCS 1163, pages 133–144. Springer-Verlag, 1996.

Sergi Robles

Bellaterra, July 2002

117

