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Abstract

This thesis explores all problems involved in the 3D reconstruction of coronary
vessels from X-ray angiographies: calibration, vessel extraction in X-ray images and
3D reconstruction of the vessel in space.

We divide the calibration into two procedures: The first procedure is devoted to
the correction of the geometrical distortion, and the second one is focused on the esti-
mation of the extrinsic and intrinsic parameters of the X-ray acquisition system. We
correct the geometrical distortion introduced by the image intensifier by defining
a novel polynomial model for the distortion. The main advantage of our approach is
that the distortion can be corrected for any view, and thus eliminates the need of dis-
tortion calibration for each acquisition. Regarding the estimation of the acquisition
geometry, we show that the assumptions made by other researchers to estimate the
extrinsic parameters are only valid in very restricted cases and thus introduce high
degree of error. Therefore, we propose a new, more general and flexible model to
calibrate the parameters of the C-arm. Using our proposed model, we can obtain a
highly accurate estimation of the acquisition geometry.

Once calibrated, next steps of the thesis refer to vessel detection in images and 3D
reconstruction. Due to the low signal-to-noise ratio of X-ray angiographies, the vessel
segmentation procedure is not a trivial procedure. We develop a new anisotropic
diffusion filter that enhances the vessels on the X-ray images in order to improve the
vessel segmentation result. The proposed filter automatically chooses the scale of the
diffusion tensor to be applied for each pixel, and achieves selective enhancement of
the vessels enhancing the contrast-to-noise ratio. Given the detected vessel points in
the angiography, 3D reconstruction is applied applying techniques similar to stereo
vision avoiding the problem of determining the corresponding points of the object
in both images. We define the biplane snakes that are deformable models consisting
on a three-dimensional elastic curve that deforms in space to adapt its projections
to the vessels in the images. The proposed approach inherently solves the point
correspondence problem and has a good behaviour when the acquisition conditions
are known with low precision.

The proposed methods are extensively validated with imaged phantoms and real
angiographic sequences acquired with a monoplane angiographic system and the valu-
able help of the physicians of Hospital Universitari "Germans Tries i Pujol".
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Resumen

Esta tesis explora los problemas de la reconstrucciéon 3D de los vasos coronarios a
partir de angiografias: calibracién, extraccion de los vasos a partir de las iméagenes, y
reconstruccion 3D del vaso.

La calibracion se divide en dos procedimientos: El primer procedimiento corrige
la distorsiéon geométrica, y el segundo se concentra en la estimacién de los paramet-
ros extrinsecos e intrinsicos del sistema de adquisicién. La distorsién geométrica
introducida por el intensificador de imagen se corrige mediante la definicién de un
nuevo modelo de polinomios para la distorsién. La principal ventaja de esta aproxi-
macién es que la distorsion se puede corregir para cualquier vista, eliminando asi la
necesidad de calibrar para cada adquisicion. Respecto la estimacion de la geometria
de adquisicién, mostramos que las asunciones hechas por otros investigadores a la
hora de estimar los pardmetros extrinsecos s6lo son vélidas en casos muy restringi-
dos, y por tanto introducen un alto grado de error. Por ello, proponemos un modelo
nuevo, mas general y flexible, para calibrar los parametros del brazo C. Gracias a este
modelo, podemos obtener una estimacién precisa de la geometria de adquisicion.

Después de calibrar, los siguientes pasos de esta tesis se refieren a la deteccion
de los vasos y a la reconstruccién 3D. Debido a la baja relaciéon senal-ruido de las
imagenes de angiografias, la segmentaciéon de los vasos no es un problema trivial
de resolver. Nosotros desarrollamos un filtro de difusion anisotrépica para mejorar
el resultado de la segmentacion de los vasos. Este filtro escoge automaticamente la
escala del tensor de difusion para cada pixel y consigue un realce selectivo de los
vasos. A partir de los puntos detectados del vaso, la reconstruccion 3D se consigue
aplicando técnicas parecidas a las de la vision estéreo, pero evitando el problema de la
determinaciéon de las correspondencias de puntos del objeto en las dos iméagenes.
Para ello, definimos los snakes biplanos, que son modelos deformables consistentes en
una curva tridimensional que se deforma en el espacio para adaptar sus proyecciones
a los vasos en las imagenes. Esta técnica resuelve el problema de las correspondencias
de puntos de forma inherente, y tiene un buen comportamiento cuando las condiciones
de adquisicién no se conocen con gran precision.

Los métodos propuestos son extensamente validados usando phantoms y secuen-
cias reales de angiografias adquiridas con un sistema monoplano de angiografias y la
inestimable ayuda de los médicos del Hospital Universitari "Germans Tries i Pujol".
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Chapter 1

Introduction

The rapid development and proliferation of medical imaging technologies is rev-
olutionizing medicine. Medical imaging allows scientists and physicians to glean po-
tentially livesaving information by peering into the human body. The role of medical
imaging has expanded beyond the simple visualization and inspection of anatomic
structures. It has become a tool for surgical planning and simulation, intra-operative
navigation, radiotherapy planning and for tracking the progress of disease.

The analysis of coronary arteries is of particular importance in medical diagnosis
of heart disease. It has been well known that cardiologic injure is presently the single
greatest health problem in most developed countries. The most frequent pathology
affecting the heart arteries or coronaries is the partial or total obstruction due to lipid
accumulation in their interior walls. This pathology is known as stenosis. An image
technique is needed for its diagnosis and evaluation.

At this moment, the current most used technique is coronary angiography. An-
other useful technique is the IntraVascular UltraSound (IVUS), although it is not
so widely used. Both techniques complement each other. Recently, a new technique
has been developed, the High-speed Magnetic Resonance Coronary Angiography, that
provides an image volume of the heart, where the vessels can be appreciated. However,
this technique is not yet available in most catheterism laboratories, and, moreover,
the acquisition cost is very high.

1.1 Improvements using Computers

As showed by McInerney et al. in [57], with medical imaging playing an increas-
ingly prominent role in the diagnosis and treatment of diseases, it becomes nearly
necessary to extract, with the assistance of computers, clinically useful information
about anatomic structures imaged through X-Ray Angiography, IntraVascular Ultra-
Sound (IVUS), Computed Tomography (CT), Magnetic Resonance (MR), Positron
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Emission Tomography (PET), and other modalities. Although these modern imag-
ing devices provide exceptional views of internal anatomy, the use of computers to
quantify and analyze the embedded structures with accuracy and efficiency is lim-
ited. Accurate, repeatable, quantitative data must be efficiently extracted in order to
support the diagnosis. Moreover, and beyond providing quantitative data, computers
can compensate some of the lacks that have the current medical imaging techniques.

In the framework of coronary vessels examination, much work has been done to
improve the diagnosis potential of imaging techniques:

3D Lesion Length Measurent. Using a pair of views of the lesion, a 3D recon-
struction of the vessel segment containing the lesion is reconstructed. From this
reconstruction, one can obtain a more reliable measurement, of the lesion length.
An example of this application can be found in [§].

Fusion of X-Ray Coronary Angiography and IVUS. X-ray coronary angiogra-
phy presents the lack of the foreshortening effect when evaluating the degree of
a stenosis, while IVUS has the problem of an excessive locality of the informa-
tion that they provide. An approach to alleviate these problems is to perform a
fusion between the information provided by the angiography (the 3D catheter
path) and the one provided by the IVUS (the cross-sectional transmural data).
The result obtained allows a global assessment of the vessel lesion, by means of
volumetric measurements and 3D visualizations. This approach has been pre-
sented in [73, 93, 78]. Figure 1.1 shows a snapshot of the application developed
by Rotger in [77] to relate and fuse data from angiography and IVUS.

Determination of Optimal Views. The main idea of this procedure is to acquire
two different views of the vessel to be analysed and, from this image pair, to
deduce which should be the two optimal views to acquire the vessel of interest.
The optimal views shall be two perpendicular ones that are both parallel to
the main axis of the vessel. From these views, the perspective effect should be
minimized. Dumay et al. presented in [22] a method to obtain such views.

Case Retrieval. Using computers, the individual cases can be stored with all the in-
formation related to them: diagnosis, treatment, patient evolution, etc. Hence,
given a new case, the physician can perform a search on the database to obtain
similar past cases. By examining the effects of the different treatments applied
to each case, he/she can decide the treatment to be applied. At this moment,
a research project is being carried out in our group devoted to the developpent
of a case retrieval application for IVUS images using elastic matching.

Vessel Tagging. Given the complexity of the coronary tree and the wide range of
views from which it can be acquired, it is often necessary to get some help
on identifying the different coronary vessels from a coronary angiography. The
main applications of vessel tagging are to improve inter-physician comunication
and to help the case characterisation for other purpouses, as case retrieval.
An approach to obtain this tagging is to adapt a model of the coronary tree
containing the vessel tags to the image [30].



1.2. Coronary Angiography 3

LEF): Sequence 36 [114], image 274
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Figure 1.1: An IVUS and Angiogram fusion application. The user can know for
each IVUS image the corresponding location of the catheter on the angiographic
image.

Among these improvements, there are several, specially lesion length measure-
ment and the fusion of X-ray coronary angiography and IVUS, that need a three-
dimensional reconstruction of the vessel from angiographic image pairs. Hence, it is
a key point on the development of these techniques. That is why in this thesis we
focus the three-dimensional reconstruction of the vessels from angiographies and the
problems associated with it.

1.2 Coronary Angiography

Coronary angiography consists of a vessel radiography with radio-opaque fluid
injected to improve contrast (see figure 1.2 for an example). This technique is specially
used to detect stenosis and other lesions on the coronary arteries. Also, it is used to
determine the length of the stent to be introduced in order to treat the detected
stenosis and to guide the stent to the desired location during its introduction.

However, it presents some drawbacks. First, when measuring the length of a
lesion, the measurement has to be obtained by comparing the size of the lesion to
the width of the catheter appearance in the image, disregarding the imprecision due
to the perspective projection. As shown in figure 1.3, unless we acquire the lesion
from the appropiate angulation, that is, parallel to the vessel, we will obtain a length
measure shorter than the real one due to the perspective effect.

Another drawback of this technique is that the degree of stenosis can not be
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Figure 1.2: A coronary angiography image.

Projection Projection
plane 1 plane 2

Figure 1.3: The perspective projection problem. Unless we acquire the lesion from
the appropiate angulation, that is, parallel to the vessel, we will obtain a length
measure shorter than the real one.

evaluated due to the foreshortening effect: depending on the view angle of the lesion,
the degree of stenosis can be under-estimated. For an illustration of this effect, see
figure 1.4. Moreover, even when this evaluation is performed from an optimal view,
the precision obtained is not very high due to the low signal-to-noise ratio of this kind
of images and the size of the vessels on the image.

Finally, vessel overlapping is another shortcoming of this technique. The desired
lesion could be hidden by another vessel in front of it from the acquisition point of
view.

A technique that can complement X-ray angiography is Intravascular Ultrasound,
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Figure 1.4: The foreshortening effect. Depending on the acquisition angle, the
degree of stenosis can be under-estimated using X-ray angiography.

which is obtained by introducing a catheter into the vessel. This catheter has a sensor
on its extreme that, using ultrasound, provides transmural cross-sectional information
of the vessel at the position of the sensor (see figure 1.5).

Figure 1.5: An IntraVascular UltraSound image.

This technique, although invasive, allows in vivo a more comprehensive assessment
of the plaque, as it provides transmural cross-sectional imaging of coronary arteries
and allows diameter and area measurements of both lumen and atherosclerotic plaque.
To examine a section of a vessel, the catheter is introduced until the beginning of
the desired section and then a motorized system slowly extracts the catheter while
obtaining cross-sectional images of the vessel at each position (see figure 1.6). This
procedure is called pull-back.
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Figure 1.6: IVUS provide local cross-sectional information of the vessel.

The main drawback of this technique is that each image only provides local in-
formation of the vessel, i.e. the physician does not know exactly which location of
the vessel each frame refers to. By examining the pull-back sequence, he/she has to
imagine how the global situation of the vessel is. This mental exercice is of course not
very easy to achieve, due to the lack of references in the images. Moreover, due to
the movement of the heart, each frame is rotated from the previous one, complicating
even more the task to the physician.

1.3 3D Reconstruction from Coronary Angiography

As stated before, obtaining an accurate three-dimensional reconstruction is key for
several applications. However, we have found several difficulties when approaching
the 3D reconstruction of the coronary vessels from angiography. The main difficulties
that we have found are the correction of the geometrical distortion introducted by
the image intensifier, the acquisition geometry determination, the automatic vessel
detection and the corresponding points determination. In this thesis, we analyse these
difficulties and propose an approach to alleviate them.

1.3.1 Geometrical Distortion Correction

When approaching the three-dimensional reconstruction of the coronary vessels,
we find that angiographic images suffer from geometrical distortion, which is intro-
duced by the image intensifier. The main difficulty is that, unlike the distortion
introduced by the optics in the camera frame, the distortion introduced by the image
intensifier varies from one view to another.

This distortion is generally described as the combination of two effects from dif-
ferent sources: First, the peripheral concavity of the Image Intensifier (II) and the
non-linearity of the electronic devices that causes pincushion and other geometrical



1.3. 3D Reconstruction from Coronary Angiography 7

distortions. Second, the influence of the earth’s magnetic field is quite perceptible
and the distortion depends on the orientation of the detector; hence, the distortion
changes depending on the orientation of the II [29, 17]. Other non-fixed distortion
sources may include fields emitted by nearby monitors, or even non-linear distortions
with a warming-up of the image intensifier. Since in our case the monitors remain
at a fixed position, we assume that the distortion introduced by them can also be
assumed as depending on the orientation of the detector. Regarding the warming-up
of the II, authors in [17] claim that the distortion remains quite constant even during
several months, always after a warming-up of a minimum of 2h from the switching on
of the II.

In routine clinical practice, where a Field-Of-View (FOV) of 17—23cm is commonly
used for the acquisition of coronary vessels, this distortion introduces a positional error
of up to 7 pixels for an image matrix size of 512 x 512 and a FOV of 17cm. This error
increases with the size of the FOV. Geometrical distortions have a significant effect
on the validity of the 3D reconstruction of vessels from these images. Hence, in order
to obtain an accurate three-dimensional reconstruction of vessels from angiography,
X-ray image distortion must be taken into account [21].

Some investigators use a few small lead markers attached to the II screen to
estimate the distortion [26, 67, 63]. Since the geometrical distortion is complex, in
most cases a large number of lead markers [17] or a calibration grid attached to the
IT screen, is necessary [27, 2, 76, 29, 17, 38, 28, 25, 21]. Applying this procedure
for each acquisition may be inconvenient in clinical practice; hence, some researchers
have suggested to calibrate the system only once [28]. Thus, they correct only the
radial or pincushion distortion. However, the influence of the II orientation on the
geometrical distortion [29] and its effect on the 3D reconstruction is too large to be
neglected [17, 21]. Other authors propose to predict the distortion [29, 25] from the
anatomical angles (rotation and angulation) of the II by interpolation, obtaining a
mean error of about 1.5 pixels and a maximum of about three pixels, for an image
matrix size of 512 x 512 pixels [25]. Even though these approaches are a good step
forward, the precision obtained could be insuficient for some applications. Therefore,
we conclude that although much work has been done, the problem of correcting X-ray
image distortion remains open.

Our proposal

In this thesis, we propose a model of geometrical distortion based on anatomical
angles, since the geometrical distortion varies with the extrinsic parameters. First,
we prove that the distortion can be accurately modeled using a polynomial for each
view. Also, we show that the estimated polynomial is independent of focal length, but
not of changes in anatomical angles, as the II is influenced by the earth’s magnetic
field. Thus, we decompose the polynomial into two components, namely the steady
and the orientation-dependent component. This fact simplifies the estimation of the
orientation-dependent polynomial, since the number of polynomial coefficients to be
estimated is lower.
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For the development of the distortion model, we have been inspired by the work of
Kerrien et al. in [25]. In the method proposed by Kerrien et al. [25], the position of
the grid nodes are estimated using a bivariate polynomial of @ and 3 (the anatomical
angles, which describe the orientation of the C-arm). Using the estimated grid nodes,
a vector field containing the image displacement due to distortion is computed for the
whole image. The main differences with this work are: First, we estimate a global
model of the distortion consisting on a bi-variate polynomial of the image coordinates,
instead of estimating the positions of the grid nodes on the image. This polynomial
is selected to have the optimal number of coefficients to describe the distortion, and
this simplifies the estimation of these coefficients from the anatomical angles a and £.
Second, we decompose the distortion model into two components, namely the steady
and the orientation-dependent component, thus reducing the number of coefficients to
be estimated from « and 3, since the orientation-dependent distortion is less complex
than the steady one. This should simplify the model and its calibration. And third,
we use a bi-variate polynomial of « and § of optimal degree for the estimation of the
orientation-dependent distortion component.

1.3.2 Determination of the Acquisition Geometry

In order to obtain an accurate 3D reconstruction of a point or curve, the acqui-
sition geometry must be known with a high precision. Hence, camera calibration is
a necessary step in order to extract metric information from 2D images. Much work
has been done, starting in the photogrammetry community (see [6, 31] to cite a few),
and more recently in computer vision [35, 60, 91, 96, 56].

We can classify the different calibration techniques in the literature into two cat-
egories: photogrammetric calibration and self-calibration[103]:

Photogrammetric calibration. Camera calibration is performed by observing a
calibration object whose geometry in 3D space is known with very good pre-
cision. Calibration can be very efficiently done [32]. The calibration object
usually consists of two or three planes orthogonal to each other. Sometimes
a plane undergoing a precisely known translation is also used [91]. These ap-
proaches require an expensive calibration apparatus and an elaborated setup.

Self-calibration. Techniques in this category do not use any calibration object. Just
by moving a camera in a static scene, the rigidity of the scene provides in general
two constraints [56, 52] on the cameras internal parameters from the camera
displacement by using image information alone. Therefore, if images are taken
by the same camera with fixed internal parameters, correspondences between
three images are sufficient to recover both the internal and external parameters
which allow to reconstruct 3D structure up to a similarity [53, 40]. While this
approach is very flexible, it is not yet mature [5]. Because there are many
parameters to estimate, we cannot always obtain reliable results.

Other techniques exist: vanishing points for orthogonal directions [11, 47], and cali-
bration from pure rotation [40, 86].
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Thus, a lot of work on the estimation of the camera projection matrix has been
done, and hence one can find a lot of methods on the Computer Vision literature.
However, in the angiographic frame we have some difficulties that are harder to over-
come than in the camera calibration frame and that limitate the applicability of some
methods in the angiographic frame.

The first difficulty is the calibration object manufacture. Since we are not working
with visible light, but with X-rays, we have to accurately choose the materials, this
object is manufactured of. Hence, radio-opaque materials, as iron and other met-
als, should be used only as calibration markers, while radio-transparent materials,
as expanded polystyrene (better known as porezpan) or polymethyl methacrylate,
should be kept for supporting the markers. Working with this kind of materials is
more difficult than simply printing a calibration pattern on a paper and sticking it
to a rigid planar surface. Thus, the calibration method should require a calibration
object as easy to construct as possible. Therefore, we will discard the calibration
methods which require a complicate calibration object, as most methods coming from
Photogrammetric Calibration do. Nevertheless, we can find methods that use a Pho-
togrammetric approach in the angiographic frame, as the one presented by Hoffmann
et al. in [28]. This method needs a calibration object consisting of a polymethyl
methacrylate cube with 12 lead marks attatched to it at known 3D positions. The
calibration is done by repeating the acquisition but acquiring a calibration object
instead of the patient. Although this method obtains good results, the calibration
object is hard to manufacture and hence we have not followed this approach.

Another difficulty is that some methods require a precisely known translation [91]
or rotation[39, 86]. In the camera calibration frame, this is already a difficulty, since it
requires an elaborated setup to perform such a movement. In the angiographic frame,
a movement of this kind (as a rotation around the camera focus) is simply impossible,
or at least very hard to obtain. Moreover, for the sake of the clinical aplicability of
the reconstruction method, the calibration procedure should be as simple to perform
as possible. Thus, we have also rejected all the calibration methods that needed such
movements.

Finally, self-calibration techniques where also discarded for this thesis. This ap-
proach has been already explored in the angiographic frame [62, 13]. The main idea is
to define point correspondences on at least two different projections of the heart, tipi-
cally corresponding to vessel bifurcations. From these correspondences, these meth-
ods are able to recover the intrinsic and extrinsic parameters up to a similarity. This
means that knowledge about the size of the imaged objects should be known with
high precision to obtain good results. In practice, this approach presents two main
problems: first, knowing the size of the imaged objects, or, alternatively, the distance
between the two X-ray sources is difficult to achieve. Moreover, the accuracy of these
techniques highly relies on the precision obtained when detecting the corresponding
features on the images. Since an automatic method to detect corresponding vessel
bifurcations on two images with high precision is very hard to achieve, this is an
additional obstacle for the practical application of this technique on routine clinical
practice.
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Hence, we are looking for an approach as flexible as self-calibration but which
does not need a knowledge hard to obtain (as the distance between the two X-ray
sources for each acquisition pair) nor a complicated calibration object. Recently,
two methods that fulfill these requirements have appeared in the Computer Vision
literature [87, 103]. Although both methods where independently developped, they
are very similar. They only require the camera (or angiography acquisition system) to
observe a planar pattern shown at a few (at least two) different orientations. Either
the camera or the planar pattern can be freely moved. The motion need not be known.
By assuming that the model plane is on Z = 0 of the world coordinate system, two
constraints are defined, provided that the intrinsic parameters of the camera (as
the focal length) do not change. The position and orientation of the camera for
each acquisition can be derived from these constraints, and also the camera intrinsic
parameters.

However, all these methods require performing a calibration at each acquisition,
which becomes a time-consuming and tedious task in clinical practice. Hence, another
common approach in the angiographic frame is to use a model of the movement of
the C-arm, as the proposed by Dumay et al. in [22], which is widely used to obtain
an estimation of the acquisition geometry. Nevertheless, authors in [23] state that the
classical isocentric model could not satisfy the accuracy required, and thus propose
to use a variable isoaxis instead of a variable isocenter, and to refine the acquisition
geometry using image correspondences at each acquisition. Chen et al. in [13] propose
also this refining for the same reason. As we have already discussed, automatically
detecting corresponding features on cardiac images with high precision is hard to
achieve. Moreover, the first difficulty that one finds when aiming to use a model
is the estimation of the model parameters which best fit a particular angiographic
system.

Our proposal

Our objective is to develop an improved model of the movement of the C-arm
inspired from the model proposed by Dumay et al. in [22], which imposes less con-
straints and then is closer to the reality. By extending the model, we soften the
requirement of a refinement at each acquisition. The calibration procedure should
be performed only once (or at least only after a long period of time from the last
calibration). This should facilitate the final clinical application of the method.

Also, we aim to formulate a flexible calibration method to estimate the parameters
of this model, which will depend on each particular system. The calibration method
should only require a calibration object easy to construct and a short acquisition time.
In this thesis, we have chosen the method proposed by Zhang in [103] as starting point
for the calibration method.
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1.3.3 Awutomatic Vessel Detection

After correcting the image distortion and determining the acquisition geometry,
we approach the three-dimensional reconstruction of the vessels. One of the most
difficult problems when approaching this task is the automatic vessel extraction. A
gray-scale image thresholding approach to segment the vessels is not applicable here
for two reasons: First, the X-rays incidence is not homogeneous on the image, and
therefore the image is brighter near the center of the image. And second, as opposite
to the optical camera frame, the images obtained with X-rays are of an accumulative
nature, and therefore the vessels will be darker or brighter depending on the back-
ground structures behind or in front of them. Hence, only a local contrast measure is
applicable here. Moreover, current angiographic systems store the acquired sequences
on a digital support in DICOM format. Even if this support allows applications which
were nearly impossible with the film support, storing the images in DICOM format
currently means an image size of 512 x 512 pixels and only 256 gray levels. This fact
really makes difficult vessel segmentation, specially for small and/or poor contrasted
vessels.

We can find many methods devoted to the vessel centerline extraction in the
literature (see [50, 37] for a review). Some of them are based on specially designed
algorithms, others on mathematical morphology and others on general valley detectors
tuned to the particular problem. Nevertheless, in this thesis we do not focus the study
of the different methods to detect the vessel centerline. Instead, we have chosen the
most available for us, since it has been developped in our group, as starting point to
develop our vessel centerline feature extraction procedure.

This method was presented by Lopez et al. in [50]. It consists on a scanning
method, which is based on the computation of a robust creaseness measure named
multilocal level curve curvature, a geometric entity defined by the same authors.
Hence, the vessel centerlines are obtained by thresholding this creaseness measure and
afterwards applying a thinning algorithm to the obtained binary image to obtain the
centerlines. In order to eliminate spurious background structures, the authors in [50]
propose to eliminate the centerlines of short length. Although this actually improves
the result, it can have the undersired effect of eliminating real vessel centerlines when
the centerline appears broken.

Hence, a problem that we have found when applying this method is that some
background structures are also detected as vessel centerlines. In our opinion, the
reason is that the creaseness measure does not take into account the image contrast
at the creases, and hence poorly contrasted creases obtain the same score as the strong
contrasted ones, which are more likely to correspond to a vessel.

Digital Substraction Angiography (DSA) is a common approach to alleviate the
problems originated from background structures and the heterogeneous X-ray in-
tensity distribution on the image: an image acquired prior to contrast injection is
substracted from the contrasted image, thus removing the background and obtaining
the vessels. For still images the results of this technique are so good that no further
processing is necessary. However, in cardiac applications the coronary vessels are
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in constant movement, and a raw DSA approach will create motion artifacts which
could be detected as vessels. In [59], several methods for the reduction of motion
artifacts are presented. Nevertheless, a conclusion of this paper is that in coronary
angiography these techniques are hard to apply.

On the other hand, we can find specific multiscale approaches for vessel enhance-
ment without substracting the background in [81, 49, 34]. In particular, the filter
proposed by Frangi et al. in [34] gives good noise and background supression results.
However, we have noticed some problems to segment the vessels from two-dimensional
X-ray cardiac angiographies. We think that one of the reasons is that this method
does not consider the coherence, that is if a given pixel is considered to be part of a
vessel, the neighbour pixels in the vessel direction are also very likely to correspond
to a vessel.

By analising the literature, we can find filters that aim increasing the coherence
of the features in the images. That is the case of the diffusion processes based on the
structure tensor to enhance linear structures [95] and creases [85]. Since the vessels
can be regarded as creases and Solé’s filter [85] aims enhancing the coherence of the
creases on the image, this filter seems a priori appropiate for enhancing the image
prior the vessel segmentation. However, the ridges/valleys measure used does not
take into account the image contrast, and therefore, when applying it to regularize
the vessels, some undesired background structures are also enhanced. Also, the vessels
appear at different scales, and therefore a multiscale approach is necessary [34].

Our proposal

In this thesis, we aim to develop a method to enhance vessel structures to make
easier vessel segmentation. A vessel enhancement improves vessel delination and
reduces noise and background objects. This facilitates visual analysis and improves
the results of vessel centerline segmentation using any of the techniques present in
the literature, as for example the one presented by Lopez et al. in [50].

To this aim, we propose a new anisotropic diffusion filter inspired in that of Solé
et al. [85], which enhances the creases on the image. The main difference is that our
filter enhances the creases on the image with a diffusion strenght determined by the
Frangi’s vesselness measure [34]. Moreover, for each pixel the scale of the diffusion
tensor to be applied is chosen using the Frangi’s vesselness measure.

By applying this pre-processing before the vessel centerline detection procedure of
Lopez et al. [50], we obtain two benefits: First, since the filtering increases the crease
coherence on the image, the centerlines corresponding to a vessel are less likely to be
broken after thresholding the creaseness measure. Second, we can use the vesselness
measure, which will be now improved after applying the anisotropic vesselness en-
hancement diffusion filter, to eliminate the detected centerlines corresponding to the
background while preserving those corresponding to vessels.



1.4. Previous Publications 13

1.3.4 Corresponding Points Determination

Once that we have detected the points on the image corresponding to the vessel
centerline, we will be interested in obtaining the three-dimensional centerline curve.
To this aim, the usual approach consists of reconstructing corresponding points in both
X-ray images, and then obtaining a 3D curve by interpolation between the obtained
3D points. This is the approach used in [84, 36, 22, 94, 23, 12, 13, 28, 98, 21].

However, this bottom-up approach has many shortcomings. First, authomatic
corresponding points determination is in general computationally expensive, mainly
when we do not have in general two similar views but two different ones as angulated
as possible. While this fact improves the accuracy of the three-dimensional recon-
struction, the two views will be very different one from another. Moreover, there is a
big degree of ambiguity present on this kind of images, since all the vessels are simi-
lar. The usual approach is therefore asking the user to manually mark corresponding
points. This task is also non-trivial for the user, and can become quite tedious if high
accuracy is needed. Second, even when the user is helped by the epipolar line [22] to
match points in different views, innacuracies on the biplane geometry estimation may
make fail the epipolarity constraint, and therefore the user can be driven to mark in-
correct matches. And third, the curve is directly interpolated among marked points,
and therefore the user must mark a lot of corresponding points to accurately follow
the shape of the vessel, which in many cases can be quite wavy.

Our proposal

In this thesis we propose to reduce both problems by using biplane snakes, which
are derived from the physics-based model of snakes [42]. The snake initialization is
done by a user interaction that determines two pairs of approximately corresponding
points near the beginning and the end of the part of the vessel to be reconstructed.
Then, an initial 3D curve is obtained from this correspondence. Such a curve de-
forms in order to adapt its projections to the images, inherently solving the point
correspondence problem.

Preliminary results of this aproach were presented in [64] for orthogonal views in
the frame of catheter path reconstruction. We aim to develop an improved version of
the technique and apply it to the three-dimensional reconstruction of vessel centerlines
from arbitrary views.

1.4 Previous Publications

Parts of this thesis have been previously published. The model for the movement
of the C-arm and the calibration techniques were published in [10]. The distor-
tion/undistortion model and the associated calibration were published in [7] and in
journal version in [9]. Preliminary results on the use of biplane snake to reconstruct
the vessels were presented in [15, 66, 8]. A journal version of biplane snakes using
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GGVF was published in [9].

Although not described in this thesis, we have applied the results obtained in this
thesis to other applications. In particular, results for IVUS and angiogram data fusion
were published in [74, 55, 79].

1.5 Thesis Organization

The remaining of this thesis is organized as follows. In Chapter 2 we provide
the background material about X-ray angiography, 3D Reconstruction, Deformable
Models and Image Enhancement techniques. In Chapter 3, we develop our proposal
for the geometrical distortion correction, and the model of the movement of the C-
arm. We also propose calibration methods to obtain the parameters of the proposed
models. In Chapter 4, we focus on the three-dimensional reconstruction of the coro-
nary vessels using snakes. We propose a method to improve the image quality in
order to obtain a better segmentation of the vessels and develop the biplane snakes,
extended to arbitraty views, to improve the performance against wavy vessels and to
take into account image distortion. In Chapter 5, we present experimental results of
the methods proposed in Chapters 3 and 4 using the angiographic images provided by
the Hospital Universitary "Germans Tries i Pujol". Finally, we conclude this thesis
in Chapter 6 with a summary and a discussion of future research areas.



Chapter 2

Background

2.1 X-Ray Angiography

In this section, we aim to provide the basics on digital X-ray angiography. First, we
relate the X-Rays discovery and describe the properties of this type of radiation. Next,
we concentrate on the development of coronary angiography. Finally, we describe a
coronary angiographer, how it works, and the problems that could arise when working
with it.

2.1.1 X-Rays History

Wilhelm Conrad Roentgen (figure 2.1) discovered the X-rays while studying cath-
ode rays. In order to facilitate his observations, he wrapped the gas discharge tube
in black paper and darked the room. Thus, he noticed that when he operated his gas
discharge tube, a fluorescent screen of barium platinocyanide, which was accidentaly
near the tube, lighted up.

This is the first documented observation of X-rays, and occurred on November
8, 1895. Right away he recognised the importance of his discovery and locked him
up in his laboraty for seven weeks. Within these weeks, he discovered and analyzed
practically all properties of X-rays relevant for imaging and even produced some
radiographs of hands on photographic plates, the first known X-ray images showing
human anatomy (see figure 2.2).

During his early experiments with X-rays, Roentgen identified as the source of
the radiation that area of the glass tube which was hit by the cathode rays, i.e.
accelerated free electrons (see figure 2.3). The cloud of electrons was generated by
the small voltage, and accelerated by the big one to the cathode. When they hit the
glass at very high speed, they were able to liberate electrons from the higher energy
layers of the glass atoms, and hence an electromagnetic radiation of very high energy
(i.e. frequency) was produced.

Thus, the mysterious X-rays discovered by Roentgen were just another type of
electromagnetic radiation like radio waves, infra-red, visible light, or ultra-violet, how-
ever, of a very much higher frequency or energy than e.g. ultra-violet and, therefore,

15
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Figure 2.2: The first radiograph performed by W.C. Roentgen, probably Mrs.
Roentgen’s hand.

drastically different behavior in its interaction with matter. In particular, X-rays
have the ability to penetrate solid objects, and the degree of penetration depends on
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Figure 2.3: X-ray generation on Roentgen’s glass tube.

the energy of the X-ray quanta but also on the thickness and density of the object.
Therefore, X-rays have become an invaluable tool for medical imaging and industrial
non-destructive testing.

2.1.2 The Development of Cardiac Angiography

The first angiography was obtained in January 1896, by post-mortem injection
of mercury compounds on the vessels of a hand (see figure 2.4). This compound
was necessary in order to enhance the contrast of the vessels, since blood is nearly
radio-transparent. Since mercury is highly radio-opaque, it would be a good contrast
compound if a mercury injection were not so mortal. Fortunally, for the medical
application of angiography, inocuous compounds for the enhancement of the contrast
of vessels where posteriously developed. Now the most commonly injected contrast
compound is a iodine solution at exactly 36.5°C.

Figure 2.4: Post-mortem injection of mercury compounds, January 1896.
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However, coronary angiography appeared much later, since this technique required
direct contrast injection on the vessels to be imaged. A student of the University
Hospital of Berlin, called Werner Forssmann, played a key role on the development
of this technique. In 1929, he used a urology catheter of 60cm to reach the heart by
inserting it trough the arteries. He was so convinced of the feasibility of this that he
decided to test the technique with himself. Hence, he carried himself out a cut on his
forearm, and opened an artery to introduce the catheter into it. After introducing the
catheter into his body, he decided that he had to test whether he had succeeded by
imaging the catheter with X-rays, and therefore, he went to the upper floor through
the stairs to the X-ray laboratory with the catheter introduced into his body. There
he realized that he could lead the catheter to his heart: cardiac catheterism was born.
Although he was dismissed due to the riskiness of his experiments, in 1956 he shared
with André Cournand and Dickinson Richards the Nobel Prize for his contribution in
the development of cardiac catheterism.

Nowadays, it is not necessary to perform such a cut to the patient, since it is
enough to inflict a punction. The usual location of this punction is on the femoral
artery, although at this moment new techniques allow to perform this punction on
the forearm of the patient (radial punction). This is much more confortable to the
patient, since after the exploration the patient can stand up and walk, which is not
the case for the femoral punction.

Another great improvement has been the introduction of the image intensifier, and
the development of new techniques to produce X-rays. Thanks to these improvements,
now it is possible to image coronary vessels in real time and with high resolution,
without undergoing the patient to a big amount of radiation.

2.1.3 The Cardiac Angiography Acquisition System

A typical cardiac X-ray angiography acquisition system is composed by the fol-
lowing: A X-ray generator tube or X-ray source, a table onto which the patient can
be placed, an Image Intensifier which converts the X-ray signal into a visible image, a
granting system to move the source-intensifier pair in order to obtain different views of
the patient’s anatomy and an image acquisition system. Figure 2.5 shows the system
available at Hospital Universitari "Germans Tries i Pujol" of Badalona, with whom
we collaborate.

The X-Ray Source

Whereas the applications as computerized tomography use a fine X-ray beam to
obtain high-resolution images, X-ray cardiac angiography must find an equilibrium
between a high spatial resolution and a high temporal resolution.

On the one hand, high spatial resolution is needed, since coronary vessels must be
imaged with enough accuracy to determine the severety of an arterial obstruction or
stenosis. On the other hand, a high temporal resolution is needed to deal with the
movement of the heart and avoid blurred images.

The problem is that the X-ray tube has its limitations. To give a maximal resolu-
tion, either spatial or temporal, angiographic systems use fan-shaped X-ray sources,
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Figure 2.5: An example of angiographer.

which allow a fast image acquisition at the expense of a small distortion on the image.
Nevertheless, recently new techniques for high-speed angiographic system have been
developed, which provide a higher resolution, both spatial and temporal[92].

The Image Intensifier

The image acquisition system is based on a property called fluorescence. This
property consists of the capability to transform an incident radiation in another radi-
ation of a different wave length (a more detailed description of this phenomenon can
be found in any elemental physics book). Thus, a screen covered by a substance which
absorbs X-ray and remits them as visible light allows to obtain an image'. However,
in order to obtain an image directly visible by the human eye, the incident radiation
must be intense.

The problem is that a big amount of X-ray radiation can bring about tumours,
as first X-ray investigators as Mihran Kassabian (1870-1910), who lost its two hands,
unfortunally ought to note. Therefore, in medical aplications the minimization of
the amount of radiation received by the patient is a must. So, an alternative way
for image intensification should be explored, and this leads to the application of the
image intensifier.

Figure 2.6 shows a sketch of the image intensifier, which consists of a fluorescent
input screen mounted on a thin transparent base on a tube, in which vacuum has
been made.

X-ray collides with the fluorescent input screen, thus leading to the emision of
visible light. This light is then transformed in an electron beam by means of the
fotocatode. An anode placed at the other extreme of the tube accelerates the electrons

IFor instance, the screen of barium platinocyanide present in Roentgen’s laboratory was fluores-
cent.
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Figure 2.6: A image intensifier.

and concentrates them into a groove. The electrons cross the groove and collide with
a second fluorescent screen which transform them again in visible light, but around
10,000 times brighter than the original [92].

The main drawback of the image intensifier is that it introduces geometrical dis-
tortion on the image. This distortion is generally described as the combination of
two effects from different sources: First, the peripheral concavity of input screen of
the Image Intensifier and the non-linearity of the electronic devices cause pincushion
and geometrical S distortions (see figure 2.7 for an illustration of these distortions).
Second, the influence of the earth’s magnetic field is quite perceptible and the distor-
tion depends on the orientation of the detector, provoking something similar to an
image rotation. These effects are quite perceptible. For instance, in clinical practice,
where a Field-Of-View(FOV) of about 17cm is commonly used, we have found that
the positional error is up to 7 pixels for a 512 x 512 image. This error increases with
the size of the FOV.

(a) Ideal image (b) With pincushion  (c) With S-distortion

Figure 2.7: Ideal image and two types of geometrical distortion.
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The Granting System

There exist two types of granting system: L-arm and C-arm. In this work, we will
concentrate on the description of the C-arm, which is the most common and also the
one which we work with.

The C-arm configuration owes its name to the its C-shape. The image intensifier
and the image acquisition system are mounted on the top extreme of the C, and the
X-ray tube is mounted on the bottom extreme.

In clinical practice, it is very useful to change the point of view depending on the
vessel to be imaged. Instead of rotating and moving the patient, the granting system
is able to rotate with two degrees of freedom (rotation and angulation), which are
denoted by the so called anatomical angles o and (3, respectively. Let us analize the
two movements that the C-arm can carry out:

Rotation: It is determined by the anatomical angle a. As shown in figure 2.8, when
a > 0, we have a Right Anterior Oblique (RAO) view, and for a < 0 we obtain
a Left Anterior Oblique (LAO) view.

Figure 2.8: Rotation, denoted by .

Angulation: Described by the anatomical angle 5. When 8 > 0 the view is classified
as Cranial (CRA), and when § < 0 we talk about a Caudal (CAU) view, as
illustated in figure 2.9.
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Figure 2.9: Angulation, denoted by S.

Other named views are the one corresponding to a = 0 and 8 = 0 configuration,
called Anterior-Posterior (AP), which provides a frontal view of the heart, and this of
a = —90 and 8 = 0, which is called Lateral 90 (LAT90) and is mainly used to image
the right coronary.

The physician has also the possibility of variating the X-ray source and image
intensifier distance (SID). As shown in figure 2.10, the image intensifier moves up and
down, whereas the X-ray source remains at a constant position. Hence, by moving
the image intensifier away from the patient, the objects appear magnified, since the
focal length is longer.

Figure 2.10: Variating the SID. The X-ray source does not move.
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Image Acquisition System

In a traditional angiographic acquisition system, a beam-splitter is placed in front
of the output screen, in order that both the video camera and the 35cm cinefilm can
pick the image. This configuration allows the real-time visualization of the angiog-
raphy, but also to save the sequence on a high-resolution support which is easy to
transport.

Modern angiographic systems, on the other hand, have replaced both supports on
a unique one: the digital one. Images can also be examined in real time, but at the end
of the exploration they are stored in a CD-ROM using the DICOM][92] protocol. This
means that we have the sequences stored with a resolution of 512 x 512 pixels, 256 gray
levels and typically 12.5 frames per second. Although the resolution is not so high as
the provided by the 35cm cinefilm, the numerous advantages of the digital support, as
the possibility of storing all the information about the acquisition conditions (rotation
and angulation angle, type of contrast, physician which performed the exploration,
etc), about the patient (name, sex, age, weight, etc.) and above all the ECG, fully
justify the use of the digital support, since it opens the possibility of a wide variety
of applications. For the application of this thesis, where a digitalization is required in
order to work with the images on a computer, a digital system avoids a lot of problems
with the 35cm cinefilm digitalization procedure. Moreover, the new DICOM standard
will include the possibility of storing the images at a resolution of 1024 x 1024 pixels
with 12 bits of gray-level depth.

Although we started this thesis with a non-digital, traditional angiographic system,
very soon we had available digital one. The results presented are all for a digital
acquisition system.

2.2 3D Reconstruction

In this section, we aim to provide the reader with a minimal background on three-
dimensional reconstruction to understand the difficulties found in this thesis. Hence,
what is presented here is not an exhaustive review on three-dimensional, but a col-
lection of concepts which will be used to calibrate the X-ray angiographer for 3D
reconstruction purpouses. To this aim, we first illustrate the relationship existing
between the camera model used in Computer Vision applications and that of the X-
ray angiographer. Then, we give some insights on 3D reconstruction of a point and
describe two feasible reconstruction error measures. After, we describe a calibration
approach that fits our requiriments and that is used in this thesis. Finally, we describe
a tool- namely, the epipolar line-, which is used to determine corresponding points in
two views.

2.2.1 Cameras and Angiographers are very Similar

There is a strong relationship between the camera model used in Computer Vision
applications and the angiography acquisition system. Let us consider a pinhole camera
model and note the differences with the angiography model. Plane F, called the focal
plane, is placed in front of the image plane Z. Distance f is the focal length. Let
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Figure 2.11: The angiography acquisition model (a) and the pinhole camera model

(b)

point C be the optical center, then the optical azis is the line passing through C
perpendicular to F. The optical axis intersects Z at point c, called the principal point.
Figure 2.11(a) illustrates the angiography acquisition model and figure 2.11(b) shows
the pinhole camera model (see [32, 102] for more details). It should be noted that,
from a geometric viewpoint, in both models we deal with the perspective projection.
The main difference between them is that the object in the X-ray image is magnified
and not inverted compared to the pinhole camera image.

The transformation from 3D world coordinates to camera pixel coordinates is
modeled in [91] as a process of four stages. By changing some details, we obtain an
equivalent procedure.

First, we perform a linear transformation from the three-dimensional world co-
ordinate system (X,,, Y., Z,) to the three-dimensional camera coordinate system

(X,Y, 2):

X
Y |=[R t] : (2.1)
A

aalake

where matrix R is a 3 x 3 rotation matrix and t is a translation vector. R, t constitute
the extrinsic parameters.

Second, a perspective projection is applied, following the pinhole camera model,
which is also applicable in the angiographic context:

U X
Vi i=A|Y |, (2.2)
S Z

u:%, U:% when S #0

where matrix A embodies the intrinsic parameters. A standard expression for the
matrix A is:
fk 0 Uo
A= 0 fk Vo
0 0 1
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where £ is the inverse pixel size and (ug, vg) are the coordinates of the principal point
¢ on the image matrix. This step differs from Tsai’s approach [91], where matrix A
depends only on f. There, the pixel aspect ratio is addressed at a fourth step by
including the aspect factor s,, and expressing f in pixels/cm. We do not introduce
any aspect factor, as we consider it as a part of image distortion. Another difference
with the Tsai’s approach is that in [91], the image center is supposed to be at (0,0),
which is defined at the center of the image matrix. Instead, we include the parameters
Ugp, V9.
Equations (2.1) and (2.2) can be combined as follows:

U S

V| =AR t]| ¥ |,
Zy

s 1

u:%, v:% when S #0

However, ignoring distortion is unacceptable when doing 3D measurement [91].
This is also true in the context of angiographic projection, since the pinhole camera
model is not accurate. Therefore, a third step to model geometrical distortion is
needed. Thus, we perform a non-linear transformation using functions p* and p? to
obtain distorted pizel coordinates (4, 0):

>
I

u+p¥,
v+p’,

<>
I

This is the model to be applied in order to obtain a unwarped image. The rea-
son is that for each coordinate of the target undistorted image, we obtain a unique
corresponding distorted coordinate on the image to be unwarped. If we use instead a
undistortion model to unwarp images, we will ought deal with image holes or multiple
pixel values.

Nevertheless, image unwarping introduces noise in the image, and is computation-
ally expensive. So, it is preferable to avoid it. Instead, we propose to estimate also a
model to obtain the undistorted coordinates:

w = G+ p%,
= o+,
Thus, to project a 3D point on the distorted image (as we will see later) we use the

distortion model, and to reconstruct a 3D point from a pair of points on the images,
we use the undistortion model. Thus, no image unwarping is needed.

2.2.2 Three-Dimensional Reconstruction of a Point

Let Cq1,C5 be the focus position of the X-ray beams in two views, and m; =
(u1,v1) and mo = (ug,vs2) the 2D projections of a three-dimensional point M, which
we aim to obtain.
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Theoretically, the 3D reconstruction of a point M from two projections mjy, moy
corresponds to the intersection of projective rays m'C! and m2C?. However in
practice they may fail to intersect. Dumay et al. [22] propose as an approximated
reconstruction (also called retroprojection) the point M', which minimizes the distance
to both projective lines (see figure 2.12).

Figure 2.12: The minimum distance three-dimensional reconstruction of corre-
sponding points m; and msy.

This point is situated upon the segment S;Ss, which is perpendicular to both
projective lines. The vectorial representation of this segment is as follows:

Slsz = (C2 + O'szz) — (C]_ + TC1m1) (24)
where 7,0 are determined from the perpendicular constraints:
S]_Sz . C1m1 = S]_Sz . szz =0

The 3D point corresponding to both projections of my, my (which is called the
backprojection ¢~! of m; and mg2) is therefore expressed as follows [22]:

1
MI = (p_l(mlam2) = Cl + TClml + 58182

However, this backprojection method does not necessarily minimize the distances
|jm; —mi|| and ||ms — mj||, where m{ and m), are the projections of M'. Moreover,
it is not clear how to apply it when more than two views are available. Therefore, we
use an alternative method to compute M'.

Let P; = A;[ Ri t; ] be the projection matrix for view i. Using equation (2.3),
we can derive the following constraint for each view[102]:

(ai'1 - uiaé)TRi M — (uiaé - afl)Tti
(al, — v;ak)TR; (v;ak — ab)Tt;

where aij corresponds to the j* row of matrix A;. For any two views, we have 4
equations and 3 unknowns. Any linear least-squares technique can be used to solve
this problem.
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However, the previous approach minimizes a criterion that does not have a good
physical interpretation (see [102] for details). We use the obtained solution as starting
point to minimize the following functional:

. T 2 . T 2
M’ LM’
E |lm; — my'||* = E (Ui - b ) + (Ui - p? )

i P M/ py M’

where p'; corresponds to the j% row of matrix P;.

2.2.3 Reconstruction error

Now that we know how to obtain the backprojection M’ from two projections
mj, mo, we are interested in measuring with how much precision it can be done.

The problem is that in most cases we will not have the exact geometry of the
object to be reconstructed, and therefore, we need to define some measure which
provides an idea of the amount of error commited when reconstructing. A possible
measure of the reconstruction error, which is commonly used, is the distance between
projective lines calculated from (2.4):

e1(my, mz) = || S 52| (2.5)

Alternatively, considering my’, my’ as the projections of M’ in both planes, we can
define the reconstruction error as:

g2(my, mz) = [[mymy’|| + |[mymo’|| (2.6)

The use of the first or the second error measure will depend on the application,
although both are clearly related. It is easy to see that by reducing (2.6) we reduce
(2.5). Error (2.6) is in the image plane units (typically in pixels), while error (2.6) is
in world units (typically, millimeters or centimeters).

2.2.4 Camera Calibration using the Zhang’s Method

The calibration technique proposed by Zhang in [103] only requires the camera
(or angiography acquisition system) to observe a planar pattern shown at a few (at
least two) different orientations. Either the camera or the planar pattern can be freely
moved. The motion need not be known.

This approach, which uses 2D metric information, lies between the photogrammet-
ric calibration, which uses explicit 3D model, and self-calibration, which uses motion
rigidity or equivalently implicit 3D information. Compared to classical techniques,
this technique is considerably more flexible: Anyone can make a calibration pattern
and, in the angiographic frame, we can use the calibration grid which is commonly
available in the catheterism laboratories to estimate the geometrical distortion. Com-
pared with self-calibration, it gains a considerable degree of robustness. Moreover, we
do not need any additional knowledge besides the spacing of the grid, which is well
known.
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Let m = [u,v,1]7 be an augmented 2D point. A 3D point is denoted by M =
[X,Y,Z,1]T. A camera is then modeled by the usual pinhole:

. a v ug
sm=A[R t]|M with A=] 0 B8 u (2.7)
0 0 1

where s is an arbitrary scale factor, (R,t) the rotation and translation which
relates world coordinates with camera coordinates, and A is the camera intrinsic
matrix, with (ug,v) the coordinates of the principal point, a and g the scale factors
and ~ the skew factor.

In this method, the point is to assume that the model plane is on Z = 0 of the
world coordinate system, so we can denote M = [X,Y, 1]7. Figure 2.13 illustrates the
concept.

view 1

2 x =
-~ Calibration ™. S
0 Y grid e,

Figure 2.13: The world coordinate system {O, XY, Z} is defined so that the cali-
bration object is placed on Z = 0.

From equation (2.7) we have:

1
s| v :A[rl rs rs t]

X
:A[ ry ro t] Y
1 1

X
Y
0
1
Therefore, a model point on world coordinates can be expressed in image coordi-

nates by applying the homography H:
sm=HM with H=A[r rs t] (2.8)
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where rq,ro are the first and second columns of R. H is defined up to a scale factor
and can be estimated for each view.

There are many ways to estimate the homography between the model plane and
its image. Here, we present a technique based on a maximum-likelihood criterion,
which is the one proposed by Zhang in [103]. Let M; and m; be the model and
image points, respectively. Ideally, they should satisfy (2.8). In practice, they do not
because of noise in the extracted image points. Let us assume that m; is corrupted
by Gaussian noise with mean 0 and covariance matrix Ay,,. Then, the maximum-
likelihood estimation of H is obtained by minimizing the following functional:

> (mi — 1) A, (my — i)

i

where
. 1 hTwm; I .
m; = W [ l_lgMi with hj, the i-th row of H.

In practice, it is simply assumed Ap,, = oI for all i. This is reasonable if points
are extracted independently with the same procedure. In this case, the above problem
becomes a nonlinear least-squares one, i.e., ming Y, = ||m; — m;||>. The nonlinear
minimization can be carried out using any non-linear least squares procedure, as the
Levenberg-Marquardt Algorithm. Since this requires an initial guess, Zhang in [103]
proposes to obtain it as follows:

Let x = [h], h], hi]. Then, equation (2.8) can be rewritten as follows:

MT o7 M)
o7 MT —pMT [T
Given n points, one obtains n above equations, which can be written in matrix
equation as Lx = 0, where L is a 2n x 9 matrix. As x is defined up to a scale factor,
the solution is well-known to be the right singular vector of L associated with the
smallest singular value (or equivalently, the eigenvector of LTL associated with the
smallest eigenvalue) 2.
Using the obtained homographies, Zhang defines in [103] the following constraints
for each view:

hi"A"TA 'hy =0 (2.9)
hi"A"TA 'hy =hy"A~TA 'h, (2.10)

where h; is the i-th column vector of matrix H.

These constraints are derived from equation (2.8), from which hy = Ar; and
h, = Ar,. Hence, using the knowledge that r; and rp are orthonormal and therefore
r1Try = 0 and r1"ry = ra7ry, Zhang defines the constraints (2.9) and (2.10). For a

geometrical interpretation of these constraints, see [103].

2In L, some elements are constant 1, some are in pixels, some are in world coordinates, and some
are multiplication of both. This makes L poorly conditioned numerically. Much better results can
be obtained by performing a simple data normalization prior to running the above procedure [103].
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Let B = A-TA1. If the skewless constraint v = 0 is imposed, from (2.7) the
following expression for matrix B is obtained:

1 u
Bi1 Biz Bis aZ ? _%_g
B=ATA"=| By B»n By |=| 0 & -3 (2.11)
Bi3 Bz B -5 B %+;—§+1
Since B is symmetric, it is defined by the 6D vector b:
b = [Bi1, Bi2, Ba2, B13, Baz, B3] (2.12)

Let the i-th column vector of matrix H be h; = [h1, hi2, hiz]T. Then the two
constraints (2.9) and (2.10) are expressed as two homogeneous equations in matrix
form as follows [103]:

viz b=0 2.13
(Vi1 — vaa) B (2.13)

where
vij = [hithji, hithjo + hishji, hishje, hithjs + highji, hishjs + hishja, highjs]"
For n images of the model plane, one can stack equations of (2.13) as:
Vb =0 (2.14)

Since the skewless constraint v = 0, i.e., [0,1,0,0,0,0]b = 0 has been imposed?,
an additional equation to (2.14) can be added. This allows to obtain the remaining
parameters by only using 2 views. The solution to (2.14) is the eigenvector of v7v
associated with the smallest eigenvalue.

The matrix B is estimated up to a scale factor, i.e., B = AMA~TA~! with X
an arbitrary scale. Without difficulty, the intrinsic parameters can be extracted by
inspecting equation (2.11):

Bi13?Bso + Bss” By
By By
_Bis _Bes
By, Bss

Vo

[ A [ A
« = _— fd R
Bll B BQE

Once A is known, the extrinsic parameters for each view are readily computed
from (2.7) as follows:

A = Bss -

Ug =

_ AT'H, _ AT'H,
T OATH] T ATH
_ AT'H;  AT'H;
T ATH[  [ATTH:|

rs = TIp XTIy t

For further details, see [103].

31n practice, we impose [0,1000,0,0,0,0]b = 0, since it makes somewhat stronger this constraint.



2.2. 3D Reconstruction 31

2.2.5 Determination of Corresponding Points

Once the acquisition geometry is known, the next problem to solve is determining
the corresponding points on an image pair of the objects to be reconstructed. This
task has been deeply studied, and we can find a lot of methods in the Computer
Vision literature (see [104] for an example of one of these methods). We will not
describe here these methods, but a common characteristic among them is that they
use the epipolar line.

The epipolar line is the intersection of the image plane with the epipolar plane.
This plane is defined by two projective rays, and therefore contains the focal points
F4, F3 and the three-dimensional point M to be reconstructed. Figure 2.14 illustrates
the concept for the angiographic case.

F, F,

epipolar
plane

/N = "\
Figure 2.14: The epipolar plane for the angiographic case define the epipolar lines
l1 and l2.

Note that projections m; and mg of the three-dimensional point M are on the
epipolar lines. Provided that we know the acquisition geometry, and although the
three-dimensional point M is unknown, by determining the projection of point M on
one view we can obtain the corresponding epipolar line on the other view.

2.2.6 Computation of the Epipolar Line

Let R1, t1 be the extrinsic parameters of the first camera, and R, t2 the extrinsic
parameters of the second one. The transformation from the camera coordinates of
the first camera to the camera coordinates of the second one is then described by the
rigid transform (R,t), where R = RoR;” and t = to — RoRy 7 ty.

The Essential Matriz E is defined from R, t as follows [32]:
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E=TR
where
0 —t3 to
T=| t3 0 -t with t = [t1,t,t3]7
~ty t; 0

This matrix has a number of important properties, based on the fact that it is the
algebraic representation of epipolar geometry (see [32] for details). Then, using the
calibration matrices A1, Az, that relate an image point in pixels to the same point
in camera coordinates, the fundamental matriz is defined as follows:

F=A,"TEA,!

Given two projections mj, mo from the three-dimensional point M, the epipolar
constraint can be written using the fundamental matrix F as follows:

szle =0

Using the fundamental matrix F, the equation of the epipolar line is very easy to
obtain. Given the point mj; on the first image in pixel coordinates, the equation of
the epipolar line on the second image asu + bav 4+ ¢ = 0 is obtained as follows:

[ (15)] b2 Co ]T = le

On the other hand, given the point ms on the second image, the equation of the
epipolar line on the first image a;u + byv 4+ ¢; = 0 is derived using the following:

[ ay b1 C1 ] = mgTF

As we stated before, in the Computer Vision frame, the epipolar line is therefore
used to authomatically determine the corresponding points. Given the projection of
a point on one view, the corresponding point is searched only along the epipolar line
defined on the other view. Figure 2.15 shows this concept for a stereo pair. The
user has manually marked some points, which determine the corresponding epipolar
lines on the other view. It is clear that given the nature of these images, a simple
correlation procedure shall perform quite well.

However, in the angiographic frame the authomatic correspondence determination
presents two main difficulties. First, we do not have in general two similar views but
two different views as angulated as possible. While this fact improves the accuracy
of the three-dimensional reconstruction, the two views will be very different one from
another. The second difficulty is the big degree of ambiguity present on this kind
of images, since all the vessels are similar. Figure 2.16 shows an example of this
situation. The epipolar line crosses several vessels, and it is difficult to determine
which is the correct one without additional knowledge.

That is the reason why most researchers propose to obtain the tree-dimensional
reconstruction of the vessel using corresponding points, which are manually marked
by the user.
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Figure 2.15: The points marked by the user on image (a) determine epipolar lines
on image (b). These lines are useful to constraint the search of corresponding points.

(a)

Figure 2.16: Epipolar line on X-ray angiography is not enough to determine corre-
sponding points due to the ambiguities.

However, as stated in Chapter 1, even when the user is helped by the epipolar line
[22] to match points in different views, this is a quite tedious task if high accuracy
is needed. Moreover, the curve is directly interpolated among marked points, and
therefore the user must mark a lot of corresponding points to accuratelly follow the
shape of the vessel, which in many cases can be quite wavy. Hence, we propose the
use of biplane snakes to perform this task, which are derived from the physics-based
model of snakes [42].
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2.3 Image Enhancement Techniques

As we stated in Chapter 1, one of the most difficult problems that we find when
approaching the 3D reconstruction of the vessels is the automatic vessel segmentation.
The main difficulty relies on the fact that X-ray cardiac angiographies are very noisy,
and small vessels with low contrast are hard to detect.

In this section, we describe two techniques that are applicable in order to improve
the quality of the X-ray images of the vessels. First we give some insight on anisotropic
diffusion techniques. Special attention is paid to a crease enhancement diffusion
process, since the vessels can be described as valleys on the image. Second, we describe
a specific technique developped to enhance the vessels on cardiac images.

2.3.1 Anisotropic Diffusion

Diffusion processes derive from Fick’s law [33] and the continuity equation. Fick’s
law expresses that a gradient concentration leads to a flow which compensates for
it. If we include Ficks’s law in the continuity equation, which expresses that mass is
only transported but can be neither created nor destroyed, we obtain the diffusion
equation:

Ou .
i div(D - u) (2.15)

where D is a diffusion tensor and u corresponds to the mass concentration (for images,
to the gray level at each pixel). The diffusion tensor defines the diffusion process; for
example, if we choose D as the identity matrix we will obtain a filtering equivalent
to the convolution of the function u by a Gaussian kernel [46, 97]. Another type of
filtering, proposed by Perona and Malik (see [72]), can be seen as a diffusion filtering:

where K controls the diffusion strength. This filtering avoids the blurring at the edges.

In all these processes, the diffusion direction is always collinear to the image gra-
dient yu and its perpendicular syut. Weickert proposed in [95] the tuning of the
diffusion directions according to the dominant orientation of each image pixel, in order
to enhance linear structures. This direction can be obtained through structure tensor
analysis [41]. Then, Weickert constructed the diffusion tensor which eigendirections
coincide with the eigenvectors of the structure tensor but have different eigenvalues;
namely:

)\1 = «

—-c
X = a+ (1 — a)e(m—w)gm ,

where p1 and po are the eigenvalues of the structure tensor and m, C, and « are
parameters controlling the diffusion strenght in the noncoherence direction. However,
Sole et al. state in [85] that with this filtering many junctions disappear and original
structures are deformed. Therefore, they propose another diffusion tensor. First, they
compute the normalized Hessian by first regularizing the initial image u to obtain
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robust derivatives (derivation step) and then regularizing the tensor field (integration
step) as follows:

1 821120 8%u,
H,,=G,* | ———— 3823” ggay with u, = G, xu, (2.16)
V1tV ue? am‘éﬁ; ayuza

where G, is a Gaussian kernel of size p (integration scale) and o is the differentiation
scale that controls the size of the neighbourhood in which an orientation is domi-
nant. This tensor provides a multilocal version of the eigendirections and normalized
eigenvalues of the Hessian. Let v; be the first eigendirection corresponding to the
highest eigenvalue in absolute value (K1 = |k1|) and v2 be the first eigendirection
corresponding to the lowest one. The creaseness diffusion tensor is then constructed
to have the same eigenvectors v; and vs and the associated eigenvalues:

A = € €€ (0,1)
Ay = apy + B,Uv aaﬂ € [07 1]7

where a and [ are parameters controlling the diffusion strenght in the presence of
ridges and valleys, respectively. The value € ensures the semidefinite propoperty of
the diffusion tensor, and should be small. u, and u, reach their highest values in the
presence of ridges and valleys, respectively, and have the following expression:

leleg M E/lsz M
,ur:{RIHW if k1 <0 vZ{F“H” ifky >0
o]

if kg >0 0 if k1 <0

Since this diffusion process enhances the creases on the image, and since the vessels
can be regarded as creases, it seems appropiate for enhancing the image prior the vessel
segmentation. However, the ridge/valley measure does not take into account the image
contrast, and therefore, when applying it to regularize the vessels, some undesired
background structures are also enhanced. Also, the vessels appear at different scales,
and therefore a multiscale approach is necessary.

2.3.2 Frangi’s Filter

Although the filter proposed by Frangi et al. in [34] is aplicable both for 3D and
2D images, in this thesis we will focus on the two-dimensional case.

The main idea is that a vessel can be regarded as a tubular structure. Since vessels
appear in different sizes, a measurement scale which varies within a certain range is
introduced. To analyze the local behaviour of an image, denoted by u, we can use
the information provided by the Hessian computed at a given scale o as follows:

8%u, 8%u,

2 9z2  Owd

H,(u) =0 | 27 5% (2.17)
0z0y 0y2

where u, is the initial image u convolved by a Gaussian kernel of size o. Note that

the Hessian is normalized by multiplying it by o2 in order to obtain a fair comparison
of the response of differential operators at multiple scales [48§].
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By analysing the eigenvectors and eigenvalues of the Hessian, Frangi et al. pro-
pose two descriptors of the local structure useful for vessel detection. Let hj be the
eigenvalue with the k-th smallest magnitude (|h1| < |ha|) and v the corresponding
eigenvector.

First, a blobness measure Rz is defined in 2D as follows:

(2.18)

Note that Rg is near to 0 for tubular structures and near to 1 when no privileged
direction is present. This ratio is grey-level invariant (i.e. it remains constant under
intensity re-scalings) and therefore only capture the local geometric information of
the image. However, vessel structures are darker than the background and occupy a
(relatively) small volume of the dataset. To quantify this, Frangi et al. propose the
following contrast descriptor:

S =|Hollr = \/hi + 13 (2.19)

which will be low in the background where no structure is present and in regions with
hight contrast will become larger, since at least one of the eigenvalues will be large.

Using these two descriptors, a vesselness function is defined for each scale o as
follows:

0 if hs <0 (brighter structure),

Vo(o) = 2\ _Rs? 2.20

(@) (1 — 6_2%) e 267 otherwise ( )

where § and ¢ are parameters to control the sensitivity of the filter to the measures

Rs and S. Frangi et al. propose a value of 0.5 for 5 and half the maximum Hessian
norm for ¢. These are the values that we use in this work.

The vesselness measure is analyzed at different scales o. Since the response will

be maximum at a scale that approximately matches the size of the vessel to detect,

the integrated filter response is computed as follows:

Vo = max  Vo(o) (2.21)
Omin<0<Omaz
This filter gives good noise and background supression results, but we have noticed
problems to segment the vessels from two-dimensional X-ray cardiac angiographies.
One of the reasons is that this method does not consider the coherence, that is the
fact that if a given pixel is considered to be part of a vessel, the neighbour pixels in
the vessel direction are also very likely to correspond to a vessel.

2.4 Deformable Models

Medical images are often corrupted by noise and sampling artifacts. Even if we
use image enhancement techniques, classical segmentation techniques either fail com-
pletely or need a post-processing step when dealing with this type of images. To
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address these dificulties, deformable models have been extensively studied and widely
used, with promising results. Hence, in this thesis we use a deformable model tech-
nique to segment the vessels on the images. Moreover, we use an special type of
deformable models, which we called biplane snakes, that inherently solves the corre-
sponding points determination problem.

In this section, we give some background knowledge about one-dimensional de-
formable models or snakes, which are used to develop biplane snakes in Chapter 4.

2.4.1 Deformable Models Overview

The term deformable models first appeared in the work of Terzopolous and his
collaborators in [89, 42]. Since the publication of deformable models in [42], they
have grown to be one of the most active and successful research areas in image seg-
mentation and tracking. Other names, as snakes, active contours or surfaces, ballons
and deformable contours or surfaces, have been used in the literature to refer the
deformable models.

The main idea of deformable models is to adapt a shape on an image domain. Dif-
ferent approaches are present in the literature, by changing the representation of the
shape to be adapted or the method to adapt it to the image. Basically, there are two
types of deformable models: parametric deformable models and geometric deformable
models. Parametric deformable models are curves or surfaces explicit in their para-
metric forms during deformation. This representation allows direct interaction with
the model and can lead to a compact representation for fast real-time implementa-
tion. However, it is difficult to adapt model topology, such as splitting or merging
parts during deformation. Geometrical deformable models, on the other hand, can
handle topological changes in a natural way. These models are based on the theory
of curve evolution [80, 65, 43, 44], and the level set method [68, 82], and the curves or
surfaces are represented implicitly as a level set of a higher