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Abstract

T
he high-level structure of a video can be obtained once we have knowledge
about the domain plus a representation of the contents that provides seman-
tic information. In this context, intermediate-level semantic representations

are defined in terms of low-level features and the information they convey about the
contents of the video. Intermediate-level representations allow us to obtain seman-
tically meaningful clusterings of shots, which are then used together with high-level
domain-specific knowledge in order to obtain the structure of the video. Intermediate-
level representations are usually domain-dependent as well. The descriptors involved
in the representation are specifically tailored for the application, taking into account
the requirements of the domain and the knowledge we have about it. This thesis pro-
poses an intermediate-level representation of video contents that allows us to obtain
semantically meaningful clusterings of shots. This representation does not depend on
the domain, but still provides enough information to obtain the high-level structure
of the video by combining the contributions of different low-level image features to
the intermediate-level semantics.

Intermediate-level semantics are implicitly supplied by low-level features, given
that a specific semantic concept generates some particular combination of feature
values. The problem is to bridge the gap between observed low-level features and their
corresponding hidden intermediate-level semantic concepts. Computer vision and
image processing techniques are used to establish relationships between them. Other
disciplines such as filmmaking and semiotics also provide important clues to discover
how low-level features are used to create semantic concepts. A proper descriptor
of low-level features can provide a representation of their corresponding semantic
contents. Particularly, color summarized as a histogram is used to represent the
appearance of objects. When this object is the background, color provides information
about location. In the same way, the semantics conveyed by a description of motion
have been analyzed in this thesis. A summary of motion features as a temporal
cooccurrence matrix provides information about camera operation and the type of
shot in terms of relative distance of the camera to the subject matter.

The main contribution of this thesis is a representation of visual contents in video
based on summarizing the dynamic behavior of low-level features as temporal pro-
cesses described by Markov chains (MC). The states of the MC are given by the values
of an observed low-level feature. Unlike keyframe-based representations of shots, in-
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iv ABSTRACT

formation from all the frames is considered in the MC modeling. Natural similarity
measures such as likelihood ratios and Kullback-Leibler divergence are used to com-
pare MC’s, and thus the contents of the shots they are representing. In this framework,
multiple image features can be combined in the same representation by coupling their
corresponding MC’s. Different ways of coupling MC’s are presented, particularly the
one called Coupled Markov Chains (CMC). A method to find the optimal coupling
structure in terms of minimal cost and minimal loss of information is detailed in this
dissertation. The loss of information is directly related to the loss of accuracy of the
coupled structure to represent video contents. During the same process of comput-
ing shot representations, the boundaries between shots are detected using the same
modeling of contents and similarity measures.

When color and motion features are combined, the CMC representation provides
an intermediate-level semantic descriptor that implicitly contains information about
objects (their identities, sizes and motion patterns), camera operation, location, type
of shot, temporal relationships between elements of the scene and global activity un-
derstood as the amount of action. More complex semantic concepts emerge from the
combination of these intermediate-level descriptors, such as a “talking head” that
combines a close-up with the skin color of a face. Adding the location component
in the News domain, talking heads can be further classified into “anchors” (located
in the studio) and “correspondents” (located outdoors). These and many other se-
mantically meaningful categories are discovered when shots represented using the
CMC model are clustered in an unsupervised way. Well-defined concepts are given
by compact clusters, which can be determined by a measure of their density. High
level domain knowledge can then be defined by simple rules on these salient concepts,
which will establish boundaries in the semantic structure of the video. The CMC
modeling of video shots unifies the first steps of the video analysis process provid-
ing an intermediate-level semantically meaningful representation of contents without
prior shot boundary detection.



Resumen

L
a estructura de alto nivel del v́ıdeo se puede obtener a partir de conocimiento
sobre el dominio más una representación de los contenidos que proporcione in-
formación semántica. En este contexto, las representaciones de la semántica de

nivel medio vienen dadas en términos de caracteŕısticas de bajo nivel y de la infor-
mación que expresan acerca de los contenidos del v́ıdeo. Las representaciones de nivel
medio permiten obtener de forma automática agrupamientos semánticamente signi-
ficativos de los shots, que son posteriormente utilizados conjuntamente con conocimien-
tos de alto nivel espećıficos del dominio para obtener la estructura del v́ıdeo. En gen-
eral, las representaciones de nivel medio también dependen del dominio. Los descrip-
tores que forman parte de la representación están espećıficamente diseñados para una
aplicación concreta, teniendo en cuenta los requisitos del dominio y el conocimiento
que tenemos del mismo. En esta tesis se propone una representación de nivel medio
de los contenidos videográficos que permite obtener agrupamientos de shots que son
semánticamente significativos. Esta representación no depende del dominio, y sin
embargo aporta la información necesaria para obtener la estructura de alto nivel del
v́ıdeo, gracias a la combinación de las contribuciones de diferentes caracteŕısticas de
bajo nivel de las imágenes a la semántica de nivel medio.

La semántica de nivel medio se encuentra impĺıcita en las caracteŕısticas de bajo
nivel, dado que un concepto semántico concreto genera una combinación espećıfica de
valores de las mismas. El problema consiste en “tender un puente sobre el vaćıo” en-
tre las caracteŕısticas de bajo nivel que se observan y sus correspondientes conceptos
semánticos de nivel medio ocultos. Para establecer relaciones entre estos dos niveles, se
utilizan técnicas de visión por computador y procesamiento de imágenes. Otras disci-
plinas como la cinematograf́ıa y la semiótica también proporcionan pistas importantes
para determinar como se usan las caracteŕısticas de bajo nivel para crear conceptos
semánticos. Una descripción adecuada de las caracteŕısticas de bajo nivel puede pro-
porcionar una representación de sus correspondientes contenidos semánticos. Más en
concreto, el color resumido en un histograma se utiliza para representar la apariencia
de los objetos. Cuando el objeto es el fondo de la escena, su color aporta información
sobre la localización. De la misma manera, en esta tesis se analiza la semántica que
transmite una descripción del movimiento. Las caracteŕısticas de movimiento resum-
idas en una matriz de coocurrencias temporales proporcionan información sobre las
operaciones de la cámara y el tipo de toma (primer plano, etc.) en función de la
distancia relativa entre la cámara y los objetos filmados.
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vi RESUMEN

La principal contribución de esta tesis es una representación de los contenidos
visuales del v́ıdeo basada en el resumen del comportamiento dinámico de las carac-
teŕısticas de bajo nivel como procesos temporals descritos por cadenas de Markov.
Los estados de la cadena de Markov vienen dados por los valores observados de una
caracteŕıstica de bajo nivel. A diferencia de las representaciones de los shots basadas
en keyframes, el modelo de cadena de Markov considera información de todos los
frames del shot en la misma representación. Las medidas de similitud naturales en un
marco probabiĺıstico, como la divergencia de Kullback-Leibler, pueden ser utilizadas
para comparar cadenas de Markov y, por tanto, el contenido de los shots que rep-
resentan. En la misma representación se pueden combinar múltiples caracteŕısticas
de las imágenes mediante el acoplamiento de sus correspondientes cadenas. Esta
tesis presenta diferentes formas de acoplar cadenas de Markov, y en particular la lla-
mada Cadenas Acopladas de Markov (Coupled Markov Chains, CMC). También se
detalla un método para encontrar la estructura de acoplamiento óptima en términos
de coste mı́nimo y mı́nima pérdida de información, ya que esta merma se relaciona
directamente con la pérdida de precisión de la estructura acoplada para representar
contenidos de v́ıdeo. Durante el proceso de cálculo de las representaciones de los shots
se detectan las fronteras entre éstos usando el mismo modelo y medidas de similitud.

Cuando las caracteŕısticas de color y movimiento se combinan, la representación
en cadenas acopladas de Markov proporciona un descriptor semántico de nivel medio
que contiene información impĺıcita sobre objetos (sus identidades, tamaños y patrones
de movimiento), movimiento de cámara, localización, tipo de toma, relaciones tempo-
rales entre los elementos que componen la escena y actividad global, entendida como
la cantidad de acción. Conceptos semánticos más complejos emergen de la unión
de estos descriptores de nivel medio, tales como “cabeza parlante”, que surge de la
combinación de un primer plano con el color de la piel de la cara. Añadiendo el com-
ponente de localización en el dominio de Noticiarios, las cabezas parlantes se pueden
subclasificar en “presentadores” (localizados en estudio) y “corresponsales” (localiza-
dos en exteriores). Estas y otras categoŕıas semánticamente significativas aparecen
cuando los shots representados usando el modelo CMC se agrupan de forma no su-
pervisada. Los conceptos mejor definidos se corresponden con grupos compactos,
que pueden ser detectados usando una medida de densidad. Conocimiento de alto
nivel sobre el dominio se puede definir mediante simples reglas basadas en estos con-
ceptos, que establecen fronteras en la estructura semàntica del v́ıdeo. El modelado
de contenidos de v́ıdeo por cadenas acopladas de Markov unifica los primeros pa-
sos del proceso de análisis semántico de v́ıdeo y proporciona una representación de
nivel medio semánticamente significativa sin necesidad de detectar previamente las
fronteras entre shots.



Resum

L
’estructura d’alt nivell del v́ıdeo es pot obtenir a partir de coneixement sobre
el domini més una representació dels continguts que proporcioni informació
semàntica. En aquest context, les representacions de la semàntica de nivell

mig venen donades en termes de caracteŕıstiques de baix nivell i de la informació que
expressen sobre els continguts del v́ıdeo. Les representacions de nivell mig permeten
obtenir de manera automàtica agrupaments semànticament significatius dels shots,
que s’utilitzen més tard conjuntament amb coneixements d’alt nivell expećıfics del
domini per obtenir l’estructura del v́ıdeo. En general, les representacions de nivell
mig també depenen del domini. Els descriptors que formen part de la representació
són dissenyats espećıficament per a una aplicació en concret, considerant els requeri-
ments del domini i el coneixement que tenim d’aquest. En aquesta tesi es proposa una
representació de nivell mig dels continguts v́ıdeogràfics que permet obtenir agrupa-
ments semànticament significatius dels shots que el composen. Aquesta representació,
tot i que no depèn del domini, aporta la informació necessària per obtenir l’estructura
d’alt nivell del v́ıdeo, gràcies a la combinació de les contribucions de diferents carac-
teŕıstiques de baix nivell de les imatges a la semàntica de nivell mig.

La semàntica de nivell mig es troba impĺıcita en les caracteŕıstiques de baix niv-
ell, ja que un concepte semàntic concret genera una combinació espećıfica de valors
d’aquestes. El problema consisteix a “estendre un pont sobre el buit” entre les carac-
teŕıstiques de baix nivell que s’observen i els seus corresponents conceptes semàntics
de nivell mig ocults. Per establir relacions entre aquests dos nivells, es fan servir
tècniques de visió per computador i processament d’imatges. Altres disciplines com la
cinematografia i la semiòtica també donen indicacions per determinar com s’utilitzen
les caracteŕıstiques de baix nivell en la creaci de conceptes semàntics. Una descripció
adequada de les caracteŕıstiques de baix nivell pot proporcionar una representació
dels seus corresponents continguts semàntics. Concretament, el color resumit com
un histograma s’empra per representar l’aparença dels objectes. Quan l’objecte és el
fons de l’escena, el seu color aporta informació sobre la localització. Aix́ı mateix, la
semàntica que es deriva d’una descripció del moviment és analitzada en aquesta tesi.
Les caracteŕıstiques d’aquest resumides en una matriu de coocurrències temporals
proporcionen informació sobre el moviment de la càmera i el tipus de presa (primer
pla, etc.) en funció de la distància relativa entre la càmera i els objectes filmats.

La principal contribució d’aquesta tesi és una representació dels continguts visu-
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als del v́ıdeo basada en el resum del comportament dinàmic de les caracteŕıstiques
de baix nivell com a processos temporals descrits per cadenes de Markov. Els es-
tats de la cadena de Markov estan determinats pels valors que s’observen en una
caracteŕıstica de baix nivell. A diferència de les representacions dels shots basades
en keyframes, el model de cadena de Markov considera informació de tots els frames
del shot dins de la mateixa representació. Les mesures de similitud naturals dins
d’un marc probabiĺıstic, com la divergència de Kullback-Leibler, poden ser utilitzades
per comparar cadenes de Markov i, per tant, el contingut dels shots que represen-
ten. En la mateixa representació, es poden combinar múltiples caracteŕıstiques de les
imatges mitjançant l’acoblament de les seves corresponents cadenes. Aquesta tesi pre-
senta diferents formes d’acoblar cadenes de Markov, i en particular les anomenades
Cadenes Acoblades de Markov (Coupled Markov Chains, CMC). També es detalla
un mètode per trobar l’estructura d’acoblament òptima en termes de cost mı́nim i
mı́nima pèrdua d’informació, puix aquesta minva incideix en la pèrdua de precisió de
l’estructura acoblada per representar continguts de v́ıdeo. Durant el procés de càlcul
de les representacions dels shots es detecten també les fronteres entre aquests fent
servir el mateix model i mesures de similitud.

Quan es combinen les caracteŕıstiques de color i moviment, la representació en
cadenes acoblades de Markov proporciona un descriptor semàntic de nivell mig que
conté informació impĺıcita sobre objectes (les seves identitats, mides i patrons de
moviment), moviment de càmera, localització, tipus de presa, relacions temporals
entre els elements que composen l’escena i activitat global, entesa com a quantitat
d’acció. Conceptes semàntics més complexes emergeixen de la unió d’aquests descrip-
tors de nivell mig, com ara “cap parlant”, que sorgeix de la combinació d’un primer
pla amb el color de la pell de la cara. Afegint el component de localització al domini
de Noticiaris, els caps parlants es poden subclassificar en “presentadors” (localitzats
dins l’estudi) i “corresponsals” (localitzats en exteriors). Aquestes i altres categories
semànticament significatives apareixen quan els shots representats fent servir el model
CMC s’agrupen de forma no supervisada. Els conceptes més ben definits es correspo-
nen amb grups compactes, que poden ser detectats mitjançant una mesura de densi-
tat. Mitjançant simples regles sobre aquests conceptes –que estableixen fronteres en
l’estructura semàntica del v́ıdeo– es pot definir coneixement d’alt nivell sobre el do-
mini. El modelatge de continguts de v́ıdeo per cadenes acoblades de Markov unifica els
primers passos del procés d’anàlisi semàntic de v́ıdeo i proporciona una representació
de nivell mig semànticament significativa sense que calgui detectar prèviament les
fronteres entre shots.
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Chapter 1

The semantic structure of video

The high-level structure of a video can be obtained once we have knowledge about
the domain plus a representation of the contents that provides semantic information.
In this context, intermediate-level semantic representations are defined in terms of
low-level features and the information they convey about the contents of the video.
Intermediate-level representations allow us to obtain semantically meaningful cluster-
ings of shots, which are then used together with high-level domain-specific knowledge
in order to obtain the structure of the video. Intermediate-level representations are
usually domain-dependent as well. The descriptors involved in the representation are
specifically tailored for the application, taking into account the requirements of the
domain and the knowledge we have about it. This thesis proposes an intermediate-
level representation of video contents that allows us to obtain semantically meaningful
clusterings of shots. This representation does not depend on the domain, but still
provides enough information to obtain the high-level structure of the video by com-
bining the contributions of different low-level image features to the intermediate-level
semantics.

1.1 Introduction

V
ideo contents are naturally structured during the production process. This
structure is hierarchical and has at least two levels. In the lowest level, we find
camera shots, which are the basic units that are concatenated during edition.

In the next level, shot aggregates form “story units”. Depending on the domain,
story units get different names: scenes in the case of feature films, news items for
newscasts, plays for sports, and so on. In all cases, the shots are logically grouped
in terms of contents semantics. Some video domains show a better defined structure
than others. News videos are a good example of highly structured audio-visual data,
while movie trailers have very little structure. Home videos have been considered
unstructured by some authors [39]. However, we can still find this basic two-level
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structure, as shots are grouped with the purpose of recording an event or a place [46].
Some domains may show structures with higher levels of aggregation, like sections in
newscasts or game periods in sports. The automatic identification of the structure of
video contents is a basic task in order to organize them, so that they can be easily
located, retrieved, browsed, and summarized.

The MPEG-7 standard provides tools to describe multimedia contents. The main
basic goal of MPEG-7 is to make multimedia contents searchable. MPEG-7 is in-
tended to be generic, not application-dependant. The tools provided allow us to
describe contents using different levels of abstraction, from low-level video and audio
descriptors to high-level semantics and structure. Most low-level video and audio
feature descriptors like color, texture, motion activity, timbre or pitch can be auto-
matically obtained using well-known image and audio analysis techniques. However,
semantic concepts and the structure of contents usually have to be defined manually.

Many recent works on multimedia content analysis have been devoted to the au-
tomatic identification of the high-level semantic structure of video. This structure
depends on the domain and, in many cases, on the application. For example, focus-
ing on the structure of news videos, we can observe that:

• Every piece of news begins with an anchor shot. Typically, two or three different
anchors may appear in the same news program.

• The most important news items are summarized at the beginning of the news-
cast, reusing part of the video footage that will illustrate them later in the
program.

• Different TV stations use the same video footage provided by news agencies in
order to illustrate the news.

These facts are found in the typical structure of news videos nowadays, which is
depicted in fig. 1.1. Many applications can be faced from the semantic standpoint
using this structure. For example, when a user queries a news archive, he is usually
looking for a particular piece of news, and not for the complete news program. Once
he finds it, he may want to watch the history of that topic, that is, how it evolved along
time. He may also want to compare how this topic is treated by different stations.
The automatic extraction of the structure of news videos allows us to organize a news
archive in order to easily provide support for the previously mentioned functionalities,
and also the automatic creation of an optimal Table-of-Contents (ToC) of each news
video for quick preview and browsing of its contents.

1.2 Extracting semantics from video

We have seen that knowledge about the domain has to be defined and properly rep-
resented in order to automatically obtain the structure of a video. In our example,
we have implicitly defined a set of rules that are common to all news videos. For
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Figure 1.1: Typical semantic structure of a news video. News items begin with an
anchor shot. Headlines from the table of contents (ToC) are linked to their associated
news items.

instance, “if an anchor shot is found, then a news item begins”. Domain knowledge
can be represented in different ways like rules, finite state machines (FSM) or hid-
den Markov models (HMM). In any case, this knowledge is expressed in terms of
intermediate-level semantic concepts like “anchor shot”. Some of these concepts can
be obtained using pattern recognition and computer vision techniques on low-level
features that can be directly computed from the images. Different low-level features
convey different semantics about the contents. Chapter 2 of this thesis will review the
semantics that can be extracted from basic color, texture and orientation descriptors,
and will analyze the kind of semantics that is carried by motion information.

There are intermediate-level semantic concepts, whose definition is very subtle.
This is the case of emotions and other kind of unspoken messages conveyed in video.
Research on communication theory and semiotics can be of great help in order to
obtain intermediate-level representations that take into account this kind of concepts.
Analyzing the relationships established by semiotics between low-level image features
and unspoken messages conveyed by TV commercials, it can be shown that there
exists a relationship between the 4 classes of emotions (relax, happiness, pleasantness
and action) that can be conveyed by a commercial, and the visual features used
in its production. Different mentions to these relationships will be done along this
dissertation. Other works on this topic have been carried out by the group of Del
Bimbo at University of Florence [13, 14, 11].

Mosaic images can also be seen as an intermediate-level representation of video
shots, where the descriptors are not explicitly given. Mosaics contain information
about location [3], objects, their trajectories and sizes [4], object and global camera-
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induced motion, and even spatial and temporal descriptions of the actions in the scene
(implicit in object trajectories).

Video shots, which are considered the basic semantically meaningful unit of video
contents, are thus clustered in terms of their intermediate-level semantics, so that
domain knowledge can be applied in order to obtain the high-level structure. This
entire framework can be summarized in one simple equation:

Video structure = Domain knowledge + Intermediate-level semantics

The main problem is that not only domain knowledge is domain-specific, but also
intermediate-level semantics. For instance, in our example of a news program, we
have defined the concept of “anchor shot” as the fundamental view that indicates the
boundaries of higher-level structures. The usual approach would be to develop an
algorithm for detecting “anchor shots” in a video sequence. An anchor is a concept
that only appears in newscasts, and maybe in other similar domains. Therefore,
intermediate-level descriptors are also specifically tailored to the domain. This thesis
provides a generic tool to characterize intermediate-level semantic concepts, so that
specific algorithms for the detection of, for instance, “anchor shots” do not have to
be developed.

1.3 Prior work on video structure analysis

A considerable research effort has been recently devoted to the analysis of video
sequences in order to obtain their high-level semantic structure [16, 85, 2, 25, 33, 66,
77, 81, 41, 45, 46, 47]. The usual approach follows the scheme shown in fig. 1.2.
First, the video sequence is partitioned into shots, which are the basic semantically
meaningful units. Each shot is represented by one or several representative images or
keyframes, depending on the complexity of its contents. Feature vectors are extracted
from the keyframes, so that a similarity measure can be defined in order to allow
the clustering of shots based on their keyframe representation. This clustering is
intended to provide semantically meaningful groupings of the shots, which sometimes
can be attached to semantic labels [55, 75, 86, 25, 80]. Semantics can be expressed
implicitly by the feature vector, or explicitly by the definition of a set of appropriate
intermediate-level semantic descriptors. A semantic clustering, together with properly
defined domain-specific knowledge, leads to the high-level semantic structure of the
video. A review of prior work on the different parts of this process follows.

1.3.1 Shot boundary detection

Most of the algorithms found in the literature follow the same paradigm [42]. They
obtain a certain feature of each frame, and then a distance between the features of
adjacent frames is computed. When this distance exceeds a certain pre-defined thresh-
old, a shot boundary is detected. This approach has been used either on compressed
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Feature vectors

Video structure
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Figure 1.2: Block diagram of the usual approach to video structure analysis.

and uncompressed video. Cabedo et al. reported that the feature that provides better
results is the global intensity or color histogram, and using the cosine distance [72].

These algorithms have two main problems. First, the selection of a pre-defined
threshold is extremely difficult. A fixed threshold depends on the domain of the
contents (sports, news, commercials, ...). O’Toole et al. proposed in [57] a semi-
automatic selection of the threshold depending on the domain of video, which must be
known a priori. However, even within the same domain, threshold selection requires a
trade-off between recall and precision that depends on the target application. Usually,
a small number of false detections are harmless, while a missed boundary can be
dramatic. However, a threshold tailored to avoid missing true boundaries can report
an overwhelming number of false detections.

Second, the frame-to-frame approach works well with abrupt transitions, also
known as cuts. However, it is not appropriate for gradual transitions [24]. Particu-
larly, the variation of a global intensity or color histogram between adjacent frames
in a gradual transition is very subtle and difficult to detect. Zabih et al. developed
in [82] an approach to gradual transitions detection based on the analysis of intensity
edges. This method also has limitations due to the edge detection process. Boreczky
and Rowe argue in [7] that a combination of features might produce better results
than each of them individually.
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1.3.2 The CECA algorithm for shot boundary detection

Edges and color

Shot segmentation algorithms in uncompressed images are mainly based on a single
image feature. Combining different features during the analysis we can take advantage
of their strengths, and mutually conceal their weaknesses. An algorithm that combines
information from color and edges is presented in this section.

The colors around the edges of an image are a very important source of data for
visual recognition. Analyzing image similarities in this way lets us capture the content
of the scene, while certain variability during time is accepted. Regions around edges
have interesting characteristics, as they can be seen as two different sub-regions which
belong to different scene elements or to different parts of the same element. Moreover,
these sub-regions have uniform colors, so that the analysis of their color content can
be interpreted with respect to the elements of the scene. Imagine an object moving
over an irregularly colored and textured background. In this situation, the color of
the sub-region that belongs to the background may change from one frame to the
next, but the one belonging to the object will remain unchanged. Therefore, the
criterion used in the Combined Edges and Color Analysis (CECA) algorithm in order
to determine the continuity of a region around an edge is:

Criterion 1 Given a specific region defined by the surroundings of an edge, if the
content of at least one of its sub-regions has not significantly changed from frame i to
frame i + 1, then the probability of having continuity in the scene increases.

This criterion is checked for every region by building a color histogram of the
pixels around the edge. Using a queue based algorithm, the pixels of the sub-regions
at a distance less than or equal to d from their boundary are determined, so that the
color histogram is built using the same number of pixels from both sub-regions (fig.
1.3). Suppose that we have the regions around edge j in frames i and i +1, which we
call Ri

j and Ri+1
j , where the color in only one of its sub-regions has changed. Their

associated color histograms hi
j and hi+1

j are bimodal and their intersection is the color
corresponding to the unchanged sub-region. Given that both sub-regions contribute
to the histograms with the same number of pixels, this intersection comprises 50% of
the volume of a full histogram (which is normalized to 1). Thus, criterion 1 becomes
true for regions Ri

j and Ri+1
j when:

∑

n

min(hi
j(n), hi+1

j (n)) ≥ 0.5 (1.1)

Finding matching edges between two images

In order to be able to apply criterion 1, we must find a correspondence between the
edges in frames i and i + 1. Edges may have moved and changed of shape due to
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(a) (b) (c) (d)

Figure 1.3: (a) An image, (b) its edges, (c) the pixels used to build a color histogram
around a particular edge, and (d) a 2-D projection of the bimodal color histogram
obtained.

(a) Adjacent frames. (c) Global motion compensation.

(b) Edges from (a). (d) Local motion approach.

Figure 1.4: Global motion compensation is not enough when there is a camera
zoom. There is a zoom out effect between the images in (a). When global motion
is compensated, their edges (b) do not intersect correctly (c). Local motion com-
pensation (d) works well, but must be followed by a second test. In our case, color
continuity is checked. The arrows show the motion estimated for each edge segment.

camera operation. Global motion compensation could be applied like in [82], so that
intersecting edges from the two images would be assigned to each other. However,
correcting global translations may not suffice when there are multiple motions in
the scene, or when there is a camera zoom, like in fig. 1.4(c). For this reason, our
approach consists of breaking all edges into smaller segments and performing local
edge motion estimation. In the example shown in fig. 1.4(d), all edges are moving
towards the center of the image due to the zoom-out effect.

Every edge segment is located in the following frame using a correlation based
search within a neighborhood of its edge image. Given a particular edge from frame
i, if there is not a corresponding edge in frame i + 1, then we consider a disappearing
edge. That is, this region of the scene has changed, so that the probability of being
a shot boundary increases. This consideration leads us to criterion 2, which must be
applied prior to criterion 1.
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Criterion 2 Given an edge, if a corresponding one can not be found within a neigh-
borhood in the next frame, then the probability of continuity of the scene decreases.

Given a region Ri
j , if it does not fit criterion 2, then it is added to a set called P i.

Otherwise, criterion 1 is checked and the region is added to a second set called Qi if
it fails (see fig. 1.5).

Detecting and classifying scene breaks

These are the steps to be followed in order to detect changed regions in a frame with
respect to the next one:

– Initial sets of changed regions: P i = ∅, Qi = ∅.
– Edge detection: threshold on the color gradient image (average of the gradient

of the RGB channels).
– Edge rejection: remove small edges.
– Edge partition: divide large edges into smaller pieces.
– Region definition: define regions Ri

j , ∀j.
– FOR every j DO

IF a feasible Ri+1
j is located THEN

IF
∑

n min(hi
j(n), hi+1

j (n)) < 0.5 THEN

Qi = Qi ∪ {Ri
j}

ENDIF
ELSE

P i = P i ∪ {Ri
j}

ENDIF
– ENDFOR

In order to obtain a global measure of the scene variation in consecutive frames a
ratio of the changed regions with respect to the total regions is computed as:

V1(i) =

L−1
∑

j=0

|P i
j | +

M−1
∑

j=0

|Qi
j|

N−1
∑

j=0

|Ri
j |

(1.2)

where |x| denotes the number of pixels in region x. The contribution of each region
is weighed up by the number of pixels it contains, so that variations in large regions
are more significant than in small ones.

Sharp and gradual transitions are detected and classified using equation (1.2).
Cuts are characterized by high values of V1(i) with the contribution of both the Qi

j’s

and the P i
j ’s, while they are mainly due to the P i

j ’s in dissolves because new edges
appear far from the locations of old edges, as observed in [82], and color variation



1.3. Prior work on video structure analysis 9

(a) Frames before and after a cut.

(b) Detection of a P -type region. (c) Detection of a Q-type region.

Figure 1.5: Region Ri
j may become a P i

j or a Qi
j in the presence of a cut between

frame i and frame i + 1 (a). If no Ri+1

j that correlates well with Ri
j is found in a

neighbourhood (b), it becomes a P -type region. If a feasible Ri+1

j is found (b), its
color content is checked and it becomes a Q-type region if it does not match.

between consecutive frames is low. Figure 1.5 shows these contributions in a common
cut. In a fade-out, i.e. a gradual transition of the scene into black, every Ri

j turns

out to be a P i
j because all the edges disappear, but a fade-in, which is the opposite

transition, can not be detected using V1(i). Since the edges gradually appear, we can
first define the regions Ri+1

j instead and compute an equivalent measure V2(i) with
respect to the regions in frame i.

We can take advantage of the need to compute V2(i) in order to make the detection
more robust, using the sum of both measures V (i) = V1(i)+V2(i) instead of only one
of them. Table 1.1 summarizes the different contributions of P and Q-type regions in
the computation of V1 and V2.

Results and discussion

The CECA algorithm was tested on a video sequence of commercials from a Spanish
TV broadcast. The sequence was 11,800 frames long and contains different kinds of
shot transitions, which are summarized in the ideal detection column in table 1.2.
The sequence also contains plenty of synthetic images, camera operation and multiple
object motions, as commonly found in commercials. Detection results are given in
table 1.2 in terms of precision and recall.

We have compared the results obtained by the CECA with algorithms that only
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Contribution to V1 Contribution to V2

Transition effect P -type Q-type P -type Q-type

Cut + + + +
Dissolve – – – –
Fade-out + 0 0 0
Fade-in 0 0 + 0

Table 1.1: Contribution of P - and Q-type regions to the computation of V1 and V2.
+ and – stand for high and low contributions and 0 for no contribution at all.

Ideal CECA HI (th = 0.25) HI (th = 0.3) Edges

Cuts detected 246 246 210 202 234
Fade-in’s detected 12 10 4 4 8
Fade-out’s detected 9 7 3 3 5
Dissolves detected 18 9 0 0 1
False positives 0 45 67 48 203
Precision 1 0.86 0.76 0.81 0.55
Recall 1 0.96 0.77 0.74 0.88
Recall (only cuts) 1 1 0.85 0.82 0.95

Table 1.2: Comparative results of different scene break detection algorithms on a
11,800 frames long video sequence.

rely on one of these visual cues, either edges or color. As a color-based algorithm,
we have implemented the widely used frame-to-frame color histogram difference with
respect to their intersection. On the other hand, we have tested an algorithm based
on the work by Zabih et al. in [82]. Our particular implementation uses the same
edge detection strategy that was used in the CECA algorithm, and then compensates
global motion by finding the maximum correlation position of edge images. The
number of intersecting edge pixels is computed after applying a dilation to the motion
compensated image, so that small local variations are allowed.

The performance of all the algorithms compared in our tests is very poor when
applied to gradual transitions, especially for the simple color histogram detector.
Moreover, the number of these transitions is relatively low with respect to the number
of cuts in the test sequence. For these reasons, we have also considered a recall measure
that only takes into account sharp transitions, and not gradual ones.

First of all, results show a great cut detection accuracy of the CECA algorithm,
and a significantly better detection of gradual transitions than with single cue ap-
proaches. Fades are easier to detect than dissolves because image features completely
appear or disappear. However, frame-to-frame approaches to shot boundary detection
are not appropriate to deal with gradual transitions due to their extremely smooth
image variations. A larger number of frames should be considered like in the twin
threshold mechanism by Zhang et al. [84]. Even so, gradual transition detection
results obtained using CECA are significantly good.
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(a) Adjacent frames. (b) Edges of images from (a).

Figure 1.6: (a) Color is affected by dramatic luminance changes. (b) Edges may be
affected as well.

(a) Adjacent frames. (b) Edges of images from (a).

Figure 1.7: Motion blur makes edge detection difficult. The CECA algorithm is
affected by appearing and disappearing edges.

On the other hand, the number of false positives is kept within reasonable values,
i.e. we will not be overwhelmed by a huge number of redundant key-frames. We have
noticed in our tests that false positives given by the CECA algorithm are always due
to one of these facts:

• Dramatic luminance changes: Camera flashes, explosions, and so on, not only
cause sudden changes in image colors, but edge detection may also be affected,
as shown in fig. 1.6. Single feature approaches are also affected by them.

• Fast and sudden motion: Large objects may appear and disappear from the
scene. Motion blur can also make edge detection difficult, like in fig. 1.7.

These are the main sources of false positives using the color histogram detector as
well. However, this algorithm has low recall. When a lower threshold is used in order
to obtain a better recall rate, then precision gets worse, as shown in table 1.2. The
enhanced analysis performed by the CECA algorithm lets us detect shot boundaries
that go unnoticed using only color, like in fig. 1.8, without being less precise.

On the other hand, the purely edge based algorithm reports a quite good recall
rate, but precision is low. When false positive detections are thoroughly analyzed, we
notice that the algorithm is affected by camera operation, other than simple transla-
tions, and by multiple motions in different directions. Figures 1.4(c) and 1.9 show that
global motion compensation is not suitable in these situations. The local approach
used in the CECA algorithm can handle them properly. A local motion approach
is prone to find matching edges even in significantly different images because the
global structure of the scene is not considered. Therefore, a test that confirms them
is needed, which in this case is based on the color around them.
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(a) Frames before and after a cut. (b) Edges of images from (a).

Figure 1.8: The color histograms of images in (a) are very similar, so the cut
between them is not detected using a color based algorithm. However, their edges
(b) are significantly different.

(a) Adjacent frames. (b) Global motion compensation.

Figure 1.9: (a) The face is moving right and the background is going left. (b)
Global motion compensation can not fit both of them.

1.3.3 Keyframe selection

A keyframe is a representative image from a shot. The problem is how to select the
image that best represents shot contents. Sometimes, more than one image may be
needed to represent all the contents in a single shot, depending on its complexity.
The standard and most straightforward approach to keyframe selection is to choose
images at fixed positions in the shot, like the first, the last, or a temporal sampling of
a certain number of frames. However, considering that editors, authors and artists use
camera operations to communicate some specific intentions, this standard keyframe
selection approach may not represent properly the semantic information of the shot.

Several works can be found in the literature that perform a content-based selection
of keyframes. Different visual criteria have been defined in order to select keyframes.
Wolf uses motion analysis in [79]. He proposes stillness as a selection criterion, arguing
that the camera stops on a new position or the characters hold gestures to emphasize
their importance. Considering the same observation, Gresle and Huang propose in
[32] a selection criterion based on the local minima of an activity indicator. Zhang et
al. propose in [83] the use of multiple visual criteria to extract keyframes:

• Shot criterion: The first frame of a shot is always selected as a keyframe.

• Color criterion: The current frame is selected as a keyframe if it has significantly
changed with respect to the last keyframe selected.

• Motion criterion: If there is a zoom in the shot, the first and last frames are
selected. If there is a pan, frames with less than 30% overlap are selected.



1.3. Prior work on video structure analysis 13

Zhuang et al. present a clustering-based approach in [87]. The N frames of a shot
are clustered into M clusters, and the frames closer to their centroids are selected as
keyframes. Girgensohn et al. propose a similar approach in [29], but they also apply
temporal constraints to the selection of keyframes from the clusters.

The clustering-based approach reduces redundancies and obtains more compact
representations. Other ways of reducing redundancy have been proposed. Gong
et al. use Singular Value Decomposition (SVD) in [30] for the summarization of
shots and optimal selection of keyframes. Orriols et al. present in [56] a generative
model approach to extract a reduced number of image-like data structures, which are
semantically meaningful and have the ability of representing the dynamic evolution
of the sequence.

1.3.4 AudiCom: An example of keyframe-based representa-

tion

AudiCom is an example of application that uses a keyframe-based representation of
video contents to recognize TV commercials. The automatic recognition of commer-
cials in TV broadcasts is an important task that can be faced from the pattern recog-
nition standpoint. Possible applications of this technology are commercials isolation
and removal, copy detection, and, like in the case of AudiCom, logging of broadcast
times and durations in order to allow advertisers to check their correctness.

In AudiCom, we deal with the problem of matching video segments under some
specific constraints imposed by the domain of TV commercials. Spot producers make
an extensive use of synthetic production effects and other techniques due to the large
amount of information they want to convey to the viewer within a very strict time
constraint, usually from 10 to 40 seconds. In this sense, information must be un-
derstood from the semiotic point of view instead of from the information theory
definition. This kind of information is embedded in the audio and visual streams, but
must be inferred by the viewer by considering previously established semantic codes.
These characteristics make automatic tasks like scene break detection to be especially
difficult. Besides, there are two main sources of variability that affect commercials
recognition:

• The length of commercials is reduced after a short time of being aired. Shorter
spots act as reminders of their longer versions, while broadcast cost is reduced.
Shorter versions are built from the original set of shots by removing and/or
trimming some of them.

• Color intensity variations caused by the acquisition of video imagery from dif-
ferent sources, i.e. broadcasts from different TV stations or digitization using
different video devices. These variations distort the appearance of images and
complicate the matching process.

A commercial is represented in AudiCom by a set of keyframes. Video segment
matching is thus turned into a problem of matching static images. The first image
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of every shot is chosen as its keyframe. This keyframe selection strategy has the
following motivations:

• When advertisers make shortened versions of their commercials by trimming
shots, they usually remove frames from their end, thus relying on the memory
of the viewer.

• Taking the first frame is costless, and using more complex criteria does not
guarantee a better performance of the system.

• The recognition rates obtained by the system provide an empirical validation of
this criterion.

Principal component analysis (PCA) is then used as a dimensionality reduction
technique in order to obtain a compact feature vector for each keyframe. Matching
of keyframes is then performed in the low-dimensional feature space using minimum
Euclidean distance. Heuristics are introduced in the database lookup process in order
to consider the sequentiality of video segments. If we already know which commercial
is currently being aired because any of its shots has been identified, then the next
shot will probably belong to the same commercial. If it does not, then the commercial
has probably finished, and a new one may be starting. We must also consider that
shots can be removed in shorter versions of the commercials, even the first one of the
sequence. Therefore, the search sequence is as follows:

1. Shots from the current commercial.

2. First shot of the rest of commercials.

3. All non-first shots of all commercials.

The main drawback of appearance-based representations, like the one obtained
by PCA, is their sensitivity to slight changes of view and color intensity variations.
If the first frame of each shot is taken as its keyframe, changes of view might only
be caused by a lack of precision in shot boundary detections. Fortunately, most of
the algorithms are precise in this sense, as they are based on computing frame to
frame difference measures. On the other hand, color intensity variations are a very
meaningful source of variability in commercials. A color normalization step must be
applied to keyframes prior to obtaining their low-dimensional representation. Several
normalization algorithms have been developed. The grayworld approach has been
shown to be suitable for pure recognition purposes. It is based on the assumption
that the average color in all images is an ideal or canonical gray, following the diagonal
model of color correction [20]. The scale factors for each RGB color channel are Rg/R̄,
Gg/Ḡ and Bg/B̄, where (Rg, Gg, Bg) is the canonical gray RGB value and (R̄, Ḡ, B̄)
is the average image color.

The keyframes-based representation and the video segment matching strategy im-
plemented in AudiCom have some disadvantages. First, the presence of keyframes
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from monochrome shots may lead to confusion. Monochrome shots are used in many
contexts, not only in commercials. Considering knowledge about the domain, these
keyframes can be removed from the representation, as they will always be found
between two other keyframes of the same commercial. On the other hand, the per-
formance of the video segment recognizer relies on the accuracy of the shot boundary
detector. Due to their particular complexity, we can easily come across commercials
that can not be correctly represented by their keyframes because shot boundaries are
not properly detected. On the other hand, shot boundary detection techniques with
better recall usually have poor precision. In this case, oversegmentation produces an
overwhelming number of redundant keyframes that will slow down and reduce the
performance of the recognition process. For these reasons, an accurate shot boundary
detection algorithm, like the previously discussed CECA, is needed.

The keyframe-based approach also disregards the temporal information contained
in video sequences, which can provide very significant information about their con-
tents. Some works try to overcome this fault by defining some kind of activity-related
descriptor [66, 76] or simply by accumulating static image feature descriptors through
several consecutive images of the video [60]. A different approach is based on repre-
senting a shot by its temporal fingerprint, which is a concatenation of one or several
features of each image of the sequence. In this way, a string of image features is
obtained, so that string edit distances can be applied [1]. Lienhart et al. presented in
[44] a method for recognizing TV commercials based on fingerprints. Other work on
automatic recognition of TV commercials was also carried out by Hampapur et al. in
[34]. In this case, they compare different features and distance measures for matching
video sequences.

1.3.5 Intermediate-level descriptions

Intermediate-level semantics can be either implicit or explicit. Low-level features
implicitly contain semantic information about contents. A proper representation of
low-level features can semantically characterize contents. For example, a simple color
histogram can be used for object recognition [69, 27, 10]. Therefore, the representation
of color as a histogram contains semantic information about the identity of the object
that generates that particular distribution of colors.

When used individually, some image features (like color, texture, shape, motion
or even audio in video sequences) may provide a better representation of contents
than others, so that one can be more appropriate for a particular application than
another. There is a believe that a combination of image features provides a better
representation than the features independently. Several works have presented different
ways to use multiple features [49, 59, 52]. Combining features is not straightforward.
For this reason, some authors [55, 86] have used multiple features, but at different
stages of a hierarchical clustering, one at a time. Other authors have used different
features specifically for different classifications [75]. For example, Vailaya et al. use in
[73] color for an “indoor vs. outdoor” classifier and edges for “city vs. landscape”. The
definition of a multiple-feature similarity measure is complex and usually requires user



16 THE SEMANTIC STRUCTURE OF VIDEO

intervention in order to specify the relative importance of each feature in the measure
[52].

Intermediate-level descriptors that are fed to the higher-level domain knowledge
reasoning system can also be explicitly defined. Qian et al. state in [65] that, in
general, an explicit intermediate-level description may consist of descriptors that refer
to:

Objects Whether a particular object appears in the scene or not. For instance, a
person, a face, an animal, a tree, the sky/clouds, grass, buildings, and so on.
Also, the size of the objects and their motion pattern, if any.

Space Spatial relationships between objects or elements in the scene (next to, on top
of, ...).

Time Temporal description of the actions that happen in the scene (beginning, while,
...).

Motion Description of global camera-induced motion (zoom, pan, ...) and object
motion and their trajectories.

Two more categories should be included above, due to their relevance in terms of
semantics and video structure analysis:

Shot type Description of how the scene was shot (wide-angle, close-up, ...).

Affective descriptors For example, emotions, expressions, unspoken messages con-
veyed in video, the impact of graphics or the sense of activity.

In some cases, ways to automatically obtain these descriptors are described [65, 46].
Computer vision and pattern recognition play a main role providing algorithms for
face detection, object recognition, and other semantically relevant tasks. In other
cases, the intermediate-level is so complex that video shots must be annotated by
hand [45].

1.3.6 Domain knowledge representation

Domain knowledge can be specified as rules about the way a video sequence is gen-
erated [2, 12, 85]. These rules are derived from film-making and from experimental
observations. In many cases, the rules are based on fundamental views that indicate
the boundaries of higher-level structures. This is the case of news videos, where the
fundamental view “anchor shot” indicates the boundaries of the higher-level struc-
tures “news items”.

Other tools that have been used for representing domain knowledge are temporal
models of behavior, like finite state machines (FSM) [33, 43] or hidden Markov models
(HMM) [16, 43, 45]. In the case of HMM, its learning capabilities can be used to
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automatize the acquisition of knowledge up to a certain level. Probabilistic reasoning
and belief networks have been also used for knowledge representation by Paek et al.
in [58]. Knowledge discovery and data mining techniques were used in this context
by Benitez et al. in [5] to automatically obtain high-level knowledge from image sets.

1.4 An intermediate-level representation of video

contents

In this thesis, an intermediate-level representation based on Markov chains is pre-
sented. Markov chains provide a simple representation of a temporal process, and
thus can be used to represent the temporal behavior of a certain pixel-based image
feature. The representation is not keyframe-based, but is an aggregate of the infor-
mation contained in all the frames of a shot. This framework allows us to integrate
information from multiple image features into the same model of shot contents, and
provides natural similarity measures. Multiple features are straightforwardly com-
bined by considering the Cartesian product of feature state spaces. When multiple
features are combined in this way, the size of the representation of the model grows ex-
ponentially. For this reason, a method to obtain a lower-cost representation with the
minimum loss of information is presented. The method also proves that the amount
of information (in the information theory sense) contained by the model is directly
related to its accuracy to represent video contents. This method leads us to the cou-
pled Markov chains (CMC) model, which is a simplification of the straight Cartesian-
product model that establishes certain independencies between random variables in
the chains. Also, the method can automatically determine the presence of irrele-
vant features that can be removed from the representation, and other independencies
between random variables that may exist. In this way, the model can be further
simplified with a minimum loss of representation accuracy.

The CMC representation of shot contents is a form of intermediate-level descrip-
tion. For instance, when color and motion features are considered, the CMC represen-
tation contains object descriptions, object sizes, global and object motions, temporal
relationships, the type of shot, and information about location given by the back-
ground. Besides, the quality of the image features computed is not critical for the
accuracy of the representation of contents, as it is based on accumulating and aver-
aging feature values. Shot boundary detection is implicit in the generation of shot
contents representations, and can also be used as a stand-alone shot segmentation
technique. The contributions of the CMC modeling to the representation of visual
contents in video can be summarized as follows:

• Shot contents are seen as a temporal process, thus a keyframe-based represen-
tation is avoided.

• The partition of the video into shots is automatically obtained during the gen-
eration of the CMC shot representations.

• Natural similarity measures are provided by the probabilistic framework.
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• Multiple image features can be combined in the same representation, with rea-
sonable cost in time and space and a minimum loss of representation accuracy
with respect to the optimal combination.

• The representation captures the intermediate-level information that can be ex-
tracted from the image features used.

• Given that the CMC modeling provides an intermediate-level description of shot
contents, an intermediate-level semantic clustering can be obtained using the
similarity measures available.

The representation given by a CMC model can be used for object detection
in video, intermediate-level semantic video retrieval and, particularly, to obtain an
intermediate-level semantic clustering of video shots. This clustering provides a large
amount of information that can be used together with domain-specific knowledge
about the structure of videos in order to automatically obtain ToC’s and semantic
indexes. We have defined very simple rules about the structure of news videos in order
to automatically obtain their structure in terms of news items, the initial summary,
and the links between them. The clustering obtained allows us to automatically label
the cluster of anchors, so that the structure is obtained fully automatically.

1.5 Organization of the thesis

The rest of this dissertation is organized as follows:

Chapter 2 deals with the semantics conveyed by low-level features. The semantics
that can be attached to color, and how it has been used for video structure analysis will
be reviewed. Then, a deep analysis of the semantics that can be inferred from motion
information is presented. Also, the combination of multiple features is discussed.

Chapter 3 presents an intermediate-level representation of contents based on Markov
chains. This representation will be extended to jointly account for information from
multiple low-level features. This extension leads to an increase in its computational
cost. A method for model structure learning will be shown, so that a reduced cost
model can be obtained with minimum loss of information and representation accuracy.
This accuracy will be tested in a content-based video retrieval environment. Alto-
gether will lead us to CMC as a multiple feature temporal model of visual contents
in video.

Chapter 4 shows the application of the coupled Markov chains representation
of visual contents in video to obtain an intermediate-level semantically meaningful
clustering of video shots that will be used to automatically extract the high-level
structure in the domain of news videos. Other applications like object detection in
video and video retrieval will be considered.

Chapter 5 concludes this dissertation with a summary of the main contributions
of this work and insights on issues that remain open to future research.




