Universitat
Autonoma
e/ de Barcelona

A Methodology to Enhance the
Prediction of Forest Fire
Propagation

Department d’Informatica
Unitat d’Arquitectura d’Ordinadors

i Sistemas Operatius

A thesis submitted by Baker Abdalhaq
in fulfillment of the requirements for the de-
gree of Doctor per la Universitat Autdonoma de

Barcelona.

Barcelona (Spain), June 2004

A Methodology to Enhance
the Prediction of Forest Fire

Propagation

Thesis submitted by Baker Khaldoun Baker
Abdalhaq in fulfillment of the requirements
for the degree of Doctor per la Universitat
Autonoma de Barcelona. This work has been
developed in the Computer Science Department
of the Universidad Autonoma de Barcelona and
was advised by Dra. Ana Cortés Fité,

Bellatera June, 2004

Thesis Advisor

Ana Cortés Fité

To my parents

ii

Acknowledgment

Writing a doctoral thesis is hard work but the collaboration of all my colleagues
and my family made it easier. I take the opportunity to thank all the people
who have helped me through the course of graduate study.

First T would not only like to thank my advisor Ana Cortés, for her invaluable
guidance advice and encouragement, but also for creating a family atmosphere
in the group, and I would like to thank Tomés Margalef for his help and his
questioning that enriches the work. Thank to Emilio Luque for his discussions
that inspires the work.

Many thanks are due to my colleagues in the unit AOSO, German Bianchini
for his participation in the experiments, Josep Jorba providing his simulator
and Xiao Yuan Yung for his discussions. I wish to also acknowledge my col-
leagues outside the unit, I would like to thank my colleagues in Coimbra, Xavier
Domingos Viegas and his team that provided us with the possibility of carrying
out experiments in the laboratory of Lous&o, Jorge André for his scientific cu-
riosity and his deductions about some ideas of the thesis. Many thanks to my
colleagues in CREAF, Imma, Oliveras digitalizing the experiments videos and
currying out the fire experiment and in helping to carry out the experiments in
Lousio and Josep Pinol’s discussions of the main ideas of Thesis. I would like
to thank the technical staff, Daniel Ruiz and Jordi Valls for their great job of
making the cluster work properly and of solving the emerging problems in the
research platform.

I would like to acknowledge the indirect help of the GNU! movement over
the world by providing the environment and tools, such as the operating system,
the compilers, editors and the world processors, which are essential to the inves-
tigation. I would also like to acknowledge the financial support of “Autonoma
solidaria” and “SPREAD” project.

I This thesis has been written using Ix’X

iii

.

My family, my wife and daughters have made a great sacrifice; moving from
Palestine to Spain with all the associated difficulties such as the language and
leaving the house and the surrounding family and neighbors. I would like to
thank my wife and daughters for that. Special thanks to my parents that have
planted and did not wait for harvest time. I would like to thank my sister
Huda and my brother Saad for their caring and supporting me throughout my
education.

My stay in Spain could not continue without the help of my new friends
Muhannad Fatayer, Hesham Annajjar and Muhammad Abdalah, thanks to the
hard times I faced when I first came to Spain I have made good friends for my
whole life.

iv

Contents

1 Introduction 1
1.1 Computational Science and Engineering 2
1.2 Grand Challenge Problems 6
1.3 Forest Fire: A Grand Challenge Problem 7
1.4 Forest Fire Simulators 9

1.4.1 Forest Fire Models 10
1.4.2 Simulator Software Development 13
1.4.3 Error Sources in the Simulators 14
1.5 Classical Fire Prediction 16
1.6 Thesis Contribution 16
1.6.1 Input Data Uncertainty 17
1.6.2 Real Time Constraint 19
1.7 Outlineof Thesis 20

2 Enhanced Prediction Method 23
2.1 Wild-land Fire Prediction 23
2.2 Optimization Problem 26

2.2.1 Objective Function 26
2.2.2 Search Space 28
2.3 Optimization Taxonomy 28
2.4 Analytical Methods 29
2.5 Traditional optimization Methods 30
2.5.1 Exhaustive Search 30
2.5.2 LocalSearch 30
2.5.3 Greedy Algorithms 32
2.5.4 Divide and Conquer 33
2.5.5 BranchandBound 33

2.6 Modern Heuristic Optimization Methods 34

2.6.1 Taboo Search 34
2.6.2 Simulated Annealing 37
2.6.3 Genetic Algorithm 39
2.7 Evolutionary Methods Theory 43
2.8 Chapter Conclusions ot i i i v ... 46
Parallelizing the Method 47
3.1 Parallel Programming Paradigms 48
3.1.1 Master/Worker L. 48
3.1.2 Single Program Multiple Data (SPMD) 49
3.1.3 DataPipelining 50
3.1.4 Divide and Conquer 51
3.1.5 Speculative Parallelism 51
3.2 Parallel Enhanced Prediction Approach 52
3.3 Black-Box Optimization Framework (BBOF) 52
3.31 BBOF-DesignlIssues 53
3.3.2 BBOF - The Master Process 56
3.3.3 BBOF - The Worker Process 65
3.4 Chapter Conclusionst i i ... 68
Opt. Techniques: Comparative Study 69
4.1 Platform Descriptiono oL 69
4.2 Experiment Description 70
4.2.1 Creating the Synthetic Real Fire Line 71
4.2.2 Homogeneous Wind Field 71
4.2.3 Smooth Heterogeneous Wind Field 72
4.2.4 Rough Heterogeneous Wind Field: 73
4.3 The Objective Function 73
4.3.1 Objective function analysis 75
4.4 Homogeneous wind Field. 000, 79
4.4.1 Tuning Genetic Algorithm 80
4.4.2 Tuning Taboo Algorithm 84
44.3 Analytical Search oo 86
444 Random Search 87
44.5 Comparison Study 87
4.5 Smooth Heterogeneous Wind Field 88

vi

4.5.1 Tuning Genetic Algorithm 89

4.5.2 Tunning Taboo Algorithm 91
4.5.3 Comparison Opt. Tech. Heterogeneous Wind Field 93
4.5.4 Algorithm Scalability 94
4.6 Rough Heterogeneous Wind Field 95
4.7 Comparing Modern Heuristic Techniques 96
4.8 Chapter Conclusion, 99
Accelerating Optimization Convergence 101
5.1 Reducing the Search Space 101
5.1.1 Fixing Some Parameters to their Nominal Values 102
5.1.2 Introducing a Certain Degree of Knowledge 102
5.1.3 Sampling the Search Space 102
5.2 Sensitivity Analysis. o oL 103
5.2.1 Sensitivity Analysis on the Enhanced Prediction Approach.104
5.3 Experimental Study oo 106
5.3.1 Calculating the Sensitivity Index 106
5.3.2 Reducing Problem Dimensionality 108
5.3.3 The Effect of Limiting the Parameters Ranges. 112
5.3.4 Sampling the Search Space. 113
5.4 Chapter Conclusions 115
Appl. the Method. on Real Cases 119
6.1 Experiment Platform 000 119
6.1.1 Fire Simulator Used to Make the Prediction. 121
6.1.2 Input Parameters Estimation 122
6.1.3 The Prediction Error 124
6.1.4 Speedup Test of the Methodology 126
6.2 Experiments Methodology 127
6.3 Case 1: 35° Slope, no Wind and Maritime Pine Fuel 129
6.4 Case 2: 30° Slope no Wind and Straw Fuel. 133
6.5 Case 3: No Slope, Variable Wind and Straw Fuel. 134
6.6 Case 4: No Slope, Variable Wind and Maritime Pine Fuel. 135
6.7 Case 5: 30° Slope, no Wind and Variable Fuel. 138
6.8 Chapter Conclusions 139

vii

7 Conclusion and Future Work
7.1 Conclusions and Global Observations
7.2 Current and Future Work

viii

Chapter 1

Introduction

“La aventura va guiando nuestras cosas
mejor de lo que acertaramos a
desear...que ésta es buena guerra, y es
gran servicio de Dios quitar tan mala
simiente de sobre la faz de la tierra”

Miguel de Cervantes

With computers, scientists and engineers have made numerous discoveries
that they would not have made otherwise. In fact, computers have revolution-
ized the way that many scientists do their work. Traditionally, science was done
in laboratory as a combination of theory and physical experimentation (which
included hand calculations), but computers have made possible a new and pow-
erful way of doing science. Numerical simulation is the process of modeling
mathematically a physical phenomenon, and then running an experiment with
the mathematical model. Computational mathematics or computational scien-
tists play a major role in this new way of doing science, creating, evaluating,
and refining the mathematical models used to simulate the physical phenomena.
Thus, computational science and Grand Challenge problems conform a new way

of seeing “science’.

2 CHAPTER 1. INTRODUCTION

Experimental Theoretical
Science

Computational
Science

Figure 1.1: Three methods of investigation in natural sciences and engineering.
(Computing includes, in this figure, numerical computations, simulation and
visualization.)

1.1 Computational Science and Engineering

The power and availability of modern computers have made numerical calcu-
lations, computer simulations and other use of high performance computers to
an important tool in almost all disciplines of science and engineering. Many
researchers claim that computing has become a third main method for doing in-
vestigations, besides theory and ezperiments, [92, 20, 31]. There is probably no
consensus about the relative importance of computing compared to the other
two parts of this triad (Figure 1.1). However, there is no doubt that computing
is being used in more and more disciplines as a main tool. Computing may be
used instead of theory and experiments by providing insight in many phenomena,
that are too complex to be handled by analytical methods, too expensive, too
dangerous or impossible to study through experiments [31]. Computing may
also be a supplement to theory and experimentation resulting in an interplay
among the three main methods.

At present, the computational approaches used by scientists and engineers
are very similar [31], so computational science is often used as a shorthand
for computational science and engineering. A very short (informal) definition
of computational science is given by D. E. Stevenson in his article Science,

Computational Science and Computer Science: At a Crossroads [102]:

"We describe computational science as an interdisciplinary approach

to doing science on computers."

1.1. COMPUTATIONAL SCIENCE AND ENGINEERING 3

The difference between the term scientific computing and computational science
is presently not completely understood by the author. Golub and Ortega give
the following working definition of "scientific computing" [45]:

"Scientific computing is the collection of tools, techniques, and the-
ories required to solve on a computer mathematical models of prob-

lems in science and engineering."
Golub and Ortega describe the difference in the following way:

"... The techniques used to obtain such solutions [of mathematical
models that represent some physical situation] are part of the gen-
eral area called scientific computing, and the use of these techniques
to elicit insight into scientific or engineering problems is called com-
putational science (or computational engineering).”

From Native point of view [82], the difference expressed in the second part of

this quotation may become a bit clearer when another definition is considered.

..... “use of HPC technology to advance the state of knowledge in a

particular applications discipline”

Thus, informally, scientific computing may be perceived as more focused on
"obtaining a solution on a computer", while CS&E can be said to be more fo-
cused toward using such solutions to increase the understanding of problems
in science or engineering. In other words, in the term computational science
it is important to realize that science is a variable x, representing any natural
science or engineering discipline. Thus we have computational chemistry, com-
putational physics, computational solid mechanics etc. Computational science
is not the science of how to do computations, covering topics such as computa-
tional complexity theory (algorithm analysis, computability, NP-completeness
etc.). Those topics are part of the well-established field theoretical computer
science (TCS). CS&E experts need a certain body of knowledge in such top-
ics just as they need it in mathematics, but computational science must not
be misunderstood as a new name on such relatively traditional "computational
topics" within computer science.

Computational science is a scientific endeavor (application) that is supported
by the concepts and skills of mathematics (algorithms) and computer science

(architecture) (see figure 1.2).

4 CHAPTER 1. INTRODUCTION

Architecture
{Computing Environment)

Application Algorithm
(Science) (Mathematical Model)

Figure 1.2: Computational Science

The major steps in scientific problem solving in computational science are
basically the same as for ordinary problem solving except for an additional step
that converts the devised plan into a computational method. In this context,
the steps in scientific problem solving become (similar to Polya’s list)

1. Problem formulation - This step is an exploratory, familiarization step.
Understanding the problem, determining the relevant physical/scientific
principles, developing an intuitive, conceptual picture of the problem are
all things done at this level. This is where the gee whiz aspect of science
occurs (what happens if T push here?)

2. Modeling- Develop a model (usually mathematical) that describes some
aspects of the problem. Mathematically, this is really an abstraction of
the physical problem, and as such involves approximations (i.e. certain

physical aspects are considered unimportant or irrelevant).

3. Computational method- Develop a procedure for solving the mathemat-
ical formulation of the problem. Historically, this has often involved a
good deal of mathematical analysis. There are very few problems, which
can be solved exactly, whether the solution is attempted by approximate

analytical techniques or by numerical computations.

4. Solution implementation- Carry out the calculation either by evaluating
the approximate analytic solution or by coding the numerical computa-

tions.

1.1. COMPUTATIONAL SCIENCE AND ENGINEERING 5

5. Assess/analyze the results in context of computational method, mathe-
matical model, and original problem — determine how relevant the results
are to the original problem. Because the results represent a calculational
approximation to the mathematical approximation of the problem, it is
important to form a judgment as to whether the results are meaningful
or not. For example, these results might imply something that is utter
nonsense physically.

These steps exist for both traditional and computational science; the devil is
in the details. For example, in step 2 above one needs to use one or several
numerical "recipes"” to begin the solution of the mathematical model generated.
Many numerical recipes are too complex to calculate by hand and/or require
repetitive calculations — iterations — to get close to an answer. At this point
we can use the technologies of computer science to implement our algorithm
or mathematical model on some suitable sized computer using some computa-
tional software tool. Needless to say, this whole process is itself "iterative" —
solutions to preliminary algorithmic approaches to the problem generate a bet-
ter algorithm, perhaps with the need for increasing computational power and/or
precision. In other words, computer modeling can be done instead of a strictly
mathematical model and the solution method would then be a computer simu-
lation (an example of this is lattice gas automata). The mathematical analysis
of the computer modeling would be impossible.

There is a nice, historical example that illustrates the differences between
traditional science and computational science- the development of the model for

the solar system.

1. Experimental science- Tycho Brahe (1546-1601) was a Danish astronomer
who, over a twenty year period, painstakingly recorded the positions of
celestial bodies (including planets) before the invention of the telescope.
In order to do this, he invented things such as the sextant, the mural
quadrant, and the ring armillary. Notice that these instruments have had
wider uses than the original intent Experimental scientists observe how
nature behaves, designing experiments, building equipment to improve
their measurements, refining their experiments if unexpected results are

measured.

2. Computational science- Johann Kepler (1571-1630) was a German as-
tronomer who was Brahe’s assistant at the end of Brahe’s life. Kepler

6 CHAPTER 1. INTRODUCTION

inherited his entire observational record. Kepler set himself the goal of
finding the patterns in the data. Over the years, he filled book after book
with calculations on the data. Eventually, he came up with what are

known as Kepler’s laws of planetary

(a) Planets move around the sun in an ellipse with the sun at one focus
of the ellipse.

(b) The line between the planet and the sun sweeps out equal areas in

equal times.

(¢) The square of a planet’s orbital period is proportional to the cube of
is average distance from the sun.
Kepler’s laws are consistent with Brahe’s observations but do not

explain why the planets move in this way.

3. Theoretical science- Isaac Newton (1642-1727) was an English physicist
who discovered the laws of motion and gravitation. These laws describe
the motion of every object, not just planets. They explain Kepler’s laws

as resulting from gravitation.

Theoretical scientists use mathematics to give a succinct, abstract representa-
tion of physical phenomena in order to explain and predict how nature behaves.
Note that these predictions/explanations follow from the mathematical model.
To the extent that these models describe reality (recall that these models are
still approximations) they give correct results. Discrepancies often indicate re-
finements of the models are needed. Theoretical scientists deal with abstractions
and generalizations of observations and calculations, i.e. they deal with general
knowledge instead of specific knowledge.

Computational scientists use both theoretical and experimental knowledge
to develop computer models of reality. These models are then used to simulate
the behavior of nature- they can be verified by comparing with nature. They
are simulated versions of nature. Note that in this simulation certain aspects of

nature could be changed, creating a virtual reality.

1.2 Grand Challenge Problems

Historically, studies of specific problems and corresponding breakthroughs have
led to new scientific disciplines. Physics, Chemistry and Astronomy emerged out

1.3. FOREST FIRE: A GRAND CHALLENGE PROBLEM 7

of Natural Philosophy following the important discoveries by Newton, LaVoisier
and Galileo respectively. The type of problems in which computational science
could achieve breakthroughs are generally referred to as “grand challenges”. A
nice definition of grand challenges stems from Office of Science and Technology

Policy:

Grand Challenges are... fundamental problems in science and en-
gineering, with potentially broad social, political, and scientific im-
pact, that could be advanced by applying high performance comput-

ing resources.

As expected, there is a long list of grand challenge problems, including electronic
structures of materials, turbulence, genome sequencing and structural biology,
global climate modeling, speech and languages studies, pharmaceutical design,
pollution and dispersion, and many more. In particular, the Grand Challenge
face up in this thesis is Forest Fire Prevention and Mitigation.

1.3 Prediction of Forest Fire Propagation: A Grand
Challenge Problem

Forest fire is one of the most critical environmental risks in all the Mediterranean
countries due to the high temperatures and low precipitation rates, especially
during the summer. This is an important problem throughout the world, but
in these areas it is especially dangerous. Every year, intensive forest fires burn
thousands of hectares, destroying many trees and natural resources. Moreover, it
implies a progressive turning of land into desert with all the associated problems
(figure 1.3).

For all these reasons, it is very important to fight against such forest fires
using all the available resources in order to minimize their effects as much as

possible. The fight against fire must be carried out at two main different levels:

1. Forest fire prevention: At this level, the administration must promote the
education of civil society to avoid risks that can provoke a wild forest
fire. However, there are many other things that must be done to minimize
fire effects as much as possible. For example, it is necessary to work
on the planning of the terrain to prepare natural fire-breaks, to decide

which terrain can be urbanized, to prepare evacuation plans, to design

8 CHAPTER 1. INTRODUCTION

(a) (b)
Figure 1.3: (a) land before fire (b)land after fire

roads and ways of reaching all the places in the country and so on. If the
administrative decisions are made in the proper way, fire effects can be
minimized and the fight against the fire during a real emergency can be

made easier.

2. Forest fire fighting: During a forest fire emergency, it is necessary to use
the available resources in the best possible way. However, fighting against
the fires implies the coordination of several groups (planes, helicopters,
firemen, and volunteers) for the adequate use of combative resources (fig-
ure 1.4). It is very important to predict fire behavior so as to avoid
accidents and to make rational decisions. For instance, if we know the fire
propagation speed, direction and intensity, we will be able to decide what
front we have to fight on and the effective way of fighting.

In both cases, fire prevention and real emergency, it is very important to have
tools that are able to predict forest fire propagation, taking into account partic-
ular conditions. One of the goals of fire-model developers is to provide physical
or heuristic rules that can explain and emulate fire behavior and, consequently,
might be applied to creating robust prediction and prevention tools. In the
following section, we will describe forest-fire simulator as a tool for predicting

fire behavior.

1.4. FOREST FIRE SIMULATORS 9

Figure 1.4: fire fighting groups in act

1.4 Forest Fire Simulators

The process of developing a simulator software often is done in team made up
of members bringing a variety of different skills. They use the following process

in order to solve problems.

1. Identify an appropriate real-world phenomenon; Scientists begin the solu-
tion process by defining the problem of interest. It is important to identify
clearly the aspect of the problem that will be considered. The information
that is “known” about the problem must be stated. It will be used to en-
sure that the model represents the original problem as closely as possible.
Then the questions to be answered must be posed clearly. The scientists

may then assemble an inter-disciplinary team.

2. Construct a mathematical model; The mathematical model is usually a
very large collection of equations and inequalities. Moving from the orig-
inal problem to the mathematical model almost always requires making
simplifying assumptions. Perhaps it will be modeled in 2 dimensions rather
than 3, for example. These assumptions will need to be reconsidered when

10 CHAPTER 1. INTRODUCTION

the results of the numerical experiments are obtained.

3. Design a numerical algorithm; An algorithm is a set of step-by-step in-
structions for accomplishing a task. The algorithm is intended to produce

the solution to a problem or sub-problem by operating on the model.

4. Build a computer code that implements the numerical algorithm; Often,
steps in the numerical algorithm are general enough that they can be
implemented in computer code in more than one way. The computational
scientist will need to decide how to implement the algorithm efficiently on
the type of computer that will be used to solve the problem. Many of the
steps in the algorithm may be implemented by using existing software;
others will require new code to be written.

5. Perform numerical experimentation (simulation) with the intention of:

a) evaluating (validating) and revising (if necessary) the model. If the
results replicate behavior that scientists know to be valid, then they will
have more confidence that the predictions of the model will also be of
value. Sometimes, results from simulations will lead to additional ques-
tions about the phenomenon being studied, and the mathematical model
will need to be modified to reflect a new direction of research. Occasion-
ally, researchers will realize this point that they forgot to include some
piece of information (for example, that a particular value can never be
negative) that is common sense to person, but must be stated explicitly
in a mathematical model.

b) generating mathematical conjecture and subsequent new theory con-
cerning numerical and theoretical properties of both the model and the
algorithm|[112, 113].

The following sections are organized according to these development steps.

1.4.1 Forest Fire Models

Models are being increasingly used to make predictions in many fields of the
environmental science. Models, however, have a series of limitations of which
the lack of accuracy and/or a proper validation have the most dramatic con-
sequences. However, other restrictions generally occur when applying models.
Frequently, information on a high number of input variables is required to run
a model, this need being specially restrictive for models with a spatially explicit

1.4. FOREST FIRE SIMULATORS 11

expression (since these require data for variables in each site). Fire propagation
models are a good example of data demanding (data restricted) models.
It must be considered that the forest fire propagation is a very complex

problem that involves several aspects that must be considered:

1. Meteorological aspects: The meteorological conditions affect fire propa-
gation in a direct way. Temperature, wind, moisture, and so on modify
fire behavior and propagation in a significant way. It must be taken into
account that these conditions are not static, but these change due to the
macro-meteorological conditions or the day-night cycle. Therefore, the
forest fire propagation prediction should consider prediction of the me-
teorological conditions as well. In a more accurate analysis, it must be
pointed out that the fire itself modifies the temperature, wind conditions

and so on.

2. Vegetation features: Vegetation features influence the fire behavior in a
direct way. However, there are points related to meteorological conditions
that modify the features of the vegetation. For example, the moisture con-
tents of the vegetation influences fire behavior, but this content depends

on meteorological conditions (past and current).

3. Topographical aspects: The topographical aspects of the terrain are also
very significant to predict the fire behavior. But the particular topographi-
cal conditions also modify the meteorological conditions. For example, the
meteorological wind is modified by the topography of the terrain in such a
way that the particular wind at each point must be evaluated and there-
fore, it must be analyzed as a wind field with a particular value in each
point.

For all these reasons it can be concluded that the forest fire propagation predic-
tion is a very complex problem involving several disciplines that must co-operate
to provide accurate models and solutions that predict the fire propagation in a
realistic way. Research on these models involves researchers in physics, chem-
istry, biology or ecology. In other worlds, forest fire propagation prediction is a
Grand Challenge problem.

There are several models in the literature to describe the behavior of forest
fire propagation. First of all, it must be pointed out that the propagation
models include two separate models: the global model and the local model.
These two models consider two different scales. On the one hand, the global

12 CHAPTER 1. INTRODUCTION

model considers the fire-line as a whole unit (geometrical unit) that evolves
in time and space. On the other hand, the local models consider the small
units (points, sections, arcs, cells, ...) that constitutes the fire-line. These local
models take into account the particular conditions (vegetation, wind, moisture,
...) of each unit and its neighborhood to calculate the evolution of each unit.

The local fire-spread model calculates the movement of each individual sec-
tion of the fire-line and then the global model calculates the total fire-line ap-
plying an aggregation process. The local fire-spread model takes into account
the static and dynamic conditions of the terrain (vegetation, topography, wind,
moisture, and so on). The dynamic conditions (mainly moisture and wind) must
be evaluated before the local model can calculate the movement of the section.

The global model allows the partitioning of the fire-line into a set of sections.
In each of these sections certain, local balance conditions must be observed [6, 7].
Under these conditions the movement of the fire-line can be considered as the
separate movement of the different sections, and then it is possible to compose
the fire-line in the next time step by aggregating the particular movement of
the different sections.

In the literature, there are several approaches to solving the global models.

These approaches can be classified in the following categories:

1. The fire-line is considered as a set of units (points, sections, arcs, ...). It is
assumed that each section has its own desegregate movement and then the
new position of the fire-line is determined by aggregating the new position

of each section.

2. Physical approach based on Huygens principle. The fire-line is considered
as a set of points. Each point is considered as an ignition point that
generates a virtual fire-line, which evolves in the same way as a real fire.

The new fire-line is obtained as the covering of the virtual fire-lines.

3. Cellular models based on Dijkstra’s Algorithms. The terrain is divided
in a discrete mesh of cells that are characterized by the average values of
the parameters. From each cell, the fire can propagate to the neighbor
cells. There are different models that consider different mesh geometry or
different neighborhoods.

Once we have developed the mathematical model, we need to design and imple-
ment the simulator. In the next section we will describe how this is done.

1.4. FOREST FIRE SIMULATORS 13

S| o 1 |
£ | | Fireline of) |— > Disintegration

process info local

| ion | | entiies
ol Vegetattion |] smoke 3
o | —| : * | emission
2N H i HI -
To raph _) N g Local Model
] pograpny g Fuel Imqs‘rure > (to each entity)
i 71| Prediction >
3 * Heat Flux

Q

£ G

o Metereology _> . ; Global Model
Z 1 Wind model f (ioin process)

Fireline ¢(t+A)

Figure 1.5: "Ideal" components of a fire simulation system

1.4.2 Simulator Software Development

The main goal of any implementation based on fire propagation models is to
provide simulation tools that can be integrated into an information system that
provides the user with an accurate information concerning forest fire propaga-
tion. This means that theoretical models developed by scientist must be coded
and must run on a computer. To accomplish this objective, it is necessary to
apply numerical methods and algorithms that solve the proposed models. This
work implies direct co-operation between scientists and computer scientists.

The global and local models and the required environmental information
must be integrated to obtain a simulation system that provides the space-time
forest fire evolution. The general "ideal" structure of such systems is shown in
figure 1.5[7].

The main components are the following:

1. Input information databases, concerning the physical environment, in-
cluding: 1) Ignition point or current status of the fire-line, 2) vegetation
maps that include the characteristics of the vegetation of each region, 3)
topographic information of the terrain where the fire is burning, and 4)

meteorological information, usually the wind field.
2. Propagation models: The global and local models described above.

3. Complementary models: These models include those parameters with a

dynamic behavior.

14 CHAPTER 1. INTRODUCTION

ype| | Input |l Model I Cutput |
=] .
= Fireline o) | = Desintegration
B process Into local
Vegetattion - enities
: ;
o
o
i
Topography —w Local Modg
N (to each ertity]
0
ol ;
g ||| Meteredlody H | Giobal Madel
- (join process) = Fireline aff+4)

Figure 1.6: Components of a fire simulation system

4. QOutput: Mainly is the prediction of forest fire propagation, in addition to

other outputs like heat flux and smoke emission.

The diagram at figure 1.5 includes all these components. However, the current
state of forest fire research does not allow us to include all the components in a
real system. There is active research in all these fields [25, 80, 106, 91, 110, 97, 40]
but there are no final results that can be included in the simulation systems.
Therefore, the real current simulation systems have a simplified structure (as
that shown in figure 1.6). However, it must be pointed out that in the near

future, research results will be introduced in these simulation systems.

1.4.3 Error Sources in the Simulation Software

Most of the existing wild-land fire models are not able to exactly predict real-fire
spread behavior. Fire simulators [68, 74, 58, 35], which merely are a translation
of the fire models’ equations into code, cannot provide satisfactory fire spread
predictions. The disagreement between real and simulated propagation basically

arises because of :

e Uncertainties stemming from the respective mathematical models; scien-
tists study fire behavior to create sophisticated fire models. A model is
a simplified description of an actual system, useful for studying system
behavior. The models attempt to simplify the phenomena without los-

ing the main characteristics. Overly simple models can lose accuracy and

1.4. FOREST FIRE SIMULATORS 15

overly complicated models can be unpractical to use or even to realize.
The models try to capture the main characteristics of the physical system
or phenomena. No model will capture all the characteristics of the phe-
nomena, if so it will be the system it self. It is important to understand
what aspects of the system the model is intended to describe, and what

the model limitations are as a result of simplification.

e Limitation of numerical solutions; Mathematical equations in the models
are solved by numerical solutions. Usually, the mathematical models con-
tain a complicated differential equations that need approximated numeri-
cal solutions to be solved. These methods have approximation errors (or
truncation errors)[86]. The discrepancy between the true answer and the
answer obtained in a practical calculation is called the truncation error.
Truncation error would persist even on a hypothetical, “perfect” computer.

e Processor limitations; translating the mathematical models with their nu-
merical solutions into code is done using a computer language. These
languages and the underlying processors have numerical accuracy limi-
tations. The representation of real numbers in digital machines and the
ability of the processor to process the numbers have limits. Computers
store numbers not with infinite precision but rather in some approxima-
tion that can be packed into a fixed number of bits. In floating-point
representation, a number is represented internally by a sign bit, and ex-
act integer exponent, and an exact positive integer mantissa. Arithmetic
among numbers in floating-point representation is not exact, even if the
operands happen to be exactly represented. The smallest (in magnitude)
floating-point number which, when added to the floating-point number 1.0,
produces a floating-point result different from 1.0 is termed the machine
accuracy. Many arithmetic operations among floating numbers should be
thought of as introducing an additional fractional error of at least equals

to machine accuracy. This type of error is called roundoff error.

We can see that there will always be limitations on the simulators, so a perfect
simulator is impossible to create. However, assuming that the simulator we have
is good enough, we use it to predict the fire behavior. In the following section,
we will describe the classical way of using fire simulators to predict fire behavior.

16 CHAPTER 1. INTRODUCTION

t=t, t=t,
v v

Ingut Parametars _)E\—b

Figure 1.7: Classical prediction of wild-land fire propagation.

1.5 Classical Fire Prediction

Once we have developed the fire propagation model and created a simulator
software based on the mathematical model, the resulting software can be used
to predict the fire propagation patterns in a variety of conditions. Classical pre-
diction simply consists of using any existing fire simulator to evaluate the fire
position after a certain time. The simulator is fed with all the required param-
eters (vegetation, meteorological, ignition point ...etc). Then, the simulator is
executed to predict the fire line after a certain period of time. We should point
out that the simulator cannot be run with the absence of one of these input
parameters.

This classical approach is depicted in figure 1.7 where FS corresponds to the
underlying Fire Simulator, which is seen as a black-box. RFLO is the real fire
line at time ¢¢ (initial fire line), whereas RFL1 corresponds to the real fire line at
time #;. If the prediction process works, after executing FS (which should be fed
with its input parameters and RFL0), the predicted/simulated fire line at time
t1 (PFL) should concord with the real fire line (RFL1). However, this classical
approach to predicting fire spreed has certain limitations. These limitations will

be discussed in the following section.

1.6 Discussion of the Classical Prediction Prob-

lem: Thesis Contribution

The error in the classical approach of prediction not only stems from the sim-
ulator as described in section 1.4, but, even if we have a perfect simulator, we

1.6. THESIS CONTRIBUTION 17

still have difficulties to provide this simulator with quality input parameters. In

the following subsection we will describe this difficulty.

1.6.1 Input Data Uncertainty

One of the most common sources of deviation from real propagation is impre-
cision in input parameters. There are certain parameters that cannot be mea-
sured directly, but this must be estimated from indirect measures (for example,
moisture content in vegetation). Other parameters can be measured in certain
particular points but the value of such parameters must then be interpolated to
the whole terrain. For example, wind can be measured in certain meteorological
stations (figure 1.8), but it is necessary to then estimate the wind for all the
points within the terrain; therefore some sort of model is required to make this
highly specific form of estimation. Moreover, the wind changes dynamically
during forest-fire propagation due to changes in the meteorological conditions,
so some model is required that will effectively predict the evolution of the wind.
Other source of uncertainty and error in input parameters is that maps used
(of vegetation characteristics and humidity) have finite cell size. It will be very
costly to make maps with small cell size. So the simulator will need to work
with parameters that are the average of large cell. In addition to that, the maps
can be actualized in certain time periods, so the parameters fed to the simulator
have to be measured at the past. For all these reasons, wind is usually estimated
and predicted with a high degree of uncertainty.

Similarly, uncertainties in other input parameters can also have substantial
impact on the result errors. For example, an error in the wind direction will
affect the fire propagation direction. For this reason, we intend to search for
parameters that, if fed to the simulator, will best describe the real fire line in
the near past. We expect that these parameters will remain valid for a period
of time (predictability limit), so we can use them to forecast within that time.
This can be realized by defining a measurement of concordance between the real
fire line and simulated. Then maximizing the concordance will provide us with
the desired parameters. Therefore, we propose to add an optimization process
on the classical prediction approach to tune input parameters. While the fire
extends and time passes the parameters may change, which creates a prediction
error. The error can be controlled by the continual assimilation of data, with
intervals shorter than the predictability limit and continual execution of the

optimization process.

18

CHAPTER 1. INTRODUCTION

Figure 1.8: meteorological station

1.6. THESIS CONTRIBUTION 19

1.6.2 Real Time Constraint

In order to obtain operative predictions during a real fire emergency, this needs
to be restricted by the real time constraint. Usually, simulators are compli-
cated programs which consists of many calculations that need a great amount
of computer power, so the proposed additional optimization process need to
be finished in as few a number of executions as possible so as to minimize the
need of computer power and the time of optimization. Due to the increasingly
large size and inherent complexity of most man-made simulators, the problem
to optimize here is an NP-complete problem, purely analytical means are of-
ten insufficient for optimization. We need to use modern heuristic optimization
methods to search input parameters domains in the most efficient way.

The computing systems based on parallel and distributed systems offer the
required power to apply these techniques and provide successful results in an
acceptable time. Currently, distributed systems are widely available at a reason-
able cost, and the software technology is mature enough to allow their intensive
use.

On the one hand, using the classical approach of prediction with a light-
weight simulator we can meet the real time constraint but we will loose the
precision. On the other hand, optimizing the huge number of input parameters
will be a time consuming problem even in a computer cluster. As in all decisions
in life, and in engineering, there are some compromises. In this case, we have
not just a compromise, but a suitable compromise. For instance, we can reduce
the optimization time without loosing precision by fixing the parameters that
have little impact on the simulation result to nominal or expected values and
spend the time on a more productive issue, namely optimizing the most sensible
parameters.

In order to apply this method to a fire emergency, we need to obtain the
status of the fire in real time, assimilate this information and use it as a ref-
erence to calculate the prediction error. This information will then be used to
optimize the input parameters of the fire spread simulation in order to enhance
the prediction. The real fire line must be available in real-time and in machine
recognizable format (a polygon in two dimensions or a set of burned cells). This
requires an on-line forest fire (measurement) system(see figure 1.9). The system
aims to use the images (for example taken from a helicopter), the GPS position
of the camera, and information from a geographic Information System (GIS) to
locate the fire and to estimate in real-time their properties. The system needs

20 CHAPTER 1. INTRODUCTION

y” Y Image
7€ — > QEQ

Forest fire measurment system

(‘) Machine formatlfire line
[

Real fire

- - [
E] <1 TDEQFTmTherTUE EQE

Decisions and actions pgg

Fire prediction

Figure 1.9: The relation of the fire prediction system with the other systems

to provide in real-time the evolution of the fire-front [78, 77, 70, 76].

After the delivery of the real fire line in the desired format, a prediction
system has to start processing all the available data (the fire line, ignition line,
vegetation, terrain, meteorological data) to provide an accurate prediction also
under the real-time constraint. The prediction of the future behavior of the fire
will be manipulated by humans and/or by a Decision Support System (DSS)
to act against the hazard in the most proper way, to prevent accidents and to

optimize resources.

1.7 Outline of Thesis

In the following chapter we introduce a theoretical description of the enhanced
prediction method (Chapter 2). Then, we discuss the possible ways of paral-
lelizing the method and a description of the implementation is stated in chapter
3. After that an illustration of experimental comparison of the implemented
optimization techniques is reported in chapter 4. We discuss, in chapter 5, the
theory and experiments of possible ways to accelerate the optimization meth-
ods. Finally, in chapter 6, an application of the complete methodology on real
cases is included. In the following we describe in more details each chapter.

1.7. OUTLINE OF THESIS 21

In chapter 2, we will describe a pragmatic approach that intended to improve
the prediction quality of forest-fire simulators with the existence of all imper-
fections in real life (described in the introduction). As mentioned, enhanced
prediction method is based on searching for values of input parameters that
enhance the prediction of the simulators. Therefore, search methods occupy an
important part of the Thesis. Thus, a theoretical discussion of search methods
is introduced in chapter 2.

Chapter 3 discusses the way we have parallelized the method to reduce the
time of execution and make it possible to execute the method in reasonable
time. In addition, a full description of the implementation of the method is
reported.

In chapter 4, we illustrate our experimental study to tune and compare
several optimization techniques that could be used in the proposed methodology.

Chapter 5 describes the ways to accelerate the optimization method so that
we can reach the optimal solution in less iteration and, therefore in less time.
In the same chapter we illustrate the experimental study performed.

In chapter 6, we apply this methodology on real fire lines extracted from
laboratory experiment, which were specifically designed to test our methodology.

Finally, in chapter 7, we address the main conclusions and propose future
directions that can extend and enhance this research.

22

CHAPTER 1. INTRODUCTION

Chapter 2

Enhanced Prediction Method

“si tienes miedo, quitate de ahi, y
ponte en oracién en el espacio que yo
voy a entrar con ellos en fiera y
desigual batalla.”

Miguel de Cervantes

In this chapter, we will introduce a new methodology to enhance the pre-
diction of the forest fire propagation in order to overcome the difficulties of
obtaining precise input parameters. As has been mentioned, the methodology
consists of optimizing a black-box function. We will therefore discuss the pos-
sible methods that can be used to approach such problems. For this purpose,
the chapter is organized as follows: The chapter will start with a description of
the enhanced methodology to predict forest fire propagation. Then, a formal
description of the optimization process will be introduced followed by a discus-
sion of the main parts of the optimization process. Finally, there is a discussion
about optimization methods available in the literature.

2.1 Wild-land Fire Prediction

The prediction method proposed is a step forward with respect to the classical
methodology described in section 1.5. The approach proposed focuses its effort
on overcoming the input-parameter uncertainty problem. Using this approach
the interaction of the end user with the simulation/prediction or (desision sup-
port system) DSS systems will be changed. The operator who uses the software

23

24 CHAPTER 2. ENHANCED PREDICTION METHOD

Classical le) @
Enhanced (o] O

Redal —
Opftimized —
Prediction —

Figure 2.1: Readjusting the prediction using the optimized parameters

can provide ranges instead of a single guess for the values as input parameters.
These ranges reflect the possible values of the parameters that the operator es-
timates. Our approach introduces the idea of applying an optimization scheme
to calibrate the set of input parameter with the aim of finding an optimal set of
inputs, thus improving the results provided by the fire-spread simulator. The
aim of the optimization process is to find a set of input parameters that, if fed to
the simulator, best describe fire behavior in the past. Therefore, we expect that
the same set of parameters could be used to improve the prediction of fire be-
havior in the near future. We assumed that these parameters will remain valid
for a period of time (predictability limit). In figure 2.1 we illustrate how the
enhanced prediction works differently from the classical prediction. In the clas-
sical prediction we use some estimated parameters to predict the fire line in the
future, but in the enhanced prediction we use the parameters of the optimized
fire line (at time ¢;) to predict the fire at time ¢2. It is clear from the figure that
we cannot use the enhanced prediction at time ¢;. We need two time periods
to carry out the prediction. One period is needed to find the optimized set of
parameters. Then we use the optimized parameters to predict the fire line in
the future. This process will be repeated to re-adjust the optimized parameters

because the some parameters are very dynamic.

2.1. WILD-LAND FIRE PREDICTION 25

t=t, t=t, t=t,

tme — wmmmmn

v
El

v v
G € &>

> s o @oro > vs o o7 Ryl s
Input Parameters T} PFL ‘ 1" Parameters -

Figure 2.2: Enhanced wild-land fire prediction method

The resulting scheme is shown in figure 2.2. As we can see, in order to
evaluate the goodness (concordance) of the results provided by the simulator,
a prediction error estimation should be included (PEE box). This function will
determine the degree of matching between the predicted fire line and the real
fire line. We can also observe from figure 2.2 the way in which the optimization
strategy is included into the framework to close a feedback loop. This loop will
be repeated until a “good” solution is found or until a predetermined number of
iterations has been reached. At that point, a “suboptimal” set of inputs should
be found, which will be used as the input set for the fire simulator, in order to
obtain the position of the fire front in the very near future (¢ in figure 2.2).
Obviously, this process will not be useful if the time incurred in optimizing is
superior to the time interval between two consecutive updates of the real-fire
spread information (for the example of figure 2.2, the interval time between #;
and t2). Consequently, we are interested in accelerating the optimization process
as much as possible. Although similar ways of approaching this problem can be
found in the literature [18, 26], no analysis of its applicability under real time
constraints has been carried out.

Optimization is an iterative process that starts from an initial set of guesses
for the input parameters and, at each iteration, generates an enhanced set of
input parameter guesses. The optimization process will stop when a satisfactory
solution is reached or the time of execution is spent. Typically, any optimization
technique involves a large number of simulation executions, all of which usually
require considerable time.

This process will be repeated when a new real fire line is optioned from the
fire. The real fire line needs to be provided in a time interval less than the
predictability limit. While the fire is burning, the process will be repeated to
readjust the prediction and minimize the prediction error.

26 CHAPTER 2. ENHANCED PREDICTION METHOD

Since the fire simulator (FS) box of figure 2.2 has been widely analyzed in
chapter 1, in the following sections, we will describe in more details the opti-
mization (OPT) and prediction-error estimation (PEE) boxes shown in figure
2.2.

2.2 Optimization Problem

Formal optimization is associated with the specification of a mathematical ob-
jective function (called L) and a collection of parameters that should be adjusted
(tuned) to optimize the objective function. This set of parameters is represented
by a vector referred to as §. Consequently, one can formulate an optimization
problem as follows:

L(0)

9es

where L : RP — R! represents some objective function to be minimized (or max-

Find 6* that optimizes

imized). Furthermore, 6 represents the vector of adjustable parameters (where
0*is a particular setting of 8), and S C RP represents a constrain set defining
the allowable values for the 6 parameters. Put simply, the optimization prob-
lem deals with the aim of defining a process to find a setting for the parameter
vector #, which provides the best value (minimum or maximum) for the ob-
jective function L. The term “search problem” and “optimization problem” are
considered synonymous. The search for the best feasible solution is the opti-
mization problem. This search is carried out according to certain restrictions of
the values that each parameter can take. The whole range of possibilities that
can be explored in obtaining the optimization goal is called the search space,
which is referred to as S. In the following section, we describe how the objective
function is particularized for our particular problem and certain key points to
be considered with respect to the search space (S) defined by the fire problem.

2.2.1 Objective Function

As we mentioned in the previous section, we are interested in complex model
optimization regardless of how the model itself works. Under this assumption,
the underlying model/simulator is identified as a complex black-box function
about which no information is provided. However, there is the possibility of
measuring the quality of the results provided by the simulator for any input
vector (6). Consequently, the objective function (L) involves both executing

2.2. OPTIMIZATION PROBLEM 27

RFLO O @
Objective Function L

Prediction error (L(8))
FS —F PEE »

Yy

——>» Input Parameters ()

Figure 2.3: Objective function

the simulator and the evaluation of the quality of the results sequentially for
each input vector 8. If we identify each one of these components in figure 2.2,
we obtain the scheme depicted in figure 2.3. As we can observe, the objective
function L corresponds to executes the underlying fire simulator once, followed
by executing the prediction error estimator. The final value obtained is identified
to L(6) and its return is the value to minimize (prediction error).

Since our objective consists of finding the combination of input parameters
that minimizes the deviation of the simulator prediction from the real scenario
as fast as possible, we need to compare the simulated fire-lines against the
real fire-line and, according to the results of this comparison, assign a quality
measurement to the underlying scenario.

The objective function figure 2.3 takes a candidate solution (i.e a set of
input parameters) as inputs. Then it executes the simulator using the input
parameters and any inputs that we consider as fixed, such as the terrain. The
obtained simulated fire line is compared with the real fire line and assigns a real
value that describes the concordance (or disagreement) of the simulated fire line
with the real fire line. This value is what we call the prediction error.

The prediction error estimator must be a function, whose value has to cor-

rectly respond to the following rules:

e give a zero prediction error value when the simulated fire line exactly

concords with the real fire line and a positive value otherwise.

e better simulations should provide a smaller prediction error.

The fire lines are usually described in geometrical lines or as areas in two dimen-
sional euclidean surface. Therefore, the prediction error will be a measurement
made by matching two geometrical shapes.

28 CHAPTER 2. ENHANCED PREDICTION METHOD

2.2.2 Search Space

Fire simulators (as described above) needs many input parameters to be func-
tionally usable. The simulator inputs are usually supplied as maps of vegetation
and wind, which means that in each cell of the map there are several real valued
parameters. As described in section 1.4, forest fire model parameters can be
divided into three categories, meteorological, vegetation and topological. The
topology is considered as static and can be obtained from the available maps.
So we will not include the topology parameter in the optimization process.

The simplest case is when we have homogeneous vegetation and wind field.
In these cases, the simulators need no less than 10 different parameters at each
point. In mathematics, there is infinity number of possible solutions, but in
computers, every thing is digital and finite, so, if we are going to implement
some sort of algorithms to find the optimum, we have to consider the avail-
able computing precision, if we guarantee precession of six decimal places, each
variable could then take on 10°000°000 different values [79]. Thus with only 10
parameters the search space will be 10E70 different combinations.

2.3 Optimization Taxonomy

Optimization problems are classified [111] according to the attribute variable
type into continuous and discrete, and according to the presence of the con-
straints into unconstrained and constrained, and according to problem com-
plexity into linear and nonlinear. The optimization problem we have can be
classified as a continuous unconstrained nonlinear optimization prob-
lem. We will discuss the issues related with this type of problems in this thesis.

Figure 2.4 shows a taxonomy of optimization methods as focused in this the-
sis. The main criteria in classifying optimization strategies concerns the degree
of analytical formality implied when developing them. On the one hand, ana-
lytical methods uses calculus as a tool to analyze the objective function L(6).
This method requires a well defined description of the objective function and
its derivatives. On the other hand, non-analytical approaches can be further
divided into two more categories: traditional optimization methods and mod-
ern heuristics. Within the traditional optimization method we can include for
example, exhaustive search, and local search. Some representative examples
of modern heuristics methods are genetic algorithm, simulated annealing and
taboo search. The main difference between them is that the traditional meth-

2.4. ANALYTICAL METHODS 29

optimization strategies

analytical non-analytical
traditional modern heuristics

Figure 2.4: A classification of optimization methods

ods, although guarantee finding the global optimum, they are very expensive
for solving typical real-world problems, and they have a tendency to get stuck
in local optima.

2.4 Analytical Methods

The traditional analytical method is the method based on calculus derivation
of the objective function. The method is designed to find local minima and

maxima of a function using the following theory:

Theorem. Suppose that a is a local maximum or a local minimum of the
function L. Then either L'(a) = 0 or L'(a) does not exist.

Therefore, by finding the derivative of the function we can find all its maxima
and minima. We then only need to search for the global optima throughout
these points. Finding the derivative of the function in real-world problems is
not an easy task. Problems, such as the problem we have, do not have explicit
function definition but are a complex set of functions and algorithms that have
many loops and if-statements inside. However, if we were able to estimate the
corresponding function, it usually would have a complex derivative that will
make it difficult to find its roots.

30 CHAPTER 2. ENHANCED PREDICTION METHOD

2.5 'Traditional optimization Methods

There are many traditional algorithms designed to screen the search space for an
optimum solution, but none of these traditional methods are robust. Every time
the problem changes, the algorithm must also changes. The classical methods
of optimization can be very effective when appropriate to the task in hand. It
pays to know when and when not to use each one. As mentioned in section 2.3
optimization methods can be divided into two main categories: Those dealing
with partial solutions and those dealing with complete solutions. Exhaustive
search and local searches are examples of traditional methods that deal with
complete solutions. Greedy algorithms, divide and conquer and branch and
bound are examples of algorithms that deal with partial solutions.

2.5.1 Exhaustive Search

As the name implies, exhaustive search checks each and every solution in the
search space until the best global solution has been found. This means if you
do not know the value that corresponds to the evaluated worth of the best
solution, there is no way to be sure that you have found the best solution using
exhaustive search unless you examine everything. The size of the search space
is enormous. If we look at the example in the section 2.2.2 we have 10e+70
possible solutions if we need 1 second for each objective function evaluation
which implies execution of a fire simulator. We need le+71 seconds which is
equal to 3.1709791984e+63 years of computation to reach the optimal solution.

2.5.2 Local Search

Instead of exhaustively searching the entire space of possible solutions, we might
focus our attention within a local neighborhood of some particular solution. this
procedure can be explicated in four steps:

1. Pick a solution from the search space and evaluate its merit. Define this
as the current solution.

2. Apply a transformation to the current solution to generate a new solution

and evaluate its merit.

3. If the new solution is better than the current solution then exchange it
with the current solution; otherwise, discard the new solution.

2.5. TRADITIONAL OPTIMIZATION METHODS 31

4. repeat steps 2 and 3 until no transformation in the given set improves the

current solution.

The key to understanding how this local search algorithm works lies in the
type of transformation applied to the current solution. At one extreme, the
transformation could be defined to return a potential solution from the search
space selected uniformly at random. In this case, the current solution has no
effect on the probabilities of selecting any new solution, and in fact the search
becomes essentially enumerative. Actually, it is possible for this search to be
even worse than enumeration because you might re-sample points that you have
already tried. At the other extreme lies the transformation that always returns
the current solution and this is not productive.

From a practical standpoint, the right thing to do lies somewhere in between
these extremes. Searching within some local neighborhood of the current solu-
tion is a useful compromise. In that way, the current solution imposes a bias on
where we can search next, and when we find something better we can update the
current point to this new solution and retain what we learned. If the size of the
neighborhood is very small, then we might be able to search that neighborhood
very quickly, but we might also get trapped at a local optimum. In contrast, if
the size of the neighborhood is very large then we have less chance of getting
stuck, but the efficiency of the search may suffer. The type of transformation
that we apply to the current solution determines the size of the neighborhood,
therefore, we have to choose the transformation wisely in light of what we know
about the evaluation function and our representation.

The majority of numerical optimization algorithms for NLP (Non-Linear
Problems) are based on some sort of local search principle. However, there is
quit a diversity of these methods. One reason that there are so many different
approaches to NLP is that no single method is superior to all others. In general,
it is impossible to develop a deterministic method for finding the best global
solution in terms of L that would be better than exhaustive search.

Bracketing methods[79]. This method seeks to find the L(6*) = 0. Suppose
we know how to bracket 8* with two other numbers a and b. Then one very
simple way to find * is the method of bisecting the range between a and b,
finding this midpoint, m, determining the value of L(m) then resetting the left
of right limits of the range to m, depending on whether or not L(m) is positive.
If we continue to iterate this procedure, we eventually converge arbitrarily close
to a value 6* such that L(6*) = 0.

32 CHAPTER 2. ENHANCED PREDICTION METHOD

Note that this bisection is a local search method. It relies on two bracketing
points, a and b, but it still updates only one point at a time and has one current
best solution at any iteration. There are many other similar methods that will
converge much faster. For example Regula Falsi, which uses a secant line and
find the point that intersects the x-axis. Also, Newton’s method which uses the
tangent line in the same manner.

Gradient methods.[79] The basic idea is that we need to find a directional
derivative so that we can proceed in the direction of the steepest ascent or de-
scent, depending on whether we are maximizing or minimizing. If the evaluation
function is sufficiently smooth at the current candidate solution, the directional
derivative exists. Our challenge is to find the angle around the current solution
for which the magnitude of the derivative of the evaluation function with respect
to some step size s is maximized. By applying calculus, we can derive that this
maximum occurs in the direction of the negative gradient —V.L(0)

The method of steepest descent, then, is essentially this: Start with a candi-
date solution 6, where k = 1. Then, generate a new solution using the update

rule:

Or41 = 0r — Vo L(6k),

where k > 0, VL(6y)is the gradient at 0y,and oy, is the step size. The bigger ay,
is, the less local the search will be. The method is designed to ensure reductions
in the evaluation function for small enough steps, so the idea is to find the right
step size to guarantee the best rate of reduction in the evaluations of candidate

solutions over several iterations.

2.5.3 Greedy Algorithms

Greedy algorithms attack a problem by constructing the complete solution in a
series of steps. The reason for their popularity is simplicity. The general idea
behind the greedy approach is to assign the values for all the decision variables
one by one and, at every step, make the best available decision. Of course, this
approach assumes a heuristic for decision-making that provides the best possible
move at each step, the best “profit”, thus the name greedy. However, it is clear
that the approach is also shortsighted since taking the optimum decisions at
each separate step does not always return the optimum solution overall. There
really are no efficient greedy algorithms for NLP, but we can design an algorithm
that displays some greedy characteristics. For example, to optimize a function

2.5. TRADITIONAL OPTIMIZATION METHODS 33

of, say, two variables, we could set one of the variables at a constant and vary
the other until we reach an optimum. Then, while holding the new value of the
second constant, we could vary the first until a new optimum is reached, and
so on. Naturally, this line search can be generalized into n dimensions, but this
process performs poorly if there are interaction between the variables.

Strictly speaking, line searches are not really greedy algorithms because they
only evaluate complete solutions. Nevertheless, the intention of choosing the
best available opportunity with respect to single dimension at a time does follow
the general notion of greedy algorithms.

Greedy methods are conceptually simple, but they normally pay for that
simplicity by failing to provide good solutions to complex problems with inter-
acting parameters. The fire simulator optimization is a case of problems with
interdependencies between the parameters.

2.5.4 Divide and Conquer

Sometimes it is a good idea to solve a seemingly complicated problem by break-
ing it up into smaller simple problems. You might be able to then solve each of
those easier problems and find a way to assemble an overall answer out of each
part. This “divide and conquer” approach is really only cost-effective if the time
and effort required to complete the decomposition, solve all of the decomposed
problems, and then reassembling an answer is less than the cost of solving the
problem as it originally stands with all its inherent complexity. Also, you cau-
tion is required when you assemble the solution from the decomposed pieces, so
you actually do obtain the answer you were looking for. Sometimes, the chance
for assembling an overall solution disintegrates as you break the problem apart.

The original problem is replaced by a collection of subproblems, each of which
is further decomposed into sub-subproblems, and so forth, often in a recursive

manner. The process continues until the problems are reduced to being trivial.

2.5.5 Branch and Bound

Branch and bound is one such heuristic that works on the idea of successive
partitioning of the search space. We first need some means for obtaining a lower
bound on the cost for any particular solution (or an upper bound depending on
whether we are minimizing or maximizing). The idea is then that if we have a
solution with a cost of, say, ¢ units, we know that the next solution to try has

a lower bound that is greater than ¢, and we are minimizing, we don’t have to

34 CHAPTER 2. ENHANCED PREDICTION METHOD

compute just how bad it actually is. We can forgot about that one and move
on to the next possibility.

It helps to think about the search space as being organized like a tree. The
heuristic of branch and bound prunes away that area of interest.

2.6 Modern Heuristic Optimization Methods

We have discussed a few traditional problem-solving strategies. Some of them
guarantee finding the global solution, others do not, but they all share a common
pattern. Either they guarantee discovering the global solution, but are too
expensive (i.e., too time consuming) for solving typically real-world problems,
or else they have a tendency of “getting stuck” in local optima. Since there
is almost no chance to speedup algorithms that guarantee finding the global
solution, i.e., there is almost no chance of finding polynomial-time algorithms
for most real problems (as they tend to be NP-hard), the other remaining option
aims at designing algorithms that are capable of escaping local optima.

2.6.1 Taboo Search

Taboo Search (TS) [44, 65, 66] is an iterative procedure, which was originally
proposed for solving discrete combinatorial optimization problems. It was first
suggested by Glover (1986) [42] and since then it has become increasingly used.
It has been successfully applied to obtain optimal or sub-optimal solutions to
such problems as scheduling, timetabling, traveling salesperson, and layout op-
timization.

Taboo Search is based on the premise that problem solving, in order to qual-
ify as intelligent, must incorporate adaptive memory and responsive exploration.
The adaptive memory feature of TS allows the implementation of procedures
that are capable of searching the solution space economically and effectively.

The emphasis on responsive exploration in Taboo Search, whether in a de-
terministic or probabilistic implementation, derives from the supposition that a
bad strategic choice can yield more information than a good random choice. In
a system that uses memory, a bad choice based on strategy can provide useful
clues about how the strategy may profitably be changed. (even in a space with
significant randomness a purposeful design can be more adapt at uncovering the
imprint of structure.)

2.6. MODERN HEURISTIC OPTIMIZATION METHODS 35

Algorithm 1 Sketch of Taboo Search algorithm
TS Algorithm

k = 1 , Generate initial solution €

WHILE not finished
Identify N(f) € S (Neighborhood set)
Identify T'(d) eN(6) (taboo set)
Identify A(¢) €T(0) (Aspiration set)
Choose #' €

N(@) —T())UA(f), for which L(#') is maximal
0 <0
k= k+1.

END WHILE

Responsive exploration integrates the basic principle of intelligent search, i.e.
exploiting good solution features while exploring new promising regions. taboo
search is concerned with finding new and more effective ways of taking advan-
tage of the mechanisms associated with both adaptive memory and responsive
exploration. The development of new designs and strategic mixes makes TS a
fertile area for research and empirical study.

Quoting Glover and Laguna (1993, p. 70)[43], "taboo search has its an-
tecedents in methods designed to cross boundaries of feasibility or local opti-
mality standardly treated as barriers, and to systematically impose and release
constraints to permit exploration of otherwise forbidden regions".

TS begins in the same way as ordinary local or neighborhood search, proceed-
ing iteratively from one solution (parameter vector) to another until a chosen
termination criterion is satisfied. Each vector of the search space (8 € S) has an
associated neighborhood N(6) C S, and each solution 8’ € N(6) is reached from
0 by an operation called move. There is a set of k moves, M = {m, ..., my}, and
the application of these moves to a feasible solution (# € S) leads to k usually
distinct, solutions M (0) = {m1(8),...,m(8}. The subset of feasible solution
belonging to m(6) is known as the neighborhood of 8(N(6)) (see figure 2.5).

The method commences with a (possibly random) solution 6y € S and deter-
mines a sequence of solution g, 1, ...,0, € S. At each iteration §;; is selected
from the neighborhood N(6;) and the aspirant set A(6;) C T'(;) of taboo neigh-
bors. Then 6, is the neighbor of §; which is either an aspirant or not taboo and
for which L(6;41) is maximal; that is L(6;41) > L(8')V8' € N(8;)—-T(6;)UA(8;).

A sketch of the taboo Search algorithm is provided in algorithm box 1.

36 CHAPTER 2. ENHANCED PREDICTION METHOD

search space (S)

-

Neighbourhod set (N)

The point 6

7

move (ml)

Figure 2.5: Tabu search

2.6. MODERN HEURISTIC OPTIMIZATION METHODS 37

Note that it is possible, and even desirable, to avoid convergence at a local
optimum, that L(6;41) < L(6;). The conditions for a neighborhood to be taboo
or an aspirant will be problem-specific. For example, a move m, may be taboo
if it could lead to a solution which has already been considered in the last ¢
iterations (regency or short-term condition) or which has been repeated many
times before (frequency or long-term condition). A taboo move satisfies the
aspiration criteria if, for example, the value of L(8') with §' € T'(6,) satisfies
L(6") > L(0;)Vi,o <i < j.

2.6.2 Simulated Annealing

Simulated Annealing is a stochastic search technique that avoids getting trapped
in local optima by also accepting, in addition to transitions corresponding to an
increase in function value, transitions corresponding to a decrease in function
value. The latter is done in a limited way by means of a probabilistic acceptance
criterion. In the course of the maximization process, the probability of accepting
deteriorations in the course of the maximization process, the probability of
accepting moving away from local optima and exploring the feasible region S in
its entirety.

Simulated annealing originated from an analogy with the physical annealing
process of finding low energy states of a solid in a heat bath. Pincus (1970)[84]
developed an algorithm based on this analogy for solving discriminations of
continuous global optimization problems. Many applications to date have been
of continuous global optimization problems.

As with any search algorithm, simulated annealing requires the answers for

the following problem-specific questions:
e What is a solution?
e What are the neighbors of a solution?
e What is the cost of a solution?
e How do we determine the initial solution?

These answers yield the structure of the search space together with the definition
of neighborhood, the objective function, and the initial starting point. Note,

however, simulated annealing also requires answers for additional questions:

¢ How do we determine the initial “temperature” T?

38 CHAPTER 2. ENHANCED PREDICTION METHOD

Algorithm 2 Sketch of Simulating Annealing algorithm
SA Algorithm
Step 0. Set n =0,choose Ty € [0,00]and 6 € S
Step 1. Select Y, according to
the probability distribution R(f,,.).
Step 2. If L(Ont1) > L(ynt1), set Opt1 < ynta,
If L(ynt1) < L(On+1), set Oni1 <= ynya
with probability ezp((L(yn+t1) — L(Ont1))/Th)-
Otherwise, set 0,411 < 6,.
Step 3. Set T,41 =9(T,n),
increment n and return to Stepl.

end.

e How do we determine the cooling ratio g(T',n)?
e How do we determine the termination condition?

e How do we determine the halting criterion?

The temperature 7" must be initialized before executing the procedure. Should
we start with 7" = 100, T = 1000, or something else? how should we choose
the termination condition after which the temperature is decreased and the
annealing procedure reiterates? Should we execute certain number of iterations
or should we use some other criterion instead? Then, how much or by what
factor should the temperature be decreased? By one percent or less? When
should the temperature be decreased? And finally, when should the algorithm
halt, i.e., what is the “frozen” temperature?

Most implementations of simulated annealing follow a simple sequence of

steps:

STEP 1: T < Thax
select 6, at random

STEP 2:pick a point 6,, from the neighborhood of 6,
if L(6,)is better than L(f.)
then select it (6, + 6.)
else select it with probability exp(—AL(8)/T)
repeat this step K;times

STEP 3:set T < rT

2.6. MODERN HEURISTIC OPTIMIZATION METHODS 39

then goto STEP 2
else goto STEP 1

Here we have to set the values of the parameters T}y, 44, K¢, r, and T}y,;n, which
correspond to initial temperature, the number of iterations, the cooling ratio,
and the frozen temperature, respectively.

In the area of numerical optimization, the issues of generating the initial
solution, defining the neighborhood of a given point, and selecting particular
neighbors are straightforward. The usual procedure employs a random start
and Gaussian distributions for neighborhoods. Bit implementations differ in
the methods for decreasing temperature, the termination condition, the halting
condition, and the existence of a post-processing phase (e.g., where we might
include a gradient-based method that would locate the local optimum quickly).
Note that continuous domains also provide for an additional flexibility: the size
of the neighborhood can decrease together with the temperature. If parameters
o;(standard deviation) decrease over time, the search concentrates around he

current point resulting in better fine tuning.

2.6.3 Genetic Algorithm

Genetic Algorithms (GA) are numerical optimization algorithms inspired by
both natural selection and natural genetics. The method is a general one, ca-
pable of being applied to an extremely wide range of problems. Unlike some
approaches, their promise has rarely been over-sold and they are used to help
solve practical problems on a daily bases. The algorithms are simple to under-
stand and the required computer code is easy to write.

In many ways, the thought of extending the concept of natural selection and
natural genetics to other problems was tried from the very beginning. Computer
scientists have visions of systems that mimicked one or more of the attributes
of life. The idea of using a population of solutions to solve practical engineering
optimization problems was considered several times in the 1950’s and 1960’s.
However, GAs were in essence invented by one man - John Holland - in the
1960’s. More recently others, for example De Jong, in a paper entitled “Genetic
algorithms are NOT function Optimizers” [32], have been keen to remind us
that GAs are potentially far more than just a robust method for estimating a
series of unknown parameters within a model of a physical system. However
in the context of this text, it is this robustness across many different practical

optimization problems that concerns us most.

40 CHAPTER 2. ENHANCED PREDICTION METHOD

So what is a GA? A typical algorithm might consist of the following:

1. a set of guesses (or population) of the solution to the problem;

2. a way of calculating how good or bad the individual solutions within the

population are;

3. a method of mixing fragments of the better solutions to form new, (on
average better solutions); and

4. a mutation operator to avoid permanent loss of diversity within the solu-

tions.

With typically so few components, it is possible to start getting the idea of
just how simple it is to produce a GA to solve a specific problem. There is no
complex mathematics, or this three are few hard and fast rules to what exactly
a GA is.

Rather than starting from a single point (or guess) within the search space,
GAs are initialized with a population of guesses. These are usually random
and will be spread throughout the search space. A typical algorithm then uses
three operators, selection, crossover and mutation (chosen in part by analogy
with the natural world) to direct the population (over a series of time steps or
generations) toward convergence at the global optimum.

Typically, these initial guesses are held as binary encoding (or strings) of
the true variables, although an increasing number of GAs use "real-valued"
(i.e. based-10) encoding, or encoding that have been chosen to mimic in some
manner the natural data structure of the problem. This initial population is
then processed by the three main operators.

Selection attempts to apply pressure upon the population in a manner similar
to that of natural selection found in biological systems. Poorer performing
individuals are weeded out and better performing, or fitter, individuals have a
greater than average chance of promoting the information they contain within
the next generation.

Crossover allows solutions to exchange information in a way similar to that
used by a natural organism undergoing sexual reproduction. One method
(termed single point crossover) is to choose pairs of individuals promoted by
the selection operator, randomly choose a single locus (point) within the binary
strings and swap all the information (digits) to the right of this locus between
the two individuals (see figure 2.6).

2.6. MODERN HEURISTIC OPTIMIZATION METHODS 41

Crossover point

Parent 1

Parent 2

Chid 1

Child 2

Figure 2.6: Crossover

Mutation is used to randomly change (flip) the value of single bits within
individual strings. Mutation is typically used very sparingly.

After selection, crossover and mutation have been applied to initial popula-
tion, a new population will have been formed and the generational counter is
increased by one. This process of selection, crossover and mutation is continued
until a fixed number of generations have elapsed or certain convergence criterion
has been met.

On a first encounter, it is far from obvious that this process is ever likely to
discover the global optimum, let alone from the basis of a general and highly
effective search algorithm. However, the application of the technique to numer-
ous problems across a wide diversity of fields has shown that it does exactly
this. The ultimate proof of the utility of the approach possibly lies with the
demonstrated success of life on earth.

From the above discussion, we have seen that Genetic Algorithms (GAs)
seek to mimic natural evolution’s ability to produce highly functional objects.
Natural evolution produces organisms. Genetic algorithms produce sets of pa-
rameters, programs, molecular designs, and many other structures. Genetic
algorithms usually solve problems by following the 4 steps shown in algorithm
box 3.

A key issue is what constitutes better individuals or better chromosomes.
This is determined by a fitness function. The fitness function takes a chromo-
some (set of genes) as input and returns a number representing the fitness of that

42 CHAPTER 2. ENHANCED PREDICTION METHOD

Algorithm 3 Sketch of Genetic Algorithm
1. Randomly generating the first population of individual
potential solutions.

2. Evaluate the fitness function for each population member.

3. While not(an acceptable solution is found or exhaustion sets in) Obtain a
new generation:

3.1 Elitism: best individuals are copied into the new generation.
repeat

3.2 Selection: select two "parent" individuals with a bias
toward better individuals to produce children.

3.3 Crossover: each of two parents is divided into two parts and one part from
each parent is combined into a child.

3.4 Mutation: a single "parent"” is randomly modified to generate a child.
until a new population has been completed

end while

chromosome. The fitness values will be used to discriminate which members of
the population will be considered/discarded to generate the new population.
The genetic algorithm will be consecutively applied to obtain generations until

an acceptable solution has been found.

Genetic algorithms differ in their representation of solutions. Bit string rep-
resentations were used in the first genetic algorithms [56], but arrays of floating
point numbers, special symbols that generate circuits [57], robot commands [59],
and many other symbols may be found in the literature. For an excellent review
of genetic algorithms and related techniques, see [12]. In our case, a chromosome
is defined as the set of input parameters needed by the simulator to provide the
output fire line. Since all involved parameters are represented by floating point
numbers, we took these patterns as a solution representation for all elements of

our chromosomes.

In the following section, we will discuss the our version of the heuristic

techniques and how they can be fitted in one framework.

2.7. EVOLUTIONARY METHODS THEORY 43

2.7 Evolutionary Methods Theory

In this section, we will introduce our vision of the heuristic algorithms. This
vision will help us in the implementation. The main advantage of this approach
is that it will not be necessary to implement different data structures and classes
every time we want to implement different algorithm. According to this vision
it will be easier to understand the implementation of the algorithms. The main-
tenance of the software will be more efficient. In future, it will be easier to
implement other algorithms. The resulting software can be re-adapted to be
used for purposes other that first intended purpose.

Evolutionary algorithms mimic the metaphor of natural biological evolution.
Evolutionary algorithms operate on a population of potential solutions applying
the principle of survival of the fittest to produce ever better approximations to
a solution. At each generation, a new set of approximations is created by the
process of selecting individuals according to their level of fitness in the problem
domain and breeding them together using operators borrowed from natural ge-
netics. This process leads to the evolution of populations of individuals that are
better suited to their environment than the individuals that they were created
from, just as in natural adaptation.

Evolutionary algorithms model natural processes, such as selection, recom-
bination, mutation, migration, locality and neighborhood. Evolutionary algo-
rithms work on populations of individuals instead of single solutions. In this
way, the search is performed in a parallel manner.

From the above discussion, it can be seen that evolutionary algorithms differ
substantially from more traditional search and optimization methods. The most
significant differences are:

e Evolutionary algorithms search a population of points in parallel, not a
single point.

e Evolutionary algorithms do not require derivative information or other
auxiliary knowledge; only the objective function and corresponding fitness
levels influence the directions of search.

e Evolutionary algorithms use probabilistic transition rules, not determin-

istic ones.

¢ Evolutionary algorithms are generally more straightforward to apply

44 CHAPTER 2. ENHANCED PREDICTION METHOD

are optimization

enerate initial population evaluate objective function
¢ pop 9 4 criteria met?

best individuals

Generate new
POpUlation selection @

‘ start ’

perturbation

Figure 2.7: evolutionary algorithm

e Evolutionary algorithms can provide a number of potential solutions to a
given problem. The final choice is left to the user. (Thus, in cases where
the particular problem does not have one individual solution, for example,
a family of Pareto-optimal solutions, as in the case of multi-objective opti-
mization and scheduling problems, the evolutionary algorithm is then po-
tentially useful for identifying these alternative solutions simultaneously.)

Figure 2.7 shows a simple sketch of the evolutionary algorithm. The main

parts of the evolutionary algorithms are:

Selection where the algorithm chooses certain solutions in a stochastic way to
use them as a base to create new solutions. The selection is biased toward
good solutions. It is necessary some times to choose solutions that are not
the best to avoid trapping in local minima.

Perturbation this part is applying some operations to introduce new solutions,
these solutions are usually from the neighborhood of the current solutions.

Genetic algorithm, taboo search and simulated annealing can be adapted to the
evolutionary approach. Genetic algorithm by nature works on a population of
individuals at a time. The GA uses mutation and crossover for this purpose.
The selection in the genetic algorithm depends on the competition among the
candidate solutions. The perturbation is mutation and crossover. Where muta-

2.7. EVOLUTIONARY METHODS THEORY 45

tion is some kind of searching the neighborhood of the solution and crossover is
combining more than one solution to create some others.

Simulated annealing also can fit in this framework. The original SA algo-
rithm explores the search space by examining one solution at a time, but it can
be adapted to fit the evolutionary approach by exploring a set of neighbors at a
time. This set of neighbors is analogical to the current generation in the genetic
algorithm. Selection in SA depends on choosing better solution, if not found
it may choose the next solution according to decreasing probability. It selects
a solution from the neighborhood of the current solution. If in the neighbor-
hood there is a better solution it selects it, otherwise, it selects another solution
according to decreasing probability. The creation of the neighborhoods can be
seen as an operator of perturbation. It is analogical to mutation in the genetic
approach.

In the case of taboo search, it searches in the neighborhood as with simulated
annealing, but the selection is different. It uses a memory instead of probability
to avoid local minima. Selection in TS depends on memory. It uses experience
from the previous iterations. Perturbation is similar to the case of SA, it is
creating the neighborhood and it also may use cross over. In all the three cases
we can use the same perturbation operators.

These methods participate the same idea of exploring not only the best
solution to avoid trapping in local minima. All of these methods have algorithm
parameters that need to be tuned to make a trade-off between exploring the
entire search space and, at the same time, concentrate on the promising regions.
For instance, in the genetic search we can modify the mutation and crossover
probabilities. We can also change the strategy of the selection to give more
stress on the good solutions or to relax the selection to explore more regions.
Some ideas from simulated annealing can also be used in GA such as changing
the mutation probability or mutation radius during the iterations. In the case
of simulated annealing, we can do the same by choosing the starting and ending
temperature and the cooling strategy. The size of the taboo memory and the
taboo moves do the same in the case of taboo search.

In summary, the three modern heuristic approaches can be seen as one itera-
tive search approach that have as input a population of solutions and as output
another population of solutions, and it uses selection and perturbation operators
to explore the search space. Taking in account exploring all the search space
and at the same time concentrating in the neighborhood of the good solutions.

Table 2.1 summarizes the differences between the three algorithms. The se-

46 CHAPTER 2. ENHANCED PREDICTION METHOD

Genetic Algo- | taboo search Simulated An-
rithm nealing
selection competence be- | according the | decreasing proba-
tween solutions memory bility
perturbation mutation, neighborhood neighborhood
crossover

Table 2.1: evolutionary approach

lection in the genetic algorithm depends on the competence between the current
generation of the individuals: better individuals have more chance to reproduce
new solutions. In the case of taboo search, the memory decides the next region
to explore. The solutions that have been explored will not be chosen. Simulated
annealing starts as random search choosing any solution from the neighborhood,
then it restricts the selection to better solutions at the end of the iterations.

2.8 Chapter Conclusions

In this chapter we have developed a methodology to enhance the prediction
methods. We have theoretically shown that heuristic optimization methods
are strong candidates to be used in the enhanced prediction method. At the
end of the chapter, we developed a theory that can help in simplifying the
implementation and parallelization of the heuristic optimization methods. In

the next chapter, we show how to parallelize the proposed methodology.

Chapter 3

Parallelizing the Enhanced
Prediction Method.

“Pues aunque movais més brazos que
los del gigante Briareo, que lo habéis

[13

de pagar.

Miguel de Cervantes

As we have previously commented, the main goal of this work consists of
carrying out parameter optimization and prediction faster than real fire evolu-
tion so that the prediction can be useful in deciding which actions need to be
taken in tackling the emergency. Consequently, the response time of the pre-
diction framework (simulator plus optimization) will be bounded by hard real
time constraints. The response time of the program must be faster than the real
fire. Although modern heuristic optimization techniques may reduce the time of
search, we still could make the execution time faster. The computational time
consumed for optimizing process clearly depends on two elements: the function
to be optimized (objective function), which involves the execution of the un-
derlying simulator, and the number of times the optimization process should be
iterated to converge. In this chapter, we focus on how to overcome these two
sources of prediction delay by taking advantage of the computing systems based
on parallel and distributed systems. Distributed systems are currently widely
available at a reasonable cost, and the software technology is mature enough

47

48 CHAPTER 3. PARALLELIZING THE METHOD

to allow their intensive use. Therefore, we have parallelized the proposed en-
hanced prediction method in order to reduce the execution time involved in each
iteration of the whole process.

In the following sections, we will start with the analysis of different parallel

programing paradigms. Then, we will describe the parallel enhanced method-

ology.

3.1 Parallel Programming Paradigms

It has been widely recognized that parallel applications can be classified into
some well defined programming paradigms. A few programming paradigms are
used repeatedly to develop many parallel programs. Each paradigm is a class
of algorithms that have the same control structure [53].

Experience to date suggests that there are a relatively small number of
paradigms underlying most parallel programs. The choice of paradigm is de-
termined by the available parallel computing resources and by the type of par-
allelism inherent in the problem. Computing resources may define the level of
granularity that can be efficiently supported on the system. The type of paral-
lelism reflects the structure of either the application or the data and both types
may exist in different parts of the same application. Parallelism arising from
the structure of the application is named as functional parallelism. In this case,
different parts of the program can perform different tasks in a concurrent and
cooperative manner. But parallelism may also be found in the structure of the
data. This type of parallelism allows the execution of parallel processes with
identical operation but on different parts of data.

There is a wide range of parallel program paradigm classification but the fol-
lowing are the most popular used in parallel programming [22]: Master/Worker
(Task-Farming), Single Program Multiple Data (SPMD), Data Pipelining, Di-
vide and Conquer and Speculative Parallelism [22].

In the following subsections, we briefly describe each one of these parallel

programming paradigms.

3.1.1 Master/Worker

A master-worker application consists of two entities: a master and multiple
workers. The master is responsible for decomposing the problem into small
tasks and distributes these tasks among a farm of worker processes, as well

3.1. PARALLEL PROGRAMMING PARADIGMS 49

Master
distribute tasks

— | > T

Worker1| | Worker2 Worker3| Worker4

Terminate
Figure 3.1: A master/worker structure

as for gathering the partial results in order to produce the final result of the
computation. The worker processes receive a message from the master with
the next task, process the task, and send the results to the master. The master
process may carry out some computations while tasks of a given batch are being
completed. After that, a new batch of tasks is assigned to the master and this
process is repeated several times until completion of the problem (after K cycles
or iterations). Figure 3.1 shows how a Master-Worker application proceeds.

3.1.2 Single Program Multiple Data (SPMD)

In the SPMD paradigm each process executes basically the same piece of code
but on a different part of data. This involves splitting data among the available
processors. This type of parallelism is also referred to as geometric parallelism,
domain decomposition, or data parallelism.

Many physical problems have an underlying regular geometric structure,
with spatially limited interactions. This homogeneity allows the data to be
distributed uniformly across the processors, where each one will be responsible
for a defined spatial area. Processors communicate with neighboring processors
and the communication load will be proportional to the size of the boundary
of the element (see figure 3.2). SPMD can be very efficient if the data is well
distributed by the processes and the system is homogeneous. This paradigm is
very sensitive to the loss of some process. Usually, the loss of a single process

50 CHAPTER 3. PARALLELIZING THE METHOD

Distribuate data
Calculate Calculate Calculate Calculate
Bichange || Exchange || Exchange « Exchonge
calculote calculate calculate calculate
Collect Results

Figure 3.2: Basic structure of a SPMD program.

is enough to cause a deadlock in the calculation in which none of the processes

can advance beyond a global synchronization point.

3.1.3 Data Pipelining

This program paradigm is based on a functional decomposition approach: the
tasks of the algorithm, which are capable of concurrent operation, are identi-
fied and each processor executes a small part of the total algorithm. Figure
3.3 presents the structure of this model. processes are organized in a pipeline,
each process corresponds to a stage of the pipeline and is responsible for a par-
ticular task. The communication pattern can be very simple since the data
flows between the adjacent stages of the pipeline. For this reason, this type of
parallelism is also sometimes referred to as data flow parallelism. The commu-
nication may be completely asynchronous. The efficiency of this paradigm is
directly dependent on the ability to balance the load across the stages of the
pipeline. The robustness of this paradigm against reconfigurations of the sys-
tem can be achieved by providing multiple independent paths across the stages.
This paradigm is often used in data reduction or image processing applications.

3.1. PARALLEL PROGRAMMING PARADIGMS 51

Process 1 Process 2 Process 3

— 3] Phase A »[Phase B Phase ¢ ———
Input Output

Y

Figure 3.3: Data pipelined structure

Main problem

O
BgIANS

N

OO0 OO0 OO

Sub-problllems

Figure 3.4: Divide and conquer as a virtual tree.

3.1.4 Divide and Conquer

Under this program paradigm, a problem is divided into two or more subprob-
lems. Each of these problems is solved independently and their results are
combined to give the final result. Often, the smaller problems are just smaller
instances of the original problem, giving rise to recursive solutions. One can
identify three generic computational operations for divide and conquer: split,
compute and join. The application is organized in a sort of virtual tree, as is

depicted in figure 3.4

3.1.5 Speculative Parallelism

This paradigm is employed when it is quite difficult to obtain parallelism through
anyone of the previous paradigms. Some problems have complex data depen-
dencies, which reduces the possibilities of exploiting the parallel execution. In
these cases, an appropriate solution is to execute the problem in small parts but
use some speculation or optimistic execution to facilitate the parallelism.

52 CHAPTER 3. PARALLELIZING THE METHOD

3.2 Parallel Enhanced Prediction Approach

Recalling the optimization approach described in section 2.7, the method de-
pends on using several candidate solutions to create new solutions using an
optimization method. The optimization method depends on the values of ob-
jective function of each solution to create new set of solutions. So we need to
evaluate the objective function for each candidate solution before feeding it to
the optimization method. While the evaluation of the objective function for the
candidate solutions is independent in one iteration, we can evaluate it in parallel
(see figure 3.5). We can assign for each available processor a candidate solution
to execute the objective function, then we need to collect these solutions. Once
the objective function is calculated for all the candidate solutions of the current
iteration, the optimizer function is called to process them and create a new set
of candidate solutions. Once more, the cycle starts again by distributing the

new set of solutions to the farm of processors.

This process can be described as iterative master/worker. In addition to
the master task of distributing and collecting the tasks to and from workers it
executes the optimization algorithm, and, obviously, the workers will execute
the prediction error, which consists of executing the simulator and comparison

method (see section 2.2.1).

As described earlier the objective function consists of executing a fire simu-
lator in addition of prediction error evaluation. This indicates that the objective
function will hold many execution times. So, we expect that this approach to
parallelize the method would have a good scalability because it has a reasonable

granularity and a great portion of the execution time can be parallelized.

3.3 Black-Box Optimization Framework (BBOF)

In this section, we describe the implementation of the optimization framework
called BBOF (Black-Box Optimization Framework), which works in an iterative
fashion, where it moves step-by-step from an initial set of guesses to a final value
that is expected to be closer to the true (optimal vector of parameters) than the
initial guesses. This goal is achieved because, at each iteration of this process, a
preset optimization technique is applied to generate a new set of guesses, which
should be better than the previous one.

3.3. BLACK-BOX OPTIMIZATION FRAMEWORK (BBOF) 53

t=t, =t t=t,
time e *
.7 SRS .
‘ Worker 1 ; E P
! > I : /
- Input Parameters | —— | FS % PEE] Master ; l
o [f \
FS | PEE Optimal Input
> P Input Parameters 2 *\ PEE ‘}‘} OPT T’ Parameters —» -»> /P”D
. v

e
P
: Workern — rrrrriiniian v :
: E | :
; FS PEE
¥ —i—) Input Parameters n ——Jp» 4’1’ X
i & H '
i 1

,

Figure 3.5: Parallel enhanced prediction approach

3.3.1 BBOF - Design Issues

Basically, we can decompose the implemented OF (Optimization Framework)
into two separate blocks: the optimizable block and the optimizer block. We
focus now on optimizable blocks. Optimizable blocks can be identified with
black-boxes objective functions due to the complexity of the objective func-
tion. Objective functions usually consists of several iterative solutions, table
selections and if conditions. This feature makes it impossible to reduce it to a
simple mathematical expression and to know its derivatives, furthermore, the
implemented optimizer blocks seeks a global optimum.

Since the two above-mentioned blocks are independent of each other, we can
experiment in a "plug&play" fashion with different complex objective functions
and global optimization techniques at the optimizable and optimizer blocks,
respectively.

This basic architecture of our OF system is shown in figure 3.6. This sys-
tem works in an iterative way, where starting from a set of guesses of the input
parameters (vector) needed by the black-box function, we can obtain a set of
results that allow the optimizer block to generate a new set of vectors of param-
eters. In other words, this process proceed with the following iterative steps:

1. Create a set of initial vectors randomly or distributed around some ex-
pected vector of parameters.

54 CHAPTER 3. PARALLELIZING THE METHOD

Worker 1
> i N
Input Parameters 1 | Optimizable
> | P ! P Master
J
_Worker 2 |f)
{ i imizer| | Best soluti
] . | Optimizer| | ——p» Best solution
Rt 2 Ly Input Parameters 2 > ! Optimizable E_’]\-’ I)i
' e ~ | T
L}
»
. Worker n .
' | S—— .
' > Input Parameters n » | Optimizable I_> '
: i :
n :

New set of solutions

Figure 3.6: Master and worker process interaction.

2. Evaluate the objective function of the given vectors.

3. Apply a method (optimization technique) to move from one set of vectors
to a better set.

4. Repeat 2 and 3 until satisfying exit conditions. (Number of iterations,

accepted value ... etc).

The black box can be any system that has a vector of parameters as input and
one value or more as output to be optimized. The method to generate a better
set of vectors for next iteration can be a range of methods such as genetic,
taboo, random, analytical etc... Since this process has an inherent parallel
structure, the implemented OF tool has been developed taking advantage of
existing middle-ware tools, such as MPI, PVM ..etc.

We can easily match each element of this master-worker scheme with the
main components of the iterative optimization framework BBOF. In particular,
since the evaluation of the objective function for each guess is independent of
each other, they can be identified as the work (tasks) done by the workers. The
responsibility for collecting all the results from the different workers, and for
generating the next set of guesses by applying a given optimization technique,
will be concentrated on the master process.

For the master-worker communication purpose, BBOF uses the MPI (Mes-
sage Passing Interface) library. BBOF is a set of C++ abstract-based classes
that must be re-implemented in order to fit the particular function to be opti-
mized and the specific optimization technique. The most relevant classes within
BBOF are the following;:

3.3. BLACK-BOX OPTIMIZATION FRAMEWORK (BBOF) 55

1
Worker | E e
| | : .
G) emelb [; ;
| i
} P Input Parameters |——Pp | i Master i ; v
l I
. 1 | g P
FS \-»| PEE [P | Optimal Input >
- P Input Parameters 2 ———P» 4} OPT Ir} DAtatieters s P (Q\Iil_/)
: B—
! Worker n TRt v =
A e ——) G
I H :
S
] A:—} InputParametersn*}i+ PEE I s
P) :
: 1
1

Figure 3.7: Master

BBOF _objective function: this class corresponds to the objective function
which is going to be optimized. This is the only function that the user
has to change if he wants to optimize his own objective function. It takes
an individual, evaluates the objective function according to the param-
eter vector it consists, and modifies the individual to hold the objective
function evaluation result. This class executes on the worker.

BBOF _guess: this class is identified with a vector of real numbers and the
value of the objective function. In other words, this class represents the
information related to the tasks to be executed by the workers.

BBOF _master _set: is a set of BBOF_guess classes (vector guesses) and
the current iteration number. One important method within this class is
the method denoted by BBOF _optimization technique, which is the
optimization technique to be applied. This class keeps the best individual
and it reports makes report about the current set of guesses (such as
average, standard deviation ...etc).

56 CHAPTER 3. PARALLELIZING THE METHOD

3.3.2 BBOF - The Master Process

As we have commented in our case the master process deals with the execution
of the selected optimization technique. In the following subsection we describes

in detail each one of the implemented optimization strategies.

3.3.2.1 Classical Optimization Techniques

Mathematical-Statistical To implement an analytical approach we need
information about the derivatives of the function that we want to optimize. In
this work, we assumed that we only have the system as a black-box and we do not
know anything about the function except that we can feed some parameters and
get a result. To overcome this problem, we propose finding an approximation of
the systems. We create a model of the response surface by means of statistics.
In this work we have implemented a parabolic function that is smooth and has
one global minimum and it is easy to derivate. It can be written formally as

the following

F(X) = Bo+ Buiim1 + Brazi + oo + BinaT + oo + Bp1zp + Bpax2e. + Bpma?
p p

where f is approximation of L.

In order to find the optimum of this function using calculus, we need to
derive it for each variable z; and to find the zero of the derivative. The formula
describing this derivation form and the equation we should solve is the following:

a1z, = Bia + 2Bz + ... + nBixl! =0,Vi € {1..p}

To find the coefficients of the approximated function, we evaluate a large set
of vectors to obtain a significant set of values, which allow us to better obtain
the function. Subsequently, we apply the multiple linear regressions on this set
to find the coefficients of the function.

This approach can help us, if and only if, the cost function can be approxi-
mated to a good precision to some function that is calculus friendly. In this case,
the BBOF only performs one iteration starting from a wide set of parameters

3.3. BLACK-BOX OPTIMIZATION FRAMEWORK (BBOF) 57

Algorithm 4 Analytical

1- Evaluate a large set of randomly generated vectors.

2- Consider the input as function parameter and their elevation to the power
from 1 to n as variables of the function X where

3- consider the output of black-box as the result of the function (Y vector).

4- Compute the fitted function of some degree (n) using multiple regrision.

5- Get partial derivatives as illustrated above.

6- Find the root of the partial derivatives from 4.

Evaluate the roots that have been calculated from 5.

vectors. The obtained results from the evaluation of the objective function for
all these vectors are used to obtain the parabolic mathematical expression of

the function. The steps shown in algorithm box 4.

To calculate the fitted function we used the function from the GSL (GNU
Scientific Library) library, gs1_fit_linear that computes the best-fit parame-
ters ¢ of the model y = Xc for the observations y and the matrix of prediction
variables X. The best-fit is found by singular-value decomposition of the matrix
X. Any components which have a zero singular value (to machine precision)
are discarded from the fit. The formulation can be used to fit to any number of
functions and/or variables by preparing the matrix X appropriately. To fit to

n — th order polynomial in z, we used the following matrix

where ¢ = 0...n for all the n parameters we have.

After finding the best-fit parameters and formulating the derivative parame-
ters by the formula above, we pass these parameters to the function in the same

library to solve the roots of the functions as follows:

1. For the function in the order of 2, we used the following formula to calcu-

late the best parameter.
* __ _/Bil
x; =

2Bio

2. For the function of the order 3, we have derivatives as quadratic equations

and solve them using the GSL function gsl_poly_solver_quadratic,

58 CHAPTER 3. PARALLELIZING THE METHOD

this function finds the root of the quadratic equation,

az’ +br+c = 0
a = 30
b = 2,3i2
c = Pa

the number of real roots (either zero or two) is returned. The number of roots
found depends on the sign of the discriminate. This will be subject to rounding
and cancellation errors when computed in double precision, and will also be
subject to errors if the coefficients of the polynomial are inexact. These errors
may cause a discrete change in the number of roots. However, for polynomials
with small integer coefficients, the discriminate can always be computed exactly.

In the case of polynomial of order greater than 3, we use the general polyno-
mial solver gsl_poly_complex_solver this function computes the root of the
general polynomial

P(z) = ao+az+ ast® + ...+ ap_1z —1
(i + 1) Bpit1

a;

Using balanced-QR [39] reduction of the companion. The function uses
an iterative method to find the approximate location of roots of higher order
polynomials.

Random We implement Random Search by implementing the procedure that
creates a new set vector (OFNewSet) so that it takes the old set of solutions and
searches in it for one vector that provides the objective function value better
than the one reached so far, if it finds one that satisfies this criteria it changes
the best so far by that one. Then it creates another set from the same size
randomly, by generating a random number for each parameter within the range
of that parameter. It also keeps the best vector reached so far and reports it in
the output report. The random function is equally distributed.

3.3. BLACK-BOX OPTIMIZATION FRAMEWORK (BBOF) 59

3.3.2.2 Modern Heuristic Optimization Techniques

Genetic Recalling from section 2.6.3 that GAs are characterized for emulat-
ing natural evolution, Therefore, under GAs scenarios, we refers to a vector
of parameters as chromosome, a gene is identified with one parameter and the
population is the set of vectors (chromosome) used for one iteration of the algo-
rithm. Furthermore, four transmissions operators are defined: elitism, selection,
crossover and mutation, whose particular implementation in our approach is now
described:

Elitism: The two best solutions to the problem discovered are copied to the
next generation. We choose two because our implementation of crossover
needs two parents to produce two children and the population size is as-
sumed even. It can be implemented by copying one elite individual and
the population need to be odd. Or by producing one offspring from two
parents by crossover. Our implementation maintains the same number of

vectors in each generation.

Selection: We implement the biased selection (or fitness-proportional, or roulette
wheel) where the individual with greater fitness has more probability of
being chosen. For this purpose, a random number between zero and the
summation of all fitness is generated. Then, the fitness of individuals are
added in turn and when the partial sum equals or exceeds the random

number previously obtained, the corresponding individual is selected.

Crossover: In particular, we implement arithmetic crossover. Crossover pro-
ceeds by cutting the pair of parents obtained by the selection operation at
a random locus (picked by throwing a random number between 0 to the
length of the chromosome). The two obtained parts of the chromosome
will each be equally copied to one of two children in the same locus as
they occupied in the parent chromosome. Furthermore, the remaining pa-
rameters (genes) of each child will be obtained by evaluating the average

corresponding locus values in the parents’ genes. Formally, for the first
child

0 B Op1i 1 < crosspoint
cli — 0p1i+0p0; - .
pl ; P2 4 > crosspoint

Vi=1..n

OpritOpni - .
% i < crosspoint
Oc2i

0p2i 1 > crosspoint

60 CHAPTER 3. PARALLELIZING THE METHOD

where 6.1; is the parameter i of the first child, 6.,; is the parameter i of the
second child,

0p1; is the parameter ¢ of the first parent, fp0; is the parameter ¢ of the
second parent, and n is the number of vectors parameters. Crossover is not
necessarily implemented to each individual, it can be subject to some probabil-
ity, as in the case of mutation, but the probability of crossover is usually large.
A random number is generated between 0 and 1000 if the number is less than
the probability of crossover, the algorithm applied the crossover, otherwise the
individual is copied to the next generation and it may suffer some mutation.
Typical probabilities of crossover are 0.4 to 0.9. In our implementation we use
more probability it reaches to 0.99.

Mutation: It can be defined as changing some aspects of the solution. For
every parameter there is the same probability to be mutated. We have
implemented several types of mutation. The first method is to add (or
subtract) a small number to (from) the selected parameter. Therefore we
apply the formula 6; = 6 + € where € is a small real number which can be
called the mutation distance. The other method is to change the selected
parameter to another value randomly generated. The new value can be
generated from the range of available values of the parameter using a ran-
dom distribution function. The function can equally be distribution or
any other distribution like normal distribution. Using equally distribution
the new value do not depends on the current value, but in normal distri-
bution the new value depends on the current value by using the current

value as the mean.

Experiments of genetic algorithms (detailed in the next chapter) show that the
progress is not linear. Initial progress is rapid, however this progress is not
maintained. If early during a run one particularly fit individual is produced,
fitness proportional selection can allow a large number of copies to rapidly flood
the subsequent generations. Although this will give rapid convergence, the
convergence could quite possibly be erroneous or only to a local optimum. Fur-
thermore, during the later stages of the execution, when many of the individuals
will be similar, fitness proportional selection will pick approximately equal num-
bers of individuals from the range of fitness present in the population. Thus,
there will be little pressure distinguishing between the good and the very good
individuals.

3.3. BLACK-BOX OPTIMIZATION FRAMEWORK (BBOF) 61

What is needed is a method whereby particularly good individuals can be
stopped from running away with the population in the earlier stages, yet a
degree of selection pressure maintained in the final stages. This can be achieved
by various mechanisms one being the use of linear fitness scaling.

Linear fitness scaling works by pivoting the fitness of the population members
around the average population fitness. This allows an approximately constant
proportion of copies of the best individuals to be selected compared with average
individuals. To achieve this, the fitness of every population member will have to
undergo a scaling just before selection. This scaling needs to be dynamic. The
fitness will need to be drawn closer together during the initial stages and pulled
apart during the later generations. The required scaling is achieved using the

linear transformation:

fi(9) = alg)fi(g + b(9))

where f; is the true fitness of an individual, ¢, and f the scaled fitness. As

already stated, the mean fitness of the population is assumed to remain un-

changed, so:
maz(9) = C(g)favg (9)
where f£ .. is the scaled fitness of the best individual.

This implies that:

alg) = %—me(g)

(]- - a(g))fa'ue(g)

[~
—
)
~—

I

In the program, setting ¢ to zero stops the scaling process.

Typical values for this constant, ¢, are in the range 1.0 to 2.0. When ¢ =2,
the chance of best individuals to go to the next generation is twice the chance
of average individuals to go to the next generation.

Taboo Search Technique As has been previously mentioned, taboo Algo-
rithm was originally developed for discrete optimization. We propose a con-
tinuous alternative implementation which has been implemented in our BBOF
system. Let us analyze in detail how each one of the parameters involved in
the Taboo Algorithm has been individually implemented, starting by the move

62 CHAPTER 3. PARALLELIZING THE METHOD

definition.

Move Definition We define the move in the real numbers optimization
as a determined way of changing the vector.

We have a deterministic move implementation which is adding or subtracting
certain real number (¢;) from one parameter of the vector so that the count of
available moves is double the count of the parameters. If (e;) is large, the
algorithm will not reach an acceptable vector and if (e;) is small the algorithm
spends a large number of iterations to reach the optimal or sub-optimal vector.
So the number (¢;) needs to be large at the beginning and when we find the
optimal of that precision we need to decline (¢;) to give more accurate results.
The determination of (¢;) depends on the type of the parameter, its range, the
precision needed on this parameter and its contribution in yield of the system.
This method adds another set of parameters to the algorithms parameters that
need to be set by the user.

An alternative way to define the move is changing one parameter upward or
downward by randomly choosing a value that is greater than the current value
and less than or equal to the upper limit of the available parameter range. It is
similar to the previous one, but instead of defining a determined move distance
we use a random distance. We call this move as indeterministic move. This

move adds a random factor to the algorithm.

Neighborhood Definition In the context of move definition, the Neigh-
borhood of a vector is applying all available moves on the vector (see figure
3.8).

Taboo Set Definition We use two types of taboo time: long time and
short time. The long time keeps a set of vectors that have been visited and
chosen as selected during preceding iterations. This set is implemented as queue
(first in first out) and it has a predetermined length (LL). During the navigation
in the search space oldest vector that has been visited before LL iterations goes
out and new vector comes in the list. Long-term taboo time avoids looping in
the search space.

The short-term taboo time is to mark as taboo for some iterations. The
move that have been made recently and/or its anti-move (anti-move means the

move that is given moving at the opposite direction on certain parameter so

3.3. BLACK-BOX OPTIMIZATION FRAMEWORK (BBOF) 63

\\\\\\\\\\\\\\
\\\\\\\\\

search space (S)

Neighbourhod set (N) A \\\\\§
The pOlnt e \\\\\\\\\\\ssis\\\\ \\\\\\\\\\\\\\
\§$\ \\\\ \\\\
\5\ X U
\ \\\ S \\
S [N = SSSSS
move (m §2 \ \\ \\\\ .
(m p NN \\\\\N S
-
e \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

R N S
NN

move distance £

Figure 3.8: taboo Neighborhood definition with two variables

that it may cancel the effect of the move i.e.; for example if the move is adding

to 0; the anti-move is subtracting from 6;).

Aspiration Set We simply use the criteria that if the solution is better
than the best so far, the algorithm chooses it without checking if it is taboo or

not.

Frequency We keep track of the number of times some move have been
carried out so that we can avoid concentrating on the same parameter and
discount others. The frequency counter can influence the sorting of neighbors
so that those neighbors generated using less frequent moves will have more
probability. This process helps in exploring the search space.

It is clear from this that the algorithm needs to evaluate the neighbors of a
point and these evaluations are independent. So the algorithm fits in a master-
worker paradigm and BBOF. The master will choose the next point by means
of taboo algorithm and keeps taboo memory structures. Workers evaluate the
objective function. To increase the number of workers, we can find the neighbors
of the current neighbors in advance, and evaluate them, and even enter them in
the process of choosing the next point (widen the neighborhood). In the case of

64 CHAPTER 3. PARALLELIZING THE METHOD

Algorithm 5 Sketch of Simulating Annealing Algorithm

Randomly generating the first set of n guesses, set T= TO.
Evaluate the objective function for each guess
initialize C to a vector from the first set.
While not (stop criteria).
Generate a new set of guesses:
for each guess V
calculate dE = L(V) - L(C)
if (dE<0) or(random<exp(dE/T))
change C with V
else set V = C.
calculate neighbors of the set.
Evaluate the objective function
for each vector within the new set
Reduce T.
end while.

undetermined moves, simply create more random neighbors.

Simulated Annealing We have adapted simulated annealing to our frame-
work. The sketch version of the algorithm is shown as algorithm 5. Note that
the inner ’while’ loops to the current neighborhood set using the current tem-
perature. The algorithm generates new set of solutions by substituting better
solutions with old solutions or by using probability depending on the current T’
to allow worst solutions in the new set. The probability of substituting solutions
depends on the difference of the two objective function values and the proba-
bility. If the solution has better objective function it substitutes the current
solution, otherwise it substitutes the current solution according to decreasing
probability.

Neighbors in any vicinity are calculated by randomly changing the value of
one parameter. The SA algorithm, which is outlined in algorithm box 5, is
based on a value referred to as temperature (T'). T is initialized to a certain
value Tp and is gradually reduced until a certain T}, is reached. In our particular
implementation of the SA algorithm, Ty and T3, have been set to 1000 and 10,
respectively. The function that indicates the reducing (cooling) factor of Ty is
as follows:

k(TO - Tn)

3.3. BLACK-BOX OPTIMIZATION FRAMEWORK (BBOF) 65

=t t=t t=t
time —= } L

cho _:_: """"""""""

Worker 1

PP —
<

i
R < I mmmmmmmm \
FS | PEE|M i
» Input Parameters | —Jp, I|! Master !
> i

(25|
w2

p Input Parameters 2 ———p»,

s

Optimal Input
i} arameters >
|

f
i
i
FS 1> PEE[»|! | opr
i
\

Worker n (RN RN v

S vl

| FS b PEE [-

—)» Input Parameters n ——p»| ! '
! !

J]

o=

Figure 3.9: Worker

where 4 is the current iteration number and n the maximum number of iterations
over which this process will be repeated. When dE (the difference between the
objective function value of the current state and the candidate state) is less than
zero, the algorithm accepts the new state; otherwise, if the random number is

less than edE/T

, a new random number is generated within the range [0,1].
Temperature (T') determines the tolerance of accepting other vectors (states)
that have higher energy (higher objective function); when the temperature is
high, there is more possibility of accepting a vector. i.e., if a given vector
exhibits a higher objective function and the temperature is lower, there will
be less tolerance to changing the current vector. In fact, temperature plays a

crucial role in the algorithm.

3.3.3 BBOF - The Worker Process

Figure 3.9 shows the BBOF parts belonging to the worker process. As we can
see, the worker will execute a fire simulator (FS box) followed by a Prediction
Evolution Error (PEE box).

If we consider one dimensional prediction simulator, obviously the prediction
error will be the scalar difference between the simulated and real fire propagation
speeds, but this is not our case. We have treated two dimensional fire simulators.

66 CHAPTER 3. PARALLELIZING THE METHOD

These simulators produce as output a two dimensional map describing the fire
line. Each fire-line describes a burned area. We have used two simple simulators:
the first is called ISS[58] and the second is an example that uses Fire-Lib.

ISS has in its core Rothermel’s set of equations to calculate the speed of
propagation of each segment of the fire line and treatestreats the fire line as
a polygon that moves and changes in time. ISS has as output a set of points
describing the burned area as a polygon.

We have also used fire-Lib, Which is a C-language function library for pre-
dicting the spread rate, intensity, flame length, and scorch height of free-burning
surface fires. It is derived directly from the BEHAVE [8] fire behavior algorithms
for predicting fire spread in two dimensions, but is optimized for highly itera-
tive applications such as cell- or wave- based fire growth simulation. fire-Lib
was developed to give fire growth modelers a simple, common, and optimized
application programming interface to use in their simulations. While fireLib
contains 13 functions, as few as 4 function calls are required to create a simple
yet efficient and functional fire growth simulator. Fire-Lib was written by Collin
D. Bevins, Systems for Environmental Management. Program development was
funded cooperatively by the Fire Behavior Research Work Unit of the USDA
Forest Service Rocky Mountain Research Station, and by Systems for Environ-
mental Management. With the distribution of the fire-Lib, there is a simple
simulator example that uses cells as input and output. With minor changes, we
have used this simulator to make some of our experiments. This simulator is
light and is suitable for the applications that have time restriction, so we used
this simulator to make our real case experiments.

To compare the simulated and real fire-lines, we used two ways to compare
the predicted and simulated fire line: (1) Hausdorff distance and (2) XOR area.

Hausdorff Distance [89] is used in the literature for pattern recognition.
It is simple to apply when we have the fire lines as two sets of points. The
Hausdorff distance measures the degree of mismatch between two sets of points
by measuring the distance of a point of one set that is farthest away from any
point of the other, and vice versa. Formally, the directed Hausdorff distance h

between two sets of points M and I at a specific point in I is:
h(M,I) = mazmenm (mingcr(distance(m,i)))

Thus, the Hausdorff distance H is defined as:

3.3. BLACK-BOX OPTIMIZATION FRAMEWORK (BBOF) 67

H(M,I) = maz(h(M,), h(I, M))

XOR Area The other measurement is the area of the XOR between the real
and simulated burned areas. This XOR includes the areas that are burned in
one of the propagations but not in the other one. If there is a perfect match
between the real and simulated fire, this XOR is zero. When the result of the
XOR is greater, this means that there are burned areas that were not predicted,
or that unburned areas were expected to burn. The greater the XOR, the worse
the prediction of propagation. This area can be used as a measurement of the
prediction error.

To calculate the XOR area we first create a polygon that describes the
XOR and then calculate its area. We have used the “General Polygon Clipping
library” version 2.31 by Alan Mutra (gpc)[81] to create the XOR polygon. gpc
is a C library implementation of a polygon clipping algorithm. The techniques
used are descended from Vatti’s polygon clipping method [105] . Subject and
clip polygons may be convex or concave, self-intersecting, contain holes, or be
comprised of several disjoint contours. It extends the Vatti algorithm to allow
horizontal edges in the source polygons, and to handle coincident edges in a
robust manner. Four types of clipping operation are supported: intersection,
exclusive-or, union or difference of subject and clip polygons. The output may
take the form of polygon outlines or tristrips. After using this library to create
the XOR of the two fire lines we use the following formula to calculate the area
of the resulting polygon:

1 N—a
A= > @Y1 — Tipays)

i=0

Considering a polygon made up of line segments between N vertexes (z;, y;),i =
0...N — 1 The last vertex (zn,yn)is assumed to be the same as the first. We
calculate the holes in the polygon in the same way, then subtract them from the
result.

Taking into account the particular implementation of the FireLib simulator,
where the terrain is treated as a square matrix of terrain cells. We define the
prediction error as the number of cells that are burned in the simulation but
are not burned in the real fire map, and vice versa. This expression is the XOR
function. Figure 3.10 shows an example of how this prediction error is evaluated

68 CHAPTER 3. PARALLELIZING THE METHOD

Real Fire Simulated Fire Prediction Error = 3

%4

XOR

X

X

X

R
\f»\%/’/”
X0

B3%353

%’g burned cell § cell of diference

Figure 3.10: Evaluation of the XOR function as a fitness function for a 5x5 cell
terrain.

for a 5x5 cell terrain. The obtained value will be referred to as the prediction
error that, for this example, is 3.

3.4 Chapter Conclusions

In this chapter we have shown that a suitable way to parallelize the predic-
tion method is master/worker paradigm. We have described the implemented
BBOF that have been used to build the enhanced prediction method. We stated
issue on adaptation of optimization methods to the problem. Some possible im-
plementations of the objective function have also been described. In the next
chapter we will tune the implemented optimization methods and make some
comparison studies to fined the points of weakness and strangeness of these
techniques.

