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Abstract 

 

 

 

Most metaheuristics contain a randomness component, which is usually based on 

uniform randomization –i.e., the use of the Uniform probability distribution to make 

random choices. However, the Multi-start biased Randomization of classical Heuristics 

with Adaptive local search framework (MIRHA, Gonzalez-Martin et al., 2014a; Juan 

et al. ,2014a) proposes the use of biased (non-uniform) randomization for the design of 

alternative metaheuristics -i.e., the use of skewed probability distributions such as the 

Geometric or Triangular ones. In some scenarios, this non-biased randomization has 

shown to provide faster convergence to near-optimal solutions. The MIRHA framework 

also includes a local search step for improving the incumbent solutions generated 

during the multi-start process. It also allows the addition of tailored local search 

components, like cache (memory) or splitting (divide-and-conquer) techniques, that 

allow the generation of competitive (near-optimal) solutions. The algorithms designed 

using the MIRHA framework allows to obtain ‘high-quality’ solutions to realistic 

problems in reasonable computing times. Moreover, they tend to use a reduced 

number of parameters, which makes them simple to implement and configure in most 

practical applications. This framework has successfully been applied in many routing 

and scheduling problems.  

One of the main goals of this thesis is to develop new algorithms, based in the 

aforementioned framework, for solving some combinatorial optimization problems that 

can be of interest in the telecommunication industry (Figure 1). One of the current 

issues in the telecommunication sector is that of planning of telecommunication 

networks. For instance, finding the best placements of base station on a mobile 

network, the placement of optical fiber networks or selecting the servers which could 

provide a given service with the lowest network latency, are examples of these 

problems. Two known families of combinatorial optimization problems that can be used 

for modeling the aforementioned problems are the Facility Location Problems (FLP) 

and the Arc Routing Problems (ARP). In this thesis we will propose new algorithms 

based on the MIRHA framework for problems belonging to these two families. 

         The FLP is a location problem where the goal is to find the best placement of 

some facilities which minimizes the costs of providing a service to a set of customers. 
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The ARP is similar to the well-known Vehicle Routing Problem (VRP), but its nature 

makes it also a good candidate for modeling certain real-life telecommunication 

problems. While the VRP has been extensively studied in the literature -mainly 

because of its applications to logistics and transportation-, there is much less research 

in the ARP and its potential applications to other fields.  

Regarding the ARP, we will work with several variations in order to model a 

wide range of real-life problems. Thus, we will also consider the ARP under uncertainty 

conditions. In this scenario, Simheuristics (the combination of simulation with 

metaheuristics, Juan et al., 2011a) is a useful tool that can be combined with the 

MIRHA framework in order to obtain robust solutions to the stochastic version of the 

problem.  

 

 

Keywords: Biased Randomized Heuristics, Simheuristics, Arc Routing Problem, Facility 

Location Problem, Optimization, Telecommunication applications, Logistic & 

Transportation. 

 

Figure 1. Summary of the key topics discussed on this dissertation. 
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Resum 

 

 

La majoria de metaheuristiques tenen una component aleatori, que normalment està 

basada en aleatorització uniforme –i.e., l’ús de la distribució de probabilitat uniforme 

per fer seleccions aleatòries. Per altra banda, el marc Multi-start biased Randomization 

of classical Heuristics with Adaptive local search (MIRHA, Gonzalez-Martin et al. 

2014a; Juan et al., 2014a) proposa l’ús de aleatorització esbiaixada (no uniforme) per 

al disseny de algoritmes metaheuristics alternatius –i.e., l’ús de distribucions de 

probabilitat esbiaixades com la geomètrica o la triangular. En algunes situacions, 

aquesta aleatorització no uniforme ha obtingut una convergència més ràpida a la 

solució quasi òptima. El marc MIRHA també inclou un pas de cerca local per a millorar 

les solucions generades durant el procés iteratiu. També permet afegir passos de 

cerca adaptats al problema, com cache (memòria) o splitting (dividir i conquerir), que 

permeten la generació de solucions competitives (quasi òptimes). Els algoritmes 

dissenyats amb el marc MIRHA permeten obtenir solucions d’alta qualitat a problemes 

realistes en temps de computació raonables. A més, tendeixen a utilitzar un nombre 

reduït de paràmetres, el que els fa simples d’implementar i configurar en la majoria 

d’aplicacions pràctiques. El marc s’ha aplicat exitosament a diversos problemes 

d’enrutament i planificació. 

 Un dels principals objectius d’aquesta tesi és desenvolupar nous algoritmes , 

basats en el marc mencionat, per solucionar problemes d’optimització combinatòria 

que poden ser d’interès a la industria de les telecomunicacions (Figure 1). Un dels 

problemes actuals en el sector de les telecomunicacions es aquell de la planificació de 

xarxes de telecomunicació. Per exemple, trobar les millors situacions per les estacions 

base en una xarxa mòbil, la ubicació de xarxes de fibra òptica, o la selecció dels 

servidors que poden proveir un determinat servei amb la menor latència de xarxa, són 

exemples d’aquest problemes. Dues famílies conegudes de problemes d’optimització 

combinatòria que poden utilitzar se per a modelar aquestes situacions son el Facility 

Location Problem (FLP) i l’Arc Routing Problem (ARP). En aquesta tesi proposarem 

nous algoritmes basats en el marc MIRHA per a problemes pertanyents a aquestes 

dues famílies. 
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 El FLP es un problema de localització on l’objectiu es trobar les millors ubicació 

de uns nodes proveïdors de serveis que minimitzin el cost de proveir aquest servei a 

tots els clients. El ARP és un problema semblant al conegut Vehicle Routing Problem 

(VRP), però la seva natura el fa també útil per modelar alguns problemes reals de 

telecomunicacions. Mentre que el VRP s’ha estudiat extensivament en la literatura 

existent –principalment per les seves aplicacions al transport i la logístics-, per a l’ARP 

hi ha molta menys investigació existent. 

 En quant a l’ARP, treballarem amb diverses variacions del problema per tal de 

poder modelar un rang més ampli d’aplicacions a la vida real. Així, també 

considerarem el ARP sota condicions d’incertesa. En aquest escenari, Simheuristics 

(la combinació de simulació i metaheuristics, Juan et al. 2011a) en una eina molt útil 

que es pot combinar amb el marc MIRHA per a obtenir solucions robustes per a la 

versió estocàstica del problema. 

 

 

Paraules clau: Randomització esbiaixada d’heurístiques, Simheuristics, Arc Routing 

Problem, Facility Location Problem, Optimització, Aplications en Telecomunicacions i 

Transport & Logistica. 
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1 Introduction 

 

 

 

 

 

 

Combinatorial problems involve finding a grouping, ordering or assignment of a 

discrete, finite set of objects that satisfies given conditions. Combinatorial Optimization 

Problems (COPs) consist on finding the optimal or near-optimal solution for a given 

cost function. In the case of NP-hard problems, metaheuristics are usually a good 

alternative to exact methods in order to find near-optimal solutions in reasonable 

computing times. Metaheuristics are a class of algorithms which provide approximation 

solutions of certain quality, while having relatively low execution times even for large-

scale NP-hard problems. Many metaheuristics contain a randomness component, 

which in most of the cases is based on Uniform randomization -i.e., the use of the 

Uniform probability distribution to make random choices. However, as showed in 

different works related to this thesis, use of biased (non-uniform) randomization -i.e., 

random variates generated from skewed probability distributions- can become a more 

efficient strategy when introducing randomness into a metaheuristic. The Multi-start 

biased Randomization of classical Heuristics with Adaptive local search (MIRHA, 

Gonzalez-Martin et al., 2014a; Juan et al. ,2014a), is a general framework to develop 

biased-randomized metaheuristics. MIRHA has demonstrated to be helpful for defining 

competitive algorithms in a wide range of vehicle routing and scheduling problems. 

         COPs have application in many real-life scenarios. Examples can be found in 

key economic sectors, like telecommunications or transportation and logistics (T&L). 

The telecommunication sector is one of the key role players in current economy. The 

evolution experienced, with considerable improvements in network infrastructures and 

capabilities, allow governments and enterprises to offer new electronic services to their 

customers. This evolution has been in part promoted due to the liberalization of the 

sector in many countries, where, according to the International Telecommunication 

Union (ITU) in its annual world information society report (Choudhary et al. 2008), “the 

number of telecom regulatory authorities grew from 14 in 1990 to 147 in 2007 and 

partial or full privatization of incumbent telecom operators grew from 10% in 1990 to 
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50% in 2006”. The growth of the sector in the last two decades has been very fast. 

Apart from the market liberalization, it can be explained by the advances in 

telecommunication technology, and the market privatization (Lam et al. 2010). This 

makes the advances in telecommunications technology one of the driving forces of 

globalization and the rapid growth of the world’s economy. 

This importance and the sector’s fast growth, has brought with it new 

optimization problems in several related fields. In Partridge (2011), up to forty open 

research questions in the telecommunications arena are presented. They represent big 

challenges for the future: to define a network topology which can vary over the time, to 

define a new network addressing paradigm or to provide networks with resource 

auctions which could allow service providers to shift resources among customers in 

real time, among others. Most of these research questions have associated different 

combinatorial optimization problems and, in particular, routing, assignment, availability, 

and scheduling ones. 

Likewise, transportation and logistics also has a great economic importance in 

most countries. The costs associated with transportation have growth considerably 

over the last decade, especially due to the raise of petroleum prices. Also 

environmental policies, like the Kyoto protocol, are forcing enterprises to consider 

these environmental conditions when planning routes, in addition to the direct costs 

associated with the transport (Vieira et al. 2007). 

Both T&L and telecommunication routing and assignment problems are suitable 

to be studied with optimization (exact and approximate methods) and simulation 

techniques. Also, distributed and parallel-computing systems allow the practical 

development of new solutions to these problems which are considered to be 

computationally very difficult, being many of them proven to be NP-hard (e.g. Al-Karaki 

et al. 2004). The MIRHA approach for solving deterministic NP-hard problems in the 

telecommunications and L&T areas, as well as its natural extension throughout the 

concept of Simheuristics (Juan et al., 2011a) for solving stochastic versions of these 

problems, are the main pillars over which this thesis is based. 

 

1.1 Structure of this Thesis 

This thesis studies different optimization problems, designing algorithms for them 

based on the aforementioned MIRHA and Simheuristics frameworks, and evaluating 

the performance compared with the state of the art. To this end, the thesis is structured 

in the following chapters: 
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 Chapter 2: MIRHA Framework and Simheuristics. This dissertation will start by 

introducing the MIRHA framework and the concept of Simheuristics. Both are 

closely related as they are based on the use of biased randomization for 

solving complex optimization problems. They have been proven to be useful for 

solving routing, scheduling and availability problems, especially in the field of 

Transportation and Logistics. With this thesis we are aiming to adapt these 

algorithms to be applied in other optimization problems which are more suitable 

in other field like is the case of Telecommunications. 

 Chapter 3: Capacitated Arc Routing Problem. The first problem studied is the 

Capacitated Arc Routing Problem or CARP. This is a deterministic routing 

problem very similar to the Capacitated Vehicle Routing Problem or CVRP, but 

which is more suitable for modeling certain telecommunication routing 

optimization problems. The MIRHA framework has been successfully used for 

defining algorithms for the CVRP, but has never been used for defining 

algorithms for the CARP. In this chapter we will propose a new heuristic for the 

CARP, the SHARP heuristic, and use it as a base heuristic for the MIRHA 

framework in order to define a new competitive algorithm. We will compare the 

performance of our new proposed heuristic and the randomized algorithm with 

a classical heuristic, and also with the best known solutions available in the 

literature. 

 Chapter 4: Arc Routing Problem with Stochastic Demands. In this chapter we 

will introduce a stochastic component in the customer demands which is also 

more suitable for modeling certain real-life telecommunication routing 

problems, where usually the customer demands cannot be known beforehand, 

but can be modeled using data from the past. In this case we will combine the 

algorithm defined for the deterministic problem in Chapter 3 with the 

Simheuristics framework to define a robust algorithm for the ARPSD. We will 

evaluate the robustness and performance of the proposed methodology using 

different datasets available on the literature. 

 Chapter 5: Non-smooth Arc Routing Problem. An additional variation of the 

CARP is that in which the optimization function is non-smooth. In this case, the 

capacity constraint is converted to a soft-constraint, so it can be violated but 

incurring in some penalty. This adds a non-smooth component to the cost 

function which makes the problem a Non-smooth ARP. This is also suitable for 

modeling certain real life scenarios and in this chapter we will evaluate how the 

proposed algorithm for the CARP behaves. 
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 Chapter 6: Facility Location Problem. The final problem of study is the Facility 

Location Problem or FLP. This problem is an assignment problem which is very 

useful for modeling telecommunication problems like finding the best 

placements of servers for providing some services to a set of customers. For 

this problem we will completely define a new algorithm based on the MIRHA 

framework and will assess its performance with some data sets available on 

the literature. 

 Chapter 7: Conclusions and Contributions Derived from this Thesis. On this 

chapter we will extract some conclusions from the research work and state 

some open points to be considered by future researches. Also, this final 

chapter collects all the publications that have been produced as a result of the 

work carried on with this thesis. 

In all these chapters we can appreciate the adaption of some heuristics to different 

optimization contexts and constraints. We explore how the integration of heuristics, 

simulation, biased randomization and parallel computing, can help to design high 

quality algorithms for problems which have real-life application in the 

Telecommunication arena (see section 1.2 for specific examples). The algorithms are 

tested with different benchmarks available in the literature, comparing the results with 

the state of the art. Some quantitative methods are used to analyze the generated 

results where we remark the high quality of the proposed methods, especially in terms 

of execution times and gaps with respect to the best known solution. 

 

1.2 Motivation 

The MIRHA framework and Simheuristics have demonstrated to be very helpful for 

solving complex computational optimization problems with applications focused in the 

field of T&L. Being based in quite simple concepts, they make quite straightforward to 

define new algorithms based on this framework. The produced algorithms have usually 

a single configuration parameter or even without parameter. This makes that the time 

to deploy the algorithm in a real environment is faster as it avoids the long and complex 

fine tuning phase which usually is required by other metaheuristics. The promising 

results obtained by the algorithms designed with the framework, open the opportunity 

to afford new problems to which create algorithms based on MIRHA. Also, the flexibility 

of the framework makes it quite straightforward to combine produced algorithms with 

additional problem-specific steps. One example is the Iterated Local Search (ILS, 

Lourenço et al. 2010). 
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 One important Telecommunication problem in real life is that of planning and 

deployment of telecommunication networks, both physical (by means of physical cable 

connection) and virtual (by means of service providing). In this thesis we will focus on 

problems which are suitable for modeling those kinds of problems. For instance, the 

Arc Routing Problem (which is introduced on Chapter 3) can be used for minimizing 

the total length of cable for deploying an optical fiber network in order to interconnect 

all the required cabinets in a Fiber-To-The-Home (FTTH) scenario. Another example is 

the Facility Location Problem (which is introduced on Chapter 6), which can be useful 

for determining the best locations of optical splitter that provide optical connectivity to 

subscribers in a given service area of a FTTH-Passive Optical Network (FTTH-PON). 

 Extending the MIRHA framework to new problems which have applications in 

other fields in addition to T&L, like is the case of Telecommunications, will make it more 

interesting as will increase the number of possible applications. Real-life applications 

make the problems more interesting to be studied, as it can get the attention of 

companies which can combine efforts with researchers and practitioners in order to 

produce more interesting results. Also, it can help to improve the evaluation of the 

algorithm under real world constraints, as the companies can provide researchers with 

such information. Usually results produced under real-life scenarios are not exactly the 

same as the ones produced using artificially generated data, so this will improve the 

performance evaluation of the algorithms. 

 

1.3 Research Objectives 

In general, a desirable or efficient optimization algorithm for a computational 

optimization problem should be able to generate results in a short period of time; 

should produce good or high quality solutions; should be simple to configure; flexible to 

be adapted to new constraints or new computing architectures; and easy to understand 

and implement (Cordeau et al., 2002). One of the main goals of this thesis is the 

proposal of new algorithms based on the MIRHA framework and Simheuristics, for the 

Arc Routing Problem (ARP) and the Facility Location Problem (FLP). Neither MIRHA 

framework nor Simheuristics have been used previously for defining algorithms for both 

problems. The new problems to be studied have the common characteristic that they 

are suitable for modeling real-life Telecommunications problems, such as the 

deployment of an optical fiber network or the design of a Wireless Sensors Network 

(WSN).  

To reach the general goal, several specific objectives should be achieved. First 

of all, we will design and implement new algorithms for every one of the studied 
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problems. These hybrid algorithms will be based on the MIRHA framework. To this 

end, for every problem we will present the application of the methodology to the 

problem at a higher level, and then we will introduce the pseudo-code of the proposed 

algorithm. The pseudo-code will be implemented as an application and executed with 

benchmarks extracted from the literatures. Secondly, the results produced by the 

algorithm will be collected and analyzed using statistical methods. With this, we will be 

able to compare the algorithm performance with the state of the art, being able to 

analyze the quality of the designed algorithms. 

Finally, we also are willing to evaluate the performance of the algorithm under 

uncertainty scenarios, when combined with Simheuristics. For this, we will propose an 

algorithm which combines the algorithm designed for the deterministic problems with 

ideas from the Simheuristics framework. We will then evaluate the performance with a 

set of benchmarks available on the literature adapted for the uncertainty scenario, 

using statistical techniques for evaluate the performance and reliability of the designed 

solution. 

 

1.4 Original Contributions 

In the process of achieving the objectives described in previous section, we generate a 

series of original contributions. Among them, we summarize next the most relevant 

ones, which will be detailed in deep in the next chapters: 

1. The SHARP heuristic for the Capacitated Arc Routing Problem (CARP): 

We define a savings heuristics for the ARP, based on the Clarke and Wright 

Savings (CWS) heuristic for the CVRP. This heuristic has the characteristic of 

being fast to execute while obtain relatively good results, which makes it 

suitable to be used within the MIRHA framework. 

2. The RandPSH and RandSHARP algorithm for the CARP: We propose two 

new randomized algorithms based on the MIRHA framework. Mainly they are 

defined using the same approach, but they only differ on the base heuristic 

being used. For the first, the classical Path Scanning Heuristic (PSH) is used; 

for the later, our original SHARP heuristic is used as the base heuristic. Our 

SHARP heuristics demonstrates to have a better performance when combined 

with MIRHA framework than the PSH, thus SHARP is more suitable for our 

MIRHA framework. 

3. The combination of RandSHARP with Simheuristics for the Arc Routing 

Problem with Stochastic Demands (ARPSD): For solving the stochastic 

version of the Arc Routing Problem, we propose the combination of the 
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randomized algorithm proposed for the deterministic problem with the 

Simheuristics concept. With that, we are able to obtain robust solutions for the 

problem. We also introduce a concept of upper and lower bound for evaluating 

the quality of the results obtained with our algorithm. 

4. The RandSHARP algorithm for the Non-Smooth Arc Routing Problem: We 

have adapted the RandSHARP algorithm for the non-smooth variation of the 

ARP and evaluated its performance. With that we demonstrate that ideas from 

MIRHA framework also fit perfectly when the cost function being optimized is 

non-smooth. 

5. The RandCFH-ILS algorithm for the Facility Location Problem (FLP): We 

propose a new randomized algorithm based on the MIRHA framework for the 

FLP. The algorithm is able to compete with state of the art algorithms for the 

problem, with relatively low execution times. 

 

1.5 Chapter Conclusions 

In this first chapter, we have defined the motivation, context and objectives of this 

thesis. We have presented the relation of routing optimization contexts to human 

economy activities and its impacts on different sectors like telecommunications or 

transportation and logistics. Also, we enumerate the main contributions of this thesis 

which will be introduced in the rest of the dissertation. The next chapters will present 

the MIRHA framework and Simheuristics in deep, will introduce the ARP and several 

variations of it, and also the FLP which could be considered as an evolution of the 

former. For every problem, we will present its definition, mathematical notation or 

modeling and the proposal of competitive algorithms for solving them based on a 

common framework. 
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2 MIRHA Framework and Simheuristics 

 

 

 

 

 

 

 

In this chapter, we will present the basic ideas that define the Multi-start biased 

Randomization of classical Heuristics with Adaptive local search (MIRHA) framework. 

Also, we will introduce the concept of Simheuristics, which is the combination of 

simulation with heuristics to solve problems which have some uncertainty component. 

The MIRHA framework offers a clear guidance for designing biased randomized 

heuristics based on classical problem-specific heuristics. The designed algorithms can 

be used in many deterministic optimization problems. Also, the algorithms can be 

combined with Simheuristics to cope with optimization problems which have a 

stochastic component. 

Combinatorial Optimization Problems (COPs) have posed numerous challenges 

to the human mind over the past decades. From a theoretical perspective, they have a 

well-structured definition consisting of an objective function that needs to be minimized 

or maximized, and a series of constraints that must be satisfied. From a theoretical 

point of view, these problems have an interest on their own due to the mathematics 

involved in their modeling, analysis and solution. However, the main reason for which 

they have been so actively investigated is the tremendous amount of real-life 

applications that can be successfully modeled as a COP. Thus, for example, decision-

making processes in fields such as logistics, transportation, and manufacturing contain 

plentiful hard challenges that can be expressed as COPs (Faulin et al. (2012); 

Montoya et al. (2011)). Accordingly, researchers from different areas –e.g. Applied 

Mathematics, Operations Research, Computer Science, and Artificial Intelligence– 

have directed their efforts to conceive techniques to model, analyze, and solve COPs. 

A considerable number of methods and algorithms for searching optimal or 

near-optimal solutions inside the solution space have been developed. In some small-

sized problems, the solution space can be exhaustively explored. For those instances, 

efficient exact methods can usually provide the optimal solution in a reasonable time. 

Parts of this chapter have been taken from the co-autored 

publications Juan et al. (2014a) and Gonzalez-Martin et al. (2014a). 
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Unfortunately, the solution space in most COPs is exponentially astronomical. Thus, in 

medium- or large-size problems, the solution space is too large and finding the 

optimum in a reasonable amount of time is not a feasible task. An exhaustive method 

that checks every single candidate in the solution space would be of very little help in 

these cases, since it would take exponential time. Therefore, a large amount of 

heuristics and metaheuristics have been developed in order to obtain near-optimal 

solutions, in reasonable computing times, for medium- and large-size problems, some 

of them even considering realistic constraints. 

The main goal of this chapter is to present a hybrid scheme which combines 

classical heuristics with biased-randomization processes. As it will be discussed later, 

this hybrid scheme represents an efficient, relatively simple, and flexible way to deal 

with several COPs in different fields, even when considering realistic constraints.   

 

2.1 The Methodology 

2.1.1 Background 

In the context of this chapter, we will refer to any algorithm which makes use of 

pseudo-random numbers to perform random choices during the exploration of the 

solution space by the term randomized search method, or simply randomized 

algorithm. This includes most current metaheuristics and stochastic local-search 

processes. Thus, since it does not follow a determinist path, even for the same input, a 

randomized search method can produce different outputs in different runs. Within these 

types of algorithms we can include, among others: 

 Genetic and Evolutionary algorithms (Reeves, 2010). 

 Simulated Annealing (Nikolaev and Jacobson, 2010). 

 Greedy Randomized Adaptive Search Procedure or GRASP (Festa and 

Resende, 2009a, 2009b). 

 Variable Neighborhood Search (Hansen et al., 2010). 

 Iterated Local Search (Lourenço et al., 2010). 

 Ant Colony Optimization (Dorigo and Stützle, 2010). 

 Probabilistic Tabu Search (Lokketangen and Glover, 1998). 

 Particle Swarm Optimization (Kennedy and Eberhart, 1995). 

One of the most popular randomized search methods is GRASP. Roughly 

speaking, GRASP is a multi-start or iterative process which uses uniform random 

numbers and a restricted candidate list to explore the solution space (Figure 2). At 

each iteration, two phases are executed: (i) the construction phase, which generates a 
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new solution by randomizing a classical heuristic; and (ii) a local search phase, which 

aims at improving the previously constructed solution. At the end of the multi-start 

process, the best solution found is kept as the current solution. 

 

procedure GRASP(inputs) 

01   while stopping criterion is not satisfied do 

02      solution  ConstructGreedyRandomizedSolution(inputs) 

03      solution  ApplyLocalSearch(solution) 

04      bestSolution  UpdateBestSolution(solution) 

05   endwhile 

06   return bestSolution 

endprocedure  

Figure 2. General pseudo-code for GRASP 

 

It is interesting to notice that most of the work on randomized algorithms is based on 

the use of uniform randomness, i.e., randomness is generated throughout a symmetric 

(non-biased) uniform distribution. Thus, when we talk about biased randomization, we 

refer to the use of probability distributions, other than uniform, which do not distribute 

probabilities in a symmetric shape but in a non-symmetric or skewed one. Of course, 

these skewed distributions can also be used to induce biased randomness into an 

algorithm. As a matter of fact, as far as we know, the first approach based on the use 

of biased randomization of a classical heuristic is due to Bresina (1996). The author 

proposed a methodology called Heuristic-Biased Stochastic Sampling (HBSS), which 

performs a biased iterative sampling of the search tree according to some heuristic 

criteria. Bresina applies the HBSS to a scheduling problem, and concludes that this 

approach outperforms greedy search within a small number of samples. 

2.1.2 MIRHA 

More recently, Juan et al (2011a) proposed the use of non-symmetric probability 

distributions to induce randomness in classical heuristics. Their general framework was 

called Multi-start biased Randomization of classical Heuristics with Adaptive local 

search (MIRHA). On this approach, the authors propose to combine classical greedy 

heuristics with pseudo-random variates from different, non-symmetric, probability 

distributions. In particular, the algorithm induced biased-randomness to slightly 

perturbate the greedy behavior of a classical heuristic, which transforms a deterministic 

heuristic into a probabilistic algorithm. According to the obtained results, the use of 

proper biased distributions –as an alternative to the use of the uniform distribution– 

contributes to explore the solution space in a more efficient way. Figure 3 shows the 

pseudo-code of the MIRHA general framework. Similar to GRASP, a multi-start 
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procedure encapsulates the randomization of a heuristic, but this time a non-symmetric 

distribution will be employed instead. At each iteration, two processes are carried out. 

First, a new solution is constructed using a biased randomization version of the 

selected classical heuristic –which will depend on the particular problem being 

considered. Secondly, an adaptive local search is employed in order to improve the 

randomized solution. Notice that both the randomization effect and the multi-start 

process work together to reduce the probabilities that the procedure gets trapped into a 

local minimum, while ensuring that different feasible regions in the solution space are 

sampled and explored. 

The common aspects of MIRHA with GRASP are the construction of an initial 

solution using randomization and, afterwards, the application of a local search.  But 

there are relevant differences: (a) MIRHA does not use a restrictive candidate list, one 

main characteristic of the GRASP algorithm; and (b) MIRHA uses a non-symmetric 

distribution to select the next element to be included in the solution, while most GRASP 

implementations only consider uniform distributions. The HBSS proposed by Bresina is 

similar to MIRHA since it uses a biased distribution function combined with a sampling 

methodology. In fact, MIRHA can be seen as a natural extension/enhancement of the 

HBSS methodology, one which incorporates a local search step after each solution 

obtained by the biased sampling. 

 

procedure MIRHA(inputs) 

01   heuristic  DefineHeuristic(inputs) %different for each COP 

02   initialSolution  GenerateSolution(heuristic, inputs) 

03  bestSolution  ApplyAdaptiveLocalSearch(initialSolution) 

%different for each COP 

04   probaDist  DefineProbabilityDistribution(COP) %different for 

each COP 

05   while stopping criterion is not satisfied do 

06     solution  GenerateRandomSolution(heuristic, probaDist, inputs) 

07      solution  ApplyAdaptiveLocalSearch(solution) 

08      bestSolution  UpdateBestSolution(solution) 

09   end while 

10   return bestSolution 

end procedure 

Figure 3. General pseudo-code for MIRHA 

 

2.2 Logic Behind our Approach 

Most classical heuristics for solving combinatorial optimization problems employ an 

iterative process in order to construct a feasible –and hopefully good– solution. 

Examples of these heuristics are the Clarke and Wright procedure for the Vehicle 

Routing Problem (Clarke and Wright, 1964), the NEH procedure for the Flow-Shop 
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Problem (Nawaz et al., 1983), or the Path Scanning procedure for the Arc Routing 

Problem (Golden et al., 1983). Typically, a ‘priority’ list of potential movements is 

traversed during the iterative process, i.e., at each iteration, the next constructive 

movement is selected from this list, which is sorted according to some criteria. The 

criteria employed to sort the list depends upon the specific heuristic being considered. 

Thus, any constructive heuristic could be seen as an iterative greedy procedure, which 

constructs a feasible ‘good’ solution to the problem at hand by selecting, at each 

iteration, the ‘best’ option from a list, sorted according to some logical criterion. Notice 

that this is a deterministic process, since once the criterion has been defined, it 

provides a unique order for the list of potential movements. Of course, if we randomize 

the order in which the elements of the list are selected, then a different output is likely 

to occur each time the entire procedure is executed. However, a uniform randomization 

of that list will basically destroy the logic behind the greedy behavior of the heuristic 

and, therefore, the output of the randomized algorithm is unlikely to provide a good 

solution –in fact, we could run the randomized algorithm thousands of times and it is 

likely that all the solutions generated would be significantly worse than the one 

provided by the original heuristic. To avoid losing the ‘common sense’ behind the 

heuristic, GRASP proposes to consider a restricted list of candidates –i.e. a sub-list 

including just some of the most promising movements, that is, the ones at the top of the 

list–, and then apply a uniform randomization in the order the elements of that 

restricted list are selected (Figure 4).  

 

 

Figure 4. Uniform randomization vs. biased randomization 
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This way, a deterministic procedure is transformed into a randomized algorithm –which 

can be encapsulated into a multi-start process–, while most of the logic or common 

sense behind the original heuristic is still respected. The MIRHA approach goes one 

step further, and instead of restricting the list of candidates, it assigns different 

probabilities of being selected to each potential movement in the sorted list.  In this 

way, the elements at the top of the list receive more probabilities of being selected than 

those at the bottom of the list, but potentially all elements could be selected. Notice that 

by doing so, we are not only avoiding the issue of selecting the proper size of the 

restricted list, but we also guarantee that the probabilities of being selected are always 

proportional to the position of each element in the list. Thus, it is possible to identify the 

following steps when transforming a classical heuristic into a probabilistic algorithm by 

means of biased randomization:  

1. Given a COP, select a deterministic and constructive heuristic with the following 

characteristics –which most classical heuristics already satisfy: (a) it should be 

able to run quite fast –typically in less than a second– even for large-size 

problems –this is a critical requirement since the probabilistic algorithm relies in 

executing over and over a randomized version of the heuristic; (b) it should 

provide, by design, some stage able to be randomized –e.g. a priority list as the 

one described before; and (c) it should provide ‘good’ solutions which are not 

too far from the ones generated with more complex and time-consuming 

metaheuristics –e.g. average gap about 5-10%. 

2. Once the base heuristic is selected, the new probabilistic algorithm should 

follow some kind of multi-start process –e.g. a pure multi-start or an iterated 

local search. At each round of this multi-start process, a new complete solution 

would be generated. For the construction of this solution, the base heuristic is 

randomized –e.g. its priority list is randomized– using a non-symmetric 

probability distribution. The specific distribution to employ will depend upon the 

specific COP being considered. Some candidate distributions to be considered 

are the geometric and a discrete version of the descendent triangular. 

3. Optionally, a local search process can be added to the algorithm in order to 

improve the solution provided at each round of the multi-start process. This 

local search is COP-tailored, meaning that it will be different for each COP. 

The approach described above is able to quickly generate several feasible solutions 

with different properties. Therefore, a list containing the top ‘best-found’ solutions –

each of them having different characteristics– can be saved and considered by the 

decision maker. 
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2.2.1 Benefits of Biased-Randomization Approaches 

The main motivation behind designing biased-randomized heuristics is to meet many of 

the desirable features of a metaheuristic as described by Cordeau et al. (2002), i.e.: 

accuracy, speed, simplicity, and flexibility. Most of the metaheuristics in literature are 

measured against accuracy –the degree of departure of the obtained solution value 

from the optimal value–, and against speed –the computation time. However, there are 

two other important attributes to be considered in any optimization method: simplicity 

and flexibility. Simplicity is related to the number of parameters to be set and the facility 

of implementation. This is an important feature since the method can be applied to 

different instances than the ones tested without losing quality or performance and 

without the need of performing a long run test. Flexibility is related to the possibility of 

accommodating new side constraints and also with the adaptation to other similar 

problems. 

Having in mind these measured attributes; we list the main benefits of biased-

randomized heuristics over other related approaches: 

 They allow a simplification of the fine-tuning process, since typically the 

employed probability distributions require just one (e.g. the geometric) or zero 

parameters (e.g. the descendent triangular). This is not common in most current 

metaheuristic approaches, which usually employ many parameters and, 

therefore, require from difficult and time-expensive fine-tuning processes to 

adjust their associated values. 

 Being based on classical well-tested heuristics, they are relatively simple and 

easy to implement methods, which can be adapted to account for new 

constraints (flexibility). Thus, when facing a combinatorial-optimization problem 

with already existing heuristics, some of the most efficient of these heuristics 

can be selected and enhanced throughout biased randomization. 

 Using non-uniform (skewed) distributions rather than uniform ones, they offer a 

more natural and efficient way to select the next movement from the priority list, 

since biased randomization allows keeping the logic behind the heuristic by 

assigning more probabilities of being selected to those movements which better 

fulfill the heuristic. Notice that a uniform randomization does not respect the 

‘common sense’ of the heuristic, since it assigns equal probabilities of being 

selected to all potential movements. 

 By combining randomization with a multi-start-like process, they promote 

diversification during the exploration of the solution space, i.e., the search is not 

restricted to just a reduced number of regions (Talbi, 2009). Notice that these 
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two features –randomization and multi-start approach– help the algorithm to 

escape from local minimums and also increase diversification during the 

exploration of the solution space. 

 Likewise, the combination of randomization with a multi-start-like process 

promotes parallelization in an easy and natural way (Juan et al., 2011c). Notice 

that the odds of finding ‘good’ solutions increase as more parallel runs of the 

algorithm are executed. 

 Finally, the biased-randomized heuristics can also be combined with other 

techniques, such as Monte Carlo simulation, in order to consider stochastic 

variants of COPs, as we discuss in later in this chapter. 

2.2.2 Examples of Use 

In general, probabilistic algorithms have been widely used to solve many combinatorial 

optimization problems such as, for example: Sequencing and Scheduling Problems 

(Pinedo, 2008), Vehicle Routing Problems (Laporte, 2009), or Quadratic and 

Assignment Problems (Loiola et al., 2007). They have also been used to solve real 

combinatorial optimization problems that arise in different industrial sectors, e.g.: 

Transportation, Logistics, Manufacturing, Aeronautics, Telecommunication, Health, 

Electrical Power Systems, Biotechnology, etc. 

As described in Festa and Resende (2009b), GRASP algorithms have been 

applied to solve a wide set of problems like scheduling, routing, logic, partitioning, 

location, graph theory, assignment, manufacturing, transportation, telecommunications, 

biology and related fields, automatic drawing, power systems, and VLSI design. 

Regarding the use of biased/skewed randomization as proposed by the HBSS and 

MIRHA general schemes, Juan et al. (2010) proposed a specific implementation, 

called SR-GCWS, for solving the Capacitated Vehicle Routing Problem. The SR-

GCWS algorithm combines a biased randomization process with the Clarke & Wright 

savings heuristic (Clarke and Wright, 1964). A geometric distribution is used to 

randomize the constructive process while keeping the logic behind the heuristic. Other 

authors have also proposed the randomization of a classical heuristic for solving the 

Arc Routing Problem. For example, Gomes and Selman (1997) propose a randomized 

version of the Backtrack Search algorithm where randomization is added to break ties, 

and also a randomization of the Branch-and-Bound algorithm where randomization is 

added in the variable selection strategy by introducing noise in the ranking of the 

variables. However, in both cases the authors add uniformly distributed randomization 

to the base heuristic. Finally, Juan et al. (2012) propose the ILS-ESP algorithm for 

solving the Permutation Flow-Shop Problem. The ILS-ESP uses an Iterated Local 
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Search framework and combines the NEH heuristic (Nawaz et al, 1983) with a biased 

randomization process guided by a descending triangular distribution. 

All in all, the proposed methodology can be used to improve the efficiency of 

most existing heuristics for solving combinatorial-optimization problems. This is done 

by transforming the greedy deterministic behavior of the heuristic into a probabilistic 

behavior which still follows the logic behind the heuristic but randomizes the 

construction process using a biased, non-uniform, distribution. 

 

2.3 Simheuristics 

There is an emerging interest on introducing randomization into combinatorial 

optimization problems as a way of describing new real problems in which most of the 

information and data cannot be known beforehand. This tendency can be observed in 

Van Hentenryck and Bent (2010), which provides an interesting review of many 

traditional combinatorial problems with stochastic parameters. Thus, those authors 

studied Stochastic Scheduling, Stochastic Reservations and Stochastic Routing in 

order to make decision on-line, i.e., to re-optimize solutions when their initial conditions 

have changed and, therefore, are no longer optimal. 

The Simheuristic approach (Figure 5) is a particular case of simulation-

optimization which combines a heuristic/metaheuristic algorithm with simulation 

methodologies – e.g. Monte-Carlo, discrete-event, agent-based, etc… - in order to 

efficiently deal with the two components in a Stochastic Combinatorial Optimization 

Problem (SCOP) instance: the optimization nature of the problem and its stochastic 

nature. Examples of Simheuristics applications to different fields can be found in the 

optimization-simulation literature. For instance, Juan et al. (2011b) combined Monte 

Carlo Simulation (MCS) with routing metaheuristics in order to solve the Vehicle 

Routing Problem with Stochastic Demands (VRPSD); Peruyero et al. (2011) combined 

MCS with a scheduling metaheuristic for solving the permutation flow-shop problem 

with stochastic processing times; and Caceres et al. (2012) combined also MCS with a 

routing metaheuristic for solving the inventory routing problem with stock-outs and 

stochastic demands. 

Typically, given a SCOP instance, a heuristic/metaheuristic algorithm is run in 

order to perform an oriented search inside the solution space. This iterative process 

aims at finding feasible solutions with the best possible value, which is expected to be 

near-optimal as well. During the iterative search process, the algorithm must deal with 

the stochastic nature of the SCOP instance. One natural way to do this is by taking 
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advantage of the capabilities simulation methods offer to manage randomness. Of 

course, other approaches can also be used instead of simulation –e.g. dynamic 

programming, fuzzy logic, etc. However, under the presence of historical data on 

stochastic behavior, simulation allows the development of both accurate and flexible 

models. Specifically, randomness can be modeled throughout a best-fit probability 

distribution –including parameterization– without any additional assumptions or 

constraints. Thus, simulation is usually integrated with the heuristic/meta-heuristic 

approach and it frequently provides dynamic feedback to the searching process in 

order to improve the final outcome.  In some sense, simulation allows to extend already 

existing and highly efficient meta-heuristics –initially designed to cope with 

deterministic problems– so that they can also be employed to solve SCOPs. 

 

 

Figure 5. Overview scheme of the Simheuristic approach 

Obviously, one major drawback of this approach is that the results are not expected to 

be optimal anymore, since Simheuristics are combining two approximate 

methodologies.  Nevertheless, real-life problems are complex enough and usually NP-

hard even in their deterministic versions. Therefore, Simheuristics constitute a quite 

interesting alternative for most practical purposes, since they represent relatively 
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simple and flexible methods which are able to provide near-optimal solutions to 

complex real-life problems in reasonable computing times. 

2.3.1 An Integrated Simulation-based Framework 

The solution proposed for the VRPSD in Juan et al. (2011b) was based on the same 

framework, which will be described in this section. The methodology is based in two 

facts: (a) the stochastic problem can be seen as a generalization of the deterministic 

problem where the random value has zero variance; and (b) efficient meta-heuristics 

already exist for the deterministic problems while the stochastic problems are an 

emerging field. Accordingly, the key idea behind this framework is to transform the 

stochastic instance into a new problem which consists of solving several conservative 

instances of the deterministic problem, each of the characterized by a specific risk of 

showing routing failures. The term conservative refers to the fact that only a certain 

percentage of the vehicle capacity is considered during the route design phase, so the 

rest of capacity is considered as safety stock. So, this remaining capacity of the vehicle 

will be available in case the actual demand of the route is greater than expected.  

 The methodology consists on the following steps (see Figure 6): 

1. Consider a problem instance with a set of customers. Each customer has 

associated a stochastic demand characterized by its mean and probability 

distribution. 

2. Compute the value of the safety stock given by a percentage of the vehicle 

capacity. This percentage will be a parameter defined for the algorithm. 

3. Consider the deterministic instance of the problem, consisting on the same 

problem instance than the stochastic version, but where the demands are 

deterministic and equal to the mean, and the vehicle capacity is restricted to the 

value computed on step 2. 

4. Solve previous instance using a biased randomized algorithm (e.g. SG-GCWS 

for CVRP or RandSHARP for CARP). This solution will be an aprioristic solution 

for the original problem instance. Furthermore, it will be a feasible solution as 

long as there are not any route failures. 

5. Using the previous solution, estimate the expected cost due to possible failures 

on any route. This is done by using Monte Carlo simulation. To this end, 

random demands are generated and, whenever a route occurs a repair action is 

applied, registering the associated cost of this action in the total cost of the 

solution. The repair action consists of a round-trip from the depot to the failing 

customer so the vehicle capacity is reloaded. After iterating this process some 

thousands of times, a random sample of costs is obtained, and an estimate for 
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its expected value can be calculated. Then, the expected total costs due to 

possible route failures can be computed by addition of these variable costs and 

the costs of the deterministic solution obtained during the design phase. 

6. Using the deterministic solution, obtain an estimate for the reliability of each 

route of the solution. In such context, the reliability index is defined as the 

probability that a route will not fail. This route reliability index is computed by 

direct Monte Carlo simulation using the probability distributions that model 

customer demands in each route. Remark that in each route, over-estimated 

demands could sometimes be compensated by under-estimated demands. 

Figure 6. Flow diagram for the described methodology 
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7. The reliability index for the total solution is computed as the multiplication of the 

value for each route in the solution. This value can be considered as a measure 

for the feasibility for the solution in the context of the stochastic problem. 

8. Depending on the total costs and the reliability indices associated with the 

solutions already obtained, repeat the process from Step 1 with a different value 

of the value used for the safety stock. 

9. Finally, the best solution found so far is returned as solution to the problem, as 

well as its corresponding properties such cost or reliability index. 

2.3.2 Examples of Use 

The Vehicle Routing Problem with Stochastic Demands (VRPSD) is a NP-hard problem 

in which a set of customers with random demands must be served by a fleet of 

homogeneous vehicles departing from a depot, which initially holds all available 

resources (Novoa and Storer, 2009). Obviously, there are some tangible costs 

associated with the distribution of these resources from the depot to the customers. In 

particular, it is usual for the model to explicitly consider costs due to moving a vehicle 

from one node – customer or depot – to another. These costs are often related to the 

total distance traveled, but they can also include other factors such as number of 

vehicles employed, service times for each customer, etc. The classical goal here 

consists of determining the optimal solution (set of routes) that minimizes those 

tangible costs subject to the following constraints: (i) all routes begin and end at the 

depot; (ii) each vehicle has a maximum load capacity, which is considered to be the 

same for all vehicles; (iii) all (stochastic) customer's demands must be satisfied; (iv) 

each customer is supplied by a single vehicle; and (v) a vehicle cannot stop twice at 

the same customer without incurring in a penalty cost.  

The random behavior of customers’ demands could cause an expected feasible 

solution to become an unfeasible one if the final demand of any route exceeds the 

actual vehicle capacity. This situation is referred to as route failure, and when it 

happens some corrective actions must be introduced to obtain a new feasible solution. 

Thus, for example, after a route failure the associated vehicle might be forced to return 

to the depot in order to reload and resume the distribution at the last visited customer. 

As discussed in Juan et al. (2011b), one possible methodology to deal with this 

problem is to design reliable solutions, i.e., solutions with a low probability of suffering 

route failures. This is basically attained by constructing routes in which the associated 

expected demand will be somewhat lower than the vehicle capacity. Particularly, the 

idea is to keep a certain amount of vehicle capacity surplus (safety stock) while 

designing the routes, so that if final routes’ demands exceed their expected values up 
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to a certain limit, they can be satisfied without incurring in a route failure. Using safety 

stocks not only contributes to reduce variable costs due to route failures but, related to 

that, it also increases the reliability or robustness of the planned routes, i.e.: as safety 

stock levels increase, the probability of suffering a route failure diminishes. Notice, 

however, that employing safety stocks also increases fixed costs associated with 

aprioristic routing design, since more vehicles and more routes are needed when larger 

buffers are considered. Therefore, when minimizing the total expected cost a tradeoff 

exists between its two components, fixed costs and expected variable costs. Thus, the 

challenge relies on the selection of the appropriate buffer size. 

Given a VRPSD instance, Juan et al. (2011b) consider different levels of this 

buffer size and then solve the resulting scenarios. This is performed by employing 

Monte Carlo simulation, which allows estimating the variable costs associated with 

each candidate solution. Thus, among the multiple solutions generated for each 

scenario, the ones with lowest total expected costs are stored as the best-found result 

associated with the corresponding safety-stocks level. Once the execution of the 

different scenarios ends, the corresponding solutions are compared to each other and 

the one with the lowest total expected costs is selected as the best-found routing plan. 

 

2.4 Chapter Conclusions 

In this chapter we have described the MIRHA framework and the Simheuristics 

methodology. We have analyzed some key aspects, benefits, and examples related to 

the combination of randomization strategies with classical heuristics as a natural way to 

develop probabilistic algorithms to solve combinatorial optimization problems. Both 

uniform as well as non-symmetric randomization strategies have been reviewed. In 

particular, we have discussed how the non-symmetric or biased approach constitutes 

an efficient way to randomize the priority list of a constructive heuristic without losing 

the logic behind it. Some examples of applications to several combinatorial optimization 

problems have also been exposed, including: vehicle routing problems and flow-shop 

problems. One of the main advantages of this type of probabilistic algorithms is their 

relative simplicity, since they are based in well-known heuristics and they do not 

incorporate many additional parameters. Moreover, these algorithms are flexible, quite 

efficient, and can be implemented and parallelized in a natural way, which make them 

an interesting alternative to more sophisticated metaheuristics in most practical 

applications.  



 

23 
 

3 Capacitated Arc Routing Problem 

 

 

 

 

 

 

 

The Capacitated Vehicle Routing Problem, or simply CVRP, is a well-known 

combinatorial optimization problem in which a fleet of homogeneous vehicles, initially 

located at a single depot with unlimited capacity, has to be routed so that all customers’ 

demands are served at a minimum cost and without violating the loading capacity of 

each individual vehicle (Toth and Vigo, 2002). In the CVRP, it is assumed that the 

road network is a complete graph containing nodes (vertices) representing the 

customers and the depot. Also, it is assumed that the customers’ demands are located 

at these nodes. Being a NP-hard problem studied for several decades already, the 

CVRP is still attracting researchers’ attention due to its potential applications both to 

real-life scenarios and to the development of new algorithms, optimization methods and 

metaheuristics. A related but different problem is the so-called CARP, in which the 

demands are located over the network edges or arcs (instead of at nodes), and in 

which the completeness of the road network is no longer guaranteed, i.e. not all pair of 

nodes are connected by an edge. The capacity restriction refers to the maximum load 

that each vehicle can carry. Sometimes other constraints also apply, e.g., maximum 

distance that can be covered by any single vehicle, the maximum time a vehicle can be 

operating, etc. 

 This chapter will introduce the first problem of study in this thesis, the CARP. 

The CARP, due to its characteristics, is also suitable for modeling certain 

Telecommunication problem, when compared to the CVRP. Having the demands 

located in the arcs of the graph instead of the nodes, for instance, we can think on 

them as telecommunications cables which should provide certain services to the users. 

Usually telecommunications users do not have a demand located on a single point, but 

a bandwidth required in the connection (arc) to the centralizer node. 

 

Parts of this chapter have been taken from the co-autored 

publications: Gonzalez-Martin et al. (2011) and Gonzalez-Martin et 

al. (2012a). 
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3.1 Literature Review 

Vehicle Routing Problems (VRPs) constitute a relevant topic for current researchers 

and practitioners. In fact, according to Eksioglu et al. (2009), the number of related 

articles published in refereed journals has experienced an exponential growth in the 

last fifty years. However, although the existing literature on the CVRP field is quite 

extensive and includes a wide range of efficient approaches, this is not the case with 

the CARP. One of the basic references on the CARP is the book “Arc Routing: Theory, 

Solutions and Applications” (Dror, 2000). This book, which contains twelve chapters 

devoted to different CARP-related topics, describes theoretical aspects associated with 

arc traversal, solution methodologies, and also a number of representative 

applications. 

3.1.1 Approaches for Solving the CARP 

Since the CARP was first described in by Golden and Wong (1981), a wide range of 

both exact and approximate methods have been suggested for solving it. For extensive 

surveys on the arc routing field, including CARP and some of its variations, the reader 

is referred to Assad and Golden (1995) or Wøhlk (2008). Among the exact 

approaches, Branch and Bound and Cutting Plane are the most common methods 

employed in the CARP literature. Branch-and-bound methods for the CARP were 

proposed by Hirabayashi et al. (1992) and Kiuchi et al. (1995).  In Cutting Plane, a 

Linear Programming relaxation of the problem is solved. Belenguer and Benavent 

(2003) presented a Cutting Plane algorithm for the CARP, which is partly based on 

several classes of valid inequalities presented earlier by the same authors in 

Belenguer and Benavent (1998). Using their algorithm, these authors are able to 

reach the best existing lower bounds for all test instances, even improving the existing 

lower bounds for several instances. Branch-and-Cut-and-Price based algorithms were 

suggested by Letchford and Oukil (2009). However, algorithms that guarantee finding 

the optimal solution can be used only for relative small and medium-small instances. 

A different strategy for solving the CARP is based on transforming the problem 

into a Capacitated Vehicle Routing Problem (CVRP), which is in turn solved by state-

of-the-art CVRP algorithms, as described in Eglese and Letchford (2000), Longo et 

al. (2006), and Baldacci and Maniezzo (2006). Results reported in those works are 

highly competitive compared to the previously existing ones. Likewise, methods 

providing lower bounds for the CARP were put forward by Golden et al. (1983), Pearn 

et al. (1987), Pearn (1988), Win (1988) or Amberg and Voß (2002). 

Due to the complexity of the problem, several heuristics have been also 

developed for the CARP.  Among them it is possible to point out those of Golden et al. 
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(1983), Chapleau et al. (1984), Ulusoy (1985), or Pearn 1989 and 1991. Many other 

heuristics are described by Assad and Golden (1985), Eiselt et al. (1995), and Wøhlk 

(2005). It should be mentioned that most of these approaches are problem-specific 

heuristics and their performance is generally 10 to 40 percent above the optimal 

solution according to some studies (Wøhlk, 2008). More recently, different 

metaheuristics have been proposed according. Among these, a considerable number 

of Tabu Search (TS) algorithms have been designed to solve the CARP. One of the 

first ones, called CARPET, was proposed by Hertz et al. (2000). In this work, 

unfeasible solutions are allowed but are also penalized. CARPET is one of the most 

efficient metaheuristics published so far for the CARP. Other TS-based approaches 

were developed by Amberg et al. (2000) for the Multi Depot version of the CARP, and 

by Greistorger (2003), who combined TS with Scatter Search to construct a Tabu 

Scatter Search for the CARP. A deterministic TS algorithm has been suggested by 

Brandâo and Eglese (2008). Their TS penalizes infeasible solutions in the objective 

function and alternates between different neighborhood structures. A hybrid Genetic 

Algorithm and a Memetic Algorithm were presented by Lacomme et al. (2001) and 

Lacomme et al. (2004a), respectively. These algorithms are currently among the best 

performing ones. Other approach methods for the CARP are related with Simulated 

Annealing (SA) algorithms. For instance, Li (1992), in his Ph.D. thesis, applied this 

technique and TS to a road gritting problem.  Also, Eglese (1994) designed a SA 

approach for a multi depot gritting problem with side constraints.  Finally, Wøhlk (2005) 

suggested a SA algorithm for the classical CARP, where the order of the edges on a 

giant tour is changed during the algorithm, and at each step the optimal partitioning of 

the tour is computed.  Ant Colony Systems were proposed by Lacomme et al. (2004b) 

and Doerner et al. (2003). In the former, the authors reported results competitive to the 

best algorithms with respect to solution quality, but employing longer computation 

times. In the latter, the authors reported limited success. A Guided Local Search 

algorithm has been presented for the CARP by Beullens et al. (2003). In this work, the 

distance of each arc is penalized according to some function, which is adjusted 

throughout the algorithm. Computational experiments show that this approach is a 

promising one. Additionally, it is worthy to mention the Variable Neighborhood Descent 

algorithm proposed by Hertz and Mittazl (2001), since it also reports competitive 

results. 
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3.1.2 Problem variations 

There are multiple variations of the CARP existing in the literature, each of them 

reflecting different real-life scenarios. Among the most popular variations, it is possible 

to cite the following ones: 

 The CARP defined on a directed graph or Directed Capacitated Arc Routing 

Problem (Maniezzo and Roffilli, 2008). 

 The CARP defined on mixed graphs or Mixed Capacitated Arc Routing Problem 

(Belenguer et al. 2006).  

 The CARP with objective functions other than one based on total traveling 

costs, i.e., minimizing the total number of vehicles, minimizing the length of the 

longest tour, etc. For instance, Ulusoy (1985) considers minimizing the 

traveling costs plus some fixed costs associated with the use of different types 

of vehicles. 

 The CARP with multi-objective functions. For instance, Shang et al. (2014) 

consider a multi objective CARP that can be viewed as a mix between the 

CARP and the Min-Max K-Chinese Postman Problem.  The Min-Max K-Chinese 

Postman Problem (Frederickson, 1978) is a CARP-like problem where the 

vehicle loading capacity is infinite. 

 The CARP with Time Windows, considered by Reghioui et al. (2007) and by 

Wøhlk (2007). 

 The CARP with time-dependent service costs, as considered by Tagmouti et 

al. (2011). 

 The CARP with multiple depots, proposed by Cattrysse et al. (2002).  There is 

also a variant with mobile depots, proposed by Del Pia et al. (2006).  

 The Periodic CARP, studied by Chu et al. (2003) and by Lacomme et al. 

(2005). 

 The CARP with profits, in which the objective is to maximize the profit collected 

from a set of potential customers as described in Zachariadis and Kiranoudis 

(2011). 

 The CARP with Stochastic Demands (ARPSD), where the customer’s demands 

are not known beforehand (Gonzalez-Martin et al., 2014b). 

3.1.3 Applications 

Routing problems have been extensively studied due to their wide number of real-life 

applications, which usually involve very large costs associated with the delivery of 

goods demanded by customers. The CARP is a delivery problem with several practical 

applications. Some classical examples of arc routing problems where the service 
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activity requires finding minimum-cost routes in a transportation network can be found 

in: refuse collection, snow removal, inspection of distributing systems, routing of street 

sweepers, routing of electric meter readers, school bus routing, etc.  

 For example, Beltrami and Bodin (1974) describe a computer system for 

garbage collection planning that was applied in New York city; Eglese and Li (1992) 

study the problem of spraying roads with salt to prevent ice in the Lancashire County 

Council; Bodin and Kursh (1979) develop a computer assisted system for the routing 

and scheduling of street sweepers; Stern and Dror (1979) describe an arc routing 

problem associated with electric meter reading in the city of Beersheba (Israel). In most 

applications, several vehicles are involved and there may be a number of restrictions 

on capacity, travel distance, or travel times, among others. 

 More recently, we can find applications of the CARP to the Telecommunications 

field. One example, it is useful for the planning of the placement of optical cable 

network. In this problem, the objective is to decide for which streets the cable should be 

installed in order to provide access to all the customers which are distributed along the 

streets (and thus we consider that demand is located in the arcs). 

 

3.2 Problem Description 

3.2.1 Basic description  

The CARP is a combinatorial optimization problem that can be informally described as 

follows (Golden and Wong (1981)): Let             be an undirected graph, 

where: 

i. V is a set of nodes, including the one representing the depot or distribution 

center 

ii. E is a set of edges or arcs connecting some nodes in V. 

iii. C is a costs matrix representing the positive costs of moving from on node to 

another – these costs are usually based on distances or travel times between a 

pair of nodes. 

iv. Q is a demands vector representing the non-negative demands associated with 

each arc. 

Consider also a set of identical vehicles (homogeneous fleet), each of them with a 

maximum loading capacity              . Under these circumstances, the usual 

goal is to find a set of vehicle routes that minimizes the total delivering costs while 

satisfying the following constraints: 
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i. Every route starts and ends at the depot (roundtrips). 

ii. All arcs demands are satisfied. 

iii. Each arc with a positive demand is served by exactly one vehicle. Notice, 

however, that an arc can be traversed more than once by the same or different 

vehicles. 

iv. The total demand to be served in any route does not exceed the vehicle loading 

capacity W. 

3.2.2 Mathematical model 

Different mathematical formulations have been proposed for the CARP. The first ILP 

formulation was the one proposed by Golden and Wong (1981), and it is based on 

directed variables even though the formulated problem is undirected. A formulation 

using undirected variables is presented by Belenguer and Benavent (1992). In his 

Ph.D. dissertation, Letchford gives several ILP formulations of the CARP, and derives 

additional valid inequalities and separation algorithms for the problem. Other 

mathematical formulations are due to Welz (1994) and Eglese and Letchford (2000), 

all of them for the undirected case. For describing the model, we use an integer 

programming formulation adapted from Golden and Wong (1981) to formally 

described the CARP. Although we are not explicitly using it in our solving approach 

based on MIRHA, analyzing this model contributes to a better understanding of the 

complexity, as well as some details of the problem. 

 The CARP is defined over a non-complete graph. Let         be an 

undirected graph, where               represents the set of n+1 nodes (node 0 

being the depot), and where                   represents the set of m arcs 

connecting some (not necessarily all) of the nodes. Associated with each edge       

there is a symmetric cost          , as well as a non-negative demand      . 

Edges with strictly positive demand,                , are called required arcs as 

they must be traversed at least once in order to be served. Notice also that non-

required arcs (those with zero demand) do not need to be traversed, although they may 

be traversed one or more times. 

 A fleet of K identical vehicles (or postmen in other contexts), each of them with 

a limited capacity W, are available and based on the depot node. We assume that 

                    . Let N(i) denote the subset of nodes which are adjacent 

(i.e. directly connected) to node i. Additionally, two set of variables are introduced:  

i.    
   is 1 if vehicle k traverses edge eij from node i to node j, and 0 otherwise. 
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ii.    
   is 1 if vehicle k delivers edge eij while traversing it from node i to node j, and 

0 otherwise. 

The formulation is as follows: 
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                          (9) 

 

Constraint (2) ensures that, for each vehicle route k and node I, the vehicle route k 

returns to the same node i. Constraint (3) states that every edge    , the value of    
  is 

always greater or equal than    
 , which ensures that every serviced edge is a traversed 

edge, so it is not possible to serve an edge without traversing it. Constraint (4) forces 

all required arcs to be serviced once and only once, as it ensures that the sum of the 

servicing variable    
  for all routes is always equal to one. The explicit vehicle capacity 

constraint (5) applies to each vehicle route k, and states that the total demand served 

by a vehicle servicing route k cannot surpass the vehicle capacity W. This constraint is 

the one which makes the CARP a capacitated problem. Constraint (6) states that for 

any route k and subset of nodes S, the sum of all edges connecting any pair of node in 

S which are traversed by route k, minus the square of the total number of nodes 
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multiplied by   
  is always less than the number of nodes in S. Constraint (7) forces 

that, for any vehicle route k and any subset of nodes S, the sum of all edges 

connecting a node in S and a node outside S which are traversed by a given route k, 

plus   
  is always greater or equal than 0. This means that there always is, at least, a 

traversed arc to go outside S. The binary variables   
  and   

  are used here as 

auxiliary variables (the reader is referred to Golden and Wong, 1981 for more details). 

All in all, the group of constraints (6)-(8) removes the possibility of disconnected sub-

tours but allows tours that include two or more closed cycles. It must be noted that with 

this group of constraints the number of restrictions to consider grows exponentially as 

they are considering any subset of nodes S.  

 

3.3 Classical heuristics for the CARP 

As described in Chapter 2, the MIRHA framework requires a problem specific with the 

characteristic of being simple and fast to execute in order to be able to define 

randomized algorithms. Among all the classical heuristics existing in the literature, we 

have selected two of them: the Path Scanning Heuristic (PSH) for the CARP and the 

Clarke and Wright Savings (CWS) heuristic for the CVRP. It is worth to mention that 

the second one is an heuristic for the CVRP problem. So we will define an adaption of 

the heuristic for the ARC routing problem, the Savings Heuristic for the Arc Routing 

Problem (SHARP), which is also one of the original contributions of this thesis. 

3.3.1 The Path Scanning heuristic for the CARP 

The PSH is a classical heuristic proposed by Golden et al. (1983) for solving the 

CARP. As a constructive heuristic, it can be used as a base heuristic for defining a 

MIRHA based algorithm. The PSH is a simple and fast method for solving the CARP by 

building one route at a time. Its main idea is to construct five complete solutions, every 

one of them following a different optimization criterion. The final solution of the 

algorithm is the best – in terms of total costs – of the five solutions obtained. 

 The way every route is constructed is not clearly defined in the original paper, 

so it allows different interpretations when trying to implement it. Following Belenguer 

et al. (2006) the approach we use in this chapter is to extend the current route by 

selecting only adjacent arcs with not served demand, choosing only the arc which best 

accomplishes the given criteria. Assuming that the vehicle is currently located at node 

I, then an adjacent arc eij connecting nodes i and j must be selected such that eij meets 

one of the following criteria: 

1. Minimizes the cost per unit demand, i.e.              . 
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2. Maximizes the cost per unit demand, i.e.              . 

3. Minimizes the distance from node j back to the depot. 

4. Maximizes the distance from node j back to the depot. 

5. If the vehicle is less than half-full, it minimizes the distance from node j back to 

the depot, otherwise it maximizes the distance. 

In case all adjacent arcs have been already served, then the closest not served arc – in 

terms of the shortest path distance – is selected. If there is more than one arc at the 

same minimum distance, then the best arc accomplishing the current optimization 

criteria is selected. Finally, once the vehicle capacity is exhausted, the current route is 

closed by returning the vehicle to the depot through the shortest path. The original 

algorithm does not state how the shortest path is computed. In our approach an 

implementation of the Dijkstra’s algorithm (Cormen et al., 2009) is used. 

 Several modifications of the heuristic can be found on the literature. Santos et 

al. (2009) propose a new heuristic which is similar to the one by Belenguer et al. 

(2006). The latter one randomly selects tied edges and solves each problem k times. 

Pearn et al. (1989) basically uses the same algorithm as the original PSH, but instead 

of applying each of the five next-step criterion in a separate way, a time-based loop is 

run. In every loop iteration, all five criteria are randomly combined together, i.e.: at each 

step during the constructive phase, a criterion is randomly selected following either a 

uniform or a weighted distribution. 

3.3.2 The SHARP heuristic for the CARP 

The CWS heuristic is probably the most cited heuristic in the CVRP arena. The CWS is 

an iterative method that starts out by considering an initial dummy solution in which 

each non-depot node (customer) is served by a dedicated vehicle. Next, the method 

initiates an iterative process for merging some of the routes in the initial solution. 

Merging routes can improve the expensive initial solution so that a unique vehicle 

serves the nodes of the merged route. The merging criterion is based upon the concept 

of savings. Roughly speaking, given a pair of nodes to be served, a savings value can 

be assigned to the edge connecting these two nodes. This savings value is given by 

the reduction in the total cost function due to serving both nodes with the same vehicle 

instead of using a dedicated vehicle to serve each node as proposed in the initial 

dummy solution. This way, the algorithm constructs a list of savings, one for each 

possible edge connecting to demanding nodes. At each iteration of the merging 

process, the edge with the largest possible savings is selected from the list as far as 

the following conditions are satisfied: (a) the nodes defining the edge are adjacent 
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to the depot; and (b) the two corresponding routes can be feasibly merged, that is, the 

vehicle capacity is not exceeded after the merging. 

 Since the CWS is considered by many authors as the best single heuristic for 

solving the CVRP, we decided to develop a new constructive heuristic for the CARP, 

based on the savings concept of the CWS. The savings-based approach, while 

extensively used in the CVRP, has received little attention in the CARP. Only recently, 

an adaptation version of the CWS has been used by Tagmouti et al. (2007). However, 

these savings-based versions are only used to provide an initial starting point of a 

complex metaheuristic, and no details are given on how the CWS has been adapted to 

be used in the CARP. Since this adaptation process is not trivial and can be done in 

very different ways, this is a clear gap in the current ARP literature. 

 

procedure SHARP(nodes, edges, vCap) 

01 for {each pair of nodes iN,jN in nodes} do 

02   sp  calcShortestPath(iN,jN,edges) 

03   dist  calcDistance(iN,jN,sp) 

04   spMatrix  addPath(iN,jN,sp) 

05   dMatrix  addDistance(iN,jN,dist) 

06 end for 

07 rE  selectRequiredEdges(edges)  

08 rN  selectRequiredNodes(rE) 

09 currentSol  buildDummySol(rE) 

10 savings  calcSavings(rN,dMatrix) 

11 savings  sortList(savings)   

12 while {savings is not empty} do 

13   edge  selectEdgeAtTop(savings) 

14   iN  selectInitialNode(edge) 

15   jN  selectEndNode(edge) 

16   for {each route iR crossing iN} do 

16     for {each route jR crossing jN} do 

17       if {isMegePossible(iR,jR,vCap)} then 

18         newRoute  mergeRoutes(iR,jR) 

19         currentSol  deleteRoutes(iR,jR) 

20         currentSol  addRoute(newRoute) 

21         exit the for loops 

22       end if 

23     end for 

24   end for 

25 end while 

26 for {each route iR in currentSol} do 

27   iR  completeRoute(iR,spMatrix) 

28 end for 

29  return avgVarCosts and solReliability 

end procedure 

Figure 7. Pseudo-code of the SHARP heuristic 

 

The pseudo-code of SHARP (see Figure 7) describes how we developed a new 

heuristic for the CARP. First, we use the Floyd–Warshall algorithm (Cormen et al., 
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2009) to compute the shortest paths δ(i, j) for all pairs of nodes (i, j) in the graph or 

road network (lines 1–6). This allows us to treat the graph as if it was a complete one. 

Having a virtually complete graph, we can now calculate the savings associated to 

each arc (line 10) – either if it is real or virtual – in a similar way as savings are 

computed in the CWS heuristic for the CVRP, i.e. s(i, j) = δ(depot, i)+δ(j, depot)−δ(i, j), 

for each pair of nodes (i, j) and the depot node. However, in the CARP case, we will 

only calculate savings between nodes that lie on required arcs (line 8), i.e. on edges 

with demand greater than zero. The edges are then sorted in a list according to their 

associated savings value (line 8). We now create a dummy solution by assigning a 

vehicle (route) to serve each required arc (line 9). At this stage, we keep track only of 

the required edges (and their orientation) in our routes, as the complete final route is 

reconstructed at the end. Additionally, at each node we keep track of routes for which 

that particular node is at the very start/end of the route (i.e., is an exterior node). We 

then iterate over the list of savings and look at each node in the selected arc to see 

which routes (if any) have that node as an exterior node, attempting to merge these 

routes if possible, i.e. as far as the capacity constraint is not violated (lines 12–26). This 

is done by iterating first over every route in node i, then over every route in node j, and 

finally checking if both routes can be merged (lines 16–18). If they can be merged, they 

are merged and removed from i’s and j’s routes lists (lines 19–22), and we proceed 

attempting other routes pairs until no more merges can be made. Finally, once we have 

run out of edges in the savings list, we will have a set of routes composed only of a set 

of sorted and oriented edges with demand greater than zero. We now reconstruct the 

final solution by computing the shortest path between the edges in the route using the 

all-pairs shortest path matrix we generated at the beginning of the procedure (lines 27–

29). 

 

3.4 Randomized algorithms for the CARP 

3.4.1 The RandPSH algorithm 

Reghioui et al. (2007) proposed a randomization of the PSH. Their randomization 

process is quite similar to the one we propose in this chapter. They designed a GRASP 

approach based on the PSH. Thus, their algorithm includes two levels of biased 

randomization: the first random process is associated with choosing the criterion 

among the five Path Scanning criteria described before; the second random process 

relates to choosing the next edge to be used. Moreover, they also consider twelve 

additional criteria, which make the resulting algorithm more efficient. 
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Our RandPSH algorithm also introduces two different randomization processes 

into the original heuristic: 

1. When constructing a new solution, the optimization criterion used to select the 

next edge is not deterministic but probabilistic: a criterion is randomly selected, 

using a uniform probability distribution in a similar way as proposed in Pearn et 

al. (1989). 

2. When selecting the next edge during the solution construction process, a 

geometric distribution is used to randomly select the edge from the sorted 

edges list. 

3.4.2 The RandSHARP algorithm 

Our savings-based heuristic for the CARP, the SHARP, has been integrated into a 

schema based on the MIRHA framework for defining a randomized algorithm, the 

RandSHARP. This randomized algorithm will use the solution produced by the savings-

based heuristic as an initial solution. Then, it will iteratively generate new randomized 

solutions by introducing a probabilistic criterion when selecting edges from the savings 

list. In this case, we have selected the geometric distribution to implement this 

probabilistic criterion. Work done by Juan et al. (2010) suggests that a geometric 

distribution with any parameter randomly selected between 0.10 and 0.25 provides 

acceptable results for the CVRP – notice that no time-costly fine-tuning process is 

needed here. Therefore, we have used these values as a reference while solving the 

CARP. 

 

3.5 Results 

To evaluate the performance of the proposed heuristics and randomized algorithms, 

they have all been implemented as computer program. Java SE6 was used here 

instead of C or C++ for several reasons: 

i. Being an object-oriented programming language with advanced memory 

management features (such as the garbage collector) and with readily-available 

data structures, it allows a somewhat faster development of algorithmic 

software. 

ii. It offers immediate portability to different platforms, i.e., the same Java 

application can be run over most operating systems. 

iii. It offers better replicability and duplicability than other languages. 

However, the downside of using Java instead of C or C++ is probably a reduction on 

code execution performance, mainly due to the fact that Java is not a compiled 
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language and to the lack of pointer-based optimization. To perform the tests, a 

standard personal computer was used with a an Intel® Core2® Quad CPU Q9300 

@2.50GHz and 8 GB RAM running the Windows® 7 Pro operating system. The 

experiments were run with four different benchmarks obtained from Belenguer (2014) 

(see Table 2): 

 The egl dataset (Eglese and Li, 1992) consisting of 24 instances which are 

derived from real world data. This data refers to winter gritting in the county of 

Lancashire, United Kingdom. These instances contain both required and not 

required arcs, so there are also arcs without associated demand. The instances 

are grouped in two different network configurations with very low arc density. 

The density of arcs is computed as the percentage of arcs of the complete 

graph which conform the network of the given instance. 

 The gdb dataset (Golden et al., 1983) consisting of 23 instances of small and 

medium-size – between 10 and 50 arcs – with a mixture of dense and sparse 

graph networks. The instances are characterized by their number of nodes, 

number of arcs, number of required arcs, and the density of arcs on the 

network. These instances are artificially generated and contain only arcs with 

associated demand. 

 The kshs dataset (Kiuchi et al., 1995) consisting of 6 instances of small size 

and a medium- to high-density of arcs. They are artificially generated and all the 

instances have the same number of arcs. All of the arcs contained on them are 

required as they have an associated demand. 

 The val dataset (Belenguer and Benavent, 2003) consisting of 34 instances, 

modelled on 10 sparse graph networks, with varying vehicle capacities for each 

network. Thus, the same instance valX is to be solved with different capacity 

constraints, obtaining the variants valXY which conform the final instance. 

These instances include only required arcs and are networks with low arc 

density (around 10%). 

 

Set Instances Nodes Arcs Density 

egl 24 109 144 2.65% 

gdb 23 12 29 53.77% 

kshs 6 8 15 55.95% 

val 34 36 63 10.59% 

Table 2. Average characteristics of problem datasets 
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3.5.1 Comparison using the BEST10 and AVG10 metrics 

For each one of the aforementioned set of instances, and for each approach – either 

heuristic or randomized algorithm – we designed and performed extensive tests using 

the same machine, same language program, same execution time, and same 

programmer. In particular, for each of the randomized algorithms and for each tested 

instance, 10 independent iterations (replicas) were run. Each replica was run for a 

maximum time of 180 s. Then, for each set of replicas, the best experimental solution 

found (BEST10) as well as the average value of the different replicas (AVG10) were 

registered. Also, the best-known solution (BKS) associated with each instance was 

obtained from Santos et al., 2009. Table 3 to Table 6 show detailed results for each 

instance (87 instances in total), including the gap of each approach with respect to the 

BKS.  

 

  Average gap w.r.t. BKS Average gap w.r.t. BKS in MaxTime = 180s 

  Heuristic BEST10 AVG10 

  PSH SHARP RandPSH RandSHARP RandPSH RandSHARP 
Set BKS Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap 

gdb1 316 316 0.00% 323 2.22% 316 0.00% 316 0.00% 316 0.00% 316 0.00% 

gdb2 339 367 8.26% 360 6.19% 339 0.00% 339 0.00% 339 0.00% 339 0.00% 

gdb3 275 289 5.09% 296 7.64% 275 0.00% 275 0.00% 275 0.00% 275 0.00% 

gdb4 287 320 11.50% 320 11.50% 287 0.00% 287 0.00% 287 0.00% 287 0.00% 

gdb5 377 439 16.45% 409 8.49% 383 1.59% 377 0.00% 383 1.59% 377 0.00% 

gdb6 298 330 10.74% 338 13.42% 298 0.00% 298 0.00% 298 0.00% 298 0.00% 

gdb7 325 330 1.54% 359 10.46% 325 0.00% 325 0.00% 325 0.00% 325 0.00% 

gdb8 348 408 17.24% 392 12.64% 350 0.57% 350 0.57% 354 1.84% 354 1.58% 

gdb9 303 364 20.13% 333 9.90% 313 3.30% 313 3.30% 317 4.62% 315 3.96% 

gdb10 275 284 3.27% 303 10.18% 275 0.00% 275 0.00% 275 0.00% 275 0.00% 

gdb11 395 424 7.34% 435 10.13% 395 0.00% 395 0.00% 395 0.00% 396 0.30% 

gdb12 458 560 22.27% 539 17.69% 490 6.99% 468 2.18% 490 6.99% 470 2.58% 

gdb13 536 548 2.24% 556 3.73% 536 0.00% 536 0.00% 536 0.00% 537 0.15% 

gdb14 100 104 4.00% 104 4.00% 100 0.00% 100 0.00% 100 0.00% 101 0.81% 

gdb15 58 60 3.45% 58 0.00% 58 0.00% 58 0.00% 58 0.00% 58 0.00% 

gdb16 127 131 3.15% 133 4.72% 127 0.00% 127 0.00% 127 0.00% 127 0.00% 

gdb17 91 91 0.00% 93 2.20% 91 0.00% 91 0.00% 91 0.00% 91 0.00% 

gdb18 164 168 2.44% 185 12.80% 164 0.00% 164 0.00% 164 0.00% 166 1.11% 

gdb19 55 57 3.64% 63 14.55% 55 0.00% 55 0.00% 55 0.00% 55 0.00% 

gdb20 121 127 4.96% 125 3.31% 121 0.00% 121 0.00% 121 0.00% 121 0.00% 

gdb21 156 168 7.69% 162 3.85% 156 0.00% 156 0.00% 156 0.00% 157 0.77% 

gdb22 200 204 2.00% 205 2.50% 200 0.00% 200 0.00% 200 0.00% 200 0.00% 

gdb23 233 246 5.58% 237 1.72% 233 0.00% 233 0.00% 234 0.30% 235 0.60% 

Avg.  7.09%  7.56%  0.54%  0.26%  0.67%  0.53% 

Table 3. Experimental results for gdb instances. 

 

  Average gap w.r.t. BKS Average gap w.r.t. BKS in MaxTime = 180s 

  Heuristic BEST10 AVG10 

  PSH SHARP RandPSH RandSHARP RandPSH RandSHARP 
Set BKS Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap 

kshs1 14661 15164 3.43% 16825 14.76% 14661 0.00% 14661 0.00% 14661 0.00% 14661 0.00% 

kshs2 9863 9953 0.91% 9953 0.91% 9863 0.00% 9863 0.00% 9863 0.00% 9863 0.00% 

kshs3 9320 9757 4.69% 9784 4.98% 9320 0.00% 9666 3.71% 9320 0.00% 9666 3.71% 

kshs4 11498 14408 25.31% 13636 18.59% 12076 5.03% 11498 0.00% 12076 5.03% 11498 0.00% 

kshs5 10957 12721 16.10% 12095 10.39% 10957 0.00% 10957 0.00% 10957 0.00% 10957 0.00% 

kshs6 10197 11091 8.77% 11177 9.61% 10197 0.00% 10197 0.00% 10197 0.00% 10197 0.00% 

Avg.  9.87%  9.87%  0.84%  0.62%  0.84%  0.62% 

Table 4. Experimental results for kshs instances. 
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  Average gap w.r.t. BKS Average gap w.r.t. BKS in MaxTime = 180s 

  Heuristic BEST10 AVG10 

  PSH SHARP RandPSH RandSHARP RandPSH RandSHARP 
Set BKS Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap 

e1-A 3548 4263 20.15% 3826 7.84% 3921 10.51% 3548 0.00% 3923 10.56% 3548 0.00% 

e1-B 4498 5499 22.25% 4769 6.02% 4956 10.18% 4498 0.00% 4956 10.18% 4512 0.32% 

e1-C 5595 7044 25.90% 5939 6.15% 6596 17.89% 5632 0.66% 6596 17.89% 5632 0.67% 

e2-A 5018 6513 29.79% 5288 5.38% 5507 9.74% 5022 0.08% 5546 10.51% 5043 0.50% 

e2-B 6317 7541 19.38% 6710 6.22% 7146 13.12% 6344 0.43% 7160 13.34% 6366 0.78% 

e2-C 8335 10537 26.42% 8945 7.32% 9267 11.18% 8477 1.70% 9346 12.13% 8518 2.20% 

e3-A 5898 7214 22.31% 6291 6.66% 6401 8.53% 5924 0.44% 6437 9.13% 5941 0.73% 

e3-B 7775 9526 22.52% 8228 5.83% 8554 10.02% 7847 0.93% 8606 10.65% 7868 1.20% 

e3-C 10292 13178 28.04% 11026 7.13% 11408 10.84% 10386 0.91% 11508 11.81% 10494 1.96% 

e4-A 6444 7979 23.82% 6835 6.07% 6913 7.28% 6504 0.93% 7027 9.04% 6530 1.33% 

e4-B 8983 10650 18.56% 9825 9.37% 9743 8.46% 9120 1.53% 9841 9.55% 9185 2.25% 

e4-C 11596 14157 22.09% 12810 10.47% 12824 10.59% 11886 2.50% 13073 12.73% 11907 2.68% 

s1-A 5018 6382 27.18% 5255 4.72% 5912 17.82% 5018 0.00% 5912 17.82% 5025 0.14% 

s1-B 6388 8372 31.06% 6666 4.35% 8110 26.96% 6435 0.74% 8110 26.96% 6450 0.97% 

s1-C 8518 10259 20.44% 8626 1.27% 9442 10.85% 8518 0.00% 9468 11.16% 8529 0.13% 

s2-A 9844 12344 25.40% 10322 4.86% 11115 12.91% 10076 2.36% 11319 14.98% 10140 3.01% 

s2-B 13100 16653 27.12% 13880 5.95% 14550 11.07% 13356 1.95% 14697 12.19% 13457 2.72% 

s2-C 16425 20665 25.81% 17399 5.93% 18707 13.89% 16752 1.99% 19007 15.72% 16803 2.30% 

s3-A 10220 13252 29.67% 10773 5.41% 11934 16.77% 10478 2.52% 12061 18.01% 10519 2.93% 

s3-B 13682 17365 26.92% 14511 6.06% 15743 15.06% 13986 2.22% 15897 16.19% 14081 2.92% 

s3-C 17230 21055 22.20% 18411 6.85% 19842 15.16% 17538 1.79% 20046 16.35% 17653 2.46% 

s4-A 12268 15817 28.93% 13076 6.59% 14350 16.97% 12647 3.09% 14497 18.17% 12737 3.82% 

s4-B 16321 19882 21.82% 17553 7.55% 18577 13.82% 16693 2.28% 18854 15.52% 16776 2.79% 

s4-C 20517 25214 22.89% 21513 4.85% 23645 15.25% 21071 2.70% 24031 17.13% 21149 3.08% 

Avg.  4.61%  6.20%  13.12%  1.32%  14.07%  1.75% 

Table 5. Experimental results for egl instances. 

 

Table 7 summarizes the aforementioned results in a single table. From the averages in 

the last row of the table, it can be deduced that the performance of the RandSHARP 

algorithm is far superior to the performance of the RandPSH algorithm in both 

considered metrics. In fact, the 87 instance average gap associated with the 

RandSHARP algorithm for the BEST10 metric is just of 1.10%, which taking into 

consideration the limited computation time employed (180 s per instance in a standard 

PC) is a quite competitive result. This is specially the case if we remember that the 

current version of the algorithm does not employ any local search process, and that it 

only uses a single parameter – the one associated with the biased random distribution 

employed. Notice also that, as expected, the performance of both randomized 

algorithms – which results improve with more computing time – is much better than the 

performance of the deterministic heuristics. Finally, notice that the performance of our 

SHARP heuristic is quite superior to that of the classical Path Scanning heuristic. 

Figure 8 shows a multiple box plot which allows a visual comparison of the 

algorithms’ performance for the BEST10 metric. A very similar visualization is obtained 

when considering the AVG10 metric instead –for that reason we did not consider 

necessary to include the corresponding multiple box plot. The multiple box plot 

reinforces the idea that results from the RandSHARP algorithm are far superior to 
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results obtained with the RandPSH and, of course, to those generated by any heuristic. 

It also shows that the heuristic introduced in this chapter is far superior to the classical 

Path Scanning heuristic – this is true both for the BEST10 and AVG10 metrics. As a 

conclusion, the SHARP heuristic constitutes a remarkable candidate to generate the 

initial solution in most metaheuristic approaches for the CARP. 

 

  Average gap w.r.t. BKS Average gap w.r.t. BKS in MaxTime = 180s 

  Heuristic BEST10 AVG10 

  PSH SHARP RandPSH RandSHARP RandPSH RandSHARP 
Set BKS Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap 

val1A 173 188 8.67% 187 8.09% 173 0.00% 173 0.00% 173 0.00% 173 0.00% 

val1B 173 188 8.67% 198 14.45% 173 0.00% 175 1.16% 173 0.00% 181 4.62% 

val1C 245 287 17.14% 266 8.57% 255 4.08% 247 0.82% 257 4.85% 248 1.27% 

val2A 227 269 18.50% 249 9.69% 227 0.00% 229 0.88% 227 0.00% 232 2.33% 

val2B 259 284 9.65% 303 16.99% 261 0.77% 260 0.39% 261 0.77% 260 0.42% 

val2C 457 550 20.35% 490 7.22% 483 5.69% 462 1.09% 483 5.69% 462 1.09% 

val3A 81 86 6.17% 89 9.88% 81 0.00% 81 0.00% 81 0.00% 81 0.37% 

val3B 87 98 12.64% 99 13.79% 87 0.00% 87 0.00% 87 0.13% 88 1.15% 

val3C 138 157 13.77% 158 14.49% 141 2.17% 139 0.72% 141 2.17% 139 0.72% 

val4A 400 472 18.00% 446 11.50% 400 0.00% 404 1.00% 403 0.75% 407 1.68% 

val4B 412 508 23.30% 453 9.95% 419 1.70% 424 2.91% 426 3.32% 428 3.81% 

val4C 428 539 25.93% 484 13.08% 448 4.67% 438 2.34% 454 5.97% 451 5.42% 

val4D 530 710 33.96% 588 10.94% 557 5.09% 543 2.45% 568 7.09% 548 3.45% 

val5A 423 487 15.13% 579 36.88% 423 0.00% 427 0.95% 425 0.42% 436 3.10% 

val5B 446 496 11.21% 509 14.13% 449 0.67% 450 0.90% 450 0.95% 460 3.21% 

val5C 474 524 10.55% 551 16.24% 481 1.48% 485 2.32% 484 2.09% 492 3.71% 

val5D 575 707 22.96% 638 10.96% 608 5.74% 594 3.30% 617 7.30% 609 5.83% 

val6A 223 258 15.70% 235 5.38% 223 0.00% 225 0.90% 223 0.00% 228 2.33% 

val6B 233 258 10.73% 251 7.73% 233 0.00% 233 0.00% 233 0.00% 234 0.52% 

val6C 317 386 21.77% 355 11.99% 328 3.47% 321 1.26% 332 4.63% 324 2.33% 

val7A 279 303 8.60% 305 9.32% 279 0.00% 279 0.00% 279 0.00% 280 0.39% 

val7B 283 320 13.07% 301 6.36% 283 0.00% 286 1.06% 283 0.00% 288 1.66% 

val7C 334 390 16.77% 367 9.88% 343 2.69% 342 2.40% 347 3.79% 345 3.23% 

val8A 386 434 12.44% 458 18.65% 386 0.00% 391 1.30% 387 0.26% 394 2.07% 

val8B 395 450 13.92% 469 18.73% 396 0.25% 406 2.78% 403 2.05% 414 4.78% 

val8C 521 617 18.43% 613 17.66% 554 6.33% 541 3.84% 558 7.17% 553 6.18% 

val9A 323 375 16.10% 336 4.02% 324 0.31% 326 0.93% 326 0.89% 329 1.70% 

val9B 326 359 10.12% 359 10.12% 332 1.84% 333 2.15% 335 2.76% 338 3.56% 

val9C 332 371 11.75% 364 9.64% 339 2.11% 341 2.71% 346 4.25% 346 4.22% 

val9D 389 474 21.85% 440 13.11% 416 6.94% 402 3.34% 425 9.28% 411 5.63% 

val10A 428 451 5.37% 460 7.48% 431 0.70% 435 1.64% 436 1.92% 437 2.10% 

val10B 436 473 8.49% 472 8.26% 445 2.06% 447 2.52% 450 3.11% 450 3.17% 

val10C 446 484 8.52% 484 8.52% 463 3.81% 459 2.91% 467 4.81% 466 4.39% 

val10D 525 625 19.05% 587 11.81% 563 7.24% 543 3.43% 568 8.25% 559 6.55% 

Avg.  14.98%  11.93%  2.05%  1.60%  2.78%  2.85% 

Table 6. Experimental results for val instances. 

 

 
Average gap w.r.t. BKS Average gap w.r.t. BKS in MaxTime = 180s 

Heuristic BEST10 AVG10 

Set PSH SHARP RandPSH RandSHARP RandPSH RandSHARP 

egl 24.61% 6.20% 13.12% 1.32% 14.07% 1.75% 

gdb 7.09% 7.56% 0.54% 0.26% 0.67% 0.53% 

kshs 9.87% 9.87% 0.84% 0.62% 0.84% 0.62% 

val 14.98% 11.93% 2.05% 1.60% 2.78% 2.85% 

Avg. 15.20% 9.05% 4.62% 1.10% 5.20% 1.78% 

Table 7. Summary of experimental results by dataset. 
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Additionally, two ANOVA tests for comparing the performance of each approach using 

the BEST10 and AVG10 metrics were also performed. Figure 9 shows the ANOVA 

table corresponding to the AVG10 metric (a similar output is obtained for the ANOVA 

associated with the BEST10 metric). The corresponding p-value is 0.000, and thus it is 

possible to conclude that not all the approaches have the same performance level, i.e. 

some algorithms perform significantly better than others. Since the individual 95% 

confidence intervals are clearly disjoint, it seems reasonable to conclude that, in fact, 

algorithms’ average performances are significantly different. A Fisher’s test for 

differences contributed to confirm this point. 

 

 

Figure 8. Visual comparison of the different approaches. 

 

3.5.2 A comparison using time-evolution of the gap 

In order to discuss the effect of computing time on each approach, several instances 

have been randomly selected and then solved using each of the approaches 

considered in this chapter and also different maximum computing times (up to 300 s). 

Needless to say that both heuristics are very fast, providing immediate feedback – i.e., 

a solution in about one second or even less – for most ‘small’ and ‘medium’ instances. 

Despite their speed, these heuristics are basically deterministic approaches which 

generate solutions with a noticeable gap with respect to the BKS. On the contrary, the 
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randomized algorithms are stochastic procedures which are able to improve their 

respective solutions with more computing time or more computing resources (e.g., 

using parallelization techniques). 

Figure 10 shows the time-evolution of the gaps associated with each approach 

for the instance egl-e2-A (77 nodes). Notice that the classical Path Scanning heuristic 

offers a gap close to 30%, which in general terms can be considered as an enormous 

gap. This gap can be reduced with time using the RandPSH. In fact, the RandPSH 

quickly diminishes the gap down to a 10% or so. For this instance, our SHARP 

heuristic is much more efficient, providing an instantaneous gap close to 5%. 

Moreover, the RandSHARP algorithm is able to reduce that gap down to almost 0% in 

just a few seconds. Similarly, Figure 11 shows the time-evolution of the gaps 

associated with each approach for the instance gdb8 (27 nodes). Again, both heuristics 

seem to provide far-from-optimal solutions which can be quickly improved by using the 

randomized algorithms. In particular, our RandSHARP method is able to diminish the 

gap down to 1% in just a few seconds of computation. 

 

 

Figure 9. ANOVA for comparing performances. 
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Figure 10. GAP time-evolution for the egl-e2-A instance. 

 

 

Figure 11. GAP time-evolution for the gdb8 instance. 
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3.6 Chapter Conclusions 

In this chapter we have introduced a first application of the MIRHA framework to the 

CARP. The CARP is a problem suitable for modeling certain Telecommunication 

optimization problem. This increases the possible applications of the MIRHA framework 

which originally was only applied to Transportation & Logistics problems. A new 

heuristic and two randomized algorithms for solving the CARP have been proposed 

and evaluated. The SHARP heuristic is based on the savings concept extensively used 

in the Vehicle Routing Problem arena, and it shows to be highly efficient when 

compared with the classical Path Scanning heuristic. The randomized algorithms are 

based on a multi-start biased randomization of a classical heuristic. Thus, the first 

randomized algorithm, RandSHARP, introduces a biased randomization process into 

the SHARP heuristic, while the second one randomizes the PSH. As far as we know, it 

is the first time that a savings based heuristic for solving the CARP is presented in 

detail. The empirical tests show that employing biased randomization is an efficient 

way of quickly improving classical heuristics without introducing complexity to them. As 

a matter of fact, a notable characteristic of our approach is that it only uses one single 

parameter and, therefore, no complex fine-tuning processes are required. Moreover, 

the results show that the multi-start biased randomization of the SHARP heuristic is 

able to provide competitive results in a reasonable computing time period, improving by 

far other approaches in the literature. Also we can remark that the proposed heuristic 

SHARP, is better suited for the MIRHA framework than the classical PSH, as results 

demonstrate.  
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4 Arc Routing Problem with Stochastic 

Demands 

 

 

 

 

 

 

Telecommunication optimization problems in real-life scenarios usually have a 

component which is not deterministic. For instance, the real demand required by the 

users usually is not a deterministic value that can be anticipated, but has a random 

component which makes it somehow uncertain. Another example is the background 

noise which interfere the communication channel, especially for wireless 

communications. In those cases, a deterministic model is not suitable to properly 

evaluate the real scenario. However, even though the values cannot be known 

beforehand, one can infer some probabilistic distribution based on real data from the 

past which could model the expected value for the random variable.  

The Arc Routing Problem with Stochastic Demands (ARPSD) is a variant of the 

deterministic CARP which generalizes it by considering customers’ demands as 

random variables instead of as deterministic values. In fact, we assume that the 

random demand associated with each customer can be modeled by a probability 

distribution, and that its actual value is not determined until the vehicle reaches the 

customer’s arc. Notice that this random behavior of the customers’ demands can lead 

to infeasibility of the planned routing solutions whenever the actual demand in a route 

exceeds the capacity of the assigned vehicle. This situation generates a “route failure” 

and requires from corrective actions to guarantee that all customers’ demands will be 

satisfied. Of course, corrective actions might increase the total cost of the implemented 

solution, so they must be taken into account during the routes-design stage. 

Considering stochastic demands instead of deterministic ones is a more 

realistic but also difficult scenario. Unfortunately, most of the existing literature focuses 

on the deterministic case. Therefore, the main goal of our approach is to contribute to 

fill the lack of methods for solving the stochastic case by proposing a Simheuristic 

algorithm that combines Monte Carlo Simulation (MCS) with a metaheuristic that was 

Parts of this chapter have been taken from the co-autored 

publications: Gonzalez-Martin et al. (2012b) and Gonzalez-Martin 

et al. (2014b). 
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originally designed for solving the deterministic CARP. As it will be discussed later, this 

algorithm deals with the stochastic variant of the problem in a natural and efficient way. 

Our work is based on the use of a safety stock during the route-design stage. This 

capacity surplus can be used during the delivery stage to handle unexpected demands.  

With that, our methodology is able to cover route failures, thus limiting the impact of 

corrective actions over the total delivery costs. A reliability index is also defined to 

evaluate the robustness of each solution with respect to possible route failures caused 

by random demands. This reliability index can be helpful for decision makers when 

choosing among several distribution plans with similar expected total costs. 

 

4.1 Literature Review 

The research body concerning the stochastic version of the CARP is quite limited yet, 

especially when compared with its deterministic counterpart. As far as we know, the 

ARPSD was first considered by Fleury et al. (2002) and further extended by the same 

authors in Fleury et al. (2005). In these works, the ARPSD was not approached 

directly. Instead, the scope was to evaluate the robustness of the solutions obtained for 

the classical CARP if the demands were stochastic instead of deterministic. In 

particular, the latter work contains an application to the CARP of the Hybrid Genetic 

Heuristic proposed by Lacomme et al.(2001). Different solutions were obtained by 

varying the vehicle capacity in each run of the heuristic. The solutions obtained were 

then evaluated by means of simulation studies. Although this approach resembles 

somewhat to the one we are proposing, there are relevant differences among them, 

e.g.: our proposal uses a different metaheuristic framework, and it employs MCS to 

estimate the total expected costs –including routing plus corrective actions- as well as 

reliability indexes of each solution. 

 The ARPSD with Normally distributed demands was first approached by Fleury 

et al. (2004). The authors propose a Memetic Algorithm, which is an extension of the 

algorithm suggested by Lacomme et al. (2004a). For each edge, the Normal 

distribution describing the demand was truncated to avoid negative values or demands 

exceeding the vehicle capacity. The problem was further restricted, since a route was 

only allowed to fail once. An exact method for the ARPSD was proposed by 

Christiansen et al. (2009). It is motivated on a previous work for solving the VRPSD 

presented by the same authors in Christiansen and Lysgaard (2007). In particular, 

they formulated the ARPSD as a Set Partitioning Problem and developed a Branch-

and-Price algorithm in which the pricing incorporates demands with stochastic nature.  

Laporte et al. (2010) have developed a local search approach for the stochastic 
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version of the undirected CARP in the context of garbage collection. In this chapter, a 

first-stage solution is constructed by means of an Adaptive Large Neighborhood 

Search Heuristic (ALNS) that takes the expected cost of recourse into account. Closed 

form expressions were derived for the expected cost of recourse by extending the 

concept of route failure commonly used in stochastic node-routing problems. Their 

computational results show that ALNS solutions were better than those obtained by 

first optimally solving a deterministic CARP and then computing the expected cost of 

recourse by using random variables for the demands. 

Finally, other works related to the ARPSD that are worth to mention are found in 

Chen et al. (2009) and Ismail and Ramli (2011). In the former, an arc-routing problem 

motivated by a real world application in small-package delivery was addressed. In this 

problem, the uncertainty is considered and incorporated to a proposed model called 

Probabilistic Arc Routing Problem (PARP). The PARP solution procedure incorporates 

the probabilities into an adapted local search that was primarily designed for the 

Probabilistic Traveling Salesman Problem by Bertsimas and Howell (1993). Similarly, 

Ismail and Ramli (2011) considered a rich CARP based on waste collection 

operations. They studied how rain drops affect the weight of the collected waste.  

These authors also developed a constructive heuristic called Nearest Procedure Based 

on Highest Demand/Cost. 

 

4.2 Our Approach 

Our proposed methodology is based on two main facts: (a) the ARPSD can be seen as 

a generalization of the CARP, i.e. the CARP can be considered a special case of the 

ARPSD where the random demands have zero variance; and (b) as discussed in the 

literature review section, while the ARPSD is yet an emerging research area, efficient 

metaheuristics do already exist for solving the deterministic CARP. Accordingly, one of 

the fundamental ideas behind our approach is to transform the challenge of solving a 

given ARPSD instance into a new challenge which consists in solving several 

conservative CARP instances, each of them characterized by a specific risk 

(probability) of showing route failures. The term conservative refers here to the fact that 

only a certain percentage of the total capacity is considered during the route design 

phase. This latent capacity will be available if the actual demand of the route is greater 

than expected. This unused capacity can be considered as a safety stock, since it 

reflects the level of latent capacity that is maintained to buffer against possible route 

failures. 
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A similar approach was already introduced by Juan et al. (2011a) for the 

Vehicle Routing Problem with Stochastic Demands, which can be seen as the 

stochastic version of the classical VRP.  In our research, we also use the Randomized 

Savings Heuristic for the Arc Routing Problem (RandSHARP) described in Chapter 3. 

Figure 12 shows the flowchart of our Simheuristic approach, an overview of which is 

given next: 

1. Consider an ARPSD instance defined by a network of arcs, a depot, a set of 

customers, and a capacity W.  Assume that each customer has a positive 

stochastic demand characterized by a specific probability distribution with 

known mean. 

2. Consider a specific value for the parameter k (0 ≤ k ≤ 1), which sets the 

percentage of W that will be used during the route design stage, i.e.: instead of 

considering the total capacity, W, we will assume ‘virtual’ vehicles with capacity 

given by W* = k W (thus leaving a safety stock for emergencies). 

3. Consider the CARP(W*) instance defined by the expected demands of each 

customer and with capacity W*. 

4. Solve the CARP(W*) instance using the RandSHARP algorithm. The obtained 

solution, s, will be also a feasible solution for the original ARPSD as long as the 

total route demand computed during the actual delivery stage does not exceed 

the surplus capacity (i.e., the safety stock). 

5. Using the solution s, estimate throughout MCS the expected cost due to 

possible failures on any route.  To this end, random demands for each 

customer are generated using the associated probability distribution and, 

whenever a route failure occurs, a corrective action is applied and its cost is 

registered.  In our case, the corrective action consists in performing a round-trip 

from the arc causing the route failure to the depot, where the vehicle is reloaded 

so that it can resume the delivery route. After iterating this process some 

thousands of times, a random sample of costs is obtained, from which an 

average value can be estimated. Then, the expected total costs can be 

computed by adding these variable costs due to route failures and the fixed 

distance-based costs given by s. 

6. During the same MCS, it is also possible to estimate the reliability of each route 

in s.  Thus, a route-reliability index can be defined as the probability that a given 

route will not fail.  It should be noticed that, in each route, higher-than-expected 

demands could sometimes be compensated by lower-than-expected demands.  

7. The reliability index for s is then computed as the product of each route-

reliability index –under the reasonable hypothesis that customer demands are 
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independent.  This s-reliability index can be considered as a measure of the 

solution robustness in the stochastic scenario. 

8. Repeat the process from Step 2 with a new value of the parameter k to explore 

the convenience of using a different level of safety stocks inside each vehicle. 

9. Finally, return the solution with the lowest expected total costs found so far (or, 

alternatively, a list with the best solutions found so far so that the decision 

maker can choose according to both total expected costs and reliability indices). 

 

ARPSD instance with random demands 
and vehicle capacity W

Select k in (0,1) and 

set W* = k W

s  solve CARP(W*) with average demands

Generate random values for the 

stochastic demands

Estimate 

variableCosts(s)

totalExpectedCosts(s)   

fixedCosts(s) + variableCosts(s)

Estimate 

routeReliabilityIndex(s)

reliabilityIndex(s)  

Product(routeReliabilityIndex(s))

More k values to 

test?

Return best solution(s)

Y

N

CARP metaheuristic

Simulation

 

Figure 12. Flowchart diagram of our Simheuristic algorithm 

 

4.3 Implementation details of our Approach 

This section provides the pseudo-code details of our algorithm. These details allow 

other authors and end users to quickly implement our algorithm in order to: (a) 

reproduce the experiments we have run and compare our approach against other 

approaches; and (b) use our approach to solve real-life applications of the ARPSD. 

Thus, Figure 13 shows the main procedure of our algorithm. This procedure starts by 

extracting the average value from the probability distribution associated to each 

customer’s demand. Then, after initializing the best solution, it starts a loop to try 
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different configurations of the safety stock level in each vehicle. Usually, one can start 

by using k = 1 (zero safety stock, scenario with the highest possible variable costs due 

to corrective actions) and then decreasing k at each iteration in steps of size 0.1 or 0.2 

until the increase in distance-based fixed costs overpass the savings in variable costs. 

For each value of k, the virtual vehicle capacity is computed as W* = k W, and a nested 

iterative process starts. At each iteration of this process, the RandSHARP algorithm 

described in Chapter 3 is used to generate a new ‘good’ but random solution to the 

associated CARP. The fixed cost associated with this solution is given by the distance-

based cost of the CARP instance. Then, in order to compute the variable cost, a 

simulation is employed –more details on this stage are given later. By adding both 

costs, it is possible to obtain an estimate of the total expected cost. Notice that the 

same simulation process also allows to obtain the reliability index associated with the 

current solution. Finally, whenever the new solution outperforms the best-found 

solution, the latter is updated. In fact, it is probably a good idea to keep a list of ‘top’ 

solutions so that the decision maker can choose among them using both the total 

expected cost as well as the reliability index criteria. 

 

procedure SimRandSHARP(arcs, probDist, W, maxTime) 

01 avgDemands  getAverage(probDist) 

02 bestSol  empty 

03 for {each desired value of k} do % try different user-defined k 

04   W*  k^W 

05   while {elapsed < maxTime} do % time-based stopping criterion 

06     sol  randSHARP(arcs, avgDemands, W*) % biased-radomization 

07     fixedCost  getDistanceBasedCost(sol) % deterministic costs 

08     avgVariableCost  simulation(sol, probDist) % uses MCS 

09     reliabilityIndex  simulation(sol, probDist) % uses MCS 

10     totalAvgCost  fixedCost + avgVariableCost 

11     if {totalAvgCost < cost(bestSol)} or {bestSol is empty} then 

12       bestSol  sol 

13       cost(bestSol)  totalAvgCost 

14       reliabilityIndex(bestSol)  reliabilityIndex 

15     end if 

16   end while 

17 end for 

18  return bestSol % returns the best(s) solution(s) found so far 

end procedure 

Figure 13. SimRandSHARP algorithm main procedure 

 

Figure 14 shows how a ‘good’ yet random solution to the CARP(W*) is generated 

throughout the RandSHARP algorithm. Basically, this algorithm uses a biased-

randomized version of the SHARP described in Chapter 3.  The biased randomization 

process induces a ‘soft randomization’ in the order of the sorted savings list by using a 

skewed (non-symmetric) probability distribution. This allows keeping the logic behind 
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the savings-based heuristic while, at the same time, helps to generate different 

solutions each time the randomized heuristic is run.  For a more detailed discussion of 

the biased-randomization process and an example of application to a related field, the 

reader is addressed to Juan et al (2010).  

 

procedure randSHARP(arcs, avgDemands, W*) 

01 sol  getDummySol()% generate a dummy sol 

02 savingsList  genSavingsList(arcs) % generates the savings list 

03 randSavingsList  biasedRand(savingsList) 

04 while {savingsList contains edges} do % apply savings-based heu. 

05   edge  extractNextEdge(randSavingsList) 

06   sol  randSHARP(arcs, avgDemands, W*) % biased-radomization 

07   iNode  getOriding(edge) 

08   jNode  getEnd(edge) 

09   iRoute  getRoute(iNode) 

10   jRoute  getRoute(jNode) 

11   if {iRoute is not jRoute} and {cap. after merge <= W*} then 

12     mergedRoute  mergeRoutes(iRoute, jRoute, iNode, jNode) 

13     sol  remove(iRoute, sol) 

14     sol  remove(jRoute, sol) 

15     sol  add(mergedRoute, sol) 

16   end if 

17 end while 

18  return sol % returns a random ´good´ solution 

end procedure 

Figure 14. RandSHARP procedure 

 

procedure simulation(sol, probDist) 

01 nTrials  0 

02 nFailures  0 

03 varCosts  0 

04 solReliability  1 

05 while {termination condition not met} do  

06   nTrials  nTrials + 1   

07   for {each route in sol} do 

08     totalRouteDemands  getRandomVariates(route, probDist) 

09     if {totalRouteDemands > vehCapacity} then 

10       nFailures(route)  nFailures(route) + 1 

11       varCosts  varCosts + cost(corrective action) 

12     end if 

13   end for 

14 end while 

15 avgVarCost  varCosts / nTrials 

16 for {each route in sol} do 

17   routeReliability  nFailures(route) / nTrials 

18   solReliability  solReliability * routeReliability 

19 end for 

20  return avgVarCosts and solReliability 

end procedure 

Figure 15. Simulation procedure to estimate variable cost and reliability index 
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Finally, Figure 15 illustrates the basic ideas behind the simulation procedure, which is 

used to obtain estimates for both the expected variable cost of a given solution as well 

as its reliability index. Notice that the probability distributions associated with each 

customer’s random demands are used to generate sample observations. These 

sample observations allow determining whether the actual aggregated demand in a 

single route will exceed the vehicle capacity in the current simulation run. If so, then 

both the new route failure and the variable cost associated with the corrective action 

are considered. It is worthy to notice that, despite not explicitly described in this 

pseudo-code, a route could show more than one failure in cases in which the actual 

aggregated demand exceeds by far the vehicle real capacity. 

 

4.4 Results 

The methodology described in the previous sections has been implemented as a Java 

application. In our experiments, a standard personal computer was used to perform all 

tests: an Intel® Core™2 Quad CPU Q9300 at 2.50 GHz and 8 GB RAM running with a 

Windows® 7 Pro operating system. Four different datasets, originally defined for the 

CARP, were adapted (generalized) and employed in our tests (details of the datasets 

can be found in Section 3.5). In order to generalize these datasets for the ARPSD, we 

changed the original deterministic demands by random demands with known 

probability distributions and means given by the deterministic demands. 

Since our approach uses simulation, random demands can be modeled by any 

probability distribution with a known mean. In this case, we have selected a Log-

Normal distribution for modeling the demands. Notice that historical data would be 

used in a real-life scenario to model each customer’s demand by a different probability 

distribution –the one that best fits the existing observations. The Log-Normal 

distribution, which is a more natural choice than the Normal distribution when modeling 

non-negative customers’ demands, has two parameters: the location parameter, μi, and 

the scale parameter, σi. According to the properties of the Log-Normal distribution, 

these parameters will be given by the following expressions: 

             
 

 
     

       

     
 

  (10) 

          
       

     
 

   (11) 
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4.4.1 A Numerical Example 

Before performing a complete experiment on all tests, we will discuss an illustrative 

example based on the instance egl-s4-B. First, this instance is generalized by 

considering the customer demands, Qi, as random variables following a Log-Normal 

distribution with mean E[Qi] and variance 0.25·E[Qi]. Then, we set k=0.95, which 

means that a 5% of the total vehicle capacity is used as a safety stock during the route 

design stage to deal with unexpected demands during the actual delivery stage. At this 

point, the RandSHARP algorithm is used to solve the associated CARP instance –

notice that any other efficient algorithm for solving the CARP could be used instead. 

Next, we run a (short-run) simulation over the obtained solution to obtain estimates of 

both the expected variable cost –due to corrective actions- and the solution reliability 

index. Once obtained the best solution for the current value of k, other values of this 

parameter are evaluated. Table 8 shows the results obtained for different k values. In 

this case, the value k=0.94 will be selected as the one providing the solution with the 

lowest expected total costs. Notice that, as the value of k decreases (i.e., as higher 

levels of safety stock are considered), the number of necessary routes (vehicles) 

increases, and the same can be said for the reliability level and the fixed cost –as 

opposed to what happens with the expected variable cost. 

 

k # routes Fixed cost Expected variable costs Expected total costs Reliability index 

0.90 30 18363 379.6 18742.6 0.99 

0.91 30 18278 489.6 18767.6 0.99 

0.92 30 18279 559.9 18838.9 0.99 

0.93 30 18287 415.6 18702.6 0.99 

0.94 29 17855 475.8 18330.8 0.99 

0.95 29 17922 700.7 18622.7 0.98 

0.96 29 17961 554.0 18515.0 0.98 

0.97 28 17579 1024.9 18603.9 0.98 

Table 8. Results for the egl-s4-B instance with Var[Qi]=0.25·E[Qi]. 

 

4.4.2 Computational Results 

In our computational experiments we considered the following four scenarios regarding 

the variance levels of each instance:  

(i) a ‘low-variance’ scenario with Var[Qi] = 0.05·E[Qi] 

(ii) a ‘medium-variance’ scenario with Var[Qi] = 0.25·E[Qi] 

(iii) a ‘high variance’ scenario with Var[Qi] = 0.75·E[Qi] 

(iv) a ‘very-high variance’ scenario with Var[Qi] = 2·E[Qi].  
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Notice that, since the expected value of the demand for each arc is set to the 

deterministic value of the classical CARP benchmarks, we have been able to 

generalize these CARP benchmarks in a natural way. In other words, the classical 

benchmarks are retrieved as a particular case of the new ones when Var[Qi] = 0.  

Obviously, as uncertainty in arc demands increases, total expected costs will tend to 

increase. This is so because more reliable or robust solutions will be required to avoid 

unnecessary route failures and their costly recourse actions. 

For each of the four scenarios considered, we proceed as follows. First of all, 

we computed a pseudo-optimal solution for the deterministic CARP using the 

RandSHARP algorithm. Notice that this solution can be also used as a feasible solution 

for the ARPSD, although it will probably show ‘high’ variable costs due to the 

necessary recourse actions –no safety stocks are considered in this CARP solution. In 

order to obtain estimates of these variable costs, we used simulation.  Note that the 

fixed costs of the pseudo-optimal solution for the CARP can be considered as a lower 

bound for the total costs of the ARPSD pseudo-optimal solution. Similarly, total 

expected costs associated with the CARP pseudo-optimal solution represent an upper 

bound for the ARPSD pseudo-optimal solution. 

Once these lower and upper bounds were established, we used our 

Simheuristic algorithm to generate solutions for the ARPSD.  In our experiments, we 

varied the k parameter from 0.75 to 1.00, using a step of size 0.01.  For each k-value 

and instance, a complete execution of 180 seconds was performed.  Then, the k-value 

providing the lowest total expected cost was selected as the recommended one. Table 

9 to Table 12 shows the average results, for each dataset of instances, obtained in 

each of the analyzed scenarios. For extended results refer to Annex A.1. 

In particular these tables show the following columns: (i) dataset name; (ii) fixed 

cost associated with the pseudo-optimal solution for the deterministic CARP (1); (iii) 

total expected cost associated with the former solution when random variables are 

considered and recourse actions are accounted for (2), (iv) percentage gap between 

values in (1) and (2); (v) total expected cost associated with our best solution (OBS) for 

the ARPSD (3); (vi) gap between (1) and (3); (vii) gap between (2) and (3); (viii) 

associated k-value (inverse of the safety stock level); and (ix) reliability value 

associated with the proposed solution.   
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 Average values for all instance in each dataset 

Solution for the deterministic CARP Our Best Solution for the ARPSD 

Dataset Fixed 
Cost (1) 

Expected 
Cost (2) 

Gap 
(1)-(2) 

Reli-
ability 

Expected 
Cost (3) 

Gap 
(1)-(3) 

Gap (2)-
(3) 

k Reli-
ability 

egl 9906 10825 9.27% 0.97 10145 2.41% -6.28% 0.995 1.00 

gdb 255 358 40.57% 0.84 322 26.51% -10.00% 0.943 0.94 

kshs 11140 11143 0.03% 0.97 11141 0.01% -0.02% 0.993 1.00 

val 350 395 12.62% 0.93 369 5.15% -6.64% 0.942 0.99 

Avg.  17.43% 0.92  8.57% -6.97% 0.960 0.98 

Table 9. Summary of results when Var[Qi] = 0.05·E[Qi] 

 

 Average values for all instance in each dataset 

Solution for the deterministic CARP Our Best Solution for the ARPSD 

Dataset Fixed 
Cost (1) 

Expected 
Cost (2) 

Gap 
(1)-(2) 

Reli-
ability 

Expected 
Cost (3) 

Gap 
(1)-(3) 

Gap (2)-
(3) 

k Reli-
ability 

egl 9906 12462 25.80% 0.91 10715 8.17% -14.02% 0.984 0.99 

gdb 255 380 49.33% 0.80 346 35.69% -9.13% 0.966 0.90 

kshs 11140 11593 4.06% 0.97 11218 0.70% -3.23% 0.980 1.00 

val 350 457 30.33% 0.82 398 13.53% -12.89% 0.906 0.97 

Avg.  31.41% 0.85  15.96% -11.36% 0.949 0.96 

Table 10. Summary of results when Var[Qi] = 0.25·E[Qi] 

 

 Average values for all instance in each dataset 

Solution for the deterministic CARP Our Best Solution for the ARPSD 

Dataset Fixed 
Cost (1) 

Expected 
Cost (2) 

Gap 
(1)-(2) 

Reli-
ability 

Expected 
Cost (3) 

Gap 
(1)-(3) 

Gap (2)-
(3) 

k Reli-
ability 

egl 9906 14039 41.71% 0.87 11656 17.66% -16.97% 0.958 0.96 

gdb 255 395 54.95% 0.76 360 41.31% -8.81% 0.879 0.89 

kshs 11140 11938 7.16% 0.96 11387 2.21% -4.62% 0.973 0.97 

val 350 502 43.17% 0.77 439 25.04% -12.66% 0.826 0.89 

Avg.  42.07% 0.81  24.40% -12.08% 0.886 0.94 

Table 11. Summary of results when Var[Qi] = 0.75·E[Qi] 

 

 Average values for all instance in each dataset 

Solution for the deterministic CARP Our Best Solution for the ARPSD 

Dataset Fixed 
Cost (1) 

Expected 
Cost (2) 

Gap 
(1)-(2) 

Reli-
ability 

Expected 
Cost (3) 

Gap 
(1)-(3) 

Gap (2)-
(3) 

k Reli-
ability 

egl 9906 16114 62.66% 0.81 12996 31.18% -19.35% 0.936 0.89 

gdb 255 400 57.18% 0.75 366 43.66% -8.60% 0.877 0.85 

kshs 11140 12900 15.80% 0.94 11845 6.33% -8.18% 0.955 0.97 

val 350 550 56.62% 0.71 488 39.00% -11.25% 0.824 0.88 

Avg.  53.76% 0.76  34.00% -12.50% 0.878 0.90 

Table 12. Summary of results when Var[Qi] = 2·E[Qi] 

 

Additionally, Figure 16 shows, for each uncertainty level, the gaps between: (a) the 

lower bound for the ARPSD (fixed cost of the CARP solution) and the upper bound 

(total expected cost of the CARP solution); and (b) the lower bound and our best 

solution for the ARPSD. Similarly, Figure 17 summarizes, for each scenario, the 

average reliability indices associated with the CARP solution –when it is considered as 

a solution for the ARPSD– and our best solution for the ARPSD, respectively. 

 



 

54 
 

 

Figure 16. Average gaps with respect to ARPSD lower bound (BKS CARP). 

 

Figure 17. Average reliability indices. 

 

4.4.3 Results Analysis 

The aforementioned tables show how averaged total expected costs associated with 

our best solution for the ARPSD are always bounded by the fixed and total expected 

costs associated with the CARP solution. Notice also that, as the level of variability 

increases from one scenario to other, the size of the gaps is also increased while the 

recommended k-value tends to decrease. Put in other words, the more the uncertainty 

level in the arcs demands’, the more safety stock is recommended and the more the 

pseudo-optimal solution for the ARPSD tends to differ from the pseudo-optimal solution 

for the deterministic CARP. Notice also that, for a given ARPSD solution, the higher the 

variance, the lower the reliability index of the solution. Also, the higher the variance, the 
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larger the gaps in terms of cost between the solution and the upper bound (expected 

costs for the BKS for the CARP). 

Even in the low-variability scenario, results show that when used as solutions for 

the ARPSD, the pseudo-optimal solutions for the CARP provide lower reliability levels 

(0.92 on the average) than the ones obtained with our approach (0.98 on the average).  

This effect can be clearly seen in Figure 6 for the different scenarios. As previously 

discussed, lower reliability indices imply more routes failures which, at the end, cause 

higher variable costs. This also explains that, as shown in Figure 16, our best solution 

provides always a lower average gap with respect to the lower bound than the CARP 

solution when it is used as a solution for the ARPSD. 

 

4.5 Chapter Conclusions 

This chapter has analyzed the stochastic –and more realistic– version of the Arc 

Routing Problem, which has been seldom discussed in the scientific literature so far.  

After motivating its importance and reviewing the existing related work, this chapter has 

proposed a Simheuristic algorithm to solve the ARPSD in a natural way. Our algorithm 

combines an efficient metaheuristic for the deterministic version of the problem with a 

simulation stage, which is able to manage the uncertainty presented in the model. The 

concept of ‘safety stock’ is used during the route-design stage to reduce the negative 

effects generated by unexpected demands during the customers’ delivery stage, i.e., 

this capacity surplus can be used to handle possible over demands that may appear 

due to the random nature of the demands of the customers. With that, our methodology 

is able to cover route failures, avoiding the over cost of corrective actions –e.g., a 

round trip to the depot to reload the vehicle. By employing simulation, our approach 

transforms the challenge of solving a stochastic instance into the challenge of solving a 

limited set of deterministic ARPs, each of them associated with a different level of 

safety-stock.  This allows using well-tested and efficient metaheuristics –initially 

designed for solving the deterministic version of the problem– to deal with the 

stochastic version of the problem. The proposed methodology is also able to generate 

reliability indices for each solution, which can be interpreted as robustness indicators. 

Several research lines remain open at this stage, among others: (a) explore other 

ways of integrating a simulation stage inside a metaheuristic algorithm; (b) analyze how 

parallel executions of this algorithm –each of them running with a different simulation 

seed– can speed up clock times necessary to obtain ‘high-quality’ solutions; (c) enrich 

the ARP model even further by including also stochastic costs due to random traveling 

times; and (d) developing similar Simheuristics for other combinatorial optimization 
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problems which have traditionally assumed deterministic inputs even when uncertainty 

is present in most real-life situations. 

 

  



 

57 
 

5 Non-smooth Arc Routing Problem 

 

 

 

 

 

 

 

Another scenario which is also common on real-life Telecommunication optimization 

problems is that in which the optimized function is non-convex. In the case of the 

CARP, a non-smooth variation of the problem can be that on which the capacity 

constraint is converted to a soft-constraint, which can be violated by incurring in some 

penalty cost. This means, for instance, that the capacity (bandwidth) constraint in a 

cable is not due to a physical factor but an economical one, which could be violated but 

incurring in some penalty. 

Optimization problems can be classified, from a high-level perspective, as either 

convex or non-convex. In general, ConVex Optimization Problems (CVOPs) have two 

parts: a series of constraints that represent convex regions and an objective function to 

be minimized that is also convex. CVOPs are worth studying because they have a wide 

variety of applications and many problems can be reduced to them via change of 

variables. Linear Programming is one well-known example, since linear functions are 

trivially convex (Boyd & Vandenberghe, 2004). The main idea in convex optimization 

problems is that every constraint restricts the space of solutions to a certain convex 

region. By taking the intersection of all these regions we obtain the set of feasible 

solutions, which is also convex. Due to the structure of the solution space, every single 

local optimum is a global optimum too. This is the key property that permits us to solve 

CVOPs exactly and efficiently up to very large instances. However, almost none of the 

algorithms applied for CVOPs can be extended to non-convex case. 

In non-convex optimization (NCVOPs) the objective function, or even the 

feasible region, are not convex, which results in a far more complex solution space 

than the case of the CVOPs. In NCVOPs we have many disjoint regions, and multiple 

locally optimal points within each of them. As a result, if a traditional local search is 

applied, there is a high risk of ending in the vicinity of a local optimum that may still be 

far from the global optimum. Another drawback is that it can take exponential time in 

Parts of this chapter have been taken from the co-autored 

publications Ferrer et al. (2013) and Gonzalez-Martin et al. (2014c). 
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the size of the input to determine that the NCVOP is infeasible, that the objective 

function is unbounded, or that one of the solutions found so far is the actual global 

optimum. 

A function is smooth if it is differentiable and it has continuous derivatives of all 

orders. Therefore, a non-smooth function is one that is missing some of these 

properties. Non-smooth optimization problems (NSPs) are similar to NCVOPs in the 

sense that they are much more difficult to solve than traditional smooth and convex 

problems. The function for which a global optimum needs to be computed is now non-

smooth and the solution space might contain again multiple disjoint regions and many 

locally optimal points within each of them. The computational techniques that can be 

used to solve these types of problem are often fairly complex and depend on the 

particular structure of the problem. While in convex optimization it is possible, 

sometimes, to explore the problem structure, and build solution methods that provide 

the global optimum, non-convex optimization problems are often intractable and have 

to rely on heuristic algorithms that produce only local optima. As a result, developing 

such techniques is in general time consuming, and the resulting application range is 

very limited. However, most real-life objective functions are either non-convex, non-

smooth or both. Therefore, combinatorial optimization under these complex but 

common circumstances is an important field to explore. 

 

5.1 Literature Review on Non-Smooth Problems 

In the context of combinatorial optimization, probabilistic or randomized algorithms 

make use of pseudo-random numbers or variants during the construction or local 

search phases.  In addition to the problem’s input data, a probabilistic algorithm use 

random bits to do random choices during its execution. An important property is that for 

the same input the algorithm can produce different outputs in different runs. 

Probabilistic algorithms have been widely used to solve many combinatorial 

optimization problems. Examples are Vehicle Routing Problems (Laporte, 2009), 

Location and Layout Problems (Drezner and Hamacher, 2002) or Covering, 

Clustering, Packing and Partitions Problems (Chaves and Lorena, 2010). 

Despite the great success of application of these methods to the 

aforementioned combinatorial problems, there exist only a few documented 

applications of these algorithms to the NCVOPs or NSPs. Some of the existing 

references are reviewed next. Bagirov and Yearwood (2006) present a formulation of 

the Minimum Sum-of-Squares clustering problem, which is a non-smooth, non-convex 

optimization problem. The goal of clustering problems is to separate a large set of 
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objects into groups or clusters based on certain criteria. The authors point out that a 

large number of approaches, like branch and bound or K-means algorithms, have been 

used for the clustering problem, but they are efficient only in certain special settings. 

The author remarks that, in general, better results are obtained when metaheuristics 

are used for the clustering problem. Al-Sultan (1995) proposed a Tabu Search 

approach that outperforms the K-means. However, this algorithm requires of three 

parameters, so an extensive study was necessary to find the best settings. 

The issue of Optimal Routing in Communication Networks has also received a 

lot of attention from researchers. The objective is to find the best path for data 

transmission in short amount of time. The routing strategy can greatly affect the system 

performance, so there is a high demand for efficient algorithms. Numerous methods 

that deal with this challenge have been designed. Hamdan and El-Hawary (2002) 

proposed a method which combined Genetic Algorithms with Hopfield networks.  

Oonsivialai et al. (2009) proposed an approach based on Tabu Search. The main 

drawbacks of most of these methods are either their inability to efficiently explore the 

solution spacer or very long computational times. 

Bagirov et al. (2007) present a non-smooth formulation for the Location 

Problem in Wireless Sensor Networks. In general, a wireless sensor network can be 

defined as a distributed collection of nodes that have limited resources and operate 

autonomously. The goal is to find o accurately estimate the position of the nodes.  Most 

proposed approaches have assumed accurate range measurements, which is 

unrealistic for Radio Frequency signal strength measurements. Ramadurai and 

Sichitiu (2003) show that a probabilistic approach can be adopted to deal with range 

measurements inaccuracy. 

Finally, in the transportation and logistics arena, Juan et al. (2013) presented a 

non-smooth formulation for the Vehicle Routing Problem. To solve this problem they 

proposed a hybrid algorithm for solving the problem. 

  

5.2 The Non-Smooth CARP 

As described in Chapter 3, the CARP is a combinatorial optimization problem defined 

over an undirected incomplete graph            . Also, a set of K identical vehicles 

(homogeneous fleet) with restricted capacity W are available for serving the customer’s 

demands. Under these circumstances, the usual goal is to find a set of routes which 

minimize the total delivery costs, computed as the sum of the costs of all the K routes, 

which are equals to the sum of the costs cij associated to each traversed arc (   
  is a 

binary variable which denotes whether the arc is traversed by the k-th route): 
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 (13) 

This minimization is subjected to the following constraints: 

1. Every route starts and ends at the depot node so every route is a round-trip. 

2. All the demands are satisfied. 

3. Each arc with positive demand is served by exactly one vehicle. However, an 

arc can be traversed as many times as required by any vehicle. 

4. The total demand to be served in any route does not exceed the vehicle loading 

capacity W. 

As mentioned before, one of the main goals of this chapter is to fill the gap in the CARP 

literature regarding the discussion and solution of non-smooth objective functions, and 

to show the efficiency of our approach to deal with this kind of functions in the CARP 

context. In order to test the effectiveness of our procedure and its efficiency in relation 

to other existing approaches, we relaxed the constraints by violating some conditions, if 

necessary. We considered soft constraints, which allow conditions to be violated, by 

incurring in some penalty costs that must be added to the objective function rather than 

considering hard constraints, which constraint the problem to never exceed the 

maximum route costs. According to Hashimoto et al. (2006), in real-world simulations, 

time windows and capacity constraints can be often violated to some extent. Of course, 

the same analysis can be applied to constraints associated with maximum route costs. 

In practice, if a given route exceeds a threshold cost or length, then some penalty cost 

must be added to the total route costs, and these penalty costs are likely to be defined 

by a piecewise non-smooth function. These costs will depend on the size of the gap 

between the actual route costs and the threshold.  In this chapter we will define the 

non-smooth arc routing problem by assuming that the cost of a route is given by: 

    
                             

                   

  (14) 

Where   represents a non-smooth function –e.g. a piece-wise function representing a 

variety of penalties. 

5.3 The RandSHARP algorithm 

For solving the non-smooth CARP we will use the RandSHARP algorithm introduced in 

Chapter 3. It is mainly composed of two parts: (a) the construction of an initial solution 
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using the classical heuristic; and (b) a biased randomization process applied to the 

construction of a random solution. To construct the random solution we apply a 

classical greedy heuristic. We use a classical heuristic as an starting point for several 

reasons. First of all, there are efficient heuristics for almost every combinatorial 

optimization problem. They usually are able to compute competitive solutions in a 

reasonably short amount of time. In addition, classical heuristics build solutions 

incrementally using well-tested strategies instead of directly using the objective function 

itself. With that, issues like non-convexity or non-smoothness of the objective function 

are not likely to have a significant impact on their efficiency. The main idea of these 

heuristics is to select the next step from a list of possible options of movements, usually 

following a selection criteria. In the case of the RandSHARP, the base heuristic is the 

SHARP base heuristic which is an adaption of the CWS for the CVRP, to the CARP. 

 

5.4 Results 

To evaluate the performance of the proposed algorithm, we have implemented it as a 

computer program. Java SE6 over Netbeans IDE was used to develop it for several 

reasons: (a) being an object-oriented programming language with advanced memory 

management features such as the garbage collection, and with readily-available data 

structure, it allows a somewhat faster development of algorithmic software; (b) it offers 

immediate portability to different platforms; and (c) it offers better replicability and 

duplicability than other languages. 

However, a downside of using Java instead other languages such as C or C++ 

is the reduction on code execution performance, mainly due to the fact that Java is 

executed over a virtual machine and it is not a complied language and to the lack of 

pointer-based optimization. A standard personal computer was used to perform all 

tests, an Intel® Core2® Quad CPU Q9300 @2.50GHz and 8 GB RAM running the 

Windows® 7 Pro operating system. For the generation of random number we have 

employed the L’Ecuyer (2006) SSJ library for Java, concretely the LFSR113 random 

number generation, which offers a period value approximately equal to 2113. 

To assess the performance and the quality of the solutions obtained with the 

proposed algorithms, a complete dataset originally proposed for the standard CARP 

problem was adapted to make it have a non-smooth objective function. In concrete, the 

gdb (Golden et al., 1983) dataset was used. This dataset consists of 23 instances of 

small to medium size with a mixture of dense and sparse graph networks.  For these 

instances, we have introduced parameter which determines the maximum route cost 

allowed. This parameter was defined considering the results obtained by the MIRH 
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algorithm for the CARP instance, rounded to a multiple of 10. But, instead of 

considering this parameter as a hard constraint, we have considered it as a soft one 

that could eventually be violated. Following the penalty costs function (14), for our tests 

we have used the specific non-linear and non-smooth function: 

                 
 

               
(15) 

                    
       

  
 
 

 (16) 

It is worth to mention that these non-smooth functions have been selected for the 

problem instances which are being tested in our experiments. These values depend on 

the magnitude of the costs of the instance. In this case the maximum route penalty due 

to exceeding Cmax is equal to 8 (15), which approximately is the 10% of the average 

cost of a route, when considering the RandSHARP solution for the gdb CARP 

instances. The results obtained are displayed in Table 13. The table is structured in 

two halves: the first one showing the characteristics of every problem dataset, and the 

second one which contain the results. On the first half we display the instance name, 

the number of arcs (|E|) and nodes (|V|) in the problem instance, the vehicle capacity 

(W) and the maximum route costs parameter which we have defined. On the second 

half, the columns contain the following information: best-known solution for the original 

CARP problem instance; the solution obtained with RandSHARP when applied to the 

normal CARP problem instance (OBS-CARP) and the gap of this result with respect to 

the best-known solution; the solution obtained by RandSHARP in the non-smooth ARP 

when considering soft-constraint during the design phase of the algorithm (OBS-S) and 

its gap with respect the best-known solution of the CARP; and, finally, the solution of 

the RandSHARP algorithm when considering hard-constraints during the design phase 

(OBS-H) and its gap with respect the best-known solution of the CARP. 

From the results we can notice first of all that RandSHARP has a good 

performance with the original CARP problem instance (without maximum route costs 

constraint and with a smooth objective function). In addition, as it considers soft-

constraints during the design phase of the routes, it is able to minimize the effect of 

having a non-smooth objective function, showing a result closest to the BKS and to the 

solution obtained by the same algorithm when considering only the CARP. Additionally, 

we can also notice that when considering hard-constraints in the design of the 

RandSHARP algorithm, the performance falls down dramatically. This is due to the fact 

that considering hard-constraints makes the solution to have more routes required, 
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which means that more overload is obtained in the solution due to the round trips to the 

depot for refilling. 

Remark that the gap with respect to the best known solution showed in the table 

is computed as follows: 

                          
               

    
  (17) 

 

Set |E| |V| W 
Max. 
route 
costs 

BKS 
(1) 

OBS-
CARP 

(2) 

Gap 
(1)-(2) 

OBS-
S (3) 

Gap 
(1)-(3) 

OBS-
H (4) 

Gap 
(1)-(4) 

gdb1 12 22 5 60 316 316 0.00% 317.87 0.59% 343.02 8.55% 

gdb2 12 26 5 50 339 339 0.00% 341.76 0.81% 422.56 24.65% 

gdb3 12 22 5 50 275 275 0.00% 276.60 0.58% 340.09 23.67% 

gdb4 11 19 5 50 287 287 0.00% 289.08 0.72% 483.71 68.54% 

gdb5 13 26 5 60 377 377 0.00% 378.85 0.49% 467.00 23.87% 

gdb6 12 22 5 60 298 298 0.00% 299.08 0.36% 351.51 17.96% 

gdb7 12 22 5 60 325 325 0.00% 325.74 0.23% 356.50 9.69% 

gdb8 27 46 27 30 348 350 0.57% 359.43 3.28% 594.91 70.95% 

gdb9 27 51 27 30 303 313 3.30% 318.75 5.20% 433.71 43.14% 

gdb10 12 25 10 60 275 275 0.00% 276.53 0.56% 283.50 3.09% 

gdb11 22 45 50 80 395 395 0.00% 400.01 1.27% 409.00 3.54% 

gdb12 13 23 35 60 458 468 2.18% 464.89 1.50% 739.19 61.40% 

gdb13 10 28 41 80 536 536 0.00% 545.00 1.68% 580.70 8.34% 

gdb14 7 21 21 60 100 100 0.00% 104.00 4.00% 104.00 4.00% 

gdb15 7 21 37 50 58 58 0.00% 58.00 0.00% 58.00 0.00% 

gdb16 8 28 24 30 127 127 0.00% 127.76 0.60% 129.00 1.57% 

gdb17 8 28 41 20 91 91 0.00% 91.00 0.00% 91.00 0.00% 

gdb18 9 36 37 30 164 164 0.00% 167.24 1.98% 182.00 10.98% 

gdb19 11 11 27 20 55 55 0.00% 55.50 0.91% 63.00 14.55% 

gdb20 11 22 27 30 121 121 0.00% 121.53 0.44% 123.00 1.65% 

gdb21 11 33 27 30 156 156 0.00% 158.00 1.28% 158.00 1.28% 

gdb22 11 44 27 30 200 200 0.00% 201.00 0.50% 202.00 1.00% 

gdb23 11 55 27 30 233 233 0.00% 235.00 0.86% 235.00 0.86% 

Avg. 13 29 12 77  0.26%  1.21%  17.23% 

Table 13. Evaluated gdb instances and obtained results. 

 

5.5 Chapter Conclusions 

In this chapter an overview of non-convex and non-smooth optimization problems has 

been presented. We have also discussed how different approaches have been used in 

different non-smooth and non-convex problems in the existing literature. Among others 

we can find the GRASP, HBSS or Tabu Search. As has been pointed out, our 

methodology has similarities with some methods already reported in the literature but, 

at the same time, maintains significant different as previously discussed. In addition, 

we have defined the non-smooth Arc Routing Problem and described the objective 

function characteristics which make our approach a good candidate for solving it. We 

have also presented how the RandSHARP, an algorithm based on the MIRHA 

framework for solving the problem, can be used for solving the non-smooth Arc Routing 
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Problem. Finally, we evaluated the performance by using some of the benchmarks 

available on the CARP literature, but considering the capacity constraint as a soft 

constraint which could be violated by incurring in some penalty. Results show that the 

biased-randomized nature of the MIRHA framework, make the algorithm robust for 

scenarios like this, where the optimized function is non-smooth. 
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6 Facility Location Problem 

 

 

 

 

 

 

 

As a closure of the research done within this thesis, another problem has been studied 

which also has direct applications on the Telecommunications field. The Facility 

Location Problem (FLP) involves locating an undetermined number of facilities to 

minimize the sum of the setup costs and the costs of serving customer from these 

facilities. The problem assumes that the alternative sites where the facilities can be 

located are predetermined and the demand in each customer is known beforehand. 

Facility location decisions are costly and difficult to reverse as, once the facility has 

been installed, the associated cost of opening is actually incurred. This problem is 

useful to model problems in very disparate areas like transportation and logistics, 

inventory planning or telecommunication network or computational infrastructures 

planning. Clear examples of its application on Information technologies are the 

placement of web-servers in a distributed network which have to provide some service 

to a given set of customers; or the placement of cabinets in optical fiber networks to 

server all the customer with a minimal network deployment cost. 

 We can find some similarities between the FLP and ARP problem families. In 

the case of the ARP, we can see the goal as deciding how to group the customers in 

subsets which should be interconnected in a sequential route. On the other hand, for 

the FLP these customer’s subsets are connected to some kind of central node (facility) 

and the goal is, in addition to determine the subsets of customers which are grouped, 

determine also the location of this central nodes. One example of application of the 

FLP to a real scenario is that in which several servers are available for providing a kind 

of internet service, and the goal is to find the subset of servers to be connected for 

providing the service to all the customers with the minimum cost possible. 

 

Parts of this chapter have been taken from the co-autored 

publications: Cabrera et al. (2014) and Gonzalez-Martin et al. 

(2014d). 
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6.1 Literature Review 

The FLP was introduced in Operations Research field in the early 60’s (Balinski , 

1966, Stollsteimer, 1961), originally referred to as Plant Location Problem. This is 

perhaps the most common location problem, having been widely studied in the 

literature, both in theory and in practice. In this section we will review some solutions 

proposed to the problem, as well as different variants of the FLP proposed to cope with 

different scenarios. For a more extensive literature review on this topic, refer to 

Drezner (1995) or Fotakis (2011). 

6.1.1 Solutions to the problem 

The facility location problem has been studied from the perspectives of worst case 

analysis, probabilistic analysis, polyhedral combinatory and empirical heuristics 

(Cornuejols et al., 1990). In the existing literature, we can also find exact algorithms 

for the problem, but its NP-hard nature makes heuristics a more suitable tool to 

address larger instances. One of the first works on the FLP was a branch-and-bound 

algorithm developed by Efroymson and Ray (1966). They used a compact formulation 

of FLP to take advantage of the fact that its linear programming relaxation can be 

solved by inspection. However, this linear programming relaxation does not provide 

tight lower bounds to the problem. The model is therefore known as a weak 

formulation. Another of the earliest approaches proposed for the problem is the direct 

search or implicit enumeration method proposed by Spielberg (1969). The author 

defined two different algorithms based on the same directed search, one considering 

the facilities initially open and a second one considering the facilities initially closed. 

 Schrage (1975) presented a tight linear programming formulation for the 

location problem different from the one defined by Efroymson and Ray (1966). 

Schrage applied to this formulation a specialized linear programming algorithm for 

variable upper bound constraints. Erlenkotter (1978) presented a dual-based 

procedure that begins with this tight linear programming formulation but differed from 

previous approaches by considering a dual objective function. Körkel (1989) presented 

an improved version of the original Erlenkotter algorithm. 

 One of the first approximation algorithms for the problem was the greedy 

algorithm proposed by Hochbaum (1982). The first constant factor approximation for 

this problem was given by Shmoys et al. (1997), later improved by Chudak (1998), 

being both of these algorithms based on LP-rounding and therefore having high 

running times. Jain and Vazirani (1999) proposed a primal-dual algorithm with faster 

running times and adapted for solving several related problems. This same algorithm 
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was later enhanced in Jain et al. (2003) and obtained better results. More recently, Li 

(2013) proposed an improved approximation algorithm that outperformed the former 

results. 

 Approximation algorithms are very valuable for a theoretical analysis of the 

problem. However, these algorithms are outperformed in practice by more 

straightforward heuristic with no performance guarantees when facing more complex 

problem instances. Constructive algorithms and local search methods for this problem 

have been used for decades, starting from Kuehn and Hamburger (1963). The 

authors presented one of the earliest models for the problem and a heuristic procedure 

solving it. Their heuristic comprised two main phases, first a constructive phase 

considered as the main program, and an improvement phase. 

 Following this work, more sophisticated metaheuristics have been applied to the 

FLP. Alves and Almeida (1992) proposed a Simulated Annealing algorithm that was 

one of the firsts metaheuristics applied to the problem. Kraticaet al. (2001) presented 

a genetic algorithm outperforming previous works. Ghosh (2001) presented a 

neighborhood search heuristics for the problem, using tabu search as local search and 

obtaining competitive solutions in very low computational times compared to exact 

algorithms. Michel and Van Hentenryck (2003) defined a simple tabu search 

algorithm, which demonstrated to be robust, efficient and competitive when compared 

with the previous work with genetic algorithms. The tabu search algorithm used a linear 

neighborhood, which flipped a single facility at each iteration. Resende and Werneck 

(2006) proposed an algorithm based on the Greedy Randomized Adaptive Search 

Procedure (GRASP) metaheuristic. The algorithm combined a greedy construction 

phase with a local search procedure. It obtained results very close to the best-known 

solution for a wide range of different instance sets. More recently Lai et al. (2010) 

presented a hybrid algorithm based on Benders’ decomposition algorithm and using a 

genetic algorithm instead of the costly branch-and-bound method, to obtain good 

suboptimal solutions. The computational results indicated that the algorithm was 

effective and efficient. However the author only compared the performance with the 

Benders’ original algorithm. 

 Finally, some work has been presented regarding parallel computing. Wang et 

al. (2008) presented an adaptive version of a parallel Multi population Particle Swarm 

Optimization (MPSO) implemented with OpenMP. The implementation obtained an 

important improvement in terms of execution times while obtaining competitive results 

with a standard computer. 
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6.1.2 Problem variations 

Cooper (1963) studied the problem of deciding locations of warehouses and allocation 

of customers demand given the locations and demands of customers, which can be 

considered as the basic facility location problem. After that, many variations of the 

basic facility location problem have been studied. The first variation defined is by 

adding a capacity constraint to each of the facilities in the problem, which results in the 

Capacitated Facility Location Problem (CFLP).  

 Another immediate generalization of the original FLP is the problem where the 

delivery of different products is considered. The Multi Commodity Facility Location 

Problem (MCFLP) was first studied by Klincewicz and Liss (1987), and it studied the 

problem without any restriction on the number of products at each facility. In the Facility 

Location with General Cost Function (FLP-GCF), the facility cost is a function on the 

number of clients assigned to the facility. An additional variant for the problem is this in 

which the demand points arrive one at a time and the goal is to maintain a set of 

facilities to service these customers. This is called the Online Facility Location (OFLP) 

(Meyerson, 2001). Carrizosa et al. (2012) present a nonlinear variation of the 

problem. In it they modified the classical Integer Programming formulation of the 

problem by adding to the cost a nonlinear function depending on the number of open 

facilities. This was referred to as the Nonlinear Minsum Facility Location Problem 

(NMFLP). 

 An interesting field of study of variations to this problem are those proposals 

defined under uncertainty (Snyder, 2006), introducing wide variations on any of the 

parameters of the problem (mainly cost, demands or distances). The goal in these 

problems is to find a solution that performs well under any possible realization of the 

random parameters, which means a robust solution. The random parameters can be 

either continuous or discrete. As an example, Balachandran and Jain (1976) 

presented a CFLP model with piecewise linear production costs that need not be either 

concave or convex. Demands are random and continuous, described by some joint 

probability distribution. In this kind of problems, only first-stage decisions are available, 

so there are no recourse decisions. So, once the locations are set, they cannot be 

changed after the uncertainty is resolved. The objectives therefore include the 

expected recourse costs.  

 Finally, it is worth to mention an extension of the FLP where it is combined with 

another optimization problem, the Steiner Tree Problem (STP). As a result, Karger and 

Minkoff (2000) defined the Connected Facility Location Problem (ConFLP). The 

ConFLP introduces an additional constraint to the problem, which is that a Steiner tree 
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must connect all the open facilities. This variation of the problem is very interesting 

because it combines location and connectivity problems, which is suitable to model 

different network design problems. 

6.1.3 Applications 

Recently the FLP problem found several new applications in digital network design 

problems. One example is the equipment allocation in Video on Demand (VoD) 

network deployments (Thouin and Coates, 2008). VoD services are complex and 

resource demanding, so deployments involve careful design of many mechanisms 

where content attributes and usage should be taken into account. The high bandwidth 

requirements motivate distributed architectures with replication of content. An important 

and complicated task part of the network planning phase of these distributed 

architectures is resource allocation. The growth of peer-to-peer networks and the use 

of mobile devices for accessing the contents have made the problem even more 

complex. Another example of application can be found in Lee and Murray (2010). In 

this chapter the authors introduce an approach for survivable network design of 

citywide wireless broadband based on the FLP model. They address two issues: how 

to locate the Wi-Fi equipment to maximally cover the given demand; and how to 

connect Wi-Fi equipment to ensure survivable networking on a real case scenario in 

the city of Dublin (Ohio). 

 Maric (2013) applied the problem to model the location of long-term health care 

facilities among given potential sites. The objective is to minimize the maximal number 

of patients assigned to the established facilities. Examples can be also found in the 

supply chain management area. Brahimi and Khan (2013) show a real case of a 

company in Pakistan which wanted to outsource part of its warehousing activity to a 

third party provider. The problem was to decide where to rent space in the third party 

warehouses. 

 The Online Facility Location Problem (OFLP, Meyerson, 2001) can model a 

network design problem in which several servers need to be purchased and each client 

has to be connected to one of the servers. Once the network has been constructed, 

additional clients may need to be added to the network. In this case additional costs will 

appear into the problem such as the connection cost of connecting a new customer to 

the cluster and, if additional capacity is required to accommodate the increase of 

demand, an additional server should be purchased (which means opening an 

additional facility). 
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6.2 Problem Description 

The (uncapacitated) FLP involves locating an undetermined number of facilities to 

minimize the sum of setup and serving costs and was first described in Balinski (1966) 

and Stollsteimer (1961). The problem is defined over an undirected strongly 

connected graph         where V is composed of a subset of customers    and a 

subset of facilities    , and E is a set of edges connecting the nodes in V. Each edge 

     has an associated cost of using it     , and for all     we are given a facility 

opening cost     . Furthermore, for every facility i and customer j we have an 

associated cost of connecting the customer to the facility              . Under 

these circumstances, the objective of the problem is to open a subset of the facilities in 

F and connect each customer with an open facility, so that the total cost is minimized: 

   
 

       

   

    

   

 
(18) 

The uncapacitated FLP is considered as the “simple” facility location problem (Verter, 

2011), where both the alternative facility locations and the customer positions are 

considered discrete points in the graph. An example of a FLP problem instance can be 

found in Figure 18. This assumes that the alternative sites have been predetermined 

and the demand in each customer zone is concentrated at the point representing that 

region. FLP focuses on the production and distribution of a single commodity over a 

single time period, during which the demand is assumed to be known with certainty. 

The distinguishing feature of this basic discrete location problem, however, is the 

decision maker’s ability to determine the size of each facility without any restriction. 

 

Figure 18. Example of FLP problem instance (a) and solution (b) 

6.2.1 Basic notation 

When we work with an instance of the FLP, we assume the notation            as 

described before. Every customer has an associated demand that needs to be served 

by the facility,   . Notice that this demand would take place in the problem definition for 
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the case of the Capacitated Facility Location Problem (CFLP), where every facility has 

a limited facility, so it is required a constraint to avoid surpassing that facility 

capacitated. Even without this capacity constraint, the FLP is proved to be NP-hard 

(Cornuejols et al., 1990). For a given instance and a given non-empty subset of 

facilities    , a best assignment       satisfying (19) can be computed easily. 

Therefore, we will often call a nonempty     a feasible solution, with facility cost 

      (20) and service cost       (21). The task is to find a nonempty subset     

such that the sum of facility cost and service cost is minimized. We denote the optimum 

by OPT. 

          
   

    
(19) 
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6.2.2 Mathematical model 

The FLP can also be formulated as an Integer Program (IP) as follows (Vygen, 2009): 

   
 

      

   

          

      

 
(22) 

Subject to: 

                (23) 

    

   

         
(24) 

               (25) 

              (26) 

This formulation is considering two decision variables xij and yi. xij represents the 

amount of flow from a facility i to a customer j, which would be 0 if the customer will not 

be served by that facility, or equals to the demand of the customer otherwise. In 

addition, yi is a decision variable which is equal to 1 if the facility i will be opened and 0 

otherwise. Constraint (23) forces that customers can only be assigned to open 

facilities. And constraint (24) assures that every customer will have its demand 

satisfied. Note that this formulation has both a binary (yi) decision variable and a 
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continuous (xij) variable. In this case the formulation is called Mixed Integer Linear 

Program (MILP). 

 

6.3 The RandCFH-ILS Algorithm 

For the FLP we are defining an algorithm based on the MIRHA framework (see 

Chapter 2). The proposed algorithm is detailed on Figure 19 as a flow chart and works 

as follows. First, it loads the problem instance. Then, it generates an initial random 

solution, which is the starting point for the ILS procedure. To generate this initial 

solution, the algorithm chooses a random number pi between |F|/2 and |F|, and picks 

randomly pi facilities to open. After that, it computes the total cost of the generated 

solution, which is selected as starting point. 

The basis for selecting always more than the half of facilities to open in the 

initial solution is not casual. Regarding computational costs, the fact of closing a facility 

on the solution is cheaper than opening a solution. This is due to the way that the costs 

are calculated. When a facility is selected to be closed, for updating the solution costs 

we only have to relocate the customers that were assigned to the closed facilities, but 

the rest of customers assigned to the other facilities remain unmodified. However, 

when opening a facility in the solution, every single client to facility assignation must be 

evaluated to determine if the newly open facility is the one with lesser assignment cost 

for this customer among all the open facilities in the current solution. For this reason, if 

starting with a solution with a higher number of open facilities, chances are that for 

improving the solution, closing less costly movements should be performed. 

After this initial solution is generated, a local search procedure is applied to 

refine the initial solution. We propose two different local search procedures in this 

chapter. The first one is simple and very fast (tiny local search), while the other 

performs a deeper search with slower execution times (deep local search).  

 On the one hand, the tiny local search procedure is based only in closing 

movements. It starts from the current solution and randomly closes one by one each of 

the open facilities. The facilities to close are selected randomly among all the closed 

facilities. If the solution is improved (i.e. it has a lower total cost) by closing the selected 

facility, it is actually removed from the solution; otherwise the facility is kept in.  

On the other hand, the deep local search procedure combines both closing and 

opening movements, which makes this procedure computationally more expensive. 

This local search procedure is divided in three parts. First, it starts by randomly 

opening one by one each of the closed facilities. It evaluates the solution at each stage 
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and only adds the open facility to the solution in the case an improvement is obtained. 

On the second stage it performs a swap movement, replacing a random number of 

open facilities on the solution by the same number of closed facilities. Finally, in the 

third stage, it closes the open facilities in the current solution one by one selected in a 

random order, effectively closing the facility in the final solution only in the case an 

improvement is obtained. Further details on both local search procedures are detailed 

on next sections. 

 

 

Figure 19. Flow diagram of the proposed approach (RandCFH-ILS) 

  

The solution generated will finally be the starting point for the ILS framework and 

considered as base solution. The ILS is mainly an iterative process which, at each 
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iteration, generates a new feasible solution with chances to outperform the base 

solution. Our ILS consists of three steps: 

1. Destruction/Construction of the solution (perturbation) 

2. Refine the solution (local search) 

3. Acceptance criteria of the solution 

On the first step, a perturbation operator is applied to the solution. This operator 

basically destructs some part of the solution by removing open facilities, and then 

reconstructs it by opening new facilities. This operator always opens more facilities 

than the amount of closed ones, so it benefits from the fact that the closing movement 

is less computationally expensive, as happened with the generation of the initial 

solution. This solution is then refined by the same local search operator used on the 

initial solution. 

 Finally, the last step of the ILS is the acceptance criteria for updating the best 

and base solutions. Being the best solution the one that will be returned as the result of 

our methodology and the base solution the solution used as initial solution for the next 

iteration of the ILS. If the solution obtained from the perturbation and local search 

procedures improves the best solution found so far, then the best and base solutions 

are updated. 

 Additionally, if the solution obtained is worse than the current base solution, an 

acceptance criterion is defined. This acceptance criterion allows a non-improving 

solution to be accepted as a new base solution if certain conditions are met. The 

acceptance criteria define a gap which the solution is allowed to worsen. This gap 

varies during the execution of the algorithm, allowing greater gaps at the beginning of 

the execution, and smaller gap as the execution time passes. With that, we enable a 

method to escape from local minima and explore different regions of the solutions 

space. 

6.3.1 Implementation details 

The main method of our proposal is the RandCFH-ILS (Figure 20). This method 

receives as a parameter the facilities and customers which conform the problem 

instance, the beta parameter used during the randomization process and a parameter 

used as stopping criterion on the ILS loop. 

It first creates an initial random solution by the genInitRandSol method and 

refines it by the local search procedure. As early mentioned in this chapter, we defined 

two different local search procedures: localSearchTiny and localSearchDeep. After 

that, credit values used by the acceptance criteria are initialized. Then, the ILS loop is 
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started using the base solution obtained at this point. In the iterated loop, the 

perturbation operator is applied to the current base solution (calling the perturbate 

method) and the obtained solution is refined by the local search procedure. 

 

procedure RandCFH-ILS(facilities, clients, beta, maxIter) 

01 baseSol  getInitRandSol(facilities, clients, beta) 

02 baseSol  localSearch(baseSol) 

03 bestSol  baseSol 

04 nIter  0 

05 credit  0 

06 while {each nIter <= maxIter} do 

07   newSol  perturbate(baseSol, beta) % destruction-construction 

08   newSol  localSearch(baseSol) 

09   delta  cost(newSol) – cost(baseSol) 

10   if {delta < 0} then 

11     credit  -(delta) 

12     baseSol  newSol 

13     if {cost(newSol) < cost(bestSol)} then 

14       bestSol  newSol 

15     end if 

16   else if {delta > 0} and {credit >= delta} then %acc. criterion 

17     credit  0 

18     baseSol  newSol 

19   end if 

20   nIter  nIter + 1 

21 end while 

22  return bestSol % returns the best(s) solution(s) found so far 

end procedure 

Figure 20. RandCFH-ILS algorithm main procedure 

This newly obtained solution is then evaluated. If the solution improves the current 

base solution, then the base solution is updated. Also the credit is updated with the 

same value as the improvement obtained. This causes credit values to be higher at the 

beginning of the execution, so bad solutions are more tolerated. As the algorithm 

obtains smaller improvements, only small degradations on the solution are welcomed 

by the acceptance criteria. If the new solution improves also the best solution, we 

update it as well. 

 In the case that the new solution is worse than the current base solution, the 

difference between both is still evaluated. The new solution is only accepted as new 

base solution if this difference is below the credit acceptance threshold. In that case, 

the new solution is accepted as base solution and the credit is reset to 0, so two 

degradations in a row are never allowed. 

 The loop is executed until the termination criterion is met, which can be a time 

limit or a maximum number of iterations. To conclude, the algorithm returns the best 

solution found so far. 
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The genInitRandSol (Figure 21) method is the responsible of generating the 

initial solution which serves as starting point for the algorithm. This method receives as 

parameters the facilities and customers in the problem instance and the beta 

parameter required for the Random Number Generator (RNG). 

 

procedure getInitRandSol(facilities, clients, beta) 

% Since closing is fast, start by opening a lot of facilities 

01 nFacilToOpen  rand(size(facilities)/2, size(facilities)) 

% Biased-randomized selection process using a Geometric(beta) promotes 

% the random selection of those facilities with HIGHEST density levels 

02 facilToOpen  biasRandSelect(facilities, nFacilToOpen, beta) 

03 sol  constructSol(facilToOpen, clients) % compute costs 

03 return sol  

end procedure 

Figure 21. getInitRandSol method 

First, it generates a random number between to total number of facilities and the half of 

this number. Next, it randomly picks this number of facilities from the list of available 

ones in the problem instance to be open. Finally it constructs the solution with the 

selected facilities as open facilities and assigns each customer to that facility among 

the open with lowest service cost for it. 

 

procedure perturbate(baseSol, beta) 

01 sol  copy(baseSol) 

02 openFacilities  getOpenFacilities(sol) 

03 nFacilToClose  rand(0, size(openFacilities)) 

% Biased-randomized selection process using a Geometric(beta) promotes 

% the random selection of those facilities with LOWEST density levels 

04 invOpenFacil  inverseOrder(openFacilities) 

05 facilToClose  biasRandSelect(invOpenFacil, nFacilToClose, beta) 

06 sol  destructSol(sol, facilToClose) 

07 closedFacil  getClosedFacilities(sol) 

% Re-construct more than destruct since closeLS is faster than openLS 

08 nFacilToOpen  rand(nFacilToClose, size(closedFacil)) 

% Biased-randomized selection process using a Geometric(beta) promotes 

% the random selection of those facilities with LOWEST density levels 

09 facilToOpen  biasRandSelect(closedFacil, nFacilToOpen, beta) 

10 sol  constructSol(facilToOpen) % Compute assignment cost 

11  return sol 

end procedure 

Figure 22. perturbate method 

The perturbate (Figure 22) method complete the perturbation operator used within the 

main ILS loop. This method receives a base solution and the beta parameter for the 

RNG. First of all, it creates a copy of the base solution and extracts the list of open 

facilities from it. Then, it randomly closes a random number of facilities to close from all 

the open ones in the solution. After that, it generates another random number of 

facilities to be opened, being always greater than the number of facilities previously 
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closed. This forces the new solution to always include more open facilities and benefits 

the algorithm on the later refinement process of the fact that closing a facility is a 

cheaper operation than opening a new facility. Once we have the number of facilities to 

open, we randomly pick the right amount from the closed facilities list and reconstruct 

the solution by adding them. 

 

procedure localSearchTiny(baseSol, beta) 

% Fast local search based on closing 

01 sol  copy(baseSol) 

02 openFacilities  getOpenFacilities(sol) 

03 openFacilitiesSorted <- biasRandSort(openFacilities)  

04 for each {oFacility in openFacilities} do 

05   newSol  deleteFacility(sol, oFacility) 

06   if {cost(newSol) < cost(sol)} then 

07     sol  newSol 

08   else 

09     newSol  addFacility(sol, oFacility) 

10   end if 

11 end for 

12  return sol 

end procedure 

Figure 23. localSearchTiny algorithm main procedure 

The localSearchTiny (Figure 23) method describes the operation of the tiny local 

search, which can be used to refine FLP solutions. This procedure receives as 

parameters the base solution and the beta parameter for the RNG. 

First of all it, creates a copy of the base solution, extracts the list of open 

facilities and sorts it randomly. After that, all open facilities are removed from the 

solution one at a time. If the solution without that facility has a lower global cost than 

the one including it, the facility is effectively removed from the solution. Otherwise, it is 

kept in the open facilities list. 

 The localSearchDeep (Figure 24) method presents the functioning of the deep 

local search, which can be used to refine FLP solutions as the localSearchTiny 

method. This procedure receives as parameters the base solution and the parameter 

for the RNG. It starts by creating a copy of the base solution. Then, it starts a loop 

structured on three different blocks that will keep running while an improvement is 

found for the solution. 

On the first block, we try to open closed facilities. The list of closed facilities is 

extracted from the current solution and is randomly sorted. All closed facilities are 

added one by one to the solution. If the solution with that facility has a lower global cost 

than the one without it, the facility is effectively added the solution and the improvement 

control is set to true. Otherwise, it is kept out. 



 

78 
 

The second block of the loop swaps open and closed facilities. It swaps all the 

open facilities with all the closed ones one at a time until an improvement is found. If 

any of the solutions with a swap has a lower global cost than the one without the 

change, the facilities are effectively swapped from the solution, the improvement 

control is set to true and the swapping process ends. 

 

procedure localSearchDeep(baseSol, beta) 

% Local search with exhaustive search 

01 sol <- copy(baseSol) 

02 while {improvement} do 

03   improvement  false 

04   closedFacilities  getClosedFacilities(sol) 

05   closedFacilitiesSorted  biasRandSort(closedFacilities, beta) 

06   for each {cFacility in closedFacilitiesSorted} do 

07     newSol  addFacility(sol, cFacility) 

08     if {cost(newSol) < cost(sol)} then 

09       sol <- newSol 

10       improvement  true 

11     else 

12       newSol  deleteFacility(sol, cFacility) 

13     end if 

14   end for 

15   openFacilities  getOpenFacilities(sol) 

16   for each {oFacility in openFacilities} do 

17     newSol  deleteFacility(sol, oFacility) 

18     closedFacilities  getClosedFacilities(sol) 

19     for each {cFacility in closedFacilities} do 

20       newSol  addFacility(sol, cFacility) 

21       if {cost(newSol) < cost(sol)} then 

22         sol  newSol 

23         improvement  true 

24         break 

25       else 

26         newSol  removeFacility(newSol, oFacility) 

27       end if 

28     end for 

29     if {cost(newSol) < cost(sol)} then 

30       sol  newSol 

31       improvement  true 

32       break 

33     else 

34       newSol  addFacility(newSol, cFacility) 

35     end if 

36   end for 

37   sol  localSearchTiny(sol, beta) 

38 end while 

39  return bestSol % returns the best(s) solution(s) found so far 

end procedure 

Figure 24. localSearchDeep algorithm main procedure 

Finally in the third block, we try to remove open facilities calling the localSearchTiny, 

willing to reduce the solution cost. All open facilities are removed from the solution one 

at a time. If the solution without that facility has a lower global cost than the one 
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including that facility, the facility is effectively removed from the solution and the 

improvement control is set to true. Otherwise, it is kept in the open facilities list. 

 

6.4 Results 

To evaluate and assess the performance of the proposed algorithm, several 

computational experiments were performed. The proposed algorithm was implemented 

as a Java® 7SE application. We performed all the tests on a commodity desktop 

computer with an Intel® CoreTM i5-2400 at 3.20 GHz and 4 GB RAM running Ubuntu 

GNU/Linux 13.04. 

 Even though Java is a programming language executed in a virtual machine 

(JVM) and we are aware it may show poorer performance than others like C or C++, 

the vast amount of tools available in the standard API (such as advanced structures or 

garbage collection) and its object-orientation eased the development process. In 

addition, the execution on the JVM offers better replicability and repeatability than other 

languages. 

 The implementation process of the algorithm is not a trivial task, since there are 

some details which require special attention: (i) The correct design of the different 

classes so that a convenient level of coupling and cohesion is reached; (ii) The quality 

of the Random Number Generator, which affects directly in the performance of our 

algorithm; (iii) The level of precision used to store and operate with numerical values is 

key for the effectiveness of the algorithm. In order to fix (ii), a state-of-the-art pseudo 

random number generator has been employed. Specifically, we used the LFSR113 

from the SSJ library created by L’Ecuyer (2002). This generator provides a period of 

2113, compared to the period of 248 of the generator provided by the standard Java 

library. Also, to benefit from the fact that the used computer had a 4-core processor, 

the implementation of the algorithm was done in a multi-threaded application, so at the 

same time we were able to execute up to four different instances in parallel. With a 

relatively small change on the implementation, this multi-threaded implementation 

could be adapted to work all the threads on the resolution of the same instances, so 

the computational times for obtaining solutions could be reduced. 

 To test the efficiency of the proposed algorithm, four different classes of 

problem instances obtained from Hoefer (2014) were used. The selected datasets 

were chosen with the criteria of testing the algorithm against instances of small, 

medium and big size (in terms of facilities and customers included in the graph). We 
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briefly describe next the used sets, but the reader is referred to Hoefer (2014) for 

further details of each class of instances. 

 BK: a small-sized class introduced by Bilde and Krarup (1977). Includes 220 

instances in total divided in 22 subsets, with the number of facilities varying 

from 30 to 50 and the number of customers from 80 to 100. These instances 

were artificially generated by the authors, selecting the assignment costs 

randomly on the range [0, 1000], and opening costs being always greater than 

1000. 

 GAP: a medium-sized class also introduced by Kochetov and Ivanenko 

(2003). Consists of three subsets, each with 30 instances: GAPA, GAPB and 

GAPC, being GAPC the hardest. These instances are considered to be 

especially hard for dual-based methods. 

 FPP: a medium-sized class introduced by Kochetov and Ivanenko (2003). 

Consists of two subsets, each with 40 instances: FPP11 and FPP 17. Although 

optimal solutions in this class can be found in polynomial times, the instances 

are hard for algorithms based on flip and swap local search, since each 

instance has a large number of strong local optima. 

 MED: big-sized class originally proposed for the p-median problem by Ahn et 

al. (1998), and later used in the context of the uncapacitated FLP by Barahona 

and Chudak (1999). Each instance is a set of n points picked uniformly at 

random in the unit square. A point represents both a user and a facility, and the 

corresponding Euclidean distance determines connection costs. The set 

consists of six different subsets with a different number of facilities and 

customers (500, 1000, 1500, 2000, 2500 and 3000) and three different opening 

cost schemas for each subset. 

In the performed experiments, we tested the algorithm using the two different local 

search procedures presented in this chapter. So, each dataset was solved twice: one 

with the algorithm using the localSearchTiny procedure, and the second one using the 

localSearchDeep procedure. With this we will be able to compare both procedures, 

being able to determine which local search has the better performance depending on 

the characteristics of the solved instance.  

 The experiments were run by setting a stopping criteria based on a time limit for 

every problem instance. So every instance will be solved by generating feasible 

solution until the termination criteria of time has been met (see Figure 19). These 

termination criteria will be different depending on the size and the class of instances 

being solved. So, the greater the instances are, the more time it is given to the 
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algorithm (see Table 14). We have set these times the great enough to guarantee that 

the algorithm reaches its best solution. We record the time when the best solution was 

found for every instance, so we can know how fast the convergence to this best 

solution was. 

 

Class Number of facilities (n) Time (secs.) 

BK 80-100 30 

FPP11 133 600 

FPP17 307 600 

GAPA 100 180 

GAPB 100 180 

GAPC 100 180 

MED 500-3000 3600 

Table 14. Termination criteria for every class of instances. 

Next, we show the results obtained when executing our algorithm in the earlier 

explained benchmarks. We compare our results using both of the local search methods 

described with the ones declared by Resende and Werneck (2006) using a GRASP 

algorithm, as it is the best performing algorithm available in the literature. We would like 

to remark that our experiments were performed on a low-end commodity desktop 

computer, as opposed to the supercomputer used by Resende and Werneck; also, we 

used a standard Java SE application, instead of the specifically compiled application 

utilized by Resende and Werneck. Although the theoretically higher performance of our 

computer, we only used one of its cores for the Java Virtual Machine to run the 

experiments. 

 We started evaluating the methodology in the set of tests with simplest and 

smallest problem instances, the Bilde and Krarup (1977) benchmark (Table 15). In 

this test, our algorithm clearly outperforms the GRASP proposal when using the deep 

local search method. We find the optimal solution for all the instances in the benchmark 

in much shorter execution times. Contrarily, we discovered in this first test that the tiny 

local search method obtains lower quality results in terms of gap with the optima in 

comparable times with the GRASP. 

We performed the next evaluation over the GAP benchmark (Table 16), known 

as a hard test for dual-based oriented methods. Neither our algorithm nor GRASP was 

thought specifically for dual-based problems, so finding good quality results in these 

instances is challenging. In this set of tests, our algorithm obtains better quality 

solutions using any of the presented local search methods, although the deep one 
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results in much lower gaps from optima. However, the running times employed by our 

proposal were much higher than the ones in Resende’s experimentation. 

   GRASP RandCFH-ILS tiny RandCFH-ILS deep 

Subset # customers # facilities Gap t (ms) Gap t (ms) Gap t (ms) 

B 
100 50 

0.000 310 0.000 794 0.000 0.20 

C 0.016 450 0.130 835 0.000 0.05 

D01 

80 30 

0.000 223 0.001 116 0.000 0.02 

D02 0.000 211 0.000 317 0.000 0.04 

D03 0.000 199 0.000 58 0.000 0.06 

D04 0.000 170 0.000 48 0.000 0.08 

D05 0.000 162 0.000 41 0.000 0.10 

D06 0.000 186 0.000 124 0.000 0.12 

D07 0.000 174 0.000 9 0.000 0.15 

D08 0.000 166 0.000 20 0.000 0.08 

D09 0.000 175 0.000 11 0.000 0.07 

D10 0.000 166 0.000 28 0.000 0.21 

E01 

100 50 

0.000 476 0.201 667 0.000 0.03 

E02 0.000 588 0.011 1176 0.000 0.07 

E03 0.019 512 0.000 286 0.000 0.11 

E04 0.000 464 0.000 389 0.000 0.14 

E05 0.000 376 0.000 223 0.000 0.18 

E06 0.000 408 0.000 247 0.000 0.22 

E07 0.000 416 0.000 451 0.000 0.25 

E08 0.000 418 0.000 728 0.000 0.28 

E09 0.000 352 0.000 35 0.000 0.29 

E10 0.000 353 0.000 70 0.000 0.32 

Avg.  0.002 316 0.015 290 0.000 0.14 

Table 15. Results obtained for the 22 BK subsets of instances. 

 

   GRASP RandCFH-ILS tiny RandCFH-ILS deep 

Subset # customers # facilities Gap t (s) Gap t (s) Gap t (s) 

GAP A 

100 100 

5.140 1.41 2.470 47.68 1.095 31.25 

GAP B 5.980 1.81 2.811 63.56 1.642 40.72 

GAP C 6.740 1.89 2.859 70.17 1.207 59.55 

Avg.  5.953 1.70 3.405 54.43 1.314 43.84 

Table 16. Results obtained for GAP subsets of instances. 

The next test was performed over the FPP benchmark (Table 17), known to include 

very hard instances for swapping algorithms. Our algorithm is not purely in this family, 

since we close and open an independent number of facilities at each overcoming 

iteration instead of directly swapping facilities. 

 

   GRASP RandCFH-ILS tiny RandCFH-ILS deep 

Subset 
# 

customers 
# 

facilities 
Gap t (s) Gap t (s) Gap t (s) 

FPP 11 133 133 8.480 2.58 0.063 127.13 0.000 111.02 

FPP 17 307 307 58.270 25.18 70.731 272.94 12.283 253.44 

Avg.  33.375 13.88 35.397 200.03 6.142 253.44 

Table 17. Results obtained for FPP subsets of instances. 

As in the GAP experimentation, our methodology outperforms the results quality of the 

Resende’s proposal. In the small instance, we even discover the optimal solution when 

using the deep local search, while GRASP remained at an 8.4% gap. In this 
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benchmark, the tiny local search performs terribly due its simplicity in generating new 

solutions and the intended complexity of the problem instance. 

Finally, we run the MED benchmark (Table 18), the one with largest problem 

instances. In these tests, the optimal is not known, but lower and upper bounds 

obtained with exact methods are provided. In this chapter, we show the gap with 

respect to the lower bound and compare it to the same gap of the average obtained by 

the GRASP method. 

 

   GRASP RandCFH-ILS tiny RandCFH-ILS deep 

Subset # customers # facilities Gap t (s) Gap t (s) Gap t (s) 

0500-10 

500 500 

0.022 33.2 0.022 213 0.022 7.35 

0500-100 0.016 32.9 0.093 676 0.014 345 

0500-1000 0.071 23.6 0.071 3168 0.078 2803 

1000-10 

1000 1000 

0.101 173.9 0.399 2038 0.099 69 

1000-100 0.048 148.8 0.333 3566 0.088 2898 

1000-1000 0.037 141.7 1.165 3468 0.447 4494 

1500-10 

1500 1500 

0.191 347.8 0.236 2418 0.175 1012 

1500-100 0.030 378.7 0.687 3582 0.094 1427 

1500-1000 0.034 387.2 3.514 3540 0.320 20939 

2000-10 

2000 2000 

0.052 717.5 0.223 3415 0.052 1276 

2000-100 0.036 650.8 1.198 3573 0.299 2611 

2000-1000 0.031 760.0 5.468 2838 0.403 57678 

2500-10 

2500 2500 

0.164 1419.5 0.622 2988 0.168 2248 

2500-100 0.049 1128.2 1.537 3569 0.349 4369 

2500-1000 0.052 1309.4 5.964 3533 0.308 108575 

3000-10 

3000 3000 

0.104 1621.1 0.372 3570 0.102 2362 

3000-100 0.124 1977.6 1.707 3538 0.545 4904 

3000-1000 0.043 2081.4 6.238 3427 0.319 228691 

Avg.  0.067 740 1.659 2951 0.938 13790 

Table 18. Results obtained for MED subsets of instances. 

The results in Table 18 show that our algorithm performs better than GRASP in the 

instances with larger setup costs. In the smallest instances, our running times are even 

competitive with Resende’s experiments. However, on larger instances, our algorithm 

performs much slower, due to the longer list of open facilities included in these 

solutions. Still, we obtained competitive results, not far from the lower bound. 

Notice some of the times employed to find the best solution are larger than the 

maximum run time given to the algorithm. This happens in the tests with the lowest 

facility opening costs (the -1000 instances). In these problems, the number of open 

facilities is considerably large and our algorithm tries to improve iteratively a long list. 

Thus, a single iteration takes longer than the time set for the stopping criteria. 

With all the shown benchmarks, we can conclude our methodology outperforms 

the existing state-of-the-art heuristics in small and medium-scale scenarios, especially 

on those with short lists of open facilities. Thus, our algorithm could be a valuable tool 

for reduced or clustered scenarios, on which a large amount of clients could be served 

by a small amount of facilities. 
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6.5 Real Case Scenario: Minimizing Network Distance to Services 

Network distance between servers and clients has a great impact on the quality 

perception for some Internet applications and the overall bandwidth consumption. For 

instance, video streaming services might be affected if congestion is found in the path 

from the server to the final client. Distributing services across the network is a good 

strategy to reduce these phenomena, but it comes at a high cost for operators. 

 Data intensive applications can also suffer from degradation and can generate 

high bandwidth demands if data is located far from the processing spot. In this field of 

study, Ryden et al. (2013) proposed a scenario in which user-contributed resources 

could be gathered to support data-intensive applications. Their proposal included a 

host selection strategy, based on bandwidth probes, in order to reduce overall 

bandwidth usage. Also targeting systems composed by non-dedicated resources, 

Lazaro et al. (2012) proposed an availability-aware host selection policy for service 

deployment in contributory communities. From the network perspective, their replica 

selection strategy would represent a random selection. 

 Studying which locations should be selected in a network to place a content or a 

service can be modeled as a FLP or a p-median problem (Resende and Werneck, 

2004). While the p-median problem does not consider any opening costs and restricts 

the number of facilities to open, the FLP considers the cost incurred when opening a 

new facility and relates the final number of open ones to the instance size and the 

opening cost values. In this particular case, the number of replicas each service should 

deploy is not known in advance. Regarding the network distances, the more service 

replicas in a network, the closer should be any client to any of them. However, more 

resources would be utilized and therefore fewer services could be supported in a 

platform of the same size. 

 

 Average Minima Maxima 

Network diameter 11 

Node degree 2.0476 1.0000 260.0000 

Node degree centrality 0.0018 0.0009 0.2295 

Node closeness centrality 0.2442 0.1212 0.4258 

Node betweness centrality 0.0028 0.0000 0.7912 

Path lengths 4.2244 1.0000 11.0000 

Table 19. Network topology trait overview 

In order to prove the value of our methodology in a real use case, we simulated a 

community cloud. To do so, we selected a mesh network topology from a Wireless 

Community Network (WCN, Flickenberger 2002). This type of networks are 
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constructed, operated, maintained and owned by the users themselves and pose a 

great opportunity for community cloud success. We selected a network snapshot with 

1134 nodes and 1161 links. Due to space limitations and the low visibility of such a 

large graph, we cannot depict the actual network topology in this chapter. Instead, we 

provide in Table 19 some basic graph statistics to help the reader to have a better 

understanding of the type of network we are dealing with. 

We considered the 53 nodes in the topology with more than one link to be the 

nodes that could host a service (facility) and all of them (including facilities) to be 

potential service consumers (customers). Considering facilities to be also consumers is 

one of the features in the community cloud and contributory communities’ proposals, as 

users originally contribute their resources to support the platforms with the only reward 

of accessing these services. Although in this example we assume complete knowledge 

about the network topology, probing techniques like traceroute could be used in a real 

system to explore the underlying network connecting the nodes, in a similar way than 

Ryden et al. (2013) do with available bandwidth used by their allocation strategy. 

To transform the network graph into a classical FLP instance, connection costs 

were established as the number of network hops from one node to another and the 

opening cost for each facility was defined as                              . The 

closeness centrality is a graph measure on how close is a vertex to all other vertices in 

the same graph. Thus, directly linking the opening cost of a facility at a given spot to 

this measure intuitively seemed a good strategy to associate higher costs to well 

connected hosts. We studied the application of our methodology in the described 

scenario and compared it to the following allocation strategies: 

1. A greedy method that selects the top N nodes ordered by descending opening 

cost. 

2. A greedy method that selects the top N nodes ordered by ascending opening 

cost. 

3. A random selection of N nodes from all the available facilities. 

In all cases, we set N to the same number of nodes selected by our FLP solving 

method, so the distance and cost comparison is done with the same level of resource 

usage. For the random selection strategy, we took the average from 100 samples. We 

gave 1 second of running time to our heuristic, a restricted time that would allow its use 

in a user-interactive service deployment process. We plot in Figure 25 the distance of 

all clients in the network to its closest facility when selected with each of the explained 

methodologies. Figure 26 shows the cost incurred by each of the service allocations.  
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Figure 25. Cumulative distribution function of the distance to the closest replica from each client. 

 

Figure 26. Cost distribution comparison of the different deployments obtained by the described 
allocation methods 

As can be observed in both figures, our simulation-based methodology selects nodes 

in the network to host a single service that are closer to all other ones while maintaining 

a low deployment cost. Observing the disperse distances and costs obtained with both 
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greedy methodologies, we can also deduct that: (a) selecting those nodes with higher 

closeness centrality values results in low network distances and restrained total 

deployment costs; and (b) selecting nodes with lower closeness centrality results in 

very low opening costs but prohibitively high connecting ones and longer network 

distances. Both facts are a direct consequence of the cost function used to assign open 

costs for facilities in the FLP instance, but they help to value our proposal on finding 

low distance and low cost deployments. 

 

 

Figure 27. Cost distribution function of the mean network distances from each node to its closes 
replica. 

In a real-life scenario, several services or applications should be concurrently 

supported in the same network. To show the behavior of our methodology in such 

case, we evaluated the network distances after five consecutive service allocations, 

considering only one service replica was supported at a time on each host. We show in 

Figure 27 the distance of each node in the network to the closest facility of each of the 

five deployed services when replicas are allocated with the explained methodologies. 

Figure 28 shows a box plot comparison of the total costs incurred by each of the 

deployed services. Figure 27 show our methodology consistently allocates replicas 

closer to all other nodes in the network by using the same number of resources. 

Specially, if we look at the maximum distance, our proposal is able to allocate replicas 

at half the distance than other approaches. Thus, we can highlight our methodology 

does a better resource utilization, getting lower network distances without increasing 
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the number of consumed resources. Moreover, as the box plot in Figure 28 reflects, 

the selected service allocations are also cheaper on average. 

 

 

Figure 28. Box plot comparisons of the deployment costs with different allocation methodologies. 

 

6.6 Chapter Conclusions 

In the context of the Facility Location Problem applied to computer networks, this 

chapter has discussed the use of random variates generated from skewed probability 

distributions to induce a biased-randomized behavior inside a solving metaheuristic. 

The use of biased randomization helps the algorithm during the local search, thus 

providing shorter convergence times than the ones obtained by using standard uniform 

randomization. The resulting algorithm has been tested against a classical and well-

studied benchmark for the FLP. As well, we applied our proposal to a real case 

scenario of a community platform and showed our methodology regularly selects 

network locations closer than the ones selected by any of the simple methods 

compared. The proposed algorithm while simple, as it is only requiring a single-

parameter during the tuning phase, it is obtaining competitive results. These results 

confirm that simulation-inspired approaches like the one introduced in this proposal can 

become an efficient tool for solving FLP and other similar optimization problems in the 

field of distributed computing systems or telecommunication networks. We expect to 
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apply the presented methodology to larger network instances and study its application 

in real system deployments. 
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7 Conclusions and Contributions Derived 

from this Thesis 

 

 

 

 

 

7.1 Conclusions 

The Telecommunication sector is generating new optimization problems as technology 

advances occur. Improvements in the capacity of processing of computer processors, 

the definition of new concepts of network infrastructures like cloud computing, or the 

necessity of having faster internet connections which require of the deployment of 

newer network infrastructure, have associated with them optimization problems which 

are usually complex (or even impossible) to solve with exact methods. These scenarios 

usually can be modeled by already defined problems in more mature areas, as for 

example Transportation and Logistics. Also, solution methods can be reused for the 

new domain of problems or, at least, ideas behind them can be easily adapted to solve 

the new problems. One example of this is the MIRHA framework which we have 

presented in this thesis. The framework offers general concepts which can be followed 

for define biased randomized algorithms in different problems. In this thesis we have 

proposed new algorithms based on the MIRHA framework for optimization problems 

with potential applications in the Telecommunications field.  

First of all, we have worked with the CARP. For this, we used the MIRHA 

framework to define a biased-randomized algorithm, and created two different versions 

of it, with different base heuristics. One was using the classical Path Scanning heuristic 

(PSH), and the other our SHARP heuristic. The SHARP heuristic is also an original 

contribution of this thesis as a heuristic for the Capacitated Arc Routing Problem 

(CARP). The heuristic being based on the classical Clarke and Wright Savings (CWS) 

heuristic for the Capacitated Vehicle Routing Problem (CVRP), obtained relatively-good 

results by itself. Results showed that the RandSHARP algorithm has a better 

performance than RandPSH. Also, RandSHARP results are competitive when 

compared with the state of the art. This makes the RandSHARP algorithm a very good 

alternative for real-life scenarios because, as it is quite easy to implement, and has 
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only one configuration parameter, the time required to implement the algorithm in a real 

case is lower than other methauristics with complex configuration steps. 

Next, we dealt with the stochastic variation of the CARP, the Arc Routing 

Problem With Stochastic Demands (ARPSD). The ARPSD differs from the CARP in 

that the customer’s demands are not known beforehand. This makes the problem more 

suitable for certain real cases in which the demands are not known beforehand but can 

only be modeled by a random variable. For solving the problem we defined an 

algorithm which combined the RandSHARP algorithm which we defined for the CARP 

(based on the MIRHA framework), with the Simheuristics framework. Simheuristics, 

with the use of biased-random sampling and Monte Carlo simulation, provide solutions 

which are robust for scenarios with uncertainty. From this we created another original 

algorithm: the Sim-RandSHARP. Mainly it solves a problem variation which considers 

safety stocks on the capacity, with RandSHARP, and then evaluates the robustness of 

the obtained solution with MCS. After several iterations the obtained solution 

demonstrates to be robust under these uncertain scenarios, while minimizing the total 

expected costs. 

After that, a third variation of the CARP was solved: the non-smooth ARP. In the 

non-smooth ARP the function to be optimized is non-smooth. In the case of study this 

was due to the fact that the capacity constraint was changed to a soft constraint. This 

mean that the constraint can be violated but incurring in some penalty cost. For solving 

the problem, a variation of the RandSHARP for the problem was used, which consider 

the soft-constraint in the problem definition. We showed how the algorithm obtained 

also competitive results also when the cost function is non-smooth. 

Finally, we studied the Facility Location Problem (FLP) which also has application 

in telecommunications problems. For the FLP we contributed an original algorithm also 

based on the aforementioned MIRHA framework. The biased-randomized algorithm 

designed demonstrated to be very competitive in terms of execution times and 

solutions qualities when compared with other algorithms (GRASP). Also, we evaluated 

the performance of the algorithm on a problem instances extracted from a real network 

scenario. In this problem instance the algorithm obtained high quality solutions when 

compared with different methods. 

 

7.2 Future Work 

In this thesis we widen the number of successful applications of the MIRHA framework 

and Simheuristics by studying new problems. However, further research can be 
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conducted in order to analyze different scenarios of these problems and also to afford 

new optimization problems: 

 Additional problems can be studied for proposing algorithms with MIRHA 

framework and Simheuristics. In this thesis we have shown how the 

methodology can successfully be applied to different problems than the ones for 

which originally was proposed the methodology. Futures researches can 

propose algorithms based on MIRHA and/or Simheuristics to different 

problems. 

 The proposed algorithms are parallelizable in a natural way. This is due to the 

nature of the MIRHA framework, which Iterated Local Search step can be easily 

parallelizable. Also, different steps of the problem specific algorithm can be 

parallelizable. With parallelization the results obtained by the algorithm in all the 

problems that we have studied (CARP, ARPSD, non-smooth ARP and FLP) 

can be improved by decreasing the required execution time when having a 

computer with multiple execution cores.  

 Following the previous point, distributed computing can be also evaluated. In 

situations in which the computers available for executing the algorithm have not 

enough execution cores, we can share the capacity of several low-end 

computers to execute the parallelized version of the algorithm. Here the 

research would define how the computations of the algorithm would be split and 

coordinated within the distributed network. 

 Study different variations of the ARPSD. The ARPSD models a scenario in 

which the customer demands is not known beforehand, but there are other 

stochastic scenarios that can be studied. For instance, another interesting 

scenario would be that one in which the real cost of traversing an edge is not 

known beforehand. In this case we have uncertainty in the cost function. A 

future research line could evaluate if the proposed SimRandSHARP algorithm 

is also robust when facing this uncertainty scenario. 

 Propose an algorithm combining RandCFH-ILS and Simheuristics for the 

stochastic variation of the FLP. The FLP has a stochastic variation in which new 

customers appear in the network as the time passes. There is an interesting 

research line to propose a new algorithm for the problem and evaluate the 

robustness and quality of the obtained solutions. 

 Finally, one problem of special interest for its possible applications in the 

Telecommunications field is the Connected Facility Location Problem (CFLP, 

Gupta et al. 2001). In the CFLP the goal is, in addition to select the location of 
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the different central nodes or facilities, to connect them with a Steiner Tree. 

Mainly it is a combination of a FLP with a Steiner Tree Problem (STP). Thus, 

another research line could be the adaption of the RandCFH-ILS algorithm, 

originally proposed to the FLP, to the CFLP. One example of application of the 

CFLP is the design of Virtual Private Networks (VPN). 

 

7.3 Publications derived from this thesis 

As a result of the research conducted within this thesis, several publications have been 

produced as part of the main contributions of this work. Thus, in this chapter, we 

present the accepted publications, the in-process-of-reviewing publications, some 

dissemination activities developed in the last four years, and finally there are some 

extra contributions related to the objectives of this dissertation that must be pointed out. 

7.3.1 Publications 

Among the publications derived from this thesis, we can remark some parts of this 

thesis which have been published in the following articles belonging to publications 

indexed in ISI-JCR or Elsevier-Scopus journals after a peer-reviewing process: 

 Gonzalez-Martin, S.; Juan, A.; Riera, D.; Castella, Q.; Muñoz, R; and Perez, A. 

(2012a). Development and assessment of the SHARP and RandSHARP 

algorithms for the arc routing problem. AI Communications, 25: 173-189. 

Indexed in ISI SCI, 2011 IF = 0.500, Q3. ISSN: 1134-5764. 

 Gonzalez-Martin, S.; Ferrer, A.; Juan, A.; and Riera, D. (2014c). Solving non-

smooth arc routing problems throughout biased-randomized heuristics. In De 

Sousa, J.; and Rossi, R. (eds.), Advances in Intelligent Systems and 

Computing: 451-462. Indexed in ISI Web of Science and Scopus, 2013 SJR = 

0.139, Q4. ISSN: 2194-5357. 

 Gonzalez-Martin, S.; Juan, A.; Riera, D.; Elizondo, M.; and Fonseca, P. 

(2012b). Sim-RandSHARP: A hybrid algorithm for solving the arc routing 

problem with stochastic demands. In Proceedings of the 2012 Winter 

Simulation Conference, Berlin, Germany: 1-11. Indexed in ISI Web of Science 

and Scopus, 2011 SJR=0.372, Q2. ISSN: 08917736. 

 Gonzalez-Martin, S.; Barrios, B.; Juan, A.; and Riera, D. (2014a). On the use of 

biased randomization and simheuristics to solve vehicle and arc routing 

problems. In Proceedings of the 2014 Winter Simulation Conference 
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(accepted), Savannah, USA, December 7-10. Indexed in ISI Web of Science 

and Scopus, 2011 SJR=0.372, Q2. ISSN: 08917736. 

 Cabrera, G.; Gonzalez-Martin, S.; Juan, A; and Marques, J. (2014). Combining 

biased random sampling with metaheuristics for the facility location problem in 

distributed computer systems. In Proceedings of the 2014 Winter Simulation 

Conference (accepted), Savannah, USA, December 7-10. Indexed in ISI Web 

of Science and Scopus, 2011 SJR=0.372, Q2. ISSN: 08917736. 

 Juan, A.; Barrios, B.; Coccola, M.; Gonzalez-Martin, S.; Faulin, J.; and Bektas, 

T. (2012b). Combining biased randomization with meta-heuristics for solving the 

multi-depot vehicle routing problem. In Proceedings of the 2012 Winter 

Simulation Conference, Berlin, Germany, December 9-12. Indexed in ISI Web 

of Science and Scopus, 2011 SJR=0.372, Q2. ISSN: 08917736. 

 

Also, at the moment of writing this dissertation, other parts of this thesis have been 

submitted to a peer-reviewing process of other ISI-JCR publications, but still are under 

review at the moment of writing this document: 

 Gonzalez-Martin, S.; Juan, A.; Riera, D.; Elizondo, M.; and Ramos, J. (2014b). 

A simheuristic algorithm for solving the arc routing problem with stochastic 

demands. Applied Soft Computing. 

 Gonzalez-Martin, S.; Cabrera, G.; and Juan, A. (2014d). BRILSA: A biased-

randomized ILS algorithm for the uncapacitated facility location problem. In 

work. 

 

In addition, there are some conference-papers associated to ISI-WOS or Elsevier-

Scopus journals which were accepted after a peer-reviewing process: 

 Gonzalez-Martin, S.; Juan, A.; Riera, D.; and Caceres, J. (2011). A hybrid 

algorithm combining path scanning and biased random sampling for the arc 

routing problem. In Proceedings of the 18th RCRA Workshop, Barcelona, Spain: 

46-54. 

 Juan, A.; Faulin, J.; Caceres, J.; and Gonzalez-Martin, S. (2011d). Combining 

randomized heuristics, monte-carlo simulation and parallel computing to solve 

the stochastic vehicle routing problem. In: Proceedings of the international 

conference on Optimization, Theory, Algorithms and Applications in Economics 

(OPT2011), Barcelona, October 24-28. 

 Gonzalez-Martin, S.; Ferrer, A.; Juan, A.; and Riera, D. (2013). Solving non-

smooth arc routing problems throughout biased-randomzied heuristics. In: 
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Proceedings of the 16th annual meeting of Euro Working Group on 

Transportation, Porto, Protugal, September 4-6. 

 Ferrer, A.; Juan, A.; Gonzalez-Martin, S., and Lourenço, H. (2013). 

Randomized algorithms for solving routing problems with non-smooth objective 

functions. In: 26th European Conference on Operational Research (EURO 

2013). July 1-4, Rome. 

 Fernandez-Piñas, D.; Gonzalez-Matin, S.; Juan, A.; and Riera, D. (2013). A 

heuristic algorithm for the resource assignment problem in satellite 

telecommunication networks. In: Proceedings of the 20th RCRA workshop on 

Experimental Evaluation of Algorithms for Solving Problems with Combinatorial 

Explosion, Roma, Italy, June 14-15. 

 

Additionally, the following book chapter was co-authored: 

 Juan, A.; Caceres, J.; Gonzalez-Martin, S.; Riera, D.; and Barrios, B. (2014a). 

Biased randomization of Classical Heuristics. In Wang, J. (ed.), Encyclopedia of 

Business Analytics and Optimization, IGI Global, 1: 314-324. 

7.3.2 Presentations 

Some parts of this work have also been presented in several international Congresses, 

Conferences and Workshops, and published in the following activities: 

 Juan, A.; Gonzalez-Martin, S.; Elizondo, M.; Riera, D. (2012). A hybrid 

algorithm for solving the arc routing problem with stochastic demands. 2012 

IN3-HAROSA International Workshop. June 13-15, Barcelona. 

 Gonzalez-Martin, S.; Juan, A.; Cabrera, G.; and Riera, D. (2013). Applying 

MIRHA to the Connected Facility Location Problem. 2013 ICSO-HARSA 

International Workshop. July 10-12, Barcelona. 

 Muñoz, C.; Gonzalez-Martin, S.; Candia, A.; and Juan, A. (2014). Solving Arc 

Routing Problem with a Hybrid Electromagnetic Mechanism Algorithm. In: XLVI 

Brazilian Symposium of Operational Research, Salvador de Bahia, September 

16-19. 

7.3.3 Other contributions 

During the thesis period, additional activities have been conducted which, not being 

included on this thesis dissertation, were on topics closely related to the combinatorial 

optimization and telecommunications fields. In particular, the guidance of a final Master 

Thesis for the degree of Master in Software Libre from the Universitat Oberta de 
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Catalunya (UOC) was conducted in collaboration with Dr. Angel A. Juan (advisor of this 

PhD thesis). The thesis was developed by the student David Fernandez Piñas 

(Fernandez, 2013), and a part of it was published in the RCRA workshop: 

 Fernandez-Piñas, D.; Gonzalez-Matin, S.; Juan, A.; and Riera, D. (2013). A 

heuristic algorithm for the resource assignment problem in satellite 

telecommunication networks. In: Proceedings of the 20th RCRA workshop on 

Experimental Evaluation of Algorithms for Solving Problems with Combinatorial 

Explosion, Roma, Italy, June 14-15. 

 

Additionally, collaboration was done with the student Carlos Muñoz from the Talca 

University (Chile) during his stage at UOC, for the work done for his final master thesis 

in Industrial Engineering. As a result of this collaboration, the following conference 

paper was produced: 

 Muñoz, C.; Gonzalez-Martin, S.; Candia, A.; and Juan, A. (2014). Solving Arc 

Routing Problem with a Hybrid Electromagnetic Mechanism Algorithm. In: XLVI 

Brazilian Symposium of Operational Research, Salvador de Bahia, September 

16-19. 

 

Also the following co-authored paper was presented as a poster in the Winter 

Simulation Conference: 

 Juan, A.; Barrios, B.; Coccola, M.; Gonzalez-Martin, S.; Faulin, J.; and Bektas, 

T. (2012b). Combining biased randomization with meta-heuristics for solving the 

multi-depot vehicle routing problem. In Proceedings of the 2012 Winter 

Simulation Conference, Berlin, Germany, December 9-12. 
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A. Appendix 

 

A.1. Extended results for ARPSD 

 

 Solution for the deterministic CARP Our Best Solution for the ARPSD 

Set 
Fixed 

Cost (1) 
Expected 
Cost (2) 

Gap 
(1)-(2) 

Reli-
ability 

Expected 
Cost (3) 

Gap 
(1)-(3) 

Gap (2)-
(3) 

k 
Reli-

ability 

e1-A 3548 3578.7 0.87% 1.00 3562.1 0.40% -0.46% 0.99 1.00 

e1-B 4498 4572.7 1.66% 1.00 4520.6 0.50% -1.14% 1.00 1.00 

e1-C 5632 6388.6 13.43% 0.96 5669.9 0.67% -11.25% 1.00 1.00 

e2-A 5022 5366.5 6.86% 0.97 5087.2 1.30% -5.20% 1.00 1.00 

e2-B 6344 6867.7 8.26% 0.97 6436.5 1.46% -6.28% 1.00 1.00 

e2-C 8477 9674.4 14.13% 0.96 8634.0 1.85% -10.75% 1.00 1.00 

e3-A 5924 7121.9 20.22% 0.93 6051.6 2.15% -15.03% 1.00 1.00 

e3-B 7847 8503.6 8.37% 0.98 7976.8 1.65% -6.20% 1.00 1.00 

e3-C 10386 11693.9 12.59% 0.97 10641.4 2.46% -9.00% 0.99 1.00 

e4-A 6504 6710.5 3.17% 0.99 6622.6 1.82% -1.31% 0.98 1.00 

e4-B 9120 9303.4 2.01% 1.00 9311.9 2.10% 0.09% 1.00 1.00 

e4-C 11886 12225.5 2.86% 0.99 12018.9 1.12% -1.69% 1.00 1.00 

s1-A 5018 5887.3 17.32% 0.95 5130.0 2.23% -12.86% 1.00 1.00 

s1-B 6435 6484.9 0.78% 1.00 6484.9 0.78% 0.00% 1.00 1.00 

s1-C 8518 9433.0 10.74% 0.97 8692.0 2.04% -7.86% 1.00 0.99 

s2-A 10076 11747.6 16.59% 0.93 10433.6 3.55% -11.19% 1.00 0.99 

s2-B 13356 13951.9 4.46% 0.99 13710.6 2.65% -1.73% 1.00 1.00 

s2-C 16752 18229.4 8.82% 0.97 17279.8 3.15% -5.21% 0.98 1.00 

s3-A 10478 11457.1 9.34% 0.98 10696.1 2.08% -6.64% 0.99 1.00 

s3-B 13986 15981.4 14.27% 0.97 14525.3 3.86% -9.11% 0.99 1.00 

s3-C 17538 19300.7 10.05% 0.96 18222.2 3.90% -5.59% 1.00 0.99 

s4-A 12647 15105.4 19.44% 0.95 13011.9 2.89% -13.86% 0.99 1.00 

s4-B 16693 17971.1 7.66% 0.98 17083.4 2.34% -4.94% 1.00 1.00 

s4-C 21071 22244.9 5.57% 0.99 21682.7 2.90% -2.53% 0.97 1.00 

Avg.  9.27% 0.97  2.41% -6.28% 0.995 1.00 

Table 20. Results for egl dataset when Var[Qi] = 0.05·E[Qi] 
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 Solution for the deterministic CARP Our Best Solution for the ARPSD 

Set 
Fixed 

Cost (1) 
Expected 
Cost (2) 

Gap 
(1)-(2) 

Reli-
ability 

Expected 
Cost (3) 

Gap 
(1)-(3) 

Gap (2)-
(3) 

k 
Reli-

ability 

gdb1 316 541.1 71.23% 0.73 482.0 52.53% -2.01% 0.95 0.87 

gdb2 339 598.5 76.55% 0.73 517.7 52.71% -7.06% 0.99 0.87 

gdb3 275 474.1 72.40% 0.85 424.9 54.51% -3.93% 0.98 0.87 

gdb4 287 526.0 83.28% 0.98 466.1 62.40% -5.59% 0.82 0.87 

gdb5 377 628.6 66.74% 1.00 599.1 58.91% -5.79% 0.93 0.86 

gdb6 298 521.4 74.97% 0.88 469.7 57.62% -1.92% 0.85 0.82 

gdb7 325 561.7 72.83% 0.92 521.0 60.31% -5.39% 0.90 0.82 

gdb8 350 467.2 33.49% 0.82 397.4 13.54% 0.00% 1.00 0.96 

gdb9 313 451.1 44.12% 0.98 359.4 14.82% 0.00% 1.00 0.97 

gdb10 275 400.7 45.71% 0.78 356.2 29.53% 0.00% 1.00 0.91 

gdb11 395 459.2 16.25% 0.90 418.5 5.95% -1.27% 0.87 0.99 

gdb12 468 522.4 11.62% 0.71 485.9 3.82% -2.08% 0.99 0.99 

gdb13 536 546.2 1.90% 0.92 544.9 1.66% -0.04% 0.96 1.00 

gdb14 100 129.2 29.20% 0.92 109.8 9.80% -0.27% 0.92 0.98 

gdb15 58 63.2 8.97% 0.90 58.3 0.52% 0.00% 1.00 0.99 

gdb16 127 161.8 27.40% 0.93 133.9 5.43% -0.37% 0.97 0.98 

gdb17 91 94.1 3.41% 0.73 91.1 0.11% -0.33% 0.99 1.00 

gdb18 164 212.1 29.33% 0.69 178.7 8.96% -1.05% 0.87 0.98 

gdb19 55 69.7 26.73% 0.75 59.2 7.64% 0.00% 1.00 0.92 

gdb20 121 138.4 14.38% 0.73 124.4 2.81% -0.08% 0.98 0.99 

gdb21 156 175.4 12.44% 0.73 163.9 5.06% -0.30% 0.86 0.99 

gdb22 200 235.2 17.60% 0.73 207.1 3.55% -0.58% 0.96 0.99 

gdb23 233 258.6 10.99% 0.91 243.2 4.38% -1.06% 0.89 0.99 

Avg.  40.57% 0.84  26.51% -10.00% 0.943 0.94 

Table 21. Results for gdb dataset when Var[Qi] = 0.05·E[Qi] 

 

 Solution for the deterministic CARP Our Best Solution for the ARPSD 

Set 
Fixed 

Cost (1) 
Expected 
Cost (2) 

Gap 
(1)-(2) 

Reli-
ability 

Expected 
Cost (3) 

Gap 
(1)-(3) 

Gap (2)-
(3) 

k 
Reli-

ability 

kshs1 14661 14661.0 0.00% 0.83 14661.0 0.00% 0.00% 1.00 1.00 

kshs2 9863 9863.0 0.00% 1.00 9863.0 0.00% 0.00% 1.00 1.00 

kshs3 9666 9666.0 0.00% 1.00 9666.0 0.00% 0.00% 1.00 1.00 

kshs4 11498 11499.2 0.01% 1.00 11499.9 0.02% 0.00% 1.00 1.00 

kshs5 10957 10967.2 0.09% 1.00 10959.2 0.02% 0.00% 1.00 1.00 

kshs6 10197 10203.6 0.06% 1.00 10197.0 0.00% -0.02% 0.96 1.00 

Avg.  0.03% 0.97  0.01% -0.02% 0.993 1.00 

Table 22. Results for kshs dataset when Var[Qi] = 0.05·E[Qi] 
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 Solution for the deterministic CARP Our Best Solution for the ARPSD 

Set 
Fixed 

Cost (1) 
Expected 
Cost (2) 

Gap 
(1)-(2) 

Reli-
ability 

Expected 
Cost (3) 

Gap 
(1)-(3) 

Gap (2)-
(3) 

k 
Reli-

ability 

val1A 173 184.1 6.42% 1.00 184.1 6.42% -5.49% 1.00 1.00 

val1B 175 186.9 6.80% 0.93 186.9 6.80% -1.02% 1.00 0.93 

val1C 247 276.0 11.74% 0.91 276.0 11.74% -7.54% 1.00 0.91 

val2A 229 234.3 2.31% 0.85 234.3 2.31% -0.13% 1.00 0.85 

val2B 260 296.1 13.88% 0.89 296.1 13.88% -10.44% 0.98 0.89 

val2C 462 501.5 8.55% 0.94 501.5 8.55% -2.31% 0.98 0.94 

val3A 81 99.8 23.21% 1.00 99.8 23.21% -14.73% 0.94 1.00 

val3B 87 122.2 40.46% 0.96 122.2 40.46% -18.33% 0.98 0.96 

val3C 139 209.4 50.65% 1.00 209.4 50.65% -17.57% 0.93 1.00 

val4A 404 422.4 4.55% 0.94 422.4 4.55% -1.92% 0.98 0.94 

val4B 424 481.2 13.49% 0.97 481.2 13.49% -8.87% 0.98 0.97 

val4C 438 505.5 15.41% 0.81 505.5 15.41% -6.49% 0.99 0.81 

val4D 543 737.9 35.89% 0.80 737.9 35.89% -21.32% 0.99 0.80 

val5A 427 443.8 3.93% 0.83 443.8 3.93% 0.00% 0.99 0.83 

val5B 450 478.3 6.29% 0.93 478.3 6.29% -1.40% 0.98 0.93 

val5C 485 535.5 10.41% 0.88 535.5 10.41% -5.30% 0.98 0.88 

val5D 594 679.1 14.33% 0.87 679.1 14.33% -6.29% 0.99 0.87 

val6A 225 231.0 2.67% 0.85 231.0 2.67% -0.65% 1.00 0.85 

val6B 233 241.6 3.69% 0.99 241.6 3.69% -1.08% 0.98 0.99 

val6C 321 342.4 6.67% 0.96 342.4 6.67% -2.25% 1.00 0.96 

val7A 279 289.6 3.80% 0.95 289.6 3.80% -3.63% 1.00 0.95 

val7B 286 308.6 7.90% 0.95 308.6 7.90% -5.99% 1.00 0.95 

val7C 342 393.5 15.06% 0.98 393.5 15.06% -8.87% 0.99 0.98 

val8A 391 415.0 6.14% 0.98 415.0 6.14% -1.90% 0.99 0.98 

val8B 406 443.3 9.19% 0.97 443.3 9.19% -2.96% 0.98 0.97 

val8C 541 650.1 20.17% 1.00 650.1 20.17% -9.71% 0.99 1.00 

val9A 326 344.0 5.52% 0.94 344.0 5.52% -4.24% 1.00 0.94 

val9B 333 360.7 8.32% 0.95 360.7 8.32% -4.57% 0.97 0.95 

val9C 341 370.3 8.59% 0.95 370.3 8.59% -2.97% 0.99 0.95 

val9D 402 516.6 28.51% 0.93 516.6 28.51% -14.00% 0.97 0.93 

val10A 435 454.9 4.57% 0.95 454.9 4.57% -2.07% 0.96 0.95 

val10B 447 481.5 7.72% 0.94 481.5 7.72% -4.15% 1.00 0.94 

val10C 459 524.7 14.31% 0.91 524.7 14.31% -8.06% 1.00 0.91 

val10D 543 671.8 23.72% 0.90 671.8 23.72% -11.51% 0.97 0.90 

Avg.  12.62% 0.93  5.15% -6.64% 0.942 0.99 

Table 23. Results for val dataset when Var[Qi] = 0.05·E[Qi] 
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 Solution for the deterministic CARP Our Best Solution for the ARPSD 

Set 
Fixed 

Cost (1) 
Expected 
Cost (2) 

Gap 
(1)-(2) 

Reli-
ability 

Expected 
Cost (3) 

Gap 
(1)-(3) 

Gap (2)-
(3) 

k 
Reli-

ability 

e1-A 3548 4050.7 14.17% 0.94 3648.4 2.83% -9.93% 1.00 0.99 

e1-B 4498 4601.9 2.31% 0.99 4601.9 2.31% 0.00% 1.00 0.99 

e1-C 5632 7061.8 25.39% 0.93 5742.7 1.97% -18.68% 1.00 1.00 

e2-A 5022 6141.8 22.30% 0.93 5288.8 5.31% -13.89% 1.00 0.98 

e2-B 6344 8209.7 29.41% 0.90 6647.0 4.78% -19.03% 0.94 1.00 

e2-C 8477 10785.4 27.23% 0.93 8866.6 4.60% -17.79% 0.99 0.99 

e3-A 5924 8281.6 39.80% 0.84 6397.9 8.00% -22.75% 1.00 0.99 

e3-B 7847 9455.0 20.49% 0.95 8286.0 5.59% -12.36% 1.00 0.99 

e3-C 10386 12680.9 22.10% 0.93 11110.4 6.97% -12.38% 0.99 0.99 

e4-A 6504 7933.9 21.98% 0.91 6951.1 6.87% -12.39% 0.99 0.99 

e4-B 9120 12862.7 41.04% 0.88 9721.7 6.60% -24.42% 0.98 1.00 

e4-C 11886 13461.4 13.25% 0.96 12697.0 6.82% -5.68% 1.00 0.98 

s1-A 5018 7699.9 53.45% 0.80 5403.0 7.67% -29.83% 0.98 0.99 

s1-B 6435 8434.7 31.08% 0.91 6881.0 6.93% -18.42% 0.99 0.98 

s1-C 8518 10176.2 19.47% 0.94 9208.1 8.10% -9.51% 0.96 0.99 

s2-A 10076 15242.6 51.28% 0.82 11349.4 12.64% -25.54% 1.00 0.96 

s2-B 13356 16598.4 24.28% 0.92 14525.3 8.75% -12.49% 0.99 0.99 

s2-C 16752 20389.6 21.71% 0.92 18433.9 10.04% -9.59% 0.97 0.98 

s3-A 10478 12657.9 20.80% 0.94 11260.7 7.47% -11.04% 0.97 0.98 

s3-B 13986 19262.1 37.72% 0.89 15425.4 10.29% -19.92% 1.00 0.96 

s3-C 17538 20320.8 15.87% 0.95 19561.4 11.54% -3.74% 0.98 0.98 

s4-A 12647 16466.4 30.20% 0.91 13704.7 8.36% -16.77% 0.96 0.99 

s4-B 16693 20151.9 20.72% 0.94 18330.8 9.81% -9.04% 0.94 0.99 

s4-C 21071 26170.5 24.20% 0.93 23125.9 9.75% -11.63% 0.98 0.98 

Avg.  25.80% 0.91  8.17% -14.02% 0.984 0.99 

Table 24. Results for egl dataset when Var[Qi] = 0.25·E[Qi] 

 

 Solution for the deterministic CARP Our Best Solution for the ARPSD 

Set 
Fixed 

Cost (1) 
Expected 
Cost (2) 

Gap 
(1)-(2) 

Reli-
ability 

Expected 
Cost (3) 

Gap 
(1)-(3) 

Gap (2)-
(3) 

k 
Reli-

ability 

gdb1 316 514.7 62.88% 0.75 491.1 55.41% -4.59% 0.98 0.82 

gdb2 339 578.0 70.50% 0.65 526.8 55.40% -8.86% 0.99 0.86 

gdb3 275 450.1 63.67% 0.77 433.9 57.78% -3.60% 0.98 0.87 

gdb4 287 488.9 70.35% 0.94 474.1 65.19% -3.03% 0.99 0.87 

gdb5 377 662.6 75.76% 0.94 605.3 60.56% -8.65% 0.95 0.82 

gdb6 298 506.1 69.83% 0.79 476.5 59.90% -5.85% 0.98 0.82 

gdb7 325 542.8 67.02% 0.86 531.7 63.60% -2.04% 0.95 0.82 

gdb8 350 596.3 70.37% 0.83 490.8 40.23% -17.69% 0.95 0.95 

gdb9 313 559.8 78.85% 0.86 438.9 40.22% -21.60% 0.95 0.93 

gdb10 275 446.7 62.44% 0.76 389.8 41.75% -12.74% 0.95 0.86 

gdb11 395 521.8 32.10% 0.84 463.8 17.42% -11.12% 0.94 0.91 

gdb12 468 577.1 23.31% 0.74 547.2 16.92% -5.18% 0.95 0.97 

gdb13 536 613.6 14.48% 0.84 574.8 7.24% -6.32% 0.99 0.96 

gdb14 100 146.7 46.70% 0.85 125.7 25.70% -14.31% 0.96 0.91 

gdb15 58 68.0 17.24% 0.83 63.4 9.31% -6.76% 0.99 0.91 

gdb16 127 166.2 30.87% 0.81 145.8 14.80% -12.27% 0.95 0.93 

gdb17 91 102.2 12.31% 0.75 95.8 5.27% -6.26% 0.99 0.97 

gdb18 164 231.2 40.98% 0.71 202.8 23.66% -12.28% 0.97 0.91 

gdb19 55 71.6 30.18% 0.74 66.4 20.73% -7.26% 1.00 0.90 

gdb20 121 158.1 30.66% 0.75 135.5 11.98% -14.29% 0.96 0.95 

gdb21 156 196.4 25.90% 0.75 182.1 16.73% -7.28% 0.99 0.93 

gdb22 200 252.0 26.00% 0.81 221.2 10.60% -12.22% 0.91 0.94 

gdb23 233 298.1 27.94% 0.72 266.6 14.42% -10.57% 0.95 0.93 

Avg.  49.33% 0.80  35.69% -9.13% 0.966 0.90 

Table 25. Results for gdb dataset when Var[Qi] = 0.25·E[Qi] 
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 Solution for the deterministic CARP Our Best Solution for the ARPSD 

Set 
Fixed 

Cost (1) 
Expected 
Cost (2) 

Gap 
(1)-(2) 

Reli-
ability 

Expected 
Cost (3) 

Gap 
(1)-(3) 

Gap (2)-
(3) 

k 
Reli-

ability 

kshs1 14661 14834.5 1.18% 1.00 14675.7 0.10% -1.07% 1.00 1.00 

kshs2 9863 9868.2 0.05% 1.00 9870.5 0.08% 0.02% 0.98 1.00 

kshs3 9666 9666.4 0.00% 1.00 9666.1 0.00% 0.00% 0.96 1.00 

kshs4 11498 11507.9 0.09% 1.00 11506.1 0.07% -0.02% 1.00 1.00 

kshs5 10957 13463.9 22.88% 0.86 11377.7 3.84% -15.49% 1.00 0.97 

kshs6 10197 10216.1 0.19% 1.00 10212.3 0.15% -0.04% 0.94 1.00 

Avg.  4.06% 0.97  0.70% -3.23% 0.980 1.00 

Table 26. Results for kshs dataset when Var[Qi] = 0.25·E[Qi] 

 

 Solution for the deterministic CARP Our Best Solution for the ARPSD 

Set 
Fixed 

Cost (1) 
Expected 
Cost (2) 

Gap 
(1)-(2) 

Reli-
ability 

Expected 
Cost (3) 

Gap 
(1)-(3) 

Gap (2)-
(3) 

k 
Reli-

ability 

val1A 173 192.2 11.10% 0.80 177.2 2.43% -7.80% 0.99 1.00 

val1B 175 206.1 17.77% 0.80 188.1 7.49% -8.73% 1.00 0.99 

val1C 247 316.7 28.22% 0.77 288.4 16.76% -8.94% 0.93 0.97 

val2A 229 301.4 31.62% 0.79 242.8 6.03% -19.44% 0.96 0.94 

val2B 260 347.4 33.62% 0.86 292.3 12.42% -15.86% 0.89 0.94 

val2C 462 648.3 40.32% 0.94 583.6 26.32% -9.98% 0.98 0.94 

val3A 81 103.9 28.27% 0.91 93.6 15.56% -9.91% 0.98 0.96 

val3B 87 141.9 63.10% 0.85 117.4 34.94% -17.27% 0.85 0.91 

val3C 139 266.9 92.01% 0.86 229.6 65.18% -13.98% 0.78 0.91 

val4A 404 450.2 11.44% 0.87 428.7 6.11% -4.78% 0.77 0.99 

val4B 424 490.3 15.64% 0.77 460.4 8.58% -6.10% 0.78 0.99 

val4C 438 657.3 50.07% 0.72 495.4 13.11% -24.63% 0.85 0.96 

val4D 543 853.4 57.16% 0.70 645.3 18.84% -24.38% 0.91 0.95 

val5A 427 504.0 18.03% 0.84 461.9 8.17% -8.35% 0.96 0.95 

val5B 450 581.7 29.27% 0.84 492.9 9.53% -15.27% 0.84 0.99 

val5C 485 657.0 35.46% 0.71 550.0 13.40% -16.29% 0.88 0.97 

val5D 594 884.8 48.96% 0.79 727.4 22.46% -17.79% 0.88 0.98 

val6A 225 258.8 15.02% 0.84 235.5 4.67% -9.00% 1.00 1.00 

val6B 233 286.1 22.79% 0.83 254.7 9.31% -10.98% 1.00 0.99 

val6C 321 415.7 29.50% 0.79 382.7 19.22% -7.94% 0.89 0.97 

val7A 279 298.0 6.81% 0.83 286.6 2.72% -3.83% 0.89 0.97 

val7B 286 359.4 25.66% 0.83 297.6 4.06% -17.20% 0.92 0.98 

val7C 342 454.9 33.01% 0.84 404.9 18.39% -10.99% 0.99 0.93 

val8A 391 471.6 20.61% 0.88 416.7 6.57% -11.64% 0.97 0.98 

val8B 406 497.8 22.61% 0.96 451.9 11.31% -9.22% 0.85 0.97 

val8C 541 758.2 40.15% 0.79 673.7 24.53% -11.14% 0.90 0.96 

val9A 326 374.2 14.79% 0.88 338.3 3.77% -9.59% 0.91 0.99 

val9B 333 387.1 16.25% 0.83 357.7 7.42% -7.59% 0.94 0.97 

val9C 341 425.5 24.78% 0.82 374.6 9.85% -11.96% 0.97 0.96 

val9D 402 560.3 39.38% 0.83 496.3 23.46% -11.42% 0.81 0.97 

val10A 435 494.3 13.63% 0.78 454.2 4.41% -8.11% 0.96 0.98 

val10B 447 540.1 20.83% 0.81 472.7 5.75% -12.48% 0.99 0.97 

val10C 459 567.7 23.68% 0.80 503.4 9.67% -11.33% 0.76 0.98 

val10D 543 792.9 46.02% 0.81 665.7 22.60% -16.04% 0.83 0.96 

Avg.  30.33% 0.82  13.53% -12.89% 0.906 0.97 

Table 27. Results for val dataset when Var[Qi] = 0.25·E[Qi] 
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 Solution for the deterministic CARP Our Best Solution for the ARPSD 

Set 
Fixed 

Cost (1) 
Expected 
Cost (2) 

Gap 
(1)-(2) 

Reli-
ability 

Expected 
Cost (3) 

Gap 
(1)-(3) 

Gap (2)-
(3) 

k 
Reli-

ability 

e1-A 3548 4695.7 32.35% 0.87 3803.4 7.20% -19.00% 0.98 0.99 

e1-B 4498 4958.8 10.24% 0.97 4833.5 7.46% -2.53% 1.00 0.98 

e1-C 5632 6629.5 17.71% 0.94 6212.6 10.31% -6.29% 0.99 0.98 

e2-A 5022 7260.1 44.57% 0.83 5708.3 13.67% -21.37% 0.96 0.98 

e2-B 6344 9565.6 50.78% 0.86 7117.6 12.19% -25.59% 0.96 0.98 

e2-C 8477 12362.4 45.83% 0.88 9457.9 11.57% -23.49% 0.93 0.99 

e3-A 5924 7723.8 30.38% 0.89 6656.3 12.36% -13.82% 0.94 0.99 

e3-B 7847 11217.7 42.96% 0.86 8958.0 14.16% -20.14% 1.00 0.96 

e3-C 10386 13753.2 32.42% 0.90 12044.5 15.97% -12.42% 0.99 0.96 

e4-A 6504 10187.1 56.63% 0.80 7456.0 14.64% -26.81% 0.95 0.98 

e4-B 9120 12116.3 32.85% 0.89 10611.2 16.35% -12.42% 1.00 0.96 

e4-C 11886 14871.9 25.12% 0.92 13991.2 17.71% -5.92% 1.00 0.95 

s1-A 5018 7643.1 52.31% 0.79 5871.7 17.01% -23.18% 0.88 0.98 

s1-B 6435 8896.8 38.26% 0.89 7497.8 16.52% -15.72% 1.00 0.95 

s1-C 8518 11922.6 39.97% 0.88 10442.9 22.60% -12.41% 1.00 0.94 

s2-A 10076 15880.5 57.61% 0.79 11736.8 16.48% -26.09% 0.93 0.98 

s2-B 13356 18779.7 40.61% 0.85 16119.8 20.69% -14.16% 1.00 0.93 

s2-C 16752 23492.6 40.24% 0.88 19866.6 18.59% -15.43% 0.91 0.98 

s3-A 10478 17002.1 62.26% 0.78 12113.0 15.60% -28.76% 0.88 0.98 

s3-B 13986 19824.0 41.74% 0.87 17547.8 25.47% -11.48% 1.00 0.91 

s3-C 17538 25061.4 42.90% 0.88 21263.8 21.24% -15.15% 0.95 0.95 

s4-A 12647 18372.6 45.27% 0.84 14789.3 16.94% -19.50% 0.90 0.98 

s4-B 16693 25140.3 50.60% 0.86 19867.0 19.01% -20.98% 0.91 0.97 

s4-C 21071 29573.2 40.35% 0.89 25774.1 22.32% -12.85% 0.93 0.96 

Avg.  41.71% 0.87  17.66% -16.97% 0.958 0.96 

Table 28. Results for egl dataset when Var[Qi] = 0.75·E[Qi] 

 

 Solution for the deterministic CARP Our Best Solution for the ARPSD 

Set 
Fixed 

Cost (1) 
Expected 
Cost (2) 

Gap 
(1)-(2) 

Reli-
ability 

Expected 
Cost (3) 

Gap 
(1)-(3) 

Gap (2)-
(3) 

k 
Reli-

ability 

gdb1 316 501.2 58.61% 0.77 471.5 49.21% -5.93% 0.95 0.83 

gdb2 339 546.4 61.18% 0.79 516.0 52.21% -5.56% 0.97 0.87 

gdb3 275 449.5 63.45% 0.70 428.5 55.82% -4.67% 0.95 0.88 

gdb4 287 481.3 67.70% 0.87 463.3 61.43% -3.74% 1.00 0.74 

gdb5 377 613.7 62.79% 0.86 593.3 57.37% -3.32% 0.98 0.83 

gdb6 298 475.6 59.60% 0.78 459.6 54.23% -3.36% 0.92 0.84 

gdb7 325 524.1 61.26% 0.80 514.6 58.34% -1.81% 0.85 0.84 

gdb8 350 639.3 82.66% 0.75 563.9 61.11% -11.79% 0.89 0.87 

gdb9 313 622.6 98.91% 0.87 506.6 61.85% -18.63% 0.76 0.91 

gdb10 275 409.4 48.87% 0.70 391.2 42.25% -4.45% 0.82 0.86 

gdb11 395 574.3 45.39% 0.76 509.5 28.99% -11.28% 0.85 0.92 

gdb12 468 686.3 46.65% 0.78 629.1 34.42% -8.33% 0.98 0.92 

gdb13 536 718.0 33.96% 0.69 620.2 15.71% -13.62% 0.88 0.94 

gdb14 100 147.2 47.20% 0.72 136.4 36.40% -7.34% 0.82 0.91 

gdb15 58 74.4 28.28% 0.76 68.8 18.62% -7.53% 0.85 0.90 

gdb16 127 188.3 48.27% 0.73 154.7 21.81% -17.84% 0.81 0.92 

gdb17 91 106.4 16.92% 0.77 101.6 11.65% -4.51% 0.85 0.94 

gdb18 164 240.3 46.52% 0.74 218.9 33.48% -8.91% 0.79 0.90 

gdb19 55 89.2 62.18% 0.78 71.8 30.55% -19.51% 0.98 0.93 

gdb20 121 178.7 47.69% 0.77 144.5 19.42% -19.14% 0.91 0.90 

gdb21 156 221.2 41.79% 0.77 195.0 25.00% -11.84% 0.81 0.93 

gdb22 200 268.1 34.05% 0.76 234.2 17.10% -12.64% 0.82 0.91 

gdb23 233 323.3 38.76% 0.66 285.9 22.70% -11.57% 0.77 0.92 

Avg.  54.95% 0.76  41.31% -8.81% 0.879 0.89 

Table 29. Results for gdb dataset when Var[Qi] = 0.75·E[Qi] 
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 Solution for the deterministic CARP Our Best Solution for the ARPSD 

Set 
Fixed 

Cost (1) 
Expected 
Cost (2) 

Gap 
(1)-(2) 

Reli-
ability 

Expected 
Cost (3) 

Gap 
(1)-(3) 

Gap (2)-
(3) 

k 
Reli-

ability 

kshs1 14661 15182.6 3.56% 0.93 14780.4 0.81% -2.65% 1.00 1.00 

kshs2 9863 10038.0 1.77% 0.99 9947.8 0.86% -0.90% 1.00 1.00 

kshs3 9666 9721.1 0.57% 1.00 9676.1 0.10% -0.46% 0.98 1.00 

kshs4 11498 11693.7 1.70% 0.99 11682.2 1.60% -0.10% 1.00 0.99 

kshs5 10957 14592.4 33.18% 0.85 11919.3 8.78% -18.32% 0.87 1.00 

kshs6 10197 10402.4 2.01% 0.99 10314.8 1.16% -0.84% 0.99 0.99 

Avg.  7.16% 0.96  2.21% -4.62% 0.973 0.97 

Table 30. Results for kshs dataset when Var[Qi] = 0.75·E[Qi] 

 

 Solution for the deterministic CARP Our Best Solution for the ARPSD 

Set 
Fixed 

Cost (1) 
Expected 
Cost (2) 

Gap (1)-
(2) 

Reli-
ability 

Expected 
Cost (3) 

Gap 
(1)-(3) 

Gap (2)-
(3) 

k 
Reli-

ability 

val1A 173 205.8 18.96% 0.71 179.1 3.53% -12.97% 0.80 0.99 

val1B 175 210.7 20.40% 0.73 201.6 15.20% -4.32% 0.88 0.94 

val1C 247 361.2 46.23% 0.72 331.2 34.09% -8.31% 0.89 0.94 

val2A 229 286.8 25.24% 0.72 267.3 16.72% -6.80% 0.96 0.86 

val2B 260 382.9 47.27% 0.80 322.6 24.08% -15.75% 0.83 0.97 

val2C 462 801.7 73.53% 0.90 715.9 54.96% -10.70% 0.94 0.90 

val3A 81 119.1 47.04% 0.85 104.3 28.77% -12.43% 0.82 0.91 

val3B 87 152.1 74.83% 0.84 140.2 61.15% -7.82% 0.77 0.84 

val3C 139 285.7 105.54% 0.81 249.2 79.28% -12.78% 0.76 0.87 

val4A 404 509.3 26.06% 0.77 444.1 9.93% -12.80% 0.86 0.96 

val4B 424 569.7 34.36% 0.71 484.5 14.27% -14.96% 0.76 0.98 

val4C 438 655.4 49.63% 0.66 547.6 25.02% -16.45% 0.81 0.95 

val4D 543 908.2 67.26% 0.65 752.7 38.62% -17.12% 0.81 0.94 

val5A 427 547.3 28.17% 0.75 478.7 12.11% -12.53% 0.76 0.97 

val5B 450 647.8 43.96% 0.72 533.6 18.58% -17.63% 0.87 0.94 

val5C 485 698.9 44.10% 0.68 607.2 25.20% -13.12% 0.76 0.96 

val5D 594 963.2 62.15% 0.78 828.2 39.43% -14.02% 0.78 0.94 

val6A 225 291.6 29.60% 0.78 243.3 8.13% -16.56% 0.95 0.97 

val6B 233 319.2 37.00% 0.74 272.7 17.04% -14.57% 0.86 0.93 

val6C 321 510.2 58.94% 0.75 448.1 39.60% -12.17% 0.79 0.95 

val7A 279 305.5 9.50% 0.78 295.3 5.84% -3.34% 0.75 0.98 

val7B 286 354.2 23.85% 0.76 319.2 11.61% -9.88% 0.96 0.92 

val7C 342 519.3 51.84% 0.72 464.1 35.70% -10.63% 0.81 0.93 

val8A 391 505.6 29.31% 0.81 436.3 11.59% -13.71% 0.75 0.96 

val8B 406 546.9 34.70% 0.90 492.8 21.38% -9.89% 0.85 0.92 

val8C 541 951.6 75.90% 0.85 788.6 45.77% -17.13% 0.86 0.91 

val9A 326 361.7 10.95% 0.81 345.2 5.89% -4.56% 0.77 0.96 

val9B 333 428.6 28.71% 0.74 374.3 12.40% -12.67% 0.75 0.96 

val9C 341 457.6 34.19% 0.75 403.2 18.24% -11.89% 0.84 0.97 

val9D 402 650.2 61.74% 0.73 570.4 41.89% -12.27% 0.75 0.92 

val10A 435 514.6 18.30% 0.90 466.4 7.22% -9.37% 0.99 0.95 

val10B 447 556.3 24.45% 0.74 505.6 13.11% -9.11% 0.79 0.93 

val10C 459 626.9 36.58% 0.73 540.2 17.69% -13.83% 0.76 0.94 

val10D 543 871.6 60.52% 0.73 761.0 40.15% -12.69% 0.79 0.90 

Avg.  43.17% 0.77  25.04% -12.66% 0.826 0.89 

Table 31. Results for val dataset when Var[Qi] = 0.75·E[Qi] 
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 Solution for the deterministic CARP Our Best Solution for the ARPSD 

Set 
Fixed 

Cost (1) 
Expected 
Cost (2) 

Gap 
(1)-(2) 

Reli-
ability 

Expected 
Cost (3) 

Gap 
(1)-(3) 

Gap (2)-
(3) 

k 
Reli-

ability 

e1-A 3548 5337.4 50.43% 0.82 4099.6 15.55% -23.19% 0.95 0.96 

e1-B 4498 6791.2 50.98% 0.86 5273.3 17.24% -22.35% 1.00 0.94 

e1-C 5632 7734.2 37.33% 0.90 6819.5 21.08% -11.83% 0.99 0.96 

e2-A 5022 8179.7 62.88% 0.78 6103.5 21.54% -25.38% 0.90 0.95 

e2-B 6344 10299.7 62.35% 0.81 7908.6 24.66% -23.22% 0.97 0.93 

e2-C 8477 13556.3 59.92% 0.82 10479.6 23.62% -22.70% 0.96 0.94 

e3-A 5924 9606.1 62.16% 0.78 7323.6 23.63% -23.76% 0.81 0.98 

e3-B 7847 10631.8 35.49% 0.87 10029.9 27.82% -5.66% 1.00 0.91 

e3-C 10386 15948.7 53.56% 0.86 13148.1 26.59% -17.56% 0.96 0.95 

e4-A 6504 10246.4 57.54% 0.78 8070.6 24.09% -21.23% 0.91 0.97 

e4-B 9120 15899.0 74.33% 0.78 11672.0 27.98% -26.59% 0.99 0.92 

e4-C 11886 18596.6 56.46% 0.85 15357.9 29.21% -17.42% 0.97 0.93 

s1-A 5018 8545.8 70.30% 0.76 6558.3 30.70% -23.26% 0.94 0.93 

s1-B 6435 9802.4 52.33% 0.80 8492.2 31.97% -13.37% 0.95 0.93 

s1-C 8518 14835.1 74.16% 0.79 11637.2 36.62% -21.56% 0.99 0.90 

s2-A 10076 17859.2 77.24% 0.74 12786.3 26.90% -28.40% 0.86 0.96 

s2-B 13356 22263.4 66.69% 0.77 17762.5 32.99% -20.22% 0.98 0.93 

s2-C 16752 27749.0 65.65% 0.81 22873.4 36.54% -17.57% 0.91 0.93 

s3-A 10478 17770.4 69.60% 0.77 14164.0 35.18% -20.29% 0.98 0.86 

s3-B 13986 22534.1 61.12% 0.80 18908.7 35.20% -16.09% 0.90 0.93 

s3-C 17538 29729.8 69.52% 0.82 24320.6 38.67% -18.19% 0.90 0.93 

s4-A 12647 21239.4 67.94% 0.78 16455.8 30.12% -22.52% 0.86 0.95 

s4-B 16693 26434.8 58.36% 0.82 22625.9 35.54% -14.41% 0.91 0.92 

s4-C 21071 35151.6 66.82% 0.81 29021.4 37.73% -17.44% 0.88 0.94 

Avg.  62.66% 0.81  31.18% -19.35% 0.936 0.89 

Table 32. Results for egl dataset when Var[Qi] = 2·E[Qi] 

 

 Solution for the deterministic CARP Our Best Solution for the ARPSD 

Set 
Fixed 

Cost (1) 
Expected 
Cost (2) 

Gap 
(1)-(2) 

Reli-
ability 

Expected 
Cost (3) 

Gap 
(1)-(3) 

Gap (2)-
(3) 

k 
Reli-

ability 

gdb1 316 474.8 50.25% 0.80 458.5 45.09% -3.43% 0.96 0.85 

gdb2 339 527.8 55.69% 0.71 507.4 49.68% -3.87% 0.81 0.88 

gdb3 275 429.7 56.25% 0.67 414.0 50.55% -3.65% 0.98 0.86 

gdb4 287 465.4 62.16% 0.77 443.4 54.49% -4.73% 1.00 0.77 

gdb5 377 590.8 56.71% 0.79 569.4 51.03% -3.62% 1.00 0.80 

gdb6 298 460.6 54.56% 0.74 445.0 49.33% -3.39% 0.88 0.86 

gdb7 325 509.8 56.86% 0.76 496.7 52.83% -2.57% 1.00 0.80 

gdb8 350 662.5 89.29% 0.77 594.0 69.71% -10.34% 0.82 0.88 

gdb9 313 618.2 97.51% 0.73 536.5 71.41% -13.22% 0.94 0.84 

gdb10 275 407.5 48.18% 0.68 381.8 38.84% -6.31% 0.77 0.90 

gdb11 395 599.7 51.82% 0.75 556.7 40.94% -7.17% 0.87 0.79 

gdb12 468 847.9 81.18% 0.80 685.5 46.47% -19.15% 0.95 0.91 

gdb13 536 715.5 33.49% 0.76 651.2 21.49% -8.99% 0.89 0.91 

gdb14 100 159.0 59.00% 0.75 139.9 39.90% -12.01% 0.81 0.90 

gdb15 58 75.8 30.69% 0.73 71.7 23.62% -5.41% 0.93 0.87 

gdb16 127 177.8 40.00% 0.69 160.4 26.30% -9.79% 0.83 0.92 

gdb17 91 119.7 31.54% 0.79 107.4 18.02% -10.28% 0.77 0.89 

gdb18 164 248.2 51.34% 0.77 232.2 41.59% -6.45% 0.83 0.86 

gdb19 55 91.8 66.91% 0.79 75.6 37.45% -17.65% 0.93 0.91 

gdb20 121 176.8 46.12% 0.80 150.6 24.46% -14.82% 0.78 0.94 

gdb21 156 231.2 48.21% 0.79 199.9 28.14% -13.54% 0.76 0.91 

gdb22 200 277.9 38.95% 0.75 242.4 21.20% -12.77% 0.84 0.88 

gdb23 233 340.9 46.31% 0.67 297.0 27.47% -12.88% 0.78 0.90 

Avg.  57.18% 0.75  43.66% -8.60% 0.877 0.85 

Table 33. Results for gdb dataset when Var[Qi] = 2·E[Qi] 
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 Solution for the deterministic CARP Our Best Solution for the ARPSD 

Set 
Fixed 

Cost (1) 
Expected 
Cost (2) 

Gap 
(1)-(2) 

Reli-
ability 

Expected 
Cost (3) 

Gap 
(1)-(3) 

Gap (2)-
(3) 

k 
Reli-

ability 

kshs1 14661 16794.4 14.55% 0.95 15391.5 4.98% -8.35% 1.00 0.98 

kshs2 9863 10750.0 8.99% 0.97 10181.7 3.23% -5.29% 0.98 0.99 

kshs3 9666 9826.5 1.66% 0.99 9781.0 1.19% -0.46% 0.85 0.99 

kshs4 11498 13019.8 13.24% 0.96 12739.1 10.79% -2.16% 1.00 0.99 

kshs5 10957 14093.8 28.63% 0.86 12159.0 10.97% -13.73% 0.97 0.99 

kshs6 10197 12915.8 26.66% 0.89 10818.2 6.09% -16.24% 0.93 0.96 

Avg.  15.80% 0.94  6.33% -8.18% 0.955 0.97 

Table 34. Results for kshs dataset when Var[Qi] = 2·E[Qi] 

 

 Solution for the deterministic CARP Our Best Solution for the ARPSD 

Set 
Fixed 

Cost (1) 
Expected 
Cost (2) 

Gap (1)-
(2) 

Reli-
ability 

Expected 
Cost (3) 

Gap 
(1)-(3) 

Gap (2)-
(3) 

k 
Reli-

ability 

val1A 173 208.2 20.35% 0.67 189.6 9.60% -8.93% 0.80 0.95 

val1B 175 254.4 45.37% 0.67 222.6 27.20% -12.50% 0.92 0.93 

val1C 247 454.2 83.89% 0.69 377.9 53.00% -16.80% 0.78 0.91 

val2A 229 317.8 38.78% 0.66 291.8 27.42% -8.18% 0.83 0.94 

val2B 260 416.8 60.31% 0.76 370.0 42.31% -11.23% 0.94 0.91 

val2C 462 897.6 94.29% 0.78 799.2 72.99% -10.96% 0.95 0.86 

val3A 81 121.5 50.00% 0.77 114.9 41.85% -5.43% 0.79 0.86 

val3B 87 156.3 79.66% 0.76 150.5 72.99% -3.71% 0.89 0.77 

val3C 139 288.8 107.77% 0.75 256.3 84.39% -11.25% 0.85 0.83 

val4A 404 553.9 37.10% 0.72 475.6 17.72% -14.14% 0.77 0.91 

val4B 424 589.3 38.99% 0.67 534.5 26.06% -9.30% 0.83 0.92 

val4C 438 721.4 64.70% 0.64 611.3 39.57% -15.26% 0.78 0.90 

val4D 543 1031.6 89.98% 0.65 864.7 59.24% -16.18% 0.93 0.81 

val5A 427 619.2 45.01% 0.66 515.8 20.80% -16.70% 0.79 0.91 

val5B 450 676.4 50.31% 0.70 596.9 32.64% -11.75% 0.80 0.88 

val5C 485 773.5 59.48% 0.65 684.4 41.11% -11.52% 0.87 0.84 

val5D 594 1128.9 90.05% 0.70 967.6 62.90% -14.29% 0.78 0.88 

val6A 225 288.3 28.13% 0.69 262.3 16.58% -9.02% 0.85 0.91 

val6B 233 346.1 48.54% 0.71 306.6 31.59% -11.41% 0.79 0.91 

val6C 321 582.4 81.43% 0.69 511.7 59.41% -12.14% 0.79 0.88 

val7A 279 329.5 18.10% 0.70 309.6 10.97% -6.04% 0.77 0.95 

val7B 286 372.5 30.24% 0.75 340.4 19.02% -8.62% 0.76 0.92 

val7C 342 578.4 69.12% 0.70 531.6 55.44% -8.09% 0.78 0.90 

val8A 391 533.9 36.55% 0.72 480.9 22.99% -9.93% 0.90 0.88 

val8B 406 601.3 48.10% 0.85 542.2 33.55% -9.83% 0.90 0.85 

val8C 541 1017.7 88.11% 0.81 910.4 68.28% -10.54% 0.78 0.88 

val9A 326 411.7 26.29% 0.74 370.1 13.53% -10.10% 0.86 0.95 

val9B 333 459.1 37.87% 0.69 403.4 21.14% -12.13% 0.86 0.91 

val9C 341 486.8 42.76% 0.69 445.7 30.70% -8.44% 0.77 0.91 

val9D 402 741.8 84.53% 0.67 650.1 61.72% -12.36% 0.81 0.86 

val10A 435 549.9 26.41% 0.69 493.2 13.38% -10.31% 0.76 0.89 

val10B 447 587.9 31.52% 0.69 541.0 21.03% -7.98% 0.77 0.91 

val10C 459 643.7 40.24% 0.68 593.4 29.28% -7.81% 0.75 0.88 

val10D 543 940.7 73.24% 0.64 864.2 59.15% -8.13% 0.82 0.82 

Avg.  56.62% 0.71  39.00% -11.25% 0.824 0.88 

Table 35. Results for val dataset when Var[Qi] = 2·E[Qi] 

 

  

 

 


