

Applications of Biased Randomization
and Simheuristic Algorithms to Arc

Routing and Facility Location Problems

Sergio González-Martín

sgonzalezmarti@uoc.edu

Department of Computer Science, Multimedia and Telecommunication

 Universitat Oberta de Catalunya – Internet Interdisciplinary Institute (UOC-IN3)

Advisors: Dr. Angel A. Juan & Dr. Daniel Riera

PhD. Thesis Dissertation

Information and Knowledge Society Doctoral Programme

Network and Information Technologies

Barcelona, November 2014

i

Abstract

Most metaheuristics contain a randomness component, which is usually based on

uniform randomization –i.e., the use of the Uniform probability distribution to make

random choices. However, the Multi-start biased Randomization of classical Heuristics

with Adaptive local search framework (MIRHA, Gonzalez-Martin et al., 2014a; Juan

et al. ,2014a) proposes the use of biased (non-uniform) randomization for the design of

alternative metaheuristics -i.e., the use of skewed probability distributions such as the

Geometric or Triangular ones. In some scenarios, this non-biased randomization has

shown to provide faster convergence to near-optimal solutions. The MIRHA framework

also includes a local search step for improving the incumbent solutions generated

during the multi-start process. It also allows the addition of tailored local search

components, like cache (memory) or splitting (divide-and-conquer) techniques, that

allow the generation of competitive (near-optimal) solutions. The algorithms designed

using the MIRHA framework allows to obtain ‘high-quality’ solutions to realistic

problems in reasonable computing times. Moreover, they tend to use a reduced

number of parameters, which makes them simple to implement and configure in most

practical applications. This framework has successfully been applied in many routing

and scheduling problems.

One of the main goals of this thesis is to develop new algorithms, based in the

aforementioned framework, for solving some combinatorial optimization problems that

can be of interest in the telecommunication industry (Figure 1). One of the current

issues in the telecommunication sector is that of planning of telecommunication

networks. For instance, finding the best placements of base station on a mobile

network, the placement of optical fiber networks or selecting the servers which could

provide a given service with the lowest network latency, are examples of these

problems. Two known families of combinatorial optimization problems that can be used

for modeling the aforementioned problems are the Facility Location Problems (FLP)

and the Arc Routing Problems (ARP). In this thesis we will propose new algorithms

based on the MIRHA framework for problems belonging to these two families.

 The FLP is a location problem where the goal is to find the best placement of

some facilities which minimizes the costs of providing a service to a set of customers.

ii

The ARP is similar to the well-known Vehicle Routing Problem (VRP), but its nature

makes it also a good candidate for modeling certain real-life telecommunication

problems. While the VRP has been extensively studied in the literature -mainly

because of its applications to logistics and transportation-, there is much less research

in the ARP and its potential applications to other fields.

Regarding the ARP, we will work with several variations in order to model a

wide range of real-life problems. Thus, we will also consider the ARP under uncertainty

conditions. In this scenario, Simheuristics (the combination of simulation with

metaheuristics, Juan et al., 2011a) is a useful tool that can be combined with the

MIRHA framework in order to obtain robust solutions to the stochastic version of the

problem.

Keywords: Biased Randomized Heuristics, Simheuristics, Arc Routing Problem, Facility

Location Problem, Optimization, Telecommunication applications, Logistic &

Transportation.

Figure 1. Summary of the key topics discussed on this dissertation.

iii

Resum

La majoria de metaheuristiques tenen una component aleatori, que normalment està

basada en aleatorització uniforme –i.e., l’ús de la distribució de probabilitat uniforme

per fer seleccions aleatòries. Per altra banda, el marc Multi-start biased Randomization

of classical Heuristics with Adaptive local search (MIRHA, Gonzalez-Martin et al.

2014a; Juan et al., 2014a) proposa l’ús de aleatorització esbiaixada (no uniforme) per

al disseny de algoritmes metaheuristics alternatius –i.e., l’ús de distribucions de

probabilitat esbiaixades com la geomètrica o la triangular. En algunes situacions,

aquesta aleatorització no uniforme ha obtingut una convergència més ràpida a la

solució quasi òptima. El marc MIRHA també inclou un pas de cerca local per a millorar

les solucions generades durant el procés iteratiu. També permet afegir passos de

cerca adaptats al problema, com cache (memòria) o splitting (dividir i conquerir), que

permeten la generació de solucions competitives (quasi òptimes). Els algoritmes

dissenyats amb el marc MIRHA permeten obtenir solucions d’alta qualitat a problemes

realistes en temps de computació raonables. A més, tendeixen a utilitzar un nombre

reduït de paràmetres, el que els fa simples d’implementar i configurar en la majoria

d’aplicacions pràctiques. El marc s’ha aplicat exitosament a diversos problemes

d’enrutament i planificació.

 Un dels principals objectius d’aquesta tesi és desenvolupar nous algoritmes ,

basats en el marc mencionat, per solucionar problemes d’optimització combinatòria

que poden ser d’interès a la industria de les telecomunicacions (Figure 1). Un dels

problemes actuals en el sector de les telecomunicacions es aquell de la planificació de

xarxes de telecomunicació. Per exemple, trobar les millors situacions per les estacions

base en una xarxa mòbil, la ubicació de xarxes de fibra òptica, o la selecció dels

servidors que poden proveir un determinat servei amb la menor latència de xarxa, són

exemples d’aquest problemes. Dues famílies conegudes de problemes d’optimització

combinatòria que poden utilitzar se per a modelar aquestes situacions son el Facility

Location Problem (FLP) i l’Arc Routing Problem (ARP). En aquesta tesi proposarem

nous algoritmes basats en el marc MIRHA per a problemes pertanyents a aquestes

dues famílies.

iv

 El FLP es un problema de localització on l’objectiu es trobar les millors ubicació

de uns nodes proveïdors de serveis que minimitzin el cost de proveir aquest servei a

tots els clients. El ARP és un problema semblant al conegut Vehicle Routing Problem

(VRP), però la seva natura el fa també útil per modelar alguns problemes reals de

telecomunicacions. Mentre que el VRP s’ha estudiat extensivament en la literatura

existent –principalment per les seves aplicacions al transport i la logístics-, per a l’ARP

hi ha molta menys investigació existent.

 En quant a l’ARP, treballarem amb diverses variacions del problema per tal de

poder modelar un rang més ampli d’aplicacions a la vida real. Així, també

considerarem el ARP sota condicions d’incertesa. En aquest escenari, Simheuristics

(la combinació de simulació i metaheuristics, Juan et al. 2011a) en una eina molt útil

que es pot combinar amb el marc MIRHA per a obtenir solucions robustes per a la

versió estocàstica del problema.

Paraules clau: Randomització esbiaixada d’heurístiques, Simheuristics, Arc Routing

Problem, Facility Location Problem, Optimització, Aplications en Telecomunicacions i

Transport & Logistica.

v

Acknowledgements

First of all, I would like to thank my thesis advisors Dr. Angel A. Juan and Dr. Daniel

Riera for their always valuable support, motivation, enthusiasm and continuous

guidance during the elaboration of this thesis. Without their help, this thesis would not

have been possible. Also I would like to thank Dr. Juan J. Ramos for accept being the

external advisor of this thesis and his insightful comments.

 I would like to thank also to all the people in the IN3-UOC with I have had the

opportunity to collaborate in one or other way during these years. Special mentions to

my fellows from the PhD studies Jose Caceres and Guillem Cabrera who have made

me feel part of the department despite being a part-time student. To David Fernandez,

Quim Castella and Enoc Martinez for their help and support in the development of

different parts of this work. To Alejandra Perez for being always open to discus and

clarify different concepts.

 Lots of thanks also to my friends Oriol, Jordi, David, Albert and Vero for always

being open to hear my problems, and always giving good advices. Also to a long list of

colleagues from Presence Technology first, and Roche Diagnostics now, for

encouraging me to reach the end of this work.

Finally, lots of thanks to my family, especially to my wife Laura and my son

Aimar, for their patience during the long after-work hours for completing this work.

vi

vii

Contents

1 Introduction .. 1
1.1 Structure of this Thesis ... 2
1.2 Motivation ... 4
1.3 Research Objectives ... 5
1.4 Original Contributions ... 6
1.5 Chapter Conclusions .. 7

2 MIRHA Framework and Simheuristics .. 9
2.1 The Methodology .. 10

2.1.1 Background ... 10
2.1.2 MIRHA ... 11

2.2 Logic Behind our Approach ... 12
2.2.1 Benefits of Biased-Randomization Approaches 15
2.2.2 Examples of Use ... 16

2.3 Simheuristics .. 17
2.3.1 An Integrated Simulation-based Framework .. 19
2.3.2 Examples of Use ... 21

2.4 Chapter Conclusions .. 22
3 Capacitated Arc Routing Problem .. 23

3.1 Literature Review .. 24
3.1.1 Approaches for Solving the CARP ... 24
3.1.2 Problem variations ... 26
3.1.3 Applications ... 26

3.2 Problem Description ... 27
3.2.1 Basic description ... 27
3.2.2 Mathematical model ... 28

3.3 Classical heuristics for the CARP ... 30
3.3.1 The Path Scanning heuristic for the CARP .. 30
3.3.2 The SHARP heuristic for the CARP ... 31

3.4 Randomized algorithms for the CARP .. 33
3.4.1 The RandPSH algorithm .. 33
3.4.2 The RandSHARP algorithm ... 34

3.5 Results ... 34
3.5.1 Comparison using the BEST10 and AVG10 metrics 36
3.5.2 A comparison using time-evolution of the gap.. 39

3.6 Chapter Conclusions .. 42
4 Arc Routing Problem with Stochastic Demands .. 43

4.1 Literature Review .. 44
4.2 Our Approach ... 45
4.3 Implementation details of our Approach .. 47
4.4 Results ... 50

4.4.1 A Numerical Example .. 51
4.4.2 Computational Results ... 51
4.4.3 Results Analysis .. 54

4.5 Chapter Conclusions .. 55
5 Non-smooth Arc Routing Problem .. 57

viii

5.1 Literature Review on Non-Smooth Problems .. 58
5.2 The Non-Smooth CARP.. 59
5.3 The RandSHARP algorithm .. 60
5.4 Results ... 61
5.5 Chapter Conclusions .. 63

6 Facility Location Problem ... 65
6.1 Literature Review .. 66

6.1.1 Solutions to the problem .. 66
6.1.2 Problem variations ... 68
6.1.3 Applications ... 69

6.2 Problem Description ... 70
6.2.1 Basic notation .. 70
6.2.2 Mathematical model ... 71

6.3 The RandCFH-ILS Algorithm .. 72
6.3.1 Implementation details ... 74

6.4 Results ... 79
6.5 Real Case Scenario: Minimizing Network Distance to Services 84
6.6 Chapter Conclusions .. 88

7 Conclusions and Contributions Derived from this Thesis .. 91
7.1 Conclusions .. 91
7.2 Future Work .. 92
7.3 Publications derived from this thesis ... 94

7.3.1 Publications ... 94
7.3.2 Presentations... 96
7.3.3 Other contributions .. 96

References ... 99
A. Appendix .. 111

A.1. Extended results for ARPSD .. 111

ix

List of Figures

Figure 1. Summary of the key topics discussed on this dissertation.ii
Figure 2. General pseudo-code for GRASP .. 11
Figure 3. General pseudo-code for MIRHA ... 12
Figure 4. Uniform randomization vs. biased randomization ... 13
Figure 5. Overview scheme of the Simheuristic approach ... 18
Figure 6. Flow diagram for the described methodology ... 20
Figure 7. Pseudo-code of the SHARP heuristic... 32
Figure 8. Visual comparison of the different approaches. .. 39
Figure 9. ANOVA for comparing performances. .. 40
Figure 10. GAP time-evolution for the egl-e2-A instance. .. 41
Figure 11. GAP time-evolution for the gdb8 instance. ... 41
Figure 12. Flowchart diagram of our Simheuristic algorithm .. 47
Figure 13. SimRandSHARP algorithm main procedure ... 48
Figure 14. RandSHARP procedure ... 49
Figure 15. Simulation procedure to estimate variable cost and reliability index 49
Figure 16. Average gaps with respect to ARPSD lower bound (BKS CARP). 54
Figure 17. Average reliability indices. .. 54
Figure 18. Example of FLP problem instance (a) and solution (b) 70
Figure 19. Flow diagram of the proposed approach (RandCFH-ILS) 73
Figure 20. RandCFH-ILS algorithm main procedure ... 75
Figure 21. getInitRandSol method... 76
Figure 22. perturbate method .. 76
Figure 23. localSearchTiny algorithm main procedure .. 77
Figure 24. localSearchDeep algorithm main procedure ... 78
Figure 25. Cumulative distribution function of the distance to the closest
replica from each client. .. 86
Figure 26. Cost distribution comparison of the different deployments obtained
by the described allocation methods ... 86
Figure 27. Cost distribution function of the mean network distances from each
node to its closes replica. .. 87
Figure 28. Box plot comparisons of the deployment costs with different
allocation methodologies. ... 88

file:///C:/Users/Sergio/Documents/My%20Dropbox/Tesis%20Sergio/PhD%20Thesis%20Sergio%20Gonzalez-Martin.docx%23_Toc403082878

x

List of Tables

Table 1. List of abbreviation used on this dissertation .. xi
Table 2. Average characteristics of problem datasets ... 35
Table 3. Experimental results for gdb instances. ... 36
Table 4. Experimental results for kshs instances. ... 36
Table 5. Experimental results for egl instances. .. 37
Table 6. Experimental results for val instances. .. 38
Table 7. Summary of experimental results by dataset. .. 38
Table 8. Results for the egl-s4-B instance with Var[Qi]=0.25·E[Qi]. 51
Table 9. Summary of results when Var[Qi] = 0.05·E[Qi] .. 53
Table 10. Summary of results when Var[Qi] = 0.25·E[Qi]... 53
Table 11. Summary of results when Var[Qi] = 0.75·E[Qi]... 53
Table 12. Summary of results when Var[Qi] = 2·E[Qi] ... 53
Table 13. Evaluated gdb instances and obtained results. ... 63
Table 14. Termination criteria for every class of instances. ... 81
Table 15. Results obtained for the 22 BK subsets of instances. 82
Table 16. Results obtained for GAP subsets of instances. .. 82
Table 17. Results obtained for FPP subsets of instances. .. 82
Table 18. Results obtained for MED subsets of instances. ... 83
Table 19. Network topology trait overview ... 84
Table 20. Results for egl dataset when Var[Qi] = 0.05·E[Qi] 111
Table 21. Results for gdb dataset when Var[Qi] = 0.05·E[Qi] 112
Table 22. Results for kshs dataset when Var[Qi] = 0.05·E[Qi] 112
Table 23. Results for val dataset when Var[Qi] = 0.05·E[Qi] 113
Table 24. Results for egl dataset when Var[Qi] = 0.25·E[Qi] 114
Table 25. Results for gdb dataset when Var[Qi] = 0.25·E[Qi] 114
Table 26. Results for kshs dataset when Var[Qi] = 0.25·E[Qi] 115
Table 27. Results for val dataset when Var[Qi] = 0.25·E[Qi] 115
Table 28. Results for egl dataset when Var[Qi] = 0.75·E[Qi] 116
Table 29. Results for gdb dataset when Var[Qi] = 0.75·E[Qi] 116
Table 30. Results for kshs dataset when Var[Qi] = 0.75·E[Qi] 117
Table 31. Results for val dataset when Var[Qi] = 0.75·E[Qi] 117
Table 32. Results for egl dataset when Var[Qi] = 2·E[Qi] ... 118
Table 33. Results for gdb dataset when Var[Qi] = 2·E[Qi] .. 118
Table 34. Results for kshs dataset when Var[Qi] = 2·E[Qi] .. 119
Table 35. Results for val dataset when Var[Qi] = 2·E[Qi] ... 119

xi

Glossary

Abbreviation Description

ARP Arc Routing Problem
ARPSD Arc Routing Problem with Stochastic Demands
BKS Best Known Solution
CFLP Connected Facility Location Problem
COP Combinatorial Optimization Problem
CVOP ConVex Optimization Problem
DPCS Distributed Parallel and Collaborative Systems
FLP Facility Location Problem
FTTH Fiber To The Home
GRASP Greedy Randomized Adaptive Search Procedure
HAROSA Hybrid Algorithms for solving Realistic rOuting, Scheduling and

Availability problems.
HBSS Heuristic Biased Stochastic Sampling
ILP Integer Linear Programming
IN3 Internet Interdisciplinary Institute
MCS Monte-Carlo Simulation
MDVRP Multi Depot Vehicle Routing Problem
MIRHA Multi-start bIased Randomization of classical Heuristics with

Adaptive local search
NCVOP Non-ConVex Optimization Problem
OBS Our Best found Solution
PON Passive Optical Network
PSH Path Scanning Heuristic
RNG Random Number Generator
SA Simulated Annealing
Simheuristic Simulation-optimization using Heuristics
STP Steiner Tree Problem
T&L Transportation and Logistics
TS Tabu Search
TSP Traveling Salesman Problem
UOC Universitat Oberta de Catalunya
VPN Virtual Private Network
VRP Vehicle Routing Problem
VRPSD Vehicle Routing Problem with Stochastic Demands
WCN Wireless Community Network
WSN Wireless Sensors Network

Table 1. List of abbreviation used on this dissertation

xii

1

1 Introduction

Combinatorial problems involve finding a grouping, ordering or assignment of a

discrete, finite set of objects that satisfies given conditions. Combinatorial Optimization

Problems (COPs) consist on finding the optimal or near-optimal solution for a given

cost function. In the case of NP-hard problems, metaheuristics are usually a good

alternative to exact methods in order to find near-optimal solutions in reasonable

computing times. Metaheuristics are a class of algorithms which provide approximation

solutions of certain quality, while having relatively low execution times even for large-

scale NP-hard problems. Many metaheuristics contain a randomness component,

which in most of the cases is based on Uniform randomization -i.e., the use of the

Uniform probability distribution to make random choices. However, as showed in

different works related to this thesis, use of biased (non-uniform) randomization -i.e.,

random variates generated from skewed probability distributions- can become a more

efficient strategy when introducing randomness into a metaheuristic. The Multi-start

biased Randomization of classical Heuristics with Adaptive local search (MIRHA,

Gonzalez-Martin et al., 2014a; Juan et al. ,2014a), is a general framework to develop

biased-randomized metaheuristics. MIRHA has demonstrated to be helpful for defining

competitive algorithms in a wide range of vehicle routing and scheduling problems.

 COPs have application in many real-life scenarios. Examples can be found in

key economic sectors, like telecommunications or transportation and logistics (T&L).

The telecommunication sector is one of the key role players in current economy. The

evolution experienced, with considerable improvements in network infrastructures and

capabilities, allow governments and enterprises to offer new electronic services to their

customers. This evolution has been in part promoted due to the liberalization of the

sector in many countries, where, according to the International Telecommunication

Union (ITU) in its annual world information society report (Choudhary et al. 2008), “the

number of telecom regulatory authorities grew from 14 in 1990 to 147 in 2007 and

partial or full privatization of incumbent telecom operators grew from 10% in 1990 to

2

50% in 2006”. The growth of the sector in the last two decades has been very fast.

Apart from the market liberalization, it can be explained by the advances in

telecommunication technology, and the market privatization (Lam et al. 2010). This

makes the advances in telecommunications technology one of the driving forces of

globalization and the rapid growth of the world’s economy.

This importance and the sector’s fast growth, has brought with it new

optimization problems in several related fields. In Partridge (2011), up to forty open

research questions in the telecommunications arena are presented. They represent big

challenges for the future: to define a network topology which can vary over the time, to

define a new network addressing paradigm or to provide networks with resource

auctions which could allow service providers to shift resources among customers in

real time, among others. Most of these research questions have associated different

combinatorial optimization problems and, in particular, routing, assignment, availability,

and scheduling ones.

Likewise, transportation and logistics also has a great economic importance in

most countries. The costs associated with transportation have growth considerably

over the last decade, especially due to the raise of petroleum prices. Also

environmental policies, like the Kyoto protocol, are forcing enterprises to consider

these environmental conditions when planning routes, in addition to the direct costs

associated with the transport (Vieira et al. 2007).

Both T&L and telecommunication routing and assignment problems are suitable

to be studied with optimization (exact and approximate methods) and simulation

techniques. Also, distributed and parallel-computing systems allow the practical

development of new solutions to these problems which are considered to be

computationally very difficult, being many of them proven to be NP-hard (e.g. Al-Karaki

et al. 2004). The MIRHA approach for solving deterministic NP-hard problems in the

telecommunications and L&T areas, as well as its natural extension throughout the

concept of Simheuristics (Juan et al., 2011a) for solving stochastic versions of these

problems, are the main pillars over which this thesis is based.

1.1 Structure of this Thesis

This thesis studies different optimization problems, designing algorithms for them

based on the aforementioned MIRHA and Simheuristics frameworks, and evaluating

the performance compared with the state of the art. To this end, the thesis is structured

in the following chapters:

3

 Chapter 2: MIRHA Framework and Simheuristics. This dissertation will start by

introducing the MIRHA framework and the concept of Simheuristics. Both are

closely related as they are based on the use of biased randomization for

solving complex optimization problems. They have been proven to be useful for

solving routing, scheduling and availability problems, especially in the field of

Transportation and Logistics. With this thesis we are aiming to adapt these

algorithms to be applied in other optimization problems which are more suitable

in other field like is the case of Telecommunications.

 Chapter 3: Capacitated Arc Routing Problem. The first problem studied is the

Capacitated Arc Routing Problem or CARP. This is a deterministic routing

problem very similar to the Capacitated Vehicle Routing Problem or CVRP, but

which is more suitable for modeling certain telecommunication routing

optimization problems. The MIRHA framework has been successfully used for

defining algorithms for the CVRP, but has never been used for defining

algorithms for the CARP. In this chapter we will propose a new heuristic for the

CARP, the SHARP heuristic, and use it as a base heuristic for the MIRHA

framework in order to define a new competitive algorithm. We will compare the

performance of our new proposed heuristic and the randomized algorithm with

a classical heuristic, and also with the best known solutions available in the

literature.

 Chapter 4: Arc Routing Problem with Stochastic Demands. In this chapter we

will introduce a stochastic component in the customer demands which is also

more suitable for modeling certain real-life telecommunication routing

problems, where usually the customer demands cannot be known beforehand,

but can be modeled using data from the past. In this case we will combine the

algorithm defined for the deterministic problem in Chapter 3 with the

Simheuristics framework to define a robust algorithm for the ARPSD. We will

evaluate the robustness and performance of the proposed methodology using

different datasets available on the literature.

 Chapter 5: Non-smooth Arc Routing Problem. An additional variation of the

CARP is that in which the optimization function is non-smooth. In this case, the

capacity constraint is converted to a soft-constraint, so it can be violated but

incurring in some penalty. This adds a non-smooth component to the cost

function which makes the problem a Non-smooth ARP. This is also suitable for

modeling certain real life scenarios and in this chapter we will evaluate how the

proposed algorithm for the CARP behaves.

4

 Chapter 6: Facility Location Problem. The final problem of study is the Facility

Location Problem or FLP. This problem is an assignment problem which is very

useful for modeling telecommunication problems like finding the best

placements of servers for providing some services to a set of customers. For

this problem we will completely define a new algorithm based on the MIRHA

framework and will assess its performance with some data sets available on

the literature.

 Chapter 7: Conclusions and Contributions Derived from this Thesis. On this

chapter we will extract some conclusions from the research work and state

some open points to be considered by future researches. Also, this final

chapter collects all the publications that have been produced as a result of the

work carried on with this thesis.

In all these chapters we can appreciate the adaption of some heuristics to different

optimization contexts and constraints. We explore how the integration of heuristics,

simulation, biased randomization and parallel computing, can help to design high

quality algorithms for problems which have real-life application in the

Telecommunication arena (see section 1.2 for specific examples). The algorithms are

tested with different benchmarks available in the literature, comparing the results with

the state of the art. Some quantitative methods are used to analyze the generated

results where we remark the high quality of the proposed methods, especially in terms

of execution times and gaps with respect to the best known solution.

1.2 Motivation

The MIRHA framework and Simheuristics have demonstrated to be very helpful for

solving complex computational optimization problems with applications focused in the

field of T&L. Being based in quite simple concepts, they make quite straightforward to

define new algorithms based on this framework. The produced algorithms have usually

a single configuration parameter or even without parameter. This makes that the time

to deploy the algorithm in a real environment is faster as it avoids the long and complex

fine tuning phase which usually is required by other metaheuristics. The promising

results obtained by the algorithms designed with the framework, open the opportunity

to afford new problems to which create algorithms based on MIRHA. Also, the flexibility

of the framework makes it quite straightforward to combine produced algorithms with

additional problem-specific steps. One example is the Iterated Local Search (ILS,

Lourenço et al. 2010).

5

 One important Telecommunication problem in real life is that of planning and

deployment of telecommunication networks, both physical (by means of physical cable

connection) and virtual (by means of service providing). In this thesis we will focus on

problems which are suitable for modeling those kinds of problems. For instance, the

Arc Routing Problem (which is introduced on Chapter 3) can be used for minimizing

the total length of cable for deploying an optical fiber network in order to interconnect

all the required cabinets in a Fiber-To-The-Home (FTTH) scenario. Another example is

the Facility Location Problem (which is introduced on Chapter 6), which can be useful

for determining the best locations of optical splitter that provide optical connectivity to

subscribers in a given service area of a FTTH-Passive Optical Network (FTTH-PON).

 Extending the MIRHA framework to new problems which have applications in

other fields in addition to T&L, like is the case of Telecommunications, will make it more

interesting as will increase the number of possible applications. Real-life applications

make the problems more interesting to be studied, as it can get the attention of

companies which can combine efforts with researchers and practitioners in order to

produce more interesting results. Also, it can help to improve the evaluation of the

algorithm under real world constraints, as the companies can provide researchers with

such information. Usually results produced under real-life scenarios are not exactly the

same as the ones produced using artificially generated data, so this will improve the

performance evaluation of the algorithms.

1.3 Research Objectives

In general, a desirable or efficient optimization algorithm for a computational

optimization problem should be able to generate results in a short period of time;

should produce good or high quality solutions; should be simple to configure; flexible to

be adapted to new constraints or new computing architectures; and easy to understand

and implement (Cordeau et al., 2002). One of the main goals of this thesis is the

proposal of new algorithms based on the MIRHA framework and Simheuristics, for the

Arc Routing Problem (ARP) and the Facility Location Problem (FLP). Neither MIRHA

framework nor Simheuristics have been used previously for defining algorithms for both

problems. The new problems to be studied have the common characteristic that they

are suitable for modeling real-life Telecommunications problems, such as the

deployment of an optical fiber network or the design of a Wireless Sensors Network

(WSN).

To reach the general goal, several specific objectives should be achieved. First

of all, we will design and implement new algorithms for every one of the studied

6

problems. These hybrid algorithms will be based on the MIRHA framework. To this

end, for every problem we will present the application of the methodology to the

problem at a higher level, and then we will introduce the pseudo-code of the proposed

algorithm. The pseudo-code will be implemented as an application and executed with

benchmarks extracted from the literatures. Secondly, the results produced by the

algorithm will be collected and analyzed using statistical methods. With this, we will be

able to compare the algorithm performance with the state of the art, being able to

analyze the quality of the designed algorithms.

Finally, we also are willing to evaluate the performance of the algorithm under

uncertainty scenarios, when combined with Simheuristics. For this, we will propose an

algorithm which combines the algorithm designed for the deterministic problems with

ideas from the Simheuristics framework. We will then evaluate the performance with a

set of benchmarks available on the literature adapted for the uncertainty scenario,

using statistical techniques for evaluate the performance and reliability of the designed

solution.

1.4 Original Contributions

In the process of achieving the objectives described in previous section, we generate a

series of original contributions. Among them, we summarize next the most relevant

ones, which will be detailed in deep in the next chapters:

1. The SHARP heuristic for the Capacitated Arc Routing Problem (CARP):

We define a savings heuristics for the ARP, based on the Clarke and Wright

Savings (CWS) heuristic for the CVRP. This heuristic has the characteristic of

being fast to execute while obtain relatively good results, which makes it

suitable to be used within the MIRHA framework.

2. The RandPSH and RandSHARP algorithm for the CARP: We propose two

new randomized algorithms based on the MIRHA framework. Mainly they are

defined using the same approach, but they only differ on the base heuristic

being used. For the first, the classical Path Scanning Heuristic (PSH) is used;

for the later, our original SHARP heuristic is used as the base heuristic. Our

SHARP heuristics demonstrates to have a better performance when combined

with MIRHA framework than the PSH, thus SHARP is more suitable for our

MIRHA framework.

3. The combination of RandSHARP with Simheuristics for the Arc Routing

Problem with Stochastic Demands (ARPSD): For solving the stochastic

version of the Arc Routing Problem, we propose the combination of the

7

randomized algorithm proposed for the deterministic problem with the

Simheuristics concept. With that, we are able to obtain robust solutions for the

problem. We also introduce a concept of upper and lower bound for evaluating

the quality of the results obtained with our algorithm.

4. The RandSHARP algorithm for the Non-Smooth Arc Routing Problem: We

have adapted the RandSHARP algorithm for the non-smooth variation of the

ARP and evaluated its performance. With that we demonstrate that ideas from

MIRHA framework also fit perfectly when the cost function being optimized is

non-smooth.

5. The RandCFH-ILS algorithm for the Facility Location Problem (FLP): We

propose a new randomized algorithm based on the MIRHA framework for the

FLP. The algorithm is able to compete with state of the art algorithms for the

problem, with relatively low execution times.

1.5 Chapter Conclusions

In this first chapter, we have defined the motivation, context and objectives of this

thesis. We have presented the relation of routing optimization contexts to human

economy activities and its impacts on different sectors like telecommunications or

transportation and logistics. Also, we enumerate the main contributions of this thesis

which will be introduced in the rest of the dissertation. The next chapters will present

the MIRHA framework and Simheuristics in deep, will introduce the ARP and several

variations of it, and also the FLP which could be considered as an evolution of the

former. For every problem, we will present its definition, mathematical notation or

modeling and the proposal of competitive algorithms for solving them based on a

common framework.

8

9

2 MIRHA Framework and Simheuristics

In this chapter, we will present the basic ideas that define the Multi-start biased

Randomization of classical Heuristics with Adaptive local search (MIRHA) framework.

Also, we will introduce the concept of Simheuristics, which is the combination of

simulation with heuristics to solve problems which have some uncertainty component.

The MIRHA framework offers a clear guidance for designing biased randomized

heuristics based on classical problem-specific heuristics. The designed algorithms can

be used in many deterministic optimization problems. Also, the algorithms can be

combined with Simheuristics to cope with optimization problems which have a

stochastic component.

Combinatorial Optimization Problems (COPs) have posed numerous challenges

to the human mind over the past decades. From a theoretical perspective, they have a

well-structured definition consisting of an objective function that needs to be minimized

or maximized, and a series of constraints that must be satisfied. From a theoretical

point of view, these problems have an interest on their own due to the mathematics

involved in their modeling, analysis and solution. However, the main reason for which

they have been so actively investigated is the tremendous amount of real-life

applications that can be successfully modeled as a COP. Thus, for example, decision-

making processes in fields such as logistics, transportation, and manufacturing contain

plentiful hard challenges that can be expressed as COPs (Faulin et al. (2012);

Montoya et al. (2011)). Accordingly, researchers from different areas –e.g. Applied

Mathematics, Operations Research, Computer Science, and Artificial Intelligence–

have directed their efforts to conceive techniques to model, analyze, and solve COPs.

A considerable number of methods and algorithms for searching optimal or

near-optimal solutions inside the solution space have been developed. In some small-

sized problems, the solution space can be exhaustively explored. For those instances,

efficient exact methods can usually provide the optimal solution in a reasonable time.

Parts of this chapter have been taken from the co-autored

publications Juan et al. (2014a) and Gonzalez-Martin et al. (2014a).

10

Unfortunately, the solution space in most COPs is exponentially astronomical. Thus, in

medium- or large-size problems, the solution space is too large and finding the

optimum in a reasonable amount of time is not a feasible task. An exhaustive method

that checks every single candidate in the solution space would be of very little help in

these cases, since it would take exponential time. Therefore, a large amount of

heuristics and metaheuristics have been developed in order to obtain near-optimal

solutions, in reasonable computing times, for medium- and large-size problems, some

of them even considering realistic constraints.

The main goal of this chapter is to present a hybrid scheme which combines

classical heuristics with biased-randomization processes. As it will be discussed later,

this hybrid scheme represents an efficient, relatively simple, and flexible way to deal

with several COPs in different fields, even when considering realistic constraints.

2.1 The Methodology

2.1.1 Background

In the context of this chapter, we will refer to any algorithm which makes use of

pseudo-random numbers to perform random choices during the exploration of the

solution space by the term randomized search method, or simply randomized

algorithm. This includes most current metaheuristics and stochastic local-search

processes. Thus, since it does not follow a determinist path, even for the same input, a

randomized search method can produce different outputs in different runs. Within these

types of algorithms we can include, among others:

 Genetic and Evolutionary algorithms (Reeves, 2010).

 Simulated Annealing (Nikolaev and Jacobson, 2010).

 Greedy Randomized Adaptive Search Procedure or GRASP (Festa and

Resende, 2009a, 2009b).

 Variable Neighborhood Search (Hansen et al., 2010).

 Iterated Local Search (Lourenço et al., 2010).

 Ant Colony Optimization (Dorigo and Stützle, 2010).

 Probabilistic Tabu Search (Lokketangen and Glover, 1998).

 Particle Swarm Optimization (Kennedy and Eberhart, 1995).

One of the most popular randomized search methods is GRASP. Roughly

speaking, GRASP is a multi-start or iterative process which uses uniform random

numbers and a restricted candidate list to explore the solution space (Figure 2). At

each iteration, two phases are executed: (i) the construction phase, which generates a

11

new solution by randomizing a classical heuristic; and (ii) a local search phase, which

aims at improving the previously constructed solution. At the end of the multi-start

process, the best solution found is kept as the current solution.

procedure GRASP(inputs)

01 while stopping criterion is not satisfied do

02 solution  ConstructGreedyRandomizedSolution(inputs)

03 solution  ApplyLocalSearch(solution)

04 bestSolution  UpdateBestSolution(solution)

05 endwhile

06 return bestSolution

endprocedure

Figure 2. General pseudo-code for GRASP

It is interesting to notice that most of the work on randomized algorithms is based on

the use of uniform randomness, i.e., randomness is generated throughout a symmetric

(non-biased) uniform distribution. Thus, when we talk about biased randomization, we

refer to the use of probability distributions, other than uniform, which do not distribute

probabilities in a symmetric shape but in a non-symmetric or skewed one. Of course,

these skewed distributions can also be used to induce biased randomness into an

algorithm. As a matter of fact, as far as we know, the first approach based on the use

of biased randomization of a classical heuristic is due to Bresina (1996). The author

proposed a methodology called Heuristic-Biased Stochastic Sampling (HBSS), which

performs a biased iterative sampling of the search tree according to some heuristic

criteria. Bresina applies the HBSS to a scheduling problem, and concludes that this

approach outperforms greedy search within a small number of samples.

2.1.2 MIRHA

More recently, Juan et al (2011a) proposed the use of non-symmetric probability

distributions to induce randomness in classical heuristics. Their general framework was

called Multi-start biased Randomization of classical Heuristics with Adaptive local

search (MIRHA). On this approach, the authors propose to combine classical greedy

heuristics with pseudo-random variates from different, non-symmetric, probability

distributions. In particular, the algorithm induced biased-randomness to slightly

perturbate the greedy behavior of a classical heuristic, which transforms a deterministic

heuristic into a probabilistic algorithm. According to the obtained results, the use of

proper biased distributions –as an alternative to the use of the uniform distribution–

contributes to explore the solution space in a more efficient way. Figure 3 shows the

pseudo-code of the MIRHA general framework. Similar to GRASP, a multi-start

12

procedure encapsulates the randomization of a heuristic, but this time a non-symmetric

distribution will be employed instead. At each iteration, two processes are carried out.

First, a new solution is constructed using a biased randomization version of the

selected classical heuristic –which will depend on the particular problem being

considered. Secondly, an adaptive local search is employed in order to improve the

randomized solution. Notice that both the randomization effect and the multi-start

process work together to reduce the probabilities that the procedure gets trapped into a

local minimum, while ensuring that different feasible regions in the solution space are

sampled and explored.

The common aspects of MIRHA with GRASP are the construction of an initial

solution using randomization and, afterwards, the application of a local search. But

there are relevant differences: (a) MIRHA does not use a restrictive candidate list, one

main characteristic of the GRASP algorithm; and (b) MIRHA uses a non-symmetric

distribution to select the next element to be included in the solution, while most GRASP

implementations only consider uniform distributions. The HBSS proposed by Bresina is

similar to MIRHA since it uses a biased distribution function combined with a sampling

methodology. In fact, MIRHA can be seen as a natural extension/enhancement of the

HBSS methodology, one which incorporates a local search step after each solution

obtained by the biased sampling.

procedure MIRHA(inputs)

01 heuristic  DefineHeuristic(inputs) %different for each COP

02 initialSolution  GenerateSolution(heuristic, inputs)

03 bestSolution  ApplyAdaptiveLocalSearch(initialSolution)

%different for each COP

04 probaDist  DefineProbabilityDistribution(COP) %different for

each COP

05 while stopping criterion is not satisfied do

06 solution  GenerateRandomSolution(heuristic, probaDist, inputs)

07 solution  ApplyAdaptiveLocalSearch(solution)

08 bestSolution  UpdateBestSolution(solution)

09 end while

10 return bestSolution

end procedure

Figure 3. General pseudo-code for MIRHA

2.2 Logic Behind our Approach

Most classical heuristics for solving combinatorial optimization problems employ an

iterative process in order to construct a feasible –and hopefully good– solution.

Examples of these heuristics are the Clarke and Wright procedure for the Vehicle

Routing Problem (Clarke and Wright, 1964), the NEH procedure for the Flow-Shop

13

Problem (Nawaz et al., 1983), or the Path Scanning procedure for the Arc Routing

Problem (Golden et al., 1983). Typically, a ‘priority’ list of potential movements is

traversed during the iterative process, i.e., at each iteration, the next constructive

movement is selected from this list, which is sorted according to some criteria. The

criteria employed to sort the list depends upon the specific heuristic being considered.

Thus, any constructive heuristic could be seen as an iterative greedy procedure, which

constructs a feasible ‘good’ solution to the problem at hand by selecting, at each

iteration, the ‘best’ option from a list, sorted according to some logical criterion. Notice

that this is a deterministic process, since once the criterion has been defined, it

provides a unique order for the list of potential movements. Of course, if we randomize

the order in which the elements of the list are selected, then a different output is likely

to occur each time the entire procedure is executed. However, a uniform randomization

of that list will basically destroy the logic behind the greedy behavior of the heuristic

and, therefore, the output of the randomized algorithm is unlikely to provide a good

solution –in fact, we could run the randomized algorithm thousands of times and it is

likely that all the solutions generated would be significantly worse than the one

provided by the original heuristic. To avoid losing the ‘common sense’ behind the

heuristic, GRASP proposes to consider a restricted list of candidates –i.e. a sub-list

including just some of the most promising movements, that is, the ones at the top of the

list–, and then apply a uniform randomization in the order the elements of that

restricted list are selected (Figure 4).

Figure 4. Uniform randomization vs. biased randomization

14

This way, a deterministic procedure is transformed into a randomized algorithm –which

can be encapsulated into a multi-start process–, while most of the logic or common

sense behind the original heuristic is still respected. The MIRHA approach goes one

step further, and instead of restricting the list of candidates, it assigns different

probabilities of being selected to each potential movement in the sorted list. In this

way, the elements at the top of the list receive more probabilities of being selected than

those at the bottom of the list, but potentially all elements could be selected. Notice that

by doing so, we are not only avoiding the issue of selecting the proper size of the

restricted list, but we also guarantee that the probabilities of being selected are always

proportional to the position of each element in the list. Thus, it is possible to identify the

following steps when transforming a classical heuristic into a probabilistic algorithm by

means of biased randomization:

1. Given a COP, select a deterministic and constructive heuristic with the following

characteristics –which most classical heuristics already satisfy: (a) it should be

able to run quite fast –typically in less than a second– even for large-size

problems –this is a critical requirement since the probabilistic algorithm relies in

executing over and over a randomized version of the heuristic; (b) it should

provide, by design, some stage able to be randomized –e.g. a priority list as the

one described before; and (c) it should provide ‘good’ solutions which are not

too far from the ones generated with more complex and time-consuming

metaheuristics –e.g. average gap about 5-10%.

2. Once the base heuristic is selected, the new probabilistic algorithm should

follow some kind of multi-start process –e.g. a pure multi-start or an iterated

local search. At each round of this multi-start process, a new complete solution

would be generated. For the construction of this solution, the base heuristic is

randomized –e.g. its priority list is randomized– using a non-symmetric

probability distribution. The specific distribution to employ will depend upon the

specific COP being considered. Some candidate distributions to be considered

are the geometric and a discrete version of the descendent triangular.

3. Optionally, a local search process can be added to the algorithm in order to

improve the solution provided at each round of the multi-start process. This

local search is COP-tailored, meaning that it will be different for each COP.

The approach described above is able to quickly generate several feasible solutions

with different properties. Therefore, a list containing the top ‘best-found’ solutions –

each of them having different characteristics– can be saved and considered by the

decision maker.

15

2.2.1 Benefits of Biased-Randomization Approaches

The main motivation behind designing biased-randomized heuristics is to meet many of

the desirable features of a metaheuristic as described by Cordeau et al. (2002), i.e.:

accuracy, speed, simplicity, and flexibility. Most of the metaheuristics in literature are

measured against accuracy –the degree of departure of the obtained solution value

from the optimal value–, and against speed –the computation time. However, there are

two other important attributes to be considered in any optimization method: simplicity

and flexibility. Simplicity is related to the number of parameters to be set and the facility

of implementation. This is an important feature since the method can be applied to

different instances than the ones tested without losing quality or performance and

without the need of performing a long run test. Flexibility is related to the possibility of

accommodating new side constraints and also with the adaptation to other similar

problems.

Having in mind these measured attributes; we list the main benefits of biased-

randomized heuristics over other related approaches:

 They allow a simplification of the fine-tuning process, since typically the

employed probability distributions require just one (e.g. the geometric) or zero

parameters (e.g. the descendent triangular). This is not common in most current

metaheuristic approaches, which usually employ many parameters and,

therefore, require from difficult and time-expensive fine-tuning processes to

adjust their associated values.

 Being based on classical well-tested heuristics, they are relatively simple and

easy to implement methods, which can be adapted to account for new

constraints (flexibility). Thus, when facing a combinatorial-optimization problem

with already existing heuristics, some of the most efficient of these heuristics

can be selected and enhanced throughout biased randomization.

 Using non-uniform (skewed) distributions rather than uniform ones, they offer a

more natural and efficient way to select the next movement from the priority list,

since biased randomization allows keeping the logic behind the heuristic by

assigning more probabilities of being selected to those movements which better

fulfill the heuristic. Notice that a uniform randomization does not respect the

‘common sense’ of the heuristic, since it assigns equal probabilities of being

selected to all potential movements.

 By combining randomization with a multi-start-like process, they promote

diversification during the exploration of the solution space, i.e., the search is not

restricted to just a reduced number of regions (Talbi, 2009). Notice that these

16

two features –randomization and multi-start approach– help the algorithm to

escape from local minimums and also increase diversification during the

exploration of the solution space.

 Likewise, the combination of randomization with a multi-start-like process

promotes parallelization in an easy and natural way (Juan et al., 2011c). Notice

that the odds of finding ‘good’ solutions increase as more parallel runs of the

algorithm are executed.

 Finally, the biased-randomized heuristics can also be combined with other

techniques, such as Monte Carlo simulation, in order to consider stochastic

variants of COPs, as we discuss in later in this chapter.

2.2.2 Examples of Use

In general, probabilistic algorithms have been widely used to solve many combinatorial

optimization problems such as, for example: Sequencing and Scheduling Problems

(Pinedo, 2008), Vehicle Routing Problems (Laporte, 2009), or Quadratic and

Assignment Problems (Loiola et al., 2007). They have also been used to solve real

combinatorial optimization problems that arise in different industrial sectors, e.g.:

Transportation, Logistics, Manufacturing, Aeronautics, Telecommunication, Health,

Electrical Power Systems, Biotechnology, etc.

As described in Festa and Resende (2009b), GRASP algorithms have been

applied to solve a wide set of problems like scheduling, routing, logic, partitioning,

location, graph theory, assignment, manufacturing, transportation, telecommunications,

biology and related fields, automatic drawing, power systems, and VLSI design.

Regarding the use of biased/skewed randomization as proposed by the HBSS and

MIRHA general schemes, Juan et al. (2010) proposed a specific implementation,

called SR-GCWS, for solving the Capacitated Vehicle Routing Problem. The SR-

GCWS algorithm combines a biased randomization process with the Clarke & Wright

savings heuristic (Clarke and Wright, 1964). A geometric distribution is used to

randomize the constructive process while keeping the logic behind the heuristic. Other

authors have also proposed the randomization of a classical heuristic for solving the

Arc Routing Problem. For example, Gomes and Selman (1997) propose a randomized

version of the Backtrack Search algorithm where randomization is added to break ties,

and also a randomization of the Branch-and-Bound algorithm where randomization is

added in the variable selection strategy by introducing noise in the ranking of the

variables. However, in both cases the authors add uniformly distributed randomization

to the base heuristic. Finally, Juan et al. (2012) propose the ILS-ESP algorithm for

solving the Permutation Flow-Shop Problem. The ILS-ESP uses an Iterated Local

17

Search framework and combines the NEH heuristic (Nawaz et al, 1983) with a biased

randomization process guided by a descending triangular distribution.

All in all, the proposed methodology can be used to improve the efficiency of

most existing heuristics for solving combinatorial-optimization problems. This is done

by transforming the greedy deterministic behavior of the heuristic into a probabilistic

behavior which still follows the logic behind the heuristic but randomizes the

construction process using a biased, non-uniform, distribution.

2.3 Simheuristics

There is an emerging interest on introducing randomization into combinatorial

optimization problems as a way of describing new real problems in which most of the

information and data cannot be known beforehand. This tendency can be observed in

Van Hentenryck and Bent (2010), which provides an interesting review of many

traditional combinatorial problems with stochastic parameters. Thus, those authors

studied Stochastic Scheduling, Stochastic Reservations and Stochastic Routing in

order to make decision on-line, i.e., to re-optimize solutions when their initial conditions

have changed and, therefore, are no longer optimal.

The Simheuristic approach (Figure 5) is a particular case of simulation-

optimization which combines a heuristic/metaheuristic algorithm with simulation

methodologies – e.g. Monte-Carlo, discrete-event, agent-based, etc… - in order to

efficiently deal with the two components in a Stochastic Combinatorial Optimization

Problem (SCOP) instance: the optimization nature of the problem and its stochastic

nature. Examples of Simheuristics applications to different fields can be found in the

optimization-simulation literature. For instance, Juan et al. (2011b) combined Monte

Carlo Simulation (MCS) with routing metaheuristics in order to solve the Vehicle

Routing Problem with Stochastic Demands (VRPSD); Peruyero et al. (2011) combined

MCS with a scheduling metaheuristic for solving the permutation flow-shop problem

with stochastic processing times; and Caceres et al. (2012) combined also MCS with a

routing metaheuristic for solving the inventory routing problem with stock-outs and

stochastic demands.

Typically, given a SCOP instance, a heuristic/metaheuristic algorithm is run in

order to perform an oriented search inside the solution space. This iterative process

aims at finding feasible solutions with the best possible value, which is expected to be

near-optimal as well. During the iterative search process, the algorithm must deal with

the stochastic nature of the SCOP instance. One natural way to do this is by taking

18

advantage of the capabilities simulation methods offer to manage randomness. Of

course, other approaches can also be used instead of simulation –e.g. dynamic

programming, fuzzy logic, etc. However, under the presence of historical data on

stochastic behavior, simulation allows the development of both accurate and flexible

models. Specifically, randomness can be modeled throughout a best-fit probability

distribution –including parameterization– without any additional assumptions or

constraints. Thus, simulation is usually integrated with the heuristic/meta-heuristic

approach and it frequently provides dynamic feedback to the searching process in

order to improve the final outcome. In some sense, simulation allows to extend already

existing and highly efficient meta-heuristics –initially designed to cope with

deterministic problems– so that they can also be employed to solve SCOPs.

Figure 5. Overview scheme of the Simheuristic approach

Obviously, one major drawback of this approach is that the results are not expected to

be optimal anymore, since Simheuristics are combining two approximate

methodologies. Nevertheless, real-life problems are complex enough and usually NP-

hard even in their deterministic versions. Therefore, Simheuristics constitute a quite

interesting alternative for most practical purposes, since they represent relatively

19

simple and flexible methods which are able to provide near-optimal solutions to

complex real-life problems in reasonable computing times.

2.3.1 An Integrated Simulation-based Framework

The solution proposed for the VRPSD in Juan et al. (2011b) was based on the same

framework, which will be described in this section. The methodology is based in two

facts: (a) the stochastic problem can be seen as a generalization of the deterministic

problem where the random value has zero variance; and (b) efficient meta-heuristics

already exist for the deterministic problems while the stochastic problems are an

emerging field. Accordingly, the key idea behind this framework is to transform the

stochastic instance into a new problem which consists of solving several conservative

instances of the deterministic problem, each of the characterized by a specific risk of

showing routing failures. The term conservative refers to the fact that only a certain

percentage of the vehicle capacity is considered during the route design phase, so the

rest of capacity is considered as safety stock. So, this remaining capacity of the vehicle

will be available in case the actual demand of the route is greater than expected.

 The methodology consists on the following steps (see Figure 6):

1. Consider a problem instance with a set of customers. Each customer has

associated a stochastic demand characterized by its mean and probability

distribution.

2. Compute the value of the safety stock given by a percentage of the vehicle

capacity. This percentage will be a parameter defined for the algorithm.

3. Consider the deterministic instance of the problem, consisting on the same

problem instance than the stochastic version, but where the demands are

deterministic and equal to the mean, and the vehicle capacity is restricted to the

value computed on step 2.

4. Solve previous instance using a biased randomized algorithm (e.g. SG-GCWS

for CVRP or RandSHARP for CARP). This solution will be an aprioristic solution

for the original problem instance. Furthermore, it will be a feasible solution as

long as there are not any route failures.

5. Using the previous solution, estimate the expected cost due to possible failures

on any route. This is done by using Monte Carlo simulation. To this end,

random demands are generated and, whenever a route occurs a repair action is

applied, registering the associated cost of this action in the total cost of the

solution. The repair action consists of a round-trip from the depot to the failing

customer so the vehicle capacity is reloaded. After iterating this process some

thousands of times, a random sample of costs is obtained, and an estimate for

20

its expected value can be calculated. Then, the expected total costs due to

possible route failures can be computed by addition of these variable costs and

the costs of the deterministic solution obtained during the design phase.

6. Using the deterministic solution, obtain an estimate for the reliability of each

route of the solution. In such context, the reliability index is defined as the

probability that a route will not fail. This route reliability index is computed by

direct Monte Carlo simulation using the probability distributions that model

customer demands in each route. Remark that in each route, over-estimated

demands could sometimes be compensated by under-estimated demands.

Figure 6. Flow diagram for the described methodology

21

7. The reliability index for the total solution is computed as the multiplication of the

value for each route in the solution. This value can be considered as a measure

for the feasibility for the solution in the context of the stochastic problem.

8. Depending on the total costs and the reliability indices associated with the

solutions already obtained, repeat the process from Step 1 with a different value

of the value used for the safety stock.

9. Finally, the best solution found so far is returned as solution to the problem, as

well as its corresponding properties such cost or reliability index.

2.3.2 Examples of Use

The Vehicle Routing Problem with Stochastic Demands (VRPSD) is a NP-hard problem

in which a set of customers with random demands must be served by a fleet of

homogeneous vehicles departing from a depot, which initially holds all available

resources (Novoa and Storer, 2009). Obviously, there are some tangible costs

associated with the distribution of these resources from the depot to the customers. In

particular, it is usual for the model to explicitly consider costs due to moving a vehicle

from one node – customer or depot – to another. These costs are often related to the

total distance traveled, but they can also include other factors such as number of

vehicles employed, service times for each customer, etc. The classical goal here

consists of determining the optimal solution (set of routes) that minimizes those

tangible costs subject to the following constraints: (i) all routes begin and end at the

depot; (ii) each vehicle has a maximum load capacity, which is considered to be the

same for all vehicles; (iii) all (stochastic) customer's demands must be satisfied; (iv)

each customer is supplied by a single vehicle; and (v) a vehicle cannot stop twice at

the same customer without incurring in a penalty cost.

The random behavior of customers’ demands could cause an expected feasible

solution to become an unfeasible one if the final demand of any route exceeds the

actual vehicle capacity. This situation is referred to as route failure, and when it

happens some corrective actions must be introduced to obtain a new feasible solution.

Thus, for example, after a route failure the associated vehicle might be forced to return

to the depot in order to reload and resume the distribution at the last visited customer.

As discussed in Juan et al. (2011b), one possible methodology to deal with this

problem is to design reliable solutions, i.e., solutions with a low probability of suffering

route failures. This is basically attained by constructing routes in which the associated

expected demand will be somewhat lower than the vehicle capacity. Particularly, the

idea is to keep a certain amount of vehicle capacity surplus (safety stock) while

designing the routes, so that if final routes’ demands exceed their expected values up

22

to a certain limit, they can be satisfied without incurring in a route failure. Using safety

stocks not only contributes to reduce variable costs due to route failures but, related to

that, it also increases the reliability or robustness of the planned routes, i.e.: as safety

stock levels increase, the probability of suffering a route failure diminishes. Notice,

however, that employing safety stocks also increases fixed costs associated with

aprioristic routing design, since more vehicles and more routes are needed when larger

buffers are considered. Therefore, when minimizing the total expected cost a tradeoff

exists between its two components, fixed costs and expected variable costs. Thus, the

challenge relies on the selection of the appropriate buffer size.

Given a VRPSD instance, Juan et al. (2011b) consider different levels of this

buffer size and then solve the resulting scenarios. This is performed by employing

Monte Carlo simulation, which allows estimating the variable costs associated with

each candidate solution. Thus, among the multiple solutions generated for each

scenario, the ones with lowest total expected costs are stored as the best-found result

associated with the corresponding safety-stocks level. Once the execution of the

different scenarios ends, the corresponding solutions are compared to each other and

the one with the lowest total expected costs is selected as the best-found routing plan.

2.4 Chapter Conclusions

In this chapter we have described the MIRHA framework and the Simheuristics

methodology. We have analyzed some key aspects, benefits, and examples related to

the combination of randomization strategies with classical heuristics as a natural way to

develop probabilistic algorithms to solve combinatorial optimization problems. Both

uniform as well as non-symmetric randomization strategies have been reviewed. In

particular, we have discussed how the non-symmetric or biased approach constitutes

an efficient way to randomize the priority list of a constructive heuristic without losing

the logic behind it. Some examples of applications to several combinatorial optimization

problems have also been exposed, including: vehicle routing problems and flow-shop

problems. One of the main advantages of this type of probabilistic algorithms is their

relative simplicity, since they are based in well-known heuristics and they do not

incorporate many additional parameters. Moreover, these algorithms are flexible, quite

efficient, and can be implemented and parallelized in a natural way, which make them

an interesting alternative to more sophisticated metaheuristics in most practical

applications.

23

3 Capacitated Arc Routing Problem

The Capacitated Vehicle Routing Problem, or simply CVRP, is a well-known

combinatorial optimization problem in which a fleet of homogeneous vehicles, initially

located at a single depot with unlimited capacity, has to be routed so that all customers’

demands are served at a minimum cost and without violating the loading capacity of

each individual vehicle (Toth and Vigo, 2002). In the CVRP, it is assumed that the

road network is a complete graph containing nodes (vertices) representing the

customers and the depot. Also, it is assumed that the customers’ demands are located

at these nodes. Being a NP-hard problem studied for several decades already, the

CVRP is still attracting researchers’ attention due to its potential applications both to

real-life scenarios and to the development of new algorithms, optimization methods and

metaheuristics. A related but different problem is the so-called CARP, in which the

demands are located over the network edges or arcs (instead of at nodes), and in

which the completeness of the road network is no longer guaranteed, i.e. not all pair of

nodes are connected by an edge. The capacity restriction refers to the maximum load

that each vehicle can carry. Sometimes other constraints also apply, e.g., maximum

distance that can be covered by any single vehicle, the maximum time a vehicle can be

operating, etc.

 This chapter will introduce the first problem of study in this thesis, the CARP.

The CARP, due to its characteristics, is also suitable for modeling certain

Telecommunication problem, when compared to the CVRP. Having the demands

located in the arcs of the graph instead of the nodes, for instance, we can think on

them as telecommunications cables which should provide certain services to the users.

Usually telecommunications users do not have a demand located on a single point, but

a bandwidth required in the connection (arc) to the centralizer node.

Parts of this chapter have been taken from the co-autored

publications: Gonzalez-Martin et al. (2011) and Gonzalez-Martin et

al. (2012a).

24

3.1 Literature Review

Vehicle Routing Problems (VRPs) constitute a relevant topic for current researchers

and practitioners. In fact, according to Eksioglu et al. (2009), the number of related

articles published in refereed journals has experienced an exponential growth in the

last fifty years. However, although the existing literature on the CVRP field is quite

extensive and includes a wide range of efficient approaches, this is not the case with

the CARP. One of the basic references on the CARP is the book “Arc Routing: Theory,

Solutions and Applications” (Dror, 2000). This book, which contains twelve chapters

devoted to different CARP-related topics, describes theoretical aspects associated with

arc traversal, solution methodologies, and also a number of representative

applications.

3.1.1 Approaches for Solving the CARP

Since the CARP was first described in by Golden and Wong (1981), a wide range of

both exact and approximate methods have been suggested for solving it. For extensive

surveys on the arc routing field, including CARP and some of its variations, the reader

is referred to Assad and Golden (1995) or Wøhlk (2008). Among the exact

approaches, Branch and Bound and Cutting Plane are the most common methods

employed in the CARP literature. Branch-and-bound methods for the CARP were

proposed by Hirabayashi et al. (1992) and Kiuchi et al. (1995). In Cutting Plane, a

Linear Programming relaxation of the problem is solved. Belenguer and Benavent

(2003) presented a Cutting Plane algorithm for the CARP, which is partly based on

several classes of valid inequalities presented earlier by the same authors in

Belenguer and Benavent (1998). Using their algorithm, these authors are able to

reach the best existing lower bounds for all test instances, even improving the existing

lower bounds for several instances. Branch-and-Cut-and-Price based algorithms were

suggested by Letchford and Oukil (2009). However, algorithms that guarantee finding

the optimal solution can be used only for relative small and medium-small instances.

A different strategy for solving the CARP is based on transforming the problem

into a Capacitated Vehicle Routing Problem (CVRP), which is in turn solved by state-

of-the-art CVRP algorithms, as described in Eglese and Letchford (2000), Longo et

al. (2006), and Baldacci and Maniezzo (2006). Results reported in those works are

highly competitive compared to the previously existing ones. Likewise, methods

providing lower bounds for the CARP were put forward by Golden et al. (1983), Pearn

et al. (1987), Pearn (1988), Win (1988) or Amberg and Voß (2002).

Due to the complexity of the problem, several heuristics have been also

developed for the CARP. Among them it is possible to point out those of Golden et al.

25

(1983), Chapleau et al. (1984), Ulusoy (1985), or Pearn 1989 and 1991. Many other

heuristics are described by Assad and Golden (1985), Eiselt et al. (1995), and Wøhlk

(2005). It should be mentioned that most of these approaches are problem-specific

heuristics and their performance is generally 10 to 40 percent above the optimal

solution according to some studies (Wøhlk, 2008). More recently, different

metaheuristics have been proposed according. Among these, a considerable number

of Tabu Search (TS) algorithms have been designed to solve the CARP. One of the

first ones, called CARPET, was proposed by Hertz et al. (2000). In this work,

unfeasible solutions are allowed but are also penalized. CARPET is one of the most

efficient metaheuristics published so far for the CARP. Other TS-based approaches

were developed by Amberg et al. (2000) for the Multi Depot version of the CARP, and

by Greistorger (2003), who combined TS with Scatter Search to construct a Tabu

Scatter Search for the CARP. A deterministic TS algorithm has been suggested by

Brandâo and Eglese (2008). Their TS penalizes infeasible solutions in the objective

function and alternates between different neighborhood structures. A hybrid Genetic

Algorithm and a Memetic Algorithm were presented by Lacomme et al. (2001) and

Lacomme et al. (2004a), respectively. These algorithms are currently among the best

performing ones. Other approach methods for the CARP are related with Simulated

Annealing (SA) algorithms. For instance, Li (1992), in his Ph.D. thesis, applied this

technique and TS to a road gritting problem. Also, Eglese (1994) designed a SA

approach for a multi depot gritting problem with side constraints. Finally, Wøhlk (2005)

suggested a SA algorithm for the classical CARP, where the order of the edges on a

giant tour is changed during the algorithm, and at each step the optimal partitioning of

the tour is computed. Ant Colony Systems were proposed by Lacomme et al. (2004b)

and Doerner et al. (2003). In the former, the authors reported results competitive to the

best algorithms with respect to solution quality, but employing longer computation

times. In the latter, the authors reported limited success. A Guided Local Search

algorithm has been presented for the CARP by Beullens et al. (2003). In this work, the

distance of each arc is penalized according to some function, which is adjusted

throughout the algorithm. Computational experiments show that this approach is a

promising one. Additionally, it is worthy to mention the Variable Neighborhood Descent

algorithm proposed by Hertz and Mittazl (2001), since it also reports competitive

results.

26

3.1.2 Problem variations

There are multiple variations of the CARP existing in the literature, each of them

reflecting different real-life scenarios. Among the most popular variations, it is possible

to cite the following ones:

 The CARP defined on a directed graph or Directed Capacitated Arc Routing

Problem (Maniezzo and Roffilli, 2008).

 The CARP defined on mixed graphs or Mixed Capacitated Arc Routing Problem

(Belenguer et al. 2006).

 The CARP with objective functions other than one based on total traveling

costs, i.e., minimizing the total number of vehicles, minimizing the length of the

longest tour, etc. For instance, Ulusoy (1985) considers minimizing the

traveling costs plus some fixed costs associated with the use of different types

of vehicles.

 The CARP with multi-objective functions. For instance, Shang et al. (2014)

consider a multi objective CARP that can be viewed as a mix between the

CARP and the Min-Max K-Chinese Postman Problem. The Min-Max K-Chinese

Postman Problem (Frederickson, 1978) is a CARP-like problem where the

vehicle loading capacity is infinite.

 The CARP with Time Windows, considered by Reghioui et al. (2007) and by

Wøhlk (2007).

 The CARP with time-dependent service costs, as considered by Tagmouti et

al. (2011).

 The CARP with multiple depots, proposed by Cattrysse et al. (2002). There is

also a variant with mobile depots, proposed by Del Pia et al. (2006).

 The Periodic CARP, studied by Chu et al. (2003) and by Lacomme et al.

(2005).

 The CARP with profits, in which the objective is to maximize the profit collected

from a set of potential customers as described in Zachariadis and Kiranoudis

(2011).

 The CARP with Stochastic Demands (ARPSD), where the customer’s demands

are not known beforehand (Gonzalez-Martin et al., 2014b).

3.1.3 Applications

Routing problems have been extensively studied due to their wide number of real-life

applications, which usually involve very large costs associated with the delivery of

goods demanded by customers. The CARP is a delivery problem with several practical

applications. Some classical examples of arc routing problems where the service

27

activity requires finding minimum-cost routes in a transportation network can be found

in: refuse collection, snow removal, inspection of distributing systems, routing of street

sweepers, routing of electric meter readers, school bus routing, etc.

 For example, Beltrami and Bodin (1974) describe a computer system for

garbage collection planning that was applied in New York city; Eglese and Li (1992)

study the problem of spraying roads with salt to prevent ice in the Lancashire County

Council; Bodin and Kursh (1979) develop a computer assisted system for the routing

and scheduling of street sweepers; Stern and Dror (1979) describe an arc routing

problem associated with electric meter reading in the city of Beersheba (Israel). In most

applications, several vehicles are involved and there may be a number of restrictions

on capacity, travel distance, or travel times, among others.

 More recently, we can find applications of the CARP to the Telecommunications

field. One example, it is useful for the planning of the placement of optical cable

network. In this problem, the objective is to decide for which streets the cable should be

installed in order to provide access to all the customers which are distributed along the

streets (and thus we consider that demand is located in the arcs).

3.2 Problem Description

3.2.1 Basic description

The CARP is a combinatorial optimization problem that can be informally described as

follows (Golden and Wong (1981)): Let be an undirected graph,

where:

i. V is a set of nodes, including the one representing the depot or distribution

center

ii. E is a set of edges or arcs connecting some nodes in V.

iii. C is a costs matrix representing the positive costs of moving from on node to

another – these costs are usually based on distances or travel times between a

pair of nodes.

iv. Q is a demands vector representing the non-negative demands associated with

each arc.

Consider also a set of identical vehicles (homogeneous fleet), each of them with a

maximum loading capacity . Under these circumstances, the usual

goal is to find a set of vehicle routes that minimizes the total delivering costs while

satisfying the following constraints:

28

i. Every route starts and ends at the depot (roundtrips).

ii. All arcs demands are satisfied.

iii. Each arc with a positive demand is served by exactly one vehicle. Notice,

however, that an arc can be traversed more than once by the same or different

vehicles.

iv. The total demand to be served in any route does not exceed the vehicle loading

capacity W.

3.2.2 Mathematical model

Different mathematical formulations have been proposed for the CARP. The first ILP

formulation was the one proposed by Golden and Wong (1981), and it is based on

directed variables even though the formulated problem is undirected. A formulation

using undirected variables is presented by Belenguer and Benavent (1992). In his

Ph.D. dissertation, Letchford gives several ILP formulations of the CARP, and derives

additional valid inequalities and separation algorithms for the problem. Other

mathematical formulations are due to Welz (1994) and Eglese and Letchford (2000),

all of them for the undirected case. For describing the model, we use an integer

programming formulation adapted from Golden and Wong (1981) to formally

described the CARP. Although we are not explicitly using it in our solving approach

based on MIRHA, analyzing this model contributes to a better understanding of the

complexity, as well as some details of the problem.

 The CARP is defined over a non-complete graph. Let be an

undirected graph, where represents the set of n+1 nodes (node 0

being the depot), and where represents the set of m arcs

connecting some (not necessarily all) of the nodes. Associated with each edge

there is a symmetric cost , as well as a non-negative demand .

Edges with strictly positive demand, , are called required arcs as

they must be traversed at least once in order to be served. Notice also that non-

required arcs (those with zero demand) do not need to be traversed, although they may

be traversed one or more times.

 A fleet of K identical vehicles (or postmen in other contexts), each of them with

a limited capacity W, are available and based on the depot node. We assume that

 . Let N(i) denote the subset of nodes which are adjacent

(i.e. directly connected) to node i. Additionally, two set of variables are introduced:

i.
 is 1 if vehicle k traverses edge eij from node i to node j, and 0 otherwise.

29

ii.
 is 1 if vehicle k delivers edge eij while traversing it from node i to node j, and

0 otherwise.

The formulation is as follows:

 (1)

Subject to:

(2)

 (3)

 (4)

 (5)

 (6)

(7)

 (8)

 (9)

Constraint (2) ensures that, for each vehicle route k and node I, the vehicle route k

returns to the same node i. Constraint (3) states that every edge , the value of
 is

always greater or equal than
 , which ensures that every serviced edge is a traversed

edge, so it is not possible to serve an edge without traversing it. Constraint (4) forces

all required arcs to be serviced once and only once, as it ensures that the sum of the

servicing variable
 for all routes is always equal to one. The explicit vehicle capacity

constraint (5) applies to each vehicle route k, and states that the total demand served

by a vehicle servicing route k cannot surpass the vehicle capacity W. This constraint is

the one which makes the CARP a capacitated problem. Constraint (6) states that for

any route k and subset of nodes S, the sum of all edges connecting any pair of node in

S which are traversed by route k, minus the square of the total number of nodes

30

multiplied by
 is always less than the number of nodes in S. Constraint (7) forces

that, for any vehicle route k and any subset of nodes S, the sum of all edges

connecting a node in S and a node outside S which are traversed by a given route k,

plus
 is always greater or equal than 0. This means that there always is, at least, a

traversed arc to go outside S. The binary variables
 and

 are used here as

auxiliary variables (the reader is referred to Golden and Wong, 1981 for more details).

All in all, the group of constraints (6)-(8) removes the possibility of disconnected sub-

tours but allows tours that include two or more closed cycles. It must be noted that with

this group of constraints the number of restrictions to consider grows exponentially as

they are considering any subset of nodes S.

3.3 Classical heuristics for the CARP

As described in Chapter 2, the MIRHA framework requires a problem specific with the

characteristic of being simple and fast to execute in order to be able to define

randomized algorithms. Among all the classical heuristics existing in the literature, we

have selected two of them: the Path Scanning Heuristic (PSH) for the CARP and the

Clarke and Wright Savings (CWS) heuristic for the CVRP. It is worth to mention that

the second one is an heuristic for the CVRP problem. So we will define an adaption of

the heuristic for the ARC routing problem, the Savings Heuristic for the Arc Routing

Problem (SHARP), which is also one of the original contributions of this thesis.

3.3.1 The Path Scanning heuristic for the CARP

The PSH is a classical heuristic proposed by Golden et al. (1983) for solving the

CARP. As a constructive heuristic, it can be used as a base heuristic for defining a

MIRHA based algorithm. The PSH is a simple and fast method for solving the CARP by

building one route at a time. Its main idea is to construct five complete solutions, every

one of them following a different optimization criterion. The final solution of the

algorithm is the best – in terms of total costs – of the five solutions obtained.

 The way every route is constructed is not clearly defined in the original paper,

so it allows different interpretations when trying to implement it. Following Belenguer

et al. (2006) the approach we use in this chapter is to extend the current route by

selecting only adjacent arcs with not served demand, choosing only the arc which best

accomplishes the given criteria. Assuming that the vehicle is currently located at node

I, then an adjacent arc eij connecting nodes i and j must be selected such that eij meets

one of the following criteria:

1. Minimizes the cost per unit demand, i.e. .

31

2. Maximizes the cost per unit demand, i.e. .

3. Minimizes the distance from node j back to the depot.

4. Maximizes the distance from node j back to the depot.

5. If the vehicle is less than half-full, it minimizes the distance from node j back to

the depot, otherwise it maximizes the distance.

In case all adjacent arcs have been already served, then the closest not served arc – in

terms of the shortest path distance – is selected. If there is more than one arc at the

same minimum distance, then the best arc accomplishing the current optimization

criteria is selected. Finally, once the vehicle capacity is exhausted, the current route is

closed by returning the vehicle to the depot through the shortest path. The original

algorithm does not state how the shortest path is computed. In our approach an

implementation of the Dijkstra’s algorithm (Cormen et al., 2009) is used.

 Several modifications of the heuristic can be found on the literature. Santos et

al. (2009) propose a new heuristic which is similar to the one by Belenguer et al.

(2006). The latter one randomly selects tied edges and solves each problem k times.

Pearn et al. (1989) basically uses the same algorithm as the original PSH, but instead

of applying each of the five next-step criterion in a separate way, a time-based loop is

run. In every loop iteration, all five criteria are randomly combined together, i.e.: at each

step during the constructive phase, a criterion is randomly selected following either a

uniform or a weighted distribution.

3.3.2 The SHARP heuristic for the CARP

The CWS heuristic is probably the most cited heuristic in the CVRP arena. The CWS is

an iterative method that starts out by considering an initial dummy solution in which

each non-depot node (customer) is served by a dedicated vehicle. Next, the method

initiates an iterative process for merging some of the routes in the initial solution.

Merging routes can improve the expensive initial solution so that a unique vehicle

serves the nodes of the merged route. The merging criterion is based upon the concept

of savings. Roughly speaking, given a pair of nodes to be served, a savings value can

be assigned to the edge connecting these two nodes. This savings value is given by

the reduction in the total cost function due to serving both nodes with the same vehicle

instead of using a dedicated vehicle to serve each node as proposed in the initial

dummy solution. This way, the algorithm constructs a list of savings, one for each

possible edge connecting to demanding nodes. At each iteration of the merging

process, the edge with the largest possible savings is selected from the list as far as

the following conditions are satisfied: (a) the nodes defining the edge are adjacent

32

to the depot; and (b) the two corresponding routes can be feasibly merged, that is, the

vehicle capacity is not exceeded after the merging.

 Since the CWS is considered by many authors as the best single heuristic for

solving the CVRP, we decided to develop a new constructive heuristic for the CARP,

based on the savings concept of the CWS. The savings-based approach, while

extensively used in the CVRP, has received little attention in the CARP. Only recently,

an adaptation version of the CWS has been used by Tagmouti et al. (2007). However,

these savings-based versions are only used to provide an initial starting point of a

complex metaheuristic, and no details are given on how the CWS has been adapted to

be used in the CARP. Since this adaptation process is not trivial and can be done in

very different ways, this is a clear gap in the current ARP literature.

procedure SHARP(nodes, edges, vCap)

01 for {each pair of nodes iN,jN in nodes} do

02 sp  calcShortestPath(iN,jN,edges)

03 dist  calcDistance(iN,jN,sp)

04 spMatrix  addPath(iN,jN,sp)

05 dMatrix  addDistance(iN,jN,dist)

06 end for

07 rE  selectRequiredEdges(edges)

08 rN  selectRequiredNodes(rE)

09 currentSol  buildDummySol(rE)

10 savings  calcSavings(rN,dMatrix)

11 savings  sortList(savings)

12 while {savings is not empty} do

13 edge  selectEdgeAtTop(savings)

14 iN  selectInitialNode(edge)

15 jN  selectEndNode(edge)

16 for {each route iR crossing iN} do

16 for {each route jR crossing jN} do

17 if {isMegePossible(iR,jR,vCap)} then

18 newRoute  mergeRoutes(iR,jR)

19 currentSol  deleteRoutes(iR,jR)

20 currentSol  addRoute(newRoute)

21 exit the for loops

22 end if

23 end for

24 end for

25 end while

26 for {each route iR in currentSol} do

27 iR  completeRoute(iR,spMatrix)

28 end for

29 return avgVarCosts and solReliability

end procedure

Figure 7. Pseudo-code of the SHARP heuristic

The pseudo-code of SHARP (see Figure 7) describes how we developed a new

heuristic for the CARP. First, we use the Floyd–Warshall algorithm (Cormen et al.,

33

2009) to compute the shortest paths δ(i, j) for all pairs of nodes (i, j) in the graph or

road network (lines 1–6). This allows us to treat the graph as if it was a complete one.

Having a virtually complete graph, we can now calculate the savings associated to

each arc (line 10) – either if it is real or virtual – in a similar way as savings are

computed in the CWS heuristic for the CVRP, i.e. s(i, j) = δ(depot, i)+δ(j, depot)−δ(i, j),

for each pair of nodes (i, j) and the depot node. However, in the CARP case, we will

only calculate savings between nodes that lie on required arcs (line 8), i.e. on edges

with demand greater than zero. The edges are then sorted in a list according to their

associated savings value (line 8). We now create a dummy solution by assigning a

vehicle (route) to serve each required arc (line 9). At this stage, we keep track only of

the required edges (and their orientation) in our routes, as the complete final route is

reconstructed at the end. Additionally, at each node we keep track of routes for which

that particular node is at the very start/end of the route (i.e., is an exterior node). We

then iterate over the list of savings and look at each node in the selected arc to see

which routes (if any) have that node as an exterior node, attempting to merge these

routes if possible, i.e. as far as the capacity constraint is not violated (lines 12–26). This

is done by iterating first over every route in node i, then over every route in node j, and

finally checking if both routes can be merged (lines 16–18). If they can be merged, they

are merged and removed from i’s and j’s routes lists (lines 19–22), and we proceed

attempting other routes pairs until no more merges can be made. Finally, once we have

run out of edges in the savings list, we will have a set of routes composed only of a set

of sorted and oriented edges with demand greater than zero. We now reconstruct the

final solution by computing the shortest path between the edges in the route using the

all-pairs shortest path matrix we generated at the beginning of the procedure (lines 27–

29).

3.4 Randomized algorithms for the CARP

3.4.1 The RandPSH algorithm

Reghioui et al. (2007) proposed a randomization of the PSH. Their randomization

process is quite similar to the one we propose in this chapter. They designed a GRASP

approach based on the PSH. Thus, their algorithm includes two levels of biased

randomization: the first random process is associated with choosing the criterion

among the five Path Scanning criteria described before; the second random process

relates to choosing the next edge to be used. Moreover, they also consider twelve

additional criteria, which make the resulting algorithm more efficient.

34

Our RandPSH algorithm also introduces two different randomization processes

into the original heuristic:

1. When constructing a new solution, the optimization criterion used to select the

next edge is not deterministic but probabilistic: a criterion is randomly selected,

using a uniform probability distribution in a similar way as proposed in Pearn et

al. (1989).

2. When selecting the next edge during the solution construction process, a

geometric distribution is used to randomly select the edge from the sorted

edges list.

3.4.2 The RandSHARP algorithm

Our savings-based heuristic for the CARP, the SHARP, has been integrated into a

schema based on the MIRHA framework for defining a randomized algorithm, the

RandSHARP. This randomized algorithm will use the solution produced by the savings-

based heuristic as an initial solution. Then, it will iteratively generate new randomized

solutions by introducing a probabilistic criterion when selecting edges from the savings

list. In this case, we have selected the geometric distribution to implement this

probabilistic criterion. Work done by Juan et al. (2010) suggests that a geometric

distribution with any parameter randomly selected between 0.10 and 0.25 provides

acceptable results for the CVRP – notice that no time-costly fine-tuning process is

needed here. Therefore, we have used these values as a reference while solving the

CARP.

3.5 Results

To evaluate the performance of the proposed heuristics and randomized algorithms,

they have all been implemented as computer program. Java SE6 was used here

instead of C or C++ for several reasons:

i. Being an object-oriented programming language with advanced memory

management features (such as the garbage collector) and with readily-available

data structures, it allows a somewhat faster development of algorithmic

software.

ii. It offers immediate portability to different platforms, i.e., the same Java

application can be run over most operating systems.

iii. It offers better replicability and duplicability than other languages.

However, the downside of using Java instead of C or C++ is probably a reduction on

code execution performance, mainly due to the fact that Java is not a compiled

35

language and to the lack of pointer-based optimization. To perform the tests, a

standard personal computer was used with a an Intel® Core2® Quad CPU Q9300

@2.50GHz and 8 GB RAM running the Windows® 7 Pro operating system. The

experiments were run with four different benchmarks obtained from Belenguer (2014)

(see Table 2):

 The egl dataset (Eglese and Li, 1992) consisting of 24 instances which are

derived from real world data. This data refers to winter gritting in the county of

Lancashire, United Kingdom. These instances contain both required and not

required arcs, so there are also arcs without associated demand. The instances

are grouped in two different network configurations with very low arc density.

The density of arcs is computed as the percentage of arcs of the complete

graph which conform the network of the given instance.

 The gdb dataset (Golden et al., 1983) consisting of 23 instances of small and

medium-size – between 10 and 50 arcs – with a mixture of dense and sparse

graph networks. The instances are characterized by their number of nodes,

number of arcs, number of required arcs, and the density of arcs on the

network. These instances are artificially generated and contain only arcs with

associated demand.

 The kshs dataset (Kiuchi et al., 1995) consisting of 6 instances of small size

and a medium- to high-density of arcs. They are artificially generated and all the

instances have the same number of arcs. All of the arcs contained on them are

required as they have an associated demand.

 The val dataset (Belenguer and Benavent, 2003) consisting of 34 instances,

modelled on 10 sparse graph networks, with varying vehicle capacities for each

network. Thus, the same instance valX is to be solved with different capacity

constraints, obtaining the variants valXY which conform the final instance.

These instances include only required arcs and are networks with low arc

density (around 10%).

Set Instances Nodes Arcs Density

egl 24 109 144 2.65%

gdb 23 12 29 53.77%

kshs 6 8 15 55.95%

val 34 36 63 10.59%

Table 2. Average characteristics of problem datasets

36

3.5.1 Comparison using the BEST10 and AVG10 metrics

For each one of the aforementioned set of instances, and for each approach – either

heuristic or randomized algorithm – we designed and performed extensive tests using

the same machine, same language program, same execution time, and same

programmer. In particular, for each of the randomized algorithms and for each tested

instance, 10 independent iterations (replicas) were run. Each replica was run for a

maximum time of 180 s. Then, for each set of replicas, the best experimental solution

found (BEST10) as well as the average value of the different replicas (AVG10) were

registered. Also, the best-known solution (BKS) associated with each instance was

obtained from Santos et al., 2009. Table 3 to Table 6 show detailed results for each

instance (87 instances in total), including the gap of each approach with respect to the

BKS.

 Average gap w.r.t. BKS Average gap w.r.t. BKS in MaxTime = 180s

 Heuristic BEST10 AVG10

 PSH SHARP RandPSH RandSHARP RandPSH RandSHARP
Set BKS Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap

gdb1 316 316 0.00% 323 2.22% 316 0.00% 316 0.00% 316 0.00% 316 0.00%

gdb2 339 367 8.26% 360 6.19% 339 0.00% 339 0.00% 339 0.00% 339 0.00%

gdb3 275 289 5.09% 296 7.64% 275 0.00% 275 0.00% 275 0.00% 275 0.00%

gdb4 287 320 11.50% 320 11.50% 287 0.00% 287 0.00% 287 0.00% 287 0.00%

gdb5 377 439 16.45% 409 8.49% 383 1.59% 377 0.00% 383 1.59% 377 0.00%

gdb6 298 330 10.74% 338 13.42% 298 0.00% 298 0.00% 298 0.00% 298 0.00%

gdb7 325 330 1.54% 359 10.46% 325 0.00% 325 0.00% 325 0.00% 325 0.00%

gdb8 348 408 17.24% 392 12.64% 350 0.57% 350 0.57% 354 1.84% 354 1.58%

gdb9 303 364 20.13% 333 9.90% 313 3.30% 313 3.30% 317 4.62% 315 3.96%

gdb10 275 284 3.27% 303 10.18% 275 0.00% 275 0.00% 275 0.00% 275 0.00%

gdb11 395 424 7.34% 435 10.13% 395 0.00% 395 0.00% 395 0.00% 396 0.30%

gdb12 458 560 22.27% 539 17.69% 490 6.99% 468 2.18% 490 6.99% 470 2.58%

gdb13 536 548 2.24% 556 3.73% 536 0.00% 536 0.00% 536 0.00% 537 0.15%

gdb14 100 104 4.00% 104 4.00% 100 0.00% 100 0.00% 100 0.00% 101 0.81%

gdb15 58 60 3.45% 58 0.00% 58 0.00% 58 0.00% 58 0.00% 58 0.00%

gdb16 127 131 3.15% 133 4.72% 127 0.00% 127 0.00% 127 0.00% 127 0.00%

gdb17 91 91 0.00% 93 2.20% 91 0.00% 91 0.00% 91 0.00% 91 0.00%

gdb18 164 168 2.44% 185 12.80% 164 0.00% 164 0.00% 164 0.00% 166 1.11%

gdb19 55 57 3.64% 63 14.55% 55 0.00% 55 0.00% 55 0.00% 55 0.00%

gdb20 121 127 4.96% 125 3.31% 121 0.00% 121 0.00% 121 0.00% 121 0.00%

gdb21 156 168 7.69% 162 3.85% 156 0.00% 156 0.00% 156 0.00% 157 0.77%

gdb22 200 204 2.00% 205 2.50% 200 0.00% 200 0.00% 200 0.00% 200 0.00%

gdb23 233 246 5.58% 237 1.72% 233 0.00% 233 0.00% 234 0.30% 235 0.60%

Avg. 7.09% 7.56% 0.54% 0.26% 0.67% 0.53%

Table 3. Experimental results for gdb instances.

 Average gap w.r.t. BKS Average gap w.r.t. BKS in MaxTime = 180s

 Heuristic BEST10 AVG10

 PSH SHARP RandPSH RandSHARP RandPSH RandSHARP
Set BKS Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap

kshs1 14661 15164 3.43% 16825 14.76% 14661 0.00% 14661 0.00% 14661 0.00% 14661 0.00%

kshs2 9863 9953 0.91% 9953 0.91% 9863 0.00% 9863 0.00% 9863 0.00% 9863 0.00%

kshs3 9320 9757 4.69% 9784 4.98% 9320 0.00% 9666 3.71% 9320 0.00% 9666 3.71%

kshs4 11498 14408 25.31% 13636 18.59% 12076 5.03% 11498 0.00% 12076 5.03% 11498 0.00%

kshs5 10957 12721 16.10% 12095 10.39% 10957 0.00% 10957 0.00% 10957 0.00% 10957 0.00%

kshs6 10197 11091 8.77% 11177 9.61% 10197 0.00% 10197 0.00% 10197 0.00% 10197 0.00%

Avg. 9.87% 9.87% 0.84% 0.62% 0.84% 0.62%

Table 4. Experimental results for kshs instances.

37

 Average gap w.r.t. BKS Average gap w.r.t. BKS in MaxTime = 180s

 Heuristic BEST10 AVG10

 PSH SHARP RandPSH RandSHARP RandPSH RandSHARP
Set BKS Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap

e1-A 3548 4263 20.15% 3826 7.84% 3921 10.51% 3548 0.00% 3923 10.56% 3548 0.00%

e1-B 4498 5499 22.25% 4769 6.02% 4956 10.18% 4498 0.00% 4956 10.18% 4512 0.32%

e1-C 5595 7044 25.90% 5939 6.15% 6596 17.89% 5632 0.66% 6596 17.89% 5632 0.67%

e2-A 5018 6513 29.79% 5288 5.38% 5507 9.74% 5022 0.08% 5546 10.51% 5043 0.50%

e2-B 6317 7541 19.38% 6710 6.22% 7146 13.12% 6344 0.43% 7160 13.34% 6366 0.78%

e2-C 8335 10537 26.42% 8945 7.32% 9267 11.18% 8477 1.70% 9346 12.13% 8518 2.20%

e3-A 5898 7214 22.31% 6291 6.66% 6401 8.53% 5924 0.44% 6437 9.13% 5941 0.73%

e3-B 7775 9526 22.52% 8228 5.83% 8554 10.02% 7847 0.93% 8606 10.65% 7868 1.20%

e3-C 10292 13178 28.04% 11026 7.13% 11408 10.84% 10386 0.91% 11508 11.81% 10494 1.96%

e4-A 6444 7979 23.82% 6835 6.07% 6913 7.28% 6504 0.93% 7027 9.04% 6530 1.33%

e4-B 8983 10650 18.56% 9825 9.37% 9743 8.46% 9120 1.53% 9841 9.55% 9185 2.25%

e4-C 11596 14157 22.09% 12810 10.47% 12824 10.59% 11886 2.50% 13073 12.73% 11907 2.68%

s1-A 5018 6382 27.18% 5255 4.72% 5912 17.82% 5018 0.00% 5912 17.82% 5025 0.14%

s1-B 6388 8372 31.06% 6666 4.35% 8110 26.96% 6435 0.74% 8110 26.96% 6450 0.97%

s1-C 8518 10259 20.44% 8626 1.27% 9442 10.85% 8518 0.00% 9468 11.16% 8529 0.13%

s2-A 9844 12344 25.40% 10322 4.86% 11115 12.91% 10076 2.36% 11319 14.98% 10140 3.01%

s2-B 13100 16653 27.12% 13880 5.95% 14550 11.07% 13356 1.95% 14697 12.19% 13457 2.72%

s2-C 16425 20665 25.81% 17399 5.93% 18707 13.89% 16752 1.99% 19007 15.72% 16803 2.30%

s3-A 10220 13252 29.67% 10773 5.41% 11934 16.77% 10478 2.52% 12061 18.01% 10519 2.93%

s3-B 13682 17365 26.92% 14511 6.06% 15743 15.06% 13986 2.22% 15897 16.19% 14081 2.92%

s3-C 17230 21055 22.20% 18411 6.85% 19842 15.16% 17538 1.79% 20046 16.35% 17653 2.46%

s4-A 12268 15817 28.93% 13076 6.59% 14350 16.97% 12647 3.09% 14497 18.17% 12737 3.82%

s4-B 16321 19882 21.82% 17553 7.55% 18577 13.82% 16693 2.28% 18854 15.52% 16776 2.79%

s4-C 20517 25214 22.89% 21513 4.85% 23645 15.25% 21071 2.70% 24031 17.13% 21149 3.08%

Avg. 4.61% 6.20% 13.12% 1.32% 14.07% 1.75%

Table 5. Experimental results for egl instances.

Table 7 summarizes the aforementioned results in a single table. From the averages in

the last row of the table, it can be deduced that the performance of the RandSHARP

algorithm is far superior to the performance of the RandPSH algorithm in both

considered metrics. In fact, the 87 instance average gap associated with the

RandSHARP algorithm for the BEST10 metric is just of 1.10%, which taking into

consideration the limited computation time employed (180 s per instance in a standard

PC) is a quite competitive result. This is specially the case if we remember that the

current version of the algorithm does not employ any local search process, and that it

only uses a single parameter – the one associated with the biased random distribution

employed. Notice also that, as expected, the performance of both randomized

algorithms – which results improve with more computing time – is much better than the

performance of the deterministic heuristics. Finally, notice that the performance of our

SHARP heuristic is quite superior to that of the classical Path Scanning heuristic.

Figure 8 shows a multiple box plot which allows a visual comparison of the

algorithms’ performance for the BEST10 metric. A very similar visualization is obtained

when considering the AVG10 metric instead –for that reason we did not consider

necessary to include the corresponding multiple box plot. The multiple box plot

reinforces the idea that results from the RandSHARP algorithm are far superior to

38

results obtained with the RandPSH and, of course, to those generated by any heuristic.

It also shows that the heuristic introduced in this chapter is far superior to the classical

Path Scanning heuristic – this is true both for the BEST10 and AVG10 metrics. As a

conclusion, the SHARP heuristic constitutes a remarkable candidate to generate the

initial solution in most metaheuristic approaches for the CARP.

 Average gap w.r.t. BKS Average gap w.r.t. BKS in MaxTime = 180s

 Heuristic BEST10 AVG10

 PSH SHARP RandPSH RandSHARP RandPSH RandSHARP
Set BKS Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap

val1A 173 188 8.67% 187 8.09% 173 0.00% 173 0.00% 173 0.00% 173 0.00%

val1B 173 188 8.67% 198 14.45% 173 0.00% 175 1.16% 173 0.00% 181 4.62%

val1C 245 287 17.14% 266 8.57% 255 4.08% 247 0.82% 257 4.85% 248 1.27%

val2A 227 269 18.50% 249 9.69% 227 0.00% 229 0.88% 227 0.00% 232 2.33%

val2B 259 284 9.65% 303 16.99% 261 0.77% 260 0.39% 261 0.77% 260 0.42%

val2C 457 550 20.35% 490 7.22% 483 5.69% 462 1.09% 483 5.69% 462 1.09%

val3A 81 86 6.17% 89 9.88% 81 0.00% 81 0.00% 81 0.00% 81 0.37%

val3B 87 98 12.64% 99 13.79% 87 0.00% 87 0.00% 87 0.13% 88 1.15%

val3C 138 157 13.77% 158 14.49% 141 2.17% 139 0.72% 141 2.17% 139 0.72%

val4A 400 472 18.00% 446 11.50% 400 0.00% 404 1.00% 403 0.75% 407 1.68%

val4B 412 508 23.30% 453 9.95% 419 1.70% 424 2.91% 426 3.32% 428 3.81%

val4C 428 539 25.93% 484 13.08% 448 4.67% 438 2.34% 454 5.97% 451 5.42%

val4D 530 710 33.96% 588 10.94% 557 5.09% 543 2.45% 568 7.09% 548 3.45%

val5A 423 487 15.13% 579 36.88% 423 0.00% 427 0.95% 425 0.42% 436 3.10%

val5B 446 496 11.21% 509 14.13% 449 0.67% 450 0.90% 450 0.95% 460 3.21%

val5C 474 524 10.55% 551 16.24% 481 1.48% 485 2.32% 484 2.09% 492 3.71%

val5D 575 707 22.96% 638 10.96% 608 5.74% 594 3.30% 617 7.30% 609 5.83%

val6A 223 258 15.70% 235 5.38% 223 0.00% 225 0.90% 223 0.00% 228 2.33%

val6B 233 258 10.73% 251 7.73% 233 0.00% 233 0.00% 233 0.00% 234 0.52%

val6C 317 386 21.77% 355 11.99% 328 3.47% 321 1.26% 332 4.63% 324 2.33%

val7A 279 303 8.60% 305 9.32% 279 0.00% 279 0.00% 279 0.00% 280 0.39%

val7B 283 320 13.07% 301 6.36% 283 0.00% 286 1.06% 283 0.00% 288 1.66%

val7C 334 390 16.77% 367 9.88% 343 2.69% 342 2.40% 347 3.79% 345 3.23%

val8A 386 434 12.44% 458 18.65% 386 0.00% 391 1.30% 387 0.26% 394 2.07%

val8B 395 450 13.92% 469 18.73% 396 0.25% 406 2.78% 403 2.05% 414 4.78%

val8C 521 617 18.43% 613 17.66% 554 6.33% 541 3.84% 558 7.17% 553 6.18%

val9A 323 375 16.10% 336 4.02% 324 0.31% 326 0.93% 326 0.89% 329 1.70%

val9B 326 359 10.12% 359 10.12% 332 1.84% 333 2.15% 335 2.76% 338 3.56%

val9C 332 371 11.75% 364 9.64% 339 2.11% 341 2.71% 346 4.25% 346 4.22%

val9D 389 474 21.85% 440 13.11% 416 6.94% 402 3.34% 425 9.28% 411 5.63%

val10A 428 451 5.37% 460 7.48% 431 0.70% 435 1.64% 436 1.92% 437 2.10%

val10B 436 473 8.49% 472 8.26% 445 2.06% 447 2.52% 450 3.11% 450 3.17%

val10C 446 484 8.52% 484 8.52% 463 3.81% 459 2.91% 467 4.81% 466 4.39%

val10D 525 625 19.05% 587 11.81% 563 7.24% 543 3.43% 568 8.25% 559 6.55%

Avg. 14.98% 11.93% 2.05% 1.60% 2.78% 2.85%

Table 6. Experimental results for val instances.

Average gap w.r.t. BKS Average gap w.r.t. BKS in MaxTime = 180s

Heuristic BEST10 AVG10

Set PSH SHARP RandPSH RandSHARP RandPSH RandSHARP

egl 24.61% 6.20% 13.12% 1.32% 14.07% 1.75%

gdb 7.09% 7.56% 0.54% 0.26% 0.67% 0.53%

kshs 9.87% 9.87% 0.84% 0.62% 0.84% 0.62%

val 14.98% 11.93% 2.05% 1.60% 2.78% 2.85%

Avg. 15.20% 9.05% 4.62% 1.10% 5.20% 1.78%

Table 7. Summary of experimental results by dataset.

39

Additionally, two ANOVA tests for comparing the performance of each approach using

the BEST10 and AVG10 metrics were also performed. Figure 9 shows the ANOVA

table corresponding to the AVG10 metric (a similar output is obtained for the ANOVA

associated with the BEST10 metric). The corresponding p-value is 0.000, and thus it is

possible to conclude that not all the approaches have the same performance level, i.e.

some algorithms perform significantly better than others. Since the individual 95%

confidence intervals are clearly disjoint, it seems reasonable to conclude that, in fact,

algorithms’ average performances are significantly different. A Fisher’s test for

differences contributed to confirm this point.

Figure 8. Visual comparison of the different approaches.

3.5.2 A comparison using time-evolution of the gap

In order to discuss the effect of computing time on each approach, several instances

have been randomly selected and then solved using each of the approaches

considered in this chapter and also different maximum computing times (up to 300 s).

Needless to say that both heuristics are very fast, providing immediate feedback – i.e.,

a solution in about one second or even less – for most ‘small’ and ‘medium’ instances.

Despite their speed, these heuristics are basically deterministic approaches which

generate solutions with a noticeable gap with respect to the BKS. On the contrary, the

40

randomized algorithms are stochastic procedures which are able to improve their

respective solutions with more computing time or more computing resources (e.g.,

using parallelization techniques).

Figure 10 shows the time-evolution of the gaps associated with each approach

for the instance egl-e2-A (77 nodes). Notice that the classical Path Scanning heuristic

offers a gap close to 30%, which in general terms can be considered as an enormous

gap. This gap can be reduced with time using the RandPSH. In fact, the RandPSH

quickly diminishes the gap down to a 10% or so. For this instance, our SHARP

heuristic is much more efficient, providing an instantaneous gap close to 5%.

Moreover, the RandSHARP algorithm is able to reduce that gap down to almost 0% in

just a few seconds. Similarly, Figure 11 shows the time-evolution of the gaps

associated with each approach for the instance gdb8 (27 nodes). Again, both heuristics

seem to provide far-from-optimal solutions which can be quickly improved by using the

randomized algorithms. In particular, our RandSHARP method is able to diminish the

gap down to 1% in just a few seconds of computation.

Figure 9. ANOVA for comparing performances.

41

Figure 10. GAP time-evolution for the egl-e2-A instance.

Figure 11. GAP time-evolution for the gdb8 instance.

42

3.6 Chapter Conclusions

In this chapter we have introduced a first application of the MIRHA framework to the

CARP. The CARP is a problem suitable for modeling certain Telecommunication

optimization problem. This increases the possible applications of the MIRHA framework

which originally was only applied to Transportation & Logistics problems. A new

heuristic and two randomized algorithms for solving the CARP have been proposed

and evaluated. The SHARP heuristic is based on the savings concept extensively used

in the Vehicle Routing Problem arena, and it shows to be highly efficient when

compared with the classical Path Scanning heuristic. The randomized algorithms are

based on a multi-start biased randomization of a classical heuristic. Thus, the first

randomized algorithm, RandSHARP, introduces a biased randomization process into

the SHARP heuristic, while the second one randomizes the PSH. As far as we know, it

is the first time that a savings based heuristic for solving the CARP is presented in

detail. The empirical tests show that employing biased randomization is an efficient

way of quickly improving classical heuristics without introducing complexity to them. As

a matter of fact, a notable characteristic of our approach is that it only uses one single

parameter and, therefore, no complex fine-tuning processes are required. Moreover,

the results show that the multi-start biased randomization of the SHARP heuristic is

able to provide competitive results in a reasonable computing time period, improving by

far other approaches in the literature. Also we can remark that the proposed heuristic

SHARP, is better suited for the MIRHA framework than the classical PSH, as results

demonstrate.

43

4 Arc Routing Problem with Stochastic

Demands

Telecommunication optimization problems in real-life scenarios usually have a

component which is not deterministic. For instance, the real demand required by the

users usually is not a deterministic value that can be anticipated, but has a random

component which makes it somehow uncertain. Another example is the background

noise which interfere the communication channel, especially for wireless

communications. In those cases, a deterministic model is not suitable to properly

evaluate the real scenario. However, even though the values cannot be known

beforehand, one can infer some probabilistic distribution based on real data from the

past which could model the expected value for the random variable.

The Arc Routing Problem with Stochastic Demands (ARPSD) is a variant of the

deterministic CARP which generalizes it by considering customers’ demands as

random variables instead of as deterministic values. In fact, we assume that the

random demand associated with each customer can be modeled by a probability

distribution, and that its actual value is not determined until the vehicle reaches the

customer’s arc. Notice that this random behavior of the customers’ demands can lead

to infeasibility of the planned routing solutions whenever the actual demand in a route

exceeds the capacity of the assigned vehicle. This situation generates a “route failure”

and requires from corrective actions to guarantee that all customers’ demands will be

satisfied. Of course, corrective actions might increase the total cost of the implemented

solution, so they must be taken into account during the routes-design stage.

Considering stochastic demands instead of deterministic ones is a more

realistic but also difficult scenario. Unfortunately, most of the existing literature focuses

on the deterministic case. Therefore, the main goal of our approach is to contribute to

fill the lack of methods for solving the stochastic case by proposing a Simheuristic

algorithm that combines Monte Carlo Simulation (MCS) with a metaheuristic that was

Parts of this chapter have been taken from the co-autored

publications: Gonzalez-Martin et al. (2012b) and Gonzalez-Martin

et al. (2014b).

44

originally designed for solving the deterministic CARP. As it will be discussed later, this

algorithm deals with the stochastic variant of the problem in a natural and efficient way.

Our work is based on the use of a safety stock during the route-design stage. This

capacity surplus can be used during the delivery stage to handle unexpected demands.

With that, our methodology is able to cover route failures, thus limiting the impact of

corrective actions over the total delivery costs. A reliability index is also defined to

evaluate the robustness of each solution with respect to possible route failures caused

by random demands. This reliability index can be helpful for decision makers when

choosing among several distribution plans with similar expected total costs.

4.1 Literature Review

The research body concerning the stochastic version of the CARP is quite limited yet,

especially when compared with its deterministic counterpart. As far as we know, the

ARPSD was first considered by Fleury et al. (2002) and further extended by the same

authors in Fleury et al. (2005). In these works, the ARPSD was not approached

directly. Instead, the scope was to evaluate the robustness of the solutions obtained for

the classical CARP if the demands were stochastic instead of deterministic. In

particular, the latter work contains an application to the CARP of the Hybrid Genetic

Heuristic proposed by Lacomme et al.(2001). Different solutions were obtained by

varying the vehicle capacity in each run of the heuristic. The solutions obtained were

then evaluated by means of simulation studies. Although this approach resembles

somewhat to the one we are proposing, there are relevant differences among them,

e.g.: our proposal uses a different metaheuristic framework, and it employs MCS to

estimate the total expected costs –including routing plus corrective actions- as well as

reliability indexes of each solution.

 The ARPSD with Normally distributed demands was first approached by Fleury

et al. (2004). The authors propose a Memetic Algorithm, which is an extension of the

algorithm suggested by Lacomme et al. (2004a). For each edge, the Normal

distribution describing the demand was truncated to avoid negative values or demands

exceeding the vehicle capacity. The problem was further restricted, since a route was

only allowed to fail once. An exact method for the ARPSD was proposed by

Christiansen et al. (2009). It is motivated on a previous work for solving the VRPSD

presented by the same authors in Christiansen and Lysgaard (2007). In particular,

they formulated the ARPSD as a Set Partitioning Problem and developed a Branch-

and-Price algorithm in which the pricing incorporates demands with stochastic nature.

Laporte et al. (2010) have developed a local search approach for the stochastic

45

version of the undirected CARP in the context of garbage collection. In this chapter, a

first-stage solution is constructed by means of an Adaptive Large Neighborhood

Search Heuristic (ALNS) that takes the expected cost of recourse into account. Closed

form expressions were derived for the expected cost of recourse by extending the

concept of route failure commonly used in stochastic node-routing problems. Their

computational results show that ALNS solutions were better than those obtained by

first optimally solving a deterministic CARP and then computing the expected cost of

recourse by using random variables for the demands.

Finally, other works related to the ARPSD that are worth to mention are found in

Chen et al. (2009) and Ismail and Ramli (2011). In the former, an arc-routing problem

motivated by a real world application in small-package delivery was addressed. In this

problem, the uncertainty is considered and incorporated to a proposed model called

Probabilistic Arc Routing Problem (PARP). The PARP solution procedure incorporates

the probabilities into an adapted local search that was primarily designed for the

Probabilistic Traveling Salesman Problem by Bertsimas and Howell (1993). Similarly,

Ismail and Ramli (2011) considered a rich CARP based on waste collection

operations. They studied how rain drops affect the weight of the collected waste.

These authors also developed a constructive heuristic called Nearest Procedure Based

on Highest Demand/Cost.

4.2 Our Approach

Our proposed methodology is based on two main facts: (a) the ARPSD can be seen as

a generalization of the CARP, i.e. the CARP can be considered a special case of the

ARPSD where the random demands have zero variance; and (b) as discussed in the

literature review section, while the ARPSD is yet an emerging research area, efficient

metaheuristics do already exist for solving the deterministic CARP. Accordingly, one of

the fundamental ideas behind our approach is to transform the challenge of solving a

given ARPSD instance into a new challenge which consists in solving several

conservative CARP instances, each of them characterized by a specific risk

(probability) of showing route failures. The term conservative refers here to the fact that

only a certain percentage of the total capacity is considered during the route design

phase. This latent capacity will be available if the actual demand of the route is greater

than expected. This unused capacity can be considered as a safety stock, since it

reflects the level of latent capacity that is maintained to buffer against possible route

failures.

46

A similar approach was already introduced by Juan et al. (2011a) for the

Vehicle Routing Problem with Stochastic Demands, which can be seen as the

stochastic version of the classical VRP. In our research, we also use the Randomized

Savings Heuristic for the Arc Routing Problem (RandSHARP) described in Chapter 3.

Figure 12 shows the flowchart of our Simheuristic approach, an overview of which is

given next:

1. Consider an ARPSD instance defined by a network of arcs, a depot, a set of

customers, and a capacity W. Assume that each customer has a positive

stochastic demand characterized by a specific probability distribution with

known mean.

2. Consider a specific value for the parameter k (0 ≤ k ≤ 1), which sets the

percentage of W that will be used during the route design stage, i.e.: instead of

considering the total capacity, W, we will assume ‘virtual’ vehicles with capacity

given by W* = k W (thus leaving a safety stock for emergencies).

3. Consider the CARP(W*) instance defined by the expected demands of each

customer and with capacity W*.

4. Solve the CARP(W*) instance using the RandSHARP algorithm. The obtained

solution, s, will be also a feasible solution for the original ARPSD as long as the

total route demand computed during the actual delivery stage does not exceed

the surplus capacity (i.e., the safety stock).

5. Using the solution s, estimate throughout MCS the expected cost due to

possible failures on any route. To this end, random demands for each

customer are generated using the associated probability distribution and,

whenever a route failure occurs, a corrective action is applied and its cost is

registered. In our case, the corrective action consists in performing a round-trip

from the arc causing the route failure to the depot, where the vehicle is reloaded

so that it can resume the delivery route. After iterating this process some

thousands of times, a random sample of costs is obtained, from which an

average value can be estimated. Then, the expected total costs can be

computed by adding these variable costs due to route failures and the fixed

distance-based costs given by s.

6. During the same MCS, it is also possible to estimate the reliability of each route

in s. Thus, a route-reliability index can be defined as the probability that a given

route will not fail. It should be noticed that, in each route, higher-than-expected

demands could sometimes be compensated by lower-than-expected demands.

7. The reliability index for s is then computed as the product of each route-

reliability index –under the reasonable hypothesis that customer demands are

47

independent. This s-reliability index can be considered as a measure of the

solution robustness in the stochastic scenario.

8. Repeat the process from Step 2 with a new value of the parameter k to explore

the convenience of using a different level of safety stocks inside each vehicle.

9. Finally, return the solution with the lowest expected total costs found so far (or,

alternatively, a list with the best solutions found so far so that the decision

maker can choose according to both total expected costs and reliability indices).

ARPSD instance with random demands
and vehicle capacity W

Select k in (0,1) and

set W* = k W

s  solve CARP(W*) with average demands

Generate random values for the

stochastic demands

Estimate

variableCosts(s)

totalExpectedCosts(s) 

fixedCosts(s) + variableCosts(s)

Estimate

routeReliabilityIndex(s)

reliabilityIndex(s) 

Product(routeReliabilityIndex(s))

More k values to

test?

Return best solution(s)

Y

N

CARP metaheuristic

Simulation

Figure 12. Flowchart diagram of our Simheuristic algorithm

4.3 Implementation details of our Approach

This section provides the pseudo-code details of our algorithm. These details allow

other authors and end users to quickly implement our algorithm in order to: (a)

reproduce the experiments we have run and compare our approach against other

approaches; and (b) use our approach to solve real-life applications of the ARPSD.

Thus, Figure 13 shows the main procedure of our algorithm. This procedure starts by

extracting the average value from the probability distribution associated to each

customer’s demand. Then, after initializing the best solution, it starts a loop to try

48

different configurations of the safety stock level in each vehicle. Usually, one can start

by using k = 1 (zero safety stock, scenario with the highest possible variable costs due

to corrective actions) and then decreasing k at each iteration in steps of size 0.1 or 0.2

until the increase in distance-based fixed costs overpass the savings in variable costs.

For each value of k, the virtual vehicle capacity is computed as W* = k W, and a nested

iterative process starts. At each iteration of this process, the RandSHARP algorithm

described in Chapter 3 is used to generate a new ‘good’ but random solution to the

associated CARP. The fixed cost associated with this solution is given by the distance-

based cost of the CARP instance. Then, in order to compute the variable cost, a

simulation is employed –more details on this stage are given later. By adding both

costs, it is possible to obtain an estimate of the total expected cost. Notice that the

same simulation process also allows to obtain the reliability index associated with the

current solution. Finally, whenever the new solution outperforms the best-found

solution, the latter is updated. In fact, it is probably a good idea to keep a list of ‘top’

solutions so that the decision maker can choose among them using both the total

expected cost as well as the reliability index criteria.

procedure SimRandSHARP(arcs, probDist, W, maxTime)

01 avgDemands  getAverage(probDist)

02 bestSol  empty

03 for {each desired value of k} do % try different user-defined k

04 W*  k^W

05 while {elapsed < maxTime} do % time-based stopping criterion

06 sol  randSHARP(arcs, avgDemands, W*) % biased-radomization

07 fixedCost  getDistanceBasedCost(sol) % deterministic costs

08 avgVariableCost  simulation(sol, probDist) % uses MCS

09 reliabilityIndex  simulation(sol, probDist) % uses MCS

10 totalAvgCost  fixedCost + avgVariableCost

11 if {totalAvgCost < cost(bestSol)} or {bestSol is empty} then

12 bestSol  sol

13 cost(bestSol)  totalAvgCost

14 reliabilityIndex(bestSol)  reliabilityIndex

15 end if

16 end while

17 end for

18 return bestSol % returns the best(s) solution(s) found so far

end procedure

Figure 13. SimRandSHARP algorithm main procedure

Figure 14 shows how a ‘good’ yet random solution to the CARP(W*) is generated

throughout the RandSHARP algorithm. Basically, this algorithm uses a biased-

randomized version of the SHARP described in Chapter 3. The biased randomization

process induces a ‘soft randomization’ in the order of the sorted savings list by using a

skewed (non-symmetric) probability distribution. This allows keeping the logic behind

49

the savings-based heuristic while, at the same time, helps to generate different

solutions each time the randomized heuristic is run. For a more detailed discussion of

the biased-randomization process and an example of application to a related field, the

reader is addressed to Juan et al (2010).

procedure randSHARP(arcs, avgDemands, W*)

01 sol  getDummySol()% generate a dummy sol

02 savingsList  genSavingsList(arcs) % generates the savings list

03 randSavingsList  biasedRand(savingsList)

04 while {savingsList contains edges} do % apply savings-based heu.

05 edge  extractNextEdge(randSavingsList)

06 sol  randSHARP(arcs, avgDemands, W*) % biased-radomization

07 iNode  getOriding(edge)

08 jNode  getEnd(edge)

09 iRoute  getRoute(iNode)

10 jRoute  getRoute(jNode)

11 if {iRoute is not jRoute} and {cap. after merge <= W*} then

12 mergedRoute  mergeRoutes(iRoute, jRoute, iNode, jNode)

13 sol  remove(iRoute, sol)

14 sol  remove(jRoute, sol)

15 sol  add(mergedRoute, sol)

16 end if

17 end while

18 return sol % returns a random ´good´ solution

end procedure

Figure 14. RandSHARP procedure

procedure simulation(sol, probDist)

01 nTrials  0

02 nFailures  0

03 varCosts  0

04 solReliability  1

05 while {termination condition not met} do

06 nTrials  nTrials + 1

07 for {each route in sol} do

08 totalRouteDemands  getRandomVariates(route, probDist)

09 if {totalRouteDemands > vehCapacity} then

10 nFailures(route)  nFailures(route) + 1

11 varCosts  varCosts + cost(corrective action)

12 end if

13 end for

14 end while

15 avgVarCost  varCosts / nTrials

16 for {each route in sol} do

17 routeReliability  nFailures(route) / nTrials

18 solReliability  solReliability * routeReliability

19 end for

20 return avgVarCosts and solReliability

end procedure

Figure 15. Simulation procedure to estimate variable cost and reliability index

50

Finally, Figure 15 illustrates the basic ideas behind the simulation procedure, which is

used to obtain estimates for both the expected variable cost of a given solution as well

as its reliability index. Notice that the probability distributions associated with each

customer’s random demands are used to generate sample observations. These

sample observations allow determining whether the actual aggregated demand in a

single route will exceed the vehicle capacity in the current simulation run. If so, then

both the new route failure and the variable cost associated with the corrective action

are considered. It is worthy to notice that, despite not explicitly described in this

pseudo-code, a route could show more than one failure in cases in which the actual

aggregated demand exceeds by far the vehicle real capacity.

4.4 Results

The methodology described in the previous sections has been implemented as a Java

application. In our experiments, a standard personal computer was used to perform all

tests: an Intel® Core™2 Quad CPU Q9300 at 2.50 GHz and 8 GB RAM running with a

Windows® 7 Pro operating system. Four different datasets, originally defined for the

CARP, were adapted (generalized) and employed in our tests (details of the datasets

can be found in Section 3.5). In order to generalize these datasets for the ARPSD, we

changed the original deterministic demands by random demands with known

probability distributions and means given by the deterministic demands.

Since our approach uses simulation, random demands can be modeled by any

probability distribution with a known mean. In this case, we have selected a Log-

Normal distribution for modeling the demands. Notice that historical data would be

used in a real-life scenario to model each customer’s demand by a different probability

distribution –the one that best fits the existing observations. The Log-Normal

distribution, which is a more natural choice than the Normal distribution when modeling

non-negative customers’ demands, has two parameters: the location parameter, μi, and

the scale parameter, σi. According to the properties of the Log-Normal distribution,

these parameters will be given by the following expressions:

 (10)

 (11)

51

4.4.1 A Numerical Example

Before performing a complete experiment on all tests, we will discuss an illustrative

example based on the instance egl-s4-B. First, this instance is generalized by

considering the customer demands, Qi, as random variables following a Log-Normal

distribution with mean E[Qi] and variance 0.25·E[Qi]. Then, we set k=0.95, which

means that a 5% of the total vehicle capacity is used as a safety stock during the route

design stage to deal with unexpected demands during the actual delivery stage. At this

point, the RandSHARP algorithm is used to solve the associated CARP instance –

notice that any other efficient algorithm for solving the CARP could be used instead.

Next, we run a (short-run) simulation over the obtained solution to obtain estimates of

both the expected variable cost –due to corrective actions- and the solution reliability

index. Once obtained the best solution for the current value of k, other values of this

parameter are evaluated. Table 8 shows the results obtained for different k values. In

this case, the value k=0.94 will be selected as the one providing the solution with the

lowest expected total costs. Notice that, as the value of k decreases (i.e., as higher

levels of safety stock are considered), the number of necessary routes (vehicles)

increases, and the same can be said for the reliability level and the fixed cost –as

opposed to what happens with the expected variable cost.

k # routes Fixed cost Expected variable costs Expected total costs Reliability index

0.90 30 18363 379.6 18742.6 0.99

0.91 30 18278 489.6 18767.6 0.99

0.92 30 18279 559.9 18838.9 0.99

0.93 30 18287 415.6 18702.6 0.99

0.94 29 17855 475.8 18330.8 0.99

0.95 29 17922 700.7 18622.7 0.98

0.96 29 17961 554.0 18515.0 0.98

0.97 28 17579 1024.9 18603.9 0.98

Table 8. Results for the egl-s4-B instance with Var[Qi]=0.25·E[Qi].

4.4.2 Computational Results

In our computational experiments we considered the following four scenarios regarding

the variance levels of each instance:

(i) a ‘low-variance’ scenario with Var[Qi] = 0.05·E[Qi]

(ii) a ‘medium-variance’ scenario with Var[Qi] = 0.25·E[Qi]

(iii) a ‘high variance’ scenario with Var[Qi] = 0.75·E[Qi]

(iv) a ‘very-high variance’ scenario with Var[Qi] = 2·E[Qi].

52

Notice that, since the expected value of the demand for each arc is set to the

deterministic value of the classical CARP benchmarks, we have been able to

generalize these CARP benchmarks in a natural way. In other words, the classical

benchmarks are retrieved as a particular case of the new ones when Var[Qi] = 0.

Obviously, as uncertainty in arc demands increases, total expected costs will tend to

increase. This is so because more reliable or robust solutions will be required to avoid

unnecessary route failures and their costly recourse actions.

For each of the four scenarios considered, we proceed as follows. First of all,

we computed a pseudo-optimal solution for the deterministic CARP using the

RandSHARP algorithm. Notice that this solution can be also used as a feasible solution

for the ARPSD, although it will probably show ‘high’ variable costs due to the

necessary recourse actions –no safety stocks are considered in this CARP solution. In

order to obtain estimates of these variable costs, we used simulation. Note that the

fixed costs of the pseudo-optimal solution for the CARP can be considered as a lower

bound for the total costs of the ARPSD pseudo-optimal solution. Similarly, total

expected costs associated with the CARP pseudo-optimal solution represent an upper

bound for the ARPSD pseudo-optimal solution.

Once these lower and upper bounds were established, we used our

Simheuristic algorithm to generate solutions for the ARPSD. In our experiments, we

varied the k parameter from 0.75 to 1.00, using a step of size 0.01. For each k-value

and instance, a complete execution of 180 seconds was performed. Then, the k-value

providing the lowest total expected cost was selected as the recommended one. Table

9 to Table 12 shows the average results, for each dataset of instances, obtained in

each of the analyzed scenarios. For extended results refer to Annex A.1.

In particular these tables show the following columns: (i) dataset name; (ii) fixed

cost associated with the pseudo-optimal solution for the deterministic CARP (1); (iii)

total expected cost associated with the former solution when random variables are

considered and recourse actions are accounted for (2), (iv) percentage gap between

values in (1) and (2); (v) total expected cost associated with our best solution (OBS) for

the ARPSD (3); (vi) gap between (1) and (3); (vii) gap between (2) and (3); (viii)

associated k-value (inverse of the safety stock level); and (ix) reliability value

associated with the proposed solution.

53

 Average values for all instance in each dataset

Solution for the deterministic CARP Our Best Solution for the ARPSD

Dataset Fixed
Cost (1)

Expected
Cost (2)

Gap
(1)-(2)

Reli-
ability

Expected
Cost (3)

Gap
(1)-(3)

Gap (2)-
(3)

k Reli-
ability

egl 9906 10825 9.27% 0.97 10145 2.41% -6.28% 0.995 1.00

gdb 255 358 40.57% 0.84 322 26.51% -10.00% 0.943 0.94

kshs 11140 11143 0.03% 0.97 11141 0.01% -0.02% 0.993 1.00

val 350 395 12.62% 0.93 369 5.15% -6.64% 0.942 0.99

Avg. 17.43% 0.92 8.57% -6.97% 0.960 0.98

Table 9. Summary of results when Var[Qi] = 0.05·E[Qi]

 Average values for all instance in each dataset

Solution for the deterministic CARP Our Best Solution for the ARPSD

Dataset Fixed
Cost (1)

Expected
Cost (2)

Gap
(1)-(2)

Reli-
ability

Expected
Cost (3)

Gap
(1)-(3)

Gap (2)-
(3)

k Reli-
ability

egl 9906 12462 25.80% 0.91 10715 8.17% -14.02% 0.984 0.99

gdb 255 380 49.33% 0.80 346 35.69% -9.13% 0.966 0.90

kshs 11140 11593 4.06% 0.97 11218 0.70% -3.23% 0.980 1.00

val 350 457 30.33% 0.82 398 13.53% -12.89% 0.906 0.97

Avg. 31.41% 0.85 15.96% -11.36% 0.949 0.96

Table 10. Summary of results when Var[Qi] = 0.25·E[Qi]

 Average values for all instance in each dataset

Solution for the deterministic CARP Our Best Solution for the ARPSD

Dataset Fixed
Cost (1)

Expected
Cost (2)

Gap
(1)-(2)

Reli-
ability

Expected
Cost (3)

Gap
(1)-(3)

Gap (2)-
(3)

k Reli-
ability

egl 9906 14039 41.71% 0.87 11656 17.66% -16.97% 0.958 0.96

gdb 255 395 54.95% 0.76 360 41.31% -8.81% 0.879 0.89

kshs 11140 11938 7.16% 0.96 11387 2.21% -4.62% 0.973 0.97

val 350 502 43.17% 0.77 439 25.04% -12.66% 0.826 0.89

Avg. 42.07% 0.81 24.40% -12.08% 0.886 0.94

Table 11. Summary of results when Var[Qi] = 0.75·E[Qi]

 Average values for all instance in each dataset

Solution for the deterministic CARP Our Best Solution for the ARPSD

Dataset Fixed
Cost (1)

Expected
Cost (2)

Gap
(1)-(2)

Reli-
ability

Expected
Cost (3)

Gap
(1)-(3)

Gap (2)-
(3)

k Reli-
ability

egl 9906 16114 62.66% 0.81 12996 31.18% -19.35% 0.936 0.89

gdb 255 400 57.18% 0.75 366 43.66% -8.60% 0.877 0.85

kshs 11140 12900 15.80% 0.94 11845 6.33% -8.18% 0.955 0.97

val 350 550 56.62% 0.71 488 39.00% -11.25% 0.824 0.88

Avg. 53.76% 0.76 34.00% -12.50% 0.878 0.90

Table 12. Summary of results when Var[Qi] = 2·E[Qi]

Additionally, Figure 16 shows, for each uncertainty level, the gaps between: (a) the

lower bound for the ARPSD (fixed cost of the CARP solution) and the upper bound

(total expected cost of the CARP solution); and (b) the lower bound and our best

solution for the ARPSD. Similarly, Figure 17 summarizes, for each scenario, the

average reliability indices associated with the CARP solution –when it is considered as

a solution for the ARPSD– and our best solution for the ARPSD, respectively.

54

Figure 16. Average gaps with respect to ARPSD lower bound (BKS CARP).

Figure 17. Average reliability indices.

4.4.3 Results Analysis

The aforementioned tables show how averaged total expected costs associated with

our best solution for the ARPSD are always bounded by the fixed and total expected

costs associated with the CARP solution. Notice also that, as the level of variability

increases from one scenario to other, the size of the gaps is also increased while the

recommended k-value tends to decrease. Put in other words, the more the uncertainty

level in the arcs demands’, the more safety stock is recommended and the more the

pseudo-optimal solution for the ARPSD tends to differ from the pseudo-optimal solution

for the deterministic CARP. Notice also that, for a given ARPSD solution, the higher the

variance, the lower the reliability index of the solution. Also, the higher the variance, the

0%

10%

20%

30%

40%

50%

60%

0.05E[Qi] 0.25E[Qi] 0.75E[Qi] 2E[Qi]

Gap LB-UB Gap LB-OBS

0,70

0,75

0,80

0,85

0,90

0,95

1,00

0.05E[Qi] 0.25E[Qi] 0.75E[Qi] 2E[Qi]

Reliability UB sol Reliability OBS

55

larger the gaps in terms of cost between the solution and the upper bound (expected

costs for the BKS for the CARP).

Even in the low-variability scenario, results show that when used as solutions for

the ARPSD, the pseudo-optimal solutions for the CARP provide lower reliability levels

(0.92 on the average) than the ones obtained with our approach (0.98 on the average).

This effect can be clearly seen in Figure 6 for the different scenarios. As previously

discussed, lower reliability indices imply more routes failures which, at the end, cause

higher variable costs. This also explains that, as shown in Figure 16, our best solution

provides always a lower average gap with respect to the lower bound than the CARP

solution when it is used as a solution for the ARPSD.

4.5 Chapter Conclusions

This chapter has analyzed the stochastic –and more realistic– version of the Arc

Routing Problem, which has been seldom discussed in the scientific literature so far.

After motivating its importance and reviewing the existing related work, this chapter has

proposed a Simheuristic algorithm to solve the ARPSD in a natural way. Our algorithm

combines an efficient metaheuristic for the deterministic version of the problem with a

simulation stage, which is able to manage the uncertainty presented in the model. The

concept of ‘safety stock’ is used during the route-design stage to reduce the negative

effects generated by unexpected demands during the customers’ delivery stage, i.e.,

this capacity surplus can be used to handle possible over demands that may appear

due to the random nature of the demands of the customers. With that, our methodology

is able to cover route failures, avoiding the over cost of corrective actions –e.g., a

round trip to the depot to reload the vehicle. By employing simulation, our approach

transforms the challenge of solving a stochastic instance into the challenge of solving a

limited set of deterministic ARPs, each of them associated with a different level of

safety-stock. This allows using well-tested and efficient metaheuristics –initially

designed for solving the deterministic version of the problem– to deal with the

stochastic version of the problem. The proposed methodology is also able to generate

reliability indices for each solution, which can be interpreted as robustness indicators.

Several research lines remain open at this stage, among others: (a) explore other

ways of integrating a simulation stage inside a metaheuristic algorithm; (b) analyze how

parallel executions of this algorithm –each of them running with a different simulation

seed– can speed up clock times necessary to obtain ‘high-quality’ solutions; (c) enrich

the ARP model even further by including also stochastic costs due to random traveling

times; and (d) developing similar Simheuristics for other combinatorial optimization

56

problems which have traditionally assumed deterministic inputs even when uncertainty

is present in most real-life situations.

57

5 Non-smooth Arc Routing Problem

Another scenario which is also common on real-life Telecommunication optimization

problems is that in which the optimized function is non-convex. In the case of the

CARP, a non-smooth variation of the problem can be that on which the capacity

constraint is converted to a soft-constraint, which can be violated by incurring in some

penalty cost. This means, for instance, that the capacity (bandwidth) constraint in a

cable is not due to a physical factor but an economical one, which could be violated but

incurring in some penalty.

Optimization problems can be classified, from a high-level perspective, as either

convex or non-convex. In general, ConVex Optimization Problems (CVOPs) have two

parts: a series of constraints that represent convex regions and an objective function to

be minimized that is also convex. CVOPs are worth studying because they have a wide

variety of applications and many problems can be reduced to them via change of

variables. Linear Programming is one well-known example, since linear functions are

trivially convex (Boyd & Vandenberghe, 2004). The main idea in convex optimization

problems is that every constraint restricts the space of solutions to a certain convex

region. By taking the intersection of all these regions we obtain the set of feasible

solutions, which is also convex. Due to the structure of the solution space, every single

local optimum is a global optimum too. This is the key property that permits us to solve

CVOPs exactly and efficiently up to very large instances. However, almost none of the

algorithms applied for CVOPs can be extended to non-convex case.

In non-convex optimization (NCVOPs) the objective function, or even the

feasible region, are not convex, which results in a far more complex solution space

than the case of the CVOPs. In NCVOPs we have many disjoint regions, and multiple

locally optimal points within each of them. As a result, if a traditional local search is

applied, there is a high risk of ending in the vicinity of a local optimum that may still be

far from the global optimum. Another drawback is that it can take exponential time in

Parts of this chapter have been taken from the co-autored

publications Ferrer et al. (2013) and Gonzalez-Martin et al. (2014c).

58

the size of the input to determine that the NCVOP is infeasible, that the objective

function is unbounded, or that one of the solutions found so far is the actual global

optimum.

A function is smooth if it is differentiable and it has continuous derivatives of all

orders. Therefore, a non-smooth function is one that is missing some of these

properties. Non-smooth optimization problems (NSPs) are similar to NCVOPs in the

sense that they are much more difficult to solve than traditional smooth and convex

problems. The function for which a global optimum needs to be computed is now non-

smooth and the solution space might contain again multiple disjoint regions and many

locally optimal points within each of them. The computational techniques that can be

used to solve these types of problem are often fairly complex and depend on the

particular structure of the problem. While in convex optimization it is possible,

sometimes, to explore the problem structure, and build solution methods that provide

the global optimum, non-convex optimization problems are often intractable and have

to rely on heuristic algorithms that produce only local optima. As a result, developing

such techniques is in general time consuming, and the resulting application range is

very limited. However, most real-life objective functions are either non-convex, non-

smooth or both. Therefore, combinatorial optimization under these complex but

common circumstances is an important field to explore.

5.1 Literature Review on Non-Smooth Problems

In the context of combinatorial optimization, probabilistic or randomized algorithms

make use of pseudo-random numbers or variants during the construction or local

search phases. In addition to the problem’s input data, a probabilistic algorithm use

random bits to do random choices during its execution. An important property is that for

the same input the algorithm can produce different outputs in different runs.

Probabilistic algorithms have been widely used to solve many combinatorial

optimization problems. Examples are Vehicle Routing Problems (Laporte, 2009),

Location and Layout Problems (Drezner and Hamacher, 2002) or Covering,

Clustering, Packing and Partitions Problems (Chaves and Lorena, 2010).

Despite the great success of application of these methods to the

aforementioned combinatorial problems, there exist only a few documented

applications of these algorithms to the NCVOPs or NSPs. Some of the existing

references are reviewed next. Bagirov and Yearwood (2006) present a formulation of

the Minimum Sum-of-Squares clustering problem, which is a non-smooth, non-convex

optimization problem. The goal of clustering problems is to separate a large set of

59

objects into groups or clusters based on certain criteria. The authors point out that a

large number of approaches, like branch and bound or K-means algorithms, have been

used for the clustering problem, but they are efficient only in certain special settings.

The author remarks that, in general, better results are obtained when metaheuristics

are used for the clustering problem. Al-Sultan (1995) proposed a Tabu Search

approach that outperforms the K-means. However, this algorithm requires of three

parameters, so an extensive study was necessary to find the best settings.

The issue of Optimal Routing in Communication Networks has also received a

lot of attention from researchers. The objective is to find the best path for data

transmission in short amount of time. The routing strategy can greatly affect the system

performance, so there is a high demand for efficient algorithms. Numerous methods

that deal with this challenge have been designed. Hamdan and El-Hawary (2002)

proposed a method which combined Genetic Algorithms with Hopfield networks.

Oonsivialai et al. (2009) proposed an approach based on Tabu Search. The main

drawbacks of most of these methods are either their inability to efficiently explore the

solution spacer or very long computational times.

Bagirov et al. (2007) present a non-smooth formulation for the Location

Problem in Wireless Sensor Networks. In general, a wireless sensor network can be

defined as a distributed collection of nodes that have limited resources and operate

autonomously. The goal is to find o accurately estimate the position of the nodes. Most

proposed approaches have assumed accurate range measurements, which is

unrealistic for Radio Frequency signal strength measurements. Ramadurai and

Sichitiu (2003) show that a probabilistic approach can be adopted to deal with range

measurements inaccuracy.

Finally, in the transportation and logistics arena, Juan et al. (2013) presented a

non-smooth formulation for the Vehicle Routing Problem. To solve this problem they

proposed a hybrid algorithm for solving the problem.

5.2 The Non-Smooth CARP

As described in Chapter 3, the CARP is a combinatorial optimization problem defined

over an undirected incomplete graph . Also, a set of K identical vehicles

(homogeneous fleet) with restricted capacity W are available for serving the customer’s

demands. Under these circumstances, the usual goal is to find a set of routes which

minimize the total delivery costs, computed as the sum of the costs of all the K routes,

which are equals to the sum of the costs cij associated to each traversed arc (
 is a

binary variable which denotes whether the arc is traversed by the k-th route):

60

(12)

 (13)

This minimization is subjected to the following constraints:

1. Every route starts and ends at the depot node so every route is a round-trip.

2. All the demands are satisfied.

3. Each arc with positive demand is served by exactly one vehicle. However, an

arc can be traversed as many times as required by any vehicle.

4. The total demand to be served in any route does not exceed the vehicle loading

capacity W.

As mentioned before, one of the main goals of this chapter is to fill the gap in the CARP

literature regarding the discussion and solution of non-smooth objective functions, and

to show the efficiency of our approach to deal with this kind of functions in the CARP

context. In order to test the effectiveness of our procedure and its efficiency in relation

to other existing approaches, we relaxed the constraints by violating some conditions, if

necessary. We considered soft constraints, which allow conditions to be violated, by

incurring in some penalty costs that must be added to the objective function rather than

considering hard constraints, which constraint the problem to never exceed the

maximum route costs. According to Hashimoto et al. (2006), in real-world simulations,

time windows and capacity constraints can be often violated to some extent. Of course,

the same analysis can be applied to constraints associated with maximum route costs.

In practice, if a given route exceeds a threshold cost or length, then some penalty cost

must be added to the total route costs, and these penalty costs are likely to be defined

by a piecewise non-smooth function. These costs will depend on the size of the gap

between the actual route costs and the threshold. In this chapter we will define the

non-smooth arc routing problem by assuming that the cost of a route is given by:

 (14)

Where represents a non-smooth function –e.g. a piece-wise function representing a

variety of penalties.

5.3 The RandSHARP algorithm

For solving the non-smooth CARP we will use the RandSHARP algorithm introduced in

Chapter 3. It is mainly composed of two parts: (a) the construction of an initial solution

61

using the classical heuristic; and (b) a biased randomization process applied to the

construction of a random solution. To construct the random solution we apply a

classical greedy heuristic. We use a classical heuristic as an starting point for several

reasons. First of all, there are efficient heuristics for almost every combinatorial

optimization problem. They usually are able to compute competitive solutions in a

reasonably short amount of time. In addition, classical heuristics build solutions

incrementally using well-tested strategies instead of directly using the objective function

itself. With that, issues like non-convexity or non-smoothness of the objective function

are not likely to have a significant impact on their efficiency. The main idea of these

heuristics is to select the next step from a list of possible options of movements, usually

following a selection criteria. In the case of the RandSHARP, the base heuristic is the

SHARP base heuristic which is an adaption of the CWS for the CVRP, to the CARP.

5.4 Results

To evaluate the performance of the proposed algorithm, we have implemented it as a

computer program. Java SE6 over Netbeans IDE was used to develop it for several

reasons: (a) being an object-oriented programming language with advanced memory

management features such as the garbage collection, and with readily-available data

structure, it allows a somewhat faster development of algorithmic software; (b) it offers

immediate portability to different platforms; and (c) it offers better replicability and

duplicability than other languages.

However, a downside of using Java instead other languages such as C or C++

is the reduction on code execution performance, mainly due to the fact that Java is

executed over a virtual machine and it is not a complied language and to the lack of

pointer-based optimization. A standard personal computer was used to perform all

tests, an Intel® Core2® Quad CPU Q9300 @2.50GHz and 8 GB RAM running the

Windows® 7 Pro operating system. For the generation of random number we have

employed the L’Ecuyer (2006) SSJ library for Java, concretely the LFSR113 random

number generation, which offers a period value approximately equal to 2113.

To assess the performance and the quality of the solutions obtained with the

proposed algorithms, a complete dataset originally proposed for the standard CARP

problem was adapted to make it have a non-smooth objective function. In concrete, the

gdb (Golden et al., 1983) dataset was used. This dataset consists of 23 instances of

small to medium size with a mixture of dense and sparse graph networks. For these

instances, we have introduced parameter which determines the maximum route cost

allowed. This parameter was defined considering the results obtained by the MIRH

62

algorithm for the CARP instance, rounded to a multiple of 10. But, instead of

considering this parameter as a hard constraint, we have considered it as a soft one

that could eventually be violated. Following the penalty costs function (14), for our tests

we have used the specific non-linear and non-smooth function:

(15)

 (16)

It is worth to mention that these non-smooth functions have been selected for the

problem instances which are being tested in our experiments. These values depend on

the magnitude of the costs of the instance. In this case the maximum route penalty due

to exceeding Cmax is equal to 8 (15), which approximately is the 10% of the average

cost of a route, when considering the RandSHARP solution for the gdb CARP

instances. The results obtained are displayed in Table 13. The table is structured in

two halves: the first one showing the characteristics of every problem dataset, and the

second one which contain the results. On the first half we display the instance name,

the number of arcs (|E|) and nodes (|V|) in the problem instance, the vehicle capacity

(W) and the maximum route costs parameter which we have defined. On the second

half, the columns contain the following information: best-known solution for the original

CARP problem instance; the solution obtained with RandSHARP when applied to the

normal CARP problem instance (OBS-CARP) and the gap of this result with respect to

the best-known solution; the solution obtained by RandSHARP in the non-smooth ARP

when considering soft-constraint during the design phase of the algorithm (OBS-S) and

its gap with respect the best-known solution of the CARP; and, finally, the solution of

the RandSHARP algorithm when considering hard-constraints during the design phase

(OBS-H) and its gap with respect the best-known solution of the CARP.

From the results we can notice first of all that RandSHARP has a good

performance with the original CARP problem instance (without maximum route costs

constraint and with a smooth objective function). In addition, as it considers soft-

constraints during the design phase of the routes, it is able to minimize the effect of

having a non-smooth objective function, showing a result closest to the BKS and to the

solution obtained by the same algorithm when considering only the CARP. Additionally,

we can also notice that when considering hard-constraints in the design of the

RandSHARP algorithm, the performance falls down dramatically. This is due to the fact

that considering hard-constraints makes the solution to have more routes required,

63

which means that more overload is obtained in the solution due to the round trips to the

depot for refilling.

Remark that the gap with respect to the best known solution showed in the table

is computed as follows:

 (17)

Set |E| |V| W
Max.
route
costs

BKS
(1)

OBS-
CARP

(2)

Gap
(1)-(2)

OBS-
S (3)

Gap
(1)-(3)

OBS-
H (4)

Gap
(1)-(4)

gdb1 12 22 5 60 316 316 0.00% 317.87 0.59% 343.02 8.55%

gdb2 12 26 5 50 339 339 0.00% 341.76 0.81% 422.56 24.65%

gdb3 12 22 5 50 275 275 0.00% 276.60 0.58% 340.09 23.67%

gdb4 11 19 5 50 287 287 0.00% 289.08 0.72% 483.71 68.54%

gdb5 13 26 5 60 377 377 0.00% 378.85 0.49% 467.00 23.87%

gdb6 12 22 5 60 298 298 0.00% 299.08 0.36% 351.51 17.96%

gdb7 12 22 5 60 325 325 0.00% 325.74 0.23% 356.50 9.69%

gdb8 27 46 27 30 348 350 0.57% 359.43 3.28% 594.91 70.95%

gdb9 27 51 27 30 303 313 3.30% 318.75 5.20% 433.71 43.14%

gdb10 12 25 10 60 275 275 0.00% 276.53 0.56% 283.50 3.09%

gdb11 22 45 50 80 395 395 0.00% 400.01 1.27% 409.00 3.54%

gdb12 13 23 35 60 458 468 2.18% 464.89 1.50% 739.19 61.40%

gdb13 10 28 41 80 536 536 0.00% 545.00 1.68% 580.70 8.34%

gdb14 7 21 21 60 100 100 0.00% 104.00 4.00% 104.00 4.00%

gdb15 7 21 37 50 58 58 0.00% 58.00 0.00% 58.00 0.00%

gdb16 8 28 24 30 127 127 0.00% 127.76 0.60% 129.00 1.57%

gdb17 8 28 41 20 91 91 0.00% 91.00 0.00% 91.00 0.00%

gdb18 9 36 37 30 164 164 0.00% 167.24 1.98% 182.00 10.98%

gdb19 11 11 27 20 55 55 0.00% 55.50 0.91% 63.00 14.55%

gdb20 11 22 27 30 121 121 0.00% 121.53 0.44% 123.00 1.65%

gdb21 11 33 27 30 156 156 0.00% 158.00 1.28% 158.00 1.28%

gdb22 11 44 27 30 200 200 0.00% 201.00 0.50% 202.00 1.00%

gdb23 11 55 27 30 233 233 0.00% 235.00 0.86% 235.00 0.86%

Avg. 13 29 12 77 0.26% 1.21% 17.23%

Table 13. Evaluated gdb instances and obtained results.

5.5 Chapter Conclusions

In this chapter an overview of non-convex and non-smooth optimization problems has

been presented. We have also discussed how different approaches have been used in

different non-smooth and non-convex problems in the existing literature. Among others

we can find the GRASP, HBSS or Tabu Search. As has been pointed out, our

methodology has similarities with some methods already reported in the literature but,

at the same time, maintains significant different as previously discussed. In addition,

we have defined the non-smooth Arc Routing Problem and described the objective

function characteristics which make our approach a good candidate for solving it. We

have also presented how the RandSHARP, an algorithm based on the MIRHA

framework for solving the problem, can be used for solving the non-smooth Arc Routing

64

Problem. Finally, we evaluated the performance by using some of the benchmarks

available on the CARP literature, but considering the capacity constraint as a soft

constraint which could be violated by incurring in some penalty. Results show that the

biased-randomized nature of the MIRHA framework, make the algorithm robust for

scenarios like this, where the optimized function is non-smooth.

65

6 Facility Location Problem

As a closure of the research done within this thesis, another problem has been studied

which also has direct applications on the Telecommunications field. The Facility

Location Problem (FLP) involves locating an undetermined number of facilities to

minimize the sum of the setup costs and the costs of serving customer from these

facilities. The problem assumes that the alternative sites where the facilities can be

located are predetermined and the demand in each customer is known beforehand.

Facility location decisions are costly and difficult to reverse as, once the facility has

been installed, the associated cost of opening is actually incurred. This problem is

useful to model problems in very disparate areas like transportation and logistics,

inventory planning or telecommunication network or computational infrastructures

planning. Clear examples of its application on Information technologies are the

placement of web-servers in a distributed network which have to provide some service

to a given set of customers; or the placement of cabinets in optical fiber networks to

server all the customer with a minimal network deployment cost.

 We can find some similarities between the FLP and ARP problem families. In

the case of the ARP, we can see the goal as deciding how to group the customers in

subsets which should be interconnected in a sequential route. On the other hand, for

the FLP these customer’s subsets are connected to some kind of central node (facility)

and the goal is, in addition to determine the subsets of customers which are grouped,

determine also the location of this central nodes. One example of application of the

FLP to a real scenario is that in which several servers are available for providing a kind

of internet service, and the goal is to find the subset of servers to be connected for

providing the service to all the customers with the minimum cost possible.

Parts of this chapter have been taken from the co-autored

publications: Cabrera et al. (2014) and Gonzalez-Martin et al.

(2014d).

66

6.1 Literature Review

The FLP was introduced in Operations Research field in the early 60’s (Balinski ,

1966, Stollsteimer, 1961), originally referred to as Plant Location Problem. This is

perhaps the most common location problem, having been widely studied in the

literature, both in theory and in practice. In this section we will review some solutions

proposed to the problem, as well as different variants of the FLP proposed to cope with

different scenarios. For a more extensive literature review on this topic, refer to

Drezner (1995) or Fotakis (2011).

6.1.1 Solutions to the problem

The facility location problem has been studied from the perspectives of worst case

analysis, probabilistic analysis, polyhedral combinatory and empirical heuristics

(Cornuejols et al., 1990). In the existing literature, we can also find exact algorithms

for the problem, but its NP-hard nature makes heuristics a more suitable tool to

address larger instances. One of the first works on the FLP was a branch-and-bound

algorithm developed by Efroymson and Ray (1966). They used a compact formulation

of FLP to take advantage of the fact that its linear programming relaxation can be

solved by inspection. However, this linear programming relaxation does not provide

tight lower bounds to the problem. The model is therefore known as a weak

formulation. Another of the earliest approaches proposed for the problem is the direct

search or implicit enumeration method proposed by Spielberg (1969). The author

defined two different algorithms based on the same directed search, one considering

the facilities initially open and a second one considering the facilities initially closed.

 Schrage (1975) presented a tight linear programming formulation for the

location problem different from the one defined by Efroymson and Ray (1966).

Schrage applied to this formulation a specialized linear programming algorithm for

variable upper bound constraints. Erlenkotter (1978) presented a dual-based

procedure that begins with this tight linear programming formulation but differed from

previous approaches by considering a dual objective function. Körkel (1989) presented

an improved version of the original Erlenkotter algorithm.

 One of the first approximation algorithms for the problem was the greedy

algorithm proposed by Hochbaum (1982). The first constant factor approximation for

this problem was given by Shmoys et al. (1997), later improved by Chudak (1998),

being both of these algorithms based on LP-rounding and therefore having high

running times. Jain and Vazirani (1999) proposed a primal-dual algorithm with faster

running times and adapted for solving several related problems. This same algorithm

67

was later enhanced in Jain et al. (2003) and obtained better results. More recently, Li

(2013) proposed an improved approximation algorithm that outperformed the former

results.

 Approximation algorithms are very valuable for a theoretical analysis of the

problem. However, these algorithms are outperformed in practice by more

straightforward heuristic with no performance guarantees when facing more complex

problem instances. Constructive algorithms and local search methods for this problem

have been used for decades, starting from Kuehn and Hamburger (1963). The

authors presented one of the earliest models for the problem and a heuristic procedure

solving it. Their heuristic comprised two main phases, first a constructive phase

considered as the main program, and an improvement phase.

 Following this work, more sophisticated metaheuristics have been applied to the

FLP. Alves and Almeida (1992) proposed a Simulated Annealing algorithm that was

one of the firsts metaheuristics applied to the problem. Kraticaet al. (2001) presented

a genetic algorithm outperforming previous works. Ghosh (2001) presented a

neighborhood search heuristics for the problem, using tabu search as local search and

obtaining competitive solutions in very low computational times compared to exact

algorithms. Michel and Van Hentenryck (2003) defined a simple tabu search

algorithm, which demonstrated to be robust, efficient and competitive when compared

with the previous work with genetic algorithms. The tabu search algorithm used a linear

neighborhood, which flipped a single facility at each iteration. Resende and Werneck

(2006) proposed an algorithm based on the Greedy Randomized Adaptive Search

Procedure (GRASP) metaheuristic. The algorithm combined a greedy construction

phase with a local search procedure. It obtained results very close to the best-known

solution for a wide range of different instance sets. More recently Lai et al. (2010)

presented a hybrid algorithm based on Benders’ decomposition algorithm and using a

genetic algorithm instead of the costly branch-and-bound method, to obtain good

suboptimal solutions. The computational results indicated that the algorithm was

effective and efficient. However the author only compared the performance with the

Benders’ original algorithm.

 Finally, some work has been presented regarding parallel computing. Wang et

al. (2008) presented an adaptive version of a parallel Multi population Particle Swarm

Optimization (MPSO) implemented with OpenMP. The implementation obtained an

important improvement in terms of execution times while obtaining competitive results

with a standard computer.

68

6.1.2 Problem variations

Cooper (1963) studied the problem of deciding locations of warehouses and allocation

of customers demand given the locations and demands of customers, which can be

considered as the basic facility location problem. After that, many variations of the

basic facility location problem have been studied. The first variation defined is by

adding a capacity constraint to each of the facilities in the problem, which results in the

Capacitated Facility Location Problem (CFLP).

 Another immediate generalization of the original FLP is the problem where the

delivery of different products is considered. The Multi Commodity Facility Location

Problem (MCFLP) was first studied by Klincewicz and Liss (1987), and it studied the

problem without any restriction on the number of products at each facility. In the Facility

Location with General Cost Function (FLP-GCF), the facility cost is a function on the

number of clients assigned to the facility. An additional variant for the problem is this in

which the demand points arrive one at a time and the goal is to maintain a set of

facilities to service these customers. This is called the Online Facility Location (OFLP)

(Meyerson, 2001). Carrizosa et al. (2012) present a nonlinear variation of the

problem. In it they modified the classical Integer Programming formulation of the

problem by adding to the cost a nonlinear function depending on the number of open

facilities. This was referred to as the Nonlinear Minsum Facility Location Problem

(NMFLP).

 An interesting field of study of variations to this problem are those proposals

defined under uncertainty (Snyder, 2006), introducing wide variations on any of the

parameters of the problem (mainly cost, demands or distances). The goal in these

problems is to find a solution that performs well under any possible realization of the

random parameters, which means a robust solution. The random parameters can be

either continuous or discrete. As an example, Balachandran and Jain (1976)

presented a CFLP model with piecewise linear production costs that need not be either

concave or convex. Demands are random and continuous, described by some joint

probability distribution. In this kind of problems, only first-stage decisions are available,

so there are no recourse decisions. So, once the locations are set, they cannot be

changed after the uncertainty is resolved. The objectives therefore include the

expected recourse costs.

 Finally, it is worth to mention an extension of the FLP where it is combined with

another optimization problem, the Steiner Tree Problem (STP). As a result, Karger and

Minkoff (2000) defined the Connected Facility Location Problem (ConFLP). The

ConFLP introduces an additional constraint to the problem, which is that a Steiner tree

69

must connect all the open facilities. This variation of the problem is very interesting

because it combines location and connectivity problems, which is suitable to model

different network design problems.

6.1.3 Applications

Recently the FLP problem found several new applications in digital network design

problems. One example is the equipment allocation in Video on Demand (VoD)

network deployments (Thouin and Coates, 2008). VoD services are complex and

resource demanding, so deployments involve careful design of many mechanisms

where content attributes and usage should be taken into account. The high bandwidth

requirements motivate distributed architectures with replication of content. An important

and complicated task part of the network planning phase of these distributed

architectures is resource allocation. The growth of peer-to-peer networks and the use

of mobile devices for accessing the contents have made the problem even more

complex. Another example of application can be found in Lee and Murray (2010). In

this chapter the authors introduce an approach for survivable network design of

citywide wireless broadband based on the FLP model. They address two issues: how

to locate the Wi-Fi equipment to maximally cover the given demand; and how to

connect Wi-Fi equipment to ensure survivable networking on a real case scenario in

the city of Dublin (Ohio).

 Maric (2013) applied the problem to model the location of long-term health care

facilities among given potential sites. The objective is to minimize the maximal number

of patients assigned to the established facilities. Examples can be also found in the

supply chain management area. Brahimi and Khan (2013) show a real case of a

company in Pakistan which wanted to outsource part of its warehousing activity to a

third party provider. The problem was to decide where to rent space in the third party

warehouses.

 The Online Facility Location Problem (OFLP, Meyerson, 2001) can model a

network design problem in which several servers need to be purchased and each client

has to be connected to one of the servers. Once the network has been constructed,

additional clients may need to be added to the network. In this case additional costs will

appear into the problem such as the connection cost of connecting a new customer to

the cluster and, if additional capacity is required to accommodate the increase of

demand, an additional server should be purchased (which means opening an

additional facility).

70

6.2 Problem Description

The (uncapacitated) FLP involves locating an undetermined number of facilities to

minimize the sum of setup and serving costs and was first described in Balinski (1966)

and Stollsteimer (1961). The problem is defined over an undirected strongly

connected graph where V is composed of a subset of customers and a

subset of facilities , and E is a set of edges connecting the nodes in V. Each edge

 has an associated cost of using it , and for all we are given a facility

opening cost . Furthermore, for every facility i and customer j we have an

associated cost of connecting the customer to the facility . Under

these circumstances, the objective of the problem is to open a subset of the facilities in

F and connect each customer with an open facility, so that the total cost is minimized:

(18)

The uncapacitated FLP is considered as the “simple” facility location problem (Verter,

2011), where both the alternative facility locations and the customer positions are

considered discrete points in the graph. An example of a FLP problem instance can be

found in Figure 18. This assumes that the alternative sites have been predetermined

and the demand in each customer zone is concentrated at the point representing that

region. FLP focuses on the production and distribution of a single commodity over a

single time period, during which the demand is assumed to be known with certainty.

The distinguishing feature of this basic discrete location problem, however, is the

decision maker’s ability to determine the size of each facility without any restriction.

Figure 18. Example of FLP problem instance (a) and solution (b)

6.2.1 Basic notation

When we work with an instance of the FLP, we assume the notation as

described before. Every customer has an associated demand that needs to be served

by the facility, . Notice that this demand would take place in the problem definition for

71

the case of the Capacitated Facility Location Problem (CFLP), where every facility has

a limited facility, so it is required a constraint to avoid surpassing that facility

capacitated. Even without this capacity constraint, the FLP is proved to be NP-hard

(Cornuejols et al., 1990). For a given instance and a given non-empty subset of

facilities , a best assignment satisfying (19) can be computed easily.

Therefore, we will often call a nonempty a feasible solution, with facility cost

 (20) and service cost (21). The task is to find a nonempty subset

such that the sum of facility cost and service cost is minimized. We denote the optimum

by OPT.

(19)

(20)

(21)

6.2.2 Mathematical model

The FLP can also be formulated as an Integer Program (IP) as follows (Vygen, 2009):

(22)

Subject to:

 (23)

(24)

 (25)

 (26)

This formulation is considering two decision variables xij and yi. xij represents the

amount of flow from a facility i to a customer j, which would be 0 if the customer will not

be served by that facility, or equals to the demand of the customer otherwise. In

addition, yi is a decision variable which is equal to 1 if the facility i will be opened and 0

otherwise. Constraint (23) forces that customers can only be assigned to open

facilities. And constraint (24) assures that every customer will have its demand

satisfied. Note that this formulation has both a binary (yi) decision variable and a

72

continuous (xij) variable. In this case the formulation is called Mixed Integer Linear

Program (MILP).

6.3 The RandCFH-ILS Algorithm

For the FLP we are defining an algorithm based on the MIRHA framework (see

Chapter 2). The proposed algorithm is detailed on Figure 19 as a flow chart and works

as follows. First, it loads the problem instance. Then, it generates an initial random

solution, which is the starting point for the ILS procedure. To generate this initial

solution, the algorithm chooses a random number pi between |F|/2 and |F|, and picks

randomly pi facilities to open. After that, it computes the total cost of the generated

solution, which is selected as starting point.

The basis for selecting always more than the half of facilities to open in the

initial solution is not casual. Regarding computational costs, the fact of closing a facility

on the solution is cheaper than opening a solution. This is due to the way that the costs

are calculated. When a facility is selected to be closed, for updating the solution costs

we only have to relocate the customers that were assigned to the closed facilities, but

the rest of customers assigned to the other facilities remain unmodified. However,

when opening a facility in the solution, every single client to facility assignation must be

evaluated to determine if the newly open facility is the one with lesser assignment cost

for this customer among all the open facilities in the current solution. For this reason, if

starting with a solution with a higher number of open facilities, chances are that for

improving the solution, closing less costly movements should be performed.

After this initial solution is generated, a local search procedure is applied to

refine the initial solution. We propose two different local search procedures in this

chapter. The first one is simple and very fast (tiny local search), while the other

performs a deeper search with slower execution times (deep local search).

 On the one hand, the tiny local search procedure is based only in closing

movements. It starts from the current solution and randomly closes one by one each of

the open facilities. The facilities to close are selected randomly among all the closed

facilities. If the solution is improved (i.e. it has a lower total cost) by closing the selected

facility, it is actually removed from the solution; otherwise the facility is kept in.

On the other hand, the deep local search procedure combines both closing and

opening movements, which makes this procedure computationally more expensive.

This local search procedure is divided in three parts. First, it starts by randomly

opening one by one each of the closed facilities. It evaluates the solution at each stage

73

and only adds the open facility to the solution in the case an improvement is obtained.

On the second stage it performs a swap movement, replacing a random number of

open facilities on the solution by the same number of closed facilities. Finally, in the

third stage, it closes the open facilities in the current solution one by one selected in a

random order, effectively closing the facility in the final solution only in the case an

improvement is obtained. Further details on both local search procedures are detailed

on next sections.

Figure 19. Flow diagram of the proposed approach (RandCFH-ILS)

The solution generated will finally be the starting point for the ILS framework and

considered as base solution. The ILS is mainly an iterative process which, at each

74

iteration, generates a new feasible solution with chances to outperform the base

solution. Our ILS consists of three steps:

1. Destruction/Construction of the solution (perturbation)

2. Refine the solution (local search)

3. Acceptance criteria of the solution

On the first step, a perturbation operator is applied to the solution. This operator

basically destructs some part of the solution by removing open facilities, and then

reconstructs it by opening new facilities. This operator always opens more facilities

than the amount of closed ones, so it benefits from the fact that the closing movement

is less computationally expensive, as happened with the generation of the initial

solution. This solution is then refined by the same local search operator used on the

initial solution.

 Finally, the last step of the ILS is the acceptance criteria for updating the best

and base solutions. Being the best solution the one that will be returned as the result of

our methodology and the base solution the solution used as initial solution for the next

iteration of the ILS. If the solution obtained from the perturbation and local search

procedures improves the best solution found so far, then the best and base solutions

are updated.

 Additionally, if the solution obtained is worse than the current base solution, an

acceptance criterion is defined. This acceptance criterion allows a non-improving

solution to be accepted as a new base solution if certain conditions are met. The

acceptance criteria define a gap which the solution is allowed to worsen. This gap

varies during the execution of the algorithm, allowing greater gaps at the beginning of

the execution, and smaller gap as the execution time passes. With that, we enable a

method to escape from local minima and explore different regions of the solutions

space.

6.3.1 Implementation details

The main method of our proposal is the RandCFH-ILS (Figure 20). This method

receives as a parameter the facilities and customers which conform the problem

instance, the beta parameter used during the randomization process and a parameter

used as stopping criterion on the ILS loop.

It first creates an initial random solution by the genInitRandSol method and

refines it by the local search procedure. As early mentioned in this chapter, we defined

two different local search procedures: localSearchTiny and localSearchDeep. After

that, credit values used by the acceptance criteria are initialized. Then, the ILS loop is

75

started using the base solution obtained at this point. In the iterated loop, the

perturbation operator is applied to the current base solution (calling the perturbate

method) and the obtained solution is refined by the local search procedure.

procedure RandCFH-ILS(facilities, clients, beta, maxIter)

01 baseSol  getInitRandSol(facilities, clients, beta)

02 baseSol  localSearch(baseSol)

03 bestSol  baseSol

04 nIter  0

05 credit  0

06 while {each nIter <= maxIter} do

07 newSol  perturbate(baseSol, beta) % destruction-construction

08 newSol  localSearch(baseSol)

09 delta  cost(newSol) – cost(baseSol)

10 if {delta < 0} then

11 credit  -(delta)

12 baseSol  newSol

13 if {cost(newSol) < cost(bestSol)} then

14 bestSol  newSol

15 end if

16 else if {delta > 0} and {credit >= delta} then %acc. criterion

17 credit  0

18 baseSol  newSol

19 end if

20 nIter  nIter + 1

21 end while

22 return bestSol % returns the best(s) solution(s) found so far

end procedure

Figure 20. RandCFH-ILS algorithm main procedure

This newly obtained solution is then evaluated. If the solution improves the current

base solution, then the base solution is updated. Also the credit is updated with the

same value as the improvement obtained. This causes credit values to be higher at the

beginning of the execution, so bad solutions are more tolerated. As the algorithm

obtains smaller improvements, only small degradations on the solution are welcomed

by the acceptance criteria. If the new solution improves also the best solution, we

update it as well.

 In the case that the new solution is worse than the current base solution, the

difference between both is still evaluated. The new solution is only accepted as new

base solution if this difference is below the credit acceptance threshold. In that case,

the new solution is accepted as base solution and the credit is reset to 0, so two

degradations in a row are never allowed.

 The loop is executed until the termination criterion is met, which can be a time

limit or a maximum number of iterations. To conclude, the algorithm returns the best

solution found so far.

76

The genInitRandSol (Figure 21) method is the responsible of generating the

initial solution which serves as starting point for the algorithm. This method receives as

parameters the facilities and customers in the problem instance and the beta

parameter required for the Random Number Generator (RNG).

procedure getInitRandSol(facilities, clients, beta)

% Since closing is fast, start by opening a lot of facilities

01 nFacilToOpen  rand(size(facilities)/2, size(facilities))

% Biased-randomized selection process using a Geometric(beta) promotes

% the random selection of those facilities with HIGHEST density levels

02 facilToOpen  biasRandSelect(facilities, nFacilToOpen, beta)

03 sol  constructSol(facilToOpen, clients) % compute costs

03 return sol

end procedure

Figure 21. getInitRandSol method

First, it generates a random number between to total number of facilities and the half of

this number. Next, it randomly picks this number of facilities from the list of available

ones in the problem instance to be open. Finally it constructs the solution with the

selected facilities as open facilities and assigns each customer to that facility among

the open with lowest service cost for it.

procedure perturbate(baseSol, beta)

01 sol  copy(baseSol)

02 openFacilities  getOpenFacilities(sol)

03 nFacilToClose  rand(0, size(openFacilities))

% Biased-randomized selection process using a Geometric(beta) promotes

% the random selection of those facilities with LOWEST density levels

04 invOpenFacil  inverseOrder(openFacilities)

05 facilToClose  biasRandSelect(invOpenFacil, nFacilToClose, beta)

06 sol  destructSol(sol, facilToClose)

07 closedFacil  getClosedFacilities(sol)

% Re-construct more than destruct since closeLS is faster than openLS

08 nFacilToOpen  rand(nFacilToClose, size(closedFacil))

% Biased-randomized selection process using a Geometric(beta) promotes

% the random selection of those facilities with LOWEST density levels

09 facilToOpen  biasRandSelect(closedFacil, nFacilToOpen, beta)

10 sol  constructSol(facilToOpen) % Compute assignment cost

11 return sol

end procedure

Figure 22. perturbate method

The perturbate (Figure 22) method complete the perturbation operator used within the

main ILS loop. This method receives a base solution and the beta parameter for the

RNG. First of all, it creates a copy of the base solution and extracts the list of open

facilities from it. Then, it randomly closes a random number of facilities to close from all

the open ones in the solution. After that, it generates another random number of

facilities to be opened, being always greater than the number of facilities previously

77

closed. This forces the new solution to always include more open facilities and benefits

the algorithm on the later refinement process of the fact that closing a facility is a

cheaper operation than opening a new facility. Once we have the number of facilities to

open, we randomly pick the right amount from the closed facilities list and reconstruct

the solution by adding them.

procedure localSearchTiny(baseSol, beta)

% Fast local search based on closing

01 sol  copy(baseSol)

02 openFacilities  getOpenFacilities(sol)

03 openFacilitiesSorted <- biasRandSort(openFacilities)

04 for each {oFacility in openFacilities} do

05 newSol  deleteFacility(sol, oFacility)

06 if {cost(newSol) < cost(sol)} then

07 sol  newSol

08 else

09 newSol  addFacility(sol, oFacility)

10 end if

11 end for

12 return sol

end procedure

Figure 23. localSearchTiny algorithm main procedure

The localSearchTiny (Figure 23) method describes the operation of the tiny local

search, which can be used to refine FLP solutions. This procedure receives as

parameters the base solution and the beta parameter for the RNG.

First of all it, creates a copy of the base solution, extracts the list of open

facilities and sorts it randomly. After that, all open facilities are removed from the

solution one at a time. If the solution without that facility has a lower global cost than

the one including it, the facility is effectively removed from the solution. Otherwise, it is

kept in the open facilities list.

 The localSearchDeep (Figure 24) method presents the functioning of the deep

local search, which can be used to refine FLP solutions as the localSearchTiny

method. This procedure receives as parameters the base solution and the parameter

for the RNG. It starts by creating a copy of the base solution. Then, it starts a loop

structured on three different blocks that will keep running while an improvement is

found for the solution.

On the first block, we try to open closed facilities. The list of closed facilities is

extracted from the current solution and is randomly sorted. All closed facilities are

added one by one to the solution. If the solution with that facility has a lower global cost

than the one without it, the facility is effectively added the solution and the improvement

control is set to true. Otherwise, it is kept out.

78

The second block of the loop swaps open and closed facilities. It swaps all the

open facilities with all the closed ones one at a time until an improvement is found. If

any of the solutions with a swap has a lower global cost than the one without the

change, the facilities are effectively swapped from the solution, the improvement

control is set to true and the swapping process ends.

procedure localSearchDeep(baseSol, beta)

% Local search with exhaustive search

01 sol <- copy(baseSol)

02 while {improvement} do

03 improvement  false

04 closedFacilities  getClosedFacilities(sol)

05 closedFacilitiesSorted  biasRandSort(closedFacilities, beta)

06 for each {cFacility in closedFacilitiesSorted} do

07 newSol  addFacility(sol, cFacility)

08 if {cost(newSol) < cost(sol)} then

09 sol <- newSol

10 improvement  true

11 else

12 newSol  deleteFacility(sol, cFacility)

13 end if

14 end for

15 openFacilities  getOpenFacilities(sol)

16 for each {oFacility in openFacilities} do

17 newSol  deleteFacility(sol, oFacility)

18 closedFacilities  getClosedFacilities(sol)

19 for each {cFacility in closedFacilities} do

20 newSol  addFacility(sol, cFacility)

21 if {cost(newSol) < cost(sol)} then

22 sol  newSol

23 improvement  true

24 break

25 else

26 newSol  removeFacility(newSol, oFacility)

27 end if

28 end for

29 if {cost(newSol) < cost(sol)} then

30 sol  newSol

31 improvement  true

32 break

33 else

34 newSol  addFacility(newSol, cFacility)

35 end if

36 end for

37 sol  localSearchTiny(sol, beta)

38 end while

39 return bestSol % returns the best(s) solution(s) found so far

end procedure

Figure 24. localSearchDeep algorithm main procedure

Finally in the third block, we try to remove open facilities calling the localSearchTiny,

willing to reduce the solution cost. All open facilities are removed from the solution one

at a time. If the solution without that facility has a lower global cost than the one

79

including that facility, the facility is effectively removed from the solution and the

improvement control is set to true. Otherwise, it is kept in the open facilities list.

6.4 Results

To evaluate and assess the performance of the proposed algorithm, several

computational experiments were performed. The proposed algorithm was implemented

as a Java® 7SE application. We performed all the tests on a commodity desktop

computer with an Intel® CoreTM i5-2400 at 3.20 GHz and 4 GB RAM running Ubuntu

GNU/Linux 13.04.

 Even though Java is a programming language executed in a virtual machine

(JVM) and we are aware it may show poorer performance than others like C or C++,

the vast amount of tools available in the standard API (such as advanced structures or

garbage collection) and its object-orientation eased the development process. In

addition, the execution on the JVM offers better replicability and repeatability than other

languages.

 The implementation process of the algorithm is not a trivial task, since there are

some details which require special attention: (i) The correct design of the different

classes so that a convenient level of coupling and cohesion is reached; (ii) The quality

of the Random Number Generator, which affects directly in the performance of our

algorithm; (iii) The level of precision used to store and operate with numerical values is

key for the effectiveness of the algorithm. In order to fix (ii), a state-of-the-art pseudo

random number generator has been employed. Specifically, we used the LFSR113

from the SSJ library created by L’Ecuyer (2002). This generator provides a period of

2113, compared to the period of 248 of the generator provided by the standard Java

library. Also, to benefit from the fact that the used computer had a 4-core processor,

the implementation of the algorithm was done in a multi-threaded application, so at the

same time we were able to execute up to four different instances in parallel. With a

relatively small change on the implementation, this multi-threaded implementation

could be adapted to work all the threads on the resolution of the same instances, so

the computational times for obtaining solutions could be reduced.

 To test the efficiency of the proposed algorithm, four different classes of

problem instances obtained from Hoefer (2014) were used. The selected datasets

were chosen with the criteria of testing the algorithm against instances of small,

medium and big size (in terms of facilities and customers included in the graph). We

80

briefly describe next the used sets, but the reader is referred to Hoefer (2014) for

further details of each class of instances.

 BK: a small-sized class introduced by Bilde and Krarup (1977). Includes 220

instances in total divided in 22 subsets, with the number of facilities varying

from 30 to 50 and the number of customers from 80 to 100. These instances

were artificially generated by the authors, selecting the assignment costs

randomly on the range [0, 1000], and opening costs being always greater than

1000.

 GAP: a medium-sized class also introduced by Kochetov and Ivanenko

(2003). Consists of three subsets, each with 30 instances: GAPA, GAPB and

GAPC, being GAPC the hardest. These instances are considered to be

especially hard for dual-based methods.

 FPP: a medium-sized class introduced by Kochetov and Ivanenko (2003).

Consists of two subsets, each with 40 instances: FPP11 and FPP 17. Although

optimal solutions in this class can be found in polynomial times, the instances

are hard for algorithms based on flip and swap local search, since each

instance has a large number of strong local optima.

 MED: big-sized class originally proposed for the p-median problem by Ahn et

al. (1998), and later used in the context of the uncapacitated FLP by Barahona

and Chudak (1999). Each instance is a set of n points picked uniformly at

random in the unit square. A point represents both a user and a facility, and the

corresponding Euclidean distance determines connection costs. The set

consists of six different subsets with a different number of facilities and

customers (500, 1000, 1500, 2000, 2500 and 3000) and three different opening

cost schemas for each subset.

In the performed experiments, we tested the algorithm using the two different local

search procedures presented in this chapter. So, each dataset was solved twice: one

with the algorithm using the localSearchTiny procedure, and the second one using the

localSearchDeep procedure. With this we will be able to compare both procedures,

being able to determine which local search has the better performance depending on

the characteristics of the solved instance.

 The experiments were run by setting a stopping criteria based on a time limit for

every problem instance. So every instance will be solved by generating feasible

solution until the termination criteria of time has been met (see Figure 19). These

termination criteria will be different depending on the size and the class of instances

being solved. So, the greater the instances are, the more time it is given to the

81

algorithm (see Table 14). We have set these times the great enough to guarantee that

the algorithm reaches its best solution. We record the time when the best solution was

found for every instance, so we can know how fast the convergence to this best

solution was.

Class Number of facilities (n) Time (secs.)

BK 80-100 30

FPP11 133 600

FPP17 307 600

GAPA 100 180

GAPB 100 180

GAPC 100 180

MED 500-3000 3600

Table 14. Termination criteria for every class of instances.

Next, we show the results obtained when executing our algorithm in the earlier

explained benchmarks. We compare our results using both of the local search methods

described with the ones declared by Resende and Werneck (2006) using a GRASP

algorithm, as it is the best performing algorithm available in the literature. We would like

to remark that our experiments were performed on a low-end commodity desktop

computer, as opposed to the supercomputer used by Resende and Werneck; also, we

used a standard Java SE application, instead of the specifically compiled application

utilized by Resende and Werneck. Although the theoretically higher performance of our

computer, we only used one of its cores for the Java Virtual Machine to run the

experiments.

 We started evaluating the methodology in the set of tests with simplest and

smallest problem instances, the Bilde and Krarup (1977) benchmark (Table 15). In

this test, our algorithm clearly outperforms the GRASP proposal when using the deep

local search method. We find the optimal solution for all the instances in the benchmark

in much shorter execution times. Contrarily, we discovered in this first test that the tiny

local search method obtains lower quality results in terms of gap with the optima in

comparable times with the GRASP.

We performed the next evaluation over the GAP benchmark (Table 16), known

as a hard test for dual-based oriented methods. Neither our algorithm nor GRASP was

thought specifically for dual-based problems, so finding good quality results in these

instances is challenging. In this set of tests, our algorithm obtains better quality

solutions using any of the presented local search methods, although the deep one

82

results in much lower gaps from optima. However, the running times employed by our

proposal were much higher than the ones in Resende’s experimentation.

 GRASP RandCFH-ILS tiny RandCFH-ILS deep

Subset # customers # facilities Gap t (ms) Gap t (ms) Gap t (ms)

B
100 50

0.000 310 0.000 794 0.000 0.20

C 0.016 450 0.130 835 0.000 0.05

D01

80 30

0.000 223 0.001 116 0.000 0.02

D02 0.000 211 0.000 317 0.000 0.04

D03 0.000 199 0.000 58 0.000 0.06

D04 0.000 170 0.000 48 0.000 0.08

D05 0.000 162 0.000 41 0.000 0.10

D06 0.000 186 0.000 124 0.000 0.12

D07 0.000 174 0.000 9 0.000 0.15

D08 0.000 166 0.000 20 0.000 0.08

D09 0.000 175 0.000 11 0.000 0.07

D10 0.000 166 0.000 28 0.000 0.21

E01

100 50

0.000 476 0.201 667 0.000 0.03

E02 0.000 588 0.011 1176 0.000 0.07

E03 0.019 512 0.000 286 0.000 0.11

E04 0.000 464 0.000 389 0.000 0.14

E05 0.000 376 0.000 223 0.000 0.18

E06 0.000 408 0.000 247 0.000 0.22

E07 0.000 416 0.000 451 0.000 0.25

E08 0.000 418 0.000 728 0.000 0.28

E09 0.000 352 0.000 35 0.000 0.29

E10 0.000 353 0.000 70 0.000 0.32

Avg. 0.002 316 0.015 290 0.000 0.14

Table 15. Results obtained for the 22 BK subsets of instances.

 GRASP RandCFH-ILS tiny RandCFH-ILS deep

Subset # customers # facilities Gap t (s) Gap t (s) Gap t (s)

GAP A

100 100

5.140 1.41 2.470 47.68 1.095 31.25

GAP B 5.980 1.81 2.811 63.56 1.642 40.72

GAP C 6.740 1.89 2.859 70.17 1.207 59.55

Avg. 5.953 1.70 3.405 54.43 1.314 43.84

Table 16. Results obtained for GAP subsets of instances.

The next test was performed over the FPP benchmark (Table 17), known to include

very hard instances for swapping algorithms. Our algorithm is not purely in this family,

since we close and open an independent number of facilities at each overcoming

iteration instead of directly swapping facilities.

 GRASP RandCFH-ILS tiny RandCFH-ILS deep

Subset

customers

facilities
Gap t (s) Gap t (s) Gap t (s)

FPP 11 133 133 8.480 2.58 0.063 127.13 0.000 111.02

FPP 17 307 307 58.270 25.18 70.731 272.94 12.283 253.44

Avg. 33.375 13.88 35.397 200.03 6.142 253.44

Table 17. Results obtained for FPP subsets of instances.

As in the GAP experimentation, our methodology outperforms the results quality of the

Resende’s proposal. In the small instance, we even discover the optimal solution when

using the deep local search, while GRASP remained at an 8.4% gap. In this

83

benchmark, the tiny local search performs terribly due its simplicity in generating new

solutions and the intended complexity of the problem instance.

Finally, we run the MED benchmark (Table 18), the one with largest problem

instances. In these tests, the optimal is not known, but lower and upper bounds

obtained with exact methods are provided. In this chapter, we show the gap with

respect to the lower bound and compare it to the same gap of the average obtained by

the GRASP method.

 GRASP RandCFH-ILS tiny RandCFH-ILS deep

Subset # customers # facilities Gap t (s) Gap t (s) Gap t (s)

0500-10

500 500

0.022 33.2 0.022 213 0.022 7.35

0500-100 0.016 32.9 0.093 676 0.014 345

0500-1000 0.071 23.6 0.071 3168 0.078 2803

1000-10

1000 1000

0.101 173.9 0.399 2038 0.099 69

1000-100 0.048 148.8 0.333 3566 0.088 2898

1000-1000 0.037 141.7 1.165 3468 0.447 4494

1500-10

1500 1500

0.191 347.8 0.236 2418 0.175 1012

1500-100 0.030 378.7 0.687 3582 0.094 1427

1500-1000 0.034 387.2 3.514 3540 0.320 20939

2000-10

2000 2000

0.052 717.5 0.223 3415 0.052 1276

2000-100 0.036 650.8 1.198 3573 0.299 2611

2000-1000 0.031 760.0 5.468 2838 0.403 57678

2500-10

2500 2500

0.164 1419.5 0.622 2988 0.168 2248

2500-100 0.049 1128.2 1.537 3569 0.349 4369

2500-1000 0.052 1309.4 5.964 3533 0.308 108575

3000-10

3000 3000

0.104 1621.1 0.372 3570 0.102 2362

3000-100 0.124 1977.6 1.707 3538 0.545 4904

3000-1000 0.043 2081.4 6.238 3427 0.319 228691

Avg. 0.067 740 1.659 2951 0.938 13790

Table 18. Results obtained for MED subsets of instances.

The results in Table 18 show that our algorithm performs better than GRASP in the

instances with larger setup costs. In the smallest instances, our running times are even

competitive with Resende’s experiments. However, on larger instances, our algorithm

performs much slower, due to the longer list of open facilities included in these

solutions. Still, we obtained competitive results, not far from the lower bound.

Notice some of the times employed to find the best solution are larger than the

maximum run time given to the algorithm. This happens in the tests with the lowest

facility opening costs (the -1000 instances). In these problems, the number of open

facilities is considerably large and our algorithm tries to improve iteratively a long list.

Thus, a single iteration takes longer than the time set for the stopping criteria.

With all the shown benchmarks, we can conclude our methodology outperforms

the existing state-of-the-art heuristics in small and medium-scale scenarios, especially

on those with short lists of open facilities. Thus, our algorithm could be a valuable tool

for reduced or clustered scenarios, on which a large amount of clients could be served

by a small amount of facilities.

84

6.5 Real Case Scenario: Minimizing Network Distance to Services

Network distance between servers and clients has a great impact on the quality

perception for some Internet applications and the overall bandwidth consumption. For

instance, video streaming services might be affected if congestion is found in the path

from the server to the final client. Distributing services across the network is a good

strategy to reduce these phenomena, but it comes at a high cost for operators.

 Data intensive applications can also suffer from degradation and can generate

high bandwidth demands if data is located far from the processing spot. In this field of

study, Ryden et al. (2013) proposed a scenario in which user-contributed resources

could be gathered to support data-intensive applications. Their proposal included a

host selection strategy, based on bandwidth probes, in order to reduce overall

bandwidth usage. Also targeting systems composed by non-dedicated resources,

Lazaro et al. (2012) proposed an availability-aware host selection policy for service

deployment in contributory communities. From the network perspective, their replica

selection strategy would represent a random selection.

 Studying which locations should be selected in a network to place a content or a

service can be modeled as a FLP or a p-median problem (Resende and Werneck,

2004). While the p-median problem does not consider any opening costs and restricts

the number of facilities to open, the FLP considers the cost incurred when opening a

new facility and relates the final number of open ones to the instance size and the

opening cost values. In this particular case, the number of replicas each service should

deploy is not known in advance. Regarding the network distances, the more service

replicas in a network, the closer should be any client to any of them. However, more

resources would be utilized and therefore fewer services could be supported in a

platform of the same size.

 Average Minima Maxima

Network diameter 11

Node degree 2.0476 1.0000 260.0000

Node degree centrality 0.0018 0.0009 0.2295

Node closeness centrality 0.2442 0.1212 0.4258

Node betweness centrality 0.0028 0.0000 0.7912

Path lengths 4.2244 1.0000 11.0000

Table 19. Network topology trait overview

In order to prove the value of our methodology in a real use case, we simulated a

community cloud. To do so, we selected a mesh network topology from a Wireless

Community Network (WCN, Flickenberger 2002). This type of networks are

85

constructed, operated, maintained and owned by the users themselves and pose a

great opportunity for community cloud success. We selected a network snapshot with

1134 nodes and 1161 links. Due to space limitations and the low visibility of such a

large graph, we cannot depict the actual network topology in this chapter. Instead, we

provide in Table 19 some basic graph statistics to help the reader to have a better

understanding of the type of network we are dealing with.

We considered the 53 nodes in the topology with more than one link to be the

nodes that could host a service (facility) and all of them (including facilities) to be

potential service consumers (customers). Considering facilities to be also consumers is

one of the features in the community cloud and contributory communities’ proposals, as

users originally contribute their resources to support the platforms with the only reward

of accessing these services. Although in this example we assume complete knowledge

about the network topology, probing techniques like traceroute could be used in a real

system to explore the underlying network connecting the nodes, in a similar way than

Ryden et al. (2013) do with available bandwidth used by their allocation strategy.

To transform the network graph into a classical FLP instance, connection costs

were established as the number of network hops from one node to another and the

opening cost for each facility was defined as . The

closeness centrality is a graph measure on how close is a vertex to all other vertices in

the same graph. Thus, directly linking the opening cost of a facility at a given spot to

this measure intuitively seemed a good strategy to associate higher costs to well

connected hosts. We studied the application of our methodology in the described

scenario and compared it to the following allocation strategies:

1. A greedy method that selects the top N nodes ordered by descending opening

cost.

2. A greedy method that selects the top N nodes ordered by ascending opening

cost.

3. A random selection of N nodes from all the available facilities.

In all cases, we set N to the same number of nodes selected by our FLP solving

method, so the distance and cost comparison is done with the same level of resource

usage. For the random selection strategy, we took the average from 100 samples. We

gave 1 second of running time to our heuristic, a restricted time that would allow its use

in a user-interactive service deployment process. We plot in Figure 25 the distance of

all clients in the network to its closest facility when selected with each of the explained

methodologies. Figure 26 shows the cost incurred by each of the service allocations.

86

Figure 25. Cumulative distribution function of the distance to the closest replica from each client.

Figure 26. Cost distribution comparison of the different deployments obtained by the described
allocation methods

As can be observed in both figures, our simulation-based methodology selects nodes

in the network to host a single service that are closer to all other ones while maintaining

a low deployment cost. Observing the disperse distances and costs obtained with both

87

greedy methodologies, we can also deduct that: (a) selecting those nodes with higher

closeness centrality values results in low network distances and restrained total

deployment costs; and (b) selecting nodes with lower closeness centrality results in

very low opening costs but prohibitively high connecting ones and longer network

distances. Both facts are a direct consequence of the cost function used to assign open

costs for facilities in the FLP instance, but they help to value our proposal on finding

low distance and low cost deployments.

Figure 27. Cost distribution function of the mean network distances from each node to its closes
replica.

In a real-life scenario, several services or applications should be concurrently

supported in the same network. To show the behavior of our methodology in such

case, we evaluated the network distances after five consecutive service allocations,

considering only one service replica was supported at a time on each host. We show in

Figure 27 the distance of each node in the network to the closest facility of each of the

five deployed services when replicas are allocated with the explained methodologies.

Figure 28 shows a box plot comparison of the total costs incurred by each of the

deployed services. Figure 27 show our methodology consistently allocates replicas

closer to all other nodes in the network by using the same number of resources.

Specially, if we look at the maximum distance, our proposal is able to allocate replicas

at half the distance than other approaches. Thus, we can highlight our methodology

does a better resource utilization, getting lower network distances without increasing

88

the number of consumed resources. Moreover, as the box plot in Figure 28 reflects,

the selected service allocations are also cheaper on average.

Figure 28. Box plot comparisons of the deployment costs with different allocation methodologies.

6.6 Chapter Conclusions

In the context of the Facility Location Problem applied to computer networks, this

chapter has discussed the use of random variates generated from skewed probability

distributions to induce a biased-randomized behavior inside a solving metaheuristic.

The use of biased randomization helps the algorithm during the local search, thus

providing shorter convergence times than the ones obtained by using standard uniform

randomization. The resulting algorithm has been tested against a classical and well-

studied benchmark for the FLP. As well, we applied our proposal to a real case

scenario of a community platform and showed our methodology regularly selects

network locations closer than the ones selected by any of the simple methods

compared. The proposed algorithm while simple, as it is only requiring a single-

parameter during the tuning phase, it is obtaining competitive results. These results

confirm that simulation-inspired approaches like the one introduced in this proposal can

become an efficient tool for solving FLP and other similar optimization problems in the

field of distributed computing systems or telecommunication networks. We expect to

89

apply the presented methodology to larger network instances and study its application

in real system deployments.

90

91

7 Conclusions and Contributions Derived

from this Thesis

7.1 Conclusions

The Telecommunication sector is generating new optimization problems as technology

advances occur. Improvements in the capacity of processing of computer processors,

the definition of new concepts of network infrastructures like cloud computing, or the

necessity of having faster internet connections which require of the deployment of

newer network infrastructure, have associated with them optimization problems which

are usually complex (or even impossible) to solve with exact methods. These scenarios

usually can be modeled by already defined problems in more mature areas, as for

example Transportation and Logistics. Also, solution methods can be reused for the

new domain of problems or, at least, ideas behind them can be easily adapted to solve

the new problems. One example of this is the MIRHA framework which we have

presented in this thesis. The framework offers general concepts which can be followed

for define biased randomized algorithms in different problems. In this thesis we have

proposed new algorithms based on the MIRHA framework for optimization problems

with potential applications in the Telecommunications field.

First of all, we have worked with the CARP. For this, we used the MIRHA

framework to define a biased-randomized algorithm, and created two different versions

of it, with different base heuristics. One was using the classical Path Scanning heuristic

(PSH), and the other our SHARP heuristic. The SHARP heuristic is also an original

contribution of this thesis as a heuristic for the Capacitated Arc Routing Problem

(CARP). The heuristic being based on the classical Clarke and Wright Savings (CWS)

heuristic for the Capacitated Vehicle Routing Problem (CVRP), obtained relatively-good

results by itself. Results showed that the RandSHARP algorithm has a better

performance than RandPSH. Also, RandSHARP results are competitive when

compared with the state of the art. This makes the RandSHARP algorithm a very good

alternative for real-life scenarios because, as it is quite easy to implement, and has

92

only one configuration parameter, the time required to implement the algorithm in a real

case is lower than other methauristics with complex configuration steps.

Next, we dealt with the stochastic variation of the CARP, the Arc Routing

Problem With Stochastic Demands (ARPSD). The ARPSD differs from the CARP in

that the customer’s demands are not known beforehand. This makes the problem more

suitable for certain real cases in which the demands are not known beforehand but can

only be modeled by a random variable. For solving the problem we defined an

algorithm which combined the RandSHARP algorithm which we defined for the CARP

(based on the MIRHA framework), with the Simheuristics framework. Simheuristics,

with the use of biased-random sampling and Monte Carlo simulation, provide solutions

which are robust for scenarios with uncertainty. From this we created another original

algorithm: the Sim-RandSHARP. Mainly it solves a problem variation which considers

safety stocks on the capacity, with RandSHARP, and then evaluates the robustness of

the obtained solution with MCS. After several iterations the obtained solution

demonstrates to be robust under these uncertain scenarios, while minimizing the total

expected costs.

After that, a third variation of the CARP was solved: the non-smooth ARP. In the

non-smooth ARP the function to be optimized is non-smooth. In the case of study this

was due to the fact that the capacity constraint was changed to a soft constraint. This

mean that the constraint can be violated but incurring in some penalty cost. For solving

the problem, a variation of the RandSHARP for the problem was used, which consider

the soft-constraint in the problem definition. We showed how the algorithm obtained

also competitive results also when the cost function is non-smooth.

Finally, we studied the Facility Location Problem (FLP) which also has application

in telecommunications problems. For the FLP we contributed an original algorithm also

based on the aforementioned MIRHA framework. The biased-randomized algorithm

designed demonstrated to be very competitive in terms of execution times and

solutions qualities when compared with other algorithms (GRASP). Also, we evaluated

the performance of the algorithm on a problem instances extracted from a real network

scenario. In this problem instance the algorithm obtained high quality solutions when

compared with different methods.

7.2 Future Work

In this thesis we widen the number of successful applications of the MIRHA framework

and Simheuristics by studying new problems. However, further research can be

93

conducted in order to analyze different scenarios of these problems and also to afford

new optimization problems:

 Additional problems can be studied for proposing algorithms with MIRHA

framework and Simheuristics. In this thesis we have shown how the

methodology can successfully be applied to different problems than the ones for

which originally was proposed the methodology. Futures researches can

propose algorithms based on MIRHA and/or Simheuristics to different

problems.

 The proposed algorithms are parallelizable in a natural way. This is due to the

nature of the MIRHA framework, which Iterated Local Search step can be easily

parallelizable. Also, different steps of the problem specific algorithm can be

parallelizable. With parallelization the results obtained by the algorithm in all the

problems that we have studied (CARP, ARPSD, non-smooth ARP and FLP)

can be improved by decreasing the required execution time when having a

computer with multiple execution cores.

 Following the previous point, distributed computing can be also evaluated. In

situations in which the computers available for executing the algorithm have not

enough execution cores, we can share the capacity of several low-end

computers to execute the parallelized version of the algorithm. Here the

research would define how the computations of the algorithm would be split and

coordinated within the distributed network.

 Study different variations of the ARPSD. The ARPSD models a scenario in

which the customer demands is not known beforehand, but there are other

stochastic scenarios that can be studied. For instance, another interesting

scenario would be that one in which the real cost of traversing an edge is not

known beforehand. In this case we have uncertainty in the cost function. A

future research line could evaluate if the proposed SimRandSHARP algorithm

is also robust when facing this uncertainty scenario.

 Propose an algorithm combining RandCFH-ILS and Simheuristics for the

stochastic variation of the FLP. The FLP has a stochastic variation in which new

customers appear in the network as the time passes. There is an interesting

research line to propose a new algorithm for the problem and evaluate the

robustness and quality of the obtained solutions.

 Finally, one problem of special interest for its possible applications in the

Telecommunications field is the Connected Facility Location Problem (CFLP,

Gupta et al. 2001). In the CFLP the goal is, in addition to select the location of

94

the different central nodes or facilities, to connect them with a Steiner Tree.

Mainly it is a combination of a FLP with a Steiner Tree Problem (STP). Thus,

another research line could be the adaption of the RandCFH-ILS algorithm,

originally proposed to the FLP, to the CFLP. One example of application of the

CFLP is the design of Virtual Private Networks (VPN).

7.3 Publications derived from this thesis

As a result of the research conducted within this thesis, several publications have been

produced as part of the main contributions of this work. Thus, in this chapter, we

present the accepted publications, the in-process-of-reviewing publications, some

dissemination activities developed in the last four years, and finally there are some

extra contributions related to the objectives of this dissertation that must be pointed out.

7.3.1 Publications

Among the publications derived from this thesis, we can remark some parts of this

thesis which have been published in the following articles belonging to publications

indexed in ISI-JCR or Elsevier-Scopus journals after a peer-reviewing process:

 Gonzalez-Martin, S.; Juan, A.; Riera, D.; Castella, Q.; Muñoz, R; and Perez, A.

(2012a). Development and assessment of the SHARP and RandSHARP

algorithms for the arc routing problem. AI Communications, 25: 173-189.

Indexed in ISI SCI, 2011 IF = 0.500, Q3. ISSN: 1134-5764.

 Gonzalez-Martin, S.; Ferrer, A.; Juan, A.; and Riera, D. (2014c). Solving non-

smooth arc routing problems throughout biased-randomized heuristics. In De

Sousa, J.; and Rossi, R. (eds.), Advances in Intelligent Systems and

Computing: 451-462. Indexed in ISI Web of Science and Scopus, 2013 SJR =

0.139, Q4. ISSN: 2194-5357.

 Gonzalez-Martin, S.; Juan, A.; Riera, D.; Elizondo, M.; and Fonseca, P.

(2012b). Sim-RandSHARP: A hybrid algorithm for solving the arc routing

problem with stochastic demands. In Proceedings of the 2012 Winter

Simulation Conference, Berlin, Germany: 1-11. Indexed in ISI Web of Science

and Scopus, 2011 SJR=0.372, Q2. ISSN: 08917736.

 Gonzalez-Martin, S.; Barrios, B.; Juan, A.; and Riera, D. (2014a). On the use of

biased randomization and simheuristics to solve vehicle and arc routing

problems. In Proceedings of the 2014 Winter Simulation Conference

95

(accepted), Savannah, USA, December 7-10. Indexed in ISI Web of Science

and Scopus, 2011 SJR=0.372, Q2. ISSN: 08917736.

 Cabrera, G.; Gonzalez-Martin, S.; Juan, A; and Marques, J. (2014). Combining

biased random sampling with metaheuristics for the facility location problem in

distributed computer systems. In Proceedings of the 2014 Winter Simulation

Conference (accepted), Savannah, USA, December 7-10. Indexed in ISI Web

of Science and Scopus, 2011 SJR=0.372, Q2. ISSN: 08917736.

 Juan, A.; Barrios, B.; Coccola, M.; Gonzalez-Martin, S.; Faulin, J.; and Bektas,

T. (2012b). Combining biased randomization with meta-heuristics for solving the

multi-depot vehicle routing problem. In Proceedings of the 2012 Winter

Simulation Conference, Berlin, Germany, December 9-12. Indexed in ISI Web

of Science and Scopus, 2011 SJR=0.372, Q2. ISSN: 08917736.

Also, at the moment of writing this dissertation, other parts of this thesis have been

submitted to a peer-reviewing process of other ISI-JCR publications, but still are under

review at the moment of writing this document:

 Gonzalez-Martin, S.; Juan, A.; Riera, D.; Elizondo, M.; and Ramos, J. (2014b).

A simheuristic algorithm for solving the arc routing problem with stochastic

demands. Applied Soft Computing.

 Gonzalez-Martin, S.; Cabrera, G.; and Juan, A. (2014d). BRILSA: A biased-

randomized ILS algorithm for the uncapacitated facility location problem. In

work.

In addition, there are some conference-papers associated to ISI-WOS or Elsevier-

Scopus journals which were accepted after a peer-reviewing process:

 Gonzalez-Martin, S.; Juan, A.; Riera, D.; and Caceres, J. (2011). A hybrid

algorithm combining path scanning and biased random sampling for the arc

routing problem. In Proceedings of the 18th RCRA Workshop, Barcelona, Spain:

46-54.

 Juan, A.; Faulin, J.; Caceres, J.; and Gonzalez-Martin, S. (2011d). Combining

randomized heuristics, monte-carlo simulation and parallel computing to solve

the stochastic vehicle routing problem. In: Proceedings of the international

conference on Optimization, Theory, Algorithms and Applications in Economics

(OPT2011), Barcelona, October 24-28.

 Gonzalez-Martin, S.; Ferrer, A.; Juan, A.; and Riera, D. (2013). Solving non-

smooth arc routing problems throughout biased-randomzied heuristics. In:

96

Proceedings of the 16th annual meeting of Euro Working Group on

Transportation, Porto, Protugal, September 4-6.

 Ferrer, A.; Juan, A.; Gonzalez-Martin, S., and Lourenço, H. (2013).

Randomized algorithms for solving routing problems with non-smooth objective

functions. In: 26th European Conference on Operational Research (EURO

2013). July 1-4, Rome.

 Fernandez-Piñas, D.; Gonzalez-Matin, S.; Juan, A.; and Riera, D. (2013). A

heuristic algorithm for the resource assignment problem in satellite

telecommunication networks. In: Proceedings of the 20th RCRA workshop on

Experimental Evaluation of Algorithms for Solving Problems with Combinatorial

Explosion, Roma, Italy, June 14-15.

Additionally, the following book chapter was co-authored:

 Juan, A.; Caceres, J.; Gonzalez-Martin, S.; Riera, D.; and Barrios, B. (2014a).

Biased randomization of Classical Heuristics. In Wang, J. (ed.), Encyclopedia of

Business Analytics and Optimization, IGI Global, 1: 314-324.

7.3.2 Presentations

Some parts of this work have also been presented in several international Congresses,

Conferences and Workshops, and published in the following activities:

 Juan, A.; Gonzalez-Martin, S.; Elizondo, M.; Riera, D. (2012). A hybrid

algorithm for solving the arc routing problem with stochastic demands. 2012

IN3-HAROSA International Workshop. June 13-15, Barcelona.

 Gonzalez-Martin, S.; Juan, A.; Cabrera, G.; and Riera, D. (2013). Applying

MIRHA to the Connected Facility Location Problem. 2013 ICSO-HARSA

International Workshop. July 10-12, Barcelona.

 Muñoz, C.; Gonzalez-Martin, S.; Candia, A.; and Juan, A. (2014). Solving Arc

Routing Problem with a Hybrid Electromagnetic Mechanism Algorithm. In: XLVI

Brazilian Symposium of Operational Research, Salvador de Bahia, September

16-19.

7.3.3 Other contributions

During the thesis period, additional activities have been conducted which, not being

included on this thesis dissertation, were on topics closely related to the combinatorial

optimization and telecommunications fields. In particular, the guidance of a final Master

Thesis for the degree of Master in Software Libre from the Universitat Oberta de

97

Catalunya (UOC) was conducted in collaboration with Dr. Angel A. Juan (advisor of this

PhD thesis). The thesis was developed by the student David Fernandez Piñas

(Fernandez, 2013), and a part of it was published in the RCRA workshop:

 Fernandez-Piñas, D.; Gonzalez-Matin, S.; Juan, A.; and Riera, D. (2013). A

heuristic algorithm for the resource assignment problem in satellite

telecommunication networks. In: Proceedings of the 20th RCRA workshop on

Experimental Evaluation of Algorithms for Solving Problems with Combinatorial

Explosion, Roma, Italy, June 14-15.

Additionally, collaboration was done with the student Carlos Muñoz from the Talca

University (Chile) during his stage at UOC, for the work done for his final master thesis

in Industrial Engineering. As a result of this collaboration, the following conference

paper was produced:

 Muñoz, C.; Gonzalez-Martin, S.; Candia, A.; and Juan, A. (2014). Solving Arc

Routing Problem with a Hybrid Electromagnetic Mechanism Algorithm. In: XLVI

Brazilian Symposium of Operational Research, Salvador de Bahia, September

16-19.

Also the following co-authored paper was presented as a poster in the Winter

Simulation Conference:

 Juan, A.; Barrios, B.; Coccola, M.; Gonzalez-Martin, S.; Faulin, J.; and Bektas,

T. (2012b). Combining biased randomization with meta-heuristics for solving the

multi-depot vehicle routing problem. In Proceedings of the 2012 Winter

Simulation Conference, Berlin, Germany, December 9-12.

98

99

References

Al-Karaki, J; and Kamal, A. (2004) Routing techniques in wireless sensor networks: a survey.

IEEE Wireless Communications, 11: 6-28.

Al-Sultan, K. (1995). A tabu search approach to the clustering problem. Pattern Recognition,

28(9): 1443-1451.

Alves, M.; and Almeida, M. (1992). Simulated annealing algorithm for the simple plant location

problem. In Revista Investigação Operacional, 12.

Amberg, A.; Domschke, W.; and Voß, S. (2000). Multiple center capacitated arc routing

problems: A tabu search algorithm using capacitated trees. European Journal of

Operational Research, 124: 360-376.

Amberg, A.; and Voß, S. (2002). A hierarchical relaxation lower bound for the capacitated arc

routing problem. In Proceedings of the 35th Annual Hawaii Internat. Conference System

Science.

Assad, A.; and Golden, B. (1995). Arc routing methods and applications. In M. G. Ball, T. L.

Magnanti, C. L. Monma, and G. L. Nemhauser, eds. Network Routing, volume 8 of

Handbooks in Operations Research and Management Science, Elsevier: 375-483.

Bagirov, A.; and Yearwood, J. (2006). A new nonsmooth optimization algorithm for minimum

sum-of-squares clustering problem. European Journal of Operations Research, 170: 578-

596.

Bagirov, A.; Lai, D.; and Palaniswami, M. (2007). A nonsmooth optimization approach to sensor

network location. In: Palaniswami, M.; Marusic, M.; and Law, Y. (eds.). Proceedings of

the 2007 international conference on intelligent sensors, sensor networks and information

processing: 727-732.

Balachandran, V.; and Jain, S. (1976). Optimal facility location under random demand with

general cost structure. Naval Research Logistics Quarterly, 23: 421-436.

Baldacci, R.; and Maniezzo, V. (2006). Exact methods based on node routing formulations for

undirected arc-routing problems. Networks, 47(1): 52-60.

Balinski, M. (1966). On finding integer solutions to linear programs. In Proceedings of the IBM

Scientific Computing Symposium on Combinatorial Problem: 225-248.

Belenguer, J.; and Benavent, E. (1992) Polyhedral results on the capacitated arc routing

problem. Technical Report TR-01, Dep. Estadística e Inv. Op., Universidad de Valencia.

Belenguer, J.; and Benavent, E. (1998). The capacitated arc routing problem: Valid inequalities

and facets. Computational Optimization and Applications, 10(2):165-187.

Belenguer, J.; and Benavent, E. (2003). A cutting plane algorithm for the capacitated arc routing

problem. Computers & Operations Research, 30(5):705-728.

Belenguer, J.; Benavent, E.; Lacomme, P.; and Prins, C. (2006). Lower and upper bounds for

the mixed capacitated arc routing problem. Computers & Operations Research, 33-

12:3363-3383.

Belenguer, J. (2014). http://www.uv.es/belengue/carp.html, accessed on July 2014.

http://www.uv.es/belengue/carp.html

100

Beltrami, E.; and Bodin, L. (1974). Networks and vehicle routing for municipal waste collection.

Networks, 4(1): 65-94.

Bertsimas, D.; and Howell, L. Further results on the probabilistic traveling salesman problem.

European Journal of Operational Research, 65(1): 68-95.

Beullens, P.; Muyldermans, L.; Cattrysse, D.; and Oudheusden, D. (2003). A guided local

search heuristic for the capacitated arc routing problem. European Journal of Operational

Research, 147(3): 629-643.

Bodin, L.; and Kursh, S. A detailed description of a computer system for the routing and

scheduling of street sweepers. Computers & Operations Research, 6(4): 181-198.

Boyd, S.; and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press,

Cambridge, UK.

Brahimi, N.; and Khan, S. (2013). Warehouse location with production, inventory, and

distribution decisions: a case study in the lube oil industry. In 4OR Quarterly Journal in

Operations Research, DOI: 10.1007/s10288-013-0237-0: 1-23.

Brandâo, J.; and Eglese, R. (2008). A deterministic tabu search algorithm for the capacitated

arc routing problem. Computers & Operations Research, 35(4): 1112-1126.

Bresina, J. (1996). Heuristic-biased stochastic sampling. In Proceedings of the 13
th
 National

Conference On Artificial Intelligence and The 8
th
 Innovative Applications of Artificial

Intelligence Conference, 1-2: 271-278.

Cabrera, G.; Gonzalez-Martin, S.; Juan, A; and Marques, J. (2014). Combining biased random

sampling with metaheuristics for the facility location problem in distributed computer

systems. In Proceedings of the 2014 Winter Simulation Conference (accepted).

Cabrera, G.; Gonzalez, S.; Juan, A.; and Grasman, S (2014b). A multi-start based algorithm

with iterated local search for the uncapacitated facility location problem. In IFORS 2014,

July 13-18, Barcelona.

Caceres, J.; Juan, A.; Grasman, S.; Bektas, T.; Fauling, J. (2012). Combining monte carlo

simulation with heuristics for solving the inventory routing problem with stochastic

demands. In Proceedings of the 2012 Winter Simulation Conference, Berlin, Germany.

Carrizosa, E.; Ushakov, A.; and Vasilyev, I (2012). A computational study of nonlinear minsum

facility location problem. Computers & Operations Research, 39: 2625-2633.

Cattrysse, D.; Lotan, T.; Muyldermands, L.; and Van Oudeheusden, D. (2002). Districting for

salt spreading operations. Europan Journal of Operational research, 139(3): 521-532.

Chapleau, L.; Ferland, J.; Lapalme, G.; and Rousseau, J. (1984). A parallel insert method for

the capacitated arc routing problem. Operations Research Letters, 3(2): 95-99.

Chaves, A.; and Lorena, L. (2010). Clustering search algorithm for the capacitated centered

clustering problem. Computers & Operations Research, 37(3): 552-558.

Choudhary, M.; Khan, N.; Abbas, A.; and Salman, A. (2008). Telecom sector deregulation,

business growth and economic development. In Proceedings of the PICMET 2008, 27-31

July, Cape Town, South Africa.: 2648-2656.

101

Christinasen, C.; and Lysgaard, J. (2007). A branch-and-price algorithm for the capacitated

vehicle routing problem with stochastic demands. Operations Research Letters, 35(6):

773-781.

Christiansen, C.; Lysgaard, J.; and Wøhlk, S. (2009). A brahc-and-price algorithm for the

capacitated arc routing problem with stochastic demands. Operations Research Letters,

37(6): 392-398.

Chu, F.; Labadi, N.; and Prins, C. (2003). A scatter search for the periodic capacitated arc

routing problem. European Journal of Operational Research, 169(2):586-605.

Chudak, F. (1998). Improved approximation algorithms for uncapacitated facility location. In:

Bixby, R.; Boyd, E.; and Rios-Mercado, R. (3ds), Integer Programming and Combinatorial

Optimization, Lecture Notes in Computer Science, 1412, Springer: 180-194.

Clarke, G.; and Wright, J. (1964). Scheduling of vehicles from a central depot to a number of

delivery point. Operations Research, 12: 568-581.

Cooper, L. (1963). Location-allocation problems. Operations Research, 11(3): 331-343.

Cordeau, J.; Gendreau, M.; Laporte, G.; Potvin, J.; and Semet, F. (2002). A guide to vehicle

routing heuristics. Journal of Operations Research Society, 53: 512-522.

Cormen, R.; Leiserson, R.; Rivest, R.; and Stein, C. (2009) Introduction to algorithms, 3
rd

edition, MIT Press, Cambridge, MA.

Cornuejols, G.; Nemhauser, G.; and Wolsey, L. (1990). The uncapacitated facility location

problem. In: Mirchandani, P.; and Francis, R. (eds.), Discrete Location Theory, Wiley-

Interscience, New York: 119-171.

Del Pia, A.; and Filippi, C. (2006). A variable neighborhood descent algorithm for a real waste

collection problem with mobile depots. International Transactions in Operational

Research, 13(2):125-141.

Doerner, K.; Hartl, R.; Maniezzo, V.; and Reimann, M. (2003). An ant system metaheuristic for

the capacitated arc routing problem. In Preprints of 5th Meta-heuristics International

Conference, Kyoto.

Dorigo, M.; and Stutzle, T. (2010). Ant colony optimization: overview and recent advances. In

Gendreau, M.; and Potvin, J. (eds.), Handbook of metaheuristics. International series in

operations research management science, 146, 2
nd

 edition, Kluwer Academic, Dordrecht:

227-264.

Drezner, Z. (1995). Facility location: a survey of applications and methods. Springer series in

Operations Research and Financial Engineering.

Drezner, Z.; and Hamacher, H. (2010). Facility Location: applications and Theory. Springer,

New York.

Dror, M. (2000). Arc Routing: Theory, Solutions and Application, Kluwer Academic, Boston, MA.

Efroymson, M.; and Ray, T. (1966). A branch and bound algorithm for plant location. Operation

Research, 14: 361-368.

Eglese, R.; and Li, L. (1992). Efficient routing for winter gritting. Journal of Operaltional

Research Society, 43: 1031-1034.

102

Eglese, R. (1994). Routing winter gritting vehicles. Discrete Applied Mathematics, 48(3): 231-

244.

Eglese, R.; and Letchford, A. (2000) Polyhedral theory for arc routing problems. In M. Dror,

eds., Arc Routing: Theory, Solutions and Applications, Kluwer Academic Publishers,

Dordrecht: 199-230.

Eiselt, H.; Gendreau, M.; and Laporte, G. (1995). Arc routing problems ii: The rural postman

problem. Operations Research, 43(3): 399-414.

Erlenkotter, D. (1978). A dual-based procedure for uncapacitated location. Operation Research,

26: 992-1009.

Faulin, J.; Juan, A.; Grasman, S.; Fry, M. (eds.) (2012). Decision Making in Service Industries: A

Practical Approach. CRC Press – Taylor & Francis, Clermont, FL, USA.

Fernandez-Piñas, D. (2013). A simulation-based algortihm for solving the resource-assignment

problem in satellite telecommunication networks. Final Master Thesis, UOC.

Fernandez-Piñas, D.; Gonzalez-Matin, S.; Juan, A.; and Riera, D. (2013). A heuristic algorithm

for the resource assignment problem in satellite telecommunication networks. In:

Proceedings of the 20
th
 RCRA workshop on Experimental Evaluation of Algorithms for

Solving Problems with Combinatorial Explosion, Roma.

Ferrer, A.; Juan, A.; Gonzalez-Martin, S.; and Lourenço, H. (2013). Randomized algorithms for

solving routing problems with non-smooth objective functions. In Proceedings of the 26
th

European Conference on Operational Research (EURO 2013), Rome, Italy.

Festa, P.; and Resende, M. (2009a). An annotated bibliography of GRASP – Part I: algorithms.

International Transactions in Operational Research, 16: 1-24.

Festa, P.; and Resende, M. (2009a). An annotated bibliography of GRASP – Part II:

applications. International Transactions in Operational Research, 16: 1-24.

Fleury, G.; Lacomme, P.; Prins, C. and Ramdane-Cherif, W. (2002). Robustness evaluation of

solutions for the capacitated arc routing problem. In: Conference, AI Simulation and

Planning in High Autonomy Systems: 290-295.

Fleury, G.; Lacomme, P.; and Prins, C. (2004). Evolutionary algorithms for stochastic arc routing

problems. In: Raidl, G.; Rothlauf, F.; Smith, G.; Squillero, G.; Cagnoni, S.; Branke, J.;

Corne, D.; Drechsler, R.; Jin, Y.; and Johnson, C. (eds.) Applications of Evolutionary

Computing, volume 3005 of Lecture Notes in Computer Science: 501-512.

Fleury, G.; Lacomme, P.; Prins, C. and Ramdane-Cherif, W. (2005). Improving robustness of

solutions to arc routing problems. Journal of the Operational Research Society, 56(5):

526-538.

Fotakis, D. (2011). Online and incremental algorithms for facility location. In SIGACT News,

42(1): 97-131.

Frederickson, G.; Hecht, M.; and Kim, C. (1978). Approximation algorithms for some routing

problems. SIAM Journal of Computing, 7(2): 178-193.

Ghosh, D. (2003). Neighborhood search heuristics for the uncapacitated facility location

problem. European Journal of Operational Research, 150: 150-162.

103

Golden, B.; and Wong, R. (1981). Capacitated arc routing problems. Networks, 11(3): 305-315.

Golden, B.; DeArmon, J.; and Baker, E. (1983). Computational experiments with algorithms for

a class of routing problems. Computers & Operational Research, 10(1): 47-59.

Gomes, C.; and Selman, B. (1997). Practical aspects of algorithm portfolio design. In

Proceedings of the 3
rd

 ILOG International Users Meeting: 200-201.

Gonzalez-Martin, S.; Juan, A.; Riera, D.; and Caceres, J. (2011). A hybrid algorithm combining

path scanning and biased random sampling for the arc routing problem. In Proceedings

of the 18
th
 RCRA Workshop, Barcelona, Spain: 46-54.

Gonzalez-Martin, S.; Juan, A.; Riera, D.; Castella, Q.; Muñoz, R; and Perez, A. (2012a).

Development and assessment of the SHARP and RandSHARP algorithms for the arc

routing problem. AI Communications, 25: 173-189.

Gonzalez-Martin, S.; Juan, A.; Riera, D.; Elizondo, M.; and Fonseca, P. (2012b). Sim-

RandSHARP: A hybrid algorithm for solving the arc routing problem with stochastic

demands. In Proceedings of the 2012 Winter Simulation Conference, Berlin, Germany: 1-

11.

Gonzalez-Martin, S.; Ferrer, A.; Juan, A.; and Riera, D. (2013). Solving non-smooth arc routing

problems throughout biased-randomzied heuristics. In: Proceedings of the 16
th
 annual

meeting of Euro Working Group on Transportation, Porto, Protugal, September 4-6.

Gonzalez-Martin, S.; Barrios, B.; Juan, A.; and Riera, D. (2014a). On the use of biased

randomization and simheuristics to solve vehicle and arc routing problems. In

Proceedings of the 2014 Winter Simulation Conference (accepted).

Gonzalez-Martin, S.; Juan, A.; Riera, D.; Elizondo, M.; and Ramos, J. (2014b). A simheuristic

algorithm for solving the arc routing problem with stochastic demands. Applied Soft

Computing (under review).

Gonzalez-Martin, S.; Ferrer, A.; Juan, A.; and Riera, D. (2014c). Solving non-smooth arc routing

problems throughout biased-randomized heuristics. In De Sousa, J.; and Rossi, R. (eds.),

Advances in Intelligent Systems and Computing: 451-462.

Gonzalez-Martin, S.; Cabrera, G.; and Juan, A. (2014d). BRILSA: A biased-randomized ILS

algorithm for the uncapacitated facility location problem. In XXXXX. (in progress).

Greistorfer, P. (2003). A tabu scatter search metaheuristic for the arc routing problem.

Computers & industrial Engineering, 44(2): 249-266.

Gupta, A.; Kleinberg, J.; Kumar, A.; Rastogi, R.; and Yener, B. (2001). Provisioning a virtual

private network: a network design problem for multicommodity flow. In Proceedings of the

33
rd

 annual ACM symposium on theory of computing: 389-398.

Hamdan, M.; and El-Hawary, M. (2002). Hopfield-generic approach for solving the routing

problem. In: Computer Networks: Proceedings of the 2002 IEEE Canadian conference on

electrical and computer engineering: 823-827.

Hansen, P.; Mladenovic, N.; Brimberg, J.; and Moreno-Perez, J. (2010). Variable neighborhood

search. In, Gendreau, M.; and Potvin, J. (eds.), Handbook of metaheuristics. International

104

series in operations research management science, 146, 2
nd

 edition, Kluwer Academic,

Dordrecht: 61-86.

Hashimoto, H.; Ibaraki, T.; Imahori, S.; and Yagiura, M. (2006). The vehicle routing problem with

flexible time windows and traveling times. Discrete Applied Mathematics, 154(16): 2271-

2290.

Hertz, A.; Laporte, G.; and Mittaz, M. (2000). A tabu search heuristic for the capacitated arc

routing problem. Operations Research, 48(1): 129-135.

Hertz, A.; and Mittazl, M. A variable neighborhood descendent algorithm for the undirected

capacitated arc routing problem. Transportation Science, 35(4): 425-434.

Hirabayashi, R.; Nishida, N.; and Saruwatari, Y. (1992). Tour construction algorithm for the

capacitated arc routing problem. Asia-Pacific Journal of Operational Research, 9(2):155-

175.

Hochbaum, D. (1982). Approximation algorithms for the weighted set covering and node cover

problems. In SIAM Journal of Computing, 11(3): 555-556.

Hoefer, M. (2014). http://www.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/,

accessed on July 2014.

Ismail, Z.; and Ramli, M. (2011). Implementation of weather-type models of capacitated arc

routing problems via heuristics. American Journal of Applied Sciences, 8(4): 382-392.

Jain, K.; Mahdina, M.; Markakis, E.; Saberi, A.; and Vazirani, V. (2003). Greedy facility location

algorithms analyzed using dual fitting with factor-revealing LP. Journal of the ACM, 50:

795-824.

Jain, K.; and Vazirani, V. (1999). Primal-dual approximation algorithms for metric facility location

and k-median problems. In Proceedings of the 40th Annual IEEE Symposium on

Foundations of Computer Science, IEEE Computer Society Press, Los Alamos,

California: 2-13.

Juan, A.; Faulin, J.; Ruiz, R.; Barrios, B.; and Caballero, S. (2010). The SR-GCWS hybrid

algorithm for solving the Capacitated Vehicle Routing Problem. Applied Soft Computing,

10(1): 215-224.

Juan, A.; Faulin, J.; Ferrer, A.; Lourenço, H.; and Barrios, B. (2011a). MIRHA: multi-start biased

randomization of heuristics with adaptive local search for solving non-smooth routing

problems.

Juan, A.; Faulin, J.; Grasman, S.; Riera, D.; Marull, J.; and Mendez, C. (2011b). Using safety

stocks and simulations to solve the vehicle routing problem with stochastic demands.

Transportation Research Part C, 19: 751-765.

Juan, A.; Faulin, J.; Jorba, J.; Caceres, J.; and Marques, J. (2011c). Using parallel & distributed

computing for solving real-time vehicle routing problems with stochastic demands. Annals

of Operations Research, DOI 10.1007/s10479-011-0918-z.

Juan, A.; Faulin, J.; Caceres, J.; and Gonzalez-Martin, S. (2011d). Combining randomized

heuristics, monte-carlo simulation and parallel computing to solve the stochastic vehicle

http://www.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/

105

routing problem. In: Proceedings of the international conference on Optimization, Theory,

Algorithms and Applications in Economics (OPT2011), Barcelona, October 24-28.

Juan, A.; Lourenço, H.; Mateo, M.; Castella, Q.; and Barrios, B. (2012). ILS-ESP: An efficient,

simple and parameter-free algorithm for solving permutation flow-shop problem. In

Proceedings of the 6
th
 Workshop on Statistics, Mathematics and Computations, ISBN:

978-972-9473-62-3, July 3-4, Covilha, Portugal.

Juan, A.; Barrios, B.; Coccola, M.; Gonzalez-Martin, S.; Faulin, J.; and Bektas, T. (2012b).

Combining biased randomization with meta-heuristics for solving the multi-depot vehicle

routing problem. In Proceedings of the 2012 Winter Simulation Conference, Berlin,

Germany, December 9-12.

Juan, A.; Caceres, J.; Gonzalez-Martin, S.; Riera, D.; and Barrios, B. (2014a). Biased

randomization of Classical Heuristics. In Wang, J. (ed.), Encyclopedia of Business

Analytics and Optimization, IGI Global, 1: 314-324.

Karger, D.; and Minkoff, M. (2000). Building Steiner Trees with Incomplete Global Knowledge,

In: Proceedings of the 21
st
 annual symposium in Foundations of Computer Science: 613-

623.

Kennedy, J.; and Eberhart, R. (1995). Particle swarm optimization. In 1995 IEEE international

conference on neural networks proceedings, 1(6): 1942-1948.

Kiuchi, M.; Shinano, Y.; Hirabayashi, R.; and Saruwatari, Y. (1995). An exact algorithm for the

capacitated arc routing problem using parallel branch and bound method. Abstracts of the

1995 Spring National Conference of the Oper. Res. Soc. of Japan: 28-29.

Klincewicz, J.; and Luss, H. (1987). A dual based algorithm for multiproduct uncapacitated

facility location. Transportation Science, 21: 198-206.

Körkel, M. (1989). On the exact solution of large-scale simple plant location problems.

European Journal of Operational Research, 39: 157-173.

Kratica, J.; Tosic, D.; Filipovic, V.; and Ljubic, I. (2001). Solving the simple plant location

problem by genetic algorithm. In RAIRO Operations Research, 35: 127-142.

Kuehn, A., and Hamburger, M. (1963). A heuristic program for locating warehouses.

Management Science, 9(4): 643-666.

L’Ecuyer, P. (2006). Random number generation in simulation. Elsevier, Amsterdam.

Lam, P.; and Shiu, A. (2010). A bi-criteria approach for Steiner’s tree problems in

communications networks. In Proceedings of the 2011 International Workshop on

Modeling, Analysis and Control of Complex Networks, San Francisco, Califronia: 37-44.

Lacomme, P.; Prins, C.; and Ramdane-Chérif, W. (2001). Competitive genetic algorithms for the

capacitated arc routing problem and its extensions. Lecture Notes in Computer Science,

2037: 473-483.

Lacomme, P.; Prins, C.; and Ramdane-Chérif, W. (2004a). Competitive memetic algorithms for

arc routing problems. Annals of Operations Research, 131(1): 159-185.

Lacomme, P.; Prins, C.; and Tanguy, A. (2004b). First competitive ant colony scheme for the

CARP. Lecture Notes in Computer Science, 3172: 426-427.

106

Lacomme, P.; Prins, C.; and Ramdane-Chérif, W. (2005). Evolutionary algorithms for periodic

arc routing problems. European Journal of Operational Research, 165(2):535-553.

Lai, M.; Sohn, H.; Tseng, T.; and Chiang, C. (2010). A hybrid algorithm for capacitated plant

location problem. Expert Systems with Applications, 37: 8599-8605.

Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4): 408-416.

Laporte, G.; Musmanno, R.; and Vocaturo, F. (2010). An adaptive large neighborhood search

heuristic for the capacitated arc routing proble with stochastic demands. Transportation

Science, 44(1): 125-135.

Lazaro, D.; Kondo, D.; and Marques, J. (2012). Long-term availability prediction for groups of

volunteer resources. Journal of Parallel and Distributed Computing, 72-2: 281-296.

Lee, G.; and Murray, A. (2010). Maximal covering with network survivability requirements in

wireless mesh networks. Computers. In Environment and Urban Systems, 34: 49–57.

Letchford, A.; and Oukil, A. (2009). Exploiting sparsity in pricing routines for the capacitated arc

routing problem. Computers & Operations Research, 36(7): 2734-2742.

Li, L. (1992). Vehicle routeing for winter gritting. Ph. D. thesis, Department of Management

Science, Lancaster University.

Li, S. (2013). A 1.488 approximation algorithm for the uncapacitated facility location problem.

Information and Computation, 222: 45-58.

Loiola, E.; de Abreu, N.; Boaventura-Netto, P.; Hahn, P.; and Querido, T. (2007). A survey for

the quadratic assignment problem. European Journal in Operational Research, 176(2):

657-690.

Lokketangen, A.; and Glover, F. (1998). Solving zero-one mixed integer programming problems

using tabu search. European Journal in Operational Research, 106(2-3): 624-658.

Longo, H.; Aragão, M.; and Uchoa, E. (2006). Solving capacitated arc routing problems using a

transformation to the CVRP. Computers & Operations Research, 33(6): 1823-1837.

Lourenço, H.; Martin, O.; and Stutzle, T. (2010). Iterated local search: framework and

applications. In,Gendreau, M.; and Potvin, J. (eds.), Handbook of metaheuristics.

International series in operations research management science, 146, 2
nd

 edition, Kluwer

Academic, Dordrecht: 363-397.

Maniezzo, V.; Roffilli, M. (2008). Algorithms for large directed capacitated arc routing problem

instances. In C. Cotta, J. van Hemert eds., Recent Advances in Evolutionary

Computation for Combinatorial Optimization, volume 153 of Studies in Computational

Intelligence. Springer Berlin / Heidelberg: 259-274.

Maric, M.; Stanimirovic, Z.; and Bozovic, S. (2013). Hybrid metaheuristic method for determining

locations for long-term health care facilities. Annals of Operations Research, DOI:

10.1007/s10479-013-1313-8: 1-21.

Meyerson, A. (2001). Online facility location. In FOCS ’01 Proceedings of the 42nd IEEE

symposium on Foundations of Computer Science: 426-432.

Michel, L.; and Van Hentenryck, P. (2003). A simple tabu search for warehouse location.

European Journal on Operations Research, 157(3): 576-591.

107

Montoya, J.; Juan, A.; Huaccho, L.; Faulin, J.; and Rodriguez-Verjan, G. (eds.) (2011). Hybrid

algorithms for service, computing and manufacturing systems: routing and scheduling

solutions. IGI Global, Hershey.

Muñoz, C.; Gonzalez-Martin, S.; Candia, A.; and Juan, A. (2014). Solving Arc Routing Problem

with a Hybrid Electromagnetic Mechanism Algorithm. In: XLVI Brazilian Symposium of

Operational Research, Salvador de Bahia, September 16-19.

Nawaz, M.; Enscore, E.; and Ham, I. (1983). A heuristic algorithm for the m-machine, n-job

flowshop sequencing problem. OMEGA, 11: 91-95.

Nikolaev, A.; and Jacobson, S. (2010). Simulated annealing. In, Gendreau, M.; and Potvin, J.

(eds.), Handbook of metaheuristics. International series in operations research

management science, 146, 2
nd

 edition, Kluwer Academic, Dordrecht: 1-40.

Novoa, C.; and Storer, R. (2009). An approximate dynamic programming approach for the

vehicle routing problem with stochastic demands. European Journal of Operational

Research, 196: 509-515.

Oonsivilai, A.; Srisuruk, W.; Marungsri, B.; and Kulworawanichpong, T. (2009). Tabu search

approach to solve routing issues in communication netowkrs. In: World academy of

science, engineering and technology: 1174-1177.

Partridge, C. (2011). Forty data communications research questions. ACM SIGCOMM

Computer Communication Review, 41(5): 24-35.

Pearn, W.; Assad, A.; and Golden, B. (1987) Transforming arc routing into node routing

problems. Computers & Operations Research, 14(4): 285-288.

Pearn, W. (1988). New lower bounds for the capacitated arc routing problem. Networks, 18(3):

181-191.

Pearn, W. (1989). Approximate solutions for the capacitated arc routing problem. Computers &

Operations Research, 16(6): 589-600.

Pearn, W. (1991). Argument-insert algorithms for the capacitated arc routing problem.

Computers & Operations Research, 18(2): 189-198.

Peruyero, E.; Juan, A.; and Riera, D. (2011). A hybrid algorithm combining heuristics with monte

carlo simulation for solving the stochastic flow shop problem. In Proceedings of the 2011

ALIO/EURO Workshop, Porto, Portugal: 127-130.

Pinedo, M. (ed.) (2008). Scheduling theory, algorithms and systems. Springer, New York.

Ramadurai, V.; and Sichitiu, M. (2003). Localization in wireless sensor networks: a probabilistic

approach. In: International conference on wireless networks (ICWN03): 275-281.

Reeves, C. (2010). Genetic Algorithms. In, Gendreau, M.; and Potvin, J. (eds.), Handbook of

metaheuristics. International series in operations research management science, 146, 2
nd

edition, Kluwer Academic, Dordrecht: 109-140.

Reghioui, M.; Prins, C.; and Labadi, N. (2007) GRASP with path relinking for the capacitated arc

routing problem with time windows. Lecture Notes in Computer Science, 4448: 722-731.

Resende, M.; and Werneck, R. (2006). A hybrid heuristic for the p-median problem. Journal of

heuristics, 10(1): 59-88.

108

Resende, M.; and Werneck, R. (2006). A hybrid multistart heuristic for the uncapacitated facility

location problem. European Journal of Operational Research, 174(2006): 54-68.

Ryden, M.; Chandra, A.; and Weissman, J. (2013). Nebula: Data intensive computing over

widely distributed voluntary resources, Technical Report, Citeseer.

Santos, L.; Coutinho-Rodrigues, J.; and Current, J. (2009) An improved heuristic for the

capacitated arc routing problem. Computers & Operations Research, 36(9): 2632-2637.

Schrage, L. (1975). Implicit representation of variable upper bound in liner programming. In

Mathematical Programming Study, 4: 118-132.

Shang, R.; Wang, J.; Jiao, L.; and Wang, Y. (2014). An improved decomposition-based

memetic algorithm for multi-objective capacitated arc routing problem. Applied Soft

Computing, 19: 343-361.

Shmoys D.; Tardos, E.; and Aardal, K. (1997). Approximation algorithms for facility location

problems. In Proceedings of the 29th Annual ACM Sumposium on Theory of Computing,

ACM, New York: 265-274.

Snyder, L. (2006). Facility location under uncertainty: a review. IIE Transactions, 38(11): 971-

985.

Spielberg, K. (1969). Algorithms for the simple plant location problem with some side

considerations. Operations Research, 17: 85-111.

Stern, H.; and Dror, M. (1979). Routing electric meter readers, Computers & Operations

Research, 6(4): 209-233.

Stollsteimer, J. (1961). The effect of technical change and output expansion on the optimum

number, size and location of pear marketing facilities in a California pear producing

region. Ph.D. dissertation, University of California at Berkeley.

Tagmouti, M.; Gendreay, M.; and Potvin, J. (2007). Arc routing problems with time-dependent

service costs. European Journal of Operations Research, 181(1): 30-39.

Tagmouti, M.; Gendreau, M.; and Potvin, J. (2011). A dynamic capacitated arc routing problem

with time-dependent service costs. Transportation Research Part C, 19: 20-28.

Talbi, E (ed.) (2009). Metaheuristics: From Design to Implementation, Wiley.

Thouin, F.; and Coates, M. (2008). Equipment allocation in video on demand network

deployments. ACM Transaction on Multimedia Computing, Communications and

Applications, 5(1): 1-24.

Toth, P.; and Vigo, D. (2002). The Vehicle Routing Problem. SIAM, Phildeplhia, PA, USA.

Ulusoy, G. (1985). The fleet size and mix problem for capacitated arc routing. European Journal

of Operational Research, 22(3): 329-337.

Van Hentenryck, P.; and Bent, R. (2010). Online Stochastic Combinatorial Optimization. The

MIT Press. Boston. USA.

Verter, V. (2011). Uncapacitated and capacitated facility location problems. In: Eiselt H.; and

Marianov V. (eds.), Principles of Location Science, Springer: 25-37.

109

Vieira, J.; Moura, F.; and Viegas, J. (2007). Transport policy and environmental impacts: The

importance of multi-instrumentality in policy integration. Transportation Policy, 14(5): 421-

432.

Vygen, J. (2005). Approximation algorithm for facility location problems (Lecture Notes).

Technical report 05950, Resarch Institute for Discrete Mathematics, University of Bonn,

2005.

Wang, D.; Wang, D.; Yan, Y.; and Wang, H. (2008). An adaptive verison of parallel MPSO with

OpenMP for uncapacitated facility location problem. In Proceedigns of 2008 Chinese

Control and Decision Conference: 2303-2307.

Welz, S. (1994). Optimal solutions for the capacitated arc routing problem using integer

programming. Masther’s thesis, University o Cincinnati.

Win, Z. (1988). Contributions to routing problems. Ph. D. thesis, University of Augsburg,

Germany.

Wøhlk, S. (2005). Contributions to arc routing. Ph. D. thesis, Faculty of Social Sciences,

University of Southern Denmark.

Wøhlk, S. (2008). A decade of capacitated arc routing. In B. Golden, S. Raghavan, E. Wasil,

eds. The Vehicle Routing Problem: Latest Advances and New Challenges, volume 43 of

Operations Research/Computer Science Interfaces Series, Springer, Boston: 29-48.

Zachariadis, E.; and Kiranoudis, C. (2011), Local search for the undirected capacitated arc

routing problem with profits. European Journal of Operational Research, 210: 358-367.

110

111

A. Appendix

A.1. Extended results for ARPSD

 Solution for the deterministic CARP Our Best Solution for the ARPSD

Set
Fixed

Cost (1)
Expected
Cost (2)

Gap
(1)-(2)

Reli-
ability

Expected
Cost (3)

Gap
(1)-(3)

Gap (2)-
(3)

k
Reli-

ability

e1-A 3548 3578.7 0.87% 1.00 3562.1 0.40% -0.46% 0.99 1.00

e1-B 4498 4572.7 1.66% 1.00 4520.6 0.50% -1.14% 1.00 1.00

e1-C 5632 6388.6 13.43% 0.96 5669.9 0.67% -11.25% 1.00 1.00

e2-A 5022 5366.5 6.86% 0.97 5087.2 1.30% -5.20% 1.00 1.00

e2-B 6344 6867.7 8.26% 0.97 6436.5 1.46% -6.28% 1.00 1.00

e2-C 8477 9674.4 14.13% 0.96 8634.0 1.85% -10.75% 1.00 1.00

e3-A 5924 7121.9 20.22% 0.93 6051.6 2.15% -15.03% 1.00 1.00

e3-B 7847 8503.6 8.37% 0.98 7976.8 1.65% -6.20% 1.00 1.00

e3-C 10386 11693.9 12.59% 0.97 10641.4 2.46% -9.00% 0.99 1.00

e4-A 6504 6710.5 3.17% 0.99 6622.6 1.82% -1.31% 0.98 1.00

e4-B 9120 9303.4 2.01% 1.00 9311.9 2.10% 0.09% 1.00 1.00

e4-C 11886 12225.5 2.86% 0.99 12018.9 1.12% -1.69% 1.00 1.00

s1-A 5018 5887.3 17.32% 0.95 5130.0 2.23% -12.86% 1.00 1.00

s1-B 6435 6484.9 0.78% 1.00 6484.9 0.78% 0.00% 1.00 1.00

s1-C 8518 9433.0 10.74% 0.97 8692.0 2.04% -7.86% 1.00 0.99

s2-A 10076 11747.6 16.59% 0.93 10433.6 3.55% -11.19% 1.00 0.99

s2-B 13356 13951.9 4.46% 0.99 13710.6 2.65% -1.73% 1.00 1.00

s2-C 16752 18229.4 8.82% 0.97 17279.8 3.15% -5.21% 0.98 1.00

s3-A 10478 11457.1 9.34% 0.98 10696.1 2.08% -6.64% 0.99 1.00

s3-B 13986 15981.4 14.27% 0.97 14525.3 3.86% -9.11% 0.99 1.00

s3-C 17538 19300.7 10.05% 0.96 18222.2 3.90% -5.59% 1.00 0.99

s4-A 12647 15105.4 19.44% 0.95 13011.9 2.89% -13.86% 0.99 1.00

s4-B 16693 17971.1 7.66% 0.98 17083.4 2.34% -4.94% 1.00 1.00

s4-C 21071 22244.9 5.57% 0.99 21682.7 2.90% -2.53% 0.97 1.00

Avg. 9.27% 0.97 2.41% -6.28% 0.995 1.00

Table 20. Results for egl dataset when Var[Qi] = 0.05·E[Qi]

112

 Solution for the deterministic CARP Our Best Solution for the ARPSD

Set
Fixed

Cost (1)
Expected
Cost (2)

Gap
(1)-(2)

Reli-
ability

Expected
Cost (3)

Gap
(1)-(3)

Gap (2)-
(3)

k
Reli-

ability

gdb1 316 541.1 71.23% 0.73 482.0 52.53% -2.01% 0.95 0.87

gdb2 339 598.5 76.55% 0.73 517.7 52.71% -7.06% 0.99 0.87

gdb3 275 474.1 72.40% 0.85 424.9 54.51% -3.93% 0.98 0.87

gdb4 287 526.0 83.28% 0.98 466.1 62.40% -5.59% 0.82 0.87

gdb5 377 628.6 66.74% 1.00 599.1 58.91% -5.79% 0.93 0.86

gdb6 298 521.4 74.97% 0.88 469.7 57.62% -1.92% 0.85 0.82

gdb7 325 561.7 72.83% 0.92 521.0 60.31% -5.39% 0.90 0.82

gdb8 350 467.2 33.49% 0.82 397.4 13.54% 0.00% 1.00 0.96

gdb9 313 451.1 44.12% 0.98 359.4 14.82% 0.00% 1.00 0.97

gdb10 275 400.7 45.71% 0.78 356.2 29.53% 0.00% 1.00 0.91

gdb11 395 459.2 16.25% 0.90 418.5 5.95% -1.27% 0.87 0.99

gdb12 468 522.4 11.62% 0.71 485.9 3.82% -2.08% 0.99 0.99

gdb13 536 546.2 1.90% 0.92 544.9 1.66% -0.04% 0.96 1.00

gdb14 100 129.2 29.20% 0.92 109.8 9.80% -0.27% 0.92 0.98

gdb15 58 63.2 8.97% 0.90 58.3 0.52% 0.00% 1.00 0.99

gdb16 127 161.8 27.40% 0.93 133.9 5.43% -0.37% 0.97 0.98

gdb17 91 94.1 3.41% 0.73 91.1 0.11% -0.33% 0.99 1.00

gdb18 164 212.1 29.33% 0.69 178.7 8.96% -1.05% 0.87 0.98

gdb19 55 69.7 26.73% 0.75 59.2 7.64% 0.00% 1.00 0.92

gdb20 121 138.4 14.38% 0.73 124.4 2.81% -0.08% 0.98 0.99

gdb21 156 175.4 12.44% 0.73 163.9 5.06% -0.30% 0.86 0.99

gdb22 200 235.2 17.60% 0.73 207.1 3.55% -0.58% 0.96 0.99

gdb23 233 258.6 10.99% 0.91 243.2 4.38% -1.06% 0.89 0.99

Avg. 40.57% 0.84 26.51% -10.00% 0.943 0.94

Table 21. Results for gdb dataset when Var[Qi] = 0.05·E[Qi]

 Solution for the deterministic CARP Our Best Solution for the ARPSD

Set
Fixed

Cost (1)
Expected
Cost (2)

Gap
(1)-(2)

Reli-
ability

Expected
Cost (3)

Gap
(1)-(3)

Gap (2)-
(3)

k
Reli-

ability

kshs1 14661 14661.0 0.00% 0.83 14661.0 0.00% 0.00% 1.00 1.00

kshs2 9863 9863.0 0.00% 1.00 9863.0 0.00% 0.00% 1.00 1.00

kshs3 9666 9666.0 0.00% 1.00 9666.0 0.00% 0.00% 1.00 1.00

kshs4 11498 11499.2 0.01% 1.00 11499.9 0.02% 0.00% 1.00 1.00

kshs5 10957 10967.2 0.09% 1.00 10959.2 0.02% 0.00% 1.00 1.00

kshs6 10197 10203.6 0.06% 1.00 10197.0 0.00% -0.02% 0.96 1.00

Avg. 0.03% 0.97 0.01% -0.02% 0.993 1.00

Table 22. Results for kshs dataset when Var[Qi] = 0.05·E[Qi]

113

 Solution for the deterministic CARP Our Best Solution for the ARPSD

Set
Fixed

Cost (1)
Expected
Cost (2)

Gap
(1)-(2)

Reli-
ability

Expected
Cost (3)

Gap
(1)-(3)

Gap (2)-
(3)

k
Reli-

ability

val1A 173 184.1 6.42% 1.00 184.1 6.42% -5.49% 1.00 1.00

val1B 175 186.9 6.80% 0.93 186.9 6.80% -1.02% 1.00 0.93

val1C 247 276.0 11.74% 0.91 276.0 11.74% -7.54% 1.00 0.91

val2A 229 234.3 2.31% 0.85 234.3 2.31% -0.13% 1.00 0.85

val2B 260 296.1 13.88% 0.89 296.1 13.88% -10.44% 0.98 0.89

val2C 462 501.5 8.55% 0.94 501.5 8.55% -2.31% 0.98 0.94

val3A 81 99.8 23.21% 1.00 99.8 23.21% -14.73% 0.94 1.00

val3B 87 122.2 40.46% 0.96 122.2 40.46% -18.33% 0.98 0.96

val3C 139 209.4 50.65% 1.00 209.4 50.65% -17.57% 0.93 1.00

val4A 404 422.4 4.55% 0.94 422.4 4.55% -1.92% 0.98 0.94

val4B 424 481.2 13.49% 0.97 481.2 13.49% -8.87% 0.98 0.97

val4C 438 505.5 15.41% 0.81 505.5 15.41% -6.49% 0.99 0.81

val4D 543 737.9 35.89% 0.80 737.9 35.89% -21.32% 0.99 0.80

val5A 427 443.8 3.93% 0.83 443.8 3.93% 0.00% 0.99 0.83

val5B 450 478.3 6.29% 0.93 478.3 6.29% -1.40% 0.98 0.93

val5C 485 535.5 10.41% 0.88 535.5 10.41% -5.30% 0.98 0.88

val5D 594 679.1 14.33% 0.87 679.1 14.33% -6.29% 0.99 0.87

val6A 225 231.0 2.67% 0.85 231.0 2.67% -0.65% 1.00 0.85

val6B 233 241.6 3.69% 0.99 241.6 3.69% -1.08% 0.98 0.99

val6C 321 342.4 6.67% 0.96 342.4 6.67% -2.25% 1.00 0.96

val7A 279 289.6 3.80% 0.95 289.6 3.80% -3.63% 1.00 0.95

val7B 286 308.6 7.90% 0.95 308.6 7.90% -5.99% 1.00 0.95

val7C 342 393.5 15.06% 0.98 393.5 15.06% -8.87% 0.99 0.98

val8A 391 415.0 6.14% 0.98 415.0 6.14% -1.90% 0.99 0.98

val8B 406 443.3 9.19% 0.97 443.3 9.19% -2.96% 0.98 0.97

val8C 541 650.1 20.17% 1.00 650.1 20.17% -9.71% 0.99 1.00

val9A 326 344.0 5.52% 0.94 344.0 5.52% -4.24% 1.00 0.94

val9B 333 360.7 8.32% 0.95 360.7 8.32% -4.57% 0.97 0.95

val9C 341 370.3 8.59% 0.95 370.3 8.59% -2.97% 0.99 0.95

val9D 402 516.6 28.51% 0.93 516.6 28.51% -14.00% 0.97 0.93

val10A 435 454.9 4.57% 0.95 454.9 4.57% -2.07% 0.96 0.95

val10B 447 481.5 7.72% 0.94 481.5 7.72% -4.15% 1.00 0.94

val10C 459 524.7 14.31% 0.91 524.7 14.31% -8.06% 1.00 0.91

val10D 543 671.8 23.72% 0.90 671.8 23.72% -11.51% 0.97 0.90

Avg. 12.62% 0.93 5.15% -6.64% 0.942 0.99

Table 23. Results for val dataset when Var[Qi] = 0.05·E[Qi]

114

 Solution for the deterministic CARP Our Best Solution for the ARPSD

Set
Fixed

Cost (1)
Expected
Cost (2)

Gap
(1)-(2)

Reli-
ability

Expected
Cost (3)

Gap
(1)-(3)

Gap (2)-
(3)

k
Reli-

ability

e1-A 3548 4050.7 14.17% 0.94 3648.4 2.83% -9.93% 1.00 0.99

e1-B 4498 4601.9 2.31% 0.99 4601.9 2.31% 0.00% 1.00 0.99

e1-C 5632 7061.8 25.39% 0.93 5742.7 1.97% -18.68% 1.00 1.00

e2-A 5022 6141.8 22.30% 0.93 5288.8 5.31% -13.89% 1.00 0.98

e2-B 6344 8209.7 29.41% 0.90 6647.0 4.78% -19.03% 0.94 1.00

e2-C 8477 10785.4 27.23% 0.93 8866.6 4.60% -17.79% 0.99 0.99

e3-A 5924 8281.6 39.80% 0.84 6397.9 8.00% -22.75% 1.00 0.99

e3-B 7847 9455.0 20.49% 0.95 8286.0 5.59% -12.36% 1.00 0.99

e3-C 10386 12680.9 22.10% 0.93 11110.4 6.97% -12.38% 0.99 0.99

e4-A 6504 7933.9 21.98% 0.91 6951.1 6.87% -12.39% 0.99 0.99

e4-B 9120 12862.7 41.04% 0.88 9721.7 6.60% -24.42% 0.98 1.00

e4-C 11886 13461.4 13.25% 0.96 12697.0 6.82% -5.68% 1.00 0.98

s1-A 5018 7699.9 53.45% 0.80 5403.0 7.67% -29.83% 0.98 0.99

s1-B 6435 8434.7 31.08% 0.91 6881.0 6.93% -18.42% 0.99 0.98

s1-C 8518 10176.2 19.47% 0.94 9208.1 8.10% -9.51% 0.96 0.99

s2-A 10076 15242.6 51.28% 0.82 11349.4 12.64% -25.54% 1.00 0.96

s2-B 13356 16598.4 24.28% 0.92 14525.3 8.75% -12.49% 0.99 0.99

s2-C 16752 20389.6 21.71% 0.92 18433.9 10.04% -9.59% 0.97 0.98

s3-A 10478 12657.9 20.80% 0.94 11260.7 7.47% -11.04% 0.97 0.98

s3-B 13986 19262.1 37.72% 0.89 15425.4 10.29% -19.92% 1.00 0.96

s3-C 17538 20320.8 15.87% 0.95 19561.4 11.54% -3.74% 0.98 0.98

s4-A 12647 16466.4 30.20% 0.91 13704.7 8.36% -16.77% 0.96 0.99

s4-B 16693 20151.9 20.72% 0.94 18330.8 9.81% -9.04% 0.94 0.99

s4-C 21071 26170.5 24.20% 0.93 23125.9 9.75% -11.63% 0.98 0.98

Avg. 25.80% 0.91 8.17% -14.02% 0.984 0.99

Table 24. Results for egl dataset when Var[Qi] = 0.25·E[Qi]

 Solution for the deterministic CARP Our Best Solution for the ARPSD

Set
Fixed

Cost (1)
Expected
Cost (2)

Gap
(1)-(2)

Reli-
ability

Expected
Cost (3)

Gap
(1)-(3)

Gap (2)-
(3)

k
Reli-

ability

gdb1 316 514.7 62.88% 0.75 491.1 55.41% -4.59% 0.98 0.82

gdb2 339 578.0 70.50% 0.65 526.8 55.40% -8.86% 0.99 0.86

gdb3 275 450.1 63.67% 0.77 433.9 57.78% -3.60% 0.98 0.87

gdb4 287 488.9 70.35% 0.94 474.1 65.19% -3.03% 0.99 0.87

gdb5 377 662.6 75.76% 0.94 605.3 60.56% -8.65% 0.95 0.82

gdb6 298 506.1 69.83% 0.79 476.5 59.90% -5.85% 0.98 0.82

gdb7 325 542.8 67.02% 0.86 531.7 63.60% -2.04% 0.95 0.82

gdb8 350 596.3 70.37% 0.83 490.8 40.23% -17.69% 0.95 0.95

gdb9 313 559.8 78.85% 0.86 438.9 40.22% -21.60% 0.95 0.93

gdb10 275 446.7 62.44% 0.76 389.8 41.75% -12.74% 0.95 0.86

gdb11 395 521.8 32.10% 0.84 463.8 17.42% -11.12% 0.94 0.91

gdb12 468 577.1 23.31% 0.74 547.2 16.92% -5.18% 0.95 0.97

gdb13 536 613.6 14.48% 0.84 574.8 7.24% -6.32% 0.99 0.96

gdb14 100 146.7 46.70% 0.85 125.7 25.70% -14.31% 0.96 0.91

gdb15 58 68.0 17.24% 0.83 63.4 9.31% -6.76% 0.99 0.91

gdb16 127 166.2 30.87% 0.81 145.8 14.80% -12.27% 0.95 0.93

gdb17 91 102.2 12.31% 0.75 95.8 5.27% -6.26% 0.99 0.97

gdb18 164 231.2 40.98% 0.71 202.8 23.66% -12.28% 0.97 0.91

gdb19 55 71.6 30.18% 0.74 66.4 20.73% -7.26% 1.00 0.90

gdb20 121 158.1 30.66% 0.75 135.5 11.98% -14.29% 0.96 0.95

gdb21 156 196.4 25.90% 0.75 182.1 16.73% -7.28% 0.99 0.93

gdb22 200 252.0 26.00% 0.81 221.2 10.60% -12.22% 0.91 0.94

gdb23 233 298.1 27.94% 0.72 266.6 14.42% -10.57% 0.95 0.93

Avg. 49.33% 0.80 35.69% -9.13% 0.966 0.90

Table 25. Results for gdb dataset when Var[Qi] = 0.25·E[Qi]

115

 Solution for the deterministic CARP Our Best Solution for the ARPSD

Set
Fixed

Cost (1)
Expected
Cost (2)

Gap
(1)-(2)

Reli-
ability

Expected
Cost (3)

Gap
(1)-(3)

Gap (2)-
(3)

k
Reli-

ability

kshs1 14661 14834.5 1.18% 1.00 14675.7 0.10% -1.07% 1.00 1.00

kshs2 9863 9868.2 0.05% 1.00 9870.5 0.08% 0.02% 0.98 1.00

kshs3 9666 9666.4 0.00% 1.00 9666.1 0.00% 0.00% 0.96 1.00

kshs4 11498 11507.9 0.09% 1.00 11506.1 0.07% -0.02% 1.00 1.00

kshs5 10957 13463.9 22.88% 0.86 11377.7 3.84% -15.49% 1.00 0.97

kshs6 10197 10216.1 0.19% 1.00 10212.3 0.15% -0.04% 0.94 1.00

Avg. 4.06% 0.97 0.70% -3.23% 0.980 1.00

Table 26. Results for kshs dataset when Var[Qi] = 0.25·E[Qi]

 Solution for the deterministic CARP Our Best Solution for the ARPSD

Set
Fixed

Cost (1)
Expected
Cost (2)

Gap
(1)-(2)

Reli-
ability

Expected
Cost (3)

Gap
(1)-(3)

Gap (2)-
(3)

k
Reli-

ability

val1A 173 192.2 11.10% 0.80 177.2 2.43% -7.80% 0.99 1.00

val1B 175 206.1 17.77% 0.80 188.1 7.49% -8.73% 1.00 0.99

val1C 247 316.7 28.22% 0.77 288.4 16.76% -8.94% 0.93 0.97

val2A 229 301.4 31.62% 0.79 242.8 6.03% -19.44% 0.96 0.94

val2B 260 347.4 33.62% 0.86 292.3 12.42% -15.86% 0.89 0.94

val2C 462 648.3 40.32% 0.94 583.6 26.32% -9.98% 0.98 0.94

val3A 81 103.9 28.27% 0.91 93.6 15.56% -9.91% 0.98 0.96

val3B 87 141.9 63.10% 0.85 117.4 34.94% -17.27% 0.85 0.91

val3C 139 266.9 92.01% 0.86 229.6 65.18% -13.98% 0.78 0.91

val4A 404 450.2 11.44% 0.87 428.7 6.11% -4.78% 0.77 0.99

val4B 424 490.3 15.64% 0.77 460.4 8.58% -6.10% 0.78 0.99

val4C 438 657.3 50.07% 0.72 495.4 13.11% -24.63% 0.85 0.96

val4D 543 853.4 57.16% 0.70 645.3 18.84% -24.38% 0.91 0.95

val5A 427 504.0 18.03% 0.84 461.9 8.17% -8.35% 0.96 0.95

val5B 450 581.7 29.27% 0.84 492.9 9.53% -15.27% 0.84 0.99

val5C 485 657.0 35.46% 0.71 550.0 13.40% -16.29% 0.88 0.97

val5D 594 884.8 48.96% 0.79 727.4 22.46% -17.79% 0.88 0.98

val6A 225 258.8 15.02% 0.84 235.5 4.67% -9.00% 1.00 1.00

val6B 233 286.1 22.79% 0.83 254.7 9.31% -10.98% 1.00 0.99

val6C 321 415.7 29.50% 0.79 382.7 19.22% -7.94% 0.89 0.97

val7A 279 298.0 6.81% 0.83 286.6 2.72% -3.83% 0.89 0.97

val7B 286 359.4 25.66% 0.83 297.6 4.06% -17.20% 0.92 0.98

val7C 342 454.9 33.01% 0.84 404.9 18.39% -10.99% 0.99 0.93

val8A 391 471.6 20.61% 0.88 416.7 6.57% -11.64% 0.97 0.98

val8B 406 497.8 22.61% 0.96 451.9 11.31% -9.22% 0.85 0.97

val8C 541 758.2 40.15% 0.79 673.7 24.53% -11.14% 0.90 0.96

val9A 326 374.2 14.79% 0.88 338.3 3.77% -9.59% 0.91 0.99

val9B 333 387.1 16.25% 0.83 357.7 7.42% -7.59% 0.94 0.97

val9C 341 425.5 24.78% 0.82 374.6 9.85% -11.96% 0.97 0.96

val9D 402 560.3 39.38% 0.83 496.3 23.46% -11.42% 0.81 0.97

val10A 435 494.3 13.63% 0.78 454.2 4.41% -8.11% 0.96 0.98

val10B 447 540.1 20.83% 0.81 472.7 5.75% -12.48% 0.99 0.97

val10C 459 567.7 23.68% 0.80 503.4 9.67% -11.33% 0.76 0.98

val10D 543 792.9 46.02% 0.81 665.7 22.60% -16.04% 0.83 0.96

Avg. 30.33% 0.82 13.53% -12.89% 0.906 0.97

Table 27. Results for val dataset when Var[Qi] = 0.25·E[Qi]

116

 Solution for the deterministic CARP Our Best Solution for the ARPSD

Set
Fixed

Cost (1)
Expected
Cost (2)

Gap
(1)-(2)

Reli-
ability

Expected
Cost (3)

Gap
(1)-(3)

Gap (2)-
(3)

k
Reli-

ability

e1-A 3548 4695.7 32.35% 0.87 3803.4 7.20% -19.00% 0.98 0.99

e1-B 4498 4958.8 10.24% 0.97 4833.5 7.46% -2.53% 1.00 0.98

e1-C 5632 6629.5 17.71% 0.94 6212.6 10.31% -6.29% 0.99 0.98

e2-A 5022 7260.1 44.57% 0.83 5708.3 13.67% -21.37% 0.96 0.98

e2-B 6344 9565.6 50.78% 0.86 7117.6 12.19% -25.59% 0.96 0.98

e2-C 8477 12362.4 45.83% 0.88 9457.9 11.57% -23.49% 0.93 0.99

e3-A 5924 7723.8 30.38% 0.89 6656.3 12.36% -13.82% 0.94 0.99

e3-B 7847 11217.7 42.96% 0.86 8958.0 14.16% -20.14% 1.00 0.96

e3-C 10386 13753.2 32.42% 0.90 12044.5 15.97% -12.42% 0.99 0.96

e4-A 6504 10187.1 56.63% 0.80 7456.0 14.64% -26.81% 0.95 0.98

e4-B 9120 12116.3 32.85% 0.89 10611.2 16.35% -12.42% 1.00 0.96

e4-C 11886 14871.9 25.12% 0.92 13991.2 17.71% -5.92% 1.00 0.95

s1-A 5018 7643.1 52.31% 0.79 5871.7 17.01% -23.18% 0.88 0.98

s1-B 6435 8896.8 38.26% 0.89 7497.8 16.52% -15.72% 1.00 0.95

s1-C 8518 11922.6 39.97% 0.88 10442.9 22.60% -12.41% 1.00 0.94

s2-A 10076 15880.5 57.61% 0.79 11736.8 16.48% -26.09% 0.93 0.98

s2-B 13356 18779.7 40.61% 0.85 16119.8 20.69% -14.16% 1.00 0.93

s2-C 16752 23492.6 40.24% 0.88 19866.6 18.59% -15.43% 0.91 0.98

s3-A 10478 17002.1 62.26% 0.78 12113.0 15.60% -28.76% 0.88 0.98

s3-B 13986 19824.0 41.74% 0.87 17547.8 25.47% -11.48% 1.00 0.91

s3-C 17538 25061.4 42.90% 0.88 21263.8 21.24% -15.15% 0.95 0.95

s4-A 12647 18372.6 45.27% 0.84 14789.3 16.94% -19.50% 0.90 0.98

s4-B 16693 25140.3 50.60% 0.86 19867.0 19.01% -20.98% 0.91 0.97

s4-C 21071 29573.2 40.35% 0.89 25774.1 22.32% -12.85% 0.93 0.96

Avg. 41.71% 0.87 17.66% -16.97% 0.958 0.96

Table 28. Results for egl dataset when Var[Qi] = 0.75·E[Qi]

 Solution for the deterministic CARP Our Best Solution for the ARPSD

Set
Fixed

Cost (1)
Expected
Cost (2)

Gap
(1)-(2)

Reli-
ability

Expected
Cost (3)

Gap
(1)-(3)

Gap (2)-
(3)

k
Reli-

ability

gdb1 316 501.2 58.61% 0.77 471.5 49.21% -5.93% 0.95 0.83

gdb2 339 546.4 61.18% 0.79 516.0 52.21% -5.56% 0.97 0.87

gdb3 275 449.5 63.45% 0.70 428.5 55.82% -4.67% 0.95 0.88

gdb4 287 481.3 67.70% 0.87 463.3 61.43% -3.74% 1.00 0.74

gdb5 377 613.7 62.79% 0.86 593.3 57.37% -3.32% 0.98 0.83

gdb6 298 475.6 59.60% 0.78 459.6 54.23% -3.36% 0.92 0.84

gdb7 325 524.1 61.26% 0.80 514.6 58.34% -1.81% 0.85 0.84

gdb8 350 639.3 82.66% 0.75 563.9 61.11% -11.79% 0.89 0.87

gdb9 313 622.6 98.91% 0.87 506.6 61.85% -18.63% 0.76 0.91

gdb10 275 409.4 48.87% 0.70 391.2 42.25% -4.45% 0.82 0.86

gdb11 395 574.3 45.39% 0.76 509.5 28.99% -11.28% 0.85 0.92

gdb12 468 686.3 46.65% 0.78 629.1 34.42% -8.33% 0.98 0.92

gdb13 536 718.0 33.96% 0.69 620.2 15.71% -13.62% 0.88 0.94

gdb14 100 147.2 47.20% 0.72 136.4 36.40% -7.34% 0.82 0.91

gdb15 58 74.4 28.28% 0.76 68.8 18.62% -7.53% 0.85 0.90

gdb16 127 188.3 48.27% 0.73 154.7 21.81% -17.84% 0.81 0.92

gdb17 91 106.4 16.92% 0.77 101.6 11.65% -4.51% 0.85 0.94

gdb18 164 240.3 46.52% 0.74 218.9 33.48% -8.91% 0.79 0.90

gdb19 55 89.2 62.18% 0.78 71.8 30.55% -19.51% 0.98 0.93

gdb20 121 178.7 47.69% 0.77 144.5 19.42% -19.14% 0.91 0.90

gdb21 156 221.2 41.79% 0.77 195.0 25.00% -11.84% 0.81 0.93

gdb22 200 268.1 34.05% 0.76 234.2 17.10% -12.64% 0.82 0.91

gdb23 233 323.3 38.76% 0.66 285.9 22.70% -11.57% 0.77 0.92

Avg. 54.95% 0.76 41.31% -8.81% 0.879 0.89

Table 29. Results for gdb dataset when Var[Qi] = 0.75·E[Qi]

117

 Solution for the deterministic CARP Our Best Solution for the ARPSD

Set
Fixed

Cost (1)
Expected
Cost (2)

Gap
(1)-(2)

Reli-
ability

Expected
Cost (3)

Gap
(1)-(3)

Gap (2)-
(3)

k
Reli-

ability

kshs1 14661 15182.6 3.56% 0.93 14780.4 0.81% -2.65% 1.00 1.00

kshs2 9863 10038.0 1.77% 0.99 9947.8 0.86% -0.90% 1.00 1.00

kshs3 9666 9721.1 0.57% 1.00 9676.1 0.10% -0.46% 0.98 1.00

kshs4 11498 11693.7 1.70% 0.99 11682.2 1.60% -0.10% 1.00 0.99

kshs5 10957 14592.4 33.18% 0.85 11919.3 8.78% -18.32% 0.87 1.00

kshs6 10197 10402.4 2.01% 0.99 10314.8 1.16% -0.84% 0.99 0.99

Avg. 7.16% 0.96 2.21% -4.62% 0.973 0.97

Table 30. Results for kshs dataset when Var[Qi] = 0.75·E[Qi]

 Solution for the deterministic CARP Our Best Solution for the ARPSD

Set
Fixed

Cost (1)
Expected
Cost (2)

Gap (1)-
(2)

Reli-
ability

Expected
Cost (3)

Gap
(1)-(3)

Gap (2)-
(3)

k
Reli-

ability

val1A 173 205.8 18.96% 0.71 179.1 3.53% -12.97% 0.80 0.99

val1B 175 210.7 20.40% 0.73 201.6 15.20% -4.32% 0.88 0.94

val1C 247 361.2 46.23% 0.72 331.2 34.09% -8.31% 0.89 0.94

val2A 229 286.8 25.24% 0.72 267.3 16.72% -6.80% 0.96 0.86

val2B 260 382.9 47.27% 0.80 322.6 24.08% -15.75% 0.83 0.97

val2C 462 801.7 73.53% 0.90 715.9 54.96% -10.70% 0.94 0.90

val3A 81 119.1 47.04% 0.85 104.3 28.77% -12.43% 0.82 0.91

val3B 87 152.1 74.83% 0.84 140.2 61.15% -7.82% 0.77 0.84

val3C 139 285.7 105.54% 0.81 249.2 79.28% -12.78% 0.76 0.87

val4A 404 509.3 26.06% 0.77 444.1 9.93% -12.80% 0.86 0.96

val4B 424 569.7 34.36% 0.71 484.5 14.27% -14.96% 0.76 0.98

val4C 438 655.4 49.63% 0.66 547.6 25.02% -16.45% 0.81 0.95

val4D 543 908.2 67.26% 0.65 752.7 38.62% -17.12% 0.81 0.94

val5A 427 547.3 28.17% 0.75 478.7 12.11% -12.53% 0.76 0.97

val5B 450 647.8 43.96% 0.72 533.6 18.58% -17.63% 0.87 0.94

val5C 485 698.9 44.10% 0.68 607.2 25.20% -13.12% 0.76 0.96

val5D 594 963.2 62.15% 0.78 828.2 39.43% -14.02% 0.78 0.94

val6A 225 291.6 29.60% 0.78 243.3 8.13% -16.56% 0.95 0.97

val6B 233 319.2 37.00% 0.74 272.7 17.04% -14.57% 0.86 0.93

val6C 321 510.2 58.94% 0.75 448.1 39.60% -12.17% 0.79 0.95

val7A 279 305.5 9.50% 0.78 295.3 5.84% -3.34% 0.75 0.98

val7B 286 354.2 23.85% 0.76 319.2 11.61% -9.88% 0.96 0.92

val7C 342 519.3 51.84% 0.72 464.1 35.70% -10.63% 0.81 0.93

val8A 391 505.6 29.31% 0.81 436.3 11.59% -13.71% 0.75 0.96

val8B 406 546.9 34.70% 0.90 492.8 21.38% -9.89% 0.85 0.92

val8C 541 951.6 75.90% 0.85 788.6 45.77% -17.13% 0.86 0.91

val9A 326 361.7 10.95% 0.81 345.2 5.89% -4.56% 0.77 0.96

val9B 333 428.6 28.71% 0.74 374.3 12.40% -12.67% 0.75 0.96

val9C 341 457.6 34.19% 0.75 403.2 18.24% -11.89% 0.84 0.97

val9D 402 650.2 61.74% 0.73 570.4 41.89% -12.27% 0.75 0.92

val10A 435 514.6 18.30% 0.90 466.4 7.22% -9.37% 0.99 0.95

val10B 447 556.3 24.45% 0.74 505.6 13.11% -9.11% 0.79 0.93

val10C 459 626.9 36.58% 0.73 540.2 17.69% -13.83% 0.76 0.94

val10D 543 871.6 60.52% 0.73 761.0 40.15% -12.69% 0.79 0.90

Avg. 43.17% 0.77 25.04% -12.66% 0.826 0.89

Table 31. Results for val dataset when Var[Qi] = 0.75·E[Qi]

118

 Solution for the deterministic CARP Our Best Solution for the ARPSD

Set
Fixed

Cost (1)
Expected
Cost (2)

Gap
(1)-(2)

Reli-
ability

Expected
Cost (3)

Gap
(1)-(3)

Gap (2)-
(3)

k
Reli-

ability

e1-A 3548 5337.4 50.43% 0.82 4099.6 15.55% -23.19% 0.95 0.96

e1-B 4498 6791.2 50.98% 0.86 5273.3 17.24% -22.35% 1.00 0.94

e1-C 5632 7734.2 37.33% 0.90 6819.5 21.08% -11.83% 0.99 0.96

e2-A 5022 8179.7 62.88% 0.78 6103.5 21.54% -25.38% 0.90 0.95

e2-B 6344 10299.7 62.35% 0.81 7908.6 24.66% -23.22% 0.97 0.93

e2-C 8477 13556.3 59.92% 0.82 10479.6 23.62% -22.70% 0.96 0.94

e3-A 5924 9606.1 62.16% 0.78 7323.6 23.63% -23.76% 0.81 0.98

e3-B 7847 10631.8 35.49% 0.87 10029.9 27.82% -5.66% 1.00 0.91

e3-C 10386 15948.7 53.56% 0.86 13148.1 26.59% -17.56% 0.96 0.95

e4-A 6504 10246.4 57.54% 0.78 8070.6 24.09% -21.23% 0.91 0.97

e4-B 9120 15899.0 74.33% 0.78 11672.0 27.98% -26.59% 0.99 0.92

e4-C 11886 18596.6 56.46% 0.85 15357.9 29.21% -17.42% 0.97 0.93

s1-A 5018 8545.8 70.30% 0.76 6558.3 30.70% -23.26% 0.94 0.93

s1-B 6435 9802.4 52.33% 0.80 8492.2 31.97% -13.37% 0.95 0.93

s1-C 8518 14835.1 74.16% 0.79 11637.2 36.62% -21.56% 0.99 0.90

s2-A 10076 17859.2 77.24% 0.74 12786.3 26.90% -28.40% 0.86 0.96

s2-B 13356 22263.4 66.69% 0.77 17762.5 32.99% -20.22% 0.98 0.93

s2-C 16752 27749.0 65.65% 0.81 22873.4 36.54% -17.57% 0.91 0.93

s3-A 10478 17770.4 69.60% 0.77 14164.0 35.18% -20.29% 0.98 0.86

s3-B 13986 22534.1 61.12% 0.80 18908.7 35.20% -16.09% 0.90 0.93

s3-C 17538 29729.8 69.52% 0.82 24320.6 38.67% -18.19% 0.90 0.93

s4-A 12647 21239.4 67.94% 0.78 16455.8 30.12% -22.52% 0.86 0.95

s4-B 16693 26434.8 58.36% 0.82 22625.9 35.54% -14.41% 0.91 0.92

s4-C 21071 35151.6 66.82% 0.81 29021.4 37.73% -17.44% 0.88 0.94

Avg. 62.66% 0.81 31.18% -19.35% 0.936 0.89

Table 32. Results for egl dataset when Var[Qi] = 2·E[Qi]

 Solution for the deterministic CARP Our Best Solution for the ARPSD

Set
Fixed

Cost (1)
Expected
Cost (2)

Gap
(1)-(2)

Reli-
ability

Expected
Cost (3)

Gap
(1)-(3)

Gap (2)-
(3)

k
Reli-

ability

gdb1 316 474.8 50.25% 0.80 458.5 45.09% -3.43% 0.96 0.85

gdb2 339 527.8 55.69% 0.71 507.4 49.68% -3.87% 0.81 0.88

gdb3 275 429.7 56.25% 0.67 414.0 50.55% -3.65% 0.98 0.86

gdb4 287 465.4 62.16% 0.77 443.4 54.49% -4.73% 1.00 0.77

gdb5 377 590.8 56.71% 0.79 569.4 51.03% -3.62% 1.00 0.80

gdb6 298 460.6 54.56% 0.74 445.0 49.33% -3.39% 0.88 0.86

gdb7 325 509.8 56.86% 0.76 496.7 52.83% -2.57% 1.00 0.80

gdb8 350 662.5 89.29% 0.77 594.0 69.71% -10.34% 0.82 0.88

gdb9 313 618.2 97.51% 0.73 536.5 71.41% -13.22% 0.94 0.84

gdb10 275 407.5 48.18% 0.68 381.8 38.84% -6.31% 0.77 0.90

gdb11 395 599.7 51.82% 0.75 556.7 40.94% -7.17% 0.87 0.79

gdb12 468 847.9 81.18% 0.80 685.5 46.47% -19.15% 0.95 0.91

gdb13 536 715.5 33.49% 0.76 651.2 21.49% -8.99% 0.89 0.91

gdb14 100 159.0 59.00% 0.75 139.9 39.90% -12.01% 0.81 0.90

gdb15 58 75.8 30.69% 0.73 71.7 23.62% -5.41% 0.93 0.87

gdb16 127 177.8 40.00% 0.69 160.4 26.30% -9.79% 0.83 0.92

gdb17 91 119.7 31.54% 0.79 107.4 18.02% -10.28% 0.77 0.89

gdb18 164 248.2 51.34% 0.77 232.2 41.59% -6.45% 0.83 0.86

gdb19 55 91.8 66.91% 0.79 75.6 37.45% -17.65% 0.93 0.91

gdb20 121 176.8 46.12% 0.80 150.6 24.46% -14.82% 0.78 0.94

gdb21 156 231.2 48.21% 0.79 199.9 28.14% -13.54% 0.76 0.91

gdb22 200 277.9 38.95% 0.75 242.4 21.20% -12.77% 0.84 0.88

gdb23 233 340.9 46.31% 0.67 297.0 27.47% -12.88% 0.78 0.90

Avg. 57.18% 0.75 43.66% -8.60% 0.877 0.85

Table 33. Results for gdb dataset when Var[Qi] = 2·E[Qi]

119

 Solution for the deterministic CARP Our Best Solution for the ARPSD

Set
Fixed

Cost (1)
Expected
Cost (2)

Gap
(1)-(2)

Reli-
ability

Expected
Cost (3)

Gap
(1)-(3)

Gap (2)-
(3)

k
Reli-

ability

kshs1 14661 16794.4 14.55% 0.95 15391.5 4.98% -8.35% 1.00 0.98

kshs2 9863 10750.0 8.99% 0.97 10181.7 3.23% -5.29% 0.98 0.99

kshs3 9666 9826.5 1.66% 0.99 9781.0 1.19% -0.46% 0.85 0.99

kshs4 11498 13019.8 13.24% 0.96 12739.1 10.79% -2.16% 1.00 0.99

kshs5 10957 14093.8 28.63% 0.86 12159.0 10.97% -13.73% 0.97 0.99

kshs6 10197 12915.8 26.66% 0.89 10818.2 6.09% -16.24% 0.93 0.96

Avg. 15.80% 0.94 6.33% -8.18% 0.955 0.97

Table 34. Results for kshs dataset when Var[Qi] = 2·E[Qi]

 Solution for the deterministic CARP Our Best Solution for the ARPSD

Set
Fixed

Cost (1)
Expected
Cost (2)

Gap (1)-
(2)

Reli-
ability

Expected
Cost (3)

Gap
(1)-(3)

Gap (2)-
(3)

k
Reli-

ability

val1A 173 208.2 20.35% 0.67 189.6 9.60% -8.93% 0.80 0.95

val1B 175 254.4 45.37% 0.67 222.6 27.20% -12.50% 0.92 0.93

val1C 247 454.2 83.89% 0.69 377.9 53.00% -16.80% 0.78 0.91

val2A 229 317.8 38.78% 0.66 291.8 27.42% -8.18% 0.83 0.94

val2B 260 416.8 60.31% 0.76 370.0 42.31% -11.23% 0.94 0.91

val2C 462 897.6 94.29% 0.78 799.2 72.99% -10.96% 0.95 0.86

val3A 81 121.5 50.00% 0.77 114.9 41.85% -5.43% 0.79 0.86

val3B 87 156.3 79.66% 0.76 150.5 72.99% -3.71% 0.89 0.77

val3C 139 288.8 107.77% 0.75 256.3 84.39% -11.25% 0.85 0.83

val4A 404 553.9 37.10% 0.72 475.6 17.72% -14.14% 0.77 0.91

val4B 424 589.3 38.99% 0.67 534.5 26.06% -9.30% 0.83 0.92

val4C 438 721.4 64.70% 0.64 611.3 39.57% -15.26% 0.78 0.90

val4D 543 1031.6 89.98% 0.65 864.7 59.24% -16.18% 0.93 0.81

val5A 427 619.2 45.01% 0.66 515.8 20.80% -16.70% 0.79 0.91

val5B 450 676.4 50.31% 0.70 596.9 32.64% -11.75% 0.80 0.88

val5C 485 773.5 59.48% 0.65 684.4 41.11% -11.52% 0.87 0.84

val5D 594 1128.9 90.05% 0.70 967.6 62.90% -14.29% 0.78 0.88

val6A 225 288.3 28.13% 0.69 262.3 16.58% -9.02% 0.85 0.91

val6B 233 346.1 48.54% 0.71 306.6 31.59% -11.41% 0.79 0.91

val6C 321 582.4 81.43% 0.69 511.7 59.41% -12.14% 0.79 0.88

val7A 279 329.5 18.10% 0.70 309.6 10.97% -6.04% 0.77 0.95

val7B 286 372.5 30.24% 0.75 340.4 19.02% -8.62% 0.76 0.92

val7C 342 578.4 69.12% 0.70 531.6 55.44% -8.09% 0.78 0.90

val8A 391 533.9 36.55% 0.72 480.9 22.99% -9.93% 0.90 0.88

val8B 406 601.3 48.10% 0.85 542.2 33.55% -9.83% 0.90 0.85

val8C 541 1017.7 88.11% 0.81 910.4 68.28% -10.54% 0.78 0.88

val9A 326 411.7 26.29% 0.74 370.1 13.53% -10.10% 0.86 0.95

val9B 333 459.1 37.87% 0.69 403.4 21.14% -12.13% 0.86 0.91

val9C 341 486.8 42.76% 0.69 445.7 30.70% -8.44% 0.77 0.91

val9D 402 741.8 84.53% 0.67 650.1 61.72% -12.36% 0.81 0.86

val10A 435 549.9 26.41% 0.69 493.2 13.38% -10.31% 0.76 0.89

val10B 447 587.9 31.52% 0.69 541.0 21.03% -7.98% 0.77 0.91

val10C 459 643.7 40.24% 0.68 593.4 29.28% -7.81% 0.75 0.88

val10D 543 940.7 73.24% 0.64 864.2 59.15% -8.13% 0.82 0.82

Avg. 56.62% 0.71 39.00% -11.25% 0.824 0.88

Table 35. Results for val dataset when Var[Qi] = 2·E[Qi]

