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Chapter 1

Introduction

The subject of this thesis was to develop novel solutions for statistical analy-
sis of cytogenetic radiation biodosimetry data to correctly quantify uncertainty
associated with dose estimates in exposed individuals. The chromosomal aber-
rations induced by ionising radiation can be explained in a probabilistic manner,
leading to regression models for count data. The work done has led to distinct
improvements in dosimetry and uncertainty calculation, which has potential
impacts for both routine and emergency dosimetry.

In particular, this research focuses on cytogenetic dose estimation in the
Bayesian framework. The chromosomal aberration data can be overdispersed
and/or zero—inflated in several irradiation scenarios. These phenomena imply
the management of compound Poisson and zero—inflated distributions.

The research presented encompasses the literature review of the cytogenetic
Bayesian methods, the development of new Bayesian models for cytogenetic
dose estimation, the software implementation for some of these systems, the
empirical analysis of cytogenetic data, and the case-study of cytogenetic data
for the comparison of different models to fit cytogenetic dose—response curves.

1.1 Funding

The work carried out at Public Health England Centre for Radiation, Chemical
and Environmental Hazards was funded by the National Institute for Health
Research. The work carried out at Universitat Autonoma de Barcelona was
funded by the grant MTM2012-31118 by the Ministry of Economy and Com-
petitiveness, and by the grant UNAB10-4E-378 co—funded by ERDF ‘A way of
making Europe’.

1.2 Outline of the thesis

The thesis format is Thesis by publication. Chapter 1 corresponds to the in-
troduction, presenting biological dosimetry and the statistical limitations in
cytogenetic dose estimation. Then, Chapter 2 is an overall presentation of the
results and discussion of their novelty and relevance in the context of cytoge-
netic biodosimetry. Chapter 3 presents the general conclusions, reviewing and
combining these results, and expecting the further research.
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Chapters 4, 5, 6, 7 and 8 are the five scientific publications, Ainsbury et al.
2014 [4], Higueras et al. 2015a [39], Morifia et al. 2015a [65], Higueras et al.
2015b [40] and Oliveira et al. 2015 [70] respectively, that constitute the main
part of this thesis.

Finally, Appendix A, Morina et al. 2015b, shows a submitted scientific
article which is complementary material in this thesis.

1.3 Biological dosimetry

Radiation exposure through radiotherapy treatments, nuclear accidents or ter-
rorist acts are major current concerns for our global society. Biological dosime-
try, IAEA 2011 [42], relies on quantifying the amount of damage induced by
radiation at a cellular level, for example counting dicentrics, centric rings, or
micronuclei. The frequency of these chromosome aberrations is an established
biological indicator of radiation dose received. The quantification of the radi-
ation dose absorbed is essential for predicting the derived health consequences
in irradiated patients in the short, medium and long term. Dose estimation
from chromosome damage biomarkers is necessary despite the physical measure-
ment of dose, because it also takes into account the inter—individual variation
in susceptibility. Biological sampling and dose estimation is sometimes the only
method to be absolutely sure of the dose to the individual, for example classified
radiation workers sometimes do not wear badges or workers who are not wearing
them because they are never supposed to be near anything radioactive.

The ideal dosimeter, which obviously does not exist, would be specific to radi-
ation, present low background, have low donor variability, present low doubling
dose, dose response calibration, have persistent effect, allow ease of sampling,
rapid analysis, low cost, and work as a ‘risk meter’.

In cytogenetic biodosimetry irradiated blood samples are analysed to score
chromosomal aberrations. The samples could be in vitro, they are taken from
laboratory experiments to study the yield of chromosomal aberrations after fixed
absorbed doses, or in vivo, the samples are taken from radiotherapy patients
or nuclear accident victims to analyse the amount of absorbed dose and to
predict their future health consequences. When the whole body is exposed in
a homogeneous manner the scenario is whole body irradiation; by contrast, if
the exposure is located in a fraction of the body, the scenario is partial body
irradiation (PBI). Depending on the nature of the radiation, the linear energy
transfer (LET) describes how much energy an ionising particle transfers to the
material transverse per unit distance; e.g., y-rays and a—particles are considered
low— and high-LET, respectively, TAEA 2011 [42]. Depending on the nature
of the radiation chromosomal damage is caused by discrete energy deposition
traces in time and space which are produced by ionising radiation. It is shown
that low LET radiation can produce localised clusters of ionisations within a
single electron track, meanwhile high LET radiation produces a larger number of
ionizations that are close in spatial extent, IAEA 2011 [42]. Figure 1.1 displays
the relation between the LET and the relative biological effectiveness (RBE),
the ratio of doses producing equal biological effect; source Hall and Giaccia 2012
[36].

The most studied chromosomal aberrations are the dicentrics, which are the
interchange between the fragments of two separate chromosomes, thus they are

16



X-ray 100 keV/u 200 keV/u

RBE

LET

Figure 1.1: Diagram showing LET against RBE for cell killing, mutagenesis, or
oncogenic transformation, Hall and Giaccia 2012 [36]. Note that 100 keV/um
has the greatest RBE.

chromosomes with two centromeres. Ring chromosomes, or centric rings, are
also analysed, which are an exchange between two breaks on separate arms of
the same chromosome and are also accompanied by acentric fragments (chro-
mosomes without centromere). Another typical cytogenetic assay is based on
micronuclei, which are lagging chromosomal fragments or whole chromosomes
at anaphase that are not included in the nuclei of daughter cells. More emerging
assays, not covered in this thesis are the H2AX, the H2A variant produced by
the generation of double-stranded breaks, and the effects of ionising radiation
on gene expression.

Figures 1.2, 1.3 and 1.4 show respectively the images of centric rings, dicen-
tric chromosomes and micronuclei; source: International Atomic Energy Agency
(TAEA) manual, TAEA 2011 [42].

Biological dosimetry has progressed from an initial research idea in the 1960s,
to a varied and active field and has been based on the analysis of dicentric chro-
mosome aberrations, which is the most frequent technique and for a long time
was the only one. Since then, this field has progressed to become a standard
in most of the radiation protection programmes and its application in radia-
tion exposures cases has shown its importance. Chromosomal aberrations are
a dosimeter providing very important information for nuclear or radiological
accidents; all this biodosimetry information is compounded to get a trustable
appraisal of the cases, TAEA 2011 [42]. Today there are a number of new and
emerging assays being tested as markers of both radiation exposure and effect
(e.g. individual cancer susceptibility).

Biological dosimetry has been applied in accidents like the Chernobyl disaster

17



Figure 1.2: A metaphase spread with two rings (arrowed).

and most recently in the Fukushima occurrence (Suto et al. 2013 [91]), and for
radiotherapy treatment patients, e.g. Serna et al. 2013 [86].

1.4 Statistical considerations

The number of chromosomal aberrations induced by ionising radiation among
cells produces count data. The Poisson distribution is a discrete probability
distribution that expresses the probability of a number of events occurring in a
fixed period of time if these events occur with a known average rate and inde-
pendently of the time since the last event. If the expected number of occurrences
in this interval is A, then the probability that there are exactly k occurrences
(k=0,1,2,...) is Afe™*/k!, Johnson et al. 2005 [44]. In cytogenetic biodosime-
try A is related to the absorbed dose, i.e. the higher dose, the greater number
of chromosomal aberrations per cell.

The TAEA manual, IAEA 2011 [42], states the Poisson distribution as the
most widely recognised and commonly used probability distribution for cytoge-
netic data analysis. In fact, for dicentrics assay, irradiation with X— or vy-rays,
low LET radiation, produces a distribution of damage which is very well repre-
sented by the Poisson distribution, IAEA 2011 [42].

A Poisson distribution with mean A\ has a variance equals to A, and con-
sequently the dispersion index, the ratio of the variance to the mean, is 1
(equidispersion), see e.g. Johnson et al. 2005 [44]. Distributions which dis-
persion indexes are greater (lower) than 1, are overdispersed (underdispersed).

18



Figure 1.3: A dicentric chromosome (arrowed).

Given a sample y = {y1,¥2, ..., yn } of counts Poisson distributed, represent-
ing here the number of chromosomal aberrations in n blood cells, the lower and
upper 95% confidence limits of the population mean are (see e.g. Johnson et al.
2005 [44])

. X%X,0.025 _ X%(X+1),0.975
Ty WU T 2n ’
respectively, where X72'n,p is the quantile function corresponding to a lower tail
probability p of the y2-squared distribution with m degrees of freedom, and X
is the sample sum of y.

To reject or not reject the Poisson assumption an informative test based on
the property of equidispersion is performed, the u—test, a normalised unit of the
dispersion unit, JAEA 2011 [42]. The u—test remains:

YL

9, n—1
where § and s2 are respectively the sample mean and variance of y. Those
u values higher (lower) than (-)1.96 indicate overdispersion (underdispersion),
with a significance level of 5%, Rao and Chakravarti 1956 [80].

The first step to estimate the absorbed dose is to do a calibration, that
is, to construct a dose-response curve. The usual approach is to irradiate in
the laboratory several blood samples from a healthy donor with several doses.
For low LET radiation, 10 or more doses should be used in the range 0.25-
5.0 Gy, TAEA 2011 [42]. The construction of the dose-response curve can be
experimentally difficult according to the kind of radiation.
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Figure 1.4: Examples of binucleated cells without (left) and with 1 (middle)
and 2 (right) micronuclei.

There is a very strong empirical evidence that the yields (population mean)
of chromosome aberrations Y are related to the absorbed dose D by the linear—
quadratic equation, Y = C' + aD + $D? TAEA 2011 [42] and Hall and Giaccia
2012 [36]. In some scenarios (high LET radiation, for instance) the a—term
becomes large and eventually the S—term becomes biologically less relevant and
also statistically ‘masked’ and the dose response is approximated by the linear
equation, Y = C' + oD, IAEA 2011 [42].

Classical linear regression is not appropriate to fit the dose-response curve
because the responses are the mean of Poisson counts and the assumption of
equality of variances (homoscedasticity) is violated due to the biological process
which lead to a dependence of the variance on the dose. Generalised Linear
Models provides a unified approach for analysing the relationship between the
response, e.g. Poisson and negative binomial (NB), and several explanatory
variables, that can be numerical (regression problems) or categorical (ANOVA
problems), McCullagh and Nelder 1989 [60]. In radiation biodosimetry, the re-
spomnses are typically the number of dicentrics in each cell and they are classically
considered Poisson distributed with mean Y; = C' + aD; + D7 (identity link)
where j = 1,2,...,m represents each analysed cell (a total of m cells analysed).

Once C, a, and 3 are fitted by maximum likelihood estimation (MLE), the
dose estimation leads to an inverse regression problem, because the exposed
doses in the dose-response experiment are chosen by the laboratory researches,
i.e. the dose is not a random variable in the calibration data collecting process.
Supposing now that we have observed the above sample of chromosomal aber-
rations, y, because the MLE of the expected value for a count sample under the
Poisson assumption is the sample mean, see e.g. Johnson et al. 2005 [44], the
estimated absorbed dose is the solution D for the equation § = C' + aD + 3D?,
Merkle 1983 [61], i.e.

—a+ /a2 —4B(C — )

D =
25 ’
for the linear—quadratic model. For the linear model, § = 0, then
p-¥=¢
@

The 95% confidence region of the dose-response curve has the form (Merkle
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Figure 1.5: Fitted calibration curve (solid black line), its 95% confidence region
curves (solid red lines) and the graphical solutions of the three equations (blue
lines).

1983 [61])

Y, =C+aD+3D?>+R
V/var(C) + var(a) D2 + var(B) D4 + 2cov(C, a) D + 2cov(C, B) D% + 2cov(a, ) D3,

where R? is the 95% percentile of a chi-square distribution with 3 degrees of free-
dom (linear—quadratic model), or 2 (linear model; g8, var(83), cov(C, 8), cov(a, 8) =
0) degrees of freedom (df). For df = 3, R = 2.795 and for df = 2, R = 2.448.
The variances and covariances of the parameters are obtained from the Pois-
son regression outputs. The 95% confidence lower and upper limits of the dose
estimation are the solutions in D of the equations y;, = Y, and yy = Y_ respec-
tively, Merkle 1983 [61]. However, many researchers use the simplified version of
the Y. curves, omitting the information of the covariances, i.e. all covariances
are 0. Figure 1.5 shows the graphical solution of these equations in the example
on Section 1.5.1.

The details presented so far represent the current accepted practice for the
statistical analysis of whole body radiation induced chromosomal aberrations.
Sections 1.4.1 and 1.4.2 introduce details of the limitations and proposed al-
ternatives in the cytogenetic literature which led to the research of this thesis.
Section 1.5.1 shows an application of this methodology and Section 1.5.1 shows
its incorrectly measurement of the uncertainty through some simulations.
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1.4.1 Limitations

For the current cytogenetic analysis methods the scenario upon which the meth-
ods (calibration curves, dose estimation) are based is an acute, whole body,
homogeneous, external irradiation of a known low LET source, with dose in the
region of between 0.1 and 5 Gy. The appearance of dicentric chromosomes in
this scenario is very well represented by a Poisson process, IAEA 2011 [42]. In
contrast, real life exposures present delayed blood sampling, protraction or frac-
tionation, chronic exposures, inhomogeneity, very high or very low doses, high
LET radiation, internally deposited radionuclides, mass casualty scenarios, and
inter—scorer, —lab, —assay variation and other confounders, Vinnikov et al. [94].
For instance, the dicentric assay tends to produce overdispersed data (variance
higher that the mean) for high LET radiation exposition, i.e. it is not under
the Poisson assumption where the variance and the mean are equal. This is the
case for the dicentric assay after a—particles or neutrons irradiation, TAEA 2011
[42]. These overdispersed patterns are properly described by compound Poisson
distributions, which provide alternative models which have been tested in the
field, e.g. Virsik and Harder 1981 [96] and Puig and Barquinero 2011 [78].

The commonly used compound Poisson distributions in biodosimetry are the
Neyman A (NA), Virsik and Harder 1981 [96], the NB, Brame and Groer 2002
[14], and more recently the family of 7*'~order univariate Hermite distributions,
Puig and Barquinero 2011 [78]. The 2"-order univariate distribution is the
Hermite distribution, Kemp and Kemp 1965 [47]. A random variable ¥ follows
a compound probability distribution if it can be represented by

N
Y=> &
i=1

where N is a count data random variable and &7, &s, ... are independent, identi-
cally distributed random variables that are also independent of N. In the case
where N is Poisson, Y is said to follow a compound Poisson distribution. The
distribution of ¢; is called the generalizing distribution. In particular when the
distribution of &; is Poisson, the distribution of Y is a NA, when ¢; follows a
logarithmic distribution, Y is NB distributed, and when &; is distributed as a
binomial with a number of trials equal to 2, then Y follows a Hermite distribu-
tion, Johnson et al. 2005 [44]. The compound Poisson process considers that
the number of particles traversing a cell nucleus follows a Poisson distribution,
and for each particle, there is a probability (the generalising distribution) to
produce a count of aberrations, Puig and Barquinero 2011 [78]. The MLE of
the population mean for NA, NB and Hermite distributions is the sample mean,
Johnson et al. 2005 [44].

Partial body exposures produce overdispersed distributions due to a ‘zero—
inflation” mechanism, represented by mixed Poisson distributions, Sasaki 2003
[83]. In these scenarios the distributions of chromosome aberrations are zero—
inflated, w+ (1 —w)Y, where w represents the non-irradiated cells and (1 —w)Y
represents the irradiated cells. When Y is Poisson distributed, this leads to the
zero—inflated Poisson distribution. This distribution has one more parameter w,
the proportion of extra zeros.

Let Z = w+ (1 —w)Y where Y is Poisson distributed and 0 < w < 1, the
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probability that there are exactly k occurrences (k =0,1,2,...) is equal to

P(Z=0)=w+(1-w)e
o (T—w)aP
P(Z—k)—w,fork>0

The population mean is just (1 —w)A\, Johnson et al. 2005 [44]. The MLE of A
is obtained solving numerically the equation,

An—ng)=(1-eMX (1.1)

where ng is the number of zero counts and X is the sample sum; the estimate
of w becomes (Johnson et al. 2005 [44])

no/n —e
= 1.2
“ 1—e? (1.2)
An estimate of the variance of A can be obtained using the expression (Johnson
et al. 2005 [44]),
A1 —e )2
(n—mng)(1 —e > = e )’

From here 95% confidence limits are found in the usual way,

yo/r = A+ 1.961/V(N),

and the absorbed dose estimation 95% confidence limits are calculated like in
the whole body irradiation scenarios. It is important to remark that w is not the
‘size of the irradiated body’. To estimate this is necessary to take into account a
correction for the effects of interphase death and mitotic delay, IAEA 2011 [42],
this is dg which is the 37% cell survival dose, with experimental evidence to be
between 2.7 and 3.5 Gy, IAEA 2011 [42]. The fraction of the body irradiated is
calculated by the following formula (IAEA 2011 [42]),

V() =~

_ D/do
po(L-wke . (1.3)
w+ (1 —w)eP/do

Note that e~P/40 represents the proportion of cells which have survived. This
is the so—called Dolphin’s method. Section 1.5.2 shows an application of this
methodology.

1.4.2 The Bayesian approach

Several authors have suggested that a Bayesian approach to uncertainty estima-
tion may be suitable for analysing cytogenetic data. The methods of Bayesian
inference provide a consistent framework for modelling and predicting these
uncertain conditions. The Bayesian analysis framework focuses on the identifi-
cation of several probability distributions involved in the process. Prior informa-
tion is used in combination with experimental results to infer probabilities or the
likelihood that a hypothesis is true. A Bayesian approach is highly applicable
to ionising radiation dosimetry data. It has been shown that this approach im-
proves both the accuracy and assurance of radiation dose estimates. Bayesian
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framework allows the investigator to consider prior knowledge surrounding a
system, and this type of data is often available in biodosimetry. A number of
authors have begun to apply Bayesian methodology to analysis of cytogenetic
data for the purposes of biodosimetry. Groer and Pereira 1987 [33] were the
first to investigate the use of Bayesian models in chromosome dosimetry neu-
tron exposure. A review of Bayesian methods in biodosimetry can be found in
Ainsbury et al. 2013.
The Bayes’ theorem in its continuous version establishes

__LOWPE)
PO = Tieppe)de

where O is the continuous parameter set, y is the observed data set, L(Oly) is
the likelihood function, P(©) is the prior probability density function of © and
P(©ly) is the posterior prior probability density function of © given data y. See
Christensen et al. 2011 [16] and Sivia and Skilling 2006 [88], for instance.

The Bayesian framework considers that parameters are random variables,
in the biological dosimetry case, the calibration coefficients (C, «, 8) and the
absorbed dose D. The prior knowledge surrounding a system can be considered
in the Bayesian inference.

The calibrative density is the solution of the Bayesian inverse regression
problem, and its derivation is detailed in Section 4.4 which is the Appendix of
Ainsbury et al. 2014 [4].

1.5 Examples of classical dose estimation

The classical methodologies to estimate the absorbed dose in cytogenetic bio-
dosimetry presented in Sections 1.4 and 1.4.1 are extended here by reproducing
two practical examples.

1.5.1 Whole body irradiation

Barquinero et al. 1995 [9] studied the dose-response curve for y—rays induced
dicentrics. shows the cell distribution of dicentrics for 11 different doses. This
data set (Table 1.1) is based on blood samples which were irradiated in vitro
using a cobalt source (Theratron-780) at a dose rate of 26.95 ¢Gy/min simu-
lating acute whole body exposure. The Poisson assumption is considered and
supported for most of the samples, only the 0.25 and 2 Gy doses does the u—test
value exceed 1.96 (overdispersion).

The 1 Gy sample is taken from the calibration data to be used as test data.
The fitted calibration curve (omitting the 1 Gy sample) for a linear—quadratic
model, Y = C + oD + $D?, results

C=1312-10"3, 4=1971-10"2, 5 =6.288-10"2;

2281 —10.734 4.407
Y= —10.734 279.772 —146.915 | -1077;
4.407 —146.915 158.404

and R = 2.795. This is all the necessary information to build the curves Y
and Y. Figure 1.7 shows the plot of the fitted dose-response curve and the
observed means of the calibration data.
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Table 1.1: Dicentric distribution within cells, sample means and dispersion co-
efficients, and u values for each distribution. Test data in italics.

Number of dicentrics

Dose (Gy) 0 1 2 3 45 ] d u

0.00 4992 8 0.002 0999 -0.075
0.10 4988 14 0.003 0997 -0.135
0.25 1987 20 1 0.011 1.080 2.610
0.50 1947 55 0.027 0.973 -0.861
0.75 1736 92 4 0.050 0.950 -1.514
1.00 1064 99 5 0.093 0.999 -0.017
1.50 474 76 12 0.178 1.064  1.077
2.00 251 62 16 3 0.310 1.179 2311
3.00 104 72 15 2 0.560 0.834 -1.638
4.00 35 41 21 4 2 1.000 0.882 -0.844
5.00 1 19 11 9 6 3 1.814 1.150 0.811

Table 1.2: Distribution of dicentrics plus rings within cells, sample means and
dispersion coefficients, and u values for each distribution.

Number of Dic+CR

Dose (Gy) 0 1 2 3 4 5 ] d u

0.00 8802 9 0.001 0.999 -0.064
0.10 5034 14 0.003 0.997 -0.134
0.25 1968 36 1 0.019 1.034 1.097
0.50 1942 69 1 0.035 0.993 -0.212
0.75 1503 103 1 0.065 0.954 -1.301
1.00 1185 105 2 0.084 0.953 -1.198
1.50 582 93 7 0.157 0.975 -0.456
2.00 303 88 11 1 0.280 0.970 -0.430
3.00 105 72 25 2 1 0.644 0.921 -0.799
4.00 71 73 41 16 3 1.054 0.946 -0.545
5.00 31 66 64 24 13 2 1.640 0.791 -2.090

The 1 Gy sample presents a total of 109 dicentrics in 1168 cells analysed,
following notation in Section 1.4 X = 109 and n = 1168. The sample mean
is § = 0.093 and the lower and upper confident limits are y; = 0.077 and
yuy = 0.113 respectively.

The best dose estimate is given by the solution of the equation Y = g,
1.063 Gy. The limits for the 95% confidence region of the dose estimation are
the solutions of Y, = y; and Y_ = yy, giving a range of (0.882,1.263) Gy.
Figure 1.5 shows the graphical solution of these equations.

1.5.2 Partial body irradiation

Barquinero et al. 1997 [10] studied the in vitro yield of dicentrics plus centric
rings (Dic+CR) after X-rays exposure in partial body scenario. This calibration
data set (Table 1.2) is based on blood samples from one healthy donor which was
irradiated in vitro using a cobalt source (Theratron-780) at a dose rate ranged
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Figure 1.6: Observed means (dots), plus/minus twice their standard errors (er-
ror bars), and predicted means (solid line) of the number of dicentrics for Poisson
fitting, based on the data in Table 1.1, omitting the 1 Gy test data.

from 117.5 ¢Gy/min to 107 ¢Gy/min simulating acute whole body exposure.
The Poisson assumption is considered and supported for most of the u values,
only for 5 Gy the u—test value is lower than 1.96 (underdispersion).

The fitted calibration curve (omitting the 1 Gy sample) for a linear—quadratic
model, Y = C + aD + $D?, results

C=9.054-107%, &=3431-10"2, B =5.702-10"2;

9.721  —38.347 12.916
» = —38347 2351.696 —1012.336 | -107%;
12.916 —1012.336 885.857

and R = 2.795. This is all the necessary information to build the curves Y
and Y. Figure 1.7 shows the plot of the fitted dose-response curve and the
observed means of the calibration data.

The test data in this example is going to be the sample comprised 3 Gy for
25%, 0.75 Gy equivalent whole body dose. This sample presents 493 cells free
of dicentrics plus centric rings, 23 with 1, 3 with 2 and 1 with 3, this is a total
of 36 dicentrics in 521 cells analysed, ny = 493, X = 36 and n = 521 following
notation in Section 1.4.1. The sample mean and dispersion index and the u—
test values are § = 0.069, s?/§ = 1.601 and 9.822 respectively (overdispersion).
Solving Equation 1.1, A = 0.526 and V(A) = 0.032.

The best dose estimate is given by the solution of the equation Y = A, 2.747
Gy. The limits for the 95% confidence region of the dose estimation are the
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Figure 1.7: Observed means (dots), plus/minus twice their standard errors (er-
ror bars), and predicted means (solid line) of the number of dicentrics for Poisson
fitting, based on the data in Table 1.2.

solutions of Yy = A — 1.961/V(A) and Y_ = X + 1.964/V(}), giving a range of
(1.403,3.832) Gy. Figure 1.8 shows the graphical solution of these equations.

The proportion of non-irradiated cells w is calculated through Equation 1.2,
w = 0.868. Assuming dy = 2.7 the estimation fraction of the body irradiated
(Equation 1.3) is F' = 0.295.

1.6 Simulations

With the aim to check how the classical method to estimate cytogenetic dose
(Section 1.4) measures the uncertainties of the dose estimates, different simula-
tion practices are carried out.

1.6.1 Parametric bootstrap

Taking the calibration data of the example in Section 1.5.1, (Table 1.1), includ-
ing the 1 Gy sample this time, the linear—quadratic curve Y = C 4+ oD + 8D?
is fitted, resulting

C=1312-10"3, 4=1971-10"2, 5 =6.288-10"2;

2220  —9.942 4.377
Y= —9942  266.018 —151.076 | -10"";
4.377 —151.076  160.674
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Figure 1.8: Fitted calibration curve (solid black line), its 95% confidence region
curves (solid red lines) and the graphical solutions of the three equations (blue
lines).

and R = 2.795. This is all the necessary information to build the curves Y and
Yy. Figure 1.9 shows the plot of these curves and the observed means of the
calibration data.

Samples are simulated for two fictitious scenarios (they do not exist in the
Barquinero et al. 1995 [9] experiment), one simulating an irradiation of 0.9 Gy
in 1500 blood cells and other of 2.5 Gy in 300 cells.

Two different simulations are performed to generate these data:

e Generated by the Poisson uncertainty: for the 0.9 Gy / 1500 cells scenario
each simulation consists in 1500 random values simulated as a Poisson
with expectation C+éa-0.943-0.92 ~0.071, and for the 2.5 Gy / 300
cells scenario each simulation consists in 300 random values simulated as
a Poisson with expectation C+a-25+ B -2.52 22 0.448.

The following algorithm produces this simulation:
S1 Generate y* from Pois(C + é& - d + 3 - d%), where d is the irradiated
dose;

S2 Calculate y;, and yy from y*, and solve the equations Y, = y; and
Y_ = yy to get the confidence dose range (dr,dy), the confidence
regions for yr, /U and Y4 change depending the desired one (e.g. 95%),
90%, 75%, 50%, 25% or 10%);

S3 If d € (dr,dy) increase the counter by 1. Return to S1 until the
desired number of repeats is done. The confidence region is the final
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Table 1.3: Real confidence regions for some typical expected confidence regions
performing simulations for the Poisson uncertainty.

Dose / #cells 95% 90% 75% 50% 25% 10%
0.9 Gy /1500 99.96% 99.54% 96.66% 87.70% 61.19% 39.99%
2.5 Gy / 300 99.93% 99.42% 97.09% 83.85% 58.51% 40.14%

Table 1.4: Real confidence regions for some typical expected confidence regions
performing simulations for the Poisson and the dose-response curve uncertain-
ties.

Dose / #cells  95% 90% 75% 50% 25% 10%
0.9 Gy /1500 99.79% 98.80% 95.22% 79.80% 54.84% 37.20%
2.5 Gy / 300 99.69% 99.01% 94.76% 81.24% 57.54% 35.10%

number of the counter divided by the total number of repeats.

e Generated by the Poisson and the dose-response uncertainty: for the 0.9
Gy / 1500 cells scenario each simulation consists in 1500 random values
simulated as a Poisson with expectation C' 4+ & - 0.9 + 3 - 0.92, and for
the 2.5 Gy / 300 cells scenario each simulation consists in 300 random
values simulated as a Poisson with expectation C +a 2.5+ 3-2.52, where
(C, o, B) are simulated as trivariate normal with expectation (C, &, §) and
covariance matrix Y. These simulations includes the uncertainty of the
dose-response curve.

The following algorithm produces this simulation:

S1 Generate (C*, a*, 8*) from N ((C, o, 8), X)
S2 Generate y* from Pois(C* + a* - d + * - d?);

S3 Solve the equations Y, = yr and Y_ = yy to get the confidence dose
range (dr,,dy);

S4 If d € (dr,dy) increase the counter by 1. Return to S1 until the
desired number of repeats is done. The confidence region is the final
number of the counter divided by the total number of repeats.

To measure the real confidence region for a expected confidence region given
of this methodology, for each experiment 10000 samples are simulated checking
how many of them return a confidence region which cover the real dose.

Tables 1.3 and 1.4 show the confidence regions obtained applying the clas-
sical methodology performing the simulations for the Poisson uncertainty and
the simulations for the Poisson and the dose-response curve uncertainties, re-
spectively. These results clearly show that this methodology does not provide
an accurate measure of the uncertainty of the dose estimations.

1.6.2 Non—parametric bootstrap

Taking the calibration data of the example in Section 1.5.1, (Table 1.1), omitting
the 1 Gy (1168 blood cells analysed) sample which is going to be the test data,
and assuming a linear—quadratic dose-response curve, Y = C+aD+£D?, 10000
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Figure 1.9: Observed means (dots), and predicted means (solid line) of the
number of dicentrics for Poisson fitting, and its 95% confidence region (delimited
by the red/dashed lines), based on the data in Table 1.1 including the 1 Gy test
data.

simulations are carried out by using the frequency distribution of each sample,
e.g. each sample (the calibration and the test data) is simulated by samples
with replacement from the original one with the same size. For each step the
dose-response is fitted for the “new” calibration data and the 95% confidence
region of the absorbed dose is estimated for the “new” test data. It is checked
how many of them return a confidence region which cover the real dose, 1 Gy,
to measure the real confidence region.
The following algorithm produces this simulation:
S1 Generate 6* = (607,05,...,6%) from each sample 6 = (61,02,...,0,,),
where 0 is random selected from {61,60s,...,0,,} with replacement, i =
1,2...,m.

S2 Calculate the calibration coefficients C, & and B, and the covariance ma-
trix ¥ from the simulated calibration data;

S3 Calculate the confidence dose interval from the simulated test data and
the fitted dose-response curve;

S4 If the confidence dose interval covers the real dose, increase the counter
by 1. Return to S1 until the desired number of repeats is done. The
confidence region is the final number of the counter divided by the total
number of repeats.
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Table 1.5: Real confidence regions for some typical expected confidence regions
performing a non—parametric bootstrap.

Dose / #cells  95% 90% 5% 50% 25% 10%
1 Gy /1168 97.13% 93.39% 81.45% 60.01% 37.93% 21.92%
2 Gy / 332 98.45% 96.64% 87.82% 69.18% 46.13%  28.94%

Table 1.5 shows the confidence regions obtained applying the classical method-
ology performing a non—parametric bootstrap. The same simulation is analo-
gously performed taking the 2 Gy (332 blood cells analysed) sample as test
data.

These results also show that the classical methodology does not provide an
accurate measure of the uncertainty of the dose estimations. This is one of the
reasons to explore the Bayesian approach for cytogenetic dose estimation in the
research of this Thesis.
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Chapter 2

Presentation and discussion
of the results

This thesis collects six scientific works, five of them published/accepted by the
date of the submission of this document and the other one in the revision stage.

2.1 Review of Bayesian methods in biodosime-
try

This work is reproduced in Chapter 4 and corresponds to reference Ainsbury et
al. 2014 [4].

This is a review of the Bayesian models for radiation cytogenetics proposed
in the literature. Indeed, there is a practical overview of Bayesian cytogenetic
dose estimation including some application examples.

Throughout the literature the Bayesian analysis have been applied showing
its usefulness for cytogenetic data analysis. The Bayesian framework provide
results in form of probability densities which could give more accurate conclu-
sions, like the probability for an absorbed dose to be in a concrete range. Indeed
the Bayesian techniques gives a fuller and more rigorous consideration of the
associated uncertainties for dose estimation. The Bayesian approach has a num-
ber of obvious advantages for cytogenetic radiation dose estimation, where high
quality prior information is generally available and where the estimated dose is
more correctly represented by a distribution of possible values.

2.2 New calibration model applied for biodosime-
try

This work is reproduced in Chapter 5 and corresponds to reference Higueras et
al. 2015a [39].

In this project new Bayesian—type count data inverse regression methods are
introduced for situations where responses are Poisson or two-parameter com-
pound Poisson distributed with application in cytogenetic radiation biodosime-
try and in radiotherapy. These models can be calculated in a closed form, in
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Figure 2.1: Screenshot of radir in the RStudio interface.

the case of the compound Poisson only the simplified ones and they allow any
dose-response curve with very mild conditions.

The applied examples given in this work demonstrate that the approach
described is accurate and informative for practical cytogenetic dosimetry.

2.3 Package radir

This work is reproduced in Chapter 6 and corresponds to reference Morina et
al. 2015a [65].

The Bayesian framework has been shown to be very useful in cytogenetic dose
estimation. This paper describes the new R package radir, which implements a
the Bayesian—type dose estimation methodology in Higueras et al. 2015a [39] for
the Poisson assumption of the chromosomal aberrations yield and the required
dose-response curve (typically linear or linear-quadratic). The package is able
to calculate and plot the calibrative dose density for a given set of inputs and
provides its most relevant summary statistics including the best dose estimate,
the expected value, the standard deviation and credibility interval. Figure 2.1
shows a screenshot of an application of radir.

Several examples of application are provided. The package is useful for a
quick and easy examination of patients after unplanned exposures, like acciden-
tal overexposures in radiology services at hospitals, occupational exposures or
to follow up people affected by major nuclear accidents, such as Chernobyl or
Fukushima.

2.4 New model for partial body irradiation

This work is reproduced in Chapter 7 and corresponds to reference Higueras et
al. 2015b [40].
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A new Bayesian zero-inflated Poisson model is derived for dose and fraction
of the body irradiated estimation in partial body irradiation scenarios inside the
Bayesian framework. In the current study, Bayes factors are applied to identify
whether a sample of chromosomal aberrations in blood cells has been partially
or wholly body irradiated, contrasting the zero—inflated Poisson against the
Poisson assumption. Estimates are given in form of probability densities and
bivariate histograms, providing accurate and informative inference results. The
methods are tested and validated using data from a range of simulated exposure
scenarios, irradiated fractions and doses up to 20 Gy to the irradiated fraction.

The examples show that this methodology is highly promising for practical
biological dosimetry; indeed, the results are more accurate and more appro-
priate to analysis of cytogenetic data than the classical methods currently in
use. Further, the data required to implement this analysis (dose response curve
parameters and covariance matrices) are readily available.

2.5 Zero—inflated regression models for radiation—
induced chromosome aberration data

This work is reproduced in Chapter 8 and corresponds to reference Oliveira et
al. 2015 [70].

For radiation induced chromosome aberrations data, the Poisson distribution
is the most widely recognised and commonly used distribution and constitutes
the standard framework for explaining the relationship between the outcome
variable and the dose. However, in practice, the assumption of equidispersion
implicit in the Poisson model is often violated due to unobserved heterogeneity
in the cell population, which will render the variance of observed aberration
counts larger than their mean, and/or the frequency of zero counts greater than
expected for the Poisson distribution. The goal of this work is to study the
performance of zero-inflated models for modelling such data. For that purpose,
a substantial analysis is performed, where zero-inflated models are compared
with other models already used in biodosimetry, such as Poisson, negative bi-
nomial, Neyman type A, Hermite, Polya—Aeppli and Poisson-inverse Gaussian.
Several real data sets obtained under different scenarios, whole and partial body
exposure, and different types of radiation are considered in the study.

2.6 Package hermite

This work is reproduced in Chapter A and corresponds to reference Morina et
al. 2015b [66].

Generalized Hermite distributions are a family of two—parameter count dis-
tributions. These distributions can be useful for modelling count data that
presents multi-modality or overdispersion (the variance greater than the mean),
situations that appear commonly in practice in many fields. These distribu-
tions are closed under convolution and their maximum likelihood estimator of
the population mean is the sample mean. A Generalized Hermite distribution
of order m is represented by X; + mXs,, where X; and X5 are Poisson dis-
tributed independent random variables, and m is an integer greater or equal to
2. The second order Generalized Hermite distribution is the classical Hermite
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distribution. In this work a new R package is presented which allows the user
to work with the probability density, cumulative density, quantile and random
generation functions of the Generalized Hermite distributions. When one (or
both) of the population means of and is (are) greater than 20, the distribution
function is approximated using an Edgeworth expansion, the probability mass
function is calculated from this approximation of the distribution function, and
the quantile function is approached by a Cornish—Fisher expansion. The her-
mite package also allows the user to perform the likelihood ratio test for Poisson
assumption and to estimate parameters using the maximum likelihood method.

Practical examples of the usage of these distributions can be found in biology
and economy fields, like cytogenetic biological dosimetry.
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Chapter 3

Summary, conclusion and
further work

Cytogenetic dose estimation statistical models have been developed and ap-
plied to the entire process of cytogenetic biological dosimetry to get accurate
inferences and quantifications of their uncertainties. This has resulted in pro-
duction of statistical models for dose estimation which have a relevant role in
the different situations where overexposure irradiation is suspected, TAEA 2011
[42].

This thesis has been focused on investigating statistical models with appli-
cation to cytogenetic biodosimetry data analysis in several different exposure
scenarios. This research could lead to establishment of an alternative accepted
process for the estimation of absorbed dose, including consideration of more
count data distributions like the two—parameters compound Poisson distribu-
tions and their respective zero—inflated models, and allowing a wide range of
dose-response curves (not only the typical linear and linear—quadratic). The
Bayesian Information Criterion and the Bayes factor can be applied to deter-
mine the radiation scenario, instead the frequentist u—test.

First, in Chapter 4, Ainsbury et al. 2014 [4], Bayesian models for cytogenetic
data analysis over the field literature are reviewed, with special focus in dose—
estimation methodology.

After this, in Chapter 5, Higueras et al. 2015a [39] new Bayesian—like inverse
regression models for Poisson and two parameters compound Poisson responses
are developed for dose estimation in whole body irradiation. These models are
very flexible, allowing any kind of dose-response curves with very mild condi-
tions. Some of these models derive the usage of compound Hermite distributions,
for which an expression of the probability mass function is provided.

Chapter 6, Morina et al. 2015a [65], describes the new software implemen-
tation within the R framework for the Poisson models presented in Chapter 5,
the radir package. This package have dependency on the R package entitled
hermite, Appendix A, Morina et al. 2015b [66], which provides utilities for the
Generalised Hermite distributions.

In Chapter 7, Higueras et al. 2015b [40], a new Bayesian model for partial
body irradiation is introduced, leading to zero—inflated Poisson models.

Finally, Chapter 8, Oliveira et al. 2015 [70], presents a comparative study
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for the case of cytogenetic data to the study of different count models to fit
dose-response curves. Here, zero-inflated models to describe the number of
chromosome aberrations in biological dosimetry are compared with the Pois-
son, and some two—parameter compound Poisson models (negative binomial,
Neyman A, Hermite, Pdlya-Aeppli and Poisson-inverse Gaussian) under differ-
ent irradiation scenarios.

3.1 Further work

3.1.1 Zero—inflated compound Poisson models

Following the models in Chapter 7, Higueras et al. 2015b [40], and the compound
Poisson models in Chapter 5, Higueras et al. 2015a [39], zero—inflated negative
binomial, zero-inflated Neyman A and zero-inflated Hermite models could be
derived in the Bayesian framework for dose and fraction of the body irradiated
estimation in partial body exposure scenarios which the chromosomal aberration
yield in the irradiated fraction is overdispersed, e.g. high—-LET sources like
a—particles. Indeed, this methodology could be applied to all zero—inflated
responses to whom the underlying distribution is a two—parameter compound
Poisson.

3.1.2 Dose estimation in gradient exposure scenarios

Gradient exposure is an irradiation scenario in which a subject is exposed to
different fractions of the body. This is a situation which provides great difficul-
ties for biological dosimetry and clinicians, and as yet no viable biodosimetry
solutions have been proposed. The dose estimations in these situations could
lead to finite mixture models, see e.g. Frithwirth-Schnatter 2006 [24].

3.1.3 Software

The radir R package software introduced in Chapter 6, Morina et al. 2015a
[65], is dedicated only to the Poisson responses, so it mainly covers the low—LET
whole body irradiation scenarios. Enhancements in this software could lead to
include the negative binomial, Neyman A and Hermite models in Chapter 5,
Higueras et al. 2015a [39], and the zero-inflated Poisson models in Chapter 7,
Higueras et al. 2015b [40].

The current calculations of the posterior density in these zero—inflated Pois-
son models applying the acceptance-rejection technique is computative intensive
and sometimes require a couple of hours. Laplace approximations could be ex-
plored before the implementation of these models in the radir system, to get
quicker calculations.

In general, most of the advances forwarding this research lines for cytogenetic
dose estimation could be included in radir.

3.1.4 Other assays

A chromosomal translocation is a chromosome aberration caused by rearrange-
ment of parts between different chromosomes. These count data is managed
analogously to dicentrics, dicentrics plus centric rings and micronuclei data and
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taking into account individual factors like the age and the gender of the exposed
subjects. In a similar way the H2AX assay also leads to count models taking
into account some inter—individual factors

Indeed, the methods could be applicable for markers of late radiation effects,
the biomarkers of effect, an area of increasing interest within the low dose radi-
ation research community. Markers to be investigated would include those for
radiation induced cancers, for instance, and a number of interesting challenges
with data interpretation are foreseen.

The gene expression assay is not represented by count data; thus the models
developed in this thesis are not applicable.
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Chapter 4

Review of Bayesian
statistical analysis methods
for cytogenetic radiation
biodosimetry, with a
practical example

This chapter corresponds to the contents of [4].

Abstract: Classical methods of assessing the uncertainty associated with ra-
diation doses estimated using cytogenetic techniques are now extremely well
defined. However, several authors have suggested that a Bayesian approach to
uncertainty estimation may be more suitable for cytogenetic data, which are
inherently stochastic in nature. The Bayesian analysis framework focuses on
identification of probability distributions (for yield of aberrations or estimated
dose), which also means that uncertainty is an intrinsic part of the analysis,
rather than an ‘afterthought’. In this chapter Bayesian, as well as some more ad-
vanced classical, data analysis methods for radiation cytogenetics are reviewed
that have been proposed in the literature. A practical overview of Bayesian
cytogenetic dose estimation is also presented, with worked examples from the
literature.

Keywords: chromosome—-aberrations, biological dosimetry, critically accident,
Poisson distribution, confidence limits, model, distributions, credibility, uncer-
tainty, software.

4.1 Introduction

The classical methods for cytogenetic radiation dose estimation are now ex-
tremely well defined. In brief, dose-response calibration data are collected and
fitted to a linear or linear quadratic model, the coefficients of which are then
used to calculate the dose from the chromosome aberration yield scored in pe-
ripheral blood lymphocytes from a potentially exposed individual. The Poisson
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model is generally used to estimate the uncertainty on the yield of aberrations,
and this is combined with uncertainty on the fitted calibration coefficient(s)
using standard methodology in order to give an overall estimate of uncertainty
associated with the evaluated dose. Full details of this procedure can be found
in the International Atomic Energy Agency manual [42] and the International
Organization for Standardization (ISO) standard 19238 [43].

In general, within the field of cytogenetic dose estimation, chromosome aber-
ration yields are considered as something ‘fixed” according to the frequentist or
classical assumptions. This allows a deterministic estimate of the radiation dose
and associated confidence limits to be made. Note, however, that the classical
statement that one is 95% confident that the unknown true value of the param-
eter is contained in the interval defined by the confidence limits really means
that this interval has been defined using a procedure that is successful in giving
correct results 95% of the time. This interpretation is quite different from the
Bayesian confidence interval (or credible interval), understood as an interval
in the domain of a posterior probability. Following a measurement, the data
are known and fixed, and the parameter values are unknown. So, the natural
probability to be considered is the probability distribution of the parameter val-
ues, given the data. Using the elementary rules of conditional probability, this
brings in the prior probability distribution of true values, and so the proper prob-
abilistic interpretation of a measurement will depend on the prior information.
However, in classical cytogenetic dose estimation, assignment of a probability to
an event is usually based solely on the observed frequency of occurrence of the
event without any prior information, and the confidence limits are calculated
based on the assumed distribution of data around the observed mean frequency.
It is also important to note that, using appropriate priors, examples can be
constructed where the posterior probability distribution is entirely outside the
classical limits.

For instance, if one dicentric has been scored in 1000 cells, the classical prob-
ability of observing a dicentric in the 1001st cell is 1/1000. This ‘frequentist’
approach takes into account only the chromosomal damage which has been iden-
tified in a particular sample, and as such does not fully consider the intrinsically
stochastic nature of aberrations or any previous knowledge of the process. In
reality, the observed number of aberrations (e.g. in a calibration data set or in a
single measurement) only represents a snapshot of the true situation which can
only be realistically expressed as a probability distribution. The overall outcome
of a chromosomal analysis is a combination of the probability of induction of
aberrations by radiation and the chance of their detection. In other words, the
classical ‘probability’ is based on unknown quantities and is therefore not useful
in defining the true probability.

The alternative to the classical methodology is a Bayesian approach to data
analysis. In the Bayesian framework, probability of an event is described in
terms of previous beliefs and uncertainty. Previously existing, or prior, infor-
mation is used in combination with experimental results to infer the probability
that a hypothesis is true, in accordance with the Bayes theory

P(Dn|Dy)P(Dy)
P(Dn)

where, D, is previously existing or prior data; D, refers to newly collected
experimental results; P(D,) is the probability of occurrence of D,; P(D,) is

P(Dp|Dn) =
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the probability of occurrence of D,; P(Dp|D,) is the conditional probability
of D, given the occurrence of D,,, and P(D,|D,) is the conditional probability
of occurrence of D,, given the occurrence of D,. The details of Bayes theory
and Bayesian analysis are presented elsewhere (e.g. [88], [16]) and will not be
reproduced here. Worked examples of the use of Bayes theorem in a radiation
cytogenetics setting are, however, given in the Section 4.4.

A number of authors have suggested that a Bayesian approach to analysis
of cytogenetic data may be preferable to the classical, frequentist techniques
and the potential of the former has been demonstrated in several sets of spe-
cific circumstances. Bayesian methods are eminently suitable for analysis of
chromosome aberrations, which are inherently stochastic in nature. Bayesian
statistics considers that aberrations can be induced in a probabilistic manner,
but will not necessarily be detected. This is a much more realistic reflection of
the true scenario: the classical method of representing the mean dose and as-
sociated confidence limits allows consideration only of a single “point” estimate
of suspected dose, ignoring the fact that the suspected or likely dose is much
more accurately represented as a distribution of possible values. In contrast,
the Bayesian method gives the probability that the dose was in a certain dose
range or above or below a certain value. Additionally, prior knowledge is of-
ten available in biodosimetry in the form of background levels of aberrations,
calibration curves, or expected adherence to the Poisson distribution.

A further important advantage of Bayesian over classical methodology is that
in Bayesian statistics, the use of distributions for all parameters means that the
uncertainties associated with the parameters are intrinsically included in the
analysis. Uncertainties are therefore an integral part of the dose calculations,
rather than being considered separately as an ‘afterthought’ which is typically
how uncertainty is incorporated using the classical approach. As a result of this,
it has been shown that the Bayesian approach increases quality assurance as, in
order to create and use a statistical model, it is necessary to completely under-
stand the measurement that is being performed and this necessarily minimises
false assumptions and so leads to optimisation [87].

In practice, the Bayesian framework is based on the continuous modification
of the understanding of a model by newly collected data. At any one time, the
understanding of the model is characterised by what is termed the prior infor-
mation. Each parameter in a given model has a prior distribution associated
with it, and in this way the uncertainty surrounding each parameter is an inher-
ent part of the analysis. When new data are collected, the data are combined
with the prior information or model(s) in order to form a posterior model, which
then represents the complete, up to date, knowledge regarding the system that
is under investigation. Bayesian analysis methods can be used to calculate, for
instance, the probability that a radiation exposure occurred or that a specific
radiation dose was received.

In this chapter we review Bayesian, as well as some more advanced classical,
data analysis methods for radiation cytogenetics that have been proposed in
the literature. We also present in the appendix a practical overview of Bayesian
cytogenetic radiation dose estimation, with a worked example from the litera-
ture, which more fully demonstrates the usefulness of Bayesian techniques in
this setting.
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4.2 Bayesian methods for cytogenetic biodosime-
try

4.2.1 Model selection

There are several forms and classes of distributions that can be used to model
the probability of occurrence of events. The type of distribution chosen is very
important for accurate data analysis, and several models have been proposed
and implemented for the assessment of cytogenetic data. The most commonly
used models and their applicability to radiation cytogenetics are discussed be-
low.

In radiation cytogenetics, the Poisson distribution has long been the model
of choice. In general, counts of chromosome aberrations are low and Edwards
and colleagues showed that chromosome aberrations can therefore be modelled
extremely effectively by the Poisson model [22]. In the wider literature, the
Poisson distribution has been used in the Bayesian framework by many au-
thors. Despite this, Bayesian Poisson modelling in radiation cytogenetics is
surprisingly limited, perhaps as, to date, most forays into the field of cytoge-
netic data analysis have focused on analysing data that violate the assump-
tions associated with the Poisson model, in particular that the variance and
mean should be statistically equivalent. The classical method of dealing with
observed overdispersion is to increase the standard error associated with the
measurement; moreover, significant overdispersion would ideally be dealt with
by adding an additional parameter to the Poisson model, for example through
implementation of the negative binomial, Neyman A or Hermite models. How-
ever, other than the negative binomial, only a limited number of attempts have
been made to develop a Bayesian methodology in radiation cytogenetics using
other overdispersed distributions like the Neyman A or the Hermite. Intuitively,
the Bayesian approach is certainly more correct than the classical approach, as
it leads to a much more rigorous interpretation of the uncertainty associated
with the resulting dose estimate.

In 2003, Sasaki [83] presented a method of analysis for chromosome aberra-
tion data, in an attempt to deal with the problems of inappropriate estimation
of average dose which result from inhomogeneity of exposure. In such a sce-
nario, the cell population consists of a mix of sub populations, each exposed to
a different dose, causing a different amount of damage. The distribution of chro-
mosome damage in cells can therefore be expressed in terms of a mixed Poisson
distribution, and ‘unfolding’ of this creates a dose distribution profile. Although
formally classical in nature, this 'Bayesian-like’ approach produces a final dis-
tribution containing information on dose inhomogeneity as well as the 'prior’
information of variability induced by having a spectrum of charged particles
and multiple ionisation events in the cell nuclei. The model was demonstrated
to provide adequate fits for the linear-quadratic dose response for simulated
accidents and real overexposure data.

Morand and others [64] published a technical note describing the NETA
computer program, which can be used to calculate the 95% confidence limits of
Neyman A distributed events. This distribution was first proposed by Neyman
in 1939 [69], who introduced it as a way to test the difference between means
of two samples of count data with different variances. This is in contrast to
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other standard tests such as the z— and t—tests, for example, which are based
on normally distributed data with known and unknown population standard
deviations respectively. The Neyman A distribution tends towards the Pois-
son distribution when its theoretical dispersion index tends to 1. Morand and
colleagues found that the confidence limits calculated using the Neyman distri-
bution were smaller than those calculated using the traditional Poisson-based
method for small sample sizes (numbers of cells) [64].

Stiratelli et al. [90] consider the beta—binomial model. The beta distribution
embodies a family of continuous probability distributions, which are defined on
the interval [0,1] by two shape parameters, usually referred to as alpha and
beta. Although beta distributions are used extensively in Bayesian statistics
as they provide conjugate prior distributions (defined as being in the same
family as the posterior distribution) for binomial (including negative binomial)
and geometric distributions, the approach of Stiratelli et al. [90] is classical in
nature. The Dirichlet distributions are an extension of the beta distribution
for multiple (>2) parameters. The beta—binomial distribution arises when one
considers the p parameter in a binomial distribution as being randomly drawn
from a beta distribution. Stiratelli and colleagues [90] compared the Poisson
and binomial distributions for chemically induced chromosomal damage with
the beta—binomial, negative binomial and correlated—binomial distributions. In
contrast to the Poisson and simple binomial distributions, these models do not
rely on independence of cellular response. The authors found that all the beta—
binomial distribution based models showed improved fits with respect to the
Poisson and binomial models (as tested by the x? test). The beta—binomial
model provided the best fit with respect to the authors’ data set.

It is well documented that chromosome aberration data produced as a result
of high energy and high LET radiation can be over—dispersed, that is the vari-
ance of the data is greater than the mean, violating the Poisson assumption that
the variance and mean are equal. Brame and Groer considered over—dispersion
from a Bayesian standpoint [14]. The usual assumptions are of an underlying
statistical relation between dose, yield and number of cells scored. This can
be compared with a previously formed calibration curve for Poisson distributed
yield which is linear or linear quadratic in nature. A Bayesian approach using
a negative binomial model is applicable when over—dispersion is suspected: the
negative binomial is characterised by a parameter, ¥, which measures the de-
gree of overdispersion. With this model, overdispersion becomes independent
of dose as the expected number of dicentrics increases and as ¥ tends to 0, the
negative binomial tends towards the Poisson. The authors also used gamma
priors, amongst others, and demonstrated the use of Bayes factors for model
comparisons.

One of the criticisms of the Bayesian framework is that a successful outcome
relies heavily on the initial choice of model(s). Kottas and others [49] and Krn-
jajic and colleagues [50] recently presented details of Bayesian non—parametric
models which can be used for data which would traditionally be analysed using
a Poisson-based parametric model. The authors tested the Bayesian approach
with in vitro and real overdose data for radiation induced micronuclei, and found
that, in many cases, the non—parametric model produced more accurate predic-
tions than the parametric, Poisson, models. Mukhopadhyay [67] discusses the
use of the Dirichlet prior for non—parametric Bayesian inference of dose levels.
A numerical example of the described method is given and its particular use in
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calculating percentiles is demonstrated.

Pereira and Stern [73] presented details of a full Bayesian significance test for
hypothesis testing based on credible sets. The method presented by the authors
samples from the “parameter space” rather than from the ‘sample space’ which
may be much more appropriate for many different types of data, including, in
the opinion of the authors of this manuscript, cytogenetic data. In 2001, the ap-
plication of the full Bayesian significance test for model selection was discussed
by the same authors, which relies on testing of significance of individual pa-
rameters of models. An example was given using the multiple linear regression
model [74].

Probability density functions (PDF's) are a very important concept in Bayesian
uncertainty analysis. PDFs represent the distribution of probabilities of a quan-
tity, and are used to formally define prior knowledge. In 2006, van Dijk presented
details of numerical methods for calculating uncertainty in personal dosimetry.
Monte Carlo sampling was used to construct a probability density function of
dose from personal dosimeter measurements. This allows the uncertainty and
confidence intervals to be calculated: PDF's were assigned to all input quantities
and then these were combined to produce a single output PDF. Although clas-
sical rather than Bayesian in nature, this method demonstrates the importance
of correctly forming the PDF in order to accurately assess uncertainties [93].

4.2.2 Detection limit and decision threshold

Miller and colleagues [62] presented details of a Bayesian method of determin-
ing detection limits, i.e. whether results of biological measurements should be
deemed positive or negative. The authors discuss the advantages of the Bayesian
approach, which allows knowledge of the results of previous measurements to be
incorporated into the decision making process. In 1995, Miller and colleagues
followed this work with quantitative assessment of the methodology, showing
that Bayesian methods are much more suitable for detection limit analysis than
the corresponding classical methods, as they allow the prior knowledge of the
population to be included in the calculations [63].

In 2002, Groer demonstrated the applicability of Bayesian techniques in sta-
tistical analysis of Poisson distributed radiation net counting rates. The author
highlighted the fact that the Bayesian methods involving probability densities
allow uncertainties to be fully characterised and also represented pictorially
[31]. The following year, Groer and Carnes describe the application of Bayesian
statistical methods for threshold estimation for radiation—induced lung cancer
in mice. A Weibull based proportional hazards model was used, which allows
the dose threshold to be calculated. The authors used a Bayesian approach
to estimate the parameters of the model and characterise the uncertainty of
the estimates with probability distributions, allowing calculation of probability
based confidence intervals. Uniform and improper priors were used to account
for a lack of initial knowledge of the distributions. The results show differ-
ences between the two types of radiation investigated, Co-60 gamma rays and
neutrons: the gamma estimates of threshold were approximately normally dis-
tributed with a median on the order of 0.5 Gy; the neutron distribution was
exponential with thresholds only becoming likely at 0.2 Gy or less [32]. In 2006,
Weise and colleagues described the concepts of decision threshold and detection
limit using Bayesian methodology. The detection limit is defined as the value of
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the upper 95% confidence limit of the distribution of possible doses given a true
dose of zero; it is therefore the smallest true value that is statistically detectable
with the method used. The decision threshold is defined as the limit for which
the lower 95% confidence threshold is equivalent to the detection limit; values
above this level are statistically indicative of at least 95% probability of a true
event. Bayesian methods for calculating both were presented, together with
confidence limits. Again, the ISO standard (ISO 2004) was considered, and the
authors concluded that Bayesian methods are most appropriate for evaluation
of uncertainties [99].

4.2.3 Dose estimation using the dicentric assay

In 1987, Groer and Pereira [33] investigated the application of Bayesian statis-
tical methods for chromosome dosimetry in neutron exposure. Bayesian cali-
brative density functions were formed, which are defined by incorporating data
from physical dose estimates, calibration experiments for neutrons of the same
dose, and ‘new’ information from the dicentric chromosome aberration assay.
The authors demonstrated the use of the density function to produce an an-
alytical estimate of dose, assuming the Poisson form of the calibration data,
and applying a gamma prior for dose and for the alpha (linear) term of the
calibration curve y = aD.

As dicentrics are not stable over time, it is generally accepted that the di-
centric assay can only be used for short time periods after radiation exposure.
Straume and Bender, for example, discussed the reliability of techniques in cy-
togenetic biodosimetry including the dicentric assay, with respect to complex
and protracted radiation exposures such as those experienced by astronauts in
space. The authors point out that simple proportional yields are not sufficient
to fully describe the protracted and complex exposure conditions that are expe-
rienced in space [89]. Limitations of the dicentric assay include the fact that it
is not sufficient for dosimetry on missions of periods greater than a few months,
due to the large uncertainties associated with back—extrapolation of dicentric
frequencies. However, in 1988, Bender and colleagues investigated the problem
of detection of very low doses (<0.1 Gy) for individuals sampled decades after
exposure, using a Bayesian statistical approach. The authors concluded that
Bayesian methods could be used to provide a formal statement of likelihood
that observed chromosome damage is due to radiation exposure at time points
far later than is conventionally possible [12].

The negative binomial distribution has also been used as an example to
demonstrate a Bayesian approach to parameter and dose estimation for chro-
mosome aberrations caused by neutron exposure. Brame and Groer [14] used
a negative binomial PDF for yield to characterise uncertainty in the dose. The
negative binomial model was shown to give a better fit for data from high en-
ergy (14.7 MeV) neutrons and to be very similar to the Poisson model results
for fission neutrons at 0.7 MeV.

Criticality accidents are those in which a combination of neutron and gamma
irradiation contributes to the overall dose. Present methods for dose estimation
in this situation rely on the availability of physical calculations or estimates of
the ratio of neutron:gamma doses. Brame and Groer also described a Bayesian
approach to dose estimation in a criticality accident. Posterior probability den-
sities for the total and the neutron and gamma doses were derived, allowing
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the uncertainty in dose ratio to be included in the calculations. The Bayesian
approach led to an increase in uncertainty associated with neutron, gamma and
total dose estimates but did not affect the calculated values of the doses. The
Bayesian criticality method was found to give very similar results to the classical
iterative approach in a simulated accident situation ([14], [97]).

In 2003, Maznik and colleagues investigated the distribution of initial biolog-
ical dose estimates for Chernobyl cleanup workers. The authors used a Bayesian
approach to analyse cytogenetic data, constructing probability distributions for
yields of dicentrics and incorporating a classical conversion to dose. The au-
thors discuss the advantages of Bayesian methodology in cases of low doses and
small numbers of scored cells or observed aberrations [57]. The method was also
applied for evacuees from the vicinity of Chernobyl [58] and for retrospective
cytogenetic dosimetry for cleanup workers [59]. In all cases, the Bayesian ap-
proach was shown to be robust and relatively simple to implement, allowing the
calculation of mean doses and associated confidence intervals as well as the most
probable doses and dose limits for the probability density intervals outlined by
the researchers.

There has been a large amount of interest in the potential for automation
of the dicentric assay, indeed this is the logical next step for this biodosimetry
technique. As early as 1992, Piper and Sprey were investigating the potential
of parametric Bayesian methods for automatically classifying centromere can-
didates [75]. The Bayesian classification system was found to give considerable
improvements in terms of the false positive rate, in comparison to a traditional
‘box’ classifier.

Most recently, DiGiorgio and Zaretzky used a Bayesian approach to present
the uncertainty on a biological dose estimate for a radiation overexposure patient
in Latin-America [21]. A Poisson model with a Jeffrey’s prior was used and
it was further demonstrated that the Bayesian approach allows presentation of
probabilities for dose ranges, which leads to a much more intuitive interpretation
of the biological dosimetry results.

4.2.4 Dose estimation using the micronucleus assay

Low LET /low dose irradiation has been shown to lead to a Poisson distribution
of micronuclei (MN) [22]. A highly variable spontaneous frequency of MN is
observed across individuals and this produces challenges for modelling damage
yields and producing calibration curves. In 1994, Madruga and colleagues pre-
sented a Bayesian method of analysing micronuclei to give dose-response curves,
using the log—odds transformation presented by Aitchison and Shen [5]. The
information contained in the experimental data is used to produce the a—priori
calibration (again with the Dirichlet model), which can then be used to give the
posterior distribution [54]. Madruga and colleagues further developed the above
methods for calculation of Bayesian credibility intervals, and measured credibil-
ity, associated with estimated dose [55]. The authors demonstrate that credible
intervals can be created for unknown doses, solely based on observed frequen-
cies of micronuclei. Matthews also presented details of a Bayesian approach to
credibility assessment, though in the context of clinical trial outcomes. As with
other applications, the Bayesian methodology allows quantitative use of prior
information in credibility calculations: the critical prior interval is a measure of
the confidence in the prior information that is required for the outcome of the
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trial to be considered plausible [56].

Serna and colleagues used Bayesian techniques to calculate uncertainties
for micronuclei found in thyroid cancer patients after treatment with Todine—
131. The analysis was based on the fact that the total number of micronuclei
incorporates both the background distribution and the radiation induced Pois-
son distribution. The method facilitates the inclusion of uncertainties in the
confidence limit calculations. The Bayesian approach was demonstrated to be
particularly useful in low dose situations as, even where the counts of radia-
tion induced micronuclei were equal to or less than the background counts, the
Bayesian dose calculated in this situation was always positive due to the prior
information that a radiation dose was received [86].

4.3 Discussion and conclusion

Where methods have been proposed and tested, the Bayesian framework has
been shown to be useful for analysis of cytogenetic data. The results of a
Bayesian analysis are provided in terms of probability distributions, which can
then be manipulated to give more logical conclusions, for instance the proba-
bility that a radiation dose received by an individual was in a certain range.
In general the Bayesian analyses have been shown to give conceptually better
results than the classical counterparts, i.e. a fuller and more rigorous consider-
ation of the associated uncertainties. A Bayesian approach also requires a more
complete understanding of the system which is under investigation, which is
advantageous for both analysis and interpretation of the results. The only neg-
ative is perhaps that full Bayesian analysis can sometimes be mathematically
and computationally intensive, and given the extremely well defined nature of
currently available classical methods, it may be difficult to persuade those who
have many years of experience with classical data analysis that a move towards
the Bayesian scheme could be advantageous, in order to overcome some of the
limitations in the existing standardised statistical methodology [94]. Neverthe-
less, numerous texts are available to guide the user (e.g. [88]) and numerous
statistical software packages are available, for instance several packages made
in R [81] and WinBUGS [53] and one recent cytogenetic biodosimetry—driven
program [3], which allow the appropriate calculations to be carried out. The
advantages of the Bayesian framework are clear, and therefore more work in
this area is required, both to publicise the potential for Bayesian analysis in
biological radiation dose estimation and to develop the methodology further.

Section 4.4 presents a worked example for the application of Bayesian meth-
ods to radiation cytogenetics. In addition, the authors are currently developing
a software tool which facilitates application of a number of the Bayesian methods
discussed in this chapter.

4.4 Appendix: Methodology of Bayesian cyto-
genetic radiation dose estimation
As discussed in the main body of text, the principal of Bayesian analysis relies on

the use of pre—existing or ‘prior’ information in order to make judgements about
‘future’ experimental measurements. In terms of cytogenetic biodosimetry, the
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‘prior’ information may be the distribution of background rates of chromosome
aberrations, e.g. dicentrics, and/or previously collected calibration data re-
garding yields of aberrations at different doses that have been used to set up
reference curves for different types of radiation [42]. The word ‘future’ here
can be taken to refer to all experimental data collected following the initial
calibration experiments.

Although it is possible to find numerous basic texts on the subject of Bayesian
statistical methods(e.g. [16, 88]), for completeness, the basic terminology and
methodology of Bayesian inference is explained below. This is followed by a de-
tailed example (from the literature) which demonstrates how to use this method
for cytogenetic radiation dose estimation.

4.4.1 Method of Bayesian inference of posterior predictive
distribution of new data and calibration data

Given a prior model (distribution), f(z|6), for previously collected data with x
one or more parameters § and a prior distribution for this parameter, p(6), the
‘joint” (combined) distribution of the prior data model and the prior parameter
model, h(6|z), is defined by Equation (4.1):

h(0]x) = f(z|0)p(8). (4.1)

The ‘marginal distribution’ of this information, m(x) (also called the ‘prior
predictive distribution’), is defined as the integral of h(8|x), over all values of
the parameter(s) 6:

m(x) :/h(9|x)d9:/f(m|9)p(9)d9. (4.2)

The posterior distribution of the model for the calibration data, p(6|z), is
the distribution which emerges when the prior information regarding the pa-
rameter § and the model of the calibration data are combined as in equation
Equation (4.1) and normalised by all possible values of the distribution — given
by Equation (4.3):

o) — MOD) __7low®) W)
m(z) [ f(z]0)p(6)de
The posterior distribution p(f|x) can be viewed as a collation of all the previ-
ously collected information, i.e. the calibration data, and as discussed above,
also includes all the uncertainty information.

When new data, y, are collected, the information contained in Equation (4.1)
can be used as prior information for the calculation of the distribution of the
new data given the calibration data, as follows. Given a model distribution:
f(y|@), for with one or more parameters 6, the posterior predictive distribution
fp(yl|z, d) for data x given new data y and a fixed dose d, is defined as the integral
of the joint distribution of the model f(y|6,d) and p(f|x) over all possible values
of 6:

h@%@=/ﬂW@MWM& (4.4)

Note that in the posterior predictive distribution d acts like a parameter.
In order to calculate the distribution of dose, the calibrative density f(d|z,y)
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is calculated using Equation (4.5), which incorporates prior information for the
dose distribution p(d):

fpldlz,y) = p(d) f,(ylz, d). (4.5)

The derivation for Equation (4.5) is given in Groer and Pereira [33] and thus
is not repeated here.

4.4.2 'Worked example for the Poisson model

Here we demonstrate how the above method can be applied to estimation of
radiation dose, given data x from a new measurement and data from a previously
defined calibration curve.

In order to simplify the example as far as possible, we will assume a linear
calibration relationship between the number of dicentric chromosome aberra-
tions per cell y and dose d, y = ad; as is common for high LET radiations,
for example fission neutrons [33]. In accordance with the IAEA manual [42], a
linear dose response should also be applied for cases of protracted exposure to
low LET radiation.

The first and perhaps most important step in any Bayesian analysis is model
selection. As discussed, the Poisson model has long been the model of choice for
cytogenetic biodosimetry. Thus we will assume a Poisson model for both the dis-
tribution of each observation of the calibration data x; and for the distribution
of the future data y:

(adi)“e_o‘di

flwila) = o (4.6)
ad)Ve—od
) = 2 (4.7

We assume that each observation x; follows a Poisson distribution with ex-
pectation equal to ad; where d; is the dose corresponding to this observation.
The probability function, which also known as the likelihood function, for the
complete calibration data model for N measurements with x; aberrations in
each cell at dose d; becomes:

N (ad;)%ie=di N N
f(x‘a) = H "xi' o uim1 TigT @2 iy di (4.8)
i=1 v

The likelihood function (4.8) can be summarized using the total number of
aberrations z; observed for each different dose d; (i = 1,2,...,k) in n; cells,
obtaining the following expression:

f(z]a) aXiz1 zigma Kiny mids (4.9)

It should be noted that Equation (4.9) arises because the sum of the observed
aberrations is a sufficient statistic for the parameter of the Poisson distribution.
Such a simplification is not possible for other distributions like the negative bi-
nomial where the likelihood function has to be calculated using the observations
cell by cell, if we do not want to lose information.
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To calculate the calibrative density in this example, the parameter 6 is thus
replaced by « in Equations (4.1)—(4.4). In order to completely include all possi-
ble uncertainty information and begin the procedure of calculating the posterior
predictive distribution of the dose, we must also specify a prior model for the
model parameter «, p(«) and for the dose, p(d). For this example, we will use
the gamma distribution for both p(a) and p(d). The gamma distribution is the
‘conjugate prior’ for Poisson distributed data:

p(a) = Ga(ala,b) = I‘ZZL) a®le0e, (4.10)
p(d) = Ga(d|A, B) = Ifz)dA_le_Bd. (4.11)

In mathematical terms, the use of the conjugate prior means that when
the prior and data are combined, the posterior will be of the same or similar
form, thus we are justified in choosing this ‘Poisson like’ model to represent the
distribution of «. The practical advantage of this is that analytical treatment of
Equations (4.1)—(4.5) will be very much simplified. Ga(a|a,b) in Equation (4.10)
is the gamma distribution of the parameter a, with distribution parameters a
and b which refer to the ‘shape’ and ‘rate’ of the distribution, respectively.
I'(a) is the gamma function which is related to the factorial function in that
I'(a) = (a— 1)! for positive integers. Similarly for Equation (4.11), A and B are
the shape and rate parameters of the gamma prior distribution of the dose, d.

Once the distributions are defined, the next task in the method outlined
above is to calculate the joint distribution of the prior p(«) and the calibration
data f(z|a). Using Equation (4.1):

h(O[|£L') o az,]f:l Zig—Q Z?:l n;d; biaaa—le—ba o aEi.;l zH—a—le—a(Ef:l nid;+b) )
I'(a)
(4.12)
The properties of the conjugate prior mean that h(«|z) is in fact in the form
of a gamma distribution with modified parameters:

k k
Ga <a aJrZzi,bJanidi) .
i=1 i=1

In order to calculate the posterior distribution of the calibration data it is
not necessary to calculate the marginal distribution m(z) expressed in Equa-
tion (4.2). In fact, m(z) only introduces in Equation (4.12) the corresponding
normalizing constant such that Equation (4.12) becomes a proper density of «.
Consequently, the posterior distribution, p(«|z), becomes a gamma distribution:

k a+Sk 2
plalz) = h(alz) _ (b+ Zi:l nid;) i % aa+2f:1 zq,—le—a(b+2§:1 nid;)
m() D(a+ Y0, #)
(4.13)
If the newly collected data in the form of y total aberrations in n, cells, for

dose d, is represented by a Poisson distribution:

(anyd)ve=onvd

, (4.14)
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according to Equations (4.4), the posterior predictive distribution, f,(y|z,d),
becomes:

k +3°F 2

fp(ylz,d) = (nyd)? (b+>im nigi)a i1 7 /oo QuTatsiog zimlg—albtnyd+ 30 nidi) g,
Tla+Y ;4 2)Y 0

In order to evaluate the integral in the simplest possible way, we use a property

of the gamma function: fooo 2P~le~%*dz = T'(p)/qP, for all values p,q > 0. So,
the part of the preceding expression that we wish to integrate:

- k
/ ay+a+2§:1 Zi*lefa(bﬁ’nyd‘FZfZI ’I’lel)da _ F(y + a —|— Zz:l Zl) k
0 (b+nyd + Zle nid;)vratsio =

and therefore,

b+ 0 ngdy) et i = T(y+a+ Y0, 2)
I'(a+ Zle 2i)y! (b+ nyd + Zle nid;)ytetio = .
(4.15)
Equation (4.15) has the form of the probability function of a negative bino-
mial distribution. The distribution of the dose (calibrative density) can then
finally be calculated using Expression (4.16):

fldly,z) = p(d)fp(ylz,d)
_ iAdA—l —Bd( d)y(
- Tt ¢

fplylz, d) = (nyd)

b+ Zf:l nidi)a+2§=1 Zi
[(a+ Zf:1 2;)y!
F(y+a+zi’€:1 Zz) (4-16)
(b+nyd+ S nyd;)vrerXiogz
dATy—1g—Bd

(b+nyd + Y0 ndy)vterSiz =

which is equivalent to Equation (4) in Groer and Pereira (1987) [33]:

N
_ - idi _
f(ds|D) o df+yf ! (df 4 LT i i e s (4.17)

—(ZE witys+b)
nyg )
where x; are the calibration yields (our z;), D refers to all ‘prior’ information
(i.e. the prior distributions of the calibration parameter and dose), y; is the
measured yield in ny cells for the observed dose dy, for which values of f(ds|D)
are calculated, and N is the different number of doses (our superindex k). Also
note that in the notation of Groer and Pereira [33] the parameters a, b and A,
B have been exchanged.

In order to use this equation, it is also necessary to insert appropriate val-
ues for a, b, A and B where a and b are the parameters of the prior gamma
distribution of the calibration parameter o and A and B are the parameters of
the prior gamma distribution of the dose. For a dosimetry situation where the
type of radiation exposure is either known or at least suspected, the fact that
the mean of a gamma distribution is calculated as a/b and its standard devia-
tion as v/a/b, it can be used with a maximum likelihood procedure to estimate
the parameters. The maximum likelihood estimator (MLE) of « is obtained
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Figure 4.1: Normalised calibrative density for neutron exposure, based on Pois-
son distributed calibration data with gamma distributed prior information re-
garding the calibration coefficient, «, and the distribution of doses, d, for an
observed number of 64 dicentrics in 104 cells. Data taken from Groer and Pereira
[33].

maximizing Expression (4.9) with respect to «, obtaining the simple estimator,
& = Zle zi/ Zle n;d;. Using the classical theory of MLE we can calculate
an estimator of the standard deviation of &, by means of the reciprocal of the
Fisher information. This estimator is 6(&) = Zle zi/ Zi;l nid;.

For the calibration data of Groer and Pereira [33], these estimates are, & =
0.833 and 6(&) = 0.031. Therefore, the use of a gamma distribution as a prior
for a, with @ = 722 and b = 867, would agree with the MLE of a and its standard
deviation estimate. However, following Groer and Pereira for this example, we
take the values a = 10 and b = 10 [33]. Likewise for the dose parameters, A
and B, it is possible to use the expected distribution of dose, according to the
irradiation scenario, to assign values to these parameters of A = 10 and B = 10
[33]. Inserting these values into Equation (4.16) gives the calibrative density
distribution that is shown in Figure 4.1.

Using this method, the best estimate of dose (the modal dose) is found to
be 0.756 Gy. The density itself can then be used to calculate probabilities, for
instance there is a 95% probability that the dose was between 0.597-0.961 Gy
and, given the calibration data and the gamma priors for dose and the alpha
coefficient and an observation of 64 dicentrics in 104 cells, there is a 98.97%
probability that the dose was <1 Gy.

It is important to remark that, in general, the influence in the calibrative
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Figure 4.2: Posterior densities p(a|z) for a Ga(w|10,10) prior (red/dotted
line), a Jeffreys prior (blue/dash-dot line) and the normal approximation
N(0.833,0.031) (green/solid line). Data taken from Groer and Pereira [33].

density of the prior dose density p(d) is greater than the influence of the prior
density of the parameter «. In fact, for large sample size calibration data the
posterior distribution of « described in Equation (4.1) and (4.12), tends to a
Gaussian distribution with mean equal to the MLE & and standard deviation
equal to 6(&) [26]. This fact is independent of the prior density considered.
So for large sample size data, the normal approximation of the posterior dis-
tribution is always a good option, and in this situation it is not necessary to
choose a prior density for a. This is the case for the example analyzed here.
Figure 4.2 shows the posterior density obtained using a prior, the Jeffreys prior
p(a) x 1/y/a and the normal approximation: The three densities are almost
indistinguishable. Note that the posterior for the Poisson model with a Gamma
prior or a Jeffrey’s prior can be calculated analytically.

In contrast, the choice of prior dose density p(d) has a relatively large influ-
ence on the calibrative density. For example, if the prior dose had been assumed
to be in the region of 2 Gy, the parameters of the gamma prior could have been
assigned values of A = 10 and B = 10. In this case, the best estimate of dose

becomes 0.868 Gy.
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Figure 4.3: Prior gamma distribution for alpha coefficient: Ga(«|50,1000) with
theoretical mean alpha coefficient ~ 0.050.

An example using classical and Bayesian methods of cytogenetic dose
estimation

The below example is presented using calibration data published by Lloyd and
colleagues in 1984 [51], for an assumed suspected dose of 1 Gy, a measured yield
of dicentric chromosome aberrations of 50 in 1000 cells scored. The authors
fitted dose response curves for chromosome aberration data formed following
protracted exposures to Cobalt 60 gamma irradiation. The 12 hr exposure time
data were fitted to a linear quadratic dose response, however the first four data
points, up to approximately 2 Gy, give a nice fit to a linear model, making this
data set suitable for the calibrative density analysis described above.

The calibration data are thus as follows: Doses, d; (Gy)= (0,0.28,0.534,0.994,
2.04); numbers of cells, n; = (10000, 1033, 500,600, 700); total count of di-
centrics, z; = (5,8,12,30,81). Note that the zero Gy data point is not given
explicitly in the reference, although it is stated that a 0 Gy dose point was used
for each fit. The yield at zero Gy is given in the text, and thus the numbers
of cells and dicentrics given here for the 0 Gy data point are estimated values
which allow this yield to be reproduced.

The first step is to estimate the gamma priors for the alpha coefficient and
for dose. For the alpha coefficient, the prior can be constructed using the MLE,
obtaining & = 0.052 and 6(&) = 0.0045. The Dose Estimate program [1] was
used to investigate the fitting of these five data points from a classical point
of view. The z-test p value for the alpha coefficient was 0.012, indicating its
significance in determining the fit, and the p value for the quadratic coefficient
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Figure 4.4: Prior gamma distribution for dose: Ga(«|10,10) with theoretical
mean dose of 1 Gy.

in the case of a linear quadratic fit was 0.916, indicating that the quadratic
part of the curve has no significance with these data. The gamma prior is con-
structed following the procedure described before: A gamma shape coefficient
of 50 and a gamma rate coefficient of 1000 give an appropriate theoretical mean
(0.050) very close to the MLE, as well as a theoretical standard deviation which
is slightly greater than 6(&): 0.007. Inspection of the form of the gamma dis-
tribution Ga(a|50,1000) reveals it is distributed fairly widely around the MLE
of 0.053 (Figure 4.3). Furthermore, several examples in the literature are avail-
able (including Groer and Pereira 1987 [33]), indicating values of the gamma
coefficients on this order. Therefore values of gamma a = 50 and b = 1000 can
be used to create an appropriate prior distribution for the alpha coefficient of
the dose response curve.

If a dose of 1 Gy is suspected, then it is reasonable to assume that the
true dose might lie within a gamma distributed region around a dose of 1 Gy.
Inspection of the gamma distribution Ga(«|50,1000) (Figure 4.4) reveals a sen-
sible range for the estimated dose, therefore these values can be used to create
the gamma prior for a suspected dose of 1 Gy.

As described above, the priors can then be used with the calibration data
to create the normalised calibrative density as per Equation (4.16), with values
of a = 50, b = 1000, A = 10, B = 10, y = 50, n, = 1000, and the calibration
data d;, n; and z; given above. The resulting calibrative density is illustrated
in Figure 4.5.

The results reveal that the modal dose value is 0.954 Gy, with 95% credibility
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Figure 4.5: Normalised calibrative density, f(d|y, z), for a measured number of
50 dicentrics in 1000 cells, for gamma prior for dose Ga(10,10) (mean ~1 Gy)
and gamma prior for alpha coefficient Ga(50,1000) (mean ~0.050).

interval between 0.726 and 1.272 Gy. There is a 58.54% chance that the dose
was <1 Gy.

If the classical method of dose estimation is used, the calibration data would
first be fitted using standard maximum likelihood or weighted linear regression
techniques (e.g. using the Dose Estimate software; Ainsbury and Lloyd 2010)
to give a relationship between yield, y, and dose, D, of: y = 0.0005(%0.0003) +
0.0503(+0.0003)D. Note that this is a linear model with intercept. This line
can then be used to calculate an estimated dose of 0.984 4+ 0.137 by means of
the inverse regression technique. The associated 95% confidence limits, which
are calculated following the recommended approximation to combine the error
on the measurement with the error on the curve [42] are 0.715 to 1.253. It is
important to remark that this is a confidence interval, conceptually different
from the credibility interval provided by the Bayesian method. The Bayesian
method gives the probability that the dose was in a certain dose range (aside
from the confidence limits) or above or below a certain value, e.g. the 1 Gy
suspected dose given here. Moreover, the Bayesian method of dose calculation
allows full incorporation of any ‘prior’ information, e.g. the suspected dose
given in this example. A classical method that has been developed to deal
with this is the odds ratio approach of Szluinska, which allows the suspected
dose and calculated dose to be compared [92]. However, this approach only
allows consideration of a single “point” estimate of suspected dose, ignoring the
fact that the suspected or likely dose is much more accurately represented as a
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distribution of possible values.
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Chapter 5

A new inverse regression
model applied to radiation
biodosimetry

This chapter corresponds to the contents of [39].

Abstract: Biological dosimetry based on chromosome aberration scoring in
peripheral blood lymphocytes enables timely assessment of the ionising radi-
ation dose absorbed by an individual. Here, new Bayesian-type count data
inverse regression methods are introduced for situations where responses are
Poisson or two-parameter compound Poisson distributed. Our Poisson models
are calculated in a closed form, by means of Hermite and Negative Binomial
distributions. For compound Poisson responses, complete and simplified mod-
els are provided. The simplified models are also expressible in a closed form
and involve the use of compound Hermite and compound negative binomial
distributions. Three examples of applications are given that demonstrate the
usefulness of these methodologies in cytogenetic radiation biodosimetry and in
radiotherapy.

Keywords: calibrative density, compound Poisson distribution, Hermite dis-
tribution, Panjer recursion.

5.1 Introduction

In spite of strict safety measures and regulations, radiation accidents or un-
planned exposures occur, for instance in radiology services and radiotherapy
departments at hospitals, or using radiography cameras in industry. There
have also been some major radiation/nuclear accidents, such as Chernobyl or
Fukushima, that have affected many people [91]. In the event of a radiation
accident, biological dosimetry is essential for the timely determination of the
radiation dose to which an individual has been exposed. On the other hand,
radiotherapy is commonly used to treat cancerous tumors, and it is important to
know the total absorbed blood dose to prevent possible complications or side ef-
fects. Biological dosimetry relies on quantifying the amount of damage induced
by radiation at a cellular level, for instance by counting dicentrics or micronuclei.
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These aberrations appear because when cells are exposed to radiation, breaks
are induced in the chromosomal DNA, and the broken fragments may rejoin
incorrectly. Therefore, the frequency of chromosome aberrations increases with
the amount of radiation and is a reliable and very well established biological
indicator of radiation absorbed dose. Such information supports the clinical
management of a patient, enables rapid triage in the case of a large scale radia-
tion incident and reassures the ‘worried well’ that they have not received a severe
radiation dose. At high acute whole body doses above 2 Gy, haematopoietic fail-
ure (or myelodysplasia) is the primary threat associated with acute radiation
syndrome which can be supported by early treatment with cytokines or, at very
high doses, bone marrow transplants [19]. To estimate the dose absorbed by
an individual, dose-effect calibration curves are required which are produced by
irradiating peripheral blood lymphocytes to a range of doses. The protocol and
methodology for such calibration experiments is described in a recent manual
of the International Atomic Energy Agency [42].

The usual approach for constructing the calibration curve is to irradiate n
blood samples from various healthy donor with several doses x;, i = 1,...,n.
Then, for each irradiated sample, n; cells are examined and the numbers of ob-
served chromosomal aberrations y;;, j = 1,...,n; is recorded. For the dicentric
assay it is usually assumed that the counts y;; follow a Poisson distribution
[22] or a compound Poisson distribution [68] whose mean is a function of x;
and a set of parameters 8, i.e. E(y;;) = f(z;,8). From the point of view of
[42] B are the calibration coefficients and f(x;, 3) is the mean of aberrations per
cell (called yield or frequency of aberrations per cell, in the cytogenetics field).
The parameters of this regression model are usually estimated by maximum
likelihood [23], and the MLE and its estimated variance—covariance matrix are
calculated and recorded. Therefore, in the case of an irradiated patient, a blood
sample is taken and m lymphocytes are scored obtaining the counts 41, ..., Jm.
The classical approach to estimate the absorbed dose x and its confidence lim-
its is to use the inverse regression method of [61], also described as a standard
procedure in [42]. An improved classical inverse regression method applied to
Electron Paramagnetic Resonance (EPR) dosimetry is found in [17].

Bayesian approaches allow simple incorporation of prior information con-
cerning the circumstances of the exposure. Groer and Pereira [33] were the
first to investigate the use of Bayesian models in chromosome dosimetry, for
neutron exposure, and since then several researchers have used Bayesian meth-
ods in radiation biodosimetry. For instance, DiGiorgio and Zaretzky [21] used
a Bayesian approach to present the uncertainty on a biological dose estimate
for a radiation overexposed patient in Latin—America: a Poisson model with
a Jeffrey’s prior was used and it was further demonstrated that the Bayesian
approach allows presentation of probabilities for dose ranges, which leads to a
much more intuitive interpretation of the biological dosimetry results. A review
of these methods can be found in [4]. There is also one recent program, Cy-
toBayesJ [3], which provides some basic software tools for Bayesian analysis of
cytogenetic radiation dosimetry data.

In this chapter we present a new Bayesian—type method to use cytogenetic
data to estimate the dose to which a patient has been exposed. This method uses
dose—effect calibration curves estimated by the classical (frequentist) approach
suggested in the IJAEA manual. Therefore, our new method has the advantage
that allows reanalysis of many of the published examples of radiation exposures
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that were studied using the classical methods. In addition, the method is in
fact a general inverse regression model for count responses that could also be
applied in contexts other than radiation biodosimetry.

An R package called ‘radir’ [65], which implements the Poisson response
models presented here, is available in CRAN repository: http://cran.r-project.
org/web/packages/radir/index.html.

5.2 A Bayesian-type inverse regression model

The Poisson distribution is usually used to describe the distribution of dicentric
chromosomes per cell when the patient has been irradiated with small doses
and with a low linear energy transfer (low—LET radiation). However, after ex-
posure to high—-LET, acute radiation, the distribution of dicentrics per cell often
presents overdispersion and therefore compound Poisson distributions are pre-
ferred. The commonly compound Poisson distributions in biodosimetry are the
Neyman A (NA) [96], the negative binomial (NB) [14], and recently the family
of rth-order univariate Hermite distributions [78]. These compound Poisson
distributions, also known as stopped—Poisson distributions, can be justified by
a simple physical model of chromosomal aberration formation: the particles tra-
verse the cell nucleus following a Poisson process and, for each particle, there
is a probability (the generalizing distribution) to produce k aberrations. Then
the number of aberrations follows a compound Poisson distribution. In other
words, a random variable Y follows a compound probability distribution if it
can be represented by

N
Y =>4, (5.1)
i=1

where N is a count data random variable and &, &, ... are independent, iden-
tically distributed random variables that are also independent of N. In the
case where N is Poisson, Y is said to follow a compound Poisson distribution.
The distribution of &; is called the generalizing distribution. In particular when
the distribution of &; is Poisson, the distribution of Y is a Neyman A, when
&; follows a Logarithmic distribution, Y is negative binomial distributed, and
when &; is distributed as a binomial with a number of trials equal to 2, then
Y follows a Hermite (Herm) distribution [44]. This can be expressed according
to the Gurland’s notation ([44], [35]) as N/ €. In particular, parameterising
with respect to the population mean p and dispersion index § (the ratio of the
variance to the mean o2 /1) we have the symbolic representation,

o NA(1, ) ~ Pois<5f1) \/ Pois(s — 1)
o NB(,6) ~ Pois(”ék”g(f)> \/ Log(égl>

e Herm(u,d) ~ Pois(2(§u_1)) \/ Bin(2,6 — 1)
Properties, formulae and algorithms to calculate the probabilities of these dis-

tributions can be found in [44]. In brief, they are partially closed under addition
[77], the maximum likelihood estimator of the population mean is the sample
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mean and they are also members of the discrete exponential dispersion family of
distributions. These properties are shared with other distributions potentially
useful in biodosimetry, such as Polya Aeppli or Poisson-Inverse Gaussian. See
[77] for more properties and characterizations of these distributions. In particu-
lar, given a random variable Y (with mean p and dispersion index ) belonging
to one of these models, the sum of n independent copies of Y also belongs to
the same model having the same dispersion index and a mean equal to npu.
Moreover, if § is known, the sum of the observations is a sufficient statistic for
1, containing all the information of the model. This is an important property
that will be used in section 4.

Let D = {(zs,955)}, ¢ = 1,...,n, 7 = 1,...,n; be a calibration data set
where each y;; represents a count data observation which will be assumed to
follow a Poisson distribution or a two—parameter compound Poisson distribu-
tion. Here xz; are the values of the independent variable, dose in the case of
cytogenetic radiation biodosimetry. The number of different exposed doses is n
and n; is the sample, the number of blood cells for the i*” dose. For all the mod-
els we define the regression function E(y;;) = f(z;, 5), 8 € RP. Moreover, for
compound Poisson modeling, we assume that the dispersion index is a constant
(6). In practice, this assumption could be verified by plotting the empirical val-
ues of the dispersion index (372/1 /T:.) against the z;. However, we could assume
another relationship between the independent variable and the dispersion index.
Therefore, from now, we will consider the dispersion coefficient § not to depend
on z;, and then the domain of the parameters is © = {,d}. Note that for the
Poisson model § = 1 and the domain of the parameters is just © = {5}.

Let p(yi; = k) = p(k|u,d) be the probability mass function of the model,
parameterized in terms of its population mean and dispersion index. It is clear
that p(y;; = k) = p(k|f(x:, B), ) = p(k|z;, ©), and then the likelihood function
of the calibration data D becomes:

Lo©e)= [ pyyle:©). (5.2)
i=1,....,n
j=1,....,n;

According to the TAEA manual, the parameters are estimated by maximiz-
ing the likelihood function (5.2), obtaining © = {/,4}. It is well known that
for large data samples, the distribution of @ € RPT! can be approximated by
a multivariate Gaussian distribution Np+1((:)7 flé) where fl@ is its estimated
variance-covariance matrix, that is, the inverse of the estimated Fisher infor-
mation matrix of the model. Note, however, that in the frequentist framework
6 ~ Np+1(®,ﬁ)é). It is important to remark that the laboratory providing
the outputs of the calibration curve, that is O and f)é, could be different from
the one analysing the patient sample; even though for a consistent assay, the
calibration curve should be constructed with the data provided by the same
laboratory that will analyze the patient data to guarantee that the scoring cri-
teria applied for the construction of the curve are the same as those applied for
patient analysis.

From here, the distribution of the expected count of dicentrics and dispersion
index for a given dose of z, (i, d)|z can be approximated by a bivariate normal
distribution. This is a straightforward consequence of the multivariate delta
method [85],

(1,0) 2 ~ Na ((£(z, B),8),V - S5 71) (5.3)
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where V denotes the derivative of (f(x, 3),0) at (ﬁ, 3), that is,

oo
V= oJo1 0By

Following these arguments, note that for the Poisson model the distribution
of p|z is approximated by a univariate Normal distribution with expectation
f(x,ﬁ) and variance equal to v(a:,B) =V f]é - V!, where V is now the gra-
dient of f(x,3) at 3. The bivariate normal density in (5.3) will be denoted as
&(u, 8]z) and ¢(u|x) will be the normal univariate density used for the Poisson
model. In some situations, the use of a bivariate or univariate normal could
be incompatible with the fact that g > 0, and in general § > 1. Then, some
approximations have to be carried restricting the parameters’ domain. For the
univariate normal distribution, one solution is to replace it by a Gamma den-
sity with the same mean and variance. It is well known that a larger gamma
distribution shape parameter (i.e., the ratio of the square of the mean to the
variance) implies a better Normal approximation. As we will see in the next
sections, the Normal approximation can be used in a wide range of situations,
and it also will be compared with the Gamma approximation. For our purposes
ulx will be called the mean prior distribution, because it will act as a prior for
the inverse regression estimation problem.

Consider the test (patient) data § = {91, 92,...,¥m}, formed by m count
data observations depending on an unknown regressor x that we aim to estimate.
The likelihood function of the test data becomes,

L(glp,6) = Hp(ﬂiluﬁ)- (5-4)

Note that, because the knowledge of p implies the knowledge of x, then we
can write L(g|u, ) = L(g|p, 6, ). Therefore, an application of Bayes’ theorem
shows the expression of the posterior density of the parameters given the test
data,

L(glp, 6)p(p, 6, )

f(p, 6, 219) = :
/

L(glp, 6)p(p, 6, z)dpdddz

where p(u,d,z) is the joint prior density of u, 6 and x. But, p(u,d,z) =
d(u, 8|z)p(x), where p(z) summarizes the prior information for . This prior
information can come from the characteristics of the radiation accident, such as
the source and the duration of the exposure, etc.

Therefore, marginalizing over 1 and § we obtain the calibrative density of x,
that it is the solution of the inverse regression problem:

fzl§) o p(a) / L (3111, )1, 8/x)dpads (5.5)

As it will be shown in Section 5.3, this calibrative density can be exactly cal-
culated for the Poisson model, solving completely the problem of the absorbed
dose estimation in the most frequent situation.

However, for the two—parameter compound Poisson models the integral
in (5.5) does not have a closed form, thus some approximations are required
such as numerical integration or simulation methods. For this reason, the model
will be simplified in Section 5.4.
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5.3 The Poisson model

When data is Poisson distributed, the likelihood function of the test data has
the form,

m
L(jiln) o [ p(@iln) oc e™m p=iza e,
i=1
Because the sum of the observations is a sufficient statistic for the parameter of
Poisson data, and the sum of independent Poisson random variables is also Pois-

son distributed, this likelihood function is equivalent to the probability function
of one Poisson observation evaluated at s, that is,

L(g|p) o< p(slmpu) oc e™™(mu)*,

where s = Y1 | §;. Therefore, the calibrative density (5.5) remains,

f(zl§) = p(x)qs(2). (5.6)
where, .
(o) = [ plslmo(ulo)d. (5.7)

Note that (5.7) represents the probability function of a mixed Poisson-normal
distribution evaluated at s. Of course, strictly speaking, it is not possible to
mix a Poisson with a Normal distribution because the Poisson parameter always
has to be positive. However, understanding this mixture as a purely formal
operation, Kemp and Kemp [48] showed that this mixed Poisson distribution,
provided the population mean of the mixing Normal is greater than its variance,
is just the Hermite distribution. Specifically, using Gurland’s notation ([44],
[35]) we have the symbolic representation,

Pois(myu) /\N(a, b?) ~ Herm(ma, 1 +mb*/a).
m

This notation means that the p parameter in the Poisson distribution (left
part) is normally distributed (right part). This representation is valid only for
a > mb2.

Consequently, (5.7) is the probability that a Hermite random variable takes
a value equal to s. Specifically, it can be directly shown that the probability
(5.7) can be obtained from the Hermite probability recursion described in [47],

(r+ D1 (z) = (mf(, B) — m*v(, 5))ar () +m*v(z, B)ar—1(2),

with qo(z) = exp(—mf(x, 3) + m2v(z, §)/2) and defining q_; (x) = 0, provided
that f(x, 3) —mv(x, 3) > 0. This last inequality is achieved for most of the stud-
ied examples, for the range of interest of the absorbed dose x. In a hypothetical
situation where this inequality was not achieved, that is f(z, ) — mv(z, 8) < 0,
expression (5.7) mathematically does not make sense (the dispersion coefficient
cannot be greater than 2) and it is therefore better to replace the mean prior
normal density ¢(u|z) by a Gamma density I'(u|x) with the same mean f(z, 3)
and variance v(z, 3) Then, expression (5.7) would remain,

ale) = [ ol (5.5)
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Because mixing a Poisson with a Gamma produces a negative binomial distri-
bution, it can be shown that qs(z) in (5.8) is the probability that a negative bi-
nomial random variable, with mean mf(z, B) and variance m?v(z, B) +mf(x, B),
takes a value equal to s.

The method presented here for the Poisson model, using the Gamma dis-
tribution as a mean prior, is exactly the same as the full Bayesian method of
Groer and Pereira [33] for the simple case where f(z, ) = 2. However for other
dose-response curves both methods differ. For this simple linear dose-response
case, considering a Uniform dose prior, direct calculations show that,

ms+1(z nixi)z Yi s

f(I|y) = B(S + LZyi _ 1) (mx 4 Enixi)s-i-zyq:;

with mean, mode and variance of,

M- — s> nix;
LTI ST

B _ Yonix B(s+2,> yi —2)
T B+ LY yi— 1)

i\ly . {(meifQ)B(erZZwa) +28<s+3,zyi,3)};

according to notation in Section 5.2, where B(-) denotes Euler’s Beta function.
The distribution function of this calibrative density can be expressed in terms
of the hypergeometric function.

The following example illustrates how this methodology is applied to a real
data set.

Vig =

5.3.1 Example: Cobalt—60 gamma rays irradiation

Here we consider data from an inter—laboratory comparison for the semi—automated
dicentric assay undertaken as part of the Multibiodose project (a large scale Eu-
ropean biodosimetry project) [82]. This data set (Table 5.1) is based on blood
samples from 8 healthy donors which were irradiated in vitro with Cobalt—60
gamma rays at a high dose rate of 0.27 Gy/min simulating acute whole body
exposure. The data presented here were collated and analysed using the Metafer
4 automated analysis system (MetaSystems, Altlussheim, Germany) at a sin-
gle participating laboratory, using the ‘BfS’ image analysis classifier (system
settings — further information in Romm et al., [82]).

The u figures shown in Table 5.1 are the values of the u—test statistic of Rao
and Chakravarti [80], which is a normalized sample dispersion index,

n—1
v==D\sa =13y
where d = si /7 is the sample dispersion coefficient, n the sample size (number
of cells), and z = ny the total number of count events (number of dicentrics).
When d is close to 1 then the data follow an equidispersed distribution. If
the value of the u statistic is higher (lower) than (-)2, the distribution can be
considered over— (under—) dispersed. The u—test is suggested by the ITAEA [42]
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Table 5.1: Frequency distributions of the number of dicentrics after exposure
to 6 doses of gamma-rays, and the sample means, dispersion coefficients and u
values for each distribution. Test data in italics.

Number of dicentrics

Dose (Gy) 0 1 2 3 4 ] d u

0.25 2185 8 0.004 0.997 -0.113
0.75 2550 44 1 0.018 1.026  0.952
1.00 2231 54 2 0.025 1.044 1.503
1.50 1712 96 3 0.056 1.003  0.092
2.50 1196 123 7 1 0.105 1.038 0.985
3.00 1070 320 41 6 1 0.295 1.012 0.334

Table 5.2: BIC values using a second degree polynomial dose-response curve
without constant term for the different models.

Model NB Hermite NA Poisson
BIC 4088.834 4085.594 4085.524 4079.639

and in fact it is equivalent to the classical Fisher dispersion test. According to
the u values shown in Table 5.1, equidispersion of the calibration data can be
assumed, thus justifying the use of a Poisson regression model.

The 1.5 Gy row was removed from the calibration data set to be used as test
data. This means that the true dose is known and it is possible to compare it
with the resulting calibrative density. Following notation in Section 5.3, s = 102
and m = 1811, i.e. 102 scored dicentrics in 1811 blood cells.

In this example, for high dose rate gamma-radiation exposure, an appropri-
ate dose-response curve, i.e. the regression model, is a second degree polyno-
mial without intercept [42], f(z, 3) = B2 + 12 (Figure 5.1). In biodosimetry
this is called the linear—quadratic dose-response curve. The intercept has been
removed because we assume that for a dose x = 0 the expected number of di-
centrics will be zero (for the 0 Gy sample there was only 1 dicentric in a total of
2592 blood cells). In general regression modelling, to analyze count data using
a second degree polynomial mean response is not common, and a log-link mean
response is the usual approach. However, in biodosimetry, the linear—quadratic
dose-response curve has a biophysical interpretation [42] and is one of the most
frequently employed in practice. Some problems could occur maximizing the
likelihood function because 51 and 2 have to be necessarily positive. To ensure
this, it is sometimes necessary to use numerical algorithms allowing constrains
in the parameter domain.

Table 5.2 shows the Bayesian Information Criterion (BIC) values for the four
different response distributions treated in this work from the calibration data.
These values support the use of the Poisson model. So for a Poisson response
the maximum likelihood parameter estimates and their estimated covariance
matrix are the following:

e Fitted coefficients:

B =3.126-10"3, By =2.537-10"2.
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Figure 5.1: Observed means (dots), plus/minus twice their standard errors (er-
ror bars), and predicted means (red/solid line) of the number of dicentrics for
Poisson fitting, based on the data in Table 5.1, omitting the 1.5 Gy test data.

e Estimated covariance matrix:

. [ T7.205 —3.438 6
5= < —3.438  2.718 ) 1o

As has been commented in section 5.2, p|z will follow a Normal or a gamma
distribution with mean f(z, 3) = B222 + B2 and variance v(z, 3) = V - PR Vi,

where:
(ot of\ 9
V‘(aﬁl’aﬁz)‘(”)’

and therefore v(z, B) = Dozt + 2300123 + 3122

According to (5.7) and (5.8), for a normal or a gamma mean prior, the
predictive posterior distribution qjo2(x) represents the probability of a Hermite
or negative binomial random variable taking a value of 102 counts, both with
same mean 45.93922 4 5.6612 and variance 8.913z* — 22.5532 + 69.5712% +
5.661x.

Despite the real dose being known, firstly, a non-informative prior dose dis-
tribution is chosen in order to not take advantage of this fact, so p(z) x 1.
Secondly, for our purposes of comparing results, we define an informative prior
dose distribution assuming we do not know the real dose of the test data, but we
observe a mean of 0.056 dicentrics per cell, then by comparison with Table 5.1
it can reasonably be estimated that the dose is between 1 and 2.5 Gy. A simple
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Figure 5.2: Calibrative densities of the 1.5 Gy test data calculated from a
normal (blue/dotted line) and a gamma (red/dash—dot line) mean prior with
non—informative prior dose distribution, and for a gamma mean prior with in-
formative prior dose distribution (green/solid line). Red and blue curves are
indistinguishable.

informative prior could be a gamma whose mean is in the midpoint of this in-
terval, i.e. 1.75, and whose standard deviation is in the halfway from the mean
to cover this interval, i.e. 0.375. For a gamma distribution with this mean and
standard deviation, the 95.67% of the values fall in the region of 1.754+2-0.375.

Figure 5.2 shows the plot of the three densities of the estimated dose for the
data test. Note how these results incorporate the real dose (1.5 Gy) and show
the similarities found using both mean priors. Note that the gamma mean prior
is moderately more conservative.

To use the normal mean prior (5.7) for this calibration set, the following
condition must be satisfied: f(z, ) — mv(z,3) > 0. It holds when z < 3.337
Gy, and this could also be used as prior information about the dose, that is
p(z) ~U(0,3.337). For the range of the likely doses studied, the minimum value
of the shape parameter of the mean prior gamma is 328.616, so the gamma or
normal mean priors are practically indistinguishable.

The statistics of the three calibrative densities calculated in this example are
shown in Table 5.3.
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Table 5.3: Statistics summary of the calibrative densities for a normal (a) and
a gamma (b) mean prior with non—informative prior dose distribution, and for
a gamma mean prior with informative prior dose distribution (c).

Model Mode Expected SD 95% CI
(a) 1.430 1.432  0.081 (1.277, 1.594)
(b)  1.430 1432 0.081 (1.277, 1.593)
(c) 1.443 1.445 0.078 (1.294, 1.602)

5.3.2 Example: Analysis of doses in thyroid cancer pa-
tients

This example illustrates how our methodology can be applied having only the
fitted parameters of the dose-response curve, without knowing the calibration
points. Serna et al. [86] studied chromosomal damage in lymphocytes of thyroid
cancer patients after radioiodine treatment. The authors did a micronuclei assay
in binucleated cells of blood samples from 25 patients 3 days after Todine-131
(3.7 GBq) exposure.

The in vitro calibration curve was fitted by a linear—quadratic model with
intercept, f(z, 8) = GB22%+B12+ By according to Poisson’s law, and the estimate
of By was not taken into account, because the authors in [86] argued that the
intercept could change for each patient. Constant G is the Lea—Catcheside
generalized dose—protraction factor, that modifies the quadratic term according
to the temporal pattern of exposure, being G = 1 for the in vitro assay. The
authors calculated the following parameter estimates (3; + SE(f;)),

B =(13.6+55)-1073, fo=(3.7+1.6)-10"2, p=—0.89,

where p is the correlation coefficient for Bl and Bg. The patients were subjected
to ablative radioiodine treatments for post—surgical thyroid remnants. Conse-
quently, they had a prolonged exposure lasting several days and which means,
the temporal pattern of exposure was different than that of the in wvitro as-
say. Taking into account the exposure profile of the Todine—131 treatment, the
authors in [86] found the factor G to be close to 0.1.

Then (y, the background for each patient, can be estimated counting the
micronuclei of the patient from a blood sample taken before the treatment,
information provided in [86]. This leads to the fitted regression model f(z, 3) =
G,ng + ,8150 + ﬂo with a covariance matrix that incorporates the variance of ﬂo
without correlation with 61 and ﬁg

To illustrate our techniques we are going to estimate the absorbed dose for
Patient 1, but the same can be done for the others. Patient 1 presented 487
normal cells and 13 cells with just one micronucleus each. Before the treatment
5 micronuclei where found in 500 blood cells, thus 8y = (1044.450) - 1073, The
u—statistic of this test data is —0.395, so this is compatible with the Poisson
model.

Therefore, p|a will be considered to follow a distribution with mean f(z B) =
GBox? + Brx + By and variance v(z, 8) = V - E - V¢, where:

of of of
= a0 ' an ' an = 17 7G 2 .
<8Bo B a,@2> (L, Go%)
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Figure 5.3: Calibrative densities of [86] Patient 1 test data calculated
from a Gamma mean prior density, with a 2/(0,2) (green/solid line), a
U(0,4.5) (red/dash-dot line) prior dose distribution and a improper U(0, +00)
(blue/dotted line) prior dose distribution.

The condition f(z, B) —mv(z, B) > 0 is held when x < 0.945 Gy. This range
of doses is very small for our purposes and consequently a gamma mean prior
is preferred instead of a normal.

According to (5.8), for a gamma mean prior, the predictive posterior dis-
tribution qi3(z) represents the probability of a negative binomial random vari-
able taking a value of 13 counts, with mean 0.185x2 + 6.8z + 5 and variance
0.0062* — 0.39923 + 7.9872% + 6.8z + 9.95.

Three calibrative densities have been calculated applying two different proper
uniform prior dose distributions, both using information given in [86]. An ad-
ministered radioiodine activity that produces a blood dose less than 2 Gy is
considered safe, so we could take a uniform dose prior distribution from 0 to 2,
assuming that doctors use prudent doses. On the other hand, the calibration
curve was calculated up to a dose of 4.5 Gy, so another uniform dose prior dis-
tribution could be from 0 to 4.5. An improper uniform prior dose distribution
from 0 to 400 is also applied.

Figure 5.3 shows the plot of the three densities of the estimated dose for the
data test. Their statistics are indicated in Table 5.4. These results agree with
those displayed in [86], where the dose estimate for Patient 1 was 1.14 Gy.

72



Table 5.4: Statistics summary of the calibrative densities for two proper and
one improper uniform dose priors.

Prior dose distribution Mode Expected  SD 95% CI

U(0,2) 1.140 1.141 0.481 (0.203,1.945)
U(0,4.5) 1.140 1.561  0.858 (0.203,3.615)
U(0, +00) 1.140 1593 0.921 (0.253,3.829)

5.4 The simplified compound Poisson calibra-
tion model

We now consider a data set that follows a compound Poisson distribution. The
likelihood function of the test data has been previously described in (5.4), and
the calculation of the calibrative density (5.5) requires to use numerical integra-
tion or Monte Carlo methods. However the model can be simplified by replacing
§ in L(§|p, §) with the MLE § obtained from the calibration data. The perfor-
mance of this simplification is analysed and compared in the example 5.4.1.
Then the likelihood function L(§|u,d), which we prefer to denote as L(§, 6|),
is equivalent to the probability function of the sum of the observations, that is
the probability function of a compound Poisson observation,

L(§,0|p) o p(s, d|mp),

where s = Y"1, §;. Then, the calibrative density is as described in (5.6) with,

a@) = [ " (s, Slmu)éule)dp, (5.9)

— 00

if the mean prior is a normal density or,

oo
qs(z) = / p(s, o|mu)T (p|z)dp, (5.10)
0
when the mean prior is gamma distributed. Expressions (5.9) and (5.10) corre-
spond to the probability function of mixed compound Poisson random variables,
where the mixing density is respectively normal or gamma, evaluated at s. The

operations of compounding and mixing are interchangeable for these models
([44], [35]), e.g., mixing a Neyman A with a normal results in the following,

NA (i 8) AN (K9, 3)) =
Pois<5 >\/P01s( —1)/\1\1( xﬂ))
P01S< )/\N( x,ﬁ)\/Pms( _1):
Herm< S(x’lﬂ),u(émvxﬂ )\/Pms( )

This is providing that (5.9) and (5.10) are respectively the probability func-
tions of compound Hermite and compound negative binomial random variables.

(5.11)
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Therefore, according to the different choices of the compound Poisson distribu-
tion we obtain the following compound distributions for ¢4(z):

| miz.B) | mv(.f) (s
NA : Fl=o +(5_1)f(x76)>\/1305(5 1)

NB : e (xlﬁ) 10g($)71+ mY(m’B) log@> \/ Log (5 — 1>
5—1 (6 — Df(z, B) 5
mf(z, ) mv(z, )
2(5—1)’1+2(S— i)V

Hermite: F

Bin (2,8 - 1)

(5.12)
Here F(ur,dr) indicates a Hermite or a negative binomial distribution, ac-
cording to (5.9) or (5.10), parameterized by its population mean and dispersion
index. When F is the Hermite distribution, these representations make sense
only when f(z, )(6 — 1) > mv(z , ) for the NA, f(z, 8)(6 — 1) > mv(z, 8) log(é)
for the NB and 2f(x, 3)(6 — 1) > mv(x, 3) for the Hermite.

Compound negative binomial distributions have been studied and applied in
several publications. Properties, characterizations and references can be found
n [44]. Compound Hermite distributions are less common, so far there is one
recent publication [41] that studies the continuous compound Hermite gamma
distribution.

When F(ur,dr) is negative binomial, the probabilities of the associated
compound distributions can be calculated using the Panjer recursion formula
[72]. This formula is based on the fact that the probabilities p,, = P(X =n) of
a random variable X distributed as a NB(ux, d7) satisfy a first order recurrence
relation p, = p,—1(a+b/n), where a = (0x —1)/ér and b= (ur — o +1)/dx.
Then, if the probabilities of the generalizing distribution are denoted as fj, the
probabilities g; of the corresponding negative binomial compound distribution
satisfy the recursion [72],

Po : bj
q():(lfoa)Hb/a,qi:jzl(a—l—Z)qu2 jst>1. (5.13)
Expression (5.13) can be efficiently used to calculate (5.10). The values of a
and b will be taken according to the chosen distribution of the observations,
using the corresponding expression of ur and Jz of the negative binomial (F)
indicated in (5.12). In the next section we will give an example of application.

When F is Hermite, the probabilities of a Hermite compound distribution
cannot be calculated using the Panjer recursion formula because the probabili-
ties of the Hermite do not follow a linear recursion. To calculate the probabilities
in this case we state and prove (in Appendix 5.6) the following proposition:

Proposition 5.4.1 Let g,,n = 0,1,2... be the probabilities of a compound
Hermite distribution of the form Herm(pun,0n)\/ P, where P is a count distri-
bution with probabilities fi, k = 0,1,2.... We define r; = >.1_, fifj—i» j =
0,1,2..., then

%2—: (n—1 ql{ 2 —0p) fnoi+ wr”_i}’ (5.14)

=0
and go = exp(pn((2 = 1) (fo — 1) + (0n — (3 — 1)/2)).
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Figure 5.4: Observed means (dots), plus/minus twice their standard errors (er-
ror bars), and predicted means (solid line) of the number of micronuclei for NB
fitting, based on the data in Table 5.5, omitting the 0.1 Gy test data.

It is important to remark that, to calculate ¢s(x) in (5.9) and (5.10), a
computationally intensive direct numerical integration can be done instead to
use the Panjer recursion or Proposition 5.4.1. To this end, it would be enough
to obtain numerically the probabilities which are available for a more wide range
of models than those studied in this chapter.

The use of (5.14) will be illustrated with a real data analysis in the next
section.

5.4.1 Example: High LET exposure

Puig and Valero [77] studied the fitting of an experiment of eleven samples of
peripheral blood exposed to different doses of y-rays (Table 5.5), where the dose
rate was 0.93 ¢Gy/min. For each sample, approximately 5000 binucleated cells
were inspected, and the numbers of micronuclei were counted.

The u values shown in Table 5.5 confirm the overdispersion, thus Poisson
regression is not adequate.

Similarly to the example analyzed in 5.3.1 the 0.1 Gy data will be removed
to be used as test data. This distribution has a total of 250 micronuclei in a
total of 5000 cells so s = 250 and m = 5000.

The appropriate dose-response curve, i.e. the regression model, is again a
linear-quadratic model with intercept, f(x, 3) = Box? + 1z + By (Figure 5.4).
Table 5.6 shows the BIC values for the four different models studied in this
work. Note how these values support the use of the NB model.
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Table 5.5: Frequency distributions of the number of micronuclei after exposure
to 11 doses of gamma-rays, and the sample means, dispersion coefficients and
u values for each distribution. Test data in emphasis.

Number of micronuclei

Dose (Gy) ~ 0 1 2 3 4 5 6 7 @ d u

0.00 4887 106 5 2 0.024 1.156  7.839
0.10 4773 206 19 2 0.050 1.150  7.526
0.25 4261 324 41 12 2 0.090 1.306 15.306
0.50 4536 364 76 17 7 0.119 1.449 22.484
0.75 4383 512 8 18 2 0.149 1.257 12.876
1.00 4225 636 115 19 5 0.189 1.240 12.009
1.50 4018 805 139 26 9 1 2 0.243 1.270 13.495
2.00 3499 1194 238 45 13 10 1 0.383 1.209 10.471
2.50 3171 1313 393 94 24 3 2 0.501 1.201 10.077
3.00 2582 1575 598 190 44 9 2 6 0.722 1.206 10.307
4.00 1974 1674 869 342 102 26 13 2 1013 1.172 8.628

Table 5.6: BIC values using a second degree polynomial dose-response curve
for the different models.

Model Poisson  Hermite NA NB
BIC 67360.01 66537.46 66467.85 66437.93

Using the NB model, the maximum likelihood estimation provides the fol-
lowing results:

e Fitted coefficients:

Bo=3.639-10"2, [y =1.156-10"1, 5, =3.241-1072, §=1.231.

e Estimated covariance matrix:

73.749 —115.908 29.210 13.976

—115.908  373.338 —110.398 36.919

© 29.210 —110.398 38.102  —3.625
13.976 36.919 —3.625 1133.825

™M
Il
—_
3
N

Then, the prior densities are:

o Complete Model: According to (5.3), (i, d)|z follows a bivariate normal

distribution with mean (BQIQ + Blz + BO, 3) and variance—covariance V -

ié - V¢, where:
of of of
—_— = = 1 2 22 0
V=1 060 9B 0B = < ) ;
0 0 01 0 0 0 1

so the variance—covariance is:

( 233.134 + 2232.133 + 2231.132 + 2221‘2 + 22211‘ + 211 243]}2 + 2423? + 241
Yu32% 4+ a0z + Xay Y4
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Table 5.7: Statistics summary of the calibrative densities for the complete
model, and the simplified models using a gamma and a normal mean prior
with a uniform prior dose distribution.

Model Complete S. Norm. p. S. Gam. p.
Mode 0.125 0.115 0.115
Expected 0.124 0.114 0.114
SD 0.033 0.034 0.034
95% CILB 0.059 0.047 0.047
95% CIUB 0.190 0.182 0.181

For this example the calibrative density (5.5) is calculated via numeri-
cal integration in order to be compared with those calculated using the
simplified models.

e Simplified Models: According to the arguments given in Section 5.4,
|z follows a gamma or a normal distribution with mean f(x, 3) = Bo2? +
B1z + Bo and variance v(z, 3) = V- X5 - V!, where:

of of of
= a0 ' Aan ) an = ]-7 ) 2 )
(860 B a@) (127)

so the variance is $5324 425302342531 224+ S0 42501 2+ 311. According
to (5.12), for a normal or a gamma mean prior, the predictive posterior
distribution ga50(x) represents respectively the probability of a compound
Hermite- or compound negative binomial-Logarithmic random variable
taking a value of 250 counts, both with same f(z, 5) = 0.03222 +0.116x +
0.036, v(:z:,B) =3.81-10762% + 1.525 - 107°23 + 5.842 - 10~ %22 — 2.318 -
10752 + 7.375- 1075, and & = 1.231.

To use the normal mean prior (5.9) in this calibration set for NB responses,
there is a condition to be satisfied: f(z, 8)(6 — 1) — mv(z, 8)log(8) > 0. It is
satisfied when z < 4.294 Gy. In this example this is not a problem and it could
be used as prior information about the dose, that is p(z) ~ 4(0,4.294). For the
range of the likely doses studied, the minimum value of the shape parameter of
the mean prior gamma is 179.605, and consequently both gamma and normal
mean priors are almost indistinguishable (red and blue curves in Figure 5.5).

Figure 5.5 shows the plot of the three densities (one from the complete model
and two from the simplified ones) of the estimated dose for the data test. Note
that both calibrative densities from the simplified models are practically the
same. The statistics of these densities are shown in Table 5.7. These results in-
corporate the real dose (0.1 Gy) and also show their similarities, chiefly between
the simplified models.

5.5 Conclusion
In this chapter we have presented several Bayesian—type methods for count data

inverse regression, showing its application in the field of cytogenetic dosimetry.
First, in Section 5.2 we defined our methodology for inverse regression, where
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Figure 5.5: Calibrative densities of the 0.1 Gy test data using the com-
plete model (5.5) (green/solid line), and the simplified ones with a normal
(blue/dotted line) and a gamma (red /dash-dot line) mean prior density; all with
a uniform prior dose distribution. Blue and red curves are indistinguishable.

responses are either Poisson or two—parameter compound Poisson. We have
assumed that the dispersion index is constant along the different doses. This
methodology leads to a bivariate normal prior density when the responses follow
a two—parameter compound Poisson distribution, and an univariate normal or
gamma mean prior density when the responses follow a Poisson distribution.
To use our methodology, only the estimates of the parameters and covariance
matrix of the dose-response curve are required. This information is available
from the standard frequentist analysis suggested by the TAEA manual, with
many examples published by other researchers or laboratories. Therefore, our
method is not a full Bayesian approach because the dose-response curve is
estimated using frequentist analysis. MCMC methods could be used if the
models were more complex or the prior densities more complicated. They might
also be used for model averaging, since one might aim to avoid choosing one of
the presented four models, preferring to use a weighted amalgam of them.

The Poisson model is developed in Section 5.3, leading to a closed form of
the calibrative density. Two examples of dose estimation based on the dicentric
assay are reported.

In Section 5.4 we treated two—parameter compound Poisson models, simpli-
fying them to get the calibrative densities into a closed form. For this purpose,
we have presented a method which involves calculating the probabilities of com-
pound negative binomial distributions, using Panjer’s recursion [72], and com-
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pound Hermite distributions, using a recursion relation described in Proposi-
tion 5.4.1. Another example of dose estimation is shown, based on data obtained
with the micronucleus assay. We have assumed a constant dispersion coefficient,
but our methods could be also extended to dose dependent dispersion models
of the form d;; = g(x;,7), v € RY.

The illustrative examples show applications using the most frequent calibra-
tive curves, that are second order polynomials (the linear—quadratic model).
However, other response functions can be directly analyzed using the same
methodology. It should be noted that the approaches presented here may also
prove useful in areas other than biological dosimetry.

5.6 Appendix A. Proof of Proposition 5.4.1

First of all, let us recall some topics related to the probability-generating func-
tion (pgf). Given a count random variable X, its pgf ®x(s) is defined as

Px(s) = ZPkSk
k=0

where the coefficients of this power series are the probabilities py, = P(X = k)
and consequently the derivatives at s = 0 divided by k! provide the probability
mass function of X. The pgf of a compound probability distribution described
in (5.1) is

Dx(s) = P (Pe(s)), (5.15)

where @y (s) is the pgf of N and ®¢(s) is the common pgf of the &; [44].

One property of pgf’s is that the sum of independent random variables is a
random variable whose pgf is the product of the pgf’s of the summed variables;
e.g., given X and Y independent random variables with pgf’s ® x (s) and Py (s)
respectively, the pgf of X + Y results

<I>X+y(5> == (I)X(S)(I)y(s) (516)

According to [48] the pgf of a random variable X Hermite distributed with
mean py and dispersion coefficient dy, is

B () = e {201 ~1)/2) (5.17)

therefore, according to (5.15), the pgf of a Herm(up, §,) \/ P distribution, being
¥(s) the pgf of P, is

P(s) = eﬂh{(2*5h)(w(5)*1)+(6h*1)(1/}2(3)71)/2}’ (5.18)

thus the probability in 0 is
o = $(0) = ehn{(2=61) (fo=1)+(8n—1)(f5~1)/2}

Note that 1% (s) is the pgf of a sum of two independent identically distributed
random variables having both a pgf equal to ¥, so

o(s) =v2(s) =D Tus", Tn=_ fifn i
n=0 =0
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The derivative of ¢ is

¢'(s) = [ {(2 = 3n)(¥'(s) = 1) + (3n — D)(¥'(s) = 1)/2}](s),

therefore,

inqnsnfl _ ﬂh{(2 o 5h) infnsnfl + (5h2— 1) im’ns"d} iQnsn
n=1 n=0

n=1 n=1

—m Y n{@ -+ P L S g
n=1 n=0

matching the coeflicients with same degree in s in both sides leads to,

n—1
Hh . (5h — 1)
=" ;(n Z)qz{@ On) fumi + -5 rn,l}, n>1,

and this finishes the proof.
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Chapter 6

radir package: An R
implementation for
cytogenetic biodosimetry
dose estimation

This chapter corresponds to the contents of [65].

Abstract: The Bayesian framework has now been shown to be very useful in
cytogenetic dose estimation. This approach allows description of the proba-
bility of an event in terms of previous knowledge, e.g. its expectation and/or
its uncertainty. A new R package entitled radir (radiation inverse regression)
has been implemented with the aim of reproducing a recent Bayesian—type dose
estimation methodology. radir takes the method of dose—estimation under the
Poisson assumption of the responses (the chromosomal aberrations counts) for
the required dose-response curve (typically linear or quadratic). The individual
commands are described in detail and relevant examples of the use of the meth-
ods and the corresponding radir software tools are given. The suitability of
this methodology is highlighted and its application encouraged by providing a
user—friendly command type software interface inside the R statistical software
(version 3.1.1 or higher), which provides a complete manual.

Keywords: Bayesian, biological dosimetry, R software, calibrative density,
Poisson distribution.

6.1 Introduction

The classical methods for dose estimation in radiation cytogenetics are well
established and described in detail in the manual of the International Atomic
Energy Agency (IAEA) [42]. First, calibration data (generally yields of chromo-
some aberrations in blood lymphocytes) are collected and fitted to a linear or
quadratic model, the coefficients of which are then used to calculate doses. The
Poisson model is used to describe the uncertainty on the yield of aberrations,
and this is combined with uncertainty on the fitted calibration coefficient(s) us-
ing standard methodology in order to give the total uncertainty associated with
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the estimated dose.

In the classical or ‘frequentist’ framework the coefficients of the calibrated
dose-response curve are considered ‘fixed’ thus providing an estimate of radia-
tion dose and associated confidence limits using standard likelihood methods.
Therefore, assignment of a probability to an event is based solely on the observed
frequency of occurrence of the event.

Alternatively, the Bayesian approach considers the parameters, for instance
the dose-response curve coefficients in this case, random variables for which
previous information could exist. This information could come from previous
analysis in the field literature or even from the experts’ opinion/knowledge.
The newly collected data is combined with this prior information to produce a
posterior model.

The Bayesian inference uses distributions for all the parameters, leading to
an important advantage: the uncertainty of the system is an intrinsic part of
the analysis. A review of these methods can be found in [4]. Bayesian methods
in cytogenetic biodosimetry give the estimation of the absorbed dose by an
individual in a form of random variable distribution, called the calibrative dose
density [15].

Some specific software has been developed to fit dose-response curves and to
estimate the dose absorbed by an individual; e.g. CABAS [18], DoseEstimate
[1] and BioDoser [98]. There is also one recent program, CytoBayesJ [3], which
provides some basic software tools for Bayesian analysis of cytogenetic radiation
dosimetry data.

In this chapter we present a new R statistical software package which imple-
ments the Poisson models developed in [39]. These models are Bayesian—type
inverse regression. They use dose—effect calibration curves estimated by the
frequentist approach.

This methodology collects the prior information of the yield of chromosomes
per cell (the prior population mean) from the dose—effect calibration curve in
an univariate parameter by means of the delta method. This prior distribution
is assumed normal (under some constraints) or gamma distributed and the cali-
brative dose density results in terms of the probability functions of the Hermite
or negative binomial distributions.

6.2 The radir R software package

The software introduced in this work has been written in the R programming
language [81], which is becoming more popular in the cytogenetic biodosimetry
context in recent years because of its availability; it can be freely downloaded
from http://cran.r-project.org/ and used on the most common operating
systems. In fact, an R script for fitting dose-response curves written by H.
Braselmann was included in [42]. In addition, the hermite R package version
1.0.1 [66] has been utilised for the management of the Hermite distribution.
The general workflow of radir package is summarised in Section 6.2.2. A video
tutorial has been prepared with the aim of helping radir users in the installation
and general usage of the R statistical software and, in particular, the radir
package. It can be found in the next open access link, http://polimedia.uab.
cat/#v_592.

82


http://cran.r-project.org/
http://polimedia.uab.cat/#v_592
http://polimedia.uab.cat/#v_592

6.2.1 Features of radir package

In version 1.0, available from http://cran.r-project.org/src/contrib/radir_
1.0.tar.gz, the following tools are included:

e Calculation of the calibrative dose density for a given:

expression of the dose-response curve;

— hyperparameters set;

— estimate of the parameter set;

— variance—covariance matrix of the estimation;
— total number of cells examined;

— number of chromosomal aberrations;

— prior distribution of the chromosomal aberration mean: normal or
gamma,

— prior distribution of the absorbed dose: uniform or gamma;

— parameters of the distribution of the dose prior.

e Summary statistics of the calibrative dose density: best estimate, expected
value, standard deviation and the 95% highest posterior density (HPD) in-
terval, defined as the shortest range that contains the 95% (or the required
percentage) region of the probability density.

e Calculation of the HPD interval for a given credible region.
e Calculation of the probability between two given doses.

e Plots of the

calibrative dose density;

— HPD interval for a given credible region;

probability between two given doses;

— cumulative dose distribution function.

6.2.2 radir package workflow

The calibrative density is computed explicitly for the Poisson model in [39],
which is the most common situation and is also the case covered by the radir
package. The software takes as inputs laboratory information such as the
dose-response curve, the maximum likelihood estimates of its parameters, the
variance—covariance matrix and the mean prior distribution, which can be nor-
mal or gamma, together with patient information such as the number of cells
examined, chromosomal aberrations counts, and the prior dose distribution,
which can be uniform or gamma. From this input data, the calibration dose
density is calculated and summary statistics, probability between two given
doses, HPDs and several plots can be obtained. This workflow is summarised
in Figure 6.1.
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Figure 6.1: radir package workflow

6.2.3 Calibrative dose density calculation

The calculation of the calibrative density is based in the fact that the likeli-
hood function of the data coming from the patient is proportional to a Poisson
probability function evaluated at the total number of chromosomal aberrations.
Then, the calibrative density remains proportional to the prior dose density
multiplied by a probability function of a mixed—Poisson distribution evaluated
at the total number of chromosomal aberrations. The nature of the mixed—
Poisson distribution depends on the mean prior distribution that acts as the
“mixing” distribution. When the mean prior is gamma (the default case for
the radir package) it leads to a negative binomial, and for the normal density
option it leads to the Hermite distribution. The details of all the process and
methodology are widely described in [39].

The first step is to compute the calibrative dose density, by means of the
function dose.distr().

A call to this function might be

dose.distr(f, pars, beta, cov, cells, dics, m.prior, d.prior,
prior.param, stdf)

The description of these arguments can be summarised as follows:

e f: Dose-response function, as an expression. Must be differentiable in the
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domain of parameters.
e pars: String vector containing the parameters in f.
e beta: Estimates of the parameters.
e cov: Variance—covariance matrix of estimates beta.
e cells: Patient information, number of cells examined.
e dics: Patient information, observed number of aberrations.

e m.prior: String containing the prior distribution of the mean. In the
current version of the package, it can be gamma (the default value) or
normal.

e d.prior: String containing the prior distribution of the dose. In the
current version of the package, it can be gamma or uniform (the default
value).

e prior.param: Vector of length 2 containing the parameters of the distri-
bution of the dose prior. Its default value is the non—informative prior. If
d.prior is a gamma distribution, the mean and standard deviation should
be given, otherwise the function will return an error.

e stdf: Approximated standard deviation factor. This input is useful to
control the ends of the calibrative density; i.e. in case the tails of the
calibrative dose density are very long this value could be reduced, or vice
versa. Its default value is 6.

The gamma and normal distributions are the alternatives for the mean prior
distribution. In principle, the normal distribution would be the most natu-
ral choice because, according to the maximum likelihood theory, the mean is
asymptotically normal distributed with expectation and variance depending on
the dose and the dose-response function. Then, the calibrative density is pro-
portional to the prior dose density multiplied by a probability function of a
Hermite distribution, that is, a Poisson—mixed normal distribution. However,
to mix a Poisson with a normal distribution only makes sense when the pop-
ulation mean of the normal distribution is greater than its variance. For this
reason, when using the normal mean prior option, the range of doses of the
calibrative density could be truncated to the right, and potentially not being
enough sensible for the analysed sample. Conversely, using the gamma mean
prior distribution (the default), mixing a Poisson with a gamma distribution
(negative binomial distribution) does not create such problems and the range
of doses is not truncated. Moreover, a gamma distribution with a large shape
parameter is a good approximation to the normal distribution. Therefore, it is
recommendable in general to use the gamma mean prior option.

The gamma and uniform distributions are the alternatives for dose prior
distributions. The gamma distribution has been used for instance in [33], and is
parameterized here in terms of its mean and standard deviation. The uniform
distribution is parameterised by its minimum and maximum, and to the knowl-
edge of the authors it has not been previously used for cytogenetic dosimetry,
even though is a sensible choice in general dosimetry. The dose prior choice
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depends on expert opinion and/or the information collected from the irradi-
ation event. If there is no prior information, the most appropriate option is
to choose an improper uniform prior defined between zero and infinity. This
non—informative option is the default. If limited knowledge about the dose is
available, for instance its maximum range, then we could use as a prior a proper
uniform distribution defined over zero and the maximum range. More infor-
mation about the dose (for instance mean and standard deviation), like in the
example 3.1, can lead to the usage of a gamma prior.

The function output collects the sequence of doses and their respective prob-
ability density.

6.2.4 Statistics summary, credible region, and probability
between doses

A summary containing the most relevant information about the estimated doses
can be obtained via summary ().

This function, when applied to the output of dose.distr, gives the most
interesting statistics in this context including mode, expected value, standard
deviation and the 95% HPD credibility interval.

The HPD credible interval for an object of class dose.radir can be obtained
numerically by means of the function ci.dose.radir, with parameters

e object: An object of class dose.radir containing the estimated doses.
e cr: Credible region size. Its default value is 0.95.

The probability between two doses can be obtained numerically by means
of the function pr.dose.radir, with parameters

e object: An object of class dose.radir containing the estimated doses.
e lod: Lower dose value. Its default value is 0.

e upd: Upper dose value. Its default value is the maximum dose in object.

6.2.5 Plots

Graphics can be obtained in the standard way by means of R plot() or lines()
functions.

The plot function can also be used to present credible intervals through the
argument ci=TRUE. The desired credible region size can be fixed using the argu-
ment cr, that is 0.95 by default. The color of the shaded credible region is grey
by default, but it may be changed by using the argument col.ci. For instance,
to see the credible region shaded in red, the user should write col.ci=‘‘red’’.

The probability between two doses can be graphically represented by means
of the argument prob=c(d1,d2), where d1 and d2 are respectively the lower
and upper doses considered. The color of the shaded region is grey by default,
but it may be changed by using the argument col.pr in the same way as for
the parameter col.ci.

The distribution function can be plotted as well, using the argument distr=
TRUE in the plot function.
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Figure 6.2: Calibrative densities of the 1.5 Gy test data for a normal mean prior
and a U(0, 00) dose prior (black, ez!.a), for gamma mean priors and a U(0, 00)
dose prior (red, exl.b) and a gamma dose prior (blue dotted line, exl.c). Note
that the black and red lines are indistinguishable.

6.3 Examples

Several examples of use of the radir package (some of them introduced in [39])
are described in detail in this section.

6.3.1 Cobalt—60 gamma-ray irradiation

In [39] the authors consider an example from an in vitro Cobalt-60 gamma-ray
exposure. From the calibration data (Table 1 in [39]) the 1.5 Gy row is removed
to be inferred later. The model consists of a linear—quadratic dose response
without a constant term curve, S22 + S1z, where 2 represents the absorbed
dose, assuming that the counts of the chromosomal aberrations are Poisson
distributed. The specific data used in this example (and in the others) were
obtained from real experiments, and are reasonable for a Cobalt-60 gamma-ray
exposure.
Its maximum likelihood estimation provides

5 5 B 7.205 —3.438
_ .10-3 _ .10-2 L . 106
fr1=3126-10"", [z =2537-107%, X;= ( 3438 9718 ) 107°.
The 1.5 Gy sample consisted of 102 observed dicentrics in a total of 1811
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Figure 6.3: 90% HPD interval of the calibrative density of the 1.5 Gy test data
for a normal mean prior and a U(0,c0) dose prior.

blood cells. Therefore, the calibrative dose density for this observed data (as-
suming an improper uniform dose prior) can be calculated with the radir pack-
age by means of,

library(radir)

f <- expression(bl*x+b2%x~2)

pars <- c("bi","b2")

beta <- c(3.126e-3, 2.537e-2)

cov <- matrix(c(7.205e-06,-3.438e-06,-3.438e-06,2.718e-06) ,nrow=2)
exl.a <- dose.distr(f, pars, beta, cov, cells=1811, dics=102, m.prior="normal")

The default situation in dose.distr() is a gamma mean prior, as

exl.b <- dose.distr(f, pars, beta, cov, cells=1811, dics=102)

In [39] the authors consider that assuming that the real dose is unknown a
reasonable prior dose distribution is gamma with mean 1.75 and standard error
0.375. This can be implemented in the radir package by means of

exl.c <- dose.distr(f, pars, beta, cov, cells=1811, dics=102, d.prior="gamma",
prior.param=c(1.75,0.375))

Figure 6.2 shows the plot of the three densities of the estimated dose for the
test data. It has been obtained using the plot() function on the outputs of
function dose.distr (exl.a, exl.b and exl.c), generated from the following

code:
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plot(exl.a)
lines(ex1.b, col="red")
lines(exl.c, col="blue", 1lty=3)

It should be observed that these results incorporate the real dose (1.5 Gy)
and show the equivalence of both mean priors. Note that the gamma mean
prior is moderately more conservative. A summary table of the statistics of the
three calibrative densities calculated in this example can be obtained via the
summary () function. For instance, for the first case

summary (ex1.a)

Mode

1.43

Expected value

1.432

Standard Dev.

0.081

95% CI

(1.275; 1.591)

A figure showing the density and the 90% HPD interval (Figure 6.3) can be
obtained by means of

plot(exl.a, ci=T, cr=0.90)

6.3.2 Analysis of doses in thyroid cancer patients

Serna et al. ([86]) studied chromosomal damage in lymphocytes of thyroid can-
cer patients after radioiodine treatment. The authors carried out the micronu-
cleus assay in binucleated cells of blood samples from 25 patients 3 days after
Todine-131 (3.7 GBq) exposure. The in vitro dose-response curve was fitted by
a linear—quadratic model, f(z,3) = GB22? + Bix + By according to Poisson’s
law, and the estimate of Sy was not taken into account, because the authors
in [86] argued that the intercept could change for each patient. Constant G
is the Lea—Catcheside generalised dose—protraction factor, which modifies the
quadratic term according to the temporal pattern of exposure, being G = 1 for
the in vitro assay. The authors calculated the following parameter estimates
(Bi £ SE(B)),
B1=(13.6+£55)-1073, fo=(3.7+1.6)-1072, p= —0.89,

where p is the correlation coefficient. Taking into account the characteristics
of the Todine-131 treatment, the authors in [86] found the factor G to be close
to 0.1. Then Sy, the background of each patient, was estimated by counting

the micronuclei of the patient from a blood sample taken before the treatment,
information provided in [86]. This leads to the fitted regression model f(z, ) =
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GBQxQ + Blm + BO with a covariance matrix that incorporates the variance of
Bo without correlation with /3’1 and Bg. For instance, Patient 1 presented 487
normal cells and 13 cells with just one micronucleus each for a total of 500 cells
scored. Before the treatment 5 micronuclei were found in 500 blood cells, thus
Bo = (10 + 4.472) - 1073.

A gamma mean prior is preferred instead of a normal in this case, because the
range of doses supported by the normal mean prior is very small, due to math-
ematical constraints. In [39] the authors show that in that case, the predictive
posterior distribution represents the probability of a negative binomial random
variable taking a value of 13 counts, with mean 4.810 - 107322 + 0.177x + 0.130
and variance 4.326-107%z* —2.647- 10" %23 +1.008 - 10222 4+ 0.177z 4+ 0.133, for
Patient 1. It is possible to define all needed input values for the radir package
to analyse the patient data via

f <- expression(bO+bl*x+0.1%b2*x"2)

pars <- c("b0","b1","b2")

beta <- c(0.01, .0136, .0037)

cov <- matrix(c(1.98e-05,0,0,0,.3121%10"(-4),-.0798%10"(-4),0,-.0798%10"(-4),
.0256%10" (-4)) ,nrow=3)

Three calibrative densities have been calculated applying two different proper
uniform prior dose distributions, both using information given in [86]. An ad-
ministered radioiodine activity that produces a blood dose less than 2 Gy is
considered safe in the context of medical uses of radiation ([46]), so one could
take a uniform dose prior distribution from 0 to 2 (ex2.u1). On the other hand,
the calibration curve was calculated up to a dose of 4.5 Gy, so another uniform
dose prior distribution could be from 0 to 4.5 (ex2.u2). An improper uniform
prior dose distribution from 0 to oo is also applied (ex2.u3). This can be done
with the radir package by means of

ex2.ul <- dose.distr(f, pars, beta, cov, cells=500, dics=13, prior.param=c(0,
2))

ex2.u2 <- dose.distr(f, pars, beta, cov, cells=500, dics=13, prior.param=c(0,
4.5))

ex2.u3 <- dose.distr(f, pars, beta, cov, cells=500, dics=13)

Table 6.1 shows the summary results for the 25 patients described in [86];
these results were obtained using a loop that runs the function dose.distr for
each patient taking the pre-radiotherapy and the post-radiotherapy informa-
tion, for each of the two uniform prior dose distributions indicated (U(0,2) and
an improper uniform distribution).

6.3.3 New model for low and high doses

In [79] the authors present a new model for biological dosimetry under a weighted
Poisson assumption, where the mean of the underlying Poisson is a Gompertz
function of the dose, and the underdispersion level is a linear function of the
dose. This leads to a model where the mean of dicentrics is

Baz(2Bpe=Pre " 1) (6.1)
1+ 5355(53(@*&6*‘32”)2 + ﬁoefﬁlefﬁzz) . .

fla, B) = Boe= e <1 ’

This model is especially useful for high dose exposures.
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Prior dose U(0, 2) U(0, o)

Patient Expected SD 95% HPD Mode  Expected SD 95% HPD
1 1.141 0.481 (0.319, 2.000) 1.140 1.593 0.919 (0.027, 3.362)
2 1.155 0.471 (0.355, 2.000) 1.141 1.588 0.894 (0.079, 3.365)
3 0.759 0.477 (0.000, 1.679) 0.475 0.867 0.637 (0.000, 2.121)
4 1.237 0.444 (0.470, 2.000) 1.279 1.739 0.908 (0.231, 3.599)
5 1.099 0.470 (0.326, 2.000) 1.007 1.434 0.828 (0.057, 3.068)
6 0.847 0.487 (0.000, 1.748) 0.605 1.001 0.693 (0.000, 2.358)
7 1.172 0.459 (0.398, 2.000) 1.143 1.587 0.870 (0.144, 3.343)
8 1.011 0.488 (0.206, 1.977) 0.871 1.290 0.806 (0.000, 2.841)
9 0.842 0.478 (0.000, 1.735) 0.602 0.982 0.671 (0.000, 2.288)
10 1.116 0.457 (0.374, 2.000) 1.008 1.431 0.797 (0.133, 3.041)
11 0.791 0.499 (0.000, 1.729) 0.482 0.949 0.715 (0.000, 2.356)
12 0.452 0.389 (0.000, 1.266) 0.000 0.471 0.430 (0.000, 1.344)
13 0.851 0.495 (0.000, 1.760) 0.608 1.025 0.722 (0.000, 2.433)
14 1.020 0.479 (0.236, 1.976) 0.871 1.280 0.777 (0.000, 2.773)
15 0.580 0.435 (0.000, 1.470) 0.222 0.624 0.515 (0.000, 1.655)
16 0.542 0.437 (0.000, 1.450) 0.000 0.589 0.524 (0.000, 1.653)
17 0.746 0.467 (0.000, 1.655) 0.471 0.840 0.610 (0.000, 2.038)
18 0.607 0.449 (0.000, 1.521) 0.225 0.663 0.544 (0.000, 1.757)
19 0.940 0.470 (0.138, 1.880) 0.734 1.117 0.700 (0.000, 2.465)
20 0.771 0.486 (0.000, 1.699) 0.478 0.899 0.673 (0.000, 2.215)
21 0.771 0.486 (0.000, 1.699) 0.478 0.895 0.663 (0.000, 2.202)
22 1.141 0.481 (0.319, 2.000) 1.140 1.590 0.913 (0.027, 3.362)
23 1.075 0.490 (0.261, 2.000) 1.005 1.445 0.874 (0.000, 3.119)
24 0.934 0.482 (0.100, 1.872) 0.736 1.128 0.724 (0.000, 2.529)
25 0.931 0.491 (0.070, 1.861) 0.738 1.145 0.756 (0.000, 2.609)

Table 6.1: Statistics summary of the calibrative densities of the 25 Patients in
[86] for U(0,2) and U(0,00) dose priors. Note that the mode is the same for

both priors.

Dose (Gy) Dicentrics Cells Mode Expected SD 95% HPD
2 155 498 1.748 1.757 0.110 (1.544, 1.975)
6 425 150 5.850 5.859  0.228 (5.415, 6.308)
12 869 150 9.747 9.763 0.311 (9.158, 10.378)
17 914 100  16.143 16.814 1.778  (14.148, 19.953)

Table 6.2: Cells analyzed and total dicentrics counts for the simulated whole
body irradiations for testing, and the statistics summary of their respective

calibrative densitie;

S.

The in vitro irradiation experiment was performed using 10 different doses,
from 0 to 25 Gy and numbers of dicentrics in blood lymphocytes were then
counted. The models in radir are only for the Poisson assumption, so a Poisson
model is defined with the dose—response curve defined by expression (6.1). The
maximum likelihood estimation is,

Bo = 8.676,

)y

B

By = 7.262,
0.056 0.006
0.006  0.089
—0.001 0.001
0.019 0.305

—0.001
0.001
0.000
0.003

0.019
0.305
0.003
1.146

By =0.230 B3 = 2.388,

To check the methodology and the radir performances, doses are inferred

from test data shown in [79] (Table 6.2).
Therefore, the input parameters for the radir package should be

f <- expression(bO*exp(-bl*exp(-b2*x))* (1+b3*x* (2*¥b0*exp (-bl*exp(-b2*x))+1)/
(1+b3*x* (b0~ 2* (exp (-bl*exp (-b2*x) ) ) "2+bO*exp (-blxexp (-b2*x))))))
pars <_ C("bO","bl”,"b2"’"b3")

91



e
[e0)
© -
=
E
[ay)
o]
o |
a
Q
© I I I I I I I I
1.0 1.4 1.8 2.2
Dose, x, Gy

Figure 6.4: Cumulative distribution function of the 2 Gy test data.

beta <- c(8.6759674, 7.2624173, 0.2296528, 2.3875238)

cov <- matrix(c(0.0562628690,0.0056047214,-8.120599¢-04,0.018587644,0.0056047214,
0.0894182387,9.727568e-04,0.304724328,-0.0008120599,0.0009727568,3.792577e-05,
0.002753902,0.0185876441,0.3047243281,2.753902e-03,1.145724697) ,nrow=4)

And then, the four situations proposed in Table 6.2 can be introduced in R
by means of

ex3.a <- dose.distr(f, pars, beta, cov, cells=498, dics=155)
ex3.b <- dose.distr(f, pars, beta, cov, cells=150, dics=425)
ex3.c <- dose.distr(f, pars, beta, cov, cells=150, dics=869)
ex3.d <- dose.distr(f, pars, beta, cov, cells=100, dics=914)

Again, the summary() function can be used to check that the results are
similar to the expected, for instance for the first experiment we have

summary (ex3.a)

Mode

1.748

Expected value

1.757

Standard Dev.

92



o
™ -
o
> ]
=
n
c o
O A -
0 o
>
=
o
S o
D pl—
° S
o
o
Q_
o T T T T T T

0 5 10 15 20 25 30
Dose, x, Gy

Figure 6.5: Calibrative density of the 17 Gy test data and the probability of the
dose to be in (15, 20) Gy.

95% CI

(1.544; 1.975)

The probability of a dose exposure between 1.544 and 1.977 is, as expected,
approximately 0.95; it can be checked using

pr.dose.radir(ex3.a, as.numeric(substr(summary(ex3.a)[[4]1]1,2,6)),
as.numeric(substr(summary(ex3.a) [[4]],9,13)))

[1] 0.9499784

The cumulative distribution for this particular example (Figure 6.4) can be
plotted with

plot(ex3.a, distr=T)

The region under the calibrative curve for doses from 15 to 20 Gy can be
plotted for the 17 Gy test data calibrative density (Figure 6.5) using

plot(ex3.d, prob=c(15,20))
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6.4 Discussion

Biological dosimetry is necessary in many situations when dealing with radiation
events, and a quick and accurate estimation of the radiation doses received by
individuals undergoing medical radiation treatments or following a radiation
accident is essential in many scenarios. This work presents a readily available
package in the framework of the well known and widely distributed R software
that represents a novel and useful tool to achieve this goal. It allows the user to
estimate radiation doses received by an individual on the basis of a new inverse
regression methodology and using the recently validated Bayesian framework
which is able to compute true probability intervals.

The package uses as inputs the estimated parameters and variance—covariance
matrix of the dose-response function, obtained using classical (frequentist) max-
imum likelihood methods. Therefore, the radir package can be seen as a com-
plement of other existing packages (CABAS [18], DoseEstimate [1] or BioDoser
[98]), which have to be used to obtain the required inputs.

The usability of the radir package in several common radiation related sit-
uations is demonstrated through the proposed examples, although the method-
ologies introduced in [39] and therefore the package itself could also be used in
areas not related to biological dosimetry. Improvements planned for the package
radir include the consideration of a normal prior dose distribution truncated
at negative values ([15]), the ability to fit the dose-response curve given the
calibration data, and the analysis of high-LET scenarios using the compound-—
Poisson models described in [39]. A Bayesian dose estimation of partial body
irradiated blood samples following the new methodology of [40] will also be
considered for future enhancement of the package.
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Chapter 7

A new Bayesian model
applied to cytogenetic
partial body irradiation
estimation

This chapter corresponds to the contents of [40].

Abstract: A new zero—inflated Poisson model is introduced for the estimation
of partial body irradiation dose and fraction of body irradiated. Bayes factors
are introduced as tools to help determine whether a data set of chromosomal
aberrations obtained from a blood sample reflects partial or whole body irra-
diation. Two examples of simulated cytogenetic radiation exposure data are
presented to demonstrate the usefulness of this methodology in cytogenetic bi-
ological dosimetry.

7.1 Introduction

The main goal of biological dosimetry is the estimation of the radiation dose
received by an exposed individual, in scenarios such as radiation accidents or in
radiotherapy settings. Radiation exposure produces breaks in the chromosomal
DNA, and the resulting fragments can be repaired in different patterns from
their original arrangement. Consequently, frequencies of chromosome aberra-
tions including dicentrics and centric rings increase with the amount of absorbed
radiation and are a reliable and very well established biomarker of radiation ex-
posure. The estimation of the dose received by an individual requires dose-effect
calibration curves, which are produced by exposing peripheral blood lympho-
cytes to a range of doses, simulating whole body irradiation. The manual of the
International Atomic Energy Agency (IAEA) [42] describes the standards for
these calibration experiments.

The construction of a calibration curve starts with the irradiation of blood
samples from a healthy donor with different doses. Next, the counts of observed
chromosomal aberrations are recorded. It is typically assumed that after expo-
sure to X— or y-rays the number of chromosomal aberrations per cell follows a
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Poisson distribution with a population mean which is a linear-quadratic function
of the dose. The set of parameters of this regression model is usually estimated
by maximum likelihood (ML), recording the estimator, called maximum like-
lihood estimator (MLE) and its variance-covariance matrix, which measures
the uncertainty of the estimated parameters. Thus, for an irradiated patient,
a blood sample is taken and several tens to thousand lymphocytes are scored
for chromosomal aberrations. The established approach for calculating the ab-
sorbed dose and its confidence limits is to use the classical inverse regression
method described as a standard procedure in [42].

The mathematical distribution of chromosomal aberrations in partial body
irradiation (PBI) scenarios is different from Poisson. The non irradiated cells
contribute an extra amount of zeros in comparison to the distribution of chro-
mosomal aberrations following whole body irradiation. This proportion of extra
zeros can be described by the so—called zero inflated models. The zero counts of
aberrations in this zero inflated process result from a mixture of cells with zero
aberrations from the irradiated population and extra zeros which represent the
non irradiated cells. Zero-inflated count models provide one method to account
for the excess zeros in the data by modelling the data as a mixture of two dis-
tributions: a distribution taking a single value at zero and a count distribution,
in this case Poisson.

The probability mass function (pmf) of a zero-inflated Poisson (ZIP) random
variable ) taking k counts is defined as

wH(l-—w)e™ ifk=0
PV =k;p,w) = pke H
(1-w) 1

where 0 < w < 1 is the proportion of extra zeros. Note that this pmf is expressed
in terms of the Poisson pmf with population mean pu.

The standard procedure to detect PBI is to calculate the sample dispersion
index, the ratio of the sample variance to the sample mean, of the counts ob-
tained from the blood sample and then to use the u—test to reject or not the
Poisson assumption [80], because of the overdispersion caused by the excess of
zeros [42]. If the Poisson hypothesis is not rejected the recommendation is to
perform a whole body cytogenetic dose estimation. Otherwise, if the Poisson
hypothesis is rejected, the yield of chromosomal aberrations in the irradiated
fraction, and the fraction of cells irradiated can both be estimated by the MLE
of the parameters of a ZIP distribution. Then, the absorbed dose is estimated
by performing the whole body cytogenetic dose estimation method for the esti-
mated yield of chromosomal aberrations in the irradiated fraction. Finally, the
fraction of the body irradiated is estimated by a formula described in [42].

The alternative to the classic methodology described above is Bayesian anal-
ysis, which lends itself to retrospective dosimetry, because it presents the prob-
ability of an event in terms of prior knowledge about its expectation and uncer-
tainty. There is a recent publication [39] with Bayesian models that allow the
reconsideration of most of the published examples of radiation exposures that
were analysed using the classical methods for dose estimation following homo-
geneous exposure. A review of Bayesian methods in biodosimetry can be found
in [4], containing one appendix dedicated to the description and derivation of a
Bayesian model for cytogenetic dose estimation. There are also two recent pro-
grams, CytoBayesJ [3], which provides some basic software tools for Bayesian

otherwise,
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Table 7.1: Calibration data.
Dose (Gy) Cells Dic+CR

0.00 5389 5
1.96 924 279
3.96 475 504
5.88 331 675
7.84 300 1028
9.59 157 735
16.36 34 295
20.30 60 927

analysis of cytogenetic radiation dosimetry data, and radir [65], which is an R
[81] package for applying the models in [39].

However, in the field of cytogenetic biodosimetry there are currently no
Bayesian methodologies in use for the detection of PBI. In this chapter a new
cytogenetic method is presented for the estimation of the absorbed dose and
the FBI in PBI scenarios, based on prior determination of whether a partial or
whole body exposure had been received.

7.2 Calibration and test data

Table 7.1 displays in vitro dose response data for dicentrics plus centric rings
(Dic+CR) obtained in a recent calibration experiment within a high dose range
[95] that was performed in accordance with the TAEA requirements [42]. The
detailed protocols and conditions of blood irradiation, lymphocyte culturing,
cell fixing, metaphase staining, aberration scoring and QA /QC procedures were
fully presented in [95]. The dose rate was 0.5 Gy min~! for 2, 4 and 6 Gy and
1.2 Gy min~! for 8, 10, 16 and 20 Gy.

The test datasets representing the Dic+CR scored after the simulated PBI
(Table 7.2) were generated within a separate experiment, which was carried out
in the framework of the IAEA Coordinated Research Project E.3.50.08. They
have not yet been published elsewhere. Peripheral blood was taken from one
healthy male volunteer, corresponding to Donor I in calibration experiment [95],
to minimise the potential impact of intrinsic individual variations in our study.
The donor participation was with written informed consent and in accordance
with the institutional ethics protocol.

Blood sampling and irradiation conditions, cell culturing details and aber-
ration scoring criteria in the PBI simulation experiment were identical to those
used in the calibration experiment [95]. Briefly, the donor’s blood samples were
collected into Vacutainer™ tubes with lithium heparin anticoagulant and ex-
posed to 1.98 and 11.88 Gy %°Co acute y-rays in accordance with the IAEA
requirements [42]. The dose rate was 0.5 Gy min~! for 2 Gy and 1.2 Gy min—!
for 12 Gy. The irradiated samples were accompanied by a sham treated zero
dose control sample.

To simulate PBI, the unirradiated and irradiated blood at each dose was
mixed, so that the exposed blood fraction comprised 90% for 12 Gy and 10%
for 2 Gy, thus the equivalent whole body doses are 10.8 and 0.2 Gy respectively.
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Table 7.2: Frequency distributions of the number of Dic+CR of the test data
samples; sample 1, 2 Gy and 10% irradiated fraction, and sample 2, 12 Gy and
90% irradiated fraction. %4 cells with 3 Dic+CR, 11 with 4, 10 with 5, 9 with
6, 7 with 7, 3 with 8, 2 with 9 and 1 with 11.

Number of Dic+CR

Sample 0 1 2 >3 Y d U 2log BF
1 1043 16 3 0.021 1.253  5.967 9.410
2 148 4 *47 1357 4.667 36.551  505.480

Lymphocyte cultures were set up according to the standard technique [42] with
cell cycle control using BrdU. After 52 h of culturing cells were fixed and conven-
tional chromosomal analysis was carried out on metaphase preparations stained
with the fluorescence—plus—Giemsa method. The microscopy of all preparations
was performed on coded slides by the same cytogeneticist, to avoid an observer
bias and possible inter-operator variability. The scorer has over 20 years of ex-
perience in microscopy of aberrations and participated actively in generating
the calibration data, and scored essential number of cells and aberrations at
each dose response point, with all QA/QC procedures described in [95]. Chro-
mosomal damage was scored only in the 15¢ in vitro division, diploid metaphases
and registered using the stringent aberration scoring criteria [42]. All unstable
chromosome type aberrations were recorded; polycentrics were converted into
the equivalent number of dicentrics. For the present work the yields of dicentrics
and centric rings accompanied by a fragment were selected.

7.3 The zero—inflated Poisson model

Assuming the test (patient) data y = {y1,y2,...,¥n}, formed by n count data
observations, representing the number of chromosomal aberrations in n blood
cells, to be ZIP(u,w) (p the population mean and w the proportion of extra
zeros) distributed, the likelihood of this sample, following [27], is proportional

to
n

X no\ W (1 —w) I

L(ylp, w) = HlP(yi) o i Z: <j )e(nm (7.1)
i= j=

where ny and s are the sample frequency of zeros and the sum of the total

number of chromosomal aberrations, respectively. Multiplying and dividing by

(n — j)? inside the summatory of (7.1), the likelihood leads to

Lyl w) ZO (no) w! (1 — w_)f*ﬂ [(n = j)pl* 72)

Jj (n —3)5 e(n=iu

Jj=1

Note that the last fraction of (7.2) is proportional to the probability of a Poisson
distribution with population mean (n — j)u taking s counts.

7.4 Bayes factor

The Bayes factor is the main Bayesian model comparison tool. Given a dataset
y, the probabilities of two different models, in this case ZIP and Poisson, on y
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are compared. Following [11] this Bayes factor remains

n—j . —(s+1/2) 7.3
nH,ZnU_j i), &

and in accordance with [45] 2log BF' > 0,2, 6, 10 gives ‘weak positive’, ‘positive’,
‘strong’ and ‘very strong’ evidence in support of the ZIP model, respectively.

7.5 Dose and body fraction estimation

Here, the probability of extra zeros w represents the proportion of non—irradiated
cells, and D the absorbed dose in the blood sample y. Following [42] the fraction
of the body irradiated, F', is calculated as

_ D/do
po_d-wke : (7.4)
w+ (1 —w)eP/do

where dy is the 37% cell survival dose, with experimental evidence to be between
2.7 and 3.5 Gy [42]. Following Equation (7.4), the proportion of non—irradiated
cells w as a function of z, F' and dy results,

1-F
Fe=D/do — F 41’

w =

(7.5)

thus substituting w by Equation (7.5), the likelihood in (7.2) results,

Z(ylp, F,do) = L (y 1, Fe—D}dO fFJF 1)
B _nno no\ F* (1 — F) [(n — j)ul®
x (Fe D/dO—F—l—l) Z(J) (n(_j)s ) [(e(nij))#] 7
(7.6)
Let pu = (D, 8) be the calibration curve, and v(D, ) = V - XA)B - VT, where
V denotes the gradient of {f(D, ) respect 8 and Zé is the variance matrix of 3,
the mean prior is defined for the purposes of inverse regression as in [39], i.e

f(D,3)* £(D,B)
~ Gamm z ~ . .
I ~ Gamna ( v(D, ) v(D 5)) 7

j=1

Analogously to [39], because the knowledge of p implies the knowledge of
D, then Z(y|u, F,do) = L (y|D, u, F,dyp), (7.6). Therefore, an application of
Bayes’ theorem shows the expression of the likelihood of the absorbed dose D
and the FBI F for the given the test data y,

+oo
0

no

= (FPe P/ _pi1)y=>" (Z[’) MP(XJ- = s|D),

= (n—j)*
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where X; is a random variable negative binomial distribution with mean (n —
§)f(z, B) and variance (n—5){(D, )+ (n—j)2v(D, ). Different fonts to indicate
the likelihood as function of different variables have been used in Equations (7.1),
(7.6) and (7.8).

Considering D, F and dy as independent random variables, consequently
their joint probability density remains P(D, F,dy) = P(D)P(F)P(dyp). For the
FBI, F, a beta prior is applied. For the cell survival dose, dy, a uniform prior
U(c, d) is applied, where ¢ > 2.7 and d < 3.5. These least informative choices are
applied in case there is no information about F and dy, F' ~ Beta(1,1) = U(0, 1)
and dg ~ U(2.7,3.5).

A prior gamma distribution is applied for the absorbed dose D, as in [33].
This prior information can be defined through expert judgement or by an em-
pirical Bayes method. The empirical Bayes method is applied using the MLE
of D and its standard error from (7.8), i.e. a gamma distribution with mean D

and variance 6% ,

g
D

D2 D
D ~ Gamma (a = &5,b= A2> . (7.9)
g% A
D
Therefore, the joint posterior density remains,
E(y‘Da F7 dO)P(Da F7 dO)

P(D, F, doly) =
/ﬁ(y|D,F, do)P(D, F, dy)dDAFdd

(7.10)

To calculate this joint posterior density (7.10), with a non—tractable form,
and its marginal densities, the acceptance—rejection method is used to simulate
the posterior distribution. This approach generates a random vector (D, F) of
size m following P(D, F, do|y):

S1 Generate u from U4(0,1).

S2 Generate a random variate D* from Gamma(a,b), a random variate F™*
from Beta(w, ), and a random variate dj from U(c, d), all them indepen-
dent of u.

S3 Ifu < L(y|D*, F*,d3)/L(y|D, F,dy), thenset (D, F) « (D, F) J(D*, F*).
While the size of (D, F) < m, go to S1.

Here D, F' and dy represent the MLE from (7.8) of the absorbed dose, the
FBI and the cell survival dose, respectively. Thus E(y|f),F,d0) is the maxi-
mum of (7.8). The efficiency is eff = m/M, where M is the total number of
times that this process is repeated until m simulations are achieved. An ap-

proximation of C', the normalising constant of the joint posterior density, is
C =eff - L(y|D*, F*,dy).

7.6 Results

The values in the last column of Table 7.2 show that the Bayes factors, Equa-
tion (7.3), give ‘strong’ and ‘very strong’ evidence in support to the ZIP as-
sumption respectively for samples 1 and 2.
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Figure 7.1: Observed means (dots), plus/minus twice their standard errors (er-
ror bars), and predicted means (solid line) of the number of Dic+CR.

Table 7.3: Statistics summary of the marginal posterior densities of the absorbed
dose and the FBI (D in Gy, F in fraction).

Sample Variable Modal Expected  SD 95% CI
1 Dly 1.392 1502 0.498  (0.658, 2.577)
Fly 0.111 0.134 0.048  (0.071, 0.250)
2 Dly 10.724 10.736  0.281 (10.182, 11.277)
Fly 0.910 0.910 0.025 (0.856, 0.951)

Following the notation in Expression (7.1), in sample 1 ny = 1043, s = 22
and n = 1062, i.e. 1043 cells free of Dic+CR and 22 scored Dic+CR in 1062
blood cells, and in sample 2 ng = 148, s = 270 and n = 199.

In this example, the appropriate dose-response curve is linear-quadratic,
f(D, 8) = B2D* + 31D + By (Figure 7.1). For high doses, Gompertz—type dose
responses curves are also suitable, as shown in a recent publication [79]. Note
that the saturation effect is often quoted as leading to incorrect dose estimates
at doses >=5 Gy, however, for low LET irradiation, doses of up to 20 Gy have
been demonstrated to induce approximately linear—quadratic responses in terms
of chromosome aberrations (e.g. [83]).

Following [95] it is assumed that the distributions of Dic+CR is Poisson and
thus the ML parameter estimates and their estimated covariance matrix are the
following:
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Figure 7.2: Marginal posterior dose density for sample 1, 2 Gy and 10% irradi-
ated fraction.

o Fitted coefficients:

Bo=19.073-10"%, [ =1.291-1071,
By =3.357-1072.

e Estimated covariance matrix:

168.354 —73.146 4.933
XA}B = —73.146  85611.557 —9365.947
4.933 —9365.947 1560.911

1079,

According to (7.7), p|D will follow a Gamma distribution with mean (D, §) =
B2D? + 31D + By and variance v(z, 3) = V - X5 V¢, where:

of of of
V= an ' Aaa ) an = 17D7D2a
(350 B 352) ( )

and therefore V(D, B) = 233D4 + 2223D3 + 22131)2 + ngDQ + 22121) + 211.
According to Expression (7.8), P(X; = s|D) represents the probability of a
negative binomial random variable taking a value of 74 counts for sample 1, 270
for sample 2, with mean (n — 5)(3.357 - 1072D? +1.291-10~*D +9.073 - 10~%)
and variance (n — 5)(3.357 - 1072D% + 1.291 - 107D + 9.073 - 107%) + (n —
§)2(15.609D* — 187.319D3 + 856.214D% — 1.463D + 1.683) - 10~ 7.
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Figure 7.3: Marginal posterior FBI density for sample 1, 2 Gy and 10% irradi-
ated fraction.

To define the prior of D, the empirical Bayes method is applied. The MLE of
sample 1 for D is D = 1.636 and &]2_:) = 0.508, then according to (7.9) the prior

of the absorbed dose is D ~ Gamma(5.271,3.221). For sample 2, D = 10.746,
6125 = 0.156, and = ~ Gamma(739.362, 68.800).

For both samples F' ~ U(0,1) and dy ~ U(2.7,3.5), the less informative
priors.

Table 7.3 and Figures 7.2, 7.3, 7.4, 7.3, 7.6, 7.7 show the results of the
posterior densities. These results are sensible compared with the real doses and
FBISs, only the real absorbed dose in sample 2 is not covered by the 95% credible
interval (CI). It is remarkable that the marginal densities of the FBI in both
samples have narrow shapes, localising the FBI most likely values in a small
range.

Applying Dolphin’s method in the classical framework ([42]) to sample 1 (2
Gy, 10% FBI) gives a dose estimate of 1.631 Gy with a confidence interval of
(0, 2.994) Gy, and the estimation of the FBI is 0.113; for sample 2 (12 Gy, 90%
FBI) the dose estimate is 10.658 Gy with a confidence interval of (9.634, 11.717)
Gy and an FBI estimate of 0.922.

In trying to demonstrate the practical applicability of the suggested method,
we selected two marginal scenarios of PBI, which can be of great interest for
clinicians which are traditionally not easy for conventional biodosimetry. Very
localized (10%) exposure to 2 Gy and sub-total (90%) exposure to 12 Gy could
easily be misinterpreted as total body irradiation, and such a mistake may lead
to serious clinical consequences. In the 2 Gy/10% scenario the calculations of
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Figure 7.4: Marginal posterior dose density for sample 2, 12 Gy and 90% irra-
diated fraction.

cancer risk to organs would be based on the underestimated dose, and for 12
Gy/90% ignoring the partial nature of exposure might result in an incorrect
decision regarding the necessity of bone marrow transplantation. However, the
new technique presented here should help to avoid such mistakes. In Figures 7.2,
7.3, 7.4 and 7.5 the shapes of the curves clearly indicate the partial nature of
exposure, and the maximum probable values of both D and F' are in acceptable
agreement with the true values. It is important to remark the histograms in
Figures 7.6 and 7.7 because to the best of the authors knowledge, this is the
first time that the correlation between the estimates of the dose and irradiated
fraction in cytogenetic dosimetry has been highlighted and visualised. From
this the end user of the information (e.g. a clinician dealing with an irradiated
patient) can make a judgment by analysing the most probable dose/volume
estimates to the clinical symptoms.

In contrast to the classical estimation method for PBI, the Bayesian methods
return results in the form of probability densities which intrinsically contain
both modal dose and uncertainty information, and more information such as
the skewness can be observed. In addition, the cell survival dose is considered a
random variable, whilst in the classical method it is a point value, fixed before
the estimation. The posterior joint density for (D, F') allows the correlation to be
studied between the absorbed dose and the FBI. However, the prior distribution
choices influence the final results. Potential future work includes to study the
application of informative priors for dy.

The number of simulations for both samples is m = 100000. This is a huge
number of simulations and consequently the joint posterior density calculation
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Figure 7.5: Marginal posterior FBI density for sample 1, 12 Gy and 90% irra-
diated fraction.

takes time (/240 min). It is necessary to use such a large number of simulations
to plot accurate bivariate histograms for (D, F') of both samples, Figures 7.6 and
7.7. In case there is only interest in plotting the marginal posteriors, a lower
number of simulations is recommended and this calculation will be quicker (e.g.
for m = 10000 it takes ~3 min).

7.7 Conclusions

This chapter presents a new ZIP Bayesian method for PBI estimation. The
Z1IP distribution is introduced and its application in cytogenetic biodosimetry
is described.

The method to estimate the absorbed dose and the FBI is also derived.
To use this methodology, only the estimates of the parameters and covariance
matrix of the dose-response curve are required, which are available from the
classical analysis [42] and many examples of which are published. Acceptance—
rejection sampling is applied to simulate the joint posterior density.

Finally, the illustrative examples show the application of this methodology
in biological dosimetry. This methodology has other potential uses, it could
be applied for other types of chromosomal aberration assays, biomarkers and
agents (e.g. chemicals).

Further evolution of the methodology presented here will focus on the de-
velopment of zero—inflated compound Poisson models for estimating dose and
fraction of the body irradiated in partial body exposure scenarios where the
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chromosomal aberration yield in the irradiated fraction is overdispersed, e.g.
high LET sources like a—particles.
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Chapter 8

Zero-inflated regression
models for
radiation-induced
chromosome aberration
data: A comparative study

Submitted to Biometrical Journal.

Abstract: Within the field of cytogenetic biodosimetry, Poisson regression is
the classical approach for modelling the number of chromosome aberrations as
a function of radiation dose. However, it is common to find data that exhibit
overdispersion. In practice, the assumption of equidispersion may be violated
due to unobserved heterogeneity in the cell population, which will render the
variance of observed aberration counts larger than their mean, and/or the fre-
quency of zero counts greater than expected for the Poisson distribution. This
phenomenon is observable for both full and partial body exposure, but more
pronounced for the latter. In this work, different methodologies for analysing
cytogenetic chromosomal aberrations datasets are compared, with special focus
on zero—inflated Poisson and zero—inflated negative binomial models. A score
test for testing for zero—inflation in Poisson regression models under the identity
link is also developed.

Keywords: biological dosimetry, chromosome aberrations, count data, overdis-
persion, zero—inflation, score tests.

8.1 Introduction

Data from biological systems regarding the effects of environmental or manmade
mutagens frequently consist of count variables. This is the case in biological
dosimetry, where the measurement of chromosome aberration frequencies in
human lymphocytes is used for assessing absorbed doses of ionising radiation
to individuals. For that purpose, dose—effect calibration curves are required
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which are produced by irradiating peripheral blood lymphocytes to a range of
doses and quantifying the amount of damage induced by radiation at a cellular
level, for instance by counting dicentrics or micronuclei (IAEA, 2011). That
is, d blood samples from a healthy donor are irradiated with several doses x;,
i = 1...,d. Then for each irradiated sample, n; cells are examined and the
number of observed chromosomal aberrations y;;, j = 1,...,n; is recorded.
The aberrations most commonly analyzed are the dicentrics, centric rings, and
micronuclei.

These chromosomal aberrations appear because when cells are exposed to
radiation, breaks are induced in the chromosomal DNA, and the broken frag-
ments may rejoin incorrectly. Therefore, the frequency of chromosome aber-
rations increases with the amount of radiation and is a reliable and very well
established biological indicator of radiation absorbed dose. Dicentrics are the
interchange between the fragments of two separate chromosomes resulting in
unstable, aberrant chromosomes with two centromeres. A ring chromosome, or
centric ring, is an exchange between two breaks on separate arms of the same
chromosome and is also accompanied by an acentric fragment (chromosome
without centromere). Micronuclei are lagging chromosomal fragments or whole
chromosomes at anaphase that are not included in the nuclei of daughter cell.

For such count data, the Poisson distribution is the most widely recognized
and commonly used distribution and constitutes the standard framework for
explaining the relationship between the outcome variable and the dose (Lloyd
and Edwards, 1983; TAEA, 2011). However, in practice, the assumption of
equidispersion implicit in the Poisson distribution is often violated, which is
a well-known effect under high LET (Linear Energy Transfer) radiation, also
known as densely ionising radiation (TAEA, 2011). Moreover, the distributions
of micronuclei are in general overdispersed for both high and low LET radiation
exposure.

The focus of the research presented in this manuscript is the identification of
adequate response distributions for the modelling of cytogenetic dose-response
curves. The cytogenetic dose estimation is a subsequent inverse regression prob-
lem that depends on this previous curve fitting. If the initial response distri-
bution is incorrectly specified, this will impact on the accuracy of the model
parameter estimates of the fitted curve and, more strongly, of their standard
errors. In addition, the inverse regression step is sensitive to the initial model
specification, and may behave unreliably if that specification is incorrect. Sum-
marizing, an incorrectly specified response distribution may or may not lead to
reasonable dose estimates, but it will certainly lead to an incorrect assessment
of the uncertainty associated to these dose estimates. This subsequent inverse
regression step is not the subject of this manuscript, see Higueras et al. (2015a,
2015b) for recent advances in this respect.

Due to the mentioned violations of the Poisson distribution, other distri-
butions have been considered in the literature for dealing with overdispersed
data in biodosimetry. These alternatives include the negative binomial distri-
bution, which has been shown to accurately characterize aberration data in cases
of overdispersion (Brame and Groer, 2002); the Neyman type A distribution,
which has been shown to be useful for characterisation of aberration induced
by high LET radiation (Gudowska—Nowak et al., 2007) and the univariate rth-
order Hermite distributions (Puig and Barquinero, 2011). These distributions
have recently been tested for suitability to a selection of chromosome aberra-
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tion data collected in different exposure scenarios (Ainsbury et al. 2013a [2])
and used for cytogenetic dose estimation through a Bayesian-like inverse regres-
sion technique (Higueras et al., 2015a). Further, Poisson—inverse Gaussian and
Pélya—Aeppli distributions have been considered in Puig and Valero (2006).

Also, a commonly observed characteristic of count data is the number of
zeros in the sample exceeding the expected number of zeros generated by a
Poisson distribution having the same mean. This phenomenon, known as zero—
inflation, is frequently related to overdispersion. Distributions which account
for overdispersion will also — to some extent — allow for zero-inflation. For
instance, the families of Compound Poisson and Mixed Poisson distributions
(which include the distributions mentioned in the previous paragraph as special
cases) are overdispersed and zero-inflated.

However, the extra zeros (relative to the Poisson model) generated by these
models may still be insufficient to account for the total observed number of
zeros in the data. Count datasets with an excessive number of zero outcomes
are abundant in many disciplines such as manufacturing applications (Lambert,
1992), medicine (Béhning et al., 1999), econometrics (Gurmu et al., 1999) and
agriculture (Hall, 2000). In most of these works, a special kind of zero-inflated
models are considered, using a mixture of a distribution degenerate at zero and
a count distribution such a Poisson or a negative binomial. These models can be
especially useful in partial body irradiation scenarios which feature a mixture
of populations of non-irradiated and irradiated cells.

In this manuscript we will introduce and advocate the use of zero—inflated
models for cytogenetic count data. We will compare zero—inflated models to
other models previously proposed in the field of radiation biodosimetry, and we
will devote particular attention to the question of whether overdispersion needs
to be taken into account on top of the zero—inflation. The manuscript is orga-
nized as follows: In Section 8.2, zero—inflated Poisson and zero—inflated negative
binomial models are reviewed. The models are applied to several datasets with
different radiation exposure patterns in Section 8.3. In Section 8.4 we provide
a small simulation study in a radiation induced chromosome aberration context
to study the identifiability of zero-inflated and overdispersed regression models.
The paper is concluded in Section 8.5.

The supplementary material in [70] contains the data sets, along with a de-
scription of the code used for the data analysis, as well as the mathematical
forms of count distributions used in Section 8.3. It further contains the deriva-
tions for a score test for zero—inflation under the identity link which is employed
in Sections 8.3 and 8.4.

8.2 Zero—inflated regression models applied to
biodosimetry

In this section, zero—inflated regression models are reviewed in a general frame-
work in Section 8.2.1 and details on how these models are applied for modelling
the number of chromosome aberrations as a function of radiation doses are given
in Section 8.2.2.
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8.2.1 Zero—inflated count regression overview

Zero—inflated count models provide one method to account for the excess zeros
in data by modelling the data as a mixture of two distributions: a distribution
taking a single value at zero and a count distribution such as Poisson or negative
binomial distributions.

The zero—inflated Poisson (ZIP) regression model was first introduced by
Lambert (1992) who applied the model to the data collected from a quality
control study. Since then, the ZIP regression model has been applied in many
and different fields, such as, dental epidemiology (Bohning et al. 1999 [13]),
occupational health (Lee et al., 2001), and children’s growth and development
(Cheung 2002).

Let Yi;, © = 1,...,d, 7 = 1,...n; be the response variable which in our
context represents numbers of chromosomal aberrations at dose level i for cell
j. A ZIP regression model is defined as

_ ) pi+ (1 —=ps)exp(—Xi), yi =0,
Py = i) = { (1 —pi) exp(=X) A" [yis!, wij; >0,
where 0 < p; < 1 and A; > 0. For the ZIP, E(Y;;) = (1 — p;)\; = p; and
Var(Y;;) = (1 — pi)Ai(1 + piAi). Both the mean \; of the underlying Poisson
distribution and the mixture parameter p; (also referred to as ‘zero—inflation
parameter’) can depend on vectors of covariates.

Since Var(Y;;) = p;(1+ piA;) > p it is clear that zero-inflation can be con-
sidered as a special form of overdispersion. When overdispersion is attributed
to the large number of zeros with respect to the Poisson model, a ZIP model
may provide a good fit. A ZIP model assumes that the zero observations have
two different origins: some of them are zeros produced at random by the Pois-
son distribution, while some others (with proportion p;) are “structural”. The
structural zeros have to be justified by the nature of data (in our case, by non—
irradiated lymphocytes; for instance after partial body exposure). In addition,
there may exist another source of overdispersion that cannot be attributed to
the excess zeros. That is, even after accounting for zero—inflation, the non—zero
part of the count distribution may be overdispersed (in our context, this will be
mainly observed for densely ionising radiation). For dealing with this situation,
Greene (1994) introduced an extended version of the negative binomial model
for excess zero count data, the zero—inflated negative binomial (ZINB). In that
case, when the overdispersion is both due to the heterogeneity of data and the
excess of zeros, the ZINB regression model often is more appropriate than the
ZIP.

For the ZINB regression model, the probability mass function of the response
variable Y;; (i =1,...,d, j =1,...,n;) is given by

1—c
ij = Yij) = T(yig+A; ¢ =M —c —Yij
VT 0 m) R (o ad) T A fa) T > 0,
where a > 0 is an overdispersion parameter, and the index ¢ € {0, 1} identifies
the form of the underlying negative binomial distribution. These models will be
denoted by ZINB1 and ZINB2, respectively. The mean and variance of the ZINB
distribution are E()/”) = (l—p,))\z = W and Var(Yij) = (l—pz))\,(l—Fp,)\,—FOé)\f),
respectively. The ZINB model reduces to the ZIP model as o — 0, in analogy
to the relationship between the negative binomial and the Poisson distribution.
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8.2.2 Application to biological dosimetry

Count regression models such as Poisson and negative binomial and their zero—
inflated versions have been widely applied in many and different fields. However
their application to biological dosimetry deserves special attention.

In biodosimetry, it is assumed that the mean of the number of aberrations
is a linear or a quadratic function of the dose (IAEA, 2011). For sparsely ionis-
ing radiation there is very strong evidence that the mean yield of chromosome
aberrations, pu;, is related to dose x; by the quadratic equation:

pizﬁo—kﬂlxi—l—ﬁgxf, i=1,...,d, (81)

whereas for densely ionising radiation, the larger relative amount of energy de-
posited (and the increase in the density of the ionisations which lead to the
damage measured) results in an increase in the linear term and the quadratic
term becomes biologically less relevant and so, the dose response may be ap-
proximated by a linear equation.

The linear quadratic model is used for low linear-energy-transfer (LET) ra-
diations (i.e. gamma and X-rays) based on the justification that dicentric chro-
mosome aberrations and micronuclei result from interactions between two in-
dependently damaged chromosomes (Hall et al., 2012) and that the number of
‘tracks’ along which damage take place is linearly proportional to dose, so that
the number of track (and thus damage) pairs is approximately proportional to
dose squared (Hlatky et al., 2002). For higher LET radiations, induction of
chromosome aberrations becomes a linear function of dose because the more
densely ionising nature of the radiation leads to a corresponding ‘one track’ dis-
tribution of damage. The same is true of fractionated or protracted doses, where
there is time for repair of damage along one or more tracks between exposures.

Consequently, the link function used in (8.1) is simply the identity link func-
tion, as opposed to the log-link which is used for count data modelling in many
other fields. The identity link is the accepted standard in biodosimetry since
there is no evidence that the increase of aberration counts with dose is of expo-
nential shape, and it avoids the undesired effect that dose-response curves start
decreasing from about the maximum dose considered (IAEA, 2011). While we
do not have strong arguments to change this standard, we point out that the
log—link does have a few conceptual advantages, such as easier access to inferen-
tial tools for model testing, and the avoidance of problems with negative values
of the linear predictor. In addition, using the log—link, that is,

log(,ui) = Bo + Prix; + Bgl‘g, i=1,...,d, (82)

a simple second order approximation of u; can be directly obtained applying
Taylor’s formula at z; = 0,

pi = exp(Bo + S + fox}) ~ a+bry +exf i =1,...,d,

with a = exp(Bo), b = exp(Bo)B1 and ¢ = exp(Bo)(B2 + B32/2). Therefore, for
low doses the results obtained using the identity—link or the log—link have to be
very similar. Indeed, we will find in our detailed study in the next section that
the results obtained for the two link functions are largely interchangeable.

A consequence of using the identity—link is that the maximum likelihood es-
timate of the parameter 8y obtained by maximizing the log-likelihood function
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of the corresponding model may be negative, i.e., may lead to a fitted negative
control level, which makes no sense biologically. Therefore, in order to avoid
negative values for the intercept, constraints in the domain of the parameters
must be included when the model is fitted. Note that, though in some papers
(e.g, Puig and Barquinero, 2011) the intercept is ignored in specific situations, it
is well known that even when blood samples are not irradiated, the background
level of aberrations could be positive (IAEA, 2011). In the absence of an in-
tercept, the likelihood function at dose 0 (and, hence, the full data likelihood)
would take the value zero, for which reason we would advocate the general use
of an intercept in any model. Furthermore, since radiation protection practises
are generally very good these days, most ‘real life’ cytogenetic dose estimates
are likely to be in the region of zero.

A decision is required on which mean function is to be modelled: the mean
of the zero-inflated distribution, u;, or the mean of the underlying Poisson or
negative binomial distribution, \;, which are related via A; = p;/(1 — p;). For
compliance with formulation (1) and with practice in this particular field, we
decided that it is adequate to model the mean of the corresponding zero—inflated
distribution, pu;, via the linear predictor in (1). If no covariates are assumed for
pi, then this is equivalent to modelling A\; through a quadratic form.

The mixture parameter p; will be modelled as usual with logistic regression,
where three different scenarios will be investigated: Firstly, it is assumed that
the proportion of the mixture is constant:

loglt(pz) =0, i=1,... 7d7 (83)
secondly, p; is also modelled as a linear function of the dose:
loglt(pz) = 71%y, 1=1,..., da (84)

and finally, p; is also modelled as a linear function of the dose but an intercept
is included:

logit(p;) = v0 + 1124, i =1,...,d. (8.5)

These different approaches will be applied on several data sets in Section 8.3.3,
and further discussed in Section 8.3.4.

It should be noted that the zero—inflated Poisson distribution has been pre-
viously applied to estimate the mean yield of aberrations of the irradiated frac-
tion of cells and the dose received by this fraction by a patient who has been
exposed to an inhomogeneous irradiation. This methodology, proposed by Dol-
phin (1969), is known in biodosimetry as Dolphin’s method or contaminated
Poisson method (TAEA, 2011). However, this methodology does not constitute
‘zero—inflated regression’ from the viewpoint of modern statistical modelling, as
outlined in this section. So, while the concept of zero—inflation is not completely
new in this context, at the best of our knowledge, zero—inflated regression mod-
els have not been employed for the construction of dose-response curves, neither
for partial nor whole body exposure scenarios.

8.3 Comparative study

In order to study the performance of zero—inflated models to describe the num-
ber of chromosome aberrations in biological dosimetry a substantial analysis
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has been performed where these models are compared with those models al-
ready considered in the literature: Poisson, negative binomial, Neyman type A,
Hermite, Pélya—Aeppli and Poisson—inverse Gaussian. The mathematical forms
of these distributions are given as supplementary material in [70].

These models have been fitted following the “standards” given in Section
8.2.2 by using self-programmed code, which has been developed in the free
software environment R (R Development Core Team, 2014). Function maxLik
from package maxLik has been used in order to maximize the corresponding
log—likelihood function. With the goal of facilitating the use of these techniques
by practitioners, the function used for fitting the different models is available as
supplementary material in [70] jointly with a detailed description of its usage
and the datasets used in the study.

8.3.1 Scenarios: description of the data

The models have been applied to several real datasets obtained under four dif-
ferent scenarios: whole and partial body exposure with sparsely and densely
ionising radiation. A brief description of them is given below.

(A) Whole body exposure — sparsely ionising radiation:

(A1) These data consist of the frequency of dicentrics chromosomes after
acute whole body in vitro exposure to eight uniform doses between 0
and 4.5 Gy of Cobalt—60 gamma rays (dose rate: 0.27 Gy/min).
Blood was taken from fourteen healthy donors (six for the 0 Gy
controls, and eight for the irradiated samples). Data were collected
within the MULTIBIODOSE project and can be found in Table 6 of
Romm et al. (2013).

(A2) This dataset consists of scores of micronuclei obtained after irradiat-
ing eleven samples of peripheral blood with different doses (between
0 and 4 Gy) of gamma irradiation, where the dose rate was 0.93
c¢Gy/min. In this case, for each sample, approximately 5000 bin-
ucleated cells were inspected and the numbers of micronuclei were
counted. Data can be found in Table 6 of Puig and Valero (2006).

(A3) Frequencies of dicentrics + centric rings aberrations are analysed in
a total of 51600 metaphases from two volunteers after whole body
exposure with 200 kV X-rays. Data considered here were obtained
by scoring in metaphases reaching the first mitosis after a culture
time of 56 h. Data can be found in Table 2 of Heimers et al. (2006).

(B) Whole body exposure — densely ionising radiation:

(B1) This dataset corresponds to the number of dicentrics after exposure
of peripheral blood samples to 10 different doses (between 0 and 1.6
Gy) of 1480 MeV oxygen ions. Data can be found in Table 2 of Di
Giorgio et al. (2004) and was studied by Puig and Barquinero (2011).

(B2) The second dataset considered in this scenario was obtained after
irradiating blood samples with five different doses between 0.1 and
1 Gy of 2.1 MeV neutrons. In this case, frequencies of dicentrics +
centric rings are analysed. Data are from Table 3 from Heimers et
al. (2006) and corresponds to a culture time of 72 h.
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Table 8.1: Doses, frequency distributions of the number of dicentrics, sample
size and sum, and u-test values, for data set (B1).
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(C) Partial body exposure — sparsely ionising radiation:

(C1-C3) Three datasets were considered here. The scenario is the same as for
dataset (A3) but, they correspond to partial body exposure simula-
tion, with unirradiated blood mixed with irradiated blood from the
same donors. The proportion of irradiated blood is 25%, 50% and
75%, respectively.

(D) Partial body exposure — densely ionising radiation:

(D1-D3) Finally, three datasets are considered in this scenario. Data were
obtained by irradiating blood samples with 2.1 MeV neutrons (as
in B2) and the same culture time is considered. The proportion of
irradiated blood is 25%, 50% and 75%, respectively.

Quadratic dose models of type (8.1) and (8.2) will be used under sparsely
ionising radiation, that is for data sets (Al) to (A3) and (C1) to (C3), and,
following Puig and Barquinero (2011), also for data set (B1). Following the
reasoning outlined in Section 8.2.2, the quadratic term will be removed for data
sets (B2) and (D1) to (D3).

To illustrate the nature of the data, the full data set (B1) is displayed in
Table 8.1 and visualized in image Figure 8.1. (Analogous tables and graphs
for the remaining datasets are available in the supplementary material in [70].)
Recall that we denote y; = Z;“:l yi; the total number of counts observed for
dose x;, that is, y; is the sufficient statistics to estimate the mean of the Poisson
distribution under dose x;. In the graphical representation, the circles have
location (z;,y;/n;) and size n,;. The solid curve is the dose-response curve that
would be fitted according to the Poisson model with identity link. However,
consider the u; figures shown in Table 8.1 which are the values of the u-test
statistic of Rao and Chakravarti (1956) to measure the overdispersion, suggested
by TAEA 2011. Most of these u values are > 1.96 (except for the control and
the 0.092 Gy samples), rejecting in general the equidispersion assumption, thus
the classical Poisson model is not appropriate for fitting this dataset.
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Figure 8.1: Dataset (B1): Proportions y;/n; (symbolized by circles of radius
x n;) and dose-response curves fitted with Poisson model and two link functions.

8.3.2 Score tests

Before we provide our detailed overview of fitted models, we will give some more
evidence for the presence of zero—inflation, and overdispersion on top of the zero—
inflation, in the datasets introduced in Section 8.3.1. Score (or Rao) tests are
a convenient tool for this purpose. A score test for testing a Poisson against
a ZIP regression model was developed by van den Broek (1995). Similar score
tests do exist for testing a Poisson against a negative binomial (NB) regression
model (Dean and Lawless, 1989), as well as ZIP against a ZINB regression model
(Ridout et al., 2001). All these tests assume that constant probabilities (8.3)
are employed. Furthermore, all these tests require that the mean is modelled
through a log—link function. For the Poisson/ZIP case, we developed a variant
of van den Broek’s score test which also works under the identity link; see the
appendix for details. As one can see from Table 8.2, the values of the test
statistic are quite similar for the two link functions, and in any case lead to the
same conclusions.

Similar adaptions of the score test for the identity link could be developed
for the Poisson/NB and the ZIP/ZINB comparisons though this is beyond the
scope of this paper. Hence, for these two latter situations, we constrain ourselves
to log-link models when applying the score—test (our considerations in Section
8.2.2, as well as the results of the Poisson/ZIP test, suggest that this is not a
serious restriction).

The values of the score test statistics for all considered datasets are given in
Table 8.2. The values given in this table need to be compared with quantiles of
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Table 8.2: Values of the score test statistic which, under the null hypothesis, has
a x? distribution with one degree of freedom. The form of the (zero-inflated)
negative binomial considered in each case is the one that provided the best fit
according to the log-likelihood value in Tables 8.3 to 8.6. For tests involving
zero—inflated models, the mixture parameter has been modelled according to

(8.3).
link tost (Al) (A2 (A3) (B) (B2 (C) (G (C3) (D) (D2 (D3
id  P/ZIP 1817 38358 002 8772 6132 2007.39 141828 77655 416.20 387.01 16813
D/ZIP 1680 37869 100 8716 47.20 1996.30 1417.96 745.84 421.48 398.38 168.74
log P/NB 2079 1699.91 090 159.26 136.89 6009.35 3281.00 1210.34 770.62 693.80 285.61
ZIP/ZINB 154 1043.94 4720 64.96 0.22 1.74 001 1149 3594 3624

the chi—squared distribution with one degree of freedom; for instance at the 5%
levels of significance this quantile takes the value 3.84. The higher the provided
value of the test statistics, the stronger the evidence against the smaller model.
This leads to the following conclusions:

e only for dataset (A3) — sparsely ionising whole body exposure — the
assumption of a Poisson distribution cannot be rejected;

o for dataset (Al) — again, sparsely ionising whole body exposure — the
Poisson assumption is rejected;

e for all datasets involving densely ionising radiation, that is (B) and (D),
as well as for the micronuclei (A2), the Poisson model is rejected in favour
of the ZIP and NB models, and furthermore the ZIP model is rejected in
favour of the ZINB model.

e for all data sets involving partial body exposure, that is (C) — sparsely
ionising — and (D) — densely ionising —, the Poisson assumption is
rejected in favour of the ZIP and NB models.

It is worth noting that the current JAEA recommendation is for the Poisson
distribution to be applied to all sparsely ionising data, testing for overdispersion
then applying Dolphin’s (1969) contaminated Poisson method or similar when
Poisson assumptions are violated — which is expected in partial body exposure
scenarios (IAEA, 2011). This recommendation is not entirely at odds with the
result of our initial score tests, but is clearly too vague to be actually useful,
so that cytogenists, in the absence of further guidance, tend to use the —
apparently incorrect — Poisson assumption in most of the cases.

From the score test results one can further observe that, while for some
datasets it will be sufficient to model either overdispersion or zero—inflation, for
other datasets overdispersion appears to be separately present on top of the
zero—inflation. We continue with a comprehensive analysis, fitting these and a
variety of other related models, which will confirm these results.

8.3.3 Results and discussion

In order to compare the performance of the different models, classical likelihood
measures of goodness of fit are used: The Akaike Information Criterion (AIC)
and the Bayesian (Schwarz) Information Criterion (BIC). The AIC (Akaike
1974 [6]) penalizes a model with a larger number of parameters, and is defined
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Table 8.3: Results of fitting various models to datasets (A1), (A2) and (A3),
obtained under whole body exposure with sparsely ionising radiation. For each
model, results obtained with identity—link (first row) and log-link (second row,

italic) are shown.

@D @) A3
Models k loglik AIC BIC loglik AIC BIC loglik AIC BIC
Poisson 3 -3748.59 7503.17 7526.14 -34679.48 69364.95 69391.70 -3806.89 7619.77 7638.94
3 -3749.36 7504.73 7527.70 -34721.03 69448.07 69474.81 -3808.27 7622.55 7641.72
NB1 4 -3742.82 7493.65 7524.28 -34199.14 68406.28 68441.94 -3806.89 7621.77 7647.33
4 -3743.69 7495.39 7526.02 -34231.24 68470.47 68506.13 -3808.28 7624.55 7650.11
NB2 4 -3739.23 7486.46 7517.09 -34398.42 68804.84 68840.50 -3806.98 7621.97 7647.53
4 -3740.55  7489.10 7519.73 -34440.88 68889.76 68925.42 -3808.28 7624.56 7650.12
Neyman A 4 -3742.96 7493.91 7524.54 -34214.13 68436.25 68471.91 -3806.93 7621.86 7647.42
4 -3743.78 7495.57 7526.20 -34246.64 68501.27 68536.93 -3808.30 7624.60 7650.16
Hermite (r=2) 4 -3743.09 7494.19 7524.82 -34249.44 68506.88 68542.54 -3806.89 7621.77 7647.33
4 -3743.89 7495.78 7526.41 -34282.67 68573.35 68609.01 -3808.30 7624.60 7650.16
Polya-Aeppli 4 -3742.90 7493.79 7524.42 -34204.54 68417.09 68452.75 -3806.93 7621.86 7647.42
4 -3743.74 7495.47 7526.10 -34236.76 68481.51 68517.17 -3808.31 7624.63 7650.18
PIG 4 -3742.75 7493.50 7524.13 -34196.84 68401.69 68437.35 -3806.91 7621.82 7647.38
4 -3743.62 7495.25 7525.88 -34228.97 68465.94 68501.60 -3808.28 7624.56 7650.12
ZIP (3) 4 -3739.79 7487.58 7518.21 -34490.47 68988.94 69024.60 -3806.44 7620.87 7646.43
4 -3741.18 7490.36 7520.99 -34534.06 69076.12 69111.78 -3807.78 7623.57 7649.12
ZIP (4) 4 -3741.26 7490.52 7521.15 -34352.76 68713.53 68749.19 -3806.89 7621.78 7647.34
4 -3742.85 7493.69 7524.32 -34395.01 68798.02 68833.68 -3808.28 7624.55 7650.11
ZIP (5) 5 -3739.18 7488.36 7526.65 -34266.33 68542.66 68587.23 -3806.21 7622.41 7654.36
5 -3740.19 7490.38 7528.67 -34299.43 68608.87 68653.44 -3807.55 7625.11 7657.06
ZINB1 (3) 5 -3739.69 7489.38 7527.67 -34199.16 68408.31 68452.89 -3806.45 7622.91 7654.85
5 -3740.72 7491.44 7529.73 -34231.63 68473.26 68517.84 -3808.19 7626.39 7658.33
ZINB1 (4) 5 -3741.27 7492.53 7530.82  -34195.50 68400.99 68445.57 -3807.24 7624.49 7656.43
5 -3742.81 7495.62 7533.90 -34226.81 68463.62 68508.19 -3808.38 7626.76 7658.71
ZINBL1 (5) 6 -3742.82 7497.65 7543.59 -34195.73 68403.46 68456.96 -3807.03 7626.06 7664.40
6 -3739.38 7490.75 7536.70 -34224.79 68461.58 68515.07 -3808.31 7628.62 7666.95
ZINB2 (3) 5 -3739.14 7488.27 7526.56 -34398.60 68807.20 68851.78 -3806.44 7622.87 7654.82
5 -3740.49 7490.98 7529.26 -34440.92 68891.84 68936.41 -3807.78 7625.57 7657.51
ZINB2 (4) 5 -3739.08 7488.16 7526.45 -34281.79 68573.58 68618.16 -3806.89 7623.78 7655.73
5 -3740.37 7490.74 7529.03 -34322.27 68654.54 68699.12 -3815.15 7640.30 7672.25
ZINB2 (5) 6 -3738.15 7488.30 7534.25 -34210.50 68433.00 68486.49 -3806.21 7642.42 7662.75
6 -3739.25 7490.50 7536.45 -34242.98 68497.96 68551.45 -3807.55 7627.11 7665.44

as AIC = —2log L+ 2k , where log L denotes the fitted log—likelihood and k the
number of parameters. The BIC (Schwarz, 1978), defined as BIC = —2log L +
klogn, works similarly to AIC but increases the penalty with increasing sample
size n (with our notation n = Zle n;). According to these criteria, models
with smaller values of AIC and BIC are considered preferable. It is standard
practise to include both criteria in model fitting. Tables 8.3—-8.6 show the results
for each dataset considered, for both the identity link and the log-link (first
and second row, respectively, for each given model). The value k used for
AIC and BIC is given explicitly in each table, and is computed as the sum of
regression and model parameters. The best model in each column and for each
link function is provided in bold face. Note that Hermite (r=1) is just Poisson,
and that the results for higher-order Hermite models (r=3,4) are relegated to
the supplementary material in [70].

(A) Whole body exposure — sparsely ionising radiation

Firstly, we observe from Table 8.3 that, as expected from the result of the
score test, for dataset (A3) the Poisson model comes up as the preferred model
under both the AIC and the BIC criterion. This corresponds to accepted prac-
tice for dicentrics under whole body exposure and sparsely ionising radiation.

However, for dataset (Al), the values of the maximized log-likelihood as
well as the information criteria indicate that NB2 and zero-inflated models fit
the data better than other models. Although the results are not shown here, a
similar behavior has been observed for other datasets (e.g., for data correspond-
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Table 8.4: Results of fitting various models to datasets (B1) and (B2), obtained
under whole body exposure with densely ionising radiation. For each model,
results obtained with identity—link (first row) and log-link (second row, italic)
are shown. Separate columns for k are provided for dataset (B1), which employs
a quadratic model, and dataset (B2), which uses a linear predictor without
quadratic term.

(B1) (B2)

Models loglik AIC BIC loglik AIC BIC

Poisson -2855.85 5717.70 5738.73  -3004.72 6013.45 6026.57
-2904.50 5815.00 5836.02  -3028.27 6060.54 6073.66

NB1 -2800.29 5608.58 5636.60  -2960.17 5926.33 5946.02
-2846.15 5700.30 5728.33  -2977.92 5961.83 5981.52

NB2 -2807.48 5622.96 5650.99  -2976.16 5958.32 5978.00
-2856.61 5721.22 5749.25  -2996.11 5998.22 6017.91

Neyman A -2799.74 5607.47 5635.50  -2958.86 5923.72 5943.41

-2845.21 5698.41 5726.44  -2976.94 5959.88 5979.57
-2802.15 5612.30 5640.32  -2959.02 5924.03 5943.72
-2847.60 5703.19 5731.22  -2978.22 5962.44 5982.13
-2799.81 5607.61 5635.64  -2959.48 5924.96 5944.65
-2845.48 5698.97 5727.00  -2977.25 5960.50 5980.19

Hermite (r=2)

Polya-Aeppli

PIG -2801.91 5611.81 5639.84  -2961.98 5929.97 5949.66
-2848.04 5704.08 5732.11  -2979.74 5965.48 5985.17
ZIP (3) -2814.53 5637.07 5665.09  -2979.06 5964.13 5983.82
-2861.85 5731.69 5759.72  -3005.82 6017.64 6037.33
ZIP (4) -2805.36 5618.71 5646.74  -2967.53 5941.05 5960.74
-2854.06 5716.12 5744.15  -2990.43 5986.87 6006.56
ZIP (5) -2800.58 5611.17 5646.20  -2958.35 5924.71 5950.96
-2847.77 5705.53 5740.57  -2977.43 5962.86 5989.12
ZINBI1 (3) -2797.41 5604.82 5639.85  -2960.81 5929.62 5955.87
-2842.31 5694.63 5729.66  -2977.92 5963.84 5990.09
ZINB1 (4) -2797.30 5604.61 5639.64  -2958.76 5925.52 5951.77
-2842.34 5694.68 5729.72  -2976.85 5961.70 5987.95
ZINB1 (5) -2797.33 5606.67 5648.71  -2957.40 5924.79 5957.61
-2842.04 5696.07 5738.11 -2975.95 5961.90 5994.71
ZINB2 (3) -2807.47 5624.93 5659.97  -2976.38 5960.76 5987.01
-2856.41 5722.82 5757.86  -2996.13 6000.26 6026.51
ZINB2 (4) -2800.06 5610.13 5645.16  -2964.11 5936.22 5962.47
-2847.84 5705.68 5740.71  -2984.50 5976.99 6003.24
ZINB2 (5) -2798.59 5609.17 5651.22 -2957.30 5924.60 5957.41

O UL UL OO O OO OUOUUU U i s s s o R R e e e s e W W R
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-2809.61 5631.21 5673.25 -2976.29 5962.58 5995.40

ing to lab 3 shown in Table 3 in Romm, 2003) obtained using an automatic
scoring procedure. In this case, one could speculate that the automatic scoring
procedure used for (Al) may skew the data away from Poisson. However, more
datasets would be needed to demonstrate such an effect reliably.

For data (A2), the Poisson distribution does not provide a good fit (see
Table 8.3). In this case, it should be pointed out that micronuclei counts differ
from dicentrics in that i) the quadratic component of the dose dependence is
frequently weaker (for sparsely irradiation), ii) baseline counts of unirradiated
samples are much higher than for dicentrics and iii) even after uniform total
body irradiation micronucleus distributions tend to be overdispersed.

Therefore, although for whole-body exposure and sparsely ionising radia-
tion, it is usually assumed that data follow a Poisson model, data under this
scenario may depart from the Poisson model due to other circumstances (e.g.,
the scoring procedure).

120



Table 8.5: Results of fitting various models to datasets (C1), (C2) and (C3),
obtained under partial body exposure with sparsely ionising radiation. For each
model, results obtained with identity—link (first row) and log-link (second row,
italic) are shown.

(1) 2) (C3)
Models Toglik AIC BIC Toglik AIC BIC Toglik ATC BIC
Poisson 2671.95 535586 5376.50  -3526.00  7050.81  7079.70  -3472.24  6950.47 _ 6969.64
2676.09  5358.18  5378.83  -3528.70  7063.39  7083.28  -3468.15 694230  6961.46
NB1 209011 418821 421574  -3011.85  GO3L.70  6058.23  -3229.20 646640  6491.95
2091.83 419165  4219.18  -3011.69  GO3L.38  G057.90  -3224.49  G456.98  6482.54
NB2 208853 418507  4212.50  -2939.48  5886.97 591349  -3155.36  G318.71  6344.27
2052.98  4113.96 414148  -2940.52  5889.05  5915.57  -3153.54  6315.08  6340.64
Neyman A 210310 421420 424173 -3021.07  6050.13  GO76.66  -3232.00  6471.99  6497.55

-2104.75 4217.50 4245.03 -3022.38 6052.76 6079.28 -3229.16 6466.31 6491.87
-2248.89 4505.77 4533.30 -3122.52 6253.03 6279.56 -3265.83 6539.65 6565.21
-2249.82 4507.64 4535.17 -3123.51 6255.01 6281.53 -3263.19 6534.39 6559.95
-2087.21 4182.42 4209.94 -3007.02 6022.04 6048.56 -3227.37 6462.75 6488.31
-2088.91 4185.82 4213.35 -3007.94 6023.89 6050.41 -3223.57 6455.14 6480.69

Hermite (r=2)

Polya-Aeppli

PIG -2109.59 4227.19 4254.72 -3035.89 6079.79 6106.31 -3241.24 6490.47 6516.03
-2111.35 4230.69 4258.22 -3035.98 6079.96 6106.48 -3235.40 6478.81 6504.37
ZIP (3) -2010.84 4029.68 4057.21 -2852.63 5713.26 5739.79 -3092.40 6192.79 6218.35
-2010.76 4029.53  4057.05 -2852.29 5712.59 5739.11 -3092.73 6193.46 6219.02
ZIP (4) -2034.75 4077.51 4105.03 -2844.89 5697.77  5724.29 -3087.70 6183.41 6208.97
-2026.52 4061.05 4088.58 -2845.72 5699.44 5725.96 -3086.79 6181.58 6207.14
ZIP (5) -2007.01  4024.02 4058.43  -2842.39 5694.79 5727.94 -3085.56 6181.13 6213.08
-2006.57  4023.13 4057.54 -2843.70 5697.40 5730.55 -3081.33 6172.66 6204.61
ZINBL1 (3) -2010.85 4031.70 4066.10 -2852.65 5715.31 5748.46 -3092.45 6194.91 6226.85
-2010.78 4031.55 4065.96 -2852.31 5714.61 5TAT.TT -3092.75 6195.50 6227.44
ZINB1 (4) -2017.66 4045.31 4079.72 -2844.21 5698.43 5731.58 -3087.84 6185.67 6217.62
-2015.63 4041.25 4075.66 -2845.06 5700.13 5733.28 -3086.80 6183.59 6215.54
ZINBL1 (5) -2006.97 4025.94 4067.23 -2842.41 5696.81 5736.60 -3085.55 6183.10 6221.44
-2006.50 4024.99 4066.28 -2843.71 5699.42 5739.20 -3080.99 6173.97 6212.31
ZINB2 (3) -2010.70 4031.40 4065.81 -2852.63 5715.26 5748.42 -3092.37 6194.74 6226.68
-2010.66 4031.31 4065.72 -2852.29 5714.59 5747.74 -3092.73 6195.46 6227.40
ZINB2 (4) -2022.00 4054.00 4088.41 -2844.88 5699.75 5732.90 -3087.68 6185.37 6217.32
-2021.05 4052.10 4086.50 -2845.72 5701.44 5734.59 -3086.79 6183.58 6215.53
ZINB2 (5) -2006.47 4024.93 4066.22 -2842.42 5696.83 5736.62 -3084.93 6181.87 6220.20

[ R = N S T N N N N N N N N N

-2006.20 4024.41 4065.70 -2843.70 5699.40 5739.18 -3080.94 6173.87 6212.21

(B) Whole body exposure — densely ionising radiation

For the two datasets in this scenario values for the Poisson regression model
are clearly worse than for the other models, confirming the overdispersion re-
ported for several authors concerning high LET radiation exposures. According
to the results shown in Table 8.4, there are several models which are very com-
petitive. In this case, it seems that overdispersion can be modelled through
different models, including the Neyman A and zero-inflated negative binomial
models.

(C) Partial body exposure — sparsely ionising radiation

For datasets considered in this scenario (C1-C3), zero-inflated models are
notably better than the other models as shown in Table 8.5. This result is in
line with the philosophy of Dolphin’s method (Dolphin, 1969). The zero—inflated
Poisson models perform consistently well for all three datasets, and the infor-
mation criteria give little support for (possibly zero—inflated) negative binomial
models. Hence, for this type of datasets, it seems clear that overdispersion is
due to the excess of zeros.

(D) Partial body exposure — densely ionising radiation

For datasets in this scenario (D1-D3), the Poisson model is clearly rejected.
From Table 8.6, it can be observed that, in general, the ZINB models provide
the best fits which indicates that overdispersion is due to both the excess of
zeroes (caused by the partial body exposure) and the heterogeneity (caused by
the densely ionising radiation). However, there is quite a wide range of models
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Table 8.6: Results of fitting various models to datasets (D1), (D2) and (D3),
obtained under partial body exposure with densely ionising radiation. For each
model, results obtained with identity—link (first row) and log-link (second row,
italic) are shown.

1) D) D3
Models k loglik AIC BIC loglik AIC BIC loglik AIC BIC
Poisson 2 -1477.95 2959.89 2973.54 -2302.09 4608.18 4621.51 -2394.99 4793.98 4806.93
2 -1482.50 2969.00 2982.65 -2323.30 4650.60 4663.94 -2415.08 4834.17 4847.12
NB1 3 -1370.07 2746.13 2766.61 -2148.66 4303.31 4323.31 -2310.45 4626.89 4646.32
3 -1373.15 2752.30 2772.77 -2163.63 4333.26 4353.26 -2326.58 4659.17 4678.59
NB2 3 -1366.28 2738.57 2759.04 -2151.63 4309.26 4329.26 -2322.30 4650.59 4670.02
3 -1370.12 2746.25 2766.72 -2167.41 4340.81 4360.81 -2337.16 4680.31 4699.74
Neyman A 3 -1372.33 2750.65 2771.13 -2146.95 4299.91 4319.91 -2306.20 4618.39 4637.82
3 -1375.41 2756.81 2777.29 -2161.79 4329.58 4349.58 -2322.23  4650.47 4669.89
Hermite (r:2) 3 -1382.18 2770.37 2790.84 -2164.80 4335.59 4355.59 -2308.57 4623.14 4642.56
3 -1385.58 2777.16 2797.63 -2180.55 4367.10 4387.10 -2325.06 4656.12 4675.55
Polya-Aeppli 3 -1370.34 2746.67 2767.15 -2146.66 4299.32  4319.32 -2308.06 4622.11 4641.54
3 -1373.41 2752.83 2773.30 -2161.53 4329.06 4349.06 -2324.10 4654.20 4673.63
PIG 3 -1371.72 2749.43 2769.90 -2155.04 4316.09 4336.08 -2315.55 4637.11 4656.54
3 -1374.81 2755.63 2776.10 -2170.28 4346.57 4366.57 -2331.96 4669.93 4689.36
ZIP (3) 3 -1369.48 2744.96 2765.43 -2155.15 4316.30 4336.30 -2322.37 4650.73 4670.16
3 -1373.58 2753.17 2773.64 -2173.27 4352.53 4372.53 -2341.29 4688.58 4708.01
ZIP (4) 3 -1386.57 2779.15 2799.62 -2172.81 4351.62 4371.61 -2323.33 4652.66 4672.09
3 -1391.84 2789.68 2810.16 -2193.54 4393.07 4413.07 -2341.86 4689.72 4709.15
VAL (5) 4 -1368.96 2745.91 2773.21 -2147.03 4302.07 4328.73 -2308.05 4624.11 4650.01
4 -1372.62 2753.25 2780.55 -2160.67 4329.34 4356.00 -2321.58 4651.15 4677.06
ZINB1 (3) 4 -1366.48 2740.96 2768.26 -2143.46 4294.93 4321.59 -2308.53 4625.06 4650.97
4 -1369.76 2747.53 2774.83 -2158.76  4325.53 4352.19 -2324.87 4657.73 4683.64
ZINB1 (4) 4 -1366.16 2740.32 2767.62 -2143.59 4295.19 4321.85 -2307.72 4623.44 4649.35
4 -1373.16 2754.32 2781.61 -2158.79 4325.59 4352.25 -2323.98 4655.97 4681.87
ZINB1 (5) 5 -1366.13 2742.27 2776.39 -2143.40 4296.80 4330.13 -2306.96 4623.93 4656.31
5 -1369.22 2748.45 2782.57 -2158.67 4327.34 4360.66 -2321.48 4652.96 4685.35
ZINB2 (3) 4 -1366.05 2740.09 2767.39 -2150.67 4309.35 4336.01 -2320.61 4649.22 4675.13
4 -1369.93 2747.85 2775.15 -2166.94 4341.88 4368.54 -2336.76 4681.52 4707.42
ZINB2 (/L) 4 -1366.44 2740.87 2768.17 -2147.31 4302.62 4329.28 -2313.89 4635.79 4661.69
4 -1369.97 2747.94 2775.23 -2162.26 4332.53 4359.19 -2328.61 4665.22 4691.12
ZINB2 (5) 5 -1365.88 2741.77 2775.89 -2144.92 4299.85 4333.18 -2307.69 4625.38 4657.76
5 -1369.66 2749.32 2783.45 -2158.93 4327.85 4361.18 -2321.34 4652.68 4685.07

which provided competitive results for some data sets under this scenario, among
them NB2, Polya-Aeppli, and the Neyman type A model. The latter has been
shown to perform well for densely ionising radiation by Virsik and Harder (1981).

In our analysis, the Poisson model provides the (by far) worst fit for al-
most all datasets, including the sparsely ionising scenarios. Thus, a Poisson
model should be used only in cases where there is strong evidence that it is
the correct specification. In any case, it is clear that the Poisson model will be
inadequate under partial body exposure and/or for densely ionising radiation.
In general, as compared to the Poisson model, the proposed zero—inflated re-
gression models perform well in terms of log—likelihood and the model selection
criteria employed, for both full and partial body exposure.

The wide range of model classes considered so far does not make the claim to
be exhaustive, and there are further modelling strategies which deserve consid-
eration. We investigated random effect models which effectively add a random
intercept term to the linear predictor (8.1) or (8.2). Considering the responses
as repeated measures y;; equipped with a two-level structure, the random effect
is added to the upper (aggregated) data level, i, effectively imposing correlation
within blood samples. While correlation between cells from the same blood
sample is a reasonable assumption, we note that each blood sample got exposed
to a different dose, which is included as covariate into the model. We certainly
would expect the dose effect to be much larger than any possible within—sample
correlation. Hence, we do not consider this approach as a truly hierarchical
(‘variance component’) model, but rather as a simple overdispersion model. We
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fitted random effect models using a Gaussian random effect with Poisson and
negative binomial response distribution, and, for the former, also considered an
unspecified random effect distribution. It was found that, using the log-link,
these models indeed work well for some specific data sets such as (A1) and (D2)
(see the supplementary material in [70] for detailed results). The identity—link
version, for which we found a workable implementation only for the Poisson
model with Gaussian random effect, is more difficult to use since the random
effect can render the linear predictor negative, which is incompatible with its
interpretation as a Poisson mean.

Of course, random effect models will show their actual power only in truly
hierarchical setups, where they can be used to model inter—individual correlation
rather than just overdispersion. To our knowledge, the first work in this direc-
tion has been produced by Mano and Suto (2014), using a Bayesian framework.
None of the datasets that we have investigated does provide such hierarchical
information, so we did not investigate this avenue further.

A second model class which should be mentioned here are two—part models,
which, rather than allowing zeros to be generated via two different routes as in
the ZIP model, define a separate model for zero— and non—zero response, where
the latter part could be described by e.g. a truncated Poisson distribution (Alfo
and Maruotti 2013 [7]). Such ‘Hurdle’ models have the appealing property
of being based on a clear hierarchical structure: first, a decision is made on
whether a zero is chosen or not, and secondly, the non—zero part of the model
is invoked if chosen. These models, which are beyond the scope of the present
manuscript, appear promising in the context of radiation biodosimetry and so
deserve further investigation.

8.3.4 Discussion on how to model the zero—inflation pa-
rameter

Based on the results shown in Tables 8.3-8.6, the three considered forms of
modelling the zero—inflation parameter p; provide similar results in terms of the
log-likelihood. However, looking at the fitted values of this parameter, it can
be observed that they can be very different depending on the specified model.

Figure 8.2 shows the fitted values of the parameter p; after fitting a ZIP
regression model to data (C1-C3) and (A3) (left panel) and a ZINBI regression
model to data (D1-D3) and (B2) (right panel). The solid dots represent the
fitted p; when these do not depend on covariates, and the dashed and solid
lines give the fitted values when p; is modelled through a logit link as a linear
function of the dose with and without intercept, respectively.

Both plots show that the mixture parameter takes similar values at the high-
est doses observed in each case, independently of how it is modelled. Moreover,
the value of p; is influenced by the percentage of unirradiated blood, as expected
(TAEA, 2011). However, for the lowest doses, it takes very different values. If
p; is modelled as logit(p;) = v12; (i =1,...,d), then the mixture parameter is
equal to 0.5 at zero dose. That is, the model (8.4) imposes the probability 0.5
of extra zeros for non—irradiation. However, this may be a very restrictive as-
sumption. In order to allow for more flexibility, an intercept is included in model
(8.5). If logit(p;) = o + 71, different situations can occur. For example, the
dashed lines in the right panel in Figure 8.2 show that for non-irradiated blood
samples, the probability of extra zeros is quite similar for the four datasets (as
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Figure 8.2: Fitted zero—inflation (mixture) parameters p; as a function of dose,
x;. Solid lines correspond to modelling the mixture parameter as logit(p;) =
~v1z; and dashed lines correspond to modelling it as logit(p;) = v + Y-
Solid dots indicate the fitted probabilities when p; is modelled as a constant,
logit(p;) = 70. Left panel: Results obtained from fitting a ZIP regression model
to data (A3) and (C1-C3). Right panel: Results obtained from fitting a ZINB1
regression model to data (B2) and (D1-D3).

it would be expected). But, the dashed lines in the left panel show that the
probability takes very different values at dose 0. This different behaviour may
be explained by the first dose observed in each case. For data in the right panel,
the smallest dose used was 0.1 Gy so, it is expected that the four datasets per-
form similarly (at dose 0, the four datasets should be practically equal). In the
other hand, for data in the left panel, the smallest dose was 1 Gy and so, the
value of p; is already influenced by the percentage of irradiated blood.

Model (8.5) is especially meaningful for fitting (C1-C3) and (D1-D3). In a
partial body exposure simulation experiment, where a fixed proportion of blood
f is irradiated (for instance, 25%, 50% and 75%) to a dose x, this proportion f
is not the same as the proportion (1 — p) of irradiated cells in the zero-inflated
model. Moreover, the magnitude of the difference also depends on the dose. The
reason is that not all the irradiated cells transform and survive to metaphase,
and those which do not survive can not be scored. According to Lloyd et
al. (1973), the survival rate of the irradiated cells s(x) follows a decreasing
exponential function of the dose x of the form, s(z) = exp(—v12). Note that
for a dose of & = 0 the survival rate is 100%.

Suppose that in a partial body exposure we have N irradiated cells and Ny
non irradiated cells. It is clear that the proportion of irradiated blood is,

N
= 8.6
f= o (5.)
but the proportion of scored irradiated cells (those which survive) is,
Ns(z)
l—-p)=——"7-——. 8.7
10 = V@) ®.7)
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Replacing Ny in (8.7) by that isolated from (8.6), we obtain,

(1-p) = Ns(x) - xp(=72) = :
N = )/f + Ns(x) (1=1)/f+exp(—nz) 1+ exp(yo + ’Y(lg:;)a

where logit(f) = —7. This implies the relationship logit(p) = ~vo + 112, justi-
fying model (8.5).

The value of v; depends on the kind or radiation and its capacity to damage
the cells, and 7y is related to the fraction of irradiated blood.

Our application studies have demonstrated little difference in terms of log—
likelihood between the three methods of modelling the mixture parameter. How-
ever, for partial body irradiation scenarios, we have shown that model (8.5) is
conceptually preferable. Dataset (C2) constitutes an example where this con-
ceptual advantage led to a superior practical performance.

8.4 Simulation study

In this section, we will give some more objective evidence for our claim that
overdispersion and zero—inflation are in general separately identifiable. If that
is true, we would expect

e the ZINB model to be favorable if both of these features are present;

e the NB model to be favorable if only overdispersion is present;

e the ZIP model to be favorable if only zero—inflation is present;

e the Poisson model to be favorable if none of these features are present.

Therefore, we generated 100 data sets from each of Poisson, ZIP, NB2 and
ZINB2 models, then we fitted the data using all four models, and counted the
proportion of times that each model gives the ‘winning result’ in terms of AIC
and BIC. We also computed the score tests introduced earlier (where applicable)
and give the proportions of rejection of the respective null hypothesis. For
the data generation, we used the Poisson model fitted to (A3) as base model
(we know from our previous analysis that this is a ‘correct’ model), with five
doses x1 = 1,...,x25 = 5. Then we instilled successively zero—inflation and
overdispersion into this data-generating process, and observed the outcome.
For the zero—inflation parameter p;, we assumed scenario (8.3); that is, we did
not assume dependence of this parameter on dose.

For the simulation of the ZIP models, we distinguished between (a) mild
zero—inflation [p = 0.1], (b) moderate zero—inflation [p = 0.2] and (c) strong
zero—inflation [p = 0.5]. For the NB models, we tried to match the degree
of ‘non-Poissonness” according to the following reasoning. Note that, for ZIP
models, one has

Var(Y;) = pi(1 + phi) = (1 + 1510/%) :

For the negative binomial model (NB2), we know that
Var(Y;) = pi(1 + ap);
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Table 8.7: Proportion of correctly identified models using AIC, for models using
the identity—link (top) and log-link (bottom). The ‘correct’ model choice is

provided in bold letters. Columns add up to 100%.
True model P 7IP NB ZINB
link  Fitted model mild mod. strong mild mod. strong mild mod. strong
P 91 0 0 0 0 0 0 0 0 0
id 7ZIP 6 88 96 96 5 0 0 8 0 0
NB 3 0 0 0 92 91 90 3 0 2
ZINB 0 12 4 4 3 9 10 89 100 98
P 95 0 0 0 2 0 0 0 0 0
log 7ZIP 3 50 67 96 42 41 7 9 0 0
NB 2 0 0 0 51 54 85 7 1 1
ZINB 0 50 33 4 5 5 8 84 99 99

Table 8.8: Proportion of correctly identified models using BIC, for models us-
ing the identity-link. The ‘correct’ model choice is provided in bold letters.
Columns add up to 100%.

True model P Z1pP NB ZINB
link  Fitted model mild mod. strong mild mod. strong mild mod. strong
P 100 0 0 0 13 0 0 0 0 0
id Z1pP 0 95 100 100 6 0 0 45 1 0
NB 0 2 0 0 81 100 100 48 25 17
ZINB 0 3 0 0 0 0 0 7 74 83
P 100 1 0 0 23 0 0 0 0 0
log 7ZIP 0 52 68 100 22 41 7 51 1 0
NB 0 11 0 0 55 59 93 39 14 15
ZINB 0 36 32 0 0 0 0 10 85 85

hence, for an equal degree of non-Poissonness we can equate o = p/(1 — p).
Following this reasoning, we considered in our simulation study data generated
from a NB2 distribution with parameters (a) o = 1/9 (mild overdispersion),
(b) @ = 1/4 (moderate overdispersion) and (c) a = 1 (strong overdispersion).
For the ZINB models, we considered the pairings (a) mild/mild, (b) moder-
ate/moderate and (c) strong/strong.

Tables 8.7 and 8.8 indicate clearly that, in the vast majority of cases, the
underlying models were correctly identified. For the log-link, we observed a
tendency of mildly zero—inflated Poisson models to be classified as ZINB mod-
els, and mildly overdispersed (NB) models to be classified as ZIP models. The
stronger the overdispersion or zero—inflation, the better are the associated mod-
els separately identifiable. The proportion of correctly identified models was
generally larger for the identity— than for the log—link, and was generally larger
when using BIC rather than AIC. The only exception to this are ‘mild/mild’
zero—inflated negative binomial models, which tend to be classified as ZIP or NB
models under BIC. The score tests in Table 8.9 speak a very clear language: The
proportion of rejection of the Poisson and ZIP model is close to 0, when these
models are true, and close or equal to 1, when these are false. Overall these
simulations confirm impressively the separate dependability of zero-inflated and
overdispersed models, as well as the need for models which are both overdis-
persed and zero—inflated.
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Table 8.9: Proportion of rejection of the smaller model using score tests (at the
5% level of significance), for models using the identity link (top row) and the
log—link (bottom three rows). Only values in bold are fully meaningful as in
this case the true model corresponds to one of the two models tested against.

True model P Z1P NB ZINB
link  Fitted model mild mod. strong mild mod. strong mild mod. strong
id P/Z1P 0.05 1 1 1 0.86 1 1 1 1 1
P/Z1P 0.02 1 1 1 0.90 1 1 1 1 1
log P/NB 0.03 0.99 1 1 0.98 1 1 1 1 1
ZIP/ZINB 0.00 0.03 0.01 0.05 0.84 1 1 0.77 1 1

8.5 Concluding remarks

Zero—inflated models have been proposed for modelling the number of aberra-
tions per cell as a function of the dose. They have been compared with other
models showing that they behave well in several scenarios, especially for partial
body exposure. Moreover, results obtained by modelling the mean yield of aber-
rations through a log-link were compared with these ones obtained by using the
identity link showing that both link functions give very similar results. Score
tests justified the use of zero—inflated models for fitting several datasets. For
the problem of testing a Poisson versus a ZIP model, we have presented in this
manuscript a variant of van den Broek’s score test which allows for the use of
the identity link.

A relevant finding of this paper is that overdispersion needs to be taken into
account irrespective of whether the data stem from full or partial body expo-
sure. In the case of full body exposure, for densely ionising radiation or when
micronuclei are analysed, the overdispersion will be relatively high and can of-
ten be addressed through a (possibly zero—inflated) negative binomial model
or the Neyman A model, whereas for sparsely ionising radiation overdispersion
will be relatively mild (but not always ignorable) and can often be addressed
exchangeably through a negative binomial or a zero—inflated Poisson model (or
even other models). Partial body exposure will in general require explicit mod-
elling of the zero-inflation. While for sparsely ionising radiation zero—inflated
Poisson models turned out to be sufficient in our analysis, for densely ionising
radiation it was generally necessary to model the overdispersion on top of the
zero—inflation, through a zero—inflated negative binomial model. A small simu-
lation study has confirmed that the concept of considering overdispersion and
zero—inflation as separately identifiable model properties is sensible.

Table 8.10 summarizes our recommended settings for different exposure sce-
narios. The important message from this table is that models which allow for
overdispersion will be needed in the bottom row (due to the densely ionising ra-
diation), and that zero-inflated models will need to be used in the right column
(where the body exposure is only partial). The table should not be considered
in an ‘exclusive’ sense — there will often be many other models which will fit
well too. We have chosen the named models based on conceptual plausibility,
and practical performance in our analysis in Tables 8.3 to 8.6. If one is in
doubt about the exposure scenario, ZIP models (especially those which model
the zero—inflation parameter linearly) will generally lead to good results.

Zero—inflated models are also directly biologically relevant, as partial body
exposures always lead to a mixture of non-irradiated and irradiated blood lym-
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Table 8.10: Summary of recommended settings under different exposure sce-
narios, when counting dicentrics and centric rings (low LET and high LET
correspond to sparsely and densely ionising radiation, respectively). When an-
alyzing micronuclei, we would advocate the use of ZINB models irrespective of
the exposure pattern.

exposure whole body partial
LET low Poisson/NB ZIp
high NB/Neyman A  ZINB

phocytes within the body at the time of irradiation, and blood sampling for
biological dosimetry takes place >24 hours after exposure, the timescale for
full circulation of lymphocytes within the human body, so the exposed and
un-exposed fractions can reasonably be expected to be fully mixed within the
sample taken.

One issue that we have not discussed in this paper is how, given a fitted
model, the dose can be estimated from the fitted model for a given aberration
count. This is an inverse regression problem; two Bayesian—like solutions to
which have been recently provided by Higueras et al. (2015a, 2015b) in whole
and partial body exposure scenarios, respectively. Higueras et al. (2015a) can
effectively be used for Poisson, NB1, Neyman A and Hermite (r = 2), and can
be extended for all two parameter compound Poisson count distributions, this
includes Poisson—inverse Gaussian and Pdlya—Aeppli models. The approach by
Higueras et al. (2015b) can be used for the ZIP(3) distribution. A well-fitting
model is, however, absolutely crucial for the success of these techniques. We
hope that our manuscript could contribute to addressing this question.

The models used with the cytogenetic example data presented in his work
would certainly be applicable to other fields, specifically including nuclear radia-
tion and technology research where the Poisson distribution is frequently applied
but also potentially for chemical and other mutagens. Indeed the results of this
work have shown that it is useful to formally assess the most appropriate models
in a dynamic way wherever count data appear, or models are used to formally
assess effects on biological systems.
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Appendix A

Generalized Hermite
distribution modelling with
the R package hermite

Submitted to The R Journal.

Abstract: The Generalized Hermite distribution (and the Hermite distribu-
tion as a particular case) is often used for fitting count data in the presence
of overdispersion or multimodality. Despite this, to our knowledge, no stan-
dard software packages have implemented specific functions to compute basic
probabilities and make simple statistical inference based on these distributions.
We present here a set of computational tools that allows the user to face these
difficulties by modelling with the Generalized Hermite distribution using the R
package hermite. The package can also be used to generate random deviates
from a Generalized Hermite distribution and to use basic functions to compute
probabilities (density, cumulative density and quantile functions are available),
to estimate parameters using the maximum likelihood method and to perform
the likelihood ratio test for Poisson assumption against a Generalized Hermite
alternative. In order to improve the density and quantile functions performance
when the parameters are large, Edgeworth and Cornish—Fisher expansions have
been used. Hermite regression is also a useful tool for modeling inflated count
data, so its inclusion to a commonly used software like R will make this tool
available to a wide range of potential users. Some examples of usage in several
fields of application are also given.

Keywords: discrete distributions, count data, Hermite distributions, Poisson,
overdispersion, multi-modality.

A.1 Introduction

The Poisson distribution is without a doubt the most common when dealing
with count data. There are several reasons for that, including the fact that
the maximum likelihood estimate of the population mean is the sample mean
and the property that this distribution is closed under convolutions (see [44]).
However, it is very common in practice that data presents overdispersion or
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zero inflation, cases where the Poisson assumption does not hold. In these
situations it is reasonable to consider discrete distributions with more than one
parameter. The class of all two-parameter discrete distributions closed under
convolutions and satisfying that the sample mean is the maximum likelihood
estimator of the population mean are characterised in [76]. One of these families
is just the Generalized Hermite distribution. Several generalizations of Poisson
distribution have been considered in literature (see, for instance, [35, 47, 48, 52]),
that are compound—Poisson or contagious distributions. They are families with
probability generating function (PGF) defined by

P(s) = exp(A(f(s) — 1)) = exp(ar(s — 1) +az(s* = 1)+ ...+ apm(s™ —1) +...),

(A1)
where f(s) is also a PGF and )_.", a; = A. Many well known discrete distri-
butions are included in these families, like the negative binomial, Polya—Aeppli
or the Neyman A distributions. The Generalized Hermite distribution was first
introduced in [34] as the situation where a,, is significant compared to a; in
(A.1), while all the other terms a; are negligible, resulting in the PGF

P(s) =exp(ai(s — 1) + an(s™ — 1)). (A.2)

After fixing the value of the positive integer m > 2, the order or degree of the
distribution, the domain of the parameters is a; > 0 and a,, > 0. Note that
when a,, tends to zero, the distribution tends to a Poisson. Otherwise, when
a1 tends to zero it tends to m times a Poisson distribution. It is immediate to
see that the PGF in (A.1) is the same than the PGF of X; + mXs, where X;
and Xy are independent Poisson distributed random variables with population
mean a; and a,, respectively. From here, it is straightforward to calculate
the population mean, variance, skewness and excess kurtosis of the Generalized
Hermite distribution:

H =a1+ mam,
o2 = a1 + m2am,
. ap + m3am
T+ m2an) (4-9)
a1 + m4am
T2 = 5 o

(a1 + m2am,)

A useful expression for the probability mass function of the Generalized Hermite
distribution in terms of the population mean p and the population index of
dispersion d = 02/ is provided in [76].

k i [k/m] i (m—1)j

w(m —d) (d=1)Y(m—-1) J
PY=kKk=PY=0——"— - . - TR
( ) ( ) (m — 1)k = md p(m=13(m — d)mi(k —myj)!j!

A4
where k = 0,1,..., P(Y = 0) = exp(pu(—1 + %)) and [k/m] is the in(tegez
part of % Note that m can be expressed as m = Hbﬂlgﬁ'
denominator is a measure of zero inflation, m can be understood as an index of
the relationship between the overdispersion and the zero inflation.

The probabilities can be also written in terms of the parameters ay, a,, using

the identities given in (A.3).

Because the
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P(x=K)
P(x<i)

Figure A.1: Hermite probability mass and distribution functions for the indi-
cated parameter values.

The case m = 2 in (A.1) is covered in detail in [47] and [48] and the resulting
distribution is simply called Hermite distribution. In that case, the probability
mass function, in terms of the parameters a; and ao, has the expression

The probability mass function and the distribution function for some values of
a1 and ay are shown in Figure A.1.

In [34] the authors also develop a recurrence relation that can be used to
calculate the probabilities in a numerically efficient way:

Pk = (pk,m<d — 1) + pk71<m — d)) y k > m, <A6>

_
k(m—1)

: k
where p, = P(Y = k) and the first values can be computed as py, = pol‘k—I; (;’i:‘f) ,
k=1,...,m—1. Although overdispersion or multimodality are common situa-
tions when dealing with count data and Generalized Hermite distribution pro-
vides an appropriate framework to face these situations, the use of techniques
based on this distribution was not easy in practice as they were not available in
any standard statistical software. A description of the package hermite main
functionalities will be given in Section A.2. Several examples of application on
different fields will be discussed in Section A.3, and finally some conclusions will
be commented in Section A.4.

A.2 Package hermite

As the common distributions in R [81], the package hermite implements the
probability mass function (dhermite()), the distribution function (phermite()),
the quantile function (ghermite()) and a function for random generation (rher-
mite()) for the Generalized Hermite distribution. It also includes the function
glm.hermite(), which allows to calculate, for an univariate sample of independent
draws, the maximum likelihood estimates for the parameters and to perform the
likelihood ratio test for a Poisson null hypothesis against a Generalized Hermite
alternative. This function can also carry out Hermite regression including co-
variates for the population mean, in a very similar way to that of the well known
R function glm().
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A.2.1 Probability mass function

The probability mass function of the Generalized Hermite distribution is im-
plemented in hermite through the function dhermite(). A call to this function
might be

dhermite(x, a, b, m=2)
The description of these arguments can be summarized as follows:
e 1: Vector of non-negative integer values.
e ¢: First parameter for the Hermite distribution.
e b: Second parameter for the Hermite distribution.

e m: Degree of the Generalized Hermite distribution. Its default value is 2,
corresponding to the classical Hermite distribution introduced in [47].

The recurrence relation (A.6) is used by dhermite() for the computation of
probabilities. For large values of any parameter a or b (above 20), the probabil-
ity of Y taking x counts is approximated using an Edgeworth expansion of the
distribution function (A.7),i.e. P(Y = ) = Fy(z)—Fu(z—1). The Edgeworth
expansion does not guarantee positive values for the probabilities in the tails,
so in case this approximation returns a negative probability, the probability is
calculated by using the normal approximation P(Y = z) = ®(zt) — ®(z7)
where ® is the typified normal distribution function and

xi_x:tO.B—a—mb
va+ m?b

are the typified continuous corrections.

The normal approximation is justified taking into account the representa-
tion of any Generalized Hermite random variable Y, as Y = X; + mXy where
X, are independent Poisson distributed with population means a, b. There-
fore, for large values of a or b, the Poissons are well approximated by normal
distributions.

A.2.2 Distribution function

The distribution function of the Generalized Hermite distribution is imple-
mented in hermite through the function phermite(). A call to this function
might be

phermite(q, a, b, m=2, lower.tail=TRUE)
The description of these arguments can be summarized as follows:

e ¢: Vector of non—negative integer quantiles.

o lower.tail: Logical; if TRUFE (the default value), the computed probabili-
ties are P(Y < x), otherwise, P(Y > x).
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All remaining arguments are defined as specified for dhermite().

If @ and b are large enough (a or b > 20), X; and X, are approximated
by N(a,+/a) and N(b,\/b) respectively, so Y can be approximated by a normal
distribution with mean a + mb and variance a + m2b. This normal approxima-
tion is improved by means of an Edgeworth expansion [8], using the following
expression

1 1 1

Fy(z) = ®(z™) — ¢(z) - (671H62(x*) + ﬂ"}/gHeg(CE*) + 72"}/%H65(1‘*)> ,
(A7)

where ® and ¢ are the typified normal distribution and density functions re-

spectively, He, (x) are the nth-degree probabilists’ Hermite polynomials [8]

Hey(x) =22-1
Hes(z) =a®—3x
Hes(y) =% — 1023 + 15z,

x* is the typified continuous correction of x considered in [71]

14 1 x+05—a—mb
xt = .
24(a + m?2b) Va+m2b
and ~; and 7, are respectively the skewness and the excess kurtosis of Y ex-
pressed in (A.3).

A.2.3 Quantile function

The quantile function of the Generalized Hermite distribution is implemented
in hermite through the function ghermite(). A call to this function might be

ghermite(p, a, b, m=2, lower.tail=TRUE)
The description of these arguments can be summarized as follows:
e p: Vector of probabilities.

All remaining arguments are defined as specified for phermite(). The quan-
tile is right continuous: ghermite(p, a, b, m) is the smallest integer = such
that P(Y < x) > p, where Y follows a m-th order Hermite distribution with
parameters a and b.

When the parameters a or b are over 20, a Cornish-Fisher expansion is used
[8] to approximate the quantile function. The Cornish-Fisher expansion uses
the following expression

1 1 1
Yp N (up + 671H62(up) + ﬁ’ngeg(up) - %75(21@ — 5up)) v a+ m2b+a+mb,

where u,, is the p quantile of the typified normal distribution.

A.2.4 Random generation

The random generation function rhermite() uses the relationship between Pois-
son and Hermite distributions detailed in Sections A.1 and A.2.1. A call to this
function might be
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rhermite(n, a, b, m=2)
The description of these arguments can be summarized as follows:
e n: Number of random values to return.

All remaining arguments are defined as specified for dhermite().

A.2.5 Maximum likelihood estimation and Hermite re-
gression

Given a sample X = z1,...,z, of a population coming from a generalized
Hermite distribution with mean p, index of dispersion d and order m, the log-
likelihood function is

UX;p,d) = nep- (—1 + dml) +log < > Zx —|—Zlog a(0)), (A.8)

_ yolwi/ml o0 _ (d=1)(m-1)™D

where ¢;(6) = Ej:o Gom and 0 = O
The maximum likelihood equations do not always have a solution. It is due
to the fact that this is not a regular family of distributions because its domain
of parameters is not an open set. The following result gives a sufficient and

necessary condition for the existence of such a solution [76]:

Proposition A.2.1 Letxy,...,x, be a random sample from a generalized Her-
mite population with ﬁxed m. Then, the mazimum likelihood equations have
solution if and only if ¥ > 1, where T is the sample mean and p™ is the
m-th order sample factomal moment, p(™ = L5 ai(wi—1) - (m; —m+1).

If the likelihood equations do not have a solution, the maximum of the
likelihood function (A.8) is attained at the border of the domain of parameters,
that is, i = Z, d = 1 (Poisson distribution), or i = Z, d = m (m times a Poisson
distribution). The case i = Z, d=m corresponds to the very improbable
situation where all the observed values were multiples of m. Then, in general,
when the condition of Proposition A.2.1 is not satisfied, the maximum likelihood
estimators are i = Z, d = 1. It means that data is fitted assuming a Poisson
distribution.

The package hermite allows to estimate the parameters p and d given an
univariate sample by means of the function glm.hermite():

glm.hermite(formula, data, link="log", start=NULL, m=NULL)

The description of the arguments can be summarized as follows:

e formula: Symbolic description of the model. A typical predictor has the
form response ~ terms where response is the (numeric) response vector
and terms is a series of terms which specifies a linear predictor for response.

e data: An optional data frame containing the variables in the model.

e [ink: Character specification of the population mean link function: ”log”
or 7identity”. By default link="log”.
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e start: A vector containing the starting values for the parameters of the
specified model. Its default value is NULL.

e m: Value for parameter m. Its default value is NULL, and in that case it
will be estimated as m, more details below.

The returned value is an object of class glm.hermite, which is a list including
the following components:

e coefs: The vector of coefficients.

loglik: Log-likelihood of the fitted model.

e vcov: Covariance matrix of all coefficients in the model (derived from the
Hessian returned by the maxLik() output).

hess: Hessian matrix, returned by the maxLik() output.

fitted.values: The fitted mean values, obtained by transforming the linear
predictors by the inverse of the link function.

e w: Likelihood ratio test statistic.
e pual: Likelihood ratio test p-value.

If the condition given in Proposition A.2.1 is not met for a sample z, the
glm.hermite() function provides the maximum likelihood estimates i = Z and
d=1anda warning message advising the user that the MLE equations have
no solutions.

The function glm.hermite() can also be used for Hermite regression as de-
scribed below and as will be shown through practical examples in Sections A.3.3
and A.3.4.

Covariates can be incorporated into the model in various ways (see e.g. [29]).
In function glm.hermite(), the distribution is specified in terms of the dispersion
index and its mean, which is then related to explanatory variables as in linear
regression or other generalized linear models. That is, for Hermite regression,
we assume Y; follows a generalized Hermite distribution of order m, where we
retain the dispersion index d (> 1) as a parameter to be estimated and let the
mean p; for the i—th observation vary as a function of the covariates for that
observation, i.e., u; = h(z;'3), where ; is a vector of covariates, t denotes the
transpose vector, 3 is the corresponding vector of coefficients to be estimated
and h is a link function. Note that because the dispersion index d is taken
constant, this is a linear mean-variance (NB1) regression model.

The link function provides the relationship between the linear predictor and
the mean of the distribution function. Although the log is the canonical link
for count data, since ensures that all the fitted values are positive, their choice
can be somewhat arbitrary or be in influenced by the data to be treated. For
example, the identity link is the accepted standard in biodosimetry since there
is no evidence that the increase of aberration counts with dose is of exponential
shape [42]. Therefore, function glm.hermite() allows both link functions.

A consequence of using the identity—link is that the maximum likelihood es-
timate of the parameters obtained by maximizing the log—likelihood function of
the corresponding model may lead to negative values for the mean. Therefore, in
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order to avoid negative values for the mean, constraints in the domain of the pa-
rameters must be included when the model is fitted. In function glm.hermite(),
this is carried out by using the function maxLik() from package maxLik [38],
which is used internally for maximizing the corresponding log-likelihood func-
tion. This function allows to introduce constraints which are needed when the
identity—link is used.

It should also be noted that results may depend of the starting values pro-
vided to the optimization routines. If no starting values are supplied, the start-
ing values for the coefficients are computed/fixed internally. Specifically, when
the log—link is specified, the starting values are obtained by fitting a standard
Poisson regression model through a call to the internal function glm.fit() from
package stats. If the link function is the identity and no initial values are
provided by the user, the function takes 1 as initial value for the coefficients. In
both cases, the initial value for the dispersion index d is taken to 1.1.

Regarding to the order of the Hermite distribution, it can be fixed by the
user. If it is not provided (default option), when the model includes covariates,
the order m is selected by discretised maximum likelihood method, fitting the
coefficients for each value of i between 1 (Poisson) and 10, and selecting the
case that maximizes the likelihood. In addition, if no covariates are included

in the model and no initial values are supplied by the user, the naive estimate
A s2/z—1

M = TXiog(p0)/z°
considered. In the unlikely case the function returns mm = 10, we recommend to
check the likelihood of the next orders (m = 11,12, ...) fixing this parameter in

the function until a local minimum is found.

where p0 is the proportion of zeros in the sample is also

When dealing with the Generalized Hermite distribution it seems natural
to wonder if data could be fitted by using a Poisson distribution. Because
the Poisson distribution is included in the Generalized Hermite family, this
is equivalent to test the null hypothesis Hy : d = 1 against the alternative
Hy : d > 1. To do this, an immediate solution is to use the likelihood ratio
test, which test—statistic is given by W = 2(I(X; i, cz) —U(X; f1,1)), where [ is
the log-likelihood function.

Under the null hypothesis W is not asymptotically x3 distributed as usual,
because d = 1 is on the border of the domain of the parameters. Using the results
of [25] and [84] it can be shown that in this case the asymptotic distribution of
W is a 50:50 mixture of a zero constant and a x7 distribution. The « percentile
for this mixture is the same as the 2a upper tail percentile for a x? [76]. The
likelihood ratio test is also performed through glm.hermite() function, using the
maximum likelihood estimates i and d.

A summary method for objects of class glm.hermite is included in the
hermite package, giving a summary of relevant information, as the residuals
minimum, maximum, median and first and third quartiles, the table of coeffi-
cients including the corresponding standard errors and significance tests based
on the Normal reference distribution for regression coefficients and the likeli-
hood ratio test against the Poisson distribution for the dispersion index. The
AIC value for the proposed model is also reported.
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Microarthropods per sample 0 1 2 3 4 5
Frequency 122 40 14 16 6 2

Table A.1: Frequency distribution of Collenbola microarthropods.

Microarthropods per sample 0 1 2 3 4 5
Frequency 118.03 49.11 10.22 14.56 5.61 1.15

Table A.2: Expected frequency distribution of Collenbola microarthropods.

A.3 Examples

Several examples of application of the package hermite in a wide range of
contexts are discussed in this section, including classical and recent real datasets
and simulated data.

A.3.1 Hartenstein (1961)

This example by [37] describes the counts of Collenbola microarthropods in 200
samples of forest soil. The frequency distribution is shown in Table A.1.

This dataset was analysed in [76] with a Generalized Hermite distribution of
order m = 3. The maximum likelihood estimation gave a mean of it = = 0.75,
and an index of dispersion of d = 1.8906.

Using glm.hermite() we calculate the parameter estimates:

R> library("hermite")
R> data <- c(rep(0,122), rep(1,40), rep(2,14), rep(3,16),
rep(4,6), rep(5,2))
R> glm.hermite(data™1, link="log", start=NULL, m=3)$coefs

(Intercept) dispersion.index order
-0.2875851 1.89056920 3.0000000

We can see that these parameter estimates are equivalent to those reported
in [76].

The estimated expected frequencies are shown in Table A.2.

The frequencies in Table A.2 have been obtained running the following code
and using the transformation

p = =D
m(m—1)° <A9)
a = pu—mb.

R> a <- -exp(mlel$coefs[1])*(mlel$coefs[2] -
mlel$coefs[3])/(mlei$coefs[3] - 1)

R> b <- exp(mlel$coefs[1])*(mlel$coefs[2] -

1)/ (mleil$coefs[3]*(mlel$coefs[3] - 1))

R> exp <- round(dhermite(seq(0,5,1), a, b, m=3)%*200,2)

Note that the null hypothesis of Poisson distributed data is strongly rejected,
with a likelihood ratio test statistic W = 48.66494 and its corresponding p-
value= 1.518232e — 12, as we can see with
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Currency and banking crises 0 1 2 3 4 5 6 7

Observed 45 44 19 17 19 13 6 4
Expected (Hermite) 38.51 35.05 37.40 24.36 15.96 8.33 4.23 1.88
Expected (Poisson) 22.07 44.66 45.20 30.49 15.43 6.25 2.11 0.61

Table A.3: Observed and expected frequency distributions of currency and bank-
ing crises.

R> mlel$w

[1] 48.66494

R> mlel$pval

[1] 1.518232e-12

A.3.2 Giles (2010)

In [30], the author explores an interesting application of the classical Hermite
distribution (m = 2) in an economic field. In particular, he proposes a model for
the number of currency and banking crises. The reported maximum likelihood
estimates for the parameters were ¢ = 0.936 and b= 0.5355, slightly different
from those obtained using glm.hermite(), which are @ = 0.910 and b = 0.557.
The actual and estimated expected counts under Hermite and Poisson distribu-
tion assumptions are shown in Table A.3.

In this example, the likelihood ratio test clearly rejects the Poisson assump-
tion in favor of the Hermite distribution (W = 40.08, p—value=1.22e — 10).

The expected frequencies of the Hermite distribution shown in Table A.3
have been calculated running the code,

R> exp2 <- round(dhermite(seq(0,7,1), 0.910, 0.557, m=2)*167, 2)
R> exp2

A.3.3 Giles (2007)

In [29] the author proposes an application of Hermite regression to the 965
number 1 hits on the Hot 100 chart over the period January 1955 to December
2003. The data were compiled and treated with different approaches by Giles
(see [28] for instance), and is available for download at the author website http:
//web.uvic.ca/~dgiles/. For all recordings that reach the number one spot,
the number of weeks that it stays at number one was recorded. The data also
allow for reentry into the number one spot after having being relegated to a
lower position in the chart. The actual and predicted counts under Poisson and
Hermite distributions are shown in Table A.4.

Several dummy covariates were also recorded, including indicators of whether
the recording was by Elvis Presley or not, the artist was a solo female, the
recording was purely instrumental and whether the recording topped the charts
in nonconsecutive weeks.

The estimates and corresponding standard errors are obtained through the
instructions

R> fit.hot100 <- glm.hermite(Weeks2 ~ Elvis+Female+Inst+NonCon,
data=data.df, start=NULL, m=2)
R> fit.hot100$coefs

(Intercept) Elvis Female
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Weeks Actual Poisson Hermite

0 337 166.95 317.85
1 249 292.91 203.58
2 139 256.94 214.60
3 93 150.26 109.61
4 47 65.90 67.99
5 35 23.12 29.32
6 21 6.76 13.78
7 13 1.69 5.20
8 9 0.37 2.04
9 8 0.07 0.69
10 5 0.01 0.24
11 2 0.00 0.07
12 2 0.00 0.02
13 4 0.00 0.01
14 0 0.00 0.00
15 1 0.00 0.00

Table A.4: Observed and expected frequency distribution of Hot 100 data.

0.4578140 0.9126080 0.1913968
Inst NonCon dispersion.index

0.3658427 0.6558621 1.5947901
order

2.0000000

R> sqrt(diag(fit.hot100$vcov))
[1] 0.03662962 0.16208682 0.07706250 0.15787552
0.12049736 0.02533045

For instance, we can obtain the predicted value for the average number of
weeks that an Elvis record hits the number one spot. According to the model,
we obtain a predicted value of 3.9370, while the observed corresponding value
is 3.9375. The likelihood ratio test result justifies the fitting through a Hermite
regression model instead of a Poisson model:

R> fit.hot100$w;fit.hot100$pval
[1] 385.7188
[1] 3.53909e-86

A.3.4 DiGiorgio et al. (2004)

In [20] the authors perform an experimental simulation of in vitro whole body
irradiation for high-LET radiation exposure, where peripheral blood samples
were exposed to 10 different doses of 1480MeV oxygen ions. For each dose,
the number of dicentrics chromosomes per blood cell were scored. The corre-
sponding data is included in the package hermite, and can be loaded into the
R session by

R> data(hi_let)
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In [78] the authors apply Hermite regression (to contrast the Poisson assump-
tion) for fitting the dose—response curve, i.e. the yield of dicentrics per cell
as a quadratic function of the absorbed dose linked by the identity function
(which is commonly used in biodosimetry). This model can be fitted using the
glm.hermite() function in the following way:

R> fit.hlet.id <- glm.hermite(Dic~Dose+Dose2-1, data=hi_let,
link="identity")

Note that the model defined in fit.hlet.id has no intercept.
A summary of the most relevant information can be obtained using the
summary() method as in

R> summary(fit.hlet.id)

Call: glm.hermite(formula = Dic ~ Dose + Dose2 - 1, data = hi_let,
link = "identity")
Deviance Residuals:
Min 1Q Median 3Q Max
-0.06261842 -0.03536264 0.00000000 0.10373982 1.42251927

Coefficients:

Estimate Std. Error z value p-value
Dose 0.4620671 0.03104362 14.884450 4.158952e-50
Dose2 0.1555365 0.04079798  3.812357 1.376478e-04
dispersion.index 1.2342896 0.02597687 107.824859 1.468052e-25
order 2.0000000 NA NA NA

(Likelihood ratio test against Poisson is reported by *z valuex
for *dispersion.indexx*)

AIC: 5592.422

We can see the maximum likelihood estimates and corresponding standard
errors in the output from the summary output. Note also that the likelihood
ratio test rejects the Poisson assumption (W = 107.82, p-value=1.47¢e — 25).

A.3.5 Higueras et al. (2015a)

In the first example in [39] the Bayesian estimation of the absorbed dose by
Cobalt—60 gamma rays after the in vitro irradiation of a sample of blood cells
is given by a density proportional to the probability mass function of a Hermite
distribution taking 102 counts whose mean and variance are functions of the
dose x, respectively u(x) = 45.93922 +5.661x and v(z) = 8.913z* — 22.55323 +
69.5712% + 5.661x.
The reparameterisation in terms of a and b as a function of the dose is given
by the transformation
a(w) = 2u() - v(x)

ba) = Ue-n) (A.10)

This density only makes sense while a(x) and b(x) are positive. The dose x > 0
and consequently b(z) is always positive and a(z) is positive for x < 3.337.
Therefore, the probability density outside (0, 3.337) is 0.

The following code generates the plot of the resulting density,
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Figure A.2: Absorbed dose density plot.

R> u <- function(x) 45.939%x"2 + 5.661*x

R> v <- function(x) 8.913%x"4 - 22.553*x"3 + 69.571*x"2 + 5.661%*x
R> a <- function(x) 2*u(x) - v(x); b <- function(x) (v(x) - u(x))/2
R> dm <- uniroot(function(x) a(x), c(1, 4))$root; dm

R> nc <- integrate(Vectorize(function(x) dhermite(102, a(x),
b(x))), 0, dm)$value

R> cd <- function(x){ vapply(x, function(d) dhermite(102, a(d),
b(d)), 1)/nc }

R> x <- seq(0, dm, .001)

R> plot(x, cd(x), type="1", ylab="Probability Density",
xlab="Dose, x, Gy")

Figure A.2 shows this resulting density.

A.3.6 Random number generation

A vector of random numbers following a Generalized Hermite distribution can
be obtained by means of the function rhermite(). For instance, the next code
generates 1000 observations according to an Hermite regression model, including
Bernoulli and normal covariates x1 and x2:

R> n <- 1000

R> #### Regression coefficients
R> b0 <- -2

R> bl <- 1

R> b2 <- 2
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Figure A.3: Random generated Hermite values

R> #### Covariate values
R> set.seed(111111)

R> x1 <- rbinom(n, 1, .75)
R> x2 <- rnorm(n, 1, .1)

R> u <- exp(b0 + bl*xl + b2*x2)
R> d <- 2.5

R>m <- 3

R> b <= ux(d - 1)/(m*(m - 1))
R> a <- u - mxb

R> x <- rhermite(n, a, b, m)

This generates a multimodal distribution, as can be seen in Figure A.3. The
probability that this distribution take a value under 5 can be computed using
the function phermite():

R> phermite(5, mean(a), mean(b), m = 3) [1] 0.8734357

Conversely, the value that has an area on the left of 0.9653287 can be computed
using the function ghermite():

R> ghermite(0.8734357, mean(a), mean(b), m = 3) [1] &

R> mle3 <- glm.hermite(x ~ factor(xl) + x2, m = 3)
R> mle3$coefs
(Intercept) factor(x1)1 x2 dispersion.index
-1.809163 1.017805 1.839606 2.491119
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order
3.000000
R> mle3$w;mle3$pval
[1] 771.7146
[1] 3.809989e-170

In order to check the performance of the likelihood ratio test, we can simulate
a Poisson sample and run the function glm.hermite() again:

R> y <- rpois(n, u)
R> mle4 <- glm.hermite(y ~ factor(xl) + x2, m=3)
R> mled4$coefs[4]
dispersion.index
1
R> mled4$w; mled4$pval [1] -5.475874e-06 [1] 0.5

We can see that in this case the maximum likelihood estimate of the dis-
persion index d is almost 1 and that the Poisson assumption is not rejected (p-
value= 0.5). If the MLE equations have no solution, the function glm.hermite()
will return a warning;:

R> z <- rpois(n, 20)
R> mleb5 <- glm.hermite(z ~ 1, m=4)
Warning message:
In glm.hermite(z ~ 1, m = 4) : MLE equations have no solution

(4)
In that case, we have “Zj = 0.987 and therefore the condition of Proposi-
tion A.2.1 is not met.

A.4 Conclusions

Hermite distributions can be useful for modeling count data that presents multi-
modality or overdispersion, situations that appear commonly in practice in many
fields. In this article we present the computational tools that allow to overcome
these difficulties by means of the Generalized Hermite distribution (and the
classical Hermite distribution as a particular case) compiled as an R package.
The hermite package also allows the user to perform the likelihood ratio test for
Poisson assumption and to estimate parameters using the maximum likelihood
method. Hermite regression is also a useful tool for modeling inflated count
data, and it can be carried out by the hermite package in a flexible framework
and including covariates. Currently, the hermite package is also used by the
radir package [65] that implements a Bayesian innovative method for radiation
biodosimetry introduced in [39].
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