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Abstract

DFT electronic calculations are performed for the double proton transfer in bicyclic oxalamidines 2,2'-bis-(3.,4,5,6-
tetrahydro-1,3-diazine) (OA6) and 2,2'-bis-(4,5,6,7-tetrahydro-1,3-diazepine) (OA7). Bidimensional potential energy
surfaces retaining the characteristics of the stationary points located in the whole potential are built to calculate the
vibrational levels through the discrete variable representation (DVR) method. Zero-point tunneling splittings are
similar for both systems but for a given energy there are much less tunneling doublets available in OA®6, this being the
key factor responsible for the different temperature dependence of the rate for the two systems. © 2001 Elsevier Science

B.V. All rights reserved.

1. Introduction

Proton transfer reactions are of fundamental
interest in chemistry and because of this they have
been studied extensively [1,2]. However, most of
the studies have dealt with single proton transfers.
Some intramolecular prototropic tautomerisms of
considerable interest include more than one proton
transfer. A very well known system is the double
proton transfer in porphyrins and related deriva-
tives [3-6]. On the theoretical side there is also
little work on the dynamics of double proton
transfers [7] and only electronic (static) calcula-
tions have been performed in the last years [8-10].
Very recently Truong et al. [11] has used the
variational transition state theory to study this
process.

* Corresponding author. Fax: +34-93-581-2920.
E-mail address: mmf@klingon.uab.es (M. Moreno).

Recently Limbach’s group studied some oxa-
lamidines, a model system of porphhyrins [12]. The
double proton transfer is depicted in the Scheme.
In particular the NMR spectra of 2,2'-bis-(3,4,5,
6-tetrahydro-1,3-diazine) (OA6) and 2,2'-bis-(4,5,
6,7-tetrahydro-1,3-diazepine) (OA7) were recorded
at different temperatures. At the lower range of
temperatures the double proton transfer in either
OAG6 or in OA7 systems was not observed as the
tautomerism is too slow as compared with the
NMR time scale. At higher temperatures the OA7
NMR spectrum disclosed the double proton
transfer taking place at a rate of the order of the
NMR time scale. Conversely, the OA6 NMR
spectra remained unchanged. This surprising dif-
ference between OA6 and OA7 was tentatively
attributted to a higher energy barrier in OA6. An
important heavy atom reorganization along the
process was also noted. These results were
partially validated through semiempirical PM3
calculations [13].

0009-2614/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.
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Scheme.

In this Letter we present an electronic (ab ini-
tio) + dynamic study to theoretically analyze the
double proton transfer in OA6 and OA7.

2. Results and discussion
2.1. Electronic results

DFT calculations were performed with the
GAUSSIAN 94 series of programs [14] using the
B3LYP method [15] with the 6-31G* basis set [16].
DFT calculations have proven very reliable when
dealing with multiple hydrogen bonded systems
given energies and geometries at a comparable
accuracy with more expensive ab initio techniques
[17]. The stationary points were obtained by full
geometry optimization [14]. Second derivatives of
the energy were calculated analytically and diag-
onalized to ascertain the nature of each stationary
point.

As the double proton-transfer reaction is sym-
metric, reactant and product geometries are
equivalent. Three additional stationary points
have been located for each reaction. Fig. 1 depicts
all the located structures.

For both OA6 and OA7 systems the equivalent
reactant and product configurations (R in Fig. 1)
are minima of the potential energy surface (PES).
Structure I in Fig. 1 is also a minimum corre-
sponding to a zwitterionic intermediate. It con-
nects with reactant through the transition state (TS
in Fig. 1). The transition vector indicates that only
one proton is transferring at this stage. Then R, TS
and I complete the mechanism for the stepwise
double proton transfer: departing from the reac-

tant R a first step involves transfer of one hydro-
gen through the transition state TS leading to the
intermediate 1. From here the process follows an
equivalent path as the second proton begins to
move and a second transition state equivalent to
the TS already obtained is passed eventually
reaching the product.

In addition, we have also considered the con-
certed mechanism. We have found the stationary
points labeled SP2 in Fig. 1 where both hydrogen
atoms are transferring in a synchronous way.
These SP2 structures have two imaginary fre-
quencies so that they are not true transition states
but saddle points of second order. In this case the
two negative eigenvalues correspond to the syn-
chronic and asynchronic motions of both hydro-
gens. Thus, the concerted R—SP2-R paths are not
true reaction paths.

Table 1 presents the relative energies of all these
stationary points as well as the imaginary fre-
quencies of transition states and saddle points of
second order. The energy barrier as well as the
relative energy of the zwitterionic intermediate are
lower for the OA7 system. However, the small
energy differences between the two oxalamidines
do not justify the fact that the double proton
transfer is only observed for the OA7 system. In
order to gain insight in the mechanism of these
reactions, a dynamical study has been undertaken.

2.2. Dynamical results

As quantum dynamical calculations are pres-
ently limited to systems with just two or three
dimensions, we have constructed analytical two-
dimensional PES by fitting the energies and posi-
tions of the actual stationary points on the whole
PES with the corresponding ones in the reduced
two-dimensional PES.

Fig. 2 schematically depicts the PES and the
position in this reduced surface of the stationary
points obtained on the true multidimensional
surface. Fig. 2 corresponds to the OA6 system but
the same scheme holds for OA7. Through sym-
metry considerations the whole surface is divided
in four equivalent parts by the x- and y-axis.
Motion along the synchronous double proton
transfer coincides with the y-axis and passes
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Fig. 1. (a) Geometries of the stationary points located on the potential energy surface for the double proton transfer in the 2,2'-bis-
(3,4,5,6-tetrahydro-1,3-diazine) (OA6) system. Bond lengths are given in A. Dihedral angles in degrees between atoms 6, 1, 2 and 14
and between atoms 19, 15, 14 and 2 are also indicated for each structure; (b) The same for the 2,2'-bis~(4,5,6,7-tetrahydro-1,3-dia-

zepine) (OA7) system.

through the SP2 structure, whereas the stepwise
mechanism takes place through one of the two
diagonal directions that depart from R and go
through one of the two equivalent I geometries.
The transition state TS is also located in these
diagonals. All these paths are indicated by arrows
in Fig. 2.

In previous works we devised a simple analyti-
cal potential energy formula to model single pro-
ton-transfer reactions [18]. We showed that to
correctly model the surface it was necessary to
consider the barrier heights and lengths between
stationary points. A similar strategy has been used
here by fitting a function of the form
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Table 1
Energies (in kcal/mol) relatives to reactants of stationary points
for the OA6 and OA7 double proton transfer®

0A6 OA7
I 19.6 17.2
TS 24.9 (1305i) 19.8 (1167i)

Sp2 45.2 (18421, 14341) 29.9 (17181, 1263i1)

#Numbers in parentheses correspond to the imaginary fre-
quencies (cm™!) which characterise each stationary point.
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Fig. 2. Schematic localisation of the stationary points for the
double proton transfer in the OA6 system in the model two-
dimensional potential energy surface. Each stationary point is
labeled in accordance with Fig. 1.

Vix,y) = —(j—?)(xz +37) + (%)(xz s

A and B depend on the following parameters ob-
tained from the true multidimensional PES: the
rotational angle that measures the rotation of the
symmetric one-dimensional double well profile
around the energy coordinate, the path length
between I and SP2 and between R and SP2 and the
energies of the three stationary points. Fig. 3
presents the surface so obtained for OA6. It does
not qualitatively differ from the one corresponding
to the OA7 system. This way the reduced PES
includes the motion of the transferring protons as
well as that of the remaining atoms in the mole-
cule.

Fig. 3. Three-dimensional picture and contour plot for the
model potential energy surface corresponding to the double
proton transfer in the OA6 system. Each stationary point is
labeled in accordance with Fig. 1.

Next step is to obtain the nuclear (vibrational)
stationary states. This has been done through the
use of the generic discrete variable representation
(DVR) method of Colbert and Miller [19]. As
small energy differences are to be measured, the
energy levels have to be obtained with high accu-
racy. In particular we took 3213 and 3283 points
for OA6 and OA7 systems, respectively. These
were the sizes of the square matrices to deal with.
It was verified that a further increase in the num-
ber of points did not modify the results.

Table 2 presents the results for some selected
levels below the transition state energy for both
systems. The first 3 doublets have energies below
the intermediate whereas the last doublets energy
is above it. Results in Table 2 show that the main
difference between the two cases is the vibrational
spectrum density, being much greater for the OA7
than for the OA6.

As noted above, the energy barriers for both the
stepwise and the concerted path are lower for the
OAY7 system. This fact alone favors the tunneling
for the OA7 system. However tunneling is also
strongly dependent on the distance separating the
two wells. Table 3 gives the path lengths s along
both the stepwise and concerted paths for the two
oxalamidines. The distance has been measured by
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Table 2
Energies and tunneling splittings of some selected levels for the
OA6 and OA7 systems

Doublet E A4
(kcal/mol) (em™)

OA6
1 2.46 3.28 x 10710
11 10.98 6.73 x 10710
33 18.75 1.07 x 107°
60 24.3 2.54 x 1072

OA7
1 1.27 1.70 x 1010
18 7.13 3.17 x 10710
77 14.93 1.78 x 107°
139 19.7 2.05 x 107!

Table 3

Path lengths (in A uma!/ 2) for the stepwise and concerted OA6
and OA7 double proton transfer

OA6 OA7
S(R-TS) 2.07 26
S(TS-1T) 1.85 1.4
s(stepwise)? 7.84 8
s(R-SP2) 1.89 32
s(concerted)® 3.78 6.4

#The path length has been calculated as 2(s(R-TS) + s(TS-1)).
®The path length has been calculated as 2s(R-SP2).

considering the straight-line distances between
each consecutive pair of stationary points. It is
clear that reaction paths are considerably shorter
for the OAG6 system so that the two factors gov-
erning tunneling act in opposite ways. This ex-
plains why the lowest tunneling splitting (which
determines the rate constant at low temperature) is
quite similar for both systems. The combination of
higher barriers and shorter distances makes the
potential wells of OA6 considerably narrower so
that the energy levels are more separated and,
consequently, it is more difficult to populate the
excited vibrational levels in OA6 than in the
shallower double well of the OA7 system. That is,
for the range of energies accessible at a given
temperature, there are more energy levels available
in the OA7 system. For instance, in the OA7 sys-
tem there are 9 quasi-degenerated vibrational pairs
with energy below 5 kcal/mol with respect to the
potential minimum but in OA6 there are only two

such a pairs. As a consequence, it is easier to
promote the OA7 molecule to higher vibrational
levels where the tunneling splitting is higher.

The fact that the path lengths are longer in OA7
may come as a surprise as in OA6 a more extended
deformation of the hydrogen bond fragments
takes place along the double proton transfer (see
the geometrical parameters in Fig. 1). Table 3 re-
veals that it is in the concerted path where the OA6
path is clearly shorter than the OA7 one. In the
stepwise mechanism the difference is considerably
reduced. This comes from the shorter distance
between R and TS in OA6 being partially com-
pensated by the longer distance from TS to I. The
key point is that, in addition to the reorganization
of the H-bond fragment (which is larger in the
OAG6 system), there is a full reorganization of the
two rings. This additional reorganization mostly
implies motion of the carbon atoms and the hy-
drogens bound to them in a direction perpendic-
ular to the plane of the double proton transfer so
that it can be hardly seen in Fig. 1 (see the dihedral
angles in Fig. 1). This motion is not important
from an energetic point of view as it mostly implies
internal rotations but it accounts for the longer
path lengths for the OA7 system as the seven
member rings need a considerably larger degree of
reorganization to interconvert than the six mem-
ber ones. This larger flexibility of OA7 can be in-
voked as a factor favoring energetically the OA7
tautomerism so that both reorganizations (hydro-
gen bonds fragment and ring deformations) are
not independent in these bicyclic systems. Results
in Table 3 also indicate that along the stepwise
path the ring deformation mainly takes place in
the region between the reactant and the transition
state whereas between the transition state and the
intermediate the nuclear motion can mostly be
ascribed to reorganization of the hydrogen bonds.

In conclusion, our dynamical calculations have
shown that purely electronic calculations are not
enough to understand the different behavior of the
two systems when increasing temperature. Zero-
point tunneling splitting are small and very similar
in both systems. This comes from the fact that the
higher energy barrier in OAG6 is almost fully com-
pensated by the larger reorganization of the heavy
atom skeleton in the OA7 system. This leads to a
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clearly longer distance between potential wells in
OA7, a factor that slows the tunneling rate. The
combination of higher energy barriers and shorter
reaction paths leads to narrower potential wells in
the OA6 potential energy surface. This implies that
the vibrational levels are higher and more sepa-
rated so that more energy is necessary to appre-
ciably populate vibrational excited levels. This
accounts for the fact that tautomerism in OA7 is
activated at a lower temperature than OA6. Our
dynamical calculations have also demonstrated
that the concerted path has to be considered even
if it is not a true reaction path.
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Equilibrium isotope effects (EIE) on the binding ot ldnd D to transition metal complexes are calculated

for a modeled version of W(CQPCy)2(17%-H,), [Ru(H--H)(CsMes)(dppm)I™ and trans[Os(H-+-H)CI-
(dppe}]*. Being probably unsatisfactorily described by the harmonic approach (specially in the elongated
dihydrogen complexes), the thermodynamic contribution of theHrstretching related modes is evaluated

by means of nuclear motion quantum calculations. The Discrete Variable Representation (DVR) methodology
is applied to obtain the anharmonic vibrational spectrum on the bidimensional B3LYP potential surface.
From these results, the associated partition function is calculated and used to correct the harmonic EIE and
other thermodynamic magnitudes. In agreement with experimental results, the anharmonically corrected EIE
for the W complex turns out to be inverse (0.534 at 300 K). On the contrary, the corrected EIE for the Ru
and Os complexes is clearly normal (1.217 and 1.685 at 300 K, respectively), predicting an unusual behavior
for ML H, compounds. Comparison with the pure harmonic EIE’s leads to the conclusion that the harmonic
approach is inadequate to describe the properties of the elongated dihydrogen complexes.

I. Introduction solution they obtain an EIE value of 0.200.15 at 295 K. At
. : _ first glance these results seem counterintuitive because the large
Isotope effects provide useful information about the molecular yo-rease in the HH (D—D) stretching frequency due to the
properties (structure and reactivity) of the organometallic H (D) binding to the complex should produce a large normal
compounds, specially in fluxional (nonrigid) transition-metal EIE. However, Bender, Kubas, Hoff and co-workers show that

com_plelxes_ mvolvmgﬁ dlhy?]rogert]) or/and hyd”d? ligands. In | the contributions of the five new vibrational modes that appear
particular, Isotope effects have become a very important ool ¢ aqgition product (coming from the original five transla-

in the mechanistic study of the reversible oxidative addition of tional and rotational degrees of freedom in the free hydrogen

molecular hydrogen to transition-metal complexes, one of the molecules) overcome the normal contributions of theHH(D—

most interesting and characteristic reactions of transition-metal D) stretching mode and the translational and rotational degrees
chemistry. Several papers have recently appeared concerningie e o - dom. this way leading to an overall inverse EIE.

deuterium equilibrium isotope effects (EIE’s) for the addition ; ) ) ’
of H, and D» to various transition-metal complexes in solution At this point, an inverse deuterium EIE seems the rule rather

to form either metal dihydride/dideuteride complekesr than the exception for the addition of molecular hydrogen to
dihydrogen/dideuterium complex€IE’s are defined a&/ suitable metal complexes to form either dihydride or dihydrogen
Ko, where Ky is the equilibrium constant for the perprotio {ransition-metal complexes. However, we wondered what the
reaction andKp stands for the equilibrium constant of the EIE would be for the formation of the particular group of
isotopically substituted reaction. By definition, an EIE is normal transition-metal dihydrogen complexes known as elongated
if it is greater than unity, whereas it is inverse if it is less than dihydrogen complexesThese complexes fill the gap between
unity. Observed EIE’s for piversusD; addition turn out to be  classical polyhydrides (with HH distances at or above 1.6 A)
usually inversé, with typical values of./Kp around 0.50 or ~ @nd nonclassical dihydrogen complexes (which havetH
less, showing that metal complexes bingl2tter than they do  distances below 1.0 A). Some of788 have recently used a
H, over a large temperature range. combined electronic Density Functional Theory plus nuclear
Of special interest is the very recent stéidy the EIE on B dynamics study of two complexes to prove that the existence
binding to the dihydrogen complex W(C§IPCys)-(7%-Hz), one and several propert|e§ of. the elongated dihydrogen qomplexes
of the so-called Kubas complexes (the first isolable dihydrogen ¢an be explained taking into account the quantum vibrational
complexes). In that paper Bender, Kubas, Hoff and co-workers motion of the hydrogen nuclei on a very anharmonic potential
use the measured vibrational frequencies arising from the €nergy surface.
corresponding infrared spectra to obtain the molecular transla- The first purpose of this paper is to theoretically study the
tional, rotational and vibrational partition functions ratios as deuterium equilibrium isotope effect for the addition of molec-
described in the general treatment of equilibrium isotope effects ular hydrogen to a complex leading to an elongated dihydrogen
by Bigeleisen and Goeppert-Maydfrom their calculations they ~ transition-metal complex. To this aim we will calculate the
get a modest inverse EIE value of 0.78 at 300 K. In addition, equilibrium constants of the several equilibria of the type
by comparison of the equilibrium constants for displacement pictured in Scheme 1. Concretely, we will study the EIE
of N2 by H, or D in the complex W(CQ)PCys)2(N2) in THF corresponding to the formation of the elongated dihydrogen

10.1021/jp001327p CCC: $19.00 © 2000 American Chemical Society
Published on Web 08/01/2000
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SCHEME 1 the tungsten atom in the Kubas complex. For the 14 outer
D H electrons of the metal atom the basis set was that associated
with the pseudopotential of Hay and Wé&twith a standard
D, + |— ML, valence doublé: LANL2DZ contraction!4 The basis set for
the hydrogen atoms directly attached to the metal was a dguble-
D H supplemented with a polarization p sh€lt® A 6-31G basis

complexes [Ru(H+H)(CsMes)(dppm)]- andtrans[Os(Hr+H)- set® was used for the H atoms attachedat P or a Catom, as
Cl(dppe)]* (dppm= bis(diphenylphosphino)methane; dppe well as for _carbon_ and oxygen atoms. The phosphorus atoms
1,2-bis(diphenylphosphino)ethane). For the sake of comparison,Were described with the 6-31G(d) basis Set.

the case corresponding to the formation of the dihydrogen Most of the electronic results for the two elongated dihydro-
complex W(CO)(PCys)a(172-H,) will also be considered. Onthe ~ gen complexes have been taken from our previous papér$?
other hand, it has to be emphasized that, as mentioned abovetiowever, a few new electronic calculations have been carried
the interesting properties of the elongated dihydrogen complexesout for these two complexes using the same level of calculation
arise from the high anharmonicity of the-HH stretching and  described there. That is, an effective core operator replacing
that the related vibrational modes are very sensitive to it. As a the inner electrons (28 and 60 in the ruthenium and osmium
consequence, any theoretical calculation of the EIE for theseatoms, respectively), and the basis set associated with the
complexes should include vibrational anharmonicity in a reliable pseudopotential of Hay and Waglwith a standard valence
way. So, the second purpose of this paper is to devise andouble£ LANL2DZ contractiort* for the 16 outer electrons in
effective strategy which allows for the practical calculation of both ruthenium and osmium atoms.The basis set for the
the anharmonic vibrational levels that influence the EIE in hydrogen atoms directly attached to the metal was a dafible-
dihydrogen transition-metal complexes, so that the vibrational supplemented with a polarization p sh€élf® A 6-31G basis
partition functions (and the EIE) can be reliably computed at a set® was used for the H atoms attachedat P or a Catom, as

Hy + |—ML,

reasonable cost. well as for carbon atoms. The phosphorus atoms were described
_ _ with the 6-31G(d) basis sét.For the chlorine atom in the
. Calculational Details osmium complex a 6-31G(d) basis Sewvas used. Finally, a

As stated in the Introduction, this work is devoted to obtain 6-31G(p) basis set was used for the free hydrogen molecule
equilibrium isotope effects. To this aim we have used a statistical Whose geometry has been optimized.
thermodynamic formulatidhas described in the next section. The Z-matrices of the minimum energy structures corre-
The molecular partition functions were first computed within sponding to the Kubas complex and the elongated dihydrogen
the ideal gas, rigid rotor, and harmonic oscillator models. Then complexes have been obtained from the authors of the ref 19
a treatment to introduce anharmonicity was employed. A and from our previous results, respectivély. Geometry
pressure of 1 atm and a temperature of 300 K have beenoptimizations have been performed using the Schlegel gradient
assumed in all the calculations. Two different types of quantum optimization algorithm using redundant internal coordin&tés.

results are required. Electronic structure calculations provide  For each minimum energy structure analytical second deriva-
the geometry of the minimum energy structures and permits t0 tives of the energy with respect to the Cartesian coordinates
build up a sizable part of the potential energy surface (PES). have been computed to obtain the frequencies and eigenvectors
Nuclear motion calculations have been carried out to determinatezssociated with each vibrational normal mode within the
vibrational wave functions. Some technical details of both sets of hseudopotentials this is a new feature included in GAUSSIAN
of calculations follows. , , 989 For those systems GAUSSIAN %4and previous versions

A. Electronic Structure Calculations. For saving compu-  opnjy allow numerical second derivatives calculation by finite
tational effort some modeling has been made on the experi- yitfarences of analytically computed first derivatives, this way
mental complexes. The three cyclohexyl groups in the Kubas i olving very time-consuming calculations. The fact that all
complex were changed by three hydrogen atoms; tidec the frequencies turn out to be real confirms that the located
unit and the four phenyl groups in the dppm ligand were points are actual minima of the PES.
substituted by a cyclopentadienyl and four hydrogen atoms, The normal modes have been recalculated for each dideu-
respectively, in the ruthenium complex; finally, in the osmium . i .

dterated minimum energy structure in order to obtain the

complex the four phenyl groups in the dppe ligand were change . . . . .
by four hydrogen atoms. As a result the dihydrogen complexes frequencies and eigenvectors corresponding to the isotopically

that have actually been studied are W(Q®NHs)2(r2-H>), substituted species.
[Ru(H:+-H)(CsHs)(H,PCHPH,)] ™ and trans[Os(H-++H)CI- B. Nuclear Motion Calculations. As explained in the next
(HoPCHCHPH),] . section, introducing the anharmonicity effects in the elongated

All electronic structure calculations have been carried out with dihydrogen transition-metal complexes requires the solution of
the GAUSSIAN 98 series of prograrig.o solve the electronic  the nuclear Sclidinger equation (vibrational energy levels and
Schralinger equation, the density-functional theory (DFT)  wave functions) over a suitable PES built up from electronic
methodology has been used. This methodology meets thecalculations. Concretely, we have chosen a two-dimensional PES
requirements of high accuracy and reasonable cost, and has bee@ds a function of the interatomic distance between the two
employed with great success to study several organometallichydrogen (deuterium) atoms of the D) unit of the complex
systems, including dihydrogen and polyhydride compléxéx!t and the distance between the metal atom and the point halfway
The three-parameter hybrid functional of Becke and the Lee, between those two hydrogen (deuterium) atoms. These two
Yang and Parr's correlation functional, widely known as parameters behave as orthogonal coordinates, in such a way
Becke3LYP!2 have been used. that no coupled terms between them appear in the nuclear kinetic

To reduce the cost of the computations an effective core operator of the corresponding nuclear Sclimger equation, that
operator has been used to replace the 60 innermost electrons ofs,
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—h29? K% A. Harmonic EIE. First of all, within the harmonic ap-
252 | 2u 8y2 (1) proximation, we have used the molecular partition functions
y provided by GAUSSIAN 98 for each chemical species in
where x and y stand for the HH and M—H, distances, Scheme 1 to evaluate the harmonic EIE’s. In addition, we have
respectively. decomp_osed eac_h EIE as _the_product of three factors: the
When calculating the PES, global relaxation of the rest of translatlona_l-rotatlonal contr_lbut_lon (TRANSROT); the chtor
geometrical parameters has been allowed. Some additionacorresponding to the contribution of the ground vibrational
details concerning the PES are given in the next section. states, thatis, only including the zero-point energy levels (ZPE);
To solve the nuclear Schdinger equation a discrete variable and the factor that appears when the excited wbrauqnal energy
representation (DVR}22 has been used. This method has levels are taken into account (EXC). The corresponding results
already been applied with success in the field of organometallic &€ _sShown in Table 1. Our harmonic EIE for the complex
chemistry” Computationally, the DVR has great advantages over W(COX(PHs)a(17*-Hs) turns out to be inverse, although numeri-
the more traditional variational basis representation, in which Cally is somewhat lesser (that is to say, the isotope effect turns
the energy levels are obtained by diagonalization of the matrix Out t0 be more intense) than the value calculated by Bender,
representation of the projection of the Hamiltonian operator on Kubas, Hoff and co-workefsfrom the infrared spectra. The
a given basis set. In short, the DVR is a grid-point representation dlfferer_me Stems_fundamen_tally from the _ZPE factor, which is
instead of a basis set representation, and thus it facilitates theth€ main responsible of the inverse behavior. On the other hand,
calculation of the potential energy integrals. In this repre-  the complexes [Ru(H-H)(CsHs)(HaPCHPH,)]™ and trans:

T=

sentation, the potential energy matrix is diagonal, [Os(H+*H)CI(H.PCHCHPHy)-] * also give inverse harmonic
EIE’s, with figures that do not qualitatively differ from those

Vi = 0;:V(X) @) corresponding to the Kubas complex. Then, our theoretical

results seem to confirm the inverse deuterium EIE as a rule for

and the kinetic energy matrix is very simple, the formation of the transition-metal dihydrogen complexes, at

least within the harmonic approximation.

B. Anharmonic EIE. We wondered what the effect of the
(3) anharmonicity on the EIE’s would be, specially for the elongated
dihydrogen complexes. Theoretical harmonic vibrational fre-
guencies are, in general, overestimaidgcause of incomplete
|eading to a very sparse Hamiltonian matrix easier to incorporation of electron correlation, the use of finite basis sets
diagonalize than those coming from a basis set representationand, as a major source of error, the neglect of anharmonicity
effects. For this reason, scaling factors are often applied prior
+ Tjj:0yir + ;.05 V(X;, ;) (4) to the use of the frequencies in the EIE calculations. Scaling
factors for obtaining fundamental vibrational frequencies, low-
In this paper the generic DVR proposed by Colbert and Miler ~ energy vibrations, zero-point vibrational energies and thermal
has been used. Once the grid-point representation of the nucleacontributions to enthalpy and entropy from theoretical harmonic
Hamiltonian has been built up, the nuclear energy levels and frequencies have been determined by Scott and R&dbyn
wave functions are found through diagonalization of this matrix. fitting to experimental values. To our knowledge, no scaling
The nuclear wave functiondl; are obtained as a linear factors have been explicitly developed for calculating isotope
combination of associated basis functiafis effects through vibrational partition functions. Perhaps the
scaling factors recommended for the prediction of the zero-
No point vibrational energies or the thermochemical quantities, at
W= Zcij¢j (5) the Becke3LYP/6-31G(d) level, could be appropriate (0.9806,
= 0.9989, and 1.0015 for the zero-point vibrational energies, the
thermal contribution to enthalpy and the thermal contribution
to entropy, respectively’t Note that in this formalism we are
looking for anharmonically corrected frequencies that provide
good results when used in the harmonic expression of the

H;iw = T;0

i ii"Ojj’

whereN; is the total number of points in the grid. In a general
two-dimensional case whose two dimensions are labebaul
y, ¢; are functions of the form

_ _ vibrational partition function. As a matter of fact this is the
X
Sin(n( X"‘)) i (n(y y"‘)) approach adopted by Bender, Kubas, Hoff and co-wotkengn
o(xy) = AX Ay (6) introducing the measured vibrational frequencies from the
. (X = Xq) 7Y = V) infrared spectra (and so including anharmonicity) in the

_ _ harmonic treatment of Bigeleisen and Goeppert-Mayéow-
beingxm andym the &, y) coordinates of the grid point associated ever, we decided not to use any scaling factors in this paper for

with the basis functio;, andAx and Ay the spacings in the two reasons. First of all, the above indicated scaling factors are
and y directions of the grid. The wave function has to be very close to one and they do not appreciably modify the
normalized prior to any calculation involving it. calculated EIE’s indicated in Table 1. Second, those scaling
) ) factors have not been fitted to reproduce properties of transition

Ill. Results and Discussion metal complexes and even less to account for the high degree

According to the well-known formulas of the statistical Of anharmonicity found in the elongated dihydrogen complexes.
thermodynamic§,we will calculate the deuterium equilibrium Instead of calculating anharmonically corrected frequencies,
isotope effect as the equilibrium constarKp(Kp) of the in the present paper we will try to determine directly the
equilibrium displayed in Scheme 1. For the three cases studiedanharmonic vibrational energy levels. Assuming an independent
in this work ML, stands for W(CQ)(PH)z, [RU(GsHs)(H2PCH,- normal-mode framework (i.e., no modenode coupling), the

PH)]* andtrans[OsCI(H,PCH,CH,PH,),] *. vibrational partition function of the molecule is separable as a
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TABLE 1: Harmonic EIE’s and Contributions to Them

W(CO)(PHs)2(n*Hz) [Ru(H-+H)(CsHs)(HPCHPH,)] trans{Os(H:+-H)CI(H.PCHCHPH,),] *
TRANSROT 5.519 (5.77) 5.470 5.553
ZPE 0.131 (0.20) 0.135 0.189
EXC 0.675 (0.67) 0.729 0.665
EIE 0.486 (0.78) 0.538 0.696

Numbers in parentheses correspond to the values calculated by Bender, Kubas, Hoff and co-workers from the infrared spectra.

product of the contributions corresponding to each individual H H OH OH
; ; >~ SN S(MHy)
normal mode. The potential energy along a single mode could ¢:> I/ML,, W(HH) (Aq) |:> ‘ /MLn e (B
be expanded in a series of powers of the associated normal H H OH ©H i
coordinate with coefficients given by the second, third, fourth - 4
and higher numerical directional d_envz_atlves of the_potgnnal | | SSML, v A Y HS M) @)
energy along the normal-mode direction. If the vibrational H i J:’\ /M‘-n astrer
energy level&™ of the one-dimensional potential energy along H H
the mode m can be determined in some way, the vibrational T
partition function for mode mq) can be calculated as H N OH OH
T \-:>T/ML.1 M) (@) = [ ML M) ()
— —E"lkgT H H frane ®OH ®H
Un=e '° @

Figure 1. Symmetry coordinates associated with the dihydrogen ligand
along with their irreducible representation inGa, symmetry point

wherekg is the Boltzmann’s constant. To avoid the calculation 9group. For the three cases studied in this workMands for W(CQ}

of high numerical derivatives (with the associated lack of (PH)z [RU(GHs)(HPCHPH,)]" andtrans[OsCI(HPCHCHPH,)] "
accuracy) it is better to build up a one-dimensional potential . . .
energy surface as a function of each normal coordinate. ThenSuitable displacement coordinates adapted to symmetry, which
we can solve the nuclear S¢klinger equation by means of are p|ctur_ed in F_|gure_ 1. These symmetry coord|r_1ates correspond
the DVR method to find the vibrational energy levels, which (O the unique vibrational mode (the-HH stretching) and the
incorporate the anharmonicity associated with each normal modelost translational and rotational degrees of freedom for free

in a natural way. hydrogen. Assuming that the hydrogen nuclei move under the
Our three dihydrogen transition-metal complexes have be- fiéld of a heavy point center (Mj) formed by the rest of the
tween 17 and 28 nuclei, what implies dealing with-4%8 complex, their symmetry point group@,. Figure 1 also shows

vibrational normal modes. Application of the above outlined the irreducible representation to which each symmetry coordi-

procedure to each normal mode is a task out of reach. Instead,ate belongs. There are two totally symmetrical coordinateks (A

to account for the anharmonicity in a practical way, we propose WO coordinates with symmetry species, Bne B symmetry

an attainable strategy that works in the following fashion: coordinate and one Asymmetry coordinate. Each normal
(@) The most anharmonic vibrational normal modes are coordinate has to be a linear combination of the symmetry

previously chosen (they will be called anharmonic modes from coor_dlnates that beI_ong to the_ same irreducible represe_ntatlon

here on). of this normal coordinate. For instance, the normal coordinates

(b) For each anharmonic normal mode a one-dimensional PESO the o A modes are linear combination of the twa A
as a function of the corresponding normal coordinate is built SYmmetry coordinates (the+H stretching and the symmetric
up. M—H, stretching).

(c) The DVR method is used to solve the nuclear Sdimger The major anharmonicity effect is probably related to the
equation over the PES associated with each anharmonic normaH—H stretching (specially for the elongated dihydrogen com-
mode, therefore obtaining the corresponding anharmonic vi- plexes), which participates in the two, Aormal modes. Then

brational energy levels. both A normal modes have to be considered as anharmonic
(d) The anharmonic vibrational partition function for each modes in the sense defined above. In addition, it is expected
anharmonic normal mode is computed through eq 7. that anharmonicity couples significantly the two modes of the

(e) The anharmonic vibrational partition function of the Same symmetry. Therefore, we will assume the independent
molecule is calculated as a product of the anharmonic vibrational Normal-mode framework neglecting all the medeode cou-
partition functions corresponding to the anharmonic normal plings but the coupling between the twa fodes, that will
modes and the harmonic vibrational partition functions corre- not be separated in our treatment. This assumption slightly
sponding to the remaining normal modes (the ones that can bemodifies the above introduced-a working scheme, in the sense
considered harmonic modes). As a matter of fact, this is done that both anharmonic normal modes are studied together over
by substituting the original harmonic contributions of the @ two-dimensional PES as a function of the two symmetry
anharmonic modes in the totally harmonic vibrational partition coordinates that define the corresponding normal coordinates.
function of the molecule by their corresponding anharmonic This leads to a two-dimensional anharmonic vibrational partition
vibrational partition functions. function that will substitute the two original one-dimensional

What are the main sources of anharmonicity in the dihydrogen harmonic contributions of the anharmonic modes in the har-
transition-metal complexes that can influence the EIE’s? Indeed monic vibrational partition function of the molecule, in this way
they will be associated with the dihydrogen ligand. Owing to leading to the anharmonic vibrational partition function of the
the large mass difference between the light hydrogen (or molecule.
deuterium) nuclei and the heavy rest of the complex, the normal A series of electronic structure calculations have been
modes involving the hydrogen (or deuterium) nuclei consist performed to construct the two-dimensional PES for the complex
fundamentally of their motion. There are 6 such vibrational W(CO)(PHs)2(17%-H>). A collection of 120 points, each corre-
modes’ The associated normal coordinates can be defined from sponding to a different set of +H and W-H, distances, has
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W(CO)4(PH,),(17H,) trans{Os(H---H)CI(H,PCH,CH,PH,),|*

2.0 1
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Figure 2. Contour plot of the two-dimensional potential energy surface Figure 3. Contour plot of the two-dimensional potential energy surface
for the complex W(CQ)PHs)(572-Hy). Distances are givenin A. Energy  for the complexrans[Os(H---H)CI(H.PCHCH:PH;,)2] *. Distances are
contours appear every 5 kcal/mol. The arrows indicate the position of given in A. Energy contours appear every 5 kcal/mol. The arrows
the minimum energy structurg(—H) = 0.832 A andd(M—H,) = indicate the position of the minimum energy structw@—H) = 1.071
1.872 A). A andd(M—H,) = 1.567 A).

been calculated. The ranges covered have been from 0.6 to 2.Ga way that none of the two //ormal modes can be identified
A for the H—H distance, and from 1.4 to 2.5 A for the distance at all with one of the A symmetry coordinates depicted in
between the tungsten atom and the midpoint halfway betweenFigure 1. Along the normal mode that is roughly parallel to the
the two hydrogen atoms. The resulting points have been fitted energetically smooth oblique valley, the stretching of thetH

into a two-dimensional cubic splines functional fofPryhich bond leads to shortening of the-MH, distance, and vice versa.

is a smooth and continuous function. Figure 2 depicts the two- On the other hand, the other normal mode is orthogonal to the

dimensional PES as a contour plot. first one and consists of the simultaneous stretching (or
Analogous two-dimensional PE®ere built up for the two compression) of both the HH bond and the M-H; distance.

elongated dihydrogen complexes in two previous paffésor Apart from the obliqgueness of the two; Aormal modes that

the complex [Ru(rt-H)(CsHs)(H.PCH:PH,)]* the range for the  imposes a global treatment, this valley is highly anharmonic,

H—H distance covered from 0.59 to 2.29 A, while the-Rdp this being a crucial factor in determining the interesting

distance covered from 1.00 to 2.20 A. As for the compifers- properties of the elongated dihydrogen transition metal-

[Os(H:+-H)CI(H,PCH,CH,PH,),] *, the intervals were from 0.6 ~ complexes.

to 2.2 A and from 1.0 to 2.2 A for the HH and the OsH, Once the two-dimensional cubic splines that define the' PES

distances, respectively. From those two works we have borrowedhave been obtained, the corresponding nuclear “Salger
the corresponding fitted two-dimensional cubic splines. The equations can be solved using the DVR method. First of all, a
PES for the complexes [Ru(H-H)(CsHs)(H.PCHPH,)]* and certain reduced mass has to be assigned to each degree of

trans[Os(H:+*H)CI(H.PCHCH2PH,)5] ™ turn out to be quali-  freedom in the Hamiltonian. As in our previous worRe®;18
tatively similar and for the sake of conciseness only the secondthe reduced masses for the motion along the symmetry
one has been pictured in Figure 3. coordinates have been calculated (for the perprotio complexes)

Comparison between Figures 2 and 3 discloses importantas
differences. The first one concerns to the position of the

minimum energy structure. For the Kubas complex it is found 1 _ 1 4 1

atd(H—H) = 0.832 A andd(W—H,) = 1.872 A, whereas the Har-r) My Mye)

corresponding values of the minimum energy structure for the

complextrans[Os(H-++H)CI(H.PCH.CH,PH,),]* are 1.071 and 1 1., 1 ®)
1.567 A, respectively. However, the most important point is Ham-Hy)  Mh, M

the shape of the PES in the region next to the minima. Around

the minimum energy structure of the Kubas complex, a normal  Note that the reduced masses of the dideuterated complexes
dihydrogen complex, the potential energy valley is quite parallel can be calculated in an analogous way. Then, the matrix
to the W—H, axis with a trend to curve along the-HH direction representation of the nuclear Hamiltonian over a rectangular
as the W-H,, distance shortens (Figure 2). As a consequence, grid of equally spaced points has been constructed. Different
the two normal modes of Asymmetry, although mixed to some  sizes of each grid have been tested until convergence of the
extent (as already pointed out by Bender, Kubas, Hoff and co- energy levels has been achieved. The characteristics of the final
workerd), can be still identified, respectively, with the twq A grids chosen for the different systems have been as follows:
symmetry coordinates. That is to say, one normal mode is 35 x 27 = 945 for both the perprotio and the dideuterated
basically the H-H stretching and the other one is essentially complexes W(CQ)PHs) (17%-Hy); 29 x 21 = 609 for both the

the symmetric M-H stretching. This is, probably, a common perprotio and the dideuterated complexes [ReH)(CsHs)-
feature of the normal dihydrogen transition-metal complexes. (H.PCHPH,)]*"; and 33x 25 = 825 and 37x 27 = 999 for

The scenario for thérans[Os(H-+-H)CI(H,PCH,CH,PHy),]+ the perprotio and the dideuterated complexass[Os(H:--H)-
clearly differs (Figure 3). In this case the potential energy valley CI(H,PCH,CH,PH,),]*, respectively (the format used is: num-
surrounding the minimum energy structure is oblique, in such ber of points along the HH coordinatex number of points
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TABLE 2: Anharmonic EIE’s (see text) and Contributions to Them

W(CO)s(PHs)o(17*H) [Ru(H-+-H)(CsHs)(HPCHPH,)] trans{Os(H:+-H)CI(H:PCHCHPH,);] *
TRANSROT 5.519 5.470 5.553
ZPE 0.143 0.323 0.505
EXC 0.676 0.689 0.601
EIE 0.534 1.217 1.685

TABLE 3: Thermodynamic Functions (300 K) Corresponding to the Equilibria of the Type Pictured in Scheme #

W(CO)(PHs)2(17?-Hy) [Ru(H:+-H)(CsHs)(H.PCHPH) trans-[Os(H:+-H)CI(H,PCH.CH,PH,),] ™

har anhar har anhar har anhar
AHP 0.906 0.871 0.912 0.350 0.688 0.041
AS 1.587 1.663 1.806 1.555 1.584 1.157
AGP 0.431 0.373 0.370 —-0.117 0.216 —0.314

aHar and Anhar stand for the Harmonic and Anharmonic aproximations, respectiveligcalmol=2. ¢ In caktmol-%-K~1

along the M-H, coordinate= total number of points). Diago-  normal modes in the dihydrogen complex leads to an inverse
nalization of the corresponding 6 matrices provides the 6 sets ZPE factor (a value smaller than unity), this effect being smaller
of vibrational wave functions (eigenvectors) and anharmonic as the HH/DD gap is more reduced in the dihydrogen complex.
energy levels (eigenvalues). These energy levels permit theAs a consequence of all this, anharmonicity increases the
calculation of the anharmonic vibrational partition function of numerical values of the ZPE factors associated with the
each molecule according to the procedure outlined above anddihydrogen ligand (the normal and inverse factors become more
then the anharmonic EIE’s are obtained. normal and less inverse, respectively), so tending to produce a

Table 2 exhibits the anharmonic EIE’s and their decomposi- nhormal EIE. This effect is so important in the highly anharmonic
tion in factors (evidently the TRANSROT contribution is the €longated dihydrogen transition-metal complexes that the EIE
same as in Table 1). Comparison of Tables 1 and 2 shows thatbecomes normal.
anharmonicity does not significantly alter the EXC factor. The  Finally, we have to remark that the anharmonic corrections
important changes only concern the ZPE factor. For the complex calculated in this paper are based on a two-dimensional
W(CO)(PHs)2(17%-H2) anharmonicity augments just slightly the — approach. Indeed, this reduction of dimensionality is a limitation.
ZPE contribution and, therefore, the EIE. The anharmonic EIE, However, the results obtained at the 2D approximation sounds
still clearly inverse, is somewhat closer to the experimental reasonable. As a matter of fact, the major source of anhar-
values than the harmonic EIE. Taking into account the range monicity is related with the HH stretching, which participates
of uncertainty of the experimental valdg®.78 from infrared in the two A normal modes. Given the size of the systems,
spectra or 0.70+ 0.15 from displacement of ) and that inclusion of more dimensions (Biormal modes) would be out
anharmonicity has been only partially incorporated, the agree- of reach. On the other hand, incorporation of coupling would
ment is rather good. Anyway, we have shown that anharmonicity be desireable but it is not probably necessary in order to obtain
tends to favor the addition of HThis effect is magnified in a reasonable prediction that can be useful for experimentalists.
the two highly anharmonic elongated dihydrogen complexes. C. Thermodynamic Functions. We have calculated the
The anharmonic EIE’s for the complex [Ru{+H)(CsHs)- thermodynamic functions at 300 K corresponding to the
(H.PCH,PH,)]* and, specially, for the compleirans[Os- equilibria of the type pictured in Scheme 1. The harmonic values
(H-+-H)CI(H,PCH,CH,PH,);]* (even more anharmonic than the are obtained from the harmonic molecular partition functions
complex of ruthenium) become clearly normal. Then, we predict according to the suitable statistical thermodynamic forméilas.
theoretically that the deuterium equilibrium isotope effect for We have determined the anharmonic values by substituting in
the addition of molecular hydrogen to a transition-metal complex the corresponding expressions the contributions of the two

leading to the formation of [Ru(+H)(CsHs)(H.PCHPH,)| T original one-dimensional harmonic vibrational partition functions
or trans[Os(H-+-H)CI(H,PCH,CH,PH,),]* is clearly normal. of the two anharmonic modes by the contribution of the two-
That is to say, H binds better than Pto both [Ru(GHs)- dimensional anharmonic vibrational partition function. Results

(H2PCHPH,)]T and [OsCI(HPCH,CH,PH,),] ™, and this con- are shown in Table 3. Note th#&H also gives the reaction
clusion is probably general for the formation of any elongated enthalpy difference AAH) between the addition of Hto a
dihydrogen transition metal complex. transition-metal complex leading to the formation of a dihy-
Why anharmonicity tends to favor the addition ofHsotopic ~ drogen complex and the corresponding addition flhe same
substitution by deuterium lowers the vibrational energy levels is true for the entropy and the Gibbs energy.
corresponding to normal modes that consist fundamentally of For the complex W(CQJPHs)2(17%-H,) it is clear that, as
motion of hydrogen nuclei, that is, the 6 normal modes already found by Bender, Kubas, Hoff and co-workeid;
associated with the dihydrogen ligand (Figure 1). The key is binding is enthalpically favored over jHbinding, but it is
that the larger the anharmonicity of the normal modes sensitive disfavored entropically. Anharmonic values are somewhat closer
to the isotopic substitution in the dihydrogen complex, the to the experimental thermodynamic functiotdH{ = 0.64 kcal
smaller the gap between the equivalent HH and DD vibrational mol~* and AS = 1.7 cal mot! K1), the agreement being
energy levels. Along the addition, the change in the HH/DD excellent. Our corresponding EIE’s (see above) have been
zero-point energy gap for the normal mode corresponding apparently not so good in comparison with the experimental
originally to the H-H (D—D) stretching in the free hydrogen results, but it has to be recalled that EIE’'s are measured as
molecule gives a normal ZPE factor (a value greater than unity). equilibrium constants, that is, as exponential function&Gf
This effect is larger as the HH/DD gap is smaller in the and, indeed, they are much more sensitive to small errors
dihydrogen complex. On the contrary, conversion of the 5 (theoretical or experimental). On the other hand, anharmonicity
translational and rotational modes in free hydrogen to vibrational lowers the endothermicity of equilibria indicated in Scheme 1
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Figure 5. Contour plots of the vibrational wave functions associated
with the ground vibrational state (G) and the first (1), second (2) and
third (3) excited states for the complérans[Os(H:+-H)CI(H.PCH-
CH,PH,),]*. Distances are given in AH) and () refer to the sign of

the vibrational wave function in order to indicate where the nodes are.

functions along the HH direction suggests that the symmetric
W—H; stretching normal mode mixes more and more with the
H—H stretching normal mode as the order of the excitation

1.2
d(H-H)

Figure 4. Contour plots of the vibrational wave functions associated

with the ground vibrational state (G) and the first (1), second (2), third

(3) and fourth (4) excited states for the complex W(&{BMs)2(1?-
H,). Distances are given in A+) and ) refer to the sign of the
vibrational wave function in order to indicate where the nodes are.

grows. On the other hand, the fourth excited state displays only
one (although somewhat sinuous) nodal line and corresponds
to the first excitation of the HH stretching normal mode (the

steepest direction around the minimum on the PES). In this case

an important mixing with the symmetric YWH, stretching
ormal mode is present as indicated by the expansion of the

because it also reduces the gap among the equivalent HH an ave function along the WH, direction.

DD vibrational energy levels in the dihydrogen complexes. This

: o L : The scenario is different for the compl&éans[Os(H:--H)-
effect is again highly amplified in the two elongated dihydrogen . .
complexes, for which that endothermicity becomes quite small C/(H2PCHCHPHy)Z ™. In this case, the ground and the excited

(only when anharmonicity is introduced). In these cases the W&V€ functions spread al_ong the energetically smooth, long
entropic term £ TAS) dominates at this temperature and the °Plique valley (compare Figures 3 and 5). The first and second
EIE becomes normal. It becomes manifest that anharmonicity €XCited states possess one and two nodal lines, respectively,

is cleary required to describe correctly the thermodynamic of "oughly perpendicular to the major axis of the almost elliptic
the process for the elongated dihydrogen transition-metal valley. These states are vibrationally excited states corresponding
complexes. to progressive excitations of the normal mode roughly parallel

D. Anharmonic Vibrational Wave Functions. A final point to the valley. On the other hand, the third excited state has only
concerns the anharmonic vibrational wave functions obtained ©n€ nodal line approximately along the major axis of the valley
as eigenvectors of the DVR matrices. For the sake of brevity, @1d corresponds to the first excitation of the seconsérmal
we will only comment the vibrational wave functions corre- mode (the one that vibrates along the steepest direction). It has
sponding to the perprotio complexes W(G@EHs)2(7%-Hz) and to be underlined that_, for the elongated dihydrogen complexes,
trans[Os(H++-H)CI(H.PCHCH:PH,),] *. Figures 4 and 5 present the degree of coupling between both Aormal modes does
the contour plots of the wave functions associated with the Not seem to change as the order of the excitation goes up, at
ground vibrational state and the first excited states for both the least for the lower excited states analyzed here.

Kubas complex and the elongated dihydrogen complex, respec-

tively. The ground wave function spreads on the low-energy V. Conclusions

basin around the minimum energy structure on the PES.

Conversely, excited wave functions tend to progressively expand [N this paper we have theoretically calculated the deuterium
toward higher energy regions. As a matter of fact the wave equilibrium isotope effect for the binding ofénd Dy to three
functions reflect the shape of the corresponding PES. So, thedihydrogen transition-metal complexes: W(GE)Cys)2(17%-Ho),
ground wave function for the Kubas complex surrounds rather [Ru(H-*-H)(CsMes)(dppm)]" andtrans-[Os(H:+-H)Cl(dppe}] .
symmetrically the minimum (compare Figures 2 and 4), showing Concretely, we have taken the complexes W (§Rbk)2(17*

a slight deviation along the HH direction as the WH; Hy), [Ru(H-+H)(CsHs)(H.PCH.PH,)] ™ andtrans[Os(H:--H)-
distance shortens. The wave functions associated with the first,CI(Ho.PCH.CH:PH,),] ™, respectively, as realistic models of
second and third excited states present one, two and three noddhem. The last two complexes are known to be elongated
lines, respectively. These states are all vibrationally excited statesdihydrogen complexes for which the high anharmonicity related
corresponding to progressive excitations of the normal mode to the H-H stretching is a crucial feature that determines many
that is basically the WH, stretching which is the direction  of their special properties. In this paper, we propose an attainable
with smoothest slope around the minimum on the PES. strategy to account for the effects of anharmonicity in a practical
However, the progressive expansion of the excited wave and reliable way. In short, the procedure consists of using a
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Experimental determination of the equilibrium isotope effect for the dihydride/dihydrogen tautomerisp (EIE

in the Kubas complex W(CQ(PCy).(r7?-H,) has not yet been achieved because of the lack of vibrational
frequencies for the dihydride form. Even so, Bender, Kubas, Hoff, and co-waélkare estimated a normal

EIEr, which predicts that deuterium favors the classical site at 300 K. In this work; t6iEthe Kubas
complex tautomerism is theoretically studied by using two levels of calculation. First, the standard harmonic
oscilator approach is used to obtain the harmonic partition functions and the corresponding harmgnic EIE
which turns out to be inverse (0.485 at 300 K). Next, anharmonicity is included in some normal modes in
order to obtain an improved EfEFollowing a new scheme developed by our group in a previous work,
DVR nuclear calculations over bidimensional potential energy surfaces are employed to obtain the associated
anharmonic partition functions and the corresponding anharmonig, Biiich turns out to be also inverse
(0.534 at 300 K). So, theoretical corrected Efedicts that deuterium favors the nonclassical site at 300 K.

Introduction SCHEME 1

Due to its important role in catalytic hydrogenation processes, Oxidative Addition
the coordination of Hto a transition metal has been one of the

most studied phenomena in the recent organometallic cherhistry. H Tautomerism H\
Depending on the nature of this interaction, two basic types of ~ H; + ML, ML, —/—/—— /MLn
compounds have been found: those where molecular H H H
coordinates as a two-electron ligand (nonclassical dihydrogen DIHYDROGEN DIHYDRIDE
complexes) and those where the-H bond has been broken (Non Classical) (Classical)

to give two one-electron ligands (classical dihydride complexes).

Dihydrogen complexes are often thought as intermediates ofn the Kubas complex, they also try to determine the EIE for
an oxidative addition of the Hito the metal , but today itis  eq 1 (EIR). It can be defined as the quotient between the EIE
accepted that in certain cases a tautomeric equilibrium can existigy the H binding in the dihydrogen form and the EIE for the
between the dihydride and the dihydrogen forms (see SchemeH2 binding in the dihydride form. Determining a generic EIE

1). o . , . is quite ambitious if we remind that, up to now, no regular
Equilibrium isotope effects (EIE's) fpr tha’? tautomerism (€q  pepayior has been found among all the studied complexes. To

1) have been reportédyut the conclusions d|verge to such an - gvercome this impasse, BKH employ a particular strategy which
extent that, at the moment, no general rule exists concerning oo cicte of assuming that the EIE for the addition eftbithe
whether deuterium favors the classical versus the nonclassical\/‘,ﬂska,S complex Ir(CO)CI(Pj), (0.46 at 300 K) is typical for
site. Determination of more EIE’s would help to understand the (HpML , case and that the EIEIfor Kubas complex W(GO)
this reaction, but experimental results in this field are not easy ! : .

’ (PCyw)2(17%-H,) (0.78 at 300 K) is typical for the (hIML , case.

to obtain and, as a consequence, only relatively limited X : .
thermodynamic data are available. This is the case for one ofThIS allow them to estlmat(_e the EIE in eq 1, EIE EIE(2)/
EIE(4), and hence to predict in general a normal tke.,

the Kubas complexes (the first isolated dihydrogen complexes), hat d um £ he classical si inallv. th

whose EIE for the tautomerism has not been strictly resolved hat deuterium avors_t € classical site at 300 K. Fmg y, they

because of the lack of experimental data. try to test the so predicted EfEor the W(CO}(PCys)2(i7*-Hz)
tautomeric equilibrium, but such a validation cannot be achieved

D H EIE T D H because no vibrational frequencies for the dihydride form are
ML, + ML, == ML, |—wmL, @ available.
D H D H
b EIEQ) H s
Bender, Kubas, Hoff, and co-workers (BKH) have recently u, + [—w(coy®cy), === D, + |—W(cO)®Cy3), @
studied the EIE on H binding in the dihydrogen complex D H

W(CO)(PCys)2(17%-Hy). In that work the measured vibrational Dy EIE(3) LN

. N L —_— ©)
frequencies arising from the corresponding infrared spectra are™ * / WCORPCy P2+ SWOEOKPCYS):
used to obtain partition function ratios as described in the general o u
treatment of equilibrium isotope effects by Bigeleisen and y, , Sicojcierhy), EE@ o p, & H>Ir(CO)C1(PPh3)2 @
Goeppert-Mayef.Once they have the EIE for the,Hbinding v’

10.1021/jp0036745 CCC: $20.00 © 2001 American Chemical Society
Published on Web 04/19/2001
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Starting from this point, our aim is to contribute to the 988 In this thermochemical calculation, molecular partition
understanding of the dihydride/dihydrogen tautomerism in the functions have also been obtained at 1 atm and 300 K within
Kubas complex W(CQJPCy)»(17%-H>) by theoretically obtain- the ideal gas, rigid rotor, and harmonic oscillator models.
ing the EIE, strictly defined as EIE(2)/EIE(3). In a first step For the dihydrogen form of the studied complex, the
we will calculate it within the harmonic approximation. After  minimum energy structure and the harmonic molecular partition
that, we will try to improve the results by being more rigorous.  functions for the two isotopic versions (H/D) have been taken
In a previous workof our group we concluded that anharmo-  from a previous paper of our grodg=or the dihydride form,
nicity has to be taken into account in order to reproduce and the geometry for the minimum energy structure has been taken
theoretically predict the experimental results concerning many from the authors of ref 17, but all the other magnitudes have
properties of dihydrogen and, probably, polyhydride complexes been calculated in this work. That dihydride structure accélnts
especially in what refers to isotope effects. Then, in a second for both the spectroscopic and the thermodynamic experimental
step, we will include anharmonicity to correct some normal data.
modes in order to obtain a more accurate£[Ehis anharmo- B. Nuclear Motion Calculations. In this second step, nuclear
nicity will be introduced by a new scheme derived from quantum mqtion calculations have been carried out to determine vibra-
nuclear calculations which has been already successfully appliedijqn g (anharmonic) energy levels and their associated (anhar-

to several dihydrogen complexes. monic) molecular partition functions.
. . Anharmonic vibrational energy levels arise from the solution
Calculational Details (eigenvalues) of the nuclear SéHinger equation over a suitable

PES built up from electronic calculations. Hence, previously

. ; ; : to the nuclear motion study, an adequate PES is required for
the results of this study. At the same time, we will establish y q q

X = . each minimum energy structure. For the dihydrogen complex,
the working conditions, that is, the models that have_ been a two-dimensional PES as a function of the interatomic distance

%etween the two hydrogen (deuterium) atoms of the(Bb)
unit of the complex and the distance between the metal atom
and the point halfway between those two hydrogen (deuterium)

In this section we will present the scheme followed to obtain

tion that has been borrowed from previous works. The whole
process can be divided in two steps: electronic structure

Ealculatlor:js;tn}rc:jeﬁr motion calculations. Both sets of computa- atoms has been taken from our previous widfer the dihydride
Ions are detalied here. _ ) complex a two-dimensional PES as a function of the interatomic
A. Electronic Structure Calculations. In a first step,  distance between the metal atom and one of the H(D) atoms
electronic structure calculations have been done to find the gnd the interatomic distance between the metal atom and the
geometry of the minimum energy structures, to compute its other H(D) atom has been constructed. It has to be noted that
molecular partition functions from the harmonic frequencies, the two PES coordinates are different from those of the
and to build up a sizable part of the potential energy surfaces gihydrogen form. This is because the molecular symmetry
(PES). To save computational effort, the complex under study phetween the two complexes is different (the criterion we have
has been modeled by turning the three cyclohexyl groups into ysed to choose these new coordinates is explained in the next

three hydrogen atoms. section). When the PES is calculated, global relaxation of the
All electronic structure calculations have been carried out with rest of geometrical parameters has been allowed.

the GAUSSIAN 98 series of prograrfigo solve the electronic These two interatomic distances behave as orthogonal coor-

Schralinger equation, the density-functional theOrfDFT) dinates, in such a way that no coupled terms between them

methodology has been used. This methodology meets theagppear in the nuclear kinetic operator of the corresponding
requirements of high accuracy and reasonable cost and has beefuclear Schidinger equation; that is,

employed with great success in the study of several organo-

metallic systems, including dihydrogen and polyhydride com- L K22 K2 PR
plexes?® The three-parameter hybrid functional of Becke and T= —t5—— (5)
the Lee, Yang, and Parr correlation functional, widely known 29X 2ty gy

as Becke3LYP? has been used. Geometry optimizations have )
been performed using the Schlegel gradient optimization wherex andy stand respectively for the +H and W-H,
algorithm using redundant internal coordinate® distances in the dihydrogen complex and-Wx and W-Hg

To reduce the cost of the computations an effective core distances in the dihydride complex.
operator has been used to replace the 60 innermost electrons of T0 solve the nuclear Schdmger equation the generic discrete
the tungsten atom. For the 14 outer electrons of the metal atomvariable representation (DVR) proposed by Colbert and Miller
the basis set was that associated with the pseudopotential ofias been used. This method has already been applied with
Hay and Wadg with a standard valence doubfet ANL2DZ success in the field of organometallic chemistty Computa-
contractiont! The basis set for the hydrogen atoms direct|y tionally, the DVR has great advantages over the more traditional
attached to the metal was a doulilesupplemented with a  Vvariational basis representation, in which the energy levels are
polarization p shelt415 A 6-31G basis sét was used for the ~ obtained by diagonalization of the matrix representation of the
H atoms attachedta P or a Catom, as well as for carbon and  Projection of the Hamiltonian operator on a given basis set. In

oxygen atoms. The phosphorus atoms were described with theShort, the DVR is a grid-point representation instead of a basis
6-31G(d) basis séf set representation, and thus, it facilitates the calculation of the

potential energy integralg;. In this representation, the potential

For each minimum energy structure analytical second deriva- A
energy matrix is diagonal,

tives of the energy with respect to the Cartesian coordinates
have been computed to obtain the frequencies and eigenvectors

associated with each vibrational normal mode within the Vi = 0;:V(%) (6)
harmonic approximation. For complexes described by means

of pseudopotentials this is a new feature included in GAUSSIAN and the kinetic energy matrix is very simple,
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73 i=i
2
(i—iy

leading to a very sparse Hamiltonian matrix easier to diagonalize
than those coming from a basis set representation,

=T.5 S V(% ¥) (8)

ii i"™jj
Once the grid-point representation of the nuclear Hamiltonian

_ hZ(_l)i*i'

2u,AX° @

Ly
n

i=i

Hijis i+ T + 0

has been built up and diagonalized, the nuclear energy levels

Torres et al.

Dihydrogen (Co,) Dihydride (Cg)

O 0
C C
HSP//«,,, ‘ \\\\\CO H, ‘ \\\\CO
He" 3
| SPH, e | pH
C
5 5
H H
ML, o Hp—ML,  (A)
H H

obtained have been used to calculate the associated two-

dimensional anharmonic vibrational partition function as
_ —Ej/kgT
Qanh_ ze e (9)
]

wherekg is Boltzmann’s constant and the summatory extends
over all the significantly populated vibrational levels of the 2-D
PES.

The total vibrational partition function is then calculated by

assuming an independent normal mode framework for the rest

of the degrees of freedom (i.e. no medaode coupling). In
this case the vibrational partition function is the produc®af
with the individual partition functions corresponding to each
additional normal mode. To obtain these individual partition
functions, one-dimensional PES should be built up as a function
of each normal mode. Our transition-metal complex has 17
nuclei, which implies dealing with 45 vibrtional modes. Ap-
plication of this procedure to each normal mode is a task out
of reach. To simplify the calculations we have assumed that all
the modes except the ones include®in, behave as harmonic
oscillators. This assumption is reasonable if most of the

anharmonic correction comes from the two modes chosen to
define the 2-D PES and, in any case, provides a first approxima-

tion to the total anharmonic vibrational partition function of
the molecule.

Results and Discussion

H
ML, () H3P—\MLn (A)
H H
Figure 1. Relevant symmetry coordinates associated with the dihy-
drogen and the dihydride complexes.

The DFT-calculated harmonic EIE for the dihydrogen forma-
tion turns out to be inverse, although numerically is somewhat
lesser (that is to say, the isotope effect turns out to be more
intense) than the value calculated by BKffom the infrared
spectra. The difference stems fundamentally from the ZPE
factor, which is the main responsible of the inverse behavior,
but that variation is not large enough to be considered a
qualitative disaccord. On the other hand, the dihydride formation
hardly gives harmonic isotope effect. This is a little surprising
if we think that the dihydride complex is almost the same
molecule as the dihydrogen one. What has changed? The reason
seems to reside on a structural alteration. The dihydrogen
structure has &,, geometry. In turn, the dihydride structure
can be described as a pentagonal-bipyrant@da@omplex with
axial carbonyls and the two hydrides lying in the equatorial plane
being separated by a phosphine lighhee Figure 1). The
P—W—P angle (136.6°) seems large enough to accommodate
encumbered phosphines such as £Cythat structure, the two
H’s cannot be considered as a thity, and hence, the HH
stretching as such is not a symmetry coordinate contributing to
a normal mode anymore. Another result of that coordination

In this section we will present the results obtained from the change is that the hydrogen motion appears to be more spread
electronic and nuclear calculations. As we outlined in the out among the normal modes. It participates in a larger number
Introduction, the discussion will be centered on the understand- of normal modes, and furthermore, it is more coupled with the
ing of the EIE and it will be presented as follows: In a first motion of the rest of the atoms of the molecule. As a
step, we will consider the harmonic EIE obtained by the standard consequence, the relative contribution of the H motion in the
approach, and in a second step, we will analyze the anharmonicdihydride vibrations is less than in the dihydrogen vibrations,

EIE obtained by following our new procedure.

According to the well-known formulas of the statistical
thermodinamic@? the deuterium equilibrium isotope effect has
been calculated as the equilibrium constant of the equilibrium

and therefore, the normal modes are, in general, less sensitive
to the isotopic substitution. That is, the EIE is less important.

Finally, we obtain an inverse E{EEIE for the tautomerism)
that differs from the normal EIE predicted by BRHat least

displayed in eq 1. This equilibrium can also be described as eqwithin the harmonic approximation. This is not an inconsistency

2/eq 3, and hence, the EiBas been obtained and presented as
EIE(2)/EIE(3), that is, as the quotient between EIE for the
dihydrogen formation and the EIE for the dihydride formation.
A. Harmonic EIE. First of all, within the harmonic ap-
proximation, we have used the molecular partition functions

if we bear in mind that they estimate Eilas EIE(2)/EIE(4),
that is, mixing two different complexes: W(CEPCys)a(1?-
H,) as a typical dihydrogen and (#(CO)CI(PPh), as a typical
dihydride.

B. Anharmonic EIE. As we have previously seen, the first

provided by GAUSSIAN 98 for each chemical species in Figure thing we need to do to be able to calculate the anharmonic EIE
1 to evaluate the harmonic EIE’s. In addition, we have is to choose which normal modes are to be corrected. A priori,
decomposed each EIE as the product of three factors: theit is not possible to know with certainty which are the most

translationat-rotational contribution (TRANSROT); the factor ~anharmonic normal modes in a molecule, but if we focus on
corresponding to the contribution of the ground vibrational the normal modes which can influence the EIE, we obviously
states, that is, only including the zero-point energy levels (ZPE); have to consider those associated with the dihydrogen or
the factor that appears when the excited vibrational energy levelsdihydride ligand.

are taken into account (EXC). The corresponding results are In the dihydrogen complex the major anharmonicity effect

shown in Table 1. is probably related to the HH stretching. This motion and the
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TABLE 1: Harmonic EIE’s and Contributions to Them 2

eq2 eq3 eql
Hy+ (D2)~WLn= Do+ (H) WL, Hz + (D)2- WLy =D+ (H)2-WL,  (D2)=WLy + (H)2-WLn = (Hz)-WL, + (D)2WL,
TRANSROT 5.519 (5.77) 5.543 0.996
ZPE 0.131 (0.20) 0.254 0.514
EXC 0.675 (0.67) 0.712 0.948
EIE 0.486 (0.78) 1.002 0.485

aNumbers in parentheses correspond to the values calculated by Bender, Kubas, Hoff, and cd-fvonkehe infrared spectra.

W—H, stretching are the two Asymmetry coordinates associ- PH 2H
ated with the dihydrogen ligafhdnd are pictured in Figure 1. W(CO)(PHy),(n"H,)
Then, the A normal modes derived from these symmetry

I \ | \ o
coordinates have to be considered as anharmonic modes in the o4 @4 1 \2227 P 0 .
sense defined above. In addition, since that anharmonicity 7 I 52 \
couples significantly the two modes of the same symmertry, A \\ \\ o
A 47,
27

the independent normal mode framework has been assumed 7oy

neglecting all the modemode couplings but the coupling 71h \ O\ 2 T \\
between the two Amodes that has not been separated. On the ™ 20 7! ZN \ 17\\\\& 421
£ 12,

other hand, in the dihydride complex the reorganization of the

d(W-H

ligands leads to a loss of symmetry and, hence, to a change in

Y 22,
the normal modes. Since there is a phosphine between, the two ,EEZ \ 2> @27
H's behave as independent ligands and not as,ddtnd i - 12 17
molecule. For that reason+H stretching is not a representative ey \
component of the normal modes in the dihydride complex, and 1.6 N7 \12\~7> "
consequently, it has not been used as a symmetry coordinate. \\ '27\\12
Among the normal modes that include the motion of the two 72'75_’2727‘\&57 20\ 2

hydrogen atoms, those where heavy atom motions are negligible

have been chosen as the anharmonic modes to be corrected

(Figure 1) and, as in the dihydrogen case, not to be separated d(H-H)

by the independent normal mode framework. In both dihydrogen Figure 2. Contour plot of the two-dimensional potential energy surface

and dihydride cases, the two normal modes chosen have beetfor the dihydrogen complex W(C@[PHs)x(1*Ho). Distances are given

studied together over a two-dimensional PES. in A. En_grgy contours appear every 5 kcal/mol. The arrows indicate
The two-dimensional PES for the dihydrogen complex was g‘nedgé)vf/'t_'?_"‘)‘it;‘%%”}\')"“m energy structurd(t{—H) = 0.832 A

already presented in a previous paper as a function of the two 2 ' '

symmetry coordinatesA collection of 120 electronic structure W(CO),(PH,),(H),

calculations, each corresponding to a different set eHand
42
2 /

0.8 1.2 1.6 2.0

W—H, distances, covered ranges from 0.6 to 2.0 A for the-H
distance and from 1.4 to 2.5 A for the W, distance. The
resulting points were fitted into a two-dimensional cubic splines
functional form?* which is a smooth and continuous function.
Figure 2 depicts the two-dimensional PES as a contour®plot.

cover the PES until an energy of at least 10 kcal/mol above the

For the dihydride complex a two-dimensional PES has been —_

built up by calculating 56 points, each one corresponding to a e ﬁ/ //
different set of W-Ha and W—Hg distances, covering ranges ; - ( .
from 1.5 to 2.2 A for the W-H, distance and from 1.5 to 2.1 T L

A for the W—Hg distance. These 56 points are necessary to o2

ey
\\&//{

minimum is reached. Since the two hydride ligands are not

5
equivalent, the extent of the ¥WHa distance and the WHpg > \\k\\!
distance is not exactly the same. It has to be noted that, in this 1.2 '102282 \62 =
case, the symmetry coordinates used to represent the anharmonic . , g '
normal modes do not coincide with the axes of the bidimensional 1.2 1.6 2.0 24
PES but with its two diagonals. It has been necessary to expand d(W-Hyg)

this PES made of electronic structure calculations. The reasonF_ 3. Cont ot of the twodi onal botential ;

is that DVR results are sometimes difficult to converge due to fcz?ltjl‘:(; d'ihygri doe“::gr?]p(l’ex \?V(C(’QOF',Tb‘;S(i()’QaDE?aenZ'e""S ‘;?grgii’l :;’risce
the fictitious energy gap present 6_“ t_hg edge OT the PES (theA. Energy contours appear every 10 kcal/mol. The arrows indicate the
method works as if there were an infinite potential wall at the position of the minimum energy structuré((—H,) = 1.788 A and
border). To save computational effort, this enlargement has beend(\W—Hg) = 1.753 A).

done by using a two-dimensional analytic harmonic potential

that generates the harmonic frequencies of the two corrected Comparison between Figures 2 and 3 discloses some remark-
normal modes. The anharmonicity which can affect the EIE is able differences regarding the shape of the two PES in the region
that of the region next to the minimum. Therefore, the use of of the minima. The dihydride complex presents a typical
this supplementary harmonic potential is not incompatible with harmonic pattern with the two normal modes, symmetric and
the introduction of anharmonicity. Figure 3 depicts the resulting antisymmetric H—M—Hg stretching, being the sum and the
two-dimensional PES as a contour plot. subtraction of the two WH distances respectively (that is, the
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TABLE 2: Anharmonic EIE’s (See Text) and Contributions to Them?

eq2 eq3 eql
Hy + (D2)—=WLy =Dy + (H)~WL,  Hy+ (D)o-WLy =D+ (H)2-WLy  (D2)=WLy + (H)2-WL, = (H2)-WL, + (D)WL,
TRANSROT 5.519 (5.77) 5.543 0.996
ZPE 0.143 (0.20) 0.254 0.563
EXC 0.676 (0.67) 0.710 0.952
EIE 0.534 (0.78) 1.001 0.534

aNumbers in parentheses correspond to the values calculated by Bender, Kubas, Hoff, and cd-fvonkehe infrared spectra.

two diagonals of the PES in Figure 3). In view of this shape,  Table 2 exhibits the anharmonic EIE’s and their decomposi-
we can expect that the introduction of anharmonicity will not tion in factors (evidently the TRANSROT contribution is the
change significantly the EIE results. Conversely, the potential same as in Table 1). Comparison of Tables 1 and 2 shows that
energy valley for the dihydrogen complex is almost parallel to anharmonicity does not significantly alter the EXC factor. The
the W—H, axis with a trend to curve along the-HH direction important changes only concern the ZPE factor. For the
as the W-H, distance shortens (Figure 2). As a consequence, dihydride, no changes appear in the anharmonic EIE(3), which
the two normal modes of Asymmetry, although mixed to some  means that the harmonic approximation is valid to study the
extent (as already pointed out by BRKcan still be identified  thermochemistry of this complex. For the dihydrogen complex,
respectively with the two Asymmetry coordinates. Thatis to  instead, anharmonicity augments slightly the ZPE contribution
say, one normal mode is basically the-H stretching and the  and, therefore, the EIE(2). The anharmonic EIE(2), still clearly
other one is essentially the symmetricitA, stretching. Unlike inverse, is somewhat closer to the experimental values than the
the dihydride, this energy valley shows some anharmonic harmonic EIE(2). If one takes into account the range of
character, and hence, in this case we can expect that theuncertainty of the experimental valde.78 from infrared
introduction of anharmonicity do will change the EIE results. spectra or 0.70+ 0.15 from displacement of H and that
Once the potential energy surfaces have been obtained, theanharmonicity has been only partially incorporated, the agree-
corresponding nuclear Scldioger equations can be solved ment is rather good. As we saw in our previous work,
using the DVR method. Prior to that, a certain reduced mass anharmonicity tends to favor the addition of Hecause it
has to be assigned to each degree of freedom in the Hamiltonianweakens the lowering of the vibrational energy levels due to
As in our previous work$;??the reduced masses for the motion  the isotopic substitution. The larger the anharmonicity of the
along the coordinates have been calculated (for the perprotionormal modes sensitive to the isotopic substitution in the
complexes) as dihydrogen complex, the smaller the gap between the equivalent
HH and DD vibrational energy levels. Along the addition in eq

t 1,1 2, the change in the HH/DD zero-point energy gap for the
Har-r)  Mh, My, normal mode corresponding originally to the-H (D—D)
stretching in the free hydrogen molecule gives a normal ZPE
1 _ 1 + 1 (10) factor (a value greater than unity). On the contrary, conversion
Ham-ny) My, M of the 5 translational and rotational modes in free hydrogen to
vibrational normal modes in the dihydrogen complex leads to
for the dihydrogen complex and an inverse ZPE factor (a value smaller than unity). As a
1 1 1 consequence of all this, anharmonicity increases the numerical
—=—+ value of the ZPE factor associated with the dihydrogen ligand
Ham-ry M, M Hg) (the normal and inverse factors become more normal and less
inverse, respectively), so tending to produce a normal EIE.
1 1 + 1 (11) The anharmonicity of the dihydrogen complex is reflected
Ham-rg) M, Mme Hy in the anharmonic EHfor the tautomerism. As in the harmonic

o results, anharmonic Effurns out to be inverse, although in a
for the dihydride complex. Note that the reduced masses of the|ess extent.

dideuterated complexes can be calculated in an analogous way.

Then, the matrix representation of the nuclear Hamiltonian over conciusions

a rectangular grid of equally spaced points has been constructed.

Different sizes of each grid have been tested until convergence In this work we have theoretically studied the equilibrium
of the energy levels has been achieved. The characteristics ofisotope effect for the dihydride/dihydrogen tautomerism (gIE
the final grids chosen for the different systems have been asin the Kubas complex W(CQPCys)2(7>-Hz). Experimental
follows: 35 x 27 = 945 for both the perprotio and the determination of this magnitude has not been achieved due to
dideuterated dihydrogen complexes and>33®5 = 1225 for the lack of vibrational frequencies for the dihydride form. There
both the perprotio and the dideuterated dihydride complexesis only an estimation by Bender, Kubas, Hoff, and co-workers
(the format used is the following: number of points along the that predicts a normal EfEthat is, that deuterium favors the

x coordinatex number of points along thgcoordinate= total classical site at 300 K.

number of points). Diagonalization of the corresponding ma-  We have first calculated the harmonic El&ising from the
trixes provides the sets of vibrational wave functions (eigen- standard thermodynamic analysis (within the ideal gas, rigid
vectors) and anharmonic energy levels (eigenvalues). Theserotor, and harmonic oscilator models). Prior to that it has been
energy levels permit the calculation of the anharmonic vibra- necessary to characterize the geometry of the minimum energy
tional partition function of each molecule according to the structures and to compute its molecular partition functions.
procedure outlined in the previous section so that the anharmonicThese electronic DFT calculations have given an inverse EIE
EIE’s are obtained. The corresponding anharmonic EIE’s are = 0.485 at 300 K. In view of the difference from the predicted
shown in Table 2. normal behavior, a deeper treatment has been done in order to
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obtain a more accurated ElEBeyond the harmonic approach, R.E.;Burant,J.C; Dliipprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K.

i i ; ; N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi,
nuclear calculations over b|<_1||men3|onal potential energy surfacesR_; Mennucci, B.: Pomelli C.: Adamo. C.. Clifford. S.. Ochterski, J.
have been pgrformed. ParUCU'a.”ya DVR meth0d0|09y has beenpetersson, G. A.: Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.
used to obtain the corresponding vibrational energy levels of Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J.
each Structure, and fina”y’ f0||owing a new scheme deve|oped V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Kamaromi, |.;

by our group in a previous wofkanharmonic partition functions

Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng,

C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W_;

have been obtained and used to compute the correctefl EIE Jjohnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.;

These nuclear calculations have given again an inversg £IE

0.534 at 300 K. Therefore, although being less inverse than the

harmonic result, the anharmonic ElElso indicates that

deuterium favors the nonclassical site at 300 K. This result

Replogle, E. S.; Pople, J. Aaussian 98Gaussian Inc.: Pittsburgh, PA,
1998.

(7) Parr, R. G.; Yang, WDensity-Functional Theory of Atoms and
Molecules Oxford University Press: Oxford, U.K., 1989.
(8) (a) Gelabert, R.; Moreno, M.; Lluch, J. M.; LIegloA. J. Am. Chem.

contrasts with the small normal kinetic isotope effect (KIE) for Soc.1997 119 9840. (b) Gelabert, R.; Moreno, M.; Lluch, J. M.; Lledo
conversion of the dihydride to the dihydrogen tautomers A-J.- Am. Chem. Sod998 120 8168.

measured by Hoff and co-workefs However, it has to be

realized that the KIE (a kinetic magnitude) and its corresponding

(9) (a) Backsay, G. B.; Bytheway, I.; Hush, N. .Am. Chem. Soc.
1996 118 3753. (b) Bytheway, |.; Backsay, G. B.; Hush, N.J.Phys.
Chem.1996 100, 6023. (c) Maseras, F.; LIédpA.; Costas, M.; Poblet, J.

EIE (a thermodynamic magnitude) can behave in a different M. Organometallics1996 15, 2947. (d) Li, J.; Dickson, R. M.; Ziegler, T.

way.
The conclusion outlined above for the Kubas complex is not

J. Am. Chem. S0&995 117, 11482. (e) Li, J.; Ziegler, TOrganometallics

1996 15, 3844. (f) Camanyes, S.; Maseras, F.; Moreno, M.; Ledy,;
Lluch, J. M.; Bertfa, J.J. Am. Chem. S0d.996 118 4617. (g) Gelabert,

a general rule which can be applied to any dihydride/dihydrogen R.: Moreno, M.; Lluch, J. M.; Lieds, A. OrganometallicsL997, 16, 3805.

tautomerism. The EHehas been rigorously calculated here only
for the Kubas complex. Actually, several experimental £E
have been reporté@nd conclusions diverge from one complex

(10) (a) Lee, C.; Yang, W.; Parr, R. ®hys. Re. B 1988 37, 785. (b)
Becke, A. D.J. Chem. Phys1993 98, 5648.

(11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;
Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson,

to another. It seems that this is such an intricate chemical processs. A - Montgomery, J. A.: Raghavachari, K.; Al-Laham, M. A.; Zakrzewski,
that no direct extrapolation would be valid to make predictions V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.;

for whatever dihydride/dihydrogen tautomerism at whatever
temperature. With the aim of understanding the dihydride/

Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W;

Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.;

Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-

dihydrogen tautomerism, additional experimental and theoretical Gordon, M.; Gonzalez, C.; Pople, J. &aussian 94 Gaussian Inc.:

studies would be necessary. Work on this topic is now in
progress in our laboratory.
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The Herman—KIuk initial value representation semiclassical approach has been applied, and proven
effective, as well as accurate, to account for the intriguing elongated dihydrogen structure in a
ruthenium coordination complex. Results are satisfactory even though the reduced dimensionality
two-dimensional potential, involving the relevant distances, casts an extremely anharmonic, weakly
bound species, with two exit channels. Comparatively short propagation times, to avoid
complications due to chaotic trajectories, as well as discarding trajectories exiting the effective
potential energy surface, has proven effective to converge results, as indicated by comparison with
quantum mechanical discrete variable representation dat®20@ American Institute of Physics.

[DOI: 10.1063/1.1502649

I. INTRODUCTION oscillatory nature of the integrand, which is characteristic of

. . the integral appearing in the SC-IVR approach to the time
The semiclassicdlSC) method has recently undergone a €9 PP g bp )
evolution operator. It arises as a consequence of its complex

rebirth of interest, especially since it was understood that, L L . .
. S . Valued origin. The multidimensional character of the inte-
thanks to several improvements in its formulation, most of

its numerical difficulties could be effectively bypassed. Thus,grand.’ in addition, forces the use Of Monte Carlo sampling
the Herman—KIuk(HK, or coherent state, or minimum un- techniques to reduce the computational effort. The second

certainty version, formulated within the initial value repre- difficulty is related to the so-called prefactor since, corre-

sentation(IVR) of the stationary phaséSP) approximation sponding to a stabilitymonodromy calculation, it is found

to the time evolution propagator, has been proven as a relf© ke very high values when the motion approaches chaotic

able, numerically efficient technique for dealing with a F€9imes. In particular, it can be shown that the simple prob-
wealth of molecular problemis® Its main advantage is the N9 Of convex regions in the potential energy surfée&S
avoidance of the exponential increase in numerical effort, aSuffices to make the prefactor, for long enough time propa-
the number of degrees of freedom increases, typical of quardations, grow up to troublesome values. Actually, a third
tum mechanical formulations of dynamical problems,d'ff'cunyv closely tied to the first, arises in problems where,
whereas, at the same time, it is capable of describing quitg-9- @ thermal average is necessary. It corresponds to the
accurately, quantum effects. These effects, contrary to prevfifficulty of having a proper weighting function in the Monte
ous expectations, are becoming more important as new ef=arlo integration, thus preventing a straightforward exten-
periments (with improved time and position resolution Sion of the method to truly complex systems.
powep are available. An intense methodological effort is being devoted to-
Among specific app]ica’[ions, one should mention modeMlardS SO|Ving the above difficulties. Generalized filtering
condensed phase problefhsumulative reaction probabil- Procedures have been proposed to reduce the oscillatory na-
ities,” femtosecond spectroscopy of P molecular energy ture of the integrand.In addition, a symmetrized form of
transfer’ thermal rate constant calculatiotfs,quantum  flux correlation functions has been recently shown to provide
coherence/decoherence in molecular vibratidress well as @ well-behaved integral in thermalized probletss for the
diffraction through a double slit potential barrier coupled to aprefactor behavior, however, a more effective yet accurate
thermal bath213 These cases, along with several recent imformulation looks still elusivé; even though some interest-
provements in the methodolody’ clearly show that the SC ing progress has been reported recently for nonchaotic
approach is fastly approaching a widespread use in the studyystems? Being a direct consequence of the SP approxima-
of molecular problems. tion (or, more generally, steepest descent techniques applied
Two specific difficulties, though, still persist, casting to the calculation of complex valued integrantfsthe pref-
some doubts into the possibility of firmly establishing the SCactor plays a decisive role since its value is related to the
approach as a routine tool. The first one concerns the highlgverall probability of the process under studyhe issue is

0021-9606/2002/117(15)/7094/8/$19.00 7094 © 2002 American Institute of Physics
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that, in present-day applications, one must deal very careclassical framework. Not only is this the first time, as far as
fully with it, otherwise meaningless results, or extremelywe know, that such a feature has been interpreted semiclas-
slow convergences, might be obtained. sically; this is also a stringent test on the capabilities of the
The above discussion will prove of full relevance whenscC-IVR approach. The determination of the equilibrium
one considers the kind of application dealt with in thestructure may be performed semiclassically starting from a
present work. It consists of the use of the SC methodologyc- VR time propagation. After a sufficiently long time the
directly to study molecular structure problems, in particulargtocorrelation function of the time evolved wave packet is
those concerning the equilibrium geometry of the so-called-gyier transformed so as to extract the energy spectrum, as
elongated dihydrogen transition metal complexes. The comMy || a5 the corresponding stationary vibrational wave func-
plexes which present hydrogen atoms in the coordination, s An accuracy check is rigorously available in the

sphere of the metaI. are gurrently'being classified into tWOpresent case, since the 2D PES permitted a previous DVR
large groups: those in which the distance between hydroge igenvalue—eigenvector quantum mechanical calculation.

atoms exceeds 1.6 A, which have been known for a lon . .
. . . . . he extraction of the energy spectrum from time-evolved
time and are referred as classical polyhydrides in the litera-

ture, and those in which this same distance has a value bwave packets has been already used in thezﬁééto study

tween 0.8 and 1.0 A, first discovered by Kubas and(f?e rgv:jbratulanall spel_cltra of strct)ngtljy,thas Wi" d‘fis \t/veakly
which have been known as “nonclassical dihydrogen ounded molecules. Here we exten ese studies o a spe-

complexes.'® The difference between both types of com- Cific Molecular structure problem. _
plexes has faded with time due to the discovery of a series of 1hUS: the relevant calculation in the present problem is
complexes whose H—H distances fall between the two abovi'® Wave function amplitude, from which the average posi-
mentioned limits#® These complexes, known as eIongatedt'On is extracted. This is a well-known problem, so that the
dihydrogen complexes, have been found both in solution antfSué here is the numerical performance when obtaining it,
in solid-state structures. i.e., are the PES features sufficiently well-behaved to allow
In principle, one may routinely attack the theoretical ge-for the SC-IVR calculation to converge the position expec-
ometry prediction of these elongated complexes by means d@tion value? Certainly, the weakly bourie-20 kcal/mo)
any of the quantum chemistry packages. The issue is thenspecies, along with a rather remarkable anharmonicity of the
matter of choosing an optimal strategy for thapproxi- potential profile(plus the existence of two exiting routes to
mated method of calculation, as well as the electronic basiglissociation/rearrangementpose seriousa priori difficul-
set. However, the resulting equilibrium geometry, concerningdies. On the one hand, the small binding character of the PES
specifically the H—H distance, clearly fails to explain thetogether with the two exit channels, make somewhat cum-
experimental findings, irrespective of the accuracy in thebersome accumulating bounded trajectories, so as to reach a
quantum chemistry calculations. In other wor@d initio  low enough statistical error. One may argue that this should
calculations did show that the corresponding species wagot really be a problem, since the exiting trajectories, being
stable, but the electronic potential energy minima was foun@verlapped with the initial wave packet in the SC-IVR cal-
to be at much shorter distances than those correspondingflation, are automatically dropped from contributing to the
inferred from neutron diffraction measurements. phase space average. On the other hand, these exiting trajec-
A plausible explanation was worked out by Gelabertigries, jointly to those probing the highly anharmonic regions
et al1® By looking at the C.onsid'erable anharmonicity of the ¢ the PES(i.e., trajectories propagated for sufficiently long
related bond energy functions, it was argued that the nucleqrme), often lead to exceedingly large prefactors that con-

wave function might possibly peak at distances far from the,minate the calculation and thus ruin the convergence rate.
electronic minimum. Discrete variable representatibi'R) Therefore, succeeding in the present application dramati-

calculations for a two-dimension4eD) effective potential cally depends on the possibility of reaching a compromise on

did show the pr_e_d|cted shn‘tmg_. In addmon,_such an effectthe number of trajectories needed: it should be large enough
should be sensitive to population changes in the supported

Lo . . t0 guarantee proper Monte Carlo statistics, but not as large as
vibrational levels, i.e., the geometry had to be, in a measur- : . . o ;
.~ to make the calculation unfeasible. Besides, a similar situa-
able degree, temperature dependent. |t was found agalnt%n exists for the propagation time; it should be long enough
good agreemenfat the semiquantitative leyebetween the propag ' 9 9

experimental data and theoretical Boltzmann-weighted avell_ohlmprove thgbrlesolutlopdof thf energy spectryrln, but I;ept as
age positions, at different temperatures. short as possible to avoid prefactor exponential growth asso-

One may thus finally recap the story by reversing theClated \{vith chaotic dynamics. Spe(?ific results in'the present
above discussion. Thus, delocalization of hydrogen nuclei, 40"k Will show that both compromises are possible, opera-
purely quantum mechanical effect originating in strongly an-tionally, hence opening the way for applying the IVR-SC
harmonic bonds, is experimentally detectable in elongate@PProach to this kind of problems.
dihydrogen transition metal coordination compounds. It ~ The remainder of the paper has been organized so that
shows up in the form of equilibrium geometries which evi- Sec. I describes the PES electronic calculation and briefly
dence an important mismatch between the actual experimegummarizes how the HK-SC-IVR approach is applied to the
tal values and the electronic potential energy minima. present molecular structure problem. Section Il shows and

From the outset, the present problem looked prospecdiscusses the numerical results, for both the PES and the
tively as a good candidate for being studied under the semisemiclassical calculations. Finally, Sec. IV concludes.
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It is interesting to note in passing that, involving the calcu-
lation of an amplitude, rather than a probability, the inte-
grand in Eq(1) is complex and contains the important phase
information for quantum effects. But, at the same time, its
oscillatory character is the main source of the above-
mentioned convergence problems.
Within the SC-HK-IVR scheme, the time evolution

propagator is given by

1
(2’7Th)F J J dequCt(quO)

x (ISPt | p, 1, ) Po Qo). @

where F=2, (poqo) are the initial positions and momenta,
(piay) are the corresponding time-evolved variables,
Si(podo) is the classical action,

—iHt/h _

e

t
— ! ~N__
FIG. 1. Optimized structure for thERu(H --H)(CsHs) (H,PCHPH,) T+ S(Podlo) J;dt [pa—HI, ©)
complex. Arrows show the two parametersandq, chosen as a reduction o
of the dimensionality of the whole hypersurface. whereas p;q;) and(pyqy| are the coherent state, minimum

uncertainty wave packets at timesand 0, respectively. Fi-
nally, C, is the Herman—KIuk prefactor, given by
Il. CALCULATION STRATEGY

B B i h
A. The potential energy surface ci=27F Mgqt v lMppV+ 7Y lMpq+ Tqu7 (4)

The complex under study is the elongated d'hy'beingMH, (with 2,2’ =p,q) the elements of the monodromy
drogen complex [Ru(H --H)(CsMes)(dppm)]™  (dppm (stability) matrix
= bis(diphenylphosphino)-methane), modeled as
[Ru(H --H)(CsHs) (H,PCH,PH,)]* in order to save com- _%
putational effort. Its structure is shown in Fig. 1. The 2 g7y

electronic structure calculations were performed with the . . .
P In expression4), y is a constant related to the width of the

GAUSSIAN 94series of program& the DFT(Ref. 23 formal- . .
ism being used throughout, with the three-parameter hybri Ohere"?t. wave packet. The _analyucal form for the latter, in
e position representation, is

functional of Becke and the Lee, Yang, and Parr’s correlatio
functional, widely known as Becke3LY®.This methodol-
ogy meets the requirements of high accuracy and reasonable (@'lpg)=
cost, and has been employed with great success in the study

of several organometallic systems, including dihydrogen and
polyhydride complexe&?® An effective core operator was

used to replace the inner electrons of the ruthenium atom, in is worth noting here that the above formulas become much

this way eliminating 28 electrons from the syst€hiThe simpler if one defineg~scaled coordinates and momenta
basis set associated with the pseudopotential of Hay and P ¥ '

Wadf® with standard valence doubletANL2DZ contrac- q—y Yq; p—yYp, 7
tion,”“ was useq f'or the remaining electrons 'of the Ru atoméince, e.g., the prefactor now becomes
As for the remaining atoms, the standard split-valence 6-31

®

1/4 1
%) eXp{ — (@' =)y -q)

+ipT(q’—q)]- (6)

basis set was choséhexcept for(a) the phosphorous atoms, C2(2)= 1 1M 1 8
for which the basis set 6-31@) was used?® and (b) the 1(20)= |5 (L=DM{ ]I 8)
hydrogen atoms directly bound to the metal, for which the . . L

6-31G(p) basis was consideréd?® The calculation of the autocorrelation function in E4d)

then involves an overlap between two coherent states, which
in this compact form avoids the explicjtdependence,
B. Application of the SC-HK-IVR approach

1 1
The basis of the present application is the time propaga- (poqo|piqi>=exp{ B Z(qO_Qi)z_ 7 (Po~ pi)?
tion of an initial wave packet, so that it is allowed to probe
the characteristic features of the PES. One then goes ahead
parallel to the treatments of linear spectroscopy, e.g., per-
forming a Fourier transform of an autocorrelation function
involving a single-time propagation,

i
+§(P0+Pi)T(CI0_CIi)]- 9
The specific implementation on the SC-HK-IVR approach
' has been performed, in the present work, using the log-
C(t)=(yle M| y). (1)  derivative version of the HK prefactor, whose derivation has
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been presented elsewhéfe® It has the advantage that, is characterized by motion far from periodic in phase space,
when the Gaussian widths are chosen to match one or seveiitd Fourier transform should not preferentially peak to any of
of the natural frequencies of the system, the occurrence dhe proper frequencies, but rather add a noiselike signal to
branch-cuts in the prefactor calculation is avoided, thus leadthe entire spectrum. Hence, chaos contamination for the ei-
ing to a more efficient integration of the equations of motion,genvalues should not be much relevant. Actually, this con-
since no tracking of the Maslov ind&xis necessary. tamination should quite likely be washed out by the Gaussian
Finally, a standard Fourier transform of the autocorrelafiltering. This may be formally seen by considering that the

tion function (1) leads to the desired energy spectrum andquantum-mechanical autocorrelation function can be ex-
associated eigenfunctions, according to the following exprespanded in terms of the stationary state®’ as

sions:

L e A =((0)] (1)) =X Cre™"ME(y(0)| P )
- iEt/H — a2 n
I(E) ReJ = y(0)|w(t))e dt (10)

h 0
Zz e(*i/h)Ent|Cn|2’ (12)
for the energy spectrum, and n

so that the Gaussian-filtered energy spectrum, (EQ), be-

1 (T
|‘I’n>°‘—f el/MEnl| y(1))dt (11  comes
2T )1
for the eigenfunction associated to théh eigenvalug? In I(E)= S e (E-En%a?|C |2, (13
Eq. (10), a Gaussian filtering determined by theparameter 2aym n

has been applied, so as to obtain noise-free peaks whigte., a set of Gaussian functions, each centered at each one of
uniquely identify the true eigenvalues of the potential energythe energy eigenvalues. Conversely, eigenvectors are calcu-
surface? lated by an integral over the whole time interval on each

Before presenting the results of the calculations, it isposition over a grid spanning the relevant configuration
interesting to explain how the semiclassical parameters, i.espace. No positions appear to be privileged by the noncha-
widths of the coherent state of the Herman—Kluk propagatorgtic motion, as compared to chaotic, as it happened with the
propagation time length, number of times the wave packegigenenergies in the energy spectrum. Consequently, the
had to be computed during the propagation, as well as th@hole eigenvector might be more likely contaminated by the
total number of trajectories, were determined. chaotic signature in the time-evolving wave packet.

The initial total energy of a trajectory is crucial in the Once the propagation time length is decided, the next
present study: if too high, the trajectory will probably escaperelevant parameter is the number of times the wave packet
from the PES. An escaped trajectory is not representative ¢fas to be computed during the propagation. This might be
the behavior of the system because it runs out from the PEjetermined by the maximum frequency necessary to be de-
so that it does not describe the bounded motion characteristigribed, since then the Nyquist frequency requirement of the
of a stable chemical species. Furthermore, the weak bondingiscrete Fourier transform method fixes the value for the
character of the PES tells that having an excess of Inltlagamp“ng raté* For the present system, a maximum fre-
energy will quite |i|(6|y occur. Therefore, we had to tune quency of 4000 cmt! proves h|gh enough to describe the
the wave packet width so as to minimize the total energy ohound vibrational states. Hence, the wave packet had to be
the initial wave packet, in order to have as few runawaycomputed 186 times along the propagation, each one of them
trajectories as possible. After the corresponding calibrationseparated by a time step of 172 atu.
the chosen values for the widths of the coherent state of Fina”y, the total number of trajectories had to be chosen.
the Herman—Kluk propagator wergq;=0.009 andyy,  Converging the eigenvalue and the eigenvector spectrum re-
=0.008 A" 2uma . quired only 8000 bounded trajectories. This number is actu-

The time length of the propagation is also very critical. glly the lowest leading to converged results for the mean
If too short, the eigenvalue spectrum will be too inaccurateposition, within a few percentthe test was extended up to
because of the uncertainty princip{the resolution of the 40000 trajectorigs It should be pointed out that since 60%
energy domain is the inverse of the total range covered in thgf the trajectories were useless as they ran out from the PES,
time domain. For instance, if a precision of, say 10 this  we needed to start 20000 trajectories in order to have the
desired, one has to propagate up~td40000 atomic time above 8000 trajectories remaining inside the bounded region
units (atu, later2.419 10717 s). Conversely, if the propa- of the PES.
gation is too long, the probability of having very large pref-
actors dramatically increases with such an anharmonic pai. NUMERICAL RESULTS AND DISCUSSION
tential. The problem clearly demands an optimal
compromise. It has been found, by trial and error, that théo"
longest possible propagation not showing chaotic dynamics An important fraction of the results corresponding to the
turned out to be 32000 atu. This length led to a spectrunpresent electronic calculations have been taken from our pre-
with a sufficient precision of 43 cnt. It is interesting to  vious work!®® A series of electronic structure calculations
realize that eigenvalues are much less sensitive to chaoticlik@ere performed to construct a 2D PES. To that purpose, a
trajectories than eigenvectors. The reason is that since chaosllection of 80 points, each corresponding to a different set

PES electronic calculations
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FIG. 2. Contour plot of the two-dimensional potential surface for the com-
plex [Ru(H --H)(CsHs) (H,PCH,PH,)]*. Energy contours appear every 4 FIG. 3. Snapshots of the time-evolved wave packet at different propagation
kcal/mol. Energy profile for the lengthening of the H—H bond, while relax- times.(+) and(—) refer to the sign of the wave packet in order to indicate
ing the rest of the structure, appears at the top right corner of the figure angthere the nodes are.
projected in the 2D PE&Jashed lines Distances are given in A and energy
in kcal/mol.

potential. First, the valley surrounding the minimum energy
of H-H and Ru-H distances, were calculated. The rangesstrycture is highly anharmonic. This is a crucial factor in
covered were from 0.59 to 2.29 A, for the H—H distaitiqe  determining the interesting properties of the elongated dihy-
coordinatg, and from 1.0 to 2.2 A, for the distance between grogen transition metal complexes, but also a chaos genera-
the ruthenium atom and the center-of-mass of the two hydrogr, due to the possible instability of a trajectory ensemble. It
gen atomg(q, coordinatg. When calculating the PES global has to be noted that the values of the H—H and Ryéis-
relaxation of the rest of geometrical parameters ur@gr tances at the minimum energy structure in the PES are 0.89
symmetry constraint was allowed. The resulting points wereynd 1.66 A, respectively. Second, the PES has two exit chan-
fitted to a two-dimensional cubic Splines functional form, nels through which the trajectories can escape. Any trajec-
|eading to a smooth and continuous function within the rel-tory whose initial energy is greater than the potentia' of the
evant range. This initial set of calculations was then used fOédge of the PES in any of the Channe|S’ and reaches that
an eigenvalue calculation, along with the corresponding Vithannel, will escape from the PES. As we will see in the next

brational eigenvector determination, by means of the wellsection, both features have important consequences for the
known sinc DVR techniqué HK-IVR calculations.

A further check, shown for the first time in the present
work, was performed to ensure that our PES was large
enough to properly describe the structural properties of thi
molecule. It was motivated by the presence of the two exi
channels in the PES, and the necessity of knowing the Figure 3 shows some snapshots of the time-evolved
asymptotic regions more accuratébf relevance for the dy- wave packet, as obtained from the HK-SC-IVR calculation.
namic calculations This check consisted of an extended It is worthwhile noting the increasingly evident recurrences
PES electronic calculation, which was made by adding to théhat appear with increasing time along the propagation. It is
original PES 54 points calculated by the same methodologywell known that these recurrences appear as a consequence
The new range covers from 1.0 to 3.0 A, along thecoor-  of the anharmonicity of the potential. In the present case this
dinate. Calculations showed that no PES enlargement was especially suggested after inspection of Fig. 2.
actually necessary to converge neither the DVR results nor Figure 4 displays the autocorrelation function, while its
the wave packet semiclassical calculatiésse below. Fourier transform, after performing Gaussian filtering on it,

The election of the H-H and Ru—Hlistances, for the is depicted in Fig. 5. It thus corresponds to the eigenvalue
reduced dimensionality 2D PES used in the present studgpectrum of the interaction potential. It specifically displays
deserves further comments. These coordinates were chos#re peaks corresponding to the three first eigenvalues, out of
as stated since they were found to fulfill two important con-the just five bounded levels actually supported by the present
ditions: (a) they are able to describe properly the dynamicsreduced potential energy surface. The corresponding eigen-
of the H, unit of the complex under studfwhich was the functions are shown in Fig. 6. It is worth noting that these
main concern in our previous calculationand(b) they be-  eigenvectors closely match the ones coming from the DVR
have as orthogonal coordinates, thus making diagonal thealculations. Taking into account the experimental conditions
nuclear kinetic operatgwhich is a requirement for the DVR in which the structure of the complex was determined by
method. neutron diffraction, as well as a previous DVR calculation,

Figure 2 depicts the 2D PES as a contour plot. Inspecthe present result suffices for our purpose. Table | compares
tion of this figure discloses two outstanding features of thehe results obtained in the present study with those obtained

?. HK-IVR calculations
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FIG. 4. The realsolid) and imaginary(dashedl parts of the semiclassical
correlation function, and the Gaussian filterifptted used for the FFT. A 1.0
value of = (0.5)?-(9.5/32000), being 32 000 atu the propagation time n=2
length, has been used.
a
by DVR techniques in a previous workboth energy levels E
and expectation values for the H—H and Ry-diktances are &
shown. =
The highest peak in Fig. 5 corresponds to the zero point
energy of the potential energy surface obtained through SC- 1.0

IVR methods. The SC-IVR result, for the zero point energy
and actually for all the energy levels considered, agrees with
the DVR reference results within the resolution of the FFT

Initial value representation

1.0 1.5 2.0
d(H-H)

7099

deconvolution. The ability of the SC-IVR methods in par- FIG. 6. Eigenfunctions corresponding to the three first eigenvaiue, 1,

ticular, and semiclassical methods in general, to reproduc@“d 2.(+) and(—) refer to the sign of the eigenvector in order to indicate

where the nodes are.

the energy levels for bound systems has been proved severa
times in the past. However, as analyzed in the previous sec-

tion, a larger sensitivity to the statistical sampling is expecteqlowing the calculation of the wave function, are affordable

for the eigenvectors, and hence any quantity directly emergs, e only one phase-space sampling is necessanjrary
ing from them, e.g., the expectation value for the position. to what happens when general correlation functions are

The expectation values for the H-H and Ru,His-

needegl Consequently, the present agreement encourages

tances are found to be §ufficiently close to the.DV.R" ones, f%xtending the present study to higher dimensionality sys-
all energy levels considered. Thus, the availability of thei, < for which the DVR methodologypr any matrix-based

DVR results confirms the correct behavior of the semiclassi-
cal method and supports the present choice of a 2D PES f
testing purposes. Furthermore, HK-SC-IVR calculations, in

1593

1 |
=
= 2153

2627
O |
0 1000 2000 3000
E(cm'l)

method is prohibitively expensive. In these cases, though,

Rhe use of the SC-IVR would require the formulation of the
‘problem in terms of a regular time-correlation function, to

avoid having to store the amplitude of the wave function in
the full-dimensional configurational space. In these cases, a
double phase-space sampling turns out to be necessary. How-
ever, reliable approximate formulations of the SC-IVR suited
for calculation of time-correlation functions do exist that
would make this endeavor feasible, like the FB-IVR, or the
GFB@2 This work is to be performed in the near future in
our laboratory.

IV. SUMMARY AND CONCLUSIONS

The molecular geometry mismatch between the predic-
tions by electronic structure theory and the results from neu-
tron diffraction experiments, for the ruthenium dihydrogen
complex [Ru(H --H)(CsMes)(dppm)]*, was explained

. 19a) :
FIG. 5. Eigenvalue spectrum of the interaction potential. Arrows show theSOMe time ago by Gelabeet al. in terms of the wave

energy for the three first eigenvalues.

function delocalization, as a consequence of highly anhar-
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TABLE |. Comparison of the SC-IVR and DVR results for the calculation of the three lowest energy levels and
expectation values for the H—H and Ru,-Histances.

SC-IVR DVR?

=}

E(cm™ (H-H) (A) (Ru-H,) (A) E(cm? (H-H) (A) (Ru-H,) (A)

0 1593+ 43 1.03 1.60 1579 1.01 1.61
1 2153+43 1.28 151 2134 1.27 1.52
2 262743 1.37 151 2616 1.24 1.55

@Data from Ref. 36.
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