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Nuclear Dynamics Discrete Variable Representation Study of the Equilibrium Isotope Effect
on H2 Binding in M( η2-H2)Ln Complexes: An Effective Theoretical Way To Account for
Anharmonicity
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Departament de Quı´mica, UniVersitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
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Equilibrium isotope effects (EIE) on the binding of H2 and D2 to transition metal complexes are calculated
for a modeled version of W(CO)3(PCy3)2(η2-H2), [Ru(H‚‚‚H)(C5Me5)(dppm)]+ and trans-[Os(H‚‚‚H)Cl-
(dppe)2]+. Being probably unsatisfactorily described by the harmonic approach (specially in the elongated
dihydrogen complexes), the thermodynamic contribution of the H-H stretching related modes is evaluated
by means of nuclear motion quantum calculations. The Discrete Variable Representation (DVR) methodology
is applied to obtain the anharmonic vibrational spectrum on the bidimensional B3LYP potential surface.
From these results, the associated partition function is calculated and used to correct the harmonic EIE and
other thermodynamic magnitudes. In agreement with experimental results, the anharmonically corrected EIE
for the W complex turns out to be inverse (0.534 at 300 K). On the contrary, the corrected EIE for the Ru
and Os complexes is clearly normal (1.217 and 1.685 at 300 K, respectively), predicting an unusual behavior
for ML nH2 compounds. Comparison with the pure harmonic EIE’s leads to the conclusion that the harmonic
approach is inadequate to describe the properties of the elongated dihydrogen complexes.

I. Introduction

Isotope effects provide useful information about the molecular
properties (structure and reactivity) of the organometallic
compounds,1 specially in fluxional (nonrigid) transition-metal
complexes involving dihydrogen or/and hydride ligands. In
particular, isotope effects have become a very important tool
in the mechanistic study of the reversible oxidative addition of
molecular hydrogen to transition-metal complexes, one of the
most interesting and characteristic reactions of transition-metal
chemistry. Several papers have recently appeared concerning
deuterium equilibrium isotope effects (EIE’s) for the addition
of H2 and D2 to various transition-metal complexes in solution
to form either metal dihydride/dideuteride complexes2 or
dihydrogen/dideuterium complexes.3 EIE’s are defined asKH/
KD, where KH is the equilibrium constant for the perprotio
reaction andKD stands for the equilibrium constant of the
isotopically substituted reaction. By definition, an EIE is normal
if it is greater than unity, whereas it is inverse if it is less than
unity. Observed EIE’s for H2 versusD2 addition turn out to be
usually inverse,4 with typical values ofKH/KD around 0.50 or
less, showing that metal complexes bind D2 better than they do
H2 over a large temperature range.

Of special interest is the very recent study4 of the EIE on H2

binding to the dihydrogen complex W(CO)3(PCy3)2(η2-H2), one
of the so-called Kubas complexes (the first isolable dihydrogen
complexes). In that paper Bender, Kubas, Hoff and co-workers
use the measured vibrational frequencies arising from the
corresponding infrared spectra to obtain the molecular transla-
tional, rotational and vibrational partition functions ratios as
described in the general treatment of equilibrium isotope effects
by Bigeleisen and Goeppert-Mayer.5 From their calculations they
get a modest inverse EIE value of 0.78 at 300 K. In addition,
by comparison of the equilibrium constants for displacement
of N2 by H2 or D2 in the complex W(CO)3(PCy3)2(N2) in THF

solution they obtain an EIE value of 0.70( 0.15 at 295 K. At
first glance these results seem counterintuitive because the large
decrease in the H-H (D-D) stretching frequency due to the
H2 (D2) binding to the complex should produce a large normal
EIE. However, Bender, Kubas, Hoff and co-workers show that
the contributions of the five new vibrational modes that appear
in the addition product (coming from the original five transla-
tional and rotational degrees of freedom in the free hydrogen
molecules) overcome the normal contributions of the H-H (D-
D) stretching mode and the translational and rotational degrees
of freedom, this way leading to an overall inverse EIE.

At this point, an inverse deuterium EIE seems the rule rather
than the exception for the addition of molecular hydrogen to
suitable metal complexes to form either dihydride or dihydrogen
transition-metal complexes. However, we wondered what the
EIE would be for the formation of the particular group of
transition-metal dihydrogen complexes known as elongated
dihydrogen complexes.6 These complexes fill the gap between
classical polyhydrides (with H-H distances at or above 1.6 Å)
and nonclassical dihydrogen complexes (which have H-H
distances below 1.0 Å). Some of us7a,b have recently used a
combined electronic Density Functional Theory plus nuclear
dynamics study of two complexes to prove that the existence
and several properties of the elongated dihydrogen complexes
can be explained taking into account the quantum vibrational
motion of the hydrogen nuclei on a very anharmonic potential
energy surface.

The first purpose of this paper is to theoretically study the
deuterium equilibrium isotope effect for the addition of molec-
ular hydrogen to a complex leading to an elongated dihydrogen
transition-metal complex. To this aim we will calculate the
equilibrium constants of the several equilibria of the type
pictured in Scheme 1. Concretely, we will study the EIE
corresponding to the formation of the elongated dihydrogen
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complexes [Ru(H‚‚‚H)(C5Me5)(dppm)]+ andtrans-[Os(H‚‚‚H)-
Cl(dppe)2]+ (dppm) bis(diphenylphosphino)methane; dppe)
1,2-bis(diphenylphosphino)ethane). For the sake of comparison,
the case corresponding to the formation of the dihydrogen
complex W(CO)3(PCy3)2(η2-H2) will also be considered. On the
other hand, it has to be emphasized that, as mentioned above,
the interesting properties of the elongated dihydrogen complexes
arise from the high anharmonicity of the H-H stretching and
that the related vibrational modes are very sensitive to it. As a
consequence, any theoretical calculation of the EIE for these
complexes should include vibrational anharmonicity in a reliable
way. So, the second purpose of this paper is to devise an
effective strategy which allows for the practical calculation of
the anharmonic vibrational levels that influence the EIE in
dihydrogen transition-metal complexes, so that the vibrational
partition functions (and the EIE) can be reliably computed at a
reasonable cost.

II. Calculational Details

As stated in the Introduction, this work is devoted to obtain
equilibrium isotope effects. To this aim we have used a statistical
thermodynamic formulation8 as described in the next section.
The molecular partition functions were first computed within
the ideal gas, rigid rotor, and harmonic oscillator models. Then
a treatment to introduce anharmonicity was employed. A
pressure of 1 atm and a temperature of 300 K have been
assumed in all the calculations. Two different types of quantum
results are required. Electronic structure calculations provide
the geometry of the minimum energy structures and permits to
build up a sizable part of the potential energy surface (PES).
Nuclear motion calculations have been carried out to determinate
vibrational (anharmonic) energy levels and their associated
vibrational wave functions. Some technical details of both sets
of calculations follows.

A. Electronic Structure Calculations. For saving compu-
tational effort some modeling has been made on the experi-
mental complexes. The three cyclohexyl groups in the Kubas
complex were changed by three hydrogen atoms; the C5Me5

unit and the four phenyl groups in the dppm ligand were
substituted by a cyclopentadienyl and four hydrogen atoms,
respectively, in the ruthenium complex; finally, in the osmium
complex the four phenyl groups in the dppe ligand were changed
by four hydrogen atoms. As a result the dihydrogen complexes
that have actually been studied are W(CO)3(PH3)2(η2-H2),
[Ru(H‚‚‚H)(C5H5)(H2PCH2PH2)]+ and trans-[Os(H‚‚‚H)Cl-
(H2PCH2CH2PH2)2]+.

All electronic structure calculations have been carried out with
the GAUSSIAN 98 series of programs.9 To solve the electronic
Schrödinger equation, the density-functional theory (DFT)10

methodology has been used. This methodology meets the
requirements of high accuracy and reasonable cost, and has been
employed with great success to study several organometallic
systems, including dihydrogen and polyhydride complexes.7a,7b,11

The three-parameter hybrid functional of Becke and the Lee,
Yang and Parr’s correlation functional, widely known as
Becke3LYP,12 have been used.

To reduce the cost of the computations an effective core
operator has been used to replace the 60 innermost electrons of

the tungsten atom in the Kubas complex. For the 14 outer
electrons of the metal atom the basis set was that associated
with the pseudopotential of Hay and Wadt13 with a standard
valence double-ê LANL2DZ contraction.14 The basis set for
the hydrogen atoms directly attached to the metal was a double-ê
supplemented with a polarization p shell.15,16 A 6-31G basis
set15 was used for the H atoms attached to a P or a Catom, as
well as for carbon and oxygen atoms. The phosphorus atoms
were described with the 6-31G(d) basis set.17

Most of the electronic results for the two elongated dihydro-
gen complexes have been taken from our previous papers.7a,7b,18

However, a few new electronic calculations have been carried
out for these two complexes using the same level of calculation
described there. That is, an effective core operator replacing
the inner electrons (28 and 60 in the ruthenium and osmium
atoms, respectively), and the basis set associated with the
pseudopotential of Hay and Wadt13 with a standard valence
double-ê LANL2DZ contraction14 for the 16 outer electrons in
both ruthenium and osmium atoms.The basis set for the
hydrogen atoms directly attached to the metal was a double-ê
supplemented with a polarization p shell.15,16 A 6-31G basis
set15 was used for the H atoms attached to a P or a Catom, as
well as for carbon atoms. The phosphorus atoms were described
with the 6-31G(d) basis set.17 For the chlorine atom in the
osmium complex a 6-31G(d) basis set17 was used. Finally, a
6-31G(p) basis set was used for the free hydrogen molecule
whose geometry has been optimized.

The Z-matrices of the minimum energy structures corre-
sponding to the Kubas complex and the elongated dihydrogen
complexes have been obtained from the authors of the ref 19
and from our previous results, respectively.7a,b Geometry
optimizations have been performed using the Schlegel gradient
optimization algorithm using redundant internal coordinates.14,20

For each minimum energy structure analytical second deriva-
tives of the energy with respect to the Cartesian coordinates
have been computed to obtain the frequencies and eigenvectors
associated with each vibrational normal mode within the
harmonic approximation. For complexes described by means
of pseudopotentials this is a new feature included in GAUSSIAN
98.9 For those systems GAUSSIAN 9414 and previous versions
only allow numerical second derivatives calculation by finite
differences of analytically computed first derivatives, this way
involving very time-consuming calculations. The fact that all
the frequencies turn out to be real confirms that the located
points are actual minima of the PES.

The normal modes have been recalculated for each dideu-
terated minimum energy structure in order to obtain the
frequencies and eigenvectors corresponding to the isotopically
substituted species.

B. Nuclear Motion Calculations. As explained in the next
section, introducing the anharmonicity effects in the elongated
dihydrogen transition-metal complexes requires the solution of
the nuclear Schro¨dinger equation (vibrational energy levels and
wave functions) over a suitable PES built up from electronic
calculations. Concretely, we have chosen a two-dimensional PES
as a function of the interatomic distance between the two
hydrogen (deuterium) atoms of the H2 (D2) unit of the complex
and the distance between the metal atom and the point halfway
between those two hydrogen (deuterium) atoms. These two
parameters behave as orthogonal coordinates, in such a way
that no coupled terms between them appear in the nuclear kinetic
operator of the corresponding nuclear Schro¨dinger equation, that
is,

SCHEME 1

Isotope Effect on H2 Binding in M(η2-H2)Ln Complexes J. Phys. Chem. A, Vol. 104, No. 33, 20007899



where x and y stand for the H-H and M-H2 distances,
respectively.

When calculating the PES, global relaxation of the rest of
geometrical parameters has been allowed. Some additional
details concerning the PES are given in the next section.

To solve the nuclear Schro¨dinger equation a discrete variable
representation (DVR)21,22 has been used. This method has
already been applied with success in the field of organometallic
chemistry.7 Computationally, the DVR has great advantages over
the more traditional variational basis representation, in which
the energy levels are obtained by diagonalization of the matrix
representation of the projection of the Hamiltonian operator on
a given basis set. In short, the DVR is a grid-point representation
instead of a basis set representation, and thus it facilitates the
calculation of the potential energy integralsVij. In this repre-
sentation, the potential energy matrix is diagonal,

and the kinetic energy matrix is very simple,

leading to a very sparse Hamiltonian matrix easier to
diagonalize than those coming from a basis set representation,

In this paper the generic DVR proposed by Colbert and Miller22

has been used. Once the grid-point representation of the nuclear
Hamiltonian has been built up, the nuclear energy levels and
wave functions are found through diagonalization of this matrix.
The nuclear wave functionsΨi are obtained as a linear
combination of associated basis functionsφj

whereNp is the total number of points in the grid. In a general
two-dimensional case whose two dimensions are labeledx and
y, φj are functions of the form

beingxm andym the (x, y) coordinates of the grid point associated
with the basis functionφj, and∆x and∆y the spacings in thex
and y directions of the grid. The wave function has to be
normalized prior to any calculation involving it.

III. Results and Discussion

According to the well-known formulas of the statistical
thermodynamics,8 we will calculate the deuterium equilibrium
isotope effect as the equilibrium constant (KH/KD) of the
equilibrium displayed in Scheme 1. For the three cases studied
in this work MLn stands for W(CO)3(PH3)2, [Ru(C5H5)(H2PCH2-
PH2)]+ and trans-[OsCl(H2PCH2CH2PH2)2]+.

A. Harmonic EIE. First of all, within the harmonic ap-
proximation, we have used the molecular partition functions
provided by GAUSSIAN 98 for each chemical species in
Scheme 1 to evaluate the harmonic EIE’s. In addition, we have
decomposed each EIE as the product of three factors: the
translational-rotational contribution (TRANSROT); the factor
corresponding to the contribution of the ground vibrational
states, that is, only including the zero-point energy levels (ZPE);
and the factor that appears when the excited vibrational energy
levels are taken into account (EXC). The corresponding results
are shown in Table 1. Our harmonic EIE for the complex
W(CO)3(PH3)2(η2-H2) turns out to be inverse, although numeri-
cally is somewhat lesser (that is to say, the isotope effect turns
out to be more intense) than the value calculated by Bender,
Kubas, Hoff and co-workers4 from the infrared spectra. The
difference stems fundamentally from the ZPE factor, which is
the main responsible of the inverse behavior. On the other hand,
the complexes [Ru(H‚‚‚H)(C5H5)(H2PCH2PH2)]+ and trans-
[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+ also give inverse harmonic
EIE’s, with figures that do not qualitatively differ from those
corresponding to the Kubas complex. Then, our theoretical
results seem to confirm the inverse deuterium EIE as a rule for
the formation of the transition-metal dihydrogen complexes, at
least within the harmonic approximation.

B. Anharmonic EIE. We wondered what the effect of the
anharmonicity on the EIE’s would be, specially for the elongated
dihydrogen complexes. Theoretical harmonic vibrational fre-
quencies are, in general, overestimated23 because of incomplete
incorporation of electron correlation, the use of finite basis sets
and, as a major source of error, the neglect of anharmonicity
effects. For this reason, scaling factors are often applied prior
to the use of the frequencies in the EIE calculations. Scaling
factors for obtaining fundamental vibrational frequencies, low-
energy vibrations, zero-point vibrational energies and thermal
contributions to enthalpy and entropy from theoretical harmonic
frequencies have been determined by Scott and Radom24 by
fitting to experimental values. To our knowledge, no scaling
factors have been explicitly developed for calculating isotope
effects through vibrational partition functions. Perhaps the
scaling factors recommended for the prediction of the zero-
point vibrational energies or the thermochemical quantities, at
the Becke3LYP/6-31G(d) level, could be appropriate (0.9806,
0.9989, and 1.0015 for the zero-point vibrational energies, the
thermal contribution to enthalpy and the thermal contribution
to entropy, respectively).24 Note that in this formalism we are
looking for anharmonically corrected frequencies that provide
good results when used in the harmonic expression of the
vibrational partition function. As a matter of fact this is the
approach adopted by Bender, Kubas, Hoff and co-workers4 when
introducing the measured vibrational frequencies from the
infrared spectra (and so including anharmonicity) in the
harmonic treatment of Bigeleisen and Goeppert-Mayer.5 How-
ever, we decided not to use any scaling factors in this paper for
two reasons. First of all, the above indicated scaling factors are
very close to one and they do not appreciably modify the
calculated EIE’s indicated in Table 1. Second, those scaling
factors have not been fitted to reproduce properties of transition
metal complexes and even less to account for the high degree
of anharmonicity found in the elongated dihydrogen complexes.

Instead of calculating anharmonically corrected frequencies,
in the present paper we will try to determine directly the
anharmonic vibrational energy levels. Assuming an independent
normal-mode framework (i.e., no mode-mode coupling), the
vibrational partition function of the molecule is separable as a
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product of the contributions corresponding to each individual
normal mode. The potential energy along a single mode could
be expanded in a series of powers of the associated normal
coordinate with coefficients given by the second, third, fourth
and higher numerical directional derivatives of the potential
energy along the normal-mode direction. If the vibrational
energy levelsEi

m of the one-dimensional potential energy along
the mode m can be determined in some way, the vibrational
partition function for mode m (qm) can be calculated as

wherekB is the Boltzmann’s constant. To avoid the calculation
of high numerical derivatives (with the associated lack of
accuracy) it is better to build up a one-dimensional potential
energy surface as a function of each normal coordinate. Then
we can solve the nuclear Schro¨dinger equation by means of
the DVR method to find the vibrational energy levels, which
incorporate the anharmonicity associated with each normal mode
in a natural way.

Our three dihydrogen transition-metal complexes have be-
tween 17 and 28 nuclei, what implies dealing with 45-78
vibrational normal modes. Application of the above outlined
procedure to each normal mode is a task out of reach. Instead,
to account for the anharmonicity in a practical way, we propose
an attainable strategy that works in the following fashion:

(a) The most anharmonic vibrational normal modes are
previously chosen (they will be called anharmonic modes from
here on).

(b) For each anharmonic normal mode a one-dimensional PES
as a function of the corresponding normal coordinate is built
up.

(c) The DVR method is used to solve the nuclear Schro¨dinger
equation over the PES associated with each anharmonic normal
mode, therefore obtaining the corresponding anharmonic vi-
brational energy levels.

(d) The anharmonic vibrational partition function for each
anharmonic normal mode is computed through eq 7.

(e) The anharmonic vibrational partition function of the
molecule is calculated as a product of the anharmonic vibrational
partition functions corresponding to the anharmonic normal
modes and the harmonic vibrational partition functions corre-
sponding to the remaining normal modes (the ones that can be
considered harmonic modes). As a matter of fact, this is done
by substituting the original harmonic contributions of the
anharmonic modes in the totally harmonic vibrational partition
function of the molecule by their corresponding anharmonic
vibrational partition functions.

What are the main sources of anharmonicity in the dihydrogen
transition-metal complexes that can influence the EIE’s? Indeed
they will be associated with the dihydrogen ligand. Owing to
the large mass difference between the light hydrogen (or
deuterium) nuclei and the heavy rest of the complex, the normal
modes involving the hydrogen (or deuterium) nuclei consist
fundamentally of their motion. There are 6 such vibrational
modes.4 The associated normal coordinates can be defined from

suitable displacement coordinates adapted to symmetry, which
are pictured in Figure 1. These symmetry coordinates correspond
to the unique vibrational mode (the H-H stretching) and the
lost translational and rotational degrees of freedom for free
hydrogen. Assuming that the hydrogen nuclei move under the
field of a heavy point center (MLn) formed by the rest of the
complex, their symmetry point group isC2V. Figure 1 also shows
the irreducible representation to which each symmetry coordi-
nate belongs. There are two totally symmetrical coordinates (A1),
two coordinates with symmetry species B1, one B2 symmetry
coordinate and one A2 symmetry coordinate. Each normal
coordinate has to be a linear combination of the symmetry
coordinates that belong to the same irreducible representation
of this normal coordinate. For instance, the normal coordinates
of the two A1 modes are linear combination of the two A1

symmetry coordinates (the H-H stretching and the symmetric
M-H2 stretching).

The major anharmonicity effect is probably related to the
H-H stretching (specially for the elongated dihydrogen com-
plexes), which participates in the two A1 normal modes. Then
both A1 normal modes have to be considered as anharmonic
modes in the sense defined above. In addition, it is expected
that anharmonicity couples significantly the two modes of the
same symmetry. Therefore, we will assume the independent
normal-mode framework neglecting all the mode-mode cou-
plings but the coupling between the two A1 modes, that will
not be separated in our treatment. This assumption slightly
modifies the above introduced a-e working scheme, in the sense
that both anharmonic normal modes are studied together over
a two-dimensional PES as a function of the two symmetry
coordinates that define the corresponding normal coordinates.
This leads to a two-dimensional anharmonic vibrational partition
function that will substitute the two original one-dimensional
harmonic contributions of the anharmonic modes in the har-
monic vibrational partition function of the molecule, in this way
leading to the anharmonic vibrational partition function of the
molecule.

A series of electronic structure calculations have been
performed to construct the two-dimensional PES for the complex
W(CO)3(PH3)2(η2-H2). A collection of 120 points, each corre-
sponding to a different set of H-H and W-H2 distances, has

TABLE 1: Harmonic EIE’s and Contributions to Them

W(CO)3(PH3)2(η2-H2) [Ru(H‚‚‚H)(C5H5)(H2PCH2PH2)]+ trans-[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+

TRANSROT 5.519 (5.77) 5.470 5.553
ZPE 0.131 (0.20) 0.135 0.189
EXC 0.675 (0.67) 0.729 0.665
EIE 0.486 (0.78) 0.538 0.696

Numbers in parentheses correspond to the values calculated by Bender, Kubas, Hoff and co-workers from the infrared spectra.

Figure 1. Symmetry coordinates associated with the dihydrogen ligand
along with their irreducible representation in aC2V symmetry point
group. For the three cases studied in this work MLn stands for W(CO)3-
(PH3)2, [Ru(C5H5)(H2PCH2PH2)]+ andtrans-[OsCl(H2PCH2CH2PH2)2]+.
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been calculated. The ranges covered have been from 0.6 to 2.0
Å for the H-H distance, and from 1.4 to 2.5 Å for the distance
between the tungsten atom and the midpoint halfway between
the two hydrogen atoms. The resulting points have been fitted
into a two-dimensional cubic splines functional form,25 which
is a smooth and continuous function. Figure 2 depicts the two-
dimensional PES as a contour plot.

Analogous two-dimensional PES′ were built up for the two
elongated dihydrogen complexes in two previous papers.7a,bFor
the complex [Ru(H‚‚‚H)(C5H5)(H2PCH2PH2)]+ the range for the
H-H distance covered from 0.59 to 2.29 Å, while the Ru-H2

distance covered from 1.00 to 2.20 Å. As for the complextrans-
[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+, the intervals were from 0.6
to 2.2 Å and from 1.0 to 2.2 Å for the H-H and the Os-H2

distances, respectively. From those two works we have borrowed
the corresponding fitted two-dimensional cubic splines. The
PES′ for the complexes [Ru(H‚‚‚H)(C5H5)(H2PCH2PH2)]+ and
trans-[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+ turn out to be quali-
tatively similar and for the sake of conciseness only the second
one has been pictured in Figure 3.

Comparison between Figures 2 and 3 discloses important
differences. The first one concerns to the position of the
minimum energy structure. For the Kubas complex it is found
at d(H-H) ) 0.832 Å andd(W-H2) ) 1.872 Å, whereas the
corresponding values of the minimum energy structure for the
complextrans-[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+ are 1.071 and
1.567 Å, respectively. However, the most important point is
the shape of the PES in the region next to the minima. Around
the minimum energy structure of the Kubas complex, a normal
dihydrogen complex, the potential energy valley is quite parallel
to the W-H2 axis with a trend to curve along the H-H direction
as the W-H2 distance shortens (Figure 2). As a consequence,
the two normal modes of A1 symmetry, although mixed to some
extent (as already pointed out by Bender, Kubas, Hoff and co-
workers4), can be still identified, respectively, with the two A1

symmetry coordinates. That is to say, one normal mode is
basically the H-H stretching and the other one is essentially
the symmetric M-H2 stretching. This is, probably, a common
feature of the normal dihydrogen transition-metal complexes.
The scenario for thetrans-[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+

clearly differs (Figure 3). In this case the potential energy valley
surrounding the minimum energy structure is oblique, in such

a way that none of the two A1 normal modes can be identified
at all with one of the A1 symmetry coordinates depicted in
Figure 1. Along the normal mode that is roughly parallel to the
energetically smooth oblique valley, the stretching of the H-H
bond leads to shortening of the M-H2 distance, and vice versa.
On the other hand, the other normal mode is orthogonal to the
first one and consists of the simultaneous stretching (or
compression) of both the H-H bond and the M-H2 distance.
Apart from the obliqueness of the two A1 normal modes that
imposes a global treatment, this valley is highly anharmonic,
this being a crucial factor in determining the interesting
properties of the elongated dihydrogen transition metal-
complexes.

Once the two-dimensional cubic splines that define the PES′
have been obtained, the corresponding nuclear Schro¨dinger
equations can be solved using the DVR method. First of all, a
certain reduced mass has to be assigned to each degree of
freedom in the Hamiltonian. As in our previous works,7a,b,18

the reduced masses for the motion along the symmetry
coordinates have been calculated (for the perprotio complexes)
as

Note that the reduced masses of the dideuterated complexes
can be calculated in an analogous way. Then, the matrix
representation of the nuclear Hamiltonian over a rectangular
grid of equally spaced points has been constructed. Different
sizes of each grid have been tested until convergence of the
energy levels has been achieved. The characteristics of the final
grids chosen for the different systems have been as follows:
35 × 27 ) 945 for both the perprotio and the dideuterated
complexes W(CO)3(PH3)2(η2-H2); 29 × 21 ) 609 for both the
perprotio and the dideuterated complexes [Ru(H‚‚‚H)(C5H5)-
(H2PCH2PH2)]+; and 33× 25 ) 825 and 37× 27 ) 999 for
the perprotio and the dideuterated complexestrans-[Os(H‚‚‚H)-
Cl(H2PCH2CH2PH2)2]+, respectively (the format used is: num-
ber of points along the H-H coordinate× number of points

Figure 2. Contour plot of the two-dimensional potential energy surface
for the complex W(CO)3(PH3)2(η2-H2). Distances are given in Å. Energy
contours appear every 5 kcal/mol. The arrows indicate the position of
the minimum energy structure (d(H-H) ) 0.832 Å andd(M-H2) )
1.872 Å).

Figure 3. Contour plot of the two-dimensional potential energy surface
for the complextrans-[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+. Distances are
given in Å. Energy contours appear every 5 kcal/mol. The arrows
indicate the position of the minimum energy structure (d(H-H) ) 1.071
Å and d(M-H2) ) 1.567 Å).
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along the M-H2 coordinate) total number of points). Diago-
nalization of the corresponding 6 matrices provides the 6 sets
of vibrational wave functions (eigenvectors) and anharmonic
energy levels (eigenvalues). These energy levels permit the
calculation of the anharmonic vibrational partition function of
each molecule according to the procedure outlined above and
then the anharmonic EIE’s are obtained.

Table 2 exhibits the anharmonic EIE’s and their decomposi-
tion in factors (evidently the TRANSROT contribution is the
same as in Table 1). Comparison of Tables 1 and 2 shows that
anharmonicity does not significantly alter the EXC factor. The
important changes only concern the ZPE factor. For the complex
W(CO)3(PH3)2(η2-H2) anharmonicity augments just slightly the
ZPE contribution and, therefore, the EIE. The anharmonic EIE,
still clearly inverse, is somewhat closer to the experimental
values than the harmonic EIE. Taking into account the range
of uncertainty of the experimental values4 (0.78 from infrared
spectra or 0.70( 0.15 from displacement of N2) and that
anharmonicity has been only partially incorporated, the agree-
ment is rather good. Anyway, we have shown that anharmonicity
tends to favor the addition of H2. This effect is magnified in
the two highly anharmonic elongated dihydrogen complexes.
The anharmonic EIE’s for the complex [Ru(H‚‚‚H)(C5H5)-
(H2PCH2PH2)]+ and, specially, for the complextrans-[Os-
(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+ (even more anharmonic than the
complex of ruthenium) become clearly normal. Then, we predict
theoretically that the deuterium equilibrium isotope effect for
the addition of molecular hydrogen to a transition-metal complex
leading to the formation of [Ru(H‚‚‚H)(C5H5)(H2PCH2PH2)]+

or trans-[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+ is clearly normal.
That is to say, H2 binds better than D2 to both [Ru(C5H5)-
(H2PCH2PH2)]+ and [OsCl(H2PCH2CH2PH2)2]+, and this con-
clusion is probably general for the formation of any elongated
dihydrogen transition metal complex.

Why anharmonicity tends to favor the addition of H2? Isotopic
substitution by deuterium lowers the vibrational energy levels
corresponding to normal modes that consist fundamentally of
motion of hydrogen nuclei, that is, the 6 normal modes
associated with the dihydrogen ligand (Figure 1). The key is
that the larger the anharmonicity of the normal modes sensitive
to the isotopic substitution in the dihydrogen complex, the
smaller the gap between the equivalent HH and DD vibrational
energy levels. Along the addition, the change in the HH/DD
zero-point energy gap for the normal mode corresponding
originally to the H-H (D-D) stretching in the free hydrogen
molecule gives a normal ZPE factor (a value greater than unity).
This effect is larger as the HH/DD gap is smaller in the
dihydrogen complex. On the contrary, conversion of the 5
translational and rotational modes in free hydrogen to vibrational

normal modes in the dihydrogen complex leads to an inverse
ZPE factor (a value smaller than unity), this effect being smaller
as the HH/DD gap is more reduced in the dihydrogen complex.
As a consequence of all this, anharmonicity increases the
numerical values of the ZPE factors associated with the
dihydrogen ligand (the normal and inverse factors become more
normal and less inverse, respectively), so tending to produce a
normal EIE. This effect is so important in the highly anharmonic
elongated dihydrogen transition-metal complexes that the EIE
becomes normal.

Finally, we have to remark that the anharmonic corrections
calculated in this paper are based on a two-dimensional
approach. Indeed, this reduction of dimensionality is a limitation.
However, the results obtained at the 2D approximation sounds
reasonable. As a matter of fact, the major source of anhar-
monicity is related with the H-H stretching, which participates
in the two A1 normal modes. Given the size of the systems,
inclusion of more dimensions (B1 normal modes) would be out
of reach. On the other hand, incorporation of coupling would
be desireable but it is not probably necessary in order to obtain
a reasonable prediction that can be useful for experimentalists.

C. Thermodynamic Functions. We have calculated the
thermodynamic functions at 300 K corresponding to the
equilibria of the type pictured in Scheme 1. The harmonic values
are obtained from the harmonic molecular partition functions
according to the suitable statistical thermodynamic formulas.8

We have determined the anharmonic values by substituting in
the corresponding expressions the contributions of the two
original one-dimensional harmonic vibrational partition functions
of the two anharmonic modes by the contribution of the two-
dimensional anharmonic vibrational partition function. Results
are shown in Table 3. Note that∆H also gives the reaction
enthalpy difference (∆∆H) between the addition of H2 to a
transition-metal complex leading to the formation of a dihy-
drogen complex and the corresponding addition of D2. The same
is true for the entropy and the Gibbs energy.

For the complex W(CO)3(PH3)2(η2-H2) it is clear that, as
already found by Bender, Kubas, Hoff and co-workers,4 D2

binding is enthalpically favored over H2 binding, but it is
disfavored entropically. Anharmonic values are somewhat closer
to the experimental thermodynamic functions (∆H ) 0.64 kcal
mol-1 and ∆S ) 1.7 cal mol-1 K-1), the agreement being
excellent. Our corresponding EIE’s (see above) have been
apparently not so good in comparison with the experimental
results, but it has to be recalled that EIE’s are measured as
equilibrium constants, that is, as exponential functions of∆G
and, indeed, they are much more sensitive to small errors
(theoretical or experimental). On the other hand, anharmonicity
lowers the endothermicity of equilibria indicated in Scheme 1

TABLE 2: Anharmonic EIE’s (see text) and Contributions to Them

W(CO)3(PH3)2(η2-H2) [Ru(H‚‚‚H)(C5H5)(H2PCH2PH2)]+ trans-[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+

TRANSROT 5.519 5.470 5.553
ZPE 0.143 0.323 0.505
EXC 0.676 0.689 0.601
EIE 0.534 1.217 1.685

TABLE 3: Thermodynamic Functions (300 K) Corresponding to the Equilibria of the Type Pictured in Scheme 1a

W(CO)3(PH3)2(η2-H2) [Ru(H‚‚‚H)(C5H5)(H2PCH2PH2)]+ trans-[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+

har anhar har anhar har anhar

∆Hb 0.906 0.871 0.912 0.350 0.688 0.041
∆Sc 1.587 1.663 1.806 1.555 1.584 1.157
∆Gb 0.431 0.373 0.370 -0.117 0.216 -0.314

a Har and Anhar stand for the Harmonic and Anharmonic aproximations, respectively.b In kcal‚mol-1. c In cal‚mol-1‚K-1
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because it also reduces the gap among the equivalent HH and
DD vibrational energy levels in the dihydrogen complexes. This
effect is again highly amplified in the two elongated dihydrogen
complexes, for which that endothermicity becomes quite small
(only when anharmonicity is introduced). In these cases the
entropic term (-T∆S) dominates at this temperature and the
EIE becomes normal. It becomes manifest that anharmonicity
is cleary required to describe correctly the thermodynamic of
the process for the elongated dihydrogen transition-metal
complexes.

D. Anharmonic Vibrational Wave Functions. A final point
concerns the anharmonic vibrational wave functions obtained
as eigenvectors of the DVR matrices. For the sake of brevity,
we will only comment the vibrational wave functions corre-
sponding to the perprotio complexes W(CO)3(PH3)2(η2-H2) and
trans-[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+. Figures 4 and 5 present
the contour plots of the wave functions associated with the
ground vibrational state and the first excited states for both the
Kubas complex and the elongated dihydrogen complex, respec-
tively. The ground wave function spreads on the low-energy
basin around the minimum energy structure on the PES.
Conversely, excited wave functions tend to progressively expand
toward higher energy regions. As a matter of fact the wave
functions reflect the shape of the corresponding PES. So, the
ground wave function for the Kubas complex surrounds rather
symmetrically the minimum (compare Figures 2 and 4), showing
a slight deviation along the H-H direction as the W-H2

distance shortens. The wave functions associated with the first,
second and third excited states present one, two and three nodal
lines, respectively. These states are all vibrationally excited states
corresponding to progressive excitations of the normal mode
that is basically the W-H2 stretching which is the direction
with smoothest slope around the minimum on the PES.
However, the progressive expansion of the excited wave

functions along the H-H direction suggests that the symmetric
W-H2 stretching normal mode mixes more and more with the
H-H stretching normal mode as the order of the excitation
grows. On the other hand, the fourth excited state displays only
one (although somewhat sinuous) nodal line and corresponds
to the first excitation of the H-H stretching normal mode (the
steepest direction around the minimum on the PES). In this case
an important mixing with the symmetric W-H2 stretching
normal mode is present as indicated by the expansion of the
wave function along the W-H2 direction.

The scenario is different for the complextrans-[Os(H‚‚‚H)-
Cl(H2PCH2CH2PH2)2]+. In this case, the ground and the excited
wave functions spread along the energetically smooth, long
oblique valley (compare Figures 3 and 5). The first and second
excited states possess one and two nodal lines, respectively,
roughly perpendicular to the major axis of the almost elliptic
valley. These states are vibrationally excited states corresponding
to progressive excitations of the normal mode roughly parallel
to the valley. On the other hand, the third excited state has only
one nodal line approximately along the major axis of the valley
and corresponds to the first excitation of the second A1 normal
mode (the one that vibrates along the steepest direction). It has
to be underlined that, for the elongated dihydrogen complexes,
the degree of coupling between both A1 normal modes does
not seem to change as the order of the excitation goes up, at
least for the lower excited states analyzed here.

IV. Conclusions

In this paper we have theoretically calculated the deuterium
equilibrium isotope effect for the binding of H2 and D2 to three
dihydrogen transition-metal complexes: W(CO)3(PCy3)2(η2-H2),
[Ru(H‚‚‚H)(C5Me5)(dppm)]+ andtrans-[Os(H‚‚‚H)Cl(dppe)2]+.
Concretely, we have taken the complexes W(CO)3(PH3)2(η2-
H2), [Ru(H‚‚‚H)(C5H5)(H2PCH2PH2)]+ and trans-[Os(H‚‚‚H)-
Cl(H2PCH2CH2PH2)2]+, respectively, as realistic models of
them. The last two complexes are known to be elongated
dihydrogen complexes for which the high anharmonicity related
to the H-H stretching is a crucial feature that determines many
of their special properties. In this paper, we propose an attainable
strategy to account for the effects of anharmonicity in a practical
and reliable way. In short, the procedure consists of using a

Figure 4. Contour plots of the vibrational wave functions associated
with the ground vibrational state (G) and the first (1), second (2), third
(3) and fourth (4) excited states for the complex W(CO)3(PH3)2(η2-
H2). Distances are given in Å. (+) and (-) refer to the sign of the
vibrational wave function in order to indicate where the nodes are.

Figure 5. Contour plots of the vibrational wave functions associated
with the ground vibrational state (G) and the first (1), second (2) and
third (3) excited states for the complextrans-[Os(H‚‚‚H)Cl(H2PCH2-
CH2PH2)2]+. Distances are given in Å. (+) and (-) refer to the sign of
the vibrational wave function in order to indicate where the nodes are.
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discrete variable representation to solve the nuclear Schro¨dinger
equation on the potential energy surface built up along the most
anharmonic vibrational normal modes. This provides the cor-
responding anharmonic vibrational energy levels and, from them,
an anharmonically corrected vibrational partition function of
the molecule can be calculated. This partition function is not
the complete anharmonic partition function of the molecule yet,
but it contains the anharmonicity contributions corresponding
to the considered modes.

We have proven, within the pure harmonic approach, that an
inverse deuterium equilibrium isotope effect is found for the
three complexes. However, anharmonicity tends to favor the
H2 binding. Anharmonicity in the complex W(CO)3(PH3)2(η2-
H2) is not important enough to change the preference for D2

binding (in good agreement with the experimental results), but
the deuterium equilibrium isotope effect is clearly normal for
the binding in [Ru(H‚‚‚H)(C5H5)(H2PCH2PH2)]+ and trans-
[Os(H‚‚‚H)Cl(H2PCH2CH2PH2)2]+. This is the first time that
the preference for the binding of H2 is predicted in elongated
dihydrogen transition-metal complexes. This result opens new
possibilities to separate hydrogen isotopes at room temperature
on metal complexes that reversibly bind molecular hydrogen
so that experimental work devoted to proving that theoretical
prediction would be very interesting

Finally, it has to be emphasized that anharmonicity has to be
taken into account in order to reproduce and theoretically predict
the experimental results concerning many properties of dihy-
drogen and, probably, polyhydride transition-metal complexes,
specially in what concerns the isotope effects. Since experi-
mental results in this field are not easy to obtain, we think that
the theoretical procedure we propose here can be very useful
to clarify many related problems as, for instance, whether
deuterium favors a classical versus a nonclassical site in
transition metal complexes. Work on this topic is now in
progress in our laboratory.
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Experimental determination of the equilibrium isotope effect for the dihydride/dihydrogen tautomerism (EIET)
in the Kubas complex W(CO)3(PCy3)2(η2-H2) has not yet been achieved because of the lack of vibrational
frequencies for the dihydride form. Even so, Bender, Kubas, Hoff, and co-workers3 have estimated a normal
EIET, which predicts that deuterium favors the classical site at 300 K. In this work, EIET for the Kubas
complex tautomerism is theoretically studied by using two levels of calculation. First, the standard harmonic
oscilator approach is used to obtain the harmonic partition functions and the corresponding harmonic EIET,
which turns out to be inverse (0.485 at 300 K). Next, anharmonicity is included in some normal modes in
order to obtain an improved EIET. Following a new scheme developed by our group in a previous work,5

DVR nuclear calculations over bidimensional potential energy surfaces are employed to obtain the associated
anharmonic partition functions and the corresponding anharmonic EIET, which turns out to be also inverse
(0.534 at 300 K). So, theoretical corrected EIET predicts that deuterium favors the nonclassical site at 300 K.

Introduction

Due to its important role in catalytic hydrogenation processes,
the coordination of H2 to a transition metal has been one of the
most studied phenomena in the recent organometallic chemistry.1

Depending on the nature of this interaction, two basic types of
compounds have been found: those where molecular H2

coordinates as a two-electron ligand (nonclassical dihydrogen
complexes) and those where the H-H bond has been broken
to give two one-electron ligands (classical dihydride complexes).
Dihydrogen complexes are often thought as intermediates of
an oxidative addition of the H2 to the metal , but today it is
accepted that in certain cases a tautomeric equilibrium can exist
between the dihydride and the dihydrogen forms (see Scheme
1).

Equilibrium isotope effects (EIE’s) for that tautomerism (eq
1) have been reported,2 but the conclusions diverge to such an
extent that, at the moment, no general rule exists concerning
whether deuterium favors the classical versus the nonclassical
site. Determination of more EIE’s would help to understand
this reaction, but experimental results in this field are not easy
to obtain and, as a consequence, only relatively limited
thermodynamic data are available. This is the case for one of
the Kubas complexes (the first isolated dihydrogen complexes),
whose EIE for the tautomerism has not been strictly resolved
because of the lack of experimental data.

Bender, Kubas, Hoff, and co-workers (BKH) have recently
studied3 the EIE on H2 binding in the dihydrogen complex
W(CO)3(PCy3)2(η2-H2). In that work the measured vibrational
frequencies arising from the corresponding infrared spectra are
used to obtain partition function ratios as described in the general
treatment of equilibrium isotope effects by Bigeleisen and
Goeppert-Mayer.4 Once they have the EIE for the H2 binding

in the Kubas complex, they also try to determine the EIE for
eq 1 (EIET). It can be defined as the quotient between the EIE
for the H2 binding in the dihydrogen form and the EIE for the
H2 binding in the dihydride form. Determining a generic EIET

is quite ambitious if we remind that, up to now, no regular
behavior has been found among all the studied complexes. To
overcome this impasse, BKH employ a particular strategy which
consists of assuming that the EIE for the addition of H2 to the
Vaska’s complex Ir(CO)Cl(Ph3)2 (0.46 at 300 K) is typical for
the (H)2MLn case and that the EIE for Kubas complex W(CO)3-
(PCy3)2(η2-H2) (0.78 at 300 K) is typical for the (H2)MLn case.
This allow them to estimate the EIE in eq 1, EIET ) EIE(2)/
EIE(4), and hence to predict in general a normal EIETsi.e.,
that deuterium favors the classical site at 300 K. Finally, they
try to test the so predicted EIET for the W(CO)3(PCy3)2(η2-H2)
tautomeric equilibrium, but such a validation cannot be achieved
because no vibrational frequencies for the dihydride form are
available.

SCHEME 1
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Starting from this point, our aim is to contribute to the
understanding of the dihydride/dihydrogen tautomerism in the
Kubas complex W(CO)3(PCy3)2(η2-H2) by theoretically obtain-
ing the EIET, strictly defined as EIE(2)/EIE(3). In a first step
we will calculate it within the harmonic approximation. After
that, we will try to improve the results by being more rigorous.
In a previous work5 of our group we concluded that anharmo-
nicity has to be taken into account in order to reproduce and
theoretically predict the experimental results concerning many
properties of dihydrogen and, probably, polyhydride complexes
especially in what refers to isotope effects. Then, in a second
step, we will include anharmonicity to correct some normal
modes in order to obtain a more accurate EIET. This anharmo-
nicity will be introduced by a new scheme derived from quantum
nuclear calculations which has been already successfully applied
to several dihydrogen complexes.5

Calculational Details

In this section we will present the scheme followed to obtain
the results of this study. At the same time, we will establish
the working conditions, that is, the models that have been
assumed, the methods that have been required, and the informa-
tion that has been borrowed from previous works. The whole
process can be divided in two steps: electronic structure
calculations; nuclear motion calculations. Both sets of computa-
tions are detailed here.

A. Electronic Structure Calculations. In a first step,
electronic structure calculations have been done to find the
geometry of the minimum energy structures, to compute its
molecular partition functions from the harmonic frequencies,
and to build up a sizable part of the potential energy surfaces
(PES). To save computational effort, the complex under study
has been modeled by turning the three cyclohexyl groups into
three hydrogen atoms.

All electronic structure calculations have been carried out with
the GAUSSIAN 98 series of programs.6 To solve the electronic
Schrödinger equation, the density-functional theory7 (DFT)
methodology has been used. This methodology meets the
requirements of high accuracy and reasonable cost and has been
employed with great success in the study of several organo-
metallic systems, including dihydrogen and polyhydride com-
plexes.8,9 The three-parameter hybrid functional of Becke and
the Lee, Yang, and Parr correlation functional, widely known
as Becke3LYP,10 has been used. Geometry optimizations have
been performed using the Schlegel gradient optimization
algorithm using redundant internal coordinates.11,12

To reduce the cost of the computations an effective core
operator has been used to replace the 60 innermost electrons of
the tungsten atom. For the 14 outer electrons of the metal atom
the basis set was that associated with the pseudopotential of
Hay and Wadt13 with a standard valence double-ê LANL2DZ
contraction.11 The basis set for the hydrogen atoms directly
attached to the metal was a double-ê supplemented with a
polarization p shell.14,15 A 6-31G basis set14 was used for the
H atoms attached to a P or a Catom, as well as for carbon and
oxygen atoms. The phosphorus atoms were described with the
6-31G(d) basis set.16

For each minimum energy structure analytical second deriva-
tives of the energy with respect to the Cartesian coordinates
have been computed to obtain the frequencies and eigenvectors
associated with each vibrational normal mode within the
harmonic approximation. For complexes described by means
of pseudopotentials this is a new feature included in GAUSSIAN

98.6 In this thermochemical calculation, molecular partition
functions have also been obtained at 1 atm and 300 K within
the ideal gas, rigid rotor, and harmonic oscillator models.

For the dihydrogen form of the studied complex, the
minimum energy structure and the harmonic molecular partition
functions for the two isotopic versions (H/D) have been taken
from a previous paper of our group.5 For the dihydride form,
the geometry for the minimum energy structure has been taken
from the authors of ref 17, but all the other magnitudes have
been calculated in this work. That dihydride structure accounts17

for both the spectroscopic and the thermodynamic experimental
data.

B. Nuclear Motion Calculations. In this second step, nuclear
motion calculations have been carried out to determine vibra-
tional (anharmonic) energy levels and their associated (anhar-
monic) molecular partition functions.

Anharmonic vibrational energy levels arise from the solution
(eigenvalues) of the nuclear Schro¨dinger equation over a suitable
PES built up from electronic calculations. Hence, previously
to the nuclear motion study, an adequate PES is required for
each minimum energy structure. For the dihydrogen complex,
a two-dimensional PES as a function of the interatomic distance
between the two hydrogen (deuterium) atoms of the H2 (D2)
unit of the complex and the distance between the metal atom
and the point halfway between those two hydrogen (deuterium)
atoms has been taken from our previous work.5 For the dihydride
complex a two-dimensional PES as a function of the interatomic
distance between the metal atom and one of the H(D) atoms
and the interatomic distance between the metal atom and the
other H(D) atom has been constructed. It has to be noted that
the two PES coordinates are different from those of the
dihydrogen form. This is because the molecular symmetry
between the two complexes is different (the criterion we have
used to choose these new coordinates is explained in the next
section). When the PES is calculated, global relaxation of the
rest of geometrical parameters has been allowed.

These two interatomic distances behave as orthogonal coor-
dinates, in such a way that no coupled terms between them
appear in the nuclear kinetic operator of the corresponding
nuclear Schro¨dinger equation; that is,

where x and y stand respectively for the H-H and W-H2

distances in the dihydrogen complex and W-HA and W-HB

distances in the dihydride complex.
To solve the nuclear Schro¨dinger equation the generic discrete

variable representation (DVR) proposed by Colbert and Miller18

has been used. This method has already been applied with
success in the field of organometallic chemistry.8,19 Computa-
tionally, the DVR has great advantages over the more traditional
variational basis representation, in which the energy levels are
obtained by diagonalization of the matrix representation of the
projection of the Hamiltonian operator on a given basis set. In
short, the DVR is a grid-point representation instead of a basis
set representation, and thus, it facilitates the calculation of the
potential energy integralsVij. In this representation, the potential
energy matrix is diagonal,

and the kinetic energy matrix is very simple,

T̂ ) -p2

2µx

∂
2

∂x2
+ -p2

2µy

∂
2

∂y2
(5)

Vii ′ ) δii 'V(xi) (6)
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leading to a very sparse Hamiltonian matrix easier to diagonalize
than those coming from a basis set representation,

Once the grid-point representation of the nuclear Hamiltonian
has been built up and diagonalized, the nuclear energy levels
obtained have been used to calculate the associated two-
dimensional anharmonic vibrational partition function as

wherekB is Boltzmann’s constant and the summatory extends
over all the significantly populated vibrational levels of the 2-D
PES.

The total vibrational partition function is then calculated by
assuming an independent normal mode framework for the rest
of the degrees of freedom (i.e. no mode-mode coupling). In
this case the vibrational partition function is the product ofQanh

with the individual partition functions corresponding to each
additional normal mode. To obtain these individual partition
functions, one-dimensional PES should be built up as a function
of each normal mode. Our transition-metal complex has 17
nuclei, which implies dealing with 45 vibrtional modes. Ap-
plication of this procedure to each normal mode is a task out
of reach. To simplify the calculations we have assumed that all
the modes except the ones included inQanhbehave as harmonic
oscillators. This assumption is reasonable if most of the
anharmonic correction comes from the two modes chosen to
define the 2-D PES and, in any case, provides a first approxima-
tion to the total anharmonic vibrational partition function of
the molecule.

Results and Discussion

In this section we will present the results obtained from the
electronic and nuclear calculations. As we outlined in the
Introduction, the discussion will be centered on the understand-
ing of the EIE and it will be presented as follows: In a first
step, we will consider the harmonic EIE obtained by the standard
approach, and in a second step, we will analyze the anharmonic
EIE obtained by following our new procedure.

According to the well-known formulas of the statistical
thermodinamics,20 the deuterium equilibrium isotope effect has
been calculated as the equilibrium constant of the equilibrium
displayed in eq 1. This equilibrium can also be described as eq
2/eq 3, and hence, the EIET has been obtained and presented as
EIE(2)/EIE(3), that is, as the quotient between EIE for the
dihydrogen formation and the EIE for the dihydride formation.

A. Harmonic EIE. First of all, within the harmonic ap-
proximation, we have used the molecular partition functions
provided by GAUSSIAN 98 for each chemical species in Figure
1 to evaluate the harmonic EIE’s. In addition, we have
decomposed each EIE as the product of three factors: the
translational-rotational contribution (TRANSROT); the factor
corresponding to the contribution of the ground vibrational
states, that is, only including the zero-point energy levels (ZPE);
the factor that appears when the excited vibrational energy levels
are taken into account (EXC). The corresponding results are
shown in Table 1.

The DFT-calculated harmonic EIE for the dihydrogen forma-
tion turns out to be inverse, although numerically is somewhat
lesser (that is to say, the isotope effect turns out to be more
intense) than the value calculated by BKH3 from the infrared
spectra. The difference stems fundamentally from the ZPE
factor, which is the main responsible of the inverse behavior,
but that variation is not large enough to be considered a
qualitative disaccord. On the other hand, the dihydride formation
hardly gives harmonic isotope effect. This is a little surprising
if we think that the dihydride complex is almost the same
molecule as the dihydrogen one. What has changed? The reason
seems to reside on a structural alteration. The dihydrogen
structure has aC2V geometry. In turn, the dihydride structure
can be described as a pentagonal-bipyramidalCs complex with
axial carbonyls and the two hydrides lying in the equatorial plane
being separated by a phosphine ligand17 (see Figure 1). The
P-W-P angle (136.6˚) seems large enough to accommodate
encumbered phosphines such as PCy3. In that structure, the two
H’s cannot be considered as a H2 unity, and hence, the H-H
stretching as such is not a symmetry coordinate contributing to
a normal mode anymore. Another result of that coordination
change is that the hydrogen motion appears to be more spread
out among the normal modes. It participates in a larger number
of normal modes, and furthermore, it is more coupled with the
motion of the rest of the atoms of the molecule. As a
consequence, the relative contribution of the H motion in the
dihydride vibrations is less than in the dihydrogen vibrations,
and therefore, the normal modes are, in general, less sensitive
to the isotopic substitution. That is, the EIE is less important.

Finally, we obtain an inverse EIET (EIE for the tautomerism)
that differs from the normal EIE predicted by BKH3, at least
within the harmonic approximation. This is not an inconsistency
if we bear in mind that they estimate EIET as EIE(2)/EIE(4),
that is, mixing two different complexes: W(CO)3(PCy3)2(η2-
H2) as a typical dihydrogen and (H)2Ir(CO)Cl(PPh3)2 as a typical
dihydride.

B. Anharmonic EIE. As we have previously seen, the first
thing we need to do to be able to calculate the anharmonic EIE
is to choose which normal modes are to be corrected. A priori,
it is not possible to know with certainty which are the most
anharmonic normal modes in a molecule, but if we focus on
the normal modes which can influence the EIE, we obviously
have to consider those associated with the dihydrogen or
dihydride ligand.

In the dihydrogen complex the major anharmonicity effect
is probably related to the H-H stretching. This motion and the

Figure 1. Relevant symmetry coordinates associated with the dihy-
drogen and the dihydride complexes.

Tii ′ )
p2(-1)i-i′

2µx∆x2 {π2/3 i ) i′

2

(i - i′)2 i * i′ } (7)

Hij,i 'j' ) Tii 'δjj ' + Tjj 'δii ' + δii 'δjj 'V(xi, yj) (8)

Qanh) ∑
j

e-Ej/kBT (9)

4678 J. Phys. Chem. A, Vol. 105, No. 19, 2001 Torres et al.



W-H2 stretching are the two A1 symmetry coordinates associ-
ated with the dihydrogen ligand5 and are pictured in Figure 1.
Then, the A1 normal modes derived from these symmetry
coordinates have to be considered as anharmonic modes in the
sense defined above. In addition, since that anharmonicity
couples significantly the two modes of the same symmertry,
the independent normal mode framework has been assumed
neglecting all the mode-mode couplings but the coupling
between the two A1 modes that has not been separated. On the
other hand, in the dihydride complex the reorganization of the
ligands leads to a loss of symmetry and, hence, to a change in
the normal modes. Since there is a phosphine between, the two
H’s behave as independent ligands and not as a H2-bound
molecule. For that reason H-H stretching is not a representative
component of the normal modes in the dihydride complex, and
consequently, it has not been used as a symmetry coordinate.
Among the normal modes that include the motion of the two
hydrogen atoms, those where heavy atom motions are negligible
have been chosen as the anharmonic modes to be corrected
(Figure 1) and, as in the dihydrogen case, not to be separated
by the independent normal mode framework. In both dihydrogen
and dihydride cases, the two normal modes chosen have been
studied together over a two-dimensional PES.

The two-dimensional PES for the dihydrogen complex was
already presented in a previous paper as a function of the two
symmetry coordinates.5 A collection of 120 electronic structure
calculations, each corresponding to a different set of H-H and
W-H2 distances, covered ranges from 0.6 to 2.0 Å for the H-H
distance and from 1.4 to 2.5 Å for the W-H2 distance. The
resulting points were fitted into a two-dimensional cubic splines
functional form,21 which is a smooth and continuous function.
Figure 2 depicts the two-dimensional PES as a contour plot.5

For the dihydride complex a two-dimensional PES has been
built up by calculating 56 points, each one corresponding to a
different set of W-HA and W-HB distances, covering ranges
from 1.5 to 2.2 Å for the W-HA distance and from 1.5 to 2.1
Å for the W-HB distance. These 56 points are necessary to
cover the PES until an energy of at least 10 kcal/mol above the
minimum is reached. Since the two hydride ligands are not
equivalent, the extent of the W-HA distance and the W-HB

distance is not exactly the same. It has to be noted that, in this
case, the symmetry coordinates used to represent the anharmonic
normal modes do not coincide with the axes of the bidimensional
PES but with its two diagonals. It has been necessary to expand
this PES made of electronic structure calculations. The reason
is that DVR results are sometimes difficult to converge due to
the fictitious energy gap present at the edge of the PES (the
method works as if there were an infinite potential wall at the
border). To save computational effort, this enlargement has been
done by using a two-dimensional analytic harmonic potential
that generates the harmonic frequencies of the two corrected
normal modes. The anharmonicity which can affect the EIE is
that of the region next to the minimum. Therefore, the use of
this supplementary harmonic potential is not incompatible with
the introduction of anharmonicity. Figure 3 depicts the resulting
two-dimensional PES as a contour plot.

Comparison between Figures 2 and 3 discloses some remark-
able differences regarding the shape of the two PES in the region
of the minima. The dihydride complex presents a typical
harmonic pattern with the two normal modes, symmetric and
antisymmetric HA-M-HB stretching, being the sum and the
subtraction of the two W-H distances respectively (that is, the

TABLE 1: Harmonic EIE’s and Contributions to Them a

eq 2
H2 + (D2)-WLn h D2 + (H2)-WLn

eq 3
H2 + (D)2-WLn h D2 + (H)2-WLn

eq 1
(D2)-WLn + (H)2-WLn h (H2)-WLn + (D)2WLn

TRANSROT 5.519 (5.77) 5.543 0.996
ZPE 0.131 (0.20) 0.254 0.514
EXC 0.675 (0.67) 0.712 0.948
EIE 0.486 (0.78) 1.002 0.485

a Numbers in parentheses correspond to the values calculated by Bender, Kubas, Hoff, and co-workers3 from the infrared spectra.

Figure 2. Contour plot of the two-dimensional potential energy surface
for the dihydrogen complex W(CO)3(PH3)2(η2-H2). Distances are given
in Å. Energy contours appear every 5 kcal/mol. The arrows indicate
the position of the minimum energy structure (d(H-H) ) 0.832 Å
andd(W-H2) ) 1.872 Å).

Figure 3. Contour plot of the two-dimensional potential energy surface
for the dihydride complex W(CO)3(PH3)2(H)2. Distances are given in
Å. Energy contours appear every 10 kcal/mol. The arrows indicate the
position of the minimum energy structure (d(W-HA) ) 1.788 Å and
d(W-HB) ) 1.753 Å).
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two diagonals of the PES in Figure 3). In view of this shape,
we can expect that the introduction of anharmonicity will not
change significantly the EIE results. Conversely, the potential
energy valley for the dihydrogen complex is almost parallel to
the W-H2 axis with a trend to curve along the H-H direction
as the W-H2 distance shortens (Figure 2). As a consequence,
the two normal modes of A1 symmetry, although mixed to some
extent (as already pointed out by BKH3), can still be identified
respectively with the two A1 symmetry coordinates. That is to
say, one normal mode is basically the H-H stretching and the
other one is essentially the symmetric M-H2 stretching. Unlike
the dihydride, this energy valley shows some anharmonic
character, and hence, in this case we can expect that the
introduction of anharmonicity do will change the EIE results.

Once the potential energy surfaces have been obtained, the
corresponding nuclear Schro¨dinger equations can be solved
using the DVR method. Prior to that, a certain reduced mass
has to be assigned to each degree of freedom in the Hamiltonian.
As in our previous works,7,22 the reduced masses for the motion
along the coordinates have been calculated (for the perprotio
complexes) as

for the dihydrogen complex and

for the dihydride complex. Note that the reduced masses of the
dideuterated complexes can be calculated in an analogous way.
Then, the matrix representation of the nuclear Hamiltonian over
a rectangular grid of equally spaced points has been constructed.
Different sizes of each grid have been tested until convergence
of the energy levels has been achieved. The characteristics of
the final grids chosen for the different systems have been as
follows: 35 × 27 ) 945 for both the perprotio and the
dideuterated dihydrogen complexes and 35× 35 ) 1225 for
both the perprotio and the dideuterated dihydride complexes
(the format used is the following: number of points along the
x coordinate× number of points along they coordinate) total
number of points). Diagonalization of the corresponding ma-
trixes provides the sets of vibrational wave functions (eigen-
vectors) and anharmonic energy levels (eigenvalues). These
energy levels permit the calculation of the anharmonic vibra-
tional partition function of each molecule according to the
procedure outlined in the previous section so that the anharmonic
EIE’s are obtained. The corresponding anharmonic EIE’s are
shown in Table 2.

Table 2 exhibits the anharmonic EIE’s and their decomposi-
tion in factors (evidently the TRANSROT contribution is the
same as in Table 1). Comparison of Tables 1 and 2 shows that
anharmonicity does not significantly alter the EXC factor. The
important changes only concern the ZPE factor. For the
dihydride, no changes appear in the anharmonic EIE(3), which
means that the harmonic approximation is valid to study the
thermochemistry of this complex. For the dihydrogen complex,
instead, anharmonicity augments slightly the ZPE contribution
and, therefore, the EIE(2). The anharmonic EIE(2), still clearly
inverse, is somewhat closer to the experimental values than the
harmonic EIE(2). If one takes into account the range of
uncertainty of the experimental values3 (0.78 from infrared
spectra or 0.70( 0.15 from displacement of N2) and that
anharmonicity has been only partially incorporated, the agree-
ment is rather good. As we saw in our previous work,
anharmonicity tends to favor the addition of H2 because it
weakens the lowering of the vibrational energy levels due to
the isotopic substitution. The larger the anharmonicity of the
normal modes sensitive to the isotopic substitution in the
dihydrogen complex, the smaller the gap between the equivalent
HH and DD vibrational energy levels. Along the addition in eq
2, the change in the HH/DD zero-point energy gap for the
normal mode corresponding originally to the H-H (D-D)
stretching in the free hydrogen molecule gives a normal ZPE
factor (a value greater than unity). On the contrary, conversion
of the 5 translational and rotational modes in free hydrogen to
vibrational normal modes in the dihydrogen complex leads to
an inverse ZPE factor (a value smaller than unity). As a
consequence of all this, anharmonicity increases the numerical
value of the ZPE factor associated with the dihydrogen ligand
(the normal and inverse factors become more normal and less
inverse, respectively), so tending to produce a normal EIE.

The anharmonicity of the dihydrogen complex is reflected
in the anharmonic EIET for the tautomerism. As in the harmonic
results, anharmonic EIET turns out to be inverse, although in a
less extent.

Conclusions

In this work we have theoretically studied the equilibrium
isotope effect for the dihydride/dihydrogen tautomerism (EIET)
in the Kubas complex W(CO)3(PCy3)2(η2-H2). Experimental
determination of this magnitude has not been achieved due to
the lack of vibrational frequencies for the dihydride form. There
is only an estimation by Bender, Kubas, Hoff, and co-workers3

that predicts a normal EIET, that is, that deuterium favors the
classical site at 300 K.

We have first calculated the harmonic EIET arising from the
standard thermodynamic analysis (within the ideal gas, rigid
rotor, and harmonic oscilator models). Prior to that it has been
necessary to characterize the geometry of the minimum energy
structures and to compute its molecular partition functions.
These electronic DFT calculations have given an inverse EIET

) 0.485 at 300 K. In view of the difference from the predicted
normal behavior, a deeper treatment has been done in order to

TABLE 2: Anharmonic EIE’s (See Text) and Contributions to Thema

eq 2
H2 + (D2)-WLn h D2 + (H2)-WLn

eq 3
H2 + (D)2-WLn h D2 + (H)2-WLn

eq 1
(D2)-WLn + (H)2-WLn h (H2)-WLn + (D)2WLn

TRANSROT 5.519 (5.77) 5.543 0.996
ZPE 0.143 (0.20) 0.254 0.563
EXC 0.676 (0.67) 0.710 0.952
EIE 0.534 (0.78) 1.001 0.534

a Numbers in parentheses correspond to the values calculated by Bender, Kubas, Hoff, and co-workers3 from the infrared spectra.
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obtain a more accurated EIET. Beyond the harmonic approach,
nuclear calculations over bidimensional potential energy surfaces
have been performed. Particularly, DVR methodology has been
used to obtain the corresponding vibrational energy levels of
each structure, and finally, following a new scheme developed
by our group in a previous work,5 anharmonic partition functions
have been obtained and used to compute the corrected EIET.
These nuclear calculations have given again an inverse EIET )
0.534 at 300 K. Therefore, although being less inverse than the
harmonic result, the anharmonic EIET also indicates that
deuterium favors the nonclassical site at 300 K. This result
contrasts with the small normal kinetic isotope effect (KIE) for
conversion of the dihydride to the dihydrogen tautomers
measured by Hoff and co-workers.23 However, it has to be
realized that the KIE (a kinetic magnitude) and its corresponding
EIE (a thermodynamic magnitude) can behave in a different
way.

The conclusion outlined above for the Kubas complex is not
a general rule which can be applied to any dihydride/dihydrogen
tautomerism. The EIET has been rigorously calculated here only
for the Kubas complex. Actually, several experimental EIET’s
have been reported2 and conclusions diverge from one complex
to another. It seems that this is such an intricate chemical process
that no direct extrapolation would be valid to make predictions
for whatever dihydride/dihydrogen tautomerism at whatever
temperature. With the aim of understanding the dihydride/
dihydrogen tautomerism, additional experimental and theoretical
studies would be necessary. Work on this topic is now in
progress in our laboratory.
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The Herman–Kluk initial value representation semiclassical approach has been applied, and proven
effective, as well as accurate, to account for the intriguing elongated dihydrogen structure in a
ruthenium coordination complex. Results are satisfactory even though the reduced dimensionality
two-dimensional potential, involving the relevant distances, casts an extremely anharmonic, weakly
bound species, with two exit channels. Comparatively short propagation times, to avoid
complications due to chaotic trajectories, as well as discarding trajectories exiting the effective
potential energy surface, has proven effective to converge results, as indicated by comparison with
quantum mechanical discrete variable representation data. ©2002 American Institute of Physics.
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I. INTRODUCTION

The semiclassical~SC! method has recently undergone
rebirth of interest, especially since it was understood th
thanks to several improvements in its formulation, most
its numerical difficulties could be effectively bypassed. Th
the Herman–Kluk~HK, or coherent state, or minimum un
certainty! version, formulated within the initial value repre
sentation~IVR! of the stationary phase~SP! approximation
to the time evolution propagator, has been proven as a
able, numerically efficient technique for dealing with
wealth of molecular problems.1–5 Its main advantage is th
avoidance of the exponential increase in numerical effort
the number of degrees of freedom increases, typical of qu
tum mechanical formulations of dynamical problem
whereas, at the same time, it is capable of describing q
accurately, quantum effects. These effects, contrary to pr
ous expectations, are becoming more important as new
periments ~with improved time and position resolutio
power! are available.

Among specific applications, one should mention mo
condensed phase problems,6 cumulative reaction probabil
ities,7 femtosecond spectroscopy of I2

2 ,8 molecular energy
transfer,9 thermal rate constant calculations,10 quantum
coherence/decoherence in molecular vibrations,11 as well as
diffraction through a double slit potential barrier coupled to
thermal bath.12,13 These cases, along with several recent i
provements in the methodology,2–5 clearly show that the SC
approach is fastly approaching a widespread use in the s
of molecular problems.

Two specific difficulties, though, still persist, castin
some doubts into the possibility of firmly establishing the S
approach as a routine tool. The first one concerns the hig
7090021-9606/2002/117(15)/7094/8/$19.00
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oscillatory nature of the integrand, which is characteristic
the integral appearing in the SC-IVR approach to the ti
evolution operator. It arises as a consequence of its com
valued origin. The multidimensional character of the in
grand, in addition, forces the use of Monte Carlo sampl
techniques to reduce the computational effort. The sec
difficulty is related to the so-called prefactor since, cor
sponding to a stability~monodromy! calculation, it is found
to take very high values when the motion approaches cha
regimes. In particular, it can be shown that the simple pr
ing of convex regions in the potential energy surface~PES!
suffices to make the prefactor, for long enough time pro
gations, grow up to troublesome values. Actually, a th
difficulty, closely tied to the first, arises in problems wher
e.g., a thermal average is necessary. It corresponds to
difficulty of having a proper weighting function in the Mont
Carlo integration, thus preventing a straightforward exte
sion of the method to truly complex systems.

An intense methodological effort is being devoted t
wards solving the above difficulties. Generalized filteri
procedures have been proposed to reduce the oscillatory
ture of the integrand.2 In addition, a symmetrized form o
flux correlation functions has been recently shown to prov
a well-behaved integral in thermalized problems.5 As for the
prefactor behavior, however, a more effective yet accur
formulation looks still elusive,14 even though some interes
ing progress has been reported recently for noncha
systems.15 Being a direct consequence of the SP approxim
tion ~or, more generally, steepest descent techniques app
to the calculation of complex valued integrands!,16 the pref-
actor plays a decisive role since its value is related to
overall probability of the process under study.17 The issue is
4 © 2002 American Institute of Physics
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7095J. Chem. Phys., Vol. 117, No. 15, 15 October 2002 Initial value representation
that, in present-day applications, one must deal very c
fully with it, otherwise meaningless results, or extreme
slow convergences, might be obtained.

The above discussion will prove of full relevance wh
one considers the kind of application dealt with in t
present work. It consists of the use of the SC methodol
directly to study molecular structure problems, in particu
those concerning the equilibrium geometry of the so-ca
elongated dihydrogen transition metal complexes. The c
plexes which present hydrogen atoms in the coordina
sphere of the metal are currently being classified into t
large groups: those in which the distance between hydro
atoms exceeds 1.6 Å, which have been known for a lo
time and are referred as classical polyhydrides in the lite
ture, and those in which this same distance has a value
tween 0.8 and 1.0 Å, first discovered by Kubas a
which have been known as ‘‘nonclassical dihydrog
complexes.’’18 The difference between both types of com
plexes has faded with time due to the discovery of a serie
complexes whose H–H distances fall between the two ab
mentioned limits.18~c! These complexes, known as elongat
dihydrogen complexes, have been found both in solution
in solid-state structures.

In principle, one may routinely attack the theoretical g
ometry prediction of these elongated complexes by mean
any of the quantum chemistry packages. The issue is th
matter of choosing an optimal strategy for the~approxi-
mated! method of calculation, as well as the electronic ba
set. However, the resulting equilibrium geometry, concern
specifically the H–H distance, clearly fails to explain t
experimental findings, irrespective of the accuracy in
quantum chemistry calculations. In other words,ab initio
calculations did show that the corresponding species
stable, but the electronic potential energy minima was fou
to be at much shorter distances than those correspond
inferred from neutron diffraction measurements.

A plausible explanation was worked out by Gelab
et al.19 By looking at the considerable anharmonicity of t
related bond energy functions, it was argued that the nuc
wave function might possibly peak at distances far from
electronic minimum. Discrete variable representation~DVR!
calculations for a two-dimensional~2D! effective potential
did show the predicted shifting. In addition, such an eff
should be sensitive to population changes in the suppo
vibrational levels, i.e., the geometry had to be, in a mea
able degree, temperature dependent. It was found aga
good agreement~at the semiquantitative level! between the
experimental data and theoretical Boltzmann-weighted a
age positions, at different temperatures.

One may thus finally recap the story by reversing
above discussion. Thus, delocalization of hydrogen nucle
purely quantum mechanical effect originating in strongly a
harmonic bonds, is experimentally detectable in elonga
dihydrogen transition metal coordination compounds.
shows up in the form of equilibrium geometries which e
dence an important mismatch between the actual experim
tal values and the electronic potential energy minima.

From the outset, the present problem looked prosp
tively as a good candidate for being studied under the se
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classical framework. Not only is this the first time, as far
we know, that such a feature has been interpreted semic
sically; this is also a stringent test on the capabilities of
SC-IVR approach. The determination of the equilibriu
structure may be performed semiclassically starting from
SC-IVR time propagation. After a sufficiently long time th
autocorrelation function of the time evolved wave packet
Fourier transformed so as to extract the energy spectrum
well as the corresponding stationary vibrational wave fu
tions. An accuracy check is rigorously available in t
present case, since the 2D PES permitted a previous D
eigenvalue–eigenvector quantum mechanical calculat
The extraction of the energy spectrum from time-evolv
wave packets has been already used in the past,20,21 to study
the rovibrational spectra of strongly, as well as weak
bounded molecules. Here we extend these studies to a
cific molecular structure problem.

Thus, the relevant calculation in the present problem
the wave function amplitude, from which the average po
tion is extracted. This is a well-known problem, so that t
issue here is the numerical performance when obtaining
i.e., are the PES features sufficiently well-behaved to all
for the SC-IVR calculation to converge the position expe
tation value? Certainly, the weakly bound~;20 kcal/mol!
species, along with a rather remarkable anharmonicity of
potential profile~plus the existence of two exiting routes
dissociation/rearrangement!, pose seriousa priori difficul-
ties. On the one hand, the small binding character of the P
together with the two exit channels, make somewhat cu
bersome accumulating bounded trajectories, so as to rea
low enough statistical error. One may argue that this sho
not really be a problem, since the exiting trajectories, be
overlapped with the initial wave packet in the SC-IVR ca
culation, are automatically dropped from contributing to t
phase space average. On the other hand, these exiting tr
tories, jointly to those probing the highly anharmonic regio
of the PES~i.e., trajectories propagated for sufficiently lon
time!, often lead to exceedingly large prefactors that co
taminate the calculation and thus ruin the convergence r

Therefore, succeeding in the present application dram
cally depends on the possibility of reaching a compromise
the number of trajectories needed: it should be large eno
to guarantee proper Monte Carlo statistics, but not as larg
to make the calculation unfeasible. Besides, a similar sit
tion exists for the propagation time; it should be long enou
to improve the resolution of the energy spectrum, but kep
short as possible to avoid prefactor exponential growth as
ciated with chaotic dynamics. Specific results in the pres
work will show that both compromises are possible, ope
tionally, hence opening the way for applying the IVR-S
approach to this kind of problems.

The remainder of the paper has been organized so
Sec. II describes the PES electronic calculation and bri
summarizes how the HK-SC-IVR approach is applied to
present molecular structure problem. Section III shows a
discusses the numerical results, for both the PES and
semiclassical calculations. Finally, Sec. IV concludes.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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II. CALCULATION STRATEGY

A. The potential energy surface

The complex under study is the elongated dih
drogen complex @Ru(H̄ H)(C5Me5)(dppm)#1 (dppm
5bis(diphenylphosphino)-methane), modeled
@Ru(H̄ H)(C5H5)(H2PCH2PH2)#1 in order to save com-
putational effort. Its structure is shown in Fig. 1. Th
electronic structure calculations were performed with
GAUSSIAN 94series of programs,22 the DFT~Ref. 23! formal-
ism being used throughout, with the three-parameter hy
functional of Becke and the Lee, Yang, and Parr’s correlat
functional, widely known as Becke3LYP.24 This methodol-
ogy meets the requirements of high accuracy and reason
cost, and has been employed with great success in the s
of several organometallic systems, including dihydrogen
polyhydride complexes.19,25 An effective core operator wa
used to replace the inner electrons of the ruthenium atom
this way eliminating 28 electrons from the system.26 The
basis set associated with the pseudopotential of Hay
Wadt26 with standard valence double-z LANL2DZ contrac-
tion,22 was used for the remaining electrons of the Ru ato
As for the remaining atoms, the standard split-valence 6-3
basis set was chosen,27 except for~a! the phosphorous atoms
for which the basis set 6-31G(d) was used,28 and ~b! the
hydrogen atoms directly bound to the metal, for which t
6-31G(p) basis was considered.27,29

B. Application of the SC-HK-IVR approach

The basis of the present application is the time propa
tion of an initial wave packet, so that it is allowed to pro
the characteristic features of the PES. One then goes a
parallel to the treatments of linear spectroscopy, e.g.,
forming a Fourier transform of an autocorrelation functi
involving a single-time propagation,

C~ t !5^c i ue2 iHt /\uc i&. ~1!

FIG. 1. Optimized structure for the@Ru(H̄ H)(C5H5)(H2PCH2PH2)#1

complex. Arrows show the two parametersq1 andq2 chosen as a reduction
of the dimensionality of the whole hypersurface.
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It is interesting to note in passing that, involving the calc
lation of an amplitude, rather than a probability, the in
grand in Eq.~1! is complex and contains the important pha
information for quantum effects. But, at the same time,
oscillatory character is the main source of the abo
mentioned convergence problems.

Within the SC-HK-IVR scheme, the time evolutio
propagator is given by

e2 iHt /\5
1

~2p\!F E E dp0dq0Ct~p0q0!

3e~ i /\!St~p0q0!uptqt&^p0q0&, ~2!

whereF52, (p0q0) are the initial positions and momenta
(ptqt) are the corresponding time-evolved variable
St(p0q0) is the classical action,

St~p0q0!5E
0

t

dt8@pq̇2H#, ~3!

whereasuptqt& and ^p0q0u are the coherent state, minimum
uncertainty wave packets at timest and 0, respectively. Fi-
nally, Ct is the Herman–Kluk prefactor, given by

Ct
2522FUMqq1g21M ppg1

i

\
g21M pq1

\

i
MqpgU ~4!

beingMzz8 ~with z,z85p,q! the elements of the monodrom
~stability! matrix

Mzz85
]zt

]z08
. ~5!

In expression~4!, g is a constant related to the width of th
coherent wave packet. The analytical form for the latter,
the position representation, is

^q8upq&5S ugu
p D 1/4

expH 2
1

2
~q82q!Tg~q82q!

1 ipT~q82q!J . ~6!

It is worth noting here that the above formulas become m
simpler if one definesg-scaled coordinates and momenta,

q→g21/2q; p→g1/2p, ~7!

since, e.g., the prefactor now becomes

Ct
2~z0!5U12 ~1,2 i !M S 1

i DU. ~8!

The calculation of the autocorrelation function in Eq.~1!
then involves an overlap between two coherent states, w
in this compact form avoids the explicitg-dependence,

^p0q0upiqi&5expH 2
1

4
~q02qi !

22
1

4
~p02pi !

2

1
i

2
~p01pi !

T~q02qi !J . ~9!

The specific implementation on the SC-HK-IVR approa
has been performed, in the present work, using the l
derivative version of the HK prefactor, whose derivation h
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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been presented elsewhere.12,30 It has the advantage tha
when the Gaussian widths are chosen to match one or se
of the natural frequencies of the system, the occurrenc
branch-cuts in the prefactor calculation is avoided, thus le
ing to a more efficient integration of the equations of motio
since no tracking of the Maslov index31 is necessary.

Finally, a standard Fourier transform of the autocorre
tion function ~1! leads to the desired energy spectrum a
associated eigenfunctions, according to the following exp
sions:

I ~E!5
1

p\
ReE

0

`

eiEt/\^c~0!uc~ t !&e2a2t2dt ~10!

for the energy spectrum, and

uFn&}
1

2T E
2T

T

e~ i /\!Entuc~ t !&dt ~11!

for the eigenfunction associated to thenth eigenvalue.32 In
Eq. ~10!, a Gaussian filtering determined by thea parameter
has been applied, so as to obtain noise-free peaks w
uniquely identify the true eigenvalues of the potential ene
surface.33

Before presenting the results of the calculations, it
interesting to explain how the semiclassical parameters,
widths of the coherent state of the Herman–Kluk propaga
propagation time length, number of times the wave pac
had to be computed during the propagation, as well as
total number of trajectories, were determined.

The initial total energy of a trajectory is crucial in th
present study: if too high, the trajectory will probably esca
from the PES. An escaped trajectory is not representativ
the behavior of the system because it runs out from the P
so that it does not describe the bounded motion character
of a stable chemical species. Furthermore, the weak bon
character of the PES tells that having an excess of in
energy will quite likely occur. Therefore, we had to tun
the wave packet width so as to minimize the total energy
the initial wave packet, in order to have as few runaw
trajectories as possible. After the corresponding calibrat
the chosen values for the widths of the coherent state
the Herman–Kluk propagator weregq150.009 and gq2

50.008 Å22 uma21.
The time length of the propagation is also very critic

If too short, the eigenvalue spectrum will be too inaccur
because of the uncertainty principle~the resolution of the
energy domain is the inverse of the total range covered in
time domain!. For instance, if a precision of, say 10 cm21 is
desired, one has to propagate up to'140 000 atomic time
units (atu, 1atu52.419•10217 s). Conversely, if the propa
gation is too long, the probability of having very large pre
actors dramatically increases with such an anharmonic
tential. The problem clearly demands an optim
compromise. It has been found, by trial and error, that
longest possible propagation not showing chaotic dynam
turned out to be 32 000 atu. This length led to a spectr
with a sufficient precision of 43 cm21. It is interesting to
realize that eigenvalues are much less sensitive to chaoti
trajectories than eigenvectors. The reason is that since c
Downloaded 30 Sep 2002 to 146.186.189.125. Redistribution subject to 
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is characterized by motion far from periodic in phase spa
its Fourier transform should not preferentially peak to any
the proper frequencies, but rather add a noiselike signa
the entire spectrum. Hence, chaos contamination for the
genvalues should not be much relevant. Actually, this c
tamination should quite likely be washed out by the Gauss
filtering. This may be formally seen by considering that t
quantum-mechanical autocorrelation function can be
panded in terms of the stationary states as33

A~ t !5^c~0!uc~ t !&5(
n

Cne~2 i /\!Ent^c~0!uFn&

5(
n

e~2 i /\!EntuCnu2, ~12!

so that the Gaussian-filtered energy spectrum, Eq.~10!, be-
comes

I ~E!5
1

2aAp
(

n
e2~E2En!2/4a2

uCnu2, ~13!

i.e., a set of Gaussian functions, each centered at each o
the energy eigenvalues. Conversely, eigenvectors are ca
lated by an integral over the whole time interval on ea
position over a grid spanning the relevant configurat
space. No positions appear to be privileged by the nonc
otic motion, as compared to chaotic, as it happened with
eigenenergies in the energy spectrum. Consequently,
whole eigenvector might be more likely contaminated by
chaotic signature in the time-evolving wave packet.

Once the propagation time length is decided, the n
relevant parameter is the number of times the wave pa
has to be computed during the propagation. This might
determined by the maximum frequency necessary to be
scribed, since then the Nyquist frequency requirement of
discrete Fourier transform method fixes the value for
sampling rate.34 For the present system, a maximum fr
quency of 4000 cm21 proves high enough to describe th
bound vibrational states. Hence, the wave packet had to
computed 186 times along the propagation, each one of t
separated by a time step of 172 atu.

Finally, the total number of trajectories had to be chos
Converging the eigenvalue and the eigenvector spectrum
quired only 8000 bounded trajectories. This number is ac
ally the lowest leading to converged results for the me
position, within a few percent~the test was extended up t
40 000 trajectories!. It should be pointed out that since 60%
of the trajectories were useless as they ran out from the P
we needed to start 20 000 trajectories in order to have
above 8000 trajectories remaining inside the bounded reg
of the PES.

III. NUMERICAL RESULTS AND DISCUSSION

A. PES electronic calculations

An important fraction of the results corresponding to t
present electronic calculations have been taken from our
vious work.19~a! A series of electronic structure calculation
were performed to construct a 2D PES. To that purpose
collection of 80 points, each corresponding to a different
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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of H–H and Ru–H2 distances, were calculated. The rang
covered were from 0.59 to 2.29 Å, for the H–H distance~q1

coordinate!, and from 1.0 to 2.2 Å, for the distance betwe
the ruthenium atom and the center-of-mass of the two hyd
gen atoms~q2 coordinate!. When calculating the PES globa
relaxation of the rest of geometrical parameters underCs

symmetry constraint was allowed. The resulting points w
fitted to a two-dimensional cubic splines functional form
leading to a smooth and continuous function within the r
evant range. This initial set of calculations was then used
an eigenvalue calculation, along with the corresponding
brational eigenvector determination, by means of the w
known sinc DVR technique.35

A further check, shown for the first time in the prese
work, was performed to ensure that our PES was la
enough to properly describe the structural properties of
molecule. It was motivated by the presence of the two e
channels in the PES, and the necessity of knowing
asymptotic regions more accurately~of relevance for the dy-
namic calculations!. This check consisted of an extende
PES electronic calculation, which was made by adding to
original PES 54 points calculated by the same methodolo
The new range covers from 1.0 to 3.0 Å, along theq2 coor-
dinate. Calculations showed that no PES enlargement
actually necessary to converge neither the DVR results
the wave packet semiclassical calculations~see below!.

The election of the H–H and Ru–H2 distances, for the
reduced dimensionality 2D PES used in the present st
deserves further comments. These coordinates were ch
as stated since they were found to fulfill two important co
ditions: ~a! they are able to describe properly the dynam
of the H2 unit of the complex under study~which was the
main concern in our previous calculations!, and~b! they be-
have as orthogonal coordinates, thus making diagonal
nuclear kinetic operator~which is a requirement for the DVR
method!.

Figure 2 depicts the 2D PES as a contour plot. Insp
tion of this figure discloses two outstanding features of

FIG. 2. Contour plot of the two-dimensional potential surface for the co
plex @Ru(H̄ H)(C5H5)(H2PCH2PH2)#1. Energy contours appear every
kcal/mol. Energy profile for the lengthening of the H–H bond, while rela
ing the rest of the structure, appears at the top right corner of the figure
projected in the 2D PES~dashed lines!. Distances are given in Å and energ
in kcal/mol.
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potential. First, the valley surrounding the minimum ener
structure is highly anharmonic. This is a crucial factor
determining the interesting properties of the elongated di
drogen transition metal complexes, but also a chaos gen
tor, due to the possible instability of a trajectory ensemble
has to be noted that the values of the H–H and Ru–H2 dis-
tances at the minimum energy structure in the PES are 0
and 1.66 Å, respectively. Second, the PES has two exit ch
nels through which the trajectories can escape. Any tra
tory whose initial energy is greater than the potential of
edge of the PES in any of the channels, and reaches
channel, will escape from the PES. As we will see in the n
section, both features have important consequences for
HK-IVR calculations.

B. HK-IVR calculations

Figure 3 shows some snapshots of the time-evol
wave packet, as obtained from the HK-SC-IVR calculatio
It is worthwhile noting the increasingly evident recurrenc
that appear with increasing time along the propagation. I
well known that these recurrences appear as a consequ
of the anharmonicity of the potential. In the present case
is especially suggested after inspection of Fig. 2.

Figure 4 displays the autocorrelation function, while
Fourier transform, after performing Gaussian filtering on
is depicted in Fig. 5. It thus corresponds to the eigenva
spectrum of the interaction potential. It specifically displa
the peaks corresponding to the three first eigenvalues, ou
the just five bounded levels actually supported by the pres
reduced potential energy surface. The corresponding eig
functions are shown in Fig. 6. It is worth noting that the
eigenvectors closely match the ones coming from the D
calculations. Taking into account the experimental conditio
in which the structure of the complex was determined
neutron diffraction, as well as a previous DVR calculatio
the present result suffices for our purpose. Table I compa
the results obtained in the present study with those obta

-

nd

FIG. 3. Snapshots of the time-evolved wave packet at different propaga
times.~1! and~2! refer to the sign of the wave packet in order to indica
where the nodes are.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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by DVR techniques in a previous work;36 both energy levels
and expectation values for the H–H and Ru–H2 distances are
shown.

The highest peak in Fig. 5 corresponds to the zero p
energy of the potential energy surface obtained through
IVR methods. The SC-IVR result, for the zero point ener
and actually for all the energy levels considered, agrees w
the DVR reference results within the resolution of the F
deconvolution. The ability of the SC-IVR methods in pa
ticular, and semiclassical methods in general, to reprod
the energy levels for bound systems has been proved se
times in the past. However, as analyzed in the previous
tion, a larger sensitivity to the statistical sampling is expec
for the eigenvectors, and hence any quantity directly em
ing from them, e.g., the expectation value for the positio

The expectation values for the H–H and Ru–H2 dis-
tances are found to be sufficiently close to the DVR ones,
all energy levels considered. Thus, the availability of t
DVR results confirms the correct behavior of the semicla
cal method and supports the present choice of a 2D PES
testing purposes. Furthermore, HK-SC-IVR calculations,

FIG. 4. The real~solid! and imaginary~dashed! parts of the semiclassica
correlation function, and the Gaussian filtering~dotted! used for the FFT. A
value of a5(0.5)1/2

•(9.5/32000), being 32 000 atu the propagation tim
length, has been used.

FIG. 5. Eigenvalue spectrum of the interaction potential. Arrows show
energy for the three first eigenvalues.
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volving the calculation of the wave function, are affordab
since only one phase-space sampling is necessary~contrary
to what happens when general correlation functions
needed!. Consequently, the present agreement encoura
extending the present study to higher dimensionality s
tems, for which the DVR methodology~or any matrix-based
method! is prohibitively expensive. In these cases, thoug
the use of the SC-IVR would require the formulation of t
problem in terms of a regular time-correlation function,
avoid having to store the amplitude of the wave function
the full-dimensional configurational space. In these case
double phase-space sampling turns out to be necessary. H
ever, reliable approximate formulations of the SC-IVR suit
for calculation of time-correlation functions do exist th
would make this endeavor feasible, like the FB-IVR, or t
GFB.1~a!,2 This work is to be performed in the near future
our laboratory.

IV. SUMMARY AND CONCLUSIONS

The molecular geometry mismatch between the pred
tions by electronic structure theory and the results from n
tron diffraction experiments, for the ruthenium dihydrog
complex @Ru(H̄ H)(C5Me5)(dppm)#1, was explained
some time ago by Gelabertet al.19~a! in terms of the wave
function delocalization, as a consequence of highly anh

e

FIG. 6. Eigenfunctions corresponding to the three first eigenvaluesn50, 1,
and 2.~1! and ~2! refer to the sign of the eigenvector in order to indica
where the nodes are.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 30 Se
TABLE I. Comparison of the SC-IVR and DVR results for the calculation of the three lowest energy level
expectation values for the H–H and Ru–H2 distances.

n

SC-IVR DVRa

E ~cm21! ^H–H& ~Å! ^Ru–H2& ~Å! E ~cm21! ^H–H& ~Å! ^Ru–H2& ~Å!

0 1593643 1.03 1.60 1579 1.01 1.61
1 2153643 1.28 1.51 2134 1.27 1.52
2 2627643 1.37 1.51 2616 1.24 1.55

aData from Ref. 36.
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monic potential energy surface. Therefore, it evidences
interesting quantum effect associated to the nuclear mot
since it causes the equilibrium geometry to fall clearly ap
from that suggested by electronic structure calculations. T
is a strong counterintuitive result from the established che
cal point of view.

The present work has addressed the same problem
means of the semiclassical initial value representation
proach, as it prospectively suggested to be a stringent c
lenge for the methodology: the reduced dimensionality
PES features a weakly bound~;20 kcal/mol! species, a
strongly anharmonic and coupled surface, as well as two
channels leading to rearrangement/dissociation. It is, to
best of our knowledge, the first application of the SC-IV
methodology to a molecular geometry problem.

The details of the application run parallel to the eige
value calculation for the related PES, i.e., the vibratio
spectrum. Hence, the Fourier transform of the autocorr
tion function of the time-evolved wave packet becomes
central quantity to be calculated. However, the specific f
tures of the PES required that special care had to be ta
with respect to the numerical parameters:~a! the Gaussian
wave packet width, as well as the initial position and m
menta, were selected so as to lead to the smallest numb
runaway trajectories;~b! the propagation time was shortene
to avoid dealing with exceedingly large prefactors, but at
same time kept long enough for a sufficiently precise eig
value resolution; ~c! a comparatively short number o
bounded trajectories~;8000! was found to lead to a con
verged description for both the eigenvalue and the associ
vibrational stationary states, even though the latter are q
more sensitive to the statistical sampling than the former

The present reduced dimensionality problem was cho
since accurate quantum mechanical results could be a
able, by means of a sinc DVR method, for the eigenvalu
eigenvectors and expectation values for the position of
related dihydrogen bonds. The quantum-semiclassical c
parison reveals a nice agreement for the eigenvalues an
pectation values, as well as for the overall shape of the eig
vectors, within a few percent. This agreement was clea
expected for eigenvalues, but not quite so for both the eig
vectors and the mean positions. In the near future this re
might prompt the extension of the present study to a hig
dimensionality PES and, furthermore, to complexes hav
more than one dihydrogen ligand~or to polyhydride com-
plexes!, for which much richer structural features~as well as
problems concerning the nuclear symmetry! are expected.
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