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Chapter   I 

Introduction 

 

 

I would like to describe a field, in which little has been done, but in which an 

enormous amount can be done in principle. This field is not quite the same as 

the others in that it will not tell us much of fundamental physics [...] but it is more 

like solid-state physics in the sense that it might tell us much of great interest 

about the strange phenomena that occur in complex situations. Furthermore, a 

point that is most important is that it would have an enormous number of 

technical applications. What I want to talk about is the problem of manipulating 

and controlling things on a small scale. 

Richard Feynman, Caltech, 1959, 

"There is Plenty of Room at the Bottom" 
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I.1. NANOPARTICLES 

 Aiming for faster electronic devices with improved capabilities, more efficient diagnostic and 

therapeutic medical treatments or even cleaner energy resources, miniaturization has become one 

of the challenges of the new millennium. On the road to the fabrication of ever smaller products and 

materials, nanoscience and nanotechnology, the novel disciplines emerged at the end of last 

century, are playing a central role. Thus, inspired by Feynman’s seminal lecture “There is Plenty of 

Room at the Bottom”,1 researchers in these areas have developed a wealth of techniques and 

strategies during the last decades that enable the study and manipulation of matter on the atomic 

and molecular scale. This has not only revolutionized the fields of physics, chemistry, electronics, 

and biology, but opened up the door to the rational design, synthesis and application of a variety of 

nanostructures and nanomaterials.2 

 Among them, the interest of this work lies in the field of nanoparticles (NPs). In particular, this 

dissertation focuses on the preparation of two different types of functionalized NPs (coordination 

polymer particles and quantum dots), the study of their properties, and their application in diverse 

fields (drug delivery and optoelectronics). Although a detailed introduction on each class of these 

systems will be provided in Chapters III and IV of the manuscript, a general overview of the 

synthesis, properties and applications of nanoparticles is given below. 

Nanoparticles are atomic, ionic or molecular clusters of any shape with dimensions in the 1-100 

nm range.a Nowadays they can be prepared from almost any material (e.g. metals, metal oxides, 

organic polymers), thus allowing their composition to be selected on the basis of the desired 

application.2 Together with the very particular properties that they present, this has triggered 

enormous interest in the synthesis of nanoparticles and their use in many different fields. 

                                                                 

a Although this is the strict size definition of nanoparticles, other sub-micron particles with larger dimensions are often 

also considered as such. Actually, the coordination polymer particles developed in Chapter III of this thesis present 

diameters over 100 nm ( 200 nm). 
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I.1.1. Synthesis of nanoparticles 

 The use of nanoparticles as inorganic dyes to stain glass and ceramics dates back to many 

centuries ago, as proven by the Roman Lycurgus cup exhibited in the British Museum.3 In spite of 

this and the fact that Faraday already prepared a stable colloidal suspension of gold NPs in 1857,4 

the abilities to design and synthesize nanoparticles have been mainly developed during the last 

decades. 

Currently, there exist two different approaches for the preparation of nanoparticles (and 

nanomaterials): the top-down and bottom-up strategies (Figure I-1). The former refers to the 

fabrication of smaller structures by reducing the size of bulk materials down to the nanoscale using 

external tools (e.g. cutting, milling, lithography, …).2 Top-down procedures are able to produce 

highly regular nanoparticle sizes and shapes but the resulting materials often contain impurities and 

structural defects on their surface. In contrast, bottom-up methodologies start from smaller 

components of atomic or molecular dimensions that self-assemble together to give rise to larger and 

more organized systems. This approach enables the preparation of nanostructures with less surface 

defects and more homogeneous chemical composition.2  

 
Figure I-1. Schematic representation of the two main approaches for the synthesis of nanoparticles: the top-

down and bottom-up approaches. 

Herein we have used bottom-up methodologies for the synthesis of coordination polymer 

particles and quantum dots, the two types of nanoparticles of interest in this work. In particular, both 

systems were prepared via homogeneous nucleation in liquid solution, a wet chemical process that 

proceeds via three main steps (Figure I-2A and B): (a) generation of a supersaturated solution of the 

atomic, ionic or molecular components of the nanoparticles, step I, (b) nucleation to form small 

clusters of these components, step II, and (c) subsequent growth of these clusters into 

nanoparticles, step III.2 Briefly, when the concentration of a solute in a solvent exceeds its 

equilibrium solubility, the solution becomes supersaturated and possesses a high Gibbs free 

energy. The reduction of such energy is the driving force for the nucleation and growth steps, which 

only start once supersaturation reaches a certain value (Cmin,nu) above the equilibrium solubility (CS). 

Once nuclei are formed, nanoparticle growth occurs simultaneously. Actually, nucleation and growth 

Bulk Powder Nanoparticles Cluster Atoms

Top-down Bottom-up
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are inseparable processes above Cmin,nu; however, they proceed at different rates. On the other 

hand, below Cmin,nu no more nuclei are formed and only growth processes take place until the 

concentration of the growth species decreases to the equilibrium concentration, finally yielding a 

colloidal suspension of the nanoparticles of interest. 

 
Figure I-2. (A) Three main steps for the formation of nanoparticles via homogeneous nucleation: 

supersaturation, nucleation and growth. (B) Schematic representation of these three steps in a solute 

concentration vs time graph.2 

 Owing to the high Brownian mobility and surface energy of sub-micrometer-sized particles, 

colloidal suspensions resulting from homogeneous nucleation are not expected to be stable. 

Instead, particle aggregation followed by precipitation of the large agglomerates formed should 

occur. To prevent this issue, stabilization strategies must therefore be followed during the wet 

chemical synthesis of nanoparticles, which rely either on their intrinsic surface properties or on the 

adsorption of a layer of molecular stabilizing moieties (capping layer).5  

Generally, three different mechanisms can be responsible for the stabilization of nanoparticles 

in a liquid suspension: electrostatic, steric, and electrosteric stabilization (Figure I-3). Electrostatic 

stabilization arises from coulombic repulsion between surface-charged NPs, a situation that can be 

achieved intrinsically or upon introduction of small ionic stabilizers (e.g. citrate). In both cases, only 

kinetic stabilization of the colloidal suspension is achieved, which is highly dependent on the polarity 

of the solvent and the ionic strength of the medium. As such, electrostatic stabilization often fails for 

non-polar organic solvents, high electrolyte concentrations in aqueous suspensions, and/or long 

storage periods. This can be overcome by steric stabilization, which is based on the steric repulsion 

experienced by the organic capping layers of different particles when they are brought into close 

proximity. In this way, steric stabilizers act as spacers between the particles and thermodynamic 

stabilization is indeed achieved. Usually, steric stabilization is realized by the physi- or 

chemisorption of large hydrorcarbonated chains onto the surface of the particles (e.g. polymers). 

When such stabilizers additionally present ionic groups that are exposed to the outer surface of the 

particle, both electrostatic and steric effects occur and the colloidal suspension is said to be 

electrosterically stabilized.5  
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Figure I-3. Different strategies for nanoparticle stabilization: electrostatic, steric and electrosteric stabilization. 

 Although colloidal stabilization is the main function of capping layers, the organic molecules 

deposited onto nanoparticle surfaces play additional roles. First, they are involved in the control of 

nanoparticle growth, thus eventually influencing the size and polydispersity of the materials 

prepared.2 On the other hand, they mainly determine the solubility behavior of the resulting 

particles.6 As a consequence, exchange of the capping layer is required to ensure good 

dispersability when transferring nanoparticles from organic to aqueous media and vice versa. For 

instance, oleic acid-capped semiconductor NPs are only soluble in low dielectric constant organic 

solvents such as toluene, and they must be coated with polar molecules (e.g. mercaptopropionic 

acid (MPA)) in order to make them dispersable in aqueous medium for medical applications (Figure 

I-4).7 Finally, incorporation of functional organic moieties to their surface may provide nanoparticles 

with new properties and applications, as it will be further discussed below. 

 
Figure I-4. Schematic representation of the process reported by Bae et al. for dispersing oleic acid-capped 

semiconductor nanoparticles in aquous media upon ligand exchange with mercaptopropionic acid.7 
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I.1.2. Properties and applications of nanoparticles 

 A number of different arguments explain the current interest in the preparation and application 

of nanomaterials. As already mentioned, optimization of many current technologies require 

miniaturization of the systems involved down to the nanoscale (e.g. transistors in an integrated 

circuit,8 drug carriers for efficient cell intake via endocytosis9). In addition, nanoparticles and 

nanotubes can be used as fillers in nanocomposites, thus obtaining novel materials with improved 

mechanical, electrical or thermal properties.10 However, from a basic science point of view, it is the 

special behavior that matter shows on the nanoscale what has attracted the attention of most 

researchers in the field of nanomaterials.11 

 An important factor that makes the physico-chemical properties of NPs be different from those 

of bulk materials is surface effects since they present higher surface to volume ratios.11 For 

instance, a nanoparticle with a diameter of 10 nm possesses as much as 10 % of atoms on its 

surface, a percentage that scales up to 100% as nanoparticle size further decreases.12 Since 

surface atoms present lower coordination numbers and cohesive forces, this results in clear 

changes in physical properties, such as lower melting temperatures.11,12 From a chemical point of 

view, surface effects are exploited in the application of nanoparticles to catalysis, given the high 

intrinsic surface area that these materials present.13 Indeed, the catalytically activity of nanoparticles 

has been demonstrated to be size dependent due to the larger relative amount of surface atoms as 

the material dimensions decrease.14 

 In addition, the physico-chemical properties of NPs are also strongly influenced by quantum 

effects, which do not play a significant role for larger scale materials.11  By decreasing material size 

down to the nanoscale, bulk electronic bands with high density of states (DOS) become 

discontinuous and the occurrence of multiple well separated electronic states is observed, thus 

resembling the situation encountered for atoms and molecules. As such, bulk metals convert into 

semiconductor and insulator nanoparticles when the DOS turns to be so low as to create a non-

negligible gap between the highest occupied and the lowest unoccupied electronic states.11 

Furthermore, electron motion is confined in nanoscale materials, which makes the actual electronic 

structure of the system be very sensitive to size changes.11 The variation of energy bandgap in 

semiconductor quantum dots with nanocrystal dimensions is a very nice example of this 

phenomenon, which will be further discussed in Chapter IV. Chemical properties are also affected 

by quantum effects, as demonstrated by the size-dependent electron affinities15 and redox 

potentials16 of metal clusters.  

 Owing to the wide variety of chemical composition with which nanoparticles can be obtained 

and to the unique size-dependent properties that they exhibit nanoparticles have been proposed 

and applied in many different fields such as catalysis,17 medicine,18 electronics,19 renewable 

energy20 and photonics,21 among others. Although all these applications benefit from the 

composition and small dimensions of the nanoparticles used, the incorporation of additional 



Nanoparticles  
Chapter I 

Introduction 
 

10 
 

molecular components to the system is often required to modulate its behavior and introduce novel 

functionalities. This is the case of the materials developed in this thesis, which consist of 

coordination polymer and semiconductor particles decorated with functional organic moieties for 

addressing specific applications. 

I.1.3. Organic compounds for the functionalization of 
nanoparticles 

The synergistic combination of molecular and nanoparticle properties in a single system allows 

the development of very versatile nanomaterials targeting highly demanding applications. In these 

materials, the functional molecules incorporated can be either loaded into the interior of the 

nanoparticles or attached to their outer surface. Multicomponent materials made of organic 

compounds embedded within nanoparticles are used in many different fields. In most of these 

cases, nanoparticles are used as carriers of the molecular moieties, which are the responsible to 

provide the system with a defined functionality. However, nanoparticles should not be considered as 

mere “molecular containers” in these materials, but they do often play an active role and are 

essential for the proper functioning of the system. For instance, mesoporous silica nanoparticles 

have been proposed as hydrophobic and hydrophilic drug carriers due to the large pore volume 

exhibited by these materials.22 Drug release from these nanostructures has been modulated by the 

proper choice of polymer coating-shell, which improves their biocompatibility,23 the controllable drug 

release24 and the site-specific delivery into different tissues. 

On the other hand, surface functionalization of nanoparticles with organic compounds is 

normally used to modulate their intrinsic properties, which are in this case determining the final 

application of the resulting multicomponent material. For instance, the surface of gold 

nanostructures for photothermal therapy can be functionalized with special antibodies to be 

selectively recognized by tumor cells.25,26 Similarly, nanoparticles for drug delivery applications are 

often coated with poly(ethylene glycol) to increase their biocompatibility and to reduce 

thrombogenicity.27 But functionalization of the nanoparticle surface is not only used for medical 

purposes, but also for modulating their optical, electronic and structural properties.28 Thus, 

aggregates of colloidal gold nanoparticles can be formed by functionalizing their surface with 

complementary ssDNA sequences, which show different optical properties than the individual 

nanoparticles.28a  

In this dissertation both types of multicomponent systems described above have been prepared 

and investigated. In Chapter III we report the synthesis of coordination polymer particles loaded with 

fluorescent ligands for the investigation of drug encapsulation and release from these metal-organic 

materials, an area of research that is attracting increasing interest nowadays.29 In Chapter IV we 

explored a novel methodology for the controlled aggregation of semiconductor quantum dot 

nanoparticles via efficient and specific covalent bonding between their outer molecular capping 
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layers. If proven to be successful, this should allow the growth of novel nanomaterials for 

unidirectional energy and/or electron transfer in quantum dot-based photovoltaic devices.30  
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Chapter   II 

Objectives 

 

 

Two different projects have been developed in this PhD thesis involving the 

synthesis and characterization of novel materials based on the cooperative 

assembly of nanoparticles and functional organic compounds: coordination 

polymer particles loaded with fluorescent model drugs, and quantum dot 

semiconductor nanocrystals functionalized with reactive capping layers for 

controlled covalent assembly. Here we briefly describe the main goals 

devised for both projects. 
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II.1. New functional ligands for investi-

gating drug release mechanisms from 

coordination polymer particles 

 During the last decades nanomedicine has emerged as a novel and promising discipline 

aiming at the application of nanotechnology to medical diagnostics and therapy. For instance, this 

is the case of nanoparticles, which are being proposed as smart carriers for controlled and 

selective drug release. In this work we were particularly interested in nanometer-sized 

coordination polymer particles as vehicles of organic therapeutic agents, which can be 

encapsulated into these materials via two different mechanisms: chemical bonding or physical 

entrapment. Even though different reports demonstrated the delivery of drugs incorporated via 

these two different approaches, no rational mechanistic studies of the release process had been 

conducted at the beginning of this thesis. In view of this, our first project consisted in the study of 

encapsulation and drug release mechanisms for amorphous coordination polymer particles 

(Figure II-1). With this aim, the following objectives were proposed: 

 
Figure II-1. Schematic representation of the main goal of the first project of this work: the study of drug 

release mechanisms from coordination polymer particles by synthesizing different model organic drugs 

that incorporate into these materials via distinct encapsulation processes (chemical binding and physical 

entrapment). 
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1. The design, synthesis and characterization of different fluorescent model drugs able to 

chemically bind to or physically incorporate into the matrix of coordination polymer particles. 

2. The synthesis and characterization of coordination polymer particles bearing these fluorescent 

organic compounds. 

3. The monitorization of the guest release profiles from these coordination polymer particles by 

means of optical measurements and their interpretation based on different mechanistic 

models for drug delivery. 

 A detailed description of the results obtained in these studies is given in Chapter III of this 

manuscript. 

II.2. New functional ligands for quantum 

dot covalent assembly 

 Owing to their outstanding optical properties, quantum dot semiconductor nanoparticles have 

been proposed for different applications, ranging from (bio)chemical sensing and imaging to 

optoelectronics. Some of these applications, such as quantum dot-based solar cells and photonic 

wires, would enormously benefit from the controlled aggregation of quantum dots into defined 

nanostructures displaying efficient and unidirectional energy or electron transfer processes. This 

has motivated us to explore in the second part of this thesis the development of a new 

methodology for the preparation of controlled covalently-bonded heteroassemblies of quantum 

dots. As shown in Figure II-2, such methodology is based on the selective reaction between the 

ligands in the quantum dot capping layer via strain-promoted azide-alkyne cycloaddition, a rapid 

and efficient process that takes place in mild conditions and in the absence of metal catalysts. To 

attain this goal, the following objectives were devised: 

1. The design, synthesis and characterization of different ligands for quantum dot binding 

bearing the reactive groups required to undertake the strain-promoted azide-alkyne 

cycloaddition process (azide and cyclooctyne). 

2. The synthesis of different quantum dots and their functionalization with the reactive ligands 

prepared. 

3. The preparation and characterization of covalently-bonded quantum dot heteroassemblies 

 The results obtained in these studies are described in Chapter IV of this manuscript. 
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Figure II-2. Schematic representation of the main goal of the second part of thesis: the preparation of 

covalently-bonded heteroaggregates of quantum dots via strain-promoted azide-alkyne cycloaddition 

reaction between the ligands of their capping layers. 
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Chapter   III 

Unraveling Drug Release Mechanisms from 

Coordination Polymer Particles 

 

 

Herein we investigate the release mechanisms from coordination polymer 

particles, which have emerged as new drug carriers in recent years. With this 

aim, different fluorescent organic molecules have been synthesized as model 

drugs that can be trapped into or tethered to coordination polymer particles and, 

consequently, be delivered via distinct processes -- namely, diffusion or particle 

degradation. By selectively monitoring the release kinetics of those fluorophores, 

we have not only demonstrated the occurrence of such mechanisms, but also 

assessed for the first time their individual efficiencies in view of the rational 

design of future systems with tailored drug delivery profiles. 

 

 

 

Parts of this chapter have been published in: a) L. Amorín-Ferré, F. Busqué, J. L. Bourdelande, D. 

Ruiz-Molina, J. Hernando, F. Novio, Chemistry 2013, 19, 17508-17516. b) F. Novio, J. Simmchen, 

N. Vázquez-Mera, L. Amorín-Ferré, D. Ruiz-Molina, Coord. Chem. Rev. 2013, 257, 2839-2847. 
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III.1. INTRODUCTION 

 As well-known metal-organic frameworks (MOFs), coordination polymer particles (CPPs) arise 

from the interaction between transition metals and polydentate bridging organic ligands, which 

produces a network of metal-organic polymers that self-assemble into micro- and nanostructures.1 

CPPs are however amorphous materials, in contrast to crystalline MOFs, which have been widely 

studied for the last two decades and applied in different fields such as catalysis,2 gas storage,3 

biomaging and medicine.4 In spite of this, CPPs have emerged in recent years as an alternative to 

metal-organic frameworks for diverse applications. This is the case of drug delivery, the subject of 

interest in this chapter. Thus, CPPs have indeed proven to be excellent host matrices for different 

therapeutic agents due to the wide variety of compositions, sizes and shapes with which they can 

be obtained,5 and their effectiveness as drug delivery systems has already been demonstrated in 

vitro.6 Nevertheless, no drug release mechanisms have been rationally established to date for these 

carriers and fundamental studies of how the active molecules are embedded into and delivered from 

CPPs are still lacking. In view of this, we aim herein to design a novel strategy to thoroughly 

investigate the encapsulation and drug release mechanisms from coordination polymer particles.  

III.1.1. Formation of coordination polymer particles 

 CPPs were first prepared by Mirkin et col. in 2005, which were composed of Zn(II) ions and the 

dicarboxylic ligand 1 (Figure III-1A)7 Their synthesis proceeded through the two-stage process 

represented in Figure III-1B. Firstly, a salt of the metal ion selected (i.e. Zn(OAc)2) was mixed with 

the ditopic organic ligand chosen to form the corresponding coordination polymer; secondly, 

addition of a poor solvent to the mixture provoked aggregation of the polymer chains and rapid 

precipitation of micro- or nano-CPPs. Although other strategies have been developed for the 
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 Similar results were reported by Xing et al., who followed two different strategies for the 

formation, and subsequent drug release studies, of different metal-based CPPs containing distinct 

fluorescent anticancer drugs able to coordinate metal ions, such as MTX and alizarin red S.27 As 

depicted in Figure III-6, the first route consisted in the direct reaction between the metal ion 

precursor and the drug, which was the only bridging ligand used. The second approach consisted in 

the polymerization of these two components together with an additional co-bridging ligand (e.g. 

polyethyleneglycol). Drug release was investigated for Fe-, Co-, Zn- and Cu-based CPPs formed by 

both routes, which allowed concluding: (a) as reported by Huxford et al.,14 most drug-loaded 

particles were observed to slowly release its cargo at physiological conditions, which was ascribed 

to CPP degradation arising from disruption of metal-ligand bonds; (b) since the stability of most of 

these bonds is very sensitive to pH, changes in the acidity of the medium could be used to modulate 

the kinetics of drug delivery; (c) the use of co-bridging ligands with designed pH-dependent affinities 

towards metal ions was found to be crucial in those cases where the stability of the drug-metal 

coordination bond was observed to be too high or too low for practical applications in drug delivery 

via CPP degradation. 

 
Figure III-6. Two different strategies followed by Xing et al. for the incorporation of a coordinating drug into 

CPPs, which involves the use (b) or not (a) of co-bridging ligands. In both cases, the kinetics of drug release 

could be controlled by means of the acidity of the medium due to the pH-dependent stability of the metal-

ligand coordination bonds exploited.27 

 Even though pH-controllable, complete release via coordination polymer degradation has been 

demonstrated for drugs chemically tethered to CPPs ,no in-depth mechanistic studies of the 

encapsulation and delivery processes have so far been reported. For instance, this would be 

required to assess the efficiency of drug incorporation by coordination to metal ions, since a fraction 

of the loaded active molecules might be simply physically entrapped within the CPPs instead of 

chemically bonded, thus critically affecting the kinetics of drug delivery. Thereby, a comprehensive 

study of drug encapsulation and release is needed to fully exploit the advantages of CPPs as micro- 

and nanocarriers of therapeutic agents. Aside from drugs with metal coordinating properties, this 

study should also be expanded to other active species without chelating capacity, which should be 

encapsulated into and released from CPPs via different mechanisms. Owing to the porosity of these 
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3. The synthesis of Co-based CPPs from type I and II ligands and co-bridging linker 2 by means of 

the solvent-induced precipitation method developed by Mirkin et col.7 This class of coordination 

polymer particles was selected for several reasons. First, some precedents had already been 

reported describing the successful formation of amorphous CPPs from Co ions, bridging ligand 2 

and coordinating t-butylcatechol molecules.15 This will therefore provide us with a simple way to 

incorporate the type I fluorescent guest to the polymer backbone in M9 without modification of 

the coordination sphere of the metal ion. Second, the coordination compounds composed of Co 

ions, catechols and N-bonded ligands display absorption spectra that expand all over the visible 

spectrum.17 Therefore, they should quench the emission from the encapsulated type I and II 

ligands via resonance energy transfer (RET,29 see section III.2.4). As a result, these ligands 

should turn fluorescent and, therefore, be selectively detected only after release from the CPP 

host. Third, valence tautomerism is expected for this type of particles, as previously 

demonstrated.15 In this work, we aim to take advantage twice of this property: (a) to assess the 

structural differences between amorphous CPPs prepared from type I and type II ligands, since 

the temperature range at which the transition between the two electronic isomers of the system 

occurs is very sensitive to the structure and local environment of the coordination complex; and 

(b) to modulate drug delivery kinetics by means of temperature changes inducing the 

interconversion between the two valence tautomers of the system. Such tautomers present 

different electronic configurations, metal ion oxidation states and metal-ligand distances,18b which 

may influence both the diffusion and degradation processes of release. 

4. The investigation of the release of type I and type II ligands from M9 and M10, which we have 

designed as benchmark systems for the separate analysis of degradation- and diffusion-

controlled drug delivery, respectively. Thus, chemically-tethered type I ligands must only be 

released from M9 via degradation processes. In the case of M10, type II guests should be mainly 

delivered by diffusion provided that particle degradation takes place in a longer time scale. In 

addition, the effect of temperature and, therefore, valence tautomerism interconversion in those 

release mechanisms would also be studied. 
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