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Scheme III-1. Synthetic routes designed in this work for the preparation of type I ligands 4-6. In all cases, the 

catechol moiety of the final ligand would be introduced via the common intermediate 7, whose synthesis is 

described in the next section. 

III.2.1.1. Synthesis of intermediate 7 

 Scheme III-2 shows the route designed for the preparation of compound 7, which starts from 

commercial 2-methoxy-4-methylphenol, 13. Firstly, the aromatic electrophilic substitution at the 5-

position of 13 followed by oxidation of the benzylic position and deprotection of the alcohol group 

lead to intermediate 14. Next, protection of the catechol moiety as methoxymethyl ether (MOM) is 

chosen due to the mild conditions needed for cleaving it. The introduction of the nitrogenated 

functional group to obtain the desired intermediate 7, has been envisioned by performing an aldol 

condensation followed by the reduction of the alkene and the nitrile group. 

 

Scheme III-2. Synthetic route devised for the formation of intermediate 7. 
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 The first two steps of the synthesis of 7 had already been reported in the literature by Wang et 

al., who described the preparation of compound 16 from 13.30 The same reaction conditions found 

in this report were directly applied in this work (Scheme III-3). Briefly, electrophilic aromatic 

substitution of 13 at 5-position was achieved by addition of tert-butanol in the presence of an excess 

of phosphoric acid, after which the benzylic position of the resulting intermediate 15 was oxidized 

with molecular bromine to yield 16. These two steps were accomplished in agreement with the 

results described by Wang et al. (47 % overall yield for both steps).30  

 
Scheme III-3. Synthetic procedure for the formation of compound 16 from commercial phenol 13 using the 

same conditions previously reported by Wang et al.30 

 Then, treatment of compound 16 with boron tribromide caused the cleavage of its methoxy 

group and the formation of catechol 14 with 90 % yield, as Bringmann et al. reported for a similar 

compound (Scheme III-4).31 1H NMR showed the total disappearance of the proton signals 

corresponding to the methoxy group. 

 
Scheme III-4. Hydroxyl deprotection reaction of 16 to yield catechol intermediate 14. 

 In the next step, the hydroxyl moieties of the catechol intermediate 14 were converted into the 

corresponding methoxymethyl ethers, which are weak protecting groups whose cleavage takes 

place in catalytic acidic conditions.32 These conditions are therefore to be avoided until the end of 

the synthesis of ligands 4-6, as devised in Scheme III-1. Protection of the catechol moiety was 

achieved following a reported methodology.33 The slow addition of methoxymethyl chloride to a 

solution of 14 under the conditions described in Scheme III-5 furnished compound 17 in quantitative 

yield after purification of the reaction crude by flash chromatography. 1H NMR clearly showed the 

incorporation of the protecting groups owing to the occurrence of four new singlets corresponding to 

the methylene (at 5.31 and 5.23 ppm) and methyl protons (at 3.66 and 3.52 ppm) introduced. 
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Scheme III-5. Reaction conditions used for the preparation of compound 17. 

 The introduction into 17 of the nitrogenated group needed for the subsequent preparation of 

target compounds 4-6 could be accomplished by different routes. As described in Scheme III-6, 

Henry reaction with nitromethane and aldol condensation with acetonitrile were the simplest and 

less expensive strategies assayed for nitrogen incorporation; unfortunately, none of them 

succeeded in the formation of the new desired C-C bond for the obtaining of the corresponding 

nitro- and cianoderivatives, respectively. Alternatively, we explored the Wittig reaction with 

commercially available 2-(triphenylphosphoranylidene)acetonitrile, 19, a stabilized phosphorane that 

reacted with the aldehyde moiety of 17 to furnish the target compound. After purification by flash 

chromatography, 1H NMR analysis of the product showed the formation of (Z)- and (E)-18 in 96 % 

yield and with a diasteromeric ratio of 2.3:1, respectively. Although this mixture could not be 

resolved by flash cromatography, its composition could be revealed on the basis of the different 

coupling constant values found between H-2 and H-3 in its 1H NMR spectrum. According to the well-

established NMR behavior for trans and cis olefinic protons,34 the two doublets at 7.32 and 5.75 

ppm with J = 16.6 Hz were assigned to (E)-18, while the two other doublets at 7.03 and 5.34 ppm 

with J = 12.2 Hz were attributed to the corresponding (Z)-isomer. 

 
Scheme III-6. Different strategies assayed for the introduction of a nitrogenated group into intermediate 17. 

Successful results were only obtained by means of Wittig reaction with 19. 

 Next, we attempted hydrogenation of olefins (E)- and (Z)-18 to convert this diastereomeric 

mixture into a single product. According to the literature,35 when performing this reaction under 

palladium catalysis in the presence of proton donor solvents such as methanol, concomitant 

reduction of the nitrile moiety of 18 should occur, thus obtaining the desired amine 7 in a single step. 
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Nevertheless, analysis of the reaction crude by 1H NMR when assaying these conditions showed 

only partial reduction of the nitrile group. For this reason, we decided to prepare 7 from 18 via a two-

step process. As depicted in Scheme III-7, we first conducted selective reduction of the alkene 

moiety, which was achieved by using molecular hydrogen gas in the presence of Pd/C catalyst and 

in ethyl acetate medium. After product separation from the heterogeneous catalyst by simple 

filtration, this led to pure compound 21 in 68% yield. Next, this product was treated with lithium 

aluminum hydride in anhydrous diethyl ether to obtain compound 7 in 89% yield (60 % overall yield 

for both steps). 1H NMR analysis of 7 showed the disappearance of the olefinic proton signals of 

compound 18 as well as the occurrence of three new signals for the alkyl protons arising from nitrile 

and alkene reduction: H-1 (at 2.73 ppm), H-2 (at 1.74 ppm) and H-3 (at 2.58 ppm), which were 

assigned on the basis of their multiplicity and of heteronuclear multiple bond correlation (HMBC) 

NMR experiments.  

 To summarize, compound 7, the key common intermediate for the preparation of final target 

ligands 4-6, was obtained in 7 reaction steps and in 24 % overall yield from the starting material 2-

methoxy-4-methylphenol, 13. 

 
Scheme III-7. Reduction of alkene and nitrile moieties of compound 18 for the formation of intermediate 7. 

III.2.1.2. Synthesis of ligand 4 

 As previously described in Scheme III-1, the synthesis of fluorescent compound 4 was 

envisioned to take place from intermediate 7 through two additional reaction steps: (a) the 

introduction of the commercial benzophenoxazine dye nile blue A, 8, by formation of an urea group, 

and (b) the cleavage of the MOM protecting groups.  

 The first step was designed on the basis of two previous independent works in which authors (i) 

converted the imino moiety of 8 into an urea by reaction between its conjugated base, 22, and an 

isocyanate group,36 and (ii) obtained an isocyanate group from an amine precursor by treatment 

with triphosgene.37 In view of these reports, we first undertook the preparation of isocyanate 23 

upon addition of triphosgene to a dichloromethane solution of 7 (Scheme III-8). When 

disappereance of the starting material was observed by TLC, 22 (prepared by treatment of 

commercial nile blue A with triethylamine) was directly poured to the mixture without any previous 

purification of the isocyanate intermediate. This led to a complicated reaction crude, which could not 

be resolved by flash chromatography. Instead, successive preparative TLCs were required to isolate 

urea 24 as a red crystalline solid in 5 % yield. Although the low amount obtained after the 

purification process did not allow complete characterization of 24 by 13C NMR and IR, its formation 

was confirmed by 1H NMR and HR-MS. In particular, new aromatic signals together with the 
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presence of a broad signal assigned to the -NH urea proton were observed in the 1H NMR spectrum 

of this compound. Unfortunately, further attempts to improve the efficiency of the synthesis and 

separation of 24 were not successful and only very limited amounts of this compound could be 

obtained. 

 
Scheme III-8. Consecutive reaction steps for the preparation of compound 24 from intermediate 7, which 

consisted in the conversion of its amino group into an isocyanate followed by the introduction of the 

fluorophore by reaction with 22 and formation of a bridging urea group. 

 In spite of this, the preparation of target ligand 4 was pursued by exposing 24 to acidic 

conditions at reflux of methanol in order to deprotect its catechol moiety. In this way, fluorescent 

compound 4 was obtained in 40 % yield (Scheme III-9). The disappearance of the MOM signals in 

the 1H NMR spectrum of this product demonstrated complete removal of the protecting groups, as 

subsequently confirmed by HR-MS. Further characterization of 4 by 13C NMR and IR could not be 

carried out owing to the small scale at which this compound was obtained. Actually, the overall yield 

for the synthesis of 4 from commercially available 2-methoxy-4-methylphenol was just 0.5% after 10 

reaction steps. This therefore dissuaded us to apply this ligand for the investigation of guest 

encapsulation and release from CPPs and, as a consequence, made us turn our attention to the 

synthesis of alternative type I ligands 5 and 6. 

 

Scheme III-9. Reaction conditions for the formation of final target ligand 4. 

III.2.1.3. Synthesis of ligands 5 and 6 

 In contrast to compound 4, the benzophenoxazine fluorescent unit of ligands 5 and 6 had to be 

prepared throughout our synthetic pathway following previous reports.38 According to the route 

designed (see Scheme III.1), it involved two sequential steps: (a) introduction of a naphthalene 

moiety into intermediate 7 via amide formation by reaction with carboxylic acid 12, and (b) 

subsequent coupling with nitrosophenol compounds 9 and 10, which would lead to target products 5 
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and 6, respectively, by concomitant cleavage of catechol MOM protecting groups. It is important to 

remark that compounds 9, 10 and 12 are not commercially available and their synthesis had to be 

carried out as described in the literature (Scheme III-10). Thus, compounds 9 and 10 were prepared 

by electrophilic aromatic substitution of commercial phenols 25 and 26 with sodium nitrite in similar 

yields to those reported by Martin-Brown et al..39 On the other hand, compound 12 was synthesized 

in 38% yield from commercial 1-naphthylamine, 27, and 3-bromopropanoic acid, 28, via nucleophilic 

substitution.40 In all cases, the 1H NMR spectra of the products obtained were in accordance with 

those previously described. 

 
Scheme III-10. (A) Preparation of compounds 9 and 10 following the methodology described by Martin-

Brown et al.39 (B) Formation of compound 12 via nucleophilic substitution according to the procedure 

described by Frade et al.40 

 Once prepared naphthalene derivative 12, it was reacted with intermediate 7 using typical 

amide formation conditions: N-ethyl-N’-(3-dimethyldiaminopropyl)-carbodiimide·HCl (EDCI) as 

coupling agent, hydroxybenzotriazole (HOBt) as additive and diisopropylethylamine (DIPEA) as 

base. In this way, compound 11 was obtained in 31 % yield (Scheme III-11). Nevertheless, no 

attempts of optimizing the reaction conditions were conducted since intermediate 7 was recovered 

after purification by flash chromatography and could be reused. The 1H NMR spectrum of the 

purified product showed the combination of the proton signals of both consitutent units 7 and 12, 

while the carboxylic 13C NMR signal of 11 (171.9 ppm) was found to shift downfield with respect to 

12 (164.4 ppm) described by Frade et al.40 This confirmed the formation of the desired product 11. 

 
Scheme III-11. Reaction conditions for the coupling of 12 and 7 via amide bond formation. 
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 This intermediate was then further reacted to yield the benzophenoxazine group of ligands 5 

and 6 using the conditions reported by Frade et al. for the synthesis of analogous dyes.40 With this 

aim, previously prepared nitrosophenol derivatives 9 or 10 were added over a solution of 10 with a 

catalytic amount of hydrogen chloride and subjected to reflux of methanol, thus furnishing the 

desired ligands 5 and 6 in 45 % and 35 % yield, respectively (Scheme III-12). Noticeably, the 

reaction conditions of this last step did not only allow the formation of the benzophenoxazine moiety, 

but also the cleavage of the MOM protective groups.32 In contrast to 4, both compounds could be 

simply purified by flash chromatography and fully characterized by 1H NMR, 13C NMR, IR and HR-

MS. 1H NMR showed the disappearance of the proton signals corresponding to the MOM protecting 

groups as well as distinct proton signals for (i) the conjugated  system of the benzophenoxazine 

moiety and (ii) the aromatic catechol group. 

 
Scheme III-12. Last step of the synthetic procedure for the formation of target ligands 5 and 6. 

 Despite achieving the successful preparation of 5 and 6, the reaction yielded a major byproduct, 

which we identified as compound 29 by means of 1H NMR analysis (Scheme III-12). Such product 

should arise from the cleavage of the MOM protecting groups of the starting material 11. Evolution 

of 29 to fluorophore formation was not observed even when different reaction conditions were 

assayed (e.g. longer reaction times, higher concentration of hydrogen chloride or the addition of an 

excess of nitrosophenols 9 and 10). However, analysis by 1H NMR of the resulting reaction crudes 

only showed the formation of new undesired products and even lower yields for the synthesis of 

target compounds 5 and 6. Despite this, the synthetic route to prepare ligands 5 and 6 and the 

easier purification procedures established allowed their preparation in a large enough scale as to 

attempt the subsequent synthesis of CPPs. In particular, target ligands 5 and 6 were both obtained 

in 9 steps and 3 % overall yield from commercial compound 2-methoxy-4-methylphenol, 13. 

III.2.1.4. Optical characterization of ligands 4, 5 and 6 

 The absorption and fluorescence spectra and the fluorescence quantum yields (fl) of the three 

ligands prepared were measured and analyzed using the commercial benzophenoxazine dye nile 

blue A, 8, as a reference (Figure III-10 and Table III-1). In agreement with different reported works, 
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Table III-1. Optical properties of compounds 8, 4, 5 and 6. 

 Abs,max (nm) Em,max (nm) Stokes' shift (nm) fla 

8 626 661 35 0.2742 

4 653 678 25 0.05 

5 626 644 18 0.13 

6 620 644 24 0.40 
aDetermined in MeOH with 8 as a reference at exc = 594 nm. 

 In view of these results and our previous synthetic studies, ligand 6 was selected as the best 

candidate for the subsequent preparation and investigation of guest-doped Co-based CPPs. Our 

choice was based on two different factors: (a) the higher yield achieved in the synthesis of 6 (and 5) 

with respect to 4; and (b) the larger fluorescent quantum yield measured for 6.  

III.2.2. Synthesis and optical characterization of 

type II fluorescent ligand 

 Once selected the type I ligand to be used in next stages of this work, we embarked ourselves 

in the synthesis of type II fluorescent compounds. To favor the comparative analysis of the results 

obtained in the encapsulation and release studies of these different species from CPPs, a single 

type II compound was designed, 30, whose structure was nearly identical to that of the type I ligand 

6 chosen (Figure III-11). The only difference between these two products lay in the functionalization 

of the hydroxyl groups of their catechol moiety, which in 30 were protected as methyl ethers to 

prevent its coordination to the metal ions of the CPPs to be formed. It must be noted that methyl 

ether groups are much more robust than the MOM protecting groups used along the synthesis of 6, 

which should allow them to resist the acidic conditions required for the preparation of the final 

benzophenoxazine unit. 

 
Figure III-11. Type II fluorescent compound to be prepared in this work, which was designed in analogy to 

type I ligand 6. 

 The synthesis of 30 was designed according to the previous synthetic pathway developed for 

the formation of compound 6. As shown in Scheme III-13, the protection of the synthesized 

intermediate 16 as methoxy group would lead to compound 31, which contains the proper protecting 
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catechol group for the synthesis of the target ligand 30. After performing the Wittig reaction between 

31 and the phosphorane 19, alkene and nitrile moieties of compound 32 would be reduced for the 

obtaining of amine 34. Next, analogous procedure used for the formation of the benzophenoxazine 

group of ligand 5 would be carried out with compound 34 for the corresponding formation of 30: 

firstly, the introduction of the aminonaphtalene derivative 12 to 34 via amide formation and, 

secondly, the reaction with the nitrosophenol compond 10. Noticeably, none of the reaction 

conditions used would cause the cleavage of the methoxy groups, which need strong Lewis acids 

for their removal. 

 
Scheme III-13. Synthetic route devised for the preparation of type II compound 30. 

 The first step for the formation of 30 was the conversion of the free hydroxyl moiety of phenol 16 

into a methyl ether protecting group. To achieve this, we applied the conditions previously described 

by Bringmann et al., who carried out this reaction using dimethylsulfate as methylating agent.31 In 

this way, compound 31 was obtained in 90% yield (Scheme III-14). 1H NMR analysis of this product 

confirmed the successful protection of the starting material due to the appearance of a new singlet 

signal at 3.91 ppm for the methoxy group introduced. 

 
Scheme III-14. Synthetic conditions used for the formation of compound 31. 

 Scheme III-15 summarizes the next reaction steps undertook, which were identical to those 

previously used for the formation of compound 6 from intermediate 17. Thus, Wittig reaction 
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between 2-(triphenylphosphoranylidene)-acetonitrile and compound 31 yielded a diastereomeric 

mixture of (E)- and (Z)-32 in 72 % yield and with a diastereomeric (E):(Z) ratio of 4.8:1 according to 
1H NMR data. This mixture was converted into single product 34 in 51% yield after consecutive 

reduction of their alkene and nitrile moieties using the same reaction conditions applied for the 

preparation of intermediate 7. Indeed, the 1H NMR spectra of compounds 34 and 7 exhibited very 

similar signals aside from those corresponding to their different hydroxyl protecting groups. The 

amino group of 34 was then reacted with carboxylic acid 12 to obtain amide 35 applying standard 

amide bond formation conditions. Finally, generation of the benzophenoxazine group was achieved 

by reaction between 35 and previously prepared nitrosophenol derivative 9 under acidic conditions, 

which yielded target type II compound 30 without cleavage of its methyl ether moieties. The 1H and 
13 C NMR spectra of this product were found to be nearly identical to those measured before for 

ligand 6, although they additionally presented the signals arising from the methoxy protecting 

groups of 30. In total, this product was obtained in 8 steps and 2% overall yield. 

 
Scheme III-15. Synthetic methodology for the preparation of 30 followed in this work. 

 Once synthesized, the optical behavior of 30 was analyzed. Thus, its absorption and emission 

spectra and its fluorescence quantum yield were determined and compared to those of the 

analogous ligand 6 (Figure III-12 and Table III-2). Clearly, both compounds displayed nearly 

equivalent optical properties, as expected since they contain the same type of benzophenoxazine 

dye. In addition, this demonstrates that the catechol group of these products is fully electronically 

uncoupled from their fluorophore unit, and therefore, their optical spectra and fl values are 

completely independent of the protection state of the catecholic hydroxyl moieties.  
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polymer particles were also prepared by means of the original procedure described by Ruiz-Molina 

et col,15 M5, which were used as reference material in the characterization of M9 and M10. 

 The first step towards the preparation of M5, M9 and M10 consisted in the synthesis of the 

bidentate organic linker 2, which is not commercially available. The synthetic procedure described 

by Dhal et al. was applied,43 which uses sodium hydride to form the conjugated base of commercial 

imidazole and thus enables nucleophilic substitution to the ,'-dibromo-p-xylene substrate 

(Scheme III-16). In this way, the desired linker 2 was obtained in 55 % yield, characterized by 1H 

NMR with results in agreement with previous spectral data,43 and freshly used for the synthesis of 

CPPs. 

 

 
Scheme III-16. Procedure for the synthesis of bridging ligand 2. 

 

 

 First CPPs formed were reference system M5, with which we aimed to implement in our group 

the synthetic methodology reported by Ruiz-Molina et col. (Figure III-13A). According to their 

procedure, the catechole and bisimidazole ligands 3 and 2 were dissolved in ethanol and an 

stoichometric ammount of an aqueous solution of cobalt acetate was added dropwise. A change of 

color (from pink to dark blue) occurred in approximately 10 min due to the oxidation process of the 

metal ion.50 Subsequently, an excess of water (a poor solvent) was added to induce the precipitation 

of the CPPs, which were purified by consecutive centrifugation-redispersion cycles of the 

nanoparticles obtained in a mixture of ethanol:water (1:4). The resulting material was analyzed by 

SEM and TEM, which demonstrated the formation of solid nanoparticles with narrow size distribution 

and average diameter of (195 ± 38) nm (Figure III-13B-D). Furthermore, elemental analysis of these 

nanoparticles was consistent with the empiric formula C32H48O4CoN2. This result was in accordance 

to the previous reported by Imaz et al.,15 whom described the coordination polymer particles as a 

network of coordination polymers consisted of units of one metal ion, one ligand 2, and two 

molecules of 3, where the metal ion mostly presented the ls-Co(III) valence (CoIII), ligand 2 (bix) 

acted as bridging ligand, and the coligand 3 presented two different forms in the same unit: (a) one 

catecholate form (3,5-dbcat) and (b) one semiquinonate form (3,5-dbsq). In this way, and 

accordingly to the results reported by Imaz et al., The monomeric formula of the CPPs synthesized 

in this work was defined as [CoIII(bix)(3,5-dbsq)(3,5-dbcat)].  
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energy transfer can take place on the nanoscale from high excitation energy donors (in our case, 

benzophenoxazine fluorophores 6 and 30, D) to lower excitation energy acceptors (the Co-based 

coordination polymers, A).29 This makes the electronic excited state of the donors relax back to their 

ground state without emission of fluorescent photons, while the acceptors are promoted to their 

electronic excited state without direct absorption of the incoming excitation light. Since such 

acceptor species were not luminescent in our case, the overall result of the RET process in M9b 

and M10 was fluorescence quenching of 6 and 30. 

 The efficiency of resonance energy transfer processes depends on four main factors: (a) the 

spectral overlap between the absorption of A and the emission of D, which is large in our case due 

to the broad absorption spectrum spanning all over the visible and NIR regions of the Co-based 

coordination polymers used (Figure III-20B), (b) the fl value of the donor, which must be high; (c) 

the orientation between the absorption transition dipole of A and the emission transition dipole of D, 

since RET is a dipole-dipole energy transfer process; (d) the separation between donor and 

acceptor species, which must be lower or at least comparable to the Förster radius (R0) defined as 

the D-A distance with 50 % probability of RET to occur. Actually, R0 can be easily calculated for any 

D-A pair using Equation III-1,29 where fl,D is the fluorescence quantum yield of D,  is the 

geometrical factor that defines the orientation of the transition dipoles and J is the D-A spectral 

overlap integral. Using the values of fl,D and J determined from the optical properties measured for 

the separated donor and acceptor moieties in methanol (fl,6 = 0.40, fl,30 = 0.41, JM9b = 1.24·10-14, 

JM10 = 1.27·10-14) and assuming random orientation between them (2= 2/3), R0 was found to be on 

the nanometer scale both for M9b and M10 (R0,M9b = 4.70 and R0,M10 = 4.72). Taking into account 

Equation III-2 to predict the efficiency of the RET process (ERET) from R0 and the actual D-A 

distance (rD-A),REF this means that rD-A must be lower than 2.19 nm to ensure complete 

fluorescence quenching (i.e. ERET > 99 %) of 6 and 30 in M9b and M10, respectively. Such a 

requirement was fulfilled for sure in M9b, where the fluorescent guest 6 was expected to be directly 

tethered to the Co-based coordination polymer (rD-A  1.68 nm). In case of M10, this indicates a 

close packing of the polymeric network, which should render the physically entrapped 30 molecules 

close enough to the energy acceptor coordination polymers. 

 

   
 

2
3 fl,D6

0 4

J
R 9.78 10

n  (III-1) 

 

6

0
RET 6 6

0

R
E

R r


  (III-2) 

 A further proof that RET accounted for the emission quenching of the fluorescent guests in M9b 

and M10 was obtained by dissolving and degrading these materials by adding non-degassed 
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and degradation processes should induce guest release from M9b. This prompted us to develop 

Equation III-4, which was derived to account for the occurrence of these two mechanisms:  

 
 

 

32 2
dD

t 2 2 2
n 1 0

k t6 1 k n t
M M b 1 exp 111 b

C Rn 1 bR






                        
 


 (III-4) 

 This equation consists of two different terms: (a) the first term corresponds to the diffusion-

induced release of physically encapsulated guest fluorophores, which should follow the same 

Fickian model applied for M10 (see Equation III-3); and (b) the second term is related to the 

Hopfenberg’s model, an empirical surface-erosion equation developed for spherical particles that 

exhibit heterogeneous degradation.49 Such a term, which should account for the delivery of 

chemically bonded molecules, depends on three different parameters: the surface erosion rate 

constant (kd), the total initial concentration of the guest in the polymer matrix (C0), and the initial 

radius of the nanoparticles (R). Moreover, an additional factor b was introduced, which is the fraction 

of guest molecules that lie mechanically entrapped within M9b and therefore reports on the 

contribution of each one of the terms in the equation to the overall release process. As both 

materials M9b and M10 were expected to be morphologically equivalent and the molecular 

geometries of guests 6 and 30 very similar, the apparent diffusion constant for the first term in 

Equation III-4, kD was assumed to be the same as that determined for M10. Thus, this equation was 

fitted to our experimental data using only two variable parameters, b and kd. In spite of this, a good 

agreement was found, as demonstrated in Figure III-23B. Noticeably, a value of b = 0.26 was 

retrieved from the fit, which meant that 26 % of the encapsulated fluorescent guests were 

mechanically entrapped within the particles. The remaining 74 % of compound 6 was covalently 

linked to the polymer matrix of M9b and released via particle degradation with a slow rate constant 

(kd/C0 = 3.31·10-13 m s-1). Therefore, both diffusion and degradation processes accounted for guest 

delivery from M9b, thus giving rise to a two-regime release profile: initial, fast delivery of physically 

encapsulated molecules (t < 5 h) followed by slow release of the chemically bonded guests. This 

conclusion was in agreement with the SEM analysis of the particles during the dialysis process 

(Figure III-24). As previously observed for M10, M9b did not show appreciable degradation effects 

during the first 5 h, a period where guest delivery was mainly governed by diffusion. Surface erosion 

triggering degradation-induced release took place in a larger time scale and their effects were only 

visible after 26 h by SEM. 
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 To demonstrate this hypothesis, two further actions were taken. First, M9b and M10 release 

profiles were adjusted with Equation III-5, which accounts for single-mechanism degradation-

induced delivery according to the Hopfenberg’s model previously introduced. As shown in Figure III-

24A, good agreement with the experimental data was achieved and very similar and high 

degradation rate constants were found for M9b (kd/C0 = 3.27·10-8 m s-1) and M10 (kd/C0 = 8.05·10-9 

m s-1). Second, the evolution in time of the morphology of the dialyzed particles was followed by 

SEM. Figure III-25B-D depict the microscopy images registered in these experiments for M10, which 

were equivalent to those acquired for M9b. Clearly, most nanoparticles lost their shape and size as 

fast as in just 3h of treatment in PBS at 60ºC, and they fully disintegrated and fused into larger 

continuous structures after 6 h. Since guest release completely took place in this period, this result 

further supported the conclusion that both physically and chemically encapsulated molecules in M9b 

and M10 were mainly delivered via degradation processes at high temperatures, in contrast to the 

behavior observed at physiological conditions. We cannot currently tell whether this thermal effect 

arose from the valence tautomerism of the particles used or it was purely due to the increased rate 

of degradation in aqueous media expected for most CPPs upon heating. Nevertheless, our study 

clearly reveals that not only guest release kinetics but also the mechanism of delivery from these 

materials might be modulated by thermal stimuli. 

 

3

d
t

0

k t
M M 11

C R

  
          (III-5) 

III.2.4.3. Exploiting our guest release models for drug 
delivery from CPPs 

 Once carefully investigated the different delivery mechanisms from Co-based CPPs doped with 

non-pharmacologically active fluorescent guests, we decided to go a step further and validate the 

release models developed in this work using as test systems other coordination polymer particles 

where real drugs were encapsulated via either chemical tethering or mechanical entrapment. In 

these studies, we mainly used Equation III-4 for release profile analysis, since it can account for any 

of the delivery mechanisms uncovered for M9b and M10: (a) purely diffusion-controlled release (if 

parameter b is set to 1); .(b) purely degradation-controlled release (if parameter b is set to 0); and 

(c) a combination of both mechanisms (if the value of b is not constrained and freely fitted). 

 As a case of chemical encapsulation, we focused our attention on the study of Huxford et al.14 

introduced above (see section 1.3.1.), where the authors investigated the release of an anticancer 

drug (MTX) coordinated to Gd-based CPPs. As such, drug delivery from this material was solely 

attributed to degradation processes. However, when fitting the delivery profile reported by them 

using Equation III-4 and b = 0 (i.e. assuming purely erosion-controlled release via a Hopfenberg’s 

model), the experimental data could not be properly adjusted (Figure III-26). Similarly, negative 
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III.3. CONCLUSIONS 

 This chapter reported the preparation of Co-based CPPs doped with fluorescent molecules for 

investigating the mechanisms of guest encapsulation and release from coordination polymer 

particles. With this aim, the following experiments were performed: 

1. Different model fluorescent guests were synthesized and characterized, which consisted in 

dyads of a benzophenoxazine dye and a t-butylcatechol unit with unprotected (4, 5, 6) or 

protected hydroxyl groups (30). All of them were prepared from commercial 2-methoxy-4-

methylphenol: (a) 4: in 10 steps and 0.5 % yield; (b) 5 and 6: in 9 steps and 3 % yield, and (c) 30 

in 8 steps and 2 % yield. Based on its higher synthetic yield and better optical properties, 

compound 6 bearing a chelating catechol ligand was chosen for the preparation of Co-based 

CPPs via coordination to the metal ions of the system. Catechol-protected, non-coordinating 

compound 30 was then designed to carry the same benzophenoxazine dye and used for the 

preparation of analogous particles where the fluorescent guests were physically encapsulated 

instead of chemically bonded. 

2. Co-based CPPs bearing compounds 6 (M9b) and 30 (M10) were synthesized according to the 

literature15, using a bisimidazole ditopic linker for the formation of the coordination polymers and 

t-butylcatechol groups to saturate the coordination sphere of the cobalt ions. Care had to be 

taken to properly select the concentration of guests 6 and 30 to be used in the preparation of 

these materials, since we demonstrated that the addition of higher amounts (> 1 mM) of these 

compounds led to self-structuration into microparticles driven by -stacking of their 

benzophenoxazine groups. Consequently, M9b and M10 were prepared with low doping content 

of 6 (2.1 % wt.) and 30 (1.1 % wt.), the encapsulation efficiencies measured being higher for the 

former compound given the coordinating capacity of its unprotected catechol group. Such low 

guest concentrations resulted in very similar morphological and structural features for both 

materials (average diameter  170 nm), which displayed the same valence tautomer behavior as 

analogous undoped particles. Thus, we observed that the metal complex units of their 

constituent coordination polymers converted from ls-Co(III) to hs-Co(II) states upon temperature 

increase, as revealed by magnetic experiments. Finally, fluorescence measurements were used 

to reveal that the emission from 6 and 30 was quenched when encapsulated within M9b and 

M10, respectively, thereby allowing selective detection of free, delivered guests in our 

subsequent release studies. 

3. Guest release experiments were conducted for Co-based CPPs M9b and M10. While no 

significant differences were observed at high temperatures (i.e. 60ºC), clearly different delivery 

profiles were measured for the two systems at physiological conditions. We could interpret these 

results on the basis of distinct encapsulation and release mechanisms according to mathematical 

models developed for drug release from organic polymeric materials and SEM analysis of the 

evolution of the particles. Thus, delivery of mechanically entrapped guest 30 from M10 was 
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encountered to be mainly associated to fast diffusion processes through the material at 37ºC, 

which took place in a shorter time scale than slow particle degradation at this temperature. In 

case of M9b, our analytical treatment revealed the occurrence of two different populations of 

encapsulated guests, physically trapped and chemically bonded molecules. As such, its release 

profile showed two different regimes at physiological conditions, which resulted from the 

separate delivery of each one of those populations via fast degradation and slow diffusion 

processes, respectively. Upon heating, however, degradation of the particles was found to be 

enormously accelerated and it became the major release mechanism for both M9b and M10. To 

account for all these possibilities (i.e. diffusion-controlled release, degradation-controlled release 

or combination of both), a new mathematical model for drug delivery analysis was derived 

(Equation III-4), whose general applicability was successfully validated using as test systems 

different drug-loaded CPPs from the literature as well as specifically prepared in this work.  

 In conclusion, we have demonstrated in this chapter that drug delivery kinetics from CPPs can 

be easily modulated by proper choice of the encapsulation mechanism of therapeutic agents. Thus, 

by cleverly combining fast diffusion of mechanically entrapped molecules together with slow 

degradation-controlled release of chemically bonded guests, the delivery profiles from these 

materials can be finely tuned and adjusted on demand to the time window of action of the target 

drugs. 
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