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Abstract

The numerical simulation in the field of civil engineering, while widely used in struc-
tural design, has not benefited from the full potential offered by new technologies for the
analysis and design of composite materials within the framework of the finite element,
technologies that are already present in industries such as automotive, aerospace and
shipbuilding.

This thesis is based on the numerical simulation, and emerges as the need to combine
and improve existing technologies in the field of finite element analysis for composite
materials, to assess the overall structural behavior of reinforced concrete buildings with
masonry in-fills, and consequently, to support the derivation of rational rules for analysis
and design purposes.

Prior to the beginning of this thesis, a huge concern was the large amount of com-
putational resources needed for both solving systems of linear equations resulting from
the use of the finite elements method, and for storing internal variables needed in the
integration of constitutive models. Therefore, in this work, computational strategies
used to enable the analysis of real life structures are also provided.

The simplicity required to handle meshes with high amount of finite elements pushed
us to develop a new layered finite element, that can reproduce the non-linear behavior
of its constituent materials when there are out-of-plane stresses, this, without having
to introduce additional degrees of freedom. The finite element proposed has been com-
pared to finite element with different kinematics obtaining excellent results.

The robustness and efficiency of the developed methodology for analysis of masonry
and concrete buildings, is conditioned by the ability of using different patterns of steel
reinforcement, which are typically presented in real life structures. That is why it has
also been necessary to develop a computing program capable of reading both finite
element meshes, and patterns of fibers represented with convex polygons, and as a
result of areas intersections between polygons returns volumetric participation of fiber
and matrix of constituents materials for each layer, in addition had to return the fiber
orientation with respect to the local axis of the finite element.



The numerical results obtained have been compared in some cases with experimental
results available in the literature, in other cases, with numerical results obtained using
Building Codes, in both cases, there have been good agreement between them. Finally,
it has been possible to characterize a representative medium-rise building of Mexico
City using the capacity spectrum method. This method is widely used nowadays for the
assessment of building behavior, since using fragility curves can represent the ability of
a building to resist an earthquake.



Resumen

La simulación numérica en el campo de la ingeniera civil, aunque es ampliamente
utilizada en el diseño estructural, no se ha beneficiado de todo el potencial que ofrecen
las nuevas tecnoloǵıas para el análisis y diseño de materiales compuestos dentro del
marco de los elementos finitos, tecnoloǵıas que ya están presenten en industrias como
la automotriz, aeroespacial o la naval.

Este trabajo de tesis esta basado en la simulación numérica, y surge como la necesi-
dad de combinar y mejorar tecnoloǵıas existentes en el campo de los elementos finitos y
de análisis de materiales compuestos, para conocer el comportamiento estructural global
de los edificios de hormigón armado con rellenos de mamposteŕıa, y para apoyar en la
derivación de reglas racionales con fines de diseño.

Una preocupación previa al inicio de esta tesis doctoral, era la gran cantidad de
recursos computacionales necesarios, tanto para la resolución de los sistemas de ecua-
ciones lineales resultantes con el uso del método de los elementos finitos, como para
el almacenamiento de variables internas necesarias en la integración de modelos con-
stitutivos. Por ello, dentro de este trabajo, también se proporcionan las estrategias
computacionales usadas que permiten el análisis de estructuras de la vida real.

La simplicidad requerida para el manejo de mallas con gran cantidad de elementos
finitos lleva a desarrollar un elemento de lámina con diferentes capas, que pueda repro-
ducir el comportamiento no lineal de sus materiales componentes cuando existen ten-
siones fuera del plano, sin que haya que introducir grados de libertad adicionales. El ele-
mento finito propuesto ha sido comparado con elementos finitos de diferente cinemática
obteniendo excelentes resultados.

La robustez y eficiencia de la metodoloǵıa desarrollada para el análisis de edificios
de hormigón y mamposteŕıa, esta condicionada a la capacidad de utilizar los diferentes
patrones de acero de refuerzo que t́ıpicamente se presentan en estructuras de la vida
real. Es por ello que también ha sido necesario desarrollar un programa de computo
capaz de leer tanto una malla de elementos finitos, como un patrón de fibras repre-
sentado con poĺıgonos convexos, y que mediante operaciones de intersecciones de áreas
entre poĺıgonos, de como resultado la participación volumétrica de matriz y fibra de los
materiales componentes por cada capa, además de la orientación de la fibra con respecto
a los ejes locales del elemento finito.

Los resultados numéricos obtenidos se han comparado con resultados experimentales
presentes en la literatura, y con resultados numéricos obtenidos utilizando normas de
construcción, en ambos casos, se han observado buenos ajustes entre ellos. Finalmente,



ha sido posible caracterizar un edificio representativo ubicado en la Ciudad de México
usando el método del espectro de capacidad. Dicho método es ampliamente utilizado
hoy en d́ıa para el diseño y evaluación sismo-resistente de estructuras, ya que mediante
el uso de curvas de fragilidad permite representar la susceptibilidad de una estructura
a ser dañada debido a un terremoto.
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Chapter 1

Introduction

Masonry construction is a combination of individual units (bricks) bound together by a
mortar, is an ancient construction technique of prehistoric and civilized peoples, from
simply stone, later, shaped stone, to finally bricks: the oldest manufactured building
materials. Enormous constructions such as the Great Wall of China, Mayan pyramids
in Mexico and Central America, the Taj Mahal at India, point importance of masonry
constructions along mankind evolution, becoming the oldest building technique that still
finds wide use in today’s building industries. Bricks have evolved from shaped stones to
sun-baked clay bricks 6,000 years ago, enhanced to reach their final form about 4,000
B.C moving from sun-baked to fire-baked.

Perhaps the most important innovations in the evolution of architecture were the
development of masonry arches and domes, overcoming the span limitations at the time.

Masonry building construction has had ups and downs, with the onslaught of Indus-
trial Revolution, factors such as: invention of Portland cement in 1824, refinement on
iron production in the early nineteenth century, and the development of the Bessemer
furnace in 1854, besides the demand of high-rise constructions, architectural creativity
were set away from masonry. By the twenty century, The Chicago School had pioneered
the use of iron and steel skeleton frames, so masonry was completely relegated to the
usage of facings, in-fill, and fireproofing. The Monadnock Building in Chicago fig.1.1 is
generally cited as the last great building in the ancient tradition of masonry structures.
Its 16-story unreinforced load bearing walls were required by code to be several feet
thick at the base, making it seem unsuited to the demands of a modern industrialized
society.

Revival of construction on masonry came from profitable reasons, according to Beal
C. [19], in the early 1920s, economic difficulties in India convinced officials that alterna-
tive to concrete and steel structural system had to be found. Extensive research began
into the structural performance of reinforced masonry, which led not only to new sys-
tems of low-cost construction, but also to the first basic understanding of the structural
behavior of masonry, however, it was not until the late 1940s, that European engineers
and architects began serious studies of masonry bearing wall designs.

Significant improvements over old ancient tradition of masonry construction were
achieved, contemporary masonry buildings had now thinner, lighter-weight, more effi-
cient structural systems and veneers than in the past.

Over the last 40 years, masonry building construction has been widely practiced in
countries and regions of extremely high seismic activity, used for construction of one-
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2 1. Introduction

Figure 1.1 The Monadnock Building in Chicago (1891).

storey single-family housing to medium-rise apartment buildings (up to six-storey high).
Despite such wide range of application few resources have been put in structural masonry
research while compared with steel construction or concrete reinforced construction.

Let us use the example of Mexico City, to put in context some aspects such as:
economics, demographics and its structural performance, to have a better understanding
of the reliability in such construction system, and why it has been adopted as a strategy
to overcome housing shortage.

Economic: low-cost construction is the most significant aspect that makes masonry
structures reliable, hence, construction of housing buildings made out of reinforced bear-
ing walls (fig.1.2) is highly promoted by INVI. Instituto Nacional de la Vivienda, or
simply INVI, is a governmental association that assures people with the lowest incomes
in Mexico City have affordable and decent homes.

According to its website, in 2012, from January to December, INVI has invested
2,692,452,943.64 Mexican pesos (158,379,584.92 euros) in 198 properties for a total of
1970 houses, not yet been sufficient for the huge demand for housing in Mexico City.

Demographics: as a result of an intense inner in-migration activity toward Mexico
City, or the so called Greater Mexico City officially called Mexico City and Metropolitan
Area, (fig.1.3), in the past 50 years, combined with the lack of space, a essential strategy
to solve the housing necessities, is via medium rise constructions, both risk proof and
cheap.

Structural performance: Masonry structures designed in compliance with current
code requirements perform well, even in cases of significant seismic activity [92].

Mexico City’s vulnerability to earthquake damage comes from its location, lays on
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Figure 1.2 Typical apartment building in Mexico City.

Figure 1.3 Population distribution of the Greater Mexico City.
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the silt and volcanic clay sediments of the bed of the Lake Texcoco, which are between
seven and thirty-seven meters deep and have a high water content. The expansion
of Mexico City, and the gradual draining of the lake left one of the world’s largest
population center located largely on unconsolidated lake-bed sediments. Thus, these
soft sedimentary clay deposits amplify the seismic waves, resulting on different ground
motion responses within the same city, such effect is known as seismic microzoning.

Figure 1.4 depicts a superposition of evolution on the seismic microzoning of Mexico
City over the Texcoco Lake.

On the other hand, on the west coast of southern Mexico and Central America, the
Cocos Plate dips beneath the North American Plate producing a seismically active zone.

1.1 Background and Motivation

Over the last decades reinforced concrete (RC ) frames with masonry in-fills become the
preferred construction technique for low-rise buildings worldwide. Yet, due to their need
for precise detailing and execution on one hand, and the frequently inadequate level
of craftsman-ship on the other, such construction technique proved to be excessively
vulnerable to earthquakes. So a less sophisticated construction technique: Confined
Masonry technique evolved as an informal process based on its satisfactory performance.

Since the work done by Rathbun in 1938 [137], where the influence on the structural
performance of in-filled frames subjected to lateral loads was first noticed, structural
behavior of masonry wall has been the subject of many experimental and analytical
studies around the world, considering different lateral and vertical load conditions and
taking into account particular characteristics of masonry components. The first reported
use of confined masonry construction was in the reconstruction of buildings destroyed
by the 1908 Messina, Italy earthquake (magnitude 7.2) which killed over 70,000 people
[24].

In countries with high seismic activity, like Chile, this construction practice started
in 1930’s after the 1928 Talca earthquake (magnitude 8.0) that affected a significant
number of unreinforced masonry buildings [24]. Subsequently, the 1939 earthquake
(magnitude 7.8) that struck the mid-southern region of the country, revealed a very
good performance of confined masonry buildings [104].

Confined masonry construction was introduced in Mexico City, Mexico in the 1940’s
to control the wall cracking caused by large differential settlements under the soft soil
conditions. Several years later, this system became popular in other areas of highest
seismic hazard due to its excellent earthquake performance [93], but was until early
60s when the proper study of confined masonry started in the country, when Esteva
[49, 50, 48] tested masonry walls confined with reinforced concrete. Later on, several
studies were made at the time, like the ones made by Meli et al. [98], Meli and Salgado
[97], Madinaveitia and Rodŕıguez [83], Turkstra [164], Meli and Reyes [96], Madenaveitia
[82], Meli and Hernández [94, 95], being the bases upon Hernández in 1975 [60] provided
design and construction recommendations for structures made out of masonry bearing
walls. Thus, in 1977 the first Mexican code for design and construction of masonry
structures was established, where, for design purposes, a simplified use of mechanical of
materials theories is used. Appendix D depicts the analysis and design considerations
to take into account while designing a confined masonry bearing wall structure.

Over the last 40 years, confined masonry construction has been practiced in Mediter-
ranean Europe (Italy, Slovenia, Serbia), Latin America (Mexico, Chile, Peru, Argentina
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Figure 1.4 Evolution on Seismic Microzoning of Mexico City.
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Figure 1.5 Confined masonry building where walls are modeled as an equivalent
column and slabs are modeled with diagonals [55].

and other countries) The Middle East (Iran), South Asia (Indonesia) and the Far East
(China) [24]. Despite the use of masonry in different types of constructions, this material
has not been investigated as intensely as other construction materials, like reinforced
concrete or steel. Per Se, construction is one of the most traditional and less techni-
fied industries when compared to other building industries, like aerospace or automotive
more benefited from the development of composite materials. This is an abnormal situa-
tion that generates important negative social and economic consequences. Construction
industry needs support in research and development in order to be more competitive
and integrated within the present world standards. Although literature shows experi-
mental and analytical research on this field has progressively increased in past 50 years,
numerous uncertainties still remain.

The current technologies have led to model confined masonry building subjected to
ground shaking mainly as:

a. As a truss [24], as shown in figure 1.6, where masonry wall act as diagonal struts
subjected to compression, whereas the reinforced concrete confining members act
in tension/compression, depending on the lateral earthquake forces.

b. As a frame [55], where confined masonry walls are modelled using an equivalent
column (fig. 1.5), it is assumed the beams have infinite stiffness, and diagonal
struts are used to model the slabs.

In both cases, the analogy made are highly simplistic and lack in accuracy. Re-
searching work has also been extended to the numerical field applying the finite element
method. Isotropic elastic behavior was first considered by Rosenhaupt [142], and Saw
[148] ignoring the influence of mortar acting as planes of weakness, so first approxima-
tion was settle, since such assumption was useful in predicting deformation at low stress
level, but not at higher stresses level where redistribution stress caused by non-linear
material behavior and local failure would occur. Later on, material models, based on
average properties and with the influence of mortar joints ignored but including the pos-
sibility of local failure, were developed by Ganju [56] and Samarasinghe [145]. On 1978
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Figure 1.6 Confined masonry building modeled as a vertical truss [24].

Figure 1.7 Modeling strategies for masonry structures.

Page [124] presented a finite element model procedure to reproduce non-linear behav-
ior, where masonry is considered as an assemblage of elastic brick continuum elements
acting in conjunction with linkage elements simulating the mortar joints. The joint ele-
ments are assumed to have high compressive strength, low tensile strength, and limited
shear strength depending upon the bond strength and the acting degree of compres-
sion. Lourenço [79] in 1996 focuses on the non-linear analysis of unreinforced masonry
structures using a plane stress approximation for shear walls and panels. If the reader
may want to go further on the subject, a comprehensive review on the finite element
modeling of unreinforced masonry structures, both in the static and dynamic regime,
has been conducted by Tzamtzis and Asteris [166].

The majority of the proposed modeling strategies, in order to study the mechanical
behavior of masonry has been identified by Lourenço [79] and Rots [143], and can be
classified in two categories:

� Micro-modeling, or two-phase material models: where the components are
considered separately to account the different inelastic behavior in the interaction
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Auf globaler Systemebene werden bei impliziten FE-Programmen die auftretenden 
Ungleichgewichtskräfte mit Hilfe des Newton-Raphson Verfahrens umgelagert. Zur Verbesserung des 
Konvergenzverhaltens kann die Bildung der elastoplastischen Tangente DEP, deren Berechnung 
ebenfalls in den beschriebenen Algorithmen enthalten ist, dienen. Die vorgestellten Stoffmodelle 
wurden für Scheiben-, Schalen- und Volumenelemente in das implizite FEM - Programmsystem 
ANSYS® und in das explizite FEM - Programm LSDYNA3D® implementiert. Die detaillierte 
Dokumentation und Verifikation der Modelle wie auch die Ableitung weiterer sehr leistungsfähiger 
Mikromodelle sind in [6] enthalten. 
 

4 Tragfähigkeitsuntersuchungen der Göltzschtalbrücke 
Die von 1846 – 1851 im sächsischen Vogtland unter Leitung von Schubert und Wilke erbaute 600 m 
lange und 100 m hohe Göltzschtalbrücke war seinerzeit das mit Abstand höchste Eisenbahnviadukt 
der Welt. Die durchgängig im regelmäßigen Verband gemauerte Brücke setzte eine rassante 
Entwicklung der maschinellen Massenproduktion von Mauerziegeln in Gang. Noch heute ist die 
Göltzschtalbrücke in voller Nutzung durch den Fahrbetrieb der Deutschen Bahn AG. Da das Bauwerk 
einer regelmäßigen Wartung und Inspektion bedarf, wurde es notwendig, die Befahreinrichtung an der 
Brücke zu erneuern und zu erweitern. Im Rahmen dieser Baumaßnahmen wurde von der Deutschen 
Bahn AG eine erstmalige rechnersiche Überprüfung der Standsicherheit unter Berücksichtigung der 
neu einzutragenden Belastungen gewünscht. Die Modellierung des Brückenbauwerkes erfolgte als 
3D-Modell. Dabei wurde der Bereich von Achse P bis Z, d.h. fünf Stützen- und Bogenreihen 
beiderseits der großen Mittelbögen in Achse U modelliert. Daraus ergibt sich eine Länge des 
Berechnungsausschnittes von 190,14 m. Zur realistischen Erfassung des räumlichen 
Gesamttragverhaltens wurden alle vier Brückenebenen berücksichtigt. Unterschiedliche 
Materialbereiche (Naturstein- und Ziegelmauerwerk) wurden in den relevanten Bereichen (Bögen und 
Pfeiler) berücksichtigt.  

Fig. 7a: Göltzschtalbrücke Fig. 7b: FE-Modell 
 
Ein Ergebnis der Berechnungen sind die in Folge des Lastfalles Eigengewicht auftretenden 
Kraftumlagerungen. Die in Fig. 8 dargestellten plastischen Vergleichsdehnungen dieses Lastfalls 
zeigen den Effekt der Initiierung der Ausgangslage und damit einhergehende Aktivierung der 
Bogentragwirkung sehr deutlich. Die auftretenden plastischen Dehnungen in den 
Aufmauerungsbereichen der Bögen resultieren hauptsächlich aus den aktiven Fließkriterien F6 bzw. 
F9 und damit aus der Umlagerung unzulässiger Schub- und Zugspannungen. Hier entzieht sich das 
nicht in Bogenrichtung gemauerte Mauerwerk dem Lastabtrag und wirkt daher zu einem gewissen 
Anteil als Auflast der Bögen. In Folge dieser Kraftumlagerung wird die Bogentragwirkung des in 
Bogenrichtung gemauerten Bereiches erst aktiviert. 
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Fig. 8: Berechnung Göltzschtalbrücke: Aktivierung der Bogentragwirkung im 
            Eigengewichtslastfall durch plastische Umlagerungen 
 
Es wurde besonders deutlich, dass eine realistische Untersuchung des Spannungs-, Riss- und 
Verformungszustandes derartiger gemauerter Brückenviadukte nur bei Berücksichtigung der 
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Figure 1.8 Macro-modeling for Göltzschtal Bridge [150].

between them. Analysis within this category are relatively costly to use due to
the great number of degrees of freedom, require more input data, and their fail-
ure criterion has a complicated form due to the brick-mortar interaction. The
constitutive equations of the components have normally a simple form, on the
other hand, and they are suitable for the study of local behavior of masonry. This
modeling strategy is categorized into (see figure 1.7):

a. Detailed micro-modeling where units and mortars are represented as contin-
uum, with the unit/mortar interfaces modeled using discontinuous interfaces
elements as potential cracks, slip and crushing planes.

b. Simplified micro-modeling through the adoption of geometrically expanded
masonry units with a single average interface representing the mortar and
the two mortar/unit interfaces. This models requires the material model of
the expanded unit and masonry joints.

� Macro-modeling or one-phase material models: treating masonry as an
ideal homogeneous single material with constitutive equations that differ from
those of the components (mortar and bricks). The constitutive models on this
category are relatively simple to use, requires a less input data, and the failure
criterion has normally a simple form. On the other hand, their constitutive equa-
tions are relatively complicated and are suitable at best for the global behavior of
masonry. Figure 1.8 correspond to the work done by Schlegel et al [150] using a
macro-modeling technique in the structural analysis of the Göltzschtal bridge.

The structural capabilities of confined masonry bearing wall structures, or reinforced
concrete structures with masonry in-fills are still being explored. The objective of this
work is to continue researching on the matter using a One-phase material model [79, 143],
so, be able to reproduce the overall behavior of masonry structures, using both classical
mixing theories and enhanced mixing theories [135, 88] on laminated composite materials
within the finite element method framework.
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1.2 Objectives

The main objective of this work, is to develop an efficient methodology, and be able
of numerically reproduce the behavior of an entire masonry structure, to subsequently,
find reliable estimates of the non-linear response which leads to fully understand the
failure mechanisms and assess the safety of the structure.

In order to achieve this objective, the state of the art for shell elements has been
reviewed, leading to the proposal of a new integration scheme over the thickness for
layered shell elements, enhancing the bending-membrane coupled effect and allowing
degradation in different layers of the composite material.

Also, state of the art of rules of mixtures for composite materials has been reviewed,
leading to the development of a computational tool. This tool arises as a need of
mechanizing and generates the composite material information given a large mesh of
triangular finite elements and a real life steel reinforcement pattern of every layer within
the composite.

A priori, one of the main drawbacks with this proposal, could be that the computa-
tional process in terms of time-consuming and RAM memory needed would be rather
expensive. Hence, as an attempt to overcome such presumable disadvantage, some
alternatives have to be explored, and are listed below.

� To speed it up, the computational code has to be built in parallel programming
using OMP directives, and therefore, be able to obtain a response in terms of time
as a function of the used number of threads.

� Propose some computational strategies to store only the strictly necessary amount
of information, like internal variables, stresses or strain. This, to reduce the con-
sumed memory resources.

� Although pardiso [149], the direct solver used for the solution of the linear system
equations has a great performance in terms of time, lacks in terms of memory
RAM required, due to the size of the matrices required to solve the linear system.
An explored solution is the use of a preconditioned iterative solver, although the
optimal solution strategy depends on the computational resources.

On the other hand, code regulations regarding the analysis and design of masonry
buildings have to be reviewed, to compare the obtained results with the proposed anal-
ysis scheme.

Finally, the theoretical principles used will be expressed and applied to assemble
a robust numerical tool capable of predicting the behavior of real life structures from
linear elastic stage, through cracking and degradation until complete loss of strength.

1.3 Outline

Since this work deals with two different topics, the state-of-the-art is provided at the
beginning of chapter 2 and chapter 3. The work presented is organized as follows:

In chapter 2 the finite element strategy used along this work is described, first,
through a brief review of both plane stress and plate-bending elements. Later, pitfalls
of such elements are illustrated, leading to the description of the theoretical contribution
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of this work. This is the proposed integration scheme along the thickness for shell ele-
ments that allows degradation in different layers and enhances the bending-membrane
coupled effect. Finally, some tests are performed, and the results are presented.

In Chapter 3 the state of the art of the modeling techniques for composite materials
applied to concrete and masonry structures is reviewed. Also, mesh objectivity within
the classical FE formulation following a smeared crack approach is performed for both,
membrane and bending response. Due the amount of information along the thickness
that a finite element may have, a handy tool that mechanizes and solves the issue of the
composites material generation used along this work is also presented. Finally, some
numerical tests are performed and compared with experimental results in order to vali-
date the proposed scheme.

In chapter 4 various examples of large structures are presented. In order to evaluate
and explore the capabilities of the computational approach presented in this research,
several aspects have been studied, such as computational cost and real-life applications.
In all cases, results have been compared with the existing structural design regulation
valid for Mexico City.

In Chapter 5 conclusions and contributions of the work are shown. Future lines of
researching and future developments are given in this chapter as well.

Also, Appendix A has been included as an overview of damage constitutive models
with one and two scalars commonly used along the present work.

Appendix B is intended as an overview for the governing equations of the classical
rate-independent plasticity models.

Appendix C describes the architectural drawings of the real-life building analyzed
in chapter 4, and used to illustrate the methodology proposed in this work.

Appendix D has been included in this work, as an overview of the methodology a
structural engineer follows to design a structure composed by confined masonry bearing
walls in accordance with a Mexican design regulation.

Appendix E reports the obtained results, corresponding to the structural analysis
and design of the model presented in appendix D, and also in section 4.2.

Appendix F describes the structural drawings, and the composite material used for
the generation of the volumetric participation for each FE of model described in section
4.2.

Finally, appendix G describes the process used in section 4.2 to assess the seismic
demand and the probabilistic damage.



Chapter 2

Finite Element Formulation
for Membrane and Bending

This chapter discusses the technologies used for finite element analysis, reviewing the
existing kinematic, and focusing on two-dimensional F.E. subjected to membrane and
bending forces, later, as a combination of such technologies, it is proposed a finite
element appropriate for modeling of multi-storey structures with masonry in-fills.

First, a brief overview of one, two and three-dimensional element used to model
multi-storey structures is carried out, later, introduction to concepts and equations, to
both coupled and separately membrane and plate-bending for two-dimensional elements
are reviewed. Pitfalls for such elements are illustrated. The physics of shell elements for
thin plates using an enhanced element is described. Is proposed an integration scheme
along the thickness for shell elements, that allows degradation in different layers and
enhances the bending-membrane coupled effect. Finally, numerical tests are presented.

2.1 Finite Elements applied in the Analysis of Multi-
Storey Structures

For the analysis of masonry historical construction, frame structures with masonry in-
fills, or confined masonry structures, several approaches have been used. Such ap-
proaches are basically a combination of the discretization of the geometry using F.E.
with constitutive models to represent the behavior of the component materials. This
section focuses on the used F.E. based on their dimensions, and only pretends to be a
quick overview. For an extensive reference, reader may consult the work carried out by
Roca et al [140].

2.1.1 One-dimensional F.E.

Depending on the accuracy required, a multi-storey structure with masonry in-fills, or
a multi-storey structure with confined masonry bearing walls could be modeled using
only one-dimensional F.E.

There is no doubt that frame structures, in real-life structural design, are mainly
modeled using one dimensional elements, this is due to the width-to-span or the height-
to-span ratio of the elements to be modeled. However, when it comes to frame structures

11
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Figure 2.1 Analysis of masonry structures using one-dimensional F.E. [24, 55].

with masonry in-fills, a common practice is to model the in-fills is as truss elements
without aid of two-dimensional F.E.

This practice has also been extended to the modeling of multi-storey structures
with confined masonry bearing walls, that can be modeled only with the use of truss
elements [24], hence, it is made the assumption that masonry walls act as diagonal
struts subjected to compression, while reinforced confining elements like tie-columns or
tie-beams act in tension and/or compression, depending on the direction of the lateral
earthquake forces. Figure 2.1 (left) depicts such modeling strategy, as can be seen tie-
columns and tie-beams are modeled as truss elements which is the usual, and also the
masonry wall is modeled with a truss element.

Another analysis strategy to model multi-storey structures with confined masonry
bearing walls, is to model a three-dimensional structure using one-dimensional elements,
such structure is depicted in figure 2.1 (right), there, the masonry walls has been modeled
as an analogy to a wide column, and the slabs have been modeled as diagonal trusses
elements [55].

The analysis strategies described in this section, are not commonly used and are
mostly associated to the lack of computational resources while modeling multi-storey
structures.

2.1.2 Two-dimensional F.E.

Along this work, a common practice will be to refer to these elements as two-dimensional
or bi-dimensional indistinctly. This F.E. has been widely used in the analytical study
on the behavior of masonry walls when subjected to in-plan static or dynamic loads.

The use of two-dimensional element applied to the study of in-plane stresses for
masonry walls are extensive in the literature, but it has hardly been applied to the
modeling of three-dimensional structures, however, one case of such strategy is depicted
in figure 2.2 (left) carried out by Milani et al [99].

Two-dimensional elements are most commonly used to test the proposed constitutive
models, as is the case of figure 2.2 on the right that correspond to a constitutive model
combined with an algorithm to track crack patterns proposed by Pelà [130].

This work pretends to model a three-dimensional structure using two-dimensional
F.E. since the thickness-to-span ratio of such elements make them an ideal solution
for the modeling of structures pretended in this work. In this section has been briefly
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Fig. 29 3D homogenized limit
analysis of a masonry building
(Milani et al. [92])

Fig. 30 Study of Saint Marco’s
domes in Venice by a continuum
damage model (Oñate et al.
[100])

other (physical, chemical, biological) deterioration effects.
The analysis attained a characterization of the safety condi-
tion of the system of vaults (Fig. 30).

Croci et al. [38] carried out a finite element analysis of
the Cathedral of Sta. María, in Vitoria, Spain. The analysis,
applied to the main transverse sections of the building and
to the nave vaults, followed an incremental strategy to ac-
count for cracking due to tension or shear stresses, as well as

the equilibrium second-order effects. Similar analyses were

also used for the study of the collapse of Beauvais Cathe-

dral (Croci et al. [39]) and the effects of the earthquake of

September 1997 on the Basilica of Assisi (Croci [35]).

Barthel [7] elaborated very detailed finite element mod-

els to analyze Gothic cross-vaults. The models were used

in combination with partial constitutive models enabling the

Chapter 5 

 

240

Figure 5.21 illustrates the tensile damage contour. As shown, the damage in the  

ultimate conditions is represented in the form of discrete cracks, thanks to the 

tracking technique which permits to describe the tensile cracks localization 

phenomenon. Obviously, the model cannot closely reproduce the experimental 

evidence depicted in Figure 5.17, since it entails a macroscopic approach to the 

structure, as discussed in Chapter 1. However, the numerical model shows his 

capability to capture the real behaviour observed in the experiments. In fact, the 

tensile cracks related to the failure mechanism illustrated in Figure 5.18 are 

properly represented. 

 
Figure 5.21 Tensile localized damage contour. 

Figure 5.22 shows the maximum principal strain vectors. The concentration of the 

displacement gradients (strains) in the elements lying  along the computed crack is 

evident. Therefore, the resolution of the cracks is optimal for the mesh used. The 

correct failure mechanism has been predicted although the directions of the 

Chapter 5 

 

240

Figure 5.21 illustrates the tensile damage contour. As shown, the damage in the  

ultimate conditions is represented in the form of discrete cracks, thanks to the 

tracking technique which permits to describe the tensile cracks localization 

phenomenon. Obviously, the model cannot closely reproduce the experimental 

evidence depicted in Figure 5.17, since it entails a macroscopic approach to the 

structure, as discussed in Chapter 1. However, the numerical model shows his 

capability to capture the real behaviour observed in the experiments. In fact, the 

tensile cracks related to the failure mechanism illustrated in Figure 5.18 are 

properly represented. 

 
Figure 5.21 Tensile localized damage contour. 

Figure 5.22 shows the maximum principal strain vectors. The concentration of the 

displacement gradients (strains) in the elements lying  along the computed crack is 

evident. Therefore, the resolution of the cracks is optimal for the mesh used. The 

correct failure mechanism has been predicted although the directions of the 

Figure 2.2 Analysis of masonry structures using two-dimensional F.E. [99, 130]

 
Fig. 8: Berechnung Göltzschtalbrücke: Aktivierung der Bogentragwirkung im 
            Eigengewichtslastfall durch plastische Umlagerungen 
 
Es wurde besonders deutlich, dass eine realistische Untersuchung des Spannungs-, Riss- und 
Verformungszustandes derartiger gemauerter Brückenviadukte nur bei Berücksichtigung der 
nichtlinearen Struktur- und Materialantwort möglich ist. Lineare Berechnungen vermögen nicht die 
Aktivierung der Bogentragwirkung unter Eigengewicht wiederzugeben. Damit würde die Brücke als 
Durchlaufbalken mit überwiegender Biegebeanspruchung berechnet, was zu völlig falschen, den 
Lastfluss und die Tragwirkung unzutreffend beschreibenden Aussagen führen würde. Ebenso könnten 
Lastumlagerungen, wie sie insbesondere infolge von Temperaturbeanspruchungen zu verzeichnen 
sind nicht berücksichtigt werden. Sinnvolle Aussagen zu Standsicherheit und Gebrauchstauglichkeit 
wären dann nicht möglich. Als weitere Notwendigkeit zur richtigen Erfassung der 
Bauwerksbeanspruchung ergab sich hier die dreidimensionale Strukturmodellierung. Mit Hilfe des 3D-
Modells wurde es möglich, die Ausmittigkeit und ungünstige Überlagerung verschiedener 
Einwirkungen zu berücksichtigen sowie die volle Aktivierung der Tragreserven der 
Mauerwerkskonstruktion sicher zu stellen. Die Durchrechnung einer Lastfallkombination erfolgte in 
weniger als 18 Stunden. 
 

5 Zur Berechnung mehrschaliger Wandkonstruktionen 
Sehr häufig sind bei historischen Mauerwerksbauwerken mehrschalige Wandkonstruktionen 
anzutreffen. Eine wesentliche Frage bei der Berechnung derartiger Tragstrukturen betrifft das 
Zusammenwirken der einzelnen Wandschichten. Insbesondere ist bei den meist dreischaligen 
Wänden zu klären, in wie weit sich die i.A. regellose Innenschicht am Lastabtrag beteiligt und in 
welchem Maße sie Kräfte an die Außenschalen abgibt. Eine realistische Einschätzung dieser 
Interaktion ist wichtig, wenn es um die Bewertung der Tragfähigkeit des Gesamtsystems geht. In 
verschiedenen Fallstudien wurde der Abtrag des Eigengewichtes der Innenschicht sowie die 
Beanspruchung infolge vertikaler Auflast untersucht. Dabei wurde die Festigkeit der Innenschicht 
variiert. Es zeigt sich, dass nur das Innenschichtmauerwerk sehr geringer Festigkeit einen 
nennenswerten Seitendruck auf die Außenschalen ausübt. Dabei führt der in der Literatur gelegentlich 
vorgeschlagene Silodruckansatz zu einer deutlichen Überschätzung der entstehenden 
Seitendruckbeanspruchung.  
 
22nd CAD-FEM Users’ Meeting 2004                                                                                 
International Congress on FEM Technology 
with ANSYS CFX & ICEM CFD Conference                                                                                                           
 
November 10-12, 2004, International Congress Center Dresden, Germany  
 

316 P. Roca et al.

Fig. 23 (Color online) Analysis
of Küçük Ayasofya Mosque in
Istanbul by a damage
mechanics—based
macro-model. Distribution of
tensile damage parameter (in
chromatic scale) for the
structure subjected to dead
loading (Roca et al. [123])

Fig. 24 Seismic analysis of Mallorca Cathedral. Smeared damage approach (a) versus localized damage approach (b), for an earthquake of 475
years of return period (Clemente et al. [31]). Both diagrams represent the tensile damage scalar parameter in chromatic scale

distinctly described. The so-called detailed micro-models

describe the units and the mortar at joints using continuum

finite elements, whereas the unit-mortar interface is repre-

sented by discontinuous elements accounting for potential

crack or slip planes (Fig. 26). Detailed micro-modelling is

probably the more accurate tool available to simulate the real

Figure 2.3 Analysis of complex masonry structures using three-dimensional F.E.
[141, 150].

described, however, it will be more carefully studied in this chapter and in chapter 3.

2.1.3 Three-dimensional F.E.

In order to correctly predict the kinematics of complex structures, three-dimensional
F.E. analysis can be the best alternative. However, the simulation of large multi-layered
structures with many plies can be unaffordable due to the excessive computational cost,
especially when non-linear studies are required. In addition, the discretization of very
thin layers can lead to highly distorted elements carrying numerical issues.

Literature shows that [38, 79, 130, 140, 150] three-dimensional F.E. are most com-
monly used on the analysis of historical unreinforced masonry structures, and hardly
used for other purposes. Apply such elements for the analysis of multi-storey construc-
tion with reinforced concrete and masonry elements seems cumbersome.

Some examples of the use of three-dimensional F.E. applied in the study of historical
masonry structures are presented in figure 2.3, figure on the left corresponds to the work
done by Schlegel et al [150] for the analysis of the Göltzschtal Bridge. On the other
hand, figure 2.3 on the right, corresponds to the analysis of the küçük Ayasofya Mosque
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Figure 2.4 Plane stress state in a continuum

in Istanbul [141] carried out by Roca et al.

2.2 Fundamentals of the F.E. Formulation for Plane
Stress State

It is said an element is subjected to a plane stress state when one of the three principal
stresses (σx, σy, σz) is zero, usually when a prismatic structural element has a very small
dimension compared with the other two, hence, the stresses are negligible to the smaller
dimension. So, it is well assumed that if a flat plate is subjected only to parallel loading
forces, and has just two in-plane degrees of freedom (u,v), such element will be under
plane stress.

Let us consider a two-dimensional generic section whose axis will be named (x,y) fig.
[2.4]. Displacement field will be perfectly defined once displacements in x and y direc-
tions of any given point within the generic section are known. Thus, the displacement
vector of a given point [eq.2.1], strain [eq.2.2] and stress [eq.2.3] field will be stated.

u(x, y) =

{
u(x, y)
v(x, y)

}
(2.1)

ε =

 εx
εy
εxy

 =



∂u

∂x

∂v

∂y

∂u

∂y
+
∂v

∂x


(2.2)

σ =

σx
σy
τxy

 (2.3)
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Figure 2.5 Geometry of a two-dimensional triangle.

Stress-Strain relationship σ = Dε can be established using a constitutive matrix D
in such a way [159].

D =


d11 d12 0

d21 d22 0

0 0 d33

 (2.4)

Finally, the generalized stress vector is the result of performing the integration of
the stress vector over the thickness, as shown in [eq.2.5].

σ̂ =

Nx
Ny
Nxy

 =

∫ + t
2

− t
2

z

σx
σy
τxy

 dz =

∫ + t
2

− t
2

zσdz (2.5)

2.2.1 Constant Stress Triangle Element

Also called linear triangle, Turner triangle, or simply CST, was developed as a plane
stress element by Jon Turner, Ray Clough and Harold Martin [165]. Its geometry is
shown in fig.2.5, where local and global coordinate systems are xy and XY respectively,
ζ2 and ζ3 are coordinates and ζ1 = 1− ζ2 − ζ3.

Degrees of freedom of CST membrane element are collectable in the nodal displace-
ment vector as

dm = {u1 v1 u2 v2 u3 v3}T (2.6)

Formulation of the stiffness matrix is based on the following decomposition

KCST =

∫∫
Ω


BT

1

BT
2

BT
3

D[B1, B2, B3] tdA (2.7)

Being B the Cartesian derivatives of shape functions and D the constitutive matrix
shown in eq.2.4.
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Figure 2.6 Geometry of a 4-Noded Lagrangian Element.

2.2.2 Four-Noded Lagrangian Element

This is the simplest Lagrangian element based upon two-dimensional polynomial La-
grange interpolation, which allows evaluating a nodal shape function as the product of
two unidimensional Lagrange polynomial in isoparametric coordinates ξ and η.

Stiffness matrix of such elements can be evaluated as

K
(e)
ij =

∫∫
A(e)

BT
i (x, y)DBj(x, y)tdxdy =

∫ +1

−1

∫ +1

−1

BT
i (ξ, η)DBj(ξ, η) |J|tdξdη (2.8)

Where J(e) is a two dimensional Jacobian matrix and D the constitutive matrix
shown in eq.2.4.

J(e) =


∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂ξ

 =

n=4∑
i=1


∂Ni

∂ξ
xi

∂Ni

∂ξ
yi

∂Ni

∂η
xi

∂Ni

∂η
yi

 (2.9)

2.2.3 OPT Element

A membrane element without including a in-plane rotation degree (drilling rotation)
leads to in-plane rotation singularity [64]. Successful attempts at developing membrane
elements with drilling degree of freedom are due to the work by Allman [7] and Felippa
[21].

OPT element is a high-performance element which include a rotational degree of
freedom and based upon the ANDES formulation [100] (Assumed Natural DEviatoric
Strain). Key concept of ANDES formulation states that only the deviatoric part of the
strain is assumed over the element whereas the mean strain part is discarded in favour
of a constant stress assumption.

An extensive study of high-performance elements using an ANDES template has
been presented [52], where term OPTimal is used in the sense of exact in-plane pure-
bending response of rectangular mesh units of arbitrary aspects ratio. Later in this
section, comparison among such high-performance elements presented in [52] will be
reproduced.

The geometry of OPT triangle is presented in fig.2.7. Thickness is t, node numbering
is counterclockwise, and there are 6 degrees of freedom [eq.2.12]. Local and global
coordinate systems are xyz and XY Z respectively. ζ2 and ζ3 are the co-ordinates and
ζ1 = 1− ζ3 − ζ3.
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Figure 2.7 Geometry of a triangular element.

Coordinate differences are abbreviated as

xij = xi − xj , yij = yi − yj (2.10)

Area and volume of the element and the length of the side ij are represented by A,
V and lij respectively

A =
1

2
(y21x13 − x21y13); V = At; lij =

√
x2
ij + y2

ij (2.11)

The degrees of freedom of OPT membrane element are collectable in the nodal
displacement vector as

dm = {u1 v1 θz1 u2 v2 θz2 u3 v3 θz3 }T (2.12)

The fundamental element stiffness decomposition of the two-stage direct fabrication
method is

Km = Kmb + Kmh (2.13)

where Kmb is the basic stiffness, which take care of the consistency, and Kmh is the
high order stiffness, which takes care of stability (rank sufficiency) and accuracy. The
final form of Km is a template with 11 free parameters

K(αb,β0,...,β9) =
1

V
LDLT +

∫
Ω

BTDB dv (2.14)

where D is the same described in [eq.2.4], V is the volume of the element, B matrix is
defined as

B = Te(Q1ζ1 + Q2ζ2 + Q3ζ3)T̃θu (2.15)

L, Te, T̃θu and Q1−3 are constant matrices over the element and are defined as [52]
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L =
h

2



y23 0 x32

0 x32 y23

1
6 αby23(y13 − y21) 1

6 αbx32(x31 − x12) 1
6 αb(x31y31 − x12y21)

y31 0 x13

0 x31 y31

1
6 αby31(y21 − y32) 1

6 αbx13(x12 − x23) 1
6 αb(x12y21 − x23y32)

y12 0 x21

0 x21 y12

1
6 αby12(y32 − y13) 1

6 αbx21(x23 − x31) 1
6 αb(x23y32 − x31y13)



(2.16)

Te =
1

4A2


y23y13l

2
21 y31y21l

2
32 y12y32l

2
13

x23x13l
2
21 x31x21l

2
32 x12x32l

2
13

(y23x31 + x32y13)l221 (y31x12 + x13y21)l232 (y12x23 + x21y32)l213

 (2.17)

Q1 =
2A

3



β1

l221

β2

l221

β3

l221

β4

l232

β5

l232

β6

l232

β7

l213

β8

l213

β9

l213


Q2 =

2A

3



β9

l221

β7

l221

β8

l221

β3

l232

β1

l232

β2

l232

β6

l213

β4

l213

β5

l213


Q3 =

2A

3



β5

l221

β6

l221

β4

l221

β8

l232

β9

l232

β7

l232

β2

l213

β3

l213

β1

l213


(2.18)

T̃θu =
1

4A


x32 y32 4A x13 y13 0 x21 y21 0

x32 y32 0 x13 y13 4A x21 y21 0

x32 y32 0 x13 y13 0 x21 y21 4A

 (2.19)

The exact integration of Km is obtained using three numerical integration Gauss
points (mid point rule). Final form of Km may be written as [52]

K(αb,β0,...,β9) =
1

V
LDLT +

3

4
β0T̃

T

θuKθT̃θu (2.20)

where

Kθ = Ah(QT
4 EnatQ4 + QT

5 EnatQ5 + QT
6 EnatQ6) (2.21)

and

Enat = TT
e ETe; Q4 =

1

2
(Q1 + Q2); Q5 =

1

2
(Q2 + Q3); Q6 =

1

2
(Q3 + Q1) (2.22)
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αb and β1 through β9 are free dimensional parameters, and β0 is an overall scaling
coefficient. Felippa [52] has shown that for an isotropic material with Poisson’s ratio v,
the followings values for free parameters lead to the OPTimal membrane element:

αb = 3
2 ; β0 = 1

2 (1− 4v2); β1,3,5 = 1

β2 = 2; β4 = 0; β6,7,8 = −1; β9 = −2
(2.23)

For non-isotropic materials β1 through β9 remain the same, but the following average
value for β0 has been proposed

β0 = max

(
256|D|
W

− 1.5, 0.01

)
(2.24)

where W is evaluated as

W =− 6D3
12 + 5D2

11D22 − 5D2
12D22 −D22(75D2

13 + 14D13D23 + 3D2
23)

+ 2D12(7D2
13 + 46D13D23 + 7D2

23)−D11(5D2
12 + 3D2

13 − 6D12D22

− 5D2
22 + 14D13D23 + 75D2

23) + (3D2
11 + 82D11D22 + 3D2

22 − 4(6D2
12

+ 5D2
13 − 6D13D23 + 5D2

23))D33 + 4(5D11 − 6D12 + 5D22)D2
33 (2.25)

2.3 Fundamentals of the F. E Formulation for Plate
Bending State

It is said an element is subjected to bending stress when one of the three principal stresses
is zero, as in plane stress, the stress in the smaller direction is neglected. The main
difference among them is the way load is applied, whereas in plane stress force’s direction
is parallel to a middle x,y plane, a bending state does not accept such forces[fig.2.8],
which means, σx = σy = τxy = 0 at the middle plane. Hence a plate acted upon only by
normal forces to its middle x,y plane and bending moments whose axis are contained
within such x,y plane is under a bending state.

Main hypothesis plate theory is based upon are shown below.

1. Points along middle plane only can have vertical
displacement (u = v = 0).

2. Points along a normal to middle plane have the same
vertical displacement.

3. Stress in z direction is zero (σz = 0)

Another hypothesis shall be introduced according to the thickness of the plate. Al-
though there is no a proper way to define whether is a thin or thick plate, as a general
rule of thumb [107] we can stablish: a thin plate is such that t/L ≤ 0.050, where t is
the thickness and L the smallest length in x, y direction. Hence, hypothesis regarding
thickness of a thin plate [fig.2.9], or Kirchhoff plate [160] is shown below.

4. Points along a normal line to the middle surface be-
fore a deformation process draw an orthogonal line
to middle plane’s deformed shape once deformation
process has occur.
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Figure 2.8 Plate bending state in a continuum.

Figure 2.9 Plate bending geometry.

A thick plate will be treated as such when t/L ≥ 0.100 (using the same rule of
thumb described in [107]). For thick plates the greater the deformation the greater the
distortion within the cross section, which leads to orthogonality among normal line and
middle plane is no longer comply. Hence, hypothesis regarding thickness of a thick plate
[fig.2.12], or Reissner-Mindlin plate [101] is:

4. Points along a normal line to the middle surface be-
fore a deformation process still draw a line, although
not necessary orthogonal to middle plane’s deformed
shape once deformation process has occur.

Along next lines a brief description of both Kirchhoff and Reissner-Mindlin bending
plate theories are presented.

2.3.1 Kirchhoff Theory

Since integrals and variables are a function of x,y coordinates of the middle plane of a
plate (Fig.2.10), then displacement field can be expressed as:

u(x, y, z) = −zθx(x, y)

v(x, y, z) = −zθy(x, y)

w(x, y, z) = w(x, y)

(2.26)
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Once displacements along w direction and rotations along θx, θy are known displace-
ment field would be perfectly defined,

u(x, y) =

w(x, y)
θx(x, y)
θy(x, y)

 (2.27)

Both strain and stress vectors are defined by equations 2.2 and 2.3] respectively
having into account

εx =
∂u

∂x
= −z ∂

2w

∂x2
; εy =

∂v

∂y
= −z ∂

2w

∂y2
; εz ≈ 0

γxy =
∂u

∂y
+
∂v

∂x
= −2z

∂2w

∂x∂y
; γxz =

∂w

∂x
+
∂u

∂z
= 0

γyz =
∂w

∂y
+
∂v

∂z
= 0

(2.28)

Since σz = 0 for both plane stress and bending plates, the same stress-strain relation-
ship comply, along with constitutive matrix D presented in equation 2.4. Generalized
stresses are the resultant of performing an integration of stresses σ along thickness
(eq.2.29).

σ̂ =

Mx

My

Mxy

 =

∫ + t
2

− t
2

z

σx
σy
τxy

 dz =

∫ + t
2

− t
2

zσdz (2.29)

Shear stresses shall be evaluated a posteriori, the way presented in equation 2.30,
as can be seen Qx and Qy only can be evaluated once bending moments σ̂ are known
[eq.2.29].

Qx =
∂Mx

∂x
+
∂Mxy

∂y

Qy =
∂My

∂y
+
∂Mxy

∂x

(2.30)

Due to the existence of a second derivative in 2.28, C1 continuity of function w is
required. Since C1 continuity is not a easy condition to achieve it rises to non conform
elements whose study is presented in [107], and shall not be discussed within this work.

2.3.2 DKT Element

Triangular flat elements having displacements and rotations at the corner nodes as
degree of freedom (the engineering DOF) are particularly appealing for many practical
reasons, i.e. they allow to model arbitrary shell geometries, general supports and cut
outs, and beam stiffeners. Discrete Kirchhoff Triangle is the most reliable triangular
element for the analysis of thin plates, has been developed by Batoz et al [15].

Batoz’s DKT element is based upon the following assumptions.
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Figure 2.10 Middle plane deformation for a thin plate.

Figure 2.11 The DKT element.
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1. Rotations vary quadratically over the element

θx =

6∑
i=1

Niθxi ; θy =

6∑
i=1

Niθyi

where θx and θy are the nodal values at the corners and at the
mid-nodes (fig.2.11), and Ni(ξ, η) are shape functions.

N1 = 2(1− ξ − η)(
1

2
− ξ − η) N2 = ξ(2ξ − 1)

N3 = η(2η − 1) N4 = 4ξη

N5 = 4η(1− ξ − η) N6 = 4ξ(1− ξ − η)

2. The Kirchhoff hypothesis is imposed at corners (nodes 1,2,3)

θx +
∂w

∂x
= 0 ; θy +

∂w

∂y
= 0

and at the mid-nodes (k = 4, 5, 6)

θsk +

(
∂w

∂s

)
k

= 0

3. The variation of w along the sides is cubic(
∂w

∂s

)
k

= − 3

2lij
wi −

1

4

(
∂w

∂s

)
i

+
3

2lij
wj −

1

4

(
∂w

∂s

)
j

with K denoting the mid-node of side ij and lij equal to the length
of the side ij.

4. A linear variation of θn is imposed along sides

θnk =
1

2
(θni + θnj)

where k = 4, 5, 6 denotes the mid-node of the sides 23, 31 and 12
respectively

Degrees of freedom can be presented in a vector as

d b = {w1 θx1 θy1 w1 θx2 θy2 w1 θx3 θy3} (2.31)

The evaluation of the stiffness matrix follows the standard procedures of the finite
elements methods.

Kb =

∫
Ω

BT
b DbBb dA = 2A

∫ 1

0

∫ 1−ζ3

0

BT
b DbBb dζ2dζ3 (2.32)
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where Db is the flexural rigidity of the plate, defined as a function of D presented in
eq.2.4 and the thickness of the plate as

Db =

∫ + t
2

− t
2

Ddz (2.33)

and deformation matrix Bb is defined as [15]

Bb =
1

2A


y31H

T
1 + y12H

T
3

−x31H
T
2 − x12H

T
4

−x31H
T
1 − x12H

T
3 + y31H

T
2 + y12H

T
4

 (2.34)

vectors H1 - H4 are functions of ζ2 and ζ3 [15]

H1 =



P6(1− 2ζ2) + (P5 − P6)ζ3

q6(1− 2ζ2)− (q5 + q6)ζ3

−4 + 6(ζ2 + ζ3) + r6(1− 2ζ2)− ζ3(r5 + r6)

−P6(1− 2ζ2) + ζ3(P4 + P6)

q6(1− 2ζ2)− ζ3(q6 − q4)

−2 + 6ζ2 + r6(1− 2ζ2) + ζ3(r4 − r6)

−ζ3(P5 + P4)

ζ3(q4 − q5)

−ζ3(r5 − r4)



(2.35)

H2 =



t6(1− 2ζ2) + (t5 − t6)ζ3

1 + r6(1− 2ζ2)− (r5 + r6)ζ3

−q6(1− 2ζ2) + ζ3(q5 + q6)

−t6(1− 2ζ2) + ζ3(t4 + t6)

−1 + r6(1− 2ζ2) + ζ3(r4 − r6)

−q6(1− 2ζ2)− ζ3(q4 − q6)

−ζ3(t5 + t4)

ζ3(r4 − r5)

−ζ3(q4 − q5)



(2.36)
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H3 =



−P5(1− 2ζ3)− (P6 − P5)ζ2

q5(1− 2ζ3)− (q5 + q6)ζ2

−4 + 6(ζ2 + ζ3) + r5(1− 2ζ3)− ζ2(r5 + r6)

ζ2(P4 + P6)

ζ2(q4 − q6)

−ζ2(r6 − r4)

P5(1− 2ζ3)− ζ2(P5 + P4)

q5(1− 2ζ3) + ζ2(q4 − q5)

−2 + 6ζ3 + r5(1− 2ζ3) + ζ2(r4 − r5)



(2.37)

H4 =



−t5(1− 2ζ3)− (t6 − t5)ζ2

1 + r5(1− 2ζ3)− (r5 + r6)ζ2

−q5(1− 2ζ3) + ζ2(q5 + q6)

ζ2(t4 + t6)

ζ2(r4 − r6)

−ζ2(q4 − q6)

t5(1− 2ζ3)− ζ2(t5 + t4)

−1 + r5(1− 2ζ3) + ζ2(r4 − r5)

−q5(1− 2ζ3)− ζ2(q4 − q5)



(2.38)

where

Pk = −6xij/l
2
ij = 6ak

tk = −6yij/l
2
ij = 6dk

qk = 3xijyij/l
2
ij = 4bk

rk = 3y2
ij/l

2
ij

k = 4, 5, 6 for ij = 23, 31, 12 respectively.

2.3.3 Reissner-Mindlin Theory

As previously pointed, main difference among thin and thick plate theories is the rotation
of a normal line to the middle plane once deformation has occur (θx, θy). Reissner-
Mindlin theory for thick plates states such rotations are formed by two terms 9fig.2.12).
Firsts ∂w/∂x and ∂w/∂y due to the change of slope of middle plane, and φx, φy is an
additional rotation.

θx =
∂w

∂x
+ φx ; θy =

∂w

∂y
+ φy (2.39)
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Figure 2.12 Middle plane deformation for a thick plate.

In a general manner equations 2.26 and 2.27 apply for thick plates, unless eq.2.28,
since γxz and γyz will no longer be zero (eq.2.40).

γxz =
∂u

∂z
+
∂w

∂x
= −θx +

∂w

∂x
= −φx

γyz =
∂v

∂z
+
∂w

∂y
= −θy +

∂w

∂y
= −φy

(2.40)

Thus, φx and φy arise to the physical meaning of being the deformation due to shear
stresses. In such a way strain vector can be defined as:

ε =



εx

εy

γxy

......

γxz

γyz


=



−z ∂θx
∂x

−z ∂θy
∂y

−z
(
∂θx

∂y
+
∂θy

∂x

)
......

∂w

∂x
− θx

∂w

∂y
− θy



=


σb

......

σs

 (2.41)

Now, starting from a three dimensional elasticity field, and having into account
σz = 0, stress-strain relationship is stated as:

σ =

{
σb

σs

}
=


Db

... 0

· · ·
... · · ·

0
... Ds



εb
......

εs

 (2.42)
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Where Db has already been defined in equation 2.4 while

Ds =

[
Gxz 0

0 Gyz

]
(2.43)

Being Gxz and Gyz shear modulus along xz and yz directions respectively. On the
contrary to thin plates, shear stresses are not evaluated a posteriori, but they are the
result of performing an integration of stresses along thickness (eq.2.44).

σ̂ =


σ̂b

......

σ̂s

 =



Mx

My

Mxy

......

Qx

Qy


=

∫ + t
2

− t
2



zσx

zσy

zτxy

......

τxz

τyz


dz =

∫ + t
2

− t
2


zσb

......

σs

 dz (2.44)

2.3.4 CLLL Element

CLLL stands for Cuadrilatelal element with biLinar displacement, biLinear rotation and
Linear deformation, is a four node plate bending element based on Reissner-Mindlin
Theory and mixed interpolation, originally developed by Bathe and Dvorkin [14], [46],
later Donea and Lamain presented a reformulation on [44].

Its simplicity and accuracy have made this element is widely used in the practice,
although two major drawbacks can be pointed out, namely, used interpolation implies
both shear and bending stresses to be constant along one direction, which can force to
use a dense mesh, and because of its shape (quadrilateral) this element is not optimal
to be used in meshes with irregular geometry.

The way stiffness matrix is evaluated is the standard for a four node Lagrangian
finite element

K
(e)
ij =

∫∫
A(e)

B̂
T

c (x, y)DB̂c(x, y) t dx dy (2.45)

where B̂c is a replacement transversal shear deformation matrix given in [44]

B̂c = J−1AP−1TCBc (2.46)

2.4 Shell Plane Elements

Shells can be defined as plates with non-plane middle surface. This non-coplanarity
shape confers them a higher resistance due to the ability of supporting both axial and
bending stresses at the same time. Also due to such non-coplanarity, obtaining kine-
matics shells equations in not an easy task to deal with [54], [73], [106] [160], being a
way of reducing shells complexity treat them as small plane elements, hence shells can
be approached as membrane elements coupled with bending elements assembled into
different coordinate systems [fig 2.13].

Choosing a membrane element to couple with a bending element is not easy, let us
consider the membrane element first. Figure 2.14 (which reproduces figure 5.29 from
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Figure 2.13 Curved shell discretisation into plane elements.

Figure 2.14 Cantilever beam with parabolic force at the end.
Fig. 5.29 of reference [107].
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reference [107]) shows results of the test benchmark proposed in [63], from where can be
inferred that both linear and quadratic CST triangles have poor performance, whereas
both 4 and 8 nodes Lagrangian elements have a stiff behavior that only reduces with
denser meshes. Can also be inferred from fig.2.14 that rectangular Lagrangian elements
have a better performance than triangular elements with the same quantity of degrees
of freedom, however triangular element fits better to deal with complex geometries.

Now let us have a look on the extensive study done by Felippa [52] on the matter
of high-performance membrane triangles. Figure 2.15 reproduces table 5 presented in
[52], also the poor performance of CST triangles is patent, whereas the OPT triangle
bending response is almost perfect no matter the aspect ratio.

Some advantages which lead us to choose the use of OPT membrane elements over
both CST and plane stress Lagrangian elements are pointed below.

� Do exist the θz degree of freedom, so no trick will be needed to couple them
with a bending element. Let us remember two possibles solutions to overcome the
singularity that leads the lack of θz degree of freedom: a) selective assembly in
local coordinate system [107], or b) the use of a fictitious θz stiffness [172]. Not to
mention the appearance of cuasi-coplanarity where lowered plate theory proposed
by Marguerre shall apply [86].

� High accuracy with less degrees of freedom, which will be almost mandatory
while dealing with non-linear materials due to the amount RAM memory necessary
to store information such as internal internal variables, or the always expensive:
cotangent tensor.

A drawback of OPT membrane element is that the exact expression for the relation-
ship among strains and nodal displacements is still unknown, although an approximate
expression proposed in [70] can be adopted, later in this chapter is described how to
deal with such drawback.

On the other hand, there are several triangular plate elements to select and combine
with a membrane element. The BCIZ element (named after the author’s initials) is one
of the simplest plate bending elements, developed by Bazeley et al [18], although, we
will choose the DKT element due to its reliability, shown by Batoz et al in [15] where
several triangular Kirchhoff plate bending elements were studied.

2.5 Overall DKT-OPT Element Description

Since the DKT-OPT element is used all the way long this work, a proper description
of it shall be mandatory. The standard properties of this triangular element, such as,
the area integration, enhanced with a proposed scheme for the integration along the
thickness has been implemented in PLCd [34], a code whose capabilities (non linear
analysis for solids and structures with composites materials) fits with requirements that
arise from the study of masonry and reinforced concrete structures.

DKT-OPT flat shell element has 18 degrees of freedom:

do = {u1 v1 w1 θx1 θy1 θz1 u2 v2 w2 θx2 θy2 θz2 u3 v3 w3 θx3 θy3 θz3 }T (2.47)

In order to separate membrane and bending degrees of freedom, displacement shall
be written as
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Figure 2.15 Tip deflections (exact=100) for short cantilever
beam under End Shear. Table 5 of reference [52].

{
dm

d b

}
=

 {u1 v1 θz1 u2 v2 θz2 u3 v3 θz3 }T

{w1 θx1 θy1 w2 θx2 θy2 w3 θx3 θy3 }T

 (2.48)

and strain-displacement relationship as

{
εm

εb

}
=

{
Bm 03x9

03x9 Bb

}{
dm

d b

}
= Bo

{
dm

d b

}
(2.49)

Thus stiffness matrix of the shell element corresponding to displacement vector of
eq.2.48

Ko =

∫
A

BT
o DoBo dA =

[
Km Km+b

Kb+m Kb

]
=

[
Km 09x9

09x9 Kb

]
(2.50)

where Do will be defined in section 2.5.2, Bo is shown in 2.49, and finally, once Ko

of eq.2.50 is evaluated, will be rearranged according to displacement vector shown in
eq.2.47. The reason of stiffness matrix Km+b = 0 and Kb+m = 0 will be explained in
section 2.5.3.

2.5.1 Area Integration Scheme

First, let us recall eq.2.13, where stiffness matrix Km of a OPT element is noting but
the sum of the a basic stiffness matrix Kmb evaluated using only one Gauss point Gp0
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Figure 2.16 Coordinates ζi for a triangle.

(fig. 2.16), and a high order stiffness matrix Kmh evaluated using a three Gauss points
rule: Gp1,Gp2 and Gp3. This situation lead us to a drawback pointed earlier; there is
no a exact relationship among strains and nodal displacements, in [70] expression 2.51
to eval Bm has been proposed

Bm =
LT

V
+

3

2

√
β0Te(Q1(ζ1) + Q2(ζ2) + Q3(ζ3))T̃θu (2.51)

On the other hand, due to its nature (imposing conditions in corners and mid points
of sides, section 2.3.2), exact integration of the stiffness matrix of a DKT element
is obtained using a three gauss points integration rule located at the mid-nodes [15],
namely, Gp1,Gp2 and Gp3.

In this work the way we will proceed to overcome the previous situation, for both
OPT and DKT elements, is shown below:

� Generalized strains ε̂ will be evaluated at Gp1,Gp2 and Gp3 (fig.2.16), in such a
way

ε̂ =
ε̂Gp1 + ε̂Gp2 + ε̂Gp3

3
(2.52)

This is because neither OPT or DKT element are a three G.P. elements, both are
1 G.P. elements using an integration scheme of a 3 G.P., which means stresses
and strains are constant all over the element. Hence, no state where one G.P.
is damaged and the others are not will be acceptable. Also eval ε̂ at ζ2 = 1/3
and ζ3 = 1/3 would be possible. Generalized deformation ε̂ from 2.52 is the
deformation to be distributed along element’s thickness and then to be sent to a
constitutive block where stresses σ̂ will be integrated according to both Rules of
Mixtures (RoM) of the given composite and constitutive equations of the materials
belonging to such composite.

� While assembling the Left Hand Side (LHS, for now on), if no damage occur in
any of the components elastic loads will be evaluated as:

ELAOD = Ko do (2.53)
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Otherwise, if damage has occur within a component of the element, elastic loads
will be evaluated as:

ELAOD =

∫
A

BT
o σ̂ (2.54)

2.5.2 Proposed Thickness Integration Scheme

In order to correctly predict the kinematics of complex structures, 3D finite elements
analysis seem to be the best alternative. However, simulation of large multi-layered
structures with many plies can be unaffordable with 3D analyses because of the excessive
computational cost, especially for non-linear materials. In addition, the discretization of
very thin layers can lead to highly distorted elements carrying numerical issues, hence,
reduced models for modeling multilayer plates arise as an affordable solution.

Thus, simpler and more efficient techniques are required for modeling laminated
structures, where 3D descriptions can be reduced to 2D models by introducing hypothe-
ses on the displacements or/and on the stresses field, since laminate thickness is at least
one order of magnitude lower than in-plane dimensions.

Reference [28] is an overview of the available theories and finite elements that have
been developed for multi-layered, anisotropic, composite plate and shell structures.
Multi-scale approaches [147, 117] can also be used to model non-linear multi-layered
materials. In such methods a macroscopic model is used to obtain the global response
of the structure whereas the material behavior, modeled with a constitutive law, is
solved with a microscopic model.

Many reduced approaches have been developed and improved since 19th century, in
order to facilitate their classification, they could be distinguished according to [47]:

a) The type of unknown variable chosen, so they could be Displacement Based The-
ories (DB), Stress-Based Theories (SB), or if both stress and displacement are
considered as unknowns, a Mixed Approach (MB) is obtained.

b) How the unknown variables are described. In this classification it may be a Equiv-
alent Single Layer (ESL) description, where governing equations are written for
the whole plate, or a Layer-Wise (LW) description, where each layer is treated
independently assuming separate displacement/stress fields within each ply, which
leads to write the governing equations for each layer.

The most basic DB-ESL model is the Classical Theory [160], whereas an improve-
ment to the CT theory is the First Order Shear Deformation Theory (FSDT) [101]
which enhances the CT kinematics by adding shear effects (see section 2.3). Although
CT and FSDT are excellent alternatives to accurately model homogeneous thin and
thick shell structures, they lead to poor prediction in the cases listed below, the cause
is found in the linear thickness distribution of the axial displacement, which does not
match the ZZ pattern depicted in figure 2.17 [47].

� Where component materials have a high level of transverse anisotropy.

� When applied to the analysis of composite laminated with embedded debounding.

� When it is necessary to fulfill regions with 3-D stresses fields, i.e. σZ 6= 0.
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Figure 2.17 Continuous zigzag in-plane displacement a), discontinuous in-plane
stress b), and continuous transverse stress c).

� When it is required to capture the so called zig-zag pattern of in-plane displace-
ments (ZZ condition).

� When it is required to satisfy the condition of continuous transverse shear along
the thickness direction (TC condition).

In order to fulfill the previously listed condition while performing the analysis of
laminated materials, it must be necessary to use either a theory based on 3-D kinematics,
or a LW based theory. Although LW theories accurately fulfill both, the ZZ and the TC
condition, the number of unknown variables is proportional to the number of analyzed
layers. As a result, these models yield not only to a high level of accuracy but also to
a high amount of unknown variables similar to the 3D analysis. For this reason, LW
models may result unattractive for simulating large laminated structures with many
plies. Therefore, these models should be employed to analyze complex problems where
other less expensive approaches fail to give realistic predictions [47].

A special case of LW models where the number of unknowns is independent of the
number of analysis layer are the Zigzag theory (ZZT), which are a good compromise
between the accuracy of MB-LW theories and the computational efficiency of DB-ESL
models. One of the most important advantages of these theories is that the number of
kinematics unknowns is independent of the number of analyzed layers.

Have to be remarked that, the study of the cases where it is mandatory to use a
LW description are out of the scope of this work, and the only feasible solution from
a computational point of view, which allow to achieve good results, is to adopt a ESL
scheme. That is why, in this section it has been proposed a scheme capable of reproduce
the bending damage of a laminated material without the need of additional degrees of
freedom than the ones listed in equation 2.47. This simplification is justified by the
fact that stiffness of the simple material used along this work never exceed an order of
magnitude, in addition, it has been used a Discrete Kirchhoff Triangle [15] where the
shear transverse strain is postulated to be neglected with respect to other strains.

According to the classification of the existing theories, the proposed scheme is a mod-
ification of the DB-ESL, where it is taken into account the evolution of the eccentricity
of geometric and mechanical planes of a bi-dimensional element during the damage pro-
cess, also, generalized stresses and strains have been referred to the mechanical plane,
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Figure 2.18 Strain and stress distribution of a homogeneous material.

not to the geometrical plane as occurs in the classical DB-ESL formulation. First, let
us consider Do from equation 2.50, which can be written as

Do =

[
Dm Dm+b

Db+m Db

]
(2.55)

and according to [108], can be evaluated as

Dm =

n∑
k=1

(zk − zk−1)Dk
ij

Dm+b = Db+m =

n∑
k=1

1

2
(z2
k − z2

k−1)Dk
ij (2.56)

Db =

n∑
k=1

1

3
(z3
k − z3

k−1)Dk
ij

where Dij has been defined in eq.2.4, and k = 1, ..., n being n the total numbers of
layers within the laminated material. Figure 2.18 shows a typical distributions of the
strains and stresses within a laminated material using equation 2.56, figure 2.18 also
displays the position parameters zk and zk−1 used to state the position of the kth layer,
and consequently, to perform the integration of the bending stiffness Db.

In order to perform the integration scheme over the thickness proposed in this section,
equation 2.56 have to be redefined, also, the position parameters zk and zk−1 have to
be redefined.

First, let us assume the existence of points a and b. Point a is defined as the
intersection of the middle plane and the normal of the plate, whereas point b is defined
as the intersection of the theoretical deformation of the normal and the normal. The
purpose of using points a and b is to refer the displacement field to point a, whereas
point b will be the reference for rotations, hence, point b will be used as the reference
for in-plane displacements for the layers within the laminate material. If figure 2.18 is
used to express this idea, for the particular case of a homogeneous material, then a = b.

On the other hand, let us assume laminate from figure 2.19 in its layer 07 has a
material stiffener than the rest, this example illustrates a case when a 6= b, and the
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Figure 2.19 Proposed strain and stress distribution for a laminated material.

consequences is that the strain distribution although remain linear, no longer remain
symmetrical to the middle plane, also there is a variation in the stress distribution and
in the generalized stresses σ̂, which in figure 2.19 are represented using bending moment
M. In figure 2.19 also is depicted the new position parameters ẑk and ẑk−1 used for
each layer, for convenience they are referred now to the bottom of the plate. As can be
seen, for layer 01 ẑk−1 = 0 and for layer k ẑk = Th, being Th the total thickness of the
plate. On the other hand, position parameter z0 = Th/2, since is the reference to the
middle plane. Finally, the position of Z is the cornerstone of the proposed scheme, to
define it let, us start defining the auxiliary matrix D̂b

D̂b =

∫
ykD

k
mdz =

n∑
k=1

yk tkD
k
ij (2.57)

in equation 2.57, for convenience yk = (ẑk + ẑk−1)/2, whereas tk = ẑk − ẑk−1, this is,
the thickness of the layer k, now it is possible to define Z using equation 2.58.

Z =



D̂
b

11

Dm
11

D̂
b

12

Dm
12

D̂
b

13

Dm
13

D̂
b

21

Dm
21

D̂
b

22

Dm
22

D̂
b

23

Dm
23

D̂
b

31

Dm
31

D̂
b

32

Dm
32

D̂
b

33

Dm
33


(2.58)

Now, using equation 2.58, the bending stiffness tensor Db from equation 2.56 is
rewritten in equation 2.59.

Db
ij =

n∑
k=1

[
t3k
12

+ tk (Ẑ
k

ij)
2

]
Dij (2.59)

finally, Ẑ
k

ij from equation 2.59 is defined in equation 2.60.

Ẑ
k

ij = yk − Zij (2.60)
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Figure 2.20 Fixed plate at the one end, and vertical load at the other end.
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Basic idea of the proposed integration scheme over the thickness can be inferred
using fig.2.20. Let fig.2.20.a be a plate fixed at one end and a free end with a load of
22.22kN/m, formed by two laminated materials:

� Laminate 01 with an undamaged state shown in fig.2.20.b. Since is a homoge-
neous material, mechanical plane is laid within the middle plane, and

� Laminate 02 with a fully damaged state of layers 3 to 10 (as shown in fig.2.20.c),
layers 1 and 2 stay undamaged, hence, there is the gap now between middle and
mechanical plane.

Figure 2.21 Displacement comparison (fig.2.20) - isometric view.

From the laminated materials 1 and 2 previously described, obvious distinctions
arises, in which the proposed integration scheme along the thickness is based upon,
this is: the clear distinction among mechanical plane (also referred as neutral plane)
and the middle plane (also referred as geometrical plane along this work). Whereas
loading conditions and geometry are referred to middle plane, generalized stresses and
generalized strains along thickness will be referred to the mechanical axis, as defined in
eq.2.58.
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Figure 2.22 Displacement comparison (fig.2.20) - middle plane.
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Two analysis of the model presented in figure 2.20.a have been performed to test
and show the capabilities of the proposed integration scheme. The first test is used
as a reference, and has been carried out using a mesh of 1632 8-nodded hexahedron
finite elements with a notch of 3.72 centimeters at the center. The second test has been
carried out using a mesh of 704 triangular DKT-OPT finite elements with the proposed
integration scheme and the two different laminate distributions shown in figure 2.20.a.
In both cases the left end of the mesh has been fixed, and only one loading step has
been applied on the right end of the mesh.

Obtained results are presented in figure 2.21, where the deformation of both meshes
(magnified 25 times) is depicted. Finally fig. 2.22 plots a comparison of middle plane
displacement in z direction of both prismatic and plate elements. From such figures
clearly can be concluded that the proposed integration scheme over the thickness leads
to excellent results and can be used along this work.

Shall be remarked that Z will be evaluated at the beginning of a quasistatic loading
process, and then in every iteration once damage has occur within the given FE. Also,
has to be pointed out that this integration scheme is intended to be used with a secant
tensor Dsec

ij instead of Dij from equations 2.57, and 2.59, as an attempt to reproduce
the change in the position of the mechanical plane using the information of a non-elastic
constitutive equation. A Proper explanation of non-linear evolution, regarding damage
or plasticity flow will be carried out next in section 3.6 of this work.

2.5.3 Proposed Bending-Membrane effect

Although in the development of this work it has been tried to keep separated the finite
element formulation from the part belonging to the structural analysis, in this section
is obligatory to combine them, so, it will be easier to explain the basics in the imple-
mentation proposed here.

Let us consider the different types of slabs typically used in the construction of
concrete buildings depicted in figure 2.23. Using one, or another, is not only a structural
concern to improve the strength-to-weight ratio of a slab, some cases, it could be due to
the insulation provided by the polystyrene that leads to a better thermal performance
of the structure.

The condensation of a dimension (thickness), mandatory to model structures using
two-dimensional finite elements, leads to refer all layers contained within such finite
elements to a plane, which is typically named middle plane or geometrical plane, since its
sole function is to serve as a geometrical reference. While modeling structural elements
like the ones shown in figure 2.23 it is important to distinguish the geometrical plane of
the mechanical plane, which is the application plane of the resultant stiffness of layers
contained within a finite element. Figure 2.24 serves to clarify these concepts, in it a
distribution of layers is shown for a concrete coffer slab, it is also depicted the position
of the geometrical and the mechanical plane. As can be seen, both these planes match in
the ribs, on the other hand, they do not match in the region belonging to the polystyrene
coffer.

The eccentricity between these two planes: geometrical and mechanical, leads to the
appearance of the bending-membrane effect, since membrane forces produce bending
forces within the element.

Let us first distinguish the two cases to deal with the bending-membrane (b + m)
effect. The first one is as presented in [108], and previously shown in eq.2.56 which will
be referred as Constitutive Bending Membrane Effect (CBME), will be called that way
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Figure 2.23 Cross section of different slabs commonly used in construction.

Figure 2.24 Layered cross section of a concrete coffer slab.

Figure 2.25 Fixed plate at the one end, and horizontal load at the other end.
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Figure 2.26 Middle part close up of fig.2.25.

because; in order to reproduce the b+m effect a constitutive matrix Dm+b is required.
The second one (and proposed here) will be named Force Bending Membrane Effect
(FBME), because elastic forces will be required to evaluate such b+m effect.

In order to implement the FBME it will be required to follow the next steps.

1) It will be required the list of FE elements belonging to all nodes, and the local
numeration of the given node within such elements. A flag within the given node
can be used to save computational time, in such a way if middle axis equals to
neutral axis for all belonging elements Mb+m = 0, and consequently, step 3 does
not need to be performed for the given node. Also a local coordinate system for
the node will be required in the case that E0XZ of the belonging elements were
not equal.

2) Let Dm+b = Db+m = 0 in D0 from 2.55, and perform a linear elastic analysis.

3) It will assume that
∑

M = 0 for a given point of reference, ao and bo in the case
of figure 2.26. Then

M i
x =

k∑
j=1

F jxh
j
x ; M i

y =

k∑
j=1

F jyh
j
y (2.61)

where subindex i is the current node and j is for all the belonging elements of the
given node, k is the total number of belonging elements, Fx and Fy stands for the
elastic forces in x and y direction respectively, evaluated with local displacements
and the local stiffness matrix as in eq.2.54, finally hjx = Z1,1 and hjy = Z2,2 of jth
element from 2.58.

4) M i
x and M i

y will be switch to the ith node’s base and assembled into the RHS of
the linear equation.

5) Perform again the analysis with the RHS assembled in step 4.

Now, let us consider figure 2.25, which is the same as figure 2.20, but for the direction
of the applied load. Such example will be performed in order to test the implemented
bending-membrane effect, assuming that a reasonable way to compare the obtained
results will be using a hexahedron mesh (as in fig.2.20) and the CBME scheme.
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Figure 2.27 Displacement comparison (fig.2.25) - middle plane.

Figure 2.28 Displacement comparison (fig.2.25) - isometric view.

A clear drawback arises while going through the steps of the proposed method;
both a high amount of memory to store information and more computational time will
be require, nevertheless due to the accuracy compared with hexahedron elements it is
preferable to apply the proposed method. As can we see from fig.2.27 CBME lacks
in accuracy, since obtained results are way far from the FBME method and with the
hexahedrons mesh. Finally figure 2.28 depicts an isometric perspective of deformed
meshes with a magnification factor of 100.

2.5.4 Large Displacements Approach

Different approaches can be used for non-linear analysis. In the Total Lagrangian (TL)
approach, equations are formulated with respect to a fixed reference configuration which
is usually the initial configuration, while in updated Lagrangian (UL) approach the ref-
erence configuration is the last converged solution. The corotational approach (CR) is
the most recent formulation developed for geometrically non-linear structural analysis,
in this method the finite element equations are referred to two systems: a fixed con-
figuration and a corotated configuration. The main advantage of CR formulation is its
effectiveness for problems with small strains but large-rotations.

Important work on the development of CR formulation has been done by Wempner
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Figure 2.29 Corotational scheme.

[171], Belytschko and Hsieh [20], Bergan and Horrigmoe [22], Argyris [10], Rankin and
Brogan [133], Szwabowicz [157], Rankin and Nour-Omid [134], Nour-Omid and Rankin
[105], Crisfield [39], Peng and Crisfield [131], Pacoste [123], Battini and Pacoste [16],
finally, in the work done by Khosravi et al [70] a shell laminated element combining
a OPT membrane element and a DKT bending element for geometric non-linearity is
conducted using the CR approach, although full detail of CR formulation are provided
in reference [70] a brief overview is presented in this work.

The general aspects of CR approach are that the total motion of an element is
decomposed into a rigid body motion and a pure deformation. Then the contribution
of the rigid body motion to the total deformation of the element is removed before
performing the element computations. To do so several coordinate systems are required
to fully describe the geometry and deformation of a shell structure and a shell finite
element, and later within the process remove the rigid body motion.

First let us consider figure 2.29 where is shown a typical FE shell triangle in its
initial configuration (undeformed) and at the current configuration (deformed), there
can be inferred the coordinates systems required to describe the CR aproach, namely:

� The first one used is the global coordinate system (g).

� The second coordinate system is E and E0, one for each element that translates
and rotates with it. The origin of the undeformed element frame E0 is chosen at
node 1, and the axis E01 (x local direction) is chosen as the line joining nodes 1
and 2, whereas axis E03 (z local direction) is the normal of the element’s middle
plane defined by nodes 1, 2 and 3. Axis E02 (y local direction) then defines the
Cartesian right handed coordinate system. Coordinate system E is defined in the
same fashion but at the current (deformed) configuration. E0 will be updated to
E in every Newton-Raphson iteration using the new nodal positions xg = Xg+ug

(fig.2.29).

� The second coordinate systems are S0 and S for undeformed and deformed con-
figurations respectively, one for each node that are rigidly tied to their respective
node and rotates with them. Orientation of S0 are arbitrary and is chosen to be
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Figure 2.30 Configurations in corotational scheme.

parallel to the global co-ordinate system g. Transforming from S0 to S is obtained
by rotating the S0, also such local coordinate system will be updated in every it-
eration of the Newton-Raphson process. Following expressions shows the way to
proceed to rotate old S coordinate system.

TSNEW
= T̃TSOLD

(2.62)

where

T̃ = I +
Ω̃ + 0.5Ω̃

2

1 + 0.25|ω|2 ; |ω| =
√
θ̃2
X + θ̃2

Y + θ̃2
Z

Ω̃ =


0 −θ̃Z θ̃Y

θ̃Z 0 −θ̃X

−θ̃Y θ̃X 0


(2.63)

Once coordinate system are established and updated after an iteration, the way to
proceed according to [133], in order to evaluate both pure nodal displacements and pure
nodal rotations are explained below.

a) Pure nodal displacements in E are computed by comparing the current con-
figuration with a corotated configuration, as seen on figure 2.30. Pure nodal dis-
placements at node i in E may be expressed by the relation:

uEi =


uE1
i

uE2
i

uE3
i

 = TT
E (ugi +Xg

i − ug1 −Xg
1 )−XE0

i , i = 1, 2, 3 (2.64)

where XE0
i is the initial coordinate of node i in E0, and vectors uEi are shown in

figure 2.30.
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Figure 2.31 Evolution of configurations in a corotational scheme.

b) Pure nodal rotations in E are equal to the components of an antisymmetric
matrix Ω3x3 called spin tensor as

Ω =


0 −θE3 θE2

θE3 0 −θE1

−θE2 θE1 0

 (2.65)

where Ω is found by

Ω = 2(T− I)(T + I)−1 (2.66)

and matrix T describes rotation of nodal triad S0 to S in local coordinate system
E and can be evaluated as

T = TT
ETSTE0 (2.67)

Pure deformations at node i computed in E can be expressed as:

di =
[
uE1
i uE2

i uE3
i θE1

i θE2
i θE2

i

]T
, i = 1, 2, 3 (2.68)

Pure deformation from eq.2.68 are not really pure (without rigid body motion),
which can cause problem in case that the element stiffness matrix does not have the
correct rigid body motion properties. According to [70], [134] and [105] this problem
can be overcome with the help of a projection matrix P whose capabilities of bringing
into equilibrium a non-equilibrated force vector are of special interest. Hence pure nodal
deflections d, internal forces vector r and element stiffness matrix K shall be modified
using P , whose form is fully described in [70].

d = Pd ; r = PTr ; K = PTKP (2.69)

Finally figure 2.31 shows a typical deformation process during the Newton-Raphson
iterative process using a loading control approach, whereas a self explanatory flowchart
of CR scheme is shown in figure 2.32.
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Figure 2.32 Flowchart of a corotational scheme.

2.6 Verification Examples

2.6.1 Cantilever Plate Subjected to Uniform end Moments
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Figure 1.27 Results from koshravi paper.
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1.5 Example Problems
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1.5.1 Convergence Tests
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Figure 2.33 Cantilever plate deformation.

This case is used to evaluate the geometrically non-linear static capabilities of the
DKT-OPT element. Corresponds to a cantilevered isotropic plate with uniform moment
along the tip edge, whose geometry and mechanical properties, along with a snapshot
of deformed configuration are shown in figure 2.33. Exact deformation W is given by
the following analytical formula [70]:
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Figure 2.34 Deflection of a cantilever plate subjected to end moment.

Figure 2.35 Raasch’s hook problem - Geometry, material,
loading and boundary conditions.

W = R(1− cosθ) =
EI

M(1− v2)

(
1− cosML(1− v2)

EI

)
(2.70)

The plate is modeled using 144 FE and applying a bending moment M = 5644.5Ncm
is applied at the end in 25 steps. As can be seen on fig. 2.34 there is an excellent match
between the two results.

2.6.2 The Raasch Challenge for Shell Elements

The Raasch challenge [71] is a curved strip hook problem with a tip in plane shear load,
proposed in 1990 by Ingo Raasch of BMW in Germany. The problem poses a significant
challenge to shell elements because of the inherent coupling between three modes of
deformation: bending, extension, and twist. So, the Raasch challenge benchmark will
be carried out to assure the shell element performance on linear static analysis.

Figure 2.35 shows the top view of the hook, modeled by two circular segments
connected at the tangent point. Geometry data, material properties, boundary and
loading conditions, and reference value (displacement z =4.9352 at the loaded end) are
given according to the work of Ingo Raasch [71].
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Figure 2.36 Raasch’s hook problem - Deformed mesh
magnified 10 times.

The convergence rate for 5 successively refined meshes is good (fig.2.37), taking into
account that for a coarse mesh of 216 triangular elements the accurate achieved is 94.13
percent, staying steady for meshes with 720, 2880 and 11250 triangular elements.

2.6.3 Pinched Hemisphere with 18º Hole

This popular benchmark for both linear and non-linear analysis will be consider. The
geometry consist of a hemispherical shell with radius R = 10, and a 18º hole at the top,
mechanical properties of such shell are an elasticity modulus E = 6.825x107, Poisson’s
ratio v = 0.30 and the thickness t = 0.04 (fig.2.38). Symmetry conditions are used on
this problem and therefore only one quadrant needs to be modeled.

Let us first consider a linear response whose analytical answer of 0.0924 [81] at loaded
points is used to eval the performance of the DKT-OPT element. This benchmark is
designed to study the effect of the warped element geometry in the overall performance
of the elements. Loading conditions are λ = 1, graph depicted in figure 2.39 shows the
result of a convergence study for successively refined meshes, from there it can concluded
that the implemented element has a good ability to handle rigid body rotations about
their normal.

On the other hand, non-linear response of the implemented element using the coro-
tational scheme for large deformations proposed in [70] and reproduced in section 2.5.4
will be tested and compared with the results obtained by Simo et al [151]. Simo et al
in [151] solved such non-linear problem using a structured mesh of 16x16 quadrilateral
elements, hence, for comparative purposes it will be used a structured and symmetric
triangular mesh of 1024 elements (16 elements per side) to have the same amount of
Gauss points in the whole structure, also it will be considered a loading step ∆λ = 5.
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Figure 2.37 Raasch’s hook problem - Results using
5 different meshes.

Figure 2.38 Pinched Hemisphere with a 18°hole - Mesh, loading and,
boundary conditions of one quadrant.



2.6. Verification Examples 49

64 256 1024 2304
0

20

40

60

80

100

Total number of elements

D
is

pl
. e

rr
or

 a
t l

oa
de

d 
po

in
t (

%
)

Figure 2.39 Pinched Hemisphere with an 18°hole - Results using
4 different meshes and loading factor λ = 1.
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Figure 2.40 Pinched Hemisphere with an 18°hole - Results using,
corotational method and 20 loading steps ∆λ = 5.
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Figure 2.41 Pinched Hemisphere with an 18°hole - Deformed
configuration at λ = 100.

Figure 2.40 shows displacement evolution at loaded points of the studied mesh,
whereas figure 2.41 depicts the configuration of the deformed mesh (with 4 quadrants)
without magnification factors, so it can concluded: also corotational scheme for large
deformations has a great performance while dealing with rigid body rotations over ele-
ment’s normal.



Chapter 3

Computational Constitutive
Model for In-filled Frames

An introduction to mechanical behavior of simple materials involved in this work is
illustrated. Mixing theory’s state-of-the-art is briefly reviewed. Pitfalls and drawback
of using three nodded triangular elements are summarized. A methodology to generate
composite materials for a large amount of finite elements, and capable of handling real
life steel reinforcement patterns is proposed. A mesh-objectivity test for both, mem-
brane and bending response using the proposed integration scheme along the thickness
is performed. Finally, numerical test are presented.

3.1 Behavior and Characterization of Simple Mate-
rials

Constitutive models are a set of mathematical equations based upon continuum mechan-
ics to relate two physical quantities specific to a material, whose main aim is to approx-
imates the response of the given simple material to an external stimuli (forces in this
case). They are combined with other equations governing physical laws to solve physical
problems, i.e., constitutive models help us as a connection among applied stresses to
strains. Since it has been necessary to use three different simple materials along this
work, their mechanical behavior will be briefly described below, although their con-
stitutive models from a mathematical point of view is described in appendices A and
B.

3.1.1 Steel

Steel is an alloy of iron and other elements, including carbon, whose mechanical proper-
ties exhibit the capacity for plastic deformation. The development and applications of
theories of plasticity to engineering problems started with the pioneering work of Tresca
[162], St. Venant [155], Levy [77], followed by seminal contributions of von Mises [102],
Prandtl [161] and Reuss [139]. Today, the use of plasticity in the engineering disciplines
can be divided into two categories:

� Micromechanical theories: Analyze the plastic deformation on the microscopic

51
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Figure 3.1 Typical stress-strain relationship of steel.

level and seek to explain the conditions in crystals and grains of metals leading to
a plastic flow.

� Macromechanical theories: Also called the mathematical theories, describe
plastic deformations phenomenologically, on the macroscopic level, and establish
relations among the macroscopic mechanical quantities (such as stresses, strains,
etc.). These relations are based on general principles of mechanics and on experi-
mental observations.

A complete reference of the fundamentals of both theories is given in [72], where the
reader shall be referred to, since in this work we will not abound on the subject.

The classical macro-mechanical theories of plasticity are based on the notions of a
yield surface giving the yield condition, a hardening rule and on the stress-plastic strain
relations of the given material. Such notions are used to formulate a material model for
the calculation of the material response during plastic deformation.

Let us consider figure 3.1.a , where the idealized uniaxial Strain-Stress relationship
of steel is depicted. Both Elastic (OA) and Plastic (AB) ranges can be clearly distin-
guished. Elastic range can be mathematically modeled by Hooke’s Law for restoring
forces, where the stress is linearly proportional to the strain, however, stresses larger
than the elastic limit, or yield strength σy (point A) cause a permanent deformation
known as plastic deformation or plasticity. Figure 3.1.b, on the other hand, is a typi-
cal representation in the Westergard stress space of the von Mises yield criterion [102],
which applies best to ductile materials such as metals.

Within this work, mechanical behavior of steel will be reproduced using a plasticity
model, combined with a von Mises yield function (fig. 3.1.b). Appendix B presents the
equations of classical rate-independent plasticity used, within the classical framework
of response function formulated as a projection onto plane-stress subspace, according to
the work shown in [152].

3.1.2 Concrete

Concrete is a composite materials, since it is produced of a granular material (aggre-
gate) embedded in a hard matrix of material (cement), however, it is a common practice
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to model it as a simple quasi-brittle geo-material, even though its high non-linear per-
formance is achieved due formation of micro-cracks and slipping among its aggregate
particles [113].

Large interest given to mechanical properties of concrete comes from its wide ap-
plication range to the construction field, which has led to several authors to develop
constitutive models to represent its mechanical behavior. First developments of a non-
linear fracture model within the FEM framework applied to concrete was carried by
Hillerborg et al [62], Rots et al [144], Bazant et al [17] among others.

From there, in 1958, Kachanov [68] established the basis for classical damage theory,
used at the time to represent debonding phenomena and softening behavior of mechan-
ical parts. Also, work done by Lemaitre [75], Simo and Ju [154, 153], whose proposed
Continuum Damage Model, and, Oliver et al [111], Chaboche [30, 31] o Ju [67], among
others, have guaranteed the establishment of Continuum Damage Mechanics (CDM
from now on), as a scheme to model quasi-brittle materials.

However, it was not until early eighty when CDM began being used to model concrete
materials. Models proposed by Oller [113], Mazars and Pijaudier-Cabot [89], Lubliner
et al [80], Jason et al [66], Tao [158], among others, were based upon CDM and classical
plasticity theory.

Continuum damage models are defined by a degradation internal variable of both
resistance and elasticity modulus. Such variable can be either a scalar or a tensor.
In the case of an isotropic damage model, such internal variable is represented by a
scalar [154, 111], hence, micro-cracking orientation is neglected, which leads to skip the
effect of anisotropic damage, or the effect of material’s anisotropy in the direction of the
micro-crack.

Some models take into account anisotropy of both non-damaged and damaged ma-
terial, in such cases, damage variable is then defined as a second of fourth ranked tensor
[33, 27]. Using a higher ranked order tensor not only allows to consider damage orien-
tation, but also allows to distinguish among damage mechanisms [85].

Since damage variable does not decrease during a loading process, a challenge for
CDM was to be able to properly represent the opening and closing of cracks. Opening
and closing of fractures, or the stiffness recovering upon loading reversal (visible when
passing from tension into compression, or backwards) are typically presented during a
cycling loading process, hence, in such cases it becomes necessary use a two-scalar dam-
age model. Mazars et al [89] and Faria et al [51] presented damage models where damage
variables due traction and compression are activated by yield function independent from
each other.

An idealization of the concrete’s expected behavior during a cycling loading process
is depicted in figure 3.2.a. Loading process goes from traction into compression, and
it starts in an elastic range OA, once it reaches the maximum traction resistance A, a
degradation of stiffness is activated in AB, finally stress state B is reached and it starts
an unloading process BO. Now let us consider the unloading process has reached point
O again, which is where real advantages of damage models with two scalar damage
variables can be seen, whereas d+ 6= 0, d− = 0 (since they are independent from each
other), and loading process along OC has an elastic behavior again, and until it reaches
the maximum compression stress C compression degradation will not be activated. As
expected, once loading process reaches stress C degradation of stiffness in compression
is activated CD until it reaches D and it starts an unloading process again.

Now let us consider figure 3.2.b, where two yield surfaces superimposed are shown. In
red, only traction state is depicted whereas in blue only compression state is shown. Any
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Figure 3.2 Typical stress-strain relationship for concrete.

yield function appropriated for concrete can be used, let us take for instance the work
in [51], where Faria et al used a yield surface based on energy, whereas a modification of
Drucker-Prager yield function is used in the compression case, finally results obtained
were compared with experimental results got by Kupfer et al [74] showing good accuracy
among the results.

At only tension states (in red figure 3.2.b) or in only compression state (in blue),
results from models proposed by Mazars et al [89] and Faria et al [51] have shown
good results [127], on the other hand, when loading process produces shear stresses
and are both compression and traction stresses (hatched zone figure fig.3.2.b), such
models exhibit some deficiencies due to its nature, which is to perform and additive
decomposition of stress tensor σ to split it into its traction part σ+ and compression
part σ− and handle them separately.

Paredes in [127] proposes a modification of the damage model presented in [51] by
Faria et al, where a variable for traction d+ and another for compression d− is being
used. Such modification raises for quadrants II and IV of a given yield surface (traction
and compression combined, see fig.3.2.b), and it consists on:

� Additive decomposition of the stress tensor σ pretends: a) check the position
within the yield function (in principal stresses) of the current tensional state. In
the case tensional state is either in quadrant II of IV, b) weight traction σ+ and
compression stresses σ− to obtain a dominant stress.

� Stresses σ+ and σ− will not be treated separately, but the constitutive equation
will be integrated usgin σ taking into account the dominant stress.

� Constituive Damage conditions detailed in [127] are applied.

In this work the damage model presented by Paredes with two scalar damage vari-
ables is used, reader may review [127] to abound on the subject, furthermore, appendix
A reproduces such damage model from a mathematical point of view.

3.1.3 Masonry

In this subsection, masonry will be treated more carefully than previous simple materi-
als, its failure mechanisms and more common characteristics will be pointed out. Also
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proposal to estimate mechanical and constitutive characteristics from other authors will
be reviewed.

Same as concrete, masonry is a composite material resulting of individual units
laid (brick or rock) bound together by mortar. From now on, it will be implied that
whenever it is referred to masonry it means brick masonry. Although in this work,
a brief description of materials involved in composition of masonry walls is given, it
is not pursued a complete description of them, a comprehensive description from a
manufacturing and mechanical point of view is given in [38], also reader may consult
[45, 59].

Masonry has been used as structural material, mainly as structural elements sub-
jected to compressive forces, since ancient civilizations. For a long period they were
built in accordance with empirical rules and designed only to support gravity actions
using their massive dead load to stabilize structures against lateral forces from winds
and earthquakes.

Masonry is usually made of rectangular masonry units bond together with mortar.
The construction industry offers masonry units with a very large variety of shapes,
materials and sizes. Constructive systems also change from one country to another.
This aspect is what makes difficult to extrapolate results from type to type of masonry
walls [65, 130].

However, if it is pretended to settle a damage criteria to predict non-linear behavior of
masonry, its basic failure mechanisms under the most elemental loading conditions has to
be studied, also, test to determine its mechanical properties has to be conducted. Models
to represent such mechanical behavior to real scale for more common combination of
materials have been driven by several authors, also large amount of test over masonry’s
simple materials (mortar and units) have been done in order to study the relationship
once they are bond together as a masonry prism.

From this combination results an anisotropic material. Depending on the accuracy
and the simplicity desired, masonry can be modeled using the following strategies [79].

� Detailed Micro-Modeling: Units and mortar in the joints are represented by
continuum elements whereas the unit-mortar interface is represented by discon-
tinuous elements.

� Simplified Micro-Modeling: Expanded units are represented by continuum
elements whereas the behavior of the mortar joints and unit-mortar interface is
lumped in discontinuous elements.

� Macro-Modeling: Units, mortar, and unit-mortar interface are bonded in the
continuum.

� Homogenized Modeling: This strategy is placed midway between micro-
modeling and macro-modeling, since it consists in obtaining macro-constitutive
laws starting from the micro-constitutive law of the constituents and the texture
of the masonry.

Advantages and disadvantages of each approach are discussed in [78, 79, 130], in this
work we just must point out that it will be uses a Macro-Modeling approach, since it is
more practice oriented due to the reduced time and memory requirements as well as for
the implied user-friendly mesh generation. This modeling scheme is the most valuable
when a compromise between accuracy and efficiency is needed.
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The Unit or Brick

Some authors use the word brick referring to a kind of unit smaller than block, although
block is usually used also referring to units made of concrete. In the present work the
work brick will be used as a synonym of masonry unit regardless its size or material.

Bricks are made of clay, shale, fire clay or a mixture of them, and shaped by molding,
pressing or extrusion, most common type of units are: clay brick, concrete masonry units
and clay silicate masonry unit. From a structural point of view, the compressive strength
of the unit is the most important controlling factor [59, 65], whose value shows a wide
variation, depending on the material type of masonry unit, with typical ranging from 5
to 100MPa [129], commonly, the strength of concrete masonry units varies from 10 to
40MPa, and sand-lime and clay masonry units from 8 to 50 MPa.

Compressive strength of masonry units is evaluated from a direct compression test,
usually referred to the average gross area perpendicular to the direction of the load
[41]. The distinct testing methods will not be discussed in the present work, only
must be pointed out that they do not only influence the compressive strength, but
also alter the mode of failure of the masonry unit [38, 65]. The specifications ASTM

C-67 and ASTM C-140 [41], the New Zealand standard NZS 3102:1983 [156], the Mexi-
can NMX-C-036-ONNCCE-2004 [121], or the Spanish code NBE FL-90 [36], among others,
present a detailed procedure for testing clay and concrete masonry units, also Crisafulli
in [38] presents a modification to such testing procedures.

Another important mechanical property of masonry units is its tensile strength.
Such property can be measured using three different tests: flexural test, splitting test
(or indirect tension) and direct tension test. Advantages and disadvantages of such tests
are listed in [38]. Test conducted by Hamid and Drysdale [58] showed that the uniaxial
tensile strength f ′bt may be related to the uniaxial compressive strength f ′bc according
to the following expression:

f ′bt = c
√
f ′bc


c = 0.28 for uniform tensile test

c = 0.34 for splitting test

c = 0.69 for flexural test

(3.1)

According to Crisafulli [38] the splitting test seems to be the most reliable measure
of the tensile strength when masonry is subjected to in-plane forces. This is the case of
masonry panels surrounded by steel or reinforced concrete frames subjected to gravity
or lateral in-plane loads.

Strains-Stress relationship of unit mortars depends significantly on their constitu-
tive materials. The elasticity modulus of masonry units present a wide variation and
basically depends on the type of material and the compressive strength f ′bc. There is no
standardized method to evaluate the modulus of elasticity and usually it is adopted as
the secant modulus of elasticity from zero stress to one third of the material strength.
About Poisson’s ratio of masonry units there is an insufficient amount of information,
since parameter νb is not usually investigated by researches. Atkinoson et al [11] and
McNary and Abrams [90] reported ranging from 0.13 to 0.22 for three different types
of masonry units and Ameny et al [9] found values ranging from 0.07 to 0.14 testing
dry-pressed masonry.
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The Mortar

Mortar is a mixture of cementitious materials, aggregates and water used to bind ma-
sonry units into a structural mass. Fresh mortars must be workable, and when hard-
ened, the mortar must provide bond between the masonry units and strength to bear
loads. Mortar mixes are usually indicated in parts of volume, namely, for masonry with
loadbearing proposes [59] mortar should be a cement:lime:sand mix whose proportions
may vary according to a given construction code. There are many cementitious mate-
rial for making mortars: Portland cement and lime mixed in adequate proportions are
frequently used.

Opposite to masonry units, most relevant property of mortars is not its compressive
strength, although mortar’s standard of quality is based upon such property. Deforma-
bility and adherence, on the other hand, have a significant role to play in masonry’s
overall performance. Mortar deformability has direct relationship with total deformation
of a masonry wall and the compressive strength under vertical loads, while adherence
frequently defines shear strength [65].

The compressive strength of the mortar f ′jc usually ranges from 5 to 20 MPa and it
depends on many factors, such as, lime content, characteristics of aggregates, cement-
water ratio and curing process. The determination of compressive strength is conducted
using a 50mm cube (ASTM C 109) or cylinders of different dimensions (usually length-
diameter ratio equal to 2.0) [41] although authors like Crisafulli [38] recommends the
use of cylinders of 75x150mm because of the handling of specimens is easier and the
variation of the results is less significant. The standard test method CRD-C 260-01 [41]
covers the determination of tensile strength of hydraulic cement mortar employing the
briquette specimen.

Stress-Strain relationship obtained from mortar compressive test is, in a general
sense, similar for those for unconfined concrete [9, 11, 90]. Also it may be observed
that lime has an important effect on the mortar behavior, modifying the compressive
strength as well as the elasticity modulus decreases when content of lime increases [38].

Compression Strength in Masonry

Masonry structures present good behavior when they are stressed in compression, addi-
tionally, when the loading direction is perpendicular to bed joints they presents linear
behavior at a low force level. As the compressive load increases material behaves non-
linearly and vertical cracks appear at a force level smaller than the compressive capacity
(see figure 3.3).

Compressive strength is one of the most important parameters to quantify the char-
acteristics of masonry, and has been extensively studied for researches and engineers.
This parameter is also commonly used to establish the allowable flexural and shear
stresses. The numerous possible combinations of mortars, masonry units and mortar
joint thickness, lead to an ample variation of the compressive strength.

Behavior and failure mechanisms of masonry under axial load are highly dependent
on interaction between its units and mortar. Interpretation of this dependence is due
the difference stress-strain response on component materials, i.e., while being under the
same stress level, the less deformable material (generally the masonry unit) restricts
transversal deformation on the most deformable material inducing transversal compres-
sive stresses in it. On the other hand, in the less deformable material, transversal
stresses are introduced reducing its compressive strength [65]. Figure 3.4.a-d shows a
typical stress-strain distribution of a masonry pile using the FEM.
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Figure 3.3 Typical failure mode of masonry under compression loading.

Compressive failure mechanism is manifested through vertical cracks along the units,
when this vertical cracking becomes excessive a brittle failure on the masonry appears.
For units with low compressive strength failure is produced by crushing on them. Mortar
crushing does not produce failure when only axial stresses are presented, since when
mortar crushes, it is still bonded by friction to masonry units. Although in thin masonry
elements, mortar crushing may cause instability conditions [65].

The failure mechanisms previously described is valid for masonry panels subjected
to compressive loading in the perpendicular direction to the bed joints. When the
compressive load is applied in the direction parallel to the bed joints, failure occurs by
debounding along the bed joints due the lateral spreading of the panel [125].

Figure 3.4.e shows a typical stress-stress response under uniaxil compression for
mortar, masonry units and the composite material. It can be observed that the strength
of masonry in compression is smaller than the nominal compression strength of the units
as given by a standard compressive test. On the other hand, the masonry strength may
greatly exceed the cube crushing strength of the mortar used in it [59].

Masonry prisms are primarily used to evaluate the strength, they are small masonry
walls built one or two bricks in length and three or more bricks in height, tested under
a compressive load perpendicularly applied to the bed joint. Many consideration have
been proposed by several authors regarding the proportion length lp, height hp and
thickness tp such walls should have, in [38] a study has been carried out on the matter.

Shear Stress in Masonry

The adequate evaluation of shear strength is required for the design of masonry panels
subjected to lateral loads introduced by action of the wind or earthquake. Shear stress
is usually combined with compressive stress produced by gravity loads or other actions.
Consequently, the case of pure shear has no practical application and the shear strength
of masonry is usually investigated considering the effect of compressive stress acting in
normal direction to the bed joints.

Failure mechanism of masonry under shear stress usually happens as sloped cracks
along the joints, which depends on the resistance of the masonry unit and its bonding
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Figure 3.4 Stresses and strain distribution of a pile of bricks under compression
stress.

Figure 3.5 Modes of failure of masonry panels subjected to shear.

with mortar. Typically happens that for low resistance masonry units, cracks will cross
indistinctly throughout masonry unit or mortar (fig. 3.5.a), however, for walls made
of masonry units with high resistance and good bonding with mortar, cracks appears
throughout joints [65] (fig. 3.5.b). Hence, the resistance and bonding skills of the mortar
play a very important role while determining the shear strength of a masonry wall.

The shear behavior has been investigated by many researches. In 1873 Bauschinger
(as reported by Dialer [43]) apparently conducted the first test to investigate the strength
of masonry subjected to shear loading. Nowadays, different testing methodologies are
used that go from simple prisms made with two bricks to full-scale masonry walls sub-
jected to biaxial load.

The simplest test procedure (direct shear test) consists of testing prism built with
two, three or four masonry units (fig. 3.6.a). The compressive load P is applied first
and then the specimen is subjected to a second load V , which induces increasing shear
stress up to the failure [38]. Tests of masonry panels (fig. 3.6.b) are a more realistic
procedure to investigate the shear strength, and different methods are employed for the
application of the loads. Studies to determine shear strength also have been conducted
by Meli and Reyes [96] and Hernández and Meli [61] introducing stresses in different
directions using walls with different aspect ratio (fig. 3.6.c). Another method often used
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Figure 3.6 Typical tests of masonry panels to determine shear strength.

in experimental work is represented in figure 3.6.d. In this case small masonry panels
are tested under compressive loading, but the angle α between the bed joint direction
and the applied load is different from 90°. Consequently, shear and axial stresses are
introduced in the mortar joints.

Tensile Stress in Masonry

Direct tensile strength can arise in masonry as a result of in-plane loading effects. There
may be caused by wind, by eccentric gravity loads, by thermal or moisture movements
of by foundation movements. Tensile strength of masonry particularly along bed joint
direction, is low and variable and therefore is not generally relied upon in structural
design [59]. Nevertheless it is essential that there should be adhesion between units
and mortar, and it is necessary to be aware of those conditions, since tensile strength
of masonry is primarily controlled by the bond strength developed at the mortar brick
interface. Nature of tensile strength is similar to the shear bond: it relies on bond
strength of masonry’s components.

Different type of failures may occur according to the direction of the tensile load, the
relative magnitude of the bond resistance or the tensile strength of the brick. Figure
3.7a,b show two typical crack patterns for masonry subjected to tensile stresses parallel
to the bed joints. In the first case (a), cracks occur through brick in alternate courses
and the tensile strength is controlled by the tensile strength of the masonry units. On
case (b), cracks do not affect bricks and only occurs along the mortar joints. The mode
of failure, for tensile load acting perpendicularly to the bed joints, usually occurs by
debonding of the mortar-brick interface (fig. 3.7.c), however, the tension failure of the
brick could also occur as shown in figure 3.7.d.

Different test techniques have been used to determine the tensile strength of masonry.
The test of masonry panels under direct tensile strength present some difficulties, its
variability have to be kept in mind, and it should only be used with great caution.



3.1. Behavior and Characterization of Simple Materials 61

Figure 3.7 Mechanism of failure of masonry subjected to direct tension.

Figure 3.8 Elasticity modulus of masonry along different directions.

Direct tensile strength is typically about 0.4 N/mm2 [59].

The splitting test is another typical test used to define the modulus of rupture, or
flexural tensile strength (out-of-plane stress). Has great practical importance, since the
same factors that influence the direct tensile bond apply to the development of flexural
tensile strength. If a wall is supported only at its base and top, its lateral resistance will
depend on the flexural tensile strength developed across the bed joints If it is supported
also on its vertical edges, lateral resistance will depend also on the flexural strength of
the masonry in the direction across the header joints. Tensile strength across header
joint is typically about three times as across the bed joint [59], and for clay units ranges
from 0.8 up to 2.0 N/mm2 in the stronger direction (header direction), hence, strength
across bed joint’s direction is about one-third of this value [59]. The tensile strength
obtained from the splitting test, f ′mt is evaluated in eq. 3.2 based on the linear elastic
theory.

f ′mt =
2P

πAt
(3.2)
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3.2 Macro-Modeling of Masonry

3.2.1 Mechanical Properties

Masonry is generally treated as a linear elastic material, although tests indicate that
the stress-strain relationship is approximately parabolic. Various formulae have been
suggested for the determination of Young’s modulus. This parameter is rather variable
even for nominally identical specimens, and as an approximation several researches have
derived expressions assuming linear elastic behavior for both materials and equating
the compressive deformation of masonry to the sum of the deformation of the brick
and mortar joints. Although the most common approach is to relate the modulus of
elasticity Em of masonry with its compressive strength f ′mc. Most of the results ranges
from 400f ′mc < Em < 1000f ′mc. To name few authors, Hendry [59] proposes eq. 3.3, San
Bartolome [146] at the Colorado Building Code proposed eq.3.4, and Meli and Reyes
[96] proposed eq. 3.5.

Em = 700f ′mc (3.3)

Em = 500f ′mc (3.4)

Em =

{
450f ′mc for clay units

650f ′mc for concrete units
(3.5)

Previous values of masonry’s elasticity modulus Em, are obtained from axial com-
pression acting normal to the bed joints f ′mcy, in the normal direction of the header
joint, however, it would be necessary to consider the different amount of material’s joint
density causing the masonry orthotropy.

Meli in [91] proposes an expression to determine the elasticity modulus of masonry
in a given orientation, determined using mechanical properties of the components of a
two-phase composite material (fig. 3.8). Mechanical properties of components shall be
evaluated according to eq. 3.6.

Ej = 250f ′jc for mortar.

Eb = 200f ′bc for clay units. (3.6)

Eb = 570f ′bc for block units.

The shear modulus of masonry Gm can be calculated from deflection measurement
made on masonry panels. It has been observed that the shear modulus depends on
the type of brick, mortar class and the moisture content when laying. For approximate
calculations, it can be assumed that masonry behaves as an isotropic material (in terms
of deformational properties), thus:

Gm =
Em

2(1 + νm)
(3.7)

This expression indicates that the ratio Gm/Em varies from 0.40 to 0.45 for usual
values of Poisson’s ratio, ranging from 0.10 to 0.25. Although different authors reported
contradictory conclusions [38].
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3.2.2 Failure Envelope

From a computational-cost point of view, the only viable strategy to perform the analysis
of masonry structures built from a large number of units and joints is using macro-
models. In such models average stress-strain relationships in the composite material are
established.

Figure 3.9 Masonry yield function proposed by Dhanasekar et al [42].

As an attempt to develop specific macro-models for the analysis of masonry struc-
tures, let us first consider the work carried out by Dhanasekar et al in [42], to approx-
imate a failure surface (fig 3.9) using a representation in the space fp − fn, where fp
represents the stress parallel to the bed joint, fn is the stress normal to the bed joint,
using f1 and f2 as the principal stresses and their orientation referred to the bed joints θ.
Dhanasekar et al proposed six different tests, and also proposed a complete description
of the biaxial stress-strain relationship for brick masonry, considering anisotropic behav-
ior, although the criterion developed by Dhanasekar et al is essentially phenomenological
and it is not directly based on physical considerations [38].

Now let us consider work done by Lourenço [79] and Pelà [130], where composite
yield criterion suitable for modeling anisotropic materials under plane stress conditions
are presented, in such cases individual yield criterion for both tension and compression
have been considered, according to different failure mechanisms (figure 3.10 and 3.11).
Then, proposed yield criterion are compared with the most complete set of strength
data for biaxially loaded masonry walls carried out by Page [125, 126].

Although both cases miss to reproduce the uniaxial compressive strength parallel to
the bed joints, globally, good accuracy can be notice from such yield criterion.

Lourenço in his work [79] even proposed the required information to define the
anisotropic composite yield criterion. Necessary data to plot such anisotropic damage
yield function and to evaluate damage evolution is shown below. Typical position of the
natural tests and non-standard tests proposed by Lourenço are shown in figure 3.16.
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Figure 3.10 Comparison among plasticity model of Lourenço [79] and Page
[125, 126].

Figure 3.11 Comparison among plasticity model of Pelà [130] and Page [125, 126].

1. Four natural tests to calibrate the composite model. a) uniaxial tension parallel to
the bed joints f ′mtx, b) uniaxial tension normal to the bed joints f ′mty, c) uniaxial
compression parallel to the bed joints f ′mcx and finally, d) uniaxial compression
normal to the bed joints f ′mcx

2. Three additional tests are required to fully calibrate the yield criterion. Parameter
α, which weights the shear stress contribution to tensile failure. Parameter β,
which controls the coupling between normal stress values in the case of compressive
failure, and parameter γ, which weight the shear stress contribution to compressive
failure. Such parameters are evaluated as follow:



3.2. Macro-Modeling of Masonry 65

α =
1

9

(
1 + 4

fmtx

fα

)(
1 + 4

f ′mty
fα

)

β =

[
1

f2
β

− 1

(f ′mcx)2
− 1

(f ′mcy)2

]
f ′mcxf

′
mcy (3.8)

γ =

[
16

f2
γ

− 9

(
1

(f ′mcx)2
+

β

f ′mcxf ′mcy
+

1

(f ′mcy)2

)]
f ′mcxf

′
mcy

3. The four independent fracture energies, two under tensile load (Gftx, Gfty), and
two under compressive load (Gfcx, Gfcy), also the peak strain compression would
be required κp.

3.2.3 Properties of the Unit-Mortar Interface

A salient feature of masonry is its softening behavior, which is a typical non-linear
response of quasi-brittle materials. Softening is a gradual decrease of mechanical resis-
tance under continuous increase of deformation and it is due to a process of progressive
internal crack growth.

Masonry’s softening behavior is typically attributed to the heterogeneity of its com-
ponents or defects on them. Although the non-linear response of the unit-mortar inter-
face has a relevant influence on masonry’s mechanical behavior. For continuum macro-
models, the effect of the interface playing an important role on masonry’s post-peak
behavior will not be directly included, because the unit and mortar geometries are not
discretized. However, such effect can be taken into account through the fracture energy
in the material.

Fracture energy, in its general form, is defined as the integral of the σ − δ response
diagram (mode I), or the τ − δ diagram for shear failure mode (mode II), although Van
der Pluijm in [167] defined it as a function of the crack length along the unit-mortar
interface of the masonry, i. e. is the amount of energy to create a unitary area of a
crack along the unit-mortar interface.

Mode I Failure

Van der Pluijm [167] carried out deformation-controlled tests in small specimens of
solid clay and calcium-silicate units (fig. 3.12.a). Such tests resulted in an exponential
tension softening curve with a mode I fracture energy GIf ranging from 0.005 to 0.02

[Nmm/mm2] for a tensile bond strength ranging from 0.30 to 0.90 [N/mm2], according
to the unit-mortar combination.

A closer observation of the cracked specimens revealed that the bond area was smaller
than the cross sectional area of the specimen (fig. 3.13.a). The subsequently so-called
net bonding surface seems to concentrate in the inner part of the specimen. For a wall
the net bonding surface must be corrected according to a smaller number of edges.
Values given in figure 3.13.b refer to the real cross section of a wall and result from an
extrapolation of the measured net bonding surface of the specimen to the assumed net
bonding surface of the wall, neglecting any influence of the vertical joints.
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fully characterize the mortar behavior, Bierwirthet al. (1993), Schubert and Hoffman
(1994) and Stöcklet al.(1994). Nevertheless, there is still a lack of knowledge about the
complete mortar uniaxial behavior, both in compression and tension.

2.4 Properties of the unit-mortar interface

The bond between the unit and mortar is often the weakest link in masonry assem-
blages. The nonlinear response of the joints, which is then controlled by the unit-mortar
interface, is one of the most relevant features of masonry behavior. Two different phe-
nomena occur in the unit-mortar interface, one associated with tensile failure (mode I)
and the other associated with shear failure (mode II).

2.4.1 Mode I failure

Van der Pluijm (1992) carried out deformation controlled tests in small masonry speci-
mens of solid clay and calcium-silicate units, see Figure 2.4. These tests resulted in an
exponential tension softening curve with a mode I fracture energyGI

f ranging from
0.005 to 0.02 [Nmm/mm2] for a tensile bond strength ranging from 0.3 to 0.9 [N/mm2],
according to the unit-mortar combination. This fracture energy is defined as the amount
of energy to create a unitary area of a crack along the unit-mortar interface. A close
observation of the cracked specimens revealed that the bond area was smaller than the
cross sectional area of the specimen, see Figure 2.5a. This so-called net bond surface
seems to concentrate in the inner part of the specimen, which can be a combined result
from shrinkage of the mortar and the process of laying units in the mortar bed. For a
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Figure 2.4 Tensile bond behavior of masonry, Van der Pluijm (1992): (a) test speci-

men; (b) typical experimental stress-crack displacement results for solid
clay brick masonry (the shaded area represents the envelope of three
tests).

Figure 1.12 Tensile bond behaviour, Van der Pluijm [75].

1.2.3 Properties of the Unit-Mortar Interface

A salient feature of masonry is its softening behaviour, which is a typical non-linear
response of quasi-brittle materials. Softening is a gradual decrease of mechanical resis-
tance under continuous increase of deformation and it is due to a process of progressive
internal crack growth.

Masonry’s softening behaviour is typically attributed to the heterogeneity of its
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der Pluijm in [75] defined it as a function of the crack length along the unit-mortar
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A close observation of the cracked specimens revealed that the bond area was smaller
than the cross sectional area of the specimen (fig. 1.13.a). This so-called net bond
surface seems to concentrate in the inner part of the specimen. For a wall the net bond
surface must be corrected according to a smaller number of edges. Values given in figure
1.13.b refer to the real cross section of a wall and result from an extrapolation of the
measured net bond surface of the specimen to the assumed net bond surface of the wall,
neglecting any influence of the vertical joints.

Figure 3.12 Tensile bond behavior, Van der Pluijm [167].

Modeling masonry: A material description 17

(a)

Estimated net bond
surface for
wall (59%)

Av erage net bond
surface of

specimens (35%)

(b)

Figure 2.5 Tensile bond surface, Van der Pluijm (1992): (a) typical net bond surface
for tensile specimens of solid clay units; (b) extrapolation of net bond
surface from specimen to wall.

wall the net bond surface must be corrected according to a smaller number of edges, see
Figure 2.5b. The values given above refer to the real cross section of a wall and result
from an extrapolation of the measured net bond surface of the specimen to the assumed
net bond surface of the wall, neglecting any influence of the vertical joints.

2.4.2 Mode II failure

An important aspect in the determination of the shear response of masonry joints is the
ability of the test set-up to generate a uniform state of stress in the joints. This objective
is difficult because the equilibrium constraints introduce non-uniform normal stresses in
the joint. A discussion about the adequacy of different test configurations will not be
given here and the reader is referred to Van der Pluijm (1993) and Atkinsonet al.(1989)
for this purpose.

Van der Pluijm (1993) presents the most complete characterization of the masonry
shear behavior, for solid clay and calcium-silicate units. The test set-up shown in
Figure 2.6 permits to keep a constant normal confining pressure upon shearing. Confin-
ing (compressive) stresses were applied with three different levels: 0.1, 0.5 and 1.0
[N/mm2]. The test apparatus did not allow for application of tensile stresses and even
for low confining stresses extremely brittle results are found with potential instability of
the test set-up. Noteworthy, for several specimens with higher confining stresses shear-
ing of the unit-mortar interface was accompanied by diagonal cracking in the unit.

The experimental results yield an exponential shear softening diagram with a resid-
ual dry friction level, see Figure 2.7a. The area defined by the stress-displacement

Figure 3.13 Tensile bond surface, Van der Pluijm [167].
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Figure 3.14 Test set-up to obtain shear bond behavior, Van der Pluijm [167].
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Figure 2.6 Test set-up to obtain shear bond behavior, Van der Pluijm (1993):
(a) test specimen ready for testing; (b) forces applied to the test specimen
during testing.
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Figure 2.7 Typical shear bond behavior of the joints for solid clay units, Van der

Pluijm (1993): (a) stress-displacement diagram for different normal
stress levels (the shaded area represents the envelope of three tests);
(b) mode II fracture energyGII

f as a function of the normal stress level.

diagram and the residual dry friction shear level is named mode II fracture energyGII
f ,

with values ranging from 0.01 to 0.25 [Nmm/mm2] for initial cohesionc values ranging
from 0.1 to 1.8 [N/mm2]. The value for the fracture energy depends also on the level of
the confining stress, see Figure 2.7b. Evaluation of the net bond surface of the speci-
mens is no longer possible but the values measured for tensile bond strength can be
assumed to hold. Additional material parameters can be obtained from such an experi-
ment, see Figure 2.8. The initial internal friction angleφ0, associated with a Coulomb
friction model, is measured by tanφ0, which ranges from 0.7 to 1.2, for different unit-
mortar combinations. The residual internal friction angleφ r is measured by tanφ r ,

Figure 3.15 Typical shear bond behavior of the joints for solid clay units, Van der
Pluijm [167].

Mode II Failure

An important aspect in the determination of the shear response of masonry joints is
the ability of the test set-up to generate a uniform state of stress in the joints. This
objective is difficult because the equilibrium constrains introduce non-uniform normal
stresses in the joint.

Van der Pluijm in [168] presented the most complete characterization of the masonry
shear behavior, for solid clay and calcium-silicate units. Test set-up shown in figure
3.14.a permits to keep a constant normal confining pressure upon shearing. Confining
stresses were applied with three different levels: 0.1, 0.5 and 1.0 [N/mm2].

The experimental result yield an exponential shear softening diagram (fig. 3.15).
The area defined by the stress-displacement diagram is named mode II fracture energy
GIIf , with values ranging from 0.01 to 0.25 [Nmm/mm2] for initial cohesion values

ranging from 0.10 to 1.80 [N/mm2]. The value of the fracture energy depends also on
the level of the confining stress (fig. 3.15.b).

The initial internal friction angle φ0, associated with the Mohr-Coulomb friction
model, ranges from 30° to 50° for different unit-mortar combination. The residual inter-
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nal friction angle φr seems to be approximately equal to 37°. The dilatancy angle ψ for
low confining pressure falls in the range from 11° to 35 ° depending on the roughness of
the unit surface. For high confining pressures ψ decreases to zero due to the smoothing
of the shared surfaces.

3.2.4 Remarks Regarding Mechanical and Non-Linear Response

In this section, the use of existing experimental and analytical data, plus the use of a ma-
sonry designing code (Normas Técnicas Complementarias para Dise~no y

Construcciones de Estructuras de Mamposterı́a, 2004 [6]) will be required as an
attempt to reproduce mechanical and non-linear behavior of generic masonry. Points 1
to 5 down below, show a guidance to plot a orthotropic yield function, point 6 is a brief
description to determine mechanical properties of masonry, and finally, point 7 treats
post-peak response of masonry in a diffused form.

Scheme proposed by Lourenço [79] to plot an anisotropic damage yield function
seems ideal, however, scarcity of experimental information makes it useless for practical
applications.

1) Typically there are two forms of determining the value f ′mcy. The first one: is
trough a standard compressive analysis of a pile of masonry, containing the given
unit and mortar, or the second: once the uniaxial compressive strength of unit
f ′bc is known, and also the proportion of cement:lime:sand which will compose the
mortar, Table 2.6 from reference [6] can be used.

2) Reference [6] does not allude a ratio among f ′mcx and f ′mcy. It is so, in this work
we propose to use equation 3.9 based on results of Lourenço [79] and Pelà [130].

f ′mcx
f ′mcy

= 1.08 for solid brick masonry

f ′mcx
f ′mcy

= 4.00 for hollow brick masonry

(3.9)

3) Both f ′mtx and f ′mty tensile strength are considered null according to section

2.8.4 of [6]. However, we shall use a conservative value got from direct ten-
sile tests. As proposed by Hendry [59] it could be f ′mty = 0.13N/mm2 and
f ′mtx = 0.40N/mm2 used regardless the type of unit or mortar.

4) Lacking experimental information, or guidance from reference [6] to obtain nec-
essary parameters α, β and γ to settle Lourenço’s [79] anisotropic yield criterion
model, it is decided to use only-compression model proposed by Faria et al [51].
Where K = 0.118 for solid brick masonry, whereas K = 0.072 for hollow brick
masonry based on results from Pelà [130]. To model only-tension case a mod-
ified Mohr-Coulomb model will be used [113] (such model also will be used for
both tension-compression and compression-tension cases, see appendix A). Shear
strength under compression case f−12 will be defined equal to V ∗m (see Seccion

2.8.2 [6]). Also, resistance f+
12 will be considered equal to f ′mty.

5) To model masonry as a homogeneous material, a diagonal fourth order tensor
is assumed for each transformation tensor, according to Batten [23], Oller et al
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Figure 3.16 Typical position of the natural tests and non-standard tests proposed by
Lourenço [79].

[115, 118], and Car et al [25, 26], and used by Pelà [130] to model masonry as an
orthotropic material.

6) Masonry’s elasticity modulus Emx will be determined according to Section 2.8.5

of reference [6]. Elasticity modulus in y direction (Emy) will be determined ac-
cording to Meli [91] (fig. 3.8), namely:

Em = Eb
γ cos α+ sin α+ β(sin α+ cos α)

η cos α+ sin α+
β

η
(cos α+ sin α)

(3.10)

where Eb is the elasticity modulus of the masonry unit, Ej is the elasticity modulus
of the mortar joint (see fig. 3.8) defined according to equation 3.6. α = 0°, β, γ
and η are defined as seen in figure 3.8. Finally, Poisson’s ratio ν12 and ν21 values
ranges from 0.10 to 0.25.

7) In reference [6], or in any other designing code for that matter, does not exist any
allusion to fracture energy, and due to the uncertainty surrounding such value,
it is only recommended to have in mind section 3.2.3 of this work, and choose a
value for Gf or Gc from an initial calibration using experimental results.

3.3 Orthotropic Yield Criterion

In this section will be reproduced the adopted scheme to model the masonry as an
orthotropic material, which is an implicit definition of the orthotropic yield function
based on the transformed-tensor method proposed by Oller et al. [116]. The reader may
abound in the subject consulting reference [130] where an extensive review of the state of
the art has been carried out, also, the underlying principles, numerical implementation
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and numerical examples of concepts reproduced in this section have been presented in
reference [130].

The objective of the approach proposed by Oller et al. [116] is to adjust an arbitrary
isotropic yield criterion to the behavior of an anisotropic material. The transformed-
tensor method is based on assuming the existence of a real anisotropic space of stresses
σij and a conjugate space of strains εij , such that each of these spaces has its respective
image in a fictitious isotropic space of stresses σij and strains εij respectively (figure
3.17). The corresponding relationships among them are;

σij
def
= Aσijklσkl ; ε

def
= Aεijklεkl (3.11)

where Aσijkl and Aεijkl are the transformation tensors, for stress and strain, respectively,
relating the fictitious and real spaces. These four-rank tensors embody the natural
anisotropic properties of the material.

The stress transformation tensor Aσijkl is a result of the properties of the materials
and the shape of the yield surface, namely,

Aσijkl =
(
Bσijkl

)−1
= (Wijrsαrskl)

−1
(3.12)

where, Wijrs contains information on the yield stress along every axis of orthotropy,
and αrskl is the shape adjustment tensor (section 6 ref. [116]).

The relationship between the stress and strain transformation tensors can therefore
be expressed as

Aεrsmn =
[
C
σ

rsij

]−1

AσijklC
σ
klmn (3.13)

where C
σ

rsij and Cσklmn represent the constitutive tensor in the fictitious and real space,
respectively.

The present formulation allows the solution for the behavior of a point in the real
anisotropic solid by transporting it into a fictitious isotropic space, in which the classical
isotropic formulation is used. It is thus possible to use the classical isotropic formulation
of small-deformation plasticity for the solution of an anisotropic plasticity model. In
this context, the anisotropic yield function Fσ and the anisotropic plastic potential Gσ

are defined respectively in equation3.14.

Fσ(σij , q
m
s ) ≡ Fσ(σij , q

m
s ) = 0

Gσ(σij , q
m
s ) ≡ Gσ(σij , q

m
s ) = K

(3.14)

where qms represents a set of m internal variables, and K is a constant. The plastic flow
rule is defined by the chain rule as [115]

ε̇
p
rs = Aεrsij ε̇

p
ij = Aεrsij

∂Gσ

∂σkl
= Aεrsij

∂G
σ

∂σkl

∂σkl

∂σkl
= λ̇Aεrsij

Rkl︷︸︸︷
∂G

σ

∂σkl
Aσklij = λ̇R̃rs (3.15)

The direction tensor of the classical flow rule in an isotropic space Rij is modified
by Aσijkl in order to obtain its analogue in the anisotropic space, Rij = RijA

σ
klij . The

transformation R̃rs = AεrsijRij introduces the influence of anisotropic elasticity on
anisotropic yielding.



3.4. Mixing Theory 71

Figure 3.17 Relation between the fictitious isotropic and the real anisotropic space.

Finally, the secant and tangent constitutive tensors in real space are expressed in
equation 3.16.

σij = m
∂Ψσ(εekl, q

m
s )

∂εeij
=
(
Aσijkl

)−1
σkl

σ̇ij =
(
Aσijkl

)−1
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Aσijkl

)−1
(
C
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)ep
ε̇rs

(
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ijkl

)ep
(3.16)
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σ
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rskl

)

H +
∂F

σ

∂σpq
C
σ

pqtnR̃tn

where Ψε is the free-energy density, m is the mass density and H is the hardening
parameter.

3.4 Mixing Theory

In a general sense, a mixing theory is a weighted mean proposed for modeling non-linear
mechanical behavior of composite materials made up of continuum or unidirectional
fibers.

Classical mixing theory (CMT) was firstly studied by Truesdell and Toupin [163]
establishing the basis for subsequent developments, like the ones made by Ortiz and
Popov [122], Oller et al [119] and Oñate et al [120].

CMT takes into account the volume fraction of components but not its morphologi-
cal distribution, since it assumes all component of the composite experiment the same
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strain state in all directions (pure parallel behavior). This feature is a strong limita-
tion for the use of CMT to predict the behavior of most composites, and consequently
modifications to this theory were developed by Rastellini [136] making the composite
behavior dependent on the constitutive laws of component materials according to their
volume fractions and to their morphological distribution inside the composite.

Serial-parallel (SP) mixing theory proposed by Rastellini [136] assumes that com-
ponents behave as parallels materials in the fibers alignment and as serial materials in
orthogonal directions. Later SP theory was implemented by Martinez [87], in next lines
numerical model of both CMT and SP mixhing theory are briefly reproduced.

3.4.1 Classical Mixing Theory

Due to the pure parallel behavior within the components it is also referred as parallel
mixing theory, and their basic hypothesis are:

1. Every infinitesimal volume of the mixing is composed by a finite number of com-
ponent materials.

2. The ratio of component’s participation in the overall behavior of the composite is
the same ratio of its volume.

3. All components substances have the same deformations as the component (strain
compatibility).

4. Volume of each component substance is less than the total volume of the compo-
nent.

Other hypothesis implies an homogeneous distribution of all substances for a given
region of the composite. Interaction between such substances, each with its own con-
stitutive model, results in the behavior of the component which depends on the volume
ratio of each of the components.

Also CMT theory assumes that in absence of atomic diffusion (moderate tempera-
tures) between substances within the components of the solid, next compatibility equa-
tion is fulfilled:

(εij)1 = (εij)2 = . . . = (εij)n = εij (3.17)

Furthermore, for composite materials, free energy can be written as shown in equa-
tion 3.18 [163].

mΨ
(
εeij , α, β

)
= mΨ

εij , Pr︷ ︸︸ ︷
εpij , α, β

 = m

n∑
c=1

kcΨc

(
(εij)c , (Pr)c

)
(3.18)

where Ψc is the free energy of the c-th component of all the n involved in the mixture,
(pr)c is a set of internal variables for the c-th component, and kc = dVc

dV is the volume
ratio of the c-th component. It is convenient to acknowledge regarding to volume ratio,
that have to be fulfilled condition shown below.

n∑
c=1

kc = 1.0 (3.19)
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Stress of the composite is now a function of the free energy, same as for simple
materials. For thermally steady cases:

σij = m
∂Ψ (εkl, P r)

∂εij
= m

n∑
c=1

kc
∂Ψc (εkl, (Pr)c)

∂εij
=

n∑
c=1

kc (σij)c (3.20)

where (σij)c is the stress of the c-th component material.
Via the Clausius Planck inequality, a thermodynamic expression for mechanical dis-

sipation can be obtained.

Ξmec =
∂Ψ (εmm, P r)

∂Pi
Ṗi = m

n∑
c=1

kc
∂Ψc ((εmm)c, (Pr)c)

∂εij∂εij
=

n∑
c=1

kc (Cijkl)c (3.21)

Finally, considering strain compatibility, strains in the composite can be written as:

εij = (εij)c =
(
εeij
)
c

+
(
εpij
)
c

=
(
Csijkl

)−1

c
(σkl)c +

(
εpij
)
c

(3.22)

3.4.2 Serial-Parallel Mixing Theory

Numerical model developed to obtain stress-strain relationship of composite material
from their components under a serial-parallel behavior is based upon the next hypoth-
esis.

1. Component materials have the same strains in the parallel direction of the fiber
(iso-strain condition).

2. Component materials have the same stress in the serial direction (iso-stress con-
dition)

3. The ratio of component’s participation in the overall behavior of the composite is
the same ratio of its volume.

4. It is considered a homogeneous distribution of components within the composite.

5. Only two components are considered: matrix and fiber, and it is assumed they
are perfectly bonded to each other.

Mechanical behaviors of components within the composite are related by their own
constitutive equation. In this work, SP theory will be mainly considered to reproduce
the mechanical behavior of reinforced concrete, although can also be used to reproduce
the behavior of reinforced masonry, in any case, matrix material will follow a damage
constitutive equation (eq. 3.23), whereas fiber material (steel) will be modeled with a
classical plasticity constitutive equation (eq. 3.24).

kσ = (1− d)kCo : (kε) (3.23)

kσ = kCo : kεe = kCo : (kε− kεp) (3.24)

following same notation presented in [136], kσ is the stress tensor of the material k-th;
kCo is the constitutive tensor of the k-th material, whereas kε and kεp are the total
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and plastic deformation tensors respectively, finally, d is a internal variable of isotropic
damage (see appendix A).

Stress-strain relationship shown in equations 3.23 and 3.24, can be rewritten consid-
ering decomposition of constitutive tensors in their serial and parallel components.[

kσP

kσS

]
=

[
kCPP

kCPS

kCSP
kCSS

]
:

[
kεP

kεS

]
(3.25)

Decomposition of constitutive tensor for each simple material is defined by the double
contraction of fourth order projection tensors, and the constitutive tensor itself, hence

kCPP = PP : kC : PP

kCPS = PP : kC : PS

kCSP = PS : kC : PP

kCSS = PS : kC : PS

(3.26)

Considering that both matrix and fiber material have a common four order consti-
tutive tensor, and as a function of volumetric fraction, material constitutive tensor is
defined as:

cCPP =
(
fkfCPP + mkmCPP

)
+ mkfk

(
fCPS − mCPS

)
: A :

(
mCSP − fCSP

)
cCPS =

(
fkfCPS : A : mCSS + mkmCPS : A : fCSS

)
cCSP =

(
mkfCSS : A : mCSP + fkmCSS : A : fCSP

)
(3.27)

cCSS =
1

2

(
mCSS : A : fCSS + fCSS : A : mCSS

)
being

A =
(
mkfCSS + fkmCSS

)−1

(3.28)

again, using the same notation as in [136], superindex c, m and f are referred to the:
composite, matrix and fiber material respectively. Parameters fk and mk represent
volumetric fraction of matrix and fiber materials, respectively.

Finally, equilibrium and compatibility equations to be fulfilled in the composite are
shown below.

Parallel


cεP = mεP = fεP

cσP = mkmσP + fkfσP
(3.29)

Serial


cεS = mkmεS + fkfεS

cσS = mσS + fσS
(3.30)
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3.5 Mesh Objectivity of FE Formulation Response
with Strain-Softening

Masonry, as some other materials subjected to the action of imposed displacements
exhibit, after a certain limit, a phenomenon called softening. During a process of uniaxial
quasi-static loading, softening appears as a reduction of the magnitude of the stress and
an increment of strains.

In continuum mechanics, it is known that the inclusion of strain-softening leads to the
increment of strains in narrow strips. This phenomenon is known as strain localization.
Two major approaches may be distinguished for analyzing crack propagation, namely:

� Discontinuous (or Discrete) crack approach, where displacement that jumps
across the crack are explicitly considered, and the non-linear behavior is estab-
lished through a softening traction-displacement law. A mayor disadvantage that
adheres this approach is the fact that the topology of the finite element mesh is
changed continuously, although this concept has been refined in recent years in
models where cracks are no longer forced to align with the original inter element
boundaries.

� Smeared crack approach, that is, standard finite elements with continuous
displacement fields and standard local constitutive model with strain-softening.
Softening modulus is adjusted according to the material fracture energy and the
element size. The crack is assumed to be distributed over the entire area belonging
to an integration point.

Objective of this section is only to point out in a briefly manner the strain-softening
phenomena, reader may abound in the subject by consulting reference [29]. Also some
remarks on the selected approach in this work (SC approach) are listed below.

� The simplicity of this approach. Smeared crack models can be readily imple-
mented in any non-linear FE code, by simply writing a routine for a new material
constitutive model.

� Re-meshing is unnecessary. Since the cracking material is assumed to remain
continuum and material properties (stiffness and strength) are modified to account
for the effect of cracking.

� Mesh dependency. A drawback is that the total energy dissipated in the crack-
ing process is proportional to the size of the element.

The requirement that the result from the numerical modeling should be independent
of the mesh choice is named mesh objectivity. This requirement can be bring into the
numerical modeling by modifying the softening law as proposed in [109]. Bazant and
Oh in [109] remark that in a FEM framework, the concept of strain softening should
not be considered as a characteristic of the material only, since this aspect is related to
the fracture energy Gf and to the size of the FE where the energy dissipation process
occurs, hence, in each FE, the width of the fracture zone is computed depending on the
geometric dimensions of the elements, in other words, fracture energy is now adopted as
a bonding parameter between fracture mechanics and the constitutive model based on
classical mechanics. Following a simple formulation based on a uniaxial behavior, the
fracture energy Df per unit area can be expressed as:
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Figure 3.18 Schematic representation of crack approaches.

Gf =
Wf

Af
(3.31)

where Wf is the total energy dissipated by the fracture at the end of quasi-static process,
and Af is the total area of the crack. Finally, the coupling of classical mechanics
framework and a given constitutive model via Gf is given in equation 3.32.

Wf = GfAf =

∫
V

gf dV (3.32)

where gf is the maximum energy dissipated by a continuum model in pure traction.
Figure 3.18.a depicts a schematic representation of a discontinuous crack approach,
whereas figure 3.18.b represents a smeared crack approach.

From equation 3.32, relationship among fracture energy per unit area Gf and the
total energy per unit of volume gf is expressed as:

Gf =
Wf

Af
=

∫
V

gf

Af
dV (3.33)

Since the process where fracture occurs is defined as V = lpAf then equation 3.33
becomes

Gf =
Wf

Af
= lf gf ⇒ gf =

Gf

lf
=

Wf

lfAf
(3.34)

where lf is the length of the area where the non-linear behavior will occur. Since Gf is
a property of the material, mesh objectivity comes while defining the fracture length lf
of a given finite element. Several studies have been done to provide objectivity on the
results independently of the size of the finite element mesh (Oliver [110], Oller [114],
Oliver et al [112], Cervera and Chiumenti [29], among others). Finally, it is important
to point out the work done by Cervera and Chiumenti, since is the scheme to evaluate
lch adopted in this work. In [29] characteristic length is defined as the representative
size of the element lch for linear simplex elements and for 2D triangular elements using
equation 3.35.
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Figure 3.19 Schematic representation of axially loaded plate.

lch =

√
4√
3
Ae (3.35)

being Ae the area of the element assuming that the triangular elements are equilateral.

3.5.1 Objectivity Analysis - Membrane Test.

A numerical example of a damage constitutive model with strain-softening using stan-
dard triangular FE (CST triangle) has been carried out in this subsection. To carry an
objectivity analysis, the example used by Badillo in [12] has been chosen. The model
consists on a plate fixed on its left part whereas on its right part a displacement has
been imposed (fig. 3.19), this has been done in order to simulate an ideal uniaxial tensile
test.

Studied plate is 1 centimeter thick, and is composed by a matrix-like material whose
non-linear behavior is expressed by the continuum damage model with exponential soft-
ening. The formulation of the constitutive model used is fully described in appendix
A.

Material properties of the plate are: Young’s modulus E = 3.5E4MPa, Poisson’s
ratio ν = 0.2, internal friction angle φ = 30°, compression strength σyc = 20MPa,
tensile strength σyt = 2.0MPa, fracture energy Gf = 0.25kN/m and compression
energy Gc = 26.0kN/m.

Mesh arrangements for specimens are presented in figure 3.20 consisting in: a) nearly
equilateral triangles elements (P-2x24 and P-6x12), b) triangular elements with their
longest side perpendicular to the loading direction (P-2x8 and P-4x16), and c) triangular
elements with their longest direction parallel to the loading direction (P-4x4 and P-2x8).

For each mesh presented in figure 3.20, three different values of the characteristic
length have been assigned for comparative purposes:

1. Equal to the root area of the finite element lch =
√
Ae.

2. Equal to the scheme proposed in [29] lch =

√
4√
3
Ae.

3. Equal to the full length of the element in the load direction lch = he.
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Figure 3.20 Mesh arrangements for softening objectivity analysis.

Finally, solution has been compared with the response of a plate obtained by mod-
eling it with one single finite element, which is considered as the reference solution,
as presented in [12]. Figures 3.21.a, 3.21.b and 3.21.c depict results of the performed
analysis in terms of the capacity curves for the different mesh models and for the given
value of the characteristic length assigned.

Figure 3.21.a rendering results of specimens using lch =
√
Ae seems confusing, since

finite elements with high aspect ratio (P-2x8 and P-4x16) fits exactly as the reference
solution. On the other hand, both, meshes with FE with the longest side parallel to
the loading direction (P-4x4 and P-8x8) and meshes with FE sensibility equilateral
overestimate the response.

Results obtained from figure 3.21.b confirm scheme presented in [29] by Cervera and
Chiumenti. The characteristic length used in equation 3.35 tends to be the ideal, since
finite elements in specimens P-2x4 and P-6x12 are closer to be equilateral triangles
are the ones with the best approximation to the theoretical response. On the other
hand, responses of specimens with higher finite element’s aspect ratio both under or
overestimate the response compared with the reference solution.

Finally, results from figure 3.21.c are straightforward, and according to a smeared
crack approach, demonstrate that the characteristic length that gives objectivity in the
response and that match reference solution is when lch equals the theoretical fracture
length for the case of pure uniaxial test.

It also must be noticed that the use of fracture length depending on the size of a
finite element brings different evolution of stresses in the non-linear range [12], since
total energy depends in the volume of a given finite element. Namely, for large elements
(and large fracture energy too) the fracture energy per unit of volume is lower, resulting
in a lower stress state compared with smaller elements.

3.6 Bending performance of the proposed shell ele-
ment

In this section is presented a numerical example of a laminated plate subjected only to
bending stresses. The aim of this section is to point out that with the proposed inte-
gration scheme along the thickness, a layered plate is perfectly capable of reproducing
the expected bending degradation that arises when some layers are beyond the elastic
threshold and others are not.
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Figure 4 Non-linear FEM response using different characteristic length lch

Figure 3.21 Non-linear FEM response using different characteristic length lch
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Figure 3.22 Schematic representation of bending damage.
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Figure 3.23 Schematic representation of range in which moves the mechanical axis.

First, the expected behavior due the damage evolution is briefly described; then,
numerical results obtained with the proposed integration scheme over the thickness are
compared with obtained results from a model formed with hexahedron elements.

Let us considered the example shown in figure 3.22 where the layer distribution of
a plate under a monotonic bending stress is depicted. Layers of the composite material
are formed by a homogeneous and isotropic material, in such a way mechanical plane
lie in the geometrical plane. Let us also consider that the simple material forming the
laminated plate is a concrete-like material, where there is a pronounced difference among
tension and compression damage threshold.

As bending moment monotonic load starts being applied, the expected distribu-
tion of strains along the thickness would be the shown in figure 3.22.a, whereas stress
distribution would be like the ones shown in figure 3.22.b. Both stresses and strains
corresponding to figures 3.22.a and 3.22.b would be in the elastic range.

As bending moment continues to impose, a non-liner response would be reached.
The expected response of the composite material is such that only the layers under
tension stress (since tension is by far the less resistant stress) reach the non-linear range,
and due to this, layers subjected to compression forces undergo a gradual increase of
stress. Consequently, strain level of a the laminated material slightly beyond the damage
threshold would be as shown in figure 3.22.c, also, from such figure can be notice that
mechanical and geometrical planes no longer correspond. On the other hand, expected
stress distribution would be the presented in figure 3.22.d.

Finally, if it stills imposing a bending moment up to a fully damaged state in the
plate, strain distribution would be very much alike at the one presented in figure 3.22.e
and the corresponding stress distribution shall the one shown in figure 3.22.f.

This effect can be summarized as a gradual loss of bending stiffness due to damage
that occurs in some layers of the composite material. Mathematically, such effect is
evaluated using secant constitutive tensors of the layers, this in order to determine
the position of the mechanical plane, and then, integration along the thickness of the
composite material is performed (as previously explained in chapter 2). It is easy to
notice that, by definition, mechanical plane of the shell only can move within range hma

shown in figure 3.23. With the proposed integration scheme it becomes mandatory to
perform a finer layer distribution in the following cases:

� At the farthest zones away from the geometric axis of the shell, since such layers
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Figure 3.24 Schematic representation of bending loaded plate.

will be subjected to the higher stresses while acting a bending stress.

� At zones where exist an abrupt change of stiffness, which correspond to the pres-
ence of steel reinforcement within the concrete, no matter the position within the
overall thickness.

Main idea of such layer distribution, is to endow the proposed integration scheme,
with the capability of capturing the mechanical axis once the shell element has undergone
a non-linear effect. Because as the element damages, the mechanical axis moves away
from its original position toward one end (according to the bending moment’s direction),
and the nearest to one end the more damage state is able to represent.

Let us consider the example shown in figure 3.24, where a model subjected to bend-
ing moment is depicted. Two cases are considered, a shell element with the proposed
integration scheme, and a conventional hexahedron element. In both cases, boundary
conditions will be the same, namely, one end fixed, and in the other end, a vertical
displacement monotonically increased will be imposed. Dimensions of the model are
72x36x10cm. For the shell model, it has been used a mesh with a total of 144 triangular
elements with a single integration point, on the other hand, the model with hexahedron
elements has been performed using a mesh with 720 finite elements with 8 integration
points each.

Mechanical properties of the material forming the layers of the shell (and hexahedron
elements, for that matter) are the ones previously presented in section 3.5.1. In order
to stay away from the definition and evaluation of the fracture length, since for both bi-
dimensional and three-dimensional elements different theory may apply, fracture length
will be fixed in both examples to lch = hgp = 3cm, where hgp is the length of a gauss
point in the load direction of a hexahedron element .

Figure 3.25 depicts the evolution on the non-linear force-displacement response of
both models. It is easy to notice that a good agreement among two models has been
achieved, although the layered shell element slightly underestimated the response. Also
it is easy to notice that bending moment at the support is equal to Ma = PL. Values
corresponding to imposed displacements δ1, δ2 and δ3 are used as a reference to the
information output for a random F.E (figures 3.26 and 3.27).

Once both analysis has been performed, the first comparison point is the deformation
undergone by both models, such comparison is shown in figure 3.26, as expected, damage
takes place in the nearest elements to the fixed end in both models, this seems obvious,
since such elements are subjected to the highest levels of tensile stresses at the top
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Figure 9 Final deformation of vertically loaded models.

Figure 3.25 Non-linear FEM response of a vertically loaded plate using lch = 3cm.
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Figure 8 Non-linear FEM response of a vertically loaded plate using lch = 3cm.

Figure 9 Final deformation of vertically loaded models.
Figure 3.26 Final deformation of vertically loaded models.
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layers. In both cases, damage starts at the top most layers/elements, then it propagates
to the inner layers/elements.

In figures 3.27,(a), (b) and (c) three graphics are shown, from left to right they
correspond to: strain distribution along thickness’s element, stress distribution along
thickness and generalized stress MXX . Such figures show the stresses and strains un-
dergone by a random element near the model’s fixed end (F.E. 50, fig. 3.26).

First loading stage (fig. 3.27.a) corresponds to an initial state of stresses within the
elastic range. As seen, mechanical plane lays on the geometrical plane. Strains are
depicted as a straight vertical line due to the selected scale used to show the results (the
same scale has been kept for the three figures), although such distribution shall look
very much alike the one shown in figure 3.25.a. On the other hand, stress distribution
stills symmetric with respect to the geometrical plane.

Second loading stage chosen, is the one of the figure 3.27.b, it correspond at the load-
ing stage, where is presented the maximum bending stress in the shell
(Mmax = 7.774 kN − m/m), it is also the point where it becomes more visible the
damage along the layers of the element, since mechanical and geometrical plane no
longer correspond.

Finally, loading stage shown in figure fig. 3.27.c corresponds to a high damaged
state (although not fully damaged), it becomes notorious that layers at the top of the
element are fully damaged, it is also notorious the huge change in the position of the
mechanical plane from its original position.

Additionally, in order to point out the biggest advantage of using the proposed
scheme, has been selected a model with the same geometry and boundary conditions as
the shown in figure 3.24. Although there is a change in the distribution of the layers, the
total thickness remains the same as in the previous example. The change in the layer
distribution of the laminate material is because steel reinforcement has been added at
the top of the laminate, in such a way the reinforcement enhances bending resistance,
its thickness is Thi = 3mm, with a volumetric participation of steel reinforcement equal
to 5% embedded in a matrix of concrete. To numerically reproduce the behavior of such
layer, it has been used the serial-parallel mixing theory [87, 136] described in section
3.4.2 of this work, and has been split into 6 layers to get a total amount of 15 layers
within the laminated material.

The reason of using an non-symmetric arrangement of the layers with respect to
the geometric plane, is to show that, even within the linear range there is a difference
between the position of the geometric plane and the mechanical plane, such difference
increases once the a monotonically increased displacement is applied.

Such effect can be appreciated in the obtained results once the analysis has been
performed, a resume of such results is presented in figure 3.28. Figure 3.28.a shows
a comparison among the results obtained for non-reinforced plate (previous example)
and for a reinforced plate. There is a significant improvement in the bending strength
even with a small amount of steel reinforcement, in addition, there is no longer a brittle
failure, but degradation is presented in a more gradual manner.

The graph of figure 3.28.a also displays displacements δ1, δ2, δ3 and δ4 used as a ref-
erence for the output results for F.E. 50 shown in figure 3.26, whose stresses and strains
undergone are presented from figure 3.28.b to 3.28.e. For display purposes different
horizontal scales has been used in such figures.

The stresses and strains of the F.E. studied when an imposed displacement
δ1 = 1.25mm are depicted in figure 3.28.b, as can be seen, although in such loading
step the element is in a linear range, already exist a difference between mechanical and
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Figure 3.27 Evolution of strains and stresses of FE 50(units: kN, meters)
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Figure 3.28 Evolution of strains and stresses of FE 50, for a plate with steel
reinforcement (units: kN, meters).
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geometrical plane. On the other hand, the maximum bending strength of the model
is achieved when δ2 = 2.30mm (figure 3.28.c). Although there is no a significant dif-
ference among the position of the mechanical plane of loading steps δ1, δ2 and δ3, and
consequently, neither there is among the undergone stresses and strains, there is when
imposed displacement δ4 = 9.4mm. Figure 3.28.e depicts a significant change in the
stresses accompanied with slight change of strains. This is due to the degradation in
the lower layers of the laminated material, this has caused a change in the location of
the mechanical plane, now it is somewhere inside the reinforced layers, and some of
those layers are under compressive forces.

Main advantage of the proposed scheme is to accurately reproduce the behavior
of laminated materials, using composites within each layer which are formed by simple
materials with different constitutive equations, this, with a low amount of computational
resources while compared with three-dimensional finite elements, since it is not expensive
to add a higher number of layers within the thickness in order to make a more refined
analysis.

3.7 Meshing and Composite Materials Generation

In this section, a complete description of the composite material’s generation is con-
ducted. Such generation will be performed in terms of volumetric participation of their
components and reinforcement’s direction.

To cover the meshing needs, is selected the use of a pre and post processor for
numerical simulations, in this case GiD [35]. GiD is a universal, adaptive and user-
friendly pre and post-processor for numerical simulations in science and engineering.
It has been designed to cover all the common needs in the numerical simulations field
from pre to post-processing: geometrical modeling, effective definition of analysis data,
meshing, data transfer to analysis software, as well as the visualization of numerical
results.

On the other hand, in order to reproduce real life structures, in term of steel rein-
forcement patterns, a computational tool was developed having in mind the 3 principal
requisites shown below.

1. Reproduce a more realistic reinforcement pattern.

2. Mechanize process where volumetric part of components on composite materials
is generated.

3. Capable of handling information of large meshes.

Such tool arises as a need of mechanizing and generating the composite material
information given a large mesh of triangular finite elements and the real life steel re-
inforcement pattern of every layer within the laminated material. To achieve this, it
is necessary to read pre-defined text files, where the information regarding the steel
reinforcement patterns has been stored.

The starting point for the generation of the composite materials presented here,
is something we called structured composite material (SCM from now on), where a
pattern is selected to represent both, the reinforcement steel within layers and the SCM

’s boundary. Main idea behind the use of this method is making as mechanical as
possible the generation of the composite material for any finite element.
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Figure 3.29 Structural drawings (plans and elevations) of a typical one-storey
construction.

A reader experienced in computer drawing design (using AutoCAD), would find
similarities of a SCM with a hatch. Namely, both are a general pre-generated pattern of
bi-dimensional closed polygons (steel reinforcement in the case of a SCM ) stored in a text
file, such pattern is ready to be used as much as needed, and becomes particular, once
is given to it, information such as: a contour, a local x’, y’ plane and an insertion point.
Then the code on purpose will take care of generate information such as: volumetric
participation, fibers direction (when applicable), and thickness for every layer of the SCM.

The process to generate the composite material’s information for any finite element is
carried out as follows:

1. Is generated the text file containing information related to all SCM within the
model, also boundaries and insertion points are included.

2. Finite element mesh is generated for the model.

3. The code on purpose searches for the finite elements intersecting the contour of
the SCM .
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Figure 3.30 Structural drawings (detailed sections of columns and beam) of a typical
one-storey construction.

4. With the information obtained, volumetric participation of the matrix mk and
fiber fk for each layer are evaluated, in the case, when fk = 0 the classic mixing
theory is selected, whereas fk 6= 0 serial-parallel mixing theory shall be used.

5. Finally, in order to reduce the number of composite materials, a smoothing pro-
cedure is performed.

Let us consider figures 3.29 to 3.32 as an aid for a better explanation of the proposed
method. Figure 3.29 shows structural drawings of a building with a square shape in
plan, with 5.0 meters along each side direction, and only one storey with 3.0 meter
high. Structuring of such construction, is formed by two frames along each orthogonal
direction, with columns type C-01 and beams type B-01. Steel reinforcement of beams
and columns, are shown in figure 3.30, whereas, in figure 3.31, the distribution of the
steel reinforcement for the concrete slab is shown. In both cases, layer distribution
for the cross sections is also depicted. A total of three SCM will be required in this
example, the first one (SCM-01), represents the frame of both; axis 1 and 2, the second
one (SCM-02) represents only the beams along construction axis A and B, finally, a third
one (SCM-03) will be needed to represent the concrete slab.

Section X-X’ from figure 3.29 can be seen as SCM-01, since it can be repeated over
axis 1 and axis 2, hence, the first step of the proposed method, is to search the finite
elements that overlap with the boundary of SCM-01, later, the intersection area of ele-
ments belonging to the SCM-01 (steel reinforcement) with finite elements are evaluated.
An example of SCM-01 repeated for the axis 2 is depicted in figure 3.32.a, where is
highlighted the boundary of SCM-01, on the other hand, boundaries for SCM-02 and
SCM-03 are depicted in light gray. Only finite elements belonging to SCM-01 repeated
for axis 2 are shown, also, elements belonging layers 4 and 17 (stirrups of beam B-01)
are displayed. Figure 3.32.b, on the other hand, shows information related to layers 03

and 18, which is the main steel reinforcement along column type C-01 of SCM-01.
Again, figure 3.32.c displays boundaries of all SCM considered in the current ex-

ample, plus, the finite elements and information of layers 2 and 19 (column’s stirrups)
belonging to SCM-01 repeated for construction axis 1. Figure 3.32.d displays main steel
reinforcement of beam B-01 (layers 5, 8, 11, 13 and 16).

SCM-02 is the one corresponding to beam B-01 of construction axis A and B shown in
figure 3.32.e and 3.32.f. In this case, figure 3.32.e displays information of finite elements



90 3. Computational Constitutive Model for In-filled Frames

Figure 3.31 Structural drawings (detailed sections of slab) of a typical one-storey
construction.

within the given boundary (axis A), and the reinforcement information concerning to
layers 4 and 17, whereas, figure 3.32.f displays information of layers 5, 8, 11, 13 and
16, along structural axis B.

Finally, the third case of the used SCM correspond to the concrete slab, as in previous
cases, in figures 3.32.g and 3.32.h are displayed only finite elements belonging to SCM-03,
and contours of all used SCM . In both cases, bottom steel reinforcement is displayed,
on one hand, figure 3.32.g displays information along vertical direction (layer 3), on the
other hand, figure 3.32.h displays information along horizontal direction (layer 4).

Once the volumetric participation for each layer within the laminated material has
been generated, it is possible to perform the analysis using PLCd [34]. An example has
been conducted in order to show the handling of the obtained information.

Let us first clarify that the structure shown in figures 3.29 to 3.32 has been meshed
using GiD [35], then, the following boundary conditions have been applied to it: a)
displacements and rotations have been restricted at the bottom of the columns to re-
produce a fixed support, b) a lateral force in global Y direction has been imposed at the
top of columns. Forces due to the action of gravity have been neglected, neither surface
loads at the top of the slab have been applied. Mechanical properties of the materials
are E = 2.5x104MPa and υ = 0.20 for concrete, whereas for steel E = 2.1x105MPa
and υ = 0.00.

Figure 3.33 summarizes some of the obtained results focusing on the stresses un-
dergone by the steel reinforcement. Figure 3.33.a shows the mesh obtained using GiD,
and the lateral displacement on the structure. As expected, given the used boundary
conditions, the maximum displacement appears at the top of the structure.

The remaining figures (from 3.33.b to 3.33.h) show the stresses on the steel reinforce-
ment of some layers of the different laminated materials, as can be seen, it is depicted
only the information of the FE containing steel reinforcement. From figure 3.33 can also
be inferred the amount of information stored in each FE.

Main idea behind the use of this method to generate composite materials, is to bring
about the needed versatility while dealing with a complex structure where different
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Figure 1.33 Boundaries of SCM with theirs FE and some of the steel reinforcement
patterns.Figure 3.32 Boundaries of SCM with their FE and some of the steel reinforcement
patterns.
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Figure 3.33 Representation of some obtained results for a typical one-storey
construction.
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(a) Concrete frame with reinforced masonry wall in-fill.

(b) Confined masonry wall with a reinforced concrete shear wall.

Figure 3.34 Front elevation of typical structures.
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structural sections are normally used. Also, it makes possible the use of more realistic
patterns for reinforcement steel, becoming a handy tool in the pre-processing task.

Some application examples using the method described in this section are listed in
the section 3.8. In the following, only will be mentioned some casuistry that would
apply, and that comes to mind. As in the case of figure 3.34.a, where is depicted a
typical case of a reinforced concrete frame with a masonry wall in-fill, also, the masonry
wall, has being reinforced with steel dowels in both, bed and head joint direction.

Figure 3.34.b displays a typical case present in confined masonry buildings, which
is, the abrupt change in stiffness among structural elements. In zones with high seis-
mic hazard, it becomes almost mandatory the use of concrete stiffeners, to endow the
building with a better performance in terms of withstanding lateral forces. Although in
this case only one storey is represented, it is implied that upper storeys have the same
configuration.

3.8 Application Examples

Some representative examples have been chosen as a comparison, although the full
potential of the shell element presented here, only can be noticed along chapter 4.
Example shown in sections 3.8.1 and 3.8.2 are based on the work done by Molina et al
[103], where a set of reinforced concrete frames has been tested numerically. On the
other hand, examples shown in sections 3.8.3 and 3.8.4 correspond to experimental tests
carried out by Meli [91] and Vermeltfoort and Raijmakers [170] respectively.

3.8.1 Unreinforced Concrete Frame

An unreinforced concrete frame is presented, in which it is intended to reproduce the
mechanical response it exhibits a brittle material. Geometry of the frame is shown in
figure 3.35.a, where dimensions are presented in centimeters. For both cases, thickness
of column C-01 and beam B-01 is 40 centimeters, whose discretization has been done
using 4 layers of 10 centimeters each. Figure 3.35.b shows the mesh of triangular finite
elements used. This example correspond to a case where only unreinforced concrete
has been used, thus, cross sections shall not be confused with the sections presented in
figure 3.38.a, since they correspond to the model of section 3.8.2.

There is only one simple material used to model the current frame, it corresponds
to concrete, whose mechanical properties agree with the used by Molina et al in [103],
and for convenience have been reproduced in below lines.

� Elasticity modulus: E = 2.5x104MPa

� Poisson’s ratio: υ = 0.20

� Yield criterion: Mohr Coulomb.

� Damage thresholds:

σc = 30MPa

σt = 3MPa

� Fracture energy:

Gc = 50.0kPa ·m
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Figure 3.35 Front elevation of typical concrete frame.
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Figure 3.36 Displacement comparison.

Gt = 5.0kPa ·m

� self-weight γ = 2500kg/m3

The present analysis has been performed using two loading phases, the first one
correspond to the self-weight loading condition, and the second one, corresponds to a
displacement monotonically increased, imposed at the left top of the frame.

Figure 3.37 displays the final deformation of the unreinforced concrete frame, corre-
sponding to a fully damaged state. It becomes evident the apparition of hinge joint due
to the tensile stresses that caused damage on concrete. Firsts appearing hinge joints
are at the bottom of the columns, giving way to the formation of hinge joints at the
beam-column joint.

A manifest brittle material behavior is noticed in the force-displacement response
(fig. 3.36). The low performance of the concrete under tensile stresses, and the absence
of reinforcing steel on it, conditioned a poor overall efficiency of the structural system.

Finally, figure 3.36 also depicts a comparison between results obtained in [103], by
Molina et al (using a 4-node Lagrangian element) and the present work, where an
acceptable similarity is achieved for both, initial stiffness and damage evolution.
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Figure 3.37 Damage field distribution and deformed geometry (20x).

3.8.2 Reinforced Concrete Frame

The example of this section, has been originally proposed by Molina et al in [103], to be
used as the starting point in the comparison with frames reinforced with fibers reinforced
polymers (FRP), for comparative purposes has been reproduced here, to show the full
potential of the serial/parallel mixing theory for composite materials.

Geometry and mesh of this model are similar to the ones presented in the section
3.8.1, i.e., they correspond to figure 3.35. Also, loading conditions are the same, namely,
two lading stages have been applied, first a self-weight loading condition, and then, a
monotonically increased displacement.

In this example, the presence of reinforcement steel makes it necessary the use of the
serial-parallel rule of mixtures (section 3.4.2), and the method to generate composite
materials previously described in section 3.7.

Mechanical properties used for modeling concrete, agree with the used in section
3.8.1, whereas mechanical properties of steel fibers are reproduced below.

� Elasticity modulus: E = 2.1x105MPa.

� Poisson’s ratio: υ = 0.00.

� Yield criterion: Von Mises.

� Damage thresholds:

σc = 270MPa

σt = 270MPa.

� Fracture energy:

Gc = 2.0MPa ·m
Gt = 2.0MPa ·m

� self-weight γ = 7845kg/m3.
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20

Figure 24 Distribution of reinforced fibres, and cross sections of structural elements.

Figure 3.38 Distribution of reinforced fibers, and cross sections of structural elements
for a concrete frame.
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Cross sections of structural elements with steel reinforcement are presented in figure
3.38.a. Both sections have been discretized using 20 layers with different thickness.
Layer’s thickness has been adjusted to the position of the steel reinforcement.

Also, steel reinforcement’s location is being shown in figure 3.38.b. As can be seen,
layers 01, 06, 09, 12, 15 and 20 do not contain steel reinforcement, whereas layers
02, 04, 17 and 19 contain stirrup steel reinforcement (φ8mm) of both sections C-01

and B-01. On the other hand, layers 03, 07, 10, 14 and 18 contain the main steel
reinforcement for columns (φ16mm). Finally, layers 05, 08, 11, 13 and 16 contain
the longitudinal steel reinforcement (φ16mm) of beams B-01.

Figure 3.39.a displays the force displacement response for both analysis, the one
carried out by Molina et al [103] with four-nodded Lagrangian elements, and the one
of the present work. From such figure it can be seen a perfect matching between initial
stiffness of both models. A slight difference appears for an applied load close to 50kN,
when damage in concrete starts (point A). A higher difference takes place when the steel
reinforcement at base of the columns, goes into plastic range (point B). The difference
in the obtained results at point B may be due to the difficulties the linear triangular
elements exhibit during a plastic process, such effect is fully documented in [32]. Point
B of figure 3.39.a is where the reinforced concrete frame presents its higher resistance to
lateral forces, beyond such point, a slight difference is presented between both results,
the tendency depicted infers a plastic process taking place in the steel reinforcement.

Damage on layer 01 (only concrete) is shown in figure 3.39.b, its evolution shows the
same initial behavior as the case studied in section 3.8.1, namely, it starts at the bottom
of the columns, and then at the beam-column joint, however, due to the presence of
steel reinforcement, a most uniform distribution of damaged elements is achieved. On
the other hand, figure 3.39.c depicts the final plastic strain along main reinforcement
steel for columns (layer 03), being evident that steel yields due to the tensile stresses
taking place at the bottom of the column.

As a conclusion, shall be remarked the fact that, the proper steel within the frame,
gives the structural system efficiency, in terms of lateral loading resistance and ductility.

3.8.3 Reinforced Concrete Frame With Masonry In-fill

The example reproduced in this section, corresponds to an experimental test carried
out by Meli, and fully described in [91], where it is intended to reproduce, from an
experimental stand of view, the mechanical behavior of a masonry wall confined with
two columns and a beam made of reinforced concrete.

Geometry of analyzed specimen is depicted in figure 3.40, where it is presented a
lateral view (fig. 3.40.a) and a frontal view (fig. 3.40.b), also it is presented the location
of the confining structural elements (C-01 and B-01), the distribution of the masonry
units, and the boundary conditions such as, an imposed displacement at the top, and a
fixed support at the bottom.

Figure 3.40.b also depicts an overlapping (on red) of the crack patterns of the exper-
imental test [91]. In the present study the masonry in-fill exhibits the typical response
that happens for low resistance masonry units, i.e. crack will cross indistinctly through-
out masonry unit or mortar.

To reproduce numerically the present model, three simple materials are involved.
Mechanical properties used for steel reinforcement already have been presented in pre-
vious models (section 3.8.2), on the other hand, mechanical properties of concrete
have been evaluated considering a compression resistance equal to f ′cy = 250kg/cm2
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Figure 25 Displacement comparison.

Cross sections of structural elements with steel reinforcement are presented in figure
24.a. Both section have been discretized using 20 layers with different thickness. Layer’s
thickness has been adjusted to the position of the steel reinforcement.

Also, steel reinforcement’s location is being shown in figure 24.b. As can be seen,
layers 01, 06, 09, 12, 15 and 20 do not contain steel reinforcement, whereas layers
02, 04, 17 and 19 contain stirrup steel reinforcement (φ8mm) of both sections C-01

and B-01. On the other hand, layers 03, 07, 10, 14 and 18 contain the main steel
reinforcement for columns (φ16mm). Finally, layers 05, 08, 11, 13 and 16 contains
the longitudinal steel reinforcement (φ16mm) of beams B-01.

Figure 25 displays the force displacement response for both analysis, the one carried
out by Molina et al [7] with four-nodded Lagrangian elements, and the one of the present
work. From such figure it can be seen a perfect matching between initial stiffness of
both models, however, a slight difference appears as, due to the damage of the concrete,
the non-linear range starts. A higher difference takes place when steel reinforcement (at
base of columns) goes into a plastic range, namely, at the point where the reinforced
concrete frame presents its higher resistance due lateral forces. Beyond this point, a
slight difference is presented between both results, the tendency depicted infers a plastic
process taking place in the steel reinforcement.

Damage on layer 01 (only concrete) is shown in figure 26.a, its evolution shows the
same initial behaviour as the case studied in section 0.4.1, namely, it starts at the bottom
of the columns, and then at the beam-column joint, however, due to the presence of
steel reinforcement, a most uniform distribution of damaged elements is achieved. On
the other hand, figure 26.b depicts the final plastic strain along main reinforcement steel
for columns (layer 03), being evident that steel yields due to the tensile stresses taking
place at the bottom of the column.

As a conclusion, shall be remarked the fact that, the proper steel within the frame,
gives the structural system efficiency, in terms of lateral loading resistance and ductility.

Figure 1.42 Numerical results for a reinforced concrete frame.
Figure 3.39 Numerical results for a reinforced concrete frame.
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Figure 3.40 Geometry, loading and boundary conditions for cantilever wall with
masonry in-fill [91]

(24.53x106N/m2), to later, evaluate the elasticity modulus according to section 1.5.1.4

of reference [4], namely:

E = 4400
√
f ′cy (3.36)

where units of equation 3.36 are given in MPa. All other mechanical properties needed
are shown below.

� Elasticity modulus: E = 2.18x104MPa

� Poisson’s ratio: υ = 0.20

� Yield criterion: Mohr Coulomb.

� Damage thresholds:

σc = 24.53MPa.

σt = 2.45MPa.

Fracture energy:

Gc = 50.0KPa ·m.

Gt = 5.0KPa ·m.

� self-weight γ = 2500kg/m3

Mechanical properties used to reproduce behavior of the masonry in-fill, have been
obtained assuming a compression resistance of f ′m = 40kg/cm2 (3.92MPa) and
υ∗m = 1.1kg/cm2 (0.15MPa). Hence, elasticity modulus Emx = 1.37x103MPa ac-
cording to section 2.8.5.2 of reference [6], where

Emx = 350f ′mcy (3.37)

elasticity modulus is evaluated under sustained loads (eq. 2.6) reference [6].
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Figure 28 Distribution of reinforced fibres, and cross section of structural elements
for a reinforced concrete frame with masonry in-fills.

σt = 2.45MPa.

Fracture energy:

Gc = 50.0kPa ·m.

Gt = 5.0kPa ·m.

� self-weight γ = 2500kg/m3

Mechanical properties used to reproduce behaviour of the masonry in-fill, have been
obtained assuming a compression resistance of f ′mcy = 40kg/cm2 (3.92MPa). Hence,
elasticity modulus Emx = 1.37x103MPa according to section 2.8.5.2 of reference [2],
where

Emx = 350f ′mcy (7)

elasticity modulus is evaluated under sustained loads (eq. 2.6) reference [2].

� Elasticity modulus:

Emx = 1.37x103MPa

Emy = 0.73x103MPa

� Poisson’s ratio: υ = 0.10

� Yield criterion: Mohr Coulomb.

� Damage thresholds:

σcx = 3.63MPa σtx = 0.40MPa

Figure 3.41 Distribution of reinforced fibers, and cross section of structural elements
for a reinforced concrete frame with masonry in-fills.

� Elasticity modulus:

Emx = 1.37x103MPa

Emy = 0.73x103MPa

� Poisson’s ratio: υxy = 0.10, υyx = 0.15

� Yield criterion: Mohr Coulomb.

� Damage thresholds:

σ′mcx = 3.920MPa σ′mtx = 200KPa

σ′mcy = 1.270MPa σ′mty = 65KPa

� Fracture energy:

Gc = 20.0KPa ·m.

Gt = 0.2KPa ·m

� self-weight γ = 1300kg/m3

Cross section of confining elements are presented in figure 3.41.a. Both section C-01

and B-01 have been discretized using 10 layers with different thickness, since they have
been adjusted to the location of the steel reinforcement. General location of the steel
reinforcement is displayed in figure 3.41.b, there, it can be seen that layers 01, 05, 06 and
10 do not have steel reinforcement, whereas, layer 03 and 08 contain both beam’s stirrup
steel reinforcement (φ6.4mm) and column’s main steel reinforcement (φ15.9mm). On
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Figure 25 Numerical results for the reinforced concrete frame with a masonry in-fill.Figure 3.42 Numerical results for a reinforced concrete frame with a masonry in-fill.
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the other hand, layers 04 and 07 contain only the main steel reinforcement of beams,
and finally, layers 02 and 09 contain only the stirrup steel reinforcement of columns.

The analysis has been performed using two lading stages, the first one corresponds
to gravity loads evaluated using the self-weight of the corresponding material, the sec-
ond loading stage correspond to a pushover analysis intended to predict the force-
displacement response of the structure.

Comparison among force-displacement response of both, Meli [91] and the present
work is presented in figure 3.42.a. Figure 3.42 from b to d depict the damage state of
three different loading steps δ1 = 0.46mm, δ2 = 1.94mm and δ3 = 7.66mm. Column
on the left shows the damage state of layer 01 of the confining elements, column on the
center displays the damage state of the masonry in-fill, and finally column on the right
shows the stresses in local direction of steel fibers within layer 03.

In both cases depicted in figure 3.42.a, the response is characterized by a high-
stiffness zone at the beginning of the loading process. However, such response is followed
by a slight decreasing of stiffness due the separation of the masonry corners and the
confining elements, as reported by Meli, such behavior was not captured in the present
work leading to a significant difference in the force-displacement response, since only
one diagonal crack is starting to grow while performing the numerical simulation, as can
be seen in figure 3.42.b.

Finally, beyond the point where occurs a slight loss of stiffness (δ2), characterized by
the apparition of several diagonal cracks, a better concordance in the response between
both testes is observed.

3.8.4 Raijmakers And Vermeltfoort Test

In this section, we consider the shear wall tests carried out by Raijmakers and Vermelt-
foort [170], such specimen consist is a wall with a central opening whose dimensions are
990x1000 millimeters constituted by 18 courses, from which 16 courses are active and 2
courses are clamped in steel beams (fig. 3.43).

Units of the wall have been made wire-cut solid clay bricks with dimension (in
millimeters) 210x100x52, whereas mortar joints have 10mm thick prepared with a vol-
umetric cement:lime:sand ratio 1:2:9.

Experimental behavior as reported by Raijmakers and Vermeltfoort [170] is shown in
figure 3.44. Where diagonal zigzag cracks arise initially from two corners of the opening
at four possible locations. Shortly afterwards, tensile cracks arise from the outside of
the wall at the base and the top of the small piers. Under increasing deformation,
predominant diagonal cracks occur leading to partial closing of the cracks that were
opened before. Finally, a collapse mechanism is formed with failure of the compressed
toes, located at the bottom and top of the wall and at the bottom and top of the small
piers.

Although micro-modeling, is probably the best tool available to understand and
represent the behavior of masonry, due to its nature, it is not always a good choice in
terms of computational cost. Such modeling strategy will be used only in this section
for comparative purposes, also alternatives presented by Lourenço [79] regarding micro-
modeling and Pelà in [130] regarding macro-modeling are briefly described.

Lourenço [79] has proposed a simplified modeling strategy, in which interface ele-
ments are used as potential cracks, slip or crushing planes, where all the inelastic phe-
nomena occur. Also, interface elements are considered to model potential cracks within
the masonry units. Remarks on the Lourenço modeling strategy are shown below.
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Figure 3.43 Geometry, loading and boundary conditions for tests conducted by
Raijmakers and Vermeltfoort (1992).

Figure 3.44 Experimental crack patterns for different tests [79].
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Figure 3.45 Finite element meshes for micro and macro scale modeling.

1. Masonry units are modeled with bi-dimensional plane stress continuum elements
assuming a linear elastic response.

2. Interface elements are used to represent the mortar joints, allowing discontinuities
in the displacement field.

3. Potential and predefined cracks are modeled within the continuum element using
zero-thickness interface elements where a non-linear response could occur.

4. In the plasticity framework, a constitutive formulation is presented, including a
tension cut-off for mode I failure, a Coulomb friction envelope for mode II failure
and a cap mode for compressive failure.

Macro-modeling strategy, on the other hand, brings efficiency in terms of computa-
tional performance, although drawbacks are bonded to it. Let us take for instance the
work done by Pelà in [130], where a macro-modeling strategy is enhanced with a crack
tracking algorithm technique combined with a two-scalar damage model for orthotropic
materials, whose results where finally validated via a comparison with shear wall test
carried out by Raijmakers and Vermeltfoort [170]. Later on, on this section such results
will be reproduced.

Due to computational restrictions, one of the premises along this work is to keep the
modeling strategy as simple as possible where good results could be achieved. Hence,
no crack tracking technique, nor interface elements will be used. It has been choose to
use a slightly different damage model than the one proposed by Pelà, and is the one
presented by Paredes [128]. This is a two scalar damage model for orthotropic materials.

In the present study, both a micro and a macro modeling strategies have been con-
ducted, for this purpose two different meshes have been used (fig. 3.45). In both cases,
geometry and boundary conditions are the ones presented in figure 3.43, whereas, three
loading conditions have been used in the numerical simulation of both models, namely:

a) Self-weight load is applied.

b) Vertical pre-compression uniformly distributed force (P = 0.30N/mm2).
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correct failure mechanism is predicted. It is however recognized that the behavior
obtained numerically is more brittle than the experimental observations.

Globally, the analysis captures well the experimental behavior of the walls, as illus-
trated in Figures 4.25 to 4.27. Initially, two diagonal cracks arise from the corners of the
opening. These cracks are accompanied by less evident horizontal cracks in the top and
bottom of the small piers as well as one horizontal crack in the bottom of the wall, see
Figure 4.25. Under increasing deformation, the diagonal cracks that arose initially can-
not progress to the compressed toes and two additional diagonal cracks start to open, see
Figure 4.26. These become gradually predominant and, when the compressed toes at the

Shear + Tension Cap

(a) (b)
Figure 4.25 Walls JG. Results of the analysis at a displacement of 1.0 [mm]:

(a) deformed mesh; (b) damage.

Shear + Tension Cap

(a) (b)
Figure 4.26 Walls JG. Results of the analysis at a displacement of 2.0 [mm]:

(a) deformed mesh; (b) damage.

Localized Damage Model for Orthotropic Materials 
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Figure 5.19 Walls J2G and J3G. Load vs. displacement diagrams. 

 
Figure 5.20 Computed deformed mesh (x10). 

b) Vertical pre-compression uniformly distributed force (P = 0.30N/mm2).

c) Horizontal displacement monotonically increased is imposed, keeping both the
bottom and top boundaries horizontal.

Mechanical properties of both mortar joints and masonry units have been taken from
[10], although, to induce the phenomena described in [?] (high resistance masonry units
bonded with low resistance mortar joints) mechanical behaviour of masonry units has
been fixed for a linear response.

� Elasticity modulus:

E1 = 7.52x103MPa.

E2 = 3.96x103MPa.

� Poisson’s ratio: υ12 = 0.09, υ21 = 0.05.

� Yield criterion: Mohr Coulomb.

� Damage thresholds:

f+11 = 0.35MPa f−11 = 5.25MPa.

f+22 = 0.25MPa f−22 = 3.75MPa.

f+12 = 0.32MPa f−12 = 4.77MPa .

� Fracture energy:

Figure 3.46 Mesh configurations for deformed models.

c) Horizontal displacement monotonically increased is imposed, keeping both the
bottom and top boundaries horizontal.

Mechanical properties of both mortar joints and masonry units have been taken from
[130], although, to induce the phenomena described in [91] (high resistance masonry
units bonded with low resistance mortar joints) mechanical behavior of masonry units
has been fixed for a linear response.

� Elasticity modulus:

E1 = 7.52x103MPa.

E2 = 3.96x103MPa.

� Poisson’s ratio: υ12 = 0.09, υ21 = 0.05.

� Yield criterion: Mohr Coulomb.

� Damage thresholds:

f+
11 = 0.35MPa f−11 = 5.25MPa.

f+
22 = 0.25MPa f−22 = 3.75MPa.

f+
12 = 0.32MPa f−12 = 4.77MPa .

� Fracture energy:

G+
f = 1.00KPa ·m
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Figure 3.47 Load displacement comparison of a wall subjected to a imposed
displacement.

G−f = 100.0KPa ·m

� self-weight γ = 1300kg/m3.

As expected, micro-model notoriously overcome the accuracy of results obtained
with a macro-modeling scheme. Results showing the final configuration of the deformed
mesh are shown in the figure 3.46, where mesh (a) corresponds to the micro-model
reproduced here, (b) corresponds to the deformed configuration presented in [79] by
Lourenço, mesh (c) corresponds to the macro-model presented here, and finally, mesh
(d) corresponds to the deformed configuration presented in [130] by Pelà.

Using a macro-modeling scheme, a diagonal crack that crosses indistinctly both
masonry units and mortar joints is formed along the whole shear wall (fig. 3.46.c),
allowing the structural system to dissipate less energy along such crack. On the other
hand, using a micro-modeling scheme cracks propagates along mortar joints (fig. 3.46.a)
making this result very much alike at the one of figure 3.46.b.

Finally, numerical results obtained have been compared with experimental results of
Raijmakers and Vermeltfoort [170], and with the numerical results of Lourenço [79] and
Pelà [130] (figure 3.47). As seen, micro-model has reasonably well agreement whereas a
poor performance in terms of dissipated energy and overall response is achieved using
a macro-modeling scheme.

It is important to distinguish the type of structure addressed in this section, it is a
non reinforced nor confined masonry structure, that is why from graph on figure 3.47
it can be concluded that the use of a plain macro-modeling strategy is inadequate to
reproduce the behavior of such structures. Moreover, from a practical standpoint, the
failure mechanism exhibited on the model reproduced by Raijmakers and Vermeltfoort
is not desired, since remarks by Meli in [91] pointed out that failure along mortar joints
is typical in some masonry walls, such as:
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1. Masonry walls with high-resistance masonry units bonded with low resistance
mortar joints.

2. Scarce bonding resistance between mortar joint and masonry unit, most commonly
presented in both smooth-surface and big-opening masonry units.

3. Walls are not subjected to high vertical stresses.

For today’s masonry construction, this failure mechanisms is evidence of a poor
technique construction, or a bad choice of the constituent materials, however, case 1
shown in the previous list, is of a great academic importance, since such is the behavior
of historical constructions, namely, they are masonry structures with high-resistance
shaped-stones bonded with low resistance mortar joints.

As a conclusion we shall remark that the use of a macro-scale as modeling strat-
egy will bring some notorious disadvantage while modeling unreinforced masonry walls
formed by high resistance masonry units and low resistance mortar joints. A solution
to such drawback tends toward a homogenized scheme, which will not be treated in this
work.



Chapter 4

Applications to Large
Structures

A set of practical examples are proposed and intended to test the capabilities of the pro-
posed analysis scheme. The proposed models are outlined through structural drawings,
sized and structured following the building code regulations for masonry structures in
Mexico City. Computational requirements for the analysis of large structures are indi-
cated, in addition to the improvements to the non-linear computing code PLCd [34] for
a better performance in terms of memory management and execution times. Finally,
a comparison between obtained results and the building code regulation is carried out,
highlighting the differences in the obtained results.

4.1 One Storey Construction

The first selected example is relatively simple; it is a one-storey construction with the
typical dimensions of a bedroom. It is evident that such construction does not corre-
spond to a real life structure, although it will serve to highlight the capabilities of the
analysis scheme proposed in this work, for now on, such model will be referred to as
B-OSC.

Building B-OSC is structured with load-bearing walls and a roofing system based
on a solid reinforced concrete slab. It has a window in the rear façade, and a window
and a door in the front façade. Load-bearing walls have been structured to meet the
requirements of the masonry code regulation [6] in force for the Mexico City, namely:

� Masonry units meet the minimum width necessary to prevent buckling problems
in slender walls, according to section 5.1.4 of reference [6].

� Reinforced concrete elements whose purpose is confining the load-bearing ma-
sonry wall, meet the maximum separation among themselves in plan, in addition,
also meet the rates of reinforcing steel necessary due bending and temperature,
according to provisions stated in section 5.1.1, reference [6].

� Openings like doors and windows in masonry load-bearing walls have been rein-
forced in the whole perimeter using beams and columns, according to provision
stated in section 5.1.3, reference [6].

109
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Figure 4.1 Structural Drawings - One storey construction (units: cm).
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� The thickness of the roof slab meets the requirements necessary to maintain the
deflections within the serviceability limits stated in section 3 of reference [4].

4.1.1 Structural Drawings

The structural drawings for the construction B-OSC, discussed in this section, are shown
in figure 4.1. In such drawings effort has been put to make them as close to real life
construction as possible, especially regarding the distribution of steel reinforcement,
where the simplifications that a structural engineer would make for an easy placement
in the field.

Scales used in plan view drawings are 1:100, while the scale for elevation view draw-
ings is 1:75. Typically, in all drawings the diameters of the reinforcing steel rods are
shown in millimeters, although they correspond to the British nomenclature, where di-
ameters of 6.4mm, 9.5mm y 1.27mm correspond to 1/4”, 3/8” y 1/2” respectively, this
will be maintained as a common practice in structural drawings presented along this
chapter.

As seen in figure 4.1, the structure has a regular distribution in a plan view, having a
substantially symmetrical rigidity in x direction, where stiffness of the whole structure in
such direction is given by two walls, both 4.15 meters long, and placed along constructive
axis 1 and 2. In both walls an intermediate column has been placed (axis B) in order to
meet the maximum separation among confining columns, according to provision stated
in section 5.1.1 of the reference [6]. None of such walls have openings.

On the other hand, stiffness along y direction of the structure is asymmetric, since it
is provided by three short walls, of which only one, 0.95 meters long, lays over construc-
tive axis A, while the remaining two (both 1.075 meters long) lay along constructive
axis C.

The roof plan drawings show the distribution of reinforcing steel in both directions in
which has been endowed the slab. Since it is an isolated slab, more steel reinforcement
has been placed in the lower bed, namely, it has been used steel rods of 3/8”(9.5mm)
diameter, placed every 30 centimeters. Same diameter has been used in the upper bed,
although spacing among them has been changed to 40 centimeters.

In the structural drawings it is also shown the elevation view, the purpose of this,
is to achieve a more detailed perspective of the confining elements, such as beams and
columns. In the elevation views shown, a modulation is presented using masonry units
whose dimensions are 15x20x40 centimeters and the joints are 10 millimeters thick.
Once the modulation has been performed, the total height of the walls can be obtained:

� The walls forming the opening of the windows are 101 centimeters height, this is:
4 rows of bricks (or courses) plus the height of the beam (15 centimeters).

� The regular masonry walls are 256 centimeters height, this is: 11 courses plus the
height of the beam (25 centimeters).

In the elevation view along constructive axis A (principal façade) two openings are
displayed, one is the window and the other one is a door. Rear façade displays only one
opening (a window), whereas no opening is shown in the lateral façades (constructive
axis 1 and 2).

A brief description of the reinforced concrete structural elements involved in the
structure of this section is carried out next. In all cases, the scales of the structural
drawing presented in figures 4.2, 4.3 and 4.4 is 1:10. Regarding the masonry wall layer
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Figure 4.2 Detailed section of columns (units: cm).

1 2 3 4 5 6
2.0 4.0 8.0 12.0 24.0 25.0

7 8 9 10 11 12
25.0 24.0 12.0 8.0 4.0 2.0

Table 4.1 Thickness of layers (in millimeters) for masonry walls.

distribution, it will only be mentioned that has been discretized using an arrangement
of 12 layers whose thickness have been detailed in table 4.1.

Columns

The purpose of these structural elements is to endow the brickwork of vertical con-
finement. In the model of this section, it has only been selected one cross section for
columns, which is shown in figure 4.2, and has total dimensions of 15x15 centimeters.
Such cross section has been named Kc-01 and has been endowed with a main steel rein-
forcement of 4 rods of 1/2 inches of diameter, whereas the secondary steel reinforcement
is formed by steel rods of 1/4 inches of diameter with a separation among themselves
of 15 centimeters. Cross section Kc-01 has been discretized using an arrangement of 18
layers whose thickness is presented in table 4.2, and distribution can be seen on figure
4.2.

1 2 3 4 5 6 7 8 9
2.0 18.0 3.2 3.2 6.35 6.35 6.35 6.35 23.2

10 11 12 13 14 15 16 17 18
23.2 6.35 6.35 6.35 6.35 3.2 3.2 18.0 2.0

Table 4.2 Thickness of layers (in millimeters) for columns and beams.
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Figure 4.3 Detailed section of beams (units: cm).

Beams

Reinforced concrete beams will endow the horizontal confinement to the brickwork. In
this case, two different sections of beams have been selected. The first one named Kb-01

to be used in the regular walls (union of the beam with the concrete slab), and the second
one named Kb-02 to be used in the lower walls (walls forming the window opening).

Figure 4.3 shows the steel reinforcement pattern and layer distribution of both sec-
tions Kb-01 and section Kb-02. The basic difference among them is their height, since
in both cases, the main steel reinforcement (4 rods of 1/2” diameter) and the secondary
steel reinforcement (rods of 1/4” diameter separated 15 centimeters) are the same. Also,
in both cases, the thickness has been discretized using an arrangement of 18 layers (table
4.2).

In both cases, beam sections have a coating for the transverse steel of 33 millimeters
(left and right side) and 20 millimeters at the upper and lower part, this is usually done
in the field as an adjustment to prevent longitudinal steel overlaps.

Slabs

Although simple materials that make up the concrete slab of the structure were fixed
to have a linear behavior, it has discretized along the thickness using a pattern of 20
layers for a total thickness of 15 centimeters (table 4.3). Layer distribution of reinforced
concrete slab can be seen in figure 4.4, where also can be noticed the steel reinforcement
in both beds and in both orthogonal directions. In all cases, the diameter of the steel
reinforcement rods remains the same, this is 3/8 inches, which varies is the separation
among themselves. The separation of the steel reinforcement for the lower bed is 30
centimeters, whereas for the upper bed, a separation of 40 centimeters has been used.

4.1.2 Simple Material Properties

As in chapter 3, only three simple materials are needed to perform the analysis of models
presented in this chapter, namely: steel, concrete and masonry. Their mechanical and
constitutive properties are detailed next.

It should be noted that constitutive equation for both simple materials (concrete and
steel) only in the slab are set to be elastic. This has been done to simplify the analysis
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1 2 3 4 5 6 7 8 9 10
2.0 8.0 11.2 5.0 5.0 4.75 4.75 9.5 12.4 12.4

11 12 13 14 15 16 17 18 19 20
12.40 12.40 9.5 4.75 4.75 5.0 5.0 11.2 8.0 2.0

Table 4.3 Thickness of layers (in millimeters) for slabs.

Figure 4.4 Detailed section of slab (units: cm).

process, and it has been justified by the fact that in such area no damage is expected.

Mechanical Properties of Steel

The rods used shall be of circular cross section, with corrugations to bring on ad-
hesion with the concrete, in this work, only medium resistance corrugated steel rods
(fy = 4200kg/cm2) will be used. A detailed description of the mechanical properties of
the steel considered in this work is presented next.

� Elasticity modulus: E = 2.1x105MPa.

� Poisson’s ratio: υ = 0.00.

� Yield criterion: Von Mises.

� Damage thresholds:

σc = 420MPa

σt = 420MPa.

� Fracture energy:

Gc = 2x103kPa ·m
Gt = 2x103kPa ·m

� self-weight γ = 7845kg/m3.

Mechanical Properties of Concrete

One of the most important properties of the concrete (from the stand of view of a
structural engineer) is its compressive strength. For confined masonry ranges of such



4.1. One Storey Construction 115

properties varies from 200 to 250 kg/cm2 (20 to 25 MPa). It is a common prac-
tice, due to the cost of high compression resistance concrete, to use a resistance equal
f ′c = 250kg/cm2 only for foundation elements, since they are exposed to ground contact
and more prone to erosion, on the other hand, a compressive strength of f ′c = 200kg/cm2

is typically used in both confining elements and slabs. In any case, in this work the com-
pressive strength is assumed equal to f ′c = 250kg/cm2.

� Elasticity modulus: E = 2.5x104MPa

� Poisson’s ratio: υ = 0.20

� Yield criterion: Mohr Coulomb.

� Damage thresholds:

σc = 25MPa

σt = 3.5MPa

� Fracture energy:

Gc = 50.0kPa ·m
Gt = 5.0kPa ·m

� self-weight γ = 2500kg/m3

Mechanical Properties of Masonry

The mechanical properties of masonry described in this section, have been obtained
assuming that simple compressive strength (f ′mcy) of the combination of masonry units
and mortar is equal to f∗m = 120kg/cm2, whereas the maximum shear strength is
equal to υ∗m = 3.5kg/cm2. Once such parameters have been settled, using reference
[6] and having into account section 3.2.4 of this work, are defined the mechanical and
constitutive properties used to model the masonry elements.

� Elasticity modulus: Em = E1 = E2 = 600f∗m = 7.06x103MPa.

� Elasticity modulus: Gxy = 0.4Em = 2.825x103MPa

� Yield criterion: Mohr Coulomb.

� Damage thresholds:

f ′mtx = 0.35MPa f ′mcx = 5.15MPa.

f ′mty = 0.60MPa f ′mcy = 12.0MPa.

� Fracture energy:

Gc = 20.0kPa ·m
Gt = 0.5kPa ·m

� self-weight γ = 1500kg/m3.
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4.1.3 Structured Composite Materials

In this section, a description of the patterns of steel reinforcement is described. As pre-
viously detailed in section 3.7 of this work, in order to generate the composite material
for each finite element, the use of a set of SCM is necessary. A description of the layer
distribution arrangement and their thickness has been omitted, since they have been
previously detailed in tables 4.1, 4.2 and 4.3. Color red has been used to delimit the
contour of every SCM, whereas light gray is used to show the FE belonging to the given
SCM. For a better reference of the whole structure, light gray is also used to show the
rest of the SCM. Color blue has been used to represent the fibers (rods) forming the main
steel reinforcement (or longitudinal reinforcement). Finally, color green has been used
to represent rods of the secondary steel reinforcement.

Images shown in figures 4.5, 4.6, and 4.7 correspond to the SCM-01 repeated for
the columns Kc-01 and beams Kb-01 of walls along constructive axis 1 and 2. As
can be noticed in figure 4.5, layers 3, 4, 15 and 16 correspond to the secondary steel
reinforcement (stirrups) of columns Kc-01. On the other hand, figure 4.6 shows fibers
information contained in layers 5, 6, 13 and 14 belonging to the main steel reinforcement
of columns, and the secondary steel reinforcement of the beams. Finally, figure 4.7
shows fibers information of layers 7, 8, 11 and 12 corresponding only to the main steel
reinforcement of beams Kb-01.

Fibers or steel reinforcement pattern used for SCM-03 (constructive axis A) and
SCM-06 (constructive axis C) are closely similar to the used in the SCM-01. Main differ-
ence among them is the use of two beam’s cross sections, since it is added a new beam
in the perimeter of the window, as can be seen from figure 4.8 to 4.13.

From figures 4.14 to 4.17 it is shown the finite element mesh (light gray) and the
contour (red) belonging to the SCM-09. Information belonging to the steel reinforcement
of lower bed in its both directions is displayed in figures 4.14 and 4.15, while upper bed
reinforcement pattern of the slab is shown in figures 4.16 and 4.17. In such figures,
it also can be noticed the different separation among steel reinforcement of upper and
lower bed.

Finally, figure 4.18 depicts the contours of SCM’s 02, 04, 05, 07 and 08. Since
it is non-reinforced masonry, there is no fiber information to show and only the finite
elements belonging to the SCM’s are displayed.
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Figure 4.5 SCM-01 - Layer 3, 4, 15 and 16.

Figure 4.6 SCM-01 - Layer 5, 6, 13 and 14.
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Figure 4.7 SCM-01 - Layer 7, 8, 11 and 12.

Figure 4.8 SCM-03 - Layer 3, 4, 15 and 16.
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Figure 4.9 SCM-03 - Layer 5, 6, 13 and 14.

Figure 4.10 SCM-03 - Layer 7, 8, 11 and 12.
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Figure 4.11 SCM-06 - Layer 3, 4, 15 and 16.

Figure 4.12 SCM-06 - Layer 5, 6, 13 and 14.
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Figure 4.13 SCM-06 - Layer 7, 8, 11 and 12.

Figure 4.14 SCM-09 - Layer 4 and 5.
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Figure 4.15 SCM-09 - Layer 6 and 7.

Figure 4.16 SCM-09 - Layer 14 and 15.
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Figure 4.17 SCM-09 - Layer 16 and 17.

Figure 4.18 Masonry Material - 12 layers.
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Figure 4.19 Fibers reinforcement on slab.

One resulting output of the composite generation is depicted in figure 4.19 for a non-
structured mesh, the case in the figure corresponds to the bottom steel reinforcement of
the concrete slab, and represents the finite elements that have a volumetric participation
of steel, similar drawings are obtained for the remaining layers.

4.1.4 Boundary Conditions

Analysis process has been performed using 3 different loading phases. It is convenient
to point out that in none of the 3 loading phases have been used the loading factors
that are normally included in building code regulations, neither have been used security
factor for designing purposes. Analysis has been performed in this way on purpose, so
results obtained using a design code can be properly compared with the results obtained
using the scheme proposed in this work.

Fixed Displacements

In all loading phases, the basement of the structure has been set to remain rigidly fixed,
hence, neither displacements nor rotations will be allowed.

First Stage Loading Condition: Dead Loading

The first loading step the model is subjected to corresponds to the dead loading con-
dition. This is, the sum of the weight of elements used with structural purpose (bear-
loading masonry walls, columns, beams and slabs), plus the weight of the elements
belonging to the structure without a structural purpose and only used to fulfill archi-
tectural requirements (plaster, paving or infill aggregates).

It is almost mandatory for a structural engineer to start the modeling process by
performing a detailed weight analysis of all elements involved in the structure. Let us
consider figure 4.20, where a small sketch (on the left) of structural and architectural
elements belonging to masonry walls is displayed. It is also shown (on the right) a
table displaying thickness and weight of all components involved. Some building code
regulations, due to uncertainty in the building process, recommend to add weight to



4.1. One Storey Construction 125

Figure 4.20 Dead loads - Masonry bearing walls.

Figure 4.21 Dead loads - Roofing system.

dead loads, depending on the materials involved. This is the case of code regulation
used (reference [2] art. 197), that recommends to add 20 kg/m2 while in the presence
of concrete or mortar. In the case shown in figure 4.20 it is only used mortar for the
masonry joints, hence, the total weight considered for a masonry wall will be equal to
DL = 305kg/m2.

Figure 4.21 also shows a dead loading analysis; in this case, it is about the roof-
ing system. As in the previous example, on the left is shown a sketch pointing all
materials involved, while in the right part a table detailing weights and thicknesses
are displayed. Also due the recommendation of article 197 of reference [2], it will be
added 40kg/m2, yielding to the total weight due to the presence of concrete and mortar
DL ≈ 525.0kg/m2.

Second Stage Loading Condition: Live Loading

Live loads, are temporary and of short duration (while compared to permanent loads),
such loads are based upon published regulations, in the case of this work, it has been
used the Reglamento de construcciones para el Distrito Federal [2] to predict them. Such
code regulation in its chapter V article 199.V.g, marks a uniform load of 100 kg/m2 to
be used in the roof for residential homes, being only valid when the slope of the roof is
less or equal to 5%.
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Figure 4.22 Application loads on pushover analysis.

Figure 4.23 Bearing walls and tributary areas (units: cm).

Third Stage Loading Condition: Pushover

Finally, the third loading stage corresponds to a pushover applied separately in both
orthogonal direction x and y. Hence, for both directions the displacements displayed
in figure 4.22 have been imposed and their purpose is to predict the force-displacement
response of the structure. Obtained results are detailed in next section.

4.1.5 Results Obtained Using a Design code

As stated in section 4.1.4, both dead and live loads have not been factorized, and no
security factors will be used either, this in order to make a proper comparison between
obtained result with the proposed analysis scheme and results obtained using the build-
ing code regulation [6].

Figure 4.23 (on the left) shows a numeration for masonry walls and their total length,
it is important to state a numeration like this, since most of the results presented next
will be referred to it. On the right side of the same figure, the tributary load of each
masonry wall is presented. The total amount of bear-loading masonry walls is 5.

For the analysis purposes regarding the code regulation [6], the short walls that form
part of the window have not been considered, nor the stiffness due to reinforced concrete
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Wall Number W-01 W-02 W-03 W-04 W-05

Stiffness(kN/m) 474002.72 474002.72 14787.67 20907.57 20907.57
Shear Strength (kN) 221.53 221.59 52.77 57.65 57.65

Table 4.4 Stiffness and shear strength of masonry walls.

confining elements.
It is also necessary to point out that according to the detailed analysis shown in

reference [6], the walls perpendicular (in plan view) to the analysis direction have to
be neglected, hence, in such cases, stiffness and shear strength is equal to 0. Thus, to
evaluate the total stiffness and shear strength of the structure in X direction, only have
to be considered walls W-01 and W-02 (fig. 4.23), while for direction Y only walls W-03,
W-04 and W-05 have been considered.

Stiffness of a Masonry Wall, Using a Design Code (reference [6])

According to reference [6], the stiffness of a masonry wall can be evaluated using
equation 4.1

Ki
m =

1

hi

[
(hi)2

3EiIi
+

1

AiTG
i

] (4.1)

where, hi is the total height, E is the elasticity modulus, I it the inertia momentum,
AT is the gross area, and G is the shear modulus of the wall i, evaluated according to
appendix D of this work.

From equation 4.4 it is straight that steel reinforcement and concrete section of the
confining elements are neglected.

Shear Strength of Masonry Wall, Using a Design Code (reference [6])

Shear strength of an unreinforced confined masonry wall is detailed in section 5.4.2 of
the reference [6], and it can be evaluated using equation 4.2

VR = FR
(
0.50υ∗mA

i
T + 0.3P i

)
≤ 1.5FRv

∗
mA

i
T (4.2)

where At is the gross area of the wall i, υ∗m is the shear strength of the masonry used,
P is the vertical load acting upon wall i. Once resistance factors are removed from
equation 4.2, it follows that:

VR = υ∗mA
i
T + 0.3P i (4.3)

where magnitude of P i is evaluated using the tributary area of the wall shown in figure
4.23 and the slab weight from figure 4.21, AiT has been evaluated using the total length
of the walls (figure 4.23) and a thickness Th = 15cm, finally υ∗ = 0.35MPa.

Table 4.4 shows the stiffness and shear strength of walls involved in the present
model, obtained according to the masonry building code regulation [6]. From table 4.4
it also can be inferred the total stiffness of the structure in both orthogonal directions
being presented in 4.4.
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Figure 4.24 Displacement-force response of model B-OSC in X direction.

Kx = 948005.44kN/m ; Ky = 56602.81kN/m (4.4)

also from table 4.4 it is possible to obtain the total shear strength of the structure in
both orthogonal direction, this is:

Vx
R = 443.12kN ; Vy

R = 168.07kN (4.5)

values shown in 4.4 and 4.5 will be used as a comparison point with results obtained
using a non-linear finite element analysis.

4.1.6 Result Comparison

As mentioned above, and according to reference [6], the behavior of the structure in X
direction only depends on walls W-01 and W-02. It is easily noticed analysing figure 4.23
that the structure is able to withstand more loading force in X than in Y direction,
although this is also confirmed in equation 4.5.

X Direction Analysis

The response of the structure when an imposed displacement has been applied in X
direction (figure 4.22 on the left) will be described using the graph of figure 4.24. There,
the combined response of walls W-03, W-04 and W-05 will be referred as shell-acting
walls, or simply shell walls (green), since their ability to impede displacements in X
direction is given by their flexural stiffness, in other words, such walls act like a cantilever
beam whose height is equal to the thickness of the masonry wall when a load is applied
in X direction. On the other hand, the combined response of walls W-01 and W-02 is
referred as membrane-acting walls or simply membrane walls (blue), since their ability
to prevent displacements in X direction is given by their membrane stiffness acting as
cantilever beams whose height is equal to the corresponding length of the masonry wall.
Finally, in red is shown the combined response of both membrane and shell walls.
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In graph from figure 4.24 can be noticed the well agreement among the stiffness
evaluated using reference [6] (black hidden line) from equation 4.4, and total stiffness
of masonry walls evaluated with the proposed scheme of this work (red), even though
neither concrete or steel stiffness are considered by reference [6]. Not only stiffness shows
a reasonably good agreement, also total shear strength of the structure, that in the case
of reference [6] is defined as the point where non-linear process begins. Total shear
strength in figure 4.24 is represented as an black horizontal line whose value equals to
Vx
R = 443.12kN (equation 4.5).

The graph shown in figure 4.24 also confirms reference [6] regarding the low stiff-
ness presented by bending walls and that have to be neglected for analysis and design
purposes. In order to carry out a proper description of the displacement-force response
graph, it has been divided into 6 segments, this is:

� Segment OA, where the elastic response occurs.

� Segment AB, where the first crack appears, reaching the maximum shear strength
of the entire structure in x direction at point B.

� Segment BC corresponds to the process of spending the entire capability of ma-
sonry walls to support lateral forces, beyond C point, high discontinuities are
expected, since the resistance due lateral forces are only provided by the confining
elements.

� Segment CD is a sudden lost of stiffness due the rupture of confining elements at
one of the points where the loads have been applied, which is point P 2

x from figure
4.22.

� Segment DE can be described as a small amount of lateral force that the structure
is able to support until the next rupture of a confining element occurs.

� And finally, segment EF which is the sudden rupture at point P 1
x (figure 4.22).

Figures 4.25 and 4.26 are a set of images displaying the undergoing deformation
process of the entire structure when a lateral displacement in X direction is applied.
Figures 4.25 are from a frontal perspective where mostly can be appreciated the principal
façade and the masonry wall W-01, on the other hand, the isometric view of figure
4.26 correspond to the rear part of the model, where walls W-02, W-04 and W-05 are
shown. In all cases the deformation has been amplified 200 times, although images of
cases a correspond to the undeformed mesh. The difference among both figures is the
perspective from where the structure is being viewed, and there is a correspondence
among undergone deformation, hence, for reference purposes, figure 4.25.b or figure
4.26.b could be used indistinctly, or figure 4.25 and figure 4.26 for that matter.

Figure 4.25.b correspond to a damage state when imposed displacement is equal to
0.58mm, can be noticed a diagonal crack propagating from the joint of the masonry wall
and the middle of the column Kc-01. Also can be noticed a slight damage due flexural
stresses in the lower part of some walls in principal façade. The state of undergone
deformation depicted in figures 4.25.b correspond to point between segment AB from
figure 4.24.

Figures 4.25.c and 4.25.d correspond to a damage state where imposed displacements
are equal to 0.64mm and 0.70mm respectively, this is, in points within segment BC.
In such figures, a new crack appears in the masonry wall W-01 only interrupted by the
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Figure 4.25 Front isometric view - Damage evolution of masonry
walls in X direction.
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presence of column Kc-01 located at the middle of the masonry wall. Although in the
set of figures 4.25 a perspective view from the rear facade is presented, in figure 4.25.c
and 4.25.d also can be noticed some cracks in wall W-02 through the window and door
openings.

In figure 4.25.e it is only displayed the damage of confining elements, and such image
is intended to represent the instant where point D (of displacement-force response in
fig. 4.24) has been reached. Same occurs with figure 4.25.f which corresponds to the
previously defined point F.

As seen from figures 4.25 and 4.26 there is a slight difference between crack patterns
of walls W-01 and W-02, this might be due to the asymmetry caused by door and windows
openings, or may also be because of a mesh dependency.

In any case, the cracking pattern presented in walls W-01 and W-02 is very similar,
as a reference let us consider figures 4.25.b and 4.26.b in both cases, the same diagonal
crack propagates when a displacement of 0.580mm is imposed.

Y Direction Analysis

From the performed analysis in Y direction, the first inference obtained is the low stiff-
ness of the structure while compared with the X direction. Let us consider displacement-
force graph of figure 4.27, where the same consideration regarding bending and masonry
walls have been made as in the X direction analysis, but in this case, the bending-acting
walls are W-01 and W-02, whereas W-03, W-04 and W-05 are the membrane-acting walls.
Their combined contribution is represented in blue for membrane walls, green for the
bending walls and finally, the overall response has been represented in red. It is also
shown the stiffness (black hidden line) and the total shear strength (horizontal black
line) obtained according to reference [6].

The first obvious conclusion from the displacement-force response in Y direction
(figure 4.27) is the apparent mismatch among stiffness evaluated using reference [6] and
the results obtained using the proposed scheme. Concordance as appears in X directions
does not exist, this huge difference (apart from the omission of steel and concrete) is due
the contribution of short walls (walls forming the windows openings), since they act as
stiffeners over the rest of the walls parallels to Y direction, shortening the total height
of such walls and completely modifying the equation 4.1. Such stiffening behavior is
also described below using figures 4.28 and 4.29.

As in the previous section, where the response of the structure in X direction has
been described, in this section, the displacement-force graph (fig. 4.27) also has been
divided into segments in order to carry out a proper description, such segments are
described in next paragraph.

� Segment OA, is where the elastic response occurs, reporting a total stiffness
K = 291981.95kN/m which is 5.15 times the stiffness evaluated using equation
4.1 from reference [6], and as previously described, such difference comes from the
stiffening effect of the short walls over their adjacent walls. Let us consider table
4.5, where is reported the stiffness evaluated with equation 4.1 of the shortened
walls, this is, reducing their total heigh in such a way it is not considered from
the top of the short walls to the basement. If we make such consideration, the
reported stiffness using equation 4.1 is Ky = 219404.31kN/m (table 4.5), which
lead to a more precise prediction of the total stiffness.

� Segment AB, corresponds to the propagation of the cracks, reaching the maximum
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Figure 4.26 Rear isometric view - Damage evolution of masonry walls in X direction.
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Figure 4.27 Displacement-force response of model B-OSC in Y direction.

Wall Number W-03 W-04 W-05

Stiffness(kN/m) 58733.22 80335.54 80335.54

Table 4.5 Stiffness and shear strength of shortened masonry walls.

shear strength of the structure at point B. It can be appreciated a well agreement
among both shear strengths, the one evaluated using reference [6] and shown
in equation 4.5, with the maximum shear strength obtained using the proposed
scheme.

� And finally, segment BC where the resistance of the structure start to decrease,
until it reaches C point, beyond such point, appears a sudden loss of stiffness due
to the rupture at the bottom corner of the confining elements in the walls of the
rear façade.

As in previous section, a set of images (figures 4.28 and 4.29) is used to describe the
damage evolution of walls while a displacement in Y direction is imposed. Deformation
in all cases has been amplified 500 times, except for the case a that corresponds to
the reference mesh. The first set of images (fig. 4.28) correspond to an isometric view
of the front part of the structure, intended to display the damage in walls W-02 and
W-03, whereas the second set of images (fig. 4.29) corresponds to a rear isometric view
intended to show the damage on masonry walls W-01, W-04 and W-05.

Figure 4.28.b displays a point (at a imposed displacement equal to 0.4726mm) where
the non-linear process starts, as can be seen, a timid damage process starts in wall W-03
in the union of confining column Kc-01 with the brickwork. Next, the crack propa-
gates vertically along wall W-03 (figures 4.28.c and 4.28.d) until it reaches the horizontal
confining element at the top (beam Kb-01), then the diagonal crack propagates diago-
nally until it reaches the confining element Kb-02. Also in figures 4.28.e and 4.28.f can
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Figure 4.28 Front isometric view - Damage evolution of masonry walls in Y direction.
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Figure 4.29 Rear isometric view - Damage evolution of masonry walls in Y direction.
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Figure 4.30 Capacity curve response of model B-OSC in X direction.

be appreciated a slight damage of the confining element at the corners of the window
openings.

It is necessary to point out that the damage process at the bottom (from the bottom
of the window opening to the foundation of the wall) of wall W-03, is present, although
is almost zero due to the small tensional stress which such wall is subjected to in that
area. Hence, a short wall effect appears in which case, only the upper part of wall W-03
is subjected to the high tensional stresses that lead to a damage process.

The short wall effect is also present in walls W-04 and W-05 (figure 4.29), where only
the upper part of such walls is subjected to high level of tensional stresses, whereas the
bottom part is stiff, leading to small strain states, and consequently to a low level of
stresses. Finally, figures 4.29.e and 4.29.f display the damage undergone by confining
elements, as can be seen, the damage is more evident in the corners of the window
opening.

4.1.7 Damage Assessment for Model B-OSC

Although displacement-force response displayed in figure 4.24 shows an excellent agree-
ment compared with a code regulation, it cannot be clearly appreciated the magnitude
of the stiffness and resistance model B-OSC has, and in general, masonry structures
have. That is why, in the present section it is pretended, with the aid of methodology
described in appendix G, to characterize the damages scenarios the B-OSC structure
could undergo in a high seismic activity zone. The starting point to do so will be the
two next assumptions:

1. The capacity curve used to characterize the damage scenarios depicted in figure
4.30, corresponds to the displacement-force response in X direction (figure 4.24),
where point C corresponds to a complete damage scenario according to classifica-
tion of RISK-EU [132].

2. It is assumed that model B-OSC is located somewhere within the European Union
whose soil is D, type 1, with peak ground acceleration equal to 0.20g according to
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Figure 4.31 Bilinear capacity curve of building B-OSC in X direction.

classification of Eurocode 8 [40], the corresponding design spectrum in a sa − sd
representation is depicted in figure G.6.

The goal of using the methodology described in appendix G is that the probabilistic
damage undergone by a structure during a seismic event can be assess using a stan-
dard design spectrum and the capacity curve of a given structure. By standard design
spectrum is meant the ones recommended by Eurocode 8 [40] for countries within the
European Union, the ones recommended by reference [3] for Mexico City, or any one
for that matter, given in a T − sa(T ) representation, where T is vibrational period of
a linear system with one-degree-of-freedom and sa(T ) is the design acceleration as a
function of the vibrational period and the design ground acceleration ag.

The method described in appendix G is based upon two main simplifications, the
aim of the first simplification is to convert a multi-storey model with several degrees
of freedom into a model with equivalent stiffness and one-degree-of-freedom per storey
where the mass of the whole storey is concentrated, such model is usually referred to
as a mass-concentrated model (figure G.2). The aim of the second simplification is to
convert the mass-concentrated model into a one-degree-of-freedom model, to do so, it is
used the modal decomposition described in appendix G.

Since the model B-OSC consists in only one storey, to apply the methodology to
assess the probabilistic damage, it is only required to perform the first of the previously
described simplifications, hence, PF1 = 1, and α1 = 1 from equation G.4 (appendix G),
so spectral displacements sd and spectral accelerations can be obtained using equation
4.6.

sdj = δj ; saj =
Vj

W
(4.6)

where the total weight of model B-OSC is W = 93.087kN .
The spectral capacity curve for model B-OSC and the bilinear capacity curve obtained

using equation 4.6 are depicted in figure 4.32.
Next step, is to obtain the point that represents the seismic demand, or performance

point, as described in appendix G. One way to obtain such point, is by overlaying the
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Figure 4.32 Graphic representation of a linear equivalent approximation for building
B-OSC (X direction).
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Figure 4.34 Damage index curve for building B-OSC (X direction).

elastic response spectrum in a sa− sd representation and the obtained bilinear capacity
spectrum, in figure 4.32 such point represent the crossing point of both spectra, although
the shape of the design spectrum may not resemble the one presented in figure G.6, this
is due to the magnitude of the obtained displacements.

Using the points (Dy, Ay) and (Du, Au) defined in figure 4.31, and equation 4.17, it
is now possible to plot the corresponding fragility curves (figure 4.33)and the damage
index curve (figure 4.34) for model B-OSC.

ds1 = 0.7Dy (4.7)

ds2 = Dy

ds3 = Dy + 0.25(Du −Dy)

ds4 = Du

The meaning of the obtained performance point dse = 0.03mm from figure 4.32, is
that structure B-OSC can withstand high demanding seismic events with no damage, even
in the case of a spectral acceleration equal to 1.0g, where the corresponding displacement
would be dse = 0.0978mm, which is confirmed by the damage index (fig. 4.34) where
the damage starts when the spectral displacement is equal to ds = 0.16mm.

4.2 Typical Masonry Building at Mexico City

The geometry, plan distribution and elevation of the studied model in this section, has
been adjusted to a masonry building confined with reinforced concrete elements, that
typically is designed and built in Mexico City. Such building will be referred from now
on as the B-SSC model, and fictitiously is being located in the seismic zone ZIIIa (placed
at the former lake area of Mexico City) according the classification depicted in reference
[3].

Due to the great necessities for low income housing in Mexico City, a typical practice
adopted is the construction of 6 storeys housing buildings. Although the code construc-
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tion regulation for Mexico City [2] in the article 101, subsection I states: buildings that
are more than 4 levels high in addition to the ground floor, or height or depth greater
than 12 meters from the access to the building, except for single family construction,
must have a lift or elevator system for passengers.

It is evident (from figure 4.36) that, since the proposed building of this section has
6 levels does not meet the previsions stated in [3] Art. 101.I. In any case, these issues
are beyond the scope of this research work and has been decided to model a building
with 6 levels of masonry bearing walls confined with reinforced concrete elements, this
in order to exploit the capabilities of the scheme proposed here.

4.2.1 Architectural and Structural Drawings

The proposed housing building is a construction of 6 levels, having two apartments for
each storey for a total of 12 apartments with an area of 58m2 each. Distribution in plan
view is shown in the architectural drawing of figure 4.35.

Figure 4.36 shows an architectural view in elevation of the proposed building. In
the present section it has only been reproduced the architectural drawings of figure 4.35
and figure 4.36, although a complete description of both, architectural and structural
drawings is presented in appendix C and appendix F respectively.

It is also explained in detail in appendix E the designing process that leads to the
structural drawing presented in figure 4.37. In this section only the general aspect of
such designing process has been covered, and it is presented in next lines.

1. The geometry of the building (architectural project), is usually defined with the
type of simple materials to be used along the construction of the building, also
it is necessary to specify the location of the building, in order to define seismic
hazard.

2. Bearing masonry walls with structural purpose have to be distinguished, discarding
walls with only architectural purpose, like dividing walls or short walls forming
the windows.

3. Loading conditions such dead loads, additional dead loads, and live loads have
to be defined using reference [2]. It is also mandatory to perform an analysis of
tributary areas for each bearing wall.

4. The first performed design is through gravity loads, paying special attention to
walls in the ground floor, since they are the ones subjected to the highest vertical
stresses.

5. An iterative design due lateral loads is performed (for each orthogonal direction).
The starting point of such analysis is the assumption that all walls are made of
confined masonry. In the case where do exist walls out of the security range stated
in [6] reinforced concrete walls will be required as stiffeners, and accordingly, to
change the dynamical response of the building. Reinforced concrete wall also
lowers the stress the masonry walls are subjected to.

6. The last step of the designing process is the revision due in-plane bending moment
of the masonry walls, where the confining columns forming the masonry wall have
to be endow with the required amount of steel reinforcement.



4.2. Typical Masonry Building at Mexico City 141

F
ig

u
re

4
.3

5
A

rc
h
it

ec
tu

ra
l

d
ra

w
in

g
-

fl
oo

r
p
la

n
(u

n
it

s:
cm

).



142 4. Applications to Large Structures

Figure 4.36 Architectural Drawing - Section A-A’ (units: cm).
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1 2 3 4 5 6
2.0 4.0 8.0 12.0 14.0 20.0

7 8 9 10 11 12
20.0 14.0 12.0 8.0 4.0 2.0

Table 4.6 Thickness of layers (in millimetres) for masonry walls.

7. Finally, structural drawings are generated using the information obtained through-
out the designing process.

A tool used in this researching work, in order to make faster the designing process
is the ANEMgcW program [57] (Analysis of Masonry Buildings). Since the structural
analysis program ANEMgcW follows the steps depicted in appendix D, it has been used
as an aid for analysis and design process, and consequently, to generate the structural
drawings shown in figure 4.37. Hence, structural drawings of figure 4.37 become the
basis of the upcoming comparisons among the designing process using a code regulation
and the analysis scheme proposed in this work.

4.2.2 Structural Elements

The typical structural plan shown in figure 4.37 corresponds to a plan view for the
proposed building located in the former lake area ZIIIa of Mexico City, according
to the classification described in [3]. In this section, is carried out a description of
the structural elements that conform model B-SSC, although not all of the structural
elements are shown in figure 4.37, for a full reference appendix F can be consulted.

Masonry Walls

Masonry walls have been structured to fulfill requirements pointed out in reference
[6], namely, they meet the minimum thickness required to avoid out-of-plane buckling
problems, and they are confined with reinforced concrete elements along the whole
perimeter.

Regarding the masonry walls layer’s distribution, has to be mentioned that has been
discretized using an arrangement of 12 layers with different thickness (table 4.6) for a
total thickness of 12 centimeters.

Reinforced Concrete Walls

Drawing 4.37 reports a designation of sections that goes from CW-01 (CW stands for
concrete wall) to CW-10. Concrete walls from CW-03 to CW-10 has been used for con-
structive purposes, this is, since they are considerably small, it is preferable to make
them of reinforced concrete, whereas concrete walls CW-01 and CW-02 provide the stiff-
ness the building requires to prove compliance with the requirements for mechanical
strength, stability and safety according of reference [3].

In this case, the main purpose of the reinforced concrete walls (or simply concrete
walls) is to modify the dynamical properties of the building. Such elements have a
very high in-plane stiffness which made them an ideal solution to lower the period of
vibrations for a given structure. Not only that, but, due to their stiffness, they lower the
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Figure 4.38 Detailed section of columns (units: cm).

deformation other walls undergone, and consequently, the stress levels they are subjected
to. Such effect can be inferred while attending reference [3], which states that the total
lateral force acting on each level of a building has to be distributed over bearing walls
depending of their stiffness, in other words, the higher the stiffness the higher the lateral
force.

The typical arrangement for the steel reinforcement’s pattern used in concrete walls
is two grids on each bed of the wall. In this case, is used a vertical reinforcement
of steel rods with 3/8 inches (9.5mm) of diameter with 20 centimeters of separation
among themselves, whereas for horizontal reinforcement have been used steel rods of
1/4 inches (6.4mm) of diameter with 15 centimeters among themselves. All concrete
walls have been reinforced with columns C-01 placed at both ends. Steel distribution of
all concrete walls (from CW-01 to CW-10) have been detailed in appendix F. Thickness
and distributions of layers regarding the concrete wall’s cross sections is presented in
table 4.7, as can be seen, the same arrangement will be used for columns, beams, and
concrete walls.

1 2 3 4 5 6 7 8 9
2.0 18.0 3.2 3.2 6.35 6.35 6.35 6.35 23.2

10 11 12 13 14 15 16 17 18
23.2 6.35 6.35 6.35 6.35 3.2 3.2 18.0 2.0

Table 4.7 Thickness of layers (in millimeters) for columns, beams
and concrete walls.

Columns

Only two different sections of columns have been used while designing the model B-SSC,
which are shown in figure 4.38. Both sections have dimensions of 12x12 centimeters.

The columns with section type C-01 have been used for the two first levels of the
building (L+0.00 and L+2.63), they have been endowed with a main steel reinforcement
of 4 rods with 1/2 (12.7mm) inches of diameter, whereas their secondary steel reinforce-
ment consist in rods of 1/4 (6.4mm) inches of diameter placed with a separation of 15
centimeters among themselves.

On the other hand sections type C-02 have been used from third level to sixth level
of the building (levels L + 5.26, L + 7.89, L + 10.52 and L + 13.15). Basically, they
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Figure 4.39 Detailed section of beams (units: cm).

have the same secondary steel reinforcement as section C-01 have. What make them
different is in their main steel reinforcement, since section’s C-02 is formed by 4 steel
rods of 3/8 (9.5mm) inches of diameter.

Beams

Figure 4.39 shows the three different sections used in B-SSC model. Two of them have
been used to endow horizontal confinement to masonry walls, whereas one of them has
been used with the purpose of shorten concrete slabs.

Beams with the section type RW-01 (RW stands for rib over wall, technically not a
beam) are used to infer confinement on regular masonry walls, the dimension of their
cross section are 12x25 centimeters, their main steel reinforcement consist in 4 rods
with 3/8 (9.5mm) inches of diameter. Beams with section type RW-02 are used to
endow horizontal confinement to short masonry walls (under the window openings),
and although both sections RW-01 and RW-02 have different dimensions, they have the
same steel reinforcement arrangement (figure 4.39).

On the other hand, beam section B-01 (this is a proper beam) has been used to reduce
the dimension of the slab in construction axis 2, from B-E and G-J (see appendix F).
Although has the same dimensions as section RW-01 the difference is the main steel
reinforcement, which consist in 4 rods with 1/2 (12.7mm) inches of diameter.

Finally, it has to be pointed out that the three section types of beams have the same
secondary steel reinforcement, which consist in rods of 1/4 (6.4mm) inches of diameter
placed with a separation of 15 centimeters among themselves.

Slabs

As in the model presented in the previous section, the simple materials that make up
the concrete slab of the structure have been fixed up to have a linear elastic behavior.
The thickness of slabs have been designed to meet requirements regarding serviceability
loads stated in reference [4] section 3, although in some cases, it has been necessary to
shorten concrete slab boards with a concrete beam.

Slabs have been discretized along the thickness using a pattern of 20 layers for a total
thickness of 15 centimeters. Their layer distribution can be seen on figure 4.8, where
also can be noticed the steel reinforcement pattern in both beds and in both orthogonal
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Figure 4.40 Detailed section of slab (units: cm).

1 2 3 4 5 6 7 8 9 10
2.0 8.0 11.2 5.0 5.0 4.75 4.75 9.5 12.4 12.4

11 12 13 14 15 16 17 18 19 20
12.40 12.40 9.5 4.75 4.75 5.0 5.0 11.2 8.0 2.0

Table 4.8 Thickness of layers (in millimeters) for slabs.

directions. In all cases, the diameter of the steel reinforcement rods remain the same,
this is 3/8 inches, which varies is the separation among themselves. The separation of
the steel reinforcement for the lower bed is 30 centimeters, whereas for the upper bed,
a separation of 40 centimeters has been used.

4.2.3 Simple Material Properties

Since mechanical and constitutive properties of simple materials are the same as the
materials presented in section 4.1.2, for convenience they have not been reproduced
here.

4.2.4 Structured Composite Materials

In this section is carried out a brief description of SCM used to generate volumetric par-
ticipation of composite materials within each layer of the finite elements. The procedure
used has been previously described in section 3.7 of this work. In next figures, color red
has been used to delimit the contour of current SCM, whereas, as an aid for reference,
light gray has been used to represent the contour of the remaining SCM. Although in all
cases, has only been presented one storey of the building, it is implied that the process
has been repeated for the six storeys. A complete description of all SCM involved in the
models are shown in appendix F of this work.

Figure 4.41 shows the SCM of constructive axis 3 for model B-SSC. The fibers of
longitudinal steel reinforcements (main reinforcement) are shown in blue, whereas color
green has been used to represent the transversal steel reinforcement (secondary rein-
forcement). It is convenient to point out that figure 4.41 shows a superposition of all
layers within the SCM, and in no case, finite elements belonging to the SCM have been
displayed.
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Figure 4.41 Steel fibers of Axis 3.

The others SCM shown in this section correspond to the constructive axis A and
K depicted in figure 4.42, as in the previous example, the information of all layers
has been superimposed, and finite elements has not been shown, this due to visibility
matters. The purpose of displaying SCM from constructive axis A and K (as in the
previous example) is to remark the existence of the reinforced concrete wall and their
steel reinforcement pattern.

Finally, figure 4.43 displays the steel reinforcement pattern of structural elements
belonging to construction axis 1 (rear façade), 7 (font façade) and F.

4.2.5 Boundary Conditions

The analysis process has been performed using 3 different loading phases. It is con-
venient to point out that; in no one of the loading phases has been used any loading
factors, which are commonly included in code regulations due to the uncertainty in the
assessment of loading forces.

Fixed Displacements

In all three loading phases, the basement of the structure has been set to remain rigidly
fixed, hence, neither displacements nor rotations would be allowed.

First Stage Loading Condition: Dead Load

First loading stage corresponds to the dead load condition, namely, it is the force struc-
tural (walls, beams, columns, slabs) and non-structural elements (in-fills, plaster) acting
due to gravity.

Let us take, for instance figure 4.44, where a typical loading analysis for the walls
used in the construction of the building is displayed. A small sketch (on the left) shows
both structural and non-structural components of a masonry wall, whereas in the right,
a table depicts in detail thickness and weight of all components involved. Table on the
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Figure 4.42 Steel fibers of Axis A and K.

Figure 4.43 Steel fibers of Axis 1, 7 and F.
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Figure 4.44 Dead loads - Masonry bearing walls.

Figure 4.45 Dead loads - Storey system.

right also shows the additional loads (reference [2] art. 97) due uncertainties regarding
real thickness of components or in the assessment process of the weights. In the case
considered, only will be necessary to add 20kg/m2 due the presence of mortar. Finally,
figure reports the total weight for the masonry wall to be equal to WD = 260kg/m2.

Figure 4.45 shows (on the left) the sketch of the storey system used in the building,
as can be noticed, it consist in only a vinyl tile to cover the concrete slab. The thickness
of the vinyl tile is not detailed in the table on the right, but only its uniform weight equal
to 5kg/m2 (included the resin to bond it to the concrete slab). Due to the presence of
concrete, 20kg/m2 has been added to the total weight. Hence, the total weight of the
storey systems is equal to DL = 385.0kg/m2.

Finally, figure 4.46 depicts the loading analysis for the roofing system. The sketch
on the left shows an average in-fill of aggregate material considered in the whole area of
the roof. Such in-fill is necessary to provide a slope to the roof, so the water does not
become stagnant when it rains. The table on the right (figure 4.46) details thicknesses
and weights of elements forming the roof, in this case it has been necessary to add 40
kg/m2 (ref. [2]) due the presence of mortar and concrete. Hence, the total weight of
the roofing systems is equal to DL ≈ 525.0kg/m2.

Second Stage Loading Condition: Live Loading

Live loads, are temporary, of short duration, and are based upon published regulations,
in this case, it has been used the Reglamento de construcciones para el Distrito Federal
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Figure 4.46 Dead loads - Roofing system.

[2], as an aid to predict them. Such code regulation in its chapter V article 199.V.g

marks:

� An uniform live load equal to 100 kg/m2 has to be used in the roof system of
residential houses with an slope not higher than 5% (section 199.V.g)

� An uniform live load equal to 170 kg/m2 has to be used in the storey system of
residential houses (section 199.V.b).

Third Stage Loading Condition: Pushover

The third loading stage corresponds to a standard pushover applied in x direction.
Hence, a displacement has been imposed to a set of nodes located along an edge of the
slab of the sixth storey, the reason of conducting the pushover analysis in this way is
to avoid a high concentration of forces to only few FE. The region where displacements
in X direction have been applied is shown in figure 4.47. The purpose of imposing such
displacement is to predict the force-displacement response of the structure. Obtained
results for model B-SSC are presented in section 4.2.6.

4.2.6 Obtained Results for Model B-SSC

The obtained results for model B-SSC applying the pushover analysis (previously de-
scribed) are summarized and discussed in this section with the aid of the figures de-
scribed down below.

� Figure 4.50, which corresponds to the displacement-force response of model B-SSC.

� Figure 4.51 corresponding to the damage evolution of walls W-01 and W-02, located
along constructive axis 1 (rear façade), and whose isometric view is depicted in
figure 4.47 on the left.

� Figure 4.52 corresponding to the damage evolution of walls W-05, W-06 and W-07,
located along constructive axis 3, and whose isometric view is depicted in figure
4.47 on the right.

� Figure 4.53 corresponding to the damage evolution of walls W-08, W-09, W10 and
W-07, located along constructive axis 4, whose isometric view is depicted in figure
4.48 on the left.
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Figure 4.47 Isometric view of GiD model for the B-SSC building.

� An uniformed live load equal to 170 kg/m2 has to be used in the storey system of
residential houses (section 199.V.b).

Third Stage Loading Condition: Pushover

The third loading stage corresponds to a standard pushover applied x direction. Hence,
a displacement has been imposed at the center of the slab of the sixth storey, whose
purpose is to predict the force-displacement response of the structure. Obtained results
for model B-SSC are presented in section 4.2.6.

4.2.5 Meshing and Computational Requirements

To cover the meshing needs, is selected the use of a pre and post processor for numerical
simulations, in this case GiD [33]. GiD is a universal, adaptive and user-friendly pre
and post-processor for numerical simulations in science and engineering. It has been
designed to cover all the common needs in the numerical simulations field from pre to
post-processing: geometrical modelling, effective definition of analysis data, meshing,
data transfer to analysis software, as well as the visualization of numerical results.
Figure 4.47 on the left, for instance, depicts the GiD visualization from an isometric
frontal perspective, whereas figure 4.47 on the right depicts the GiD visualization from
the rear perspective. Also the set of figures 4.48 correspond to a isometric perspective
of a GiD output that correspond to the constructive axis 3 (on the left) and axis A and
K (on the right).

Model described on section 4.1 have to be just considered as an example, intended
to show the capabilities and scopes of the process followed to perform the structural
analysis of a masonry constructions. The model of section 4.1 is small while compared

Figure 4.47 Isometric view of GiD model for the B-SSC building.

Figure 4.48 View of constructive axis 1 and 3 of GiD model for the B-SSC building.
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Figure 4.49 View of constructive axis 4 and 7 of GiD model for the B-SSC building.

� Figure 4.54 corresponding to the damage evolution of walls W-15, W-16, W-17 and
W-18, located along constructive axis 7 (front façade), and whose isometric view
is depicted in figure 4.48 on the right.

Model B-SSC has been designed using a commercial code for design of masonry struc-
tures, named ANEMgcW [37] (based on reference [6]), and the corresponding procedure
for its structural design has been briefly described in appendix E. It is important this
clarification, since there is only one point of comparison among results obtained with
the proposed methodology for model B-SSC and the results obtained (and shown in
appendix E) using a design code, which is, the initial stiffness obtained for both cases.

1KX = 3′027, 012.84 kN/m 4KX = 3′111, 957.63 kN/m
2KX = 3′227, 568.48 kN/m 5KX = 3′310, 423.74 kN/m
3KX = 3′359, 669.94 kN/m 6KX = 3′373, 992.94 kN/m

(4.8)

Equation 4.8 summarizes the stiffness obtained using ANEMgcW for each of the
storeys of model B-SSC, such vales have been assembled into a so-called global stiffness
matrix of the mass-concentrated model (figure G.2 appendix G), then a displacement
at the top δtop (storey 6th) has been imposed and the corresponding reaction at the
bottom Vδtop has been evaluated solving the corresponding linear system. The value
corresponding to the stiffness Kds is presented in equation 4.9.

Kdc =
Vδtop
δtop

= 538, 316.78 kN/m (4.9)

On the other hand, stiffness obtained with the methodology proposed in this work
can be easily evaluated for the elastic range using equation 4.10.
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Figure 4.50 Displacement-force response of the structure B-SSC in X direction.

Kpw =
∆Vj

∆δj
= 476, 580.49 kN/m (4.10)

where Kpw stands for the total stiffness of model B-SSC evaluated using the proposed
methodology, ∆δj and ∆Vj are respectively an increment of displacement and an incre-
ment of shear force within the elastic range.

A schematic representation of both stiffness are presented in figure 4.50, where can
be seen that there is 12.95% of error among them.

Similarly as model B-OSC, the model B-SSC confirms reference [6] regarding the
low stiffness presented by the bending-acting walls (green line), while their stiffness is
compared with the membrane-acting walls (blue line), and that their stiffness perfectly
could be neglected for analysis and design purposes. The red line of figure 4.50 represents
the overall response of the structure.

Finally, let us consider figures 4.51 to 4.54, they correspond to a set of deformation
stages (amplified 250 times) within the analysis process, where the damage variables
of the element is also shown. In all three cases, images on the left represent the con-
fining elements, whereas images on the right represent the masonry elements. The
selected stages for the displacement have been a) δ = 2.00mm, b) δ = 6.00mm and c)
δ = 8.20mm.

4.2.7 Damage Assessment for Model B-SSC

In this section, it is pretended to characterize the damage scenarios the structure B-SSC

could undergo in a zone with high seismic activity, therefore, two main assumptions
have to be done before starting:

1. The capacity spectrum and the bilinear capacity spectrum used to characterize
the damage scenarios depicted in figure 4.55, correspond to the displacement-force
response obtained from the pushover analysis, previously described, and whose
results are shown in figure 4.50. Process to obtain the capacity spectrum and,
consequently, the bilinear capacity spectrum are described later in this section.
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Figure 18 Damage evolution on structural components on constructive axis 1.
Figure 4.51 Damage evolution on structural components on constructive axis 1.
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Figure 19 Damage evolution on structural components on constructive axis 3.
Figure 4.52 Damage evolution on structural components on constructive axis 3.
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Figure 19 Damage evolution on structural components on constructive axis 4.
Figure 4.53 Damage evolution on structural components on constructive axis 4.
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Figure 21 Damage evolution on structural components on constructive axis 7.
Figure 4.54 Damage evolution on structural components on constructive axis 7.
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Figure 4.55 Bilinear representation of the capacity curve
displayed in figure 4.50 transformed to spectral displacement.

2. For comparative purposes, two locations have been selected for the model B-SSC.
The first location (location L1 from now on) is somewhere in Mexico City within
the seismic zone ZIIIa according to micro zone described in reference [3]. The
second location (location L2 from now on) is somewhere within the European
Union where the soil is D, type 1 and has a peak ground acceleration equal to
0.20g according to classification of Eurocode 8 [40]. The corresponding design
spectra transformed to a sd− sa according to methodology described in appendix
G are shown in figure 4.58. The vertical hidden blue line in figure 4.58 repre-
sents a threshold equal to 4mm of spectral displacement sa, it has been used for
representative purposes, and to take into account the magnitude of the spectral
displacements used in the representation of the obtained results.

Before the capacity spectrum in figure 4.55 had been plot, two main simplifications
to model B-SSC had to be performed. The first one consisted in converting it into a
model with equivalent stiffness and one-degree-of-freedom per storey, where the mass
of the corresponding storey is concentrated. The equivalent stiffness of each storey
corresponding to the mass-concentrated model are shown in equation 4.11,

1KX = 2′987, 042.83 kN/m 4KX = 2′854, 411.56 kN/m
2KX = 2′974, 362.83 kN/m 5KX = 2′755, 059.66 kN/m
3KX = 2′930, 764.48 kN/m 6KX = 2′679, 856.84 kN/m

(4.11)

whereas, the weight concentrated in each storey is presented in equation 4.12.

w1 = 1, 019.95 kN w4 = 1, 019.95 kN

w2 = 1, 019.95 kN w5 = 1, 019.95 kN

w3 = 1, 019.95 kN w6 = 932.44 kN

(4.12)

The second simplification was to convert the mass-concentrated model into a one-
degree-of-freedom model, this was achieved through a modal decomposition, using the
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vibrational mode 1, whose corresponding values of the eigenvector for modal vibrational
1 are presented in equation 4.13

φ1,1 = 0.1299 φ4,1 = 0.4544

φ2,1 = 0.2529 φ5,1 = 0.5210

φ3,1 = 0.3630 φ6,1 = 0.5563

(4.13)

and which substituted in equation G.2 and G.3 (appendix G) led to the values shown
in equation 4.14.

PF1 = 2.2959 ; α1 = 0.8633 (4.14)

Using values of PF1 and α1 from equation 4.14, and equation 4.15, it was possible to
plot the spectral capacity curve depicted in figure 4.55 (red hidden line), where subindex
j represents the applied loading increments the structure is subjected to under a non-
linear pushover analysis.

sdj =
δj

PF1
; saj =

Vj

α1 W
(4.15)

Once the spectral capacity curve has been defined, it was possible to plot the bilinear
capacity spectrum, which is essential to estimate the probabilistic damage, since all
damage scenarios are based upon values of points (Dy, Au) and (Du, Au), as described
in equation 4.17. The construction of the bilinear capacity spectrum is bases on the
three hypothesis described next,

1. The area under the spectral capacity curve must be equal to the equivalent bilinear
capacity curve.

2. Coordinates of the point with maximum displacement (Du, Au) match in both
curves.

3. The initial slope in both graphs must be the same.

which led to the corresponding values for points (Dy, Au) and (Du, Au) shown in equa-
tion 4.16.

Dy = 1.870mm Du = 3.640mm

Ay = 0.375g Au = 0.487g
(4.16)

Fragility curves represent the probability in which a damage scenario ds on a struc-
ture could be reached or exceeded, as a function of the parameter that represent the
intensity of the seismic action. Risk-EU [132] distinguishes four possible damage scenar-
ios on a structure, namely, slight (ds1), moderated (ds2), extensive (ds3) and complete
(ds4), whose definitions depends on points (Dy, Ay) and (Du, Au) of the bilinear capacity
spectrum according to equation 4.17.

ds1 = 0.7Dy (4.17)

ds2 = Dy

ds3 = Dy + 0.25(Du −Dy)

ds4 = Du
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Figure 4.56 Fragility curves for model B-SSC

Since appendix G describes how to manage to plot fragility curves and the damage
index for a given structure, in this section only will be reproduced the values (equation
4.18) that lead to figure 4.56 and 4.57.

ds1 = 1.309mm ; βds1 = 0.280

ds2 = 1.870mm ; βds2 = 0.240

ds3 = 2.313mm ; βds3 = 0.300

ds4 = 3.640mm ; βds4 = 0.350

(4.18)

The seismic demand the structure undergoes, is obtained through its point of per-
formance, in this section, to obtain it, will be used a linear equivalent approach. To do
so, let us consider figure 4.58, corresponding to the design spectra for location L1 and
location L2, as can be seen, both spectra have been plot in a sd− sa representation in
order to link them together with the bilinear capacity spectrum shown in figure 4.55.

Figure 4.59 represent the superposition of both the design spectra and the bilinear
capacity spectrum. The point of performance corresponding to the location L1 is defined
by point A (sdL1 = 0.89mm), which is the crossing of the bilinear capacity spectrum
and the design spectrum for L1, as will be seen later, point A corresponds to a null
damage state, since the seismic demand is low.

On the other hand, the crossing point of the prolongation of the first segment of the
bilinear capacity spectrum, and the design spectrum for location L2 correspond to the
point of performance for location L2 (sdL2 = 2.78mm).

Finally, using the fragility curves depicted in figure 4.56, and the point of perfor-
mance shown in figure 4.59 for both locations, it is possible to probabilistically assess
the damage scenarios model B-SSC could undergo, the results are summarized in table
4.9.

From table 4.9 can be seen the very low probability of occurrence of a low damage
scenario, which is equal to P(ds1) = 8.65%, whereas the remaining scenarios have no
possibility of occurrence, this is obvious, since the model B-SSC has been designed to
withstand the seismic conditions of location L1 in the first place, as detailed in appendix
E, so that, the expected damage can be represented using the damage index DI = 0.021.
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Figure 4.57 Damage index for model B-SSC
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Figure 4.58 Design spectra in sd− sa representation corresponding to ZIIIa and soil
D type 1 with ag = 0.2g.
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Figure 4.59 Point of performance using a design spectra for seismic zone ZIIIa and
seismic zone Type 1 Soil D according to EC8 [40].
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Figure 4.60 Expected damage for model B-SSC and seismic zone Type 1 Soil D [40].
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ds Location L1 Location L2

P(ds1) 8.65% 99.65%

P(ds2) 0.00% 95.02%

P(ds3) 0.00% 73.04%

P(ds4) 0.00% 22.12%

Table 4.9 Probability of damage occurrence.
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Figure 4.61 Probability of damage for model B-SSC and seismic zone Type 1 Soil D
[40].

For location L2, however, since the seismic demand increases, so the probabilistic
damage does, which was the reason of using such fictitious location. Results of model
B-SSC at location L2 reports a damage index DI = 0.7246, being DI = 1.0 the index
corresponding to the complete damage scenario.

Figure 4.61 is a graphical representation of the meaning of fragility curves, in such
figure, it is represented (with a vertical hidden black line) the spectral displacement
dse = 2.78mm which correspond to the point of performance of structure SSC at location
L2, the crossing line of the vertical black hidden line with the corresponding curve
represents the probability of occurrence of the given damage scenario, which already
have been summarized in table 4.9.

4.3 Computational Requirements

Model described on section 4.1 have to be just considered as an example, intended
to show the capabilities and scopes of the process followed to perform the structural
analysis of a masonry constructions. The model of section 4.1 is small while compared
with a real-life masonry structure and needs a much less amount of computational
resources.

In this section are described the improvements performed in PLCD, in order to
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Model F.E. Initial Memory Req. S.M. Info Solver

B-OSC 30,868 572.70Mb 262.22Mb 243.62Mb

B-SSC 1’105,804 28.599Gb 9.82Gb 14.599Gb

Table 4.10 Memory comparison between models B-OSC and B-SSC.

make it possible to analyze large structures in a reasonably short amount of time, and
consequently, be able to analyze structures such as model B-SSC.

Although here have studied alternatives to address the resolution of structures that
require handling large amount of information, this section is not conclusive, since other
comparison is required to be studied in depth, this is while using either a direct or an
iterative solver for the resolution of linear equations, thus, be able to evaluate the use
of one or other depending on the computational resources available.

Memory-Consuming Based Optimization

Let us consider table 4.10, where is shown a comparison among the RAM memory
required for different process in the analysis of models B-OSC and B-SSC. From left to
right, column 2 shows the amount of FE within the used mesh, column 3 shows the total
amount RAM memory, column 4 depicts the required memory to store information of
the simple materials such as internal variables, stresses and strains. Finally, column 5
shows the memory required for the PARDISO solver. Since model B-OSC (section 4.1)
consists on a mesh with 30,868 FE, the amount of required memory (572.70Mb) seems
reasonable, and the resources required can be easily fulfilled by a conventional desktop
computer. However, when it comes to large structures, it becomes more difficult to
fulfill the required memory.

Let us consider again model B-OSC shown in table 4.10. Expressed in term of per-
centages, the required memory to handle the information of simple materials is equal to
45.78%, whereas the solver uses 42.50% of the total. Analyzing such percentages makes
clear to where should be directed the efforts on optimizing the consumed memory.

Using the previous scheme all the information regarding the components of the FE
was allocated at the beginning of the analysis process using vectors, so it was necessary
to implement a different scheme using user-defined data types, where, at the beginning
of the analysis process, the information is reserved and only allocated while needed (once
the FE is in a non-linear range), leading to a less necessity of RAM memory resources.
Starting from the assumption that not all elements reach a non-linear behavior, the
proposed programming scheme (shown below) was implemented in PLCd.

� It was used a template to store internal variable for every non-damaged FE with
the same composite information. At this point it is not necessary to store strain
or stress information of composite neither components of the laminated material.

� Once a component within a FE has reach a non-linear behavior, then allocation of
memory to store information of the FE was required (internal variables, stresses
and strains).
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Model Initial Memory Req. Final Memory Req.

B-OSC 572.70Mb 329.4Mb

B-SSC 28.599Gb 19.00Gb

Table 4.11 Memory comparison between models B-OSC and B-SSC using the proposed
scheme and the direct solver PARDISO.

1 ! Composite Material Information .....................................
TYPE TYPE Sm Inf K

3 REAL (8) :: PARKc , HACHE , STRAN (3), STRAT (3), STRAP (3), STRES (3) ,&
SGTOT (3), SGTOTP (3), CTANg (3,3)

5 END TYPE TYPE Sm Inf K
TYPE TYPE Lay Inf K

7 REAL (8) :: Mstra0 (3), Fstra0 (3), LSTRA (3), LSTRE (3), LSTREP (3), &
CTANg (3,3)

9 END TYPE TYPE Lay Inf K
TYPE TYPE Composite

11 TYPE( TYPE IVar sm ), ALLOCATABLE :: iVI(:)
TYPE( TYPE Lay Inf K ), ALLOCATABLE :: L(:)

13 TYPE( TYPE Sm Inf K ), ALLOCATABLE :: Sm(:)
END TYPE TYPE Composite

15 ! Internal Variables Information .....................................
TYPE TYPE IVar sm

17 INTEGER :: EUNLD
REAL (8) :: CAPAP , ANGFI , ANGSI , PREYS , HARDS , DEGMA , DEGMAplus , &

19 DEGMAminu , TAUMA , TAUMAplus , TAUMAminu
END TYPE TYPE IVar sm

21 ! Simple Material Information ........................................
TYPE TYPE Sm Info ! Flag ASMT , AEMX

23 LOGICAL :: Fl Ani S , Fl Ani E
INTEGER :: NCRIT , NTINT , NCRIP , NINDI , NINDIp , NINDIm , NICUR , &

25 KFLUG , HCURV , NHARD , NMATX
REAL (8) :: ECERO , GSUBF , GSUBC , SIGAS , ENE , PARKc , HACHE , &

27 ALPRI , SIKMA , RETEN , CUR T (6), CUR C (6), DMANX (3,3), &
DMATX (3,3), ASMT (3,3), AEMX (3,3), STRAN (3), STRAT (3) ,&

29 STRAP (3), STRES (3), SGTOT (3), SGTOTP (3), fp 11 , &
fp 22 , fp 12 , fm 11 , fm 22 , fm 12

31 END TYPE TYPE Sm Info

33 LOGICAL :: FlgAll
TYPE( TYPE Composite ) :: kKomp

35 TYPE( TYPE Sm Info ), ALLOCATABLE :: iSM(:)
TYPE( TYPE IVar sm ), ALLOCATABLE :: iVI(:)

Listing 4.1 User-defined data types to call the constitutive equations.

� Allocating at every loading step or iteration may be time consuming, however, it
will be justified for large structures where a considerable amount of RAM would
be required.

� For output and visualization purposes (writing information in GiD format) the
information of non-damaged finite elements is evaluated using their local displace-
ments, which will be a major drawback.
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! Basic data type for internal variables
2 TYPE TYPE IVar sm

INTEGER :: EUNLD
4 REAL (8) :: CAPAP , ANGFI , ANGSI , PREYS , HARDS , DEGMA , DEGMAplus , &

DEGMAminu , TAUMA , TAUMAplus , TAUMAminu
6 END TYPE TYPE IVar sm

! Composed data type , stresses/strains and type TYPE IVar sm
8 TYPE TYPE Sm

TYPE( TYPE IVar sm ) :: IVc , IVn ! Converged and Non−Converged
10 REAL (8) :: STRSGc (3), STRATc (3), STRAPc (3), &

STRSGn (3), STRATn (3), STRAPn (3)
12 END TYPE TYPE Sm

! Composed data type por finite elements , where a flag has been added
14 ! if Dflg == .FALSE. −−> Elastic Range

! if Dflg == .TRUE. −−> Non−lienar Range
16 TYPE TYPE SmElInfo

LOGICAL :: Dflg
18 TYPE( TYPE Sm ), ALLOCATABLE :: Sm(:)

END TYPE TYPE SmElInfo
20 ! Finite element data type

TYPE( TYPE SmElInfo ), ALLOCATABLE :: VBASms (:)

Listing 4.2 User-defined data types to store internal variables stresses/strains for
each FE.

Basically, the process followed is this: if any of the components within any layer of
the laminated material reach an non-linear range, such FE is considered as damaged,
thus, information of the components has to be stored. Otherwise, strain and stresses
are evaluated using the local displacements of the finite element. As can be notice
this is a major disadvantage in terms of analysis time, since while writing the output
information to GiD [35] the required information to be written of a simple material has
to be evaluated first.

The used-defined data type implemented to store information of finite elements once
it is in the non-linear range is presented in listing 4.2. As can be seen, memory for
data type Sm(:) is only reserved at the beginning of the analysis, whereas the flag Dflg

is always used.

The results obtained once the previously described scheme has been implemented in
PLCD are shown in table 4.11, as can be appreciated, there is a considerable reduction
on the amount of consumed memory, however, the 19.00Gb required by model B-SSC
seems excessive to use a conventional desktop computer, and maybe to perform the
analysis of such models would be required the node of a cluster. In any case, the
other strategy comes to mind, this is the use of an iterative solver. To do so, has
been implemented in PLCD the FEMT library developed by Vargas and Botello-Rionda
[169], which contains routines running in parallel, to handle and solve the typical linear
systems of equations resulting from finite element or finite volume discretizations for a
large number of unknowns.

FEMT library consists of a sets of function embedded in the files libFEMSolver and
libMETIS, hence for a proper linkage, the first thing to keep in mind is whether such
library has been compiled for unix or windows platform, and for architecture of 32 or
64 bits.

In this section, it has been carried out a comparison only in terms of consumed
memory, however, further comparisons in terms of running time while using an iterative
solver are required, to fit the best alternative. Obtained results using the proposed
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Model Initial Memory Req. Final Memory Req.

B-OSC 572.70Mb 132.51Mb

B-SSC 28.599Gb 4.75Gb

Table 4.12 Memory comparison between models B-OSC and B-SSC using an iterative
solver of library FEMT [169].

scheme of only allocating the memory required for internal variables, strains and stresses
of simple materials combined with the use of an iterative solver is depicted in table 4.12,
as can be seen, there is a significant improvement in terms of memory management.

Parallelization of PLCD Using OMP directives

PLCD [34] is a state of the art implicit finite element written in Fortran, and originally
developed by Prof. Oller at CIMNE. It has been developed to treat a large variety
of composite materials through the use of Rules of Mixtures. This section covers the
paralellization of the module used to solve mechanical problems with shell elements,
which has been performed using OpenMP [13] directives in three different sections of
the code. Such sections are shown below.

1. Loop over elements while evaluating the generalized strains ε̂ and the generalized
stresses σ̂.

2. Loop over elements while integrating the constitutive equations (plasticity, dam-
age, etc.).

3. Loop over elements while writing/reading information to perform a restart oper-
ation.

For convenience only sections 1 and 2 of list previously shown will be described here,
since section 3 is only about writing or reading text files. In both of the cases described
here, the key aspect for a quick parallelization process has been that data of called
functions within parallel regions has been encapsulated.

Parallelization while evaluating generalized stresses and strains

The first part selected to be parallelized has been the loop over the elements where the
generalized strains ε̂ and generalized stresses σ̂ are evaluated. Since the loop in this case
is only over the elements is less time-consuming than the portion of code parallelized
shown in next section.

This part has been parallelized using a PARALLEL DO directive (listing 4.3). Once
variables defined as PRIVATE has been recognized, the process has been easily carried out.

The variables declared as locals to each tread (PRIVATE variables) are II, XYcoord, RMTEL,

THtot, Enod, fpars, DMATm, DMATb, DMATmb, DisplLoc, ElGenStra, ElGenStre, Bfact. As can be
noticed from listing 4.3, the only OpenMP directives required are the ones on lines 2, 3
and 23 of such listing.
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1 ! Starts Main Loop Over Elements .....................................
!$OMP PARALLEL DO PRIVATE(II,XYcoord ,RMTEL ,THtot ,Enod ,fpars ,DMATm)&

3 !$OMP PRIVATE(DMATb , DMATmb , DisplLoc , ElGenStra , ElGenStre , Bfact)
DO II=1,NELEM

5 CALL DKTOPTelementInfo (II,’Small Deform ’,XYcoord ,RMTEL ,THtot , &
Enod ,DMATm ,DMATb ,DMATmb ,fpars)

7 IF (TanStiffMat(II)%DamageFlag .EQ. 1) THEN
DMATb (:,:) = TanStiffMat(II)%DBENX (:,:)

9 ENDIF
CALL DKTOPTelementDispl(II,RMTEL ,DisplLoc)

11 CALL DKTOPTelementStrainStress( DisplLoc ,XYcoord , THtot , &
DMATm ,DMATb ,DMATmb ,fpars , &

13 ElGenStra , ElGenStre ,Bfact)
VBAS5sh(II)%Bfact (:,:) = Bfact (:,:)

15 ! Stores non−converged generalized stresses/strains ...
VBAS1e(II)%STRATn (1:6) = ElGenStra (:)

17 VBAS1e(II)%STRSGn (1:6) = ElGenStre (:)
! Deactivate Element if I Fase > VBAS5sh(IELEM)%EFASE ...

19 IF (VBAS5sh(II)%EFASE .GT. I Fase ) THEN
VBAS1e(II)%STRSGn (1:8) = 0.0D0

21 ENDIF
ENDDO

23 !$OMP END PARALLEL DO

Listing 4.3 Loop over elements running in parallel.

Parallelization while evaluating the constitutive equations

A process less straightforward had to be follow to parallelize this section of the code.

1 !$OMP THREADPRIVATE (kKomp ,iSM ,iVI)

Listing 4.4 Defining thread private variables.

Variables kKomp, iSM, iVI are user-defined data types used to pass information to
function DKTOPT2DConstitutiveBlock, which is where all the process regarding the integration
of the constitutive equations is performed. Hence, such variables have been defined as
THREADPRIVATE (listing 4.4) since, along the process running in parallel, each thread will
need to store its own value.

1 ! To allocate treadprivate variables ...
IF (FlgAll) THEN

3 !$OMP PARALLEL
CALL DKTOPT 2DInt Set Cons Info (kKomp , iSM , iVI)

5 !$OMP END PARALLEL
FlgAll = .FALSE.

7 ENDIF

Listing 4.5 Allocating thread private variables.

Once THREADPRIVATE variables have been declared, next step is to allocate each variable
in each used tread. This operation is performed with the lines of code shown in listing
4.5, since the variables have been previously defined as THREADPRIVATE, it is only required
to open a parallel region, where the same operation within such region will be performed
by each thread. The use of a flag of allocation (FlgAll) is necessary so that this process
is not repeated.
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1 ! Starts Main Loop Over Elements .....................................
! Already defined as THREADPRIVATE

3 ! + kKomp , iSM , + iVI
!$OMP PARALLEL DO PRIVATE(Ielem ,LPROP ,DmgFlg ,KLAY ,LSTRSG ,DaGeStr)&

5 !$OMP SHARED(kInfo ,VBAS5sh , J LHS )
DO Ielem=1,NELEM

7 LPROP = VBAS5sh(Ielem)%IMATC
KLAY = kInfo(LPROP)%NLays

9 CALL DKTOPT 2DInt Get Elem Info (Ielem , kInfo(LPROP),kKomp , iVI)
CALL DKTOPT 2DConstitutiveBlock (kKomp , kInfo(LPROP), iSM)

11 CALL DKTOPTCheckDamagedElement(Ielem ,LPROP ,kKomp ,kInfo(LPROP),iVI ,DmgFlg)
CALL DKTOPT 2DInt Write Elem Info (Ielem ,kKomp ,kInfo(LPROP))

13 CALL DKTOPTDamagedStresses(LPROP , KLAY , VBAS5sh(Ielem)%Yps , &
Ielem ,DmgFlg ,LSTRSG (:,1: KLAY), DaGeStr)

15 CALL DKTOPTEvalElasticLoads(Ielem ,DaGeStr)
ENDDO

17 !$OMP END PARALLEL DO

Listing 4.6 Loop over elements running in parallel.

Listing 4.6 shows the aspect of the part where the constitutive equations for each
simple material are integrated. As can be seen, only lines 4, 5 and 17 are OpenMP
directives. The selected OpenMP directive for the loop of listing 4.6 is a PARALLEL DO,
finally in line 4 of listing 4.6 PRIVATE variables are defines, whereas in line 5 is where
SHARED variables have been defined. The purpose of each function within listing 4.6 has
been briefly described below.

� Function DKTOPT 2DInt Get Elem Info() gets the required information for the given finite
element.

� Function DKTOPT 2DConstitutiveBlock() is where all the process regarding the integra-
tion of the constitutive equations is performed.

� Function DKTOPTCheckDamagedElement() checks if there is any simple material within
the given finite element in a non-linear range.

� Function DKTOPT 2DInt Write Elem Info(), allocates finite element memory if necessary.

� Function DKTOPTDamagedStresses() evaluates the generalized stresses, then, such in-
formation is stored in the DaGeStr variable.

� Finally, function DKTOPTEvalElasticLoads() evaluates the elastic loads.

The final operation of the portion of code depicted in listing 4.6 is to evaluate
internal forces of each finite element, so internal forces can be assembled into a global
vector usually referred to as LHS. Hence, it is necessary to restrict the access to the
LHS vector to only one thread at the time. This can be done using the directive-
pair CRITCAL|END CRITICAL. The portion of code depicted in listing 4.7 belongs to function
DKTOPTEvalElasticLoads() (which evaluates and assembles the internal force vector), where
can be noticed the use of the CRITICAL OpenMP directive-pair.
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Figure 4.62 Computational time improvement obtained for model B-SSC using
different number of threads running in parallel for a total of 30 steps.

1 ! Assembles LHS vector [ J LHS ].......................................
DO II=1,3

3 Ps = (Enod(II)−1) 6
Pt = (II−1) 6

5 !$OMP CRITICAL ( J LHS ASSEMBLE )
J LHS (Ps+1:Ps+6) = J LHS (Ps+1:Ps+6) + ELOAD(Pt+1:Pt+6)

7 !$OMP END CRITICAL ( J LHS ASSEMBLE )
ENDDO

Listing 4.7 Use of the critical OpenMP directive.

Results of the implementation of the previously described concepts can be summa-
rized with the use of graph on figure 4.62, that reports the time needed to perform 10
steps for each of the 3 different loading phases, for a total of 30 steps.

Have to be taken into consideration that the process of reading the input informa-
tion, and allocation of the main variables has not been parallelized, hence, it was also
necessary the use of graph on figure 4.63, where the time spent along one simple iteration
is reported, omitting the time it takes to write output information, write information
to perform restart operations, allocate the variables at the beginning of the analysis
process, and so on.
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Figure 4.63 Computational time improvement obtained for model B-SSC using
different number of threads running in parallel on one single iteration.



Chapter 5

Conclusions and Final
Remarks

Main findings are presented in a brief summary, where it has been pointed out the
starting point, the contributions and the conclusions belonging to the present study.
Finally, future lines of study and developments has been suggested based on the work
presented and on the main difficulties found while developing the current research.

5.1 Summary

The starting point of this work has been the use of a 3-node and 2-dimensional triangular
shell element with one Gauss point combined with the state-of-the-art rule of mixtures
theories for composite materials. Thus, make it possible to use composite materials
whose components can be modeled with non-linear constitutive equations. Although
the proposed methodology has only been applied to masonry structures in the present
study, it can easily be extended to frame structures with or without masonry in-fills.

The first step to succeed in the present work has been, to propose, develop and im-
plement in PLCD [34] a laminated shell element, able to reproduce the damage due to
bending stresses (out-of-plane), besides of the typical damage due to membrane stresses
(in-plane), this without being necessary to introduce additional degrees of freedom into
its kinematics. Such idea comes with necessity of keeping the complexity of the re-
sulting formulation for the element to a minimum, and consequently, also the required
computational resources, thus, make the masonry structures described in this work
computationally affordable.

The proposed element to reproduce the behavior of laminated materials, according
to the classification of the existing theories, can be classified as a modification of the
DB-ESL (Displacement Based-Equivalent Single Layer) theory, where it is taken into
account the evolution of the eccentricity formed by the geometric and the mechanical
planes of a bi-dimensional element during the damage process, this can be achieved
since integration scheme is intended to be used with a secant constitutive tensors Dsec

ij

instead of the elastic tensor Dij according to [108]. As a result, generalized stresses
and strains have to be referred to the mechanical plane, not to the geometrical plane as
occurs in the classical DB-ESL formulation.

The use of bi-dimensional shell elements capable to reproduce not only the damage
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due membrane stress, but also the damage due bending stresses, was mandatory to
model three-dimensional structures, and demonstrate one of the main hypothesis the
simplified design of confined masonry structures is based upon, which is the neglect of
the bending-acting masonry walls. Also, it has been possible to notice the stiffness en-
hancement of masonry walls adjacent to short walls formed in the windows openings, the
overall behavior of such structures, and damage evolution of the constituent structural
elements while subjected to lateral forces.

Using the proposed scheme, not only it has been possible to obtain the force-
displacement response for a confined masonry structure of one storey high, but also, for
a medium-rise confined masonry building. In both cases, results have been compared
with the active code regulation for construction in masonry and concrete of Mexico City
finding good agreement among them. With the results obtained, has been possible to
characterize the damage scenarios such structures could undergo in a zone with high
seismic activity, to do so, it has been used the methodology proposed by Alzate [8] to
assess a reliable seismic demand, and consequently, to state a probabilistic damage a
structure would undergo given such seismic demand.

It is important to point out that the use of a macro-modeling technique combined
with plain finite elements has proven been effective for most of the cases analyzed
in chapter 3, which have been compare with some experimental results available in
the literature. Using this scheme also has been possible to obtain good concordance
among the results of models analyzed in chapter 4 and the results obtained using the
construction code regulation for Mexico City described in references [2, 3, 4, 5, 6]. On
the other hand, the possibility of using a large strain formulation approach for the
studied structures seems rather inefficient, due to the small amount of deformation they
undergo when cracking occurs.

In order to be able to reproduce the steel reinforcement pattern of real-life construc-
tions, a computational tool was developed having in mind the 3 principal requisites
shown next:

1. Reproduce a more realistic reinforcement pattern.

2. Mechanize process where volumetric part of components within a composite ma-
terial is generated.

3. Capable of handling information of large meshes.

Such tool arose as the need of mechanizing and generates the composite material
information given a large mesh of triangular finite elements, and a real-life steel rein-
forcement pattern of every layer within the composite. To achieve this, it is necessary
to read pre-defined text files, where the information regarding the steel reinforcement
patterns has been stored.

On the other hand, due to the size of the models considered in this work, it was also
necessary to adopt a programming strategy that allow to reduce the execution time of
analysis, and also to reduce the computational resources required in terms of memory
RAM, such strategy is briefly described in next paragraphs.

� The first step in the running-time based optimization of the PLCD code, was
to detect the most time-consuming processes (also called hotspots in computing
programming terms) with the tool named VTune Amplifier Software [138]. One
of the conclusions of using VTune was that intrinsic functions to perform matrix



5.2. Conclusions 175

operations had to be avoided, instead, the use of implied matrices operation func-
tions had to be implemented. Also, the use of VTune pointed out the processes
that would be necessary to parallelize.

� In order to take advantage of new technologies in current shared memory multi-
processing techniques to reduce analysis time, using OMP directives, the module
of shells within the PLCD [34] code has been programmed to run in parallel.
Hence, was paralellized the loop over the elements where the generalized strains
(ε̂) and the corresponding generalized stresses (σ̂) are evaluated, also, the loop
over the elements where the constitutive equations for each of their components
is integrated was paralellized.

� In order to reduce the amount of memory stored along the execution process,
it has been implemented a scheme where user-defined data structures have been
used to store information for the finite elements, where only the information of
components (internal variables, stresses and strains) are stored for elements within
a non-linear range.

� Another alternative to the memory-consuming drawback has been explored, this
is the use of iterative solvers for the solution of the linear system of equations.
Although iterative solvers are more time-consuming than direct solvers, in cases
of large structures their use is justified on the ground that they need less amount
of memory to store the required matrices to solve the resulting linear system of
equations.

5.2 Conclusions

This thesis deals with the analysis of large masonry structures, whose pursued objectives,
introduced in section 1.2, have been fulfilled satisfactorily. This is, a methodology to
analyze masonry structures has been developed, implemented in the context of the
finite element method, and finally, compared in some cases, with experimental results,
and in other cases with building regulations obtaining good results. Other conclusions
regarding the development of this thesis are listed below.

� The integration scheme over the thickness proposed in this work, combined with
a bi-dimensional triangular element has proved that is capable to reproduce the
damage due bending stresses while compared with three-dimensional finite ele-
ments, being not necessary the use of additional degrees of freedom.

� A significant advantage of the modification proposed to the DB-ESL theory, is
being able to use laminated materials combined with the state-of-the-art rule
of mixtures theories for composite, which in the case of the present work has
been applied to model the behavior of the reinforced concrete confining elements.
Also, the use of non-linear constitutive equations to model the behavior of its
components is possible. This make possible to model and assess the damage of
three-dimensional structures with a reasonable low requirement of computational
resources.

� To extend the proposed scheme to a composite material is only required to obtain
the secant constitutive tensor Dsec

ij of such composite.
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� The proposed integration scheme over the thickness, due to its nature, in any case
is able to reproduce debonding effects.

� For the tested models, it has been proved the significant difference among the stiff-
ness of masonry walls when their planes are perpendicular (bending-acting walls)
or parallel (membrane-acting walls) to the direction of the acting force. Such effect
has been taken into account for most of the construction code regulations, assum-
ing the higher damage will occur on the membrane-acting walls, and despising
for designing purposes, the bending-acting walls, which coincides with obtained
results of this work.

� In the studied cases of this work, has been observed the stiffener effect produced
by the short masonry walls formed at the windows openings that entirely change
the stiffness, and consequently, the structural behavior of the adjacent masonry
walls.

� The analysis scheme for masonry buildings proposed in this work, stand on the
basis that it is possible to obtain the parameters that define the mechanical and
non-linear response of masonry elements, this, in order to be able to plot an
anisotropic yield function. In this work a guidance using a construction code
regulation has been proposed, as an attempt to settle the mechanical properties
and non-linear response of masonry elements for practical purposes.

� The cases where it has been possible to perform a comparison of experimental
results with the results obtained in this work, it has been achieved a well agreement
in terms of cracking patterns and overall shear response. In some other cases,
it only has been possible to compare obtained results with a construction code
regulation, in terms of initial stiffness and overall shear strength, in such cases,
also a reasonable well agreement has been achieved.

� It has been possible to model a typical confined masonry building of 6 stories
height. Results obtained for such models have been compared with a construction
code regulation in terms of their initial stiffness where a reasonable well agreement
has been achieved. Also an analysis of probabilistic assessment of the global
damage of the structure has been carried out using the scheme proposed by Alzate
[8] and the design response spectrum for Mexico City.

5.3 Future Work

� The use of a macro-modeling technique applied for masonry structures has proved
not being effective while attempting to reproduce the cracking propagation pat-
terns throughout mortar joints. Such effect is typically present in two cases:
a) in masonry walls where the strength of the mortar is considerably low com-
pared with the strength of the masonry units, or b) in masonry walls with a poor
bonding strength among masonry units and mortar joints. Although for a real life
construction, a cracking propagation pattern throughout the masonry unit is not
desired or expected, in this work, such effect was only possible to be reproduced
using a simplified micro-modeling technique, which due to its nature, is costly
from a computational point of view. To overcome this situation, it seems conve-
nient to explore a solution like the one proposed by Pelà [130] where the use of
macro-modeling techniques are combined with a crack tracking algorithm.
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� The performed analysis have exhibit difficulties to reach a valid solution once a
plastic process has started within a given element. Such situation is typical of
linear triangular elements, it is fully documented in [32], and appears due the lack
of satisfaction of the Babǔska–Brezzi condition [53]. Hence, a mixed formulation
involving pressure and displacement fields [32] needs to be considered to enhance
the current capabilities of the element.

� The evaluation of the dynamic response of masonry structures is almost manda-
tory to fully understand the failure mechanisms and reliably assess the structural
safety, hence to fulfill this aspect, it is necessary the implementation of a time step
integration scheme.

� Extend the formulation into one-dimensional elements with six degrees of freedom
in such a way the can be coupled with the proposed shell elements. Achieving this
would allow to reproduce the behavior of flat slabs structures, and to focus on the
punching shear.

� In order to achieve a fully optimized formulation, improve the efficiency of the
analysis process, and speed up both solution and convergence, a tangent stiffness
matrix for the element have to be formulated or evaluated using perturbations
techniques.
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posteŕıa, No. 403. Mexico, D.F.

[66] Jason, L., Huerta, A., Pijaudier-Cabot, G., and Ghavamian, S. An
elastic plastic damage formulation for concrete: Application to elementary tests
and comparison with an isotropic damage model. Computer methods in applied
mechanics and engineering 195, 52 (2006), 7077–7092.

[67] Ju, J. On energy-based coupled elastoplastic damage theories: constitutive mod-
eling and computational aspects. International Journal of Solids and Structures
25, 7 (1989), 803–833.

[68] Kachanov, L. Time of the rupture process under creep conditions. Isv. Akad.
Nauk. SSR. Otd Tekh. Nauk 8 (1958), 26–31.

[69] Kachanov, L. Introduction to continuum damage mechanics. Martinus Nijhoff
Dortrecht, The Netherland, 1986.

[70] Khosravi, P., Ganesan, R., and Sedaghati, R. Corotational non-linear
analysis of thin plates and shells using a new shell element. International Journal
for Numerical Methods in Engineering 69 (2007), 859–885.

[71] Knight, N. Raasch challenge for shell elements. The American Institute of
Aeronautics and Astronautics Journal 35 (1997), 375–371.
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Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico (1971).
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[118] Oller, S., Oñate, E., and Miquel, J. Mixing anisotropic formulation for
analysis of composites. Communications in numerical methods in engineering 12,
8 (1996), 471–482.



References 187
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[121] Organizmo Nacional de Normalización y Certificación de la Con-
strucción y Edificación S.C. Building industry - blocks, bricks, brincks or
partition masonry units and paving block - Compresive Strengh - Method of test,
2004.

[122] Ortiz, M., and Popov, E. P. Plain concrete as a composite material. Mechanics
of Materials 1, 2 (1982), 139–150.

[123] Pacoste, C. Co-rotational flat facet triangular element for shell instability anal-
ysis. Computer Methods in Applied Mechanics and Engineering 156, 1 (1998),
75–110.

[124] Page, A. W. Finite element model for masonry. Journal of Structural Division
104, 8 (1973), 1267–1285.

[125] Page, A. W. The biaxial compressive strength of brick masonry. In ICE Pro-
ceedings (1981), vol. 71, Thomas Telford, pp. 893–906.

[126] Page, A. W. The strength of brick masonry under biaxial compression-tension.
International Journal of Masonry Construction 3, 1 (1983), 23–31.

[127] Paredes, J. A. Modelización numerica del comportamiento constitutivo del daño
local y global y su correlacion con la evolucion de las recuencias naturales en
estructuras de hormigón reforzado. PhD dissertation, Escola Tècnica Superior
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Canals I Ports. Universitat Politècnica de Catalunya, Barcelona, España, 2006.

[137] Rathbun, J. Wind forces on a tall building. Proceedings of the American Society
of Civil Engineers 64 (1938), 1355–1375.

[138] Reinders, J. Vtune performance analyzer essentials: Measurement and tuning
techniques for software developers. engineer to engineer series. Intel Press 1, 2
(2005), 6.
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[159] Timoshenko, S., and Goodie, J. Teoŕıa de la Elasticidad. Ediciones Urmo S.
A, Bilbao, España, 1968.

[160] Timoshenko, S., and Woinowsky-Kringer, S. Teoŕıa de Placas y Láminas.
Ediciones Urmo S. A., Bilbao, España, 1970.

[161] Tollmien, W., Schlichting, H., and Görtler, H. Spannungsverteilung
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Appendix A

Damage Constitutive Model

In this appendix, a brief description of formulation regarding to this branch of
Continuum Mechanics is reproduced, emphasising to models in which damage is de-
scribed by one or two scalars.

A.1 Effective Stress Concept

Continuum damage mechanics is based upon the definition of the effective stress σ̄
(measured in the non-damaged space) firstly introduced by Kachanov [69], and later
on such concept was used in accordance with equivalence deformation by Lemaitre-
Chaboche [76], σ̄ can be computed as

σ̄ = C0 : ε (A.1)

being C an isotropic linear-elastic four order tensor. In the case of an isotropic damage
model, damage occurs equal in all directions and only depends on a scalar damage
variable d, hence equation (A.1) takes the form [111]

σ̄ =
σ

1− d (A.2)

damage stress σ under an effective stress σ̄ can be also represented as

σ = (1− d)σ̄ = (1− d)C0 : ε (A.3)

Under such assumptions damage internal variable d becomes a measure of loss of
stiffness, whose limits are 0 ≤ d ≤ 1. A fully damage state is represented by d = 1
whereas d = 0 represents a non-damaged state.

A.2 Thermodynamic Framework and Constitutive Re-
lationship

Constitutive relationship is obtained by writing the dissipation of the thermo-mechanical
process. Helmholtz free energy potential will be needed as a measurement of the total
potential energy. Hence, for an isotropic damage model under constant temperature,
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using ε and d as free and internal variables respectively, Helmholtz free energy potential
can be defined as

Ψ = Ψ(ε, d) = (1− d)Ψ0 (A.4)

being Ψ0 Helmholtz initial free energy for an undamaged state, for the case of small
strains is given by

Ψ0(ε) =
1

2
ε : C0 : ε ; Ψ0(ε) =

1

2
εij Cijkl εkl (A.5)

where C0 is the undamaged constitutive tensor. Finally dissipative potential energy
subjected to a thermally stable process is set using the Clausius-Planck inequality.

Ξ =

(
σ − ∂Ψ

∂ε

)
: ε̇− ∂Ψ

∂ḋ
≥ 0 (A.6)

Finally, constitutive hyper-elastic equation for damage model with one damage scalar
variable is defined as:

σ =
∂Ψ

∂ε
= (1− d)

∂Ψ0

∂ε
= (1− d)C0 : ε (A.7)

A.3 Damage Criterion

Damage criterion depends on mechanical properties of a given material, and in its general
form is given by following expression [111]

F(σ0; q) = f(σ0)− c(d) ≤ 0 (A.8)

where q ≡ {d}, f(σ0) is a function of stress tensor σ0 = C0 : ε, and c(d) is an stress-
like variable, representing the current damage threshold, as its variable controls the
size of the (monotonically) expanding damage surface. The initial value of the damage
threshold is c0 = σ0, where σ0 is the initial uniaxial damage stress.

A.4 Evolution Law of Internal Variables

The expansion of the damage bounding surface for loading, unloading and reloading
conditions is controlled by the Kuhn-Tucker relations and the damage consistency con-
ditions, which are:

ṙ ≥ 0 ; F(σ0; q) ≤ 0 ; ċF(σ0; q) = 0 (A.9)

Which leads to the loading condition:

ḟ = ċ (A.10)

Leading to the explicit definition of the current values of the initial variable c(d) in
the form

c(d) = max {c0,max(F)} (A.11)
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Equation (A.11) allows to compute the current values for c(d) in terms of the current
value of F(σ0; q), which depends explicitly on the current total strains.

Finally, damage index d = d(r) is explicitly defined in terms of the corresponding
current value of damage threshold, so that it is a monotonically increasing function such
that 0 ≤ d ≤ 1.

Within the present work, following functions to represent damage evolution are used:
where HS is the softening modulus.

� Linear Softening

d(r) =

(1 +HS)(1− c0

c
) c0 ≤ c ≤ cu = c0

(
1− 1

HS

)
1 c ≤ cu

(A.12)

� Exponential Softening

d(r) = 1− c0

c
exp

{
−2HS

(
c− c0
c0

)}
; c0 ≤ c (A.13)

A.5 Tangent Operator

The tangent constitutive tensor Ctan can be obtained explicitly. The stress increment
is given by:

σ̇ = Ctan : ε̇

= (1− d)C : ε̇− ḋC : ε (A.14)

= (1− d)C : ε̇− ḋσ

In the elastic regime, the stress rate is expressed as:

σ̇ = (1− d)C : ε̇ ; ḋ = 0 (A.15)

Recalling that the rate of the damage index has been expressed as ḋ = d′ṙ and that
the loading direction ṙ = τ̇ , then the stress increment can be expressed as:

σ̇ = (1− d)C : ε̇− d′

τ
σ ⊗ σ : ε̇ (A.16)

σ̇ =

[
(1− d)C− d′

τ
σ ⊗ σ

]
ε̇ (A.17)

And the tangent constitutive tensor stays as:

Ctan = (1− d)C− d′

τ
σ ⊗ σ (A.18)
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Appendix B

Plasticity

This Appendix reproduces the governing equations of classical rate-independent plastic-
ity model following formulation presented in [152], where a comprehensive exposition on
stress-space formulation within the context of the three dimensional infinitesimal theory
has been driven.

B.1 General Formulation

1. Additive decomposition of the strain tensor. Assumption that strain tensor ε can
be decomposed into an elastic εe and plastic part εp is made, hence

ε = εe + εp (B.1)

Since ε is regarded as an independent variable and evolution of εp will be defined
as a flow rule, equation (B.1) should be viewed as a definition of elastic strain
tensor as εe = ε− εp.

2. (Elastic) stress response. Stress tensor σ is related to elastic strain ε by means of a
stored-energy function W : B×S→ R according to the (hyperelastic) relationship

σ(x, t) =
∂W [x, εe(x, t)]

∂εp
(B.2)

For linearized elasticity, W is a quadratic form in the elastic strain, i.e.,
W = 1

2ε
e : C : εe, where C is the tensor of elastic moduli which is assumed

constant. Then equations (B.1) and (B.2) imply

σ = C : [ε− εp] (B.3)

It is observed that equations (B.2) -(B.3) and the decomposition (B.1) are local.
Therefore, although the total strain is the (symmetric) gradient of the displace-
ment field, the elastic strain is not in general the gradient of an elastic displacement
field. Shall be noticed that εp and, consequently, εe are assumed to be symmetric
at the outset, i.e., εp ∈ S. Thus the notion of a plastic spin plays no role in classical
plasticity.
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3. Elastic domain and yield condition. Yield Criterion function f : S × Rm → R
which constrains the admissible states {σ, q} ∈ S × Rm has been define to lie in
the set Eσ as

Eσ := {(σ, q) ∈ S× Rm f(σ, q) ≤ 0} (B.4)

Interior of Eσ is referred to as int(Eσ) and given by

int(Eσ) := {(σ, q) ∈ E× Rm f(σ, q) < 0} (B.5)

as the elastic domain; whereas the boundary of Eσ, denoted by ∂Eσ and defined
as

∂Eσ := {(σ, q) ∈ E× Rm f(σ, q) = 0} (B.6)

is called the yield surface in stress space. Can be noticed that {(σ, q)} outside Eσ
are nonadmissible and are ruled out in classical plasticity.

4. Flow rule and hardening law. Irreversibility of plastic flow is introduced by the
following equations of evolution for {εp, q}, called flow rule and hardening law,
respectively;

ε̇p = γr(σ, q),

q̇ = −γh(σ, q).
(B.7)

Where r : S × Rm → S and h : S × Rm → Rm are prescribed function which
define direction of plastic flow and type of hardening. Parameter γ ≥ 0 is a non-
negative function, called the consistency parameter, assumed to obey following
Kuhn-Tucker complementary conditions:

γ ≥ 0, f(σ, q) ≤ 0, γf(σ, q) = 0. (B.8)

In addition to condition B.8, γ ≥ 0 satisfies the consistency requirement

γḟ(σ, q) = 0 (B.9)

In the classical literature, conditions B.8 and B.9 are known as loading/unloading
and consistency conditions, respectively.

5. To exploit condition (B.9), derivative of f have to be evaluated at (σ, q) ∈ Eσ.
Using chain rule, along with the rate forms of the stress-strain relationship (B.4),
the flow rule, and the hardening law (B.7), is found that

ḟ = ∂σf : σ̇ + ∂qf · q̇
= ∂σf : C : [ε̇− ε̇p] + ∂qf · q̇ (B.10)

= ∂σf : C : ε̇− γ [∂σf : C : r + ∂qf · h ] ≤ 0
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Assuming that flow rule, hardening law, and yield conditions in stress space are
such that following inquiry hold

[∂σf : C : r + ∂qf · h ] > 0 (B.11)

for all admissible states [σ, q ] ∈ ∂σ. Such assumption only holds for perfect
plasticity, yielding (B.9) to

ḟ = 0 ⇐⇒ γ =
〈∂σf : C : ε̇〉

∂σf : C : r + ∂qf · h
(B.12)

Finally, according to (B.2) and (B.7):

σ̇ = C : [ε̇− ε̇p] = C : [ε̇− γr ] (B.13)

Then, substituting (B.12) in (B.13) then yields the rate of change of σ in terms
of the total strain rate ε̇ as follows

σ̇ = Ctan : ε̇ (B.14)

being Ctan the so-called tensor of tangent elastoplastic moduli given by the ex-
pression:

Cep =


C if γ = 0

C = C− C : r ⊗C : ∂σf

∂σf : C : r + ∂qf · h
if γ > 0

(B.15)

Can be noticed that Ctan is generally non-symmetric for arbitrary r(σ, q), except
in the case where

r(σ, q) = ∂σf(σ, q) (B.16)

which has special significance and is called associative flow rule.

B.2 J2 Flow Theory with Isotropic/Kinematic Hard-
ening

A choice of internal plastic variables which is typically of metal plasticity is q :=
{
α, β

}
.

Where, α is the equivalent plastic strain that defines the isotropic hardening of the von
Mises yield surface, and β defines the center of the von Mises yield surface in stress
deviator space. The resulting J2-plasticity model has the following yield condition flow
rule and hardening law:
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η : = dev[σ]− β

tr
[
β
]

= 0

f(σ, q) = ‖η‖ −
√

1

2
K ′(α) (B.17)

ε̇p = γ
η

‖η‖

β̇ = γ
2

3
H ′(α)

η

‖η‖

α̇ = γ

√
2

3

Functions K ′(α) and H ′(α) are called the isoparametric and hardening modulus,
respectively. Since ‖ε̇‖ = γ, relationship (B.17)6 implies that

α(t) :=

∫ t

0

√
2

3
‖ε̇p(τ)‖ dτ (B.18)

which agrees with the usual definition of equivalent plastic strain.
Now, the plastic consistency parameter given by B.12 in the general case takes the

explicit form:

γ =
〈n : ε̇〉

1 +
H ′ +K ′

3µ

(B.19)

where

n :=
η

‖η‖ (B.20)

Since tr[n ] = 0, n : ε̇ ≡ n : dev[ε̇]. Finally for 〈γ〉 = γ ≥ 0, i.e., for plastic loading,
the elastoplastic tangent moduli are obtained from (B.15) as

Cep = κ1⊗ 1 + 2µ

[
I− 1

3
1⊗ 1− n ⊗ n

1 + H′+K′

3µ

]
forγ > 0 (B.21)

B.3 J2 Flow Theory - Projection onto Plane-Stress
Subspace

Equations resulting from the plane-stress constraint σ3i ≡ 0 for i = 1,2,3 plays a crucial
role in the algorithmic treatment of the plane-stress problem. Symmetry of second order
tensor vector space S implies that dim[S] = 6. The plane-stress subspace (SP ⊂ S) is
obtained from S by appending three additional constrains as follows

SP := {σ ∈ S σ13 = σ23 = σ33 ≡ 0} (B.22)
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Similarly, subspace of deviatoric symmetric second-order tensors, denoted by SD ⊂ S
is defined by three additional constrains on S:

SD := {S ∈ S S13 ≡ S23 = 0, tr[S] := Skk ≡ 0} (B.23)

Hence, dim[SP ] = dim[SD] = 3. Since both SD ⊂ S and SP ⊂ S are isomorphic to
R3, using vector notation and express σ ∈ SP and S ∈ SD as

σ := [σ11 σ22 σ12]T S := [S11 S22 S12]T (B.24)

The mapping P̄ : SP → SD connecting the constrained stress tensor σ ∈ SP and its
deviatoric S := dev[σ] ∈ SD and using matrix notation

S := dev[σ] = P̄σ (B.25)

where

P̄ :=
1

3

 2 −1 0
−1 2 0
0 0 3

 (B.26)

Although the component S33 is non-zero, it need not be explicitly included in (B.24).
Also can be noticed that P̄ is not a projection, i.e., P̄P̄ 6= P̄.
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Appendix C

Architectural Drawings for
Model B-SSC

In this appendix, are outlined the architectural drawings used as the starting point
for the model presented in section 4.2 (model B-SSC from now on), structural design
presented in appendix E and structural information presented in appendix F are based
upon the architectural information presented in this appendix.

In order to be certain that the architectural project presented in this section can
be considered as a typical masonry building as the ones designed and constructed at
Mexico City, Architect Jorge Espinosa de los Montero (Head of the Departmental Unit
for Projects at the National Housing Institute in Mexico City, or Jefe de la Unidad
Departamental de proyectos de Obra del Instituto Nacional de la Vivienda in Spanish)
has been consulted, highlighting the following observations:

� In order for a governmental institution such as INVI (National Housing Institute,
in Spanish) to be allowed to fund a dwelling unit, the area of such dwelling unit
have to be equal or less than 54 m2. Ergo, for the case presented in this section in
a real situation, the owner of a dwelling will be required for an off-front payment
equivalent to the 3m2 of the surplus area, since the area of the proposed dwelling
is 57m2.

� A common rule for masonry buildings constructed in Mexico City is that four
apartments have to be connected with only one stair hallways (as can be seen in
figure C.1). Buildings as the one of figure C.1 are named H buildings in a non-
formal sense. The regulation of using one stair hallways to connect four apartments
is based on the economy of the construction, and to reduce to a minimum the
non-constructed area of the property given the lack-of-space situation undergone
in Mexico City.

Although both of the previously cited characteristics are not comply, regarding the
remaining architectural characteristic of the construction, such as, space distribution in
plan view, building height, dimension of window openings, and so on, can be considered
as typical, hence, for the pursued purposes of this work, the drawings presented in this
section can be considered as a typical masonry building designed and constructed in the
present days at Mexico City.
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Figure C.4 Architectural Drawing - Section A-A’.
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Figure C.5 Architectural Drawing - Principal Facade.



Appendix D

Design of a Masonry Building
Using a Mexican Design Code

Present appendix is intended to reproduce, in a brief manner, the methodology an
engineer should follow to design one structure composed by confined bearing walls in
accordance with the buildings code shown below

� Normas Técnicas Complementarias para el Dise~no por Sismo 2004 [3].

� Normas Técnicas Complementarias para Dise~no y Construcciones de

Estructuras de Mamposterı́a, 2004 [6].

� Normas Técnicas Complementarias para Dise~no y Construcciones de

Estructuras de Concreto, 2004 [4].

� Normas Técnicas Complementarias sobre Criterios y Acciones para el

Dise~no Estructural de las Edificaciones, 2004 [5].

� Reglamento de Construccion del Distrito Federal 1993 [2].

� Manual de Dise~no de Obras Civiles de la Comisión Federal de

Electricidad - Dise~no por Sismo, 1997 [1].

Also, reader may consult reference [65] to abound on the subject.
Designing a building with confined masonry, as most of the designing process has to

be an iterative process, and some factor has to be settled before starting it. In the first
place, have to be properly executed the architectural project, and with it, three major
issues:

� Unit. Due the diversity of units in the market to form masonry, selected unit has
to be clearly specified, since both mechanical properties and dynamical response
are tightly linked to it.

� Construction Location. It is straightforward realize that location will be needed
to evaluate accidental forces, such as wind or seismic forces.

� Bearing wall locations. It is also clear that sometimes partition walls not intended
to have any structural response are commonly used, and such kind of walls have to
be clearly specified in the architectural drawings, along with lengths and heights.
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Figure D.1 Location of masonry bearing walls and its tributary areas.

As a typical structural designing scheme, in such kind of buildings, reinforced con-
crete walls are used combined with confined masonry walls as stiffeners. Economical
and architectural factor has direct impact on engineer’s choices while selecting which
wall have to be made of reinforced concrete.

Major advantage of using concrete bearing walls is noticed while designing the struc-
ture under lateral forces, due their stiffness, dynamical response of the structure is
changed, lowering the elastic fundamental period of vibration of the structure.

Let us assume drawings of figure (D.1) depict the view in plan of a 6-storey con-
fined masonry building (arrangement of walls will be the same in the 6 storeys). Basic
information regarding walls will be required, such as

� Geometry. Figure (D.1) on the left, shows a way the distinction of walls shall
be made, assigning them a number, and consequently; its length, thickness and
height. Such information will be needed in the first place to evaluate its weight,
and in the other hand, to evaluate its stiffness, as will be seen later in this section,
on equation D.4.

� Shape. Shape of a wall has to be understood as the shape in plan distinguished
among 4 possibilities: I, L, T or O. Part II, Section 4.4.4 of reference [65]
explains how could be incremented the inertia modulus I of the wall due presence
flanges.

� Type of unit and mortar. Tables 2.7, 2.8 and 2.9 of reference [6] relates both
the type of unit and mortar being f∗m and v∗m the resistance under compression
and the shear resistance of masonry respectively.

D.1 Vertical In-plane Loads

1. As a general rule of thumb, the first step is to review the loading resistance of
walls under vertical forces, this is doing by fulfilling that PU ≤ PR, from next
equations

PU = φ(WD +WL) (D.1)
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Figure D.2 Location of stiffness direction and centroids.

PR = FRFE(f∗mAT +
∑

ASFY ) (D.2)

where
PU = Nominal vertical load.

PR = Design vertical load.

WD = Dead load.

WL = Live load.

φ = Loading factor (Section 3.4 Reference [5]).

FR = Resistance factor (Section 3.1.4 from [6]).

FE = Eccentricity factor (Section 3.2.2.3 from [6])

f∗m = Resistance under compression of masonry.

AT = Total area of the wall.

AS = Area of reinforcement steel.

FY = Yield strength of reinforcement steel.

Equations D.1 and D.2 only apply while designing a masonry wall.

D.2 Lateral In-plane Loads

A general procedure to estimate the lateral seismic forces following the so-called seismic
detailed analysis is presented next.

2. Total stiffness kKx,y have to be evaluated in the form

kKx =
∑
i=1,n

kKi
x ; kKy =

∑
i=1,n

kKi
y ; (D.3)

where subindex k stands for storey, Kx,y is the stiffness of the wall and it depends
on its orientations, as can be seen from figure (D.2), for walls M-01, M-02, M-03
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Figure D.3 Representation of modal-spectral scheme.

and M-04 K1
y = K2

y = K3
y = K4

y = 0, being straightforward that walls only have
stiffness along its longitudinal direction. Stiffness K shall be evaluated as follows.

Ki
m =

1

hi

[
(hi)2

3EiIi
+

1

AiTG
i

] ; Ki
c =

1

hi

[
(hi)2

3EiIi
+

6

5AiTG
i

] (D.4)

where
E = Young modulus of masonry from section 2.8.5. reference [6].

I = Inertia modulus obtained according to part II, section 4.4.4

from [65].

AT = Cross section’s area, without flanges.

G = Shear modulus according to Section 2.8.6 reference [65].

h = Non-restricted height.

Ki
m and Ki

c are stiffness for a confined masonry and concrete wall respectively.
Finally, center of stiffness for each storey kXCS ,

kYCS has to be evaluated.

3. Evaluate total mass km and center of mass kXSM ,
kYSM of each storey. Mass

shall be evaluated according to Title Sixth, Chapter IV and V of reference [2].

4. Elastic fundamental period of vibration Ts in x and y direction have to be evaluated
solving and dynamic model with a single degree of freedom figure (D.3a).

5. Peak modal response is used with an elastic response spectrum to represent the
dynamic effects due ground motion ac (D.3b).

6. Lateral forces over the entire storey in each direction (fig.D.3c) are evaluated using
equation D.5.

kFx,y =
(ac)x,y
Qx,y

× WT∑
k=1,n

kW kH
× kW kH (D.5)
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where
kF = Entire lateral force of storey k.

ac = Ground acceleration.

Q = Structural behavior factor, defined in section 5 of reference [3].

WT = Entire weight of the structure.
kW = Weight of storey k.
kH = Height of storey k (fig.D.3).

7. First step to insure resistance of a given wall under lateral forced is to fulfil con-
dition among shear strengths VU ≤ VR, equations (D.6) and (D.7) detail the way
they are determined.

VU = φ (VD + VT ) (D.6)

VR = FR
(
0.50v∗mA

i
T + 0.3P i

)
≤ 1.5FRv

∗
mA

i
T (D.7)

From equation (D.6) VD of wall i on storey k has to be understood as a direct
distribution of shear Fx,y, determined as shown below,

kV iD =
kKi

kK
kFx,y (D.8)

on the other hand, VT is a distribution of shear due horizontal torsional moment
(MT )x,y (fig.D.2), in the form:

k(MT )x = k(Fxey) ; k(MT )y = k(Fyex) (D.9)

kV iT =
(
kMT

)
x,y

k
(
Kidi

)∑
i=1,n

k
[
Ki (di)

2
] (D.10)

Have to be noticed that VD = VT = 0 for seismic forces acting on perpendicular
direction of the wall, since VU is only evaluated when direction of lateral forces lie
parallel to longitudinal direction of the given wall.

where
VU = Nominal shear strength.

VR = Design shear strength.

φ = Loading factor (section 3.4 reference [5]).

FR = Resistance factor (section 3.1.4 reference [6]).
k(MT )x,y = Horizontal torsional moment of storey k.

kex,y = Eccentricity at storey k.
kdi = Distance from center of stiffness to a given wall i (fig. D.2).

v∗m = Shear resistance of masonry.

P = Gravity load, equal to P = WD +WL (eq. D.1).

8. Finally in-plane flexural moment condition of resistance MU ≤ MR have to be
fulfilled.

kM i
U =

∑
(kh)2∑
kh

kV iD (D.11)



214 D. Design of a Masonry Building Using a Mexican Design Code

MR =


FRMo + 0.30PUd if 0 ≤ PU ≤

PR

3

(1.5FRMo + 0.15PRd)

(
1− PU

PR

)
if PU >

PR

3

(D.12)

where
MU = Nominal in-plane flexural moment strength.

MR = Design in-plane flexural moment.

PU = Nominal vertical load (Eq. D.1).

PR = Design vertical load (Eq. D.2).

FR = Resistance factor (section 3.1.4 reference [6]).

Mo = ASfyd
′. flexural strength of wall.

d = Distance from steel centroid of confined column under tensile
stress to farthest fiber under compression stress (fig D.4).

d′ = Distance between centroid of steel (fig. D.4).

Figure D.4 Typical view in plan of a confined masonry wall.
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Structural Analysis Using a
Commercial Software

The results presented in this section have been obtained using a commercial software
for analysis and design of masonry structures named ANEMgcW [37], which is based
on reference [6] to perform the analysis and design of masonry walls, in reference [4] to
review the concrete walls and confining elements, and also in reference [3] to predict the
seismic response of the analysed structures.

The procedure followed to obtain the results shown in this section are listed below:

1. With the architectural information presented in appendix C, the bearing walls
have been distinguished, measured and enumerated, the result is displayed in
figure E.1. An output of such information obtained using ANEMgcW is also
displayed in figure E.3.

2. An analysis of the tributary areas of the walls enumerated in step 1 has been
carried out, results are displayed in figure E.2.

3. Information such as: weights of walls and floor systems, and mechanical properties
have to be given to ANEMgcW as an input.

Have to be pointed out that the model B-SSC has been designed to withstand the
ground acceleration due to a seismic event as if it was located in seismic zone ZIIIa [3],
the corresponding design spectrum for such zone is depicted in figure E.4, where it is
also shown the response period TX = 0.146s reported as an output by ANEMgcW.
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Figure E.1 Location of masonry bearing walls.

Figure E.2 Localization of tributary areas over bearing walls
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Figure E.3 Localization of bearing walls (ANEM output).
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Figure E.4 Seismic design spectrum for Zone IIIa at Mexico City.



218 E. Structural Analysis Using a Commercial Software

ANEMgcW V3.07 Zone I - Chapter 4 Thesis -ANEM_ZIIIa- 1

Construbiva Arquitectos e Ingenieros S.C. Jl.26/14

ANÁLISIS SÍSMICO DINÁMICO [RDF2004]

PESO TOTAL EN SISMO 634.68 T

CORTANTES BASALES
estático total X: 169.25 T

Y: 169.25 T
estático reducido X: 101.90 T

Y: 100.65 T
mínimo X: 81.52 T [factor: 0.8]

Y: 80.52 T

Centro de masa
Nivel W (T) x (m) y (m)

6 95.05 6.560 4.635
5 107.93 6.560 4.701
4 107.93 6.560 4.701
3 107.93 6.560 4.701
2 107.93 6.560 4.701
1 107.93 6.560 4.701

Suma 634.68

Periodo (seg) Aceleración espectral Coef.Participación
Modo x y x y x y Q'x Q'y

1 0.146 0.141 0.183 0.180 -7.483 -7.467 1.138 1.133
2 0.050 0.049 0.129 0.128 2.431 2.456 1.048 1.046
3 0.032 0.031 0.118 0.117 1.336 1.355 1.030 1.029
4 0.024 0.024 0.114 0.113 0.818 0.832 1.023 1.022
5 0.020 0.020 0.112 0.111 -0.497 -0.518 1.019 1.019
6 0.019 0.018 0.111 0.110 0.292 0.340 1.018 1.017

Peso modal efectivo % de peso total
Modo x (T) y (T) x y

1 549.38 546.94 86.56 86.18
2 57.95 59.19 9.13 9.33
3 17.52 18.00 2.76 2.84
4 6.57 6.78 1.04 1.07
5 2.42 2.63 0.38 0.41
6 0.83 1.13 0.13 0.18

Suma 634.68 634.68 100.00 100.00

Cortantes basales Alturas efectivas Momentos de volteo
Modo Vx (T) Vy (T) Hx (m) Hy (m) Mx (T*m) My (T*m)

1 88.20 86.74 10.788 10.820 951.49 938.50
2 7.11 7.23 -3.428 -3.179 -24.38 -22.99
3 2.01 2.05 2.203 2.034 4.42 4.18
4 0.73 0.75 -1.802 -1.691 -1.32 -1.27
5 0.26 0.29 1.499 1.295 0.40 0.37
6 0.09 0.12 -0.839 -0.529 -0.08 -0.06

Comb 88.51 87.07 951.82 938.79

Momento de volteo R i g i d e z  t o t a l C o r t a n t e Distorsión*Q' en C.Masa Desplaz. en C.Masa
Ent. x (T*m) y (T*m) x (T/m) y (T/m) x (T) y (T) Q'x:1.138 Q'y:1.133 x (cm) y (cm)

6 52.855 52.593 308564 312432 20.097 19.997 0.00003 0.00003 0.11 0.10
5 160.014 158.828 317223 326507 40.833 40.491 0.00006 0.00005 0.10 0.09
4 313.528 310.518 329008 347810 58.620 57.943 0.00008 0.00007 0.09 0.08
3 504.031 498.291 337454 363283 72.887 71.868 0.00009 0.00009 0.07 0.06
2 720.818 711.630 342474 372986 83.066 81.770 0.00010 0.00009 0.05 0.05
1 951.817 938.795 343934 375865 88.515 87.068 0.00011 0.00010 0.03 0.02

C o r t a n t e Pos.Cortante Centro de torsión Excent.Calculada (m) Dimensiones planta
Nivel x (T) y (T) x (m) y (m) x (m) y (m) SismoX SismoY x (m) y (m)

6 20.10 20.00 6.560 4.635 6.560 5.998 -1.363 0.000 13.240 9.100
5 40.83 40.49 6.560 4.669 6.560 5.945 -1.277 0.000 13.240 9.100
4 58.62 57.94 6.560 4.679 6.560 5.867 -1.188 0.000 13.240 9.100
3 72.89 71.87 6.560 4.683 6.560 5.815 -1.132 0.000 13.240 9.100
2 83.07 81.77 6.560 4.685 6.560 5.784 -1.099 0.000 13.240 9.100
1 88.51 87.07 6.560 4.686 6.560 5.775 -1.089 0.000 13.240 9.100

Excentricidades [ 1.5e+0.1b  ;  e-0.1b ] M o m e n t o s  T o r s i o n a n t e s [ V*e ]
Excent. de diseño (m) sismo dirección X sismo dirección Y sismo dirección X sismo dirección Y

Nivel SismoX SismoY e1 (m) e2 (m) e1 (m) e2 (m) m1 (T*m) m2 (T*m) m1 (T*m) m2 (T*m)
6 -1.363 0.000 -2.955 -0.453 1.324 -1.324 -59.38 -9.11 26.48 -26.48
5 -1.277 0.000 -2.825 -0.367 1.324 -1.324 -115.36 -14.97 53.61 -53.61
4 -1.188 0.000 -2.692 -0.278 1.324 -1.324 -157.82 -16.31 76.72 -76.72
3 -1.132 0.000 -2.608 -0.222 1.324 -1.324 -190.11 -16.19 95.15 -95.15
2 -1.099 0.000 -2.558 -0.189 1.324 -1.324 -212.49 -15.68 108.26 -108.26
1 -1.089 0.000 -2.543 -0.179 1.324 -1.324 -225.09 -15.82 115.28 -115.28
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Fuerzas sísmicas equivalentes

Posición de fuerzas sísmicas
Fuerzas sísmicas sismo direc.X sismo direc.Y

Nivel x (T) y (T) Y1 (m) Y2 (m) X1 (m) X2 (m)
6 20.097 19.997 3.044 5.545 7.884 5.236
5 20.736 20.494 3.246 5.662 7.884 5.236
4 17.788 17.451 3.479 5.792 7.884 5.236
3 14.267 13.925 3.552 5.823 7.884 5.236
2 10.178 9.903 3.585 5.835 7.884 5.236
1 5.449 5.297 3.462 5.749 7.884 5.236

Suma 88.515 87.068

REVISION POR CARGA LATERAL

MURO ENT Fr P (T) K (T/m) Vd (T) Vt (T) Vt' (T) Vu (T) distor*Q' Vr (T)
1 1 0.700 31.63 25,302 6.51 -0.10 0.75 7.30 0.00012 12.43

2 0.700 26.46 25,302 6.14 -0.10 0.71 6.87 0.00012 11.35
3 0.700 21.29 25,302 5.47 -0.11 0.64 6.10 0.00010 10.26
4 0.700 16.12 25,302 4.51 -0.11 0.53 5.01 0.00009 9.18
5 0.700 10.95 25,302 3.26 -0.11 0.38 3.59 0.00006 8.09
6 0.700 5.78 25,302 1.65 -0.07 0.19 1.80 0.00003 7.01

2 1 0.700 31.63 25,302 6.51 -0.10 0.75 7.30 0.00012 12.43
2 0.700 26.46 25,302 6.14 -0.10 0.71 6.87 0.00012 11.35
3 0.700 21.29 25,302 5.47 -0.11 0.64 6.10 0.00010 10.26
4 0.700 16.12 25,302 4.51 -0.11 0.53 5.01 0.00009 9.18
5 0.700 10.95 25,302 3.26 -0.11 0.38 3.59 0.00006 8.09
6 0.700 5.78 25,302 1.65 -0.07 0.19 1.80 0.00003 7.01

3 1 16.59 8,130 2.09 -0.01 0.08 2.32 0.00012
2 13.90 8,130 1.97 -0.01 0.08 2.18 0.00012
3 11.20 8,130 1.76 -0.01 0.07 1.94 0.00010
4 8.50 8,130 1.45 -0.01 0.06 1.60 0.00009
5 5.81 8,130 1.05 -0.01 0.04 1.15 0.00006
6 3.11 8,130 0.53 -0.01 0.02 0.58 0.00003

4 1 16.59 8,130 2.09 -0.01 0.08 2.32 0.00012
2 13.90 8,130 1.97 -0.01 0.08 2.18 0.00012
3 11.20 8,130 1.76 -0.01 0.07 1.94 0.00010
4 8.50 8,130 1.45 -0.01 0.06 1.60 0.00009
5 5.81 8,130 1.05 -0.01 0.04 1.15 0.00006
6 3.11 8,130 0.53 -0.01 0.02 0.58 0.00003

5 1 0.700 22.59 16,112 4.15 0.00 0.01 4.56 0.00012 8.86
2 0.700 18.89 15,917 3.86 0.00 0.01 4.25 0.00012 8.08
3 0.700 15.20 15,331 3.31 0.00 0.01 3.64 0.00010 7.31
4 0.700 11.51 14,608 2.60 0.00 0.00 2.86 0.00008 6.53
5 0.700 7.82 13,694 1.76 0.01 0.01 1.95 0.00006 5.76
6 0.700 4.13 13,404 0.87 0.01 0.00 0.97 0.00003 4.98

6 1 55.46 162,496 41.82 -0.02 0.13 46.02 0.00012
2 46.42 162,496 39.41 -0.02 0.11 43.37 0.00012
3 37.38 162,496 35.10 -0.01 0.06 38.62 0.00010
4 28.33 162,496 28.95 0.02 0.01 31.87 0.00008
5 19.29 162,496 20.92 0.15 0.07 23.19 0.00006
6 10.25 162,496 10.58 0.13 0.06 11.80 0.00003

7 1 0.700 22.59 16,112 4.15 0.00 0.01 4.56 0.00012 8.86
2 0.700 18.89 15,917 3.86 0.00 0.01 4.25 0.00012 8.08
3 0.700 15.20 15,331 3.31 0.00 0.01 3.64 0.00010 7.31
4 0.700 11.51 14,608 2.60 0.00 0.00 2.86 0.00008 6.53
5 0.700 7.82 13,694 1.76 0.01 0.01 1.95 0.00006 5.76
6 0.700 4.13 13,404 0.87 0.01 0.00 0.97 0.00003 4.98

8 1 0.700 16.02 15,807 4.07 0.35 0.18 4.92 0.00013 6.66
2 0.700 13.39 15,807 3.83 0.34 0.17 4.65 0.00013 6.10
3 0.700 10.77 15,466 3.34 0.31 0.16 4.07 0.00011 5.55
4 0.700 8.14 13,909 2.48 0.25 0.12 3.05 0.00009 5.00
5 0.700 5.52 11,394 1.47 0.17 0.08 1.83 0.00007 4.45
6 0.700 2.89 8,317 0.54 0.07 0.03 0.68 0.00004 3.90

9 1 5.97 4,979 1.28 0.11 0.06 1.55 0.00013
2 4.99 4,644 1.13 0.10 0.05 1.37 0.00013
3 4.02 3,710 0.80 0.08 0.04 0.98 0.00011
4 3.04 2,691 0.48 0.05 0.02 0.59 0.00009
5 2.07 1,577 0.20 0.02 0.01 0.25 0.00007
6 1.09 1,258 0.08 0.01 0.00 0.10 0.00004

10 1 5.97 4,979 1.28 0.11 0.06 1.55 0.00013
2 4.99 4,644 1.13 0.10 0.05 1.37 0.00013
3 4.02 3,710 0.80 0.08 0.04 0.98 0.00011
4 3.04 2,691 0.48 0.05 0.02 0.59 0.00009
5 2.07 1,577 0.20 0.02 0.01 0.25 0.00007
6 1.09 1,258 0.08 0.01 0.00 0.10 0.00004

11 1 0.700 16.02 15,807 4.07 0.35 0.18 4.92 0.00013 6.66
2 0.700 13.39 15,807 3.83 0.34 0.17 4.65 0.00013 6.10
3 0.700 10.77 15,466 3.34 0.31 0.16 4.07 0.00011 5.55
4 0.700 8.14 13,909 2.48 0.25 0.12 3.05 0.00009 5.00
5 0.700 5.52 11,394 1.47 0.17 0.08 1.83 0.00007 4.45
6 0.700 2.89 8,317 0.54 0.07 0.03 0.68 0.00004 3.90
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REVISION POR CARGA LATERAL

MURO ENT Fr P (T) K (T/m) Vd (T) Vt (T) Vt' (T) Vu (T) distor*Q' Vr (T)
12 1 32.21 24,585 6.33 1.00 0.51 8.23 0.00014

2 26.99 24,585 5.96 0.95 0.49 7.77 0.00014
3 21.77 24,585 5.31 0.89 0.45 6.97 0.00012
4 16.56 24,585 4.38 0.79 0.38 5.81 0.00010
5 11.34 24,585 3.16 0.63 0.29 4.27 0.00008
6 6.12 24,585 1.60 0.34 0.15 2.19 0.00004

13 1 4.40 720 0.19 0.05 0.02 0.26 0.00016
2 3.68 720 0.17 0.05 0.02 0.25 0.00015
3 2.97 704 0.15 0.04 0.02 0.22 0.00014
4 2.25 638 0.11 0.03 0.02 0.17 0.00011
5 1.53 519 0.07 0.02 0.01 0.10 0.00008
6 0.82 306 0.02 0.01 0.00 0.03 0.00004

14 1 4.40 720 0.19 0.05 0.02 0.26 0.00016
2 3.68 720 0.17 0.05 0.02 0.25 0.00015
3 2.97 704 0.15 0.04 0.02 0.22 0.00014
4 2.25 638 0.11 0.03 0.02 0.17 0.00011
5 1.53 519 0.07 0.02 0.01 0.10 0.00008
6 0.82 306 0.02 0.01 0.00 0.03 0.00004

15 1 8.44 3,689 0.95 0.39 0.20 1.54 0.00018
2 7.07 3,589 0.87 0.36 0.18 1.41 0.00017
3 5.69 3,272 0.71 0.30 0.15 1.16 0.00015
4 4.32 2,843 0.51 0.23 0.11 0.85 0.00013
5 2.94 2,227 0.29 0.14 0.07 0.49 0.00010
6 1.56 2,012 0.13 0.07 0.03 0.23 0.00005

16 1 8.44 3,689 0.95 0.39 0.20 1.54 0.00018
2 7.07 3,589 0.87 0.36 0.18 1.41 0.00017
3 5.69 3,272 0.71 0.30 0.15 1.16 0.00015
4 4.32 2,843 0.51 0.23 0.11 0.85 0.00013
5 2.94 2,227 0.29 0.14 0.07 0.49 0.00010
6 1.56 2,012 0.13 0.07 0.03 0.23 0.00005

17 1 8.44 3,689 0.95 0.39 0.20 1.54 0.00018
2 7.07 3,589 0.87 0.36 0.18 1.41 0.00017
3 5.69 3,272 0.71 0.30 0.15 1.16 0.00015
4 4.32 2,843 0.51 0.23 0.11 0.85 0.00013
5 2.94 2,227 0.29 0.14 0.07 0.49 0.00010
6 1.56 2,012 0.13 0.07 0.03 0.23 0.00005

18 1 8.44 3,689 0.95 0.39 0.20 1.54 0.00018
2 7.07 3,589 0.87 0.36 0.18 1.41 0.00017
3 5.69 3,272 0.71 0.30 0.15 1.16 0.00015
4 4.32 2,843 0.51 0.23 0.11 0.85 0.00013
5 2.94 2,227 0.29 0.14 0.07 0.49 0.00010
6 1.56 2,012 0.13 0.07 0.03 0.23 0.00005

19 1 0.700 30.25 35,644 8.26 2.17 4.25 12.88 0.00016 13.20
2 0.700 25.28 35,458 7.77 2.05 4.02 12.13 0.00015 12.16
3 0.700 20.31 34,910 6.91 1.83 3.65 10.81 0.00013 11.12
4 0.700 15.34 34,258 5.71 1.51 3.10 8.96 0.00011 10.07
5 0.700 10.38 33,469 4.15 1.09 2.34 6.54 0.00008 9.03
6 0.700 5.41 33,227 2.13 0.55 1.23 3.35 0.00004 7.99

20 1 3.49 1,123 0.26 0.07 0.13 0.41 0.00016
2 2.92 1,094 0.24 0.06 0.12 0.37 0.00015
3 2.34 1,000 0.20 0.05 0.10 0.31 0.00013
4 1.77 865 0.14 0.04 0.08 0.23 0.00011
5 1.19 654 0.08 0.02 0.05 0.13 0.00008
6 0.62 574 0.04 0.01 0.02 0.06 0.00004

21 1 23.71 77,890 18.04 4.75 9.28 28.14 0.00016
2 19.82 77,076 16.90 4.46 8.75 26.38 0.00015
3 15.93 74,643 14.77 3.91 7.80 23.11 0.00013
4 12.03 71,683 11.94 3.15 6.48 18.74 0.00011
5 8.14 68,002 8.43 2.21 4.76 13.28 0.00008
6 4.25 66,849 4.28 1.11 2.48 6.74 0.00004

22 1 0.700 35.00 17,517 4.06 0.72 1.41 5.73 0.00014 11.67
2 0.700 29.32 17,320 3.80 0.68 1.33 5.36 0.00013 10.48
3 0.700 23.63 16,725 3.31 0.59 1.18 4.68 0.00012 9.28
4 0.700 17.95 15,994 2.66 0.48 0.98 3.78 0.00010 8.09
5 0.700 12.27 15,072 1.87 0.33 0.71 2.66 0.00008 6.90
6 0.700 6.59 14,781 0.95 0.17 0.37 1.35 0.00004 5.71

23 1 8.03 4,704 1.09 0.19 0.38 1.54 0.00014
2 6.72 4,704 1.03 0.18 0.36 1.46 0.00013
3 5.41 4,611 0.91 0.16 0.33 1.29 0.00012
4 4.10 4,166 0.69 0.12 0.25 0.98 0.00010
5 2.79 3,357 0.42 0.07 0.16 0.59 0.00008
6 1.48 2,160 0.14 0.02 0.05 0.20 0.00004

24 1 8.72 1,845 0.43 0.07 0.13 0.59 0.00014
2 7.31 1,796 0.39 0.06 0.12 0.54 0.00013
3 5.89 1,639 0.32 0.05 0.10 0.45 0.00012
4 4.48 1,418 0.24 0.04 0.08 0.33 0.00010
5 3.06 1,084 0.13 0.02 0.04 0.19 0.00007
6 1.65 962 0.06 0.01 0.02 0.09 0.00004
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REVISION POR CARGA LATERAL

MURO ENT Fr P (T) K (T/m) Vd (T) Vt (T) Vt' (T) Vu (T) distor*Q' Vr (T)
25 1 0.700 15.67 15,612 3.62 0.48 0.93 4.81 0.00013 6.55

2 0.700 13.10 15,612 3.42 0.45 0.89 4.55 0.00013 6.01
3 0.700 10.53 15,272 3.02 0.40 0.80 4.03 0.00011 5.47
4 0.700 7.96 13,720 2.29 0.30 0.62 3.05 0.00010 4.94
5 0.700 5.39 11,214 1.39 0.18 0.39 1.86 0.00007 4.40
6 0.700 2.83 8,151 0.52 0.07 0.15 0.70 0.00004 3.86

26 1 0.700 15.23 9,666 2.24 0.09 0.17 2.61 0.00012 6.31
2 0.700 12.73 9,503 2.08 0.08 0.16 2.43 0.00011 5.79
3 0.700 10.24 9,010 1.78 0.07 0.14 2.08 0.00010 5.27
4 0.700 7.74 8,392 1.40 0.05 0.11 1.63 0.00008 4.74
5 0.700 5.25 7,595 0.94 0.04 0.08 1.10 0.00006 4.22
6 0.700 2.75 7,339 0.47 0.02 0.04 0.55 0.00003 3.69

27 1 8.98 574 0.13 0.01 0.01 0.16 0.00012
2 7.53 574 0.13 0.00 0.01 0.15 0.00011
3 6.07 574 0.11 0.00 0.01 0.13 0.00010
4 4.62 574 0.10 0.00 0.01 0.11 0.00008
5 3.17 574 0.07 0.00 0.01 0.08 0.00006
6 1.71 574 0.04 0.00 0.00 0.04 0.00003

28 1 0.700 47.14 46,711 10.82 0.00 0.00 11.90 0.00011 18.07
2 0.700 39.45 46,711 10.24 0.00 0.00 11.26 0.00010 16.46
3 0.700 31.75 46,515 9.20 0.00 0.00 10.12 0.00009 14.84
4 0.700 24.05 45,673 7.61 0.00 0.00 8.37 0.00008 13.22
5 0.700 16.35 44,465 5.51 0.00 0.00 6.07 0.00006 11.61
6 0.700 8.66 43,198 2.76 0.00 0.00 3.04 0.00003 9.99

29 1 0.700 15.23 9,666 2.24 0.09 0.17 2.61 0.00012 6.31
2 0.700 12.73 9,503 2.08 0.08 0.16 2.43 0.00011 5.79
3 0.700 10.24 9,010 1.78 0.07 0.14 2.08 0.00010 5.27
4 0.700 7.74 8,392 1.40 0.05 0.11 1.63 0.00008 4.74
5 0.700 5.25 7,595 0.94 0.04 0.08 1.10 0.00006 4.22
6 0.700 2.75 7,339 0.47 0.02 0.04 0.55 0.00003 3.69

30 1 8.98 574 0.13 0.01 0.01 0.16 0.00012
2 7.53 574 0.13 0.00 0.01 0.15 0.00011
3 6.07 574 0.11 0.00 0.01 0.13 0.00010
4 4.62 574 0.10 0.00 0.01 0.11 0.00008
5 3.17 574 0.07 0.00 0.01 0.08 0.00006
6 1.71 574 0.04 0.00 0.00 0.04 0.00003

31 1 0.700 35.00 17,517 4.06 0.72 1.41 5.73 0.00014 11.67
2 0.700 29.32 17,320 3.80 0.68 1.33 5.36 0.00013 10.48
3 0.700 23.63 16,725 3.31 0.59 1.18 4.68 0.00012 9.28
4 0.700 17.95 15,994 2.66 0.48 0.98 3.78 0.00010 8.09
5 0.700 12.27 15,072 1.87 0.33 0.71 2.66 0.00008 6.90
6 0.700 6.59 14,781 0.95 0.17 0.37 1.35 0.00004 5.71

32 1 8.03 4,704 1.09 0.19 0.38 1.54 0.00014
2 6.72 4,704 1.03 0.18 0.36 1.46 0.00013
3 5.41 4,611 0.91 0.16 0.33 1.29 0.00012
4 4.10 4,166 0.69 0.12 0.25 0.98 0.00010
5 2.79 3,357 0.42 0.07 0.16 0.59 0.00008
6 1.48 2,160 0.14 0.02 0.05 0.20 0.00004

33 1 8.72 1,845 0.43 0.07 0.13 0.59 0.00014
2 7.31 1,796 0.39 0.06 0.12 0.54 0.00013
3 5.89 1,639 0.32 0.05 0.10 0.45 0.00012
4 4.48 1,418 0.24 0.04 0.08 0.33 0.00010
5 3.06 1,084 0.13 0.02 0.04 0.19 0.00007
6 1.65 962 0.06 0.01 0.02 0.09 0.00004

34 1 0.700 15.67 15,612 3.62 0.48 0.93 4.81 0.00013 6.55
2 0.700 13.10 15,612 3.42 0.45 0.89 4.55 0.00013 6.01
3 0.700 10.53 15,272 3.02 0.40 0.80 4.03 0.00011 5.47
4 0.700 7.96 13,720 2.29 0.30 0.62 3.05 0.00010 4.94
5 0.700 5.39 11,214 1.39 0.18 0.39 1.86 0.00007 4.40
6 0.700 2.83 8,151 0.52 0.07 0.15 0.70 0.00004 3.86

35 1 0.700 30.25 35,644 8.26 2.17 4.25 12.88 0.00016 13.20
2 0.700 25.28 35,458 7.77 2.05 4.02 12.13 0.00015 12.16
3 0.700 20.31 34,910 6.91 1.83 3.65 10.81 0.00013 11.12
4 0.700 15.34 34,258 5.71 1.51 3.10 8.96 0.00011 10.07
5 0.700 10.38 33,469 4.15 1.09 2.34 6.54 0.00008 9.03
6 0.700 5.41 33,227 2.13 0.55 1.23 3.35 0.00004 7.99

36 1 3.49 1,123 0.26 0.07 0.13 0.41 0.00016
2 2.92 1,094 0.24 0.06 0.12 0.37 0.00015
3 2.34 1,000 0.20 0.05 0.10 0.31 0.00013
4 1.77 865 0.14 0.04 0.08 0.23 0.00011
5 1.19 654 0.08 0.02 0.05 0.13 0.00008
6 0.62 574 0.04 0.01 0.02 0.06 0.00004

37 1 23.71 77,890 18.04 4.75 9.28 28.14 0.00016
2 19.82 77,076 16.90 4.46 8.75 26.38 0.00015
3 15.93 74,643 14.77 3.91 7.80 23.11 0.00013
4 12.03 71,683 11.94 3.15 6.48 18.74 0.00011
5 8.14 68,002 8.43 2.21 4.76 13.28 0.00008
6 4.25 66,849 4.28 1.11 2.48 6.74 0.00004
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Appendix F

Structural Drawings and
Composite Materials

This section depicts the structural drawings generated with the information obtained in
appendix E, the set of figures shown in this appendix correspond to:

� Figure F.1 depicts the typical steel reinforcement pattern for all concrete slabs of
building B-SSC.

� Figures F.2 and F.3 are the structural plan view of each level belonging to building
B-SSC.

� Figures F.4 to F.6 are structural elevation of some construction axis.

� Figure F.7 display the set of structural elements used to confine the masonry walls,
whereas F.8 display the cross sections of the used concrete walls.

� On the other hand, Figures F.9 to F.16 represent the SCM as described in section
3.7 to model building B-SSC using the proposed scheme of this work.
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Figure F.4 Structural Elevation - Axis 1.
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Figure F.5 Structural Elevation - Axis 3.
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Figure F.6 Structural Elevation - Axis 7.
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Figure F.7 Structural Cross Sections - RC Elements.
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Figure F.8 Structural Cross Sections - RC Walls.

Figure F.9 Steel fibers of Axis 1, 5a and 7.
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Figure F.10 Steel fibers of Axis 2 and 6.

Figure F.11 Steel fibers of Axis 3.
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Figure F.12 Steel fibers of Axis 4 and 5.

Figure F.13 Steel fibers of Axis A, E, G and K.
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Figure F.14 Steel fibers of Axis B, D1, G1 and J.

Figure F.15 Steel fibers of Axis C, F and I.
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Figure F.16 Steel fibers of Axis D and H.

Figure F.17 Steel fibers of concrete slab.
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Appendix G

Seismic Demand and
Probabilistic Damage
Assessment

The present appendix briefly describes the methodology proposed by Alzate [8] to assess
a reliable seismic demand, and consequently, to state a probabilistic damage a structure
would undergo given such seismic demand. The methodology proposed by Alzate [8] is
based upon the capacity spectrum, the followed steps are summarized in next paragraph,
and finally, they are described from section G.1 to section G.4.

1. The starting point is the capacity curve of a given structure obtained from a
standard pushover analysis, the capacity curve need to be transform into a spectral
capacity curve, and later, in a bilinear capacity curve using the method described
in section G.1.

2. It is necessary to obtain a performance point (which represents the seismic de-
mand), to do so, it is necessary to overlaying an elastic response spectrum in a
sa− sd representation (section G.2) and the obtained bilinear capacity spectrum
(section G.1) using the linear equivalent approach described in section G.3.

3. Finally, using the points (Dy, Ay) and (Du, Au) which define the bilinear capacity
spectrum, can be plot a set of fragility curves, and consequently, be able to obtain
an expected damage index (section G.4).

Using the information obtained from step 3, it is possible to link together the capac-
ity of a given structure, with the expected seismic demand (using an elastic response
spectrum) such structure would undergo, thus concluding, the probability of taking
place each of the damage states defined by Risk-EU [132].

G.1 Standard Capacity Curve and Bilinear Capacity
Spectrum

The standard capacity curve, or simply capacity curve shown in figure G.1 correspond
to the work done by Alzate [8] and reports the displacement-force response of a building
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Figure G.1 Standard capacity curve for Omega Building
(UPC Campus Nord, Barcelona, Spain).

located in Barcelona, Spain.

Graph on figure G.1 has been obtained with a pushover analysis with monotonic
adaptive load pattern, and have to be seen as the starting point to obtain the proba-
bilistic damage assessment of a building using the method described in this appendix.

Since elastic response spectra are calculated for a one-degree-of-freedom structure,
it is convenient to represent the capacity curve of the studied structure using the same
convention. A proposal for this has been carried out by Alzate [8], is based upon funda-
mentals of structural dynamics, and consists on the two main simplifications described
next.

1. The starting point for the first simplification is a structure as the one depicted in
figure G.2 on the left, namely, a structure with several storeys and several degrees
of freedom on each storey. An equivalent stiffness per storey can be obtained using
equation G.1,

kKx =
∑
i=1,n

kKi
x ; kKy =

∑
i=1,n

kKi
y (G.1)

where subindex k stands for storey, Kx,y is the stiffness of a given structural
element, and K is the total stiffness of the k storey, also, the mass of the whole
storey have to be concentrated in a single degree of freedom. The result is an
equivalent model as the one shown in figure G.2 on the right, referred from now
on, as the mass-concentrated model.

2. The second simplification comes from converting the mass-concentrated model into
an equivalent one-degree-of-freedom model using the modal participation factor
shown in equation G.2.
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Figure G.2 Structural model and its equivalent mass-concentrated model

PFm =

n∑
i=1

wi φim

g

n∑
i=1

wi φ
2
im

g

(G.2)

where φim is the component i of the vibrational mode m, wi is the weight of the
storey i, and g the gravitational constant. On the other hand, the effective mass
coefficient αm on equation G.3 represents the total amount of mass used by each
vibrational mode.

αm =

[
n∑
i=1

(
wi φim

g

)]2

n∑
i=1

(
wi

g

)
n∑
i=1

(
wi φ

2
im

g

) (G.3)

In plain words, using equations G.2 and G.3 it is possible to represent each vi-
brational mode of a multi-degree-of-freedom model as an equivalent one-degree-
of-freedom model with a normalized mass m∗ and a normalized stiffness K∗.

The idea behind such concepts can be better illustrated using figure G.3, where
fi = mi ai, being ai the acceleration a mass mi undergoes, which in turn produces
a seismic force fi, V is the entire shear force at the basement of the structure, iK
is the condensed stiffness for storey i, δroof is the resulting displacement at the
top of the structure once a force fi has been applied. On the other hand, sa and
sd are respectively, the spectral acceleration and the spectral displacements.
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Figure G.3 Mass-concentrated model and its equivalent one d.o.f. model.

Finally, the use of equations G.4 makes possible the transformation of a capacity
curve into a spectral capacity curve

sdj =
δj

PF1
; saj =

Vj

α1 W
(G.4)

where subindex j represents the applied loading increments the structure is sub-
jected to under a non-linear pushover analysis.

The concept that is pretended to be synthesized with the use of figure G.3 is: the dis-
placement at the top of a given structure produced by a given load pattern is equivalent
to the spectral displacement of the vibrational system of a structure with one-degree-
of-freedom. Thus, it is possible to transform the standard curve capacity (fig. G.1) into
the spectral capacity curve of an equivalent structure with only one-degree-of-freedom
shown in figure G.4.

Finally, once defined the spectral capacity curve with the use of the previously
defined concepts, it is possible to plot a spectral capacity curve in a bilinear format
(also displayed in figure G.4), which is useful to define the damage states undergone by
a given structure, the main hypothesis to construct it are:

1. The area under the spectral capacity curve must be equal to the equivalent bilinear
capacity curve.

2. Coordinates of the point with maximum displacement (Du, Au) match in both
curves.

3. The initial slope in both graphs must be the same.

G.2 Seismic Design Spectrum and sa-sd Representa-
tion

Most of the countries, where an intense seismic activity is present, usually possess
mandatory code regulations for the structural design of construction, where seismicity
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Figure G.4 Bilinear capacity curve for Omega Building
(UPC Campus Nord, Barcelona, Spain).

condition are taken into account with the use of design spectra plotted for one-degree-
of-freedom structures, usually, with damping equal to 5%. In general, design spectra
are divided in sections where the acceleration, velocity and displacement are constant,
and can be plot with the use of simplistic function.

In the countries of the European union, for instance, it is recommended the use of
EUROCODE 8 [40] to prove compliance with the requirements for mechanical strength,
stability and safety in case of seismic activity. The proposed spectra in [40] are based
on studies of different research groups that use a selected set of European strong motion
data, their shapes are considered for varying seismicity conditions and subsoil classifi-
cation, and can be plot using the set of equations G.5 to G.8.

0 ≤ T ≤ TB : sa(T ) = ag S

[
1 +

T

TB
(2.5η − 1)

]
(G.5)

TB ≤ T ≤ TC : sa(T ) = 2.5 ag S η (G.6)

TC ≤ T ≤ TD : sa(T ) = 2.5 ag S η

[
TC

T

]
(G.7)

TD ≤ T ≤ 4s : sa(T ) = 2.5 ag S η

[
TC TD

T 2

]
(G.8)

where
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Soil Type S TB(S) TC(S) TD(S)

A 1.00 0.15 0.4 2

B 1.20 0.15 0.5 2

C 1.15 0.20 0.6 2

D 1.35 0.20 0.8 2

F 1.40 0.15 0.5 2

Table G.1 Parameters for seismic design spectra,
Eurocode 8, Type 1.

Soil Type S TB(S) TC(S) TD(S)

A 1.00 0.05 0.25 1.2

B 1.35 0.05 0.25 1.2

C 1.50 0.10 0.25 1.2

D 1.80 0.10 0.30 1.2

F 1.60 0.05 0.25 1.2

Table G.2 Parameters for seismic design spectra,
Eurocode 8, Type 2.

sa(T ) = Design spectrum as a function of the vibrational period.

T = Vibrational period of a linear system with one-degree-of-freedom.

ag = Design ground acceleration.

TB = Vibrational period defining the lower limit of the constant accel-
eration segment.

TC = Vibrational period defining the upper limit of the constant ac-
celeration segment, and the beginning of the constant velocity
segment.

TD = Vibrational period defining the end of the constant velocity seg-
ment, and the beginning of the constant displacement segment.

S = Soil factor.

η = Damping correction factor.

The elastic design spectra for different seismicity conditions and subsoil classes can
be created using equations G.5 to G.8 and parameters of tables G.1 and G.2. EC8 [40]
defines two different spectra according to the surface wave magnitude Ms, namely, for
Ms < 5.5 parameters for soil type 1 have to be used (table G.1), on the other hand, for
Ms > 5.5 parameters for soil type 2 have to be selected (table G.2).

The design spectra, for a given damping, created using equations G.5 to G.8 and
tables G.1 and G.2 link together the spectral acceleration sa with the vibrational period
T of an one-degree-of-freedom structure, however, Mahaney et al in [84] proposes the
use of a representation in a sa− sd format, exploiting the fact that the response spec-
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Figure G.5 Design spectra for soil type 1, Eurocode 8 [40].

tra corresponding to small damping are approximated with the use of pseudo-spectra.
Also, because the damping ratio of building usually are among 5% and 20% of the crit-
ical damping, spectra or pseudo-spectra can be used indistinctly, validating the use of
equation G.9 which is only valid for pseudo-spectra.

sd(ω) =
1

ω
sv(ω) =

1

ω2
sa(ω) (G.9)

From equation G.9 ω is the angular frequency, sa, sv y sd are respectively, the
response spectra of acceleration, velocity and displacement.

ω =
2 π

T
(G.10)

Keeping in mind equation G.9 and the existing relationship among the angular fre-
quency (or pulsation) ω with the vibrational period T described by equation G.10, the
spectral displacement is now obtained using equation G.11.

sdi =
T 2
i sai

4 π2
(G.11)

The use of equation G.11 is useful to plot a design spectrum in a sa− sd represen-
tation, for instance, figure G.6 is a sa − sd representation of design spectra shown in
figure G.5.

G.3 Capacity on Demand and Performance Point

In section G.2 has been presented a brief description of elastic design spectra, and
how to manage to represent them in such a way they link the spectral acceleration
sa with the spectral displacement sd. Also, in section G.1 has been reproduced a
description of how to represent the standard capacity curve of a given construction in
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Figure G.6 Design spectra for soil type 1, Eurocode 8 [40], sa− sd representation.

P (ds1) P (ds2) P (ds3) P (ds4)

P (ds1 = 0.50) 0.500 0.119 0.012 0.000

P (ds2 = 0.50) 0.896 0.500 0.135 0.008

P (ds3 = 0.50) 0.992 0.866 0.500 0.104

P (ds4 = 0.50) 1.000 0.988 0.881 0.500

Table G.3 Distribucion de probabilidad para dsi.

a bilinear capacity (fig. G.4). This section describes the process to link together such
information, and therefore, obtain the expected spectral displacement sde (also referred
as the performance point) used to assess the seismic demand of the studied structure.

Although in reference [8] Alzate describes two possible schemes to assess the perfor-
mance point, in the present appendix, it is only described one of them: the linear equiv-
alent approach, and although its main drawback is that it does not take into account
the ductility of the structure, for the descriptive purposes intended in this appendix is
sufficient, reader may abound in the topic using reference [8].

The linear equivalent approach consists in assuming the structure remains in the
liner elastic range the whole process, therefore, it is only necessary to prolong the initial
segment of the bilinear capacity spectrum and cross it, with the design spectra in sa−sd
format. The projection of the resulting intersection point to the bilinear capacity curve
represents the performance point.

To illustrate this concept, Alzate [8] uses a design spectrum type 1 (according to
EC8) for a soil type D, and proposes a peak ground acceleration PGA = 0.20g (figure
G.6), which combined with the bilinear capacity curve for the Omega Building (fig. G.4)
leads to a spectral displacement sde = 0.19m, as can be seen in figure G.7.
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Figure G.7 Graphic representation of a linear equivalent approximation.

G.4 Fragility Curves and Damage Index

Fragility curves represent the probability in which a given damage scenario ds on a
structure could be reached or exceeded, as a function of the parameter that represent
the intensity of the seismic action. Risk-EU [132] distinguishes four possible damage
scenarios on a structure, namely, slight, moderated, extensive and complete. Risk-EU
[132] also proposes to define such damage scenarios ds in a simplified form, which is
based on the points (Dy, Ay) and (Du, Au) of the bilinear capacity spectrum (figure
G.4), leading to the equation G.12, where ds1 correspond to a slight damage scenario,
ds2 to a moderate damage scenario, ds3 to an extensive damage scenario, and finally
ds4 to a complete damage scenario.

ds1 = 0.7Dy (G.12)

ds2 = Dy

ds3 = Dy + 0.25(Du −Dy)

ds4 = Du

Using equations G.12 Alzate [8] reports values ds1 = 0.0869m, ds2 = 0.1241m,
ds3 = 0.1464m, and ds4 = 0.2133m for the Omega Building.

Once displacements corresponding to all considered damage scenarios have been
assessed, in order to plot the corresponding fragility curves it is necessary to take in
consideration next hypothesis:

1. The existing probability that a damage scenario, in terms of its corresponding
spectral displacement threshold dsi can be reached or exceeded is equal to 50%.

2. The fragility curves hold a cumulative distribution function Φ described in equa-
tion G.13.
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Figure G.8 Fragility curves for Omega Building
(UPC Campus Nord, Barcelona, Spain).

P [dsi/sd] = Φ

[
1

βdsi
ln

(
sd

dsi

)]
(G.13)

where ds is the spectral displacement, βdsi is the standard deviation of the natural
logarithm of variable dsi.

3. The expected damage on the studied structure holds a binomial probability dis-
tribution.

Applying hypothesis 1 and 3 has made possible to obtain the probability distribution
listed in table G.3 for the considered damage scenarios dsi. On the other hand, equation
G.13 described in hypothesis 2 allows approximating the damage factors βdsi using a
least squares technique.

Although the Risk-EU project [132] proposes the assessment of the damage factors
βdsi as a function of the ductility of the studied structure µu, defined as

µu =
Du

Dy
(G.14)

using equation G.15, in the present work, such damage factors βdsi have been obtained
using a least squares approximation.

βds1 = 0.25 + 0.07νu

βds2 = 0.20 + 0.18νu

βds3 = 0.10 + 0.40νu

βds4 = 0.15 + 0.50νu

(G.15)

Using equations G.12 and the hypothesis previously described, Alzate [8] reports
values shown in equation G.16,
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Figure G.9 Damage index curve for Omega Building
(UPC Campus Nord, Barcelona, Spain).

ds1 = 0.0869 ; βds1 = 0.268

ds2 = 0.1204 ; βds2 = 0.220

ds3 = 0.1512 ; βds3 = 0.232

ds4 = 0.2133 ; βds4 = 0.282

(G.16)

and using function Φ described in equation G.13 plots the fragility curves shown in
figure G.8, corresponding to the Omega Building, used as the reference example, also
Alzate reports the probability of occurrence of the considered damage scenarios for the
spectral displacement of the performance point sde = 0.19m.

Finally, using the fragility curves shown in figure G.8, it is possible to assess the prob-
ability of occurrence of the considered damage scenarios P (dsi) applying the equation
G.17.

P (dsi) =


1− CFi+1 i = 0

CFi+1 − CFi 0 < i < 4 i ∈ {0, 1, ..., 4}
CFi i = 4

(G.17)

where CFi is the value of the fragility curve associated to the damage i. On the other
hand, it is convenient to use a parameter that represent the global damage of the
structure, therefore, using the previously calculated probabilities with equation G.17, it
is possible to obtain an expected damage index ID with equation G.18. This damage
index represent a normalized damage scenario for the studied structure, the resulting
graph is depicted in figure G.9.

ID =
1

n

n∑
i=0

P (dsi) (G.18)




