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Jo només sé dos o tres coses,
ella ja en sap quatre o cinc...
i ens ha costat Déu i ajuda
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Resum

Introducció

A la dècada de 1960s s’iniciava amb forta embranzida un nou paradigma cientı́fic,
la Ciència Cognitiva, que es posava com horitzó una definició integral dels mecan-
ismes cognitius –la caixa negra– (humans i animals) coherents amb, explicatius de
la conducta que exhibim els éssers vius –els outputs externs, mesurables. No és poca
cosa. Confiaven, no obstant, en una autèntica sinergia de corrents i disciplines que,
complementant-se, poguessin assolir l’objectiu marcat. S’hi compten, entre aquestes
disciplines, la filosofia (Fodor), la psicologia (Miller, Gardner), les ciències de la com-
putació –sota la forma de la llavors naixent intel·ligència artificial (Newell, Simon,
Minsky)–, la cibernètica (Wiener), la teoria de la informació (Shannon i Weaver), la
lingüı́stica (Chomsky), l’antropologia, la neurociència...

És en aquest context que, l’any 1969, Collins i Quillian van plantejar-se una pre-
gunta ben complicada: com s’organitzen els conceptes a la nostra ment? No eren
pas els primers a preguntar-s’ho, però sı́ ho van ser a intentar construir un model
computacional que fós alhora experimentalment contrastable. En concret, proposen
una estructura rı́gida i jeràrquica en forma d’arbre: els conceptes s’organitzen per
nivells; els nodes “fulla” són exemplars concrets; els nodes “pare” representen cat-
egories. El model incorpora també una dinàmica, la spreading activation segons la
qual l’activació d’un node inicia un procés difusiu sobre els enllaços de l’arbre, que
s’atenua en el temps (a mesura que el senyal s’allunya del node on s’ha originat). Les
prediccions del model es veieren confirmades només parcialment quan es provaven
en humans. Més enllà de l’èxit de la seva proposta, Collins i Quillian (i, en treballs
successius, Collins i Loftus) llegaren les bases per l’estudi empı́ric de l’organització
dels building blocks de la nostra vida mental, de la seva estructura a gran escala i dels
mecanismes que hi operen. Aquesta és la primera llavor de la present memòria,
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4 Resum

però en la seva forma original contempla una rigidesa i una escassedat de dades
que fa inviable qualsevol avenç.

Han de passar 30 anys abans no trobem un segon ingredient que superi, al-
menys quantitativament, el primer escull. En els darrerrs anys la revolució dels
ordinadors i d’Internet ens ha permès el que abans només era un desig: capacitat
d’emmagatzemament suficient, velocitat de processament i disponibilitat de dades.
Mentre Collins i Quillian manegaven dades d’uns centenars de conceptes/nodes,
nosaltres podem ja implementar i analitzar estructures amb milers, i de vegades
milions de vèrtex.

Falta encara una tercera llavor. Fins ara, tenim que els conceptes i les paraules es-
tan relacionats, formant estructures a gran escala; sabem que determinades dinàmiques
sobre aquesta estructura possibiliten l’activitat mental (almenys la lingüı́stica). Tenim
a més disponibilitat de dades empı́riques i força computacional per estudiar-les. Pel
camı́, hem deixat enrera un arbre per passar a una xarxa. La teoria de grafs ens
proporciona tècniques i conceptes per comprendre el que tenim entre mans. Però el
canvi d’escala que suposa passar d’estructures analitzables a cop d’ull a estructures
desordenades i amb milers d’elements ens obliga a alguna cosa més. Cal un canvi en
l’enfocament analı́tic. Aquest enfocament ha de ser preeminentment estadı́stic, per
poder respondre la pregunta, “Quin aspecte té aquesta xarxa, si de fet és impossible
visualitzar-la?”. És davant aquest panorama que sorgeixen amb força les eines de la
fı́sica estadı́stica, i particularment la disciplina dedicada a sistemes complexes. Ara
sı́: als conceptes de grau, path length, partició, etc. de la teoria de grafs, hi podem
afegir els de auto-organització, criticalitat, emergència, transició de fase, etc. que
ens proporciona la llarga tradició iniciada amb Maxwell i Boltzmann.

A vol d’ocell

Han quedat esboa̧des les tres grans linies mestres d’aquest treball. En ell ens pro-
posem desenvolupar els resultats més significatius de l’aplicació dels mètodes es-
mentats a les dades de les que hem anat disposant, provinents sobretot del treball
experimental en psicolingüı́stica i neuropsicologia.

Més enllà de la Introducció, el Capı́tol 2 es dedica a la revisió dels conceptes ele-
mentals (i altres més elaborats) que conformen la teoria de xarxes complexes mod-
erna. Les eines exposades poden classificar-se, grosso modo, en tres grans grups,
segons el nivell d’anàlisi al què estan dedicades:

• Descriptors a nivell micro, els quals ens ajuden a caracteritzar a nivell individ-
ual les unitats que composen el sistema. En aquest nivell hi són pertinents
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Resum 5

el grau k, el clustering coefficient o la vertex betweenness dels nodes considerats
individualment.

• Descriptors a nivell macro, que ens informen de les propietats estadı́stiques
globals –de la xarxa sencera: distribució de grau P (k), clustering coefficient
promig, correlacions de grau P (k|k′), etc.

• Descriptors a nivell meso. Entre els dos extrems anteriors existeix un tercer
nivell d’anàlisi, el mesoscòpic. Aquı́ pertany la descripció dels subconjunts
de nodes que estan més densament connectats entre ells que amb l’exterior.
En altres paraules, en aquest nivell s’estudia l’existència i caracetrització de
l’estructura de comunitats (o modular) del sistema.

Aixı́ doncs, en aquest capı́tol s’estableixen les bases metodològiques que han servit
per construir la resta del treball.

El Capı́tol 3 es dedica a aclarir dos aspectes importants: en primer lloc, quina
mena de dades s’han emprat (i s’empren) en l’estudi a gran escala del llenguatge
i els fenòmens cognitius que l’envolten. A banda d’una mera exposició, s’intenta
una valoració crı́tica sobre la validesa i l’abast d’aquestes dades: en l’aproximació
complex networks al llenguatge, no poden posar-se al mateix calaix estudis basats en
corpus, thesauri o diccionaris, que aquells on les dades s’han obtingut en entorns
controlats, experimentalment validats i amb vistes a l’estudi psicolingüı́stic.

En segon lloc, es revisen els treballs més destacables (to our best knowledge) que
s’han fet fins al moment actual al voltant del llenguatge i la cognició. Per clare-
dat, distingim els treballs que estudien el llenguatge per se, merament com objecte
d’estudi; d’aquells que intenten anar més enllà de la pura descripció per cercar
prediccions cognitivament plausibles i dinàmiques cognitives que eixamplin la nos-
tra comprensió de les mateixes.

Al Capı́tol 4 s’introdueix el Random Inheritance Model, que representa un intent
per comprendre com emergeixen la similitud semàntica entre paraules i les cate-
gories semàntiques. Més encara, s’intenta formalitzar el fenomen de categorització
semàntica en el context de processos markovians i els estats intermitjos d’aquests
processos, i.e. estats metaestables.

Els resultats es comparen amb altres tècniques de information extraction reconegudes
a la literatura, i amb dades empı́riques basades en les respostes de subjectes humans.

Al marge del funcionament normal de les nostres estructures lingüı́stiques, ens
interessa també comprendre les seves lesions i malalties. Al Capı́tol 5 presentem un
model de degradació semàntica que emula processos neurodegeneratius i prediu acu-
radament, a nivell qualitatiu, les observacions experimentals amb malalts d’Alzheimer
que s’han fet en l’àmbit de la neuropsicologia.
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6 Resum

En aquests processos degeneratius convergeixen interessos multidisciplinars, que
van de la mateixa cognició al fenomen de percolació en fı́sica estadı́stica, passant per
la comprensió de la relació existent entre la performance lingüı́stica i les seves arrels
neurològiques.

El Capı́tol 6 queda finalment dedicat a una reflexió global d’aquesta memòria,
tancant el treball amb les linies de recerca que l’autor, si les circumstàncies ho per-
meten, preten promoure en el futur.
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Chapter 1

Introduction

The origins of Artificial Intelligence (AI) can be traced in Philosophy for at least 2000
years. Aristotle or Llull represent important steps in that direction regarding logic,
the formal theory of deductive reasoning. Descartes seems to have been interested
in “mechanical man”, although more as a metaphor than as a possibility. Leibniz,
on the other hand, foresaw the possibility of mechanical reasoning devices using
rules of logic to settle disputes. Both Leibniz and Pascal designed calculating ma-
chines that mechanized arithmetic, but they never made the claim that the devices
could think. But only in the last half century have we had computational devices
and programming languages powerful enough to build experimental tests of ideas
about what intelligence is. What previously could have only been a formalism or a
gedankenexperiment in the History of Thought; or mere fiction in Literature, is now
possible. It is in this scenario that AI emerged as an independent discipline.

AI in its formative years was influenced by ideas from many disciplines. These
came from people working in engineering (such as Wiener’s work on cybernetics,
which includes feedback and control), biology (for example, Ashby, McCulloch and
Pitts’s work on neural networks), experimental psychology (Newell and Simon),
communication theory (Shannon’s theoretical work), game theory (notably by Von
Neumann and Morgenstern), mathematics and statistics (Good), logic and philos-
ophy (Turing, Church, Hempel), and linguistics (Chomsky’s work on grammar).
These lines of work made their mark and continue to be felt. However, just as any
mature paradigm, it also began a process of specialization: in most of current AI,
those influences have been increasingly abandoned.

Following this line, there are at least two complementary views of AI: one as
an engineering discipline concerned with the creation of intelligent machines, the
other as an empirical science concerned with the computational modeling of human
intelligence. When the field was young, these two views were seldom distinguished.
Since then, a substantial divide has opened up, with the former view dominating
modern AI and the latter view characterizing much of modern cognitive science.

We might call the first view weak AI [133, 152, 153], which intends to develop
techniques that end up with a system or an artifact with intelligent behavior. The
system is intelligent in the sense it can make correct predictions, take good decisions,
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8 1. Introduction

provide valid inferences, whatever may be the mechanisms or algorithms that make
such behavior possible. Achieving human or close-to-human level of performance
is the point. Take for example the efforts in automatic text analysis which seek to
extract relevant information, which need not be inspired in any cognitive strategy
to do so (see, for example, LSA proposal in [99, 100, 101]). In this case, we can say
that the artificial system performs like a human, rather than thinks like a human.

On the other hand, strong AI is of course also interested in artifacts showing
intelligent behavior; however, it pays much attention on how humans act intelli-
gent, and try to reproduce it. As Herbert Simon put it, “The purpose of AI is to
use a computer’s artificial intelligence to understand how humans think. In a hu-
manoid way. If you test your programs not merely by what they can accomplish,
but how they accomplish it, then you’re really doing cognitive science; you’re using
AI to understand the human mind”1. Underlying this rather daring perspective is
the principle by which cognition is a form of computation: fundamental work by
Alan Turing [178] in the 1930s formalized the notion of universal computation; the
Church-Turing thesis [38, 178] proposed that all sufficiently powerful computing
devices were essentially identical in the sense that any one device could emulate
the operations of any other. From here it was a small step to the bold hypothesis
that human cognition was a form of computation in exactly this sense, and could
therefore be emulated by computers2.

AI is, in this strong sense, embarked on a long-term objective, along with other
disciplines, which is the understanding of human cognition. In the end, the study
of actual cognition means research about what kind of mechanisms, processes and
constraints are actually going on internally (in the minds and brains of real subjects),
such that they end up with intelligent external performance (behavior). In this line
of work one can find, for instance, part of the neural networks tradition [90, 109,
146, 147] which intended neurological realism; or the work at the Sony Computer
Science Laboratory in Paris [167, 168, 169, 181] with multi-agent systems studying
the emergence of language conventions; or the family of probabilistic approaches to
language [19, 79, 81].

It is along the lines of AI that this work is to be placed, and more generally in
the broader discipline of cognitive science. For the last 40 years, cognitive science
has increasingly settled as a stable paradigm [69]. Remarkably, an interdisciplinary
nature lies at the kernel of the cognitive approach. Accordingly, the work presented
in this thesis intends to capture such multidisciplinary spirit that characterizes the
cognitive effort: first, the core of the thesis, the object under study is language (the

1excerpt from Doug Stewart: Interview with Herbert Simon, June 1994. Omni Magazine.
2Paradoxically enough, the foundational idea of the weak AI line is based also on an idea by Turing,

i.e. the Turing Test exposed in his work “Computing Machinery and Intelligence” [179].
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specification of its structure in memory, the study of how such structure facilitates
performance, the emergence of categories and meaning, etc.). Secondly, this research
project presents a methodology strongly based on computer science (using compu-
tation both as an instrument, to measure and calculate quantities; and as an object of
study itself, to simulate dynamics which mimic cognitive processes, resting on the
basic assumption that mental activity is, from a formal point of view, computational
–strong AI). Finally, the methodological principles and modeling techniques of the
whole research are to be found in statistical physics and complex systems science.
In the recent years there has been a trend towards applications of statistical physics
to interdisciplinary fields as diverse as biology, medicine, information technology,
computer science or, as the next chapters try to illustrate, cognitive science. As we
shall see, this general framework stands as a proper methodology to gain insight on
real cognition.

Cognition, computer science and statistical physics: these main lines fetch up to
a specific object, which is complex networks. Originally developed in the sociology en-
vironment, network analysis methods have been used to model many complex real-
world phenomena. Examples are numerous. The Internet is a network of routers
or domains. The World Wide Web (WWW) is a network of websites. An organiza-
tion is a network of people. Global economy is a network of national economies,
which are themselves networks of markets; and markets are themselves networks
of interacting producers and consumers. Food webs and metabolic pathways can
all be represented by networks. Moreover, diseases are transmitted through social
networks; and computer viruses occasionally spread through the Internet. Energy is
distributed through transportation networks, both in living organisms, man-made
infrastructures, and in many physical systems such as the power grids. All of them
stand as examples of research under a network modeling approach. What about
cognition? Complex networks are suitable models at different levels of explanation
of cognitive phenomena. On one side, the brain is a network of neurons. It proba-
bly stands as the most complex challenge in complex systems science. On the other,
language fits perfectly as an object of study under the shape of a network (be it at
the level of phone-phone, word-word, word-document relationships).

Marr’s levels might be illustrative of the structure of this work. David Marr
advocated and exemplified an approach to brain modeling that is based on compu-
tational sophistication together with a thorough knowledge of the biological facts.
In his 1982 book Vision [107], he envisioned a research program for the field of vision
research, using a distinction between three complementary levels at which informa-
tion processing systems may be described:

1. The computational level, at which a system is described (mental represena-
tions).
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10 1. Introduction

2. The algorithmic level, at which a system’s method is described (cognitive pro-
cesses).

3. The implementational level, at which a system’s means are described (neural
structures).

This distinction may be applied to the cognitive system. Marr’s point was that
the levels of description should all be taken equally seriously, to arrive eventually
at a comprehensive theory consisting of three complementary descriptions which,
together, explain “how the goal is reached with a method that is allowed by the
means”.

Marr’s distinction between the three levels of description has stimulated inte-
grative theoretical research. It is useful to specify the position of scientific findings
in the total field of cognitive (neuro)science.

This three-wise perspective clarifies the role of complex networks in this work.
Language has been frequently modeled as a network in the psycholinguistic area
(lexical and semantic networks) [13, 40, 41, 91]. Then complex network theory, un-
derstood now as a toolbox, can provide novel insight at the first level regarding
topology, organization, modular (community, category) structure, etc. To do so, it
comprehends many descriptors ranging from the local to the large-scale level (see
Chapter 2 for a review on network theory as a set of descriptors; and most of Chap-
ter 3 for a state-of-the-art review, i.e. how network theory as a toolbox has brought
interesting insight to language).

The algorithmic level deals with the study of cognitively plausible dynamics
(algorithms) operating on top of the structural level (lexical and/or semantic net-
works). We know from complex systems literature that one fundamental aspect
concerning the analysis of complex systems is the evidence of mutual influence be-
tween dynamical behavior and topological structure. The importance of structure to
understand (cognitive) dynamics again justifies a network theory approach. Such
approach sheds light on the mechanisms and strategies that humans put at work
when processing language, either to search and retrieve words, or to form emerg-
ing semantic categories, among others. Work along this level of description can be
found partially in Chapters 3 (reviewing other author’s proposals), 4 and 5.

Real as it may appear to us (fortunately), language is not a tangible object. Al-
though we hear/read or produce/write meaningful utterances almost any time
while awake (some of us even asleep), messages and ideas, words and relations
among them originate in an abstract object (mind) and remain abstract (concepts,
mental representations). Then, levels 1 and 2 do not suffice for a complete under-
standing of linguistic phenomena. The third level fills the gap by studying the neu-
rological roots of language. Unfortunately, this is not a work in the order of mag-
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nitude of chapters; it is rather in the order of a lifetime. Nonetheless, Chapter 6,
devoted to Conclusions, tackles this and other issues about the research currently
developed and, hopefully, in the future.

This document contains more material than the one just outlined above. If we
are going to say that a given program thinks like a human, we must have some way
of determining how humans think. We need to get inside the actual workings of hu-
man minds. There are three ways to do this: through introspection –trying to catch
our own thoughts as they go by; through psychological experiments –observing a
person in action; and through brain imaging –observing the brain in action. Intro-
spection has been rejected as a plausible theory-building method for a long time;
beyond the first two decades of the 20th century it became an outsider from sci-
entific studies. The latter two –psychological experimentation and brain imaging–
stand as our only viable way to get some insight to cognition. In Chapter 3 we de-
scribe the main datasets that are used along the rest of chapters, along with a brief
description of how they were acquired. Also, whenever necessary, some psycholin-
guistic well-known empirical methods are outlined (such as the semantic priming
paradigm in Chapter 5). The current manuscript doesn’t get into neuroimaging or
brain mapping for the reasons exposed above.
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Chapter 2

Review on Network Theory

Historically, the study of networks has been mainly the domain of a branch of dis-
crete mathematics known as graph theory. Since its birth in 1736, when the Swiss
mathematician Leonhard Euler published the solution to the Königsberg bridge
problem (consisting in finding a round trip that traversed each of the bridges of
the prussian city of Königsberg exactly once), graph theory has witnessed many ex-
citing developments and has provided answers to a series of practical questions. In
addition to the developments in mathematical graph theory, the study of networks
has seen important achievements in some specialized contexts, as for instance in the
social sciences. Social networks analysis started to develop in the early 1920s and
focuses on relationships among social entities, as communication between members
of a group, trades among nations, or economic transactions between corporations.

Although the concept of small-world was already well known by sociologists
[114, 176], it was in 1998 when Watts and Strogatz introduced the model of “small
world” network [183], which eventually became the seed for the modern theory of
complex networks. Soon it turned out that the nature of many interaction patterns
observed both in natural and artificial scenarios (for instance, the World-Wide-Web,
metabolic networks or scientific collaboration networks) was even more complex
than the small world model. As Strogatz points out [171], networks are inherently
difficult to understand, as the following list of possible complications illustrates.

1. Structural complexity: the wiring diagram could be an intricate tangle.

2. Network evolution: the wiring diagram could change over time. On the World-
Wide Web, pages and links are created and lost every minute.

3. Connection diversity: the links between nodes could have different weights,
directions and signs. Synapses in the nervous system can be strong or weak,
inhibitory or excitatory.

4. Dynamical complexity: the nodes could be nonlinear dynamical systems. In a
gene network or a Josephson junction array, the state of each node can vary in
time in complicated ways.
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14 2. Review on Network Theory

5. Node diversity: there could be many different kinds of nodes. The biochem-
ical network that controls cell division in mammals consists of a bewildering
variety of substrates and enzymes.

6. Meta-complication: the various complications can influence each other. For
example, the present layout of a power grid depends on how it has grown over
the years –a case where network evolution (2) affects topology (1). When cou-
pled neurons fire together repeatedly, the connection between them is strength-
ened; this is the basis of memory and learning. Here nodal dynamics (4) affect
connection weights (3).

In the past decade we have witnessed the evolution of the field of complex net-
works, and language has not been left out of this process: these advances have
made it possible to address the previous questions from a statistical physics point
of view, and to characterize the structure of language, comparing such characteriza-
tions for different languages (even for different domains), setting up growth models
for them, simulating dynamics on the structures, etc.

Thus, we need a summary of this last decade’s methodological advances for a
full understanding of the remaining chapters. There exist many excellent reviews
and books in the literature about the structure and dynamics of complex networks
[3, 16, 21, 32, 39, 37, 51, 123, 128, 145]. Here we overview only those minimal re-
quirements of the theory that will be mentioned along the current work.

2.1 Terminology in complex networks

Let us start by introducing the objects under discussion. A network is a graph with
N nodes andL links. If the network is directed links are then named arcs, and account
for the directionality of the connections. Otherwise the network is undirected, and
we refer to links or edges indistinctly. Besides direction, the links can also be valued.
A weighted network associates a label (weight) to every edge in the network. Two ver-
tices i and j are adjacent, or neighbors, if they have an edge connecting them. Notice
that, in a directed network, i being adjacent to j does not entail j being adjacent to
i. Networks with multiple links (multigraphs) are not considered.

A path in a network is a sequence of vertices i1, i2, . . . in such that from each of its
vertices there is an edge to the next vertex in the sequence. The first vertex is called
the start vertex and the last vertex is called the end vertex. The length of the path or
distance between i1 and in is then the number of edges of the path, which is n − 1
in unweighted networks. For weighted networks, the length is the addition of each
weight in every edge. When i1 and in are identical, their distance is 0. When i1 and
in are unreachable from each other, their distance is defined to be infinity (∞).
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2.2. Complex network descriptors 15

A connected network is an undirected network such that there exists a path be-
tween all pairs of vertices. If the network is directed, and there exists a path from
each vertex to every other vertex, then it is a strongly connected network. A network
is considered to be a complete network if all vertices are connected to one another by
one edge. We denote the complete network on n vertices Kn. A clique in a network
is a set of pairwise adjacent vertices. Since any subnetwork induced by a clique is
a complete subnetwork, the two terms and their notations are usually used inter-
changeably. A k-clique is a clique of order k. A maximal clique is a clique that is not
a subset of any other clique.

2.2 Complex network descriptors

2.2.1 Degree and Degree Distribution

The simplest and the most intensively studied one vertex characteristic is degree.
Degree, k, of a vertex is the total number of its connections. If we are dealing with
a directed graph, in-degree, kin, is the number of incoming arcs of a vertex. Out-
degree, kout is the number of its outgoing arcs. Degree is actually the number of
nearest neighbors of a vertex. Total distributions of vertex degrees of an entire net-
work, p(k), p(kin) (the in-degree distribution), and p(kout) (the out-degree distri-
bution) are its basic statistical characteristics. We define p(k) to be the fraction of
vertices in the network that have degree k. Equivalently, p(k) is the probability that
a vertex chosen uniformly at random has degree k. Most of the work in network
theory deals with cumulative degree distributions, P (k). A plot of P (k) for any
given network is built through a cumulative histogram of the degrees of vertices,
and this is the type of plot used throughout this article (and often referred to just as
“degree distribution”). Although the degree of a vertex is a local quantity, we shall
see that a cumulative degree distribution often determines some important global
characteristics of networks.

From P (k) we can calculate the moments of the distribution. The n-moment of
P (k) is defined as

〈kn〉 =
N∑
k

knp(k) (2.1)

The first moment 〈k〉 is the mean degree of the network.

UNIVERSITAT ROVIRA I VIRGILI 
COMPLEX NETWORKS THEORY AND ITS APPLICATION TO LANGUAGE. 
Javier Borge Holthoefer 
ISBN:978-84-694-2176-5/DL:T. 1034-2011 



16 2. Review on Network Theory

2.2.2 Strength Distribution

In weighted networks the concept of degree of a node i (ki) can be complemented
with the notion of strength of that node, si =

∑
j∈Γi

ωij , i.e. the sum over the nodes
j in the of i, of weights from node i towards each of the nodes j in its neighborhood
Γi. In this type of network it is possible to measure the average strength 〈s〉 with a
slight modification of Equation 2.1. On the other hand, it is also possible to plot the
cumulative strength distribution P (s), but it is important to make a good choice in
the number of bins of the histogram (this depends on the particular distribution of
weights for each network).

2.2.3 Shortest Path and Diameter

For each pair of vertices i and j connected by at least one path, one can introduce the
shortest path length, the so-called intervertex distance dij , the corresponding number
of edges in the shortest path. Then one can define the distribution of the shortest-
path lengths between pairs of vertices of a network and the average shortest-path
length L of a network. The average here is over all pairs of vertices between which a
path exists and over all realizations of a network. It determines the effective “linear
size” of a network, the average separation of pairs of vertices. In a fully connected
network, d = 1. Recall that shortest paths can also be measured in weighted net-
works, then the path’s cost equals the sum of the weights. One can also introduce
the maximal intervertex distance over all the pairs of vertices between which a path
exists. This descriptor determines the maximal extent of a network; the maximal
shortest path is also referred to as the diameter (D) of the network.

2.2.4 Clustering Coefficient

The presence of connections between the nearest neighbors of a vertex i is described
by its clustering coefficient. Suppose that a node (or vertex) i in the network has ki
edges and they connect this node to ki other nodes. These nodes are all neighbors
of node i. Clearly, at most (

ki
2

)
=
ki(ki − 1)

2
(2.2)

edges can exist among them, and this occurs when every neighbor of node i con-
nected to every other neighbor of node i (number of loops of length 3 attached to
vertex i). The clustering coefficient Ci of node i is then defined as the ratio between
the number Ei of edges that actually exist among these ki nodes and the total possi-
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2.2. Complex network descriptors 17

Figure 2.1: An illustration of the concept of clustering C, calculated on the gray node. In
the left figure, every neighbor of the mentioned node is connected to each other; therefore,
clustering coefficient is 1. In the middle picture, only two of the gray node neighbors’ are
connected, yielding a clustering coefficient of 1/3; finally, in the last illustration none of the
gray node’s neighbors are linked to each other, which yields a clustering coefficient of 0. From
Wikipedia Commons.

ble number:
Ci =

2Ei
ki(ki − 1)

(2.3)

Equivalently, the clustering coefficient of a node i can be defined as the proportion of
3-cliques in which i participates. The clustering coefficientC of the whole network is
the average of Ci over all i, see Figure 2.1. Clearly, C ≤ 1; and C = 1 if and only if the
network is globally coupled, which means that every node in the network connects
to every other node. By definition, trees are graphs without loops, i.e. C = 0.

The clustering coefficient of the network reflects the transitivity of the mean
closest neighborhood of a network vertex, that is, the extent to which the nearest
neighbors of a vertex are the nearest neighbors of each other [183]. The notion of
clustering was much earlier introduced in sociology [182].

2.2.5 Centrality Measures

Centrality measures are some of the most fundamental and frequently used mea-
sures of network structure. Centrality measures address the question,“Which is
the most important or central node in this network?”, that is, the question whether
nodes should all be considered equal in significance or not (whether exists some
kind of hierarchy or not in the system). The existence of such hierarchy would then
imply that certain vertices in the network are more central than others. There are
many answers to this question, depending on what we mean by important. In this
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18 2. Review on Network Theory

Section we briefly explore two centrality indexes (betweenness and eigenvector cen-
trality) that are widely used in the network literature. Note however that between-
ness or eigenvector centrality are not the only method to classify nodes’ importance.
Within graph theory and network analysis, there are various measures of the cen-
trality of a vertex. For instance, besides betweenness or eigenvector centrality, there
are two other main centrality measures that are widely used in network analysis:
degree centrality and closeness. The first, and simplest, is degree centrality, which as-
sumes that the larger is the degree of a node, the more central it is. The closeness
centrality of a vertex measures how easily other vertices can be reached from it (or
the other way: how easily it can be reached from the other vertices). It is defined as
the number of vertices minus one divided by the sum of the lengths of all geodesics
from/to the given vertex.

a. Betweenness One of the first significant attempts to solve the question of node
centrality is Freeman’s proposal (originally posed from a social point of view): be-
tweenness as a centrality measure [67]. As Freeman points out, a node in a network
is central to the extent that it falls on the shortest path between pairs of other nodes.
In his own words, “suppose that in order for node i to contact node j, node k must
be used as an intermediate station. Node k in such a context has a certain “respon-
sibility” to nodes i and j. If we count all the minimum paths that pass through
node k, then we have a measure of the “stress” which node k must undergo during
the activity of the network. A vector giving this number for each node of the net-
work would give us a good idea of stress conditions throughout the system” [67].
Computationally, betweenness is measured according to the next equation:

CB(i) =
∑
j 6=i6=k

σjk(i)
σjk

(2.4)

with σjk as the number of shortest paths from j to k, and σjk(i) the number of
shortest paths from j to k that pass through vertex i. Note that shortest paths can be
measured in a weighted and/or directed network, thus it is possible to calculate this
descriptor for any network [29]. Commonly, betweenness is normalized by dividing
through by the number of pairs of vertices not including v, which is (n− 1)(n− 2).
By means of normalization it is possible to compare the betweenness of nodes from
different networks.

b. Eigenvector centrality A more sophisticated version of the degree centrality
is the so-called eigenvector centrality [24]. Where degree centrality gives a simple
count of the number of connections a vertex has, eigenvector centrality acknowl-
edges that not all connections are equal. In general, connections to people who are
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2.2. Complex network descriptors 19

themselves influential will lend a person more influence than connections to less in-
fluential people. If we denote the centrality of vertex i by xi , then we can allow for
this effect by making xi proportional to the average of the centralities of is network
neighbors:

xi =
1
λ

N∑
j=1

Aijxj (2.5)

where λ is a constant. Defining the vector of centralities x = (x1, x2, . . . ), we can
rewrite this equation in matrix form as

λx = Ax (2.6)

and hence we see that x is an eigenvector of the adjacency matrix with eigenvalue λ.
Assuming that we wish the centralities to be non-negative, it can be shown (using
the Perron-Frobenius theorem) that λ must be the largest eigenvalue of the adja-
cency matrix and x the corresponding eigenvector. The eigenvector centrality de-
fined in this way accords each vertex a centrality that depends both on the number
and the quality of its connections: having a large number of connections still counts
for something, but a vertex with a smaller number of high-quality contacts may
outrank one with a larger number of mediocre contacts. In other words, eigenvector
centrality assigns relative scores to all nodes in the network based on the principle
that connections to high-scoring nodes contribute more to the score of the node in
question than equal connections to low-scoring nodes.

Eigenvector centrality turns out to be a revealing measure in many situations.
For example, a variant of eigenvector centrality is employed by the well-known Web
search engine Google to rank Web pages, and works well in that context. Specifi-
cally, from an abstract point of view, the World Wide Web forms a directed graph, in
which nodes are Web pages and the edges between them are hyperlinks [2]. The goal
of an Internet search engine is to retrieve an ordered list of pages that are relevant
to a particular query. Typically, this is done by identifying all pages that contain the
words that appear in the query, then ordering those pages using a measure of their
importance based on their link structure. Although the details of the algorithms
used by commercial search engines are proprietary, the basic principles behind the
PageRank algorithm (part of Google search engine) are public knowledge [130], and
such algorithm relies on the concept of eigenvector centrality. Despite the useful-
ness of centrality measures, hierarchy detection and node’s role determination is
not a closed issue. For this reason, other classifying techniques will be explored in
subsequent Sections.
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20 2. Review on Network Theory

2.2.6 Degree-Degree correlation: assortativity

It is often interesting to check for correlations between the degrees of different ver-
tices, which have been found to play an important role in many structural and dy-
namical network properties. The most natural approach is to consider the correla-
tions between two vertices connected by an edge. A way to determine the degree
correlation is by considering the Pearson correlation coefficient of the degrees at
both ends of the edges [126, 127]

r =
1
N

∑
j>i kikjaij − [ 1

N

∑
j>i

1
2 (ki + kk)aij ]2

1
N

∑
j>i

1
2 (k2

i + k2
j )aij − [ 1

N

∑
j>i

1
2 (ki + kk)aij ]2

(2.7)

whereN is the total number of edges. If r > 0 the network is assortative; if r < 0, the
network is disassortative; for r = 0 there are no correlation between vertex degrees.

Degree correlations can be used to characterize networks and to validate the
ability of network models to represent real network topologies. Newman computed
the Pearson correlation coefficient for some real and model networks and discov-
ered that, although the models reproduce especific topological features such as the
power law degree distribution or the small-world property, most of them (e.g., the
Erdös–Rényi and Barabási–Albert models) fail to reproduce the assortative mixing
(r = 0 for the mentioned models) [126, 127]. Further, it was found that the assorta-
tivity depends on the type of network. While social networks tend to be assortative,
biological and technological networks are often disassortative. The latter property
is undesirable for practical purposes, because assortative networks are known to be
resilient to simple target attack, at the least.

There exist alternative definitions of degree-degree relations. Whereas correla-
tion functions measure linear relations, information-based approaches measure the
general dependence between two variables [160]. Specially interesting is mutual in-
formation provided by the expression

I(q) = H(q)−Hc(q|q′) =
N∑
k=1

N∑
k′=1

qc(k, k′)log
qc(k, k′)
q(k)q(k′)

(2.8)

See the work by Solé and Valverde [160] for details.

2.3 Network models

2.3.1 Regular Graphs

Although regular graphs do not fall under the definition of complex networks (they
are actually quite far from being complex, thus their name), they play an important
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2.3. Network models 21

role in the understanding of the concept of “small world”, see below. For this reason
we offer a brief comment on them.

In graph theory, a regular graph is a graph where each vertex has the same num-
ber of neighbors, i.e. every vertex has the same degree. A regular graph with ver-
tices of degree k is called a k-regular graph or regular graph of degree k [141].

2.3.2 Random Graphs

Before the burst of attention on complex networks in the decade of 1990s, a partic-
ularly rich source of ideas has been the study of random graphs, graphs in which
the edges are distributed randomly. Networks with a complex topology and un-
known organizing principles often appear random; thus random-graph theory is
regularly used in the study of complex networks. The theory of random graphs was
introduced by Paul Erdös and Alfréd Rényi [54, 55, 56] after Erdös discovered that
probabilistic methods were often useful in tackling problems in graph theory. A de-
tailed review of the field is available in the classic book of Bollobás [23]. Here we
briefly describe the most important results of random graph theory, focusing on the
aspects that are of direct relevance to complex networks.

a. The Erdös–Rényi Model In their classic first article on random graphs, Erdös
and Rényi define a random graph as N labeled nodes connected by n edges, which
are chosen randomly from the N(N − 1)/2 possible edges [54].

In a random graph with connection probability p the degree ki of a node i follows
a binomial distribution with parameters N − 1 and p:

P (ki = k) =
(
N − 1
k

)
pk(1− p)N−1−k (2.9)

This probability represents the number of ways in which k edges can be drawn from
a certain node. To find the degree distribution of the graph, we need to study the
number of nodes with degree k, Nk . Our main goal is to determine the probability
that Nk takes on a given value, P (Nk = r). According to Equation 2.9, the expecta-
tion value of the number of nodes with degree k is

E(Nk) = NP (ki = k) = λk (2.10)

with

λk = N

(
N − 1
k

)
pk(1− p)N−1−k (2.11)

The distribution of the Nk values, P (Nk = r), approaches a Poisson distribution,

P (Nk = r) =
λrk
r!
e−λk (2.12)
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22 2. Review on Network Theory

Thus the number of nodes with degree k follows a Poisson distribution with mean
value λk.

Although random graph theory is elegant and simple, and Erdös and other au-
thors in the social sciences, like Rapoport [136, 137, 138, 139], believed it corre-
sponded fundamental truth, reality interpreted as a network by current science is
not aleatory. The established links between the nodes of various domains of reality
follow fundamental natural laws. Despite some edges might be randomly set up,
and they might play a non-negligible role, randomness is not the main feature in
real networks. Therefore, the development of new models to capture real-life sys-
tems’ features other than randomness has motivated novel developments. Specially,
two of these new models occupy a prominent place in contemporary thinking about
complex networks. Here we define and briefly discuss them.

b. Watts–Strogatz small-world network In simple terms, the small-world con-
cept describes the fact that despite their often large size, in most networks there is
a relatively short path between any two nodes. The distance between two nodes is
defined as the number of edges along the shortest path connecting them. The most
popular manifestation of small worlds is the “six degrees of separation” concept,
uncovered by the social psychologist Stanley Milgram [114, 176], who concluded
that there was a path of acquaintances with a typical length of about six between
most pairs of people in the United States. This feature (short path lengths) is also
present in random graphs. However, in a random graph, since the edges are dis-
tributed randomly, the clustering coefficient is considerably small. Instead, in most,
if not all, real networks the clustering coefficient is typically much larger than it
is in a comparable random network (i.e., same number of nodes and edges as the
real network). Beyond Milgram’s experiment, it was not until 1998 that Watts and
Strogatz’ work [183] stimulated the study of such phenomena. Their main discov-
ery was the distinctive combination of high clustering with short characteristic path
length, which is typical in real-world networks (either social, biological or techno-
logical) that cannot be captured by traditional approximations such as those based
on regular lattices or random graphs. From a computational point of view, Watts
and Strogatz proposed a one-parameter model that interpolates between an ordered
finite dimensional lattice and a random graph. The algorithm behind the model is
the following [183]:

• Start with order: Start with a ring lattice with N nodes in which every node is
connected to its first k neighbors (k/2 on either side). In order to have a sparse
but connected network at all times, consider N � k � ln(N)� 1.
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• Randomize: Randomly rewire each edge of the lattice with probability p such
that self-connections and duplicate edges are excluded. This process intro-
duces pNK/2 long-range edges which connect nodes that otherwise would
be part of different neighborhoods. By varying p one can closely monitor the
transition between order (p=0) and randomness (p=1).

The simple but interesting result when applying the algorithm was the follow-
ing. Even for a small probability of rewiring, when the local properties of the net-
work are still nearly the same as for the original regular lattice and the average
clustering coefficient does not differ essentially from its initial value, the average
shortest-path length is already of the order of the one for classical random graphs
(see Figure 2.2).

As discussed in [184], the origin of the rapid drop in the average path length L
is the appearance of shortcuts between nodes. Every shortcut, created at random,
is likely to connect widely separated parts of the graph, and thus has a significant
impact on the characteristic path length of the entire graph. Even a relatively low
fraction of shortcuts is sufficient to drastically decrease the average path length,
yet locally the network remains highly ordered. In addition to a short average
path length, small-world networks have a relatively high clustering coefficient. The
Watts–Strogatz model (SW) displays this duality for a wide range of the rewiring
probabilities p. In a regular lattice the clustering coefficient does not depend on the
size of the lattice but only on its topology. As the edges of the network are random-
ized, the clustering coefficient remains close to C(0) up to relatively large values of
p.

2.3.3 Scale-Free Networks

Certainly, the SW model initiated a revival of network modeling in the past few
years. However, there are some real-world phenomena that small-world networks
can’t capture, the most relevant one being evolution. In 1999, Barabási and Albert
presented some data and formal work that has led to the construction of various
scale-free models that, by focusing on the network dynamics, aim to offer a univer-
sal theory of network evolution [14].

Several empirical results demonstrate that many large networks are scale free,
that is, their degree distribution follows a power law for large k. The important
question is then: what is the mechanism responsible for the emergence of scale-
free networks? Answering this question requires a shift from modeling network
topology to modeling the network assembly and evolution. While the goal of the
former models is to construct a graph with correct topological features, the modeling
of scale-free networks will put the emphasis on capturing the network dynamics.
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N = 100
prew = 0.0

<k> = 8.0
C = 0.6428
L = 6.63

N = 100
prew = 0.02

<k> = 8.0
C = 0.6218
L = 4.52

N = 100
prew = 0.04

<k> = 8.0
C = 0.5943
L = 3.85

N = 100
prew = 0.06

<k> = 8.0
C = 0.5469
L = 3.23

N = 100
prew = 0.08

<k> = 8.0
C = 0.5202
L = 3.09

N = 100
prew = 0.1

<k> = 8.0
C = 0.4571
L = 2.96

N = 100
prew = 0.25

<k> = 8.0
C = 0.2761
L = 2.59

N = 100
prew = 0.5

<k> = 8.0
C = 0.1416
L = 2.46

N = 100
prew = 0.75

<k> = 8.0
C = 0.0961
L = 2.42

N = 100
prew = 1.0

<k> = 8.0
C = 0.0596
L = 2.40

Figure 2.2: From regularity to randomness: note the changes in average path length and
clustering coefficient as a function of the rewiring probability L(p), C(p) for the family of
randomly rewired graphs. For low rewiring probabilities the clustering is still close to its
initial value, whereas the average path length has already decreased significantly. For high
probabilities, the clustering has dropped to an order of 10−2. This figure illustrates the fact
that small-world is not a network, but a family of networks.
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In the first place, the network models discussed up to now (random and small-
world) assume that graphs start with a fixed number N of vertices that are then
randomly connected or rewired, without modifying N . In contrast, most real-world
networks describe open systems that grow by the continuous addition of new nodes.
Starting from a small nucleus of nodes, the number of nodes increases throughout
the lifetime of the network by the subsequent addition of new nodes. For example,
the World Wide Web grows exponentially in time by the addition of new web pages.

Second, network models discussed so far assume that the probability that two
nodes are connected (or their connection is rewired) is independent of the nodes
degree, i.e., new edges are placed randomly. Most real networks, however, exhibit
preferential attachment, such that the likelihood of connecting to a node depends on
the nodes degree. For example, a web page will more likely include hyperlinks
to popular documents with already high degrees, because such highly connected
documents are easy to find and thus well known.

a. The Barabási–Albert model These two ingredients, growth and preferential
attachment, inspired the introduction of the Barabási–Albert model (BA), which led
for the first time to a network with a power-law degree distribution. The algorithm
of the BA model is the following:

1. Growth: Starting with a small number (m0) of nodes, at every time step, we
add a new node with m(≤ m0) edges that link the new node to m different
nodes already present in the system.

2. Preferential attachment: When choosing the nodes to which the new node con-
nects, we assume that the probability Πi that a new node will be connected to
node i depends on the degree ki, such that

Πi =
ki∑
j

kj
(2.13)

It is specially in step (1) of the algorithm that the scale-free model captures the
dynamics of a system. The power-law scaling in the BA model indicates that growth
and preferential attachment play important roles in network development. How-
ever, some question arise when considering step (2): admitting that new nodes’
attachment might be preferential, is there only one equation (specifically, the one
mentioned here) that grasps such preference across different networks (social, tech-
nological, etc.)? Can preferential attachment be expressed otherwise?

In the limit t→∞ (network with infinite size), the BA model produces a degree
distribution P (k) ≈ k−γ , with an exponent γ = 3, see Figure 2.3.
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Figure 2.3: Cumulative degree distribution for a SF with N = 10000, constructed according
to the BA model. For each node entering the network, 3 new edges are placed. The horizon-
tal axis is vertex degree k and the vertical axis is the cumulative probability distribution of
degrees, i.e., the fraction of vertices that have degree greater than or equal to k.

The average distance in the BA model is smaller than in a ER-random graph with
same N , and increases logarithmically with N . Analytical results predict a double
logarithmic correction to the logarithmic dependence L ∼ logN

log(logN) . The clustering
coefficient vanishes with the system size as C ∼ N−0.75. This is a slower decay
than that observed for random graphs, C ∼ 〈k〉N−1, but it is still different from the
behavior in small-world models, where C is independent of N .

b. Other SF models The BA model has attracted an exceptional amount of atten-
tion in the literature. In addition to analytic and numerical studies of the model
itself, many authors have proposed modifications and generalizations to make the
model a more realistic representation of real networks. Various generalizations,
such as models with nonlinear preferential attachment, with dynamic edge rewiring,
fitness models and hierarchically and deterministically growing models, can be found
in the literature. Such models yield a more flexible value of the exponent γ which
is restricted to γ = 3 in the original BA construction. Furthermore, modifications to
reinforce the clustering property, which the BA model lacks, have also been consid-
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Figure 2.4: The RB model yields a hierarchical network, that combines the scale-free property
with a high degree of clustering. The starting point is a small cluster of five densely linked
nodes; next, four replicas of this hypothetical module are generated. The four external nodes
of the replicated clusters are connected to the central node of the old cluster, obtaining a large
25-node module. This replication and connection can be repeated recursively, thus obtaining
networks of size 25, 125, etc.

ered.
Among these alternative models we can find the Dorogovtsev–Mendes–Samukhin

(DMS) model, which considers a linear preferential attachment; or the Ravasz–Barabási
(RB) model, which aims at reproducing the hierarchical organization observed in
some real systems (this makes it useful as an appropriate benchmark for multi-
resolution community detection algorithms, see next Section and Figure 2.4).

The Klemm–Eguiluz (KE) model seeks to reproduce the high clustering coefficient
usually found in real networks, which the BA model fails to reproduce [96]. To do
so, it describes the growth dynamics of a network in which each node of the network
can be in two different states: active or inactive. The model starts with a complete
graph of m active nodes. At each time step, a new node j with m outgoing links is
added. Each of them active nodes receives one incoming link from j. The new node
j is then activated, while one of the m active nodes is deactivated. The probability
Πdeact
i that node i is deactivated is given by

Πdeact
i =

1
ki + a

( ∑
l∈Nact

1
kl + a

)−1

(2.14)
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where ki is the in-degree of node i, a is a positive constant and the summation runs
over the set Nact of the currently active nodes. The procedure is iteratively repeated
until the desired network size is reached. The model produces a scale-free network
with γ = 2 + a/m and with a clustering coefficient C = 5/6 when a = m. Since
the characteristic path length is proportional to the network size (L ∼ N ) in the KE
model, additional rewiring of edges is needed to recover the small-world property.
Reference [21] thoroughly discusses these and other models.

2.4 The mesoscale level

Research on networks cannot be solely the identification of actual systems that mir-
ror certain properties from formal models. Therefore, the network approach has
necessarily come up with other tools that enrich the understanding of the structural
properties of graphs. The study of networks (or the methods applied to them) can
be classified in three levels:

• The study at the micro level attempts to understand the behavior of single
nodes. Such level includes degree, clustering coefficient or betweenness and
other parameters.

• Meso level points at group or community structure. At this level, it is interest-
ing to focus on the interaction between nodes at short distances, or classifica-
tion of nodes, as we shall see.

• Finally, macro level clarifies the general structure of a network. At this level,
relevant parameters are average degree 〈k〉, degree distribution P (k), average
path length L, average clustering coefficient C, etc.

The first and third levels of topological description range from the microscopic to
the macroscopic description in terms of statistical properties of the whole network.
Between these two extremes we find the mesoscopic level of analysis of complex
networks. In this level we describe an inhomogeneous connecting structure com-
posed by subsets of nodes which are more densely linked, when compared to the
rest of the network.

This mesoscopic scale of organization is commonly referred as community struc-
ture. It has been observed in many different contexts, including metabolic networks,
banking networks or the worldwide flight transportation network [72]. Moreover,
it has been proved that nodes belonging to a tight-knit community are more than
likely to have other properties in common. For instance, in the world wide web
community analysis has uncovered thematic clusters.
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Whatever technique applied, the belonging of a node to one or another com-
munity cannot depend upon the “meaning” of the node, i.e. it can’t rely on the
fact that a node represents an agent (sociology), a computer (the internet), a pro-
tein (metabolic network) or a word (semantic network). Thus communities must
be determined solely by the topological properties of the network: nodes must be
more connected within its community than with the rest of the network. Whatever
strategy applied, it must be blind to content, and only aware of structure.

The problem of detection is particularly tricky and has been the subject of dis-
cussion in various disciplines. In real complex networks there is no way to find out,
a priori, how many communities can be discovered, but in general there are more
than two, making the process more costly. Furthermore, communities may also be
hierarchical, that is communities may be further divided into sub-communities and
so on [11, 73, 83]. Summarizing, it is not clear at what point a community detection
algorithm must stop its classification, because no prediction can be made about the
right level of analysis.

2.4.1 Community detection

A simple approach to quantify a given configuration into communities that has be-
come widely accepted was proposed in [125]. It rests on the intuitive idea that ran-
dom networks do not exhibit community structure. Let us imagine that we have an
arbitrary network, and an arbitrary partition of that network into Nc communities.
It is then possible to define a Nc x Nc size matrix e where the elements eij represent
the fraction of total links starting at a node in partition i and ending at a node in
partition j. Then, the sum of any row (or column) of e, ai =

∑
j eij corresponds to

the fraction of links connected to i. If the network does not exhibit community struc-
ture, or if the partitions are allocated without any regard to the underlying structure,
the expected value of the fraction of links within partitions can be estimated. It is
simply the probability that a link begins at a node in i, ai, multiplied by the fraction
of links that end at a node in i, ai. So the expected number of intra-community links
is just aiai. On the other hand we know that the real fraction of links exclusively
within a community is eii. So, we can compare the two directly and sum over all the
communities in the graph.

Q =
∑
j

(eii − ai)2 (2.15)

This is a measure known as modularity. Equation 2.15 has been extended to a di-
rected and weighted framework, and even to one that admits negative weights [76].
Designing algorithms which optimize this value yields good community structure
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compared to a null (random) model. The problem is that the partition space of any
graph (even relatively small ones) is huge (the search for the optimal modularity
value seems to be a NP -hard problem due to the fact that the space of possible par-
titions grows faster than any power of the system size), and one needs a guide to
navigate through this space and find maximum values. Some of the most successful
heuristics are outlined in [53, 124]. The first one relies on a genetic algorithm method
(Extremal Optimization), while the second takes a greedy optimization (hill climb-
ing) approach. Also, there exist methods to decrease the search space and partially
relieve the cost of the optimization [10]. In [49] a comparison of different methods
is developed, see also [75].

Modularity-based methods have been extended to analyze the community struc-
ture at different resolution levels, thus uncovering the possible hierarchical organi-
zation of the mesoscale [9, 11, 12].

2.4.2 Node functional role

It is important to keep in mind that one of the interesting applications of commu-
nity detection is a better understanding of the position (importance) of a node, at
a local, modular and global level. Betweenness, degree, etc. (see Section above)
already point at this question. However, developing techniques that give more ac-
curate information about it is important to enrich the understanding of the network
structure.

When considering modular networks, it is plausible to surmise that the nodes in
a network are connected according to the role they fulfill. For example, in a classical
hierarchical organization, the chief executive is not directly connected to plant em-
ployees but is connected to the members of the board of directors. Such statement
holds for virtually any organization; that is, the role of chief executive is defined
irrespective of the particular organization considered.

Recently, Guimerà et al. [82] advanced on this issue proposing two descriptors
to characterize the modular structure: the z-score (a measure of the number of stan-
dard deviations a data point is from the mean of a data set) of the internal degree
of each node in its module, and the participation coefficient (P ) defined as how the
node is positioned in its own module and with respect to other modules. Given a
certain partition, the plot of nodes in the z–P plane admit an heuristic tagging of
nodes’ role. The success of this representation relies on a consistent interpretation
of topological roles of nodes, i.e. GA approach is based on the idea that nodes with
the same role should have similar topological properties.

The within-module degree and the participation coefficient are easily computed once
the modules of a network are known.
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Figure 2.5: Each node in a network can be characterized by its within-module degree and
its participation coefficient. GA classify nodes with z ≥ 2.5 as module hubs and nodes with
z ≤ 2.5 as non-hubs. Non-hub nodes can be assigned into four different roles: (R1) ultra-
peripheral nodes; (R2) peripheral nodes; (R3) non-hub connector nodes; and (R4) non-hub
kinless nodes. Hub nodes can be naturally assigned into three different roles: (R5) provincial
hubs; (R6) connector hubs; and (R7) kinless hubs. After [82].

Given a node i, high values of zi indicate high within-module degrees and vice
versa. Being Nc the number of modules in a network, the participation coefficient
Pi reaches a maximum value of Pi = 1− 1

Nc
when its links are uniformly distributed

among all the modules, and 0 if all its links are within its own module.

If κi is the number of links of node i to other nodes in its module si, κsi is the
average of κ over all the nodes in si, and σκsi is the standard deviation of κ in si,
then:

zi =
κi − κsi
σκsi

(2.16)

is the so-called z-score. The participation coefficient Pi of node i is defined as:
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Pi = 1−
NM∑
s=1

(
κis
ki

)2

(2.17)

where κis is the number of links of node i to nodes in module s, and ki is the
total degree of node i. From these definitions, GA define seven different universal
roles, each defined by a different region in the z–P parameter space (see Figure 2.5).
According to the within-module degree, nodes are classified in the next way:

• Non-hubs:

1. (R1) ultra-peripheral nodes; that is, nodes with all their links within their
module (P ≤ 0.05);

2. (R2) peripheral nodes; that is, nodes with most links within their module
(0.05 < P ≤ 0.62);

3. (R3) non-hub connector nodes; that is, nodes with many links to other
modules (0.62 < P ≤ 0.80);

4. (R4) non-hub kinless nodes; that is, nodes with links homogeneously dis-
tributed among all modules (P > 0.80).

• Hubs:

1. (R5) provincial hubs; that is, hub nodes with the vast majority of links
within their module (P ≤ 0.30);

2. (R6) connector hubs; that is, hubs with many links to most of the other
modules (0.30 < P ≤ 0.75);

3. (R7) kinless hubs; that is, hubs with links homogeneously distributed
among all modules (P > 0.75).

The analysis of nodes’ role by GA can be complemented with the study of at
the modular level, taking into account both their internal structure and their inter-
relations. Such analysis is developed in the next section.

2.4.3 An optimal map of the modular structure of complex net-
works

This Section describes a set of related tools to screen the modular structure. The
comprehension of modular structure in networks necessarily demands the analysis
of the contribution of each one of its constituents (nodes) to the modules.
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The method is based on linear projection theory, to study the modular structure
in networks that enables a systematic analysis and elucidation of its skeleton. The
method yields an optimal mapping of the information of the modular structure (in
the sense of least squares) in a two-dimensional space. As an example, the method
has been applied to two empirical networks. The statistical analysis of the geomet-
rical projections allow to characterize the structure of individual modules and their
interrelations in a unified framework. Application to both synthetic and empirical
networks can be seen in [7].

a. Projection of the modular structure A complex network (weighted or un-
weighted, directed or undirected) can be represented by its graph matrixW , whose
elements Wij are the weights of the connections from any node i to any node j. As-
suming that a certain partition of the network into modules is available, this coarse
grained structure can be analyzed (the partition can be obtained by any method).
The main object of the analysis is the Contribution matrix C, of N nodes to M mod-
ules. The rows of C correspond to nodes, and the columns to modules. The ele-
ments Ciα are the number of links that node i dedicates to module α, and can be
easily obtained as the matrix multiplication between Wij and the partition matrix S:

Ciα =
N∑
j=1

WijSjα (2.18)

where Sjα = 1 if node j belongs to module α, and Sjα = 0 otherwise. The goal is to
reveal the structure of individual modules, and their interrelations, from the matrix
C. To this end, the method deals with the high dimensionality of the original data
by constructing a two-dimensional map of the contribution matrix, minimizing the
loss of information in the dimensional reduction, and making it more amenable to
further investigation.

b. Singular Value Decomposition of the modular structure The approach con-
sists in the analysis of C using Singular Value Decomposition [74] (SVD). It stands
for the factorization of a rectangular N -by-M real (or complex) matrix as follows:

C = UΣV † (2.19)

where U is an unitary N -by-N matrix, Σ is a diagonal N -by-M matrix and V † de-
notes the conjugate transpose of V , anM -by-M unitary matrix. This decomposition
corresponds to a rotation or reflection around the origin, a non-uniform scale rep-
resented by the singular values (diagonal elements of Σ) and (possibly) change in
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the number of dimensions, and finally again a rotation or reflection around the ori-
gin. This approach and its variants have been extraordinarily successful in many
applications [74], in particular for the analysis of relationships between a set of doc-
uments and the words they contain. In this case, the decomposition yields infor-
mation between word-word, word-document, and document-document semantic
associations, the technique is known as Latent Semantic Indexing [17], and Latent
Semantic Analysis [99], see Chapter 4. The scenario here is quite similar to this,
where nodes resemble words, and modules resemble documents.

c. An optimal 2D map of the modular structure of networks A practical use of
SVD is dimensional reduction approximation, also known as Truncated Singular
Value Decomposition (TSVD). It consists in keeping only some of the largest sin-
gular values to produce a least squares optimal, lower rank order approximation
(see Appendix). In the following we will consider the best approximation of C by a
matrix of rank r = 2.

The main idea is to compute the projection of the contribution of nodes to a cer-
tain partition (rows of C, namely ni for the i-th node) into the space spanned by
the first two left singular vectors, the projection space U2 (see Appendix). The pro-
jected contribution of the i-th node is denoted as ñi. Given that the transformation
is information preserving [36], the map obtained gives an accurate representation of
the main characteristics of the original data, visualizable and, in principle, easier to
scrutinize. Note that the proposed approach has essential differences with classical
pattern recognition techniques based on TSVD such as Principal Components Anal-
ysis (PCA) or, equivalently, Karhunen-Loeve expansions. In this case data (columns
of C) can not be independently shifted to mean zero without loosing its original
meaning, this restriction prevents the straightforward application of the mentioned
techniques.

To obtain and correctly interpret the outcome of SVD it is worth pointing out the
following geometrical properties of the projection of the rows ofC we have defined
(see Appendix for a mathematical description):

1. Every module α has an intrinsic direction ẽα in the projection space U2 cor-
responding to the line of the projection of its internal nodes (those that have
links exclusively inside the module). These directions are intramodular projec-
tions. This property is essential to discern among modules that are cohesive,
in the sense that the majority of nodes project in this direction, from those
modules which are not.

2. Every module α has a distinguished direction m̃α in the projection space U2

corresponding to the vector sum of the contributions of all its nodes. These
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Figure 2.6: Geometrical scheme of the TSVD. The intramodular projection of module α, ẽα
is the direction where all internal nodes lay (in the plot node i). The node contribution pro-
jections ñ are represented by vectors in different colors. Finally, the modular projection m̃α

is computed as the vector sum of all the node contribution projections belonging to it. Note
that the intramodular projection and the modular projection do not coincide, the differences
between both inform about the cohesiveness of the module.

directions are named modular projections. The modular projection is relevant
when compared to the intramodular projection because their deviations in-
form about the tendency to connect with other modules. Note that eα and mα

are equal only if the module is disconnected from the rest of the network.

3. Any node contribution projection ñi is a linear combination of intramodular
projections, being the coefficient of each one proportional to the original con-
tribution Ciα of links of the node i to each module α. This property comes
from the linearity of the projection, and expresses the contribution of nodes to
the modules to which they are connected to.

Consequently, from (i) and (iii), we can classify nodes. Nodes with only internal
links have a distance to the origin proportional to its degree (or strength). Nodes
with internal and external links, separate from the intramodular projection propor-
tionally to their contributions to other modules. From (ii) we can classify modules.
Modules that have close modular projections are more interrelated. These geomet-
rical facts are the key to relate the outcome of TSVD and the original data in our
problem, see Figure 2.6.

d. Structure of individual modules Keeping in mind the geometrical properties
(i) and (iii) exposed above, the structural information relative to each module is
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extracted by comparing the map of nodes’ contributions to the intramodular pro-
jection directions. To this end it is convenient to change to polar coordinates, where
for each node i the radius Ri measures the length of its contribution projection vec-
tor ñi, and θi the angle between ñi and the horizontal axis. We also define φi as
the absolute distance in angle between ñi and the intramodular projection ẽα corre-
sponding to its module α, i.e. φi = |θi − θẽα |.

Using these coordinates R–φ we find a way to interpret correctly the map of
the contribution matrix in U2: i) Rint = R cosφ informs about the internal contri-
bution of nodes to its corresponding module, as well as to the contribution to its
own module by connecting to others. To clarify the latter assertion, let us assume
a node i belonging to a module β has connections with the rest of modules in the
network. Given that this connectivity pattern is a linear combination of intramod-
ular directions ẽα , the vector sum implies that connecting with modules α having
|θẽβ − θẽα | > π/2 decreases the module R, and vice versa. ii) Rext = R sinφ informs
about the deviation (as the orthogonal distance) of each node to the contribution to
its own module, see Figure 2.7.

Following [7], the internal structure of modules can be explored using the values
of Rint, and the boundary structure of modules using Rext. Using descriptive statis-
tics one can reveal and compare the structure of individual modules. Provided that
the distribution of contributions is not necessarily Gaussian, an exploration in terms
of z-scores is not convenient. Instead box-and-whisker charts are used, depicting
the principal quartiles and the outliers (defined as having a value more than 1.5 IQR
lower than the first quartile or 1.5 IQR higher than the third quartile, where IQR is
the Inter-Quartile Range).

The boxplots for the data of each module in the variable Rint allow for a visual-
ization of the heterogeneity in the contribution of nodes building their correspond-
ing modules, and an objective determination of distinguished nodes on its structure
(outliers). Consequently, the boxplots in Rext inform about the heterogeneity in the
boundary connectivity. Nodes with links in only one module are not considered in
this statistics because they do not provide relevant information about the bound-
aries (they have φ = 0), only nodes that act as bridges between modules are taken
into account. Assuming that every module devotes some external links (otherwise
they would be disconnected), the width of the boxes in this plot is proportional to
the heterogeneity of such efforts. If only one node makes external connections, then
the boxplot has zero width. Moreover, given two boxes equally wide, their position
(median) determines which module contributes more to keeping the whole network
connected.
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Figure 2.7: Schematic plot of the coordinates proposed to study the structure of individual
modules. The relative distance of a node from its module is captured by the angle φ. The
respective components Rint and Rext are depicted.
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Figure 2.8: Schematic plot of the interrelation between the modular projections of 4 modules.
The matrix represents the overlap computed as the scalar product between directions.

e. Interrelations between modules The analysis of the interrelations between
modules is performed at the coarse grained level of its modular projections. The
modular projections m̃α are aggregated measures of the nodes’ contribution to their
particular module. The normalized scalar product of modular projections provide
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38 2. Review on Network Theory

a measure of the interrelations (overlapping) between different modules. A repre-
sentation of these data in form of a matrix ordered by the values of θm̃α

reveals the
actual skeleton of the network at the topological mesoscale, see Figure 2.8.

The method allows the access to a tractable map of the empirical complex net-
work data according to a biological, functional or topological partition. The analysis
of this map can help to anticipate the scope of dynamic emergent phenomena that
depends on the structure and relations between modules. Furthermore, the method
can be extended to graph bipartitioning by adaptively changing nodes between two
modules while maximizing the angle in the R–θ plane between them. Further stud-
ies of the similarities between nodes’ contribution projections can also help to clas-
sify networks according to the role profiles of nodes [148] and/or modules.

Appendix

Properties of TSVD

Let us assume that we preserve only the r largest singular values and neglect the re-
maining substituting their value by zero, then the reduced matrixCr = UΣrV

† has
several mathematical properties worth to mention: first, it minimizes the Frobenius

norm (‖A‖F =
√

trace(AA†)) of the difference ‖C −Cr‖F , that means that among
all possible matrices of rank r,Cr is the best approximation in a least squares sense;
second, Cr is also the best approximation in the sense of statistics, it maintains the
most significant information portion of the original matrix [36]. The left and right
singular vectors (from matrices U and V respectively) capture invariant distribu-
tions of values of the contribution of nodes to the different modules. In particular
the larger the singular value the more information represented by their correspond-
ing left and right singular vectors. We have used the LAPACK-based implemen-
tation of SVD in MATLAB. We warn that some numerical implementations of SVD
suffer from a sign indeterminacy, in particular the one provided by MATLAB is such
that the first singular vectors from an all-positive matrix always have all-negative
elements, whose sign obviously should be switched to positive [30].

Projection using TSVD of rank 2

In the case of a rank r = 2 approximation, the unicity of the two-ranked decom-
position is ensured [74] if the ordered singular values σi of the matrix Σ, satisfy
σ1 > σ2 > σ3. This dimensional reduction is particularly interesting to depict re-
sults in a two-dimensional plot for visualization purposes. In the new space there
are two different sets of singular vectors: the left singular vectors (columns of matrix
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U ), and the right singular vectors (rows of matrix V †). Given that we truncate at
r = 2, we fix our analysis on the two first columns of U , we call this the projection
space U2. The coordinates ñi of the projection of the contributions ni of node i are
computed as follows:

ñi = Σ2
−1V †ni (2.20)

Here Σ2
−1 denotes the pseudo-inverse of the diagonal rectangular matrix Σ2 (sin-

gular values matrix truncated in 2 rows), simply obtained by inverting the values of
the diagonal elements. It is possible to assess the loss of information of this projec-
tion compared to the initial data by computing the relative difference between the
Frobenius norms:

Er =
‖C‖F − ‖Cr‖F

‖C‖F
=
∑M
α=1 σ

2
α −

∑r
α=1 σ

2
α∑M

α=1 σ
2
α

(2.21)

Geometrical properties of the projection of C

The intramodular projection ẽα corresponding to module α, is defined as the pro-
jection of the cartesian unit vector eα = (0, . . . , 0, 1, 0, . . . , 0) (the α-th component is
1, the rest are zero), i.e.

ẽα = Σ2
−1V †eα (2.22)

Any node in the original contribution matrix can be represented as

ni =
M∑
α=1

Ciαeα (2.23)

Its projection gives the node contribution projection

ñi =
M∑
α=1

Ciα(Σ2
−1V †eα) =

M∑
α=1

Ciαẽα (2.24)

a linear combination of intramodular projections. In particular, a node i whose con-
tribution is totally internal to a module α is projected as ñi = kiẽα, where ki is the
node degree. The modular projections m̃α are computed as the vector sum of all the
projections of nodes contributions, for those nodes belonging to module α, i.e.

m̃α =
N∑
i=1

Siαñi (2.25)
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Figure 2.9: Robustness of the method to noise in the partition. We show the separation from
the intramodular directions of modules 1 to 4 (top to down) of all nodes, in particular we
track the deviation of the nodes when some of them have been assigned to the incorrect
module. The nodes that have been moved are those that deviate more from the intramodular
projection of module 2.

Effect of noise on C

The method presented is pretty robust to perturbations in the partition or, equiva-
lently, in the contribution matrix C. To support the claim we make the following
experiment: using the benchmark network proposed by Newman and Girvan [72].
With 128 nodes, zin = 15 and zout = 1, we perform slight changes in the predefined
partition, by moving nodes from module 1 to module 2. First we move only one
node, then two nodes, and finally 8 nodes. This changes matrix C, which must in
turn affect TSVD output. Fig. 2.9 contains the nodes’ projection as the mentioned
movements take place (squares, triangles and diamonds respectively). Consistently,
module 1’s nodes projections progressively decrease in R. Module 2 balances this
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fact, it retains the weight leaving from module 1. Sensitivity to inter-modular con-
nections is also evidenced: when a single new node appears in module 2 (Fig. 2.9,
squares), φi has an outstanding value if compared to the rest; this is also evident
when two nodes enter group 2 (Fig. 2.9, triangles). When moving 8 nodes, the effect
is less drastic for the deviations in θ and more drastic inR. Unsurprisingly, modules
3 and 4 remain mostly unchanged, the interplay between modules 1 and 2 (nodes
leaving from one group towards the other) does not drastically affect their internal
characteristics, nor their importance in the whole structure.
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Chapter 3

Lexical and Semantic Networks: Structure and
Dynamics

Language is surely a strikingly complex object to study. It is built upon many thou-
sands of items (WordNet database [115], for instance, currently gathers over 200,000
words in English), which in turn are often ambiguous. Also, they hold manifold
relationships with each other, sometimes for the sake of structure (syntax), some-
times for the sake of their meaning (semantics). Words, and the relationships they
hold, evolve across time, new words appear, some of them die, some simply change.
As difficult as it may be to study or model these facts, complexity is even greater
when language is placed in a cognitive context: linguistic production and compre-
hension processes occur proficiently in the mind while many other processes are
concurrently interacting. Consider, among them, actions from the sensorimotor sys-
tem (vocalization), the perceptual system (listening, reading) or memory (retrieval,
recall and recognition). Finally, a last step to complexity is to consider linguistic
performance as a result of neural activity. Language, thus, is a complex object ef-
ficiently managed in a complex mental context, which in turn is embodied in the
most complex known system, the brain.

Linguistics and psycholinguistics devote much efforts to disentangle the details
of the aforementioned facts. However, some fundamental questions can not be
addressed from this fine-grained perspective: what is the general structure of lan-
guage? Is such structure common to every language? Can we describe the general
trends of the mechanisms that provide for linguistic efficient performance? Is it
possible to describe the principles of language growth (from a child to an adult)?
Such questions demand a complementary point of view from that of linguistics and
psycholinguistics, one that abstracts and simplifies as much as possible the intricate
nature of language. This general view makes the minimum assumptions, in the end
language is reduced to a set of entities which are related with each other. Following
this line, cognitive processes are characterized as phenomena occurring on top of
that structure. These processes are conceived as naı̈ve mechanisms.

As it has been argued in Chapter 1, and implicitly all along the text, the basics of
this viewpoint fit naturally in complex systems approach.
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44 3. Lexical and Semantic Networks: Structure and Dynamics

Research on language include syntax, prosody, semantics, neuroscience, etc. Some
of them deal with physical observables but are not suitably approached from a sta-
tistical physics point of view yet (to our best knowledge). That is the case of prosody,
which tries to extract useful linguistic information from the loudness, pitch or fre-
quency of language sounds. Others, like syntax, have been subject of study from
a network perspective, for example by dealing with syntactic trees understood as
graphs. Although this latter line has received much attention [43, 44, 60, 64, 65, 159]
(or rather, because of it), it constitutes a line of research of its own and lies outside the
scope of this work. Then the natural framework of this overview is semantics at the
lexical (word) level and some adjacent phenomena (lexicon formation and change).
This means that works devoted to linguistic superstructures (phrases and sentences)
are not considered; neither are sub-lexical units (lemmas, phonemes, etc.), although
there also exists some work on them in the complex systems bibliography [95, 180].

The Chapter is organized as follows: Section 3.1 introduces the question of data
acquisition and network construction, pointing some sources that have been used
to build up language networks and what interpretation they should receive. The
next three Sections are devoted to (i) characterization of language: the organization
of language is characterized in terms of general network structural principles (Sec-
tion 3.2) ; (ii) cognitive growth and development: we attempt to reveal how struc-
tural features reflect general processes of language acquisition (Section 3.3); and (iii)
cognitive processes: a few models that relate human performance in semantic pro-
cessing tasks with processes operating on complex networks are presented (Section
3.4).

3.1 Building language networks

An often expressed concern around complex networks is their arbitrary charac-
ter. When modeling actual, real-world systems using network methodology, the
researcher needs to take some decisions: what kind of object must be understood
as a vertex, in the first place; and more critical, what must be understood as a link
between vertices. In our case, it is not straightforward to define the notion of word
interaction in a unique way. For instance, one can connect the nearest neighbors
in sentences. Also, one could take into account linguistic standard relations, like
synonymy, hyper-or hyponymy, etc. Finally, one can assemble networks out of lab-
oratory data, i.e. data coming from experiments with subjects in psycholinguistics.
We detail these three lines in the subsequent paragraphs, closely following the ideas
in [111].
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3.1. Building language networks 45

Figure 3.1: Fixed-size window scheme: in this case words are linked to d = 2 neighbors,
where d is a constant window size. Note that words without semantic content have been
removed, i.e. articles, prepositions, etc.

3.1.1 Text analysis: co-occurrence graphs

Intuitively, the simplest strategy to collect relations among entities is to construct
a network whose topology reflects the co-occurrence of words. Such intuition is
rooted in collocation analysis, a well established field of corpus linguistics [157, 172,
173]. It follows a tradition according to which collocations manifest lexical semantic
affinities beyond grammatical restrictions [84].

Typically, text co-occurrence networks are obtained with the minimum assump-
tions and cost, i.e. a fixed adjacency window of width d is predefined, such that
two words w1 and w2 are connected by an edge (link) if dw1−w2 ≤ d. Thus, a
two-word adjacency network automatically connects a word with any two words
before and after it, see Figure 3.1. Often articles and other connecting words are
excluded. Their topology quantified by several measurements can provide infor-
mation on some properties of the text, such as style and authorship [6].

Some limitations must be taken into account under this constructive method: if
d is long, the risk of capturing spurious co-occurrences increases. If d is too short,
certain strong co-occurrences can be systematically left out [63].

The textual sources for these type of networks can be varied. In some cases a
single source is chosen (for example, a book from a particular author). In other
cases, collections of newspapers or magazines are used (as in the ACE corpus [42]).
This subtle difference is important, in the first case the resulting structure reflects
(at least partially) the lexical organization of an individual; whereas the latter pro-
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vides an access to the semantic collective system of a language, that is, to the overall
organization of its lexical subsystem [156]. This distinction already points in two
research poles, the more cognitive- and the more language-oriented, which shall
appear later.

3.1.2 Dictionaries and Thesauri

As in the case of multi-source text analysis, again a collective view on language
is predominant in the case of dictionaries. Lexical reference systems or terminological
ontologies (e.g. WordNet, [115]), thesauri (e.g. Roget’s thesaurus, [142]) and related
systems build on expert knowledge of lexicographers in order to define sense rela-
tions (e.g. synonymy, antonymy, hyponymy) between words or conceptual relations
between concepts (therefore, they are meaning-based). Following [111], in the case
of thesaurus graphs based on the expertise of lexicographers and corpus linguists,
the characteristics of the network can be interpreted as indicators of thesaurus qual-
ity or consistency. For instance, a graph representing hyponymy relations within a
thesaurus should induce a hierarchical structure, whereas polysemy should provide
for the small world nature of the semantic system of the language under considera-
tion. Such is the case of Wordnet in the study by Sigman and Cecchi [156].

3.1.3 Semantic features

In many of the most influential theories of word meaning and of concepts and cat-
egorization, semantic features have been used as their representational currency.
Numerous vector models of memory are based on feature representations. For this
reason, the major purpose of collecting semantic feature production norms is to con-
struct empirically derived conceptual representation and computation.

One of the most relevant example of such data collection is that of McRae et
al. [110] Feature Production Norms (FPN), which will help us illustrate this data
gathering technique. FPN were produced by asking subjects to conceptually recog-
nize features when confronted with a certain word. This feature collection is used
to build up a vector of characteristics for each word, where each dimension repre-
sents a feature. In particular, participants are presented with a set of concept names
and are asked to produce features they think are important for each concept. Each
feature stands as a vector component, with a value that represents its production
frequency across participants. These norms include 541 living and nonliving thing
concepts, for which semantic closeness or similarity is computed as the cosine (over-
lap) between pairs of vectors of characteristics. The cosine is obtained as the dot
product between two concept vectors, divided by the product of their lengths:
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cos θ =
v1w1 + v2w2 + . . .+ vnwn

‖ v ‖‖ w ‖
(3.1)

As a consequence, words like banjo and accordion are very similar (i.e. they have
a projection close to 1) because their vector representations show a high overlap,
essentially provoked by their shared features as musical instruments, while the vec-
tors for banjo and spider are very different, showing an overlap close to 0 (almost
orthogonal vectors).

In terms of network modeling, each node represents a word, and an edge (or
link) is set up between a pair of nodes whenever their vectors projection is different
from 0 (or above a predefined threshold τ ). The meaning of an edge in this network
is thus the features similarity between two words. The network is undirected (sym-
metric relationships) and weighted by the value of the projections. See Figure 3.2
for illustration.

Although these measures are not obtained from an individual, but rather av-
eraged out of many participants in an experiment, this type of data is in the line
of cognitive research, in which network modeling is a tool to understand actual
mechanisms of human language usage. The same can be said regarding associative
networks, in the next subsection.

3.1.4 Associative networks

Association graphs are networks in which vertices denote words, whereas links rep-
resent association relations as observed in cognitive-linguistic experiments. Such
graphs are considered the most relevant from a psychological point of view. Ac-
cording to the hypothesis that association is one of the principles of memory orga-
nization, the question that has to be addressed is which network topologies support
an efficient organization in terms of time and space complexity.

The best known Free Association data set in English are University of South
Florida Free Association Norms (USF-FA from now on; [122]). Nelson et al. pro-
duced these norms by asking over 6000 participants to write down the first word
(target) that came to their mind when confronted with a cue (word presented to the
subject). The experiment was performed using more than 5000 cues. Among other
information, a frequency of coincidence between subjects for each pair of words is
obtained. As an example, words mice and cheese are neighbors in this database, be-
cause a large fraction of the subjects related this target to this cue. Note, however,
that the association of these two words is not directly represented by similar fea-
tures but other relationships (in this case mice eat cheese). The network empirically
obtained is directed and weighted. Weights represent the frequency of association
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Figure 3.2: A network structure out of semantic features data. Left: each subject assigns
semantic features to given nouns, and features build up a semantic vector. In the example,
features are is alive, has tail, is wild, can fly, is underwear, is long, is warm and has buttons. The
number in each cell reflects the number of participants who assigned that feature to the cor-
responding item. Right: cosine overlapping between each pair of vectors from the left matrix.
This new similarity matrix can be suitably interpreted as a semantic network. Note that val-
ues in both matrices do not represent actual results, and have been put merely for illustrative
purposes.

in the sample. These same data exist in Spanish [33, 58], German [112] or French
[59].

Generally speaking, Free-Association Norms represent a more complex scenario
than Feature Production Norms when considering the semantics of edges. Free-
Association Norms are heterogeneous by construction, they may grasp any relation
between words e.g. a causal-temporal relation (fire and smoke), an instrumental re-
lation (broom and floor) or a conceptual relation (bus and train), among others.

From this data set, two networks can be created. A directed network, where two
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3.2. Lexical networks: topology, function, evolution 49

word nodes i and j are joined by an arc (from i to j) if the cue i evoked j as an asso-
ciative response for at least two of the participants in the database. In an undirected
version, word nodes are joined by an edge if the words were associatively related
regardless of associative direction. Although the directed network is clearly a more
natural representation of word associations, most of the literature on small-world
and scale-free networks has focused on undirected networks.

Next Sections attempt to review some works centered on network modeling of
language. We will move gradually from the language-oriented pole, which is con-
cerned with general structural patterns and dynamics of language as an object per
se; towards the cognitive-oriented one, which is confronted with a greater degree of
detail and complexity (language as an object-in-minds).

3.2 Lexical networks: topology, function, evolution

Soon after the seminal works by Watts and Strogatz, and Barabási and Albert in
the late ’90s, network scientists focused upon language as an interesting subject.
Unsurprisingly, the insights were general in this initial stage, and became deeper
from then on.

N 〈k〉 C L

Moby Thesaurus 30244 59.9 0.53 3.16
Randomized MT 30244 59.9 0.002 2.5

Table 3.1: Results for the conceptual network defined by the Thesaurus dictionary, and a
comparison with a corresponding random network with the same parameters. N is the total
number of nodes, 〈k〉 is the average number of links per node, C is the clustering coefficient,
and L is the average shortest path. After [120].

One of the first approaches is that of Motter et al. in [120], where the network
structure of language is studied. The author presents results for the English lan-
guage, which are expected to hold for any other language. A conceptual network is
built from the entries in the Moby Thesaurus, and considers two words connected if
they express similar concepts. Motter et al.’s resulting network includes over 30,000
nodes (words). Table 3.1 summarizes the results of the analysis. The random coun-
terpart of the Moby Thesaurus [175] highlights the small-world features of the orig-
inal, i.e. high clustering coefficient and low average path length.

Similarly, Sigman and Cecchi thoroughly characterized the WordNet database
[156], with similar results. Their analysis of the degree distribution results in power-
law distributions, the fingerprint of self-organizing, evolving systems.
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50 3. Lexical and Semantic Networks: Structure and Dynamics

Figure 3.3: Dorogovstev and Mendes’ scheme of the language network growth [52]: a new
word is connected to some old one i with the probability proportional to its degree ki
(Barabási and Albert’s preferential attachment); in addition, at each increment of time, ct
new edges emerge between old words, where c is a constant coefficient that characterizes a
particular network.

Dorogovstev and Mendes explore the mentioned possibility in [52], namely that
language (or, more precisely, lexicon) is a self-organized growing system. Specif-
ically, they discuss whether empirical degree distributions might be the result of
some type of preferential attachment dynamics. The authors propose a stochastic
theory of evolution of human language based on the treatment of language as an
evolving network of interacting words. It is well known that language evolves,
then the question is what kind of growth (in the sense of increase of lexical reper-
toire) leads to a self-organized structure? Although in the general framework of
Barabási and Albert’s preferential attachment, their proposal adds a second growth
mechanism inspired in observations from real collaboration networks. This vari-
ation includes, at each time step, the appearance of new edges between already-
existing (old) words, besides the birth of new words that link to some old ones (see
Figure 3.3).

The model can be described in a precise analytical form. It is possible to detail
the evolution of the degree of a certain word “born” at time s and observed at time
t:

∂k(s, t)
∂t

= (1 + 2ct)
k(s, t)∫ t

0
du k(u, t)

(3.2)
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The development of Equation 3.2 leads to a description of the evolution of the
degree distribution P (k, t), which matches the empirical findings in [63], i.e. a two-
regime power-law with different exponents, see comments below.

Different language networks display as well similar small-world characteristics,
see Table 3.2. Also, their degree distribution corresponds in some cases to scale-free
networks, see Figure 3.4 (remarkably, the high interest in scale-free networks might
give the impression that all complex networks in nature have power-law degree
distributions. As is shown in the mentioned figure, this is far from being the case).

N 〈k〉 C L D

USF-FA 5018 22 0.1928 3.04 5
SFA-SV 7759 3.05 0.0867 3.71 5

SFA 2901 4.9 0.1487 4.50 8
GFA-SV 3632 2.05 0.034 4.57 8

Table 3.2: Some parameters obtained from four different data-sets: the University of South
Florida word association (USF-FA, [122]), Free-association norms for the Spanish names of
the Snodgrass and Vanderwart pictures (SFA-SV, [58]), association norms in Spanish (SFA,
[33]) and association norms for the German names of the Snodgrass and Vanderwart pictures
(GFA-SV, [112]). As the ones reported on Table 3.1, they all conform sparse structures with
very lowL (if compared to the size of the network). However, only USF-FA and SFA clearly fit
in the small-world definition. Low C in the data sets based on the drawings from Snodgrass
and Vanderwart [158] can be explained by the specific experimental setup with this material.
N is the total number of nodes, 〈k〉 is the average number of links per node,C is the clustering
coefficient, L is the average shortest path, andD is the diameter. The latter descriptors (L and
D) have been measured from the undirected, unweighted networks of the data sets.

Most interestingly, these early results led to the claim that they have deep cogni-
tive implications. From the standpoint of retrieval of information, the small-world
property of the network represents a maximization of efficiency: high clustering
gathers similar pieces of information, low distances makes fast search and retrieval
possible. The expression “mental navigation” arises: irrespective of the specifics
of the neuronal implementation, it can be thought that the small-world property is
a desirable one in a navigation network (it strikes a balance between the number
of active connections and the number of steps required to access any node); and,
taking mental navigation for granted, one could also expect that the hubs of the net-
work should display a statistical bias for priming in association and related tasks
[156]. Navigation, in this context, corresponds to retrieval in semantic memory, un-
derstood as intentional recovery of a word. “Mental exploration” would instead
correspond to search processes (such as when trying to produce words that begin
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52 3. Lexical and Semantic Networks: Structure and Dynamics

for a certain letter): there is no topological information to achieve this purpose in the
network. In both processes shortcuts and hubs must significantly affect proficiency.

These intuitions probably point at the right direction, but there is a need to focus
the attention on some specific phenomena. Then, since linguistic phenomena does
not occur outside the boundaries of cognition, research necessarily turned towards
the cognitive pole.

The work by Ferrer i Cancho and Solé represents significant steps in this di-
rection. For instance, a difference is settled between single- and multi-author lin-
guistic sources. In [63], a network N ≈ 5 × 105 words is built out of the British
National Corpus (BNC). The degree distribution of such network evidences a two-
regime power law, one of them with an average exponent close to the Barabási-
Albert model (γBA = −3). From this twofold behavior the authors claim that the
lexicon is divided into a set of core words (kernel, γ = −2.7) and a set of peripheral
words (γ = −1.5). The kernel lexicon contains words that are common to the whole
community of speakers, while in the periphery a certain word is unknown for one
speaker and familiar for another. Results suggest that language has grown under
the dynamics of preferential attachment, the core of the network (with γ ≈ γBA)
containing at least functional words, i.e. those with low or null semantic content.
This approach takes into account not only the features of complex physical systems
(self-organization, etc.), but how can they be explained in terms of collective behav-
ior.

This “physical system–cognitive phenomena” mapping is again visible in [61,
62]. The question here is to give account of Zipf’s least effort principle [188] using
network methodology and information theory [155]. Again, the center of the discus-
sion is a cognitive phenomenon (communication) in which a speaker and a listener
are involved. As it is well known, word frequencies in human language obey a uni-
versal regularity, the so-called Zipfs law. If P (f) is the proportion of words whose
frequency is f in a text, we obtain P (f) ∝ f−β , with β ∈ [1.6, 2.4]. Given this in-
terval, the author’s claim is that the exponent of Zipf’s law depends on a balance
between maximizing information transfer and saving the cost of signal use. This
trade-off is in close relation to the one reported in [66] according to the expression

Ω = λI(S,R)− (1− λ)H(S) (3.3)

where Ω is the energy function that a communication system must minimize, I(S,R)
denotes the Shannon information transfer between the set of signals S and the set
of stimuli R; and H(S) is the entropy associated to signals, i.e. the cost of signal
use present in any communication [61]. In this context, λ ∈ [0, 1] is a parameter
regulating the balance between the goals of communication (maximize transfer of
information) and its cost. Of course, λ = 1 results in a completely effective commu-
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Table 3.3: Language-oriented complex networks works. Ref. [170] partially contains also
genuine cognitive-oriented research.

Graph Source Network Vertex Edge Orient. N 〈k〉 L C Reference

thesaurus graph Moby’s thesaurus word sense relation undir. 30,244 59.9 3.16 0.53 [120]

collocation graph BNC corpus word collocation undir. 460,902 70.13 2.67 0.44 [63]

co-occurrence graph BNC corpus word co-occurrence undir. 478,773 74.2 2.63 0,69 [63]

thesaurus graph Roget’s thesaurus word sense relation undir. 29,381 S. (3.3) 5.60 0.87 [170]

concept graph WordNet word sense relation undir. 122,005 3.3 10.56 0.03 [170]

association graph free assoc. data word association undir. 5,018 22.0 3.04 0.19 [170]

association graph free assoc. data word association dir. 5,018 12.7 4.27 0.19 [170]

nication, whereas λ = 0 leads to a costless (though null) communication.
Given this framework, energy Ω can be minimized for different values of λ. Re-

sults show a sudden jump from close to null information transfer (low values of λ)
to a maximum information transfer at a critical value λ∗ ≈ 0.5. For values λ > λ∗,
I(S,R) does not increase. These results are in turn interpreted in the context of net-
works in [62], by showing that favoring information transfer without regard of the
cost (low values of λ) corresponds to a dense, richly interconnected network (infor-
mation availability); above a threshold, the situation is reversed and the network of
signals and stimulus (language) is broken or disconnected (certain parts of language
remain unreachable). The change from one to another scenario occurs, again, in the
form of a phase transition at a certain critical value.

Up to now, we have been able to assess the existence of certain universal sta-
tistical trends (see Table 3.3 and references therein), and we have placed language
networks in the framework of information and communication theory, which ap-
proaches them to its natural place, i.e. embedded in human cognition.

Thus, we now fully turn to the cognitive-oriented research. As Solé et al. [159]
point out, some (possibly interacting) factors must be considered for a more compre-
hensive view on linguistic phenomena, for instance: a common brain architecture
and vocalization system, or the need for optimization in communication and learn-
ability. These new considerations have turned the attention of research towards a
cognitive-oriented work, where the network is not the object of analysis anymore
(or not exclusively, at least); rather it is the object on top of which language cognitive
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Figure 3.4: Plots of the cumulative degree distribution in four networks. All of them have
been converted to unweighted and undirected. (a) WordNet, hypernymy relationships; (b)
Co-occurrence networks for variable window size, from the ACE corpus; (c) English Free
Association Norms (USF-FA); (d) Roget’s thesaurus. Note that the plots are drawn in log-
log scale. Only (a) and (b) display a power-law decay, whereas (c) and (d) do not follow a
scale-free distribution. All of them, nonetheless, fit in the small-world definition.

mechanisms operate. Furthermore, more attention is put both on the type of data
and its original meaning: while a coarse-grain general study on structural princi-
ples usually treats with undirected, unweighted networks, the cognitive approach
tries to preserve as much as possible the original structures. By doing so, the natural
heterogeneity and bias in cognitive phenomena are preserved. For instance, Figure
3.5 illustrates how misleading it can be to oversee the details in data. Summarizing,
the study of cognitive processes demands a finer level of detail, where it matters
whether a word facilitates another one, but not the other way around; or whether
two words are semantically similar up to 0.9, whereas another pair reaches only 0.1.
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Figure 3.5: Directions and weights matter. Left: log-log plots of the cumulative degree dis-
tributions for psycholinguistic data in four languages (from top to bottom: USF, SFA-SV, SFA
and GFA). Directions are symmetrized and weights are not taken into account. Right: log-
log plots of the cumulative in-strength distribution for the same data without manipulation.
Note that there exist striking differences between degree and strength distributions of psy-
cholinguistic data. These differences are also evident in other descriptors, which suggests
that comprehension about cognitive-linguistic processes demand attention to such details.

Both situations are treated as symmetric unweighted relationships in most complex
network overviews of language.
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3.3 The cognitive pole I: Language and conceptual de-
velopment

The work by Steyvers and Tenenbaum in 2005 [170] represents, up to date, the most
comprehensive effort to join cognitive science with complex systems. As a con-
fluence of these disciplines the authors vindicate the group of theories in psychol-
ogy of memory which, under the label of semantic networks, were developed forty
years ago [40, 41]. These classic semantic networks often represent defined rela-
tionships between entities, and the topological structure is typically defined by the
designer. A classical example of this type of semantic network is Collins and Quil-
lian’s groundbreaking work in 1969 [40]. These authors suggested that concepts are
represented as nodes in a tree-structured hierarchy, with connections determined
by class-inclusion relations. Additional nodes for characteristic attributes or predi-
cates are linked to the most general level of the hierarchy to which they apply, see
Figure 3.6. Collins and Quillian proposed algorithms for efficiently searching these
inheritance hierarchies to retrieve or verify facts such as Robins have wings, and they
showed that reaction times of human subjects often seemed to match the qualita-
tive predictions of their model. Word retrieval and recognition processes involve, in
this proposal, tracing out the structure in parallel (simulated in the computer by a
breadth-first search algorithm) along the links from the node of each concept spec-
ified by the input words. Such tracing process is known as “spreading activation”.
The spread of activation constantly expands, first to all the nodes linked to the first
node, then to all the nodes linked to each of these nodes, and so on. At each node
reached in this process, an activation tag is left that specifies the starting node and
the immediate predecessor. When a tag from another starting node is encountered,
an intersection between the two nodes has been found. By following the tags back
to both starting nodes, the path that led to the intersection can be reconstructed. In-
terestingly, the relation between structure and performance is addressed in terms of
the cognitive economy principle. Such principle, in its weak version, imposes certain
constraints on the amount of information stored per node, thus affecting the struc-
ture (and its growth) in behalf of better future performance, see [40, 41] for further
development.

A tree-structured hierarchy provides a particularly economical system for repre-
senting default knowledge about categories, but it places too strong constraints on
the possible ways of organizing knowledge. Moreover, it has severe limitations as
a general model of semantic structure. Inheritance hierarchies are clearly appropri-
ate only for certain taxonomically organized concepts, such as classes of animals or
other natural kinds.

The second classical proposal is that of Collins and Loftus [41] which, although
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Figure 3.6: The Collins and Quillians tree data structure provides a particularly economical
system for representing knowledge about categories. The cognitive economy principle pre-
vents the structure from having redundant information, thus features which belong to one
level do not appear in any other. Despite some positive experimental results with humans,
the structure is far too rigid to accommodate actual semantic knowledge.

accepting many of Collins and Quillians premises, assumes a quite different data
structure: a graph (notice that a graph is a general case of a tree; or, to put it the
other way around, a tree is a particular case of a graph). Collins and Loftus model
does not differentiate between concepts and their atributes. Therefore, nodes in the
graph can either be nouns (such as “apple”), adjectives (such as “red”), or even
compounded expressions (such as “fire engine”). Edges connecting them express
a semantic relationship between them (not necessarily a category or similarity rela-
tionship), and it is assigned a number (a weight). Therefore, Collins and Loftus pro-
posal yields an undirected, weighted graph which formally resembles very much
the type of network that has been reviewed along this work.

Note that conceptually there is not much distance between Collins and Loftus
graph proposal and complex networks. However, perhaps because of the limited
prediction power of these proposals, perhaps because other points of view evi-
denced higher success at that time, the following decades did not witness a prolon-
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gation of these seminal works. As a consequence, there is relatively small agreement
about general principles governing the large-scale structure of semantic memory, or
how that structure interacts with processes of memory search or knowledge acqui-
sition.

A complex network approach to language emerges naturally from this tradition,
thus the work of Steyvers and Tenenbaum can be thought of as an update, both from
the point of view of methodology and data availability. Although this work has a
wide scope, part of it reports similar results as those reviewed in the previous Sec-
tion, for instance a structural characterization of WordNet, Roget’s Thesaurus and
USF-FA. Our interest is focused now on the genuine cognitive approach to language
learning or growth in an individual (lexical development).

The first part of the question can be stated: is it possible to find a variation on
Barabási and Albert’s preferential attachment which guarantees the emergence of
a small-world, scale-free network? This question was already tackled by Dorogov-
stev and Mendes, as we have seen above. The novelty lies on the fact that the goal
is to explain the statistics of semantic networks as the products of a general family of
psychologically plausible developmental processes. In particular, (i) it is assumed that
semantic structures grow primarily through a process of differentiation: the mean-
ing of a new word or concept typically consists of some kind of variation on the
meaning of an existing word or concept; (ii) it is assumed that the probability of
differentiating a particular node at each time step is proportional to its current com-
plexity (how many connections it has); and finally, (iii) nodes are allowed to vary in
a “utility” variable, which modulates the probability that they will be the targets of
new connections.

These constraints are translated to an algorithm which departs from a clique
(fully connected network) of M initial nodes. Then, a node i is chosen to be differ-
entiated at time t with probability Pi(t) to be proportional to the complexity of the
corresponding word or concept, as measured by its number of connections:

Pi(t) =
ki(t)∑n(t)
l=1 kl(t)

(3.4)

where ki(t) is the degree (number of connections) of node i at time t. Secondly,
given that node i has been selected for differentiation, we take the probability Pij(t)
of connecting to a particular node j in the neighborhood of node i to be proportional
to the utility of the corresponding word or concept:

Pij(t) =
uj∑
l∈Γi

ul
(3.5)

where Γi stands for the neighborhood of node i. One possibility is to equate a word’s
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utility with its frequency; for a simpler model, one may also take all utilities to
be equal, then connection probabilities are simply distributed uniformly over the
neighborhood of node i:

Pij(t) =
1

ki(t)
(3.6)

With these equations (Eqs.3.4-3.5, or Eqs.3.4-3.6) each new node is connected to
M old nodes. Nodes are added to the network until the desired size N is reached.
With these constructive algorithm a synthetic network is obtained, and its statistical
features can be compared to the empirical counterparts. Steyvers and Tenenbaum
report a significant agreement on degree distribution P (k) match, as well as on some
quantities, which are reproduced in Table 3.4.

N 〈k〉 C L D γ

USF-FA 5018 23.5 0.1928 3.04 5 3.01
Synthetic USF 5018 22 0.174 3.00(.012) 5(.000) 2.95(.054)

Table 3.4: Results of model simulations (undirected version). γ is the exponent of the power-
law that describes P (k). Standard deviations of 50 simulations given between parentheses.

3.4 The cognitive pole II: Cognitive-linguistic processes
on language networks

In the following subsections, we report two examples of the application of complex
systems techniques to gain insight on genuine cognitive phenomena.

3.4.1 Google and the mind

The world wide web (WWW) presents at least two resemblances to associative mod-
els of language. First, it is organized as a directed network (nodes are web pages and
the links between those nodes are hyperlinks, in the case of the WWW); second, its
structure is dominated by the contents of its nodes. These factors add up to the
fact that both human semantic memory and Internet face a shared computational
problem, namely the necessity to retrieve stored pieces of information in an efficient
way.

Given this, Griffiths and co-authors point out a very interesting parallelism be-
tween the PageRank algorithm [130] (see Figure 3.7) and human performance on
certain cognitive processes [80].
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Figure 3.7: An illustration of the output of the PageRank algorithm. A link from an important
web page is a better indicator of importance than a link from an unimportant web page. Un-
der such a view, an important web page is one that receives many links from other important
web pages. From Wikipedia Commons.

To explore the correspondence between PageRank and human memory, the au-
thors used a task that closely parallels the formal structure of Internet search. In this
task, people were shown a letter of the alphabet (the query) and asked them to say
the first word beginning with that letter that came to mind. The aim was to mimic
the problem solved by Internet search engines, which retrieve all pages containing
the set of search terms, and thus to obtain a direct estimate of the prominence of dif-
ferent words in human memory. In memory research, such a task is used to measure
fluency (the ease with which people retrieve different facts). With this experimental
setup, accordance between the word’s rank given by the algorithm and by empirical
data is measured.

Results evidence that verbal fluency can be predicted, at least partially, attend-
ing the prominence (i.e. centrality) of words in memory. Furthermore, PageRank
performs better predictions than those obtained attending word usage frequency,
see Figure 3.8.

In the context of this review, note that the work of Griffiths and co-authors in-
volves experimental design and direct, detailed comparison between the theoretical
hypothesis and empirical results. From this point of view, the mixture of cogni-
tive research and complex network methodology represents a real advance in the
comprehension of knowledge organization in humans. Also, this novel orientation
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Figure 3.8: Human Subjects Responses in the fluency task and rankings given by different
predictors. This table provides a selective list, showing only 10 items for each letter. In the
sections of the table corresponding to the three predictors, the order of the words in each
column reflects the rankings given by the predictor indicated. Numbers in parentheses are
frequencies in the human responses. After [80].

places research on language networks in the general framework of traffic and nav-
igation on complex networks. The hypothesis suggests that search and retrieval
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are affected by the way information flows, this issue has received much attention
during the past years, see for instance [8, 48].

3.4.2 Clustering and switching dynamics

Previous Section deals with a dynamic cognitive search process where subjects’ pro-
duction is independent of meaning, the task depends on the form of words, rather
than their content. An alternative scenario might be that where subjects are de-
manded to produce words according to a certain category (for instance, “name any
animal you can think of”). This approach has been studied in [78], under the theo-
retical framework of Troyer’s model for optimal fluency [177], in which search and
retrieval cognitive processes exist on a double time-scale, a short one regarding local
exploration (clustering), and a long one accounting for switch-transitions times.

The authors’ proposal shares some aspects with the previous one. However, the
issue here is not prominence or availability of words (centrality), but rather the fact
that words are organized in communities or modules. Such modules are not only
topological clusters, but also thematic groups or topics. From this point of view, the
switching and clustering mechanism, understood as a double-level navigation pro-
cess, can be used to predict human performance in such task as it is reported in [28].
The switcher-random-walker model (SRW) is then a cognitive inspired strategy that
combines random-walking with switching for random exploration of networks. It is
found that the number of steps needed to travel between a pair of nodes decreases
when following this strategy, and thus the overall exploration abilities of a SRW
within networks improves respect to mere random walkers.

Interestingly, a highly modular organization plus a two-level exploration scheme
allows the system to organize information or to evolve without compromising ex-
ploration and retrieval efficiency. In this sense, semantic memory might be organiz-
ing information in a strongly modular or locally clustered way without compromis-
ing retrieval performance of concepts.

Community detection on empirical databases reveals the highly modular struc-
ture of word association. Analysis of USF-FA’s mesoscale yields a modularity value
Q = 0.6162, about 150 standard deviations above its randomized counterpart; sim-
ilar results have been obtained with SFA (Q = 0.7930). See an example of detected
modular structure for a subset of USF-FA data in Figure 3.9. The partition has been
obtained for this review using a combination of algorithms (Extremal Optimization
[53], Fast Algorithm [124] and Tabu Search [11]) available at [75]. These values seem
a good starting point from which empirical work can be taken ahead.
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Figure 3.9: Community analysis for a subset of USF-FA withN = 376 nodes. The modularity
value for this analysis is Q = 0.8630. The partition has been obtained for this review us-
ing a combination of algorithms (Extremal Optimization [53], Fast Algorithm [124] and Tabu
Search [11]) available at [75].

3.5 Conclusions and perspectives

In this Chapter we have reviewed some important work from the last decade on
language as a networked system. Work in this area has been strongly motivated
by the uprise of a prolific branch of statistical mechanics, complex networks. Its
foundations have been outlined in Chapter 2, focusing on a number of macro and
micro statistical properties of networks that have received particular attention, and
on some tools to scrutinize the meso level.

Section 3.1 elucidates the variety of sources and points of view from which lan-
guage can be modeled as a network.

In Section 3.2 we have concentrated on the so-called language-oriented works
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(lexical networks). Inspired by empirical studies of real-world networks ranging
from the Internet to citation networks, researchers have approached language so as
to propose models of networks that seek to explain either how networks come to
have the observed structure, or what the expected effects of that structure will be.
Such advances have brought to light two important facts: (i) that language resem-
bles in many aspects other complex systems; and (ii) that different languages are
also similar to each other regarding statistical descriptors. These results allow us
to talk about the existence of certain universal trends that underlie linguistic struc-
tures. Within this Section, we have also seen some incipient efforts to link language
topology and linguistic activity in humans.

In the last part of this review (Sections 3.3 and 3.4) we have discussed work on
the behavior of processes that take place on networks. This implies a shift from
an interest in structures per se towards an interest in the mechanisms that operate
on them. It also implies a greater transdisciplinary effort, aiming at a convergence
with knowledge from cognitive science. We have paid attention to some topics of
a cognitive-oriented complex network research, namely lexical development (net-
work growth with a cognitive accent) and mental navigation (dynamical processes
on language networks).

The progress in this field is so rapid, that we have failed to discuss and even cite
a number of relevant results.

We believe that these results are only the tip of the iceberg. In looking forward
to future developments in this area it is clear that there is much to be done. From a
methodological point of view, the techniques for analyzing networks are at present
no more than a collection of miscellaneous and largely unrelated tools. A systematic
program for characterizing network structure is still missing.

On the linguistic side we are just in the first attempts at answering a few ques-
tions; this means that almost everything is yet to begin. Some topics that might be
important in the future are: are there common mechanisms in the emergence of SF
language network structures in artificial communities of agents [15, 165, 166] and
language acquisition in children? How can be mental navigation so efficient on a
network which displays many different types of links between words? Is it possible
to construct a typology of languages where the genealogical relations are reflected
in network features? How do semantic categories evolve? Can semantic memory’s
malfunctions (blocking, persistence, bias, etc.) be explained in terms of topological
changes? How are language networks modified through aging and brain damage?
If we can gain some understanding for these questions, it will give us new insight
into complex and previously poorly understood phenomena.

UNIVERSITAT ROVIRA I VIRGILI 
COMPLEX NETWORKS THEORY AND ITS APPLICATION TO LANGUAGE. 
Javier Borge Holthoefer 
ISBN:978-84-694-2176-5/DL:T. 1034-2011 



Chapter 4

The Random Inheritance Model

In the line of the second part of the previous Chapter, we now introduce another
model that relates human performance in semantic processing tasks with processes
operating on complex networks.

Semantic memory is the cognitive system where conceptual knowledge is stored.
Empirical evidence from experiments with subjects and other lexical resources (the-
sauri [142], corpus [57], etc.) suggest that this system can be suitably represented as
a semantic network, where each node corresponds to a word, and edges stand as
pairwise associations. The network reconstructed from semantic information is in
contrast with hierarchies created by individuals for computer storage and retrieval
–which are trees– [97], the network has an intricate topology of cyclic relationships.
Estimations that on average a healthy adult knows from 20,000 to 40,000 words
[13] raise challenging questions about storage capacity, organization of the infor-
mation and verbal performance. Regarding organization, some words are linked by
virtue of their semantic similarity (intra-categorical relations, e.g. car and automo-
bile). Other types of associations fall under the more general semantic relatedness,
which includes the former and any kind of functional or frequent association [31],
e.g. car and road. This implies that many types of association exist undistinguished
in the network structure. In particular, categorical (similarity) relations are embed-
ded in a much richer structure of superposed relationships.

In this Chapter we follow [26] to propose a computational model to extract se-
mantic similarity information from the track of a dynamical process upon word as-
sociation data. The main idea is that categorical relations emerge from navigation
on the topology of semantic memory. Although we focus on cognitive phenomena
and data, our efforts can be more generally interpreted in terms of the extraction of
the backbone of a network, which entails that there exist “master relations” between
elements (long-lasting similarity relations) and “incidental” (experience-dependent)
ones that are entangled with the previous.

We use two empirical data sets to test the model: a general association semantic
network as substrate of a dynamic process, and a feature similarity network for
comparison purposes. Both have been characterized in the previous Chapter (USF-
FA and FPN; simply FA and FP hereafter). After that, the model itself is detailed. We
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name it the Random Inheritance Model (RIM) because it is based on uncorrelated
random walks from node to node that propagate an inheritance mechanism among
words. The results obtained yield significant success both at the macro- and the
microscopic level when compared to actual data. Beyond the practical and applied
aspects of RIM, we devise the formal background of the model in Section 4.4. Finally,
we discuss that the key to such success is the modular structure of the substrate
network, which retains significant meta-similitude relationships.

4.1 Topology of semantic networks

The algorithm that implements our model runs on general word association data,
which are typically called Free Association. It is widely accepted that such data offer
the most general and realistic insight of the structure of semantic memory, because
they are not restricted to a particular kind of association. On the contrary, feature
similarity data reports only the amount of features two words have in common,
thus displaying strictly pairwise similarity information. See previous Chapter for a
deeper comment on such data.

The differences in the nature of edges has drastic effects on the topology of these
semantic networks, this can be analyzed in terms of statistical descriptors. In Table
4.1 we highlight some of such descriptors. 〈s〉 is the average strength per node; L is
the average path length, defined as the average of the geodesic paths (minimal dis-
tance) between any pair of nodes; D is the diameter of the network; C is the average
clustering coefficient. Strength distribution P (s), the cumulative distribution func-
tion, which gives the probability that the strength of a node is greater than or equal
to s. It is helpful to gain a global vision of a network’s connectivity profile, in Figure
4.3 we see FA’s and FP’s distributions. A complete review of these descriptors can
be found in [3, 21, 123].

It is readily understood from table 4.1 that the structures differ largely. The high
connectivity in FP gives raise to a dense network, which in turn allows that any
node is reachable in less than 2 steps on average. It also has the effect of a highly
cohesive structure, i.e. clustering is prominent. In order to avoid size effects (the
difference between FA and FP sizes), the same statistics are computed for the com-
mon subset of words, the differences between both topologies still hold. Strength
distribution, which is plotted for FA’s and FP’s common subgraphs, also evidences
deep structural disagreement, Figure 4.3.

We have analyzed quantities that describe macro and micro levels of networks.
Also at the level of groups or communities (mesoscale) differences arise between FA
and FP. This is expected, both because reviewed topological features differ largely,
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FA (all) FP (all) FA (subset) FP (subset)
N 5018 541 376 376
〈s〉 0.77 20.20 0.26 13.43
L 3.04 1.68 4.41 1.68
D 5 5 9 3
C 0.1862 0.6344 0.1926 0.6253

Table 4.1: Main statistical descriptors of the networks FA and FP, and their respective com-
mon words’ subnetworks. N is the number of nodes; 〈s〉 is the average strength; L is the
average shortest path length; D is the diameter of the network and C is clustering coefficient.

and the semantics of links is different from construction. Modularity optimization
methods [49, 53, 124] yield partitions in which groups of words are gathered dif-
ferently. FA shows a highly modular structure (Q = 0.6162), while FP reaches a
modularity value Q = 0.4288. Lower modularity implies that clear boundaries are
harder to define, this fits well with evidence of humans’ fuzzy categorical system
[143] and with computational models of verbal fluency [78]. Despite this, a close
look to the words that conform communities, either in FA or FP, correctly reflect the
distinct underlying associations, see Figure 4.1.

4.2 The Random Inheritance Model (RIM)

Up to now we have some clues about the type of topology our algorithm will be run
on (FA), and what the output of the model should resemble (FP). From this knowl-
edge we move on to develop the logic steps behind our proposal and describe the
mathematical framework behind it. Recent works have pointed out the ability of a
random navigation to explore the complexity of networks [45, 129, 185]. Here we
propose a random navigation process and an inheritance mechanism to disentan-
gle categorical relationships from a semantic network. Our intuition about the ex-
pected success of our approach relies on two facts: the modular structure of the FA
network retains significant meta-similitude relationships, and random walks are the
simplest dynamical processes capable of revealing the local neighborhoods of nodes
when they persistently get trapped into modules. The inheritance mechanism is a
simple reinforcement of similarities within these groups. We call this algorithm the
Random Inheritance Model (RIM).

RIM proceeds in three steps, (i) initialization, (ii) navigation and inheritance, and
(iii) output construction. Step (i) tags every word in the FA network with an initial
features vector. The vectors are orthogonal in the canonical basis to avoid initial
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Figure 4.1: A sample of words that conform communities, from partitions obtained through
modularity optimization in (a) FA and (b) FP. For the sake of simplicity edges leaving the
depicted subgraph have been removed.

bias. That means that every word has associated a vector of N -dimensions, being N
the size of the network, with a component at 1 and the rest at zero. The second step
consists of launching random walks of length S from every word i in the network.
The inheritance mechanism changes the vector of i, vi depending on the navigation
behavior. Let s = {s1, s2, ..., sn} the set of visited nodes. Then the new vector for
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node i is computed as:
vi =

∑
si∈s

vsi (4.1)

Note that (a) update of the feature vectors is synchronized, final values are com-
puted after completion of the inheritance for every word; and (b) a random walk is
a time-reversible finite Markov chain, which implies that node i can be itself in the
set of visited nodes, see [105] for a survey on the topic. A new (synthetic) network FS
is built in step (iii). Nodes in the new structure are those from the substrate network,
weights between them are the result of projecting all pairs of updated vectors.
Steps (i)-(iii) are iterated (by simulating several runs) up to convergence of the av-
erage of the synthetic feature similarity networks generated at each run. The final
average is the synthetic feature similarity network to be compared to FP.

This algorithm can be algebraically described in terms of Markov chains. Before
we must define the transition probability of the FA network. The elements of FA
(aij) correspond to frequency of first association reported in [122]. However, note
that the 5018 words that appear on the data set are not all the words that appeared
in the experiment, but only those that were at the same time cues in the experiment.
Therefore data need to be normalized before having a transition probability matrix.
We define the transition probability matrix P as:

Pij =
aij∑
j aij

(4.2)

As the original matrix, this one is also asymmetric. Once the matrix P is con-
structed, the random walkers of different lengths are simply represented by powers
of P . In practice, this means that if we perform random walks of length S, after av-
eraging over many realizations we will converge to the transition matrix PS , every
element (PS)ij represents the probability of reaching j, from i, in S steps. The inher-
itance process corresponds, in this scenario, to a change of basis, from the orthogonal
basis of the N -dimensional space, to the new basis in the space of transitions T :

T = lim
S→∞

S∑
i=0

P i = (I − P )−1 (4.3)

However, in order to collect information about the dynamical behavior of the ran-
dom walkers, one does not need to measure this limit. Thus, computations were
done up to S = 10, and S = 4 already evidence good results. Results for RIM are
expressed for S = 4 from now on. Finally, FS is the matrix that will represent in
our model the feature similarity network (synthetic features network), where simi-
larity is calculated as the cosine of the vectors in the new space, given by the scalar
product of the matrix and its transpose, FS = TT †.

UNIVERSITAT ROVIRA I VIRGILI 
COMPLEX NETWORKS THEORY AND ITS APPLICATION TO LANGUAGE. 
Javier Borge Holthoefer 
ISBN:978-84-694-2176-5/DL:T. 1034-2011 



70 4. The Random Inheritance Model

0.10

0.600.05

0.20 0.05

1

0.40
0.30

0.30
0.70

0.20

0.10
1

0.40

0.60

0.70

0.30

0.25

0.25

0.50
0.50

0.50

1 2

3

45

6

7

8

9 10

11

1 0 0 1 0 0 0 0 0 0 0

0.10

0.600.05

0.20 0.05

1

0.40
0.30

0.30
0.70

0.20

0.10
1

0.40

0.60

0.70

0.30

0.25

0.25

0.50
0.50

0.50

1 2

3

45

6

7

8

9 10

11

1 0 0 1 0 0 1 0 0 0 0

0.10

0.600.05

0.20 0.05

1

0.40
0.30

0.30
0.70

0.20

0.10
1

0.40

0.60

0.70

0.30

0.25

0.25

0.50
0.50

0.50

1 2

3

45

6

7

8

9 10

11

2 0 0 1 0 0 1 0 0 0 0

0.10

0.600.05

0.20 0.05

1

0.40
0.30

0.30
0.70

0.20

0.10
1

0.40

0.60

0.70

0.30

0.25

0.25

0.50
0.50

0.50

1 2

3

45

6

7

8

9 10

11

2 0 0 1 0 0 1 0 1 0 0

a b

c d

Figure 4.2: In RIM, the visits of a random walker starting at node i trigger the inheritance
mechanism, which modifies the features vector of a node i. In the figure, a random walk of 4
steps changes the vector of node 1.

RIM fits naturally in the family of path-based similarity measures [20, 92, 93,
140, 149, 150, 102]. Jaccard index [92], cosine similarity [150] and the like have an in-
herent constraint, they can only account for short range similarities. This limitation
is overcome in measures that take into consideration also long-range relationships
[20, 93, 102]. However, a subtle distinctive feature of RIM is that similarity between
nodes i and j is not a function of the number of paths from i to j, but depends on
their navigational characteristics to the whole network, i.e. two nodes are similar
if random walkers departing from them behave similarly. Cosine of vectors at the
end of the navigation process accounts for random walkers’ global performance. We
think this particular feature is adequate in a cognitive-inspired dynamical mecha-
nism, where navigation matters.
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Table 4.2: Statistical parameters for Free Association norms FA (substrate of the dynamic pro-
cess), Feature Production norms FP (empirical target), and the synthetic networks obtained
using Latent Semantic Analysis LSA and Random Inheritance Model RIM.

Descriptor FA FP LSA-N FS
N 376 376 376 376
〈s〉 0.26 13.43 39.60 15.62
L 4.41 1.68 0.02 1.77
D 9 3 2 3
C 0.1926 0.6253 0.9611 0.5848

4.3 Model performance

The algorithm sketched above yields a new synthetic network, FS. The capacity of
RIM to extract similarity information must be tested against the empirical FP. We
first check statistical macroscopical resemblance between FS and FP, by direct com-
parison of network descriptors and P (s). We also point out results from Latent Se-
mantic Analysis, LSA [50, 99]. LSA uses truncated Singular Value Decomposition to
infer semantic similarity between pairs of words. We report results for LSA trained
on the TASA corpus and truncation at d = 300, for the subset of common words in
FA and FP. We will refer to this network as LSA-N. This LSA TASA-based represen-
tation is an appropriate benchmark because it largely succeeds at predicting human
synonym test judgments [100].

In Figure 4.3 we plot the cumulative strength distribution P (s) of the empirical
networks FA, FP, and the synthetic ones LSA-N and FS. The statistical agreement
between FP and FS is remarkable. Note that all distributions present an exponen-
tial decay instead of a power-law decay, being the cutoff of the distribution in FA
more pronounced due to its original sparseness. Random homogeneous networks
typically show this specific form of the distributions. Main descriptors of the four
networks are presented in table 4.2. Again, the agreement between FP and FS is
remarkable, the model reproduces with significant accuracy average strength, aver-
age path length, diameter, and clustering of the FP target network. The descriptors
indicate that LSA-N is even denser than FP, close to complete connectivity.

Though informative and important, agreement on average or global descriptors
does not determine to state the validity of RIM to extract actual categorical infor-
mation from the original substrate. The reason for this is that nodes are tagged,
conformity must be sought down to the local level. In practice, we intend to test
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Figure 4.3: Log-linear plots of the cumulative strength distribution of the networks. Left: Free
Association norms FA (substrate of the dynamic process). Right: Feature Production norms
FP (empirical target) , and the synthetic networks obtained using Latent Semantic Analysis
(LSA-N) and Random Inheritance Model (FS).

whether the specific neighborhood of a word in FP is replicated for the same word
in FS (and LSA-N). We proceed as follows: given a specific word i, we start sort-
ing its neighbors according to their linking weight. We apply this for each word in
our data sets forming lists. The list of each word in FP is the empirical reference,
and the lists we want to compare with, are those obtained for each word in the syn-
thetic data sets, FS and LSA-N. We restrict our analysis up to the first 15 ordered
neighbors, assuming that these are the most significant ones.

We now need a convenient measure to compare pairs of lists. To this end, we
design a restrictive expression that assigns an error score between a list and its ref-
erence. Error depends on the number of mismatches between both lists, and also on
the number of misplacements in them. A mismatch (M) corresponds to a word that
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exist in the reference list and not in the synthetic list and vice versa. A misplacement
(O) is an error in the order of appearance of both words in each list. The error score
E is then defined as:

E = EM +
EO

l − EM
(4.4)

where EM stands for the number of mismatches, EO the number of displacements
and l the length of the list. This quantity is inspired in Levenshtein edit distance
[103] and its generalization, Damerau-Levenshtein distance [47]. In them, similarity
between two strings depends on the amount of insertions/deletions and transposi-
tions that one has to perform on a string in order to completely match another one.
Notice that E is strongly increased when a mismatch appears, movements are less
punished. Note also that E = 0 when lists match perfectly, we prescribe E = l + 1
for two completely different lists.

Besides a proper measure, we also define a suitable micro null case. To this end,
we check whether categorical information is available just by listing a word’s closest
neighbors in the original FA. This implies the calculation of all-to-all shortest paths,
weighting links as dij = 1

pij
, stronger relatedness is equivalent to shorter distance.

Note that a direct neighbor of word i, i.e. a word with an edge from i, might lie at
a longer distance than a second-level word. Success with this strategy would imply
that RIM’s retrieval capacity is merely due to topological closeness.

Success, i.e. 100(1 − E) with E as defined in Equation 4.4 and normalized, is
plotted in Figure 4.4 for FS, LSA-N. Error in the null model is close to 100%, it has
been left out in this plot. On average the success of FS is about 10% higher than
that of LSA-N, the null model evidences that categorical information demands a
stronger model to be disentangled.

4.4 Formal extension of RIM

In the previous sections we have presented the computational aspects of RIM, to-
gether with the basic intuitions that conform it as a plausible approach. Also we
have focused on the practical aspects of it, testing it against empirical evidence and
against another model (LSA).

Instead, we now turn to the mathematical foundations of RIM, which establish
a strong connection between a cognitive semantic exploration strategy with a for-
malism in which semantic categories emerge as sets of recurrent states in a Markov
chain.
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Figure 4.4: Log-linear plots of the cumulative strength distribution of the networks. Left: Free
Association norms FA (substrate of the dynamic process). Right: Feature Production norms
FP (empirical target) , and the synthetic networks obtained using Latent Semantic Analysis
(LSA-N) and Random Inheritance Model (FS).

4.4.1 First approach

Let the process Xt, t ≥ 0, define a finite Markov chain, where Xt ∈ {1, . . . , N} is a
random variable describing the state of the process at time t. This chain is defined by
the transition probability pij = Pr(Xt+1 = j|Xt = i). Let P = (pij) be the transition
matrix of the Markov chain. This is a stochastic matrix because pij ≥ 0 for any i, j and∑
j pij = 1. Let p(n)

ij denote the probability that, being in state i at time t, the process

is in state j at time t+ n; thus, Pn =
(
p

(n)
ij

)
. Obviously, Pn is also stochastic for any

n ≥ 1.
To any such Markov chain one can associate a finite directed graph G, whose

nodes are labelled 1, . . . , N , and such that there is a directed link from node i to node
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TUBA
FP LSA RIM

trombone clarinet trombone
trumpet violin saxophone

drum flute trumpet
cello guitar flute

clarinet trombone clarinet
saxophone fork cello

flute trumpet violin
harp cake harp
banjo drum banjo
piano piano stereo

ERROR 4.83 2.5

ROOSTER
FP LSA RIM

chicken cat chicken
goose gate turkey

pigeon donkey crow
sparrow barn robin
penguin turnip sparrow
pelican owl bluejay
bluejay pig pigeon

dove fence pelican
hawk lion goose
turkey strawberry hawk
ERROR 11 2.87

Table 4.3: Some illustrative examples of LSA and RIM’s predictive capacity, when compared
to our FP (list size l = 10).

j if and only if pij > 0. Over this graph, the Markov process can be regarded as a
random walk such that if the walker is at node i, it jumps to any of its neighbors j
with probability pij (pij = 0 if j is not a neighbor of i). Thus a diffusion process over
a weighted directed graph is equivalent to a finite Markov chain. We will analyze
this process in terms of the properties of a finite Markov chain. Accordingly, the
words node and state will be used interchangeably.
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76 4. The Random Inheritance Model

Assuming the graph G is not multipartite1 the states of the Markov chain (hence
the nodes of G) can be classified into transient and recurrent. If we compute the limit

ai ≡ lim
n→∞

p
(n)
ii , (4.5)

transient states have ai = 0 and recurrent states ai > 0. In other words, the process
returns to a transient state only a finite number of times, whereas a recurrent state
is visited infinitely often.

In its turn, recurrent states can be partitioned into sets R1, . . . , Rs, such that
p

(n)
ij > 0 for some n > 0 if i, j ∈ Rµ, but p(n)

ij = 0 for all n > 0 if j ∈ Rµ and
j ∈ Rν , with µ 6= ν. In other words, any node can be reached from any other node
within the same set, but nodes in different sets cannot be reached from each other.

According to this classification, starting from any node the process eventually
hits a recurrent state. From that moment on, the process remains in the set this
recurrent state belongs to. Within each of the sets Rµ the process is ergodic. Thus,
if restricted to set Rµ, the process has a stationary probability given by the vector(
π′µi
)
i∈Rµ

. It can be shown that

lim
n→∞

p
(n)
ij = π′µj , i, j ∈ Rµ, (4.6)

which in turn implies that ∑
i∈Rµ

π′µipij = π′µj , j ∈ Rµ, (4.7)

i.e. the stationary probability vector is a left eigenvector with eigenvalue 1 of the
submatrix (pij)i,j∈Rµ . Actually, the limit 4.6 provides an iterative procedure to com-
pute this eigenvector.

The partition of nodes that we have just obtained suggests a convenient relabel-
ing of the nodes: the nodes of R1 are taken as the first nodes, followed by those of
R2, then those of R3 and so on until Rs, and finally we label the transient nodes
(which form the set T ). With this relabeling matrix P has the block structure

P =
(
R 0
U Q

)
, (4.8)

where R is a block diagonal matrix with matrices P1, . . . , Ps in the diagonal. Matrix
Q = (qij), where i, j ∈ T , is strictly substochastic, i.e.

∑
j qij < 1, because eventually

1In other words, there is not a partition of nodes into sets S1, . . . , Sr such that nodes from Si lead only
to nodes of Si+1, with Sr+1 = S1. Such a partition would produce a periodic Markov chain. Anyway,
multipartite graphs are the exception rather than the norm in complex networks.

UNIVERSITAT ROVIRA I VIRGILI 
COMPLEX NETWORKS THEORY AND ITS APPLICATION TO LANGUAGE. 
Javier Borge Holthoefer 
ISBN:978-84-694-2176-5/DL:T. 1034-2011 
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the process abandons the transient set T . Also, if U = (uij), where i ∈ T and
j /∈ T , is such that

∑
j uij > 0, for the same reason. The latter matrix describes the

probabilities of jumping from a transient state to a recurrent state.

Asymptotic probabilities of a finite, aperiodic Markov chain Our concern is the
computation of the limit

P∞ ≡ lim
n→∞

I + P + P 2 + · · ·+ Pn

n
= lim
n→∞

Pn. (4.9)

For that we first notice that

Pn =
(
Rn 0
Un Qn

)
, (4.10)

where the identity PPn = PnP leads to the following recurrence for matrices Un:

URn +QUn = UnR+QnU. (4.11)

First of all,
lim
n→∞

Qn = 0 (4.12)

because of limit 4.5 (equivalently, because Q is substochastic). Secondly, Rn is block
diagonal with blocks Pnµ . Given the limit of these matrices described above, the limit
of Rn can be conveniently described by introducing the vectors
πµ = (πµi)i/∈T and 1µ = (1µi)i/∈T as

πµi =

{
π′µi if i ∈ Rµ,

0 otherwise,
1µi =

{
1 if i ∈ Rµ,

0 otherwise.
(4.13)

Regarding R,

Π = lim
n→∞

Rn =
s∑

µ=1

1T
µπµ, (4.14)

a block diagonal matrix whose µ-th block is a matrix all whose rows contain the
stationary distribution for the recurrent set Rµ.

Finally, if we define

W = lim
n→∞

Un (4.15)

and take the limit in Equation 4.11 we obtain
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78 4. The Random Inheritance Model

UΠ +QW = WR. (4.16)

Also taking the limit in Pn+1 = PnP we get

ΠR = Π, WR = W (4.17)

The first equation summarizes relationships in Equation 4.7, and the second equa-
tion allows us to simplify the left-hand side of Equation 4.16 and write

UΠ +QW = W ⇔ W = (I −Q)−1UΠ. (4.18)

The matrix I −Q can be inverted because I −Q is substochastic (which means that
the spectral radius of Q is smaller than 1). Let us now define the vectors vµ(viµ)i∈T
as

viµ =
∑
j∈Rµ

wij , (4.19)

i.e. the probability of jumping from the transient state i to any state of Rµ. In matrix
form this equation reads

vT
µ = U1T

µ. (4.20)

Then

UΠ =
s∑

µ=1

U1T
µπµ =

s∑
µ=1

vT
µπµ. (4.21)

We define now wT
µ = W1T

µ; thus, according to Equation 4.18 and taking into account
that πν1T

µ = δµν ,

wT
µ = (I −Q)−1vT

µ = (I +Q+Q2 + · · ·+Qn + · · · )vT
µ. (4.22)

The meaning of wiµ, the i-th component of wµ, is therefore the probability that start-
ing from the transient state i the process gets absorbed into the recurrent set Rµ.
Vectors wµ can be obtained as the solution to the linear systems

(I −Q)wT
µ = vT

µ, µ = 1, . . . , s, (4.23)

and in virtue of Equation 4.22, matrix W becomes

W =
s∑

µ=1

wT
µπµ. (4.24)
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4.4. Formal extension of RIM 79

Thus, the asymptotic probability of a finite, aperiodic Markov chain is given by

P∞ =
(

Π 0
W 0

)
, (4.25)

with Π given by Equation 4.14 and W given by Equation 4.24.

Semantic content of a Markov chain We can interpret the sets Rµ, for µ = 1, . . . , s
as semantic categories contained in the graph G. A random walk starting at any node
hits one of these categories with a certain probability. These probabilities, as well
as the probability distributions within each category, yield a characterization of the
nodes of G, so that we can establish a relationship between these nodes by compar-
ing their respective probability vectors. The rows of P∞ provide these probability
vectors, so that by computing the angle between the vectors corresponding to two
different nodes we can establish a semantic relatedness between them. This is what
RIM does at finite times (lengths of random walks). Given this formalism, the i, j
entry of the matrix P∞P T

∞ provides the dot product between the vectors associated
to nodes i and j. Thus

cos θij =
(P∞P T

∞)ij√
(P∞P T

∞)ii
√

(P∞P T
∞)jj

. (4.26)

In what follows it will be convenient to introduce a new inner product between
vectors of Rs. Given x = (x1, . . . , xs) and y = (y1, . . . , ys), we define

〈x,y〉 =
s∑

µ=1

xµyµ‖πµ‖2, (4.27)

and its associated norm

‖x‖R ≡
√
〈x,x〉, (4.28)

where ‖πµ‖ is the length of the stationary probability vector corresponding to the
set Rµ. In order to provide an interpretation for Equation 4.27 let us try to figure out
what ‖πµ‖ represents. It is very easy to prove that

1
nµ
≤ ‖πµ‖2 ≤ 1, (4.29)

nµ ≡ |Rµ| being the cardinal of set Rµ (the number of elements in that set). On
the other hand, the lowest bound is reached by a vector πµ = (1/nµ, . . . , 1/nµ) (i.e.
when all nodes of Rµ are equiprobable) whereas the upper bound is reached when
πµ has only one nonzero component (which is of course equal to one). Besides, if πµ
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80 4. The Random Inheritance Model

has k ≤ nµ nonzero components, all of them equal to 1/k, then ‖πµ‖2 = 1/k. This
suggests an interesting interpretation of ‖πµ‖2 as the inverse of the “effective size”
of Rµ. In the light of this interpretation, the inner product (Equation 4.27) can be
regarded as a way of measuring the similarity between two vectors of Rs stressing
the importance of the similarity of those components which coincide in narrower
semantic categories over those which coincide in wider categories.

Let us now compute

P∞P
T
∞ =

(
Π 0
W 0

)(
ΠT W T

0 0

)
=
(

ΠΠT ΠW T

WΠT WW T

)
. (4.30)

From Equation 4.14 we get

ΠΠT =
s∑

µ=1

s∑
ν=1

1T
µπµπ

T
ν1ν =

s∑
µ=1

s∑
ν=1

‖πµ‖2δµν1T
µ1ν =

s∑
µ=1

‖πµ‖21T
µ1µ. (4.31)

The entries of this matrix are(
ΠΠT

)
ij

= ‖πµ‖2δµν , i ∈ Rµ, j ∈ Rν , (4.32)

from which

cos θij = δµν , i ∈ Rµ, j ∈ Rν . (4.33)

From Equations 4.14 and 4.24 we get

WΠT =
s∑

µ=1

s∑
ν=1

wT
µπµπ

T
ν1ν =

s∑
µ=1

‖πµ‖2wT
µ1µ, (4.34)

WW T =
s∑

µ=1

s∑
ν=1

wT
µπµπ

T
νwν =

s∑
µ=1

‖πµ‖2wT
µwµ. (4.35)

If we define the vectors wi = (wiν)sν=1 and eµ = (δµν)sν=1, the entries of the two
matrices above will be

(
WΠT

)
ij

= 〈wi, eµ〉, i ∈ T, j ∈ Rµ, (4.36)(
WW T

)
ij

= 〈wi,wj〉, i, j ∈ T, (4.37)

from which
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cos θij =
〈wi, eµ〉

‖wi‖R‖eµ‖R
, i ∈ T, j ∈ Rµ, (4.38)

cos θij =
〈wi,wj〉

‖wi‖R‖wj‖R
, i, j ∈ T. (4.39)

Remarks The meaning of formulae (4.33), (4.38) and (4.39) is very appealing. Ev-
ery node in the graph G is linked to one or more of the sets R1, . . . , Rs with different
probabilities. The semantic relatedness of two nodes is determined by the overlap of
this links, with a larger strength put on narrower semantic categories. Semantic cat-
egories provide a more precise meaning the narrower they are, because their size is
associated to the dispersion of their meaning. In defining the size of categories, not
only the number of nodes is important, but also the distribution of weights among
these nodes. If a category has a large number of nodes, but their weights are very
peaked around one or a few nodes, it means that the meaning is somehow “concen-
trated” in these few nodes and the effective size of the category is correspondingly
small.

Computationally, all that this analysis amounts to determine is the classification
of nodes into categories R1, . . . , Rs, T , and the computation of all vectors πµ, by
solving Equation 4.7, and wµ, by solving the linear systems in Equations 4.23. There
is a recursive algorithm for determining the semantic categories of the graph which
is feasible for graphs even with a few million nodes, provided the associated matrix
is sparse (i.e. low mean degree). Determining vectors πµ can be achieved by an
iterative method, and solving the linear systems (4.23) can be done by applying an
algorithm optimized for sparse matrices.

4.4.2 Markov chains with metastable states

The problem with networks of the type of FA is that most of its nodes can be easily
classified as recurrent states. This implies that, in the infinite limit, FA is split into
an ergodic subgraph of the order of N , and only a few nodes fall into the transient
set. Note that, just as important as semantic categories (recurrent sets), transient
states are those that allow effective exploration of the semantic network. For this
reason the previous formalism must be re-formulated in terms of quasistationary
distribution (or metastable configuration).

Let us assume that we have a Markov chain with metastable configurations
among the recurrent states. In other words, suppose that there are two characteristic
times: tqst and tst, such that for tqst . t� tst the process behaves as if it had reached
the stationary state, exhibiting a partition into sets R1, . . . , Rs, but when t . tst this
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82 4. The Random Inheritance Model

structure disappears and the true stationary state is reached. This stationary state
may be formed by a single set or a less fine partition obtained by merging sets of the
former partition. If tst is sufficiently large compared with tqst, only the metastable
structure may be observable so it make sense to attempt a description in which the
above partition plays a relevant role.

In order to achieve this goal we need to find a permutation of the recurrent states
such that the blockR in Equation 4.8 can be decomposed asR = Rqst +E, whereRqst

is a block diagonal matrix with stochastic matrices P qst
µ =

(
p

(µ)
ij

)
i,j∈Rµ

(µ = 1, . . . , s)

in the diagonal, andE = (eij)i,j /∈T is a matrix such that
∑
j /∈T eij = 0. This preserves

the stochastic character of the original matrix R. The definition of these matrices in
terms of the original matrix R = (pij)ij /∈T is

p
(µ)
ij =

pij∑
k∈Rµ pik

, eij =

pij if i ∈ Rµ and j ∈ Rν , µ 6= ν,

−p(µ)
ij

(
1−

∑
k∈Rµ pik

)
if i, j ∈ Rµ.

(4.40)
The probabilities p(µ)

ij have a well defined meaning: they represent the transition
probability from state i ∈ Rµ to state j ∈ Rµ conditioned to remain within the set
Rµ. On the other hand,∑

j /∈T

pij = 1 ⇒ 1−
∑
k∈Rµ

pik =
∑
ν 6=µ

∑
k∈Rν

pik. (4.41)

Metastability occurs only when the right-hand side of the above sentence is small. In
that case, matrixE becomes a perturbation of the structure described in the previous
sections.

The lowest order approximation amounts to simply neglect E. In that case
metastable states become true stationary states because

lim
t→∞

Rtqst = Πqst =
s∑

µ=1

1T
µπµ (4.42)

is a well-defined limit. The distribution πµ is such that πµRqst = πµ. In the theory
of Markov chains, this distribution is known as a quasistationary distribution and
plays the role, for metastable states, of the stationary probability distribution for true
stable states. All the structure discussed above is recovered with the replacement
Π→ Πqst.

Quasistationary time From the previous developments it follows that the chal-
lenge is to find the correct quasistationary time, tqst. To do so, we rely on the fact
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that a correct tqst is one such that the diffusive process has already outlined the
quasi-recurrent states (which we interpret as semantic categories), while it is not yet
close to tst (it has not yet coarsened semantic differentiation too far). In practical
terms, the similarity standard deviation σRIM , which we measure as

σRIM =
1
N

∑
i

σi, (4.43)

stands as an appropriate quantity to monitor the information diffusion that the
Markov process has already performed. In this equation, σi is the standard devi-
ation of the similarity values of word i.

Note that the existence of a metastable configuration from which semantic in-
formation may be inferred totally depends on the fact that the original substrate,
the topology on which the dynamics is performed, already shows some modular
structure: otherwise the diffusive process can not encounter a quasistationary state.
This is in accordance with works that seek community structure relying on random
walker-based dynamics [132].

It is also worth remarking that this framework validates the original approach of
RIM, in which similarity was computed at some finite time of the Markov process.

4.5 Summary and Conclusions

We have presented a simple information retrieval algorithm (RIM). This algorithm
yields a measure of similarity between all pairs of vertices in a network. RIM is
naturally related to a class of path-based similarity measures, but its aim is not
the discovery of structural similarity. Inspired by cognitive mechanisms of mem-
ory search and retrieval, RIM highlights similar words, i.e. words that belong to the
same category. From this point of view, the focus is not to spot words with structural
similarities, but words with similar meaning.

Along the Chapter we have proposed that RIM is related to open problems in
natural language processing and cognitive science, the understanding of concep-
tual knowledge organization. For this reason empirical data is related to cognitive
science, and output interpretation is in terms of semantic knowledge, the capac-
ity of RIM to predict semantic similarity. RIM’s results are compared to those of
LSA, which has a long history of success in many machine learning linguistic-related
tasks.

However we suspect that RIM has a more general interpretation. The meaning
of a word (its defining features) is reduced to a dynamic process of probabilistic
walks and inheritance, blind to semantic content. Then, semantic similarity is just
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similarity of the behavior of random walkers: two vertices are highly similar when
random walkers departing from them visit, on average, the same nodes. Indeed,
topology is a key factor to understand RIM’s success. In a highly modular scenario,
such as FA, random walkers tend to get trapped [132, 144] reinforcing inheritance
among vertices in the same community. Topological communities then enable meta-
similitude relationships. While immediate neighborhood does not suffice to infer
categorical relationships: mesoscale relationships matter.

The close connection of RIM to random walkers allows its reduction to an al-
gebraic description in terms of Markov chains. All these facts yield an algebraic
and topological interpretation of conceptual knowledge. The interest of the devel-
oped formalism, either in its stationary or quasistationary version, is that, given a
directed graph we can create a new graph undirected graph which gathers the se-
mantic information that emerges from the former. On the one hand, the semantic
is characterized by the categories R1, . . . , Rs. Categories are defined by certain sets
of nodes. They may or may not coincide with a priori concepts, but they contain
the true information of the semantic of the original graph, in the sense that random
walks eventually end up in one of these categories and do not leave them anymore.
Nodes of the same category are all linked and links have the maximum weight 1.
Nodes of different categories are not linked, though, so categories somehow repre-
sent pure concepts.

Transient states are linked to several semantic concepts with different weights.
They play a crucial role because they are the connection between different seman-
tic categories. Nodes belonging to two different categories are separated by a two
step path through all transient states with nonzero component in those categories.
They act as “step ideas” which allow transitions between independent concepts in
a navigation through the semantic graph. One such typical navigation which starts
within a pure category remains within the category for a while until suddenly it
jumps to one “step idea” (transient node) and from there navigation enters a new
pure category.
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Chapter 5

Semantic Networks’ Robustness in
Alzheimer’s Disease Patients

Following the clear cognitive orientation of the whole work we now turn to cog-
nitive impairments. Network modeling of language is mostly devoted to normal,
healthy performance. However, understanding how aging and disease affect pro-
ficiency in language production and comprehension is a great concern in the field.
Graph theory has proved useful to analyze phenomena related to semantic stor-
age and mechanisms operating on it. Though a simplification, such perspective
can grasp the main trends of phenomena under study, opening complementary ap-
proaches to them: language growth and child language development [170, 88, 89,
87]; lexical availability [80]; semantic similarity and category formation [25, 27] or
verbal fluency [78, 77] stand as good examples of such strategy. Rooted in the in-
fluential computer model put forward by Collins and Quillian [134, 40] and elab-
orated by Collins and Loftus [41], modern theory of complex networks represents
a methodological update boosted by massive empirical data availability, while re-
taining the intuitive character of the framework. It has also provided a relatively
simple but powerful quantitative framework to gain insight into brain pathologies.
Several studies from cognitive neuroscience report a progressive loss of structural
and functional connectivity in brain networks in patients compared with control
subjects [164, 104, 174, 163]. Finally, there exists a rich literature regarding network
robustness, breakdown and final disintegration, both in the cognitive field [1, 94, 5]
and out of it [4, 135, 151, 22, 154].

In this Chapter, we first present theoretical results which analyze how deteriora-
tion is related to performance; then we apply the scheme from the first part to test its
empirical relevance. In particular, we focus on one of the most intriguing effects of
dementia of the Alzheimer type (DAT). The topological substrate used all along the
Chapter is again the Free Association Norms dataset from [122] (FA), see Chapter 3.
As it has been previously said, the network empirically obtained is directed (asym-
metric) and weighted, weights represent the frequency of association in the sample.
The normalized frequency yields a probabilistic interpretation: the corresponding
matrix is a transition one, see Figure 5.1. We maintain the asymmetry property in
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Figure 5.1: Partial representation of the Free Association network topology. Each node has a
set of outgoing and incoming links. Because outgoing links correspond to produced frequen-
cies, the resulting graph can be interpreted in terms of probabilities.

our approach to preserve the meaning of the empirical data.

5.1 Modeling dementia: Searching an adequate dam-
age framework

5.1.1 Classical approach

In Chapter 4 we have proposed a mechanism that drives the emergence of category
structure. Now we turn to the characteristics of both the original topology and RIM
dynamics under error. Literature on error and attack tolerance in complex networks
[4, 135, 151, 22, 154] typically model deterioration in two ways: error as the failure
(removal) of randomly chosen nodes/edges, and attack as the removal of impor-
tant nodes/edges (“importance” can be quantified by some descriptor, be it high
connectivity, high betweenness, etc.). Using this approach, one typically monitors
a suitable network characteristic that signals the moment in which physical disinte-
gration of the structure takes place. Following most of the literature on percolation
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processes, we follow the evolution of Ngiant/Nnet, that is, the proportion of nodes
that remain connected to the giant component. As for RIM’s dynamics, performance
of a word i under error or attack is measured as the proportion of words that re-
main similar to i in the impoverished structure (we name it matchi), compared to
the original results. This implies that, each time a node is removed, RIM is applied
on the distorted structure and current similarity neighborhoods are compared to the
original ones, for each node. The quantity “match” is a global average over the N
elements of the network, and of course its value is 1 when no node has yet been
removed.

In Figure 5.2 we use this approach by progressively removing nodes. This has
been done in three ways: randomly choosing a node (failure), choosing it in terms
of highest vertex betweenness (maximum betweenness attack), or eliminating the
node with highest ωin (maximum in-strength attack).

At least two conclusions can be drawn from Figure 5.2: in the first place, the
relative size of the giant component Ngiant/Nnet decays in a similar way to those re-
ported in the literature for scale-free networks [4], i.e. the structure is robust against
failures but attacks hinder the integrity of the topology much before, approximately
at f = 0.75. More interestingly, the RIM dynamics are not as resilient as the struc-
ture, and collapses long before the topology is actually disintegrated in the three
cases (failure and both attack strategies). That is, before the critical point is reached,
the dynamics’ performance is much more deteriorated than the topology for any
given fraction of removed nodes, f .

5.1.2 New approach

Though informative, we now wonder whether failure or attack correctly grasp the
way in which pathologies or aging affects a cognitive structure such as semantic
memory. Empirical evidence in the neuroscience literature report on a general decay
of the neural structure supporting cognition [164, 104, 163]. Then, realistic modeling
demands a different way to approach this problem. Here, we redefine error in the
context of cognitive systems. In this framework, it is more useful to consider error
in terms of aging or disease, where the whole topology simultaneously decays in
some way. By doing so, we capture the degrading behavior of aging and/or dis-
ease, which differs from attack (there is no selective action) and from error (which
affects only one node/edge at a time). For the sake of clarity, we refer to error in the
cognitive framework as degradation.

Degradation assumes that links are increasingly damaged. At a given threshold
τ , every link (i, j) in FA with a ωij ≤ τ is removed. The surviving links are normal-
ized to preserve a probabilistic interpretation of the structure, see Figure 5.3. This
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Figure 5.2: Upper: topological deterioration (relative size of the giant component) of FA as
a function of f , the fraction of nodes removed from the network. In green, results for error
(random failure of nodes); in red, results for attack to vertex betweenness: the nodes with
highest B are removed the first. Finally, attack to higher in-strength appears in black. Lower:
RIM’s resilience for the same strategies.

process is performed with values 0 ≤ τ ≤ 1. As in the case of failure and attack, for
each value τ , we monitor both topological and dynamical properties of the result-
ing network (the size of the giant component of the degraded structure is measured;
and RIM is used to find a similarity matrix on the degraded structure, and the result
is compared to the non-degraded RIM, i.e. RIM’s result at τ = 0 –“match” axis in
figures–).

Degradation on the original structure Figure 5.4 shows the results for both topo-
logical deterioration (upper panel) and dynamical resilience (lower panel). Focusing
on black circles (which correspond to degradation of the FA network), the behavior
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Figure 5.3: Topological global view of the degradation progress: Frames (a), (b), (c) and (d)
correspond to different values of the parameter that controls the process τ , 0.0, 0.15, 0.30 and
0.45 respectively. Two main consequences of the process are observed: the topology is impov-
erished as weaker links (thin, clear lines) disappear, and at the same time some relationships
are reinforced (thicker, darker lines) because of the probability normalization. This topology
is merely illustrative, it does not correspond to empirical data.

of RIM’s dynamics appears to be very sensitive to degradation even at very low
values of τ . This suggests that lexical impairment can appear at early stages of se-
mantic memory disease degradation. Interestingly, however, RIM’s degradation is
much slower than the topological one. At τ ≈ 0.3, FA structure is already disin-
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Figure 5.4: Upper: topological deterioration (relative size of the giant component) of FA as a
function of τ . In black, results for the original FA structure. The same process of degradation
has been applied to an unweighted version of FA understood here as a plausible null model,
in red. In green, results for a second null model, which sets the weights of links in FA as
kouti kinj . Lower: RIM’s resilience for the same structures.

tegrated, whereas RIM can still recover as much as a 25% of its original content.
RIM’s results do not vanish up to τ ≈ 0.6. Such result indicates that fundamental
cognitive capacities as word–word similarity inference and category formation are
substantially resilient to structural impoverishment.

Degradation on the null model I Results in black circles (degradation of the FA
network) from Figure 5.4 raise the question of which topological aspect of the dy-
namics’ substrate provides for good performance in a disrupted topology. To an-
swer this question we propose to build appropriate null models. The idea is that,
by changing the topology that supports the dynamics, we can gain insight on which
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properties of the original structure provide long-lasting performance. In particular,
we devise two null models, both preserve the degree sequence and directions. In the
first place, we consider the network FA in which weights are ignored. This implies
that each node has the same in- and out-degree distribution, but outgoing links are
weighted uniformly, that is ωij = 1/kout. The topological resilience of this modified
FA network is represented as red circles in the top panel of Figure 5.4. The percola-
tion point has moved to the left if compared to the original results, i.e. the network
is structurally weaker. This result is not surprising, given that τ affects in the first
place weaker links; thus, in an unweighted FA, this means that (i) nodes with higher
degree kout have the lowest weights, 1/kout; and (ii) since weights are distributed
uniformly for each node, when τ = 1/ki all out-going links are removed at once. In
this sense, this null model is equivalent to a kmax-attack. From the dynamical point
of view, it is apparent also that the structure can not support category formation and
similarity inference for a long time: RIM’s results collapse even before the topology
reaches the topological percolation point.

Degradation on the null model II Although the unweighted null model is not an
“aggressive” one (it preserves many of the features of the original network, such as
degree distribution P (k), average degree 〈k〉, average clustering coefficient C, etc.),
we may devise one in which, furthermore, weight heterogeneity is still present. This
can be done by assigning a weight to out-links proportional to the out-degree kouti

of the source node i and the in-degree of the node j receiving that link, kinj . Then,
ωij = kouti kinj . The weights quantified in this fashion are normalized, to replicate the
probabilistic interpretation of the original links in FA and in the previous null model.
As it is apparent from the green circles in Figure 5.4 (upper panel), the kouti kinj -
weight configuration yields a more resilient structure from a topological point of
view, the percolation point is displaced to the right if compared with original FA.
This is so because, contrary to the previous case, nodes with high degree are favored,
in such a way that both their in- and out-weights are high. Then the threshold
parameter τ does not affect hubs until a late degradation stage, the structure is not
severely fragmented until τ ≈ 0.4. However, RIM decays faster than the original
FA counterpart (Figure 5.4, lower panel). Although the value of “match” vanishes
approximately at the same time as for the original substrate, dynamic deterioration
for early τ values is more rapid.

Up to this point, we have studied how dynamics reacts when confronted to fail-
ure and attack, in the first place; and then to progressive degradation of the topo-
logical structure. To this end, we follow the line of percolation theory in complex
network with some modifications. Results indicate that linguistic performance is
severely affected by semantic memory degradation, on the other hand such perfor-
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mance is still significantly effective beyond topological disintegration.
Our study concludes, furthermore, that the specific distribution of weights in the

lexical network plays a key role in the resilience both of the topology and the dy-
namics. Perturbing this weight distribution dramatically changes the capacity of the
structure to hold performance of the dynamics on it. The particular value of these
weights is just a consequence of contextual diversity (statistical biases of language
use), which can soundly be identified as the origin of categorization and the main-
tainer of semantic integrity. On the other hand, this work raises some questions
of interest. From a physical point of view, the new approach to structural dam-
age demands an analytical treatment, in order to predict the topological response
to weighted degradation. In this line a reconsideration of current knowledge on
percolation theory is necessary.

From the standpoint of neuroscience and psycholinguistics, attention should fo-
cus on how physical (neurological) and cognitive degradation are related. Also,
it has been reported that pathologies sometimes selectively affect linguistic perfor-
mance [119, 34]. Then some kind of “selective degradation” should be implemented
and studied, attending the modular structure that lexical networks display [26, 27].
Finally, other variables can be taken into account; for instance, at the moment a
node is disconnected from the network, its “cognitive load” (the semantic meaning
it bears) must be assumed by the remaining connected structure. In this way, degra-
dation could be in interplay with node-breaking avalanches [117, 118], which could
explain not only cognitive dysfunction (inexact or impoverished semantic capaci-
ties) but also system inefficiency (general performance slowing).

5.2 Degradation against real data: DAT and hyperprim-
ing

The understanding of semantic memory impairments in DAT patients has been an
important subject of investigation in the last years. There is converging evidence
about the general symptoms, i.e. studies of spontaneous speech, verbal fluency,
spelling and numerous other tasks all point to a progressive breakdown of knowl-
edge about words and the objects they represent. However there is not such a con-
sensus when it comes to explain unexpected or paradoxical performance. A situa-
tion of this kind is found when DAT patients are confronted with a semantic priming
SP task and results are compared with controls. On one hand, unsurprising deficits
appear when prime and target hold a object–attribute relationship (zebra – stripes),
the result is less-than-normal priming effect (hypopriming). However, paradoxical
hyperpriming occur for pairs of words which are category-coordinates (lion – tiger).
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The hyperpriming effect is well documented in AD patients under the SP paradigm
[121, 35, 106, 71, 70, 98, among others], and it also appears in different circumstances
[46, which reports semantic dementia effects in repetition priming]. But the nature
of this effect is still unclear. Some researchers hold that AD patients suffer a loss
of information in the semantic store, whereas others point to the difficulty to access
and process semantic information, see [85]. In this Chapter we use a graph theoret-
ical approach to add some evidence in one way or another.

Semantic priming is associated to a response-to-stimulus time scale. In this work,
the rationale is that topologically (structurally) close concepts will be associated in
a quicker way than distant ones. Focusing on disease, our approach starts from
the hypothesis that the semantic network undergoes degradation in brain patholo-
gies as DAT. As a consequence, the weakest links progressively disappear. In this
model, removal of a link relatively reinforces the remaining existing connections.
Under this plausible assumption, hyperpriming naturally emerges for certain pairs
of words. Furthermore, the severity of degradation can be controlled, then we can
observe whether hyperpriming occurs in early or late stages of the disease. Our
model is tested against empirical results from a longitudinal study of semantic prim-
ing in AD patients [70], the agreement is remarkable. Such agreement holds even for
the finer-grained study, which splits category-coordinates pairs in “close” or “dis-
tant”; and object–attribute pairs, with the labels “shared” or “distinctive” [98].

5.2.1 Materials and Methods

Semantic Priming In 1971 the article by Meyer and Schvaneveldt [113] introduced
the concept of semantic priming. Priming is an improvement in performance in a per-
ceptual or cognitive task, relative to an appropriate baseline, produced by context
or prior experience. Semantic priming refers to the improvement in speed or accu-
racy to respond to a stimulus, such as a word or a picture, when it is preceded by a
semantically related stimulus (e.g., cat-dog) relative to when it is preceded by a se-
mantically unrelated stimulus (e.g., table-dog). In other words, the semantic priming
effect refers to the phenomenon whereby subjects are faster and more accurate in
recognizing a target word when it follows a related word than when it follows an
unrelated word.

The stimulus to which responses are made (e.g., dog) is the target and the pre-
ceding stimulus (e.g., cat or table) is the prime. The classical task for investigating
semantic priming is the lexical decision task. The stimuli consist of correctly spelled
words and meaningless strings of letters called “non-words” (e.g., blit). On each trial
of the experiment, a prime and a target are displayed on a computer screen. Partici-
pants are instructed to read the prime silently and then to decide whether the target
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is word or a non-word. The standard finding is that lexical decision responses are
faster and more accurate when the target is semantically related to the prime than
when the target is semantically unrelated to the prime.

Semantic priming has captured the attention of cognitive scientists for several
years. At least one reason for it is that semantic priming occurs in many cognitive
tasks, including lexical decision, naming and semantic categorization. The ubiq-
uity of semantic priming suggests that it is caused by fundamental mechanisms of
retrieval from memory. Following the “spreading activation paradigm”, a speeded
reaction time (RT) –priming effect– would be explained as the spread from the prime
to semantically associated concepts, which consequently facilitates lexical access to
related target words

In the context of pathology, chronometric measures have been brought to bear on
the question of semantic memory loss and anomia. Relative to our concerns in the
following sections, the most common findings among impaired subjects (patients
with Alzheimer’s Disease, schizophrenia, anomia, etc.) is that priming effects are
progressively lost, i.e. a prime can not enhance the response to a target anymore.
However, under certain conditions and for some early stages in the disease, the
priming effect can actually appear stronger than that of healthy (control) subjects.

Topological degradation and semantic priming Placing the degradation frame-
work in the context of DAT and semantic priming demands some comment. First,
normalization after each τ thresholding is natural, in the sense that exploration of
the semantic network continues, no matter the number of paths available. Besides,
this redistribution of associative strength is central to observe the hyperpriming ef-
fect. Also, note that in the scope of our definition of degradation, the parameter τ
can be understood as the control of the time progression: low values of τ represent
early stages of the disease, higher values correspond to later stages.

For each value τ , we calculate the cosine similarity (or closeness) between every
pair of words on the resulting, degraded structure. These values change across τ .
Topologically, cosine similarity between two words i, j on FA expresses the propor-
tion of common neighbors these nodes have. Note that a direct link between such
nodes does not add similarity, it rather decreases it given that no self-loops exist in
the network. As indicated above, we assume that structurally close concepts would
display a stronger priming effect than distant ones, thus the measure of closeness
is taken as a surrogate of priming effect: higher closeness corresponds to a higher
speeding of response time to target words.

Remarkably, those nodes that are disconnected, i.e. those that no longer have
incoming or outgoing links, will display no closeness to any node at all. However,
those nodes which remain connected will acknowledge an increase in their close-
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Figure 5.5: Topological local view of the degradation progress: The neighborhoods for the
words BEE and WASP are represented as degradation takes place. The value of the threshold
τ increases from top to bottom (0.0, 0.1, 0.2 and 0.3 respectively), the weaker connections are
progressively removed. Due to normalization, the surviving links increase their value. The
paradoxical growth in the words’ mutual overlap (cosine) is naturally explained through the
described topological change, see text for details.

ness. Such phenomenon is due to a reinforcement of the surviving paths as a conse-
quence of the normalization of the remaining links, which yields higher strengths.
Figures 5.3 and 5.5 illustrate the degradation process and subsequent redistribu-
tion of associative strength, from a large-scale and local point of view, respectively.
Under this probabilistic interpretation, abnormal increased closeness (our priming
proxy) between words arises naturally.

Enlarging Statistics: Feature Production Norms In order to decide which pairs of
words’ closeness should be monitored, we have followed the list in [98] (see Table
5.1). Results for these words are displayed in the corresponding section. However,
we understand that the length of such lists suffices in those works where statistics
are enlarged with many subjects (both patients and controls). On the contrary, only
one topology is available upon which the simulated degradation and dynamics are
performed. Thus, reinforcing the statistics is important, to this end we have made
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use of public psycholinguistic data.
A significant amount of category-coordinate word pairs can be obtained using

Feature Production Norms (FP, see Chapter 3), by filtering those pairs of words
which display significant similarity. In this fashion we have obtained 246 pairs of
category-coordinate words, which correspond to words in FP exhibiting a similarity
greater than 0.65. On the other hand, we have filtered produced features in FP to
retain the ones under the label “visual-form and surface” and such that the feature’s
rank is below 3, i.e. the feature has at most rank 3 within the concept according to
production frequency. In this way a list with 246 concept-attribute pairs has been
obtained.

Statistical errors The FA norms explained above are surely exposed to several
sources of experimental error which are unobservable. It is mandatory then, to ac-
count for errors in the sample, which are understood as deviations of the sample
from the (unobservable) true value. We analyze this using confidence intervals for
the whole set of similarity values sampled. Standardizing the similarity values we
determine that with a 95% confidence, the error is around 10% in the measure. Tak-
ing into account this value, we can generate synthetic samples of free association
networks by using the original data and adding gaussian noise to the links with a
variance of 10%. This methodology has proved to smooth the behavior of the func-
tions represented without changing its qualitative structure.

5.2.2 Results

Topological disintegration In the context outlined in the previous section, the
degradation parameter τ can be understood as a time scale: higher thresholding
values correspond to later stages in semantic memory degradation. However, it is
not possible to establish an exact mapping between τ and disease progression. Thus
it is important to get a picture of how the topology behaves under degradation.

Figure 5.6 plots the topological evolution of FA as the topology is increasingly
damaged (it represents the upper panel of Figure 5.4, isolated for the sake of clarity).
The giant component of a network is the largest connected subnetwork. If a network
is connected, the giant component’s size N∗ spans the size of the system N . At each
value of τ , the size of the giant component of the degraded structure is measured.
The proportion of nodes in the giant component N

∗

N is presented, in order to monitor
the disintegration of the structure.

The analysis of the evolution of the giant component indicates that the topology
remains mostly undamaged up to τ = 0.1. In the other extreme, FA’s giant compo-
nent is only a 5% ofN at the value of τ = 0.3. For this reason, our degradation analy-
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Figure 5.6: Topological degradation of the FA network as a function of τ . The fraction of
nodes in the giant component N∗

N
is plotted against the degradation parameter (τ ), in order

to monitor the disintegration of the structure. The evolution of N∗

N
provides the range of

interest for the study in the subsequent sections, which is 0.05 ≤ τ ≤ 0.35.

sis in the subsequent sections considers only values from τ = 0.05 to τ = 0.35, which
correspond to mild-to-severe semantic memory damage. Our model degrades the
topological structure by increments of 10−3 in τ providing a high resolution of the
whole process.

Priming in data-mined word pairs Figure 5.8 depicts the average evolution of SP
proxy as explained above, taking as a reference the lists obtained from FP. Such re-
sult evidences a qualitative resemblance to the results reported in [70] regarding the
coordinate condition, i.e. hyperpriming emerges in the early stage of degradation,
and vanishes afterwards (black small circles). The synthetic attribute-condition list
evidences similarity to empirical results for low thresholding values, but clearly de-
viate at the end (small red squares). Nonetheless, it must be taken into account that
the longitudinal study in the cited work includes only four experimental sessions.
Thus the general tendency in both coordinate and attribute conditions can be recov-
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Figure 5.7: Schematic evolution of SP effects in relation to semantic memory degradation in
DAT (mild to moderate dementia): adapted from [98]. Lines illustrate the hypothetical evo-
lution of the range of SP effects according to the semantic memory deterioration in different
semantic relationship conditions: close and distant category-coordinate, shared and distinc-
tive attribute. Average normal priming effect is represented by the grey area. Under this limit
is situated the extinction of priming while hyperpriming is illustrated by lines above it. An
extinction of SP is observed in the DAT patients in the distinctive attribute condition, con-
firming the relative vulnerability of distinctive attributes (see Discussion). Simultaneously
a hyperpriming effect was observed in the close category-coordinate condition. The hyper-
priming effect was also found in the distant category-coordinate condition albeit to a lesser
extent (see Results and Discussion).

ered, see dotted lines in Figure 5.8.

Priming in experimental word pairs For the case of the actual lists used in SP
with DAT patients and control subjects we present Figure 5.9, which corresponds
both to the category-coordinate and attribute word pairs and respective refinements
within. The plot presents six traces: two of them are global averages for the coor-
dinate (black) and attribute (red) conditions. The rest represent the refinements ex-
posed in [98]. Again, the behavior of the curves in the coordinate conditions signal a
transient period of hyperpriming with a subsequent decay, finally falling below the
initial level of SP. The hyperpriming effect is significantly more remarkable in close
coordinates. Despite the lack of significant statistics due to the lists’ short length,
the statistics have been enriched by means of the production of synthetic samples,
see Section 5.2.1. We highlight once again the high level of coincidence with the
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Figure 5.8: Average evolution of the semantic priming effect, both in the coordinate (small
black circles) and the attribute (small red squares) condition. The plot begins at τ = 0.05

to emulate DAT’s early stages (an already damaged structure); and ends at τ = 0.35, when
FA topology is already disintegrated, see Figure 5.4. Discontinuous thick lines (black and
red) show the tendency in SP if four single arbitrary points (t1, t2, t3 and t4, green vertical
lines) are taken into account, recalling real experimentation in [70] which included only four
experimental sessions.

data-mined word pairs and with empirical results for the attribute condition, i.e. a
sustained performance in SP with a final decay below the initial state. All in all,
results are in full coherence with the in silico ones previously offered, and with those
empirically obtained.
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Figure 5.9: Average similarity results for the coordinate condition and attribute condition for
word pairs in [98] (note that the lists have been adapted such that the words belong to our em-
pirical dataset –FA–. When not possible, other items have been chosen following the criteria
in the original work). The list comprehends 72 pairs (18 under the label “close category-
coordinates”, 18 in “distant category-coordinates”, 18 in “shared attributes” and finally 18 in
“distinctive attributes”). Again, the plot shows great resemblance to results reported in [98]
(see also Figure 5.7): a transient hyperpriming effect appears before the whole performance
decays.

5.2.3 Discussion

So long, we have introduced FA as a plausible representation of the structure of
semantic memory. We take cosine similarity between the elements in FA as a good
surrogate of SP effects. Once this information is available we study to what extent a
progressive degradation of the topological structure affects performance, quantified
in terms of such similarity.

To contrast synthetic results with the empirical ones, it is necessary to fix the
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values of the degradation parameter, τ , in which the topology still yields signifiant
values (that is, before what is known in physics as the percolation threshold, the
point at which the whole network disintegrates in insignificant pieces). A general
overview (Figure 5.4) allows to establish such limiting cases in which degradation
is still likely to be cognitively relevant, i.e. 0.05 ≤ τ ≤ 0.35. At the lower limit of this
range we may assume that disease has begun its degrading action, though mildly;
while at the higher limit we can assure that the topology can not hold cognitive
activity anymore.

The truly interesting observation emerges from the results depicted in Figures
5.8 and 5.9, which evidence striking similarity to the ones reported from experi-
mental works regarding hyper- and hypopriming (Figure 5.7). This level of co-
incidence provides two strong conclusions: (i) the hypothesis by which semantic
deficits in DAT stem from the difficulty to access and process semantic information
is supported. The predictive success of our computational model is based on the
idea that links are increasingly damaged, which is equivalent to hinder accessibility
and proper navigation on the semantic network; and (ii) the so-called “category-
coordinate condition” and “attribute condition” can be better understood in terms
of structural connectivity.

We believe that assertion (i) is self-evident from the results along the paper. Hin-
dered accessibility, modeled as a degrading process of the connections of a network,
stands as a sufficient condition to observe hyperpriming. This is compatible with a
scenario in which semantic search and retrieval strategies are qualitatively the same,
but occur in a distorted topology. We do not claim, however, that other malfunctions
(e.g. cognitive slowing) are not also present in the emergence of abnormal priming
effects, this is beyond the scope of our computational model.

As for assertion (ii), in the remainder of this section we offer a detailed account
of results for close and distant coordinates, as well as for shared and distinct at-
tributes. These labels, at the light of such explanations, can be defined in terms of
topological patterns, overcoming merely intuitive definitions, or one based on formal
oversimplifications.

Following the sketch of SP effects as a function of semantic memory damage in
[98], see Figure 5.7, our synthetic model offers an explanation for each case (close
and distant coordinates, shared and distinctive attributes). Figure 5.10 illustrates
a structural explanation for both close and distant coordinates. For these specific
cases hyperpriming effect is reported, being the one corresponding to close coordi-
nates more acute. Close coordinate pairs typically share many associates in FA, their
semantic proximity favors the fact that they are linked to some common attributes
and to other coordinates in the semantic network. Topologically speaking, beyond
their having a direct, mutual connection, there usually exist many other paths con-
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Figure 5.10: Simplified scheme of degradation in the coordinate condition. From a topo-
logical perspective, close coordinate words (middle and right red nodes) have a significant
proportion of common neighborhood. Moreover, relations in such neighborhood are simi-
larly strong, i.e. capable of surviving at least early degradation. On the other hand, distant
coordinates share a lesser amount of neighbors. Note that all weights have been weakened
after applying a threshold τ = 0.2; those links weaker than this threshold have been removed.

necting a pair of this kind, which implies a great deal of common neighbors. This
entails that the degradation process does not affect such relationships until deteri-
oration is in a late stage. Since weights are normalized after the network has been
thresholded, such weights tend to grow up to the moment when they disappear.
This re-normalization implies a reinforcement in terms of the cosine similarity, thus
the increase in SP is expectable up to mid-values in τ (Figure 5.5). After such values,
common relationships are not held anymore, naturally accounting for the transient
nature of the hyperpriming effect.

Distant coordinates share most of the characteristics with close coordinates, see
Figure 5.10. However, the amount of shared neighbors is not as high as in close
coordinates. Also, shared neighbors do not hold as strong relationships as in the co-
ordinates case. This disparity in their connection patterns naturally yields a limited
hyperpriming effect on such type of word pairs, not as marked as in close coordi-
nates. Note that there is not a sharp distinction between close and distant coordi-
nates, at the light of this topological characterization their differences are graded.
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The explanation for distinctive attributes is specially simple and elegant. By
definition, these attributes are connected to very few concepts, because they are
almost unique to those concepts. Being this so, degradation affects them enor-
mously: as soon as the threshold achieves a certain value, the corresponding at-
tribute’s node becomes completely isolated, impeding the implicit spreading activa-
tion. This sharp dichotomy between existence/non-existence of a link is smoothed
by statistics, in which distinctive attribute word pairs exhibit different weights, thus
decay does not occur suddenly. Figure 5.11 illustrates this phenomenon. The ten-
dency for such word pairs is a slow decay in early stages of DAT, and similarity dies
off as early as τ = 0.25.

Shared attributes show a similar pattern of decay compared to distinctive ones.
Their decline, however, is not as fast. As it is apparent from Figure 5.11, the main
difference between distinctive and shared attributes is, in topological terms, the cre-
ation of triangles (clusters). Unlike distinctive attributes, then, the rupture of a di-
rect connection between a concept and an attribute does not imply the complete
disappearance of a SP effect, due to shared connections. Thus degradation affects
distinctive attributes first and then shared ones.

The detailed explanation of each case from a structural perspective is compatible
with the hypothesis that, not being exactly the same, hyperpriming is close to repe-
tition priming [70], in which prime and target are the same. The loss of distinctive
connections at early stages of semantic memory deterioration turns two distinct con-
cepts into very close, almost exact ones regarding their connectivity profile. In terms
of the structure of the semantic network, the connection pattern (neighborhood) of
a certain node which has lost many of its connections is almost exactly the same
as that of another node which has also lost its distinguishing connections. Under
this topological perspective, being close-to-synonym is not necessarily being mu-
tually connected; rather two words become synonyms because they share the exact
same neighborhood. Beyond the abnormal early stage of disease in which repetition
priming appears, it is presumed that impoverishment of conceptual knowledge will
prevail, as defining attributes become inaccessible, and the associational strength
between related concepts weakened. Topologically, such associative strength actu-
ally vanishes. Again, we emphasize that word-word relationships can be redefined
in terms of connectivity patterns.

All the same, such structural arguments find their coinciding neurological coun-
terpart in [164, 104, 174, 163]. These works report the fragmentation of neural net-
works in DAT and other neuropathologies patients (which agree with the relative
weight reinforcement due to link degradation and removal) and the disappearance
of long range connections within such networks. The study of how changes at the
physical layer are mirrored at the cognitive one is increasingly becoming a most
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Figure 5.11: Topological characterization of the attribute condition, in an illustrative manner.
Shared attributes exhibit a richer connectivity than distinctive attributes. This implies that
complete disconnection typically appears at higher thresholding values. This fact explains
the sustained evolution of closeness in the shared attribute condition, in contrast to the early
collapse of the distinctive attribute condition.

relevant research issue.

The model can be used further. Following the structural approach developed
so far, we can try to detect pairs of words which present an abnormal, transient
growth in their closeness. That is, once the degradation process arises as a plausible
explanation for hyperpriming, it is possible to use such model as a predictive tool. In
this line, we have monitored across τ the whole set of possible pairs in our empirical
data, to check for atypical closeness (our SP’s proxy) evolutions. Seeking for early
increases, we have detected 73,012 pairs (0.29% of the total possible) which display
hyperpriming; 2,218,070 (8.8%) pairs match the hypopriming scheme. The rest (over
a 90% of the possible pairs) have null closeness (note that the number of possible
pairs amounts up to N ×N pairs). These figures match our expectations: (i) most of
the word pairs have no SP effect, either at the system’s healthy state (τ = 0) or in a
distorted context; (ii) hypopriming is the most common evolution. As degradation
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progresses, the main consequence must be a general impoverished performance;
and (iii) hyperpriming is a rather restricted phenomenon, a collateral effect in a
general weakened scenario.

Furthermore, a close look to the list of word pairs with predicted hyperprim-
ing expands the range of words which might display this phenomenon beyond
category-coordinates (see Table 5.2 for some examples). This would indicate that
there exists a class of words which share a similar connectivity profile. Within this
class one may find category-coordinates, but just as well other types of relations.
This novel, more general insight reveals, as expected, that the complexity in the
organization of semantic knowledge is far beyond the ansatz in [40].

On more general grounds, our explanation could also be used to design specific
complementary therapies at the early stage of the Alzheimer’s disease from a neu-
ropsychological perspective. Those would rely on the reinforcement of the semantic
network by inducing the formation of structural links between distant coordinates
and distinctive attributes, for example. We devise that this can be done exposing pa-
tients to a sequential learning process linking these, in principle distant, concepts.
The structural improvement of the semantic topology will increase the resilience to
degradation.

Finally, topological degradation is here assumed to be uniform, i.e. the threshold
parameter acts upon any connection. This does not match evidence, from which
is known that some parts of semantic knowledge might be deteriorated, whereas
others remain undamaged. Although selective damage has not been implemented
in this work, it can be easily deduced that word pairs whose connections are not
damaged do not yield unexpected phenomena, such as hyperpriming. This fact
matches the ideas in [35] and [85], who report that hyperpriming is particularly
noticeable for those items that explicit memory tasks had revealed to be degraded,
but equivalent priming effects for patients and controls were found for items that
were not degraded.

Given the highly modular structure of FA [26], some kind of selective degrada-
tion scheme could be designed such that different deterioration scenarios could be
put to study. This line of future work demands higher attention to semantic memory
degradation patterns under disease.
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Distinctive attribute Shared attribute Distant c.c Close c.c
train-wagon pigeon-wings spoon-fork wardrobe-table
bicycle-pedal gorilla-hair comb-brush whale-shark
spider-web boot-heel bee-wasp ant-beetle
pine-needle bicycle-wheel tiger-lion plate-bowl
shoe-lace duck-feather jeans-trousers lobster-shrimp

stag-woods cap-fabric strawberry-raspberry chair-bench
glasses-frame cat-whiskers pear-apple lettuce-celery
plane-wings crow-wings pony-horse fly-butterfly

dog-bark pick-handle sandals-shoe truck-tractor
zebra-stripe scissors-blade bison-buffalo daisy-tulip
hammer-head tiger-claw cup-bowl nail-screw

bed-sheet brush-bristle garlic-onion cow-sheep
crab-claw lizard-tail desk-table knife-saw

sheep-wool palm-trunk snail-slug dandelion-daisy
mill-blade cherry-stem wolf-dog trousers-shirt

elephant-trunk grasshopper-leg necklace-bracelet peach-strawberry
basket-wicker pumpkin-seed corn-wheat vase-glass

snail-shell oak-leaf tie-scarf stag-pig

Table 5.1: Word pairs of the four related conditions of the SP paradigm. Adapted from [98]:
Monitored word pairs from which results in Figure 5.9 have been obtained. “c.c” stand for
“category-coordinate”. In italics, word pairs that have been adapted to accommodate them
to available empirical data (FA).

frequency-television pasta-sauce Venus-Saturn fragile-fix
frequency-speaker pasta-noodles Venus-Jupiter fragile-bend
frequency-frequent pasta-mafia Venus-Pluto fragile-smash
frequency-seldom pasta-meatballs Venus-Uranus fragile-fracture

Table 5.2: Predicted hyperpriming word pairs (sample): Some of the pairs of words with
predicted hyperpriming. Note that a notable proportion of pairs are category-coordinates
(for instance, all the examples with planets involved), but the phenomenon appears also in a
more general context (such as in pasta-mafia or the pairs in which fragile appears).
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Chapter 6

Conclusions. Current and future directions.

The last part of this long work, including these lines, has been written on a train
somewhere between Tarragona and Zaragoza. Somewhere between the Universitat
Rovira i Virgili and the Institute for Biocomputation and Physics of Complex Sys-
tems. I find this situation a suitable metaphor of my incipient scientific career: laid
between different areas, my advisors, collaborators and myself are engaged on an
interesting trip, exploring fascinating facts about our natural cognitive capabilities.
Such exploration is merely at its initial stage, and yet a great effort has been needed
to achieve it.

6.1 Where we come from

Before getting to this point, I had to learn a whole new methodology and see how
it could serve our purposes to understand language. All that reading and learning
has been condensed in Chapters 2 and 3. The former represents a quick overlook
to some of the most outstanding review works in the complex network literature;
the latter is an attempt to find a unifying trend in the myriad of articles that have
focused on language and linguistic phenomena. On the track of this trend, I have
tried to put the accent on the importance of a cognitive-oriented research, otherwise
it is difficult to overcome merely descriptive achievements.

Following the argument, it does not suffice to consider complex network theory
as a simple toolbox: find some data, build a network, characterize and describe it,
unveil its possible modular structure. Iterate from the first step... Rather, we have
tried (and hopefully succeeded) to use statistical physics and complex systems as
an inspiring source of new approaches. Just as some models of social dynamics are
themselves instantiations of variations on the Ising spin model, our constructions
seek to find the physical foundations of certain cognitive processes. Chapter 4 ex-
emplifies this attitude: although Free Association Norms present themselves very
interesting features (regarding their being directed, weighted, modular and so on),
we place on top of it a random walker-based dynamics, the Random Inheritance
Model. We argument that this dynamics is plausible from a cognitive point of view
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(in the sense that retrieving words form our semantic network resembles a random
aggregated exploration in the long run), and we provide evidence that some inter-
esting phenomena emerge from such process (semantic similarity, categorization).
Inspired on physical grounds and with empirical relevance, the circle is complete
with a proper formalization.

Chapter 5 is also an example of fruitful discussion between cognitive science,
physics and computational modeling. In there we seek a plausible model for se-
mantic memory deterioration in Alzheimer’s Disease. This brain pathology has
been thoroughly studied and therefore much data are available, both in psycholin-
guistics and in neuroscience. However, percolation theory on networks typically
models damage as random error or targeted attack, which is not satisfactory for a
process in which the system is attacked concurrently at many sites. Then, we must
come up with new methods. In this way, a problem in cognitive science has led
us to propose a new structure degrading scheme, which in turn raises interesting
questions in physics (which, of course, we intend to solve in the near future).

All in all, these chapters acknowledge the slow, constant effort that has been
committed to gain some understanding in linguistic phenomena.

6.2 Where I (would like to) go

By the time I write this text, the amount of open issues on my to-do stack has
grown faster than my capacity to deal with them. These issues are not restricted
to cognitive-related questions. My secret hope is that this situation will translate
into some kind of job stability (I have only reached non-enduring metastable states
regarding this part of my life). In any case, I will try to briefly review some of those
“cognitive to-do’s”.

6.2.1 Semantic navigation

In Chapter 4 we have presented RIM as the mechanism responsible for the emer-
gence of categories. In the end, the rationale behind this idea is that a thorough,
uninterrupted exploration of our semantic network naturally produces a way to
quantify semantic similarity between words. Focused on the prediction of these
similarities, we have overlooked other applications of RIM.

For instance, we may think of the information obtained from RIM as a hidden
metric space which enables navigation without a global knowledge of the structure.
Such locally-directed, semantically-driven navigation should be:
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1. Efficient: the cost in terms of “steps” (jumps from node to node) should be
close to the pure topological shortest paths.

2. Internal characteristics: probably more interesting than the previous point,
the content of “similarity paths” should be semantically smoother than those
from a purely topological navigation. This means that, while purely topo-
logical navigation obeys the constraints from the weights of links (which, we
should recall, represent any kind of relation), semantic relations from RIM
are restricted to semantic similarity. Then the intermediate nodes necessary
to reach a target word from a given source might be very different from one
scheme to the other.

6.2.2 Wikipedia

I should be thankful to the experimental psychologists that collected the Free As-
sociation Norms (FA): as one may realize at this point, they have enabled the most
fruitful results of our research. The question about data availability is always a
sensitive one. Do we have larger, richer data sets than FA? Are they available in
other languages? The answer is Wikipedia; or, to be precise, the internal linking
structure of it. Note that, in a single Wikipedia article, one can find many types of
links. For example, in the article devoted to Andrey Markov it is possible to find
geographic references (where was he born and raised –Ryazan, Russia–, where he
studied, and so on); professional references (a generic link to “Mathematics”, but
also more specific ones like “random process”, “Brownian motion”, etc.); personal
references (noticeable people he interacted with). In this sense Wikipedia is very
similar to Free Association Norms, where relations between concepts are very rich,
and such richness is the key to success for RIM. Moreover, Wikipedia shares another
characteristic with FA, which is its dynamic (growing and rewiring) nature.

English Wikipedia contains at this moment over 3,000,000 articles, each of them
filled with links to other articles. It is also available in at least 20 other languages
–those with the largest population speaking them. Presumably, this huge available
data will soon offer us new insight about human knowledge organization and dy-
namic mechanisms operating at the cognitive level.

6.2.3 Cognitive robustness. Topology vs. Dynamics

Part of Chapter 5 was devoted to study the effects of different damaging strategies
both on the topology and RIM dynamics. Some surprising effects were found, and
these deserve further study.
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On one hand, we have a genuine physics problem in the newly introduced
percolation-by-degradation. Note that this question can be addressed in two sep-
arate steps: (i) simple degradation, in which links below a threshold are deleted but
the remaining ones are left unchanged. This demands monitoring the evolution of
P (k) in relation with the particular distribution of weights, P (w); and (ii) degra-
dation plus reinforcement, in which P (w) changes both because of the removal of
links and because values are normalized at each step, i.e. the distribution is now
time-dependent P (w, τ). Both approaches can be interpreted in terms of systems
where some quantity is preserved (presence of reinforcement) or not.

If this problem is solved, that is, if we attain an analytical understanding of the
problem (such as describing the critical percolation point), the next question is to
distinguish between topological (or static) and dynamic percolation. Throughout
this work (and of course in the literature) it has been implicitly assumed that topol-
ogy and dynamics are in close interplay. Literature on percolation has mainly fo-
cused on the structural collapse of systems, while probably the most interesting
aspect to study is precisely dynamic resilience, i.e. how long can a system behave as
it is expected before it functionally collapses. Of course, this turns the percolation
problem into a more complex one, because typically we can study one topology, but
the number of dynamics we can run on top of it are countless.

Within the particular cognitive orientation, we believe that the line of work of
Chapter 5 is to be continued, that is, being able to characterize brain and cognitive
pathologies, even in a simplified manner, so as to allow specialists to gain insight in
their particular disciplines.

6.2.4 Linking the functional and the physical layer

In the Introduction we mentioned the fact that semantic networks are abstract ob-
jects, in the sense that they “live” in our minds. Leaving aside certain forms of naı̈ve
mentalism, it is generally accepted that all these mental structures find their foun-
dations on a physical layer, the brain. We may introduce an illustrative metaphor to
understand this peculiar relation mind–brain, by comparing these levels (cognitive–
neural) to those of computer communications: the Internet represents the physical,
wired, geo-referenced underlying structure of the logical level, the WWW. There is
no way of inferring what the physical connectivity looks like if one merely pays
attention to links pointing websites.

Is this really so? Are the physical and the logical layers absolutely uncorrelated?
Evidence both from psycholinguistics and neuroscience (the emergent and polemic
field of cognitive neuroscience) doesn’t suggest so. Does this mean that there is a
perfect mapping from the neural layer to the cognitive one? Again, the answer is
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no.
Given this situation, one of the greatest challenges in the long run is to under-

stand how these two layers interact and modify each other. I believe that physics-
inspired methods will be of much use to tackle these problems. Complex neural
topologies have already been spotted [161, 162, 186, 187], which suggest that com-
plex network methods might be adequate in this area. Furthermore, data indicate
that there are several pathways connecting the language-relevant brain areas [68],
which suggest a networked structure. Finally, there exists strong evidence about
specific localization of semantic categories. Brain imaging studies have shown that
different spatial patterns of neural activation are associated with thinking about dif-
ferent semantic categories of pictures and words (for example, tools, buildings, or
animals) [18, 86, 108, 116, 131]. These works suggest that the lexico-semantic sys-
tem’s organization we observe at an abstract level, i.e. semantically coherent modu-
lar structure (see Figure 3.9), may have a close correlate at the physical level. Chap-
ter 5 also points at this direction.

Although more fine grained resolution of fiber tracts and crossings is necessary
and unavailable nowadays, we can envisage some future research issues: what is
the direction of the information flow in the fiber tracts connecting language areas?
Is there a distinctive area where linguistic information is integrated? Is the modular
structure detected in language networks mirrored at the neural level? These key
questions open up a whole new and intriguing research scenario.
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