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Abstract 

Dynamic mechanical analysis (DMA) is often used to explore the 

relaxation dynamics of metallic glasses (MGs). Secondary relaxations in 

metallic glasses appear as an excess wing, as a shoulder of the primary 

relaxation peak or as a differentiated low temperature peak on the loss 

modulus E’’(T). In order to differentiate this relaxation from α-relaxation, 

which is due to collective movement and directly related to the elastic (solid 

glass) to viscous (supercooled liquid) transition, it is termed as β-relaxation. 

Its origin and main characteristics are still not clear and the understanding of 

the β process is still developing. 

Early results based on DMA suggested that it is the result of anelastic 

events, as the system is in a metastable state. It might be originated from 

diffusion processes, resembling Zener or Snoek relaxation in crystalline 

materials. In the energy landscape picture it is attributed to jumps between 

close energy minima separated by a low energy barrier. It is also treated as a 

process related to the activation of shear transformation zones (STZ) or flow 

units. In this thesis, the mechanical relaxation of MG is explored by quasi-

static measurements like creep and stress relaxation, and by DMA. The 

current theoretical models and experimental data available in literature are 

revised and discussed. Following, three different MG systems, namely, 

Cu46Zr46Al8, Pd42.5Ni7.5Cu30P20 and Fe55Cr10Mo14C15B6 are analyzed and it is 

clarified that the different β-relaxations manifested on the DMA behavior 

have different origins. 

Finally, we discuss the implications of the relaxation dynamics 

characterization presented in this work on the mechanical properties of these 

materials. The understanding of the relaxation behavior and some related 

phenomena like physical aging, mechanical deformation and internal damping 

is seen as fundamental to improve our knowledge of MGs, this leading to new 

alloys with improved mechanical performance.  
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1 Introduction 

A glass is formed when a liquid cooled down below its melting 

temperature fails to crystallize but instead cools continuously and forms a 

solid. From the structural point of view, although detailed structure analysis 

may show differences between the glassy state and the liquid state, the glass 

inherits the structure of the ancestor liquid. Besides the amorphous structure, 

the terminology of glass is usually related to substances that show a glass 

transition on the enthalpy measurement. Structural glasses comprise the 

families of oxide glasses, polymeric glasses and, more recently discovered, 

metallic glasses (MGs). In all these families it is found that the crystallization 

can be suppressed depending on the crystallization kinetics of the particular 

substance. 

As to the particular case of glassy metals, they were first described as 

“amorphous alloys” where emphasis was put on the structural aspect[1]. In the 

earlier period, due to the limited glass forming ability of the first discovered 

alloys, the amorphous alloys were only obtained by high cooling-rate 

techniques like rapid quenching or atomic deposition. These amorphous 

alloys, without clear glass transition behavior on the calorimetric 

measurement, sometimes were not regarded as glasses. The absence of a clear 

glass transition was because the glassy state was not stable enough and the 

material crystallized upon heating before the glass transition temperature was 

completed. 

Inoue’s systematic works on the stability of supercooled metallic liquids 

probing different compositions[2–4] broadened the range of alloys that could 

be vitrified and reduced the required cooling rate. In those new alloys, 

calorimetric measurements showed a clear glass transition phenomenon at 

temperatures well differentiated from the crystallization process. Because of 

this, they were started to be referred as metallic glasses. It was found that in 

some good glass-forming systems, the critical cooling rate to avoid 

crystallization could be as low as 10 K/s, for instance in compositional 

systems like Pd-Ni-Cu-P[5,6] or Zr-Ti-Cu-Ni-Be[7], and they could be cast 

into parts of centimeters without crystallization by simple copper mold casting 
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techniques. These easy glass-forming alloys were called as bulk metallic 

glasses (BMGs)[8,9]. 

 

1.1 Merits of MGs and problems need to be solved 

Ever since their discovery, MGs have risen great interest, both as a basic 

research subject in the field of disordered matter and as a potential 

engineering type of materials. With the continuous research in increasing 

glass forming ability (GFA), samples with higher stability and more extended 

supercooled liquid region were obtained. This high glass and liquid stability 

make it possible to investigate the dynamics and thermodynamics of glass 

formation and to explore the functional and structural applications. Compared 

with their counterpart crystalline alloys, glassy metals lacking of long range 

order endow unusual mechanical, chemical and physical properties.  

Until now, the most successful application of MGs are based on their 

magnetic properties. The families of MGs with soft and hard magnetic 

properties were reviewed by Inoue[10]. Typical MGs with soft magnetic 

properties, like Fe72Al5Ga2P11C6B4, have Curie temperatures of 590-600 K, 

which can increase up to 600-606 K after certain annealing treatments. The 

saturation magnetization (Bs) is around 1.1 T and the coercive force (Hc) is 2-

6 Am-1. The permeability reduces at higher frequency in crystalline metals, 

while in these soft magnetic MGs the relative permeability can remain as high 

as 7000-12000  at 1 kHz. The saturated magnetostriction when applied in a 

transformer core is found to be 2.1×10-5 for Fe-Al-Ga-P-C-B-Si alloys which 

is still high, but is around 30% lower as compared with those of Fe-Si-B 

amorphous alloys (3.0×10-5)[10,11]. This lower magnetostriction is helpful 

for reducing the noise generated by the transformer. Due to their low 

coercivity and high permeability, combined with a high electrical resistivity, 

which is helpful for reducing eddy current losses, soft magnetic MGs are 

widely used in laminated transformer cores.  

As to the hard magnetic properties, MGs like Ln60Fe30Al10 (Ln=Nd or Pr) 

with Curie temperatures Tc around 600 K can be cast into cylinders with 

diameters up to 15 mm. Typical magnetic properties are 0.13 T for 
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remanence, 0.15 T for Bs, 280 kAm-1 for Hc and 19 kJm-3 for (JH)max. The 

magneto-caloric effect and tunable magnetic properties are also of great 

interest[10].  

 

Figure 1-1 Ashby map of the damage tolerance of materials[12].In normal crystalline materials, there is 
usually a tradeoff between yield strength and toughness due to activation of the dislocations. On the other 
hand, metallic glasses could possess both high yield strength and fracture toughness. 

Regarding to mechanical properties, as the dislocation movement gets 

activated under stress and accumulated in the grain boundaries, there is a 

tradeoff between the strength and toughness in crystalline materials. This can 

be clearly seen from Figure 1-1. As mentioned by Demetriou[12], the 

dislocation based deformation mechanism makes a low elastic energy 

threshold for these defects to get activated, which leads to low yield strengths. 

Dislocation movement also enables extensive plastic shielding ahead of an 

opening crack, which promotes high fracture toughness. In contrast, materials 

with amorphous atomic structures, lacking classical microstructural defects 

like dislocations, can potentially yield plastically at much higher strengths. 

For example, ductile metals, like low carbon steels, have a low plastic yield 

strengths of less than 500 MPa and high fracture toughness above 200 

MPa·m1/2. On the contrary, silicate glass fibers have high yield strengths of up 

to 3GPa but very limited plasticity ahead of an opening crack tip. 
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Consequently an opening failure is usually accommodated by unstable crack 

propagation, resulting in low fracture toughness and often low strength, as 

shown in the silicates glasses bulk samples where toughness is lower than 1 

MPa.m1/2. Their failure occurs at less than 100 MPa by brittle fracture which 

is well below the theoretical yield strength. 

Because of the possibility of producing large samples, mechanical 

properties can be measured in BMGs. A shear sliding mechanism in the 

vicinity of a flaw under opening stress can blunt the crack, and it is shown that 

BMGs can possess high yield strength as well as high fracture toughness[12]. 

As it can be seen in Figure 1-1, BMGs have the advantage of both high 

strength and high fracture toughness. This makes them potential engineering 

structural materials. Besides the high elastic limit and strength, ultralow 

elastic moduli, tension compression anisotropy and strain rate sensitivity have 

been also found in some specific BMGs[13]. 

Compared to crystalline metals, MGs show a continuous change of volume 

during glass formation, the solidification shrinkage is low and high precision 

is obtained in melt casting processes. Besides, the high viscosity and low 

strain rate sensitivity of the supercooled liquid permit thermoplastic 

forming[14]. The ease of precision forming by thermoplastic flow combined 

with high hardness makes MGs good candidates to be used in mm-scale 

structures like gears in miniature electric motors[15]. 

The properties of MGs related to potential applications are summarized in 

a very nice work by Ashby[16]. Due to the lack of grain boundaries, where 

initiation of corrosion usually happens, and because of the extension of the 

solubility region of beneficial anti-corrosion elements some MGs also show 

an outstanding corrosion resistance. High hardness and corrosion resistance 

gives durability which is attractive from aesthetic point of view as well as for 

wear resistance applications. 

Although MGs are very promising as potential structural materials, there 

are several basic as well as practical problems not yet fully understood like 

formation, structure, thermal stability or brittleness. The solution of these 

problems is still generating great research efforts in the MG scientific 

community. 
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1.2 Glass transition and glass forming ability (GFA)  

Practically, the first thing we care about on a specific material is its 

availability. GFA is an important factor we need to concern about which 

illustrates the easiness of obtaining MGs. A lower required cooling rate means 

that a bigger glassy sample can be obtained. MGs are metastable materials 

formed under the conditions where crystallization is suppressed. Normally, a 

high cooling rate is required in order to suppress the nucleation and growth of 

the crystallites. Experimentally, the improvement of GFA can be achieved 

with composition optimization. This composition optimization is 

accomplished with the understanding of both the thermodynamics and 

kinetics of the glass formation and crystallization processes. 

 

1.2.1 Thermodynamics of crystallization and glass transition 

Glass is formed when cooling a material under the circumstance that 

crystallization is avoided. The thermodynamics and kinetics of crystallization 

play central role in glass formation. Figure 1-2 shows the changes of 

properties when a liquid is cooled into the solid state. The temperature region 

could be separated into three parts: the thermodynamically stable liquid, the 

thermodynamically metastable supercooled liquid and the out-of-equilibrium 

glassy state. At the highest temperatures, this means region A of figure 1-2, 

the free energy of the liquid is lower than the crystalline phase, the melt is in 

equilibrium state and there is no driving force for crystallization. 

Cooling into range B (the freezing-melting temperature Tf is where the 

Gibbs energy of the liquid phase is the same as the crystalline phase), the free 

energy of the liquid becomes larger than that of the crystalline phase. The 

melt is metastable and will crystallize if a critical nucleus is provided. This 

state is called supercooled liquid state. For metallic melts, this temperature 

region can be separated into two according to the dominating process of 

crystallization. At the higher temperatures, the critical nucleus size is large 

and, therefore, the homogeneous nucleation rate is very low. On the contrary, 

the growth rate is fast at this temperature region. At the lower temperatures of 

this region, the driving force of crystallization is high enough to produce a  
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Figure 1-2 Properties of the glassy and liquid state as function of temperature[17]. Properties related are (a) 
volume or density. (b) viscosity. (c) heat capacity Cp. (d)  Gibbs free energy.  
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high homogeneous nucleation rate but the slow growth of the crystallites, 

related with the high viscosity and slow diffusion of the atoms, becomes the 

limiting factor. Crystallization would happen in range B if both the 

thermodynamic and kinetics conditions for crystal growth are satisfied. If 

crystallization is avoided on cooling, range C is reached where we called the 

system is in the glass state. 

As shown in figure 1-2, the glass transition manifests on the temperature 

dependence properties like volume or viscosity of the supercooled liquid. A 

glass state is characterized by the liquid configuration frozen at the glass 

transition temperature Tg. It should be noted that unlike Tf which is a 

thermodynamic parameter, Tg is not but a dynamic related parameter, which 

depends on the cooling or heating rates applied to the system. In order 

universally define the glass transition temperature, Tg is defined as the 

temperature where the viscosity of the supercooled liquid phase reaches 1012 

Pa·s. However, experimentally, with slow cooling rates, the deviation from 

the supercooled liquid happens at lower temperatures and a smaller specific 

volume and higher viscosity of the glassy state are obtained. 

From the solidification kinetics point of view, the viscosity of MG forming 

liquids at temperatures around Tg is of great importance for crystallization. 

Actually, as it will be explained in chapter 2, the viscosity behavior of the 

glass is influenced by physical aging and it shows a quite complicated 

behavior. In the glass state (region C in figure 1-2), annealing of the glass 

enables the system to evolve towards more stable states and so it becomes 

densified. This process is referred as physical aging or structural relaxation. 

Physical aging stabilizes the glass leading it towards a so called ideal glassy 

state. 

This ideal glassy state is represented by an extrapolation of the equilibrium 

liquid properties. As it can be seen in figure 1-2, extrapolation of liquid 

properties like volume to lower temperatures would lead to a point where the 

property of the glassy state would be the same as that of the crystalline one. 

Kauzmann suggested that the isentropic point at which the extrapolated liquid 

entropy matches that of the crystal could be taken to represent an ideal glass 

transition temperature. This ideal glass transition temperature corresponds to 
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an infinite slow cooling rate and the experimentally observed glass transition 

from viscosity, calorimetric or other experimental probes is always found at 

higher temperatures. 

 

1.2.2 Parameters related to GFA 

In the early studies, due to limited GFA, researchers were focused on the 

development of better rapid-quenching techniques for applying higher cooling 

rates. The pioneer work on stabilizing the amorphous alloys by Inoue showed 

that, in some alloy systems, the glass could be formed using relatively low 

cooling rates. Ever since then, much work have been done to explore the 

range of compositions that do not require high cooling rates but could be 

formed in bulk MGs with simple mold casting techniques.  

Inoue summarized three empirical rules for finding high GFA alloys based 

on their systematic work on the GFA dependence of composition: a) presence 

of at least three atomic elements in the system, b) large negative heat of 

mixing between the elements and c) atomic radius differences larger than 12% 

between the different components. Besides Inoue’s rules, several parameters 

based on empirical data have been put forward with the aim of understanding 

the GFA through the characteristic temperatures of the systems.  

One of the most used ideas was developed by Turnbull[18], based on the 

fact that crystallization during cooling is possible only in the supercooled 

liquid region from the equilibrium melting temperature Tf down to Tg (figure 

1-2). Consequently, the crystallization is more easily avoided on cooling if 

these two temperatures are closer to each other. The liquidus (freezing) 

temperature Tf is more dependent on composition than Tg which is more 

constant. At a eutectic composition, the Tf is lowest and thus the two 

temperatures are closest, increasing the GFA. Compiling results in binary 

systems, it was suggested that good glass formers are usually found near 

eutectic points. In order to develop quantitative parameters, GFA was related 

to the reduced glass transition temperature, Trg=Tg/Tf. In multicomponent 

systems, even deeper eutectics (i.e. with eutectic temperature Tf even closer to 
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Tg) can be achieved, and this is the basis for the discovery of systems with 

higher Trg and corresponding higher GFA.  

Besides Trg, many other parameters are also used to characterize the GFA 

from thermodynamic aspects. The stability of the supercooled liquid, 

determined as ΔTx=Tg-Tx, which is the temperature difference between Tg and 

the crystallization temperature Tx is often used. Besides, there are parameters 

relating two or more characteristics temperatures, like the γ parameter, widely 

used to characterize the stability of the supercooled liquid and the 

GFA[19,20]. There are also GFA parameters based on the atomic level 

characteristics of the alloy. Based on the covalent atomic radii, Ma suggested 

that a critical electronegativity difference Δxcri correlated the alloy 

composition with the thermal stability and GFA of Al-Ni-Re ternary 

MGs[21]. 

Despite many empirical and theoretical efforts, predicting the GFA is not 

an easy work. In Al87Ni7Gd6, the Trg is usually less than 0.5, and the increase 

of Trg as well as thermal stability against crystallization is obtained with 

decreasing Al content. Based on the parameters mentioned earlier, the GFA 

might get improved. However, experimental result show that this is not the 

case[22]. In fact, the current models are mostly empirical with limited ability 

to predict GFA. For instance, in binary systems like Cu66Hf34[23], with 

Trg=0.62 and ΔTx=51 K, fully glassy bulk samples can be obtained. This 

binary system with large GFA does not fulfills Inoue’s empirical rules.  

The key for obtaining amorphous metals is the suppression of 

crystallization at a given cooling rate. The success of Inoue on stabilizing the 

supercooled liquid has inspired other people aiming to find systems with high 

GFA. Much effort has been put on optimizing the composition to stabilize the 

supercooled liquid. Trial and error method is still often employed and 

nowadays new BMGs are being reported continuously.  

This work is focused on three well known MG systems, namely Cu-Zr-Al, 

Pd-Ni-Cu-P, and Fe-(Mo,Cr)-(C,B).The influence of doping with Al on the 

thermal behavior of the (Cu50Zr50)100-xAlx(3<x<10) system shows that Tg, Tx  

and ΔTx all increase with the concentration of the doping element [24]. Works 

in other related systems show that with Al addition, the GFA of Ti41Zr25Be34 
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alloy can be enhanced from 5mm to 7mm, and by partial substitution of Cu by 

Al the system with composition of Cu49Hf42Al9 can be cast into cylinders of 

10 mm diameter[25]. A fifth alloying element, Cu addition to Ti-Zr-Be-Al 

glassy system, can further improve GFA and 10 mm glassy rods have been 

reported for the (Ti41Zr25Be29Al5)Cu9 alloy[26]. 

Pd-Ni-Cu-P and Fe-(Mo,Cr)-(C,B) systems belong also to some of the 

most studied MG systems. The former one is the system showing the highest 

GFA ever reporter[6] allowing the production of 7.2 cm bulk parts of 

completely amorphous metal. The latter one, belongs to the family of the so 

called amorphous steels. This family is characterized by compositions with a 

total of 80 at% of transition metal elements (Fe, Mo, Cr, Ni, Co, …) plus a 20 

at% of metalloid elements (Si, C, P or B). Amorphous steels are characterized 

by extremely high hardness as well as good corrosion and magnetic properties 

for some compositions. The GFA has been optimized and some compositions 

have been produced in cm-scale bulk parts[27]. 

  

1.3 Structure of amorphous materials 

Depending on scale, the structure of a material can be viewed from 

different levels like macrostructure, microstructure, and crystal structure. 

From the crystal structure point of view, determining the structure of a crystal 

is to identify the coordinates of all the atoms in the unit cell. The properties of 

crystalline materials are related to the crystal structures and crystalline defects 

like point defects, dislocations and crystal boundaries. There are already 

matured theories on these structure-property relationships. Physical aging’s 

influence on structure and properties of glasses confirms that structure and 

properties are closely related; a slightly increase in density, which is even 

difficult to be detectable, leads to a viscosity increase of some orders of 

magnitude in rapidly quenched MGs. Besides viscosity, the influence of 

structure is also manifested on other properties like Cp, magnetic properties 

and electrical resistance. 

However, the structure of glasses still remains a great challenge to us. 

Because of this, the relationship between the structure and properties is far 
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from being established. From the macroscopic point of view, the glassy 

structure can be regarded as a featureless single phase solid alloy, without 

microstructure as it is usually understood. On the microscopic level, there is 

no crystal lattice and thus no defects such as grain boundaries or dislocations 

can be defined explicitly. There are no unit cells, and the atomic environments 

of different species are different, being only possible to describe them on a 

statistical basis. In this point lies the difficulty of determining and describing 

the structure of a glass. The goal of structural studies is then limited to 

identify the physical principles that govern the formation and physical 

properties of MGs from an statistical point of view[17]. 

The pair distribution function, PDF, measures the probability of finding 

atoms as a function of distance r from an average central atom. It is often 

given in a reduced form G(r)=4πr(ρ(r)-ρ0), where ρ(r) is the number of atoms 

per unit volume at a distance r and ρ0 is the average number of atoms per unit 

volume in the sample as a whole. A common employed structural analysis of 

glass is based on the PDF which can be determined from scattering 

experiments using different sources like X-rays, electrons or neutrons. When 

different types of atoms are not distinguished, the PDF is regarded as radial 

distribution function (RDF). In this case one set of scattering data is enough to 

determine the RDF. The RDF analysis ignores the difference between atoms. 

In the situation where different atoms can be distinguished, a partial pair 

distribution function (PPDF) is used to describe each type of atom pair.  

For a binary alloy AB there are three types of pairs with AA, AB and BB. 

In order to determine the three PPDFs, it is necessary to perform at least three 

scattering experiments in which the two types of atom have different relative 

scattering powers. This can be done in several ways. One way is to use 

different radiations, such as X-rays, neutrons, and electrons. Another way is to 

use anomalous dispersion with a wavelength close to an absorption edge of 

each of the species, to obtain distinct effective atomic scattering factors. There 

are other techniques also possible which include polarized neutrons (only 

effective dealing with ferromagnetic sample) or isotopic substitution[28].  

The PDFs gives statistic information about atomic ordering with distance, 

but the information on angular distribution of interatomic bonds is lost from 
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the diffraction or scattering techniques. This angular distribution could be 

explored by absorption techniques like X-ray absorption fine structure 

(XAFS), including the fine structure at or near an X-ray absorption edge. 

These techniques can give information on the local environments of the 

particular species of absorbing atoms. It can also be explored by nuclear 

magnetic resonance (NMR) or Mössbauer spectroscopy. Through the 

interaction of the nuclear quadrupole moment of the probe atom with the local 

field gradient, the information on the symmetry of the local environment 

could be obtained using the Mössbauer spectroscopy.  

The obtained experimental structural information can be analyzed on two 

ways. The first is the direct data analysis. Taking the PDFs as an example, 

statistic structural information like distance between atoms and coordination 

number can be obtained by Fourier transform of the scattering factor. The 

information manifests the peak position, peak width and relative intensity, etc. 

Another way is to predefine a structural model and simulate the diffraction or 

absorption spectrum, and compare with the experimental result. The latter is a 

typical reversal problem where the result depends on the predefined structural 

model. Normally different configurations are provided and compared with 

experimental data. By Monte Carlo method, generation of random 

configurations and minimization of the difference between the simulated and 

experimental data, the structure could be determined. This methodology is 

known as Reverse Monte Carlo (RMC) method. The difficulty of this 

methodology is that the influences of atom positions and atom identities may 

be difficult to separate. Besides, due to the amorphous nature, there are 

problems predefining the structural models. Besides the RMC, Molecular 

dynamics (MD) simulation is also helpful to help us to understand how 

structure evolves at the atomic scale. The MD results can be verified by the 

scattering or absorption data which manifest on the PDF or XAFS analysis. 

Since the glassy state is congealed directly from the supercooled liquid 

without ordering, it is logical that its structure might be inherited from the 

liquid. Bernal modeled the structure of pure metallic liquids as a packing of 

hard spheres with the same diameter[29]. This dense random packing is 

statistically reproducible, and the structure can be considered to be made up of 
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only five simple polyhedra. One important parameter on structural analysis is 

the coordination number (CN) which is the number of atoms that form the 

nearest neighbor shell of a given central atom. In glasses with covalent 

bonding like network glass a low CN value is common while for MGs, with 

metallic bonding nature, high CNs are observed. It should be noted that the 

determination of nearest neighbors is arbitrary in glasses when using a 

distance cutoff method. Other route like Voronoi tessellation analysis is 

employed to describe the structural motifs. 

In addition to the short range Angstrom scale motives dominating the local 

environment of atoms, glasses are also characterized by nanometer scale 

fluctuations in the structure. This nanometer scale inhomogeneity is 

characterized by density as well as elastic and dynamic fluctuations. The 

presence of soft and hard regions has been observed by TEM and other 

techniques[30] . This type of structural inhomogeneity is thought to play a 

central role in the mechanical relaxation behavior of metallic glasses. 

  

1.4 Stability considerations  

Due to the metastable nature, a MG is prone to evolving to more stable 

states. Different aspects like structural relaxation, phase separation and 

crystallization need to be considered depending on service conditions. They 

are of especial important when elevated temperature applications are 

considered.   

Here structural relaxation is also referred as physical aging. It has large 

effect on many properties of the material. The structural effects of physical 

aging are apparent on the local atomic arrangement, modifying the atomic 

clusters and the coordination number, and also on the nanometer 

inhomogeneity. Physical aging is thought to modify the correlation length of 

density fluctuations thus implying strong changes in the associated properties. 

A review on the influence and mechanism of structural relaxation is given 

later in chapter 3. 

Although glasses were thought to be homogeneous without phases, Small 

Angle X-ray Scattering experiments showed that phase separation 
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phenomenon occur in some MGs like the Ni-Nb-Y systems[31]. This phase 

separation is also observed in other MGs like Cu-Zr or Fe-B using TEM [32]. 

It should be noted that not only intrinsic phase separation would introduce 

phase contrast in TEM, the sample preparation process might also introduce 

phase contrast when employing TEM techniques. Great care need to be taken 

when discussing on phase separation of MGs, factors influencing the 

techniques like surface flatness need to be excluded[33,34].  

As for the observed phase separation, it might be related to the miscibility 

gap in the equilibrium liquid[31]. By adding elements with large positive 

enthalpy of mixing to one of the main constituent of a glass forming liquid, 

multi-phase MGs can be obtained in the liquid or in the undercooled liquid. 

This multi-phase supercooled liquid then can be frozen into a multi-phase MG 

when further crystallization is limited. The final microstructure depends on 

the thermodynamics and dynamics when phase separation occurs as well as 

the processing conditions. Besides Ni-Nb-Y system, Zr-Co-Al-Gd, Co-Cu-Zr, 

Cu-Zr-Ag systems also show a phase separation phenomenon [31]. The phase 

separation is claimed beneficial to the mechanical properties as studied in Cu-

(Zr,Hf)-(Gd,Y)-Al[35] Cu-Zr-Al-Ti[36] and Cu-Zr-Al-Fe systems[37].   

Due to the metastable nature of the glass, crystallization needs to be taken 

into consideration at elevated temperatures. Since crystallization is a 

pronounced exothermic process, a method commonly used to determine the 

nucleation and growth kinetics of crystallization is calorimetric thermal 

analysis. The crystallization dynamics is usually described by the Kissinger 

method based on the relationship between the logarithm of the heating rate 

and the temperature at the maximum of the crystallization rate. Kinetic 

parameters like activation energy, transformation enthalpy and reaction order 

can also be obtained from a DSC measurement. For isothermal 

transformations, kinetic analyses are performed by applying the Kolmogorov-

Johnson-Mehl-Avrami (KJMA) formalism. The onset of crystallization is 

clearly detected in the mechanical relaxation behavior as will be seen in the 

following chapters.  
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1.5 Mechanical properties 

With the improved GFA, many MGs can be cast into fully glassy state 

without the need of extremely high cooling rates. These systems of size lager 

than 1 mm obtained by normal Copper-mold casting, are called BMGs. Some 

systems can even be cast into rods as thick as several centimeters. Compared 

with most commonly used crystalline alloys with elastic limit of about 0.2%, 

BMGs have larger elastic limit, Tian[38] even report a value of 5%. This 

extremely high elastic limit can make BMGs quite promising in many 

technological applications. For instance, the amorphous nature without 

dislocations makes that Al86Ni7Y4.5Co1La1.5 BMG possesses a compressive 

yield strength of 1050 MPa[39]. This corresponds to a specific strength of 

3.3×105 N·m·kg-1 and is higher than that of any existing engineering alloys.  

On the micro scale, tensile elongation and necking in the in situ 

deformation of samples of about 100 nm was observed by TEM[40]. 

However, the macro fracture mode is normally brittle in conditions without 

constraint[41,42]. Whether the monolithic MG is intrinsically brittle or ductile 

is still under debate[43], but the evidence is that there is no plastic 

deformation in tensile deformation mode. The free volume theory and shear 

transformation zone[44] are commonly employed to describe the deformation 

mechanisms in MGs. In particular, it is generally accepted that during 

deformation shear is not homogeneously distributed in the glass; on the 

contrary, stresses are dissipated in localized small volumes where most of the 

shear is accommodated. These are the so-called shear transformation zones. 

Currently, the lack of plasticity has been the main limiting factor for BMGs as 

engineering materials. 

In general, the mechanical properties are related to the microstructure of 

the material. Recent experimental results found that grain boundaries are not 

always detrimental to the mechanical properties[45]. As a matter of fact, 

nanomaterials attract great attention due to the novel properties introduced by 

the nano-scale grain boundaries. Nanocrystalline materials could be obtained 

through controlled devitrification of MGs by taking consideration of the 

crystallization kinetics[46]. 
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Figure 1-3 Schematic microstructure and mechanical property of Zr based metallic glass composites[45]. 
The fracture strength and deformation is related to the microstructure of the composite. By appropriate 
microstructural optimization, comprehensive mechanical properties can be improved.   

Composites with microstructures of Al nanocrystals in an amorphous 

matrix with nanocrystalline volume fractions approaching 20% were obtained 

in Al rich glasses as shown in figure 1-3[45]. The composite was reported to 

have improved mechanical properties. Nanocrystalline precipitates are also 

achieved in Fe based alloy glass systems such as Fe-Nb-B and Fe-Si-B with 

densities of ~1020 m-3 [47]. By appropriate microstructure control through 
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composition optimization and solidification process control, nanostructured 

matrix/ductile dendritic phase composite with composition of 

Ti60Cu14Ni12Sn4Nb10 exhibiting plastic strain as high as 14.5% and ultimate 

stress of 2.4GPa under compression was reported[48]. It was also report that 

in the Fe based MGs, the fracture strength could reach 3GPa while reaching a 

plastic strain of more than 30%[49]. 

Through appropriate microstructure control, the fracture stress and fracture 

strain could be improved[45]. Compared with the fully glassy ones, BMG 

composites have better mechanical performance and have gained large 

attention. The microstructure design mentioned above is referred as in situ 

composite. Besides the nanocrystallization, in situ formed continuous second 

phase and phase separation are also found to be an effective way of adjusting 

the stress distribution.  

The strategy of in situ composite is not only effective in compression 

ductility, but also under tensile stress[50,51]. Extensive toughening and 

ductility is achieved with control over the shear modulus (G) and size of the 

dendritic phase in Ti-Zr based BMG composites,showing tensile ductility 

exceeding 10% at ambient temperature, yield strengths of 1.2-1.5 GPa, K1c up 

to 170 MPa·m1/2 and fracture energies for crack propagation as high as 

G1c=340 kJ.m-2. The K1c and G1c values are equal or surpass those achievable 

in the toughest Ti or even Fe conventional crystalline alloys[51].  

Beside the in situ formed composite, mechanical properties can be 

improved through ex situ methods like continuous second phases or particles, 

for example, by addition of particles of TiB2 into Mg65Cu7.5Ni7.5Zn5Ag5Y10 

MG as reinforcing phase. Without affecting its GFA, when uniformly 

distributed in the matrix, the BMG composites show plastic behavior under 

compression with a plastic strain of 2-3%  and fracture strength as high as 1.3 

GPa[52,53]. By adjusting the interface, the evolution of shear transformation 

zones could be controlled and thus the plasticity could be improved. Improved 

ductility in the MGs can not only be achieved by composites but also in 

foams[54] as well as designed structures[55]. Besides the interface effect, 

stress induced crystallization[56] and polymorphic transformations might also 

be employed to improve the mechanical properties. 
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1.6 Forming 

A main feature of MGs is that they possess the high strength of metals 

while at the same time they flow, still in solid phase, at elevated temperatures. 

This thermoplastic property could be used as one step forming of the final 

product. When applying thermoplastic forming to MGs, several aspects need 

to be considered like crystallization dynamics and, viscosity behavior[57]. 

Actually, homogeneous deformation should be achieved, as inhomogeneous 

deformation might lead to failure. Here, the controlling parameter is the 

temperature dependent viscosity. 

Actually, due to the wide range of values of viscosity, which covers as 

much as 14 orders of magnitude, the theory description is still far from perfect 

and the description of viscosity of metallic glasses is still a subject of intense 

research. At high temperatures above the melting point, the configuration of 

the melt is in equilibrium, i.e. the system can adapt to the new more stable 

configuration within experimental detectable time. With cooling closer to Tg, 

the viscosity behavior shows a VFT behavior[58], manifested by the viscosity 

of Pd82Si18, Pd77.5Cu6Si16.5 and Pd40Ni40P19Si1 around the glass transition 

temperature using creep experiments by Spaepen[59–63]. However, as 

Mckenna[64] pointed out, a new framework is needed since viscosity 

described by VFT introduces a T0 temperature below which viscosity diverges 

and the system ceases to flow.  

Actually, on further cooling, the system congeals into a glass. The 

structure of the supercooled liquid gets stuck, the system becomes non-

ergodic and the viscosity deviates from the VFT behavior. This deviation 

from the VFT behavior is generally observed in glasses like network glasses 

and molecular glasses[65,66], and it is also observed in MGs where iso-

configurational viscosity show an Arrhenius behavior[67] in Pd82Si18 MG. 

The viscosity behavior could be explained in the framework of the free 

volume model [60] as performed for Pd43Ni10Cu27P20 MG[68].    

It should be taken in consideration that recovery of residual stress might 

also play important role in the final product. For instance, in homogeneously 

deformed Cu64.5Zr35.5 MG, if the strain is not fully recovered before cooling 

down, anelastic strain will remain in the local structure and this will lead to 
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structural anisotropy [69]. The homogeneous deformation regime used in 

thermoplastic forming of metallic glasses is deeply connected with viscosity 

and the mechanical relaxation behavior which is the main focus of this work. 

 

1.7 Applications of MGs 

With the development of new alloys with high GFA, new applications are 

being investigated. Due to the unique mechanical properties like high elastic 

strain which allows the material to store more elastic energy, combined with 

low mechanical damping, BMGs are attractive for springs and some sport 

products. Actually, golf club heads and tennis racket frames have been 

commercialized. The high elastic strain limit of MGs makes them attractive 

for use in strain sensing devices such as pressure sensors. The features like 

high mechanical strength, large elastic elongation limit, high corrosion 

resistance and good surface smoothness, have already made Fe-based BMG 

alloy powders with particle sizes of 0.05 to 1mm been used as shot peening 

particles[15]. Other applications taking advantage of biocompatibility in niche 

environment as well as in space exploration are also under investigation by 

the MG research community[70]. 
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2. Objectives 

MGs have attracted great attention due to its unique properties as described 

above. The deformation mechanisms, such as dislocation and twinning, 

responsible for plastic deformation of crystalline materials are not valid in the 

amorphous materials. Therefore, a new deformation mechanism had to be 

determined for the glassy systems[41]. Closely related to the mechanical 

properties, the mechanical relaxation of MGs is getting increasing 

attention[71][72]. Dynamic mechanical analysis, also known as mechanical 

spectroscopy, is widely used by the metallic glass community to explore the 

mechanical response. The main objective of this thesis is to investigate the 

mechanical relaxation of MGs. In order to understand the mechanical 

response of these materials, an extended review of the relaxation phenomena 

of metallic glasses is needed. This review and the corresponding discussion 

will be addressed in chapter 3. 

DMA experiments revealed secondary relaxation in BMGs, and this 

attracted great attention. Wang’s work on La-Ni-Y BMGs shows that the 

activation energy of secondary relaxation is comparable with the activation 

energy of shear transformation zones. It is believed that the control of the 

activation of secondary relaxations might be helpful to improve the 

mechanical properties of MGs[71][73]. Secondary relaxation is known as β-

relaxation, this means it is detected as a secondary process on the loss 

modulus versus temperature profile, E’’(T), of MGs. In different systems β-

relaxation shows different signatures on the loss modulus. In some cases it is 

observed as a low temperature peak, in some other cases as a shoulder or 

excess wing of the primary relaxation peak. One objective of this work is to 

investigate the nature of this secondary relaxation. 

Besides mechanical considerations, due to the softening behavior as 

temperature is increased, MGs start to flow below the glass transition 

temperature. This opens a way of forming the material into complex shapes in 

a single step. In such cases, relaxation dynamics and viscosity are key factors 

for designing the processing conditions. For instance, the temperature where 

forming processes like fiber drawing or glass blowing could be performed is 
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usually when viscosity reaches 108 Pa·s. Other techniques like annealing and 

bubble removal, as employed in oxide glasses, are also closely related to the 

viscosity behavior. Thus, the knowledge of the mechanical relaxation 

behavior of MGs is critical to define their technological potential. Besides, it 

does not only play an important role in technical aspects; as claimed by 

Gupta[74], the iso-structural viscosity is also of crucial important in testing in 

detail the proposed models of the glass transition theory. So, the other focus 

of interest of this thesis is the viscosity behavior of MGs. 

The work is structured in 6 chapters. After chapter 3, already described, 

the experimental materials and methods used in this work are described in 

Chapter 4. Following, section 5 presents and discuss the results obtained. As 

for the specific MG systems studied in this thesis, the Cu-Zr-Al MG family is 

of interest as potential structural material. This is because of the fact that the 

mechanical properties of the Cu-Zr based MGs are often found promising 

with minor doping of Al[37,56,75,76], The mechanical relaxation of Cu-Zr-Al 

will be explored in section 5.1. 

The extremely high glass forming ability of Pd42.5Ni7.5Cu30P20 MG, with a 

wide temperature span of the supercooled liquid region and superior stability 

against crystallization, provides us a good sample to investigate the properties 

of MGs. The mechanical relaxation of this MG will be explored in section 5.2. 

Iron based MGs with relative cheap raw material, acceptable glass forming 

ability and good corrosion resistance performance[77][78] are extensively 

used in the transformer cores as well as the antitheft devices taking advantage 

of soft magnetic properties. They are also promising as structural engineering 

materials[79][16]. The mechanical relaxation of one amorphous alloy 

belonging to this MG family will be explored in section 5.3. 

The discussion of the experimental results will be addressed in section 5.4. 

Finally, the conclusions of the work are presented in Chapter 6. 
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3. Mechanical relaxation of MGs: overview of 
experimental data and theoretical models 

The purpose of this chapter is to give an overview of the relaxation 

phenomenon in metallic glasses, the techniques to explore it and the influence 

of relaxation on their properties. This review is addressed to clarify some 

basic definitions and general behaviors. The terminology of β-relaxation in 

different contexts will be explained and the general methodology for 

analyzing the mechanical response will be addressed. The main work of this 

chapter has been published in reference [80]. 

  

3.1 Basics of glass relaxation dynamics  

Relaxation is a universal phenomenon driving a system from an excited 

state towards a more stable one. There are different techniques capable to 

explore the relaxation response under different stimuli. These techniques 

comprehend mechanical and dielectric spectroscopy, nuclear magnetic 

resonance, neutron scattering, and various electromagnetic radiation 

scattering. They probe the relaxation dynamics through the time behavior of 

different variables such as density, enthalpy, stress or strain, electric and 

magnetic polarization, nuclear spin orientation, and mean square and 

rotational angle displacements.  

The relaxation times obtained from different techniques coincide in some 

systems and time-temperature windows, but not necessary in others as 

illustrated in figure 3‐1[81]. The relaxation time l (liquid structural 

relaxation-longitudinal) determined from Brillouin scattering, τreorientation 

obtained from vibrational spectroscopy, σ determined from electrical 

conductivity, s from viscosity and H from differential scanning calorimetry 

of 0.4 Ca(NO3)2 0.6 KNO3 (CKN glass) split off from each other when 

temperature decreases, this indicating a decoupling of the relaxation times 

associated to different structural movements as the supercooled liquid 

approaches the glass transition temperature (Tg). In the case of MGs some of 

these experimental techniques cannot be used, as for example dielectric 

spectroscopy. This opens a hole in the frequency window usually probed, 
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which is partially filled with the information obtained by mechanical 

relaxation techniques.  

 

Figure 3-1 Relaxation times associated to different probed properties in CKN glass. Reprinted from ref. 
[81]. 

Although there is not yet a comprehensive theory, it is generally accepted 

that glass formation is not a thermodynamic phase transformation but a 

kinetic process that freezes the system in an out-of-equilibrium configuration 

at temperatures below Tg[82–84]. Therefore, glasses are permanently prone to 

change its configuration towards a more stable state through irreversible 

atomic movements. This process is called physical aging and it may have time 

scales much larger than the experimental ones, seeming that the system is 

stable from the macroscopic point of view. This process is also called 

structural relaxation, in the sense that the system is relaxing form a higher 

free-energy configuration towards a lower one. Nevertheless, the structural 

relaxation understood as the response of the system to an applied external 

stimulus, is an intrinsic process present both in equilibrium (liquid) and out-

of-equilibrium (glassy) states. Of course, in many cases, similar structural 

movements are responsible for structural relaxation and physical aging. 
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However, the relaxation response is a well-defined property dependent only 

on temperature and pressure for a particular glassy configuration while 

physical aging is a history dependent process driving the system through 

different glassy states. 

 

3.1.1 Relaxation in the supercooled liquid region  

The activation of viscous flow reflects the complete relaxation of the 

system, accommodating its structure under the application of an external 

force. Therefore, in structural glasses, viscosity is directly related to the 

primary relaxation time of the system, the so-called -relaxation. In the 

supercooled liquid region, when T>Tg, the system is ergodic and the -

relaxation time, , characterizes how long takes the system to return to 

internal equilibrium after being excited by an external force or a change in the 

temperature-pressure conditions. Generally speaking, the viscosity () and  

deviate from Arrhenius behavior. As summarized by Angell[85], different 

theories like simple liquid model, mode coupling theory, random walk model, 

random packed spheres or cooperatively rearranging system model propose 

different dependences on temperature. 

Actually, in the relatively narrow temperature region where most of the 

experimental viscosity data is obtained, all models fit the data with just two or 

three parameters and it is difficult to determine which model have superior 

validity. Experimentally, for many liquids above Tg, the relaxation dynamics 

can be described in the form of the Vogel-Fulcher-Tammann (VFT) equation 

for the viscosity  

  










0

0
*

0 exp
TT

TD
T   (3.1)  

D* and T0 being the strength parameter and the VFT temperature respectively. 

In some cases, D* T0 is described as B. The strength parameter D* is used to 

distinguish between strong and fragile liquids; strong liquids are defined by a 

large D* and an almost Arrhenius like behavior (T0→0). On the other hands, 

fragile liquids are characterized by small D* and a very rapid breakdown of 

shear resistance when heating above Tg. Analogous temperature dependence is 
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also found for  above Tg[86]. The strong-fragile nature of liquids near Tg is 

also usually characterized by the fragility parameter  

   
gg TTgTTg TTd

d

TTd

d
m



  loglog
. (3.2)  

According to the bonding nature, it could be classified as network formers 

like SiO2, lonic liquids, van der Walls bonding between molecules and MGs. 

SiO2 have a near Arrhenius temperature dependence of viscosity, the 

parameter m is usually smaller than 30, it is called strong liquid. While 

organic liquid like o-terphenyl which composed of discrete molecules is 

fragile with a strongly non-Arrhenius temperature dependence of viscosity 

and a large m value lager than 100. MG is between strong and fragile liquids 

with m value between 20 and 80. 

In addition to the main -relaxation, secondary relaxations may be also 

found in the supercooled liquid region. Below some critical temperature, 

particular structural movements may be decoupled from the main process 

giving rise to faster relaxations which usually follow an Arrhenius-like 

temperature behavior. As discussed below, some models predict the presence 

of a -relaxation below a critical temperature (Tc>Tg) as a universal feature of 

the glass transition process[85,87,88]. 

 

3.1.2 Relaxation and aging below Tg  

In an intermediate temperature region near and not too far below the glass 

transition, the situation is complex. The relaxation dynamics cannot be 

described by the VFT equation anymore, the system is not in an ergodic state 

and its properties are not uniquely defined by the temperature-pressure 

conditions; they depend on the particular glassy state reached during the 

previous history of the system. Furthermore, the degree of aging determine 

the physical and mechanical properties like density, elastic constants, 

diffusivity, Curie temperature (for ferromagnetic glasses)[89], electrical 

resistivity, enthalpy, etc., as well as the relaxation dynamics of the system. In 

this intermediate region, physical aging must be considered as occurring 
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continuously on all experimental time scales, but without reaching 

equilibrium except for very long annealing times (ta). This complexity might 

be solved in a first-order approach by introducing a fictive temperature Tfictive, 

which is used to define the glassy state of a system[90]. 

If aging is not considered the glassy dynamics of many systems can be 

approached as function Tfictive using the Adams-Gibbs-Vogel (AGV) 

model[91,92]  

   
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where B and T0 are empirical parameters, 0 the pre-exponential factor and 

Tfictive defines the temperature at which glass Arrhenius-like (AGV) and liquid 

(VFT) dynamics intersect each other. This fictive temperature evolves as a 

consequence of aging 

aging

fictive

a

fictive TT

dt

dT




  (3.4)  

with limiting condition of Tfictive=T for a completely aged system attaining 

internal equilibrium. 

At low temperatures (T<<Tg) the aging time, aging, is usually long enough 

to consider Tfictive constant and the glass structure frozen in an iso-

configurational state, with properties dependent on T, P and Tfictive. This low 

temperature region can be defined as the range where the cooperative stress 

relaxation (-relaxation) of the viscous liquid is completely frozen and the 

structural state of the glass does not change in laboratory time-scale; as Tfictive 

is constant, the glass properties are defined only by the temperature-pressure 

conditions. Relaxation in this glassy range involves decoupled, localized 

motion of easily mobile species; this is usually called secondary relaxations. 

They are sometimes classified further as β, γ, δ-relaxations in polymers where 

the stepwise freezing of various local degrees of freedom may be associated 

with specific molecular groups. While remaining in an isoconfigurational 
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state, relaxations are thermally activated processes with well-defined 

temperature dependences, (T), usually following Arrhenius-like behaviors. 

On the other hand, at intermediate temperatures, the complexity comes 

from the fact that aging, which controls the aging evolution, is at the same time 

dependent on the degree of aging. Different models have been introduced in 

order to model this complex behavior. One common approach to model the 

viscosity, the glassy dynamics and other properties is the Tool-

Narayanaswamy-Moyniham (TNM) equation[91,93–95]   
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where x is a dimensionless non-linearity parameter (the TNM parameter), Eact 

is an activation energy and kB is the Boltzmann constant as usual. Under this 

approach, the viscosity dependence on time could be described as a function 

of the change of the fictive temperature with complexity attributed to the non-

linearity parameter x. Some models propose different approaches for the time 

evolution of the -relaxation time during aging at a given temperature. 

Lunkenheimer et al.[96] proposed an expression for (ta) assuming that τaging 

is equal to . This assumption is commonly adopted for structural glasses, as 

it is reasonable to expect the movements accommodating the structure to an 

external force should be similar to the ones driving the system towards more 

stable configurations during aging. 

The study of physical aging in MGs has been extensively done by 

calorimetric techniques. Based on Chen’s work[97], the aging process 

characterized by DSC can show a broad distribution of activation energies. 

The activation energy spectrum can be obtained by plotting the difference 

between cp in the as quenched and annealed state versus temperature. Chen’s 

work shows that the spectrum has two separable broad processes, attributed to 

β and α relaxations respectively[97]. In the Pd48Ni32P20 MG the low-energy 

peak corresponds to an activation energy E=92.4 kJ/mol (0.96 eV). 

Tsyplakov[98] obtained similar results on the activation energy spectrum 

using DSC and mechanical relaxation. He interpreted the data by assuming 

that aging of MGs is a change in the concentration of frozen defects similar to 
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Dumbbell interstitials in simple crystals[98–100]. In the Dumbbell interstitials 

model, the activation energy shows a broad distribution of values. Nagel’s 

work on positron annihilation studies of free volume changes during aging of 

Zr65Al7.5Ni10Cu17.5 glass[101] suggests that the isothermal aging kinetics 

obeys a Kohlrausch-Williams-Watts (KWW) law with βKWW exponent of 

about 0.3 between 230 and 290 oC. The effective activation energy was found 

E~120 kJ/mol. 

Below Tg, there is also a reversible thermal relaxation component, faster 

than the irreversible aging. By thermal cycling, the annealing induced 

relaxation can be separated into reversible and irreversible components and 

can be interpreted by chemical short range ordering (CSRO) and topological 

short range ordering (TSRO) respectively[102,103]. The former could be 

explained by the activation energy spectrum, while the latter could be 

explained in terms of free volume theory[102]. Borrego et al.[104] studied 

aging by monitoring enthalpy and Curie temperature changes in Fe-(Co)-Si-

Al-Ga-P-C-B and Finemet glasses. They found that aging can be interpreted 

as driven by two relaxation times of minutes and hours respectively, in this 

case they associated the fast process to TSRO and the slow one to CSRO 

changes. However, it should be noted that this sharp separation between 

TSRO and CSRO is criticized because CSRO is unlikely without an 

accompanying TSRO[105,106].  

Khonik[107,108] treated plastic flow below Tg as irreversible structural 

relaxation with distributed activation energies modified  by  external  stress, 

developing the so called directional structural relaxation (DSR) model. 

According to DSR model, relaxation and aging involve structural movements 

generally anisotropic at the atomic level and oriented in different directions. 

In the presence of a mechanical stress, however, the distribution of the local 

events may become asymmetric producing a net distortion in the direction of 

energetically favored orientations. The DSR model is a general approach 

which includes any relaxation mechanism based on the motion of defects, and 

it even can be applied to relaxation in crystalline materials. At T~Tg, 

cooperative atomic motions cause viscous flow, mechanical relaxation and 

aging. In the DSR model the relaxation centers are divided into irreversible 
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and reversible ones, the former being responsible for mainly viscoplastic low-

frequency internal friction, plastic flow and even for reversible strain 

recovery, whereas the latter cause anelastic processes seen at higher 

frequencies. However, in spite of some models, the microscopic mechanisms 

and dynamics are still far from being understood. Recent work shows that in 

the microscopic scale, the aging of MGs is a complex process leaded by the 

release of internal stresses involving both smooth and sudden (avalanche-like) 

movements of the structure[109]. 

The activation energies of the processes controlling physical aging in MGs 

show typical values around 100kJ/mol[97,98,110]. Generally, aging is thought 

as being driven by thermally activated localized structural rearrangements and 

then controlled by the same molecular movements responsible of the 

secondary relaxations. Hu[111] performed a survey of the sub-Tg aging and 

relaxation data of several MGs obtained by DSC or DMA and they found a 

common relationship of Eβ=26.1RTg. Although enthalpy changes can be the 

result of many different types of structural rearrangements while mechanical 

measurements respond only to shear deformation, comparison between as-

quenched and relaxed samples using both enthalpy and mechanical techniques 

suggest that structural relaxation could be characterized by both of these 

techniques and the results are consistent[98,112]. However, it should be noted 

that, as Chen pointed out[113], the secondary relaxation process observed 

from calorimetry in MGs does not necessarily respond to the one observed by 

shear deformation. The internal friction measurements probe shear 

relaxations, while enthalpy relaxation samples all sorts of relaxation 

processes, chemical and topological. 

At still lower T, where the primary structural relaxation is eventually 

frozen, plastic deformation of MG is controlled either by creep or by highly 

localized shear banding depending on the applied deformation rate. In this 

range, secondary relaxations are related to anelastic processes concerning easy 

mobile species with similar behaviors as in crystalline materials. Maddin[114] 

suggested that the creep behavior of Pd80Si20 MG is governed by a single 

thermally activated process with an activation energy E=50 kJ/mol (0.52 eV). 

Based on the calculation of the activation volume of 25 Å, close to the volume 
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of one constituent atom, they proposed that steady state creep of the MG is 

due to transfer of atoms across a distance of one lattice spacing in order to 

relax the applied stress. 

 

3.1.3 Models for glassy dynamics  

The free volume model, proposed by Turnbull and Cohen[115], describes 

quite properly the viscosity dependence on temperature and it was further 

developed to explain the glass transformation phenomenon[116,117]. The 

model uses free volume as a parameter to describe the change of physical 

properties, with the particular achievement of predicting the equivalence of 

viscosity changes due to temperature or pressure variations in the supercooled 

liquid state. According to this theory, physical properties are related to the 

density of the system. The volume in the liquid could be classified into two 

types; type I is the volume of the elemental unit, type II is the volume where 

the elemental unit can move freely. Type II is called free volume. It is a small 

part in the whole volume and it is shared by the elemental units. When the 

system cools down, both volumes decrease, and when the free volume drops 

below a certain volume, the elemental units can no longer move and thus form 

glass. Free volume theory is quite useful and highly accepted in the MG 

community to explain the glass transition and aging phenomena. The weak 

point of the theory is that free volume is difficult to measure directly by 

experiment. Furthermore, later work on the phenomenon of inhomogeneous 

flow as well as the divergence of the relaxation modes showed that a single 

parameter model is not enough to describe the properties of a glassy 

state[84,118]. 

The potential energy landscape model is often used to interpret the 

relaxation dynamics[119]. According to the analysis by Johari and 

Goldstein[87], the atomic and molecular configurations in liquids and glasses 

change according to motions classified as primary (α) and secondary (β) 

relaxations. Primary relaxations describe the major large scale irreversible 

rearrangements responsible for viscous flow. On cooling, the glass transition 

is reached when the decreasing mobility stifles these rearrangements. On the 

contrary, β-relaxation could be viewed as a locally initiated and reversible 
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process. Measurements of the dielectric loss factor in many rigid molecular 

glasses as well as amorphous polymers show secondary relaxations. 

According to this evidence, Johari and Goldstein suggested that secondary 

relaxation could be a near universal feature of the glassy state[87]. From a 

potential energy landscape perspective, Debenedetti and Stillinger[82,83] 

have identified the β-transitions as stochastically activated hopping events 

across sub-basins confined within the inherent mega-basin and the α-

transitions as irreversible hopping events extending across different landscape 

mega-basins. 

The mode coupling theory (MCT) is able to explain the experimental 

evidence that the α-relaxation time diverges from β-relaxation at some critical 

temperature[88]. By characterizing and classifying the secondary relaxations 

in many glass formers, Ngai and Paluch identified the class of secondary 

relaxation that bear a strong connection or correlation with the primary one in 

all the dynamic properties and called it Johari-Goldstein (JG) β-

relaxation[120]. This link between α and β relaxations was initially found in 

polymers, but at present it is assumed to be universal. According to MCT, the 

decoupling temperature and the expected effects at much lower temperatures 

can be calculated. Based on this Ngai suggested the excess wing manifested in 

mechanical spectroscopy of MGs comes from a JG β-relaxation[121]. 

 

3.2 Mechanical relaxation of glasses 

3.2.1 Introduction to mechanical relaxation  

In general, the self-adjustment with time of a thermodynamic system 

towards a new equilibrium state in response to a change in an external 

variable is termed relaxation. When the external variable is mechanical, the 

phenomenon is known as mechanical relaxation. The measurement of internal 

friction by dynamic mechanical analysis (DMA), also known as mechanical 

spectroscopy, is widely used in solid state physics, physical metallurgy and 

materials science to study structural defects and their mobility, transport 

phenomena and solid-solid phase transformations. From the mechanical 

engineering point of view, the internal friction properties are responsible for 
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the damping properties of materials, including applications of both high 

damping (vibration and noise reduction) as well as low damping materials 

(vibration sensors). In MGs, normally, the internal friction behavior is 

empirically characterized and interpreted as a manifestation of internal 

relaxation processes, ignoring the details of their physical origins or atomistic 

mechanisms which are difficult to describe due to the complex structure of 

glasses. 

The relationship between stress, , and strain, , within the elastic region is 

given by the modulus of elasticity M 

 M . (3.6)  

For an arbitrary deformation, the stress and strain are second order tensors and 

Hooke’s law is a set of linear equations expressing each component of the 

stress tensor in terms of all the components of the strain tensor. However, 

considering an isotropic material and the usual modes of pure shear, uniaxial 

and hydrostatic loading, M corresponds to shear (G), Young’s (E) and bulk 

(B) modulus respectively. Results of mechanical spectroscopy in MGs are 

obtained in both shear and uniaxial modes, the latter usually adopted when 

only thin ribbon-shape samples are available due to a low glass-forming 

ability (GFA) of the alloys. 

The ideal elastic behavior has three conditions to be fulfilled, namely: 1) 

The strain response to each level of applied stress has a unique equilibrium 

value, 2) The equilibrium response is achieved instantaneously and 3) The 

response is linear. In a solid material exposed to a time dependent load, 

besides the elasticity part there might be also a time dependent part generating 

internal friction and deviating from Hooke’s law. According to the conditions 

obeyed by the stress-strain relationship, mechanical responses can be 

classified into the following types detailed in table 3-1[122].  
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Table 3-1. Classification of mechanical behaviors. 

Behavior Complete 
recoverability 

Instantaneous Linear 

Ideal elasticity Yes Yes Yes 
Nonlinear 
elasticity 

Yes Yes No 

Instantaneous 
plasticity 

No Yes No 

Anelasticity Yes No Not necessary 
viscoplasticity No No Not necessary 

So, the internal friction behavior could be the result of all these effects. 

The work by Nowick and Berry[122] explains in detail the different behaviors 

observed in the relaxation of solids, focusing mainly in the anelastic one. 

Experimentally, mechanical relaxation is observable by recording the stress 

(or strain) change with time when strain (or stress) is modified externally. It 

can be measured as quasi-static measurements in terms of creep, the elastic 

aftereffect, or stress relaxation. Quasi-static experiments are used to obtain 

information on the behavior of materials over periods of several seconds and 

longer. For information about the behavior of a material in a shorter timescale, 

dynamic experiments are more appropriate. In these experiments a stress 

periodic in time, σ=σ0e
iωt, is imposed on the system, and the phase lag  of the 

strain, ε=ε0e
i(ωt-), behind the stress is determined. For ideal elasticity, =0, the 

ratio ε/σ gives the elastic compliance of the material J. In the case of 

viscoelastic contributions,  is not null, and so the ratio ε/σ is a complex 

quantity called complex compliance, J(ω), which is a function of the applied 

frequency ω  

     

 JiJJ    (3.7)  

where J’(ω), the real part, is called the storage compliance and J’’(ω), the 

imaginary part, is called the loss compliance. In a similar way, we could have 

regarded the periodic strain as given, and the stress as leading the strain by a 

phase angle . The complex modulus /=M(ω)= M’(ω)+iM’’(ω) could be 
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then defined in a similar way. It should be noted that J(0)=J’(0), and at very 

high frequencies, J(∞)=J’(∞), it follows that J’’(0)=J’’(∞)=0. 

The characterization of the internal friction of materials is commonly done 

by the damping parameter 

M

M
Q




 tan1  (3.8)  

which is proportional to the mechanical energy dissipated by the system. Q-1 

has the advantage of being not influenced by uncertainties of the sample sizes 

and it is widely used in thermal analysis of substances, for instance in the 

characterization of Tg in polymeric materials, and in the determination of 

internal friction at high frequencies by ultrasound spectroscopy. On the other 

hand, as will be discussed later, the loss modulus peak is more directly related 

to the frequency spectrum of the mechanical relaxation. 

Within the scope of linearity, the mechanical response satisfies the 

Boltzmann superposition principle: the response of the material to an applied 

stress is independent on other applied stresses. This means that each response 

function constitutes a complete representation of the inherent anelastic 

properties of the solid. Accordingly, any one of the various response functions 

can be used to specify completely the anelastic behavior of the solid, and 

further, all other response functions are derivable from the selected one. The 

classical analysis of mechanical relaxation data uses mechanical models 

composed of springs (=K, where K is the elastic constant of the spring) and 

Newtonian dashpots (σ=ηdε/dt, where η is the viscosity of the dashpot) 

arranged in different configurations. This allows the derivation of the 

response of the system from the solution of the differential equations coming 

from the model. The two elements combined in parallel and series give rise to 

the Voigt and Maxwell units respectively. The standard anelastic solid is a 

three parameter model which can either contain a Voigt or a Maxwell unit. 

The Voigt type model is convenient for the analysis of the creep behavior 

while the Maxwell type model is convenient for analyzing the stress 

relaxation. 
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The general behavior of a standard anelastic solid shows a Debye peak in 

the loss modulus with the form  

   T

M
MTM u 221

=,






  

   T

M
TM

221
=,





  

(3.9)  

Where Mu=M(∞) is the modulus dictating the pure elastic response, and M is 

the intensity of the relaxation process (i.e. the decay of storage modulus 

observed between external forces being applied faster or slower than the 

characteristic time of the process). The peak in the loss modulus is observed 

when ωτ=1 and it can be traced either by scanning in  or in temperature, as 

(T) is temperature dependent. Glass relaxation involves cooperative 

movements of atoms in a non-regular structure, and it is far more complex 

than the simple standard anelastic model. The mathematical functions most 

commonly used to characterize the mechanical responses measured in both 

quasi-static and dynamic experiments are detailed in the following section. 

 

3.2.2 Time and frequency domain response functions 

Based on the observation of relaxation phenomena, the time dependent 

properties measured in dielectric or mechanical relaxation of glasses can be 

usually well-described by a KWW equation, also called stretched exponential  

    KWWtt   exp   (3.10)  

φ(t) being the time correlation function describing how the system losses 

memory and returns to equilibrium after being excited by an external 

stimulus. This expression with only two parameters is widely used to describe 

time dependent properties in both microscopic and macroscopic scales. 

Actually, the stretched exponential is known as a complementary cumulative 

Weibull distribution. The coverage of this equation is not only limited to 

models based on distributions of relaxation times but also complex correlated 

processes. The interpretation of the parameter KWW is of great interest as 
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discussed by Ngai[123]. When KWW=1 the function represents a simple 

exponential decay characteristic of a Debye relaxation with a characteristic 

time constant, while if 0<KWW <1 the expression can be regarded as the result 

of a distribution of individual events with different relaxation times. 

In creep-recovery experiments, the strain evolution (t) during the recovery 

is  

   tct pl    (3.11)  

where pl is the residual irreversible plastic deformation,  is the stress applied 

during the previous creep period and c+pl corresponds to the strain at the 

beginning of the recovery period[124]. On the other hand, in quasi-static 

stress relaxation experiments, a sudden deformation is applied to the system 

generating an initial stress 0 that decays following  

      RR tt   0
 (3.12)  

where R is the residual elastic contribution. Both creep recovery and stress 

relaxation probe the relaxation response function of the system. An example 

of the expected strain or stress time evolution in these experiments is shown 

in figure 3-2. 

 

Figure 3-2 Expected behavior for creep-recovery (left) and stress-relaxation (right) quasi-static 
experiments. 

The description with a two parameter stretched exponential is forcedly a 

simplification of the mechanical response, assuming implicitly an unimodal 
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distribution of relaxation times. In order to gain further insight, the time 

response may be analyzed in terms of a distribution of relaxation times  

     ii tAt  exp  

or 

       ''exp'
0

 dtAt  


 

(3.13)  

with factors A(’) determining the contribution of each relaxation time to the 

whole relaxation process. This analysis is able to fit complex experimental 

responses that may be not well fitted by the two-parameter function. 

However, φ(t) is just the Laplace transform of the intensity of the respective 

relaxation process and, as it is well known, the computation of the inverse 

Laplace transform is a very complex mathematical problem where 

experimental noise or inaccuracies may derive in fuzzy results. In the present 

case, it might give rise to fictitious relaxation time distributions, so 

experimental data must be cautiously analyzed. 

Jiao[125] analyzed the stress relaxation of a MG by assuming that the 

relaxation time spectrum had a log normal distribution with the form 

    22lnlnexpln skA    (3.14)  

where τ is the most probable relaxation time, s is the width of the τ’ spectrum, 

and k is a normalizing factor. This model fitted properly the stress relaxation 

of the Pd40Ni10Cu30P20 MG. Besides log-normal distribution, other distribution 

shapes like box or wedge-like could be also used for the spectrum to fit with 

experimental data[126]. The activation energy spectrum could be also 

determined with some approximation by using the data from calorimetric or 

mechanical relaxation experiments[98]. 

 The correlation function φ(t) is related to a complex susceptibility by 

Fourier transform  

       

 







0
dte

dt

td
i ti   (3.15)  
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which can be probed by dynamical experiments. In case of DMA 

experiments, the measured complex elastic modulus is  

        MMMiMM u    (3.16)  

with Mu and M already defined in equation 3.9. It should be noticed that 

there is no analytical expression for the Fourier transform of the KWW 

function with a general value of the KWW exponent and numerical methods 

have to be employed in order to translate the experimental data from time to 

frequency domains or inversely. Furthermore, computing of Fourier transform 

poses numerical problems originating from cutoff effects which yield 

unwanted oscillations, especially when treating real data with experimental 

error and noise. 

Characterization of the relaxation processes is generally obtained from the 

analysis of the loss modulus M’’(). The M’’() peak related to a given 

relaxation process is defined by four main characteristics: The intensity of the 

peak (M ), the bluntness of the peak, and the power laws defining both the 

low and high-frequency tails 

   
    





b

a

 (3.17)  

where 0<a, b<1. In the case of a Debye process a=b=1, and for a time-domain 

response defined by a KWW function (equation 3.10) a=1 and b=KWW. The 

real loss peak found experimentally shows different degrees of asymmetry. 

An empirical function widely used for characterizing it is the Havriliak-

Negami (HN) function 

 
  


i


1

1
  (3.18)  

where the exponents  and  define the broadness and the asymmetry of the 

peak respectively, and they produce power-laws of the tails given by a= and 

b=. The Cole-Davidson (CD) function and the Cole-Cole (CC) functions, 

which are also commonly used in relaxation studies, correspond to the HN-
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function with =1 or =1 respectively. The CD-function, with peak shape 

dictated only by the  exponent, shows an asymmetric peak very similar to the 

one given by the Fourier transform of the KWW-function[127]. On the other 

hand, the CC-function results in a symmetric peak with broadening given by 

the exponent . Many results show that secondary relaxations of glasses can 

be generally fitted by using the Cole-Cole equation; the parameter α gives 

information about how distributed are the relaxation times and normally it 

increases with the temperature. On the contrary, classical anelastic relaxations 

in crystalline metals show shapes very close to a Debye relaxation with  and 

~1. It should be recalled here that the =(T) in the previous equation is the 

average relaxation time of the process at a given temperature. 

Other functions, either empirical or coming from physical models, are used 

to characterize the experimental loss modulus of glasses[128,129]; although 

here we only describe the most common ones, some of these other models 

will appear in the next section when discussing the mechanical spectroscopy 

results in MGs. In any case, however, all the functions have to fulfill similar 

properties as the ones detailed here for the HN and related functions. 

 

3.3.3 Thermally activated models 

As previously stated, internal friction can be interpreted as a combination 

of anelastic (reversible) and viscoplastic (irreversible) relaxation events. 

Previous works on crystalline metals show that anelastic relaxation can be 

well explained by mobility of defects in the crystalline lattice. These models 

consider interface relaxation (including grain boundary, twin boundary and 

nano-crystalline metals), dislocation, and point defect relaxation known as 

Snoek and Zener relaxation[122,130]. That is, most of the known mechanisms 

of anelastic relaxation in metals have their origin in the thermally activated 

motion of various kinds of defects. 

The amorphous nature of MGs prevents the description of internal friction 

in terms of these mechanisms. The only mechanism which can be easily 

extrapolated from crystalline to amorphous structures is that of atomic and 

defect migrations, directly related to the movement of single atoms inside the 
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structure. The jump of an atom or point defect from one site to another in a 

crystal lattice is a simple example of a rate process. The corresponding 

relaxation time follows a reciprocal Arrhenius equation  

  









Tk

E
T

B

actexp0  (3.19)  

valid when the rate limiting step of the relaxation process is the movement 

over an energy barrier. 

From the position of the loss peak at a given temperature, ωτ(T)=1, 

obtained from dynamic experiments the activation energy is calculated as 

   
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E

B
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(3.20)  

In the case of no observable peak, the activation energy could still be 

calculated using the temperature dependence of a fixed value of the loss 

modulus as a function of frequency. In a more general way, the temperature 

behavior of the average relaxation time (T) may be obtained by application 

of the temperature-time-superposition (TTS) analysis of the mechanical 

relaxation curves also for non-Arrhenius behaviors[131]. 

The relaxation processes of glasses may involve cooperative movements 

much more complex than the defect migration scheme. Besides, even for a 

well-defined process of atomic or defect migration, the inhomogeneous 

structure of glasses would generate a broader distribution of activation 

energies than in a crystalline material. In spite of this, glass relaxations are 

usually interpreted in terms of the temperature dependence of a main 

characteristic time (T), which is the average value of the relaxation times 

distribution, and can be determined by TTS analysis. Of course, if the DMA 

curves involve the overlapping of different processes with quite different 

activation energies or (T) behaviors, the TTS analysis will not be applicable. 
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3.3 Mechanical spectroscopy of MGs  

A huge amount of work on mechanical spectroscopy is collected by 

Magalas[132]. DMA can be performed both in isothermal (scanning 

frequency at fixed temperature) or isochronal (scanning temperature at fixed 

frequency) modes. In every solid, there exists a fundamental thermoelastic 

coupling between the thermal and mechanical states with the thermal 

expansion coefficient as the coupling constant. The thermoelastic damping 

contributes to the background of the loss modulus and Q-1 isochronal curves; 

differences between high and low frequency tests may originate from this 

effect. A detailed discussion on the thermoelastic background could be found 

in Nowick’s book[122]. Other effects may also contribute to the DMA 

background, which increases in less compact structures and it is then more 

important for glassy states with higher free-volume. Castellero[133] used the 

change in the intensity of the Q-1 background in order to follow the room 

temperature aging of Mg-Cu-Y glasses. 

 

Figure 3-3 Normalized storage shear modulus G’ and loss modulus G’’ vs temperature in La60Ni15Al25  
BMG, Gu is the unrelaxed shear modulus. Reprinted from ref.[135]. 

In addition to the background, the basic features of isochronal DMA 

curves of MGs are observed in figure 3-3. At temperatures below Tg, a slight 

and constant decrease of the storage modulus is expected as temperature 

increases due to thermal expansion of the structure[134]. In this region, many 
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MGs also show a secondary relaxation peak in the loss modulus and the 

corresponding partial step-like decay of the storage modulus. Increasing the 

temperature, the dynamic glass transition is clearly visualized by the -

relaxation peak of M’’ and a complete decay of M’ once in the liquid state. At 

higher temperatures, crystallization returns the system to the solid state 

increasing again the storage modulus. At even higher temperatures, thermal 

expansion and softening of the solid reduce again the storage modulus and 

increases the internal friction. 

 

Figure 3-4 Dependence of the normalized loss modulus vs the normalized frequency in typical MGs. The 
solid line is fitted by the KWW model. Reprinted from Ref.[139].  

DMA measurements are usually performed with heating rates of 1-5 

K/min and frequencies from 0.01 to 100 Hz. For this range of heating rates 

and frequencies, the maximum of the -peak is found in the liquid 

temperature-region, and the measured temperature dependence of  is in 

good agreement with the viscosity behavior described by equation 3.1[136]. 

In many glassy alloys, however, crystallization is very close or even 

overlapped with glass transition. The decay of the storage modulus is then 

stopped before reaching a zero value and the -peak may be cut on its high-

temperature side. In this case, the apparent maximum of the peak may not 

correspond to the real -relaxation peak maximum. In spite of possible 

deviations due to crystallization or aging, the -relaxation process observed 

by DMA is generally well-understood and it can be characterized by an HN-
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function or the Fourier transform of a KWW function with stretched exponent 

values KWW~0.5, as seen in figure 3-4. Wang et al.[137] also found values of 

KWW between 0.4 and 0.5 for some of the most representative MGs 

(PdNiCuP, CeAlCu and Vitreloy), while Meyer’s work on Pd40Ni10Cu30P20 in 

the equilibrium state[138] found that the α-relaxation followed the stretched 

exponential function with βKWW=0.76. On the other hand, secondary 

relaxations show very diverse characteristics in different MGs and their origin 

is less clear. 

 

3.3.1 Secondary relaxations 

By surveying the relaxation dynamics in organic molecular liquids and 

fused salts, Johari and Goldstein suggested that β relaxation was a universal 

feature of glassy systems[87]. In some polymers, as shown in figure 3-5 from 

the work by Casalini[140], there is a clear picture. On one hand the -

relaxation time becomes arrested in an Arrhenius behavior once in the glass 

state, it controls the aging and it is coincident with the calculations from the 

mode coupling model. On the other hand, the β-relaxation times are similar to 

the primitive  in agreement with the interpretation of a Johari-Goldstein 

relaxation as a precursor of the structural α-relaxation.  

 

Figure 3-5 Relaxation time for the α and β processes, along with the aging decay time τaging and the τα 
calculated from coupling model. Reprinted from ref.[140]. 
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Nowadays, it is becoming popular a description of MG dynamics in terms 

of α and β relaxations. All the peaks below the glass transition temperature are 

referred as β-relaxation although their origin may not be the same. We will 

follow this terminology here. However, it should be noted that some β-

relaxations detected by mechanical spectroscopy are not Johari-Goldstein 

relaxations or the ones envisioned from the potential energy landscape model 

but may come from different origins. 

Indeed, this kind of anelastic events in MGs can be dated back to the 

discovery by Berry that in Nb3Ge MGs thermal activated anelastic events 

manifest on an internal friction peak around 250 K[141]. This peak was 

interpreted as stress induced ordering of a similar nature to the point defect 

relaxations known in crystalline solids. Although it is not a Debye peak and it 

shows an asymmetric distribution of activation energies, the typical 

magnitude of the relaxation time corresponded to a single atomic jump and 

the intensity of the peak decreases with aging. Actually, later work suggested 

that in the low temperature region there might be contributions from hydrogen 

absorption, which exists in quite large range of MGs[142]. Yoon[143] also 

found these peaks located around 250K with activation energies of E~100 

kJ/mol (1.0 eV) in Fe40Ni40P14B6 and Fe32Ni36Cr14P12B6 MGs and they 

ascribed them to the movement of B atoms. Fukuhara[144] interpreted the 

low-temperature (150 K) relaxation peak found in Zr55Cu30Al10Ni5 as related 

to a topological transition or a vacancy-like defect rearrangement. 

However, based on the finding of this peak in Cu50Zr50, Co35Y65 as well as 

Co35Dy65 MG, and after excluding factors like hydrogen or oxygen 

absorption, Kunzi[145] suggested that the relaxation peak is due to the 

existence of intrinsic degrees of freedom in the amorphous structure as well as 

in other glasses such as oxides glasses[146]. It is also observed that cold work 

might lead to the observation of peaks occurring at temperatures between 100 

to 300K[147]. Actually, plastic flow both on cold rolling and hydrogenation 

occurs via formation and motion of dislocation-like defects which are the 

reason of the observed anelastic anomalies. It is suggested by Khonik[147] 

that low temperature internal friction peaks described in the literature for as 

cast, cold deformed and hydrogenated samples have common origin. 
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Nevertheless, the characterization of local defects in amorphous structures is a 

complex, long-standing topic still not fulfilled in spite of many efforts since 

the early works of Egami[148]. 

 

Figure 3-6 Temperature dependence of DMA behavior of La55Al25Ni20 MG. Reprinted from ref. [149]. 

These thermal activated anelastic events might also happen in a bulk MG 

as first described by Okumura[149] in the analysis of the viscoelastic behavior 

of La55Al25Ni20 MG. As shown in figure 3-3‐6, besides the glass transition 

temperature region, a β-relaxation gets activated at around 400K.  Further 

work[150] showed that aging reduces the magnitude of the relaxation peak 

but has little effect on the β-relaxation peak position. However, this fact was 

questioned by Qiao’s work, which showed that the β-peak moves to higher 

temperature after physical aging[151]. The activation energy of the β-

relaxation obtained by the time temperature superposition (TTS) shift factor 

method is E~100 kJ/mol (1.0 eV). In calorimetric measurements, the 

extrapolation of the intensity of β-relaxation associated to enthalpy release 

when the aging process is completed shows a non-zero intercept, which 

suggests that the β-relaxation would still remain in the fully relaxed state. 

Combined with Qiao’s result on partially crystallized samples where this peak 

remains, it seems consistent that β relaxation might be caused by short range 

atomic relaxation, somewhat similar to Snoek or Zener type processes, as 

suggest by Okumura. On the other hand, as already stated above, some works 

have found that the characteristics of the secondary relaxation in some MGs 
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are well in agreement with the expected JG-relaxation[121]. The debate on the 

origin of -relaxation remains open. 

Similar behavior of the loss modulus is also observed in La70Al15Co15. 

Wang’s work on La-based BMGs shows that the β-relaxation behavior could 

be tuned by modification of the chemical composition and could also manifest 

on different fragility parameter[152]. Not only the intensity, but also the 

temperature is strongly influenced by the composition; the loss modulus 

dependence on temperature of La70M15Al15 with M=Ni, Co or Cu is strongly 

related to the composition as shown in figure 3-7. In the case of Ni and Co, 

there are distinguishable β relaxation peaks, but in the case of Cu the onset of 

β relaxation is at higher temperature and overlaps with the contribution of the 

main relaxation, leading to a shoulder or excess wing. This is further explored 

by Yu[72], affirming that β-relaxation appears if all the atomic pairs have 

large similar negative values of enthalpy of mixing, while positive or 

significant fluctuations in enthalpy of mixing suppress β-relaxation. Their 

conclusion is based on the fact that by substituting Ni by Cu in La70Ni15Al15 

the loss modulus changes from a separate β-relaxation peak to an excess wing 

behavior. 

 

Figure 3-7 The T dependence of loss modulus of La70M15Al15 with M=Ni,Co,Cu. Reprinted from ref.[152]. 
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The enthalpy of mixing is also used to explain the experimental 

observation that partially substituting Ni with Cu in Pd40Ni40P20 increases the 

glass transition temperature while lowers the starting temperature of β-

relaxation. Furthermore, they suggest that strong and comparable interactions 

among all the constituting atoms generate string-like atomic configurations, 

whose excitation emerges as the β-relaxation events.  

In systems like Pd77.5Si16.5Cu6, Pd48Ni32P20, Pt58.4Ni14.6P27 and 

Au49Cu26.9Si16.3Ag5.5Pd2.3 the sub-Tg relaxation is detected as a shoulder of the 

-peak[153,154] and experiences important changes upon annealing due to 

aging. Chen pointed out[153] that this sub-Tg relaxation has different features 

from the JG-relaxation of polymeric and molecular glasses which shows a 

distinct peak at Tm<0.6Tg (at a frequency of 1Hz) and small effect on the 

intensity due to thermal stabilization near Tg. In Zr55Cu30Al10Ni5 alloys or 

La55Al25Ni20, M’’(T) behavior is more similar to a double -peak than a peak 

with a shoulder. These results have been interpreted in terms of double glass 

transitions related to phase separation in the glass[155] or because of double-

stage unfreezing of the mobility of the different species during heating[156]. 

Cohen[157] simulated the loss modulus of a binary Lennard-Jones 

potential by molecular dynamics by introducing oscillatory stress. The 

simulation results showed that the β wing could appear on the loss modulus as 

a function of temperature. Based on simulated DMA curves performed with 

different fractions of pinned particles, β process was attributed to cooperative 

movements different from α relaxation. Yu[158] suggested that cooperative 

string-like atomic motion might be more appropriate to express β process in 

MGs since it can explain the diffusion of the smallest atom species. Although 

with a nature of cooperative movement, they involve only small part of all the 

atoms in the system. Liu[159] measured the activation energy Ein ultra-

quenched MGs, the relationship E=26RTg suggested that it is a JG-relaxation. 

X-ray diffraction combined with EXAFS results showed that relaxation 

originated from short range collective rearrangements of large solvent atoms 

which could be realized by local cooperative bonding switch. In general, the 

microscopic mechanisms considered for secondary relaxation are also 
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associated to aging. A short revision of various microscopic models suggested 

to be responsible of physical aging is already given in section 3.1.2 above. 

 

3.3.2 Influence of aging 

Physical aging makes the structure denser and induces changes in the 

mechanical, electrical, magnetic, thermal and transport properties. The oldest 

and widely adopted concept for interpreting aging is that of free volume being 

progressively reduced. Alternative concepts describe aging as annihilation of 

various kind of ‘defects’ of the amorphous structure, comprising interstitial-

like, stress inhomogeneities, shear transformation zones (STZ) or other 

microscopic motives. In MGs aging is usually referred as irreversible 

structural relaxation and has long been noticed as a strong effect existing even 

at room temperature. Early experiments[160,161] found that when an as-

quenched sample is heated cyclically at a constant rate to successively 

increasing temperatures, the internal friction in each heating run is reduced. 

This can be described as if the relaxation spectrum is reduced in its faster part 

by physical aging. When heating during a DMA isochronal test, physical 

aging may occur in situ and the relaxation spectrum would not correspond to a 

single isoconfigurational state[162]. On the other hand, if the sample has been 

previously properly annealed it may not suffer significant aging during the 

test and the results become reproducible in consecutive heating-cooling-

heating cycles. 

The nature of individual movement of small areas is supported by room 

temperature creep behavior using nanoindentation techniques by 

Castellero[133]. The creep behavior is viscoelastic and could be fitted by two 

typical relaxation times, which were found to be around 4 s and 36 s for 

Mg65Cu25Y10 and 2.5 s and 25 s for Mg85Cu5Y10. After aging, the relaxation 

time of the slow process increases. Comparing with the relaxation time 

obtained by positron annihilation spectroscopy, Castellero et al. suggested that 

there are small and large traps where positrons can be annihilated. Smaller 

defects could be intrinsic open volume regions similar to Bernal interstitial 

sites, while larger defects are unstable and get annihilated as a consequence of 

aging. The reduction of these defects, responsible for shear transformations, 



Dynamics of metallic glasses explored by mechanical relaxation 

50 
 

lead to an abrupt loss of plasticity and a continuous decrease in the creep 

deformation rate. 

 

Figure 3-8 Internal friction of an Fe-based MG for different degrees of physical aging. Reprinted from 
ref.[163]. 

Kiss investigated the influence of aging on internal friction of FeB and NiP 

amorphous alloys[164]. Their results on Ni80P20 show that annealing decreases 

the internal friction and increases the storage modulus of MGs. Hettwer’s 

work[163] on influence of heat treatment on the internal friction of 

Fe32Ni36Cr14P12B6 shows that besides the peak observed around 665 K, there is 

another small peak in the range between 360 K and 400 K which nowadays 

could be classified as β-relaxation as shown in figure 3-8. The intensity of 

such β-relaxation becomes reduced and shifted to higher temperatures by heat 

treatment. Using this β-relaxation as a probe, they investigated the aging 

dynamics by considering that the reduction of the damping is influenced by 

both temperature and annealing time as Q-1=logta+Q-1
0 where parameters  

and Q-1
0 are functions of the temperature. 
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Tests at higher frequency (280 Hz) on the same composition by 

Haush[165] show a similar behavior, a strong secondary relaxation peak shift 

to higher temperature. However, Morito[166,167] observed that the β-

relaxation reported by Hettwer is not always reproducible, and he suggested 

that it might come from inappropriate loading. Morito and Egami’s 

work[160,167] on the same composition shows the influence of aging on 

internal friction. After an extended period of annealing, the glass reaches an 

internal pseudo-equilibrium state revealed on the internal friction. The decay 

kinetics can be expressed by first order kinetics with a log normal distribution 

of time constants, and the pseudo-equilibrium state is a function of the 

annealing temperature. A change in the annealing temperature results in a 

reversible change from one such state to another. 

The work by Deng and Argon on Cu59Zr41 and Fe80B20 shows that besides 

the -relaxation, there is another relaxation process which gets activated at 

lower temperatures[32,168], the peak position of the β-relaxation is near 500 

K. This peak shifts progressively to higher temperatures as aging continues 

and is used as a probe to study the aging process. Unlike the 

Fe32Ni36Cr14P12B6, where quasi-equilibrium structures can be achieved and 

altered reversibly by annealing at different temperatures, in the Cu59Zr41 MG 

these quantities continued to change until the onset of crystallization. By 

fitting the peak temperature at different frequencies, the activation energy for 

the sample aged at 573K for 34 hours is 46 kJ/mol (0.48 eV), with a 

frequency factor of 1.9×105 s-1. Considering the connection between 

activation energy of shear transformations and the level of free volume at the 

transforming cluster site, they affirm that the aging related shifting to higher 

temperatures without change in height is a result of reduction of free volume 

in a specific local atomic environment existing in this composition. 

The activation energy spectrum of the change of internal friction 

associated with aging can be obtained by subtracting the internal friction 

curve of the fully relaxed material from that of the as received one, in a 

similar way as the data obtained by calorimetric measurements. It is important 

to keep in mind that the activation energy of internal friction is different than 

the activation energy of irreversible structural relaxation or aging. A well-
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known fact is that the relaxation time from internal friction tests is frequency 

dependent. However, for example in Fe32Ni36Cr14P12B6, the aging 

characteristic time at 473 K is around 135 minutes and almost the same for 

573 K[166]. 

 

3.3.3 Modelling of the mechanical relaxation spectrum 

The temperature dependence of internal friction or loss modulus can be 

modelled with the methodologies described in section 2.2.2. Debye relaxation 

is normally used to describe the anelastic behavior, and the distribution of 

relaxation times can be related to a spectrum of activation energy. Ignoring 

the microscopic origin of the E distribution, the time-temperature relaxation 

spectrum M’’(,T) can be modelled by combining a frequency response 

function (HN, CD, CC or other) with a temperature dependence of the main 

relaxation time (T), in what is called time temperature superposition (TTS) 

method[169]. In this approach, the shape of the response function describes 

the effect of the relaxation time spectrum, i.e. the deviation from a Debye 

process. In the case of HN, CD or CC functions, this shape is determined by 

the exponents  and  of equation 3.18 with values obtained from fitting the 

experimental data. Therefore, (T) describes the temperature dependence of 

the average or main relaxation time of the process and is commonly found to 

follow an Arrhenius-like behavior for T<Tg. 

If the system shows various relaxation processes well differentiated in the 

time scale, each one of these processes can be modelled by the corresponding 

response function i and intensity Mi as 

       TMTMMTM u ,,, 2211    (3.21)  

where the temperature dependence of i is given by the corresponding 

i(T). Of course, if the activation energy spectrum of one of these processes is 

very broad, a (T) defined by a single activation energy and a () function 

with constant shape will not be able to reproduce the whole time-temperature 

spectrum and the modeling will have to take into account the explicit 

distribution of activation energies, computing the frequency-domain response 



Mechanical relaxation of MGs: overview of… 
 

53 
 

function by numerical calculation of equations 3.13 and 3.15. Finally, it 

should be taken into account that Mu, and sometimes Mi, usually shows a 

slight temperature dependence[134] that may has a significant effect if the 

modelling expands over a large temperature window. 

The master curve analysis is often used in the interpretation of DMA data 

using TTS principle; the master curve is constructed using isothermal multi 

frequency DMA data. Within this methodology, the temperature dependence 

of the shift factor follows an Arrhenius relationship with different activation 

energies below and above Tg. Pelletier[170] investigated the apparent 

activation energy in Pd-Ni-Cu-P using this method and obtained Eβ=1.1 eV 

and Eα=3.4 eV respectively. Jeong[171,172] analyzed the mechanical 

relaxation of Mn55Al25Ni10Cu10 and Zr36Ti24Be40. For Mn55Al25Ni10Cu10 glass, 

the activation energy of the alpha relaxation was found Eα=78 kJ/mol (0.81 

eV) and Eα=323 kJ/mol (3.3 eV) respectively below and above Tg. For 

Zr36Ti24Be40, the activation energies were Eα(T<Tg)=93 kJ/mol (0.96 eV) and 

Eα(T>Tg)=392 kJ/mol (4.1 eV). Guo’s work[173] on mechanical relaxation 

studies of α and slow β processes show that Nd65Fe15Co10Al10 have a distinct β 

relaxation in the temperature region between 320K and 420K. The activation 

energy is found Eβ=98 kJ/mol (1.0 eV) with the τβ0=10-14.5. Since there is a 

relationship Eβ=24RTg which is close to the suggested by mode coupling 

theory[174], they claim that β relaxation is intrinsic in MGs. Activation 

energy data of  and  relaxations of many MG systems can be found in 

Wang’s work[175]. 

In a narrow range above Tg, the VFT behavior of (T) can be approximated 

to an Arrhenius law with an apparent activation energy of the liquid 

)10ln(, gliquid mRTE   (3.22)  

This gives values between 200 and 600 kJ/mol depending on the fragility 

and the Tg of the system. On the other hand, the activation energies of both  

and  relaxations at T<Tg are usually found between 80 and 160 kJ/mol. These 

E values of the mechanical relaxation processes below but not far from Tg 

coincide with the activation energy commonly found for physical aging in this 
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temperature region, as already stated above, the same microscopic origins are 

expected for both processes. 

Here it is interesting to note that E ~26RTg and Eα given by the AGV 

approach (equation 3.3) give very similar values. For instance, considering 

typical values for MGs of Tg=Tfictive=600 K, T0=450 and B=D*T0=4500, 

equations 3.1, 3.2, 3.3 and 3.22 give E(T>Tg)=440 kJ/mol, m=38, 

E(T<Tg)=128 kJ/mol while E=26RTg=130 kJ/mol. Therefore, the expected 

values of the average activation energies controlling both primary and 

secondary relaxations in the glassy phase are very similar for MGs. This poses 

difficulty in interpreting both phenomena with the potential energy landscape 

picture in terms of sub and mega-basin transitions. 

Concerning the shape of the relaxation function, Liu and Wang[176,177] 

fitted the DMA behavior of Ce-based and Zr-Ti-Cu-Ni-Be glasses assuming 

that (T) follows a VFT behavior and relaxation can be described by the 

KWW function. The loss modulus was computed by Fourier transform 

finding that in the temperature region higher than Tg the experimental data 

was well reproduced; however, in the lower temperature region, the fitting 

was poorer. In Ce70Al10Cu20 and Zr-Ti-Cu-Ni-Be glasses the excess wing was 

fitted by considering α and β relaxations. They suggested that β relaxations 

arise from the small scale translational motions of atoms which are hindered 

in its metastable atomic positions by solid-like islands. 

 

Figure 3-9 Low temperature side of the loss modulus peak of ZrAlCu glass. Reprinted from ref.[178]. 
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In many MG compositions, mechanical relaxation below Tg is only 

perceived as an excess wing of the main -peak (see figure 3-9). In other 

cases, a shoulder or a secondary peak is detected in as-quenched samples but 

vanishes after thermal cycling in more stable glassy states. Description of 

M’’(,T) along the whole temperature range by consistent relaxation 

functions and (T) behaviors is maybe the main tool in order to discern if a 

secondary relaxation is present and what are its main characteristics. 

Using a CC-function, Hachenberg et al.[179,180] showed that the α-peak 

of Zr65Cu27.5Al7.5 and Pd77Cu6Si17 is well described by the VFT equation and 

the excess wing is better fitted when taken in consideration a β-relaxation. By 

observing the heating rate dependence of the onset and turning point of 

storage modulus dependence on temperature, Hachenberg determined E to be 

0.67±0.11eV and 0.59±0.39 eV for Pd77Cu6Si17 and Zr65Al17.5Cu27.5 

respectively. He ascribed this change on the storage modulus as a result of β-

relaxation with a cooperative nature. Since these two different glassy systems 

have quite different strong-fragile liquid behavior (m=52.8-77 for Pd-Cu-Si 

and m=36.4-38.4 for Zr-Al-Cu) they suggested β-relaxation might be a 

universal feature of MG dynamics. Combining the dependence on the heating 

rate of α peak and MCT predictions they explained the merging of α and β 

relaxations. 

The analysis of DMA behavior of Mg65Cu25Y10 glass show that the 

deviation from VFT behavior combined with the in situ aging manifested a 

shoulder on the loss modulus as shown in figure 3-10. [162]. In this case, the 

CC-function used for fitting the relaxation spectrum showed a significant 

change of the broadening parameter due to aging. The study of room 

temperature aging of the same system[110] shows an average activation 

energy coherent with the (T<Tg) behavior found from DMA, implying that 

in this system aging is driven by molecular movements belonging to the high-

frequency tail of a broad -peak. 
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Figure 3-10 Thick solid line is the expected isochronal DMA behavior of Mg65Cu25Y10 for different fictive 
temperatures. Reprinted from ref.[162]. 

In some MG compositions, especially Pd and La-based ones, the 

secondary relaxation appears as a prominent peak well-separated from the -

peak and present also for well-aged samples. Based on Cavaille’s work on 

rheology of glasses and polymers[181], Pelletier analyzed the dynamic 

mechanical behavior of Pd43Ni10Cu27P20 in a hierarchical correlation 

concept[170]. Following Gauthier’s[182] work on quasi point defects, three 

different contributions exist in the mechanical response as elastic, viscoelastic 

and viscoplastic parts. Qiao[183] analyzed and fit the temperature dependent 

internal friction behavior of Zr55Cu30Ni5Al10 using the same model. 
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Figure 3-11 Internal friction modeled by the quasi-point defect theory and χ dependence on temperature.  
Reprinted from ref.[183]. 

In this model, the important parameter χ is a correlation factor between 0 

and 1 linked to the quasi point defect concentration. χ=0 corresponds to a 

maximum order, when any movement of a structural unit requires the motion 

of all other units, while χ=1 represent maximum disorder when all the 

movements are independent of each other. With this methodology, in the low 

temperature range, when the χ is constant (~0.38 in the case of 

Zr55Cu30Ni5Al10), the loss factor can be easily fitted by a simple Arrhenius 

equation. At higher temperatures, the parameter χ is a function of temperature, 

and it was found that it could be fitted with a parabolic function (see figure 3-

11). In the point defect model, the key-question is how the order parameter χ 

changes with temperature. The behavior of χ is related to the viscosity change 

and Qiao’s work shows that the quality of the fitting depends on an 

appropriate description of the viscosity behavior. However, due to the many 
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orders of magnitude change within a relatively narrow temperature region, the 

description of viscosity behavior is still an open problem[84,184,185]. 

Wang[186] showed that the DMA behavior can be fitted in the whole 

temperature range by coupling two KWW equations in Fourier transforms. 

The temperature dependence of  shows a VFT equation while  has an 

Arrhenius-like dependence. For La70Ni15Al15, the pre-factors  and   are 

10-13 s and 10-15 s respectively and KWW=0.42. Qiao[151] fitted the relaxation 

dynamics of Pd40Ni10Cu30P20 as well as La60Ni15Al25 by combining the Fourier 

transform of the KWW function for the -relaxation and the CC-function for 

the . From a microscopic point of view, -relaxation could be interpreted as 

collective movement of all the atoms, while  relaxation could be understood 

by the quasi-point defect theory which relates relaxation to thermally 

activated jumps of a structural unit[135]. Later on, they described the  

process using a coupling model in a very similar form[151]. 

Mechanical spectroscopy data can also unveil the underlying distribution 

of relaxation times. This means obtaining the distribution of relaxation times 

A(’) defined in equation 3.13. Kursumovic[124,187] and Ocelik[188] 

analyzed creep recovery and found a trimodal distribution of ’ with 

maximums of the distribution peaks around 10 s, 100 s and 1000 s at 

temperature 50-100 K below Tg (figure 3-12). The details of the A(’) allowed 

them to propose different TSRO and CSRO corresponding to each mode of 

the distribution, the slowest one corresponding to annihilation of free-volume 

by cooperative motions. Ju and Atzmon applied direct spectrum analysis to 

strain relaxation data on Al86.8Ni3.7Y9.5 at room temperature[189] and later to 

DMA isothermal curves of Zr46.8Ti8.2Cu7.5Ni10Be27.5 near Tg [190]. In both 

cases they obtained a multimodal distribution of times, and interpreted it as 

associated to the activation of shear transformation zones (STZs) involving 

different number of atoms. The direct time spectrum analysis of mechanical 

spectroscopy permits to unveil more details about the microscopic movements 

involved in the relaxation process.  
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Figure 3-12 Time spectrum of anelastic relaxations of Fe40Ni40B20 glass at T<Tg.  Reprinted from ref. [187]. 

In addition to get insight to the microscopic origin of glassy dynamics, the 

determination of the relaxation spectrum M’’(,T) by appropriate response 

functions and average (T) dependences is, per se, an important 

characterization of MGs due to its consequences on the mechanical properties. 

The relationship between mechanical relaxation processes and mechanical 

properties will be briefly introduced in the following section.  
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3.4 Relationship between relaxation and mechanical properties  

On the macroscopic scale, bulk MGs can show plasticity depending on the 

temperature and the strain rate. At room temperature, depending on the 

specific system, the length scale of the plastic process zone ranges from 100 

nm to 100 μm. Based on the relationship found between the measured plastic 

zone size and the stress intensity factor KIC, Xi[191] suggested that fracture of 

MGs can be regarded as a flow process at different length scales. As reviewed 

by Schuh[41], physical aging affects all mechanical properties, from Young’s 

modulus to impact toughness. This is often explained in the framework of the 

free volume theory; the free volume decreases during annealing, the shear to 

bulk moduli ratio increases and the glass becomes more brittle. In general, the 

mechanical behavior of MGs is interpreted in terms of shear transformation 

zones (STZs) or of the more recently developed cooperative shearing model 

(CSM) as reviewed by Chen[79]. As discussed above, the β-relaxation 

measured by mechanical spectroscopy is interpreted as micro-events activated 

at temperature lower than Tg. The main point here is to describe the 

relationship between these events and the mechanical properties. 

Kahl investigated[192] the aging paths below Tg of Pd40Ni40P20 glass via 

ultrasonic measurements. Figure 3-13 shows the changes in shear modulus 

due to decrease in free volume after various annealing treatments. The 

structural changes causing the process have been attributed to JG- 

relaxations. In a similar material (Pd43Ni10Cu27P20), Harmon[193] identifies 

these secondary -relaxation events with reversible anelastic excitations 

within the elastic matrix confinement, while the -relaxation event was 

identified with the collapse of the matrix confinement and the breakdown of 

elasticity. 
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Figure 3-13 Shear modulus vs annealing temperature of a freshly prepared Pd40Ni40P20 MG and subsequent 
annealing procedures. Reprinted from ref. [192]. 

Okumura[149] investigated the mechanical behavior of La55Al25Ni20 MG 

at different temperatures. As can be seem from figure 3-3-14, there is an 

increase of maximum elongation around 385K that corresponds to the 

activation of β-relaxation in figure 3-3‐6. As pointed out by Spaepen[63,194], 

stress or thermal activation in MGs transforms nanoscale soft regions - with 

larger free volume - into flow units able to accommodate deformation. Below 

the yield stress, the resulting atomic rearrangement is reversible. Above the 

yield stress the flow units overcome a certain energy barrier and the atomic 

reconfiguration becomes irreversible. Macroscopic plastic deformation is thus 

the result of simultaneous irreversible microscopic shearing events. Under this 

approach, shear banding is a consequence of a localized high density of flow 

units. Single flow units promote the activation of near flow units, in a 

cooperative mechanism which eventually results in the nucleation of a shear 

band. 
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Figure 3-14 Changes in the yield stress and fracture elongation with testing temperature for La55Al25Ni20 
glass. Reprinted from ref.[149]. 

Based on potential energy landscape and the theory of shear strength in 

dislocation free solids, Johnson[195] proposed  the CSM with the aim of 

understanding the rheological mechanisms and mechanical properties of MGs. 

According to it, the volume of STZs, Ω, is proportional to their activation 

energy, W*, and the number of atoms participating in the flow unit can be 

estimated from the model. Using this model and treating the observed 

shoulder or -peak of M’’(,T) as a thermal activated process, the activation 

energy of the process can be determined by DMA. Zhao et al.[196] obtained 

the E of several different MGs. They obtained a relationship of E =27.5RTg 

which is close to 24RTg accepted for nonMG formers. They ascribe this 

difference to the different type of bonding and suggest that this is the Johari-

Goldstein β relaxation in MGs. Using the same methodology, Yu[73] 

determined the activation energy of more MG alloys and found E =26RTg. 

By an appropriate choice of parameters and using the CSM model they found 

that the activation energy of -relaxations and the potential energy barriers of 

STZs are the same. Liu[197] determined the activation energy of the β 

relaxation in La-based bulk MGs and assuming that this was the activation 

energy of STZs they obtained Ω=5.5(0.1) nm3 and the number of atoms 

involved in an STZ, n=178(10), of La60Al25Ni15. By compiling data of E , 
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they found that the flow unit volume of various MGs range from 2.36 to 6.18 

nm3 and n goes from 170 to 250. These values are in agreement with 

Pan’s[198] estimation based on nanoindentation experiments. 

The importance of the Poisson’s ratio on the design modern materials is 

highlighted by Greaves[199]. Besides, it is generally accepted that Possion’s 

ratio is a good indicator of the ductility of MGs. With small deviations on the 

exact value, it is widely accepted in the literature that there exists a critical 

value which divides plasticity (higher  values) from brittleness (lower  

values)[43]. For values of  larger than 0.32, the shear band tip tends to 

extend rather than induce crack initiation, allowing formation of multiple 

shear bands and leading to the observed macroscopic plasticity. The exact 

mechanism is still obscure, but it is suggested that the ductile/brittle nature of 

metals (in amorphous or crystalline form) is related to the viscous time 

dependent properties of their liquid precursors, either constrained in MG shear 

bands or in polycrystalline grain boundaries. The analysis on STZs suggest 

that the average flow units also correlates with the Possion’s ratio; as the 

value of  increase from 2.36 to 6.18 nm3, the value of Poisson’s ratio drops 

from 0.404 to 0.304.  

Unlike previous work where plasticity could only be observed in 

constrained conditions like bending or compression, Yu[200] found a 

pronounced macroscopic tensile plasticity in a La68.5Ni16Al14Co1.5 MG using 

ribbon samples. Even at room temperature, the stress strain curve deviates 

from linear relationship under the strain rate of 1.6×10-6 s-1. By determination 

of the strain rate of ductile to brittle transition (DBT) at different 

temperatures, the activation energy of the DBT is determined to be 103 

kJ/mol. This is a similar value to the E determined by DMA. Furthermore, by 

using nuclear magnetic resonance (NMR), Yu[158] determined the 

temperature dependent atomic (diffusive) hopping rates of P atoms in 

Pd40Ni10Cu30P20 and Be atoms in Zr46.75Ti8.25Cu7.5Ni10Be27.5. They found that 

their activation energies are very close to E. Since the P and Be are the 

smallest atoms in the respectively MGs, it is suggested that the  relaxation 

and self-diffusion of the smallest atoms are closely related. 
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It is generally accepted that the microstructural origin of the MGs 

plasticity can be explained by flow units or STZs. By utilizing a mandrel 

winding method which deform in the bend mode, Lu[201] realized 

homogeneous plastic deformation at room temperature for Zr, Fe, Mg, Al, and 

La based MG ribbons. Assuming E=26RTg and choosing MGs with different 

Tg, they found that plastic deformation is higher for lower Eβ. By annealing 

the sample, physical aging decreases the density of flow units and then both 

the -peak of internal friction and plastic deformation get reduced. From the 

results, they suggest that when the loading time is longer than the relaxation 

time or if enough energy is applied to activate a sufficiently high density of 

flow units, homogeneous plastic deformation of MGs can occur at room 

temperature. 
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4. Experimental materials and methods 

This section presents the sample preparation and characterization methods 

used during the PhD project. Some representative results and a list of all the 

different samples prepared and characterized during the project are given. 

  

4.1 Sample preparation 

Master alloys with different nominal composition were prepared by arc 

melting a mixture of constituent elements with purity above 99.9% under a 

Ti-gettered Argon atmosphere. The arc melting furnace used is an Edmund 

Bühler GmbH model MAM-1. The master alloys were re-melted twice to 

ensure compositional homogeneity.  

After cooling, the master alloy is transferred into a Melt spinning device 

(SC model of Edmund Bühler GmbH). The melt spinner is first vacuumed 

below 10-3 Pa through combination of mechanical and turbo-molecular 

pumps. Then the chamber is filled with Argon gas at the desired pressure. The 

master alloy is loaded in a pure silica glass crucible and melted by an 

induction coil while temperature is monitored and controlled by an optical 

pyrometer device. The melt is quenched by injecting on a copper spinning 

wheel. The injection is obtained using a pressure difference between the 

crucible and the chamber. A pressure difference of 0.4 bar is usually 

employed. For all the samples presented in this work, the velocity of the 

wheel is set as 650 rpm. Taking in consideration the radius of the copper 

wheel, the lineal velocity is around 40m/s. At this conditions, ribbon samples 

with thickness of 30 ± 5 μm and a width of 1.5 ± 0.5 mm are obtained.  

Pd42.5Ni7.5Cu30P20, Ti36.2Zr30.3Cu8.3Fe4Be12.2, Zr70Ni16Cu6Al8 master alloys 

were kindly supplied by Prof. Jichao Qiao. The MG ribbons with nominal 

composition Fe55Cr10Mo14C15B6 were kindly offered by Mr. Milad Madinehei 

while Pd77.5Cu6Si16.5 ribbon were kindly offered by Dr. Eloi Pineda. These two 

latter compositions were produced by the same equipment and methods.  

During the PhD project, several batches of samples of the following 

compositions were prepared: Cu48Zr48Al4, Cu46Zr46Al8, Mg65Cu25Y10, 
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Al85Ni7Y8, Pd42.5Ni7.5Cu30P20, Ti36.2Zr30.3Cu8.3Fe4Be12.2, Zr70Ni16Cu6Al8, 

Fe87Zr7B5Ag1, Fe20Zr80, Fe25Zr75, Fe30Zr70, Fe33Zr67, Fe40Zr60, Fe90Zr10 . Table 

4-1 describes the purpose and information collected of each of the samples. 

Table 4-1 Compositions explored within the Ph.D. thesis scope4.2 Structural, calorimetric and chemical 
characterization 

System prepared: Cu50-xZr50-xAlx 
Objectives: Study of 
relaxation behavior and 
influence of Al content on 
properties. 

Results: Main results of the relaxation 
behavior presented in chapter 5. Study of 
the crystallization kinetics in experiment 
HC-643 at ESRF (Grenoble). 

System prepared: Mg65Cu25Y10  
Objectives: Study of 
microscopic dynamics and 
structural changes during 
physical aging. 

Results: Main results are not included in this 
PhD thesis but published in ref. [202]  
 

System prepared: Al85Ni7Y8 
Objectives: preparation of 
ex-situ composite MGs 
(Al2O3+MGs), study of 
mechanical properties of 
the composite. 
 

Results: The composite was not obtained 
due to the low wetting behavior between the 
Al-Ni-Y melt and Alumina, and possible 
high reactivity between Cu-Zr-Al and 
Alumina. Normal melting casting of the 
composite as well as previous ball milling 
were tried as  production techniques. 
Amorphous samples with composition of 
Al85Ni7Y8 were obtained as manifested on 
XRD and DSC results.  

System prepared: Pd42.5Ni7.5Cu30P20 
Objectives: Study of 
relaxation behavior and 
physical aging. 
 

Results: Main results are presented in 
chapter 5. 

System prepared: Zr70Ni16Cu6Al8 
Objectives: Study of 
relaxation behavior. 

Results: DMA results show similar behavior 
to the Cu-Zr-Al MG analyzed in chapter 5. 

System prepared: Ti36.2Zr30.3Cu8.3Fe4Be12.2 
Objectives: Study of 
relaxation behavior. 

Results: DMA result show similar behavior 
to the Cu-Zr-Al MG analyzed in chapter 5. 

System prepared: Fe20-90Zr80-10 
Objectives: Fe-Zr MGs 
were explored to clarify 
whether -relaxations are 
originated from movements 
of small atoms.  

Results: DMA result is currently under 
analysis. 
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System prepared: Fe87Zr7B5Ag1 
Objectives: Analysis of 
thermal and electrical 
transport properties  

Results: Amorphous material was produced 
but the solid solution of Ag atoms in the 
glass was not attained. 

System prepared: Pd77.5Cu6Si16.5 
Objectives: Study of the 
microscopic dynamics 
during physical aging. 

Results: Study of the microscopic dynamics 
by X-Photon Correlation Spectroscopy in 
experiments HD-607 and HC-1147 at ESRF 
(Grenoble). Results under analysis. 

The amorphous character of the obtained MGs was checked by X-ray 

diffraction (XRD) in a Bruker D8 Advance X-ray diffraction with Cu-K 

radiation (λ = 0.1541 nm) over a 2θ range from 20° to 100° with a scanning 

step of 0.02°. The basic objective of the XRD diffraction was to determine the 

amorphous character of the prepared alloys. An example of the obtained XRD 

patterns are shown in figures 4-1 to 4-4.  
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Figure 4-1 XRD result of Cu46Zr46Al8 and Cu48Zr48Al4 metallic glass. No difference is observed between 
different batches. Diffraction intensity is shift in order to clarify the figure.  
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Figure 4-2 XRD of Mg65Cu25Y10 and Al85Ni7Y8. Diffraction intensity is shifted in order to clarify the figure. 
No difference is observed between different batches.  
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Figure 4-3 XRD of Pd42.5Ni7.5Cu30P20, Ti36.2Zr30.3Cu8.3Fe4Be12.2, and Zr70Ni16Cu6Al8 MGs.  
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Figure 4-4 XRD of several FexZr100-x binary MGs. Compositions are listed in the legend of the figure. 
Fe25Zr75 was found crystallized. 

The XRD patterns obtained and shown in the figures above show the 

contribution of the sample holder as a reflection at 2~25o. Indications of 

partial crystallinity are observed for example in Mg-based samples in figure 

4-2. This crystallinity may come from crystallization during the rapid melting 

process or the presence of oxides or other inclusions. 

Differential scanning calorimetry (DSC) was performed using NETZSCH 

404 F3 equipment. Some selected results are shown in figures 4-5 to 4-8. 

From low to high temperature, the expected phenomenon to be detected by 

DSC scanning of metallic glasses are structural relaxation of the glass 

(exothermic), glass transition (change of Cp), supercooled liquid 

crystallization (exothermic) and melting (endothermic). In multicomponent 

alloys the crystallization of the supercooled liquid usually involves 

precipitation of multiple crystalline phases. The crystallization reaction may 

be a single sharp process, as in Cu-Zr-Al or Mg-Cu-Y samples in figures 4-5 

and 4-6, or a multiple stage process with consecutive crystallization reactions, 

as for instance in the Al-Ni-Y of figure 4-6 or the glassy alloys shown in 

figure 4-7. Even in the case of a single sharp process, the crystallization 

usually involves nucleation and growth of various phases in a eutectic-like 

reaction. 
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Figure 4-5 DSC of Cu46Zr46Al8 and Cu48Zr48Al4, at a heating rate of 10K/min. Different samples in the same 
batch show repeatable results. The two Cu46Zr46Al8 batches show the same DSC behavior, while 
Cu48Zr48Al4 show minor difference on the starting crystallization temperature which differ from 743K to 
736K. In the case of Cu46Zr46Al8, crystallization starts from 753K with a maximum at 763K. Vertical axes 
are shifted in order to clarify the figure. 
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Figure 4-6 DSC of Mg65Cu25Y10 and Al85Ni7Y8 MGs. Al-Ni-Y is measured at a heating rate of 20K/min 
while Mg65Cu25Y10 at 5K/min. Vertical axes are shifted in order to clarify the figure. 
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Figure 4-7 DSC of Pd42.5Ni7.5Cu30P20, Ti36.2Zr30.3Cu8.3Fe4Be12.2, Zr70Ni16Cu6Al8 MGs, obtained at a heating 
rate of 20K/min. Vertical axis are shifted in order to clarify the figure. 
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Figure 4-8 DSC of FexZr100-x MGs at a heating rate of 20K/min. No obvious glass transitions were observed 
in these binary MGs. Vertical axes are shifted in order to clarify the figure.  

The glass transition, Tg, crystallization, Tx, melting, Tm and liquidus, Tf, 

temperatures were determined from DSC curves at 10-20 K/min. The Tg was 

determined as the position of the onset of the glass transition while Tx is 
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defined as the onset of the first crystallization reaction. The following table 

details the characteristic temperatures corresponding to all the samples 

analyzed during the project: 

          Table 4-2 Thermal characterization of MGs , Temperature in K, heating rates in K/min 

Composition Tg Tx Tm Tf Heating 
rate 

Cu48Zr48Al4-1 677 734 974 - 10 
Cu48Zr48Al4-2 674 740 981 - 10 
Cu46Zr46Al8 672 744 982 - 5 
Cu46Zr46Al8 695 749 982 - 10 
Cu46Zr46Al8 696 760 982 - 20 
Mg65Cu25Y10 408 450 - - 5 
Mg65Cu25Y10 412 460 - - 10 
Al85Ni7Y8 - 534 902 938 20 
Pd42.5Ni7.5Cu30P20 553 620 - - 2 
Pd42.5Ni7.5Cu30P20 567 650 792 838 20 
Ti36.2Zr30.3Cu8.3Fe4Be12.2 601 651 839 - 20 
Zr70Ni16Cu6Al8 628 687 1132 - 20 
Fe20Zr80 - 609 - - 20 
Fe25Zr75 - 569 - - 20 
Fe30Zr70 - 657 - - 20 
Fe33Zr67 - 662 - - 20 
Fe40Zr60 - 690 - - 20 
Fe90Zr10 - 852 - - 20 
Fe90Zr10 - 866 - - 50 

All the DSC measurements were performed under flow of N2. All the 

ribbons containing Zr react with N2 after melted, this is manifested as an 

exothermic event on the temperature profile which is heating rate dependent. 

As to the Cu46Zr46Al8, the reaction starts from 1200K under heating rate of 

10K/min. As to Ti-Zr-Cu-Fe-Be and Zr-Ni-Cu-Al, the corresponding 

reactions start at 926 and 1356K at a heating rate of 20 K/min. Under these 

circumstances, the determination of the freezing (liquidus) temperature cannot 

be performed. 

In the case of Fe25Zr75, X-ray diffraction results show that it is already 

crystallized. Here the crystallization temperature detected in the DSC scan 

may result from normal growth of crystals or a recrystallization processes. 
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Figure 4-9 SEM of Cu46Zr46Al8 MG.Up: air side of the ribbon. Down: side contacting with the copper 
wheel.  

The morphology of the samples was characterized by a SEM microscope, 

model Zeiss Neon 40. Typical morphology of MGs ribbons is shown in figure 

4-9. On the side contacting with cooper wheel, there are grooves on the 

surface.  
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Composition analysis was performed by energy dispersive X-ray 

spectroscopy (EDS) with the INCAPentaFETx3 detector equipped within the 

SEM.  

 

Figure 4-10 EDS of a Cu-Zr-Al MG. Horizontal axis shows X-ray energy and vertical axis number of 
counts.  

Several different points were chosen on each of the samples in order to 

assess the compositional homogeneity of the samples. A typical EDS result is 

shown in figure 4-10. Since the X-ray intensities are measured by counting 

photons the precision obtainable is affected by statistical error. The result 

obtained for this sample is listed in table 4-3. No differences between 

different points were observed since the overall analytical accuracy is 

commonly near 2%.  

Table 4-3 EDS analysis of Cu46Zr46Al8 MG.Percentage in atomic%. All element analysis (normalised). 

Spectrum Al Cu Zr 
Spectrum 1 7.69 42.55 49.76 
Spectrum 2 7.69 42.95 49.37 
Spectrum 3 7.52 44.17 48.31 
Mean 7.6 43.2 49.1 
Std. deviation 0.1 0.9 0.8 
Max. 7.69 44.17 49.76 
Min. 7.52 42.55 48.31 

There is a minor difference between the nominal composition and the 

result obtained by EDS. EDS was performed on the different samples, each 

sample is scanned on at least three points; the mean results of each sample are 
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listed in table 4-4. The EDS analyses have been systematically performed in 

order to assess any possible errors during the production method of the 

amorphous ribbons.  

Table 4-4 composition determined by EDS. All results in atomic% 

Norminal composition Result by EDS 

Cu48Zr48Al4-1 Cu44.9Zr51.3Al3.8 

Cu48Zr48Al4-2 Cu44.7Zr51.3Al4 

Cu46Zr46Al8 Cu43.2Zr49.1Al7.6 

Cu46Zr46Al8 Cu43.6Zr48.9Al7.5 

Mg65Cu25Y10 Mg61Cu25.9Y13.1 

Pd42.5Ni7.5Cu30P20 Pd44.1Ni7.3Cu27.9P20.7 

Zr70Ni16Cu6Al8 Zr71.5Ni14.9Cu5.8Al7.8 

 

4.3 DMA characterization 

Dynamic mechanical analysis in the temperature region between 170 K 

and 330 K was measured with a SDTA861e DMA designed by METTLER 

TOLEDO. The low temperature mechanical relaxation of several MGs was 

explored as illustrated in figure 4-11. 

Dynamic mechanical analysis above room temperature and up to the glass 

transition and crystallization regions was performed on the ribbons with a TA 

Instruments Q800 DMA in tension mode. In the DMA, the storage modulus 

and loss modulus were obtained and analyzed. A multi frequency range 

between 0.1 Hz to 50 Hz was applied to the samples. By choosing appropriate 

amplitude and preload force, the mechanical spectroscopy is recorded in 

constant heating mode, the range of heating rates applied varied from 0.5 to 5 

K/min. The ribbon shape samples allowed us to explore the difference 

between ultra-rapidly quenched and relaxed samples, thus surveying the 

relaxation dynamics in very different glassy states. The use of thin ribbons, 

however, restricted the range of forces used in the DMA. In order to prevent 

too much viscous flow in the glass transition region the amplitudes and 
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preload forces had to be carefully chosen. The range of strain amplitudes and 

preload forces applied was from 0.5 to 5 μm and from 0.1 to 2 N respectively.  
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Figure 4-11 DMA measurement at low temperatures. Sample geometry is set as 10.5mm×2mm×30m. 
Amplitude is chosen as 5 m. Frequency employed is 1Hz. No secondary relaxation is were observed in 
Pd42.5Ni7.5Cu30P20, Cu46Zr46Al8, Pd77.5Si16.5Cu6 MGs in the temperature region explored. Secondary 
relaxation was found in the Fe based MGs, while the peak on E’’ (ω) profile varies between different 
samples.   

The quasi stationary tests were also performed by the TA Instruments 

Q800 DMA. In the case of creep, a stress of 30 MPa is fixed and the 

corresponding time dependent strain is analyzed. After a certain period, the 

stress is removed and the strain changes are monitored during the recovery 

process. In the stress relaxation measurements, a strain of 0.1% is fixed and 

the stress change with time is analyzed. After a certain time, the strain is 

removed and the stress recovery is also recorded. The ‘instantaneous’ stresses 

applied in this quasi-stationary step tests decay from around 30 MPa. These 

values of stress and strain fall within the elastic region of metallic glasses. The 

quasi-static tests were performed under isothermal conditions at different 

temperatures ranging from room temperature up to the glass transition region. 
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4.4 Selection of the samples for the mechanical relaxation study 

The main objective of this thesis is to investigate the secondary relaxation 

of metallic glasses. As discussed in chapter 3, the presence of secondary 

relaxation has been attributed to different origins and shows different 

appearance on the E’’(ω) profile. The DMA measurements and basic 

structural and thermal characterizations were performed in all the systems 

prepared and listed in section 4-1. From all these systems, the MGs with 

nominal compositions of Cu46Zr46Al8, Pd42.5Ni7.5Cu30P20, Fe55Cr10Mo14C15B6 

were selected in order to perform the analysis and interpretation of the 

mechanical relaxation spectrum. 

The selection was decided in order to study glasses showing different 

secondary relaxation behaviors. The three selected systems are representative 

of a system with secondary relaxation appearing as an excess wing, a system 

with obvious secondary relaxation but partly overlapped with the glass 

transition and, finally, a system showing a secondary relaxation of relatively 

low intensity and very well separated from the glass transition region. The 

relaxation behavior of these systems is analyzed and discussed in the 

following chapter. 
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5. Characterization of relaxation dynamics of 
metallic glasses 

As described in chapter 3, mechanical spectroscopy reveals the presence of 

β-relaxations in MGs. Actually, some systems show a prominent β-relaxation 

peak while other systems do not show an evident secondary relaxation but just 

a low-temperature excess wing of the main relaxation peak.  

One of these systems is the family of Cu-Zr-Al alloys, where the relaxation 

below Tg is perceived as an excess wing of the E″(ω,T). The origin of this 

excess wing is still not clear. In section 5.1 of this chapter, the relaxation 

dynamics of Cu46Zr46Al8 is studied combining mechanical spectroscopy and 

static stress-relaxation tensile measurements. Preliminary tests on other 

compositions of the Cu-Zr-Ni-Al system were performed during the project, 

they all showed similar behaviors. From this set of compositions the 

Cu46Zr46Al8 was selected for performing the detailed analysis of the relaxation 

spectrum which is described in section 5.1. The main results have been 

published in [203].  

In section 5.2, the mechanical response of Pd42.5Ni7.5Cu30P20 in the 

temperature region from room temperature to glass transition temperature is 

explored by quasi-stationary measurement like creep, recovery and stress 

relaxation as well as by DMA. The DMA behavior is analyzed and related to 

the static measurement. The viscosity behavior is also explored by elongation 

experiments. This alloy has been selected as a representative of metallic 

glasses showing a prominent secondary relaxation. In the Pd-based family of 

glassy alloys, the secondary relaxation observed by internal friction at the 

typical frequencies of mechanical spectroscopy (0.01-100 Hz) is observed as a 

distinctive shoulder, more or less overlapped with the primary relaxation 

depending on the composition[129]. 

The relaxation dynamics of a stainless type of amorphous steel 

Fe55Cr10Mo14C15B6 is explored in section 5.3. The physical aging is explored 

by enthalpy measurement. Mechanical relaxation is explored by DMA. The 

viscosity is obtained by treating the material as a Maxwell fluid. Finally, 

discussion of the characterization results in presented in section 5.4. 
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5.1 Relaxation dynamics of Cu46Zr46Al8 MG 

5.1.1 Thermal analysis 

Figure 5-1 shows the DSC curves obtained for Cu46Zr46Al8 as-quenched 

and relaxed (pre-annealed) ribbons. They show distinct shapes of the glass 

transition signal, with the expected overshooting in the relaxed glass, while 

the crystallization at higher temperatures is not affected by the pre-annealing 

protocol as the memory of the system is lost once heated above the glass 

transition. The characteristic temperatures of this alloy are listed in table 4-2. 

The as-quenched ribbons show the exothermal signal of structural relaxation 

or physical aging due to the release of excess free volume. This release of heat 

is detected in the DSC curves from above 600 K until the glass transition 

region.  
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Figure 5-1 DSC scans of the relaxed (black line) and as-quenched (red line) ribbons. The scans were 
performed at 10 K/min. 

 

5.1.2 Dynamic mechanical analysis 

The tensile DMA measurements were performed on melt spun ribbons 

applying a heating rate of 1 K/min and frequencies between 0.1 and 50 Hz. 

The frequency response was obtained by applying oscillating tensile strains of 

1 μm amplitude on pieces of ribbon of about 10 mm length.  
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The difference between as quenched state and relaxed state is explored. 

The relaxed state is obtained by performing a DMA measurement 

isothermally for 30 minutes at 693K and a posterior cooling down inside the 

DMA furnace. The onset of glass transition is found at Tg = 695 K (figure 5-

1). Therefore, the annealing protocol is expected to drive the system to a 

sufficient relaxed state as to avoid significant structural changes below 690׽ 

K while heating at 1 K/min. This ensures the mechanical response E*(ω,T) 

corresponds to an isoconfigurational glassy state. 

Figure 5-2 shows the imaginary part of E*(T) of the as quenched and 

relaxed state, showing the reduction of the excess wing by annealing. As 

commonly found in metallic glasses and widely discussed in chapter 3, 

physical aging drives the system towards more stable and compact structures 

thus reducing the internal friction. The E’’(T) behavior of the as-quenched 

samples is expected to show the in situ effects of aging when increasing 

temperature. On the other hand, the internal friction of the relaxed sample is 

expected to characterize the relaxation spectrum of a unique glassy state. 
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Figure 5-2. Internal loss peak measured at 1 Hz and 1 K/min. Comparison between relaxed (black symbols) 
and as-quenched (red symbols) ribbons. 

E’’(ω,T) of the relaxed ribbons as a function of temperature for different 

frequencies is shown in Figure 5-3. The expected drift to higher temperature 



Dynamics of metallic glasses explored by mechanical relaxation 

82 
 

increasing frequency is clearly observed. At the lowest probed frequencies, 

the complete -relaxation peak can be measured. Applying higher frequencies 

the dynamic frequency-dependent glass transition moves closer to the 

crystallization temperature. At the highest frequencies, the onset of 

crystallization inhibits a complete measurement of the primary relaxation 

peak.  
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Figure 5-3 Internal loss (normalized loss modulus) of the relaxed samples as function of temperature 
measured at 0.3, 3 and 30 Hz with heating rate of 1 K/min. 

Loss modulus data under different frequencies were taken at temperature 

steps of 4 K from 500 K up to 750 K. The data sets obtained at each 

temperature were fitted to the CC-function (equation 3.18 with asymmetric 

parameter γ=1). The value of E0(T) in equation 3.18 is taken constant and 

equal to E0=E′(T=500K) when the loss modulus contribution is practically 

zero. The infinite frequency elastic response is therefore considered constant 

during the whole temperature range. Due to thermal expansion E0(T) is 

expected to show a slight monotonous decrease. Fixing a constant value may 

induce a slight error in the fitting but reduces the fitting parameters to just 

only the broadening parameter α(T) and the average relaxation time τ(T). 

The fitting CC-functions and the experimental data at some selected 

temperatures are shown in figure 5-4 for the relaxed samples. The calculated 
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values of α(T) show some dispersion around an average value α=0.35 ± 0.06 

with no clear tendency to increase or decrease with temperature. As shown in 

the figure, the CC-function with constant broadening parameter is able to 

reproduce the high frequency tails of the E’’(,T). 
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Figure 5-4 Internal loss as function of frequency at different temperatures (symbols) and the corresponding 
fitted CC-functions (solid lines). 
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Figure 5-5 Internal loss of the relaxed ribbons as a function of ωτ(T).  
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In order to assess the validity of the fitting, the loss modulus values 

collected for all frequencies and temperatures are depicted in figure 5-5 as 

function of ωτ(T). Inspection of equation 3.18 shows that if the values of the 

 and  exponents do not change with T a master curve can be obtained as 

function of ωτ(T). This means applying the TTS principle as already 

discussed in chapter 3. Within the frequency and temperature window 

explored, the data is well described by a single peak with no observable 

change in the slope of the high-frequency wing, which would be indicative of 

a change in the broadening parameter or of a merged secondary process. 
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Figure 5-6 Relaxation times calculated by DMA (symbols). Lines correspond to the VFT and AGV 
functions describing the τ(T) behavior of the relaxed samples. Red and green lines correspond to AGV 
functions with Tfictive = 694 and 718K respectively.  

The τ(T) values obtained by fitting a CC function to the experimental data 

are depicted in figure 5-6. For the case of the relaxed samples, the glass 

transition, defined as τ(Tg) =100s, is found at Tg =692K. The change from 

equilibrium to non-equilibrium dynamics is also clearly seen, the solid lines 

correspond to VFT and AGV functions (equation 3-1 and 3-3 respectively) 

with parameters τ0=6×10−13s, D*T0=B =6220, T0=512 K and Tfictive = 694K. 

The fragility parameter, calculated from the slope of the equilibrium curve at 

Tg, is found to be m=57. The glass transition temperature and the fragility 
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correspond well with the result obtained from enthalpy measurements 

reported in ref. [204].  

As seen in figure 5-5, at temperatures well below Tg the DMA data covers 

only a small part of the high frequency tail of the relaxation peak. Thus, an 

equally good description of data could be obtained with another relaxation 

function or a combination of two merged peaks as described in chapter 3, 

where the loss modulus is fit with an HN function or the combination of an 

HN function and the Fourier transform of a stretched exponential KWW 

function. Since the extra parameter γ in the HN function influences basically 

on the low frequency side of the peak (or correspondingly the high 

temperature side), our fitting with CC function is enough to describe the 

frequency dependent loss modulus profile obtained experimentally. The use of 

an HN function would imply a third fitting parameter, thus reducing the 

robustness of the method.  

For the case of the as-quenched glass, the DMA measurements in the non-

equilibrium region (T<700K) do not correspond to a single isoconfigurational 

state. As the temperature rises the sample undergoes structural changes. In 

DMA measurements with tensile geometry this changes are readily observed 

by the increase of the storage modulus E′(T) due to structural relaxation. This 

implies that in equation 3.18 the value of E0(T) does not only change because 

of the slight thermal expansion of the glass structure but also because of the 

structural differences between different glassy states.  

In order to model the relaxation response of the as-quenched samples by a 

CC function taking into account the structural changes, we define two 

temperature regions:T<675K andT>700K. In the first region, we fix 

E0=E'aq(T=500K), i.e. the storage modulus measured in the as-quenched 

samples before structural changes are detected. In the second region, T>700K, 

we fix E0=E′(T=500K) measured for the relaxed glass, which is 15% higher 

than E′aq(T=500K). The region between 675 and 700K, where the system 

shows the more intense structural changes, is not fitted. 

The τ(T) values obtained for the as-quenched ribbons using this method are 

shown in figure 5-6. The as-quenched glass coincides with the relaxed 

samples in the equilibrium region, while below Tg the relaxation times are 
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more than one order of magnitude shorter. The broadening parameter of 

equation 3.18 is found to be α=0.39±0.06. The as-quenched τ(T) points do not 

follow an AGV function with a constant Tfictive because of the in-situ structural 

changes taking place when heating at 1 K/min. Indeed, the relaxation times of 

the as-quenched samples can be interpreted as crossing isoconfigurational 

lines with decreasing Tfictive as shown in figure 5-6. 

 

5.1.3 Stress relaxation analysis 

In order to validate the measured τ(T), static stress-relaxation 

measurements were performed applying ‘instantaneous’ tensile deformations 

of amplitude 10−3׽, corresponding to an initial elastic stress of σ0 60–50׽ 

MPa, and then measuring the stress decay during 1 h. A typical protocol and 

result is illustrated in figure 5-7. 
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Figure 5-7 Stress relaxation of relaxed Cu-Zr-Al MG in static deformation measurements. Strain 0.1%. 
Preload force:0.2N. 

The comparison of stress relaxation between as-quenched and annealed 

sample at the same temperature is illustrated in figure 5-8. The time-evolving 

stress can be well modeled by a stretched exponential (equation 3.10) where 

βKWW is the Kohlrausch–Williams–Watts exponent. As discussed in chapter 3, 

when transformed to the frequency domain, equation 3.10 corresponds to a 
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relaxation peak with a high frequency tail following a power law similar to 

that given by a CC-function (equation 3.18) with α≈βKWW. 
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Figure 5-8 Relaxation of stress as function of time in static deformation measurements. Measured stress at 
673 K for relaxed (black diamonds) and as-quenched (red diamonds) ribbons. Solid lines correspond to the 
fitted stretched exponential decays.  
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Figure 5-9 Relaxation of stress as function of time in static deformation measurements. Stress relaxation of 
the relaxed ribbons measured at 653, 663, 673, 683 and 693 K. 
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Table 5-1 Parameters of KWW functions fitted to stress relaxation data of as quenched Cu-Zr-Al MG.  

T (K) βKWW τ (s) 

523 0,309 12100 

553 0,433 7065 

583 0,451 3789 

613 0,481 1494 

643 0,535 618 

673 0,598 224 

Table 5-2 Parameters of KWW function fit with stress relaxation measurement of relaxed Cu-Zr-Al MG.  

T (K) βKWW τ (s) 

633 0,423 7294 

643 0,367 9788 

653 0,404 5967 

663 0,424 3204 

673 0,463 1544 

683 0,559 641 

693 0,648 252 

583 0,295 555720 

613 0,361 120111 

643 0,401 18415 

673 0,44675 3198 

703 0,54 308 

The values of α and βKWW exponents did not show significant changes 

between as-quenched and relaxed samples and, contrary to what was observed 

in Mg65Cu25Y10alloy[162], the as-quenched samples do not show a significant 

change of the α parameter during the transition from non-equilibrium to 

equilibrium dynamics. The stress relaxation measurements of the relaxed 

Cu46Zr46Al8 MG at different temperatures are illustrated in figure 5-9. The 

experimental result is fit with KWW function. The fitting parameters of the as 

quenched and relaxed state are list in table 5-1 and 5-2 respectively. 

The fitted temperature dependent relaxation distribution parameter βKWW(T) 

is illustrated in figure 5-10. The values of the stretching exponent show a 

tendency to increase with temperature, the average value is found 
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βKWW=0.5±0.1. It is similar to the values found in other MGs[205] and it is 

slightly higher than the α parameter obtained for the CC-function. 
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Figure 5-10 Temperature dependend KWW parameter βKWW for Cu-Zr-Al MG.  
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Figure 5-11 Relaxation times calculated by DMA and static stress-relaxation measurements. DMA results 
are fit with Cole-Cole function while stress relaxation results are fit with KWW function. Relaxed samples  
are compared with as-quenched ribbons. Black line correspond to the VFT functions describing the τ(T) 
behavior of the samples. Red line correspond to AVG function with Tfictive=694K. Green line correspond to 
AGV functions with Tfictive = 718 K. 
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The fitted temperature dependent relaxation time is illustrated in figure 5-

11. The data of τ(T) obtained fitting the DMA result with Cole-Cole function 

are also shown in the same figure. The values of τ(T) obtained from the static 

measurements are in good agreement with those obtained by DMA. The 

coincidence of the two methods indicates that between 500K and 675K a CC-

function with an approximately constant E0 and α=0.39±0.06 is a good 

description of the frequency domain response of the as-quenched samples, at 

least within the temperature-frequency window probed. 
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5.2 Relaxation dynamics of Pd42.5Ni7.5Cu30P20 MG 

5.2.1 Thermal analysis 
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Figure 5-12 DSC of Pd42.5Ni7.5Cu30P20 with heating rate of 20 K/min (red) and 2 K/min (blue) 

DSC scans on Pd42.5Ni7.5Cu30P20 samples were performed at different 

heating rates, as it is shown in figure 5-12. The onset of the glass transition, as 

well as crystallization, is heating rate dependent in metallic glasses. With a 

heating rate of 2K/min, the Tg determined is 553 K and crystallization starts at 

620 K. Applying a heating rate of 20 K/min, Tg is detected at 567 K and 

crystallization at 650 K as detailed in table 4-2. As expected in a Pd-Ni-Cu-P 

alloy, the thermal stability of the supercooled liquid phase above the glass 

transition is very high. The temperature span between glass transition and 

crystallization is Tx-Tg>60 K even for the tests performed with the slowest 

heating rates. This stability allows us to explore the properties of the liquid 

phase close to the glass transition even by using long tests. 
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Figure 5-13 Thermal protocol employed in this section. (a): Protocol used for stress relaxation and creep 
measurements. At each isothermal temperature 30 minutes of stress relaxation or creep measurement is 
performed and followed by a recovery process of 30 minutes. (b): Creep measurements, when isothermal at 
403 K a creep of 240 minutes is performed and followed by a 240 minutes recovery. At higher isothermal 
temperatures both creep and recovery times are 120 minutes. (c): Continuous heating ramps with a heating 
rate of 2 K/min followed by furnace free-cooling conditions.   
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Figures 5-13 a) and b) show the thermal protocols applied during the 

mechanical tests. The isothermal stress-relaxation and creep tests are 

performed after a relaxation step above glass transition region. This relaxation 

step is performed in order to release the excess free volume and internal 

stresses quenched-in during the rapid solidification production of the ribbons. 

The high stability against crystallization of the Pd42.5Ni7.5Cu30P20 glass and 

supercooled melt allows us to perform long tests of several hours even at 

temperatures within the glass transition region. The details of the protocol are 

detailed in the caption of the figure.  

The viscosity and mechanical properties of glasses are state dependent and 

influenced by physical aging. Different structural states are obtained based on 

thermal history. In this section, several samples in different glassy states will 

be investigated. The different states will be termed as states A, B, C and D: 

State A is the as quenched sample; State B is the sample relaxed at 573 K for 

30 minutes; State C is the sample after a series of stress relaxation 

measurements at different temperatures following the protocol shown in the 

figures above; State D is the sample employing a thermal protocol composed 

of a series of heating ramps as illustrated in figure 5-13.  

5.2.2 Mechanical response of MG under fixed stress 

Under loading, the alloy shows a deformation behavior different from the 

ideal elastic behavior. As explained in chapter 3, these quasi-static 

experiments in disordered systems may show exponential or non-exponential 

relaxations, which are quite often explained in the framework of 

viscoelasticity with a distribution of relaxation times. According to whether 

the recovery is complete or not, the behavior can be classified as anelasticity 

or viscoplasticity. Actually, if the relaxation time is long enough and cannot 

be determined within the experimental window, the viscoplastic part may be 

viewed as part of the anelastic response. The anelastic part can be modeled in 

different ways as performed by Ulfert[206]. 
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Figure 5-14 Mechanical response of Pd42.5Ni7.5Cu30P20 at 403K. Stress employed is 30.MPa.The relaxation 
dynamics can be described by equation 5.1. 

Creep and recovery measurement is performed to investigate the 

mechanical response of Pd42.5Ni7.5Cu30P20 MG. Sample at state B is measured 

at 403 K, the creep behavior is shown in figure 5-14. The creep reaches a 

steady state after approximately 30 minutes at 403 K. During the rest of the 3 

hours of creep test, strain increases linearly with time indicating a steady state 

viscous flow. Similar steady state flow is found at 428 K and 453 K within 

120 minutes tests. The total displacement during the creep tests can be 

expressed in the form of: 

  kteA t    /
0 1  (5.1)  

where τ is the relaxation time of the anelastic part and k is related to the 

viscous flow which is temperature dependent.  

Creep and recovery measurements were performed to samples in state C 

under different temperatures as shown in figure 5-15 and 5-16 where the latter 

is in log-time scale.  
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Figure 5-15 Temperature dependent mechanical response of Pd42.5Ni7.5Cu30P20. Measurement is performed 
under fixed stress of 30 MPa. Top:Total displacements. Down: Calculated displacement rates 

As can be seen from figure 5-15, above Tg the strain rate is very high an 

almost reaches a steady state after few minutes. On the other hand, compared 

with the anelastic part, the viscoplastic part (i.e. the continuous increase of 

strain) is small at temperatures below 500 K. The mechanical response could 

be viewed as basically anelastic under these conditions. 
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Figure 5-16 Mechanical response of Pd42.5Ni7.5Cu30P20 at different temperatures. Below 503 K the 
mechanical response can be approximated as anelastic behavior with a single relaxation time. At 553 K, the 
viscoplastic part is important and need to be considered.  

5.2.2.1 Anelastic response  

The deformation rates are calculated and illustrated in figure 5-15. At 303 

K no obvious flow is detected; the viscosity is too high to be determined 

under the applied stress. On a short time scale of about 20 minutes, the time 

dependent displacement (or equivalently the strain) can be well fitted with and 
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exponential growth function with a single relaxation time. This behavior 

suggests that it may be regarded as anelastic deformation at these 

temperatures. The anelastic relaxation response, described by the exponential 

function of equation 5-2, was fitted to the creep data obtained isothermically 

at different temperatures. The fitted parameters employing a single relaxation 

time functions are listed in table 5-1. Increasing temperature, the intensity of 

the anelastic events gets increased while the relaxation time decreases. 

At 553 K, besides the anelastic part, the contribution of viscous flow is 

obvious. No fitting is performed at such high temperature since the anelastic 

model is no longer valid.  

Table 5-3 fitted parameters of anelastic behavior 

T (K) ε0  A τ (minutes) 

353 0.186 0.049 27 

403 0.199 0.057 20 

453 0.216 0.071 9 

503 0.245 0.128 8 

5.2.2.2 Viscous flow 

Although through small displacements, the creep measurements show that 

the strain of the samples is still increasing after 20 minutes at 353 K, 403 K 

and 453 K, when the anelastic behavior is finished. This implies the behavior 

is not purely anelastic but has a viscous flow contribution. The viscous flow at 

temperatures far below Tg is ascribed to activation of flow units[205]. 

Actually, at lower temperatures, the viscous flow can be seen more clearly at 

longer. After the anelastic response finishes, the displacement increases 

linearly with time and, therefore, the deformation rate reaches a steady value. 

The deformation rate is close to each other at 353, 403 and 453 K. At 503 and 

553K, after 23 minutes, the system also reaches a steady state flow, in these 

cases with a much higher deformation rate. 

In the framework of a Newtonian fluid, viscosity is defined as the ratio of 

stress to strain rate 
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



  (5.2)  

where ߪ is the applied stress and ߝሶ is the deformation rate. The viscosity is a 

tensorial quantity that can be decomposed in different ways into two 

independent components. One commonly employed way is to decompose it 

into shear and volume viscosities.   

In the case of measurement through elongation, shear viscosity is obtained 

through  



3

s  (5.3)  
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Figure 5-17 Viscosity  obtained by continuous heating with heaing rate of 2K/min, a constant preload force 
of 0.8N (green and blue point) and isothermal steady creep (red points). Different states are employed. Red 
star: state B, red square: state C, green: state B, blue: state D. In the temperature region below 440K, the 
viscosity obtained by continuous heating is not valid.  

As investigated by Chen and Goldstein[207], when the stress is in the 

range between 0.6 and 30 MPa, the viscosity obtained from equation 5.3 is 

valid. The flow is still Newtonian viscous under a shear stress of 82 MPa[60], 

while at higher shear stresses of 300 MPa it enters the non-linear region[208]. 

In this thesis, creep is measured employing a stress of 30 MPa at different 

temperatures and we will assume this assures the validity of equation 5.3. The 
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viscosity obtained by steady state viscous flow using equation 5.3 is shown in 

figure 5-17. 

According to equation 5.3, the viscosity can be determined through stress 

and strain rate. The apparent viscosity can also be calculated using stress and 

apparent displacement obtained during the DMA measurements with a 

continuous heating procedure and constant preload force. The results, together 

with the data obtained from the steady state creep measurements explained 

above, are illustrated in figure 5-17. In both cases, different glassy states are 

achieved by different thermal history and they become apparent on the η(T) 

behavior. 

The viscosity obtained from continuous heating measurements show minor 

differences compared with isothermal creep measurements. This is due to the 

fact that the cross-section area of the ribbons is not regular and, the true stress 

might be slightly different from one sample to another. However, the η(T) of 

the same state from isothermal and continuous heating coincides when an 

appropriate factor is employed. Besides, according to Berlev and Csach’s 

work on Zr52.5Ti5Cu17.9Ni14.6Al10 and Pd40Cu30Ni10P20 glasses[209,210], who 

compared the effect of different states resulting from different cooling rates 

during glass formation, the heating rate during creep measurement plays also 

an important role on the viscosity behavior.  

From the η(T) relationship, the Tg determined by a viscosity equal to 1012 

Pa·s is around 555 K, which agrees with the DSC measurements. Near the 

glass transition, temperature changes of tenths of degrees of magnitude imply 

changes of 3 or 4 orders of magnitude in viscosity. In order to describe this 

temperature dependent viscosity behavior, many different models have been 

proposed; some of them just fit empirical models to the experimental data 

while others are derived from more physical interpretations. However, these 

models can only fit partially the experimental data.  

As mentioned before, the VFT model is quite generally employed to 

describe the temperature dependence of equilibrium viscosity, this is above 

Tg. In the lower temperature region, viscosity deviates from the VFT behavior. 

It can be viewed as if the system changes from equilibrium to the non-

equilibrium glassy state where the configuration is non-ergodic. At 
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temperatures far below Tg the η(T) relationship can be described by an 

Arrhenius temperature dependence. As to the samples in state B, within the 

temperature region between 450 and 500K, the apparent activation energy 

considering an Arrhenius behavior is found to be 41 kJ/mol while the sample 

with state D shows an activation energy of 50.7 kJ/mol. This is close to the 

reported result in the Pd80Si20 MG (50 kJ/mol). 

One thing should be noted, at temperatures lower than 440 K, the viscosity 

is very high and the deformation is too slow to be detected in this dynamic 

heating mode. The displacement is comparable to the experimental noise and 

the obtained viscosity is not valid. 

  

5.2.3 Recovery behavior  

Annealing is a usual route employed in materials engineering to relief the 

internal stresses and to modify the mechanical properties. Experimental 

results show that, in glasses quenched without time enough for recovery, there 

are residual stresses congealed in the system. This remaining residual stresses 

may even lead to anisotropy of the elastic and mechancial properties[69,211]. 

Here the recovery behavior of Pd42.5Ni7.5Cu30P20 is explored.  

The sample in state B is creeped at 403 K applying 30 MPa for 4 hours, 

after this the recovery is monitored for another 4 hours. The recovery 

behavior at 403 K is plot in figure 5-18. As seen in the figure, the recovery 

seems to be close to saturation after 4 hours on normal time scale, but when 

examined on the logarithmic time scale, it is shown that a slow recovery 

process is still in progress. The recovery can be fitted with a KWW relaxation 

function as often employed. Using the KWW function, the relaxation time 

obtained is around 260 minutes but, as manifested by the low βKWW value of 

0.23, the process seems to involve a quite wide relaxation times distribution.  
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Figure 5-18 Recovery of Pd42.5Ni7.5Cu30P20 at 403K on normal (up) and log time scale (down). The fitting is 
performed using KWW function as well as log t function. It is found that both functions can fit the recovery 
behavior within the experimental window. 

Recovery was performed isothermally at different temperatures after each 

creep measurement. An example of a sample subjected to a procedure of 30 

minutes creep and a subsequent recovery time is illustrated in figure 5-19.  
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Figure 5-19 Recovery of Pd42.5Ni7.5Cu30P20. The sample was in state C with thermal protocol as defined in 
figure 5-13(a).  

If we consider that the recovery is not finished within this time scale, it can 

be fitted with a three parameters equation: 

   ctbat  log  (5.4)  

The parameters fitted with this log(t) behavior are listed in table 5-4. The 

fitting using equation 5.4 is better than the KWW in this time region. In the 

case of KWW function, it is a two parameter function when the final state is 
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determined. In the current situation where final state is not possible to 

determine in such short range time scale, the KWW function does not allow a 

robust fitting anymore. Compared with KWW function, the log (t) function 

has three parameters; this allows a much better fitting. As Gibbs pointed 

out[212], the log time relaxation kinetics is not anything fundamental, but it is 

due to the limited range of time and temperature chosen for the experiment.  

Table 5-4 Parameters of equation 5.4 fitted in recovery experiments of  Pd42.5Ni7.5Cu30P20 

T (K) a b c 

403 0.041 0.003 0.407 

453 0.060 0.005 -0.005 

503 0.114 0.011 0.042 

553 1.905 0.062 0.226 

As shown in figure 5-17, the recovery is not finished even after 200 

minutes. Although without a solid physical interpretation, equation 5.4 can 

characterize the relaxation dynamics quite well. This recovery behavior has 

implications for deformation of MGs under high temperatures. If not enough 

time is given to the system to recover before quenching to a lower 

temperature, the deformation might remain in the system leading to internal 

stresses. This log(t) fitting model seems to be a good approximated tool to 

estimate the remaining strain to be recovered using experimental feasible time 

windows of 30 minutes. 

 

5.2.4 Stress relaxation of Pd42.5Ni7.5Cu30P20 

While creep tests are performed under a fixed stress, stress relaxation tests 

are also quite often used in determining the relaxation behavior of glasses. 

They are performed setting a fixed strain while monitoring how stress evolves 

with time. The stress relaxation probes presented here were performed 

applying an ‘instantaneous’ strain of 0.1%. Compared with the creep 

measurements applying fixed stress of 30 MPa, here the stress also starts at 

about 30 MPa but it decreases continuously with time. Similarly to the creep 

experiments, the stress relaxation measurements were performed isothermally 

at different temperatures.  
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In order to get more information under more temperature conditions, stress 

relaxation and recovery measurements of state B were performed on different 

samples. A stress relaxation time of 30 minutes and a following recovery of 

30 minutes were performed. Each stress relaxation and recovery was 

performed at a certain temperature and higher temperatures are performed 

using the same sample. The characteristic result is shown on figure 5-20. 
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Figure 5-20 Stress relaxation of Pd42.5Ni7.5Cu30P20 in state B under isothermal conditions. Constant strain 
employed:0.1%. 

5.2.4.1 Stress relaxation described by KWW function 

The stress relaxation is often parameterized with a KWW function. Stress 

relaxation experiments were performed on different samples, the parameters 

obtained assuming a KWW-function are listed in table 5-5. 
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Table 5-5 KWW parameters for stress relaxation experiment.  

Sample T (K) Τ (s) βKWW ΔE (MPa) 

1 368 720 1,5 5500 
1 418 360 0,85 8700 
1 468 240 0,5 10000 
1 518 120 0,45 11000 
1 568 4,2 0,55 22000 
2 393 540 1,3 9500 
2 443 420 0,65 13500 
2 493 180 0,5 12000 
3 423 168 0,6 11000 
3 453 300 0,85 9000 
3 483 192 0,5 11000 
3 513 120 0,5 9000 
4 543 240 0,55 14000 
4 553 240 0,34 24000 
4 563 48 0,4 22000 
5 418 360 0,75 10000 
5 468 150 0,5 11000 
5 518 120 0,4 12000 
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Figure 5-21 Typical relaxation time of Pd42.5Ni7.5Cu30P20 from stress relaxation measurements. Relaxation 
time τ calculated by fitting with KWW functions. Red line is the Arrhenius fitting of the τ(T) behavior. 
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The KWW function has three parameters: average relaxation time τ, 

stretching exponent βKWW and relaxation intensity ΔE. These parameters are 

interdependent when fitting. When larger ΔE is employed, larger relaxation 

time τ fitted is obtained, together with smaller βKWW which mathematically 

suggest a broader distribution of relaxation times. Beforehand, βKWW was 

determined to be 0.5 in the fitting of the stress relaxation of Cu46Zr46Al8 glass 

in section 5.1. The βKWW(T) behavior might be related with different 

mechanical deformation modes[205].  

As can be seen from figure 5-20, at 518 K and after 30 minutes, there is 

still a remaining elastic-solid part of the relaxation modulus. The mechanical 

response can be viewed as an anelastic behavior. Below Tg, the anelastic 

events can be estimated to have a relaxation intensity of around 104 MPa, with 

average relaxation times that change from 10 to 2 minutes. τ(T) can be 

parameterized as τ=2.8×exp(2035/T) s. The KWW parameters are plotted in 

figures 5-21 and 5-22. 
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Figure5-22  βKWW dependence of temperature from KWW fitting of stress relaxation 

The behavior of βKWW with temperature is shown in figure 5-22. Around Tg, 

βKWW is around 0.4. It increases with decreasing temperature. At temperatures 

lower than 418 K, the relaxation can be fit only with βKWW ≥1. The 

compressed exponential is also observed from XPCS measurement [109]. 
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Actually, βKWW(T) can be fit using a four parameter Boltzmann function which 

has an s-shape curve nature as shown in figure 5-22. At temperatures higher 

than Tg, the system flows and relaxation modulus changes from 2×104 MPa to 

102 MPa. This is regarded as the α relaxation. 

5.2.4.2 Stress relaxation described in relaxation spectrum  

Actually, when calculating the relaxation time, the fitting is performed on 

the time scale of interest. As can be seen from figure 5-18 which shows the 

creep test on the logarithmic scale, at different time scale the slope is 

different. This can be regarded as an indication of the presence of a 

distribution of relaxation times. The relaxation spectrum can be obtained from 

the time response by Fourier transform or by a non-linear regression method. 

From the mathematical point of view, the problem of deconvolving the 

relaxation spectra is a particular case of the generic form of the first-kind 

Fredholm equation 

   
 

0
 det t

e  (5.5)  

Where ݁ି௧ ఛ⁄  is the kernel that describes the system, (t) is the measured 

signal and () is the unknown integral solution. The numerical solution of 

this equation is not a straightforward task since the Fredholm integral 

equation is a classical example of an ill-posed problem. In this work we used 

the renormalization technique described by Kontogiorgos[213]. It is based on 

the optimization of the residual and solution norms using the singular value 

decomposition of a matrix, which is the discrete representation of the kernel 

݁ି௧ ఛ⁄ . This methodology was already applied to the deconvolution of static 

stress relaxation data for polymers.  

The optimization of the residual and solution norms using the singular 

value decomposition method was performed for all the temperature 

conditions. How stress is relaxed at the different temperatures is shown in 

figure 5-20. The corresponding  relaxation spectra are shown in figure 5-23. 
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Figure 5-23 Relaxation time spectrum of Pd42.5Ni7.5Cu30P20 from stress relaxation.Up: with wide 
temperature span. Down: Tg region.  

Using this method, it is found that, below the glass transition temperature, 

there are 3 main relaxation times which might suggest three different 

relaxation mechanisms or stages. At 368 K, three main events are perceptible 

which are located at around 1 minute, 10 minutes, and longer than 100 

minutes. This behavior agrees with Ocelik’s work[188] where they also 

obtained three well differentiated relaxation processes in MGs. One 
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explanation is to link the events with relaxation times around 1 and 10 

minutes with the anelastic behavior. And the one with time larger than 100 

minutes as the viscoplastic or viscous flow contribution described as 

annihilation of internal stresses or excess free volume by cooperative motions. 

Below Tg, the anelastic process with a relaxation time near 10 minutes shows 

a weak temperature dependence, decreasing the relaxation time with 

increasing temperature. At temperatures reaching the glass transition, more 

relaxation events are revealed under this methodology and the relaxation 

spectrum becomes more complex. 

From our measurement and subsequent analysis, the typical relaxation 

time at around 10 minutes decreases with increasing temperature. However, at 

533 K, 543 K, 553 K, the relaxation peak at around 10 minutes shifts to longer 

time with increasing temperature. This is originated by the physical aging of 

the system when reaching this temperature region. Above the glass transition 

temperature determined by both DSC and viscosity of value of 1012 Pa·s (553 

K), the main relaxation time becomes shorter with increasing temperature. 

Actually, the main relaxation time can be fitted via VFT or Arrhenius 

temperature dependence. For the above-Tg data measured at 553, 563, 568 and 

573 K, the corresponding τ obtained are 574, 137, 27 and 10 s respectively. 

These values follow a local Arrhenius behavior with apparent activation 

energy of Eα=546 kJ/mol and a corresponding fragility parameter of m=52. 

For the relaxation spectra shown in figure 5-23, the vertical axis gives the 

relaxation relative intensity in arbitrary units. The relaxation relative intensity 

is only comparable with each other in the same stress relaxation measurement. 

The total relaxation intensity information can be obtained from original data 

as in figure 5-20, but the relative intensity shown in figure 5-23 is not 

comparable with each other for different temperatures. The relative intensity 

of the relaxation event at around 10 minutes might seem to be more or less the 

same from figure 5-23 at different temperatures, but actually the relaxation 

intensity is increased with temperature as can be seen from figure 5-20.  
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The results of stress relaxation part are plot on double log scale in figure 5-24. 
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Figure 5-24 Stress relaxation behavior of Pd42.5Ni7.5Cu30P20 in state B. Strain employed:1%.  
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Figure 5-25 Relaxation modulus on log  time scale. Strain: 0.1%. At each iso-thermal temperatures, a stress 
relaxation time of  3 hours is performed and followed by 2 hours of recovery.  

From figure 5-24, it seems that at low temperatures, the modulus remains 

at finite instead of continuously decaying. Stress relaxation times of 3 hours at 

different temperatures were measured as illustrated in figure 5-25. The 

relaxation events with times around 10 minutes are clearly illustrated at 
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temperatures below Tg. Also below Tg, it can be clearly observed that applying 

recovery times longer than 120 minutes the relaxation modulus did not reduce 

but showed a saturated value. This means that the glass shows a solid 

behavior with a remaining elastic stress contribution at these temperatures. 

  

5.2.5 Dynamic mechanical analysis 

The analysis of the E’’(T) profile allows to realize that some relaxation 

processes get activated in MGs below the glass transition temperature. In 

order to differentiate from the α relaxation which reflects the movement of the 

whole structure, these processes are known as secondary relaxations 

[214][72]. A considerable amount of work has been done trying to understand 

the divergence between the α and secondary relaxation processes[179]. 

Originated from the molecular glasses, the Johari-Goldstein β relaxation is 

considered as the origin of events manifested on the low temperature DMA 

behavior. Beside molecular glasses, several different secondary relaxation 

processes have been found in different glassy systems[120]. Here we are will 

try to understand the DMA behavior of this MG, and to explain the observed 

secondary relaxation as a contribution of the anelastic events observed in the 

quasi-stationary measurement discussed in the previous experimental results.  
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Figure 5-26 DMA of Pd42.5Ni7.5Cu30P20 measured under continuous heating. Different frequencies are 
performed at each temperature. Dots are storage modulus and lines are loss modulus. Heating rate:2K/min.  
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5.2.5.1 Temperature region below Tg 

Tg is found at 553 K, determined from DSC with a heating rate of 2K/min. 

The typical mechanical spectroscopy of Pd42.5Ni7.5Cu30P20 in state A is shown 

in figure 5-26. The loss modulus starts to increase at around 400K under 

continuous heating. It is often described as a shoulder on E’’( T ) profile. The 

origin of this shoulder has been explained as Johari-Goldstein β 

relaxation[121]. From a solid state mechanism point of view, it is regarded as 

a secondary relaxation and might be originated from anelastic events. The 

activation energy could be fitted considering a standard anelastic solid. In the 

current situation where the peak is not distinguishable, it is suggested that a 

fixed loss modulus value can be chosen and the corresponding temperature 

obtained can be used for fitting the activation energy[122].  
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Figure 5-27 Secondary relaxation of as quenched  Pd42.5Ni7.5Cu30P20 MG. Figure shows the temperatures 
and corresponding testing frequencies of a fixed value loss modulus,. The data is fitted with Debye 
equation (3.20). Different colors show different values of loss modulus employed.  

Setting the loss modulus at a fixed value, we get the temperatures 

corresponding to each different testing frequency. The frequency dependent 

loss modulus is illustrated in figure 5-27. The activation energy is calculated 

according to equation 3.20. There are several factors influencing the 

determination of the activation energy: the state of the glass, the loss modulus 

employed to get the temperature, and the testing amplitude.  



Characterization of relaxation dynamics of metallic glasses 
 

113 
 

When applying an amplitude of 5μm, for the state A, the activation energy 

and pre-exponential factors are 106, 104, 109 kJ/mol and 7×1012 s-1,  5×1011 s-

1, 5×1011 s-1 when the fixed values of loss modulus employed are 1.5 MPa, 2.5 

MPa, 3 MPa respectively. As to state B, the activation energies obtained are 

126 and 179 kJ/mol with pre-exponential factors of 2×1014 s-1 and 3.5×1018 s-1 

for values of loss modulus of 1 and 2 MPa respectively.  

It seems that a lower value of the loss modulus, which corresponds to a 

lower temperature, is more appropriate for the fitting. At higher temperatures 

where the loss modulus reaches 2 MPa, the fitting using this methodology 

gives higher activation energy and a pre-exponenntial factor of unclear 

physical meaning. It might originate from other events that may get activated 

at these higher temperatures and become overlapped on this temperature 

region. 

Amplitude also influenced the fitting. With amplitude of 0.5 μm, the 

obtained activation energy and pre-exponential factors for the state A are 180, 

270 kJ/mol and 3.5×1019 s-1, 7×1026 s-1 for values of loss modulus of 1 and 2 

MPa respectively. The relaxed sample shows activation energies of 225, 243 

and 280 kJ/mol and pre-exponential factors of 1×1024 s-1, 4×1025 s-1 and 

5×1028 s-1 for chosen values of loss modulus of 1, 1.5 and 2 MPa respectively. 

The physical meaning of the obtained values when applying an amplitude of 5 

μm is more clear. The activation energies of around 105 and 126 kJ/mol, for 

as-quenched and relaxed states respectively, agree with the values reported 

above. These values are also close to the activation energy of diffusion of 

small atoms in the system[158,215,216].  
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Figure 5-28 Difference of modulus between as quenched and relaxed state measured by DMA at a 
frequency of 3Hz. Red line is ΔE’. Blue line is ΔE’’. Pink line is the Δtan(φ). Green line is the differential 
of the ΔE’ with time: d(ΔE’)/dt . 

If we treat E’’(T) of the relaxed state as a thermo-elastic background, the 

low temperature events can be more clearly analyzed by looking at the 

difference between as quenched and relaxed states as shown in figure 5-28. 

Here the relaxed state refers to the sample first heated to 573 K and cooled 

back to 313 K with cooling rate of 2K/min. Both ΔE’(T) and ΔE’’(T) are 

shown in the figure. A single peak on ΔE’’(T) profile suggests a single 

process with a broadened activation energy distribution. The shape of internal 

friction Δtan(φ) has the same features than ΔE’’(T). 
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Figure 5-29 ΔE’(T) and ΔE’’(T) at different frequencies. Black: ΔE’(T).  Red: ΔE’’(T).  

As can be seen from figure 5-29, when increasing the testing frequency f, 

the peak temperature on the ΔE’’(T) profile increases. The relationship 

between f and peak temperature could be fitted with an Arrhenius process. 

The activation energy fitted was 120 kJ/mol and the pre-exponential factor 

2.9×1013. The difference between the as quenched and relaxed state is an 

effect of physical aging. Under this methodology, the physical aging with 

apparent activation energy of 120 kJ/mol is close to the events manifested on 
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the beginning of the loss modulus increment (126 kJ/mol under amplitude of 

5μm, fixed loss modulus of 1MPa in state B).  

The overall difference of storage modulus between as quenched and 

relaxed state is an effect of all the relaxation events in all the temperature 

range. Differentiation is performed and the corresponding activation energy 

spectrum is obtained as shown in figure 5-28 as the green line. It can be 

explained by two relaxation processes with different activation 

energies[98,112].The physical aging is described by an activation energy 

spectrum generated by difference between the as quenched and relaxed state. 

The behavior of E’(T) in figure 5-29 agrees with Tsyplakov’s work[98] on 

Pd41.25Cu41.25P17.5 MG.  

5.2.5.2 Temperature region higher than Tg  

In this region the peak of the α-relaxation is quite obvious. The relaxation 

time is obtained through the position of the peak maximum assuming the 

relationship ln(ωτ)=0 where ω=2πf is the testing angular frequency. The 

relationship between the obtained relaxation time and temperature can be 

fitted via the VFT behavior (equation 3.1) using parameters ߬଴ =10-13, B=4000 

and T0=449 K; the parameters obtained are similar to those reported in ref. 

[129]. However, the fitting is not good at lower temperatures close to Tg 

where simple Arrhenius relationship fits better the relaxation time, with 

activation energy of 526 kJ/mol. Based on the relationship between fragility 

and activation energy (equation 3.22), when Tg is chosen as 553 K, the 

fragility parameter has a value of m=50. This value agrees with the results 

obtained by stress relaxation as discussed in section 5.2.4. 

  

5.2.6 Physical aging explored by mechanical relaxation 

5.2.6.1 Isothermal physical aging dynamics 

As described in chapter 3, physical aging leads the glass to more relaxed 

states and produces important changes in many properties. Interestingly, there 

is a link between the activation energy of relaxations below Tg and the 
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initiation of mechanical flow events. Moreover, secondary relaxations are also 

considered the origin of physical aging or structural relaxation below Tg. 
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Figure 5-30 Time dependent modulus of Pd42.5Ni7.5Cu30P20 at 383 K. The as quenched sample is heated to 
383 K with heating rate of 2K/min, then  physical aging is monitored under isothermal conditions for 60 
minutes. Amplitude: 5μm. Preload force: 0.8N.    

Physical aging is explored by monitoring how the elastic modulus changes 

with time under isothermal conditions. As can be seen from figure 5-30, at 

383 K the storage modulus E’ increases with time while loss modulus E’’ 

decreases slightly. The storage modulus increasing behavior can be fitted by 

using a stretched exponential function, the obtained relaxation time τ is 2000 s 

with βKWW=0.9. The viscosity is on the order of 1014 Pa·s at this temperature, 

by interpolation of the isothermal creep measurement in figure 5-17. 

According to the Maxwell relationship =/G (which must be used with 

caution in the deep glassy state), the relaxation time would be around 3300 s, 

close to the one governing the aging process.  
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Figure 5-31 Isothermal physical aging dynamics manifest on storage modulus. As quenched sample is 
relaxed in the DMA at 423, 473 and 523K successively. DMA is measured with amplitude of 5μm and 
preload force of 0.8N.  

Structural relaxation dynamics is explored isothermally at different 

temperatures. In the experimental time window, the storage modulus does not 

saturate, suggesting that physical aging is still proceeding. This behavior 

agrees with Khonik’s work on shear modulus change as a function of time in 

the Zr-Ti-Cu-Ni-Al MGs[100]. Actually, aging time in the Pd40Ni10Cu30P20 

MG is found on the order of 5000 s at 533 K as explored by monitoring the 

shear modulus change [217].  

5.2.6.2 Physical aging explored under continuous heating 

It has been suggested that the structural relaxation has an energy 

distribution nature. The amount and activation energy of relaxation centers are 

related to the specific temperature. At a given temperature, after the 

characteristic relaxation time, the relaxation process is finished and properties 

like loss modulus or viscosity would retain a metastable value. More 

relaxation sites can get activated at higher temperatures, because of the higher 

thermal energy available in the system, and get saturated after a certain 

relaxation time. 
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Figure 5-32 Influence of physical aging on viscosity (up) and elastic modulus (down). Thermal protocal as 
in figure 5-13 (c).  

A series of thermal treatments on the same sample were performed, the 

viscosity as well as the mechanical spectroscopy were obtained in situ. The 

effect of physical aging on viscosity and modulus is illustrated in figure 5-32. 

It can be observed that physical aging reduces the internal friction, which was 

quite high even at low temperatures for the rapid quenched initial samples. 
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This result is similar to that found in Pd40Cu30Ni10P20 MG by 

Khonik[218,219].  

The viscosity, the storage and the loss modulus in figure 5-32 show a clear 

aging behavior. After each run, the state of the system is progressively 

stabilized increasing viscosity and storage modulus while decreasing internal 

friction. After a certain run is performed, the next one starts from a more 

relaxed state. When the next run reaches the final temperature of the previous 

one, the properties correspond to a more relaxed state than the one measured 

at the end of the preceding run. This is because the physical aging occurs 

continuously during both the heating and cooling segments. 

Regarding sub-Tg viscosity behavior, it is shown that the activation of 

physical aging changes the viscosity by two orders of magnitude. For each 

run, it is clearly observed that the abrupt reduction of (T) coincides with the 

presence of the secondary peak in the E’’(T). At temperatures below the 

activation of the secondary relaxation, the activation energy of viscous flow is 

the same as calculated in subsection 5.2.2.2. 
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5.3. Relaxation dynamics of Fe55Cr10Mo14C15B6 MG  

5.3.1 Activation energy spectrum by enthalpy relaxation 
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Figure 5-33 DSC of Fe55Cr10Mo14C15B6 MG showing difference between as quenched and relaxed state  

DSC results in figure 5-33 show that the glass transition starts at 790 K 

when applying a heating rate of 20 K/min. The crystallization process is a 

multistep process with the first step starting at 835 K. The second 

crystallization process is entangled with the first crystallization process, 

having its crystallization peak at 878 K.  The third crystallization peak is 937 

K. A detailed description ot the crystallization process of this material was 

studied by Madinehei[220]. 

It is well known that the structural relaxation influences many properties 

like viscosity and magnetic properties, as well as mechanical properties[221]. 

The mechanism is described as the annihilation of the free volume or shear 

transformation zones. The DSC of the as quenched and relaxed samples is 

shown in figure 5-33. The structural relaxation starts around 500 K. Here the 

relaxed sample is obtained by heating the as quenched sample up to 813 K 

and then cooling down, both heating and cooling applying the same rate of 20 

K/min.   
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Figure 5-34 DSC of Fe based MG with different states with controlled heating and cooling protocol 
explained in the insert figure, suggesting the activation energy spectrum 

A controlled physical aging was performed in the DSC, the recorded heat 

flow is depicted in figure 5-34. As it was observed on viscosity and elastic 

modulus of Pd42.5Ni7.5Cu30P20 MG, discussed in section 5.2, a physical aging 

with a distribution of activation energies is also manifested on the enthalpy 

experiment. At a given temperature, after the characteristic relaxation time, 

the structural relaxation process is finished and heat capacity retains a 

metastable value. When heating to higher temperature, more release of heat is 

observed. This behavior is continuous until the glass transition region, where 

the system reaches the configuration of the supercooled liquid equilibrium 

state and there is no more structural relaxation under the experimental heating 

rate conditions.  

Recently, the activation energy spectrum (AES) has attracted great interest 

to study the plasticity of MGs [98,112]. The AES is constructed by difference 

between the as quenched and relaxed states, as first introduced by 

Primak[223] and later developed by Gibbs[224]. This method is applied to 

MGs as described by Chen and Khonik[97,100,222] where Khonik suggests 

that a continuous distribution of activation energies is a typical feature of the 

relaxation, and that the shear modulus is influenced by structural 

relaxation[100]. The structure relaxation spectrum is obtained by the 
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difference between Cp of the as quenched and the relaxed states[97], the result 

is shown in figure 5-35. 
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Figure 5-35 Activation energy spectrum of FeCrMoCB obtained by enthalpy relaxation. Red point is the 
difference of DSC between as quenched and relaxed state. Blue line shows a fit to a log normal distribution. 

Unlike Pd-Ni-P glass where there are two events with separated activation 

energies[98,112], Fe-Cr-Mo-C-B MG has only one event with a wide 

activation energy distribution; the AES can be fitted to a log-normal 

distribution: 
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with fitting parameters y0=0.006, Tc =724, w=0.17 and A=15.34. This 

experimental observed lognormal distribution agrees with Jiao’s assumption 

used in fitting the stress relaxation of Pd40Ni10Cu30P20 metallic glass[125].  

There is a relationship between activation energy and temperature in the 

form of E=kT, where k is between 0.002 and 0.003 depending on the heating 

rate[100,222]. Chen assumed k=0.0025 with a heating rate of 20 K/min[97]. 

From the lognormal fitting, the most probable activation energy is 724 K, thus 

the corresponding activation energy is 1.81 eV, namely 174 kJ/mol. This 

value is close to the Johari-Goldstein β relaxation activation energy 171 
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kJ/mol obtained using the empirical relationship Eβ =26RTg described in 

chapter 3. 

  

5.3.2 Mechanical relaxation 
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Figure 5-36 Modulus of Fe55Cr10Mo14C15B6 MG at different frequencies varying between 0.1 to 50Hz. 
There an is obvious secondary relaxation at around 500K. The main peak is not α relaxation, but cut by 
crystallization.  

The typical multi-frequency mechanical spectroscopy results obtained for 

Fe55Cr10Mo14C15B6 MG are shown in figure 5-36. As described in section 5.1, 

Cu46Zr46Al8 glass showed that the relaxation response can be fitted by a CC-

function, and the relaxation time obtained followed a VFT behavior near and 

above Tg and an AGV behavior below it[203]. This Cole-Cole fitting was 

found also applicable to the Mg65Cu25Y10 MG where E’’(T) showed a 

shoulder-like behavior of the loss modulus[162]. In that case, the induction of 

physical aging by annealing treatments eliminated the secondary peak of the 

loss modulus. However, in the current situation, a secondary relaxation 

process needs to be taken into consideration. From 450 K, the loss modulus 

starts to increase, indicating that some process gets activated. Unlike 

Pd42.5Ni7.5Cu30P20 where loss modulus increases continuously with 

temperature, in the current MG, there is an obvious peak on the temperature 

scale. This distinguishable peak is also reported in La-Ni-Y MGs where is 
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normally referred as β-relaxation. At even higher temperatures, the loss 

modulus increases continuously with temperature until it is cut by 

crystallization and starts to decrease.   

As mentioned in chapter 3, the secondary relaxation peak is usually a 

thermally activated process whose relaxation time dependence on temperature 

follows an Arrhenius relationship. The frequency response can be then 

analyzed in the framework of the Debye equation (equation 3.20 in chapter 3).  
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Figure 5-37 Peak temperature dependence of testing frequency showing secondary relaxation in 
Fe55Cr10Mo14C15B6 MG. Eact =165KJ/mol.  

The ln(f) is plotted against 1/Tpeak in figure 5-37. For the as quenched state, 

using the peak temperature of the secondary relaxation, the fitted activation 

energy is 165 kJ/mol and the pre-exponential factor is 1.3×1015 s-1. Using the 

commonly employed relationship Eβ =26RTg, the activation energy of the 

Johari-Goldstein relaxation would be around 171 kJ/mol, taking Tg = 790 K as 

obtained by calorimetry with a heating rate of 20 K/min. The activation 

energy of this process is close to the one proposed for Johari-Goldstein 

relaxations in metallic glasses; however, with only the activation energy it is 

difficult to tell whether the secondary relaxation is a JG-relaxation or not. 

This fitted activation energy is also close to the activation energy of physical 

aging (174 kJ/mol from AES model from section 5.3.1).  
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The samples relaxed at 723 K and 773 K were analyzed by DMA. It is 

noted that after relaxation at 773 K for 30 minutes, the β relaxation still can be 

perceived. This result suggests that physical aging has similar activation 

energy than the β-relaxation shown on E’’(T), but physical aging does not 

eliminate the β-relaxation. In the former case, the activation energy obtained 

from the secondary peak is 152 kJ/mol, with pre-exponential factor of 

3.6×1013 s-1 while the latter gives an activation energy of 181 kJ/mol with pre-

exponential factor of 7×1015 s-1.  

Actually, a similar activation energy is obtained by DMA in La-Ni-Al 

MGs as well as by NMR in Zr-Ti-Cu-Ni-Be metallic glass[225]. It has been 

suggested that these processes are dominated by the atomic motion introduced 

by the smallest atoms[158]. The activation energy of β-relaxation is 

comparable with the activation energy of the shear transformation zones, and 

it is believed that enhancing β-relaxation might be beneficial for mechanical 

properties of MGs like plasticity and toughness [149,150,226]. Our results 

here, with significant secondary relaxation, suggest that when the β-relaxation 

gets activated at elevated temperature, plasticity may get improved in this 

alloy. Since chemical composition influences both the intensity as well as the 

peak position of the β-relaxation[72], further research might include 

systematic work on reducing the activation energy of this β-relaxation with 

the aim of improving toughness, as achieved in La based MG system with 

notable β-relaxations[71]. 

In situations when the peak is not distinguishable, the temperatures at 

which the material shows the same loss modulus are employed to calculate the 

activation energy. When a fixed loss modulus value of 1500 MPa is chosen, 

the activation energy is computed to be 99 kJ/mol with pre-exponential factor 

of 4.9×1010 s-1. The activation energy fitted with a fixed loss modulus value is 

lower than the one fitted from the peak position. This indicates that, as 

expected, the secondary peak is originated from a distribution of processes 

with a corresponding distribution of activation energies. Although an average 

relaxation time and activation energy may be calculated, the fastest processes 

of the distribution (which have the lowest activation energies) get activated at 

lower temperatures. 
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At higher temperatures, close to Tg, a peak is observed in the loss modulus. 

The peak temperature shifts to higher temperature when the frequency is 

increased. This increase of loss modulus can be ascribed to the α-relaxation 

involving the activation of collective movement. The peak here is cut by the 

crystallization process which further decreases the loss modulus at higher 

temperature.  

Using a fixed loss modulus value of 9200 MPa, the temperatures 

corresponding to each frequency are determined. Using equation 3.20, the 

activation of this α-process is calculated as 461 kJ/mol. However, as 

illustrated above in the case of the anelastic event, the activation energy 

obtained by a fixed value is lower than that obtained fitting from peak 

temperatures; the activation energy of 461 kJ/mol might thus be 

underestimated. Using equation 3.22, this apparent activation energy of the 

viscous flow in the glass transition region gives a fragility parameter of m=30, 

which is quite low for a metallic glass. 
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Figure 5-38 α-relaxation analyzed by equation 3.20. Temperatures are chosen as loss modulus reaches a 
fixed value of 9200 MPa at each frequency. Red line is fit with Arrhenius behavior with activation energy 
of 461 kJ/mol. Below Tg, the system is in a non-ergodic state and the behavior deviates from the 
equilibrates state.  

As described in section 5.2, the viscosity during DMA measurement can 

be obtained in the framework of Maxwell viscosity. The dependence of 
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viscosity on temperature for this alloy is illustrated in figure 5-39. Viscosity 

decreases with increasing temperature. Tg, determined  where viscosity 

reaches 1012, is around 788 K. This is quite close to the 790 K obtained by 

DSC measurement under a heating rate of 20 K/min. At temperatures higher 

than 837 K, viscosity increases with temperature, this increase on viscosity is 

related to the crystallization. This agrees with the enthalpy measurements that 

showed that Tx=835 K. 
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Figure 5-39 Viscosity of the Fe based metallic glass obtained by η=σ/3*ߝሶ. The viscosity can be described 
by an Arrhenius behavior under Tg, while can be fit with to a VFT or Arrhenius behavior above Tg, Further 
heating above the crystallization temperature would increase viscosity. Measurement performed with 
heating rate of 2K/min. 

The temperature dependent viscosity follows an Arrhenius relationship 

below Tg. As for the as quenched state, activation energy is found to be 180 

kJ/mol, which is slightly larger than the 165 kJ/mol obtained from fitting the 

secondary relaxation peak of the loss modulus. The slope of the viscosity vs 

1/T curve of the samples relaxed at 723 and 773 K are larger than that the one 

shown by the as-quenched ribbons, in agreement with the expected increase of 

the activation energy for sub-Tg viscous flow because of physical aging.  

Above Tg, the temperature dependent viscosity can be described as VFT or 

also as local Arrhenius-like in a narrow range of temperatures. Fitting with 
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Arrhenius relationship leads to Eα=746 kJ/mol. With equation 3.22, the 

corresponding fragility parameter results to be m=49.  
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5.4 Discussion of the experimental results 

Similar to dielectric spectroscopy studies of other glassy substances, like 

inorganic or polymeric glasses, mechanical spectroscopy is able to capture the 

characteristics of the relaxation dynamics of metallic glasses in the frequency 

domain. Within the explored frequency and temperature windows, the above 

DMA results show that the mechanical response of Cu46Zr46Al8, 

Pd42.5Ni7.5Cu30P20 and Fe55Cr10Mo14C15B6 shows the three typical secondary 

relaxation behaviors (termed as β relaxations) found in metallic glasses. To be 

more specific, the low temperature relaxation appeared as excess wing, 

shoulder or differentiated peak on the E’’(T) profile.  

In the case of Cu46Zr46Al8, the relaxation mechanism is proposed to 

involve only α-relaxation both in the liquid and glassy state, with dynamics 

given by the VFT and AGV (Arrhenius-like) functions respectively. It should 

be noted that the low frequency (high temperature) wing of the -relaxation 

peak is not covered by this study. At 1 K/min the onset of crystallization is 

observed at T=745 K, inhibiting the access to the high-temperature wing. If 

the low frequency wing could be measured, it would be possible that a 

complete Havriliak–Negami function with an asymmetry parameter γ≠1 

would be necessary for describing the shape of the peak. However, the 

estimation of the τ(T) values and the exponential decay of the high-frequency 

wing (given by the α parameter of the CC-function) would not change 

significantly. 

Figure 5-40 resumes the proposed model for mechanical relaxation of the 

Cu46Zr46Al8 metallic glass. The broadening of the CC-relaxation function has 

been found experimentally to be approximately constant. The excess wing 

observed experimentally agrees well with the tail of the -relaxation when the 

average relaxation time follows a non-equilibrium AGV behavior. The solid 

thick black line in the figure shows the expected isochronal E’’(T) 

measurement showing the excess wing detected in experimental DMA 

measurements. In section 5.1, the validity of the relaxation times obtained 

from the DMA analysis has been assessed by independent measurements of 

stress relaxation quasi-static tests. The model proposed in figure 5-40 is for a 

relaxed glass, with fictive temperature near to the glass transition temperature 
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detected at heating rates of the order of 1-10 K/min, as the ones usually 

applied for DSC and DMA characterization. 

 

 
Figure 5-40 Model proposed for the relaxation spectrum of Cu46Zr46Al8 glass. Blue lines stand for the CC-
function following equilibrium VFT dynamics. Green lines stand for CC-function following AGV 
dynamics below Tg. 

The results obtained are consistent with those obtained for Mg65Cu25Y10, a 

MG with a very different chemistry[162]. In both cases, only a single 

relaxation process was necessary to understand the glass–liquid dynamics 

within the frequency and temperature window probed (0.1 Hz < f < 100 Hz). 

It should be noted that the AGV function is a good description of the glass 

dynamics only if the glass is in an isoconfigurational state. Physical aging of 

MGs has been recently studied by X-ray photon correlation spectroscopy 

(XPCS) in Mg65Cu25Y10 and Ni33Zr67 glasses[109]. The complex aging 

behavior found in those works cannot be described by the simple VFT-AGV 

scheme proposed here. However, if the validity of the VFT-AGV description 

is verified for isoconfigurational MGs, it may give a useful tool to estimate 

the relaxation times and associated properties as function of the fictive 

temperature of the glass. 

Although only the presence of the α-relaxation is needed to explain the 

excess wing of Cu46Zr46Al8, a secondary relaxation with very low intensity 
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could be merged with the main loss peak. In fact, the presence of -relaxation 

as a universal phenomenon in metallic glasses has been widely discussed. 

However, the intensity of this relaxation would be irrelevant as it is not 

needed to interpret the experimental results of this system. Many other 

metallic glass systems, basically the ones belonging to the very important 

families of Cu, Ti and Zr based metallic glasses, do only show an excess wing 

in their internal friction behavior. It is reasonable to suggest that a similar 

picture to the one presented in section 5.1 of this work may be applicable to 

most of these systems. 

In the case of Pd42.5Ni7.5Cu30P20 glass analyzed in section 5.2, there are 

obvious secondary relaxations prior to the α-relaxation process on the 

temperature profile. At the lower temperature regions, loss modulus is fitted 

in the framework of a standard anelastic solid by a thermal activated process 

with activation energy of 126 kJ/mol and possible atomic jump origin. At a 

higher temperature region, the plateau shown on the loss modulus is related 

with events of varying relaxation times. The distribution parameters, as well 

as relaxation intensity, have been derived from the stress relaxation 

measurements. At even higher temperature, close to Tg, the mechanical 

response is due to α-relaxation which follows a VFT behavior. 

The anelastic origin of the secondary relaxation is even more obvious in 

the case of Fe55Cr10Mo14C15B6, where a thermal activated secondary 

relaxation occurs at temperatures 200 K below the glass transition region and 

the correspondent predominance of the α process. The activation energy of 

this low temperature anelastic event is 165 kJ/mol. As discussed in chapter 3, 

the presence of relaxations in conventional steels and other Fe-based 

crystalline materials with similar compositions have been reported since long 

ago. They are attributed to anelastic relaxations of crystalline materials and 

similar activation energies are reported. This may suggest a similar origin for 

the anelastic relaxation observed for the Fe55Cr10Mo14C15B6 glass. However, 

the calculated activation energy is also close to the activation energy 

associated to Johari-Goldstein relaxations (171 kJ/mol), using the empirical 

Eact=26RTg rule. 
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Furthermore, it is interesting to note the two following points found in this 

work: Firstly, the physical aging explored by enthalpy measurements shows a 

log normal distribution of activation energies with a most probable value of 

activation energy of 174 kJ/mol. Secondly, the viscosity of this metallic glass, 

which was obtained by treating it as a Maxwell fluid, shows an activation 

energy of viscous flow slightly below Tg of around 180 kJ/mol. The apparent 

activation energies from different properties are therefore similar with each 

other, whether they come from the same microscopic mechanism still needs to 

be verified.  

Isothermal creep measurements of Pd42.5Ni7.5Cu30P20 showed that in the 

glassy state viscous flow can be detected at quite low temperatures, as low as 

200 K below Tg. By treating this alloy as a Newtonian liquid, the viscosity 

was also calculated in situ during the DMA measurements. The obtained 

viscosity agrees with the data from isothermal creep measurements. From the 

temperature dependent viscosity behavior, it is shown that at Tg the 

temperature dependent viscosity behavior changes from VFT to Arrhenius 

dynamics. A similar result has been also obtained for Fe55Cr10Mo14C15B6 MG 

and it has been previously reported in other systems as discussed in chapter 3. 

We can conclude that microscopic movements leading to viscous flow are 

present in the system far below Tg. Furthermore, they have activation energies 

similar to those attributed to -relaxation and physical aging. On the one hand 

this suggests the same microscopic origin for the three processes. On the other 

hand, this makes difficult the interpretation of the low temperature internal 

friction, termed as -relaxation, as coming from reversible jumps between 

sub-basins of the potential energy landscape. In the classical picture, this type 

of secondary relaxations would not be able to activate viscous flow. 

Based on continuous time random walk through meta basins in the 

potential energy landscape, Gupta developed a model which fits quite well the 

isostructural viscosity data[74]. It is also suggested that the viscous flow could 

be described in the framework of percolation theory[227]. Hunt suggested that 

transport occurs by atomic diffusion through thermally activated hopping over 

energy barriers at higher temperatures, while below a certain temperature Tc it 

becomes a percolative behavior[228]. From the solid state point of view, the 
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Arrhenius behavior of viscosity at low temperatures is also analyzed by 

Ferrarit in the framework of intrinsic defects with exponentially distributed 

activation energies[229]. It can also be explained in the framework of flow 

events[205]. The assessment of the predictions of these different models in 

order to elucidated the physical mechanisms responsible of sub-Tg viscous 

flow would be interesting to address in future work. 

Stress relaxation is usually analyzed within the framework of KWW 

function. Within this approach, the underlying distribution of relaxation times 

is characterized by the value of the stretching exponent KWW, lower exponents 

implying a broader time distribution. In this work, the full relaxation behavior 

has been parameterized by a KWW function with all the parameters 

dependent on temperature: relaxation intensity, average relaxation time and 

stretching exponent. Results for the Cu46Zr46Al8 and Pd42.5Ni7.5Cu30P20 glasses 

are given in sections 5.1 and 5.2. A more detailed analysis can also be 

performed within the framework of relaxation time spectrum. This 

methodology implies a relaxation time distribution as described in section 

5.2.4 where viscous flow units can be regarded as having the longest 

relaxation time events on the relaxation time spectrum. This has been 

performed in this work for the Pd42.5Ni7.5Cu30P20 glass, finding three relaxation 

stages even near the glass transition temperature. As discussed in chapter 3, 

similar results have been already reported in metallic glasses when using 

similar techniques. The decomposition of the stretched relaxation into a fast 

and slow processes has been observed by Kursumovic[124,187], Ocelik[230] 

and Atzmon[189,190]. The results presented here show that, although the 

frequency response may show just one ( peak) or two ( and  peaks), the 

relaxation time spectrum is composed by different processes with 

differentiated times and activation energies. The convolution of all this 

processes results in the broad response functions collected in frequency-

temperature DMA scans, i.e. the relaxation time in the KWW function is an 

average effect of all the three events found on the stress relaxation spectrum. 

Besides of this, the mechanical relaxation of metallic glasses can be 

viewed as a merging of anelastic plus viscoplastic behaviors. As discussed 

above, the structural processes responsible of structural relaxation are linked 
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with the fundamental deformation events originating plastic deformation of 

MGs. These events could be associated to molecular rearrangements 

belonging to the broad peak of the α-relaxation, as in the case of Cu46Zr46Al8, 

or to the secondary loss modulus peaks in Pd42.5Ni7.5Cu30P20 and 

Fe55Cr10Mo14C15B6 glasses. In any case, the activation energies are similar to 

the ones expected for viscous flow (-relaxation) once in the out-of-

equilibrium (sub-Tg) glassy dynamics. 

 

 

Figure 5-41 relationship between activation energy of shear transformation zone and apparent activation 
energy of α relaxation in non-equilibrium state in several MGs. Data of WSTZ and the VFT parameters 
obtained from reference[175,231]. 

Let us now discuss the implications of this point. Considering a well 

relaxed glass (Tfictive׽Tg) and relaxation times following equation 3.3, the 

average activation energy of structural relaxation below Tg would be 

determined as Eact = RB/(1−T0/Tg). Considering MG systems with equilibrium 

dynamics above Tg determined by viscosity measurements and well described 

by a VFT behavior, the activation energy of the primary glass relaxation 

below Tg can be estimated from the B and T0 parameters. This is performed 

and shown in figure 5-41, where for the calculation of the activation energies 

Tfictive is chosen as Tg and data of the VFT parameters are obtained from 

references [175,231]. As shown in the figure, this estimated Eact is 

consistently well correlated with the WSTZ, the estimated work to activate a 
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shear transformation zone, with Eact being 30–40% higher in most of the 

systems.  

Concerning to the effect of the fictive temperature, the ratio of activation 

energies between two isoconfigurational states can be estimated as 

Eact1/Eact2=(1-T0/Tfictive1)/(1-T0/Tfictive2). For instance, in the Cu46Zr46Al8 system 

of this work, an increase of 30 K of the fictive temperature produces a 10% 

reduction of the activation energy for primary relaxation (or viscous flow) 

below Tg. More significant than the changes in activation energy are the large 

changes in relaxation times between different glassy states. The effect of 

physical aging has been analyzed in the three metallic glasses examined in 

this work. In all three cases important changes of relaxation times and/or 

viscosity have been detected as shown in figures 5-11, 5-32 and 5-39. Our 

result shows that physical aging or structural relaxation influences viscosity, 

manifested on the fact that the more relaxed state has viscosity more than one 

order of magnitude higher than the as-quenched state. 

However, the change from VFT to Arrhenius behavior happens in both 

relaxed and non-relaxed samples. The results from Cu46Zr46Al8 showed that 

for the as-quenched state, due to the concurrent physical aging manifested on 

the changing of the fictive temperature, the average main relaxation time 

deviated from the Arrhenius behavior below Tg. On the contrary, the relaxed 

sample is expected to be in a nearly isoconfigurational state, i.e. with fixed 

fictive temperature, and it is then found to follow an Arrhenius behavior. Our 

result might favor the conclusion by Hunt that the major component of the 

curvature of the viscosity with decreasing temperature is from the change in 

transport type other than changes in structure[228]. 

Let us now consider that the system can sustain a maximum critical stress 

σc before inhomogeneous flow or fracture becomes activated. For deformation 

rates  <c/E, the glass is able to release stress via activation of primary 

relaxation rapidly enough to maintain the accumulated stress lower than σc. 

Therefore, the knowledge of the τ(T, Tfictive) behavior can give an estimation of 

the limiting values of   at a given working temperature. For instance, 

considering Cu46Zr46Al8 at 500 K, an increase of the fictive temperature of 5 

K would double the limiting deformation rate. 
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From the temperature dependent relaxation time, the fragility parameter m 

is usually employed to describe the dynamics. In the case of Cu46Zr46Al8, 

using the temperature dependence of the relaxation time obtained from α 

relaxation we obtained m=57. In the case of Pd42.5Ni7.5Cu30P20, using 

relaxation time from α relaxation, in the framework of a local Arrhenius 

relationship, we obtained Eα=526 kJ/mol and m=50. Using relaxation times 

from stress relaxation spectrum, we obtained Eα=546 kJ/mol and m=52. In the 

case of Fe55Cr10Mo14C15B6, α-relaxation manifested on the temperature 

dependence of viscosity gives Eα=746 kJ/mol and a corresponding m=49. 

They are all very similar values and correspond to metallic glasses able to 

sustain a certain degree of plastic deformation at temperatures well below Tg. 

The study of more rigid metallic glasses coming from stronger precursor 

liquids, for example with fragility parameters m<30, might be interesting as 

future work. 

In section 5.1, the full shape of the experimental E″(T) of Cu46Zr46Al8 has 

been modeled considering a single Cole–Cole relaxation function with 

different relaxation time-temperature dependences above and below Tg . The 

validity of this model was confirmed by means of stress relaxation 

experiments, which gave direct access to the time domain response. In 

sections 5.2 and 5.3, the Pd42.5Ni7.5Cu30P20 and Fe55Cr10Mo14C15B6 E″(T) 

cannot be fitted with one single relaxation event. For Pd42.5Ni7.5Cu30P20, the α 

and β processes are close in a narrow temperature region, with the subsequent 

overlapping between the concurring mechanisms: thermally activated 

anelastic events, physical aging manifested as irreversible relaxation, and the 

viscosity related component which shows a change from an Arrhenius 

behavior to a VFT behavior at the glass transition. It is very difficult to 

distinguish between them, as the corresponding activation energies are close 

to each other. This does not allowed us to obtain a model able to reproduce 

the internal friction all over the whole frequency-temperature region probed in 

this work. For Fe55Cr10Mo14C15B6, the lower temperature β process shows a 

conventional thermally activated anelastic behavior. At higher temperature, 

the increase of loss modulus comes from primary relaxation and reflects the 

flow of the whole structure. This system should be in principle more suitable 

to model, combining the two processes with well defined average relaxation 
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times and response functions. In both cases, achieving a detailed modeling of 

the E’’(,T) behavior would be a good tool for predicting the different 

mechanical responses under different deformation rate and temperature 

conditions. Future work is being addressed in order to accomplish this 

objective.  
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6. Conclusions 

The present knowledge and models for understanding the relaxation 

dynamics of metallic glasses have been discussed in this work, mainly in 

chapter 3. Above the glass transition temperature, this is in the metastable 

equilibrium region, the -relaxation is responsible for viscous flow and shows 

a frequency-temperature behavior similar to that observed in other kinds of 

glass-forming substances. The relaxation in this temperature region is in 

general well understood. Below Tg, the system is arrested in the out-of-

equilibrium, non-ergodic glassy state. In this temperature region the internal 

friction of metallic glasses shows different relaxation phenomena. Some of 

them, detected at temperature far below Tg can be thought as coming from 

microscopic processes similar to those already present in crystalline alloys.  

Approaching the glass transition, the presence of internal friction may have 

different aspects, going from just an excess wing of the principal -peak to a 

well-defined loss peak with different degrees of overlapping with the -

relaxation. 

The origin and characteristics of this sub-Tg internal friction of metallic 

glasses, as well as its relation to physical aging and mechanical deformation, 

has been revised. From the extensive study of experimental data and 

theoretical models performed in chapter 3, it is shown that -relaxation, 

activation of shear transformation zones, physical aging, atomic diffusion, 

viscous flow and also sub-Tg -relaxation all show very similar activation 

energies in a metallic glass. This tells that the microscopic movements 

implicated in all these processes may be very similar and it makes difficult to 

classify the different relaxations as coming from well differentiated origins. 

The relaxation dynamics of MGs has been investigated using several 

techniques including differential scanning calorimetry, dynamic mechanical 

analysis, stress relaxation, creep and recovery. After production and basic 

characterization of many different metallic glass compositions, as it is 

described in chapter 4, the relaxation behavior was investigated in 3 different 

MGs On E’’(T) profile, in terms of β relaxation the three selected MGs ( 

Cu46Zr46Al8, Pd42.5Ni7.5Cu30P20 and Fe55Cr10Mo14C15B6) show totally different 

behavior, namely excess wing, shoulder and differentiated peak respectively. 



Dynamics of metallic glasses explored by mechanical relaxation 

140 
 

The characterization, modeling and origin of the sub-Tg internal friction has 

been presented and discussed in chapter 5.  

In the case of Cu46Zr46Al8, the relaxation behavior of this MG can be well 

described by a broad distribution of relaxation times. This distribution was 

modelled with a CC-function with a broadening parameter of value around 0.5 

and an average relaxation time (T). The relaxation dynamics of the system 

can be then characterized by the (T) behavior, which follows VFT (>Tg) and 

AGV (<Tg) equations at least within the frequency and temperature windows 

explored. The results show that the low-temperature excess wing of internal 

loss is generated by the high-frequency tail of the α-relaxation. The induction 

of physical aging by annealing at temperatures near Tg and the comparison of 

the relaxation spectra for as quenched and aged samples allowed the 

characterization of the relaxation behavior of different glassy states. In this 

system, it is shown that the effect of physical aging on the relaxation 

dynamics can be well quantified through the definition of the glassy state by 

means of the fictive temperature parameter. 

In the case of Pd42.5Ni7.5Cu30P20, the shoulder manifested on E’’(T) profile 

cannot be modeled by an empirical function because of its overlapping with 

the main relaxation. The intensity and temperature extension of the secondary 

peak is reduced by physical aging but, contrary to other systems reported in 

literature, the presence of the secondary peak is clear even in the well relaxed 

glassy states. The shoulder of the loss modulus obtained by DMA is related to 

the short time dynamics manifested from the stress relaxation experiments. 

Three different approaches have been applied to investigate the mechanical 

response of this MG. Stress, creep and recovery allowed us to separate the 

anelastic and viscoplastic part of the internal friction. The secondary 

relaxation is then mainly attributed to the anelastic part while the 

characteristics of the -relaxation are coherent with the viscoplastic effect. 

However, both anelastic and viscoplastic contributions are merged in the 

response of this material. The relaxation time spectrum obtained by a proper 

fitting of the stress relaxation tests show a complex picture, with different 

time scales clearly involved in the relaxation processes. The longer time scale 

seems to dominate the viscous flow and -relaxation while the shorter times 

are related to anelastic effects originating the loss shoulder.  



Conclusions 
 

141 
 

In the case of Fe55Cr10Mo14C15B6, the separate β relaxation on E’’(T) 

profile is clearly attributed to an anelastic event. The activation energy of this 

process is close to the activation energy for physical aging as well as the 

expected one for a Johari-Goldstein β-relaxation following the empirical 

relation between activation energy and Tg discussed in chapter 3.The 

microscopic origin of the -relaxation in this material can be attributed to a 

process precursor of the main relaxation that controls viscous flow at higher 

temperatures within the standard picture of secondary-primary relaxations in 

glasses. The physical aging of this material is controlled by the same process, 

which is characterized by a broad distribution of relaxation times.  

The temperature dependence of viscosity is also obtained for the 

Pd42.5Ni7.5Cu30P20 and Fe55Cr10Mo14C15B6 MGs. The viscosity follows the 

expected glass-liquid transition when reaching values close to 1012 Pa·s in 

agreement with the Tg obtained by calorimetric measurements at similar 

heating rates. The determination of the viscosity from DMA measurements 

under continuous heating is coherent with that obtained from creep 

experiments in the steady flow regime, this confirming the validity of the 

measurements. The viscosity is found to follow Arrhenius behavior in the 

glassy state and shows a great influence of physical aging. The activation 

energy of viscous flow is found to be similar to the sub-Tg relaxation 

processes and to the physical aging, this confirming that in this temperature 

region the activation of any kind of structural rearrangement has to overcome 

the same energy barrier and, probably, it involves the same type of 

microscopic movements.  

Finally, it has been discussed the intrinsic relationship between stress 

relaxation, viscous flow, internal friction and recovery tests with the 

mechanical behavior of metallic glasses. The author hopes that the extensive 

characterization of these processes presented in this work will help the 

understanding of physical aging effects, thermoplastic forming behavior and 

deformation microscopic mechanisms which are important issues for the 

application of metallic glasses as technological materials. 
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