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Preface 

 
You see things that are and say "why?"  

 But I dream of things that never were, and say "why not?"  

    George Bernard Shaw 

 

 

 

 

The key to reading this thesis work is from the point of view of 

fundamental research. Here the main goal is to try to understand the 

physics and the general behavior that lie beneath a particular phenomenon. 

While the starting point may be fixed, we are dealing with a moving target 

that is pushed forward every time a new knowledge is acquired and a 

missing piece of the puzzle added to the scheme. On the other hand there is 

the applied research whose objectives may be fixed by device specifications, 

and the work consists of gathering relevant knowledge to reach the goal.  

These definitions are not completely static, as new knowledge causes also 

advances technology. For example, fundamental research is always the 
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breeding ground where seeds may be sown and eventually see the light of 

important applications. The personal computer may be the most significant 

example. It may also happen that researchers working on a particular 

device find important clues to a new fundament theory. For example, two 

engineers (now Nobel Prizes) of Bell Lab working on a communication 

microwave antenna were the first to record the distant, faint echo of what 

started it all: The Big Bang. 

 This distinction was not at all clear to me when first I approached the 

world of physics.  I took my first tentative steps in the group of Dr. Michael 

Scalora at Charles M. Bowden Research Facility, RDECOM, Alabama, and 

then in the group of Prof. Ramon Vilaseca, Prof. Crina Cojocaru and Prof. 

Jose Trull, in the Physics and Nonlinear Engineering Department at 

Polytechnic University of Catalonia. At a time when both groups were facing 

two fundamental problems concerning what appeared to be small details in 

nonlinear optics. My role was to help the team to answer questions like: 

Why does this happen? How does it work? And, my favorite, what happens 

if…?   

 Fortunately, these small details turned out to be not small after all, 

and wielded the power to open the doors to fertile research grounds.  This 

thesis is a semi-chronological review of the main results we obtained during 

the last three years. The scheme is essentially serial since each result was 

first forecast using the previous results and then verified, mostly 

experimentally. This body of work is more or less complete thanks to the 

influence of the method of work, the tools, and the analytical and 

experimental results we developed during our research. For the sake of 

overall simplicity and self-consistency, we did not include all our results in 

this thesis work.  Suffice it to say that, thankfully, this work is never done.   

As Phil Russell, of the Max Plank Institute, once put it: Open a book, any 

book, to a page, any page, and you will find that there is work to be done.   

 

 For more than forty years, scientists working in the field of nonlinear 

optics have focused their attention mainly on improving the conversion 

efficiency of harmonics generation, particularly of the second harmonic. This 

is achievable thanks to the fulfillment of very special working conditions. 
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The result is that while our understanding of this particular phenomenon 

has much improved over time, at the same time one may freely state that 

this knowledge is quite narrow.  As soon as one looks in another direction 

one may easily ascertain that the amount of work done so far in this field is 

not enough to systematically cover all possible working conditions where 

frequency conversion phenomenon can take place. The object of this thesis 

work is thus to shed light on the general situation of large phase 

mismatched harmonic generation. Even if conversion efficiency may at first 

sight be relatively small compared to phase matched situations, we will 

show that two important features (random quasi phase matching and phase 

locking mechanism) arise, concerning respectively each of the two portion of 

the generated electromagnetic field. This is the first time that these two 

aspects have been investigated so extensively and we believe that our 

results represent a significant step forward in understanding these 

particular aspects of the nonlinear interactions.  

  

 Going now into the details, this thesis is organized as follow. In 

Chapter 1 we will briefly define the field of nonlinear optics.  Linear optics 

deals with the study of the interaction of electromagnetic fields with matter 

with the assumption that their intensities are low enough to treat the 

relation between the impinging field and the induced polarization as linear. 

In all the other cases where electromagnetic forces start to be comparable 

with atomic forces acting on the electrons of the material, a series of 

nonlinear effects occur. Among these, harmonic generation (second and 

third in particular) is one of the most manifest and well-studied. Then we 

will describe the features of a two dimensional nonlinear photonic crystal 

and it’s naturally occurrence in nature: the ferroelectric crystals. In this 

section we will also describe the set of equations and the numerical model 

that we have developed and continuously improved to be used throughout 

all the particular situations studied in this work. 

 Part I is dedicated to the study of harmonic generation in random 

nonlinear photonic crystals. Starting from the description of the crystal and 

of the first set of experiments we will illustrate the characteristics of second 

harmonic emission in such structures. The emerging need was to have a 
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clearer view of the real nonlinear optical properties possessed by these 

crystals. For different reasons traditional imaging techniques were partially 

unsuccessful, so that one has to rely on numerical calculations aimed at 

material characterization (Chapter 2). The wide transparency window of 

real crystals (example SBN and NiLiO3) gives us the opportunity to also 

study the behavior of cascaded third harmonic emission thanks to the 

quadratic nonlinearity of the material (Chapter 3). Finally, we gathered and 

applied all the information to study the behavior in the pulsed regime. We 

propose a new technique of electromagnetic pulse characterization that 

complement the actual existing techniques and show several important 

advantages in the case of ultrashort pulse characterization. (Chapter 4). 

 Part II concerns the phase locking mechanism. In a nonlinear 

interaction, besides the usual generated component, the second harmonic 

has also a particular component that travels with the same k-vector of the 

fundamental beam. This led us to ponder about a general theorem: this 

particular second harmonic component always experiences the same 

complex index of refraction of the fundament beam. In Chapter 5 we lay the 

basis of this theory, with an extension to third harmonic generation. In 

Chapter 6 we use this theory to inhibit material absorption at the harmonic 

wavelengths. Following analytical studies of field dynamics in a free 

standing cavity environment we proceeded with an experimental test using 

a simple, single mirror cavity, followed by an efficient high-Q cavity that 

allowed us to reach more impressive results (Chapter 7). Finally we pushed 

our findings in the direction of the harmonics generation in spectral regions 

where materials display metallic behavior, i.e.  where in principle no light 

propagation should be observed (Chapter 8). These last steps have great 

importance, because they show that it possible to actually do nonlinear 

optics in materials like GaAs, GaP, and Si, to name a few, in the UV part of 

the spectrum. At UV wavelengths semiconductors like those described above 

are remarkably dull because they are most notable for reflecting light. 

However, the insights developed in this thesis may help to pave the way to 

the realization of devices that efficiently generate light in the deep UV and 

soft X-ray range using ordinary materials and equally ordinary laser 

sources.   
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 Taken as a whole, the work presents a balanced composition of the 

three main ingredients: theoretical study, numerical calculation and 

experimental verification. This mosaic is well distributed among the 

different groups which each time, depending on the actual needs and 

possibilities, gave the best synergistic effort. Great part of my personal work 

dwelt on the field of numerical calculations, which have a crucial role in 

everything that follows. The approach that has been followed was based on 

the development of new numerical algorithms to solve the Maxwell’s set of 

equations based on spectral Fast Fourier Transform (FFT) method. This has 

multi-faceted importance: First, the direct manipulation of the equations of 

motion helps the individual to “get inside” the problem to actually 

understand it.  Second, FFT methods require much deeper manipulations 

that ordinary ones. Third, the method is far from being a block-box 

approach, as commercial software tends to be, which can solve a problem in 

an almost effortless manner but cannot help develop any insight into any 

particular aspect of the problem. Fortunately this high-risk approach has 

thus produced a high-pay off in the form of wide research activity. 

Nevertheless I never forgot to theoretically verify the results obtained and 

to put my hands on the experiments. 

 

 An important feature of this thesis is the strong team collaboration. 

Research is teamwork. None of research results presented in this thesis can 

be claimed as solely my own, but all projects reported on benefited from the 

ideas and suggestions of my supervisors and colleagues. The base was the 

Physics and Nuclear Engineering Department of the Polytechnic University 

of Catalunya, Spain. The first topic (Part I) was developed in collaboration 

with Dr. Wieslaw Krolikowski of the Australian National University, 

Australia, where I personally spent six month. The second topic (Part II) 

was developed in collaboration with Dr. Michael Scalora at the C.M. Bowden 

Research Facility, Redstone Arsenal, USA, where I personally spent one 

year in total. Moreover, we actively collaborated with the group of Dr. Rama 

Raj and Dr. Fabrice Raineri at Laboratoire de Photonique et de 

Nanostructures, CNRS, France, for samples fabrication and experimental 

verification.
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Part I 

Chapter 1 
 

Introduction 

 

1.1. Nonlinear Maxwell’s equations 

 Maxwell's 1873 results constitute a fascinating and complete synthesis 

of the entire theory of classical electromagnetism. Still today, the deep 

comprehension of Maxwell's four equations is the key behind one of the 

greatest and most exciting challenges in physics: manipulating light. 

 The introduction of the laser in the early ´60s gave a strong impetus to 

the study of electromagnetic phenomena in the infrared and visible ranges 

for high intensity light beams giving rise to a new branch of physics: the 

nonlinear optics. The emergence of modulated structures and metamaterials 

last decade, has led to remarkable achievements in this field. Since the ´70 a 

lot of effort has been dedicated to the study and the experimental 

improvement of the efficiency of the different nonlinear effects. Nonlinear 

optical interactions have been incredibly enhanced by means of photonic 

band gap photonic crystals and metamaterials have revealed novel kind of 

nonlinearities. Recently, nonlinear optics have also been showed to be 
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suitable to mimick exotic linear effects, like for example perfect lensing 

[Pen08].  

 This introductory chapter is intended to review the basics of linear and 

nonlinear light propagation in both homogeneous and structured crystals 

paying particular attention to the second and third-harmonic generation 

process. We also describe in some detail the numerical method that we have 

used to study the particular nonlinear effects that constitutes the object of 

this work. In each of these sections, we will focus particularly on the studies 

that are mostly related to our purposes and will voluntarily omit certain 

aspects. These expanding fields have however the advantage of being 

presented by a consequent number of reviews and textbooks, which the 

reader can refer to [Boy08], [Yar67], [Joa08], [Sha07], [Woo07].   

 

Nonlinear Optics 

 Nonlinear electromagnetic phenomena occur when the response of a 

material system is no longer proportional to the amplitudes of applied 

electric and magnetic fields. Typically, these phenomena are only observable 

by means of laser light, which is sufficiently intense to modify the optical 

properties of matter and hence generate detectable nonlinear effects. The 

nonlinear optics begins with the discovery of the Second Harmonic (SH) 

generation process by Franken et al. in 1961 [Fra61], shortly after the 

realization of the first working laser by Maiman [Mai60]. Lasers have 

particular characteristics of monochromaticity and coherence and their light 

can be concentrated in very small areas, of order of some hundreds square 

microns. This makes possible to obtain very intense electric fields associated 

to the propagating wave comparable to those existing inside atoms and 

consequently to induce local modifications in the material composition, 

which cause the nonlinear responses. 

 In order to describe more precisely the meaning of an optical 

nonlinearity, let us see how the polarization P of a material system depends 

upon the strength of the electric field E. We assume that the interaction 

time between the electrical oscillations and the bound electrons in the atoms 

is extremely short, so that the medium response can be regarded as 
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instantaneous. Then, in conventional optics (i.e., linear optics), the induced 

polarization is proportional to the amplitude of the applied electric field: 

0 ,P E   (1.1) 

where 
0  is the permittivity of free space and   is the electric susceptibility 

of the medium. In nonlinear optics, the relation between P and E is no more 

linear. In this case, the optical response can be described as a generalization 

of Eq.(1.1) (for non resonant process) by expressing the polarization P as a 

power series in the field strength E as:. 
(2) 2 (3) 3

0 0 0 ... ,P E E E          (1.2) 

where the quantities (2)  and (3)  are known as the second- and third-order 

nonlinear optical susceptibilities, respectively. Typical values can range 

from 1 to 100 pm/V for (2)  and from 10-24 and 10-19 m2/V2 for (3) . Under 

this more general view, the linear polarization (1.1) turns out to be the 

linearization of (1.2) in the neighborhood of E=0, as illustrated in Fig.1.1. In 

writing Eqs.(1.1) and  (1.2) we have taken, for simplicity, the fields P and E 

to be scalar quantities. 

 

     

(a)                                                                     (b) 

Figure 1.1. The polarization P as a function of the strength of the 

electric field. In linear optics (a) P is directly proportional to the 

electric field E. In (b) the linear polarization results to be an 

approximation of the nonlinear polarization.  

 

Second-order nonlinear optical interactions 

 Consider the second order term of the nonlinear polarization given by 

the Eq.(1.2): 

(2) (2) 2

0( ) .) (P t E t   (1.3) 

Second-order nonlinear optical interactions can occur only in non centro-

symmetric crystals, that is, in crystals that do not display inversion 
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symmetry ( P (-E )= -P ( E ) ). Since liquids, gases, amorphous solids (such as 

glass), and even many crystals do display inversion symmetry, (2)  vanishes 

identically for such media, and consequently they cannot produce second-

order nonlinear optical interactions. SH can also occurs at the surfaces of 

the medium, since here there is a breaking in the translational symmetry. 

On the contrary, third-order nonlinear optical interactions can occur both 

for centro-symmetric and non centro-symmetric media. 

 Let us consider the nonlinear interaction of two optical fields, at 

frequencies ω1 and ω2, incident upon a nonlinear medium characterized by a 

non-null nonlinear susceptibility (2) . The total incident field can be 

represented in the form: 
1 2

1 2( ) . . .
i t i t

E t E e E e c c
  

        (1.4) 

By substituting the Eq.(1.4) into the Eq.(1.3) we find: 

 

 

1 22

1 2

1
22 2(2) (2) 2 2

1 2 1 2

2* (2) * *

1 2 1 1 2 2

[( ) 2

2 . .] 2 .

i ti t i t

i t

P t E e E e E E e

E E e c c E E E E

  

 







 

 
 

  

 

   

 (1.5) 

We see from Eq.(1.5) that different frequency components are present in 

nonlinear polarization, each of which describes a different physical process 

such as second harmonic generation (SHG, 2ω), sum-frequency generation 

(SFG, ω1+ω2), difference-frequency generation (DFG, ω1-ω2) and optical 

rectification (OR). The complex amplitudes of the various frequency 

components are given by: 

(2) 2 (2) 2

1 1 2 2(2 ) , (2 ) (SHG )P E P E      

(2)

1 2 1 2( ) (S ) 2 FGP E E     

(2) *

1 2 1 2( ) 2 (DFG) P E E     

 (2) * *

1 1 2 2(0) 2 (OR )P E E E E   

However, not all these components will be present with a considerable 

intensity in the radiation generated by nonlinear interaction. The nonlinear 

polarization can efficiently produce an output signal only if a certain 

condition is satisfied: the phase-matching (PM) condition (which is discussed 

in a following section). Usually, no more than one frequency component can 

satisfy this condition at the same time. Beside these, the study of second-

order processes has also been concerned with other non linear effects; one 
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among all, the optical solitons, or localized electromagnetic pulses, that can 

propagate long distances in nonlinear media without undergoing shape 

changes [Bec03]. 

 

The nonlinear polarization tensor 

 In the previous section we have taken the fields P and E to be scalar 

quantities. More generally, one needs to deal with the vector nature of the 

fields. In such case the quantities ( )n  become tensors of order n+1 and the 

Eq.(1.2) becomes: 
(2) (3)

0 0 0 ... ,i ij i ijk j k ijkl j k l

j jk jkl

P E E E E E E               (1.6) 

where the indices i, j, k, l vary on the components x, y, z. In Eq.(1.6) we have 

assumed that the polarization depends only on the instantaneous value of 

the electric field strength. The assumption that the medium responds 

instantaneously implies (through the Kramers-Krönig relations) that the 

medium must be lossless and dispersionless. In [Boy08] the reader can find 

how to generalize these equations for the case of a medium with dispersion 

and loss. If the dispersion of the nonlinear susceptibilities can be neglected, 

all n+1 indices in the tensor ( )n  are interchangeable. This result is known 

as the Kleinman’s symmetry condition [Kle62]. Under this condition, it is 

practical to introduce a the nonlinear tensor, largely used in nonlinear 

optics: 

(2)1
.

2
ijk ijkd   

We now assume that 
ijkd  is symmetric in last two indices (intrinsic 

permutation symmetry [Boy08]) and introduce the contracted 3x6 matrix ild  

operating on the sum E1jE2k column tensor, namely: 

1 2

1 2

11 12 13 14 15 16

1 2

21 22 23 24 25 26

1 2 1 2

31 32 33 34 35 36

1 2 1 2

1 2 1 2

2

2

2
2 ,

2(

2(

2(

)

)

)

x x

y y

x

z z

y

y z z y

z

x z z x

x y y x

E E

E E
P d d d d d d

E E
P d d d d d d

E E E E
P d d d d d d

E E E E

E E E E

 
 
 

    
   

    
    

   







 
 
 

         (1.7) 
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where we have replaced the subscripts j and k  by a single symbol according 

to the prescription: 

1, 2, 3, 4, 5, 6 .xx yy zz yz zy xz zx xy yx          

When Kleinman symmetry is valid, not all of the 18 elements of 
ild  in 

Eq.(1.7) are independent. For instance, by permuting first and second 

subscript indices we can have for the complete tensor 
ijkd  that 

xyy yxyd d , 

which means that 12 26d d  in the contracted tensor ild . By applying this 

argument systematically, one finds that ild  has only 10 independent 

elements. Moreover, any crystalline symmetries of the nonlinear material 

can reduce this number further. In ZnO, for example, the ild  tensor is given 

by [Ger09]: 

15

15

31 31 33

0 0 0 0 0

0 0 .0 0 0

0 0 0

il

d

d d

d d d



 
 
 
 
 

 

Practically, by choosing the convenient field polarization one has to consider 

only one or few components of the whole nonlinear susceptibility tensor. If 

for example we simply work with the field Ez, only the component 33d  needs 

to be considered. However, in other cases, once the nonlinear interaction is 

known, it can be represented in terms of single effective nonlinear 

coefficient deff [Boy08] inferable by the tensor formulation in (1.7) with 

simple algebraic manipulation. 

 

The electromagnetic formulation of nonlinear interaction 

 In a more general way we can write the polarization vector P as a sum 

of a linear term and a nonlinear one: 

L NL 0 NL .    P P P E P     (1.8) 

Writing the Maxwell's equations including explicitly the polarization term 

P, yields: 

 0

0

,

,

t t

t





 
   

 


  



D
H E P

H
E

         (1.9) 
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where 
0  is the magnetic permeability of vacuum. This can be taken equal 

to unity everywhere because the magnetic response of natural materials 

fades out in the optical frequencies [Yar67]. For the sake of simplicity we 

have supposed that the conductivity of the medium 0   . Taking into 

account the expression in Eq.(1.8) we can rewrite the first of the Eqs.(1.9) 

as: 

NL ,
t t




  
 

PE
H     (1.10) 

where 0 0

2

0 (1 ) r n          (being n  the index of refraction of the 

medium). Taking the curl of the second of the Eqs.(1.9) and substituting the 

term H  with the expression in Eq.(1.10), we obtain: 

22
2 NL

0 02 2t t
  


 

 

PE
E        (1.11) 

where we have used the vectorial relation 2·  E E E  with 

· 0 E  The Eq.(1.11) is named nonlinear wave equation. In this form, it is 

clear that the nonlinear polarization plays a fundamental role in the 

description of nonlinear optical phenomena. It acts, in fact, as a source 

radiating in a linear medium characterized by the permittivity  .  

 A multitude of second-order effects can be studied by considering the 

interaction between three different waves. Consider an electromagnetic field 

( , )E tr  composed by the superposition of three waves oscillating at 
1 , 

2  

and 
3 respectively: 

31 2

1 2 3

1,2,3

( , ) ( ) ( ) ( ) . . ( ) ,ni t i ti t i t

n

n

E t E e E e E e c c E e
     



     r r r r r  (1.12) 

where n n     and *

n nE E  . The corresponding i-th component of the 

second-order polarization obtained by substituting the Eq.(1.12) into 

Eq.(1.3) is: 

( )(2)

NL

,

( , ) ( ) ( ) ,n mi t

n m

n m

P t E E e
   

 r r r    (1.13) 

which corresponds, into the wave equation (1.11), to a radiation source 

composed by harmonic components of frequencies that are sums and 

differences of original frequencies 1 , 2  and 3 . Substituting the 

Eqs.(1.13) and (1.12) into the Eq.(1.11), we obtain the single differential 

equation: 
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( )2 2 (2) 2

,

( ) ( ) ( ) ( ) ( ) ,n n n mi t i t i t

n n n n m n m

n n m

E e k E e E E e
        

     r r r r  

where 2 2

n nk  . If the frequencies 1 , 2  and 3  are commensurate, for 

example one frequency is the sum of the other two, i.e., 3 1 2    , we can 

separate the last equation into three differential equations by equating 

terms oscillating at the same frequency. The result is a set of three coupled 

Helmholtz equations with source: 

 

 

 

2 2 2 (2) *

1 1 1 3 2

2 2 2 (2) *

2 2 2 3 1

2 2 2 (2)

3 3 3 1 2

2 ,

2 ,

2 .

k E E E

k E E E

k E E E

 

 

 

   

   

   

    (1.14) 

In the absence of nonlinearity, (2) 0  , the source terms vanish so that each 

of the three waves satisfies the Helmholtz equation independently, as 

expected in linear optics. Eqs.(1.14) are valid when the frequencies 1 , 2  

and 3  are distinct. However, they can be used in the limiting case for 

which 1 2   and 3 12  , paying attention in choosing the correct 

nonlinear polarization terms. In such a case, we have only two independent 

coupled equations: 

 

 

2 2 2 (2) *

1 1 0 1 3 1

2 2 2 (2) 2

3 3 0 3 1

2 ,k E E E

k E E

  

  

   

   
          (1.15) 

These equations constitute the starting point for the analytical study of the 

SHG process that will be discussed in the next section. 

 

Optical second-harmonic generation 

 The first experiment showing nonlinear effects at optical frequencies 

goes back to the 1961 and it was performed by Franken, Hill, Peters and 

Weinreich [Fra61]. By focusing a ruby laser ( 694nm  ) on a crystalline 

quartz plate, they observed radiation at twice the input frequency (i.e., at 

347nm  ). In this section we present a mathematical description of the 

SHG process in a lossless bulk medium [Arm62]. 

 For the sake of simplicity, we reduce the problem to one dimension, 

assuming that it is invariant along the x and y directions, i.e. 

/ / 0x y       (see Fig.1.2). We consider also that the fields can be written 
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as 1

1 1( )
ik z

E E z e  and 2

2 2 ( )
ik z

E E z e . With these assumptions the first of the 

Eqs.(1.15) becomes: 

 

 

Figure 1.2. Second-harmonic generation schema. 

 

 

 2 11 1

2

2 *1 1

1 0 1 2 12
2 4 .

k k zik z ik zd E dE
e ik e dE E e

dzdz
 

 
            (1.16) 

Now, assuming the Slowly Varying Envelope Approximation (SVEA,) so 

that: 

2

1 1

1 2
,

dE d E
k

dz dz
 

we get from Eq.(1.16): 

*01

1 2 1

1

2 ,i kzdE
i dE E e

dz






      (1.17) 

where 1 22k k k    is the phase mismatch factor. Similarly, from the second 

of the Eqs.(1.15) we obtain: 

202

2 1

2

.i kzdE
i dE e

dz






            (1.18) 

In most of the experimental conditions, the power lost by the input beam  

due to the conversion to the SH frequency is negligible, i.e., 1 / 0dE dz . This 

assumption takes the name of undepleted pump approximation. In these 

conditions, the SHG process can be analyzed by taking into account only the 

Eq.(1.18). Its solution, in absence of an input SH beam, i.e.  2E 0 0 , and 

for a propagation length L inside the nonlinear crystal is: 

20

2 2 1

2

1
( ) ,

i kLe
E L i dE

i k






 
 


 



    

 

10 

which gives for the intensity I2 the following expression: 

 

 

2
22 2 2 2 202

2 2 2 1 2

0 2

sin / 21 1
( ) ( ) .

2 2 / 2

kL
I L E L d E L

kL




 


 


 

The conversion efficiency   is thus: 

 

 

3
22 2 22

02 1 1

3 2

1 0

sin / 2( )
( ) 8 ,

/ 2

kLI L d I L
L

I n kL

 




 
   

 
     (1.19) 

where we took 2

1 2 0n   . 

 

 

Figure 1.3.  Normalized conversion efficiency as a function of the 

refractive index mismatch after a propagation length 10L  λ0. 

 

 

Figure 1.4. Normalized second-harmoic intensity versus the 

propagation distance z  for different values of k  
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If  

 0k            (1.20) 

(or equivalently 0n   in 1D approach), the sinc function in (1.19) assume 

its maximum and constant value. Then the conversion efficiency is only and 

directly proportional to d2, to L2 and to the total the intensity of the 

pumping beam. On the other side, if 0k  , the Eq.(1.19) predicts a 

dramatic decrease in the conversion efficiency (see Fig.1.3). Moreover, the 

sinc term is no longer constant, giving rise to an oscillating behavior with 

the propagation distance (see Fig.1.4). In the figure it is also possible to see 

how the larger is the phase mismatch the lower is the SH conversion 

efficiency. 

 In the previous analysis it was assumed that the input intensity at ω 

was not affected by the SH conversion process. This assumption limits the 

validity of the results to situations where the amount of the converted 

energy is small in comparison to the total fundamental power. If the 

undepleted pump approximation does not hold we must solve 

simultaneously the coupled Eqs.(1.17) and (1.18), that we rewrite here in a 

more suitable form: 

*1

2 1

22

1

,

,

i kz

i kz

dA
A A e

dz

dA
A e

dz





 







        (1.21) 

where , 1,2i i iA n E i   are defined as 
2

iA  is proportional to the intensity of 

the corresponding wave, and the coupling constant   is: 

0

1 2

1 2

2 ,i d
n n


    

It follows from the Eqs.(1.21) that: 

      
2 2 * *

1 2 1 1 2 2 0 ,
d d d

A A A A A A
dz dz dz

      (1.22) 

which is a direct consequence of the energy conservation. The Eqs.(1.21) can 

be easily solved numerically, using the Eq.(1.22) as a test of the goodness of 

the results. 

 The system of equations (1.21), or more generally the system (1.9), has 

a general solution consisting of the solution of the homogeneous system plus 

one particular solution of the inhomogeneous system driven by the 
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nonlinear polarization term [Blo62]. It can be formally expressed 

(considering only the SH field) as 

  2hom 2inhom 2

2 2hom 2inhom

i i i t
e e e

  
 

k r k r
A A A .   (1.23) 

In a general dispersive medium we find 
2hom 2inhomk k . For plane waves the 

amplitude 
2homA  of the homogeneous solution can be found imposing the 

boundary conditions. For other general situations, the shape of this solution 

has been widely studied and investigated. All the theory exposed in this and 

following sections of this Chapter concern only with this homogeneous 

component. In particular, the researchers are usually interested in 

searching that peculiar working condition that allows an enhancement of 

the conversion efficiency. This working condition is explained in the next 

section. In the general case, however, the conversion efficiency, and thus the 

generated SH intensity, is very low. 

 On the other side, the shape of the inhomogeneous solution has been 

almost ignored during last decades. It is very difficult to find an analytical 

formulation that describes its behavior. Moreover, since it represents only a 

particular solution, it has been thought that it could be always neglected 

respect to the homogeneous solution. 

 The general expression (1.23) of the SH solution is a crucial point for 

this thesis work. We will in fact focus our attention on those general regimes 

of low conversion efficiency and study the behavior of both the homogeneous 

solution (in the Part II) and the inhomogeneous solution (in the Part III). 

 

Phase-matching condition 

 According to the Eq.(1.19), a prerequisite for efficient SHG is that the 

relation (1.20) is satisfied, which means that 2 1k = 2k . This relation requires 

that both the SH and fundamental beam have the same phase velocity and 

can be written more generally for a 2D space as 

2 12 .k k      (1.24) 

The above vectorial relation takes the name of perfect phase matching (PM) 

condition. The PM condition essentially requires conservation of linear 

momentum to sustain a mutual interaction over extended regions of space 
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between the fundamental and the generated harmonic field. The perfect PM 

condition (1.24) is a particular case of the general PM condition, 

 
2 12 0  k k k      (1.25) 

when the phase mismatch factor is null, 0 k . In Fig.1.5(a) is sketched the 

collinear case, namely where the two fundamental beams lie in the same 

direction and are overlapped. This is not the only possible situation, since 

noncollinear situations are also possible, as for example illustrated in 

Fig.1.5(b). If two fundamental beams are launched at different directions, 

there is not, at first sight, a privileged direction for the generation of the SH. 

Since the magnitude of the SH k-vector is fixed by the index of refraction 

and the wavelength, |k2|=n2ω2, it can only end on the green dashed arc of 

circumference in Fig.1.5(b). However, as it is clear from the figure, the phase 

mismatch vector k  will assume the lower extension in the direction of the 

geometrical sum 1 1 k k . This will be always the direction of the generated 

SH in a homogeneous material. 

 

 

Figure 1.5. (a) Collinear SHG. (b) Noncollinear SHG. 

 

 When the perfect PM condition is satisfied, accordingly to Eq.(1.19), the 

conversion efficiency grows with the square of the propagation length L. The 

absence of a saturation level is due to the fact that we have assumed an 

undepleted pumping wave. As we saw in the 1D case, if 0 k , the SH 

conversion efficiency quickly decrease. In that case the SH wave generated 

at a given point z1, having propagated to some other point z2, is not in phase 

with the SH wave generated at z2. The result is the interference described 

by the factor  2sin / 2kL  in Eq.(1.19). 
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 One half of the length separating two adjacent peaks of this 

interference pattern is called the coherence length, and it is defined as 

2 1 2 1

,
2 4

cl
k k k n n

  
  
  

 

where   is the free space wavelength of the fundamental beam. The 

coherence length cl  represents the maximum (homogeneous) crystal length 

that is useful in producing the SH power. Typically in nonlinear materials 

the difference in indexes of refraction at the fundamental and SH, n , is of 

the order of 110  to 210 . The coherence length is then only few wavelengths 

long. The intensity of the generated SH increases during the first coherence 

length, where the energy flows from the fundamental frequency to the SH. If 

the length of the nonlinear material is further increased, the energy flow 

changes its sign thus returning energy from the SH to the fundamental field 

(FF). After 2 cl  the energy of the SH is zero. Unfortunately in nature does 

not exist materials with 0n  . The dispersive dependence of the index of 

refraction with the wavelength prevents the PM relation (1.24) to be 

naturally fulfilled. However, as we will see in the next section, a numbers of 

techniques can be implemented to externally force, or at least to approach, 

the perfect PM condition.  

 

Phase-matching techniques 

 In the previous section we have seen that the PM condition is a 

necessary condition for an efficient SHG. PM does not generally occur in 

nature because of the refractive index normal dispersion. However, various 

methods have been proposed that attempt to bring the interacting waves 

closer to ideal perfect PM conditions. Here we will provide a briefly review. 

 One technique consists in using the natural birefringence of uniaxial 

crystals. When an optical wave propagates in isotropic crystals, the 

electrons displacement takes place in the direction of the applied field. In a 

birefringent crystal, however, the electrons will move in a direction imposed 

by the crystalline structure. As a result the resulting polarization vector is 

not parallel to the electric field and the solutions of the wave equation 

propagate with fixed polarization inside the crystal. In Fig.1.6(a) it is shown 
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an optical wave with an arbitrary polarization entering in a birefringent 

crystal with a k-vector non-parallel to the crystal axis. Inside the medium 

the ordinary and extraordinary polarization components split and follow two 

different propagation angles given by the different indexes of refraction for 

the two polarizations. In Fig.1.6(b) it is shown the diagram of the indexes of 

refraction varying the propagation direction inside such kind of crystal for 

both the ordinary and extraordinary polarizations and for both the FF and 

SH wavelengths. It is clear how it can be possible to found a particular 

propagation direction   where the ordinary polarized FF has the same 

index of refraction of the extraordinary polarized SH (in the case of negative 

uniaxial or vice versa for the positive uniaxial crystals). 

 

 

    (a)                                                          (b) 

Figure 1.6. (a) Scheme of the propagation of a generally polarized 

beam inside a birefringent crystal. (b) The indices' ellipsoid 

projection of a negative uniaxial (ne<n0) crystal. Propagation 

along the θ direction allows the PM condition ne(2ω)=n0(ω). 

 

 Another way, proposed for the first time by Armstrong et al. in 1962 

[Arm62], is the quasi-phase-matching (QPM) technique (although is was not 

experimentally obtained until 1992 [Fej92] to do technological reasons). It 

consists in periodically modulate the nonlinear coefficient of the material 

every coherence length. This is done by opportunely pooling the material 

with an external applied electrical field. Since the quadratic nonlinearity is 

given by a local displacement or asymmetry inside the crystal unit cell, the 

applied field forces the unit cell to rearrange in such a way to adapt its 
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polarization direction accordingly. In Fig.1.7 is reported a typical realization 

scheme for the case of LiNbO3. 

 

 

Figure 1.7. QPM technique scheme for a typical case of LiNbO3 

crystal. A photoresistive mask allows the change of the sign of 

the nonlinearity only inside selected regions. 

 

 

Figure 1.8. SH intensity for PM, non-PM and QPM strucures. By 

inverting the sign of χ(2) in the highlighted region it is possible to 

artificially recover the PM between the fundamental and SH 

waves, so that the generation gets larger by increasing the length 

of the crystal. 

 

 The presence of the chromatic dispersion implies that after a length of 

cl  a   phase difference sets in between the nonlinear polarization source 

term and the generated SH field. If the crystal length is larger than cl , the 

polarization interferes in a detrimental way with the SH field and the 

energy is converted back to the FF until a 2  difference of phase is reached. 

Using QPM, a   phase difference between FF and SH is artificially 

introduced at each multiple of cl  by periodically inverting the sign of (2) . 

In this way the phase difference always produce an energy transfer from the 
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FF to the SH, achieving efficiencies close to those obtained in phase-

matched crystals (see Fig.1.8). 

 QPM can be also understood in terms of momentum conservation. The 

phase mismatch is compensated through an external momentum provided 

by the material. It is given by the reciprocal nonlinear lattice vector G=π/
cl , 

that result from the periodic modulation of the medium and it can be shown 

that it applies directly in the PM relation as  

 0QPM    k k G .    (1.26) 

 Another PM mechanism, proposed by Bloembegen and Sievers [Blo70] 

and experimentally demonstrated by Van der Ziel et al. [Zie79], uses 

periodical distribution of dielectric materials to induce a bending of the 

photon dispersion curve near the SH frequency. It was shown that the 

effective coherence length may be increased and even perfect PM can be 

achieved at the band edge of a semiconductor multilayer structure. Sakoda 

et al. [Sak96] proposed in 1996 a 2D structure that allows both the PM and 

the increase of the fundamental and SH density of states. Looking at the 

expression (1.19), it is clear that the enhancement of the FF intensity 

increases the conversion efficiency. Before Sakoda, several studies have 

been conducted to embed the nonlinear source in a Fabry-Pérot cavity, in 

order to enhance the harmonic conversion efficiency. 

 External cavity configurations were early envisaged by Armstrong et 

al. [Arm62], and experimentally demonstrated in the pioneering paper of 

Ashkin et al. [Ash66]. To enhance the efficiency of the SHG generation 

further, doubly resonant cavities, i.e., resonant both at the pump and at the 

harmonic frequencies can be used [Ou93]. As far as a practical device was 

concerned, a monolithic concept of a doubly resonant cavity was desirable 

[Ber97], because of the practical aspects of compact size. However, in all 

these cases, the resonant properties were obtained in detriment of the PM 

condition. In this context, the work of Sakoda was of extreme importance, 

because for the first time it was proposed a solution that allows 

simultaneously PM and field enhancement at both, fundamental and 

harmonic frequencies. In 1997 Scalora et al. have also shown that an exact 

PM and, high localization and overlapping of fields can be achieved by 

exploiting the anomalous dispersion of finite one-dimensional periodic 
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structures, at the edges of their transmission band gaps [Sca97]. This work 

represented the first significant step into the direction of the integration of 

nonlinear optical devices. 

 

 

Figure 1.9. Iso-frequency curves for the fundamental wavelength 

(blue curve) inside the PC sketched in the inset. The black curves 

are the SH iso-frequency curves for k2ω/2. At points A and B the 

PM condition is fulfilled for specific angles of incidence.  

 

 Photonic crystals (PC) are structures where the linear index of 

refraction can be modulated along 1, 2 or 3 directions. As we saw in the 

previous section, the condition for an efficient SH conversion relies on 

matching the wave vectors at fundamental and SH frequencies. In the PC 

structures the consequent anisotropy of the dispersion curves provides a 

way to control the propagation direction of the generated harmonic. 

Moreover, in PCs the group velocity gv  and the wave vector k  are not 

necessarily collinear. As a result, in condition of PM, the SH generated field 

can propagate in a completely independent direction, depending on the 

structure of iso-frequency curves. For example, in [Cen06b] the author 

numerically demonstrates the angular and frequency SH superprism. A PC 

consisting in a rectangular lattice of air holes embedded in GaN was used. 

The iso-frequency curves of such a PC are shown in Fig.1.9. Small angular 

variations or a small wavelength detuning of the FF induces large shifts of 

the SH emission.  
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 SHG in supercollimating regime has also been recently studied [Nis08]. 

By exploiting flat regions of iso-frequency curves at both, fundamental and 

SH frequency, extremely narrow collimated beams (of the width of few 

wavelengths) can be used to enhance the SHG process in quadratic-

nonlinear photonic crystals. In conclusion, although a large number of works 

concerning SH have been published since its discovery, a meager quantity 

dealt with the emission control of the generated harmonics. This is probably 

due to the fact that the principal difficulty to overcome was historically the 

low conversion efficiency. 

 

2D Nonlinear photonic crystals 

 While the SHG in traditional PC is achieved by the zeroing of the 

phase mismatch Δk, another strategy could be to compensate it by adding 

external momentum and generalizing the idea of the QPM. The first 

detailed work on such idea was written only recently by Berger [Ber98] and 

we will faithfully refer to it throughout this overview. The resulting 

structure is the first step versus the 2D disordered nonlinear structures 

studied in the Part I. 

 Let us consider a two dimensional structure that present a space-

independent linear dielectric constant, but has a periodic second-order 

nonlinear coefficient.  These kinds of devices are better known in literature 

as nonlinear photonic crystals (NLPC). The 1D case of a NLPC is the well-

known QPM structure. In fig.1.10 it is shown schematically an example of a 

2D nonlinear structure under study. It reminds a 2D linear PC; in this case 

the linear susceptibility is constant but there is a spatial modulation of the 

χ(2) nonlinear susceptibility tensor.   

 Various demonstrations of QPM have been already performed (for a 

review, see [Fej92]). For instance, GaAs waveguides with periodic (100) and 

(-100) oriented zones were recently demonstrated [Yoo96], and periodically 

poled lithium niobate (PPLN) [Mye95] or periodic poled KTP [Kar97] have 

recently become some of the most attractive nonlinear materials for optical 

parametric oscillators.  
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 In 1D QPM structures, for GaAs waveguides as for PPLN, the 1D 

periodicity of the nonlinear susceptibility is defined by the design of a 

metallic grating. In the case of GaAs waveguides, the grating is used as a 

mask for a reactive ion etching step [Yoo96], and in the case of PPLN, the 

grating is an electrode for ferroelectric domain reversal. Though these 

techniques are very different, they both use a metallic grating, defined by 

electron-beam lithography, which defines the pattern of the QPM structure. 

Both techniques can be generalized to the 2D structure presented in 

Fig.1.10. 

 

 

Figure 1.10. Schematic picture of a 2D nonlinear crystal. The 

material presents a translation invariance perpendicular to the 

figure, and is invariant by translation in a 2D lattice (here a 

triangular lattice). The linear susceptibility is constant in the 

whole material but the sign of the second-order susceptibility χ(2) 

presents a given pattern in the unit cell [Ber98]. 

   

 Let us assume that a plane wave at the frequency ω propagates in the 

transverse plane of a 2D crystal that is perpendicular to the translation axis 

of the cylinders, of arbitrary section. Let us recall that the linear refractive 

index is constant in the whole structure. This ensures that multiple 

reflections, leading to PBG effects, are not present. In this 2D structure, the 

problem can be considered as scalar [Vil92], which simplifies the notations. 

For instance, in the case of a 2D PPLN crystal, fundamental and harmonic 

waves are TM polarized, i.e., with the electric field in the translational 

direction. Although they are constant in space, the linear dielectric 

constants are assumed to be different at ω and 2ω, this dispersion being the 

source of phase mismatch. An efficient SHG process in the χ(2) crystal is 
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obtained if a quasi-plane-wave at the harmonic frequency is observed to 

increase at a large scale, compared to the coherence length 
cl  and to the χ(2) 

period order. We already saw that the Eq.(1.18) well describe the evolution 

of the SH field under well-established approximations as SVEA and 

undepleted pump and for plane wave and quasi-plane waves. 

 The nonlinear susceptibility can be written as a Fourier series,  

 (2)

RL

( ) exp( )i 


    G

G

r G r             (1.27) 

where the sum is extended over the whole 2D reciprocal lattice (RL). Note 

the explicit dependence on the spatial coordinate r. Inserting this expression 

in Eq.(1.18), the increase of the SH field appears to be related to a sum of  

 2exp 2i    
 

k k G r . 

The QPM condition appears then as the expression of the momentum 

conservation. It corresponds to the generalized PM condition shown in 

Eq.(1.26) 

2 2 0   k k G           (1.28) 

For 1D QPM, the phase mismatch can be compensated in a structure of 

period d if the spatial frequency of the structure, 2/d, is equal to a multiple 

of the 
cl  [Fej92]. In contrast to this, QPM in a 2D χ(2) photonic crystal 

involves a momentum taken in the 2D RL. The possibilities of QPM are not 

only n-fold degenerate (thanks to the symmetry of the n-order lattice), but 

new QPM orders appear in the 2D crystal which are not multiples of the 

fundamental QPM process, opposite to the 1D situation. Two examples of 

2D QPM processes are shown in Fig.1.11 (left): the fundamental process, 

which involves the shortest possible G vector, and a 2D QPM process with a 

momentum transfer 3  times greater, which is impossible in a 1D 

structure. 

 The 2D QPM order can be labeled with two integer coordinates, given 

in the (G1, G2) basis of the RL. In Fig.1.11, for instance, 2D QPM processes of 

orders [1, 0] and [1, 1] are represented. However, the related conversion 

efficiencies depends on the Fourier coefficients of Eq.(1.27), which depends 

on the shape of the χ(2) pattern at the unit cell level, and is generally not the 

same for different vectors of equal modulus in the RL.  

 Using some trigonometry, Fig.1.11 leads to 



    

 

22 

2

2 2

2 2

2
1 4 sin

n n

n n

 


 


 

 
   

 G
   (1.29) 

    

Figure 1.11. (left) Reciprocal lattice of the structure of Fig.1.10, 

with the 2D QPM processes of order [1, 0] and [1, 1] shown 

schematically. The first Brillouin zone with the usual G, M, and 

K points is represented on the left. (right) Nonlinear Ewald 

construction: The center of the Ewald sphere is located |kω| 

away from the origin of the RL and the radius of the sphere is 

|k2ω|. If a point of the RL is located on the Ewald sphere, PM 

occurs for the SHG process [Ber98]. 

    

where 2  is the SH wavelength inside the material and 2  the walk-off 

angle between 
k  and 2

k . More generally, this equation gives the direction 

of coherent radiation at the wavelength 2  for a phased array of nonlinear 

dipoles having a phase relation fixed by the propagation of the pump. 

Eq.(1.29) appears then as a nonlinear Bragg law, and is a generalization for 

nonlinear optics of the Bragg law. It gives the direction of resonant 

scattering at the wavelength 2  of a plane wave with vector 
k  by a set of 

nonlinear dipoles. If the medium has no dispersion, 2n n  , Eq.(1.29) is 

reduced to the well known Bragg law, which expresses the resonant 

scattering direction by a periodic set of scatterers, 

4
sin 2 sind


   

G
 

where d is the period between two planes of scatterers. In the case 2n n  , 

the nonlinear emission follows the same behavior as a linear scattering: in 

both cases the direction of propagation is given by the Huyghens-Fresnel 

principle, given the phase relation between the scatterers. 
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 The analogy with x-ray diffraction by crystals is useful for 

understanding the different possibilities offered by 2D QPM. Fig.1.11 shows 

a modified Ewald construction corresponding to Eq.(1.29) [Ewa69]. This 

figure follows the same principle as the usual Ewald construction, except for 

the fact that the radius of the Ewald sphere 2| |
k  is greater than the 

distance | |
k  between its center and the origin of the RL. As in the case of 

x-ray diffraction, for a given pump wave vector 
k , there is in general no 

reciprocal vector 2| |
k  on the Ewald sphere. This means that the 2D QPM 

is a resonant process which can be obtained by varying either the angle of 

propagation of the pump or the wavelength. It is interesting to note that for 

specific angles and wavelengths several points can be located 

simultaneously on the Ewald sphere. In such a case of multiple resonances, 

SH beams can be generated simultaneously in different directions in the 

plane, in a similar way as the linear diffraction in several order beams by a 

diffraction grating.  

 Multiple resonances were already observed in the QPM SHG spectrum 

arising from the different reciprocal vectors Gm,n of the quasi-periodic optical 

superlattice. The 2D RL indexing of the quasi-periodic 1D structure is the 

fundamental difference from the usual 1D periodic structure, and this 

difference is the reason for multi-wavelength frequency conversion. The 2D 

indexing comes from the fact that the 1D quasi-periodic lattice is nothing 

but the projection of a 2D periodic crystal on a 1D axis. This follows the well 

known geometrical construction of quasi-crystalline structures.  

 

Third harmonic generation 

 Another important set of nonlinear effects are those leading to the 

third harmonic (TH) generation. This can be obtained directly due to the 

cubic nonlinearity of the material and/or due to the combination of 

fundamental and SH beams still via the quadratic nonlinearity, the so 

called cascaded third harmonic generation (THG). In the first case three 

photons of the FF annihilate to create directly a TH photon (ω+ω+ω 3ω). In 

the second case a two-step process occurs: first two photons of the FF 
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annihilate to create a SH photon  (ω+ω2ω) and then one photon from the 

FF and one photon from the SH combine to create a TH photon (ω+2ω3ω). 

 From Eq.(1.2) it is possible, with little effort, to derive some of the 

consequences of the inclusion of the (3)  in the expansion of the relation 

between the electric and the induced polarization fields. As we saw in (1.6), 

the term (3)  is in general a 3+1 order tensor. This notwithstanding, for the 

purpose of this work and considering the values of the crystals we will use, 

we can adopt the isotropic assumption and take it as a scalar.  We now 

consider a nonlinear polarization made by second and third order terms of 

the Eq.(1.2): 
(2) 2 (3)

0 0

3( ) ( ) ( )NLP t E t E t                  (1.30) 

and a total field of the form 
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By substituting the Eq.(1.31) into the Eq.(1.30) we find: 
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   (1.32) 

In this expression we took only the leading terms considering that the SH 

and TH fields are far less intense with respect to the FF. 

 We see from Eq.(1.32) that new physical processes arise due to the 

contribution of the first two harmonics ( 1E  and 2E ) to the third one ( 3E ) and 

vice versa. The most famous effect is the intensity dependent refractive 

index due to the term 2(3)

1 1| |E E  where the FF acts directly on itself 

producing a local variation of the index of refraction proportional to its 

intensity. To practically appreciate this effect taking into account typical 

values of (3) , propagation distances much longer than the typical crystal 

length used in this work are needed. 

 Our attention, on the other hand, is focused on the two terms  

13 (2) (3)

0 1 2

3

12
i t

e E E E
   

    

representing a driving field at a the frequency 13 . The first one is 

responsible of the cascaded THG, and the second one of the proper THG. In 

the first one, the generation of the field with three times the fundamental 
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wavelength is the result of the mutual interaction of the first two harmonics 

fields via the quadratic nonlinearity of the material.  This is a purely (2)  

effect. In the second one the THG is the result of only the fundamental beam 

via the third order nonlinearity. In principle the TH can be generated from 

the two sources at the same time and the effects can be linearly 

superimposed. Usually the two following situations occur: 1) the material 

presents inversion symmetry, (2) 0  , thus there is only THG; 2) the 

material has a non null (2) value. In this case the cascaded THG is 

generally predominant.  

 Now the PM relation can be generalized as follow 

3

3

2 1

2 1

1

2 0

0

03

SH

TH
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  

 







k k k

k k k k

k k k

    (1.33) 

Note that the PM condition is different for the two THG processes since in 

general ΔkTH ≠ ΔkcascTH. All the discussions made on the previous paragraphs 

are easily extended. For example, in the case of collinear interaction of all 

fields, we can define three coherence lengths 
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that give us an idea on the behavior of each interaction. The smaller is the 

k , the longer is the propagation distance where the energy flow keeps the 

monotonic growing behavior for such interaction. The relations (1.33) are in 

general vectorial, thus any combination of those vectors in the space will be 

useful to achieve a PM situation. As we already saw, they are momentum 

conservation relations. From this point of view k  represents a missing 

momentum that we can externally provide to the interaction. To add 

momentum we need to include an oscillating action of an appropriate 

frequency and, as we saw before, for example the way the QPM technique 

pursues is to physically alternate the sign of quadratic nonlinearity of the 

crystals. This is not the ideal solution, since the square wave modulation 
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will introduce higher orders perturbations, but so far it is the only way to 

practically realize it.  

 

 

1.2. Ferroelectric materials 

 NLPCs can be artificially produced, with the same tecniques of the 1D 

QPM. Despite of this, in this work we are more interested in the naturally 

occurrences of the nonlinear domains inversion, for reasons that will be 

clear in the next Chapter. The best case of such as-grown nonlinear 

structures is represented by the ferroelectric crystals. Even if they are more 

often studied for their linear properties of spontaneous polarization, the root 

of the nonlinear properties dwells in the same ground. We will thus briefly 

introduce here a typical linear description of these crystals. For a deeper 

study the reader can refer for example to the DoITPoMS website 

(Dissemination of IT for the Promotion of Materials Science), of the 

University of Cambridge, from which this paragraph draws on information 

from. 

 The ferroelectric effect was first observed by Valasek in 1920 [Val20], 

in the Rochelle salt. This has molecular formula KNaC4H4O6·4H2O. The 

effect was then not considered for some time, and it wasn't until a few 

decades ago that they came into great use. Nowadays, ferroelectric 

materials are used widely, mainly in memory applications. To be 

ferroelectric, a material must possess a spontaneous dipole moment that can 

be switched in an applied electric field, i.e. spontaneous switchable 

polarisation. This is found when two particles of charge q are separated by 

some distance r. The dipole moment μ is thus μ = qr. 

 In a ferroelectric material, there is a net permanent dipole moment, 

which comes from the vector sum of dipole moments in each unit cell, Σμ. 

This means that it cannot exist in a structure that has a centre of 

symmetry, as any dipole moment generated in one direction would be forced 

by symmetry to be zero. Therefore, ferroelectrics must be non-

centrosymmetric. This is not the only requirement however. There must also 



Chapter 1.  Introduction 

 

 27 

be a spontaneous local dipole moment which can leads to a macroscopic 

polarisation, but not necessarily if there are domains that cancel completely. 

This means that the central atom must be in a non-equilibrium position. For 

example, consider an atom in a tetrahedral interstice as in Fig.1.12. 

 In Fig.1.12(a) the structure is said to be non-polar. There is no 

displacement of the central atom, and no net dipole moment. In Fig.1.12(b) 

the central atom is displaced and the structure is polar. There is now an 

inherent dipole moment in the structure. This results in a polarisation, 

which may be defined as the total dipole moment per unit volume, i.e. P= 

Σμ/V. When the materials that are polarised along a unique crystallographic 

direction, certain atoms are displaced only along this axis, leading to a 

dipole moment along it. But, depending on the crystal system, there may be 

few or many possible displacing axes.  

 

 

Figure.1.12. An example of tetrahedral crystal stucture. In (a) the 

central atom is exaclty centrally located while in (b) it is slightly 

displaced. As a consequence the crystal will be polar. 

 

 Since it is the most common and easy to see, let us examine a 

tetragonal system that BaTiO3 forms when cooled from the high 

temperature cubic phase, through the Curie temperature (Tc=120°C). In this 

system, the dipole moment can lie in 6 possible directions corresponding to 

the original cubic axes. In a ferroelectric crystal, it is likely that dipole 

moments of the unit cells in one region lie along one of the possible six 

directions while the dipole moments in another region lie in a different one. 

Each of these regions is called a domain, and a cross section through a 

crystal can look like as sketched in Fig.1.13. 
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 A domain is a homogenous region of a ferroelectric crystal, in which all 

of the dipole moments in adjacent unit cells have the same orientation. In a 

newly-grown single crystal, there will be many domains, with individual 

polarisations such that there is no overall polarisation. The polarisation of 

individual domains is organised such that polarization vector heads are held 

near the neighbouring tails (Fig.1.13). This leads to a reduction in stray 

field energy, because there are fewer isolated heads and tails of domains. 

This is analogous to the strain energy reduction found in dislocation 

stacking. Domain boundaries are arranged so that the dipole moments of 

individual domains meet at either 90° or 180°. In a polycrystal, where there 

are more than one crystallographic grain, the arrangement of domains 

depends on grain size. If the grains are fine (<<1μm), then there is usually 

found to be one domain per grain. In larger grains there can be more than 

one domain in each grain. Fig.1.13 shows a micrograph of the domains in a 

single grain. In this grain, the domains are twinned in such a way as to 

reduce the overall stray electric field energy. 

 

           
Figure 1.13. (left) Sketch of the domains formation when a 

ferroelectric crystal is cooled down to the Curie temperature. 

(right) Micrograph of the domains in a single grain This 

micrograph is reproduced from the DoITPoMS Micrograph 

Library. 

 

 In the presence of an external electric field E  a polarised material 

lowers its energy by P E  , beeing P  the polarisation. Any dipole moment 

which lies parallel to the electric field lowers its energy, while moments that 

lie perpendicular to the field increase its energy and moments that lie anti-

parallel are even higher in energy ( P E ). This introduces a driving force to 
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minimise the free energy, such that all dipole moments align with the 

electric field. 

 Let us start by considering how dipole moments may align in zero 

applied field; since the horizontal direction is crystallographically unique, 

the dipole moment is stable either aligned to the left of to the right. These 

two moments are stable, because they sit in potential energy walls. The 

potential barrier between them can be represented on a free energy diagram 

(Fig.1.14). This material is considered to be homogenous. 

 If the polarisation points left then we have the situation in fig.1.14(a). 

The electric field consequently alters the energy profile, resulting in a 

“tilting” of the potential well, Fig.1.14(b). An increase in the electric field 

will result in a greater tilt, and lead to the dipole moments switching, 

Fig.1.14(c). 

 

 

Figure 1.14. Free energy diagram. This scheme represents the 

potential barrier between the two stable positions (left and right 

versus on the horizontal direction) of the dipole moments.  

 

 

Figure 1.15. Snapshot of the inhomogenous nucleation process 

that happen when a reversed external electric field Eext is applied 

on a fully polarized crystal. The arrows represent the local 

direction of the polarization. 

 

 We can now look at the more realistic scenario in which domains form. 

Consider a material which is fully polarised, so that all of the dipole 
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moments are aligned in the same direction. Then if we apply a reversed 

electric field over it, new domains with a reversed polarisation starts to 

nucleate inhomogenously. This requires a certain amount of time, in the 

same manner as any nucleation process. When the fluctuating nuclei reach 

a certain critical radius, they grow outwards, forming needle-like structures. 

When they reach the other side of the ferroelectric, they begin to grow 

outwards (Fig.1.15). 

 This dynamics explains the origin of the hysteresis loop. The removal of 

the field will leave some polarisation behind. Only when the field is 

reversed, also the polarisation starts to lessen and new, oppositely poled, 

domains form. They grow quickly however, giving a large change of 

polarisation for very little electric field. But to form an entirely reversed 

material, a large switching field is required. This is mainly due to defects in 

the crystal structure but it is also due to stray field energy. The polarisation 

of the material goes from a coupled pattern, with 180° boundaries, to a state 

in which many heads and tails are separated. This leads to the increase in 

stray field energy. Therefore, to attain this state, lots of energy has to be put 

in by a larger field. In Fig.1.16 it is shown how a minor hysteresis loop fits 

into the major loop above. There are three sections to this curve: 1)reversible 

domain wall motion; 2) linear growth of new domains; 3) new domains 

reaching the limit of their growth. 

 

 

Figure 1.16. Hysteresis loop due to the nucleation process. It is 

possible to distinguish three sections: 1)reversible domain wall 

motion; 2) linear growth of new domains; 3) new domains 

reaching the limit of their growth. 

 

 Let us consider one of the most well-known ferroelectrics, barium 

titanate, (BaTiO3). In Fig.1.17 it is shown its crystallographic strucure. The 

temperature TC at which the spontaneous polarisation disappears is 120º. 
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Above TC, barium titanate has a cubic structure. This means it is centro-

symmetric and possesses no spontaneous dipole. With no dipole the material 

behaves like a simple dielectric, giving a linear polarisation. Below TC, it 

changes to a tetragonal phase, with an accompanying movement of the 

atoms. The movement of Ti atoms inside the O6 octahedra may be 

considered to be significantly responsible for the dipole moment. 

 

 

Figure 1.17.  Crystallographic strucure of the barium titanate 

(BaTiO3). The oxygen (blue) and titanium (red) atoms surround 

the barium (black) atom. On the left are reported the a,b and c 

lattice parameters and on the right is highlighted the 

octahedronal structure that the O6 atoms form around the Ti 

atom. 

 

 Cooling through TC causes the cubic phase of barium titanate to 

transform to a tetragonal phase with the lengthening of the c lattice 

parameter (and a corresponding reduction in a and b). The dipole moment 

may be considered to arise primarily due to the movement of Ti atoms with 

respect to the O atoms in the same plane, but the movement of the other O 

atoms (i.e. those O atoms above and below Ti atoms) and the Ba atoms is 

also relevant. The switching to a cubic structure is the reason for the 

polarisation spontaneously disappearing above TC.  

 Barium titanate has two other phase transitions when we cool it 

further, each of which enhances the dipole moment. The phase which is 

reached after cooling to ~0°C from tetragonal is orthorhombic. And then 

rhombohedral below -90°C. All of these ferroelectric phases have a 

spontaneous polarisation based to a significant extent on movement of the 

Ti atom in the O6 octahedra represented in Fig.1.18. 
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 In conclusion, their intrisic propertiy to be non-centrosymmetric makes 

the ferroelectric crystals good candidate to possess non vanishing quadratic 

nonlinearity. The movement of the central atom is responsible of the 

breaking of the traslational symetry along one certain line. If the nucleation 

of the domains happens to be with an opposite polarization direction along 

this same line, there is little influence on the linear properties of the 

material, being both verses stable positions for the free energy diagram. 

However, fixing an external reference (for example an external linearly 

polarized electrical field), the sign of the χ(2) nonlinearity appears to change 

value along with the change of the direction of the spontaneous polarization. 

 

 

Figure 1.18. Spontaneous polarisation corresponding to the 

different phase transitions of the BaTiO3. The direction of the 

polarization is given by the direction of the movement of the Ti 

atom. 

 

 

1.3. Numerical tools 

 The field of the nonlinear optics is characterized by a high degree of 

complexity that does not allow many analytical solutions for the equations 

ruling the propagation. Few exceptions can be reported in the case of plane 

waves and easy modulation of the material properties. To have a more 

realistic representation of the light interaction and to have a large degree of 

freedom in the design of the linear and nonlinear properties of the material, 

one needs to resort to a numerical approach. However this is not a unique 
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choice, but, depending by the actual type of interaction, it needs to be 

carefully selected considering its approximations and assumptions. 

 The role of the numerical calculations in this thesis work is crucial. On 

one side (Part II), it was important to have a numerical correspondence and 

confirmation of the forecast made on simple PM schemes or statistical 

methods. On the other side (Part III), the experiments were not even 

thinkable without a prior numerical study of the phenomenon. For these 

reasons, we want to briefly explain here the strategy and the practical 

numerical set-up we used, even if a detailed description is outside the scope 

of this work.  

 The set of equations (and their mathematical form) chosen to describe 

the physics is strictly related with the following numerical method selected 

to resolve them.  In the next section we present a derivation of the 

Maxwell’s equations for the pulsed regime, in contrast to the more common 

plane wave approach used in text so far. For the sake of clarity they will be 

first considered in a one-dimension space domain plus the time coordinate 

and with specific assumptions and approximations. Even this form of the 

equations has a good validity and it has been widely used in other works, it 

is not the final form we used throughout this work.  

 It follows a schematic description of the numerical technique that we 

use to numerically solve this equations system. The method is called split 

step time domain Fast Fourier Transformed Beam Propagation Method 

(split step FFT-BPM) and has been manually implemented. As it will be 

clear later in the text, it presents both advantages and drawbacks respect to 

other more used numerical methods (such as for example Finite Difference 

Time Domain, FDTD), but it can reach the same level of accuracy. The main 

advantage is its easy nonlinear customization depending on the actual 

propagation characteristics. 

 Finally, in the following section, we will introduce the real and 

complete set of equations we solved for the purposes of this work. 

 It is worth noting that we did not resort to the very common SVEA 

because in critical situations, as for example propagation at big angles or 

examination of new phenomena, it can bring to numerical artifacts that are 

hardly separable from the physics results.  
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Equations in pulsed regime 

 We chose 0 =1m as the reference wavelength and adopt the following 

scaling: 0/z   is the scaled longitudinal coordinate; 0/ct   is the 

time in units of the optical cycle; 2   is the scaled wave vector; 

0/    is the scaled frequency, and 0 02 /c   , where c is the speed 

of light in vacuum. Gaussian units will be used in this section. We assume 

the fields can be decomposed as a superposition of harmonics with envelope 

and fast oscillating terms, of the type 
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   (1.34) 

with 1,2,3  for the first three harmonics respectively. Moreover, the 

displacement field may be related to the electric field by expanding the 

complex dielectric function as a Taylor’s series in the usual way:  
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(1.35) 

It follows that a simple constitutive relation may be written to relate each harmonic to 

its relative displacement field, and it is relatively easy to show that [Lan60]:  
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(1.36) 

Substituting the field description like in (1.34) and taking into account 

(1.35) and (1.36), in scaled form Maxwell's equations for the 
th

 harmonic 

take the following form: 
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and the symbol ' denotes a derivative with respect to frequency; together 

with   and     and   are also complex functions of frequency 

and of the spatial coordinate. Moreover, in deriving Eqs.(1.37) we have 

assumed that the background medium is isotropic, and that pulses do not 

diffract. The latter restriction simply means that transverse beam width 

remains many wavelengths wide at all times. This limitation can easily be 

lifted by allowing the fields to vary along the transverse coordinate [Sca05, 

Sca05b, Sca05c, Sca06, Sca06b]. More importantly, our description of the 

fields as the product of an envelope function and a carrier wave vector and 

frequency is a mere matter of convenience, primarily because it allows one 

to follow the detailed dynamics of each harmonic, and to explore the impact 

of each term on the dynamics.  However, it should be noted that although 

this field decomposition constitutes the foundation of the SVEA, it should 

not per se be misconstrued as an approximation, because (1.34) do not yet 

contain restrictions on the envelope functions. 

 While in principle the number of linear dispersion terms (temporal 

derivatives of the fields) and/or the number of harmonics one retains to 

describe the system may be arbitrarily large, in practice one must work with 

a finite number of them. Of course, truncating the number of time 

derivatives or the number of harmonics is equivalent to making some kind 

of approximation.   
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Figure 1.19. Dispersion relation of GaAs. Note that in whole 

intesting range we can approximate the group velocity Vg relation 

with a first order Taylor’s expansion. The second order dispersion 

length, gives an idea to estimate when the second order effect 

become important. It can be of the order of centimeters or meters 

for typical interaction values. 

 

 Using this approach, we typically consider a medium only a few 

hundred wavelengths thick. Under these conditions, it is more than 

sufficient to neglect third and higher harmonics, and to neglect second and 

higher temporal derivatives that arise from linear material dispersion 

(Fig.1.19). Therefore, it is clear that the calculations may be simplified by 

truncating nonlinear polarization term at the SH fields without appreciably 

impacting the dynamics. 

 In terms of linear material dispersion, typical material dispersions 

and/or relatively short propagation distances make it possible to neglect 

second and higher order temporal derivatives, without the need to perform a 

SVEA in time [Sca06, Sca97, Cen01]. That is to say, it can easily be 

demonstrated that in the visible range and near IR ranges, for typical 

dielectric and semiconductor materials the second order dispersion length, 

defined as  

(2) 2~ / | '' |
D pL k , 

where p is pulse duration and 
2 2'' /k d k d , can easily be a few 

centimeters for a pulse only a few tens of femtoseconds in duration. After 
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these considerations, the dielectric constant in Eq.(1.35) can be accurately 

represented by the first two leading terms, even if a pulse were only a few 

optical cycles in duration. Of course, the truncation of (1.35) at the second 

term becomes a material characterization, not an approximation imposed on 

the envelope function. Therefore, under most circumstances of interest that 

involve pulse propagation in relatively thin media, (1.37) may safely and 

accurately be recast as follows [Sca06]: 

 

 

,

ω
ω,ξ ω lω

E H P
E H 4 P

H E
β H E .

i i

i

  
     




    
  

 
 

   
     

   

 
  

 

  (1.38) 

 In summary, in addition to the assumptions that the linear background 

medium is isotropic and diffraction is neglected, the final Eqs.(1.38) for the 

th
 harmonic contain the following simplifications: (i) second and higher-

order, linear material dispersion terms are neglected; (ii) third and higher 

harmonics are also neglected. As written, (1.38) provide an accurate 

physical picture of the dynamics, including boundary conditions and all 

orders of reflections, even for pulses that are just a few wave cycles in 

duration.  

 The integration of (1.38) is carried out for pulses whose durations 

varied from a few optical cycles up to several picoseconds, with 

indistinguishable results in all cases investigated. In addition to having 

more control over each term, Maxwell’s Eqs.(1.38) are written in a form that 

allows the use of the classic fast Fourier transform, beam propagation 

method [Sca94], appropriately modified to include all orders of reflections 

and feedback in the time domain. The advantage to use a spectral method is 

mainly that in the transformed domain it involves only multiplication of 

linear operators; it is unconditionally stable, with no known issues relating 

to phase or amplitude errors, and thus not prone to the generation of any 

numerical artifacts; it can easily be extended also to the multidimensional 

domain almost effortlessly [Sca05b, Sca05c].  
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Split step FFT beam propagation method  

 In this section we explain the solving algorithm used to solve Eqs.(1.38) 

following the seminal work in [Sca94]. For simplicity, we will treat only the 

first two harmonics 1,2 . For this reasons the start point is a system of 

four coupled equations for the electric and magnetic fields of the 

fundamental pulse, at ω frequency, and the SH pulse, at 2ω frequency: 

 

 

 

 

2 2 2
2 2 2 2

2 2
2 2 2

E H P
E H 4 i P

H E
H E

E H P
2 E H 4 2i P

H E
2 H E

i

i

i

i

  
   

 
  

  
   

 
  

    
  

  
 

    
  

  
 

   
     

   

 
  

 

   
     

   

 
  

 

    (1.39) 

 They include the effects of dispersion and the quadratic nonlinear term 

that are responsible of the coupling between the first and third equations. 

The couplings between the first and the second and between the third and 

the fourth equations are due to the intrinsic tridimensional nature of 

Maxwell’s equations. In fact our case is only a special case of general pulse 

propagation feature if we consider a TEM polarization with electric field 

along x-axis during normal incidence. In all this treatment the indications of 

the spatial and temporal dependence are dropped except when they are 

necessary for the comprehension. 

 We will focus our attention only in the first equation, being with a 

similar procedure for the others. With a simple handling the first of (1.39) 

becomes 

(2) *

2H H 4 E E1 1
E E

E E E

i
i   

 

   

 
 

  

  
      

    
  (1.40) 

where we have expressed the nonlinear term and neglected its temporal 

derivative. It is possible to show that this term does not affect the accuracy 

of the method for a pulse at least longer than some optical cycles. Formally 

it is possible to recast Eq.(1.40) as 
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1 ˆ ˆE ED V 

 


  
 

   (1.41) 

where 

(2) *

2

H1ˆ
E

H 4 E Eˆ
E E

D

i
V i





  

 



 
 


 



 
   

 

 

are particular operators referred respectively to a propagation in the free 

space and in the medium. The solution of (1.41) has the form   

   
1 ˆ ˆE , E , expz d z D V dt 



  


 
     

 
 

that, at first order becomes 

   
 

    2

E ,
E , E ,

1 ˆ ˆE , E , ( ).

z
z d z d

z D V z d d



 

 




   



   



   



    
 

 

If now we sum and subtract the term  E , /z    it takes the following 

form 

   
   2

E ,1 ˆ ˆE , E , 1 1 ( )
z

z d z D V d d


 

 


    

 

 
          

 
 

that is, at the second order, the same as 

      ˆ ˆ1 1
E , E , 1 E ,V d Ddz d z e e z 

  

 

   
 

 
    

 
. 

Operator D̂  involves a spatial derivative and it can be evaluated in the 

spatial Fourier domain  

Hˆ

E
D ik 





  , 

thus, the full integration step is 
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 

 
 



 

 
          

 

 (1.42) 

Thank to this formulation it is possible now to split the problem in three 

steps: i) propagation in free space, accounting for the operator D̂ , ii) 

propagation in nonlinear medium, accounting for the operator V̂  and iii) 

counting of the dispersive effect through the factor  . All the equations of 

the set (1.39) need to be casted in this form and integrated at the same time. 

The detailed numerical treatment of the integration strategy can be 

somewhat tedious and it is outside the scope of this thesis work. This 

notwithstanding, we want to give a hint at least on how the free space 

propagation step is integrated. 

 We can start from the observation that the solution 
ˆ(1)E ( , ) E( ,0) Ddq d q e    of the equation ˆ/E DE    can be expressed 

in the form 

 (1)

0

ˆE ( , ) E( ,0) E( , ') 'q q D q d



       (1.43) 

where q is the transformed spatial coordinate. The integral represents the 

area under the curve ˆ E( , )D q   between the two times 0 and τ.  If we 

consider a time step 1d  , the eq.(1.43) can be written as 

  (1) ( , ) ( ,0) ( , ) ( ,0)
2

ikd
E q d E q H q d H q


    (1.44) 

with a second order error. From the second of the Eqs.(1.39) we can obtain a 

similar equation for the H field 

  (1) ( , ) ( ,0) ( , ) ( ,0)
2

ik d
H q d H q E q d E q


   .      (1.45) 

Substituting (1.45) into (1.44), after some algebraic manipulation we finally 

have 

 
   

2 2

(1)

2 2 2 2

1 / 4 ( , )
( , ) ( , )

1 / 4 1 / 4

ik d ik d H q
E q d E q

ik d ik
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  

 


 

 
 (1.46) 

where the field at the time step d   is fully calculated with fields 

quantities at time  .     
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Full vectorial equations 

 To maintain a high degree of generality we have performed numerical 

simulations of pulse propagation with a Maxwell-Lorentz system of 

equations in two dimensions, without resorting to either slowly varying or 

undepleted pump approximations. The numerical model is similar to that 

used in previous section with the addition of a transverse coordinate to 

include diffraction and propagation in a two-dimensional plane. In the 

previous paragraph the modeling of the material characteristics was limited 

to the inclusion in the equations system of only the first two orders of the 

material dispersion. Throughout this thesis work we actually include all 

higher order dispersion terms by adopting a more generic Lorentz oscillator 

model to describe material dispersion and, for simplicity, we assume a TM-

polarized incident pump and generated fields. Depending on the actual case 

treated (namely the nonlinear tensor of the crystal used) different 

interactions can be implemented. In a two-dimensional propagation domain 

this means we will have an electromagnetic field composed by two electric 

components along the plane (y, z) and one magnetic component along the 

direction x perpendicular to the plane and to the material interface. In a 

very general way, the fields may be written as a superposition of harmonics 

as follows: 
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l l
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E E

(1.47) 

where ( , , )x z y t
H , ( , , )y z y t

E  and ( , , )z z y t
E  are generic, spatially- and 

temporally-dependent, complex envelope functions; k and ω are carrier wave 

vector and frequency, respectively, and  is an integer.  As we already 

stated, these equations are a convenient representation of the fields, and no 

a priori assumptions are made about the field envelopes. We have also 

assumed that a TM-polarized incident field generates similarly polarized 

harmonics. The linear response of the medium induced by an external 

applied field is described by a Lorentz oscillator model [Lor06]: 
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2
2

0

Ne

m
   P P P E .   (1.48) 

The solution in Fourier space is given by 

2

2 2
( ) 1

p

ri


 

  
 

 
 

We have assumed that   

( ) 1   . 

The parameters  , 
p , and 

r are the damping coefficient, the plasma and 

resonance frequencies, respectively. This model is not restrictive and 

different equations can be added, for example, to model negative index 

materials that require a magnetic response. The second and third order 

nonlinear polarization is assumed to be 

 (2) 2 (3) 3

0 0NL     P E E .       (1.49) 

As an example, each field component yields nonlinear polarization terms at 

the fundamental and harmonics frequencies as follows:  
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(1.50) 

 Assuming that polarization and currents may be decomposed as in 

Eqs.(1.47), we obtain the following 2D Maxwell-Lorentz system of equations 

for the 
th

 field components, in the scaled two-dimensional space ( ,~y ) plus 

time ( ) coordinate system: 
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                  (1.51) 

 In Eqs.(1.51), the functions NLJ,  P,  P  refer to linear electric currents, 

polarization, and nonlinear polarization, respectively. The coordinates are 

scaled so that 
0/z   , 

0/y y  , 
0/ct  , 

0 02 /c   , where 
0 1 m   is 

just reference wavelength; , 
02 /    ,  

02 /r r   , 
p , are the 

scaled damping coefficient, wave-vector, resonance and electric plasma 

frequencies for the 
th

 harmonic, respectively. 
i  is the angle of incidence of 

the pump field. The equations are solved using the split step FFT-BPM that 

advances the fields in time. Its strategy has been just explained in the 

previous section. Since the oscillator’s equations are solved simultaneously 

with Maxwell’s equations through the coupling action of the terms y

E  and 

z

E , all orders of material dispersion are taken into account.  Furthermore, 

no explicit boundary conditions are required because they are implicitly 

included in the solution of the equations.  
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Part I 

Chapter 2 
 

SHG in disordered 

nonlinear domains 

structures 

 

2.1. State of the art 

 In Chapter 1 we saw that, out of the PM condition, the generated SH 

field propagates in the material with different phase velocity with respect to 

the FF. In addition, when beam and/or pulsed propagation are considered, 

the different directions of the k-vectors and/or the different group velocities 

will make the SH inevitably walk-off (spatially or temporally) by the FF 

after a certain time. This directly interrupts the SH energy provision. Some 



 

 

46 

studies tried to compensate, for example, the temporal dispersion by 

engineering material dispersion slope to modify the pulse group velocity. 

Fortunately, in the majority of the cases the spatial extension of the 

pulses/beams is bigger, or at least of the same order, than the samples 

dimension. In this case there is not enough time/space for the walk-off to 

happen. To give a rough idea, a 3 nanoseconds pulse is of the order of one 

meter in spatial extension and a 3 picoseconds pulse is of the order o 1mm. 

 The main issue to assess is thus the phase velocities difference, and 

this is what we are really interested in. This difference results from the 

normal dispersion of the material that imposes different refractive indices at 

the two wavelengths. The parameter that better gives us the idea of the 

scale of this phenomenon is the coherence length. After one coherence 

length from the material entry surface, the two harmonic beams have 

already completely lost their phase synchronization and the energy of the 

generated SH cannot be further increased. Moreover, during the second 

coherence length the SH energy return back to the FF. Depending on the 

material and on the tuning of the beam, the coherence length can sensibly 

vary, but it is always on the micro- or even nano-scale, and the bulk 

efficiency of the generated SH outside the PM condition unlikely reaches 

appreciable values. 

 As outlined in Chapter 1, one of the well known methods to go beyond 

this limit is the QPM technique. It was practically achieved for the first time 

by Fejer et al. [Fej92]. By periodically changing the sign of the quadratic 

nonlinearity one can externally correct the phase delay of the SH every 

coherence length distance during the propagation. This allows a mono-

directional energy flow from the FF to the SH. While the high efficiency of 

the method is not under discussion, we want to underline here some of the 

drawbacks. For example, it is clear that a crystal can be pooled (namely 

quasi-phase-matched) only for one specific wavelength interaction and for 

one nonlinear process each time. The QPM bandwidth is in general very 

narrow and it makes the overall alignment and tuning processes very 

critical. For this reason also, the method is thought to be proficient with 

continuous wave, while it loses nominal efficiency with short pulsed 
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interaction where the spectral bandwidth can span up to hundreds of 

nanometers.  

 During last ten years several attempts were made to gain some degree 

of freedom trying to obtain large bandwidth keeping, at the same time, the 

SH conversion efficiency at reasonable levels. An easy modification of the 

classical QPM technique consists in superimpose different periodicities 

along the one dimensional poling. Alternatively it is also possible to play 

with the frequency chirp and/or duty factor of the nonlinearity’s variation 

(see for example [Ari10] for a complete review). However, the most 

important achievement was probably the stepping from an intrinsic 1D 

QPM geometry to a more feasible 2D geometry, introducing the NLPC 

[Ber98] (see Chapter 1). Here the periodicity is spread in a two dimensional 

plane. For this reason, to be fully characterized, it needs not only a 

reciprocal vector (RV) value but also a RV direction. The generation process 

is more complex because different RVs G with different directions and 

magnitudes can contribute either to the same interaction or facilitating 

different SH emission. The main difference with the classical QPM is 

essentially that the NLPCs allow the SHG at different (designable) angles. 

To loose the constrain of the (still present) narrow bandwidth, some authors 

proposed the introduction of some degree of disorder in the perfectly ordered 

poled structure. For example in [She07] the square-based periodicity of the 

nonlinear pooling was rotationally perturbated with a random rotation of 

the unit cell (see Fig.2.1).  

 

 

Figure 2.1. (a) Micrograph of etched domain structure used in [She07], 

(b)reciprocal vectors detected with He–Ne laser, (c) Schematic picture showing 

how the short-range ordered structure is created by placing randomly oriented 

basic units on a square lattice of period b [She07]. 
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 The result is that the RVs distribution acquires an effective relatively 

broad area that can be used to PM more easily the SH interaction. At this 

stage, the position of the reversed nonlinear domains forming the pseudo-

periodicity still needs to be somehow designed. This requires an effort that 

can be not negligible for long samples and for in-series production devices. 

On the other side, the broadening of the G vectors spectrum can be still not 

enough to reach that degree of freedom as ideally desired. 

 The last step that connects this branch of investigation to the present 

work was the discovery of the fact that the domains the ferroelectric crystals 

naturally present (see Chapter 1) are not only regions where the linear 

polarization assumes an opposite direction. Even if this does not change the 

linear index of refraction, it affects as a consequence also the nonlinear 

polarization. The sign of the χ(2) keeps alternating throughout the sample 

along the change of the direction of the linear polarization. This is true only 

for the as-grown crystal, namely without any artificial poling subsequent to 

their growing. Since the linear value of the index of refraction is 

homogeneous, in last analysis we can refer to these materials as quadratic 

NLPC consisting of antiparallel ferroelectric nonlinear domains with 

randomized sizes and positions. In the next section we are going to overview 

their main characteristics and the experimental set-up where they are 

typically used. 

 

 

2.2. Random nonlinear domains crystals 

 One of the ferroelectric crystal that posses random inverted nonlinear 

domain is Strontium Barium Niobate (SBN). This crystal shows needle-like 

domains distributed parallel to the optical axis. Fig.2.2 shows different 

views of such crystal obtained by different techniques. The pictures show 

the domain structure of the crystal as it grows naturally in chemical 

laboratories. In the first case (left) the boundaries of the domains have been 

made visible by selective chemically etching the surface of the sample 

[Ber98b, Mol08]. In the second case (right) the graphs were obtained by 
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using the SH nonlinear microscopy [She10]. The figures depict the domain 

structure as seen perpendicular (first row) and along (second row) to the 

optical c-axis which coincides with the longer dimension of the domains. 

 

 

Figure 2.2. (left) Optical micrograph revealing the 2D distribution of the 

alternate ferroelectric domains on the a–b plane (perpendicular to the c axis, on 

the top) and along c-axis (on the bottom) of a SBN crystal after selective 

chemical etching [Mol08]. (right) multi-domain structure of another SBN 

sample as visualized by the SH nonlinear microscopy; viewing area 

perpendicular (top) and parallel (bottom) to the optical c-axis [Wan10]. 

 

 The as-grown domain pattern depends on a variety of factors that can 

span from the type of crystal, to the growing method, passing through the 

electric voltage applied and the thermal history. The dimension of the 

domains can be unpredictable. In [Soe05] a number of different imagine 

techniques are reviewed showing that, in last analysis, it is not easy to 

visualize the nonlinear domains without having a prior knowledge on the 

strucure. 

 For example, Fig.2.3, shows the bar chart representing the domain 

distribution as the crystal shown in Fig.2.2(left). These bar charts are 

typically used to characterize the random domain pattern. However, when 

one uses images as these there are still a number of unanswered questions. 

For example, is the etching process able to show all the domains, even the 
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smaller ones? How many domains are there in one grain? How is the sign of 

the nonlinearity for each domain?  

 

 

Figure 2.3. Histogram showing the domain diameter distribution of the optical 

micrograph in Fig.2.2 (left). 

 

 For this reason, the starting point of our work will be to have a clear 

and deep nonlinear crystal characterization using a a reversed-engineering 

approach. Starting with the far field experimental visualization of the 

generated SH from real crystals, we design guess structures and 

numerically model the laser light propagation through them. We proceeded 

until we obtained the same far field emission for both numerical and 

experimental data, namely the same nonlinear structure. Even if this 

method is precise, it is extremely time consuming and cannot be applied to 

systematical analysis of big amount of samples. Despite that, it allowed us 

to validate a more simple and fast statistical method that takes into account 

the domains pattern as a whole ignoring the individual domain 

specification. 

 Notwithstanding this initial lacking of information we can describe the 

main features of the domain pattern, also aided by images as in Figs.2.2.  

 Firstly, the domains have all identical linear properties. Some variation 

of the linear index can be present between two domains of different χ(2) 

sign due to the strong variation of the polarization. However, the 

magnitude of this variation is of the order of 10-2-10-3 [Woi01, Gai09]. 

 Domain sizes in the x-y plane can vary from few nanometers to tens of 

microns and their packing is random. On the other hand, the coherence 
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length for the SHG varies between 0.1 and 1.5µm. The harmonic 

generation in this structure is therefore generally based on higher order 

phase-matching, especially for the non-collinear cases which require 

smaller grating periods than the forward PM.  

 The domains are elongated along the crystal c-axis. This leads to a 

finer modulated structure in the x-y plane compared to modulation 

along the c-axis, which is of significantly larger scale. We will consider 

the system as two-dimensional since it has been proved that the 

structure in c direction has practically no impact on the effects observed 

in experiments [Kaw98].  

 Due to the tetragonal unit cell of the crystal, the needle-like domains 

are either parallel or anti-parallel ferromagnetic orientated along the 

crystal c-axis. Thus the sign of the second-order nonlinearity χ(2) 

changes from domain to domain in the x-y plane. This provides a 

natural two-dimensional poled structure. The term “natural” is here 

used in the sense that it is not technical designed and controlled, even 

if the growing process, the type of material and the history of the 

crystal can strongly affect the distribution.  

 

 The scheme shown in Fig.2.4 illustrates the comparison between a 

periodically poled and the disordered 2D ferroelectric as-grown crystal. In 

the first one is clear the periodicity of the sign of the nonlinear domains 

while no such single period is evident in the second case and apparently no 

single periodicity dominates the formation. The disordered modulation 

provides a continuous set of PM gratings with various periods and in all 

directions of the x-y plane. As a result, for any fundamental wavevector kω of 

light propagating through the crystal there will be also a matching grating 

vector G in this plane to fulfill the phase-matching condition k2ω=2kω + G. 

Furthermore, this is not limited to SHG but is equally valid for any other 

second-order parametric process such as sum frequency mixing or difference 

frequency mixing [Boy08]. 

 Since the probability for different periods varies only slowly, the 

directly linked SHG efficiency as a function of the fundamental wavelength 

can be considered as practically constant over the range of several 
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nanometres. As a result, the disordered domain structure provides 

achromatic PM, meaning that all frequencies (in the transparency range of 

the crystal) are converted with equal efficiency. Achromatic PM is a property 

highly desirable for all-optical devices that could convert different 

wavelengths in the same material with equal efficiency. It also proofs very 

useful in systems with tunable laser wavelength, where the strength of the 

SH response from the unpoled SBN is independent of the adjusted 

wavelength. Furthermore, no angular or temperature tuning of the crystal 

is needed when the working wavelength is changed. 

 

 

Figure 2.4. Schematic comparison of a strictly periodic structure to natural 

domain poling in SBN. The grey arrows illustrate grating vectors [Fis08]. 

   

 It is important to point out at this point that the main drawback of 

such high degree of freedom is a rather low conversion efficiency. However, a 

low conversion efficiency means also a low depletion of the FF. This aspect is 

of particular importance for measurement applications where the FF has to 

be analyzed with minimal distortion and losses. 

 The most interesting applications of achromatic PM are probably found 

in the context of ultra-short pulses. Due to the fundamental uncertainty 

principle, the spectral bandwidth of a pulse naturally increases as the pulse 

duration becomes shorter. This relation is known as the time-bandwidth 

product of a laser pulse and the corresponding limiting factor can be 

calculated with the Fourier transform.  

 The strength of the SH generating process depends on the polarization 

of the fundamental light wave with respect to the principal axis of this 

crystal. As discussed in Chapter 1, this process is governed by the second-
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order electric susceptibility χ(2) which varies strongly along the different 

crystal axis. SBN belongs to the 4mm (C4v) crystal class, and possess non-

zero components d31≈9.4 pm/V, d15≈6.76 pm/V and d33≈17.7 pm/V  

[Cha00](data for 1064 nm fundamental wavelength). This means that the 

highest conversion efficiency will be achieved for light polarized along the c-

axis since it makes use of the largest tensor element d33. Hence the 

wavevector of the corresponding FF stands normal to the c-axis (kω⊥z) and 

the light is propagating in the x-y plane. On the other hand, the orientation 

of the wavevector within this plane has no impact on the efficiency. Along 

any propagation direction in the plane the build-up of the SH field depends 

solely on the PM condition, which is isotropic in x and y since the disorder of 

the domain structure has no directional preference. Accordingly the position 

of the non-zero elements in the tensor, it is clear that a linear polarization of 

the FF along any of the crystal axis will lead to extraordinary polarized SH 

emission. Ordinarily polarized SH light can only be generated from mixed 

polarization states of the fundamental, as we will show in a following 

section. 

 

Planar SHG, k perpendicular to z 

 Moshe Horowitz and Baruch Fischer studied the broadband SHG in 

SBN already in the early 90’s [Hor93]. Yet the interest in this technique 

suffered under the rather low conversion efficiency in this material, and the 

relevance of this approach for ultra-short pulses was not commonly recog-

nised. The more recent development of sources for laser pulses with only 

femtoseconds duration changes this situation in two ways: one is the need 

for a broader PM bandwidth for ultra-short pulses, the other is the fact that 

the concentration of the pulse energy in such a short event leads to 

extremely high peak intensities.  

 It is very interesting to shortly review the work done in [Fis08] to 

briefly explain this kind of interaction. The experimental setup consisted of 

a femtosecond oscillator providing 150fs long pulses at 76Mhz of repetition 

rate and 0.5W of average power, which is tunable within the range of 700 to 

900 nm. A lens with 50 mm focal length focused the input beam on an 
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unpoled SBN crystal of the dimensions 5×5×10 mm. All sides of the crystal 

were polished, allowing the observation of the SH radiation from different 

directions. The power of the SH emission was measured with a regular 

power meter, while the spectral properties of the fundamental beam and the 

SH radiation were monitored by a spectrometer with an average resolution 

of 0.3 nm.  

 The fundamental beam is propagating perpendicular to the domain 

orientation (z-axis) as shown in Fig.2.5(a). All available grating vectors for 

PM thus lie in the x-y plane, resulting in a SH emission in theoretical all 

directions of this plane. However, the PM diagram in Fig.2.5(b) makes 

evident that for an increasing angle between the SH wave vector and the 

direction of the FF, the reciprocal grating vector G has to become longer. 

This means that the required grating periods have to become smaller, for 

large angles φ>>π/2 even smaller than the fundamental wavelength. 

 

 

Figure 2.5. SH emission for a beam propagating in the x-y plane of the SBN 

crystal. (a) Schematic representation of the domain orientation to the FF, 

leading to the PM condition depicted in (b), where red and blue arrows indicate 

the fundamental and SH wave vector, respectively, and grey arrows stand for 

the reciprocal grating vector. The four cases are exemplary only, QPM is given 

in all direction in the x-y plane. (c) Photo of the SH emission in experiment, 

where the blue lines are either reflections or scattering of the SH at the sample 

holder and the crystal facets. The red arrow represents the fundamental beam 

[Fis08]. 

 

 Consequently, the SH emission for large φ is due to a higher order 

processes than the forward PM, leading to a relative weaker SHG. The SH 

light scattering at the crystal input facet in Fig.2.5(c)(left crystal facet in 

photo) is forward SH reflected at the crystal output facet (right side). 

Nonetheless, the photo shows clearly in this case a rather homogeneous 

distribution of the SH signal in all directions of the x-y plane.  
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 The femtosecond conversion efficiency can be calculated as the ratio of 

the generated average SH output power and the average input power of the 

fundamental.  The observed maximum efficiency of the SHG process is close 

to 0.1%. The radiation coming out from the top surface and recorded by the 

power meter is only a fraction of the whole signal emitted in this plane. Due 

to the total internal reflection almost half of the generated SH light is 

trapped inside the crystal and only the emission at the angles 90±23º is 

collected by the power meter. After accounting for the whole generated SH 

signal, the total conversion efficiency for the fundamental propagating in the 

x-y plane is estimated to be about 0.38%.  

 

Conical SHG, k parallel to z 

 For a FF propagating along or under a small angle to the crystal 

domain orientation (c-axis), the same two-dimensional modulation leads to a 

very different PM situation compared to the conditions for a FF propagating 

in the x-y plane. As it is depicted schematically in Fig.2.6(a), the SH is no 

longer emitted in a plane but in the form of a cone [Tun03]. The infinite set 

of reciprocal PM vectors now lies in a plane perpendicular to the 

propagation direction. The diagram in Fig.2.6(b) shows the effect of the PM 

condition for a beam propagating exactly in direction of the c-axis: since the 

available grating vectors are restricted to the normal of the fundamental 

wave vector, the cone angle φ depends directly on the phase mismatch 

between the fundamental and the SH wave. Fig.2.6(c) extends this 

description for small angles α of the fundamental beam with respect of the c-

axis. It shows that the axis of the emitted SH cone always coincides with the 

crystal c-axis, independent of α, the fundamental wavelength or the phase 

mismatch. However, the cone angle is affected by all of these, as can be seen 

from the longitudinal and transverse PM conditions that can be written as  
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Figure 2.6. Propagation of the FF along the crystal c-axis leads to a conical SH 

emission. (a) Schematic representation of the SH emission geometry to the 

domain orientation; (b,c) diagrams illustrating the PM condition for the beam 

propagating (b) exactly along and (c) under an angle α to the c-axis. (d) Photo of 

the conical emission in experiment scattered through a thin piece of paper. The 

black dot in the middle is a metal plate stopping the fundamental beam [Fis08]. 

 

 Due to the continuous set of grating vectors Gi in the x-y plane the 

transverse PM condition is always fulfilled. Furthermore, the homogeneous 

intensity distribution of the SH cone, which can be seen in the photo of the 

experiment in Fig.2.6(d), clearly confirms the isotropy of the PM in the 

disorded structure. Also, due to the radial symmetry of the SHG geometry, 

the conical emission is always radially polarised [Tun03]. The longitudinal 

PM condition determines the cone angle. Together with the refraction at the 

crystal surface, the external cone angle θ has a strong dependence on the 

fundamental wavelength. To give an example, for a fundamental 

wavelength of 860nm the full external angle (2θ) measured at low powers is 

130º.
 
 

 After having discussed the two cases for kω⊥z and kω║z separately, it 

should be mentioned that the angle φ increases monotonically with the 

angle α between the propagation direction of the fundamental wave and the 

crystal c-axis. Consequently, the cone opens in a gradual transition, until in 

the extreme case of α=π, meaning kω⊥z, the cone is transformed into a plane.  

 

Planar SHG, noncollinear pumps  

 Since the PM scheme requires that two photons of the fundamental 

beam annihilate to generate one SH photon, it is also interesting to study 

what happens if the two photons are provided with different characteristics, 

for example at different direction or with different polarization. To 

implement this idea the following experimental set-up has been used 
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[Tru07]. A 8 nanosecond Nd:YAG system at 1064nm (repetition rate 10 Hz) 

was arranged to deliver two beams (denoted as A and B) with total energy of 

3 mJ and diameter of 5 mm (FWHM). The beams intersected in the unpoled 

SBN crystal at the external angle 4º. Due to the extremely long pulse 

duration compared with the crystal lenght, for our purpose we can see the 

beams as stationary plane waves. The two beams were loosely focused in the 

crystal. Beam paths were chosen such that counter-propagating pulses 

would meet in the central part of the SBN crystal. The polarization 

orientation of entering beams A and B are controlled by λ/2 wave plates. The 

geometry of the experiment is shown in Fig.2.7. 

 

 

Figure 2.7. Scheme of the experiment in [Tru07]. 

 

 In Fig.2.8(a) they are shown three photographs of forward emitted SH 

signals observed in the experiment. The three pictures (left to right) 

represent the case of 1)extraordinary polarized fundamental beams, 

2)perpendicularly polarized fundamental beams (A-extraordinary;B-

ordinary) and 3)ordinary polarized fundamental beams. The SH signal is 

emitted in a form of three well resolved lines. The side lines (numbered 

1,3,4,6,7,9) represent SH emitted separately by each fundamental beam. 

The middle lines (numbered 2,5,8) appear only when both beams A and B 

are simultaneously present and hence represent the non-collinear SHG by 

the two beams. The polarization state of each SH lines is indicated as ”e” 

(extraordinary) or ”o” (ordinary). Note that all but one (line 5) outputs are 

extraordinary polarized. The presence of this particular ordinary polarized 

signal defies the previous claims that in SBN crystal only extraordinary SH 

signal could be generated [Hor93]. This line appears as a result of  
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E1AO1B →O2 

interaction that is governed by the same component d32 responsible for 

O1AO1B →E2 

process. However since the phase mismatch for the former interaction is 

larger the emitted signal is weaker than that of the latter process. 

 PM conditions for SH signals are shown in Fig.2.8(b). They can be 

represented in vector form as 

1 1 2A B  k k g k  

where k1A and k 1B represent fundamental waves, k2 is SH and g is one of the 

grating vectors provided by the random character of nonlinear medium. As 

it is seen from the PM diagram, g vectors have different sizes and 

orientation, but they always lie in a x-y plane. This is in contrast to single 

uniform QPM structures with only a fixed set of grating vectors available. 

 

 

Figure 2.8. (a) SH signal (lines) in the nanosecond experiment obtained for 

different polarization orientations of the fundamental beams A and B. (b) 

Illustrative diagram of the PM conditions for generation of the SH scattered 

light (single beam case); g are grating vectors that compensate the bulk phase 

mismatch [Tru07]. 

  

 Due to the randomness of the SBN media a pool of grating vectors with 

different magnitudes and orientations are available for PM. This enables 

PM in extremely broad wavelength range and SH emission in broad angular 

range as it seen in the photos in figure Fig.2.8(a). The angular distance 

between the maxima is of the order of 10 degrees. Moreover, this continuum 

of infinite number of grating vectors allows simultaneous PM of several SH 

processes. For instance in Fig.2.8 we observe simultaneous PM of collinear 

and non collinear processes. It has also been shown that the polarization 
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properties of these processes can be used to determine the relative strength 

of two relevant components of the second order nonlinearity d32/d33 [Tru07].  

 

 

2.3. The role of ferroelectric domains structure  

 Recent experiments with random domain SBN crystals demonstrated 

that the emission pattern of the generated waves may differ drastically from 

sample to sample, being either spatially homogeneous or exhibiting distinct 

intensity peaks (see for example Fig.2.5 and 2.8) [Fis06, Tru07]. This 

behavior points towards the difference in the actual distributions of 

ferroelectric domains in different samples. Observations of random domains 

ranging from tens of nanometers to few microns have been reported in the 

literature [Ter02, Shv08, Gai09, Rom02,]. Moreover, it has been even 

suggested that the domain walls induced light scattering of the fundamental 

wave plays significant role in the SH generation [Mol08]. In order to obtain 

a better understanding of the nonlinear interaction in random media, in this 

section we study theoretically and numerically the role of the domain 

distribution on the efficiency and transverse characteristics of the SH 

emission in a quadratic random crystal. The numerical simulations obtained 

are supported by our experimental evidence of the SH emission. 

 

Modeling random ferroelectric domain pattern 

 We have developed a model to describe and simulate our quadratic 

crystals with random 2D ferroelectric domain distribution, considering the 

domains as building blocks. We follow the characteristics of the 

experimentally reported structures in SBN crystals [Gai09, Mol08]. 

 To mimic the process of domain formation we adopt the following 

strategy. Firstly, we assume that the individual domains (our building 

blocks) have form of rods with a circular transverse profile. While the 

assumption about circular shape follows from the experimental observations 

[Rom01], it is in fact not that critical because, as we see below, the 
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macroscopic pattern of nonlinearity distribution consists of regions of 

opposite sign of the nonlinearity which may have very complicated (not 

necessarily circular) shape. As we consider light propagation and emission 

in the plane perpendicular to the longer dimension of the domain only their 

transverse structure is taken into account here. A Gaussian distribution of 

the domain sizes is chosen with a certain mean diameter ( 0 ) and variance 

( ). Using this distribution a number of domains is randomly generated 

and randomly placed in a rectangular area representing the size of the 

sample. In all the cases discussed here at least two thousand domains were 

used to create a random domain pattern. The domains number that takes 

part in the process may depend on the geometry of the interaction. As a rule 

of thumb this number should be large compared to the actual size of the 

input optical beam [Leg01].  

 In the next step we randomly assign at each domain a particular sign 

of the nonlinearity (positive/negative). Some particular 2D domains patterns 

for different choice of statistical parameters are shown in Fig.2.9(top left) 

and in the top row of Fig.2.10. The black and white colors denote the 

antiparallel oriented domains with opposite signs of the quadratic 

nonlinearity. These kind of generated patterns are then directly used in the 

numerical simulations. 

 A completely random assignment leads sometimes to large 

agglomeration of domains with the same sign of the (2)  nonlinearity. This 

agglomeration leads to artificial small G vectors in the reciprocal space. In 

Fig.2.9 (top left) we depict a typical case of domain pattern where large 

areas of domains agglomeration occur (for example as indicate in the red 

circles). These areas act effectively as a single domain distorting the real 

distribution. In Fig.2.9 (top right) we depict its relative spatial spectrum. 

The white circle indicates the place where the G vectors should be more 

gathered considering the nominal mean domain value (indicated by “a” in 

this case). It is clear from this picture that the G vectors of the structure are 

in general much smaller than the expected value. This effectively 

corresponds to larger spatial oscillation of the sign of the (2)  distribution. 

In the same figure (bottom row) we also show two different possibilities to 

describe this domain pattern with a bar chart. In the first case (left) the 
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number of domains while in the second case (right) the area of the domains 

as a function of the domain width are considered. The two bar charts give 

two different outputs starting from the same domain distribution. This is a 

clear example of the inadequacy of this method to describe this kind of 

structure. 

 To avoid the negative effect of the domain agglomeration, and to create 

structures with very fine domain pattern, the sign of each particular domain 

was assigned taking into account the signs of its closest neighborhood, such 

as in Figs.2.10(a) and (b). The algorithm implemented here integrates the 

area close to the domain under study; if in this area there is a prevalence of 

positive (2)  sign, a negative sign will be chosen and vice versa. As a 

comparison, in Fig.2.10(c) it is also reported the same domain distribution 

as in Fig.2.10(b) but allowing some degree of agglomeration. The non 

occupied zones among the domains are considered to form the domain walls 

and they amount to around 10% of the whole area of the sample which is in 

agreement with the experimental observations in similar poled structures 

[Ale96]. In the region of the domain walls the nonlinearity is assigned a null 

value. However, we allowed in this region for a small linear refractive index 

change of the order of 10-3 to account for the strong discontinuity of the 

vector of spontaneous polarization [Ale96, Woi01]. This weak linear index 

variation will produce a linear scattering of light. We will talk about this 

effect later in this section. 

 The insets in Fig.2.10(a) and Fig.2.10(b) depict corresponding 

histograms of the domain size and correspond to the following parameters: 

(a) ρ0=0.3μm,  σ=0.05μm; (b) ρ0=0.3μm, σ=0.1μm. Such histograms were 

previously used to characterize actual samples of as grown SBN crystals 

with disordered domain pattern [Mol08] but do not contain all the needed 

information on the distribution. For example, it is not possible to retrieve 

the distribution of the sign of the nonlinearity. Moreover, as we already 

have shown before, the histograms can be ambiguous since it is possible to 

choose either the diameter or the area of the domains as discriminating 

parameter. Moreover notice how, starting from the same statistical 

parameters, it is possible to draw two completely different random patterns 

(Fig.2.10(b,c)) by either allowing or avoiding the agglomeration. 
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Figure 2.9. (top left) Example of domain distribution with strong agglomeration 

of domain with the same sign of nonlinearity (marked in red). (Top right) 

Spatial spectrum indicating that the spatial periodicities possessed by the 

structure are smaller than the nominal one. (Bottom row) Two different 

realizations of bar charts of the same structure.   

 

 

Figure 2.10. Examples of particular realizations of the random domain pattern. 

(a) ρ0=0.3μm,  σ=0.05μm, (b) ρ0=0.3μm,  σ=0.1μm, (c) ρ0=0.3μm,  σ=0.1μm with 

agglomerations of the domains. The insets depict histograms of the resulting 

domain diameters. Bottom row: corresponding spatial Fourier spectrum of the 

domain patterns. Note that the agglomeration of domains shown in (c) results 

drastically changes its spatial Fourier spectrum and hence will have a strong 

impact on SH emission. 
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SH emission forecast 

 In order to fully characterize the domain pattern as a QPM nonlinear 

photonic structure we use the spatial Fourier spectrum of the nonlinearity 

distribution. Such spectrum represents the domain of reciprocal vectors G  

which will be employed to fulfill the PM condition 2 12 0  k k G  which 

determines the direction and efficiency of the quadratic process. Here G  

can be expressed as /  (2 ) G n where  represents periodicity along the 

generic direction n. In this particular case we can consider a virtual 

periodicity made by two adjacent domains with a different sign of the 

nonlinearity.  

 In the bottom row in Fig.2.10 we depict the modulus of the square of 

the Fourier spectrum corresponding to the domain patterns shown in the 

top row. In these graphs the strength of the spectral components is directly 

represented by their brightness. It is clear that different domain 

distributions lead to drastically different structure of the reciprocal space 

which, as we will show later, will subsequently affect the SH emission. This 

property has been used to control the shape of the generated SH beam in 

specially designed structures [Qin08, Ell09]. As it is clear from the bottom 

row of Fig.2.10(a,b), a real spatially random domain pattern leads to a 

circularly shaped Fourier spectrum. The radius of the circle will be directly 

related to the mean domain size and its width from the radius will be 

related with the standard deviation. In particular, domain distributions 

with narrow (broad) standard deviation lead to the correspondingly narrow 

(broad) width of the reciprocal distribution of the G vectors. Domain 

distributions with small (big) mean domain size lead to the correspondingly 

large (small) radius of the circular distribution. As comparison, the bottom 

row of Fig.2.10(c) depicts the spatial Fourier spectrum of the distribution 

with large rate of domains agglomeration. Here the structure consists 

effectively of large area domains of the size of the agglomerated areas, and 

consequently its spatial spectrum shrinks toward very small components. 

 In order to see how the particular nonlinear structures affect emission 

of the SH we need to consider the PM condition. In Fig.2.11 we plot the 

three particular scenarios associated with the random domain structures. 
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The green circle represents possible directions of the SH k-vector while the 

yellow ring represents the more considerable region of the reciprocal vectors 

G provided by the randomness of the domain pattern. As the pattern is 

isotropic so is the distribution of the G vectors.  

 The most efficient SH emission is expected to occur in the directions 

determined by the intersection of the green circle and yellow ring where the 

PM conditions are fulfilled with the stronger coefficients of the reciprocal 

spectrum. It is clear that, because of availability of isotropically oriented G 

vectors, the generation of the SH is expected to be non-collinear and with a 

broad spatial distribution of the intensity. 

 

 

Figure 2.11. Diagram illustrating few possible scenarios of the PM condition for 

the SH emission in medium with disordered ferroelectric domain structure. 

Dashed green arrows indicate possible directions of strong emission of SH. (a-b) 

same disordered domain distribution, different wavelengths of the fundamental 

wave λF (λF is shorter in case (b) ); (c) random domain distribution with the mean 

value significantly smaller than in cases (a-b) 

 

 The two cases shown in Fig.2.11(a-b) correspond to identical domain 

pattern but they differ in the wavelength of the fundamental wave. Hence, 

in the first case (a) the SH is expected to be emitted predominantly in two 

angular directions. On the other hand the same structure used with shorter 

fundamental wave (as in Fig.2.11(b)) should lead to mostly forward emission 

centered around the direction of the fundamental wave. Finally, the domain 

pattern with much smaller average size is expected to lead to strongest 

emission oriented at large angles as in Fig.2.11(c). As the geometric regions 

of the strongest PM shown in these three examples differ significantly one 

may expect this property to be reflected in the SH emission pattern. 

However, the actual spatial intensity distribution of the generated SH wave 
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will be determined not only by the PM condition but also by the strength of 

the nonlinearity for the particular emission direction which is strongly 

affected by the randomness of the system. 

 In order to explore this further we employ the statistical approach of 

Dolino [Dol72] and Le Grand [Leg01]. In this approach the intensity of the 

SH wave generated in the medium consisting of randomly distributed 

antiparallel domains can be expressed as 

 2 0( , , )effI I d f q     (2.1) 

where I  is the intensity of the fundamental wave and deff
 is the effective 

(2)  nonlinearity which depends on material parameters and geometry of 

the interaction. The function 0( , , )f q    represents the effect of disorder in 

the domain distribution 
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where L is the propagation distance and | |q k   is the absolute value of the 

phase mismatch. The linear dependence of 
2I   on propagation distance is 

the signature of disorder which makes the process of SH build-up to be 

incoherent [Ray04, Mor01, Mor04, Shu08]. As the phase mismatch 

parameter q is in our geometry of interaction uniquely linked to the angle 

between propagation direction of the SH and fundamental waves, the 

relation (2.1) provides, in fact, angular distribution of the SH intensity. 

 

 

Figure 2.12. Theoretically predicted angular distribution of the SH emission in 

the quadratic crystal with random domain distribution (Eq.(2.1)). (a) constant 

average domain diameter ρ0=1μm, (b) constant dispersion σ=1μm. In all 

simulations we assumed λF =1μm. (c) The effect of varying of the wavelength of 

the fundamental wave on the emission angle of the SH. Here ρ0=1μm and 

σ=1μm. In all graphs the dashed line represents phase PM with a single 

reciprocal vector |Gmean|=π/ρ0.   
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 The contour plots in Fig.2.12 illustrate the relation Eq.(2.1) as a 

function of emission angle and/or statistical parameters of the domain 

distribution. From Fig.2.12(a) it is evident that for low domain dispersion 

the structure is almost perfectly periodic leading to very directed transverse 

emission determined by the PM condition which in this case is satisfied in 

two particular directions of the SH. As the domain dispersion increases the 

more G vectors contribute towards the PM which results in a forward 

emission of the SH. Plot in Fig.2.12(b) illustrates the effect of the mean 

value of the domain diameter. For fine domain pattern (at given dispersion) 

many G vectors participate in the SH generation leading to very broad 

emission. As the average domain diameter increases the SH emission 

becomes less spread approaching the forward emission for large ρ0. Finally, 

in Fig.2.12(c) we demonstrate the effect of varying the wavelength of the 

fundamental wave on the SH generation. In this particular example 

0 1 m    .  

 The dashed line in all graphs in Fig.2.12 represents emission of the SH 

determined solely by the PM condition taking into account only one 

reciprocal vector  

0 0| | 2 / 2 / 2 /mean       G  

corresponding to the mean diameter of the domains. It is clear while this 

simplified approach is sufficiently accurate for weak disorder it leads to 

erroneous results for high degree of randomness of the periodic structure. In 

addition it cannot be used to determine the spatial distribution of the 

emitted SH. 

 

Numerical simulations 

 To test the above discussed analytical predictions we resorted to 

numerical simulations of SHG in random domain structures. We 

numerically solved the Maxwell`s equations assuming that the random 

quadratic medium (for example as in Fig.2.8 or Fig.2.9) is illuminated with 

a Gaussian fundamental pulse. We used the material parameters which 

correspond to those of as-grown SBN crystals [Woi01]. For example at 



Chapter 2. SHG in disordered nonlinear domains structures 

 

67 

800nm and 1064nm the indexes of refractions are next=2.25 and 2.22, for the 

extraordinary polarization, and nord=2.28 and 2.25, for the ordinary one.  

 It should be stressed here that Vidal and Martorell [Vid06] were 

perhaps the first ones to investigate numerically SH emission in multi-

domain crystal. They considered only 1D structure and used the matrix 

transfer approach. Our simulations of full Maxwell equations were 

conducted using optical pulses and finite beams in two dimensional 

medium. Therefore we could describe SH emission at arbitrary angle and 

did not have to perform statistical averaging in order to obtain relevant 

physical quantities such as the energy of the generated waves. 

 To simulate the light propagation through SBN crystal we use the 

numerical model discussed in the Chapter 1. Contrary to the most common 

nonlinear numerical codes, the one implemented here is able to solve the 

complete 2D vectorial Maxwell's equations in the time domain without 

SVEA. For this reason all angles of propagation and/or diffraction are 

allowed. Furthermore, no undepleted pump approximation is used.  

 A number of numerical simulations have been performed with different 

working conditions. The fundamental pulse length in the plane of the 

nonlinear domain was in the range 6-30 optical cycles. We varied the 

fundamental wavelength from 790nm up to 1550nm. The data for the index 

of refraction were obtained fitting the Sellemier's equation with the 

coefficient as in [Woi01] to a general Lorentz curve. In Fig.2.13 we show the 

results of some of these simulations obtained assuming the λF=800,1064nm. 

In this figure the plots in the left column depict the spatial intensity 

distribution of the fundamental and generated SHs for three different 

random samples. The statistical parameters of the domain distribution are: 

(b) ρ0=3μm, σ=0.3μm, λF =1.064μm, here the sample is bigger to arrange an 

enough number of domains; (c) ρ0=0.9μm and σ=0.1μm, λF =1.064μm; (d) 

ρ0=0.3μm and σ=0.05μm, λF =0.800μm. 

 Middle column shows the transverse structure of the fundamental and 

SHs in the spatial Fourier space (or equivalently, in the far field) and the 

plots in the right column depicts the energy of the fundamental and SHs as 

a function of the time of propagation. In the Fig.2.13(a) is depicted the 

typical propagation of the fundamental pulse. Initially located in the air, it 
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impinges normally in the sample. Due to the index mismatch, part of the 

pulse is backward reflected and the remaining is forward propagating in the 

material. The k-spectrum of the fundamental field shows a very narrow 

peak with coordinates 2 /xk    and 0yk   during the first part of the 

propagation in the air and 2 ( ) /x F Fk n    and 0yk   after entering in the 

material, where ( )Fn   is the index of refraction at the fundamental 

frequency. 

 

 

 

Figure 2.13. Numerical simulations - generation of the SH by a femtosecond 

laser pulse in a disordered structure.  Left column: Spatial intensity 

distribution of the fundamental (a) and SHs (b-d) for three different random 

samples in three different numerical simulations. Middle column - the structure 

of the interacting waves in the spatial Fourier space. Right column - energy of 

the fundamental and SHs as a function of the time of propagation. 
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  Since the efficiency of the nonlinear process is low, the energy of the 

fundamental is practically constant during the propagation in the SBN. 

 The graphs in Fig.2.13 demonstrate dramatic variations in the far field 

of the emitted SH depending on the characteristics of the domain pattern. 

Note the differences in the emission angles in cases (b), (c) and (d) which 

correspond to the domain distributions from large to small average domain 

sizes, namely 3, 0.9 and 0.3µm. The angular distribution of the intensity of 

the generated SH fields reflects the spatial distributions of the domains. As 

expected, the energy of the generated SH clearly displays a linear-like 

growth. This is indication of the incoherent character of the build-up of the 

SH and is in full agreement with earlier experiments and theoretical 

prediction [Ray04, Mor01, Mor04]. The difference in the maximum reached 

values of the SH fields and energies is due to the different input intensities 

of the fundamental as initial condition. For example, in the simulation in 

Fig.2.13(b) the input intensity is three orders of magnitude higher than the 

simulation in Fig.2.13(c). 

 The full investigation process for all the distributions considered 

consisted in four steps (Fig.2.14): 

1. We firstly generate the domain distribution fixing ρ0 and σ. Bar 

chart and spatial spectrum are recovered (a); 

2. With the G distribution obtained in the spatial spectrum we make a 

forecast on the SH angle of emission θmean. This is done simply using 

the PM relation and the algebraic cosine law (b) 

2 2 2

2

2

(2 )
cos

2 (2 )

mean

mean

k k G

k k

 

 


 

 ; 

3. We feed the complete spatial domain patter into the Maxwell’s 

equations and numerically simulate the complete SH emission 

distribution (c); 

4. Finally we test experimentally and record the SH emission from the 

real sample (d). 

From the comparison among the analytical forecast, numerical results 

and experimental recorded signals we are able to determine with a good 

level of confidence the actual domain distribution characteristics possessed 

by the sample. 
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Figure 2.14. Full investigation step. (a) Design of the domain pattern; (b) 

forecast of the emission using the PM relation; (c) Numerical simulations of 

SHG; (d) Experimental verification. 

 

 In Fig.2.15 we report more examples of the generated SH. In these 

three cases we directly compare the spatial characteristic of the structures 

(on the left) with the generated SH signal (on the right). Notice how the 

changes in G distribution directly affect the generation of the SH. In all the 

three cases the domain mean value is practically the same. Thus it is 

possible to verify how this method is also able to appreciate the difference in 

the SH emission due to the variation of the parameter σ. 

 Comparing the numerical simulations with the analytical predictions, 

Eq.(2.1), we find them in very good agreement. Therefore the simple 

statistical approach appears to be a powerful tool in predicting spatial 

distribution of the generated harmonic in media with disordered domain 

structure. This suggests that experimental observation of SH pattern can be 

employed to obtain information about the degree of the disorder of the 

ensuing domain structure. This aspect is currently being experimentally 

investigated. 

 To give an idea of the power of this method, as it follows from the 

results of this study we can evaluate that to have SH light propagating at 
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the transverse and backward directions the sample needs to possess 

nonlinear domains at least of the order of 10-50nm. This consideration is 

very important as far as the choice of the domain visualization technique 

with appropriate resolution is concerned [Soe05]. 

 

 

Figure 2.15. Numerical SH generation (right) from different structures (left) at 

different wavelengths. Since the mean domain value is practically unchanged, 

the differences in the SH emission are due to the different value of the 

parameter σ. 

 

 Finally, we would like to comment on the role of the light scattering on 

the SH emission. Due to the discontinuity in the direction of spontaneous 

polarization between domains a small jump of the linear index of refraction 

is present in the area of the domain walls. For instance, according to 

[Woi01] this index modulation is 4

852 1.0 10nmn


    and 3

404 2.6 10nmn


   . 

Obviously the strength of light scattering induced by the domain walls will 

be at least one order of magnitude weaker for infrared than for visible light. 
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Thus, the SH light will always experience stronger scattering than the 

fundamental wave while propagating in the same sample. 

 It has been suggested before that the wide angle emission of the SH in 

experiments with multi-domain SBN crystals could be attributed to the 

emission of the SH signal by scattered fundamental beam [Mol08]. To test 

this hypothesis we included the effect of index variation in the domain walls 

in our numerical simulations. In fact all graphs depicted in Fig.2.13 have 

been obtained assuming the index jumps at fundamental frequency of 

0.01n  . No appreciable effect in both fundamental beam nor the SH has 

been observed. This confirms that the transverse emission of the SH is 

caused solely by the spatial modulation of the nonlinearity resulting from 

the random domain pattern. However, it should be stressed that in the 

situation when the strong scattering of the SH is present it may indeed 

affect its overall intensity distribution. 



 

 

 

 

 

 

 

Chapter 3 
 

 Cascading THG in 

disordered nonlinear 

domains structures 

 

3.1. Introduction 

 

 Theoretically, the frequency limitations of SH and/or TH generation 

processes are only set by the crystals transparency. A peculiarity of 

ferroelectric crystals is the fact that they possess a very wide transparency 

window. For the case of SBN it ranges from λ=0.4µm to approximately 4 or 

6µm (the specifications of manufacturers differ in this point); in Fig.3.1 it is 

plotted the measurement of the absorption within the range of our interest. 
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This characteristic of SBN made it possible to easily tune our IR laser at 

1500nm wavelength and to observe TH generated at 500nm.  

 

 

Figure 3.1. Trasparency window of SBN [Fis08]. 

 

 It has been previously demonstrated that periodically poled quadratic 

nonlinear media can be used in THG. The process is not a χ(3) THG, but it is 

based on cascading of two quadratic effects: SHG followed by sum frequency 

mixing [Pfi97, Sal05, Fuj07, She09]. Because these two independent 

processes have to occur at the same time, two different PM conditions 

should be satisfied simultaneously. Obviously, this requires prior knowledge 

of all involved wavelengths, in order to manufacture a desired structure. For 

such application working with a random quadratic medium is an advantage 

since it will automatically PM any parametric process simultaneously, 

provided the degree of randomness is high enough.  

 In this section we present what it is, to our knowledge, the first 

quantitative and systematic experimental analysis on cascaded THG in 

unpoled SBN crystals with disordered ferroelectric domain structure. 

Actually, the first observation of THG in such medium has been reported by 

Molina et al. [Mol08] but since the generated signal was very weak only 

qualitative observations were conducted. In our case, thanks to the 

surprisingly high intensity signal we experimentally recorded, we could 

make a detailed study on the TH emitted properties. We discuss the spatial 
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distribution of the generated TH signals, as well as their polarization 

properties and compare them with the theoretical model. 

 We worked in both collinear and noncollinear set-up to cover a big 

portion of the experimental possibilities. The last but not the less important 

reason to investigate the THG is the fundamental importance that the 

influence of a quadratic nonlinear perturbation can play with a cubic 

material response.  

 

 

3.2. Collinear setup 

Esperimental set-up 

 In Fig.3.2(a) is sketched our experimental set up. The source is a fiber 

laser providing a 400fs pulse at a wavelength of 1500nm. The measured 

peak power reaches a value of 20kW at 5MHz repetition rate. The half 

waveplate (WP) has the function of linearly polarize the beam. The input 

polarization of the beam can be varied from ordinary to extraordinary by 

adjusting the WP. The beam is focused by an 8cm focal length lens (L) onto 

the face parallel to the c-axis of a sample of unpoled SBN crystal. A band-

pass filter (BPF) separates the fundamental beam and its harmonics so 

their corresponding powers and spatial intensity distribution can be 

measured and recorded onto a CCD camera from the screen located 22mm 

behind the crystal. In addition, a polarizer (P) enables measurements of the 

ordinary and the extraordinary components of the generated harmonics. 

 When the linearly polarized fundamental beam is launched into the 

SBN crystal, the SH and TH beams are readily observed. We chose the 

extraordinary polarization since the efficiency here is maximum (see the 

previous sections). However, the random character of the ferroelectric 

domain distribution results in low conversion efficiency for both harmonics. 

For an average fundamental input power of 27mW, the powers of the SH 

and the TH are 40µW and 11nW, respectively. We have measured the 

dependence of the power of the TH as a function of the power of the 
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fundamental beam. The results are depicted in the plot in Fig.3.2(b). As 

expected, the experimental points follow faithfully the cubic fit (solid red 

line). It is worth stressing here that in order to determine possible 

contribution of the direct THG via the third order nonlinearity we run a test 

experiment using a single domain SBN crystal. Such SBN crystal has 

symmetry inversion, thus χ(2)=0.  

 

 

 

Figure 3.2. Schematic of the experimental setup. The multi-domain structure of 

the SBN sample is schematically shown. L lens, WP half wave-plate, BPF  band 

pass filter, P polarizer . (b) Power of the third harmonics vs. the input power of 

the fundamental beam (measured with Ophir Laser Power Head PD300-UV, 

accuracy ±3%). Solid line represents a cubic fit. (c) Experimentally recorded 

transverse intensity distribution of the second (top) and third (bottom) 

harmonics. 

 

 The TH generated from this crystal can only come from a χ(3) effect 

because there is not cascaded THG. Since no third harmonic signal had been 

detected under the same experimental conditions we are confident that the 

observed TH emission in a random domain SBN was indeed only a result of 

the cascaded χ(2) process. The images in Fig.3.2(c) depict the spatial light 
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intensity distribution of both, SH and TH beams (for an extraordinary 

polarized fundamental wave). As the emission region is small (hundred 

microns) compared to the crystal-screen distance, these images represent 

the far field (or spatial spectrum) of the emitted waves. It is clearly visible 

that compared to the SH, the TH trace is narrower along the vertical (z or c) 

axis but at the same time broader along the horizontal (y) axis.  

 

Phase matching relation 

 While the narrowing of the TH intensity can be attributed to the 

smaller spatial overlap between the fundamental and the SH waves, the 

elongated y-trace is directly related to the domain randomness and its role 

in the PM process. To explain this let us first recall that the formation of the 

TH is a result of two cascaded quadratic processes: SHG 

 (1) 2

2
ˆ
effE d E   (3.1) 

and sum frequency generation in which the TH of the input field is formed 

by mixing of the fundamental and SH waves: 

 (2)

3 2
ˆ ,effE d E E    (3.2) 

where (1)ˆ
effd  and (2)ˆ

effd  represent the effective nonlinearity of the SBN for the 

constituent processes. These processes involve simultaneous fulfillment of 

two PM conditions which are schematically illustrated in Fig.3.3. The 

random domain distribution provides a broad set of reciprocal wavevectors 

( mG  - formally determined by the Fourier spectrum of the domain structure) 

that are used to PM the SHG (Fig.3.3). These vectors are represented in the 

graph by the orange disk with the dashed-line circle representing the mean 

value of the | mG  | distribution. Then the PM condition is satisfied in the 

area of intersection of this disk with the green ring representing the spatial 

direction of the wave-vector of the SH 2k . As a result, the generation of the 

SH is non-collinear with broad spatial distribution of the intensity. The 

second constituent process involves the interaction between the directed 

fundamental beam and the already spatially distributed SH. The angular 

emission of the latter is now determined by the intersection of the big circle 

(with the radius 3| |k ) with a disk of the reciprocal vectors mG . Since the 

randomness contributes to both cascaded processes by providing the 
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reciprocal 
mG  vectors, the resulting spatial distribution of the generated TH 

is broader than that of the SH (angle 
3 2  ). It should be stressed here that 

because of randomness of nonlinearity the above described generation of SH 

and TH can be realized for broad spectral range of the fundamental wave. 

This was confirmed in different experiments with fundamental wave in the 

range 1200nm - 1550nm. 

 

 

Figure 3.3. Diagram of the PM for cascaded THG in random SBN crystal. 

Reciprocal vectors Gm1 and Gm2 phase match the SH and TH generation, 

respectively. Note the broadening of the emission angle for the THG. 

 

Polarization properties  

 Next we study the polarization properties of the emitted harmonics. To 

this end we record the power of both ordinary and extraordinary 

components of generated SH and TH as a function of the azimuthal angle α. 

The results of this measurement are shown in Fig.3.4, where the 

experimental data is represented by dots and triangles. The graph in 

Fig.3.4(a) shows the power dependence of the extraordinary component of 

the SH. Interestingly, in our experiments the ordinary component of SH is 

negligibly weak hence, the SH is always extraordinary polarized. On the 

other hand, the TH contains both, ordinary and extraordinary components. 

Their dependence on polarization of the fundamental wave is displayed in 

Fig.3.4(b). Clearly, the strongest SH and TH signals are recorded for an 

extraordinary fundamental wave. The ordinary generated TH is 

approximately eight times smaller for the same input power. The solid 
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curves in both graphs represent the theoretical predictions which are 

obtained by considering all possible processes contributing towards the 

generation of SH and TH. 

 

 

Figure 3.4. The power of the ordinary (blue) and extraordinary (red) components 

of the SH (a) and TH (b) as a function of the input polarization angle of the 

fundamental beam. 0º corresponds to the extraordinary fundamental wave. 

Points - experimental data;  lines - theoretical fit  Eqs.(3.3). 

 

 We denote by Oj and Ej the ordinary and extraordinary components of 

the j-th wave (j =1,2,3 for the fundamental, SH and TH, respectively). Then, 

for arbitrary polarized fundamental wave, the SH and TH will, in principle, 

contain ordinary and extraordinary components.  

 We start with SHG. Its extraordinary component is formed via the 

following two processes: E1E1E2 and O1O1E2. On the other hand, the 

ordinary component of the SH is obtained via a single interaction, E1O1O2. 

The TH is formed due to mixing of photons from the fundamental and SH 

beams. In particular, the extraordinary component is created via the 

processes E1E2E3 and O1O2E3, while the ordinary component appears 

due to the wave mixing, E1O2O3 and O1E2O3. The strength of each of 

these nonlinear processes is determined by the corresponding effective 

nonlinearity (see next section). In homogeneous media, all these processes 

contribute coherently to the total amplitude of the generated harmonic. 

However, because of the disorder in the domain distribution, this is no 

longer the case.  

 As discussed earlier [Ray04], the disorder in a nonlinear crystal leads 

to the incoherent build up of the generated waves. As a result, the two 
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constituent processes in SHG, namely E1E1E2 and O1O1E2, are mutually 

incoherent. Such a breakup of mutual coherence between two constituent 

nonlinear processes has already been noticed in the studies of SHG in 

random crystals [Tru07]. However, the effect of randomness is even more 

profound. Since in our experiments only an extraordinary SH component is 

generated, the effective nonlinearity responsible for the interaction 

E1O1O2 is negligible. In homogeneous crystals, the effective nonlinearity is 

directly proportional to the relevant element of the χ(2) tensor (see next 

section). The situation is more complex in media with random domains. As 

pointed out by Le Grand et al. [Leg01], the randomness generally weakens 

the strength of nonlinear interactions. Consequently, the constituent 

interactions involving different polarization states of the fundamental beam 

and its harmonics will be affected differently by the disorder. Introducing 

the ordinary and extraordinary intensity components of the fundamental 

beam as 2cosI   and 2sinI  , respectively, and taking into account the 

mutually incoherent character of the contributing nonlinear processes, we 

present the intensity of the ordinary and extraordinary components of the 

SH and TH by the following relations, 
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 (3.3) 

where the quantities R1, R2 and R3 represent relative strengths of the 

constituent nonlinear processes. They are used as free parameters in fitting 

the formulas (3.3) to the experimental data, as shown in Fig.3.4. We found 

that the best agreement between experiment and theory is achieved for 

R1=0.75, R2=0.011 and R3=1.1. 

 

Numerical simulations 

 Finally, we study numerically the formation of TH radiation in 

disordered χ(2) structure by solving directly the Maxwell equations as 

explained in the Chapter 1, assuming the propagation of the FF in a two-

dimensional nonlinear medium with randomly distributed domains 
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(Gaussian distribution with mean value of 1µm and standard deviation of 

0.1µm). The Fig.3.5 illustrates the dynamics of the process by depicting the 

SH and TH in a real and Fourier space, respectively. In this way, one can 

easily capture the spatial properties of the generated waves. The difference 

in the angular emission for both SH and TH is clearly visible. It is worth 

noting that the same simulations conducted for a single domain crystal 

(with the same nonlinearity) did not produce any TH signal. 

   

 

Figure 3.5. Numerical results. Generation of the SH and TH by a femtosecond 

laser pulse in a disordered structure. Left column: Spatial intensity distribution 

of the fundamental, SH and TH (from the top to bottom). Middle column- the 

transverse structure of the interacting waves in the Fourier space. Note the 

much broader emission angle for the third harmonics. Right column - energy of 

the fundamental, SH and TH as a function of the time of propagation of the 

fundamental pulse in the SBN crystal. 

 

 The Fig.3.5 depicts a snapshot during the propagation of a FF inside a 

SBN crystal. Due to the index mismatch, a portion of the field is backward 

reflected. The forward propagating portion generates SH and cascaded TH. 

Notice the typical shape of the generated field (on the left) that mirrors the 

domains distribution covered by the fundamental pulse. From the k-spectra 

we can clearly see the direction of propagation and/or the k-vector 

composition (that will produce a similar far field image). For the FF only a 
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single peak in the forward direction is present. For the SH, it is possible to 

clear distinguish two peaks at a fixed angle that well agrees with the 

domains statistical distribution (see Chapter 2). The TH, on the other hand, 

presents more broad distribution that well agrees with the experimental 

recorded image. From the energy diagrams we can verify that the FF is 

undepleted. The linear behavior for the generated SH and TH confirms the 

incoherent nature of those two signals. 

 

 

3.3. Noncollinear setup 

Experimental set-up 

 We describe now the theory and experiment results obtained for the 

noncollinear set-up case. Here we decided to use a new solution respect to 

the one used in the previous section. The set-up will be here implemented 

with a bi-prism that hardwarely split the input fundamental beam into two 

beams converging with and angle 2α. This presents the disadvantage that it 

is impossible to vary the angle of the two beams inside the crystal (without 

changing the optical components), but it is more useful from the practical 

point of view because the set-up does not need a delay line and in general a 

delicate alignment. This decision also, goes toward the idea of the 

integration and simplification for a future real device application. As we will 

see in the last section, as far as the application for pulse monitoring and 

characterization is concerned, the nonlinear interaction in the disordered 

crystal involves two beams (pulses) intersecting at small angle inside the 

disordered medium.  

 In this part of the work we extend our studies by considering 

simultaneous SHG and THG via cascading. This is particularly relevant for 

interactions involving fundamental waves at the telecommunication 

wavelengths since cascading leads to the emission of the TH in the visible 

part of the spectrum, far from the absorption edge of the commonly used 

quadratic crystals. We investigate polarization properties of the emitted 
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harmonics and model them using the concept of effective nonlinearity and 

taking into account the role of spatial randomness of the antiparallel 

ferroelectric domains. We support our experimental results with direct 

simulations of the Maxwell’s equation in random quadratic medium as 

explained in the first Chapter. 

 The experimental setup is shown in Fig.3.6. As a light source we used 

an optical parametric amplifier (TOPAS) generating 150fs pulses 

(λ=1500nm, 250Hz rep rate) with total energy of 0.788mJ and beam 

diameter 5mm (full width at half maximum). The beam was propagating 

through the half-waveplate (WP) in order to control its polarization, and 

then after focusing with a 100mm cylindrical lens (L) was incident on a bi-

prism (BP) converting the incoming beam into two symmetric beams which 

then intersected at the angle of 2xα=2x2.344º inside the SBN crystal 

(Fig.3.6(b)). In the experiment, the orientation of the crystal was such that 

both beams propagated in the x-z plane, close to its crystallographic x-axis 

and nearly perpendicularly to the longer dimension of the domains 

(coinciding with the optical axis), as illustrated in Fig.3.6(a). Interaction of 

these two beams inside the crystal resulted in the emission of SH and TH 

waves whose far field in the forward direction was recorded using a CCD 

camera located behind the SBN crystal. 

 In the experiment the input polarization of the fundamental beam was 

varied from ordinary to extraordinary by adjusting the half wave-plate 

(WP). Band-pass filters (not shown) placed in front of the CCD camera were 

used to separate the fundamental beam and its harmonics so their 

corresponding spatial intensity distribution could be separately recorded. In 

addition, a polarizer (not shown) located behind the SBN sample enabled 

measurements of the ordinary and the extraordinary components of the 

generated harmonics. 
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Figure 3.6. (a)Schematic of the experimental setup. The multi-domain structure 

of the SBN sample is schematically shown. WP- half wave-plate, L- cylindrical 

lens, BP- bi-prism. (b) Top view scheme of the bi-prism.  

 

  When the two intersecting linearly polarized fundamental beams 

propagate in the sample of the SBN crystal, the nonlinear interaction in the 

crystal leads to the emission of both, SH and TH. In our previous works with 

the fundamental wavelength of 1.064µm or 0.8µm the TH could not be 

observed since it was above the absorption edge of the medium. On the 

contrary, now it falls in visible part of the spectrum and its intensity was 

high enough to be measured and characterized. 

 Because of the randomness the overall generated signals were rather 

weak. The total emitted power of the SH and TH reached 35µW and 16nW, 

respectively. Typical harmonic intensity pattern observed on the screen is 

depicted in Fig.3.7. It consists of seven lines oriented perpendicularly to the 

optical c-axis of the crystal. The three lines denoted as SH1, SH2 represent 

the SH while the four lines marked as TH1 and TH2 represent the TH 

waves. The two SH signals (denoted as SH2) represent waves emitted due to 

the interaction of fundamental photons from each constituent FF. On the 

other hand, the central line (SH1) is a result of interaction of fundamental 

photons from both FF's. 
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Figure 3.7. Experimentally recorded planar emission of the SH and TH.   

   

Phase matching relation 

 Fig.3.8(a) illustrates the PM condition for this process in  the x-z plane. 

In this case the iG  denotes one of the reciprocal vectors provided by the 

randomness. Fig.3.8(b) depicts the PM in the 3-dimensional (3D) setting. 

The number of differently oriented reciprocal vectors G  located on an arc 

defined by the magnitude of the wave vector ( 2k ) of the SH reflects the 

planar emission of SH forming a vertical line on the screen. 

 When such generated SH photons interact with photons from the 

fundamental beams via the sum frequency mixing, the outcome is cascaded 

THG. Due to the presence of two noncollinear fundamental beams and three 

SH signals, the TH emission acquires the four-line pattern. Similarly to SH 

generation, the sum-frequency mixing also utilizes the reciprocal wave-

vectors G to fulfill its corresponding PM conditions. In typical fabricated 

structures the simultaneous PM of two such processes would require careful 
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design of the ferroelectric domain pattern and would work for only one set of 

frequencies. 

 

 

Figure 3.8. Diagrams illustrating the PM scenarios for the SHG (a-b) and 

cascaded THG (c-d) generation in random SBN crystal in the presence of two 

FF. G1...G8 represent reciprocal vectors provided by the randomness of the 

nonlinearity. See text for details. 

 

 Here, the randomness ensures that there are always reciprocal vectors 

available which can phase match practically all quadratic processes for 

broad spectrum of the fundamental waves. The emission of the four TH lines 

can be explained by considering again the respective PM conditions of the 

underlying wave mixing mechanism. In particular, the two lines denoted as 

TH2 are formed by the interaction of the fundamental beam with its 

corresponding SH (SH2). On the other hand, the TH signal marked as TH1 

is emitted via two different processes which are illustrated in Fig.3.8(c). The 

first one involves fundamental wave 1k , the SH signal 2
k  originating 

from the second fundamental wave 1
k   and the reciprocal wave-vector 4G . 

The resulting TH signal is emitted in the direction indicated by the vector 

3k . However, this TH signal will also receive contribution originating from 

the interaction of the auto-correlation SH signal (with the wave-vector 2k ) 

with one of the fundamental wave 1
k  employing the reciprocal vector 5G . 

Graph in Fig.3.8(d) illustrates the full 3D character of the interaction 

leading to the emission of the TH in a form of the line TH1. As can be seen 

in this figure, the TH emission in a particular direction is due to the 
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contributions of the SH signals in all directions. Also a single SH signal will 

contribute to the TH emission in different spatial directions. 

 Experimentally recorded image of the emission lines (see Fig.3.7) 

shows that the spatial (vertical) extent of the third harmonic is significantly 

larger than that of the second harmonic. This is a consequence of the fact 

that in each of the quadratic processes such as SHG or sum frequency 

mixing the randomness of the nonlinearity results in delocalized emission of 

the generated frequency (see also [Sti10, Pas10]). As the TH is formed via 

cascading of two quadratic processes its spatial distribution is broader than 

each of the constituent interactions. 

 

Polarization properties 

 The strength of the nonlinear interaction in quadratic media is 

determined by the effective nonlinearity which itself is a function of 

polarization of the interaction waves. Hence, by studying the polarization 

characteristics of the emitted harmonics one can extract information about 

details of the particular interaction process.  

 To really understand the polarization properties of the emitted signals 

we need to have a look closely to the polarization tensor of the SBN (with a 

group symmetry 4mm) 
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where the notation (1)E and (2)E  stands for the two fields making the 

interaction, being them two FFs or a FF and a SH. The detailed analysis can 

be tedious, but we want to give here an example that explains the 

procedure. From Fig.3.8(a) we can set the first step of interaction between 

two collinear FFs written in coordinate (y,x,z) as follow 
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Following the scheme in Eq.(3.4), the in-plane polarization components will 

have the following form 
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namely extraordinary polarized polarization. The second step of interaction 

will be thus between the following fields 
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The scheme in Eq.(3.4) now takes the particular form 
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and consequently the polarization components can be written as 
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Substitutions Eqs.(3.5) in (3.7), after some algebra we finally get the 

following expression 
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 In the experiment we varied the azimuthal angle   (  is the angle 

with respect to y-axis of the sample) of the linearly polarized fundamental 
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wave from zero to 360º, while measuring the power of the extraordinary and 

ordinary components of the emitted harmonics. The results of these 

measurements are shown in Fig.3.9, where the experimental data are 

represented by filled and open circles for the central (SH1, TH1) and 

peripheral (SH2, TH2) harmonic signals, respectively. Fig.3.9(a) and (b) 

show the dependence of the ordinary and extraordinary component of the 

SH and TH on polarization of the fundamental beam. The plots show that 

the polarization properties of the SH and TH beams do not depend on the 

particular emission directions. This is because the angle between two 

fundamental beams is relatively small. 

 The solid lines in Fig.3.9 represent the theoretically predicted 

dependence. It has been obtained by considering all possible processes 

contributing towards the SH and TH signals, in the way outlined in Eq.(3.8). 

Then, for arbitrary polarized fundamental beams, SH and TH will contain 

ordinary and extraordinary components. In case of, e.g. SH1 SHG, its 

extraordinary component is formed via the following two processes:  

E1E’1 E2   and  O1O’1 E2. 

On the other hand, the ordinary component of the same SH signal is 

obtained via the following interaction:  

E’1O1 O2   and  E1O’1 O2. 

 

 

Figure 3.9. Intensity of the SH (left) and TH (right) signals as a function of the 

polarization angle of the input fundamental beams. Filled and open circles 

denote the experimental points for the central (SH1, TH1)and peripheral (SH2, 

TH2) harmonic signals, respectively. The solid line represents theoretical fit 

(Eqs.(3.9)). The red and blue colors refer to the extraordinary and ordinary 

components of the corresponding harmonics. 
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 The TH is formed due to mixing of photons from the fundamental and 

SH beams. In particular, for the light emitted into the TH1 line, its 

extraordinary component is created via the following processes: 

E1E2SH2 E3   and  O1O2SH2 E3 

E’1E2SH1 E3   and  O’1O2SH1 E3 

while the ordinary component appears due to the following interaction: 

E1O2SH2 O3   and  O1E2SH2 O3 

E’1O2SH1 O3   and  O’1E2SH1 O3. 

In analogous way one can identify all remaining processes contributing 

towards the SH2 and TH2 emissions. All these interaction processes are 

inferable from the polarization tensor in (3.4). 

 Unlike homogeneous media where all these processes contribute 

coherently to the total amplitude of the generated harmonic, the 

randomness of nonlinearity induced by multi-domain structure makes these 

constituent processes mutually incoherent. Therefore one can show that the 

intensities of SH and TH depend on the polarization angle   of the 

fundamental beam as follows 
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where R2j, (j=1,2) and R3k (k=1,2) denote the strengths of the constituent 

nonlinear processes and are determined by the corresponding effective 

nonlinearity.  

 It is worth noting that the effective nonlinearity for all constituent 

processes depends not only on the material parameters, polarization and 

geometry of interaction but is also affected by the disorder as it has been 

shown by Le Grand et al. [Leg01]. We have extended this theory to cascaded 

processes. It appears that disorder generally weakens the strength of the 

quadratic interaction and its effect depends on the phase mismatch of the 

process. In fitting the theoretical formulas to the experimental data we used 

the following values for the R2j and R3k parameters: R21=0.75, R22=4.10 and 
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R31=0.25, R32=1.40 for the harmonic lines SH1 and TH1; R21=0.82, R22=4.20 

and R31=0.04, R32=1.31 for the harmonic lines SH2 and TH2.  

 Notice, as example, how the last two equations of the set (3.9) are 

obtained simply taking the square of each terms in the Eqs.(3.8). The good 

agreement of the fit with the experimental results in Fig3.9 is the clear 

mark of an incoherent superposition of the generated fields. Indeed, if the 

field were coherently growing, their intensities would be proportional to the 

total square of the polarization terms, namely   
2

TH

yP  and  
2

TH

zP . This will 

give rise to mixing product terms that will drastically change the shape of 

the recorded curves. 

 

Numerical simulations 

 Finally, we investigated numerically the SHG and THG in disordered 

quadratic media with two intersecting fundamental beams with Gaussian 

spatial and temporal profiles. Starting from Maxwell's equations and 

considering monochromatic stationary waves we can write the generic and 

well known equation describing the electromagnetic interaction that for the 

transverse-electric case, for example, holds as 

 2 2 2 2

0 0 ,j j j j NL jk n    E E P , (3.10) 

where 0 /j jk c , j  is the frequency, jn  is the index of refraction and 

j=FB1, FB2, SH, TH discriminates for the two noncollinear fundamental 

beams, SH and TH respectively. The Gaussian fundamental beams, 

assumed to be undepleted, are tuned at 1500nm, are 24µm in diameter and 

impinge at the nonlinear medium at an internal angle α=±2.35º with respect 

to the x-axis. The SH and TH nonlinear polarizations can be simply 

expressed as 
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where we neglected the cubic nonlinearity and did not impose any constrain 

on the 2D spatial distribution of the (2)  nonlinearity. 
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 The equations were solved with a standard 2D finite element method 

(COMSOL Multiphysics) considering several realizations of Gaussian 

distributions of the nonlinear domain pattern. As example, in Fig.3.10 we 

report the case of domain distribution with 1µm mean value and 0.15µm 

standard deviation. Plots in Fig.3.10 depict the far field intensity at the exit 

surface of the medium of both, SH and TH signals. The different emission 

angles are due to the noncollinear PM conditions and are in good agreement 

with the discussion above. For the peripheral emission lines, the SH and TH 

overlap as in the experiment while for the centrally emitted (TH1) TH, the 

simulated emission angle is β=1.70º, corresponding very well to the 

measured angle of 1.7º. It is clear from these plots that the signals 

corresponding to the noncollinear interactions are always strongest than 

those originating from the collinear interaction. This effect, also clear from 

the experimental data, results from the fact that the corresponding effective 

second order nonlinearity is at least four times stronger in the former case. 

Varying the parameters of the domain distribution (i.e. mean value and 

standard deviation) does not affect the positions of the peaks but only 

changes the relative emitted intensity, since it will only change the number 

of G vectors available to satisfy that particular phase matching relation. 

 

 

Figure 3.10. Numerically simulated far field intensity of the SH (red-dashed) 

and TH (blue-solid) generated via interaction of two fundamental waves in SBN 

crystal with random domain distribution.  



 

 

 

 

 

 

 

Chapter 4 
 

Pulsed dynamics in 

disordered nonlinear 

domains structures 

 

 

 

4.1. Introduction  

 The use of ultrashort optical pulses has nowadays become an essential 

tool in a rapidly increasing number of applications in both research and 

industry. Important examples include the measurements of the dynamics of 

complex DNA molecules, monitoring of chemical reactions, optical 

communications, and laser micromachining. For the success of such 

applications, it is essential to obtain a precise knowledge of the duration and 

stability of the laser pulses. The existing techniques of ultrashort pulse 
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measurements usually rely on optical gating between the pulse and its 

replica that is typically realized through a nonlinear optical process, e.g. 

parametric process of the generation of the SHs [Die89, Tre97, Iac98, Dor02, 

She84]. 

 Among the different schemes for optical gating, noncollinear SHG is 

known as one of the best methods for single-shot pulse-duration 

measurements [Gyu79, Kol81, Salt82, Sal82, Jan77, Rem88, Sal87, Wya81, 

Akt03, Sza83, Ish85, Sal86, Rag01, Col99, Dub94, Sac01]. In this method, 

two beams cross at a small angle inside a quadratic nonlinear crystal and, if 

the PM conditions are fulfilled, a SH beam is generated in the forward 

direction. The spatial shape of the generated SH beam represents the 

correlation function of the interacting ultrashort pulses. 

 It is well known that to obtain an efficient SHG the PM condition has 

to be fulfilled. Since the angular, frequency, or temperature conversion 

bandwidth utilized in these techniques is quite narrow (it decreases with 

the crystal length), this requires careful selection and alignment of the 

crystals used in a particular application. However, in disordered media SHG 

PM is possible over a broad frequency bandwidth, being limited only by the 

transparency region of the crystal, and it does not require angular or 

thermal crystal tuning [Hor93]. 

 In this Chapter we show that the planar SHG resulting from the non-

collinear interaction of a pulse with its own replica represents the 

autocorrelation of the pulse. Since the fundamental pulse broadens with the 

propagation inside the crystal due to material dispersion, the 

autocorrelation trace will widen correspondingly. This effect can be also 

used for the chirp characterization of the input femtosecond pulses. The 

broad conversion bandwidth provided by the random QPM process makes 

possible to use the same crystal for different wavelengths without need of 

realignment. 
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4.2. Short pulses characterization 

Phase-matching conditions  

  In earlier works on parametric processes in unpoled SBN crystals, it 

was considered mainly collinear pump interaction schemes [Fis06, Fis07, 

Sal08]. For a single fundamental beam propagating along or perpendicular 

to the optical axis (which coincides with the domain orientation) the PM 

condition results in SH radiation emitted in a form of a cone or a plane. For 

counter propagating pumps being either perpendicular to [Fis07] or directed 

along the z-axis [Sal08] the SH signal is also emitted in a form of a plane. 

Here, we consider two fundamental beams propagating in crystallographic 

plane x-z of the SBN crystal and forming angles –α and + αwith the x-axis. 

Then the general vectorial PM condition for SHG is written as 

  
k

2
 k

1
 k

1
G , where 1k , 

  
k
1
 and 2k  are the wave vectors of the 

fundamental and SH waves, respectively, and G  represents one of the 

reciprocal vectors available from the infinite set of vectors provided by a 

disordered NLPC. The PM conditions which require 3D consideration are 

visualized in Fig.4.1(a). The blue arc defines the geometrical place of the 2k  

direction. All reciprocal vectors G  are situated in the x-y plane. If we 

consider a complete random distribution of the nonlinear domains, G  

vectors can take any length and direction within this plane. We notice that 

all possible PM triangles determine that the SH radiation is emitted in the 

form of a plane coinciding with the crystal x-y plane.  

 Because the SH signal is generated in the area where the pulses from 

each fundamental beam overlap, the width of the emission region is directly 

related to the pulse length and beam size (see Fig.4.1(b)). Let us consider 

two distinct limiting cases:  

1. interaction of long pulses, when the pulse width 
  
 ? 2 tan / u , 

where  is the angle between each of the beams and the crystal x-

axis,  is the beam radius, and u  is the speed of light in the 

crystal. the SH radiation is generated from the volume overlap of 

the two fundamental beams and the width of the emission area z  

is defined as 
  
z  2 / cos . In this situation the pulse duration has 
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no connection with the area of the generated SH. This corresponds 

to the situation depicted in Fig.4.3(a). 

2.  interaction of short pulses when 
  
 = 2 tan / u . In this case the SH 

emission area is defined by the temporal overlap of both pulses and 

has form of a thick line with the width of   z  u / sin  (see Fig.4.2). 

This relation is valid for identical rectangular pulses with the 

duration u and width 2. This situation corresponds to the 

situation depicted in Fig.4.1(b) or Fig.4.3(b). 

 

 

Figure 4.1. (a) Schematic of the PM diagram demonstrating the planar emission 

of the SH wave via interaction of two noncollinear pumps with bisector 

coinciding with crystal x-axis. Gi being the reciprocal vectors of the disordered 

nonlinear crystal. (b) Overlap of the beams A and B and the overlap of the short 

pulses forming a narrow line inside the crystal. 

 

 

Figure 4.2. Schematic of the relation between the overlapping region and the 

pulse duration for the short pulses case. 
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 In the case of Gaussian pulses, the width of the SH emission area will 

be 2  smaller [Jan77] 

 
  
z  u / 2 sin ,  (4.1) 

leading to following relation     z 2 sin / u . This is the well-known 

formula for the pulse duration single-shot measurements by noncollinear 

SHG experiments, see for example [Jan77, Sal81, Ish8510]. The difference is 

that in the traditional pulse-duration measurement techniques the 

recording of the SH trace is performed in forward direction, integrated over 

the crystal length. This is due to the fact that PM conditions are only 

fulfilled in the forward direction. In the situation considered here, we deal 

with an emission also in the transverse direction, due to the specific for this 

type of media omnidirectional random quasi phase matching [Bau04]. 

Therefore, the two-pulse overlapping volume is moving towards the output 

face, resulting in a SH line as illustrated in Fig.4.1(b). Monitoring 

transversely the width of this line along the crystal length can now provide 

an additional information about the pulse evolution inside the SH crystal. 

 

Theoretical model 

 In order to take full advantage of this set-up and to be able to handle 

all the characteristic of the propagation, we need to consider a theoretical 

model. We assume that the two fundamental beams have a Gaussian 

spatial and temporal profile and cross at an angle 2α inside the crystal. The 

corresponding amplitudes can be written as: 
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where (x1, z1) and (x2, z2) are the coordinates in reference systems oriented 

along the propagation direction of each one of the beams (Fig.4.3), u=c/n is 

the speed of light in the crystal. T  is the pulse-width at 1/e levels in 

intensity. 

 By introducing a common coordinate system for both beams, 

corresponding to the x- and z-axis (x,z) (Fig.4.3) we calculate the SH field 
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generated in the crystal. Assuming that PM is provided by the random QPM 

process [Bau04], the SH amplitude is proportional to the nonlinear 

polarization at doubled frequency: 

 
  
B(x, z,t)  P
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(2)  d
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(2) A
1
A

2
.  (4.3) 

 

 

Figure 4.3.  Beam superposition inside the SBN crystal for two limiting cases of 

(a) long pulses and (b) short pulses. For the case (b), as beams propagate the 

emission region moves along the x-axis giving rise to the recorded trace. 

  

 The generated SH signal recorded by a CCD camera represent a cross-

correlation function of two interacting pulses. Therefore, in case of Gaussian 

pulses, the SH field can be represented as 

 

  

B(x, z, t)  B
0
(x)exp 

z2 cos2   x2 sin2 

2











 exp 
(tu  x cos )2  z2 sin2 

u2T
c

2 (x)









 ,

 (4.4) 

where α denotes the half angle between the wave-vectors of the two 

intersecting fundamental beams inside the crystal and B0(x) is an amplitude 

that will be defined below. 

 The initial velocity of each spectral component is [Agr07] 
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with C the initial chirp at the entrance of the crystal. With propagation 

inside the crystal the pulses experience broadening due to material 

dispersion, that depends on the initial chirp of the pulse. We have 

considered this effect assuming a chirped pulse in a medium with group 

velocity dispersion β2 by formally replacing in Eq.(4.4) the pulse duration, T, 

by the complex pulse duration, Tc [Agr07], 

 
  
T

c

2  [T 2  i
2
x(1 iC)](1 iC)1 . (4.6) 

In such case  
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  Figure 4.4(a) illustrates emission of the SH (central peak, in blue) 

via the noncollinear interaction of the overlapping pulse fronts of the two 

fundamental beams inside the crystal as described by Eq.(4.4) in condition 

of big radii (
  
  uT / 2 tan ) of the beams. 

 

 

Figure 4.4. (a) Emission of the SH wave (central peak, blue) via the noncollinear 

interaction of the overlapping fundamental pulses inside the crystal, as 

described by Eq.(4.4). Background emission of the SH wave by each beam is 

shown as well. In this simulation, the beam radii are considered much bigger 

than uT /2 tan α, with 2α  being the angle between the beams inside the crystal. 

(b-e) Theoretically evaluated snap-shot of the spatial profiles of the SH signal 

for different pulse durations and chirp parameters. 
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 The graph also shows the background emission of the SH (in pink) by 

each individual beam. Only in the region of pulse overlap, a much stronger 

SH signal is emitted. Since the detected signal corresponds to an integration 

in the time domain, it results in a recorded continuous trace along the x-

direction. The resulting SH intensity emitted from the overlapping of the 

fundamental beams is given by 
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where 
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If the pulse is long the recorded trace corresponds to the second exponent of 

Eq.(4.8) and its shape (see Fig.4.4(b)) is defined only by the transverse 

dimensions of the beam and can not be used for estimation of pulse duration 

(Fig.4.3(a)). In the most interesting, from the practical application point of 

view, limit of very large ρ, the transverse profile of the SH trace along x is 

determined solely by the first exponent in Eq.(4.8). This case is illustrated 

on Fig.4.4(c,d,e) for two different angles between the two fundamental 

beams. 

 The thickness 
  
z(x)  of the SH trace depends directly on the pulse 

duration (as shown in Fig.4.1(b) and 4.3(b)) 
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If the width of the SH trace is measured at the input facet of the crystal 

(x=0) we obtain, (considering Tch(0)=T ) a measure of the pulse duration, 

 
  
T  ( 2 sin)z(0) / u.  (4.11) 

The same relation holds for the experimentally measurable FWHM of the 

pulse duration, τ, and the FWHM of the trace transverse profile,  
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 Additional information about the pulse can be obtained if the SH trace 

is recorded along the nonlinear crystal. Depending on the values of the 

group velocity dispersion β2 and the initial chirp of the pulse C the width of 

the trace may became dependent on the distance measured from the 

entrance surface. For β2 and C having the same sign, the trace width will 

grow constantly with the increase of distance from the front surface, while 

for β2 and C of the opposite signs, this width will first reach its minimum at 

certain distance and will start growing afterwards. The case of negative β2=-

466 fs2/mm and C=-4 is shown on Fig.4.4(e). As can be seen from Eqs.(4.9) 

and (4.10) for known β2 it is sufficient to measure the width of the trace at a 

distance x  from the crystal entrance in order to determine the initial chirp 

of the pulse: 
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Comparing Fig.4.4(d) and Fig.4.4(e) we note that the chirp may strongly 

affect the spatial profile of the recorded SH field, which can be also used in 

analyzing the properties of the input pulses. 

 

Experimental results and discussion  

 Two types of experiments have been conducted by using light sources 

with different wavelengths and pulse durations. In the first experiment we 

used a Nd:YAG laser delivering 8 ns pulses at 1064 nm wavelength with 

repetition rate of 10 Hz. This experiment is representative of the situation 

where the pulse duration is too long and the recorded image cannot be used 

to measure the pulse duration. A large emission SH area has been 

experimentally recorded (Fig.4.7(a)), but it is non representative of the 

pulses duration. 

 In the second experiment the fundamental pulses are generated by a 

femtosecond MIRA (Coherent) oscillator tuned to 810 nm, with an 

approximate pulse duration  =180 fs and repetition rate 76 MHz. The 

schematic representation of this experimental geometry is displayed in 

Fig.4.5. The incoming infrared laser beam is split into two equal parts (with 
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the amplitudes EA and EB) which are incident at an unpoled SBN crystal 

(5x5x10 mm, all sides polished) under an acute angle such that the two 

beams intersect in the central part of the crystal. The externally measured 

intersection angle 2 ext  in different measurements is in the range of 20-28º. 

A variable delay line in one of the arms ensures that the two pulses coincide 

inside the crystal.  

 

 

Figure 4.5. Photographic images of the SH emission in the transverse (a) and 

forward (b) directions via noncollinear waves interaction. The middle line in 

both photos corresponds to the planar SH emission as a result of the mixing of 

the two beams/pulses A and B (λF= 810 nm). These central traces disappear if 

one of the input beams (A or B) is blocked or if the pulses do not overlap inside 

the crystal. The two arcs on both sides of the central lines represent the conical 

emission from each individual pump beam.  

   

 We note that it is essential to have a large beam width in the plane of 

the crossing angle in order to fulfil the requirement for short pulse 

nonlinear interaction discussed above. For this reason, the beams are 

focused in the crystal with a cylindrical lens (f=10 cm), resulting in beam 

transverse dimension in the range of 2.2x0.43 mm. The path lengths of both 

incident beams are adjusted to ensure that the propagating pulses meet 

inside the crystal. In the experiments, the polarization vectors of both pump 

beams are chosen to be extraordinary, being directed along the 

crystallographic z-axis. The generated SH radiation is also polarized along z 

indicating the interaction of the type eAeB-eSH. This interaction gives the 

highest efficiency compared with other two possible geometries, namely 

oAoB-eSH and oAeB-oSH. In this notation, ‘e’ means an extraordinary wave and 



Chapter 4. Pulsed dynamics in disordered nonlinear domains structures 

 

103 

‘o’  an ordinary wave. The 4mm point symmetry group of the SBN crystal 

determines nonzero components of the second-order nonlinearity tensor 

(2)d̂ . Since the direction of the fundamental beams is close to or coincides 

with the crystallographic x-axis, the relevant (2)  component for eAeB-eSH is 

d33 (see previous Chapter). 

 The SH signal can be detected by a CCD camera imaging the crystal x-

z plane from above or in front of the crystal. In the first case, the camera can 

record the evolution of the SH signal along the propagation of the 

fundamental beams from the entrance to the output of the sample. The 

photos in Fig.4.5 illustrate experimentally observed (a) transversely and (b) 

forward emitted SH signal for the noncollinear interaction of the 

fundamental beams in the SBN crystal. In each photograph, the central line 

appears only if two femtosecond pulses overlap inside the crystal. Blocking 

one of the beams or introducing a relatively large delay (> 2 ps) for one of 

the pulses makes this line to disappear. The two arcs located symmetrically 

on each side of the central trace represent the conical emissions from each 

individual pump beam [Fis06, Mol08, Tun03]. They are formed as a result of 

the collinear interaction of the fundamental photons within each beam. The 

internal cone angle   is defined by the PM conditions similar to that 

discussed in [Fis06, Tun03] but modified to account for an arbitrary position 

of the fundamental beam with respect to the x-axis. Actually, the cone angle 

 can be found from the relation [Fis06, Tun04]  

 
  
  cos1 2k

1
/k

2 sin



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Based on the internal angle  corresponding to the present experiment, we 

obtain that the external cone angle 
 
  79¼. 

 Fig.4.6 shows the AC trace measured for the case of 810nm 

fundamental waves. As both pulses enter the crystal simultaneously, the 

trace is located centrally inside the geometrical region of the overlap of both 

incoming beams. The plot on the right depicts a detailed profile of the AC 

trace. In the presence of a temporal delay between the fundamental pulses, 

the AC line will shift transversely to left or right by   z  ut / 2sin  (see 

Fig.4.9(a)). This lateral shift can be used to calibrate the AC measurements. 

On the right hand side of Fig.4.6, a digitized trace from the region close to 
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the entrance side of the crystal is shown. According to Eq.(4.1), its width 

gives the FWHM pulse duration of 193 fs . 

 

 

Figure 4.6. (left) The AC trace of transversely emitted SHG from two 

intersecting fundamental beams. (right) Detailed profile of the AC trace. 

  

 In Figs.4.7 we comparate the two experiments. For long (8 ns) pulses 

(Fig.4.7(a)) the trace fills the entire overlapping area of the beams. In this 

particular experiment the intersection angle 2
 


ext
~22º. On the other hand, 

in the case of femtosecond pulses (see Fig.4.7(b)) the trace has a form of a 

narrowline located inside the area of an overlap of both beams. In this case, 

the thickness of the trace directly reflects the pulse duration, with intensity 

distribution representing the AC function of the pulses.  

 

 

Figure 4.7. (a-b) Comparison of the thicknesses of the planar SH emission in the 

case of (a) nanosecond and (b) femtosecond pulses;  
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 It should be stressed that since the SH signals originating from each 

individual beam are emitted in a cone, it is possible to separate them from 

that coming from overlapping pulses which is generated in a plane. This 

makes the measurement virtually background-free as illustrated in Fig.4.8. 

Fig.4.8(a) shows the background-free autocorrelation trace recorded by the 

camera pointing vertically at the crystal. The images in Figs.4.8(b,c) depict 

SH signals emitted by each separate beam. These images were obtained by 

tilting  the camera at an angle corresponding to the conical emission of the 

SH by each fundamental beam. 

   

 

Figure 4.8. Recorded SH traces corresponding to (a) noncollinear planar SHG 

and (b,c) single beam SHG. To obtain the images (b) and (c), the imaging system 

is rotated in the y-z plane. 

   

 The photo in Fig.4.9(c) illustrates the experimental observation of the 

SH cross-correlation trace originating from interaction of a single pulse in a 

one beam with two consecutive pulses in the other beam. This pulse doublet 

is obtained by splitting the original femtosecond pulse utilizing the 

difference in the velocities of the orthogonally polarized pulses in a 

birefringent lithium niobate crystal [Fis07]. In this case the interaction 

results in a formation of two parallel SH traces separated by a distance 

corresponding to the temporal separation of both pulses. The same 

argomenations can be used to interpreter the AC trace in case of one the two 

beams presents double peaked strucure or if it is made by a train of pulses. 
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Figure 4.9. (a) Experimental observation of the formation of cross-correlation 

trace, when one of the fundamental beams carries a sequence of two consecutive 

pulses; (b) Schematic illustration of this process. 

  

 The temporal delay between the pulses is 837fs. Graph in Fig.4.9(b) 

depicts schematic of this process. The accuracy of this measurement 

depends on the resolution of the imaging system which can be easily 

controlled by choosing the proper magnification. In our experiments all 

autocorrelation traces were recorded using a standard CCD camera. To 

asses the accuracy of our method we compared its results with those 

obtained by the commercial Grenouille autocorrelator. We found very good 

correspondence in pulse measurements. For instance, for a Grenoullie 

reconstructed FWHM of 272.2 fs, our method gave 276 fs. As was mentioned 

above, the noncollinear SHG geometry discussed here enables us not only to 

determine the pulse width but also to obtain information about the initial 

pulse chirp. To this end, we should measure the transverse width of the 

autocorrelation trace at different distances from the front entrance facet of 

the crystal and then use equation Eq.(4.10) and Eq.(4.13) to calculate the 
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chirp parameter C. We demonstrate this in our experiments using pulses 

with different initial chirps, realized through different alignment of the 

laser. The results are shown in Fig.4.10, which depicts the width of the 

autocorrelation signal (data points) as a function of propagation distance. 

The lines represent a theoretical fit (using Eq.(4.10)) from which the chirp 

parameter C is found. The insets show corresponding autocorrelation traces. 

 

 

Figure 4.10. (top) Two typical autocorrelation traces recorded in the regime of 

weak and strong chirp. (bottom) Evaluation of pulse chirp by measuring the 

transverse width of the SH trace at different locations inside the crystal. 

Dashed lines represent theoretically calculated evolution of the SH signal for 

three different values of the incident chirp.   

 

  An additional advantage of using random QPM with respect to other 

usual nonlinear techniques is that we can obtain a SH signal for different 

polarizations of the input beam without any further alignment. As 

expressed in Eq.(4.3), the resulting SH signal is proportional to (2)

effd . 

 The symmetry of the SBN crystal allows for three different 

interactions, namely (eee), (ooe), and (eoo) [Tru07]. The large bandwidth of 

the random QPM process allows to simultaneously phase match all these 
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processes, so we can obtain a SH planar emission for different input beam 

polarizations. The most effective SH emission, however, takes place for the 

extraordinary beams since the (eee) interaction is driven by the largest 

coefficient d33. 

 In conclusion, we have demonstrated that, by employing random QPM 

in an SBN crystal, we can realize non- collinear planar SH generation. By 

imaging the SH emitted in the transverse direction, we have determined the 

pulse duration and the initial linear pulse chirp. In addition, such type of 

nonlinear media can be used for nonlinear optical interactions with multiple 

input wavelengths or input polarizations without any further alignment or 

angular tuning due to available broad bandwidth provided by the random 

nonlinear photonic structure. 
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 Phase matching is a crucial point for efficient nonlinear interactions, 

but unfortunately it is not a natural condition in common materials. 

Different techniques that assure this phase matching condition share the 

common limitation of the reduced bandwidth. In the same time, a specific 

design of the structure is useful only for one particular nonlinear interaction 

and well defined polarizations of the interacting beams. In this work we 

studied new aspects related with the nonlinear interaction in random and 

disordered nonlinear photonic crystals. We show that these structures 

provide a very broad PM, both in wavelength as well in angular domain, the 

only limitation being the transparency window of the material. This topic is 

extremely new and it is characterized by high complexity since it needs to 

merge fundamental knowledge from structured materials and linear, 

nonlinear and statistical optics. We approached the problem to the best of 
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our ability using the tools of theoretical study, numerical analysis and 

experimental verification. 

 In Chapters 2 and 3 we analyzed the SH and TH emissions from the 

SBN crystal, which is the natural material with the χ(2) modulation of the 

random NLPC. We verified in detail that the pattern and the characteristics 

of the experimentally measured signals are in good agreement with both the 

forecast made by the PM scheme and the numerical simulations of the full 

vectorial Maxwell’s equations, that we have obtained with our 2D nonlinear 

propagation model specially adapted to simulate these kind of random 

structures. We showed that cascaded processes in such structures are also 

possible with simultaneous fulfillment of PM for SHG and sum frequency 

generation.  

 We also proved that this nonlinear interaction can be used to 

characterize the random distribution of the material.  In Chapter 2 we 

proposed a different approach to the modeling and visualization of the 

nonlinear domains. Due to the technical difficulties to obtain unambiguous 

images of the nonlinear structures, we approached the problem from the 

opposite side, numerically providing guess structures and iteratively 

adapting them to the experimentally obtained SH emission. In this way the 

statistical parameters are univocally fixed regardless of the growing method 

or crystal manipulation. 

 This study has been performed by a non commercial numerical code that 

solves the Maxwell’s equations in their complete form and advances the 

fields in time. The numerical method does not rely on any of the usual 

approximations (such as SVEA, undepleted pump, etc…) giving us a very 

good confidence on the results obtained. This is in opposition on the other 

code more usually employed to solve this kind of noncollinear interaction. 

The presence of light generation at big angles respect to the FF propagation 

direction (as for example the transverse and backward SHG) requires 

careful implementation of the numerical code and does not permit the 

inclusion of strong approximations (such as SVEA) that will produce 

numerical artifacts. In addition to the electromagnetic pulse propagation 

simulations, we implemented a numerical tool that automatically generates 

disordered structures that mimic the ferroelectric crystals features. These 
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structures were then studied in the spatial Fourier space and analyzed with 

the PM scheme.  

 To our knowledge this work is the first one where a lot of issues related 

to the emission from these structures are systematically assessed. As an 

example, the transverse SHG in both collinear and non collinear schemes 

has been widely investigated and explained. The whole study embodied in 

Chapters 2 and 3 is a valid base where future works can build a systematic 

study and investigation device-oriented. The knowledge of how the 

nonlinear domains collectively operate gives a unique opportunity to their 

artificial and/or post-production engineering based on specific on-demand 

SH emission characteristics. The comparison between simulations and 

experiments allows us to interpret different emission patterns opening the 

possibility 1)to control the light emission by the proper design of the 

nonlinear domains and 2)to characterize the material by the study of the 

nonlinear emission. 

 Finally, in Chapter 4 we present a first practical application of our new 

acquired knowledge on these materials. We deepen the observation made in 

Chapter 2, shifting to the pulsed regime. We gave theoretical bases and 

experimental verification for the practical and easy determination not only 

of the fundamental beam pulse duration, but also of the initial chirp 

possessed by the beam. This put this method is complementary respect with 

other well-know methods as FROG, Grenouille and SPIDER. In fact, our 

theory does not present any limitation on the measurable pulse duration, 

giving us the possibility to characterize ultrashort pulses down to few 

optical cycles. In this regime the other commercial methods either are not 

usable or require very careful set up and alignment. Moreover, the set up is 

very easy and robust and does not require particularly expensive tools. 

 The shift of the pulse measurement from hundred-of-femtoseconds limit 

(as in this work) down to few-femtoseconds level, presents however two 

main critic points. The first one concern with the difficult handling of so 

short pulses and it is not peculiar of only our method. Few-optical cycles 

pulses propagate in fact with very strong dispersion in both the nonlinear 

crystal and in all other optical components (as for example in the beam 

splitter). This demands a very accurate characterization of all the optical 
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elements and a smart design of the experimental set-up. The second critic 

point is illustrated in Fig.4.6. The overlap between the two fundamental 

fields that generates the SH trace has a transversal dimension that depends 

directly on the duration of the fundamental pulses. To correctly record this 

trace we need to have an image with an appropriate graphical sampling. For 

few-optical cycles pulses, this sampling can be quite severe. To solve this 

issue, in principle, it can be enough to provide an adequate magnification 

trough the optical system of the recording camera. 

 Both the critic points have a technological nature and we are confident 

that it will be possible to find satisfying solutions. Recently we re-proposed 

the experiments illustrated in the last section of this Chapter, where we 

have experimentally tested our set up for 70fs pulses with promising 

results. Our future goal is to perform the experiment with 10fs source laser, 

finally proving the great potentiality of our method. If we will be successful, 

this will give a new tool to the scientific world, academic and industry, to 

easily fully characterize the recently introduced ultrashort pulse sources. 

These are, in fact, finding some problems to be widely commercialized 

mainly due to the lacking of a (cheap) feedback characterization tool. 



 

 

 

 

 

Part II 

Chapter 5 
 

Phase Locked Harmonic 

Generation 

 

5.1. State of the art 

 In 1961, with the generation of the SH light using a beam from a ruby 

laser, Franken and his collaborators experimentally discovered SHG, and so 

nonlinear optics was born [Fra61]. Since then, SHG has become one of the 

most investigated and discussed nonlinear optical processes. Although the 

conversion efficiency reported at the time was quite small, the advent of PM 

techniques [Gio62, Mak62] has made it possible to significantly boost SHG 

conversion rates. Countless, detailed theoretical studies of SHG have 

appeared since the seminal work by Armstrong et al. [Arm62] and 

Bloembergen et al. [Blo62] in 1962. In fact, during the last four decades the 

study of SHG has mushroomed and evolved to the point that non-linear χ(2) 
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processes are so well understood that are there are very few chances for 

more surprises to be revealed, at least from the theoretical point of view. 

 Because the primary reason to investigate SHG has consistently been 

the achievement of efficient frequency doubling, the emphasis has been on 

phase matched interactions between the fundamental and the SH beams. 

PM is a condition that essentially requires conservation of linear 

momentum that allows continuous energy flow from the pump to the SH, 

generating high efficiency signal. However, this is a condition that does not 

generally occur naturally, and so the literature abounds with contributions 

that contain techniques and stratagems attempting to circumvent a 

naturally occurring phase mismatch, in order to bring the interacting waves 

closer to ideal, phase matched conditions [Gio62, Fej92, Sap05, Boy66, 

Pet05, Web86, Sid96, Rei03, Ste96, Dag06, Gal00, Con99, Fuj06, Sca97, 

Cen01, Wan01, Kry95, Liu06, Xu03, Orl96]. 

 The systematic study of nonlinear propagation phenomena at or very 

near PM conditions has resulted in relatively few studies of SHG and 

related propagation phenomena in a phase mismatched environment. In 

fact, from time to time workers have been confronted with situations where, 

in addition to the usual SH beam, a second component was observed. For 

example, the general solution for SHG from a boundary layer discussed in 

[Arm62, Blo62] (see Chapter 1) is revealed as being composed of a reflected 

signal, and two forward propagating components, one displaying a k-vector 

that is a solution of the homogeneous wave equation (i.e. the expected wave 

vector at the SH frequency), and the other a k-vector that is the solution of 

the inhomogeneous wave equation, equal to twice the pump wave vector.  

Shapiro [Sha68] in 1968 noted: “SHG spectra consisted of two parts: a part 

matched across the breadth of the laser fundamental … and a portion which 

remained fixed in frequency and coincided with the laser fundamental 

peak.”  The author thus appreciated that there were two SH components, 

but did not elaborate further on his findings.  

 In 1969, in a mathematical treatment Glenn [Gle69] provided a general 

solution of the SH field that also showed two contributions, one arising as a 

surface term, traveling with the characteristic group velocity expected at the 

second harmonic frequency, and a second component that instead appeared 
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to travel with the group velocity of the fundamental beam. These findings 

notwithstanding, workers' attention remained focused on efficient energy 

conversion schemes, via the implementation of QPM [Fej94].   

 In 1987, Manassah et al. [Man87] theoretically showed that, in the 

weak conversion efficiency regime and in the presence of group velocity 

dispersion, the SH signal was characterized by a double-peaked structure. 

The effect was attributed to an interplay between χ(2) and χ(3) processes, and 

self- and cross-phase modulation that occurred during the interaction. Then 

in 1990, Noordam et al. [Noo90] reported that under conditions of a phase 

and group velocity mismatch, the SH signal indeed displayed two prominent 

features. In their words: “This letter is ... the first report on the observation 

of double-peak shapes due to group velocity difference between the 

fundamental and the generated SH”. 

 In the years that followed, the phenomenon was again reported 

theoretically and experimentally. The high-intensity regime and the 

relatively high conversion efficiencies (up to 3.5%) however required that 

the interaction be placed in a context of competing second and third order 

processes [Mal97]. Su et al. [Su06] introduced additional theoretical and 

experimental evidence that a purely second order process could lead to a 

double-peaked structure in the time domain profile of the SH beam. The 

effect was attributed to induced group velocity dispersion (GVD), under 

conditions of negligible group velocity mismatch (GVM). As the pump and 

SH beam co-propagate, they argued, the pump is able to impress its 

dispersive properties on the SH pulse, a process that may be viewed as 

induced effective dispersion. 

 Also recently, the double-peaked structure in the SH signal was 

discussed theoretically in the context of femtosecond pulse propagation in a 

birefringent nonlinear material, under phase mismatched conditions 

[Mle99]. In that study, the authors used a finite difference time domain 

(FDTD) method to solve Maxwell's equations in the presence of a material 

discontinuity that separated vacuum from a nonlinear medium.  The result 

suggested that the SH signal splits into two components, one that travels at 

the pump's group velocity, and a second component that walks off, 
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consistent with all previous predictions and observations of the 

phenomenon.  

 In the present investigation we perform a detailed study of the nature 

of this double-peaked pulsed SHG under conditions of phase and group 

velocity mismatch, and low conversion efficiencies and pump intensities, in 

bulk or structured nonlinear materials. We generally find qualitative 

agreement with all previous reports regarding the presence of a double-

peaked SH signal, and a SH pulse that propagates at the pump's group 

velocity. Instead, our results provide additional insight into the dynamical 

aspects and the interpretation of the phenomenon, in that we find that the 

origin of the double-peaked structure resides in a phase-locking (PL) 

mechanism that characterizes not only SHG, but also χ(3) processes, for 

example, as shown in reference [Ako02], where PL mechanism was first 

discussed in the context of intense field propagation and filamentation in 

the atmosphere. We find that the two peaks consist of a first peak that 

quickly phase-locks to the pump pulse and propagates under the pump 

envelope at the pump's group velocity, and a second component that 

propagates with the characteristic group velocity of the SH frequency, which 

we can refer to as the normal component. At low intensities, the normal 

component propagates at the nominal group velocity given by linear 

material dispersion.  

 One point worthy of note is that the PL mechanism that we describe 

occurs for arbitrarily small pump intensities.  For this reason we believe it 

is not a soliton effect, which usually relies on a threshold mechanism [Fej92, 

Kiv95, Con97, Con97b, Con98, Llu96]. In reference [Llu96], for example, the 

effect is discussed at length within the context of continuous wave beams, 

diffraction, and associated spatial soliton formation, in both seeded and un-

seeded cases. The authors in fact coined the term beam locking to 

distinguish the phenomenon from other soliton-like effects that occur in χ(3) 

media [Llu96].  In our case, we find that once the normal component 

separates, the PL is complete, the interaction between the waves ceases, 

and in the absence of pump focusing, the energy of the second harmonic 

pulse clamps.  
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 Moreover, the introduction of a physical boundary with vanishingly 

small index discontinuity, e.g. the pulse is made to cross from a non-zero χ(2) 

region into a region free of nonlinearities, is enough to cause the phase-

locked SH pulse to be released, and to begin a journey still in the forward 

direction but with a different group velocity. Thus it is important to stress 

that the nonlinear coupling is the link to activate the PL. In the region 

where, for some reasons, the nonlinear coupling is null either the phase 

locked harmonic is not generated, either, if it was previously generated, it 

becomes free to propagate accordingly to its wavelength dispersion 

characteristics. 

 The partial informations achieved at the time we started this thesis 

work were enough to give us a simple idea: the phase locked harmonic 

component, once generated, reads the complex index of refraction of the 

fundamental beam. This is in opposition to the fact that the normal 

harmonic component keeps reading the index of refraction given by the 

dispersion values at its own frequency. At that time this idea was only 

partially supported. Thus, our goal in this Part III will be to fully 

experimentally prove our idea, providing a systematic and detailed study. 

 In few words, let’s consider a continuous beam at frequency 2ω that 

propagates with k-vector 2k1 (due to the PL mechanism). This can be seen 

as if the field is propagating in a medium with an effective index of 

refraction n2=2ω/2k1=ω/k1=n1, namely the same index of the fundamental 

beam. The more urgent task to accomplish was to give an experimental 

support to this idea and the results are explained in this and in the next 

Chapter. Here we tried to work with a smart working condition. Following 

our idea, if we tune the SH in a spectral region of the material dispersion 

where the absorption is strong, the difference in the two harmonics 

behaviors is pushed to the extreme consequence: the normal component 

should be completely absorbed while the PL component will be able to 

propagate undisturbed, provided that the fundamental beam is tuned in a 

transparent region. The experiment described in the following Chapter goes 

in this direction giving us the definitive proof.  

 As expected, the harmonics conversion efficiencies are relatively small 

and this makes them not practically usable. A way to shift a bit the 
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importance of these results from the fundamental relevance to the real 

applicability is to try to enhance those efficiencies. Strong of the remarkable 

result achieved, we then made a step further considering the behavior of 

such component in a microcavity environment. In Chapter 7, we started 

with a theoretical study of a free standing cavity. As a second step, we set 

up an experiment to prove our finding first with a single mirror cavity, than 

with a high performance high-Q (double dielectric mirrored) microcavity. 

 Finally, in Chapter 8 we wanted to push even further our finding. We 

investigated what happens if one harmonic field is tuned in a region where 

the material shows metallic behavior. In fact here, the field should be not 

simply absorbed, but in principle no light propagation at all should be 

allowed due to the opposite signs between the magnetic permeability 

(always around 1) and the electric permittivity (assuming negative values in 

the UV range of most semiconductors). As we will show at the end of the 

Chapter 8, the PL phenomenon is so robust to even put in crisis 

conventional wisdom.  

 

 

5.2. Role of phase matching in pulsed SHG 

Phase Locking Theory 

 The dynamics of the PL mechanism can be traced back to the beginning 

of nonlinear optics. As outlined by Bloembergen in his seminal work [Blo62], 

energy transfer between the FF and its generated harmonic, far from the 

PM condition, always happens near the interface. The expression "near the 

interface" could acquire different connotations and/or meanings depending 

on the working conditions, such as the dimensions of the incident pulse and 

the sample. Generally speaking, assuming normal material dispersion and 

that all fields are tuned at frequencies below a material resonance, the 

generated harmonic fields will always experience dispersion such that they 

will tend to travel slower than the FF. The exchange of energy between the 

FF and its harmonics takes place within the walk-off distance, i.e. until the 
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harmonic pulse is no longer under the spatial influence of the FF pulse due 

to differences in group velocities. Of course, walk-off is best observed under 

conditions of large mismatch. In this situation it is easy to observe that 

when a pump pulse crosses an interface between a linear and a nonlinear 

medium there are always three generated SH and/or TH components. One 

component is generated backward into the linear medium (i.e. vacuum), due 

to the index mismatch between the materials that form the interface and 

the remaining two components are generated forward. The basis for 

understanding the generation of two distinct forward-moving signals can be 

found in the development of the mathematical solutions of the homogeneous 

and inhomogeneous wave equations at the harmonic frequencies [Blo62, 

Arm61] (see Chapter 1). In the linear case the wave equation has a 

homogeneous form. Depending on other approximations made (for instance 

SVEA, undepleted pump, etcetera) the solution is well known.  

 If a quadratic term is considered in the constitutive relation, in the way 

outlined in the Chapter 1, a SH field with double frequency arises from the 

material. This has a generally very low efficiency level if no other expedient 

is adopted. This newly generated field satisfies the same kind of wave 

equation, except that now a driving term is present on the right hand side. 

The resulting inhomogeneous form of the equation has a solution composed 

by the sum of the homogenous and inhomogeneous solutions, which is 

difficult to express analytically in the general case. This prediction of a two-

component SH signals was later discussed and observed [Sha68, Gle69, 

Man87, Noo90, Ras97, Su06, Mle99]. 

 Continuity of the tangential components of all the fields at the 

boundary leads to generation of the two forward-propagating components 

that interfere in the vicinity of the entry surface and immediately give rise 

to Maker fringes [Mak62]. It turns out that while the inhomogeneous 

component (inhomogeneous solution) is captured by the pump pulse and 

experiences the same effective dispersion of the pump, the homogeneous 

component (homogeneous solution) travels with the group velocity given by 

material dispersion. That is, this component has wave-vector  

2 0(2 ) (2 )HOMk n k   , 
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where  

0(2 ) 2 /k c   

represents the free space wave-vector at the frequency 2ω, and exchanges 

energy with the pump until the inevitable walk-off. The inhomogeneous, 

phase locked, component has a wave-vector given by  

2 02 ( ) ( )INHk n k   , 

where  

0( ) /k c  , 

so that the wave-vector of the inhomogeneous components is precisely twice 

the pump’s wave-vector  

0( ) ( )k n k   . 

The situation for the TH is analogous. Here the term phase-locked is used to 

emphasize the fact that the inhomogeneous component maintains the same 

phase relative to the FF beam for the entire propagation distance. In the 

limit of Δn0, namely the difference between the indexes of refraction at 

the fundamental and the SH approaches zero, the two solutions merge into 

a single one. In the other cases, where Δn≠0, the two solutions interacts 

until they completely walk off. Consequently, to clearly distinguish the two 

components it is important to work with conditions very far from the PM 

and use very short pulses, which will faster the walk off process. 

 Even if it is possible, at least formally, to write the solution of the 

nonlinear Maxwell’s equation for the SH as a sum of the homogeneous and 

inhomogeneous terms as we have shown in Section 1.1. In this work we 

numerically solve the whole system of the Maxwell’s equations without 

imposing any form or limitation to the solution. Our theory predicts that the 

pump, tuned within a region of optical transparency of the material, 

captures and impresses its dispersive properties on portions of the 

generated SH and TH signals, which in turn behave as parts of the pump 

and co-propagate with the pump pulse for the entire length of the sample. 

As we will see better in the next Chapter, these general conclusions thus 

apply: if the medium is transparent at the pump frequency, then the 

material will be transparent for the generated inhomogeneous harmonic 

component. Similarly, if the medium absorbs the pump and is transparent 
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in the SH and TH ranges, the inhomogeneous components are absorbed and 

the normal components survive. 

 In absorbing materials [Cha65, Bur61, Bri94, Mar00, Ver02, Ram00, 

Che95], Maker fringes [Mak62] are observed as long as material absorption 

is small. At the same time, the amplitude of the transmitted beam is 

independent of sample thickness [Ram00]. Thus, both theoretical and 

experimental evidence suggest that the inhomogeneous component interacts 

with the normal SH component to produce Maker fringes. This interaction 

stops as soon as the normal component either is absorbed or walks off from 

the pump, leaving the inhomogeneous portion of the signal intact. 

 Even though many of these predictions and observations are not new, 

only recently we recast these phenomena that in ordinary, transparent 

materials were cast in terms of a PL mechanism that also characterizes 

higher order nonlinearities, as is the case in filamentation of high-intensity 

fundamental and TH beams in the atmosphere [Ako02].  

 In the present analysis we calculate the energy velocities of the 

generated pulses, defined as usual:  

 e
U

 

 

S
V ; (2.1) 

the brackets mean a definite integral U is the energy density and S is the 

Poynting vector defined as 

 
4

c


 S E H . 

The group velocity calculated as 

 g

k
V







 (2.2) 

is not adequate, because this value describes only the homogenous signal. 

Experimental and theoretical evidence [Sha68, Gle69, Man87, Noo90, 

Ras97, Su06, Rop07] shows that the pump and the phase locked pulses 

propagate at the same energy velocities. In confirmation of the fact that the 

phase locked generated fields behave in all respects as if they were pump 

fields, our calculations show that the proper energy velocities for the SH and 
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TH fields (that is to say, the velocity of the pump field) are recovered only if 

the Landau energies [Lan60] 

 
2 21 [ ( ) ] [ ( ) ]

( , ) Re | | Re | |
8

U z t
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  

     
     

     
E H  (2.3) 

are evaluated with the material parameters of the pump frequency.  

Therefore, we find that eV  is identical for all pulses only if the generated 

inhomogeneous harmonic fields are attributed the material dispersion of the 

pump. This finding cements the notion that phase locked pulses behave as 

the pump pulse does, and ultimately require to be treated as such in the 

application of boundary conditions. For this reason, in absorbing materials, 

discrepancies have been recorded between predictions and experimental 

results [Ver02, Ram00], even though there was a recognition that the two 

SH components propagate at different group velocities and peculiar phase 

properties [Kri04].  

 

Numerical simulations and experimental results 

 To model simultaneous SHG and THG in ordinary materials we used 

the equation and the description stated in Chapter 1. As an example, in 

Fig.5.1 we illustrate a snapshot of a typical case of SHG and THG in a 

generic dispersive nonlinear material. We assume that the FF and the 

harmonic fields are tuned far enough from resonance to render absorption 

negligible. The incident peak pump power is chosen to be quite low, of the 

order of few W/cm2, in such a way we can suppose null the effect of other 

nonlinear effects. The nonlinear coefficient is considered of the order of 

1pm/V and the index of refraction are nFF=3.3, nSH=3.8 and nTH=3.9, but 

these numbers do not limit the validity of the discussion. Fig.5.1 shows the 

fundamental beam after it already passed the entry interface of the 

material. It is possible to recognize both homogeneous and trapped 

inhomogeneous (or phase-locked) components for the SH and TH. The 

homogeneous component travels at a slower group velocity than the pump 

and eventually walks off.  The pump and the trapped portions of the SH 

signal travel at the same energy velocity. Notice how the walk-off is faster 
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for the TH components rather than for the SH components due to the bigger 

difference in the group velocities.  

 

 

Figure 5.1. Snapshot of pump, SH and TH propagation into a generic dispersive 

material. 

 

 It is easier to separate and identify the different components of the 

fields if we depict the k-space power spectrum of the signals for a generic 

propagation moment as in Fig.5.1. In Fig.5.2 We find three components for 

the FF: a reflected signal in the air (-k0ω), a residual forward propagating 

signal into the air (k0ω) (due to the theoretical infinite extension of the 

Gaussian shape) and a forward propagating signal in the material (kω). For 

the SH and TH we find an analogue situation (with -k02ω, k02ω, k2ω=k02ωn2ω 

and -k03ω, k03ω, k3ω=k03ωn3ω respectively). All these signals have k-vectors as 

predicted by material dispersion. In addition to them we can clearly 

recognize the two inhomogeneous, phase locked, components at 2kω and 3kω 

respectively. These k-vectors do not respect the dispersion characteristics of 

the material, but they depend only by the propagation values of the FF. 

Note that the reflected signals are not visible in the Fig.5.1 just because 
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they have already propagated enough to be out from the visible spatial 

domain. 

 This scenario is completely generic. The relative intensities of the two 

generated components for each harmonic are on a comparable scale as long 

as the working conditions are far from the PM (in this particular case the 

phase mismatch is of the order of μm-1). The positions of the peaks in the 

normal and k spaces are fixed by the dispersion values. Their amplitudes 

are slowly varying with the indexes mismatch of the materials forming the 

interface (air and a generic dielectric in this case). 

 

 

Figure 5.2. k-space spectrum of the fields depicted in Fig.5.1 (SH and TH field 

are out of scale). 

 

 The PL phenomenon did not attract much attention for a long period, 

basically due to the low conversion efficiency. Another reason is the 

difficulty of the inhomogeneous component to be manifest during the 

numerical simulations and the experiments. 

 There are two main evidences of its presence during the interaction: 

the two-component structure in the k-spectrum and the Maker fringes in 

the time domain. Regarding the first point, we need to note that the 

difference between 2

HOMk   and 2

INHk   can be very small in typical working 
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conditions. For example for a FF tuned at 1.2µm and the following indexes 

of refraction nFF=1.8 and nSH=2.0 we only get  
1

2

1

2

17.6

16.8

HOM

INH

k m

k m
















. 

If we have again a look on Fig.5.2 we see that it can be very likely that the 

two components are almost completely overlapped and it can be quite 

difficult notice their actual composition. 

 On the other side, concerning the SH pulse structure in the time 

domain we can make another easy example. Let us consider a super-

Gaussian pulse having a spatial extension of approximately 50µm, incident 

from vacuum on a dispersive generic positive index material (PIM) as in 

Fig.5.3. We are able to clearly discern the typical spatial modulation that 

characterizes the generated SH intensity due to the finite coherence length 

(on the order of few µm), as the pulse samples the material. Because the FF 

and SH pulses do not propagate far into the medium and because the spatial 

extension of the FF pulse is relatively long, the two pulses do not have 

enough time to experience walk-off. The assumed dispersion yields group 

velocities 
g

FFV =c/3.27 and 
g

SHV =c/4.08. In this case it is not possible to clearly 

see the temporal separation between the two SH components. This situation 

can be associated with picosecond pulse propagation in a few microns 

sample, while the situation in Fig.5.1 is typical of short femtosecond pulse 

propagation in millimeters long sample. 

 As a result, only recently with the broad availability of short duration 

laser sources the researchers must deal with the real structure of the 

generated harmonics. Ordinarily, the existence of a phase mismatched 

component leads to low energy conversion. The behavior of the energy in 

time is also indicative of the internal dynamic of the generated SH. In 

Fig.5.4 we show the SH energy  as a function of time for two phase-

mismatched situations: a case corresponding to the pulse depicted in 

Fig.5.3, where pulse walk-off has not yet occurred (red curve) and a case 

which describes the situation depicted in Fig.5.1 where the walk-off and the 

energy clamping process are complete (blue curve). 
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Figure.5.3. A picosecond super-Gaussian pump pulse (black, scale on left axis) 

propagates into a positive index material (PIM) having nFF=1.8 and nSH=2.0. 

The generated SH (red, scale on the right) presents Marker fringes due to the 

overlapped presence of the homogeneous and inhomogeneous components.  

  

 

Figure.5.4. Comparison of energy vs time diagram for SHG under phase 

mismatched conditions. (blue curve) large GVM and (red curve) low GVM. The 

time interval δt correspond to the coherence length. 
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 The two cases are generic and are distinguished by the group velocity 

dispersion (GVD) parameter that gives us the idea of the difference in the 

group velocity of the homogeneous SH pulse with the FF pulse (thus with 

the inhomogeneous SH pulse). Once the normal SH pulse separates, the SH 

energy quickly settles to a constant, steady state value. The PL is indeed a 

condition that prevents energy exchange to occur (we will give more details 

in the next Chapter). This is verified by monitoring the phase of the SH 

pulse as a function of time, at different longitudinal positions. It is a robust 

phenomenon that does not depend on any threshold intensity or a particular 

phase mismatch, and the outcome is also stable against the presence of 

absorption (as we will see in the next Chapter). The energy exchange 

diagram shown in Fig.5.4 suggests that the interaction evolves into a 

relatively simple phase link between the FF and the SH trapped pulse. It is 

apparent that the resulting dynamics comes about as a result of a 

relationship between the phases of the pulses, and not as a material feature. 

 To practically appreciate this double nature of the SH, it need a way to 

separate the two component either in time or in space. An experimental 

verification can be found in [Faz09] where this situation is analyzed in a two 

dimensional nonlinear crystal. A FF tuned at 800nm is launched at certain 

incident angle inside a LiNb03 crystal. The exit interface of a LiNbO3 crystal 

was cut at 20º respect to the orientation of the entry interface. The crystal is 

transparent for both the FF and the SH.  

 Extrapolating the previous discussion regarding the k-vector 

composition of the generated SH, at the exit interface we can expect two 

components propagating at two different output angles. The homogeneous 

component will propagate accordingly the Snell’s law at its own dispersion 

values. The inhomogeneous component, on the other hand, will propagate in 

the same direction of the FF, so that the output angle will be determined by 

nFF. 

 In Fig.5.5 are reported both numerical and experimental results. In the 

experiment, the fundamental beam impinges first normally to the entry 

interface, but it is then refracted at a certain angle at the exit accordingly to 

the Snell’s law corresponding to nFF. The generated SH is decomposed and 
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recorded in two spots: one refracts accordingly to the Snell’s law at nSH and 

the other faithfully follows the fundamental beam direction. Thus, the k-

vector of the inhomogeneous SH has the same direction of the FF k-vector. 

We may conclude that the homogeneous SH “see” the index of refraction 

imposed by the dispersion value nSH (≠nFF), but the inhomogeneous SH 

component “see” the same refractive index nFF of the fundamental beam. In 

the same work ([Faz09]) it is also possible to find an experimental 

verification of the separation in time of the two SH components. 

 These numerical and experimental results show the behavior of the 

generated homogeneous and inhomogeneous harmonic components 

concerning the real part of the index of refraction. To have a full proof of our 

initial idea, we need a verification of their behavior concerning the 

imaginary part of the complex index of refraction. This will be the subject of 

the next section. 

 

 

Figure.5.5. SH generation in a trasparet crystal (LiNbO3) at a not-normal 

incidence angle. Numerical simulation (left), experimental set-up (center) and 

experimental recorded results (right). Two clear SH spot are recorded, one of 

those is at the same FF value [Faz09]. 

 



 

 

 

 

 

 

 

Chapter 6 
 

Inhibition of absorption in 

opaque materials 

 

6.1. Numerical Simulations 

 In the previous Chapter we studied the phase locked harmonic 

generation in a generic transparent medium. What happens now if a 

significant absorption is present at the SH wavelength? To say, do the 

homogeneous and inhomogeneous components still respond differently? 

 Since its inception in the early 1960s the study of nonlinear frequency 

conversion has focused on improving the efficiency of the process in 

transparent materials [Fra61, Gio62, Mak62, Arm62, Blo62, Sha68, Gle69, 

Man87, Noo90, Ras97, Su06].  Nonlinear conversion rates depend on factors 

such as phase and group velocity mismatch, peak pump intensity and 

nonlinear coefficient of the material. Linear absorption is considered 
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detrimental since it is assumed that the generated harmonics are 

reabsorbed. The question of harmonic generation in absorbing materials 

and/or semiconductors at frequencies above the absorption edge has 

previously been considered only in the context of measuring the nonlinear 

coefficients [Cha65, Bur61, Bri94, Mar00, Ver02, Ram00, Che95] thus with 

thin films or in reflection experimental set-up, but it has not been as widely 

studied as in the transparency frequency range. For example, the 

enhancement of THG in various types of glasses opaque to TH light was 

experimentally demonstrated [Ver02]. UV SHG above the absorption band 

edge in LiNbO3 [Ram00] as well as UV and X-ray [Che95] SHG in 

semiconductors have been reported. These works indicate that the subject of 

harmonic generation in absorbing materials is of interest partly for the 

purpose of realizing coherent sources, and because of the many potential 

applications that semiconductors find in optical technology.  

 A systematic examination of propagation phenomena and nonlinear 

frequency conversion below the absorption edge of semiconductors is still 

lacking primarily because these processes are thought to be uninteresting 

and inefficient, due to absorption and to the naturally high degree of phase 

mismatch. In this Chapter we dispel this notion, predict and experimentally 

observe the inhibition of absorption for femtosecond, SH and TH  generated 

signals in a GaAs bulk substrate. If our analysis is consistent we expect that 

while the homogeneous components follow the dispersion characteristics of 

the material at the actual tuning, the inhomogeneous components will keep 

reading the complex index of refraction at the FF tuning, even if extremely 

different behavior will arise. 

 To answer to the initial question we now consider a propagation inside 

a 450μm thick GaAs substrate. The incident FF is tuned at 1300nm and has 

an intensity of ~160MW/cm2. The pulse duration is of the order of hundred 

femtoseconds. The peak power is low enough to avoid shape changes due to 

self- and cross-phase modulation, and nonlinear pump absorption. We use 

the numerical model described in Chapter 1 to simulate the pulse 

propagation and the harmonic generation in this configuration. GaAs is 

transparent for the wavelengths above 900nm and strongly absorptive 
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below it, as it is possible to see in Fig.6.1. This means that both SH and TH 

signals are tuned well below the absorption edge of GaAs, at 650nm and 

435nm, respectively. For a FF tuned at 1300nm, the characteristic 

absorption lengths of GaAs are typically much less than one micron. For 

example, transmittance through one micron of GaAs is ~10-4 at 532nm, and 

~10-8 at 364nm. The plot in Fig.6.1 represents the complex index of 

refraction of GaAs as reported by Palik [Pal85]. The Lorentz parameters are 

thus chosen to reflect these data and, in particular, are ωp=9.425, ωr=2.98, 

and γ=0 for the pump (γ=0 effectively makes the medium transparent to the 

pump); ωp=9.425, ωr=2.98, and γ=0.5 for the SH; ωp=9.425, ωr=2.98, and 

γ=1.65 for the TH. The indexes of refraction for this tuning have the 

following values: n1300nm=3.41, n650nm=3.83+i0.18 and n433nm=3.88+i1.55. The 

consequent phase mismatch for the SH is Δk=4π(n2-n1)/λ1=4.06μm-1. For a 

propagation in a L=450μm thick slab we can also estimate the parameter 

ΔkL=1.8x103. 

 

 

Figure 6.1. Real and immaginary part of GaAs as reported in Palik [Pal85]   

 

 For the sake of precision, we can note some discrepancy for the index at 

the TH among different reported values in literature and the value obtained 

here with the Lorentz model. This is due the high slope and high values of 

the complex dispersion curve around that wavelength. Moreover, the 

Lorentz model is used to model directly the permittivity of the material. To 

have a simple comparison between the absorption and not-absorption case 

as in the previous Chapter we only change the parameter γ. Real part of ε is 
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almost unaffected, while the imaginary part shifts from zero to a not 

negligible value. The index of refraction is then recovered by calculating the 

total square root of the complex ε. In the case of the TH wavelength, the 

high value of the imaginary part of ε sensibly changes the real part of the 

index of refraction. On the other end, the value of the real part of the index 

for the SH is practically insensible to the variation of γ. However, the 

validity of the whole following discussion it is not affected.  

 With these considerations in mind, in Fig.6.2 we show the pump and 

the trapped harmonic pulses propagating through a GaAs substrate. This 

situation is similar to that depicted in Fig.5.1. The dispersion values are 

comparable, but now a not negligible absorption at the harmonics 

wavelengths is present. The main difference is that now the homogeneous 

SH and TH components are completely absorbed few microns after the entry 

interface and only the inhomogeneous components propagates until the exit 

of the nonlinear medium.  

 In Fig.6.3, we depict the k-spectrum of the pulses shown in Fig.6.2. 

Also here we can note the absence of the homogeneous components; their 

spectral positions are marked by vertical red (SH) and green (TH) lines to 

better indicated their position. All their numerical values (in μm-1) are 

shown in the following table. 

 

   

FF in the air k0ω = ω/c 4.8 

FF in the GaAs kω = k0ω nω 16.5 

SH in the air k02ω = 2 ω/c 9.6 

HOM SH in the GaAs k2ω = k02ω n2ω 37.0 

INHOM SH in the GaAs 2kω 33.0 

TH in the air k03ω = 3 ω/c 14.5 

HOM TH in the GaAs k3ω = k03ω n3ω 55.1 

INHOM TH in the GaAs 3kω 49.5 
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Figure 6.2. Snapshot of pump (tuned at 1300nm), SH and TH propagation into a 

GaAs slab. The SH and TH are tuned below the absorption band edge. 

 

 

Figure 6.3. k-space spectrum of the fields depicted in Fig.6.2 for a propagation 

in GaAs (SH and TH field are out of scale). 
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  These results definitively prove the possibility to generate and 

propagate SH and TH in opaque materials. This peculiar working condition 

is also quite interesting since it is possible to perfectly study the behavior of 

inhomogeneous component free from the homogeneous component in the 

background. 

 In Fig.6.4, we show the energy evolution of the pump and harmonic 

pulses inside and at the exit surface of the substrate. The FF and generated 

signals become stationary once the pump is completely inside the substrate. 

The energy exchange and the harmonic generation occur at entry (time 

~150) and exit surfaces (time ~1200, corresponding to 450μm propagation 

distance), and the energies remain constant inside the substrate. At the exit 

surface, some SH energy is lost, while the TH signal nearly doubles in 

magnitude, although opposite behavior is also possible using slightly 

different material dispersion. 

 From this figure, one discerns that the SH and TH energies are 

generated at the entry surface and remain constant while the pulses transit 

through the sample. This is due to the fact that FF and harmonic fields are 

locked in phase. A spectral analysis of the signals shows that the frequency 

makeup of each pulse does not change with distance, an indication that no 

energy is exchanged. However, the pulses interact once again at the exit 

surface, where harmonic energy may be created (TH) and lost (SH). 

 

 

Figure 6.4. Pump (right axis) and harmonic (left axes) energies inside and to the 

right of the GaAs substrate.    
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6.2. Experimental results 

 Our calculations prove that the introduction of absorption causes the 

trapped harmonics to survive in the form of phase locked pulses. We have 

experimentally verified this phenomenon using the setup shown in Fig.6.5. 

An optical parametric amplifier pumped by ~100fs amplified Ti:Sapphire 

laser was used to deliver the pump pulses at 1300nm. We first filtered out 

all possible background component at the SH and TH wavelengths from the 

laser source by means of an equilateral dispersing prism. The collimated 

pump beam is incident onto the GaAs substrate at an angle of 20°. We chose 

GaAs mainly for two reasons. On one side it presents the absorption band 

edge in an useful position, so that we can use our IR lasers and record 

generated light in the absorptive range with not too much effort. On the 

other side it possesses a high nonlinear coefficient that reached values 

around 100pm/V. However, due to the χ(2) tensor characteristics, this very 

high value is accessible only along one particular direction. Unfortunately, 

the growing direction of our crystals is turned by 90º, exactly where the χ(2) 

coefficient is null. Choosing a propagation direction not normal to the 

crystal surface give us the possibility to use a quadratic coefficient that can 

vary in the range 0-100pm/V. 20º is a good compromise between the wish to 

get as much generated signal as we can and the need to not complicate too 

much the collinear experimental set-up. We expect to access to (2)~10pm/V. 

 After passing through the GaAs, the SH and TH fields were separated 

from the pump using a prism and lens/slit assembly. The moveable slit 

assembly provided a spatial filtering so that only one beam reaches the 

detection system. The signals were coupled to a spectrometer by means of a 

liquid light guide and were then measured using a near infrared 

photomultiplier (PMT) tube (for the pump) or liquid nitrogen cooled CCD 

array (for SH and TH).  

 The measured spectra for the pump and its first two harmonics are 

shown in Fig.6.6. The area under each spectrum corresponds to the 

measured energy (2.9µJ for pump, 3.7x10-8µJ for SH, and 7.3x10-9µJ for TH). 
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Figure 6.5. Experimental setup.  

 

 

Figure 6.6. Measured spectra of the pump and the transmitted harmonics 

 

 Absolute values of the SH and TH energies were calibrated by sending 

laser beams of known power along the same optical paths and through the 

same detection system. We were therefore able to estimate the SH and TH 

conversion efficiencies to be 1.3x10-8 and 2.5x10-9, respectively. Knowledge of 

the conversion efficiencies and pump transmittance data was used in the 

model to estimate (2)~100pm/V, and n2~10-12 cm2/W, respectively. 



Chapter 6. Inhibition of absorption in opaque materials 

 

137 

 The results on the estimated (2) is quite surprising. As outlined before, 

for our propagation direction we expect to access to a (2) value of the order 

of only 10pm/V. This gave us the opportunity to realize that this experiment 

is the first of the kind. To our knowledge, nobody before never had the idea 

to try to record the generated harmonic signals in the absorption spectral 

region of the materials in transmission set-up. All the experimental (2) 

values provided in the literature are measured in a reflection set-up, thus 

only partially accessing to the bulk nonlinear characteristics in this peculiar 

regime. Our estimated value of (2) can be a hint that the dispersion curve of 

the quadratic nonlinear coefficient can reach higher levels respect those 

thought before. Indeed, after a careful research we finally found an 

experimental work [Ber03] where the authors measured (2) coefficients in 

GaAs that can reach 500pm/V in the visible and UV spectral region. This 

confirms the validity of our experimental results.  

 Removing the GaAs sample from the beam path caused the conversion 

efficiencies to drop by a factor of twenty for the SH, and by a factor of two 

for the TH. The residual SH and TH signals come from the harmonic 

generation by any of the optical components present in the experimental 

set-up. As we pointed out before, the homogeneous components are 

absolutely negligible due to the high absorption and the long propagation 

distance.  

 The presence of surface generated SH and TH is a critic point often 

raised during the study and analysis of the results. At this stage the very 

good agreement between the experimental and numerical results do not 

leave much space for doubts regarding the origin of the generated signals. 

This notwithstanding, in a separate work [Sca10] we developed a detailed 

analytical model to evaluate the influence of other nonlinear sources, as for 

example electron gas pressure of surface currents. The main result is that at 

this scales the surface generated harmonic signals are not comparable with 

the bulk generated signals. In addition, as we will see later in the next 

Chapter, also experimental verifications are possible to confirm further this 

result. 
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 Our theoretical and experimental results represent the evidence that 

absorption can be inhibited in opaque materials, well above the absorption 

edge of semiconductors and dielectrics alike. This dramatic result is due to a 

PL mechanism that causes the pump to trap and impress its dispersive 

properties to the generated harmonic signals. As a consequence, a GaAs 

substrate 450μm thick supports the propagation of red and violet light. Our 

results suggest that it is possible to achieve significant nonlinear frequency 

conversion at high frequencies, particularly towards the UV, using readily 

available sources and materials and that the still relatively low conversion 

efficiencies can be improved significantly in a cavity environment, where PL 

still holds. This will be the subject of the next Chapter. 

 Finally, as pointed out in Ref.[Zin07], accessing regimes that are 

outside the norm highlights the fact that our ‘‘understanding of nonlinear 

wave conversion phenomena is still far from complete”, with many more 

surprises that are likely waiting to be revealed. 

 

 

6.3. Pump undepletion 

 In the context of the inhibition of absorption at the harmonic 

wavelengths due to the PL mechanism, there is another aspect that is 

important to address at this point. That is to say, instead of the inhibition of 

absorption, it is possible at first sight to assume that the inhomogeneous 

component is indeed absorbed at the expense of the pump. The assumption 

of the flow of the energy from the FF to the inhomogeneous SH initially is 

indeed a valid option, but our investigations have shown that this does not 

occur. We numerically find that the energy in the SH signal remains 

constant regardless of our integration step. Should the inhomogeneous 

signal be continuously absorbed, pump depletion should manifest itself 

rather quickly, as the harmonics would represent a significant drain of 

energy. As a rough estimation, we can suppose that the SH is completely 

absorbed every absorption length (or skin dept, depending on the working 
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condition) of propagation. Consequently, every absorption length an amount 

of energy equivalent to the energy at the SH right after the entry surface of 

the material should flow monotonically from the FF to the inhomogeneous 

SH. Using the numbers achieved in the experiments in previous section it is 

needed a propagation distance of the orders of many centimeters before we 

could start to appreciate a depletion of the pump. 

 For this reason, as a clear example we want here to discuss a 

numerical case where we tune the FF beam at 800nm in the region of 

transparency (εFF= 2.64) of a virtual material, so that the SH is tuned to a 

wavelength range where the dielectric constant is negative (εSH= -5.5-i 3.3).  

This is an extreme case that in principle allows no propagating modes (see 

Chapter 8 for experimental results). The permeability is assumed to be μ=1. 

These dielectric constants correspond to indices of refraction nFF(800nm)= 

1.62 and nSH(400nm)= 0.7 – 2.43i.  

 Under these working conditions the absorption length is extremely 

short. Indeed, since sign(ε) and sign(μ) are opposite, the material will 

behave as a metal. Here, supposing a bulk material, the most relevant 

propagation parameter is the skin depth. To evaluate the skin dept of the 

material at the SH, one may perform a simple numerical simulation using 

any of a number of commercially available codes, such as TFCalc or 

COMSOL.  We tuned a plane wave at 400nm and made it impinging on a 

bulk material as detailed before. In Fig.6.7 we depict the field intensity near 

the entry interface. The intensity decreases to 1/e of its incident value in 

only 8nm.  

 Accordingly to our estimation, every 8nm or so the SH signal will have 

lost nearly all of its energy (a numerical value of 1.4x10-5 in this case). Thus, 

one may estimate that the FF field will be ~23% depleted after propagating 

130microns inside the medium. In Fig.6.8 we report the energy of the FF 

pulse inside the material for both linear (where we set χ(2)=0) and nonlinear 

cases. The rise time corresponds to the time it takes the pulse to cross the 

interface. Materials parameters are such that pump transmittance by a 

single interface is ~94%. The figure clearly shows that total transmitted 

energy settles to about 94% after ~150 optical cycles have elapsed for both 
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cases. Since each optical cycle translates to a propagation distance of one 

wavelength, it is clear that the pump energy stays constant for hundreds of 

microns after crossing the interface.   
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Figure 6.7. Intensity profile of a 400nm plane wave impinging on a material 

with εSH= -5.5-i 3.3 and μ=1. 

 

  This allows us to conclude that indeed the FF and the 

inhomogeneous SH do not exchange energy during the propagation, after an 

initial transient, even under the conditions where the SH field is tuned to 

the metallic region of the spectrum. Similar results are reported for THG in 

GaP (see Chapter 8).  

 In conclusion we outlined the general behavior of the generated 

harmonics from nonlinear material interface. Always present is the phase 

locked component with the peculiar characteristic to not exchange energy 

with the FF field during the bulk propagation. Its energy is fixed and 

generally orders of magnitude lower than the homogeneous component. This 

is because the usual working conditions tend to approach the PM situation 
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where a net flux of energy spills from the FF to the homogeneous 

component, making it difficult to observe the PL components. 
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Figure 6.8. Energy profiles of the FF for both linear and nonlinear propagations 

in the case where the FF is tuned at 800nm with εFF= 2.64 and the SH is 

generated with εSH= -5.5-i 3.3. The two profiles are identical. The homogeneous 

SH component is promptly absorbed and the inhomogeneous SH component 

does not exchange energy with the FF. 
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Chapter 7 
 

Field localization and 

enhancement in absorbing 

cavities 
 

7.1. Introduction 

 In the previous Chapter, a systematic effort was initiated to study the 

dynamics of SH and TH generation in conventional transparent materials, 

but especially in opaque materials, under conditions of generally large 

phase mismatch, where the overall energy conversion efficiency of the 

harmonics is low. In this Chapter we want to assess the issue of the 

inhomogeneous phase locked harmonics behavior in a cavity environment. 

The goal is twofold: from one side we are searching for a fundamental 

confirmation of our theory on the phase locked harmonics; on the other side 
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we want to see if the phase locked signal could be intense enough to be 

readily and practically usable for applications. 

 The novelty of such field requires a step-by-step investigation to get a 

robust base where we can build our research. For this reason, we start with 

the simplest cavity structure: a free standing GaAs etalon. We have chosen 

this material for the reasons explained in the previous Chapter. However, 

the results can be extended to different nonlinear materials. Then we move 

in the second section to an experimental verification. Since the efficiencies 

involved are very low, we preferred to work with a slightly more efficient 

sample, namely a metallic mirrored GaAs slab. In the last section, finally, 

we study the efficiency of the phase locked component in high performance 

high-Q cavities. To mark in detail its trend, we prepared and analyzed four 

double dielectric mirrored GaAs samples with Q factor varying from 125 to 

3830.  

 Before to start, it can be useful to briefly reassume the results achieved 

in the previous two Chapters. We showed experimentally that the 

imaginary part of the effective index of refraction that the inhomogeneous 

harmonics experience is equal to that of the pump. Then, it is easy to 

retrieve the information also for the real part. This may be done by 

performing a full spectral decomposition of the fields and by calculating the 

effective index of refraction neff=c<k>/<ω> as the ratio of expectation values, 

2| ( , ) |
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calculated in the sense of average quantities. The E field may also be used 

in the calculation. Once the imaginary part of the index is mapped onto the 

pump index of refraction, the real part of the index is obtained by 

performing a Kramers-Kronig reconstruction, which in turn yields a real 

part for the high harmonic field that is identical to the index of refraction for 

the pump field. Here the experimental data concerns the FF and the first 
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two harmonics, but due to the general nature of the phenomenon it is 

possible to easily extend the discussion to all the higher harmonics. 

 It is important to point out again that the two harmonic components 

(homogeneous and phase locked) have different nature and respond 

differently to the surrounding environment. The phase locked component 

travels locked in phase with the pump, and once its energy settles it does 

not exchange energy with the FF regardless of the propagation distance 

within the nonlinear medium. Every interface, linear or nonlinear (i.e. a 

discontinuous nonlinear coefficient) or perturbation in the linear and/or 

nonlinear characteristics of the material provokes a disengagement of the 

phase locked component from the fundamental and leads to energy 

exchange. On the other hand, the behavior of the homogeneous component 

is well known and relies only on the dispersive properties of the material at 

that frequency.  

 Hence it is straightforward to think of the possibility to completely 

separate the destinies of the two components, by letting them propagate in a 

situation where there is a substantial difference between the fundamental, 

SH and/or TH complex indices  of refraction.   

 For example, in previous Chapter, a pump pulse was tuned in the 

transparent region of GaAs (1300nm). The SH and TH thus fall deep into 

the absorption region (650nm and 433nm), as can be seen in Fig.6.1, where 

the absorption spectra of GaAs can be clearly identified. In this situation SH 

and TH homogeneous components are completely absorbed within a few 

nanometers from the surface and the only observable SH and TH are the 

phase locked components. It then becomes clear that the survival of the 

harmonic fields can have significant consequences as it opens the door to 

new dynamical scenarios by allowing working conditions hitherto assumed 

inaccessible for absorbing materials, semiconductors in particular.  
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7.2. Free Standing Cavity 

SH and TH localization 

 One may ask the following question: If the phase locked component 

experiences the same index of refraction of the FF pulse, how do the 

harmonic fields behave in a cavity designed to be resonant at the FF 

frequency? The answer is that the PL not only inhibits absorption at the 

harmonic wavelengths, but as we will show later, it also fosters the 

enhancement of harmonic generation by several orders of magnitude 

compared to the no-cavity case due to the double action of FF field 

localization and anomalous harmonic field localization. While the role of FF 

field localization is easily understandable, an explanation is needed to 

clarify the role of the harmonic field localization. 

 We can start to illustrate this concept with a simple free-standing 

GaAs etalon. Although GaAs is not required for our purposes (any absorbing 

nonlinear material will do) we choose to work under conditions similar to 

those chosen in the previous Chapter. In so doing one can first isolate and 

then focus attention on the phase locked component by studying its behavior 

in a cavity environment. A FF beam tuned at 1300nm generates SH and TH 

signals. The dispersion curves for GaAs (Fig.6.1) shows that it is 

transparent at wavelengths above 900nm and completely opaque below 

900nm. The presence of the harmonic wavelengths in the opaque spectral 

range has been already clearly demonstrated in the previous Chapter.  

 Now let us reduce the optical thickness of the GaAs layer down to two 

FF wavelengths inside the material, so that the pump field resonates. The 

complex refractive index of GaAs is n1300nm=3.41, n650nm=3.83+i0.18 and 

n433nm=3.88+i1.55, as reported by Palik [Pal85]. Conventional wisdom 

dictates that this structure should be resonant for the FF, but not for the SH 

and TH signals due to the optical thickness. More than this, the material is 

expected to absorb the wavelengths correspondenting to the SH and TH. 

 While this is true for the homogeneous components, the PL mechanism 

causes the phase locked components to resonate inside the cavity along with  
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Figure 7.1. GaAs free standing etalon in air, two wavelengths thick. 

Fundamental (black, thin) and SH (red, thick) fields localization for 1300nm 

tuning. The SH propagates in phase with the FF. 

 

 
Figure 7.2. GaAs free standing etalon in air, two wavelengths thick. 

Fundamental (black, thin) and TH (red, thick) fields localization for 1300nm 

tuning. The TH propagates in phase with the FF. 
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the pump. For illustration purposes, in Figs.7.1 and 7.2 we report the 

results of a numerical calculation of the FF (thin line) and the harmonics 

(thick lines) inside the etalon. The figure represents the H fields of the FF, 

SH and TH for a certain snapshot during the propagation.  

 The calculations correspond to a general dynamical regime where a FF 

pulse more extended that the cavity length is impinging on the cavity from 

the air interface on the left and two harmonics are generated. These figures 

represent the situation with the actual values of the index of refraction of 

GaAs. As mentioned before, the homogeneous components are quickly 

absorbed while the phase locked components are free to resonate and 

become localized, following the pump. As a direct consequence, FF and 

harmonic fields propagate in phase with a typical cavity localization pattern 

and a consequent good overlap. To have a comparison, we have considered 

the same type of cavity, but we have artificially reduced the absorption of 

the material. This was done by restricting the values of absorption down to 

near zero at the harmonics wavelengths (γ0). Under this (unrealistic) 

circumstance, the homogenous components are not absorbed and, in fact, 

dominate the dynamics. This behavior is clearly identified in the fact that 

the new harmonic field is out of phase and does not overlap the FF. These 

results are shown in Figs.7.3 and 7.4 for the SH and TH case, respectively. 

 To summarize, there are three notable elements that may improve SH 

and TH conversion efficiencies in an etalon: the localization of the FF, the 

localization of the harmonics fields, and the good overlap among them. 

Inhibition of absorption is accompanied by a pull of the harmonics, initially 

tuned far from any cavity resonance, into an effective resonant condition. 

The phenomenon will occur with any nonlinear absorbing material, 

including negative index material.  

 The example above is representative of a generic situation. To make a 

complete study of the behavior of the phase locked component in a cavity 

one needs to be more specific about the model under study and about the 

cavity considered.  
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Figure 7.3. GaAs free standing etalon in air, two wavelengths thick. 

Fundamental (black, thin) and SH (blue, thick) fields localization for 1300nm 

tuning. In this case the absorption at the SH frequency is forced to zero. The SH 

is not propagating in phase with the FF owing to the presence of the 

homogeneous component. 

 

 

Figure 7.4. GaAs free standing etalon in air, two wavelengths thick. 

Fundamental (black, thin) and TH (blue, thick) fields localization for 1300nm 

tuning. In this case the absorption at the TH frequency is forced to zero. The TH 

is not propagating in phase with the FF owing to the presence of the 

homogeneous component. 



 

 

150 

 The aim of this section is to discuss in some detail SH and TH behavior 

under unusual working condition of high absorption at the harmonic 

wavelengths using numerical solutions of the vectorial Maxwell’s equations 

under pulsed conditions, as explained in Chapter 1.  

Fig.7.5 represents our typical initial condition. The fundamental pulse is the 

on-axis cross section of a Gaussian-shaped pulse that has a spatial 

extension much larger than cavity size. The cavity is two FF wavelengths 

thick (in the material) L=2/n()=762.4nm surrounded by air. The nonlinear 

coefficients are generically assumed to be (2)~10pm/V and  (3)~10-19m2/V2 

accordingly the values found in literature. However, a different choice will 

not change the qualitative aspect of the results. 

 In fig.7.6 we report the calculated transmission spectrum of the 

structure. This cavity has a resonance at 1300nm (the FF wavelength), but 

no resonance features are present at the SH and TH wavelengths. 

 We have performed several calculations for different central carrier 

wavelengths λ(nm)= 1200, 1220, 1240, 1300, 1310, 1320, 1330, 1350, 1370.  

The frequency spectra of the FF, SH and TH signals are reported in the 

Fig.7.7. The input FF pulse is 30 optical cycles in duration, with a peak 

intensity of ~1GW/cm2. There are two clearly visible maxima of generation 

at 650 and 433nm. As the tuning of the FF approaches the resonance 

wavelength (1300nm) the generation of both harmonics increases: while the 

fundamental is scanned across the resonance, the SH and TH fields are 

resonating as well.  

 Few considerations on the SH energy are useful. In Fig.7.8 we report 

three different energy conversion curves for propagation of pulses 10, 30 and 

60 optical cycles in duration, respectively. The curves represent the total 

energy as a function of time. The SH pulse gains energy only when the FF 

pulse crosses an input or output interface. Once the FF pulse exits into 

vacuum, the energy of the SH stabilizes. As expected, pulses of longer 

duration tend to better resolve the resonance, and thus generate more SH 

signal. 

 As a comparison, in Fig.7.8 we also depict the energy conversion for 

propagation in a GaAs bulk medium under the same working conditions. It 
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is possible to evaluate a gain factor of approximately 4 between cavity and 

bulk situations. This value is in agreement with the poor quality factor of 

the cavity estimated around Q10. 

 

 

Figure 7.5. Initial condition of the calculation. A Gaussian shaped pulse is 

placed in the air and propagates toward the sample at normal incidence. 

     

 

Figure 7.6. Calculated transmission spectrum of the structure. The scan of the 

resonance is marked. 

Transmission (%) 
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Figure 7.7. Calculated frequency spectra of the fundamental and of the 

generated SH and TH changing the tuning of the FF in proximity of the 

resonance marked in Fig.7.6 (1300 nm). The SH and TH fields experience the 

same resonance behavior of the FF, with maxima at 433nm and 610nm, 

respectively. 

  

 

Figure 7.8. SH energy in function of the time for a FF pulse 10, 30 and 60 

optical cycles long. As reference, the value for a bulk generation in the same 

working condition is reported. 
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The role of the cavity enhancement 

 In Fig.7.1 we saw how the phase locked SH is in-phase and well 

overlapped with the FF, while in Fig.7.3 we saw how the inhomogeneous 

component is out-of-phase and bad overlapped with the FF. These facts can 

be enough to hope in a higher enhancement of the phase locked components 

with respect to the homogeneous one. In addition, the opaque nature of the 

material at the SH wavelength has the role to get rid of this last component 

giving us the confidence that the signal we achieved in Fig.7.7 are indeed 

made by only the phase locked component. However the absorption of the 

material always needs some distance to have a complete effect and, in 

reality, for a structure as thin as the free standing etalon in this Chapter, 

we always expect some residual homogeneous SH and TH signals. Having a 

closer look to the transmission spectrum in Fig.7.6, for example, we can 

notice how the linear transmittance for the SH at 650nm is still assuming 

values of few percents, of the order of 2%. 

 The criticism that can be raised at this point is the following: even if a 

2% of the homogeneous SH component is present in the interaction, can it 

be possible that this residual component is enhanced faster than the not-

absorbed phase locked component in such a way the signal obtained in 

Fig.7.6 is made mainly by the homogeneous SH? 

 To better elucidate the aspects related with the interaction of a short 

pulse with a cavity environment we can now resort to a slightly simplified 

scheme. The role of the cavity is to enhance the value of the peak intensity 

of the impinging FF inside the structure. Thus, we can perform a set of 

numerical simulations in a transparent GaAs-like bulk similar to that in 

Fig.5.1, but now varying the value of the peak of the impinging FF. 

 In Fig.7.9 we depict a snapshot of the propagation in a GaAs-like 

material, where the absorption has been numerically turned off. We have 

used the exact parameters of GaAs, except the value of the absorption 

coefficient that is artificially fixed to zero. The top row represents the initial 

condition with a fundamental pulse 60 optical cycles long (~200fs) impinging 

on the material from air.  
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Figure 7.9. Propagation of FF (blue) and generated SH (red) for a not-absorbing 

GaAs-like material. From the top: FF initial conditions; FF after 75 µm 

propagation distance inside the material; generated SH at the same time for 

four different input FF levels. 

 

 The second row depicts the situation of the FF pulse after a 

propagation distance of 75μm inside the material. Due to the index 

mismatch (Air/GaAs), part of the FF pulse is reflected back into air.  In the 

lower rows we depict the generated SH signal for 4 different values of the 

input FF intensity. The FF field is increased by one order of magnitude each 

time. As one can plainly ascertain from the figure, the two SH components 

are always present with comparable relative field amplitude.  
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Figure 7.10. Propagation of FF (blue) and generated SH (red) in GaAs. From the 

top: FF initial conditions; FF after 75 µm propagation distance inside the 

material; generated SH at the same time for four different input FF levels. 

  

 If we were to detect the total SH generated in this transparent 

material we would have the signal made by the sum of inhomogeneous and 

homogeneous components. Approximately 50% of the detected signal will 

correspond to each of the two components. Increasing the input FF field 

does not change either the phase mismatch condition or the relative 

intensities of the two SH components. We observe that the peak intensities 

of the SH signals normalized to the FF input intensity peak (namely the SH 
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efficiency) grow quadratically with the incident input FF field intensity for 

both SH components. We will discuss this fact more deeply in the next 

section. 

 Let’s now simulate the same situation, but using the actual GaAs data, 

namely taking absorption into account. The index of refraction at the SH 

wavelength yields an absorption length of approximately 100nm. In Fig.7.10 

we report the results. The same considerations made above still apply. The 

only difference is that now the homogeneous SH component is completely 

absorbed near the entry interface. In contrast, the behavior of the 

inhomogeneous component is nearly unaffected because it experiences the 

same level of transparency as the pump field. In this case of opaque 

material, the detected signal at the output would be approximately 50% of 

the case of transparent material showed in Fig.7.9.  

  One may thus conclude that in the transparent phase mismatched 

condition, about half of the energy is stored in the homogeneous component 

and the other half resides in the inhomogeneous signal. On the other hand, 

in opaque material (at the harmonic wavelength), the energy stored in the 

homogeneous component is absorbed. If some residual signal is still present, 

it will never will grow faster that the inhomogeneous component. 

 

k-vector distribution 

 To have a definitive answer to the problem posed above, it may also be 

useful to observe the spectral components of the generated field inside the 

cavity. Unfortunately, since the cavity length is very short compared with 

the pulse duration, it can be quite difficult to have a clear image of the two 

separated SH components in the k-space. The time the pulse experiences 

the cavity length is much less than the time the pulse freely propagates in 

the air, thus the k-components in the air always surround the other portion 

of the spectrum. 

 However, since at this stage we are more interested in qualitative 

results rather than in some exactly working condition, we can provide a 

clearer numerical result, very similar by just slightly more favorable than 

our previous working conditions. We simulate now a 1μm GaAs etalon for a 



Chapter 7. Field localization and enhancement in absorbing cavities  

 

157 

30fs FF field tuned at 1μm, while the SH is tuned to 500nm, where 

transmittance is less than 1 part in 104. In Fig.7.11 we presented the results 

in the k-space spectrum. 
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Figure 7.11. k-spectra of the propagation of 30fs FF tuned at 1μm in a GaAs 

1μm cavity (dashed black, out of scale). Generated SH in the same GaAs etalon 

(blue) and generated SH in a GaAs-like cavity without absorption (red). 

  

 When the pulse impacts the structure all spectral components are 

present simultaneously.  The black dashed curve is the FF, found mostly in 

free space (for this tuning k0ω=6.3μm-1). We can also see the component 

related to the propagation into the material (kω=22μm-1). The red curve is 

the SH k-spectrum generated in the absorption-less GaAs-like material, and 

its spectrum contains: (1) the k-vector component that describes a SH field 

generated inside the cavity (k02ω=12.6 μm-1) and that immediately spills into 

the air; (2) the inhomogeneous k-vector component inside the etalon (2kω=44 

μm-1); (3) the homogeneous k-vector component in the material (k2ω=53μm-1). 
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In summary, we have all the expected components when material 

absorption is absent.  

 In contrast, the blue curve represents the generated SH signal in the 

real GaAs.  Please note that the part of the spectrum that corresponds to the 

homogeneous k-vector component is now missing, while the inhomogeneous 

component is almost unaffected. That is to say, the spectral decomposition of 

the fields clearly indicates the absence of the SH homogenous components, 

and the presence of the inhomogeneous SH signal.  This is the definitive 

proof of the nature of the SH signal that survives inside an opaque cavity. 

 In conclusion, in this section the PL phenomenon was fully investigated 

in a cavity environment under pulsed dynamics, revealing the possibility to 

enhance harmonics conversion efficiencies thanks to the synergic action of 

the fields’ localization. Finally, the theory has a generality wide enough to 

cover every situation where a harmonic field is generated. Thanks to the 

cavity environment a new range of possible applications are enabled, for 

example, frequency conversion towards the UV and XUV ranges. 

 

 

7.3. Single metallic mirror cavity 

Numerical calculations 

 In the previous section we highlighted the surprising behavior of SH 

and TH phase locked components with frequencies below the absorption 

edge by showing that, when the material is placed inside a cavity resonant 

only at the fundamental frequency, the PL mechanism not only inhibits 

absorption but also fosters the cavity localization of the generated 

harmonics, in such a way they perfectly overlap with the FF. We also start 

to discern the possibility that this localization will turn into an effective 

enhancement of the generated signals.  Our interpretation is that this 

enhancement arises because of two complementary factors.  

 First, PL with a resonant pump (and in particular, the coincidence in 

the effective refractive index) pulls the harmonics into effective resonance 
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too, leading to field enhancement and increased energy exchange between 

the fields. In this regard, we note that the rate at which energy is 

transferred from a nonlinear source to a field at a harmonic frequency (for 

instance at frequency 2) is proportional to 2 2 J E  at each point inside 

the material, where J2=-P2t is the current density and P2is the 

harmonic polarization induced by the FF. Since currents, polarization, and 

fields are local variables, the conversion efficiency depends on the strengths 

of both the FF and SH (or TH) fields at each point inside the cavity.  

 Second, if the cavity filled with the nonlinear medium is short (only a 

few wavelengths thick), the FF inside the medium visits the front and rear 

interfaces many times during the duration of a light pulse. As pointed out in 

the previous Chapter, in the opaque region it is just near the interfaces that 

energy can flow from the pump to the harmonic fields. Far from the 

interfaces, once the homogenous component is absorbed, the total energy of 

the phase locked component clamps and remains constant. In other words, 

both entrance and exit interfaces are constantly traversed by the FF and, as 

a result, the exiting harmonic fields are constantly generated by continuous 

interface crossings. The resulting field is also coherent with the 

fundamental since the pulse duration is much longer that the time needed 

to cross the entire etalon. 

 The conversion efficiency in the case of a simple etalon increases by 

only a small factor with respect to the case of a bulk medium, due to the fact 

that the Q factor of the cavity is relatively small. In this section we show 

that slight improvements to the cavity, for example, by adding a mirror at 

the back interface, can sensibly change the overall picture 

 To put into evidence the role played by the PL mechanism in a cavity 

configuration we have performed a numerical study aimed at finding the 

best possible conditions. We have considered two basic designs: a standard 

cavity with gold mirrors on both ends of the GaAs sample for simultaneous 

forward and backward SHG and a cavity with only the back mirror for 

backward SHG. Both configurations are schematically shown in Fig.7.12. 

 A plane wave FF of 100MW/cm2 of average intensity impinges from the 

left side of the structure with an angle of 10º with respect to the normal to 
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the surface. As we already explained before, the GaAs growing method 

makes the χ(2) having the higher value in direction parallel to the entry 

surface while it is zero in the normal direction. A small incident angle, as in 

this case, will not be too detrimental for the characteristic set up of the 

cavity and will give us the possibility to access to a non vanishing value of 

the quadratic nonlinear coefficient. Thus, for these calculations we assume 

χ(2)~10pm/V. 
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Figure 7.12. Schematic representation of the two geometries considered. 

  

 The thicknesses of the GaAs and of the mirrors will be for the moment 

parametrically indicated as L and a, respectively. The tuning of the FF is 

the same of the previous Chapter, namely with the FF at 1300nm with the 

generated SH below the absorption band edge at 650nm. 

 The SHG calculations have been performed using a standard Green 

function approach as detailed in [Mat05]. The length of the GaAs and the 

thickness of the mirrors have been varied simultaneously for both 

configurations and the corresponding SHG calculated. On the contrary to 

the previous case with the ideal free standing etalon, we now expect that the 

best performance will be achieved not exactly for an integer number of the 

FF wavelength into the material. This is mainly due to the asymmetry of 

the structures or to the presence of the metal. The GaAs length was thus 

varied in a range going from zero to an approximately three FF wavelengths 

in the material. The metal mirrors thickness was varied in a range from 

zero (no mirrors) to a convenient value depending on the structure. 
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 The complex refractive indexes for GaAs and gold are taken from 

experimental measured data [Pal85] (also see previous Chapter). The 

results for the configuration in Fig.7.12(a) are shown in Fig.7.13, where the 

generated SH signal is reported as a function of both the GaAs and Au 

thicknesses. Due to the asymmetry of the structure, only the backward 

generated signal is considered. The emission behavior with respect to the 

variation of L (fixing a) is somehow periodic with a certain fraction of 

number of FF wavelengths into the material, as expected. However the best 

performance is achieved for L=645nm. Notice how this value is very close to 

762nm that corresponds to two wavelengths of FF into a bulk GaAs. The 

emission behavior with respect to the variation of the thickness of the 

metallic mirror (fixing L) is slowly varying after a value of a=80nm. 
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Figure 7.13. SH conversion efficiency vs. length of the GaAs and thickness of the 

back mirror for configuration in Fig.7.12(a). Backward generated signal. 
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Figure 7.14. SH conversion efficiency vs. length of the GaAs and thickness of the 

mirrors for configuration in Fig.7.12(b). Backward(right) and forward (left) 

generated signals. 
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Figure 7.15. Spectral bandwidth of the SHG for configuration in Fig.7.12(a)(left) 

and in Fig.7.12(b)(right). 
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Figure 7.16. SHG from a simple GaAs etalon (no mirror) and from the same 

GaAs etalon plus a back mirror of 80nm. 

 

 The results for the configuration in Fig.7.12(b) are shown in Fig.7.14. 

In this case both backward and forward generated signals are considered 

due to the symmetry of the structure. They show the same kind of features 

with almost the same level of conversion efficiency. The emission behavior 

with respect to the variation of L (fixing a) is similar to the configuration in 

Fig.7.12(a), with a maximum value at L=705nm. The emission behavior 

with respect to the variation of the thickness of the metallic mirrors (fixing 
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L) presents a clear peak at a=22nm for both backward and forward 

configurations. 

 We note that for the configuration scheme in Fig.7.12(a) the best SH 

conversion efficiency, of the order of 10-8, is obtained for a length of the 

GaAs of ~645nm and a length of the back mirror equal or greater than 

80nm. On the contrary, in Fig.7.14 we note that the configuration in 

Fig.7.12(b) is far less efficient than the configuration in Fig.7.12(a), in fact 

we get a total (forward+backward) conversion efficiency of ~3.5x10-9. 

 In Fig.7.15 we compare the spectral bandwidth of the SH emission as a 

function of the incident wavelength. From this figure it is evident that 

configuration in Fig.7.12(a) not only ensures a greater SHG, but also a 

better tunability. 

 It is important to spend few words about the crucial role played by the 

back mirror in the enhancement of the SH emission in the configuration in 

Fig.7.12(a). In Fig.7.16 we show the SH emission with and without the back 

mirror. The SHG with the back mirror is ~35 times greater than the SHG 

with no back mirror. 

 

Experimental results  

  We now step to the experimental demonstration of our numerical 

prediction. We fabricate a structure following the optimum parameters 

found in the previous section for the configuration consisting of a GaAs layer 

having a back gold mirror as in Fig.7.12(a). The sample was fabricated 

using MOCVD to grow a 645 nm GaAs layer above a AlAs etch-stop layer, 

on top of a GaAs substrate. A gold mirror approximately 200nm thick was 

deposited onto the GaAs layer, aided by a few nanometers of Ti buffer layer 

to ensure good adhesion between the metal and the semiconductor. The 

structure was then glued upside down onto a silicon substrate using 

benzocyclobutene polymer. Finally, the GaAs substrate and the AlAs layer 

were removed using mechanical grinding followed by chemical etching. The 

structure is shown schematically in Fig.7.17(a). The calculated and 

measured linear reflectance from the sample, plotted in Fig.7.17(c), show 
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that the structure displays a resonance at the FF, 1300nm. However, the 

stack is not resonant at the SH and TH wavelengths.  

 In Fig.7.17(b) is reported in detail the experimental set up. We used a 

typical reflection measurement set-up. The source consists of ~100fs 

fundamental pulses from an OPA laser working at 1KHz repetition rate, 

with tunable wavelength between 1200 and 1600nm. The beam has a power 

of 200MW and was focused on the sample down to a ~0.5 millimeter spot 

size, with corresponding peak intensity of ~5GW/cm2. The reflected signal 

was collected and analyzed with a spectrometer connected to a cooled Si 

CCD camera. Due to the nonlinearity of the material, SH and TH fields will 

be generated and recorded. Nine different measurements were performed 

from 1260nm up to 1420nm in 20nm wavelength steps (Fig.7.18). As 

references, the SH and TH signals generated from a simple gold mirror and 

a bulk GaAs sample, as well as the background illumination, were recorded 

with the same set-up and subtracted from the harmonic signals recorded 

with our sample. These references show clearly that surface SH and TH 

signals generated by the bulk GaAs and gold samples are negligible with 

respect to the harmonics generated by the cavity.  

 The SH and TH measured for each step of the fundamental tuning are 

shown in Figs.7.18(a) and 7.18(b), respectively. The vertical axis shows the 

conversion efficiency of each process. These results show that two 

generation peaks are clearly visible and, in particular, the maximum SH 

efficiency occurs at ~650nm and for the TH at ~435nm: this is remarkable 

proof that the harmonics display resonant behavior. The dashed curve 

represents the envelope of the fields obtained numerically in the continuous 

wave (CW) regime for the cavity in our experiment, and the agreement is 

very good when (2)~14pm/V and (3)~1.17x10-19m2/V2. Due to field 

enhancement and overlap this time we recorded a SH conversion efficiency 

of order 1.5x10−7.  

 The presence of the Ti layer, introduced as practical solution to a 

mechanical gold adhesion problem, unfortunately acts on the interaction in 

a detrimental way spoiling the sample structure scheme. However, even 

under these conditions conversion efficiencies are at least three orders of 
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magnitude larger than the SH signal generated by bulk GaAs under the 

same conditions (~10−10).  

 

 

 

Fig.7.17. (a) Sample’s scheme. (b) Experimental set-up. (c) Linear reflectivity of 

the sample taken by Fourier Transform Infrared Spectroscopy (FTIR) and 

comparison with theory. 
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With this consideration in mind, the estimated (2) value can be actually 

under-estimated by almost one order of magnitude. This is in agreement 

with the study made on [Ber03] that found (2) values of the order of 

hundreds pm/V for GaAs in the UV-VIS frequency range. Even more 

fascinating is the TH situation, where we recorded efficiencies of order of 

1.4x10−8 under conditions of even higher absorption and wrong cavity 

length. This is a direct proof of the robustness of the PL mechanism.  

 The FF was recorded separately with a cooled InGaAs CCD camera. 

Neither the Si nor InGaAs CCD have a wide enough recording spectrum to 

be used at the same time to record FF and generated SH and TH. To 

evaluate the conversion efficiency scales in Fig.7.18 we used an independent 

HeNe laser source, whose signal could be measured at the same time with 

the Si CCD camera linked to the spectrometer and with a commercial power 

meter. In this way we were able to calibrate our recorded signals. 

 The consequences of this relatively simple experiment and calculations 

showed here open new possibilities to the examination of new optical 

phenomena in wavelength ranges that are far below the absorption edge. 

The results reported here have general validity, and apply well to 

semiconductors and dielectric materials alike, absorbing or not at the 

harmonic frequencies, as well as negative index materials, because the 

phase locked components do not experience the material dispersion 

characteristics at the harmonic wavelength. Finally, the right choice of 

materials based on the transparency window at the fundamental 

wavelength combined with cavity effects leads to relatively high nonlinear 

conversion efficiencies in GaAs at wavelengths well beyond the absorption 

edge, at 650nm and 433nm, respectively, with conversion efficiencies that 

are at least three orders of magnitude larger compared to bulk GaAs and 

can potentially be much higher. Our calculations show that conversion 

efficiencies may also be dramatically improved by sandwiching the GaAs 

etalon between distributed Bragg mirrors. This will be the subject of the 

next section. 
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Figure 7.18. Experimental results for SH (c) and TH (d) signals. The dashed 

black curves represent the CW theory. The different curves represent the 

harmonic signals for different pump tunings (respectively from left to right 

1260nm, 1280nm, 1300nm, 1320nm, 1340nm, 1360nm, 1380nm, 1400nm, 

1420nm). We note that the bandwidths of the signals are in excellent agreement 

with the numerical predictions. 
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7.4. Double dielectric mirrored cavity 

Defect microcavities 

 Before to describe our numerical results, we want to briefly remind 

here the main features of a Fabry-Perot type microcavity. To enhance the 

performance, multilayer films can be placed on both sides of the microcavity 

behaving like two perfectly parallel Bragg mirrors. 

 This kind of structure may be seen also as a photonic crystal with a 

defect that breaks the perfect symmetry of the structure and allows the 

localization of the light at certain frequencies within the forbidden bands. 

 Such microcavity type structures would trap inside any z-propagating 

light resonant with the cavity (see Fig.7.19). A specific mode corresponding 

to the photonic bang gap of the perfect periodic photonic crystal, that in 

principle should decay exponentially once it enters the crystal, may be 

trapped if its frequency coincides with one of the resonant frequencies of the 

cavity (see for example [Joa08] for more details). This light trapping results 

in a strong light localization within the defect.  
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Figure 7.19. Schematic illustration of a photonic crystal with a defect, or 

microcavity. Defect modes appearing in such structure will be localized near the 

different colored layer that breaks the symmetry in the z-direction. 

 

 The reflectivity spectrum corresponding to such a microcavity is shown 

in Fig.7.20(a). A narrow band of frequencies that can propagate through the 
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crystal appears as a consequence of the introduction of the defect. The 

introduction of the defect results also in the appearance of a high energy 

density of the electric field at the defect site, which falls off exponentially as 

we move away from the defect. This high energy density can be used to 

enhance the interaction between light and matter, being especially useful 

when considering nonlinear interactions. 

 

 

Figure 7.20. Reflection spectrum for a photonic structure made of 20 periods 

quarter wave Bragg mirrors (QWBM) structure with a defect. The thickness of 

the defect is equal to 1 m (a) and to 10 m (b) 

 

 For a fixed thickness L of the defect layer the peaks in transmission 

occur at wavelengths that satisfy the resonance condition 2 cos /L m  , 

where θis the angle of incidence and m is an integer. When L is increased, 

several wavelengths may satisfy the resonance condition and the number of 

peaks increases as can be seen in Fig-7.20(b).  

 To decrease the width of the resonance it is possible to operate in two 

different ways: 1) increase the thickness of the defect keeping the same 

multilayer mirror structure or 2) increase the number of multilayer pairs in 

the mirror structure, keeping the same thickness of the defect. This last one 

is the strategy we used in our experimental set-up. 

 

SH generation efficiency in high-Q cavities 

 In this section we want to pose the following question: is it possible to 

enhance SH in the phase mismatched regime using ordinary laser sources 
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and materials, up to a level that could rival harmonic generation from phase 

matched or quasi phase matched materials?  

 To take advantage of the inhibition of absorption of the phase locked 

SH component and find an affirmative answer to this question it is 

necessary to improve the nonlinear conversion efficiencies. As reported in 

the previous Chapter (and also in [Mak62, Jer70, Noo90, Su06, Kri04, 

Mle99]), using pump intensities of order 1GW/cm2, conversion efficiencies 

from a single interface of GaAs or similar material is of order 10-10. 

Presently we are not aware of analytical tools that might be used to infer 

the explicit expression of conversion efficiency for the phase locked 

component.  

 As a rough estimate of what one might expect in terms of conversion 

efficiency Fermi’s golden rule provides a good practical procedure to follow. 

According to this rule, the spontaneous emission rate is [Fer50]: 

 
22

( ) | | | |f i


     μ E , (2.1) 

where | f   and | i   are final and initial states, respectively, ρ(ω) is the 

density of states, μ  is the dipole moment, and E is the local electric field.  

Both ρ(ω) and 
2| |E are proportional to the cavity Q.  As a result nonlinear 

conversion rates are proportional to Q2. One should keep in mind that these 

estimates are just that, and that geometrical factors like field localization, 

dipole position and distribution inside the cavity intervene to alter these 

estimates through shape factors. In what follows we present results that 

confirm that this simple relation is a useful and practical tool to predict 

conversion efficiencies of the phase locked SH component.  

 In our experiment (in Fig.7.21(a) is sketched the set up) we used four 

different samples made of a 350nm thick GaAs layers sandwiched between 

different sets of distributed Bragg mirrors (Fig.7.21(b)). The samples were 

designed with 4, 6, 8 and 10 pairs of SiO2(210nm)/Si3N4(120nm) layers on 

each side, respectively.  
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Figure 7.21: (a) Experimental set up and (b) Sample scheme. 

 

 

Figure 7.22. Samples transmission spectra. The transmissions of the samples 

are obtained from the transmission spectra of an ultrashort fs laser. The fast 

oscillations are due to the multiple reflections inside the 1mm glass substrate. 
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 Each of these samples has a resonance centered at the same 

wavelength, but having different width due to their different quality factors. 

To ascertain the resonance shapes and widths we experimentally 

illuminated the samples with an ultrashort femtosecond pulse. The 

measured resonances are shown in Fig.7.22. The resonances are all centered 

at λ=1225nm and have widths (FHMW) of 9.3nm, 2.6nm, 1.2nm, and 

0.32nm, respectively. The corresponding cavity Q factors, calculated as 

Q=λ/Δλ, are 125, 350, 1200 and 3830.  

 The difference between this kind of dielectric sandwich and the free 

standing GaAs etalon discussed in section 7.2 is that in this case the 

internal field is amplified by hundreds of times relative to the incident field. 

The linear properties of the stack are such that it is transparent at the FF 

wavelength and allows it to become localized, but it remains opaque for the 

SH (the transmission at 612nm is less than 5%). This guaranties that the 

observed SH signal consists of phase locked SH component only. In Fig.7.23 

is reported the linear transmittance for the 6 pairs mirror sample. The blue 

curve is the transmittance of the real sample while in comparison the red 

curve is transmittance of a similar sample obtained numerically turning off 

the absorption inside the GaAs layer. Notice how the two structures behave 

identically at the FF wavelength, while the real sample starts to absorb for 

wavelength less than 900nm. The red curve gives us, on the other hand, an 

idea of linear gaps possessed by the whole multilayer structure due to the 

multi reflection inside the stack. These gaps will affect also the generated 

phase locked harmonics inside the GaAs layer, being them nonlinearly 

uncoupled with the FF inside the dielectric mirrors. In other words, after 

the inhomogeneous SH and TH are generated inside the absorptive GaAs 

layer thanks to the PL mechanism, their intensities at the exit of the sample 

will depend on the linear properties of the distributed Bragg mirrors. We 

then carefully designed the sample being sure that at least the generated 

SH will not experience a too low linear transmission. Unfortunately, 

inevitably the TH will fall in a band gap where the linear transmission 

approaches zero (see Fig.7.23). For this reason we will focus now only on the 

generated SH, leaving the study of the TH for a future work. 
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Figure 7.23. Linear transmission of the 6pair mirrors sample. (blue curve) real 

GaAs cavity structure. (red curve) GaAs-like structure without absorption. 

 

 

Figure 7.24. Experimentally measured behavior of the SH output power versus 

the input FF power for all 4 samples. The continuous lines represent the 

quadratic fit. 
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 The FF pulse centered at λ=1225 nm was provided by a tunable OPA 

and was slightly focused down to a spot of about 500m onto the sample. Its 

duration was fixed at 3ps and the intensity incident onto the sample was of 

the order of 10MW/cm2. The transmitted signals at the FF wavelength were 

collected with a cooled AlGaAs camera, and the ones at the SH frequency 

were recorded with a Si detector. The sample is rotated 10º degree to take 

advantage of the non vanishing (2) in that direction.  

  The SH efficiency was normalized to the effective FF energy that 

finds its way inside the cavity. To account for the spectral width of the 

pulse, for each sample we calculated the overlap between the FF and the 

cavity spectra. In short, after we put the sample in place in the 

experimental set-up the laser source was shifted to shorter duration (around 

80fs). This broad spectrum pulse is able to scan the effective transmission 

characteristics of the sample (Fig.7.22). Multiplying this spectrum for the 

spectrum of the 3ps pulse used during the experiment we can estimate how 

much FF energy has actually penetrated inside the cavity. 

 For each sample we first measured the behavior of the SH output 

power versus the input FF power (Fig.7.24). As shown in the figure, the SH 

follows a regular quadratic pattern. This is an indication that two-photon 

absorption and other non-linear effects are not affecting the generation 

process in an appreciable measure. Notice how the FF power range becomes 

smaller for higher Q cavities due to the smaller bandwidth of the resonance. 

At the same time, the enhancement of the FF field within the cavity 

increases with the reflectivity of the cavity’s mirrors, leading to more 

efficient SH generation for higher-Q cavities. To operate in a safe region for 

all sample, we chose to extrapolate the SH efficiencies corresponding to 

0.15MW/cm2 of FF intensity. This corresponds more or less to the last 

experimental point for the 10-mirrors pairs sample in Fig.7.24. 

 Finally, in Fig.7.25 we report for each sample the SH conversion 

efficiency vs. cavity factor Q. The circles show the experimental points and 

the solid line is a quadratic fit of the data. The first circle marks the bulk 

emission (see Chapter 6). The results are thus in good agreement with the 

general estimate made previously in Eq.(2.1). The figure shows that it is 

possible to achieve efficiency of the order of 0.1% with external pump peak 
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intensities of order 10MW/cm2, which for 3ps incident pulses leads to 

0.15MW/cm2 inside the cavity.  This means that there is real potential for 

pump depletion with relatively low intensities (tens of MW/cm2), provided 

the incident pulse resolves the resonance. In this particular situation the FF 

peak power was kept conservatively low to avoid two-photon absorption at 

the pump frequency, which can be considerable in GaAs at these 

wavelengths. Beyond this, the phase locked SH behavior is completely 

general and possible devices could be designed by choosing more appropriate 

materials, such as polymers, to outperform GaAs given the potential for 

much higher nonlinear coefficients [Ber03]. Finally, these results are easily 

extended to THG, as shown in the first section of this Chapter. In this 

particular case the cavity was not optimized for THG, which happened to be 

tuned inside a band gap of the stack.  

 

 

Figure 7.25. SH efficiency versus cavity Q factor, experimental data and 

quadratic fit. Due to the absorption regime at the harmonic wavelength, the SH 

is only made by the inhomogeneous component. 
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The role of the absorption 

 Accordingly the study for the free standing cavity, we are confident 

that the signals we recorded in the experiment are indeed made by only the 

inhomogeneous SH and TH components. Even if an enhancement of the 

residual homogeneous components is still present due to the not perfectly 

zero linear transmittance of the structure at those wavelengths, it keeps 

being negligible respect to the enhanced inhomogeneous signals. 

 However, since the absorption length is comparable with the thickness 

of the GaAs slab, we can make an additional last test as a further 

verification. In Fig.7.26 and Fig.7.27 we report the results of the numerical 

simulation of the FF propagation as in our experiment, through the 6 

couples mirror structure. In the first case (Fig.7.26) the central cavity layer 

is made by a GaAs-like material without absorption. In the second case 

(Fig.7.27) we used the real data of the GaAs, taking into account the 

absorption. In the figures are reported three different snapshots of the FF 

and the relative generated SH. From the top, the first snapshot represents 

the initial condition with the FF pulse propagating in the air toward the 

sample. In the second snapshot the FF pulse is crossing the sample and, 

finally, in the third snapshot has completely left it beyond. 

 The only difference we can appreciate between the two figures is the 

level of the generated SH. In presence of absorption the intensity of the SH 

is almost half respect to the case without absorption. This is also confirmed 

by the monitor of the SH energy versus the propagation time plotted in 

Fig.7.28. This perfectly agrees with the discussion made previously in the 

section 7.2. 

 In conclusion, we experimentally demonstrated SH conversion 

efficiencies that approach 0.1% in an opaque GaAs cavity, using incident 

pump intensities of order 10MW/cm2. We have also shown that the 

conversion efficiency of the inhomogeneous, phase locked SH component is a 

quadratic function of cavity-Q, namely the enhancement factor of the FF 

inside the cavity. These results show that high conversion efficiencies can be 

obtained in phase mismatched materials in ways that may also be practical. 
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Figure 7.26. FF and generated SH propagation into the 6couple mirrors cavity 

sample made by GaAs-like material without absorption. From the top, the first 

snapshot represents the initial condition with the FF pulse propagating in the 

air toward the sample. In the second snapshot the FF pulse is crossing the 

sample and, finally, in the third snapshot has completely left it beyond. 
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Figure 7.27. FF and generated SH propagation into the 6couple mirrors cavity 

sample made by GaAs (including absorption). From the top, the first snapshot 

represents the initial condition with the FF pulse propagating in the air toward 

the sample. In the second snapshot the FF pulse is crossing the sample and, 

finally, in the third snapshot has completely left it beyond 
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Figure 7.28. SH energy (normalized to the FF energy) versus propagation time 

for both the propagation cases as in Figs.7.26 and 7.27. 

 

 In addition, with the right materials it becomes possible to exploit new 

wavelength ranges, e.g. UV-XUV, using GaP or GaN, for example. This will 

be our next goal in the next Chapter. 
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Chapter 8 
 

Harmonic generation in 

the metallic regime 

 

8.1. SH and TH generation in GaP 

Experimental results 

 In this last Chapter we want to turn our attention to another 

interesting fundamental consequence of the PL phenomenon. So far we 

studied the behavior of the SH when it is tuned below the absorption band 

edge of semiconductors, but still in the region where the index of refraction 

is purely positive. Our curiosity forced us to see what happen if the tuning is 

moved down to the region where the dielectric permittivity can assume 

negative values. GaP practically presents such region around UV 

frequencies and, at the same time, has a lower absorption band edge 

(around 500nm) respect to the GaAs (around 900nm). This gives us the 
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possibility to pump at 670nm FF and to observe the two first harmonics at 

the peak of higher absorption (SH) and of negative permittivity value (TH). 

 Following the evolution of this topic, it now comes natural to ask the 

following question: does this phenomenon hold for harmonic fields tuned at 

frequencies in the metallic range of material? That is to say, if the pump 

field is tuned in the transparency region, will a harmonic field be able to 

propagate if it happens to be tuned in a region where    sign sign  , 

where one expects no propagating solutions? The short answer to this 

question is yes. In what follows we provide experimental and numerical 

evidence that show how an electromagnetic field is generated and 

propagates in that forbidden wavelength range. 

 In Fig.8.1 we report the dispersion relation of the GaP as given in 

reference [Pal85].  The pump pulse is tuned at 670nm, in the transparency 

region of the material, where 670 10.7nm  .  Consequently, the SH field falls 

at the UV absorption resonance located near 335nm, where 

335 19.1 24.1nm i   . In turn, the TH signal falls close the peak of the 

negative permittivity at 223nm, where 223 9.6 10.4nm i    (metallic range). 

With these dispersion values, an incident fields would either be completely 

absorbed within a few nanometers from the surface (335nm), or be 

completely reflected at the surface (223nm).  

 The experimental setup we used to measure transmitted harmonics in 

GaP is shown in Fig.8.2. Pump pulses centered at 670nm and 80fs in 

duration were generated by an optical parametric amplifier and amplified 

Ti:sapphire laser system operating at 1kHz repetition rate. Prior to sending 

the pump beam into the experimental setup, an equilateral dispersing prism 

and spatial filtering were used to remove background harmonics present in 

the beam path. A color filter (CF) was placed directly before the sample to 

remove any residual harmonics. At the sample position, the collimated 

pump beam’s energy per pulse was 2.7µJ, corresponding to a peak intensity 

of approximately 480MW/cm2. 

 After passing through the sample, the residual pump was rejected and 

the harmonics were highly reflected off by two set of four long wave pass 

(LWP) dichroic beam splitters. These mirrors each transmitted >90% of the 
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pump and reflected >97% of the SH (first set of mirrors) or >95% of the TH 

(second set of mirrors). While propagating through the sequence of LWP 

mirrors, a single polarization of harmonic light was selected by a polarizer 

with single-pass extinction ratio of ~10-3. Each harmonic was reflected back 

through the mirrors and polarizer (RP) by a concave aluminum mirror with 

deep-ultraviolet coating (DUVA). Therefore, the residual pump light was 

suppressed by at least eight orders of magnitude and either the TM or TE 

component of the harmonic was selected with a contrast of at least 106. After 

passing back through the mirrors and polarizer, the harmonic was focused 

into an all-silica fiber coupled to a UV-sensitive spectrometer and liquid 

nitrogen cooled CCD. 

 

 

Figure 8.1. Dispersion relation of GaP from reference [Pal85].  The dashed lines 

indicate tuning of the fields. There are two resonances, at ~330nm and ~240nm. 

 

 In Fig.8.3 we show the measured spectra (solid curves) for the case of a 

TM polarized pump field. The <100> GaP 500μm thick wafer was 

illuminated at an angle of 40°. The basic results may be summarized as 

follows: the harmonic conversion efficiencies for the transmitted fields are 

approximately 10-9 for the TE-polarized SH at 335nm, and 1.8x10-12 for the 

TM-polarized TH at 223nm. The detection limit of the system corresponds to 
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a minimum detectable efficiency of ~10-14.  Any harmonic present with the 

sample removed was below this detection limit. 

 

 

Figure 8.2. Schematic representation of the experimental Set-up. The 

polarization of input pump pulses at 670nm is set by a half-wave plate (HWP) 

and Glan-laser polarizer (GLP). A color filter (CF) removes the harmonics before 

the pumps strikes the GaP sample. The harmonics reflect off four LWP dichroic 

beam splitters. A Rochon polarizer (RP) transmits only one polarization of 

harmonic light. A concave aluminum mirror with deep-ultraviolet coating 

(DUVA) retroreflects the harmonic back through the RP/LWP system and 

focuses the harmonic into an all-silica fiber for detection. 

   

Theoretical verification 

 Theoretical confirmation of our experimental results was obtained by 

numerically solving Maxwell's equations in the time domain. This time the 

material was modeled as a collection of doubly resonant harmonic oscillators 

to closer model the GaP dispersion characteristics in Fig.8.1.  

 The model is mainly the one described in the Chapter 1. The difference 

is that now we consider the extension of the theory made recently in 

[Sca10]. 

FF @676nm 
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Figure 8.3. Measured spectra for the TM-polarized pump (continuous lines). 

Results of the numerical simulation (dashed lines). 

 

 In this work the authors provided a more explicit and detailed 

description of the polarization equations. Since the conversion efficiency 

involved are extremely low, in the experiments with opaque samples the 

survivor bulk inhomogeneous harmonic components can be easily confused 

with the harmonics signals generated at the entry and exit interfaces. In 

literature so far, these signals were taken into account with 

phenomenological models, which were base directly on the experimental 

results. The new, completely theoretical, approach used in [Sca10] allows us 

to practically discriminate the exact origin of any generated SH and/or TH 

signals. 

 The model is described in details in reference [Sca10]. Suffice it to say 

here that the oscillator model is exemplified by the following scaled 
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equations of motion that describe generic envelope functions that are 

allowed to vary rapidly in space and time [Sca10]: 
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   (8.1) 

 The Eqs.(8.1) are scaled as explained in the Chapter 1. e  and 
*m  are 

the electron charge and effective mass, respectively; 
NP , 

NE , and 

NH are the polarization, the electric and the magnetic fields associated 

with the Nth harmonic. As in reference [Sca10] we also operate in a two-

dimensional space, and allow the simultaneous presence of TE- and TM-

polarized field that each has a two-dimensional spatial description. The 

scaled coefficients are  

 N Ni    , 

the damping coefficient, and  

2 2 2

0, 0( ( ) )N N i N       , 

the resonance frequency, where N is an integer that denotes the given 

harmonic. This theoretical description takes into account harmonic 
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generation that arises from interface crossings (spatial derivatives on the 

polarization vector) and from the ever-present magnetic Lorentz force, 

which is usually neglected outside the context of metals. The total 

polarization that is fed back into Maxwell's equation is the vector sum of 

each of the solutions of Eqs.(8.1) and the nonlinear polarization that arises 

from χ(2)and χ(3) bulk phenomena (see for example Eq(1.49)). 

 The intrinsic nature of the GaP χ(2) tensor (only non-zero components 

are d14=d25=d36) selects the TE-polarized SH signal when the pump is TM-

polarized (see for example the polarization form in Section 3.3). The 

simulations show that in GaP the homogeneous component is completely 

absorbed within just a few nanometers from the entry surface, leaving only 

the phase locked SH. Harmonic signals generated at the surface due to 

symmetry breaking that inevitably take place during the interaction, on the 

other hand, have the same polarization as the incident pump pulse [Sca10], 

but have much smaller conversion efficiencies compared to χ(2) contributions.  

Thus, cross checking the polarization of the generated signal can be used to 

determine its origin. Using that theoretical approach outlined in reference 

[Sca10] we determined that the efficiency of the transmitted, surface-

generated, TM-polarized SH field is of order 10-11, i.e. at least two orders of 

magnitude smaller than the TE-polarized component that arises from the 

intrinsic χ(2) tensor of the medium. As a result there is little doubt that most 

of the TE-polarized signal originates with the bulk (2) of GaP.    

 For THG, nonlinear surface sources alone that arise from Coulomb and 

magnetic Lorentz forces [Sca10] are inadequate to generate an observed 

transmitted, TM-polarized TH signal with an efficiency of 10-12. An adequate 

prediction of THG can be made by adopting the realistic circumstances of a 

third order χ(3) tensor being of cubic type, with 43m symmetry and four 

independent components [Boy03], namely  

(3) (3) (3) (3), , ,xxxx yyxx yzyz yzzy    , 

 with 

(3) (3) (3)

xxxx yyyy zzzz    . 

The remaining symmetry properties of the tensor for this class of materials 

may be consulted in reference [Boy03].  The model thus includes surface and 
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volume contributions from Coulomb and magnetic Lorentz forces, as well as 

contributions from the realistic nonlinear second and third order tensors 

that give rise to SHG and THG.  

 Fig.8.4 summarizes the numerical results in the form of a 

superposition of different temporal snapshots of the incident and generated 

harmonic pulses. The interaction proceeds as follows. As the input pulse 

(Fig.8.4(a)) enters the material SHG and THG occur. In the figure we report 

the most intense components, namely TE-polarized SH (Fig.8.4(b)) and TM-

polarized TH (Fig.8.4(c)) pulses. The homogeneous components quickly 

vanish due to either the high absorption (SH) or the metallic environment 

(TH). The inhomogeneous components are the only portions of the 

harmonics that survive, and can be clearly seen from the figure, they 

perfectly overlap the pump pulse at all times.  

 The amount of energy deposited by the pump pulse into each harmonic 

is dictated by the material index mismatch at the interface, and do not vary 

during the propagation.  

 When the pump pulse reaches the exit surface the nonlinear coupling 

ceases and the fields are able to propagate freely. In Fig.8.4(d) we also show 

is also monitor the transmitted energy as a function of time.   

 The calculated spectra are shown in Fig.8.3 (dashed lines) and they 

overlap well the experimental data provided we need to use a value of  

(2)

14 25 26 500pm/Vd d d     , 

 and 

(3) (3) (3)

xxxx yyyy zzzz   
19 2 24 10 /m V  . 

Although the remaining third order tensor components  

(3) (3) (3), ,yyxx yzyz yzzy    

are also included in the calculation and are taken to be of the same order as 

the diagonal terms, their contribution influences little the overall TH 

conversion efficiency. Our calculations thus suggest that indeed the second 

order coefficients tend to achieve relatively large values in the UV range, as 

also reported elsewhere [Ber03].  On the other hand, the magnitude of the 

third order coefficient is more in line with typically reported values.  
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Figure 8.4. Time propagation that shows superposition of different temporal 

snapshots. An 80fs pump pulse impinges at 40º on a GaP 20m-thick slab (a) 

and SH (b) and TH (c) signals are generated. (d) Field energies as a function of 

time at the right of the sample. 

  

 Beside some aspects that clearly appear to have fundamental 

relevance, the discovery that the PL phenomenon still applies in the UV 

regime for harmonics tuned in ranges where the medium displays metallic 

behavior may be of strong technological importance in re-thinking and re-

designing semiconductor-based integrated devices at the nanoscale. 

Harmonic generation is only one aspect of the role that common 

semiconductors can play at UV wavelengths, i.e. ranges where typical 

semiconductors distinguish themselves only for their opacity. As another 

example, semiconductor based super-lenses [Vin09] and enhanced 
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transmission gratings [Vin10] that operate in the UV range have already 

been proposed. 

 Taken together, these results show that the functionality of 

semiconductors may be pushed down the wavelength scale, toward the soft-

X-ray region of the spectrum. The natural next step to take beyond this 

work is to study the dynamics in cavity environments, as was done in the 

previous Chapter for GaAs sample, possibly in metal-semiconductor 

structures [Sca10], where the χ(3) of metals can be fully exploited with the 

clear aim to achieve high conversion efficiencies in the deep UV range.   

 To summarize, we have experimentally detected the propagation of 

light pulses in the ultra-violet metallic frequency range of GaP. The pulse 

was generated near the entry surface of the sample as a TH signal using 

quadratic and cubic nonlinearities of the material. The propagation was 

possible thanks to a PL mechanism that binds inhomogeneous components 

to the FF, an effect that persist regardless of the dispersive characteristics 

of the medium at the harmonic wavelengths.  
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 The solution of the Maxwell’s equations in nonlinear dielectrics is 

composed of two parts: one resolves the homogeneous set of equations, while 

the other is a particular solution of the inhomogeneous equations driven by 

the nonlinear polarization term. For the case of harmonics generation, the 

homogenous component has traditionally been considered to be the only 

important constituent and so investigations have focused on it. 

Nevertheless, reports of observations of a double-peaked SH signal in the 

strong phase mismatched regime have been published. Worthy of note is the 

work of Mlejnek et al. [Mle99] where the authors showed the predictions 

made in 1962 that the inhomogeneous component of the SH signal travels at 

the group velocity of the pump pulse. At the same time, the homogeneous 

component of the SH refracts and travels according to the values one 

expects from material dispersion at that frequency.  
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 These works did not attract much attention because for application 

purposes the main goal has remained the achievement of efficient harmonic 

generation. As we saw in Chapter 5, the inhomogeneous component is 

generally difficult to observe because it travels locked under the pump 

pulse, with conversion efficiencies that for bulk materials are still relatively 

low. The key observation is the fact that this SH components always travels 

with a k-vector double that of the pump ( 2k ), even for large phase 

mismatches, and has a carrier frequency that oscillates at 2 . It is then 

straightforward to conclude that the inhomogeneous SH signal experiences 

an effective index of refraction that is the same as the pump pulse. We also 

showed that the energy transfer clamps and the inhomogeneous SH 

component travels locked in phase with the fundamental beam.  

 To experimentally prove this idea, in Chapter 6 we have chosen a pump 

pulse centered at 1300nm and we launched it into a 500m thick GaAs slab. 

Transmitted SH and TH signals were recorded at 650 and 433nm 

respectively, far below the material absorption band edge (~900nm). 

Simulations showed that the homogeneous SH and TH signals were quickly 

absorbed, while the inhomogeneous components continued on through the 

sample with an effective complex index of refraction identical to the index of 

the pump, which is tuned in a region of transparency. These results 

confirmed that the two components of the generated harmonics follow 

different destinies. This step is remarkable, because it shows that it possible 

to do nonlinear optics with materials opaque in the UV part of the spectrum. 

All the theory and the experiments (where possible) are also extended to the 

generation of the TH, highly broadening the validity of the discussion, 

 In Chapter 7, we studied, test and then provided a useful tool to 

enhance the inhomogeneous conversion efficiency. We theoretically 

investigated a free standing etalon and then we experimentally studied two 

GaAs-based schemes of cavity. The first scheme is a reflection single 

metallic mirror structure and the second one is a high-Q double dielectric 

mirrored cavity. The inhomogeneous generated component can now compete 

with the efficiency generally obtained for the homogeneous component and 

we can expect a number of devices that will take profit of this result. For 
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example, it can be designed an easy-to-build, low-cost and easy-tunable 

frequency conversion device that transform the typically IR lab lasers into 

visible or UV sources, without the needs of difficult and time consuming 

alignment and set-up. 

 From this point of view it was important the work done in Chapter 8, 

where we were able to go down to 223nm in wavelength and proof the 

stubbornness of the PL phenomenon. It was also impressive to be able to 

report for the first time, to our knowledge, a light propagation through a 

metallic bulk material. This event is something that fights against the 

common knowledge but it is the natural consequence of our theory. 

 This study has been performed by a non commercial numerical code 

that solves the Maxwell’s equations in their complete form and advances the 

fields in time. The material response was modeled with a Lorentz set of 

differential equations that are solved together with the Maxwell’s equation 

giving a high degree of management of the material dispersion for 

ultrashort pulse propagation. The numerical method does not rely on any of 

the usual approximations (such as SVEA, undepleted pump, etc…) giving us 

a very good confidence on the results obtained. 

 Even if this is not the first work to deal with the inhomogeneous 

component, it is for sure the first systematic approach to its investigation. 

As several times reported in the text, different characteristics have been 

revealed with the synergic action of theoretical analysis, numerical 

simulations and experimental verification. The main message we can 

extrapolate from this work is that the two generated harmonic components 

(homogeneous and inhomogeneous) have completely different behaviors and 

respond to completely different stimulus. We thus need to keep this clear in 

mind every time we want to operate either with one or the other component. 

 The homogeneous component faithfully obeys to the PM relation. But 

this relation does not seem to have any influence on the inhomogeneous 

component. This last one only responds to the FF, mirroring its behavior. 

 Obviously the work on this topic does not stop here. On the contrary it 

starts here, opening a new branch in the nonlinear optical field. We expect 

exciting new results from the application of the PL theory to old structures 
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or devices, looking at them from a new point of view. For example, at the 

moment, we are already working to study nonlinear grating structures in 

the opaque frequency range, as never was proposed before (see for example 

[Vin09, Vin10]). 

 Besides re-interpreting old devices, it is indeed interesting to sample 

new ideas. For example we are interested to study the case where the FF is 

seeded with a SH and/or TH fields. From preliminary calculations, it seems 

that, again, the PL phenomenon acts in a very surprising way making part 

of the seed trapped and forced to propagates anomalously. 

 Finally, it is worth of note that the introduction of almost unknown 

phenomena in the common knowledge is producing and exciting 

perturbation to the classical optical theory. As it happened for the advent of 

the negative index materials  ten years ago that required the development 

of an extension of the electromagnetic theory to include all their effects, the 

better understanding of the PL phenomenon is pushing the nonlinear 

optical theory versus a more complete and detailed description. For 

example, following this wake, the work in [Sca10] starts from the needs to 

analyze peculiar aspects of the phase locked harmonic propagation and goes 

toward a detailed classical material polarization description as never 

assessed before.    
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