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Abstract

Heterogeneity of hydraulic conductivity is known to vary orders of magnitudes within small dis-

tances. This affects our observations of natural processes. To explain reality we usually rely on

simplified models. But to apply them properly information of aquifer properties has to be trans-

ferred from local scale where the process can be described directly to the support scale of the

measurement and to the grid scale of a numerical model. This procedure is termed upscaling and

might involve changing the parameters of the known local scale equation or derivation of a new

upscaled equation. Upscaling depends strongly on the complexity of the process under considera-

tion. The objective of this thesis is to investigate these changes of scales for different subsurface

processes with increasing complexity: radial flow, conservative transport and reactive transport.

First, flow upscaling is investigated for the example of the interpretation of a hydraulic test

in a heterogeneous aquifer. Recovery tests are based on estimating transmissivity, T, from the

heads that rebound after pumping has stopped. Recovery tests can be performed in wells where

conventional constant-rate pumping tests would not be possible. Test interpretation is based on

the simple Jacob’s method, related to late time drawdown in an infinite homogeneous aquifer.

Yet, field data often cannot be explained by the homogeneous theory. Numerical simulations are

performed to show that heterogeneity in T can explain these field observations. It is also shown

that the local T value around the well can be inferred from early time recovery data, assuming

ideal conditions, whereas late time data yield a large scale (regional) representative value. Even

when recovery is observed for a short time, indirect information about the regional value can also
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be obtained.

Second, conservative transport upscaling is considered by interpreting the tailing of break-

through curves of tracer tests. Tailing is attributed to heterogeneity of aquifer properties and can-

not be properly modelled by means of the homogeneous advection-dispersion equation (ADE).

Mass-transfer models (e.g., CTRW, MRMT or fADE) using memory have been widely applied

for reproducing observed tails. The relationship between memory parameters obtained from BTC

fitting and the parameters characterizing the heterogeneity of hydraulic properties is still unclear.

Here, the conditions are investigated under which heterogeneity produces the type of tailing ob-

served in the field and how memory functions are influenced by measurable heterogeneity pa-

rameters (e.g., variance of the underlying transmissivity field). The slope of a BTC in a log-log

plot is found to be mainly influenced by the connectivity of the underlying permeability field, but

insensitive to its variance. The slope BTC reaches asymptotically 2 as connectivity increases.

And finally, the above model is extended to mixing controlled multi-component reactive trans-

port. At the field scale, reactive transport equations based on the ADE are known to overestimate

reactions. The objective is to test whether a model based on effective dynamics, such as e.g. the

Multi-Rate Mass Transfer Method (MRMT), derived from conservative transport observations,

can be used to describe effective reactive transport in heterogeneous media. The numerical so-

lution of conservative transport MRMT is extended to the reactive case. The reaction rates are

then compared for a binary system computed with the heterogeneous transport model to those

corresponding to the reactive MRMT. An excellent agreement is found between the two models

in terms of cumulative precipitated mass, and depending on the local heterogeneous structure the

match is also very good regarding the spatial distribution of precipitated mineral. These results

indicate that mass transfer models are an excellent tool for upscaling of mixing controlled reactive

transport.



Resum

L’heterogeneı̈tat de la conductivitat hidràulica és ben coneguda, podent canviar varis ordres de

magnitud en poca distància. Això afecta les nostres observacions dels processos naturals. Per

explicar la realitat normalment ens basem en models simplificats. Però per incorporar correcta-

ment en ells les propietats dels aqüı́fers, s’ha de passar de l’escala local a l’escala de suport i

a l’escala de la malla del model numèric. Aquest procés s’anomena Upscaling i pot comportar

canviar els paràmetres de l’equació coneguda a escala local, o bé la derivació d’una nova equació

d’Upscaling. L’Upscaling depèn fortament de la complexitat dels processos que es consideren.

L’objectiu d’aquesta tesis és investigar aquests canvis d’escala a partir de diferents processos sub-

terranis, incrementant la complexitat: flux radial, transport conservatiu i transport reactiu.

En primer lloc s’investiga el Upscaling de flux per medi de la interpretació d’un assaig hidràulic

en un medi heterogeni. Els assajos de recuperació es basen en l’estimació de la transmissivitat,

T, a partir de la recuperació dels nivells un cop s’ha parat el bombeig. Aquests tipus d’assaig

es pot realitzar en pous on no és possible dur a terme un assaig convencionals a cabal constant.

La interpretació de l’assaig de recuperació es basa en el mètode simplificat de Jacob, tenint en

compte els últims temps de la recuperació, en un aqüı́fer infinit homogeni. Però, sovint les dades

de camp no es poden interpretar amb la teoria basada en l’homogeneı̈tat. S’han realitzat simula-

cions per demostrar que l’heterogeneı̈tat de T pot explicar aquestes observacions de camp. També

es mostra que el valor local de T al voltant del pou pot ser deduı̈t dels primers temps de la re-

cuperació del bombeig, assumint condicions ideals, mentre que les dades del últims temps de la
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recuperació corresponen a valors representatius a escala regional. A més a més, els primers temps

de la recuperació també contenen informació indirecta del valor regional de T.

En segon lloc, es considera l’Upscaling en transport conservatiu a partir de la interpretació de

les cues de les corbes d’arribada (BTC) d’un assaig de traçadors. La cua s’atribueix a l’heterogeneı̈tat

de l’aqüı́fer, i no pot ser modelada per medi de l’equació d’advecció-dispersió (ADE) en medi ho-

mogeni. Per tal de reproduir les cues observades s’han aplicat àmpliament models de transferència

de massa utilitzant memòria (e.g, CTRW, MRMT o fADE). La relació entre els paràmetres de

memòria obtinguts de l’ajust de les BTC i els paràmetres que caracteritzen l’heterogeneı̈tat de les

propietats hidràuliques enara està per aclarir. En aquesta tesis s’investiga sota quines condicions

l’heterogeneı̈tat produeix el tipus de cues observades al camp, i com les funcions de memòria estan

influenciades per paràmetres de l’heterogeneı̈tat que es poden mesurar (e.g, variança dels camps de

transmissivitat). S’ha observat que el pendent d’una BTC en un log-log plot està majoritàriament

influenciat per la connectivitat del camp de permeabilitats, però és insensible a la seva variança.

El pendent del BTC arriba assimpdòticament a un valor de 2 quan s’augmenta la connectivitat.

I finalment, el model exposat anteriorment s’extén al transport reactiu multi-component con-

trolat per la barreja. És ben conegut que a l’escala de camp, les equacions de transport reactiu

basades en la ADE sobreestimen les reaccions. L’objectiu és assajar si un model basat en la

dinàmica efectiva, tal com per exemple MRMT derivat de les observacions de transport reactiu,

pot ser utilitzat per descriure el transport reactiu efectiu en medi heterogeni. La solució numèrica

del MRMT de transport conservatiu s’extén al cas reactiu. Les taxes de reacció es comparen per

un sistema binari, entre un model heterogeni i el seu corresponent model MRMT. S’ha trobat un

excel.lent acord entre els dos models en termes de massa precipitada acumulada i, depenent de

l’estructura heterogènia local, l’ajust és també molt bò pel que respecta a la distribució espacial

del mineral precipitat. Aquests resultats indiquen que els models de transferència de massa són

una eina excel.lent per l’Upscaling del transport reactiu controlat per la barreja.



Resumen

La heterogeneidad de la conductividad hidráulica es bien conocida, pudiendo cambiar varios

órdenes de magnitud en poca distancia. Esto afecta nuestras observaciones de los procesos natu-

rales. Para poder explicar la realidad normalmente nos basamos en modelos simplificados. Pero

para incorporar correctamente en ellos las propiedades de los acuı́feros, se debe pasar de escala

local a escala de soporte y a escala de la malla del modelo numérico. Este proceso se llama Up-

scaling y puede comportar cambiar los parámetros de la ecuación conocida a escala local, o bien

la derivación de una nueva ecuación de Upscaling. El Upscaling depende fuertemente de la com-

plejidad de los procesos que se consideran. El objetivo de esta tesis es investigar estos cambios

de escala a partir de diferentes procesos subterráneos, incrementando la complejidad: flujo radial,

transporte conservativo y transporte reactivo.

En primer lugar se investiga el Upscaling de flujo por medio de la interpretación de un ensayo

hidráulico en un medio heterogéneo. Los ensayos de recuperación se basan en la estimación de

la transmisividad, T, a partir de la recuperación de los niveles una vez parado el bombeo. Este

tipo de ensayo se puede realizar en pozos donde no es posible llevar a cabo un ensayo conven-

cional a caudal constante. La interpretación del ensayo de recuperación se basa en el modelo

simplificado de Jacob, teniendo en cuenta los últimos tiempos de la recuperación, en un acuı́fero

infinito homogéneo. Pero, a menudo los datos de campo no se pueden interpretar usando la teorı́a

basada en la homogeneidad. Se han realizado simulaciones para demostrar que la heterogeneidad

de T puede explicar estas observaciones de campo. También se muestra que el valor local de T
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alrededor del pozo puede ser deducido de los primeros tiempos de la recuperación del bombeo,

asumiendo condiciones ideales, mientras que los datos de los últimos tiempos de la recuperación

corresponden a valores representativos a escala regional. Además, los primeros tiempos de la

recuperación también contienen información indirecta del valor regional de T.

En segundo lugar, se considera el Upscaling en transporte conservativo a partir de la inter-

pretación de las colas de curvas de llegada (BTC) de un ensayo de trazadores. La cola se atribuye

a la heterogeneidad del acuı́fero, y no puede ser modelada por medio de la ecuación de advección-

dispersión (ADE) en medio homogéneo. Para reproducir las colas observadas se han aplicado am-

pliamente los modelos de transferencia de masa utilizando memoria (e.g, CTRW, MRMT o fADE).

La relación entre los parámetros de memoria obtenidos del ajuste de las BTC y los parámetros que

caracterizan la heterogeneidad de las propiedades hidráulicas aun esta por aclarar. En esta tesis se

investiga bajo qué condiciones la heterogeneidad produce el tipo de colas observadas en campo,

y como las funciones de memoria están influenciadas por parámetros de la heterogeneidad que se

pueden medir (e.g, varianza de los campos de transmisividad). Se ha observado que la pendiente

de una BTC en un log-log plot está mayoritariamente influenciada por la conectividad del campo

de permeabilidades, pero es insensible a su varianza. La pendiente del BTC llega asindóticamente

a un valor de 2 cuando aumenta la conectividad.

Y finalmente, el modelo expuesto anteriormente se extiende al transporte reactivo multi-

componente controlado por la mezcla. Es bien conocido que a escala de campo, las ecuaciones

de transporte reactivo basadas en la ADE sobrestiman las reacciones. El objetivo es ensayar si

un modelo basado en la dinámica efectiva, tal como por ejemplo MRMT derivado de las obser-

vaciones de transporte reactivo, puede ser utilizado para describir el transporte reactivo en medio

heterogéneo. La solución numérica del MRMT de transporte conservativo se extiende al caso re-

activo. Las tasas de reacción se comparan para un sistema binario, entre un modelo heterogéneo y

su correspondiente modelo MRMT. Se ha encontrado un excelente acuerdo entre los dos modelos

en términos de masa precipitada acumulada y, dependiendo de la estructura heterogénea local, el
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ajuste es también muy bueno en relación a la distribución espacial del mineral precipitado. Estos

resultados indican que los modelos de transferencia de masa son una herramienta excelente para

el Upscaling del transporte reactivo controlado por la mezcla.
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Chapter 1

Introduction

Heterogeneity remains a major difficulty in the interpretation of field observations. Hydraulic

conductivity measured at some small representative scale is known to vary by orders of magnitude

from one point to another, even in apparently homogeneous aquifers (e.g. Gelhar, 1993). This

makes it important to know the scales involved: the scale where the local equation is valid, the

support scale of the measurements, the scale of numerical resolution and the scale of the prob-

lem. The shift between these scales is called upscaling (or down-scaling). Their effects depends

strongly depending on the complexity of the process under consideration. For flow problems only

the total flux is important and neither travel time of water particles not their trajectory. For conser-

vative transport also the travel time becomes important, but integrated values over the path way is

sufficient. Considering reactive transport on the other side makes it important to consider as well

the distributions along the pathways.

For flow this problem is generally well understood. Various methods are known to deter-

mine effective parameters (e.g. Renard and de Marsily, 1997; Wen and Gómez-Hernández, 1996;

Sánchez-Vila et al., 1995). Hydraulic tests performed under radial flow conditions are a common

way to measure hydraulic conductivity. Meier et al. (1998) found for pumping tests that the late

1
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time behavior of heads, measured by the slope of drawdown versus log time was characterized by

the effective transmissivity of the aquifer, thus, making Jacob’s method also valid for heteroge-

neous media. Meier et al. (1999) showed that specific-capacity measurements depend strongly on

the local transmissivity next to the well.

Conservative transport has been traditionally modeled using the advection dispersion equation

(ADE). Yet, transport in natural aquifers usually displays anomalous (i.e., inconsistent with the

ADE) behavior. Observed deviations are numerous (Carrera, 1993). They include scale depen-

dence of dispersivity (e.g., Lallemand-Barres and Peaudecerf , 1978; Neuman, 1990), directional

and time dependence of apparent porosity (Sánchez-Vila and Carrera, 1997; Guimerà and Car-

rera, 2000) and tailing of breakthrough curves (e.g., Valocchi, 1985; Freyberg, 1986; Cortis and

Berkowitz, 2004). Stochastic hydrology has succeeded in qualitatively explaining these deviations

and in quantifying the scale dependence of dispersivity, (e.g., Dagan, 1989; Gelhar, 1993). In

the process, tools have been developed to predict the evolution of dispersivity with scale given a

stochastic description of variability of hydraulic conductivity (Kitanidis, 1988; Dentz et al., 2000).

However, much less efforts have been devoted to understanding the causes of tailing (Haggerty

et al., 2000; Shapiro, 2001; Cortis and Berkowitz, 2004; Dentz et al., 2004).

A number of non-local methods have been proposed to describe anomalous transport. Multi-

Rate Mass Transfer (MRMT) (Haggerty and Gorelick, 1995; Wang et al., 2005) and memory

functions (Carrera et al., 1998), which are equivalent (Haggerty et al., 2000), can be viewed as

dividing the medium into overlapping mobile and immobile continua (hence the generic term mul-

ticontinuum models). Each immobile zone exchanges solute mass with the mobile zone by linear

mass transfer (i.e., mass exchange is proportional to concentration gradient). These models may

be expressed as a function of only the mobile concentration by introducing a memory term into

the ADE to account for mass transfer between mobile and immobile zones. The name ”memory”

reflects the fact that this term represents the system memory (i.e., how current mobile concen-

trations are affected by past events). Multicontinuum models have been successfully applied to
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interpret anomalous transport (McKenna et al., 2001; Haggerty et al., 2004; Zinn et al., 2004;

Carrera et al., 1998; Sánchez-Vila and Carrera, 2004; Zhang et al., 2007). At present, memory

functions are calibrated against tracer test data, without explicit reference to heterogeneity. This is

unsatisfactory both from conceptual and practical viewpoints.

Reactive transport modeling at the field scale is more complex. De Simoni et al. (2005, 2007)

showed that equilibrium reaction rates are controlled by mixing rates. The distinctive character-

istic of the upscaled equations with respect to the ADE is how these equations can separate the

concepts of spreading and mixing. Spreading, directly related to hydrodynamic dispersion, pro-

vides a measure of the area that could potentially be affected by a pollution problem, incorporating

the uncertainty in the location of the center of gravity of the polluted area. Mixing, on the other

side, indicates the extent of the polluted area, regardless of its location. The ADE equates the

concepts of mixing and spreading.

The question is whether the success of non-local formulations for representing conservative

transport can be extended to reactive transport.

1.1 Objectives

The objective of this thesis is to study the effects of upscaling for different subsurface processes

in heterogeneous aquifers: particularly on flow, conservative and reactive transport. The specific

objectives are:

For flow it is studied if the classical interpretation of recovery tests yields meaningful and use-

ful hydraulic parameter values in heterogeneous aquifers. If yes, as conjectured by extrapolating

the results of Meier et al. (1998), then the practical question would be how long to pump or to

observe recovery in order to obtain meaningful results.

For conservative transport the objective is to investigate the physical meaning of mass transfer
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models used for upscaling. First, conditions are explored under which heterogeneity can explain

the kind anomalous transport observed in tracer tests, namely power law decay in tailing. Second,

the relationship between field properties describing heterogeneity and the parameters describing

the memory function are investigated.

For reactive transport the goal is to show the applicability of mass transfer models for upscaling

of multi-component reactive. For this purpose the model proposed above is revisited and extended

for reactive transport. It is then investigated if the physically based upscaling of conservative

transport is sufficient to upscale reactive transport.

1.2 Thesis outline

This thesis is presented in terms of journal publications, partly already published or still in the

review process. This results in stand-alone chapters with own introduction, own methodology and

conclusions. Unfortunately, this leads to some repetitions of concepts and methods for which I

want to apologize. Still, reading this work one will realize that the same concepts are different for

the different problems considered here. The general conclusion are then added as a final chapter.



Chapter 2

On the meaning of transmissivity values

obtained from recovery tests∗

2.1 Introduction

A large body of work in hydrogeology has been devoted to the design of hydraulic tests that can

provide good estimates of aquifer parameters. Specifically, recovery tests are easy to perform and

provide reliable estimates of transmissivity, T . Recovery tests consist of observing the build-up

(or recovery) of hydraulic heads after pumping has stopped. If possible, measurements should

continue until the head has recovered to its prior-to-pumping value.

The advantages of a recovery test stem from its simplicity: (1) a recovery test follows naturally

from a pumping test, because it only requires the recording of heads after pumping has ceased; (2)

it can be used even when pumping rates are difficult to control; (3) it is fairly inexpensive and no

equipment or additional observation wells are required apart from a water level measuring device;

∗This chapter is based in the article: Willmann, M., J. Carrera, X. Sánchez-Vila, and E. Vásquez, 2007, On the
meaning of transmissivity values obtained from recovery tests, Hydrogeol. J., Vol. 15, 833-842., doi10.1007/s10040-
006-0147-8
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and (4) results are usually not sensitive to well losses.

The analysis of a recovery test follows the Theis solution to pumping a fully penetrating well

of zero radius in an infinite, homogeneous aquifer. The most common and easiest way to interpret

a recovery test is to use the Theis recovery method (Theis, 1935), an approximation to late time

data which leads to:

s =
2.303Q

4πT
log(

t + tP

t
) = 0.183

Q
T

log(t∗) , (2.1)

where s is the residual drawdown, Q (constant) is the pumping rate, T is the transmissivity,tP is

the pumping time, and t is the elapsed time since pumping stopped. The variable t* = (t+ tP)/t is

termed equivalent time. In dimensionless form, Eq. (2.1) can be rewritten as:

sD = log(
tD + tPD

tD
) = log(t∗) (2.2)

where sD = 4πTs/2.303Q and tD = Tt/SL2 with Lc some characteristic length of the problem and S

storage coefficient. The variable tPD corresponds to the dimensionless pumping duration. Equa-

tions (2.1) and (2.2) are valid for large times, meeting the condition u = r2S/4Tt < 0.01 (e.g. Freeze

and Cherry, 1979), where r is the distance between pumping and observation points. In terms of

equivalent time, this condition is t∗ < 1 + 0.04tPD
L2

c
r2 . In recovery tests, heads are usually observed

at the pumping well, so that r is the well radius, which tends to be small, making this condition

easy to meet. Q can be approximated as Vw/tP, where Vw is the total volume of water pumped.

This result is useful when Q is not constant even if this variability might affect early time recovery.

The interpretation of a recovery test is performed by plotting residual drawdown against equiv-

alent time on a semi-logarithmic plot (Fig. 2.1). The use of equivalent time causes late time data to

be displayed on the left side, corresponding to small residual drawdown. Equation (2.1) shows that

late time data displays a straight line passing through the origin, provided that no residual draw-

down remains when the aquifer reaches equilibrium. The slope, m, of this line is the coefficient in
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Eq. (2.1). Knowing m allows estimating transmissivity as:

T = 0.183
Q
m

(2.3)

In principle, the interpretation of one recovery test using a semi-log plot would not allow estimat-

ing S . Recent research on recovery tests has concentrated on overcoming this limitation (Agarwal,

1980; Banton and Bangoy, 1996; Goode, 1997; Chenof , 2002; Zheng et al., 2005). They focus

on finding an alternative interpretation to estimate the storage coefficient by using also heads at

observation points different from the pumping well.

The Theis solution and, thus, the Theis recovery method are based on some assumptions that

are not met in reality, but may affect test results: infinite aquifers, negligible well radius, per-

fectly confined aquifer, constant pumping rate, and homogeneous hydraulic parameters. Actually,

aquifers in the field are bounded, wells do have a finite radius, flow to a pumping well may not

be purely horizontal but have a vertical component, pumping rate may be kept constant with diffi-

culty, and transmissivity and storativity are not homogeneous. Some of these departures from the

ideal hydrologic conditions have been thoroughly studied for hydraulic tests and several method-

ologies to account for them are available in the literature (e.g. Streltsova, 1988; Bourdet, 2002).

Heterogeneity remains a major difficulty in the interpretation of field hydraulic testing. Hydraulic

conductivity measured at some small representative scale is known to vary by orders of magnitude

from one point to another, even in apparently homogeneous aquifers (e.g. Gelhar, 1993). This

result makes it important to know the individual support scale of the measurements. If the sam-

pled volumes of an aquifer are too large, estimated parameters would be artificially homogenized.

In large projects, it is not unusual to perform different types of tests involving several support

scales in order to find the adequate input value for numerical models (Shapiro and Hsieh, 1998;

Martinez-Landa and Carrera, 2005)

A few results are available for the response of heads to pumping in a heterogeneous aquifer.

Analytical solutions are available for simplified heterogeneities like a disk of transmissivity T1 em-
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Figure 2.1: ”Ideal” Theis recovery plot (also called Horner plot), displaying residual drawdown
versus equivalent time, defined as t* = (t + tP)/t. Transmissivity can be calculated from the slope
m through equation 2. The validity limit of the Theis recovery method u is r2S/4Tt.

bedded in a homogeneous matrix of transmissivity T2 (Moench and Hsieh, 1985; Butler, 1990),

geometries with three different zones, each one with a different T value shaping as disks (But-

ler and Liu, 1993), or with complicated, but, in any case, prefixed geometries (Chu and Grader,

1999). Schad and Teutsch (1994) analyzed the support scale of pumping tests by looking at an

extensive set of field tests, and thus, being able to characterize an effective heterogeneity length

scale. Meier et al. (1998) found that the late time behavior of heads, measured by the slope of

drawdown versus log time was: (1) the same for all points independent of their relative location

with respect to the well, and (2) characterized by the effective transmissivity of the aquifer, thus,

making Jacob’s method also valid for heterogeneous media. These findings were confirmed an-

alytically by Sánchez-Vila et al. (1999) using a small perturbation approach. Meier et al. (1999)

showed that specific-capacity measurements depend strongly on the local transmissivity next to

the well. More recently, Copty and Findikakis (2004) and Neuman et al. (2004) have focused

on the possibility of obtaining the integral scale and the variance of local log-conductivity from

a small number of pumping tests in a given aquifer. None of the above results was derived for

recovery tests but these results are directly applicable here.
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Heterogeneity affects recovery data at all times. Heterogeneity also affects lateral boundaries

that can be conceptualized as extreme cases of heterogeneity. There are, as well, certain effects

that influence early time data. The most important effects considered here are vertical leakage,

wellbore storage, and skin effect. In case of a large amount of available drawdown data, it is pos-

sible to analyze these effects in both pumping and recovery tests, and there is extensive literature

on this subject (Streltsova, 1988; Bourdet, 2002). In any case, the point is that they are limited in

time. Using the results of Papadopulus and Cooper (1967) and Agarwal et al. (1970), wellbore

storage and skin effect can be ruled out if:

t >
S r2

s

2.25T
. (2.4)

t > 10
S We2σ

T
. (2.5)

where rS is the radius of the region sampled by the test, S W is the well storage (water surface

area in open wells), and σ is the skin factor. Using rough estimates of S and T , pumping and

recovery time can be defined so as to eliminate these perturbations from the ideal case. Oppositely,

following Eq. 2.4 for interpreting a given test, the sampling radius, rS = 1.5
√

Tt/S , can be solved.

Depending on the scale of the sampling radius and additional data, the analyst of the pumping test

has to judge whether all these early effects can be ruled out and, thus, the remaining data are

governed by the underlying heterogeneous T field.

In order to grasp the behavior of recovery tests in aquifers in the field, four selected plots

of recovery tests are shown in Fig. 2.2. It is clearly visible that, in most cases, the shapes of

the curves are far from that of Fig. 1 (that is, far from ideal). First, drawing a single straight

line is in most cases difficult. Second, the extrapolation of these straight lines rarely crosses

the origin as predicted by the homogeneous theory. Local scale heterogeneity of transmissivity

can explain these two effects (variable slope and extrapolation line not passing through the plot

origin). Proper accounting for heterogeneity needs to be done in the context of geostatistical
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Figure 2.2: Examples of field recovery tests performed within the city of Barcelona, Spain. The
Theis recovery plots are plotted as residual drawdown versus dimensionless equivalent time. Es-
corxador 1 and 2 are tests performed at Park Escorxador, Villalba is a test at Villalba Street and
Mallorca is a test at Mallorca Street? Only Fig 2a (Escorxador 1) displays a shape similar to that
in a homogeneous aquifer. Notice that even in this test, early time data (t∗ > 100) departs from the
ideal condition, reflecting well effects, such as skin, wellbore storage, etc. (negative skin in this
case).

inversion. In practice, however, this accounting is only done when several pumping tests and/or

several observation wells are available (Yeh and Liu, 2000; Meier et al., 2001; Vesselinov et al.,

2001). The scope of recovery tests is usually much more limited than when several pumping and

observation wells are available. Interpretation of recovery tests is usually done by using the simple

homogeneous model. The immediate question arising is what is the meaning of the value obtained
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using this simple interpretation?

The objective of the chapter described here is to answer the above question and specifically

to study if the classical interpretation of recovery tests yields meaningful and useful hydraulic

parameter values in heterogeneous aquifers. If yes, as conjectured by extrapolating the results of

Meier et al. (1998), then the practical question would be how long to pump or to observe recovery

in order to obtain meaningful results. To address these issues, numerical simulations are performed

first and then the results to the tests of Fig. 2.2 are applied.

2.2 Methodology for the numerical simulations

The methodology is adapted from that of Meier et al. (1998). The methodology can be summa-

rized into four basic steps: (1) generation of heterogeneous transmissivity fields; (2) numerical

simulation of recovery tests within these fields; (3) interpretation and (4) comparison of interpre-

tation results with hydraulic parameters representative of the original transmissivity field. These

steps are discussed below.

2.2.1 Transmissivity fields

The problem domain is identical for all transmissivity fields. The domain consists of a 256 x 256

zone of interest. An inner disc of radius 20 around the pumping well is also defined to specify

heterogeneity patterns. Four different heterogeneous transmissivity fields (F1 - F4) were generated

(see Fig. 2.3a). F1 and F2 are deterministic with T = Tloc for all elements located within the inner

disc, and a different value, T = Treg, outside of the disc. In field F1, Tloc is one order of magnitude

lower than Treg, whereas the opposite holds for F2. F3 and F4 are defined as individual realizations

of a random stationary field with a spherical covariance function with a correlation length, λ, of

20 and a variance of 1 in terms of ln T . Both fields are conditional to the T value around the

well, Tloc, which is one order of magnitude lower (F3) or larger (F4) than the effective large scale
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transmissivity, Treg. The random ln T fields were generated using the Gaussian random simulator

GCOSIM3D (Gómez-Hernández and Journel, 1993). The correlation length was chosen equal to

the radius of the disc in F1 and F2 for later comparison. Notice that only two realizations are

used. The underlying idea is not to follow a Monte Carlo procedure, but to generate individual

realizations to see whether information could be obtained about recovery tests in a given aquifer.

Figure 2.3: a) Transmissivity fields F1 through F4. F1 and F2 show a disc around the well with T
one order of magnitude lower (F1) or higher (F2) than the regional value. F3 and F4 are simulated
heterogeneous T fields conditioned at the well location to a value one order of magnitude higher
(F3) or lower (F4) with respect to the geometric mean of the T point values. b) Set-up of the
numerical simulations. The fields in a) correspond to the zone of interest. In the outer domain, the
grid becomes increasingly coarse towards the boundary, whereas it is refined at the well. Plot b) is
not to scale. The characteristic length, Lc, is 20, equal to the radius of the inner disc in fields F1
and F2 and equal to the correlation length in fields F3 and F4. All numbers are unit length.

2.2.2 Simulation of recovery tests

Pumping and recovery was simulated using the finite-element flow modeling code FAITH (Sánchez-

Vila et al., 1993). The zone of interest (Fig. 2.3b) consists of a grid containing 256 x 256 het-

erogeneous regular square cells. The boundary conditions applied to this ideal grid are, first, zero

drawdown at the outer boundaries and, second, a constant pumping rate prescribed at the well
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(located in the center of the grid). The pumping rate is set to zero after pumping stops. These

boundary conditions allow a total drawdown recovery for very large times.

The grid is modified in order to avoid boundary effects (Fig. 2.3b). First, the grid is enlarged

outside zone of interest to ensure that the outer boundary is far enough and does not affect the

results. In this outer domain, T is homogeneous and set to value outside the disc (Treg) in the case

of F1 and F2 and to the geometric mean (Treg) in F3 and F4. Second, the grid was refined around

the well to improve simulation accuracy. The level of refinement was verified by comparison with

the analytical solution for a homogeneous medium (for u < 0.01). This refinement does not affect

the regular shape of the transmissivity fields generated. The same approach was shown by (Meier

et al., 1998) to provide drawdown results that are not affected by boundary conditions.

One of the objectives is to obtain insight into the recommended pumping duration. Therefore,

three tests durations were simulated for each field: A short- term test with a dimensionless pump-

ing time tPD= 0.1, an intermediate-term test with tPD = 1, and a long-term test withtPD= 10. Here,

tPD is defined as in Eq. 1b, using the disc radius (F1 and F2) or the correlation length (F3 and

F4) as characteristic length, Lc, and as the transmissivity value the (constant) Tloc. Because Tloc

is either 10 Treg (F1 and F3) or 0.1Treg (F2 and F4), actual pumping is different for each field:

(1) tPD= 0.1 corresponding to a local (short) test with a very small radius of influence, so that the

perturbation in terms of drawdown has barely reached the limit of the inner disc or the correlation

length. Therefore, the support volume sampled by the test during pumping is a small area around

the well; (2) tPD = 1, an intermediate test where pumping lasts long enough to bring the drawdown

signal to a distance comparable to the characteristic length, Lc; and (3) tPD = 10, a very long test

that samples areas well beyond the characteristic distance, thus, affecting the area corresponding

toT = Treg. In all cases, the recovery time was set to five times the pumping time. Notice that mea-

surements in field tests are seldom performed after elapsed time of one to two times the pumping

time. Usually, the recovery time is often shorter (a fraction of the pumping time).
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2.2.3 Analysis of the simulated tests

A number of methods are available for interpretation of recovery tests. Possibly, diagnostic plots

(displaying the derivative of residual drawdown with respect to log tDP/t∗) are the most informa-

tive method. A large body of literature is available in the oil industry, where recovery tests are

termed “shut-in” tests, about ideal features that can be identified with diagnostic plots. Unfortu-

nately, diagnostic plots require pumping rates to be well monitored. Moreover, existing tools are

better suited for analyzing early time behavior. For the study of large scale effects, the variations

of the Theis recovery method described below were applied.

The interpretation consists of three steps. First, dimensionless drawdown is plotted against the

logarithm of the equivalent time (t∗). Second, two different slopes are defined at any given time.

Slope m1, which is defined as the tangent of the residual drawdown data, that is its derivative with

respect to t∗ = (t + tP)/t (Fig. 2.4) is considered here. This slope is computed by using moving

windows in order to avoid numerical artifacts. A second slope, m2, is defined as that corresponding

to the secant that joins any given point of the semi-log plot with the origin (s = 0, t* = 1). Third,

slopes are converted into normalized estimates of transmissivities T ∗ = T/Tlocby means of

T ∗m1 = 0.183
Q

Tlocm1
(2.6)

T ∗m2 = 0.183
Q

Tlocm2
(2.7)

which are simple extensions of equation (2.3) but normalized by the well (local) T value. Note

that in the case of a homogeneous medium (Fig. 2.1), T ∗m1 = T ∗m2 = 1 should be obtained in the

range of validity of the method. Notice also that T ∗loc = 1 for all fields but T ∗reg = 10 in fields F1

and F3, whereas T ∗reg = 0.1in fields F2 and F4.
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Figure 2.4: Two different calculations of slope m in a heterogeneous aquifer at the example test
site Villalba. At any point P, the slope can be calculated as that of the tangent (m1) or as that of
the secant, the line between the origin and P (m2). Note that m1 and m2 should be identical for
late time data in an ideal homogeneous aquifer.

2.3 Discussion of results

Results are presented in terms of both residual dimensionless drawdown and equivalent transmis-

sivities versus equivalent time for all fields and pumping durations.

The short-term test with tPD= 0.1 in Field F1 (T ∗reg= Treg/Tloc = 10) looks basically like the

homogeneous case (Fig. 2.5a). The resulting late time straight line crosses the axes close to the

origin of the semi-log plot, as would happen in a homogeneous field. Furthermore, the estimated

transmissivity is very close to the local value. Only for very long times (several times the pumping

period) would a deviation from this behavior be found. Therefore, the estimated transmissivity

value would increase with recovery time. In short, it would not be possible to resolve (find) the

regional value with such a short test. The reason is that in such a short pumping time the signal has

barely gone beyond the inner circle and the test behaves mostly as if performed in a homogeneous

medium.
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Figure 2.5: Numerical results for fields F1 and F2. (a) Dimensionless drawdown for 3 different
pumping durations for F1, and (b) corresponding estimated transmissivities (T* = T/Tloc) derived
from either (4) or (5). (c) Dimensionless drawdown for three different pumping durations for
F2, and (d) corresponding estimated transmissivities. Shown are only the portions of the curves
meeting the condition of validity of the Theis recovery method (u ¡ 0.01).

With a longer test, tPD = 1, drawdown at the well is affected by the transmissivity beyond

the inner circle. Estimated transmissivities obtained from T ∗m1 at early times are close to T∗loc

(equal to 1). As time increases (t∗ tends to 1), transmissivity tends to T ∗reg.T
∗
m2; on the other hand,

transmissivity always lies between T ∗loc and T ∗reg, converging to T ∗reg only for long recovery times.

Extrapolating the early time data crosses the time axis at t∗ > 1. Similar results, but even more

pronounced, can be seen for tPD = 10 (Fig. 2.5a). The extrapolation of early time data crosses the

equivalent time axis at an even higher value than for the case tPD= 1 and the one for late time data
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crosses exactly t∗ = 1. For these latter two cases, tPD = 1 and 10, a very short recovery test would

lose all the relevant potential information regarding Treg. Further, in both cases, T ∗m2is at all points

between T ∗loc andT ∗reg and larger thanT ∗m1.

In field F2, T ∗reg is 0.1. The short-term test (tPD= 0.1) is essentially identical to the corre-

sponding test with T ∗reg= 10 (difference between Figs. 2.5a, c for tPD = 0.1 are limited to changes

in vertical scales, except for very late recovery, i.e. small t*). Tloc is well resolved and the ex-

trapolation of the data passes through the origin (zero drawdown at infinite time). This test again

behaves like a test performed in a homogeneous medium as the heads are insensitive to the Treg

value. The intermediate test, tPD= 1 (see Fig. 2.5a, d), displays a behavior very different from the

corresponding test in field F1. Tloc is well defined from the short-time data. However, T ∗m1 tends

to the regional value, but it does not stabilize as in the F1 case. This difference can be attributed

to the fact that Treg is now smaller than Tloc. As a result, drawdowns progress slowly beyond the

inner circle. Therefore, only a relatively small area of Treg is actually sampled. The extrapolation

of the slope corresponding to early time data would cross the zero drawdown line at t∗ < 1. In

the homogeneous interpretation of a field test, this extrapolation is usually interpreted as if the

original water level were never to be recovered. If the recovery is observed for very long times,

the line bends, and the slope of the late time data would really cross the y-axis at a value close

to 1. This result is again a reason for extending the recovery time as much as possible. These

effects are similar but more pronounced in the case of tPD = 10 (Fig. 2.5) with both T ∗loc and T ∗reg

resolved visibly by T ∗m1. Again, the extrapolation of the early time slope leads to a crossing point

well beyond t∗= 1. The late time slope crosses exactly through the origin. T ∗m2 lies, in all the cases,

between T ∗loc and T ∗reg, but converges to T ∗reg faster than T ∗m1. This implies that T ∗m2can be used

as an estimate for the not resolved T ∗reg when recovery is short. When applying equation (2.4) to

the turning points in the semi-log plots for fields F1 and F2, values of r = 14 and 25, respectively,

are obtained. As the real distance is 20, this value shows that equation (2.4) does indeed lead to a

rough estimate of heterogeneity scale.
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Transition from Tloc to Treg estimated from Tm1 is preceded by a small trough when Tloc < Treg

(Fig. 2.5b) and by a small peak when Treg > Tloc (Fig. 2.5d). These results are caused by the

change in transmissivity (they occur for tDP ≈ 0.1, regardless of the pumping duration) that causes

recovery initially to speed up (when Treg < Tloc, Fig. 2.5d). The effect is similar to double porosity,

linear flow, or boundary effects.

Fields F1 and F2 can be viewed as a simplistic representation of realistic heterogeneous media.

Field sites will rarely display a single geometric feature separating local and regional T values.

The spatial distribution of T values will not be radially symmetric. Recovery tests in fields F3

and F4 (Fig. 2.6) display some similarities to those in F1 and F2, but there are a number of

distinct differences. For the shortest test (tPD = 0.1), only the local value can be well resolved

in both fields, even though T ∗m2 is slightly bent towards the regional value (recall that now Treg

is the effective transmissivity, the geometric mean of point values). Notice that the local value

corresponds here to the one used for conditioning the fields. Because the correlation length is

large compared to the cell size, this local value would correspond also to some integrated value of

the local T values around the well.

Results from the intermediate test (tPD = 1) in fields F3 and F4 are similar to those of the short-

term test, but late time data provide an improved estimation of the regional value with respect to

the shortest test. However, the behavior of the two fields is qualitatively different in that both T ∗m1

and T ∗m2 identify regional transmissivity much better in field F4 (high Tloc, Fig. 2.6d) than in F3

(low Tloc, Fig. 2.6c). It is clear that the low T zone is “screening” the high T regional value in

field F3. Contrarily, Treg becomes well defined if the pumping duration is long enough (see Fig6.

for tPD = 10) when Tloc is small. In order to register a sharp definition of Treg when it is smaller

than Tloc, a larger tPD value is required. The results corresponding to tPD = 100, also shown in

Fig. 2.6, also confirms this requirement.

In summary, Tm1 provides good estimates of Tloc with early time data and eventually tends to

Treg if both pumping time and recovery durations are long enough.Tm2, on the other hand, helps



2.3. Discussion of results 19

Figure 2.6: Numerical results for fields F3 and F4. (a) Dimensionless drawdown for 3 different
pumping durations for F3, and (b) corresponding estimated transmissivities. (c) Dimensionless
drawdown for three different pumping durations for F4 with additional pumping time tPD = 100,
and (d) corresponding estimated transmissivities. Shown are only the portions of the curves meet-
ing the condition of validity of the Theis recovery method (u < 0.01).

identifying departure from ideality, as it consistently lies between Tloc and Treg. At late times, both

values converge for sufficiently long pumping and recovery times.
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2.4 A reinterpretation of the field tests

In this section, the above results are used to discuss the interpretation of the field tests shown in

Fig. 2.2. Curves of estimated transmissivity versus equivalent time resulting from equations (2.6)

and (2.7) are shown in Fig. 2.7. The only difference with respect to the numerical simulations

from synthetic fields presented in Fig. 2.5 and Fig. 2.6 is that now the values of Tm1 and Tm2

shown are dimensional, because the local value of T at the well is not known.

Figure 2.7: Reinterpretation of the field test data presented in Fig. 2.2. The tests results are plotted
as transmissivities versus equivalent time. Tm1 and Tm2 are defined in equations 4 and 5 but not
normalized by Tloc as it is not known. In Fig. 2.7 a Tm1 and Tm2 are basically the same but in Fig.
2.7b-d they differ particularly for early times.
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2.4.1 Tests at Park Escorxador

Two long-term recovery tests (tp = 12h, constant rate) were performed at different times at two

wells located 74 m apart (Fig. 2.2 a, b). The shapes of the recovery curves are appreciably

different. Whereas test 1 follows a straight line for t∗ < 300 and looks like the expected result for a

homogeneous aquifer, the same is not true for test 2, where the slope increases with time (decreases

with t∗) without reaching a plateau. Despite these differences, very similar late time transmissivity

estimates were determined from both tests. These estimates are consistent withT values derived

from long-term pumping tests (?). Early time data lead to a difference in estimated transmissivities,

Tloc, of about one order of magnitude between the two tests. From the methodology already

explained, skin effect and effect of wellbore storage can be out- ruled. This result would mean

that well 2 is located in an area less conductive than well 1, which is consistent with the fact that

observed drawdowns are larger in well 2.

2.4.2 Test at Villalba Street

Recovery data of test Villalba (tp = 9 h, constant rate) are displayed in Fig. 2.2c. As for the Es-

corxador 2 test, the shape of the curve does not display a homogeneous behavior. Using equations

(2.4) and (2.5), skin effect and wellbore storage can be neglected. The apparent transmissivity as

a function of time is plotted in Fig. 2.7c. From the plot, it can be conclude that Treg is larger than

Tloc. In this test, an external confirmation of the estimation of Treg is confirmed as it is very close

to the value calibrated in a regional groundwater model of the area (?).

2.4.3 Test at Mallorca Street

The short recovery test (tp = 0.32 h, constant rate) in Fig. 2.2d displays clearly two different

slopes. The corresponding estimated transmissivities in Fig. 2.7d suggest an increase from Tloc

to Treg of almost two orders of magnitude. The check with equation (2.4) renders a sampling
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radius, rs, of around 10 cm for the time where the change in slope takes place. This result clearly

indicates that both the pumping and recovery times were too short. The different Tloc is most likely

caused by skin effect or wellbore storage. This result was confirmed by interpreting the test using

an automatic fitting tool (Ondiviela et al., 2001) that provides about the same result for T as our

estimated value Tloc and a very high skin factor.

2.5 Conclusions and recommendations

Interpretation of recovery tests using the simple Theis recovery method can provide valuable in-

formation about representative parameters in heterogeneous aquifers, even though the method was

developed for homogeneous media. Actually, it may be possible to discriminate between at least

two representative transmissivity values, corresponding to the local T values (Tloc) surrounding the

well, and some regional representative value (Treg). The analysis presented here implies that the

rate of early time recovery is informative of Tloc, whereas that of late time data yields information

about Treg. This result is valid as long as early time effects can be filtered out. The latter was

shown for pumping tests by Butler (1988) for a radially symmetric structure and then confirmed

by (Meier et al., 1998) for general heterogeneity. The results presented here have several practical

implications about the design and interpretation.

Regarding test design the following recommendations are advisable:

1. Pumping duration. Pumping duration should be chosen depending on the scale, Lc, to

be characterized. At the very least, tp should equal SL2
c/T, where S and T are local estimates of

storativity and transmissivity, respectively. Preferably, pumping durations should be much longer,

for example, 10 SL2
c/T , especially if Treg is expected to be smaller than T .

2. Recovery period. The design should allow for a long recovery period, not shorter than

twice the pumping duration, and, if possible, much longer than twice the duration. Notice that this

increase in time can be achieved at very low cost because time scale is logarithmic and only a few
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measurements have to be added. Because drawdowns become small for late time recovery, the

reliability of these drawdowns needs to be assessed by comparing them to measurement errors.

3. Pumping rate. Late time residual drawdown is sensitive to total volume of water pumped,

VW , as s ∼ VW/4πTt (that is, it does not depend on the time evolution of pumping rate). Average

pumping rate, VW/tP, should be designed for a sizable value of s. Recovery tests are not highly

sensitive to high frequency changes in flow rate, but early time recovery is sensitive. Still, using

VW/tP may become the only realistic option when pumping rate cannot be controlled.

4. Natural head trends. Heads should be monitored prior to the test so as to ensure either

that they have stabilized prior to pumping or that a natural trend can be fitted. It should be no-

ticed that much information is contained in late time residual drawdowns that are small. Residual

drawdowns are equal to the difference between heads during recovery, which can be measured

accurately, and natural heads. Efforts should be made to estimate the latter natural heads as accu-

rately as possible. These efforts include not only prior stabilization, but also monitoring boreholes

unaffected by the test. Mistaken natural head evolution would lead to wrong Treg estimation.

Regarding the interpretation the following recommendations are advisable:

1. At any given time the head recovery plot can yield two slopes: m1, tangent, and m2, secant

though the origin. Using them, Tm1 and Tm2 can be calculated.

2. When both pumping and recovery times are large it is possible to obtain good estimates of

both Tloc and Treg. Better estimations are obtained when the local value at the well is smaller than

the regional T value, provided that sizable pumping rates can be sustained.

3. Tloc is better represented by Tm1. Early time effects (for example, skin effect) should be

ruled out by calculating the corresponding sampling radius. A small radius indicates that these

effects are still relevant and mask Tloc that cannot be estimated.

4. If pumping duration and recovery are long enough, late time Tm1 and Tm2 will tend to Treg.
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The advantage of using Tm2 is that it converges to the large scale value much faster than Tm1.

If recovery is too short to resolve Treg (Tm1 , Tm2), Tm2 can be used to approximate Treg. The

resulting value should be suspected. Tm2 lies between Tloc and Treg. Therefore, Treg will be larger

than Tm2 if Tloc is small, and vice versa.

These recommendations are valid for the interpretation of recovery in the pumping well. Re-

covery in observation wells renders usually only an intermediate value of transmissivity as early

time responses are delayed and late time responses are usually not resolved as well. This lack of

resolution results in that total drawdown is smaller at an observation well and measurement errors

become more important.



Chapter 3

Relationship between aquifer

parameters and parameters of memory

functions controlling transport models∗

3.1 Introduction

Contaminant transport has been traditionally modeled using the advection dispersion equation

(ADE). Yet, transport in natural aquifers usually displays anomalous (i.e., inconsistent with the

ADE) behavior. Observed deviations are numerous (Carrera, 1993). They include scale depen-

dence of dispersivity (e.g., Lallemand-Barres and Peaudecerf , 1978; Neuman, 1990), directional

and time dependence of apparent porosity (Sánchez-Vila and Carrera, 1997; Guimerà and Car-

rera, 2000) and tailing of breakthrough curves (e.g., Valocchi, 1985; Freyberg, 1986; Cortis and

Berkowitz, 2004). Stochastic hydrology has succeeded in qualitatively explaining these deviations

∗This chapter is based in the article: Willmann, M., J. Carrera, and X. Sánchez-Vila, 2008, Transport up-
scaling in heterogeneous aquifers: What physical parameters control memory functions?, Water Resour. Res.,
doi:10.1029/2007WR006531, in press.

25
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Figure 3.1: Breakthrough curve of iodine measured at the EL Cabril site (UPC, 1990). A power-
law tail is observed with a slope of 2.0 (indicated as a grey line). The power-law behavior spans
over 1.5 orders of magnitude until the background concentration was reached. This curve cannot
be reproduced by using a homogeneous ADE. Mass transfer models using a memory function can
reproduce this behavior. But the causes of the tailing need to be properly understood in order to
use such memory function for predictions under different flow conditions or transport distances.

and in quantifying the scale dependence of dispersivity, (e.g., Dagan, 1989; Gelhar, 1993). In

the process, tools have been developed to predict the evolution of dispersivity with scale given a

stochastic description of variability of hydraulic conductivity (Kitanidis, 1988; Dentz et al., 2000).

However, much less efforts have been devoted to understanding the causes of tailing (Haggerty

et al., 2000; Shapiro, 2001; Cortis and Berkowitz, 2004; Dentz et al., 2004).

Tailing is defined as the markedly asymmetric shape of breakthrough curves (BTCs), which

cannot be reproduced by the homogeneous medium ADE. Field BTCs typically display a sharp

rising limb for the early arrival but a slowly decaying limb at late time (Fig.3.1). More important,

the decay limb often displays a power law behavior. That is, late-time concentrations decay as

t−mBTC , so that they plot as a straight line on a log-log scale (Farrell and Reinhard, 1994; Hader-

mann and Heer, 1996; Werth et al., 1997; Becker and Shapiro, 2000; Shapiro, 2001; Meigs and

Beauheim, 2001).
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A proper description of this ”late time” behavior is important not only for practical reasons

(i.e., time for clean-up below a threshold or reactive transport modeling), but also because the

apparent ubiquity of power-law decay suggests it must reflect something of a fundamental nature.

Different mechanisms are known to cause tailing. These include heterogeneity of permeabil-

ity, diffusion or chemical heterogeneity. Tailing was initially attributed to matrix diffusion and/or

sorption kinetics (Neretnieks et al., 1982; Neretnieks and Rasmuson, 1984). In fact, the 1.5 slope

usually observed in fractured media was soon attributed to diffusion into rock matrix (Hadermann

and Heer, 1996). Actually, different slopes can be obtained by acknowledging that low permeabil-

ity blocks exhibit a distribution of sizes and diffusion coefficients. As a result, the memory function

of diffusion dominated mass transfer is predictable (Rasmuson and Neretnieks, 1986; Zhang et al.,

2007; Gouze et al., 2008b). However, here we concentrate on the role of hydraulic heterogeneity.

Heterogeneity of permeability leads to conductive paths that carry most of the water and arrive

early (hence the sharp rising limb of BTCs) and less conductive paths that trail behind and cause

tailing. This is referred to as ”slow advection”.

Becker and Shapiro (2000, 2003) performed field tracer tests such that they could neglect other

causes for tailing. They found power-law slopes mBTC = 2 caused by slow advection. Di Donato

et al. (2003) modeled slow advection in a heterogeneous system using the streamline method.

They found a slope for 2.2. Zhang et al. (2007) modeled a heterogeneous 3D sedimentary aquifers

where the dominant process in the low conductive zones was diffusion. They found a power-law

tail of about 2. Most interestingly, Gouze et al. (2008a) and Shapiro et al. (2008) found for field

tracer tests slopes between 2 and 2.2 at intermediate times and 1.5 at very late time.

A number methods have been proposed to describe tailing. Multi-Rate Mass Transfer (MRMT)

(Haggerty and Gorelick, 1995; Wang et al., 2005) and memory functions (Carrera et al., 1998),

which are equivalent (Haggerty et al., 2000), can be viewed as dividing the medium into over-

lapping mobile and immobile continua (hence the generic term multi-continuum models). Each

immobile zone exchanges solute mass with the mobile zone by linear mass transfer (i.e., mass
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exchange is proportional to concentration gradient). These models may be expressed as a func-

tion of only the mobile concentration by introducing a memory term into the ADE to account for

mass transfer between mobile and immobile zones. The name ”memory” reflects the fact that this

term represents how current mobile concentrations are affected by past events. Multi-continuum

models have been successfully applied to interpret anomalous transport (McKenna et al., 2001;

Haggerty et al., 2004; Zinn et al., 2004; Medina and Carrera, 1996; Sánchez-Vila and Carrera,

2004; Zhang et al., 2007). While these models were originally developed to represent diffusion

into immobile regions, they can also be used to reproduce the effect of slow advection.

The most widely used method for representing tailing is the Continuous Time Random Walk

Method (CTRW) (Berkowitz and Scher, 1998; Dentz et al., 2004). CTRW can be viewed as a

generalization of Random Walk methods in that not only spatial displacements, but also time step

lengths are random variables (Berkowitz et al., 2006, Section 7.1). The effective transport equation

results from ensemble averaging the transport of individual particles. As it turns out, CTRW is

broader in scope than multi-continuum representations, which can be viewed as a particular case

of CTRW (Dentz and Berkowitz, 2003). However, the most commonly adopted form of CTRW

is equivalent to the memory function approach and the corresponding memory functions can be

derived from each other. CTRW has been successful not only in reproducing field BTCs, but

also in reproducing appropriate scaling behavior. That is, CTRW models calibrated against BTCs

measured at one scale have been successful in predicting BTCs at different scales (Berkowitz and

Scher, 1998; Kosakowski et al., 2001; Levy et al., 2003; Cortis and Berkowitz, 2004; Le Borgne

and Gouze, 2008). CTRW models have also accurately reproduced the outcome of pore network

models, reproducing the dependence of dispersion on molecular diffusion (Bijeljic and Blunt,

2006).

A further method to describe tailing are the fractional order advection-dispersion equations

(fADE) (Benson et al., 2000). As with CTRW, the model is rather general, but can also be char-

acterized by a power law memory function when only the time derivative term in the ADE is
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fractional. Berkowitz et al. (2006) showed that, in such case, fADE can be considered as a limiting

case of CTRW.

In summary, multi-continuum models, CTRW and fADE, all sharing a time non-locality, must

be considered as excellent representations of transport in natural media. Moreover, they allow

discriminating between mixing and spreading. Mixing controls many chemical reactions (e.g.,

De Simoni et al., 2005, 2007; Cirpka and Valocchi, 2007). Therefore, a proper representation of

mixing is a prerequisite for proper reactive transport modeling. Yet, the ADE (and all formulations

that base dispersion solely on the spreading of plumes) equate dispersion and mixing (thus over-

estimating mixing and mixing-driven reactions). Non-local in time formulations separate these

two processes. Therefore, they shed some hope on the possibility of predicting reactive transport

accurately.

Despite the above nice properties, non local formulations have been subject to criticism (Neu-

man and Tartakovsky, 2008). All these formulations require specifying some (arbitrary) memory

function. At present, memory functions are calibrated against tracer test data, without explicit

reference to heterogeneity. This is unsatisfactory both from conceptual and practical viewpoints.

Conceptually, it is generally agreed that tailing can be caused by heterogeneity. In fact, Berkowitz

and Scher (1997, 1998); Berkowitz et al. (2008) suggest deriving the memory function from the

velocity pdf. However, Le Borgne et al. (2008a,b) point out that velocity correlation along a stream

tube (Lagrangian correlation) may be a key factor. Since there is no way to obtain the full statistical

characterization of the velocity field, other than numerical simulation, it is clear that no explicit

link is available between memory function parameters and measurable properties of the hetero-

geneity in hydraulic conductivity. This casts a shadow of doubt on the predictive capabilities of

non-local formulations for scales dramatically different than those for which they were calibrated.

There are also practical implications. Tracer tests cannot be performed on the long scales often

needed for transport predictions. Certainly, using non-local formulations for reactive transport

requires ascertaining the conditions under which they are valid. On the other hand, stochastic ap-
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proaches offer no clear alternative. In fact they are criticized because, with rare exceptions (e.g.,

Di Donato et al., 2003; Alcolea et al., 2008; Luo et al., 2008), they usually fail to reproduce the

kind of tailing observed in the field.

Accepting that spatial variability of hydraulic conductivity is a frequent cause of tailing, the

objective of this paper is twofold. First, we explore some conditions under which heterogeneity

can explain the kind of tailing observed in tracer tests, namely power law decay. Second, we inves-

tigate the relationship between certain field properties describing heterogeneity and the parameters

describing the memory function.

3.2 Background

We conceptualize solute transport by assuming a superposition of a (homogeneous) mobile zone

and an infinite number of immobile zones. Mass is exchanged between the mobile and the immo-

bile ones by diffusion-like processes. This results in the following transport equation:

φm
∂c
∂t

= ∇ · (D∇c) − q · ∇c − Γ (3.1)

where c is solute concentration in the mobile zone, D is the dispersion tensor, φm is the mobile

porosity and Γ is the source/sink term controlling the mass transfer between the mobile and a

continuum of immobile zones. In the case of a discrete description with a finite number of immo-

bile zones Γ can be expressed in terms of immobile concentrations resulting in a system of n + 1

equations for n immobile zones. Carrera et al. (1998) showed that Γ can be expressed in terms of

mobile concentration by using a convolution product noted by (*) with a memory function g:

Γ = φimg ∗
∂c
∂t

(3.2)
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g(t) =

N∑
n=1

αnbne−αnt (3.3)

N∑
n=1

bn = 1 (3.4)

where N is the number of immobile zones, αn are first order rate coefficients and bn is the fraction

of total immobile porosity characterized by αn (inverse of the characteristic time of zone n). Note,

that the memory function (Eq. 3) is slightly different to the one of previous authors. The constant

characteristic diffusion of Carrera et al. (1998) is accounted for by αn. Haggerty et al. (2000)

define their memory function in terms of the full aquifer, while we prefer to define it in only

in terms of immobile zone parameters. Thus our memory function does not depend on mobile

porosity. By excluding the immobile porosity our memory function does not depend on the size

of the immobile zone, but only on its geometry. In Appendix A we show how Eq. 1-4 can be

easily implemented into a standard numerical code. Throughout this paper, we will only refer to

conservative transport and 1D transport equation. This implies that we could solve the transport

equation in Laplace space and then invert the solution. This would avoid discretization of the

memory function. However, our ultimate goal is to apply these results on to reactive transport,

which is simpler in the discrete version of g (Eq. 3).

A memory function can be of irregular shape. But as power-law behavior in BTCs is observed

frequently, we use memory functions that display power-law behavior. Haggerty et al. (2000)

related late time concentrations to the memory function and found that a power-law behavior in

a BTC is caused by a power-law behavior of the memory function. Similar findings are reported

by Berkowitz and Scher (1997, 1998) in the context of CTRW. Therefore, we choose αn and bn

in Eq. 3 so as to ensure this power law behavior (Fig. 3). A truncated power-law (TPL) seems

to represent best anomalous transport because it allows an evolution to Fickian transport (Dentz

et al., 2004; Berkowitz and Scher, 2008).



32 Chapter 3. Conservative Transport: Memory parameters

Figure 3.2: Representation of a memory function (black). It can be viewed as the superposi-
tion of 10 individual memory functions each corresponding to an immobile zone (grey) (Eq. 3).
The memory function exhibits three independent variables: characteristic time t1 when power-law
decay starts, characteristic time t2 when power-law behavior ends; and the power-law slope, mg.

This reduces the number independent unknown parameters describing a memory function to

three: two characteristic times, power-law behavior initial (t1) and final (t2) cut-off times and the

power-law slope mg (Fig. 3.2).

3.3 Methodology

We use a numerical approach based on synthetic aquifer analysis to study the heterogeneous fea-

tures that control tailing. The methodology consists of 4 major steps: (1) Generation of heteroge-

neous transmissivity fields, (2) transport simulation on the heterogeneous fields using the ADE at

the local scale, (3) analysis of vertically integrated BTCs at selected locations and derivation of a

representative memory function, and (4) simulation of transport though a homogeneous medium

with the above memory function. All simulations are performed within a domain of 1024 times
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512 cells of unit size. Water flow is steady-state, prescribed by constant heads at the left and the

right boundaries and no-flow conditions on top and bottom, resulting in mean uniform flow with a

mean gradient of 0.0098.

3.3.1 Generation of transmissivity fields

We generate 2D transmissivity fields with different heterogeneity characteristics. First, we need

varying heterogeneity scales, as we expect in nature, evolving over a range of scales (Neuman,

1990). We also need poorly connected and well connected fields, that is where high transmissivity,

T zones extend over long distances. We analyze transport in individual realizations of heteroge-

neous aquifers, as opposed to a Monte Carlo approach, because we are interested in what happens

in a given aquifer rather than in an ensemble. The realizations are generated with the Gaussian Se-

quential Simulation Method (Gómez-Hernández and Journel, 1993). The method uses a single or

a combination of variograms, always exponential in this work, to generate simulations conditioned

to field data. We used five types of heterogeneous lognormal transmissivity, lnT , fields (Fig. 3.3)

with a default variance of 6.

Type 1 fields are unconditioned multi-gaussian fields generated with a correlation length of

20, which is small compared to the domain size (1024). The variance of the lnT fields was set to

2 and 6. The resulting fields display neither multiple scales nor preferential flow paths. Therefore,

no anomalous transport behavior is expected for long travel distances, compared to the domain

size.

Type 2 fields are obtained with a nested variogram consisting of two exponential variograms,

one describing small scale heterogeneity with a correlation length between 8 and 128, and one

with a large correlation length between 128 and 1024. The sill of the two different variograms are

varied between between 1 and 5, but the total variance always adds up to 6. The resulting fields

display two distinct scales of heterogeneity scales but no apparent preferential flow paths.
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Figure 3.3: Five types of transmissivity fields used in this work. They show different ranges of
scales and different degrees of connectivity: (a) multi-gaussian field with a single exponential var-
iogram and a small correlation length; (b) field comprising of two nested variograms with different
correlation lengths; (c) power variograms representing a continuous distribution of heterogeneity
scales; (d) similar to type 3 but conditioned to leave a preferential flow path (white and black
crosses indicate conditioning point with low and high T values respectively; and (e) highly con-
nected fields.

Type 3 heterogeneous fields show an evolving range of scales. We use a power law variogram:

γ(s) = C0s2H (3.5)

where s is distance, C0 is a constant and H is the Hurst coefficient. The power law variogram can

be seen as an infinite series of nested variograms (Neuman and Di Federico, 2003). We generated

fields with H values of either 0.1, 0.25 or 0.4 and scale them for comparison with the other fields
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to a variance of 6. Such a variogram was postulated by Neuman (1990) to account for increasing

variance and correlation length of aquifers as their size increases. Whether such a variogram

would be still valid at very large scales can be neither profen nor discarded. The fields display

a continuous range of heterogeneity scales but the existence of interconnected zones of high T

depends on the individual realization.

Type 4 fields are a modification of type 3 fields, where the simulations are now conditioned

to 14 points to ensure interconnected zones of high T (Fig. 3.3). These fields still display a

continuous range of heterogeneity scales, but also a well defined preferential flow path. Still, the

results may be affected by the conditioning process.

The type 5 fields are built with the methodology of Zinn and Harvey (2003) to ensure good con-

nectivity. The original multi-gaussian fields display connectivity only for intermediate T values.

These are transformed to high T values to enhance hydraulic connectivity. To ensure consistency

we use here an exponential variogram with correlation lengths between 20 and 200.

We quantify here connectivity using the indexes of Knudby and Carrera (2005):

CF =
Teq

TG
. (3.6)

where Teq is the equivalent transmissivity (i.e., the transmissivity of a homogeneous medium

allowing the same flux as the actual heterogeneous medium) and TG is the geometric mean of

point transmissivity values. CF is considered a measure of connectivity because it reflects the

increase in flow caused by highly transmissive channels transversing the domain. The transport

connectivity index is defined as

CT =
tpeakhom

tpeakhet

. (3.7)

where tpeakhet is the peak arrival time for transport across the heterogeneous field and tpeakhom is the

peak arrival time for the equivalent homogeneous field. CT is considered a connectivity measure

because it reflects the early arrival caused by channels. Cortis and Knudby (2006) use a CTRW
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formulation for representing flow through heterogeneous media. We expect their memory function

to contain information on connectivity, but it has not yet been quantified as an index.

Fig. 3.3 displays an schematic plot comparing the 5 types of lnT fields in terms of regional

connectivity and scales of heterogeneity. This is a qualitative plot aimed at indicating the features

that are explored in each of the realizations.

3.3.2 Fine-scale transport simulations within the heterogeneous fields

Fine scale conservative transport simulations are performed on the heterogeneous fields following

the steady-state flow conditions described above. Transport is simulated at the local scale with

the ADE using the finite element code FAITH (Sánchez-Vila et al., 1993). Local dispersivities are

assumed to be 10 units in longitudinal and 1 unit in transverse direction. To test the effect of local

dispersivities, these values are varied for one specific set-up between 0.1 and 10. The porosity

is set to 0.3 in all cases. The time step starts with 100, increases up to 5000, and then remains

constant until the end of the simulation period. The simulation is stopped when only 10−4 % of

the initial mass remains in the domain. Breakthrough curves are measured as integrated values at

selected sections, perpendicular to the mean flow and at several distances from the source.

The above mentioned assumption (validity of the ADE at the local scale) has been questioned

by some authors (e.g., Berkowitz et al., 2006). To test this we add some additional runs with

a local scale equation based on the mass transfer scheme presented in Appendix A. We used the

same input value as before but add an additional porosity of 0.05 be accessible to mass transfer. To

keep the analogy of intragranular diffusion we use mg = 0.5, the value of matrix diffusion. We use

different characteristic diffusion times (t1/t2) to define three local memory functions: 0.017/17,

0.017/1.7, and 0.17/17 for memory functions 1, 2 and 3 respectively.

Concentration is initially zero throughout the domain. Solute mass input into the system can

be expressed either as resident or as flux averaged. Most of the runs were performed by imposing
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a flux dependent mass of 1 at the left boundary. That is, mass inflow at every node is proportional

to the water inflow. The boundary condition was applied during an initial time interval of 1000

which is small compared to the characteristic transport times. After this time interval, the boundary

condition is changed to let clean water enter the domain. To test the effect of using initial resident

concentration, one test case was performed by evenly distributing the unit mass over the first

column.

Integrated breakthrough curves are sampled along transects at several distances. To avoid

boundary effects these measurements are taken always at least 24 cells away from the aquifer

boundaries. The distinction between resident and flux concentrations (Kreft and Zuber, 1978;

Zhang et al., 2006) is relevant for our work. While resident concentrations represent the mass

within a certain domain (e.g., numerical grid cell) at a certain time, flux concentrations provide

the mass passing a cross section during a time interval. Resident concentrations are relevant for

chemical reactions (i.e., reactive transport). Flux concentrations are the ones to be used when all

mass flowing across a boundary has to be taken into account, which is the case in tracer tests. The

relationship between both concentrations is based on the definition of flux concentration at control

plains as the vertically averaged solute flux component along the mean flow direction normalized

by the vertically averaged fluid flux in mean flow direction:

c f =

∫ Ly
0 jxdy∫ Ly
0 qxdy

(3.8)

jx = qxcr − Dxx
∂cr

∂x
− Dxy

∂cr

∂y
(3.9)

where c f is the flux concentration, cr is the resident concentration, jx is the mass flux in mean

flow direction, qx is the fluid flux in mean flow direction, Dxx and Dxy are the corresponding

components of the dispersion tensor, and Ly is the length of the cross section.
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3.3.3 Obtaining memory functions from breakthrough curves

Fig. 3.2 shows the memory function defined in Eq. 3 for 10 immobile zones (N = 10). Haggerty

et al. (2000) related the late time slope of BTCs (mBTC) with the slope of memory functions

depending on the initial conditions, provided that the longest characteristic times of the memory

function are much longer than the advection time. A BTC with initial concentration specified

throughout the mobile and immobile zones is linear on the memory function, g. A BTC resulting

from an initial mass pulse into the mobile zone is linear on the time derivative of the memory

function, ∂g/∂t. For a tracer test BTC with the initial pulse and detection mode c f , the relation

between the slopes mg and mBTC is mg = mBTC -1. For example, mBTC for a matrix diffusion tracer

test is 1.5 and the slope of the corresponding memory function, mg, is 0.5.

We take advantage of the above properties to identify the memory function from the BTC

obtained from the heterogeneous fields simulations. It should be noticed that the objective here

is just to fit the BTC, which could be done by any conventional fitting procedure. In fact, we

use TRANSIN (Medina and Carrera, 1996), which is an inverse problem code, for fitting runs,

which should facilitate estimation. However, direct inversion of the memory function shown in

Eq. 3 is extremely ill-posed (a potentially large number of αn and bn coefficients just to fit the

BTC tail). Therefore, g must be parameterized. As mentioned in Section 2, we have used a

standard parametrization in terms of mg, t1 (time for which the slope mg starts) and t2 (time for

which power law behavior ends), as shown in Fig. 3.4. Time t2 represents the time for which the

immobile zone equilibrates with the mobile zone and corresponds roughly with the time for which

the BTC departs from power law behavior and drops to zero exponentially, hence the name cut-off

time. Time t1 is the characteristic time of the smallest heterogeneity scale encountered (Bijeljic

and Blunt, 2006; Berkowitz et al., 2008). For the case of slow advection, both characteristic times

scale with flow rate (Berkowitz et al., 2008) while the slope remains constant. Additionally, if t1 is

smaller than tpeak, t1 can be chosen larger and the contribution of the missed part can be modeled

using an upscaled dispersivity. TRANSIN does not handle this parametrization. Moreover, we
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Figure 3.4: Derivation of the memory function of a breakthrough curves taken in a heterogeneous
aquifer BTChet. Early time data is fitted against the corresponding BTC derived by means of the
ADE (BTCADE). t1 is read directly from the point where the two curves deviate. Starting from t1
a straight line is fitted to the tail to get mBTC . Finally, the cut-off, t2 is taken as the point where the
BTC starts to decrease exponentially.

preferred a generic methodology which could be easily applied with any code. Therefore, we use

the following steps: First, we fit an ADE to the first arrival and the peak of the BTC by applying

the same boundary conditions and using the Teq as upscaled T (Tup). The fitting parameters are

initial mass, porosity and dispersivity. Second, overlaying the resulting BTC (BTCADE) with the

measured one, we define t1 as the time when the two curves start departing from each other (again,

this is somewhat arbitrary, shorter times would work as well). Second, a straight line is fitted

starting at the point where t1 crosses the original BTC, which renders the slope mBTC . And third,

t2 is read from the BTC. Sometimes, the BTC does not display a well defined cut-off time t2. In

such cases, t2 is defined by extrapolating the power-law behavior until the full mass is recovered.

Finally, the immobile porosity controls the size (height) of the tail. Therefore, some trial runs may

be needed to obtain φim (this we did automatically with TRANSIN). Ideally, φim should be equal

to the total minus the mobile porosity (Sánchez-Vila and Carrera, 2004). But t2 may have to be

adjusted for this condition to be met (increasing t2 lowers the tail). Once t1, t2 and mg are known,

coefficients αn and bn are adjusted as explained below.
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3.3.4 Modeling of BTCs using the memory term

As a last step we take the memory function derived above and implement it in a homogeneous

1D mass transfer model. Again, the finite element code TRANSIN (Medina and Carrera, 1996)

was used for solving the ADE with general mass transfer (Appendix A). Dispersivity values and

mobile porosity are estimated from early time data. When possible, dispersivity is set to its local

value. The total porosity is kept at its true value of 0.3, except for the cases in which BTCs were

obtained with a local mass transfer scheme, when total porosity is 0.35. The immobile porosity

is calculated from the mobile one. N = 20 was found sufficient in most cases. The αn values

are bounded by (the inverse of) cut-off times, within which the power-law behavior takes place

(α1 = t−1
2 and αN = t−1

1 ). If we chose the rate coefficients, αn, evenly distributed on a logarithmic

scale, the corresponding bN can be easily calculated using the slope of the memory function and

Eq. 1 together with:

b∗n = αm−1
n (3.10)

b∗tot =
∑

b∗n (3.11)

bn =
b∗n
b∗tot

(3.12)

b∗n and b∗tot are introduced to normalize bn. Note, that bnφim = φimn where φimn is the corre-

sponding immobile porosity fraction characterized by αn.
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3.4 Results

Plume snapshots (Fig. 3.5) show that transport is non-Fickian at this scale. Spatial distributions

of solute mass are highly asymmetric, with peak values trailing behind early arrivals. It is clear

that properly reproducing the geometry of these plumes would require a thorough knowledge of

the medium, which is unrealistic. Instead, the main features of this and other simulations are

captured with a homogeneous transport equation with mass-transfer term, which motivates the

type of upscaling proposed here.

3.4.1 Effects of mass input and detection mode; scaling

Fig. 3.6 shows eight BTCs investigating solute mass input conditions and detection (sampling)

mode. They are all obtained with the same heterogeneous field (type 3 field in Fig. 3.3). This

particular field displays a relatively homogeneous right boundary, but a highly heterogeneous left

one. The homogeneous boundary is characterized by an almost uniform distribution of velocities

while the heterogeneous boundary displays a high velocity variance along the cross section (low

values on top and high values on bottom). Four tests are performed with flow from left to right

and four from right to left with all possible combinations of detection mode (flux or resident

concentration) and input conditions (flux- averaged input pulse or fixed initial concentration).

In our numerical set-up, the input conditions are affected by the upstream boundary, while the

detection mode is influenced by the downstream boundary (where measurements are taken). BTCs

separate all tests into two distinct groups. The individual behavior depends only on the condition

applied at the heterogeneous boundary. When a heterogeneous boundary is used as inflow, the

curves corresponding to constant initial concentration display a smaller slope than those of an input

pulse proportional the local velocity at each point. When the heterogeneous boundary corresponds

to the outflow, the same effect is displayed for resident concentrations detection mode with respect

to flux concentration. The difference between the slopes in the log-log plots from the two groups
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Figure 3.5: Snapshots of concentrations for a type 3 field at three different time steps. The shape
of the plume clearly indicates non-Fickian behavior (marked asymmetry) that cannot be described
by an ADE-like equation with upscaled parameters, whether constant or time dependent. Actually,
two different preferential flow paths can be observed where the upper is more conductive than the
lower one.
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of curves is 0.9, which agrees quite well with a difference of 1.0 derived analytically by Haggerty

et al. (2000) for different initial conditions. This result agrees also with Di Donato et al. (2003)

where they found a difference of 0.83. It is also worth pointing out that the peak would have

been poorly reproduced with a single ADE for the mobile zone. All BTCs display two, more or

less explicit, humps (arguably corresponding to the two main flow paths that can be discerned in

Fig. 3.5). Clearly, an accurate fit would require the superposition of at least two homogeneous

solutions (Luo et al., 2008). This implies that indeed, the BTC spread is reflecting the variability in

travel times of different stream tubes (only to some extent, lateral mass transfer between adjacent

stream tubes smooths out part of the spread). It also implies that, as opposed to memory functions

representing actual diffusion into mobile zones, the portion of memory functions representing

reversible slow advection (Gouze et al., 2008a), must be scaled by advection.

3.4.2 Effects of different heterogeneous fields

We now compare BTCs corresponding to the simulations performed in the different field types.

BTCs of type 1 fields (multi-gaussian) do not show anomalous features (Fig. 3.7a). Some tailing is

observed, for a lnT variance of 6 there, but no power-law slope is developed. These curves could

be well reproduced by the ADE with an upscaled dispersivity. As our BTC samples about 50

correlation lengths, we can consider transport here to be ergodic, so that macrodispersive behavior

is observed.

The type 2 fields (nested variograms, BTCs not shown) allow us to investigate the influence of

two clearly separate heterogeneity scales. The breakthrough curves display anomalous (i.e., non

ADE-like) behavior, some with a clear tail. Still, the shape of the log-log scale tail is irregular.

This might be due to the fact that heterogeneity only exists at two specific scales. In any case, no

clear connected paths are observed in these fields (Fig. 3.3).

Transport in type 3 fields (power-law variogram) is always anomalous. Whether strong tailing
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Figure 3.6: Comparison of breakthrough curves for two different initial conditions (uniform initial
concentration or flux averaged mass inflow) and two detection modes (resident or flux averaged
concentration). All 8 tests are performed in the type 3 field example of Figs. 3 and 5, where the left
boundary is highly heterogeneous and the right boundary is relatively homogeneous. In four tests,
the solute moves from left to right and in the remaining four from right to left with all the possible
combinations of detection mode (flux or resident concentration) and initial conditions (uniform or
flux averaged). Test results do not depend on the condition applied at the homogeneous boundary,
which consistently display a slope around 2.2. The slope decreases by about 0.9 for the four
cases where either resident concentrations are measured or fixed concentrations are applied at the
heterogeneous boundary. Notice that the effect of the two preferential flow paths of Fig. 5 is
reflected as two, more or less smoothed, humps in the BTC.

develops in a given realization depends on how high T values align to form a certain connected

path, which in these realizations happens randomly. The slopes of BTCs are smoother than those

obtained with type 2 fields and look similar to those often found in field tests, such as that presented

in Fig 3.1. This supports the conjecture that aquifers are heterogeneous over a range of scales

(Neuman, 1990) and that the power-law tails result from this range of scales (Berkowitz and Scher,

1997, 1998).

The influence of the overall variance of transmissivity can be seen in Fig. 3.7b. The slope

is not sensitive to variance of lnT , but both early arrival and cut-off times change dramatically.

As the variance decreases, early arrival is delayed and late time cut-off, t2, is reduced. This is
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Figure 3.7: Breakthrough curves for different types of heterogeneity: a) the multi-gaussian fields
(type 1). The curves do not show power-law tail and the curves can be reproduced using an ADE
with upscaled parameters. b) A type 3 field with varying variance. When variance is decreased,
we observe no change of slope, mBTC , but a significant delay in first arrival and reduction of late
time cutoff, t2. c) A type 3 field with different values for the Hurst coefficients. It indicates that
small scale heterogeneity has little effect on any of the parameters of g and d) type 3 field with
BTC measured at uniformly increasing distances between 100 and 1000. No change in mBTC is
observed with increasing sampling volume.

consistent with the view of the memory function reflecting the spread of travel times. In fact, in

the limiting case of zero variance (homogeneous medium), t2 becomes so small that a memory

term is not needed. These results suggest that t2 scales up with σ2
y . That is, increasing variance

with a factor f implies increasing t2 by the same factor while reducing immobile porosity.

To assess the effect of Hurst coefficient, independently of lnT variance, we changed H while

total variance and geometrical patterns (i.e., location of high and low T regions) remained un-

changed. This way, H reflects the relative importance of small scale variability. With increasing
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Hurst coefficient (i.e., reduced small scale variability) we get a slightly delayed first arrival but also

a slightly delayed cut-off (Fig. 3.7c). Again, the slope remains constant independently of H. This

indicates that small scale structures do not affect the large scale slope, but only the characteristic

times. In any case, the dependence is weak, which we find surprising.

Transport in type 4 fields is always anomalous. Due to the conditioning process, all fields

exhibit a preferential flow path that leads to a well defined power-law tail in the BTC (not shown).

Results are similar to those of type 3 curves. Fig. 3.7d displays a series of BTCs taken at varying

distances from the source within the same field. Tail slopes do not change with distance (or

time). However, the late time cut-off, t2, increases more or less linearly with travel distance. This

confirms the earlier assertion about the scaling of t2 with advection.

Type 5 fields allow us to investigate the influence of connectivity. Recall that these fields are

obtained by imposing connectivity on a multi-gaussian field characterized by a single correlation

length. When the correlation length of the original field is small, the modified field displays

thin high conductivity channels within a matrix of small low-conductivity blocks. Increasing

the correlation length of the original field leads to an enlargement of both channels and low-

conductivity zones, which causes an increase in connectivity. Fig. 3.8a shows that the slope

decreases with increasing correlation length of the original underlying multi-gaussian field. The

slope appears to tend asymptotically to a value of 2. The same can be said about the dependence

of the slope on connectivity indicators (Eq. 6 and 7). A noisy, but well defined, relationship

exists between slope and flow connectivity (Fig. 3.8b) or, even better, transport connectivity (Fig.

3.8c). For values close to 1 (ADE limit), increasing connectivity indicators causes a decrease in

slope, until it reaches values close to 2. From there, the slope remains constant despite of further

increases of connectivity.
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Figure 3.8: Slopes for different types of transmissivity fields versus: a) the correlation lengths of
the underlying multi-gaussian field in Type 5 fields(recall that increasing this correlation length
results in broader, better connected channels); b) flow connectivity index; and c) transport con-
nectivity index. They all show that the slope mBTC decreases (i.e., tailing becomes increasingly
marked) as connectivity increases. The slope appears to tend mBTC = 2, but does not decrease
further.

3.4.3 Effects of the local-scale equation

In all the cases discussed up to here we assumed that a local ADE exists. Subgrid heterogeneity is

modeled by a local-scale dispersivity. We discuss now the effect of local scale transport assump-

tions on large scale BTCs. The effect of local transverse dispersivity (αT ) is displayed in Fig. 3.9a.

Increasing αT , causes a small delay in first arrival and a small reduction in cut-off time, t2, but has

no impact upon the slope of the BTC. Longitudinal dispersivity (αL, not shown) has little effect on

either the cut-off time or the slope. Only the first arrival time is slightly delayed with decreasing

dispersivity. The explanation of this effect is quite apparent form earlier discussions. Transverse

dispersion tends to smooth away both from the leading (fast) and the trailing (slow) flow tubes by

transferring mass to adjacent flow tubes. This is highlighted by the strong dependence of resident

concentrations (not shown) on transverse dispersion. While this is consistent with longstanding

understanding (Taylor, 1953), it sets a warning on the use of this formulation for reactive transport.

Mixing is greatly enhanced by transverse dispersion, yet the memory function is only marginally

affected.
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Figure 3.9: BTCs investigating the local scale equation: a) Subgrid heterogeneity is modeled us-
ing dispersivity (ADE). When the local transverse dispersivity is varied, the effect on the resulting
BTCs is minor. The longitudinal dispersivity was kept constant. b) A non-local small-scale equa-
tions is used: a mass transfer term is added with varying memory functions, which causes mBTC

to decreases when a large final cutoff time is used.

To investigate the influence of the ADE assumption on the local-scale transport equation, we

study now the effect of using a local scale equation with memory. Fig. 3.9b displays the behavior

of the BTCs for different memory functions. For characteristic times much smaller than the obser-

vation time we find that BTC is virtually identical to the one observed with the ADE, only delayed

by the total porosity, which was increased from 0.30 to 0.35. If we set the characteristic times

larger than the observation time, the slope decreases. A memory function, with a t2 slightly larger

than peak arrival time, displays a slight decrease in peak concentration and peak arrival time. This

means that portion of the local immobile porosity associated to fast characteristic times can be

described by the ADE, increasing mobile porosity. If t2 is increased further, peak arrival time is

less increased, but and the slope decreases further. If also t1 is increased by an order of magnitude

and the effects are increased slightly. Remember that the assumed slope of the memory function

mg = 0.5 leads to a stronger weighting of large characteristic times (small αn). Still, we find that

the addition of a local scale equation with memory does not make the slope smaller than 2, which

would require a much larger immobile porosity and a much larger t2.
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3.4.4 Comparison with BTCs using mass transfer

Finally we use the memory function derived from the above curves to reproduce the BTC with

the homogeneous one-dimensional mass transfer model of Eq. 1-4. The only fitting parameters

are dispersivity and mobile porosity. They are fitted against early arrival and peak times. Mobile

porosity (0.075-0.16) is in all cases a fraction of the original porosity (0.3). The resulting dis-

persivity ranges between 10.0 and 34.0, where 10.0 is the local (longitudinal) dispersivity. The

slope is fitted very well (Fig. 3.10) using an immobile porosity equal to the difference between

total and mobile porosity (φim = 0.3 − φm). We repeated the model with a lower value of t1 and

we reproduced the BTC identically, but with a smaller dispersivity and a smaller mobile porosity.

This means that the early time (high αn terms) of our memory function cannot be estimated si-

multaneously with porosity and dispersivity from BTC data. This portion of the memory function

equilibrates fast with the mobile region while producing some spreading. Hence, from a fitting

point of view, neglecting this portion (i.e., increasing t1) is virtually identical to increasing mobile

porosity and dispersivity. This implies that t1 is arbitrary, but so are mobile porosity and disper-

sivity. In fact, our formulation leads to a virtually identical fit setting dispersivity to 10 (local

value) and mobile porosity equal to zero. It should be noticed that the early portion of the memory

function is likely controlled by diffusion processes at the local (pore) scale, which have not been

addressed here. In fact, proper representation of these processes requires pore scale modeling (e.g.

Bijeljic and Blunt, 2006; Tartakovsky and Neuman, 2008). The point here is that they cannot be

identified from a single, large scale, BTC.

3.5 Discussion and Conclusions

BTCs obtained from detailed simulations of transport through intermediate-scale highly hetero-

geneous media display the type of tailing often observed in field tracer tests. Intermediate scale

heterogeneity means here transport through distances comparable to, or smaller than, the largest
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Figure 3.10: Fitted breakthrough curve using the memory function derived from the heterogeneous
small scale simulations. The only fitting parameters are dispersivity and mobile porosity. As part
of the heterogeneity can be modeled either with the mobile zone dispersion or with the memory
function, more than one set of parameters fit the original BTC. When t1 is chosen small, the mobile
zone dispersivity is equal to the local dispersivity of the original heterogeneous field simulation.

heterogeneity scale. That is, transport over media with variability patterns (e.g., high permeability

channels) of size comparable to, or larger than, the size of the transport domain. Given the ubiq-

uity of tailing at all scales, this result suggests that stationary lnT fields are rare and lends support

to views of heterogeneity evolving over a range of scales (Neuman, 1990).

The above kind of BTCs cannot be accurately modeled with the ADE, because of their non-

Fickian nature, which can be well reproduced with non-local in time formulations (MRMT, CTRW,

fADE). All these formulations require specifying a memory function, whose parameters are linked

to those that describe heterogeneity. We have parameterized the memory function in terms of its

slope in log-log scale and early and late cut-off times, t1 and t2.

The slope of the memory function depends most markedly on connectivity indicators. Our

simulations displayed no dependence of the slope on other parameters frequently used in describ-

ing heterogeneity, such as variance, Hurst coefficient or correlation distance. Yet, it is clear that

they do affect BTC tailing (i.e., tailing disappears if the variance tends to zero and connectivity

would have increased if we had used much larger correlation distances).
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The slope of the BTC is mildly reduced if non-local formulations are adopted for small scale

transport. In fact, if the cut-off time, t2, for the small scale transport is much larger than the travel

time of the slow flow tubes, small scale transport will dominate transport over long distances.

The issue is non-trivial, non-locality can be caused by diffusive processes (e.g. Berkowitz et al.,

2006), which is predictable and would be naturally described by a memory function at the local

scale, and by slow advection which we have extensively discussed here. The problem is that

non-locality caused by diffusion would be scale independent, while non-locality caused by slow

advection depends on both, mean travel time and distance. Specifically, memory function slope

remains unchanged, but immobile porosity and late-time cut-off depend on advection time. Tracer

tests are often performed under forced gradient conditions (i.e., velocities much larger than those

occurring under natural conditions). The memory function derived from such tracer test should be

scaled (i.e., t2 increased in the same proportion than travel time (Berkowitz et al., 2006)) if caused

by slow advection, but not if caused by diffusion. Actually since both effects probably overlay, we

would have to split the memory function into diffusion and a slow advection for proper scaling.

The minimum slope encountered in this study for all the investigated fields is mBTC = 2, while

smaller slopes are sometimes observed in field tracer tests. The abundance of slopes close to 2

suggests that we have reached a limit for the type of fields investigated here. Further decrease

in slope may be caused by long diffusion times into immobile regions, including heterogeneous

diffusivity (Gouze et al., 2008b), by three-dimensionality, especially with variable tortuosity, or by

chemical heterogeneity, particularly for solutes that sorb into the least mobile region (e.g., clays).

The scaling behavior of t2 (late time cut-off) is quite complex. Besides depending on advection

time, t2 appears to increase linearly with the variance of lnT . It is also affected by local scale trans-

verse dispersion. This implies that theoretical developments are needed before memory functions

derived from tracer tests can be safely used for predicting long term transport.

A final note of caution must be added. The formulations we tested here are non-local only in

time. They work very well, in the sense that they accurately reproduce BTCs. This is a result of
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our model set-up and the fact that we were only trying to reproduce conservative transport BTCs.

Had we tried to simulate reactive transport or spatial distributions of concentrations, non-locality

in space may have been needed. An indicator of this is provided by the small dependence of

BTCs on local transverse dispersion, which controls mixing (and thus reactions). Therefore, we

conclude that, while spreading can be well modeled with appropriately scaled memory function,

mixing may not.



Chapter 4

Coupling of Mass Transfer and

Reactive Transport for Non-Linear

Reactions in Heterogeneous Media‡

4.1 Introduction

Multi-component reactive transport modeling at the field scale is necessary for risk assessment

and for the design of remediation strategies in groundwater pollution problems. At the local scale,

methods are available to address multicomponent reactive transport problems. But it is question-

able whether they can be extended to the field scale. Aquifers are known to be heterogeneous at all

scales with hydraulic conductivity varying over orders of magnitude even in seemingly perfectly

homogeneous aquifers. It has been widely shown that any realistic hydrogeological application

must directly or indirectly embed this heterogeneity.

‡This chapter is based in the article: Willmann, M., J. Carrera, X. Sánchez-Vila, and O. Silva, 2008, Coupling of
Mass Transfer and Reactive Transport for Non-Linear Reactions in Heterogeneous Media, in preparation for submission
to Water Resour. Res.
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For very large travel distances (relative to the largest heterogeneity scale) it has been shown

that transport of conservative species satisfies an ADE type equation with upscaled parameters

(e.g., Dagan, 1989; Gelhar, 1993). On the contrary, at intermediate to moderately large travel

distances, relevant for most hydrogeological problems, observations display what is known as

anomalous (non-Fickian) or non-ergodic (Kitanidis, 1988) behavior, so that concentrations cannot

be modeled by an ADE, even allowing for upscaled parameters. Furthermore, (Neuman, 1990)

proposes an universal scaling law stating that aquifers display an evolving range of scales and,

therefore, non-ergodic conditions apply to all transport problems, regardless of travel distance.

From a practical perspective, small scale heterogeneity is the critical one in many field ap-

plications, because large scale structures can be identified and modeled directly on the numerical

grid. This means that upscaling is required to account, at least, for small scale, sub-grid, hetero-

geneity. To describe effective transport of conservative species at intermediate distances different

non-local methods have been developed. The most general one is Continuous Time Random Walk

(CTRW) (Berkowitz et al., 2006). Other models are Fractional Advection Dispersion Equations

(fADE) (Benson et al., 2000), Multi-Rate Mass Transfer (MRMT) (Haggerty and Gorelick, 1995)

and memory functions (Carrera et al., 1998). The last two methods are mathematically equiva-

lent. It has been shown (Dentz et al., 2004; Berkowitz et al., 2006) that FADE and MRMT can be

expressed as particular cases of CTRW. In short, when only non-localities in time are considered,

all methods are equivalent.

All these non-local methods have been very successful in predicting BTCs of field and lab

experiments (Berkowitz and Scher, 1998; Kosakowski et al., 2001; McKenna et al., 2001; Levy

et al., 2003; Haggerty et al., 2004; Cortis and Berkowitz, 2004; Zinn et al., 2004; Le Borgne and

Gouze, 2008) and were also very useful in explaining anomalous transport behavior in heteroge-

neous aquifers (Schumer et al., 2003; Dentz and Berkowitz, 2003; Berkowitz et al., 2006; Zhang

et al., 2007; Berkowitz et al., 2008).

The question is whether the success of non-local formulations for representing conservative
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transport can be extended to reactive transport. Since the nature of reactive transport is extremely

sensitive to the nature of reactions (Rubin, 1983), we need to distinguish the type of reactions to

be addressed. Reactions can be classified as linear or non-linear, as kinetic (slow) or equilibrium

(fast), as homogeneous (all reactants in the same phase) or heterogeneous, etc.. Linear reactions

(e.g. instantaneous or linear kinetic sorption) should be upscaled without problems with the same

model that upscales conservative transport. In fact, MRMT was initially develop as a way to

model sorption problems, and has been widely used in this context (Rubin et al., 1997; Haggerty

and Gorelick, 1998; Lawrence et al., 2002; Berkowitz et al., 2008). Transport of sorptive species

in heterogeneous media, was investigated with emphasis on the spatial or the temporal distribution

of concentrations since the initial works of (Selroos and Cvetkovic, 1992; Bellin et al., 1993).

Regarding equilibrium or kinetic reactions, the situation is more complex. Certainly, linear

reactions should properly upscale with the same non-local model as conservative solutes because

the overall reaction is controlled by the residence time distribution, which is precisely what the

BTC represents. Therefore, any model that reproduces the BTC for a conservative solute should

also reproduce the BTC and the overall reaction rate for solute suffering a linear kinetic reaction.

This is not necessarily the case for multi-component equilibrium on non-linear kinetic reactions.

De Simoni et al. (2005, 2007) showed that equilibrium reaction rates are controlled by mixing

rates. Reproducing a BTC assures a good reproduction of solute arrivals, but not necessarily

mixing. In fact, one can fit a given BTC with models that include mixing or that consist of flow

tubes with varying degrees of mass exchange among them (Medina and Carrera, 1996; Luo and

Cirpka, 2008).

The distinctive characteristic of the non-local formulations presented before, with respect to

the ADE, is how these models can separate the concepts of spreading and mixing. Spreading,

directly related to hydrodynamic dispersion, provides a measure of the area that could potentially

be affected by a pollution problem, incorporating the uncertainty in the location of the center of

gravity of the polluted area. Mixing, on the other side, indicates the extent of the polluted area,
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regardless of its location. From these definitions it is evident that reactions are controlled by

mixing rather than by spreading, and this should be accounted for in the governing equations for

multicomponent reactive transport in heterogeneous media.

More recently the emphasis has moved to the direct computation of reaction rates. Starting

from the analytical solution for the local reaction rate developed by (De Simoni et al., 2005, 2007).

Luo et al. (2008) and Fernandez-Garcia et al. (2008) evaluated the global reaction rate for gen-

erally heterogeneous and stratified media respectively, concluding that the integrated reaction rate

could not be obtained from an upscaled ADE equation. (Lichtner and Kang, 2007) used a Lattice-

Boltzmann model to simulate pore scale precipitation/dissolution model. They found that in most

cases a multi-porosity model was needed to upscale reactive transport locally governed by a single

porosity model.

So far it has not been investigated whether reactive and conservative transport may be upscaled

in a similar way. The objective of this work is, thus, to investigate whether a Mass Transfer

model is an appropriate tool to describe mixing controlled Multi-component reactive transport in

heterogeneous aquifers. Our goal is to show that adequate upscaling of conservative transport is

sufficient in order to upscale reactive transport. For this purpose we revisit the model proposed

in the previous chapter and extend it to reactive transport. We then compare the results obtained

by some detailed heterogeneous simulations using the ADE, with those coming from the MRMT

model with the known memory function derived from conservative transport.

4.2 The Multi-Rate Mass Transfer Reactive (MRMT-R) Model

In this section we propose a model for multicomponent reactive transport based on an effective

dynamics formulation. This is done in three steps, starting with the corresponding model for con-

servative solute, presented here for completeness, then showing the local scale reactive problem

we consider in this paper (mixing induced precipitation), and finally coupling the two models to
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derive the MRMT-R model.

4.2.1 Conservative transport model based on Multi-Rate Mass Transfer

Amongst the different effective models available in the literature to represent transport in heteroge-

neous media, we select one based on Multi-Rate Mass Transfer, for reasons that become apparent

when extending it to account for reactions. The MRMT model pictures the system as composed

by a mobile and a suite of immobile regions that coexist at any given point in the domain. These

regions interact, since solute mass is transferred between the mobile and each of the immobile

regions. Originally the MRMT model was used to account for rate-limited sorption processes, and

widely used in the chemical literature (e.g., Connaughton et al., 1993; Chen and Wagenet, 1995).

Later it was adapted to conservative transport in heterogeneous media. The underlying idea is

that flow paths with varying velocities (residence times) coexist at some elementary volume. So-

lute is transferred between paths by local diffusion/dispersion. The MRMT model conceptualizes

this picture as one zone where water flows and a number of zones where the solute is stagnant

(those corresponding to slow advection paths), but that can be reached by diffusion/dispersion.

The MRMT model is an obvious simplification of reality. However, it provides sufficient degrees

of freedom to accommodate any residence time distribution and, indeed, it can be used to obtain

tracer test BTC that are analogous to those measured in the field (e.g., McKenna et al., 2001;

Haggerty et al., 2004).

The MRMT model assumes an underlying ADE equation for the mobile zone with an addi-

tional sink/source term to account for mass transfer with immobile zones. Therefore, the resulting

equation for the concentration in the mobile zone, cm, can be written as

φm
∂cm

∂t
= ∇ · (D∇cm) − q · ∇cm − Γ (4.1)

where D is the dispersion tensor, φm is the porosity corresponding to the mobile zone, i.e., the
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ratio between the pores that are accessible by advection in our model, and the total volume, and Γ

is the source/sink term controlling the mass transfer between the mobile and the suite of immobile

regions, which we write as (Carrera et al., 1998; Haggerty et al., 2000):

Γ = φitot g ∗
∂cm

∂t
(4.2)

here ∗ indicating a convolution product. Hence the resulting Eq. 4.2 is non-local in time. φitot is

called the total immobile porosity, defined as the void volume fraction that is not accessible by

advection. With this definition the actual porosity (measurable in the field) is just φ = φm + φitot .

Function g, termed memory function, accounts for the probabilistic distribution of the time that

a solute particle remains in the immobile regions. In general, this function will depend on the

velocity distribution.

Eqs. 4.1 and 4.2 are basically shared by all non-local in time formulations. As such, they are

not appropriate for reactive transport. To do so, we need to localize the transport equation (i.e., to

write it in terms of concentrations at a given point and a given time). We start by expanding the

memory function as a sum of exponentials

g(t) =

N∑
i=1

αibie−αit (4.3)

where αi is the inverse of the characteristic residence time associated to the i − th term, and bi

is the corresponding fraction of the immobile porosity. Notice that this expansion is equivalent

to discretizing the residence time distribution. More interesting, it is equivalent to viewing the

immobile region as consisting of N immobile regions, each of which exchanges mass with rate αi

(Carrera et al., 1998; Haggerty et al., 2000):

∂ci

∂t
= αi(cm − cim) (4.4)

where cim indicates the concentration of the solute at the immobile zone i (mass of solute per
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volume of pores of the i − th site). Introducing cim allows rewriting Eq. 4.2 as

Γ =

N∑
i=1

αiφi(cm − cim) (4.5)

where φi = biφitot is the immobile porosity associated to exchange rate αi (or residence time 1/αi).

Since bi’s must add up to 1, it results:

N∑
i=1

φi = φitot (4.6)

In principle a large suite of memory functions could be used. The main feature of these functions

is their behavior at large times, since they control the late-time behavior of breakthrough curves

(Haggerty et al., 2000). Also, in principle there is a large number of parameters that should be

fitted (actually 2N − 1). For this reason in most applications a general shape of the memory

function, parameterized by a rather short number of parameters, is proposed (e.g., Rubin et al.,

1997; Lawrence et al., 2002; Haggerty et al., 2000). Amongst these, a commonly used model is

the truncated power-law (Dentz et al., 2004; Berkowitz et al., 2008), in which function g(t) can

be expressed in terms of two characteristic times, t1 (time at which the power-law behavior starts

manifesting), t2 (time at which concentration starts decaying faster than the power-law), and the

slope of the memory function, mg.

4.2.2 Reactive transport in a single porosity model

The model presented in the previous subsection accounts for a conservative transport undergoing

advection, dispersion at the local scale and mass transfer between mobile and less-mobile (mathe-

matically treated as immobile) zones. In this section we extend the model to incorporate a binary

precipitation-dissolution system at equilibrium, but it could be extended to any system involving

n ≥ 2 aqueous species with m ≥ 1 equilibrium reactions along the lines of (De Simoni et al.,

2005). The binary system proposed involves two reacting aqueous species, B1, B2 (their respec-
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tive aqueous concentrations being c1, c2) in chemical equilibrium with a mineral S at any point in

space and time:

B1 + B2 ←→ S (4.7)

The concentrations of the aqueous species are non-linearly related by means of the mass action

law, which, under the assumption of low ionic strength can be written as

c1 ∗ c2 = K (4.8)

where K is the equilibrium constant. In general K will be a function of ionic strength and temper-

ature. Without loss of generality, and for the sake of simplicity, we disregard this variability. The

governing non-linear transport equations becomes

φm
∂cm, j

∂t
= ∇ · (D∇cm, j) − q · ∇cm, j − rm j = 1, 2 (4.9)

where rm is the reaction rate. Note, that in Eq. 4.9 we keep the subindex m in the concentrations

and the reaction rate to indicate that they correspond to that of the mobile zone; this distinction

will be useful in the sequel. Note also that since rm is the same in both equations, it is possible to

define a linear combination of the concentrations (denoted as component):

um = cm,1 − cm,2 (4.10)

So that the governing equation for um is again a linear transport equation, but with no chemical

source/term

φm
∂um

∂t
= ∇ · (D∇um) − q · ∇um (4.11)

The component is not defined uniquely. Another conservative quantity would also be obtained by

defining the component as the product of Eq. 4.10 by a scalar. The resulting transport equation

(Eq. 4.11) is independent of rm; that is, precipitation would remove the same amount of moles
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of the two species, and thus their difference is unaffected by reaction (which is the definition of

conservative quantity). Assuming it is possible to obtain a solution for the component um, the two

concentrations can be obtained explicitly by solving a speciation problem (involving Eqs. 4.8 and

4.10)

cm,1 =
um

2
+

√
u2

m

4
+ K cm,2 = −

um

2
+

√
u2

m

4
+ K (4.12)

In most applications the main quantity of interest is the reaction rate rather than the actual concen-

trations of the solute. This would be the case, e.g., in natural attenuation studies, karst formation,

mineral precipitation,... The reaction rate can then be obtained from Eq. 4.9. Alternatively, De Si-

moni et al. (2005) derived an explicit expression for the calculation of r directly from the solution

of the component, being the product of two terms, one of them depending only on speciation rspec

and a second one which depends on the concentration gradients and the dispersion tensor and

characterizes mixing rmix

r = rspecrmix (4.13)

with

rspec =
2K

(u2
m + 4K)3

rmix = ∇T umD∇um (4.14)

4.2.3 Multi-Rate Mass Transfer Reactive (MRMT-R) model

Combining the two models presented in this section, it is possible to write a model that incorporate

non-linear reactions to the MRMT model. An important point to note here is that the incorpora-

tion of ”immobile regions” in our effective model is just a mathematical artifact to account for

the amount of solute that samples the less mobile parts of the domain. For this reason, sink terms

should be included in the ”immobile zones” to account for the precipitation that takes place when

the solutes reaching those areas by diffusion (actually here slow advection), are not in chemical

equilibrium with the mineral. It is important to state that we can have a different chemical equi-

librium condition in each one of the zones (mobile plus N immobile). Thus, despite locally we
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preserve equilibrium at all points, defining concentration by averaging over scales larger than the

pore, equilibrium is not preserved. This issue has significant consequences in the total reaction

values, which will be explored later.

Combining Eqs. 4.9 and 4.2, we can write the governing equation for the MRMT-R model

φm
∂cm, j

∂t
= ∇ · (D∇cm, j) − q · ∇cm, j −

N∑
i=1

αiφi(cm, j − cim, j,i) − rm j = 1, 2 (4.15)

where cim, j,i denotes concentration of species j in the immobile zone i. Introducing Eq. 4.10, the

equation satisfied by the conservative component reads

φm
∂um

∂t
= ∇ · (D∇um) − q · ∇um −

N∑
i=1

αiφi(um − uim,i) (4.16)

where we have introduced uim,i = cim,1,i−cim,2,i. Provided we have a way to solve Eq. 4.16 in terms

of um, the actual concentration values in the mobile zone are given by Eq. 4.12. uim,i satisfies an

extension of Eq. 4.4)
∂uim,i

∂t
= αi(um − uim,i) (4.17)

And after solving for uim,i, the concentrations of the reacting species in each of the zones consid-

ered immobile are given as

cim,1,i =
uim,i

2
+

√
u2

im,i

4
+ K cim,2,i = −

uim,i

2
+

√
u2

im,i

4
+ K (4.18)

Finally the reaction rates can be obtained as

r = rm +

N∑
i

rim,i (4.19)
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with rm obtained from Eq. 4.15, and rim,i being

rim,i = −φi
∂cim, j,i

∂t
+ φiαi(cim, j,i − cm, j) (4.20)

and the value of rim,i being independent of j = 1 or 2, that is, of the species used for computing

mass balance. It is important to note that in the effective reactive multi-component transport model,

upscaling is entirely included in the memory function which is only determined by conservative

transport. MRMT-R model presented here is implemented in the finite element code TRANSIN

(Medina and Carrera, 1996) which was extended for general mass transfer in the previous chapter.

Some details of the numerical implementation are given in Appendix A1.

4.3 The MRMT-R Model: Sensitivity Analysis

The MRMT-R model discussed here depends on a number of parameters, including those that

define the memory function, mobile and immobile porosity, and the equilibrium constant, among

others. In this section we explore the sensitivity of instantaneous and cumulative reaction rate to a

number of those parameters.

We perform numerical simulations on a 1D homogeneous field with 3000 elements of length.

A gradient is imposed so that water flows in the positive x-direction. The water initially present in

the system has a constant chemical signature represented by um = uim,i = 0, equivalent to consider

cm, j = cim, j,i = 0. During a short interval at the beginning (δt = 1000) a pulse of u = 0.5 is

applied. The physical meaning is that a water with a different chemical composition is entering

the domain. This water has a high concentration of c1 and a low concentration of c2, but it is still

in chemical equilibrium with the mineral. After this time interval, the system is flushed with water

with the initial composition (u = 0). While the two waters are equilibrated with the mineral, any

of their mixtures will not satisfy the mass balance equation, and thus precipitation takes places

wherever mixing is occurring. The parameters for the reference case studied (see chapter 2) are a
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mobile porosity, φm of 0.147 and a longitudinal dispersivity, αl, of 33.8 for the mobile zone. The

immobile regions are characterized by an immobile porosity, φitot, 0.153 (so that total porosity is

0.3) and the following memory function parameters: slope, mg, of 1 and characteristic times t1, t2,

of 8000 and 800000.

4.3.1 Reaction Rate Spatial Distributions in the Mobile and Immobile Zones

Due to the specific boundary conditions, the largest amount of precipitation takes place at the inlet

(left) boundary (Fig.4.1a). This is caused by the largest concentration gradient being present at the

inlet node. With time reactions extend along the flow path.

In our MRMT reactive model mixing takes place in both the mobile and the N immobile zones,

with the overall reaction rate being the sum over all zones. At early times the spatial distribution

of reaction rates in the mobile zone resembles what would be obtained in a homogeneous medium

when transport is modeled by an ADE, with a characteristic symmetric double peak and a zero

value in between. The double peak is still present in the MRMT-R model, but the minimum

value is no longer equal to zero, and the fastest moving peak is slightly larger (see Fig.4.1b).

The relatively large value of reaction rate obtained in the mobile region reflects the two mixing

mechanisms present in Eq. 4.15, i.e., dispersion and exchange with immobile regions. Since

rm is obtained from a mass balance in Eq. 4.15, we cannot distinguish between the two terms.

Therefore, we calculate the reaction rate caused by dispersion using Eq. 4.13 and assume that

the rate is caused by exchange with immobile regions. The result is also shown in Fig.4.1b,c and

points out that mixing due to mass transfer, in this case, is much larger than due to dispersion.

The reaction rate obtained by integrating the reaction rates in all immobile zones is much

smaller than that of the mobile zone, and has a single maximum located in between the two peaks

of mobile zone reaction rate. For larger times, the reaction rate distribution displays only a single

peak (Fig.4.1c) for the particular set of parameters used in these simulations. Here, mobile and
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Figure 4.1: Evaluation of the spatial distribution of mineral precipitation: a) total precipitated
mass for three different times (1000, 11000, 51000); b) spatial distribution of reaction rate for an
early time step (t t1); reaction rate in the mobile zones shows some ADE like behavior with
the characteristic double peak and is much stronger than reaction rate in the immobile zone; c)
the same plot for a later time step, where no double peaks are displayed anymore (the modeling
domain was enlarged here); d) distribution of selected single immobile zones for the same time as
c); the total number of immobile zones is 20.

immobile reaction rates have similar shapes, with their maxima shifted towards the front and long

backwards tails, the one corresponding to the immobile zone delayed with respect to that of the

mobile one. Individual reaction rate for 5 zones out of the total N = 20 are shown in Fig.4.1d. For

the zones with largest α fast exchange, display a more pronounced peak and a less marked tail.

The peak of reaction rate distribution becomes increasingly delayed with decreasing α.
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4.3.2 Sensitivity to the equilibrium constant

In Eq. 4.13 the reaction rate is expressed as the product of two independent terms: the mixing

factor and the speciation factor. While our work focuses on mixing, the influence of the speciation

factor is discussed here briefly. In our simple example the speciation factor is controlled entirely by

the equilibrium constant together with the component u. Fig.4.2a illustrates the strong dependence

of the speciation factor on the equilibrium constant K. For large u the speciation factor is largest

for large K and the opposite holds for low K. Moreover, for small values (u <
√

K) the speciation

factor is virtually constant, but drops dramatically for larger u′s. Non-monotonic dependence with

respect to K translates to the quantification of overall precipitation (Fig.4.2b). Together with the

non-linearity, it leads to a somewhat impredictable behavior of reaction rates.

We observe a complete distinct behavior of precipitation depending on K. pK = log10(K) = 2,

is the reference case discussed before. When K is decreased (pK=4) the overall behavior changes

slightly. The reaction rate is generally increased and a slight double peak is developed. For pK =

6 this is much more pronounced. We see a well developed double peak. The reason here is not as

in the previous section incomplete mixing within the immobile zone but that reaction hardly take

place at peak concentrations but at much lower ones. This means the mixing is strongest where

pK = 2 has its peak, but as the mixing factor and the speciation factor are multiplied to get the

reaction rate, here we have the maximum of the reaction rate more separated. The influence of K

is very large as we want to test here mainly the role of mixing we use mainly pK = 2 as examples.

4.3.3 Variation of Parameters that Alter the Shape of the Conservative BTC

Here we analyze the sensitivity of reaction rates to some of the parameters involved in the MRMT-

R model: longitudinal dispersivity, αL, the characteristic time t2, and the slope of the memory

function mg. Results are shown in Fig.4.3.

We performed additional simulations increasing and decreasing αL by a factor of 2 (αL = 16.9,



4.3. The MRMT-R Model: Sensitivity Analysis 67

Figure 4.2: a) Speciation factor as a function of concentration for different pK values (notice,
that the speciation factor increases with pK for low values ofu, but decreases for high values); b)
spatial distribution of the reaction rate as a function of K. The reaction rates are non-monotonic
with K.

33.8 and 67.6). Small αL values lead to larger values of the peak reaction rates (see Fig.4.3a). The

reason is that despite Eq. 4.13 apparently is linear with D, the actual behavior is the opposite since

increased αL values enhance mixing, thus reducing the gradients of the conservative quantities.

t2 was changed by an order of magnitude (t2 = 8 ∗ 104, 8 ∗ 105, 8 ∗ 106). Large t2 values

lead to single peak asymmetric distributions, with the peak displaced towards the advancing front

(Fig.4.3b). The reason is that large t2 imply less accessible immobile porosity, so that the front is

less retarded. For decreasing t2 the immobile zones become more accessible and the reaction rate

exhibits an ADE-like behavior with double peak.
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Figure 4.3: Sensitivity of the spatial distribution of total reaction rates (recall Fig.4.1) and total
precipitated mass to: a,b) longitudinal dispersivity, c,d) t2, and e,f) slope of the memory function,
mg. The curves in a, c and e correspond to a fixed time t=51000

Three values of mg (0.5, 1.0, and 1.5) are compared (Fig.4.3c). Increasing mg makes the solu-

tion more ADE-like. Contrarily, small mg values lead to a single peak distribution, with increasing

peak value. This can be explained by noticing that mg can be seen as a weighting function of the

exchange rates, so that the largest the mg value, the smallest the areas with large αL values, and

vice versa.
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Figure 4.4: Spatial distributions of reaction rate for three combinations of ratios of mobile and
immobile porosity, t1 and dispersivity, that lead to virtually identical conservative tracer BTCs.
Notice that the total reaction rate is not affected dramatically though the separation between mobile
and immobile precipitation is.

4.3.4 Variation of parameters conserving the shape of the BTC

While in the previous subsection we have shown how the distribution of reaction rates are sensitive

to some of the parameters that define the MRMT-R model, this is not the case for all the parameters

that are actually involved. The physical reason is that it is equivalent to consider a large dispersion

coefficient with a large mobile porosity and a large immobile zone with a small t1 value. To

verify this hypothesis we ran transport simulations with three combinations of parameters that

lead to almost identical BTCs. Simulations were performed using immobile porosities equal to

0.153, 0.24 and 0.29, combined with longitudinal dispersivities of 33.6, 10.0, 10.0, and t1 values

of 8000, 170 and 30 respectively. In all cases the mobile porosity is selected so that total porosity

is a constant value of 0.3. The corresponding spatial distributions of reaction rates are shown in

Fig.4.4.

Depending on the combination of parameters, the reaction rates computed in the mobile and

immobile zones (not presented) can be quite different, but the total value (the sum) is practically

constant.
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4.4 MRMT-R upscaling methodology

In chapter 2 is was shown that an MRMT model could be used to provide an effective picture

of conservative transport. They obtained how the memory function is affected by different pa-

rameters characterizing the heterogeneity of the system, such as the variance of the log-hydraulic

conductivity. The main objective in this section is to find whether and under which conditions, the

MRMT-R model is capable of reproducing key features of multicomponent reactive transport in

heterogeneous media where an ADE is assumed at the local scale. The working hypothesis is that

the memory function that is derived from conservative transport would directly be applicable to

reactive transport.

The methodology we use is numerical and can be summarized in the following steps: (1) we

create heterogeneous transmissivity fields with some characteristic features; (2) we perform reac-

tive transport simulations in the heterogeneous fields based on a local description of transport gov-

erned by an ADE equation with a single sink/source term to account for precipitation/dissolution;

(3) we derive a memory function from the breakthrough curves observed for a conservative species;

(4) we model reactive transport in a homogenized media by using the MRMT-R model with the

parameters derived from the conservative curves, and, (5) we test whether the MRMT-R simu-

lations actually match the observed curves in the heterogeneous media. The different steps are

expanded next.

4.4.1 Creation of heterogeneous transmissivity fields

We conceptualize the aquifer as two-dimensional. We are interested in transport at intermediate

distances compared to a larger characteristic heterogeneity scale (such as the correlation distance

whenever it exists), where power-law tails are frequently observed in the field. According to to the

results of chapter 2 tailing occurs due to the presence of connected regions of high conductivity

(preferential flow paths). For this reason we use individual realizations of heterogeneous fields
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obtained as follows (the actual selected fields can be seen in Fig.4.5). The first field studied is

an individual unconditional realization of a Multi-Gaussian field with a small correlation length

(λ = 20 in consistent units). This field was generated using the Gaussian sequential simulator

GCOSIM3D (Gómez-Hernández and Journel, 1993). This first field is used for comparison, since

transport in Multi-Gaussian fields has been the topic of extensive research. The second field

corresponds to an individual realization of a conditional field honoring a power variogram. The

conditioning points are selected to produce a single preferential flow path connecting the high

permeability pixels. By construction, this field exhibits an evolving range of scales. The third

field is a connected field constructed using the methodology proposed by Zinn and Harvey (2003).

This results in a field with various connected preferential flow paths surrounded by low conductive

regions. The variance of log-transmissivity (Y) is set to 6 in all three fields. The domain size is

1024 by 512 elements of unit size. The flow problem consist of uniform no-flow boundaries on

top and bottom and constant head boundaries on the remaining sides, forcing a mean uniform flow

from left to right. The overall gradient is 0.0098. Notice that we are interested in looking at the

characteristic features of transport in individual realizations, and this is the reason not to pursue a

Monte Carlo approach.

4.4.2 Reactive transport simulations

The reactive transport in the heterogeneous fields is assumed to be controlled by a local scale ADE.

Berkowitz et al. (2006) question the existence of a scale independent local scale equation. Still, we

apply the ADE here as we are interested in the loss of information in the upscaling process. The

methodology could easily be extended to a different form of the local transport equation. Rather

than running a reactive transport model, we took advantage of posing the problem in terms of

a single component and we solved a transport of a conservative species (Eq. 4.11) followed by

speciation (Eq. 4.12). The initial condition is um = uim,i = 0.

Similar boundary conditions as those explained in the previous section are considered, just
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noticing that now conditions should be imposed in all boundary nodes corresponding to the 2D

domain. During a short interval at the beginning (∆t = 1000) a pulse of u = 0.5 is applied to the

water entering through the left nodes, followed by flushing with water with the initial composition.

The remaining parameters for the local scale equation are a porosity of 0.3 and longitudinal and

transverse dispersivities of 10 and 1 respectively. Molecular diffusion is neglected as we study

here the influence of physical heterogeneity and, thus, slow advection. Reaction rate is calculated

at each time step and each node through mass balance consideration, and the precipitated mass is

recorded.

4.4.3 Derivation of memory function for conservative transport

In order to apply the Multi-Rate Mass Transfer model we derive the memory function from con-

servative transport. The three BTCs presented in Fig.4.5 (thus corresponding to a conservative

species) can be represented using an MRMT model with a single memory function, which is de-

rived following the methodology outlined in chapter 2. From a given BTC, one derives an upscaled

value for longitudinal dispersivity and mobile porosity from the early time arrival of the BTC. The

three parameters defining the memory function are taken from late-time behavior. The two char-

acteristic times when the power-law behavior starts and ends t1 and t2 and the slope of the BTC

mBTC . The slope of the memory function, mg, is related to the slope of the BTC depending on

the boundary condition . They are identical for resident concentration, while for flux-averaged

concentration it holds that mg = mBTC − 1. The last relevant parameter in the model, the immobile

porosity, is calculated by φitot = φtot − φmob.
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Figure 4.5: Transmissivity fields and corresponding breakthrough curves (BTCs) obtained from
conservative transport simulations. BTC’s are the cumulated mass collected at the domain’s right
boundary. The three fields correspond respectively to single realizations of: A) a Multi-Gaussian
field with short correlation length, B) a non-stationary field based on a power variogram, and C) a
field where connectivity between the high transmissive pixels have been enhanced with respect to
those of low conductivity.
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4.5 Reproducing the observations in the heterogeneous media by means

of an effective model

Reactive transport in the three heterogeneous media shown in Fig.4.5 are now analyzed. The two

variables considered are: (1) vertically averaged spatial distribution of the reaction rates, and (2)

total precipitated mass over the whole domain. Type A field shows an almost Fickian behavior with

a slightly noticeable tail. The curves recorded from the Type B and C fields show an anomalous

(non-Fickian) behavior. While these two fields are very different in terms of their internal structure,

they render similar breakthrough curves, so that the fitted memory functions are almost identical.

Here we compare how reactive transport behaves in these fields and compare the results in terms

of reaction rate distribution to those obtained from the effective model.

4.5.1 Reproducing anomalous transport behavior

Looking at fields B and C, we find clear indicators of anomalous transport at intermediate distances

(t1 < tc < t2). The breakthrough curves for conservative solutes display a power-law behavior.

This indicates that it is possible to reproduce the conservative BTCs using a MRMT model.

Field C is characterized by fine channels within a matrix of less conductive material. Fig.4.6a

shows a very good match between the heterogeneous and solution and the upscaled mass transfer

results in terms of total precipitated mass versus distance for three selected time steps. This is ob-

tained by construction, since total precipitation is controlled by mass balance considerations. The

remarkable point is that both the spatial distribution and the time evolution are well reproduced.

This observation is independent of the K value (Fig.4.6b,c), despite the very non-linear response

to this particular parameter: larger K values (= 0.01) lead to larger precipitation close to the outlet,

while smaller K values provide a similar amount of reaction throughout the system for very large

times. The spatial distribution of vertically averaged reaction rates at one time step for the type C
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Figure 4.6: Model results for field type C (connected field). a-c) Comparison between the spatial
distribution of the vertically averaged precipitated mass in the heterogeneous media with those
derived from the effective MRMT-R model for three different time steps (1000, 11000, 51000)
and for (a) pK = 2, (b) pK = 4 ,and (c) pK = 6. d) The instantaneous reaction rate for both models
at a given time step at pK = 2..

field is shown in Fig.4.6d. The heterogeneous curve has a slight double peak with the largest peak

at the front. This behavior is reproduced quite well with the mass transfer model. Already at such

early time the effective model is capable of reproducing the main features of the heterogeneous

solution. We also compared the reaction rate at later times (not shown), but as most of the mass

has left the domain only the tails were fitted.

Type B field (Fig.4.5) is characterized by large scale structures as the transitions from high to

low conductive zones is more gradual than in the C field. Still, memory functions in those two

fields are almost identical. Fig.4.7 shows the comparison of precipitated mass versus distance

for some specific times and different K values. The agreement is still quite remarkable. On

the contrary, when comparing now the spatial distribution of reaction rate in both models (see

Fig.4.7d) the match is rather poor. The heterogeneous medium leads to a double peaked curve,
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Figure 4.7: Model results for field type B (non-stationary variogram). a-c) Comparison between
the spatial distribution of the vertically averaged precipitated mass in the heterogeneous media
with those derived from the effective MRMT-R model for three different time steps (1000, 11000,
51000) and for (a) pK = 2, (b) pK = 4 ,and (c) pK = 6. d) The instantaneous reaction rate for both
models at a given time step at pK = 2.

while the effective model provides a single one and a long tail. The explanation is that at this

distance the chosen memory function is not representative. This is due to the presence of very

large low and highly conductive zones (Fig.4.5), so that the local distribution has a very strong

impact on the actual spatial distribution, an effect that washes out when integrated along the full

domain. At larger travel times (not shown) the agreement improves slightly.

4.5.2 Reproducing Quasi-ergodic transport

Ergodic transport will eventually develop whenever travel distance is much larger than the cor-

responding correlation length along the mean flow direction. In such a case transport can be de-

scribed by means of a macro-dispersion equation. This is the reason we incorporated field A in our
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simulations. The conservative breakthrough curve at the outlet boundary shows a behavior close to

Fickian (recall Fig.4.5). The heterogeneous reactive transport results are shown in Fig.4.8a-c. In

a) we also show the difference between considering a macro-ADE, with an upscaled dispersivity

coefficient of 85.0, or a MRMT model with mobile and immobile porosities and dispersivity equal

to 0.2, 0.1 and 45.0 respectively, and the memory function characterized by a slope of 2.0 and

characteristic times of 600 and 900000. The curves in the two models are practically identical, the

second one still accounts for the minor tail of the conservative BTC. The curves corresponding

to the heterogeneous model are much smoother than in the previous two fields. Generally there

is a reasonable agreement with respect to the heterogeneous solution except at the outlet. This is

mainly due to the decreased dispersion of the MRMT model at that boundary. The agreement is

in both cases good. In the field we know that reactive transport models are underestimating the

reaction rates in the field. Our results indicate that the ADE is not valid in the field at any scale.

4.6 Sensitivity to boundary condition and transverse dispersivity

4.6.1 Boundary conditions

The slope of a BTC depends strongly on the boundary condition applied; contrarily, the memory

function does not change (Haggerty et al., 2000). In all previous simulations an initial pulse is

applied at the inlet boundary of the heterogeneous field. This results in a flux-weighted initial con-

dition, leading to a BTC slope of mpulse. Applying a uniform initial distribution leads to a different

BTC, with a slope muni f . In chapter 2 it was found that whenever the boundary itself samples all

the variability of the system, (muni f =mpulse−1). We look now at the implications to reactive trans-

port. In Fig.4.9 the curves corresponding to the two boundary conditions are compared for Field

C. We assure mass conservation in both simulations by adjusting the duration of the pulse input

(tp = 610) and the number of rows where constant concentration are initially present (13 rows).

We observe that generally the overall precipitation is largest for the flux-averaged boundary case
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Figure 4.8: Model results for field type A, the multi-Gaussian field. a) Comparison between
the spatial distribution of the vertically averaged precipitated mass in the heterogeneous media
with those derived from the effective MRMT-R model for three different time steps (1000, 11000,
51000) and for pK = 2. b) The instantaneous reaction rate for both models at a given time step.

than for the uniform one. The peak of total precipitation for the latter case is located right after the

zone where fixed initial conditions are applied. Close to the inlet boundary the total precipitation

is of the same order of magnitude than the flux-averaged one. Then precipitation becomes smaller

and after a distance of about 100 and its shape becomes identical to the flux-averaged one but only

with only 20% of the total precipitate. This large difference in mass precipitated is caused by the

dominant transport mechanism in this field being flow within the fast flowing channels, so that the

largest amount of precipitation takes place along the channels. The homogeneously distributed

case seems to have only 20% of the mass within these channels compared to the reference case.

The MRMT-R model using the same memory function accounts very well for both solutions with
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Figure 4.9: Sensitivity analysis for: a) Boundary conditions, including an flux averaged input
pulse and initial uniform concentration at the boundary nodes. After a distance of 200 the curves
have the same shape but the precipitated mass when a pulse is considered is 5 times larger than
for fixed initial concentration. The smoother cures are the effective MRMT-R models which both
reproduce very well the heterogeneous solution. b) Transverse dispersivities (0.1, 1.0, 10.0) is
varied. The curves look similar but smooth out with increasing dispersivity. The corresponding
effective solution represents very well all the heterogeneous curves.

respect to total precipitated mass. Intuitively one expects resident concentration to be used in reac-

tive transport, particularly as reactions takes place also where water is almost stagnant (immobile

zone). But from our simulations we conclude that the distinction between flux concentration and

resident concentration only depend of the boundary condition of the problem and that MRMT-R

is capable of accounting for both.



80 Chapter 4. Reactive Transport: MRMR-R

4.6.2 Transverse dispersion

Transverse dispersion, αT , seems particularly important for reactive transport as it is the main

local scale parameter that controls mixing. And, contrarily to longitudinal dispersion, αL, αT is

not modeled directly within the effective model. Here we compare for the heterogeneous reference

field C the curves of precipitated mass for three different αT values (Fig.4.9b). It can be seen that

the total precipitated mass is only slightly affected by the choice of the αT value. A large value

leads to a smooth curve. It can also be seen that a larger transverse dispersion value delays the

precipitation for earlier time steps. This happens with conservative transport as well and it is

because large αT delays the arrival of the mixing front. For comparison the effective mass transfer

model is added as well and it can be observed that all three αT s are represented well with the model

not taking into account αT . We conclude that αT while being the controlling factor describing

mixing, it is not a dominant factor controlling mixing-controlled reactive transport.

4.7 Conclusions

We present an effective reactive mass transfer model and investigate whether this model based

on upscaling of conservative transport is sufficient to upscale mixing controlled multi-component

reactive transport. We develop a mass transfer model (MRMT-R) for a binary precipitation disso-

lution system and use an upscaled memory function derived from conservative transport. Gener-

ally, we find that the MRMT-R model an excellent tool for representing mixing controlled reactive

transport. In particular:

1. Total precipitation is well reproduced for all the examples studied, in terms of both the total

mass precipitated and its spatial distribution. In any case the effective solution is smoother

than the heterogeneous one. Reaction rate at early times (relative to t1) is only matched well

if the memory function is already representative for the domain sampled.
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2. The distinction between reactions in the mobile and immobile zones is to some extend ar-

bitrary. Fast flowing parts of the domain can either be modeled within the mobile porosity

with an upscaled dispersion or within the immobile porosity with large exchange rates. In

the latter case the reaction rate of the immobile zone has a similar shape than that of the

mobile zone. If additionally the separation between dispersion mobile and mass transfer

mobile is made, a better separation can be made: the mass transfer mobile and the immo-

bile reaction rate give the total mass transfer reaction rate. This is much larger than the

remaining mobile dispersion one.

3. Applying different boundary conditions changes the reactive transport behavior dramati-

cally. A uniform initial (resident) distribution leads to stronger precipitation close to the

boundary condition and less precipitation further away. Surprisingly, the shape further away

form the boundary is more or less the same. The MRMT-R model reproduces very well pre-

cipitation for both boundary conditions using the same memory function.

4. Transverse dispersivity has only a minor effect on total precipitation even it controls mixing.

The larger transverse dispersivity, the smoother the curve. That transverse dispersion can

be ignored is important as MRMT-R (and most of the existing upscaled models) does not

account for it.

5. The ADE (or macro ADE) represents reactive transport reasonable well at distances where

transport can be modeled as Fickian. This is also the case when a very minor tailing exists.

The bad performance of the ADE in the field supports the claim that the ADE does not hold

at the local scale (e.g. Berkowitz et al., 2006).

Generally we find MRMT-R an excellent tool for upscaling mixing controlled reactive transport

in heterogeneous aquifers. In our study only mixing due to physical heterogeneity (tailing due to

slow advection) was taken into account. Further studies should explore the influence of chemical

heterogeneity like molecular diffusion or variable sorption coefficients, kd.





Chapter 5

General conclusions

This thesis investigates the influence of heterogeneity of natural aquifers on our analysis of hydro-

geological problems for different subsurface processes with varying complexity. The following

major conclusions can be drawn:

The interpretation of recovery tests using the simple Theis recovery method can provide

valuable information about representative parameters in heterogeneous aquifers, even though the

method was developed for homogeneous media. Actually, it may be possible to discriminate be-

tween at least two representative transmissivity values, corresponding to the local T values (Tloc)

surrounding the well, and some regional representative value (Treg). The analysis presented here

implies that the rate of early time recovery is informative of Tloc, whereas that of late time data

yields information about Treg. This result is valid as long as early time effects can be filtered out.

The results presented here have several practical implications about the design and interpretation.

Regarding test design the following recommendations are advisable:

1. Pumping duration. Pumping duration should be chosen depending on the scale, Lc, to

be characterized. At the very least, tp should equal SL2
c/T, where S and T are local estimates of

storativity and transmissivity, respectively. Preferably, pumping durations should be much longer,

83
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for example, 10 SL2
c/T , especially if Treg is expected to be smaller than T .

2. Recovery period. The design should allow for a long recovery period, not shorter than

twice the pumping duration, and, if possible, much longer than twice the duration. Notice that this

increase in time can be achieved at very low cost because time scale is logarithmic and only a few

measurements have to be added. Because drawdowns become small for late time recovery, the

reliability of these drawdowns needs to be assessed by comparing them to measurement errors.

3. Pumping rate. Late time residual drawdown is sensitive to total volume of water pumped,

VW , as s ∼ VW/4 (that is, it does not depend on the time evolution of pumping rate). Average

pumping rate, VW/tP, should be designed for a sizable value of s. Recovery tests are not highly

sensitive to high frequency changes in flow rate, but early time recovery is sensitive. Still, using

VW/tP may become the only realistic option when pumping rate cannot be controlled.

4. Natural head trends. Heads should be monitored prior to the test so as to ensure either

that they have stabilized prior to pumping or that a natural trend can be fitted. It should be no-

ticed that much information is contained in late time residual drawdowns that are small. Residual

drawdowns are equal to the difference between heads during recovery, which can be measured

accurately, and natural heads. Efforts should be made to estimate the latter natural heads as accu-

rately as possible. These efforts include not only prior stabilization, but also monitoring boreholes

unaffected by the test. Mistaken natural head evolution would lead to wrong Treg estimation.

Regarding the interpretation of recovery tests the following recommendations are advisable:

1. At any given time the head recovery plot can yield two slopes: m1, tangent, and m2, secant

though the origin. Using them, Tm1 and Tm2 can be calculated.

2. When both pumping and recovery times are large it is possible to obtain good estimates of

both Tloc and Treg. Better estimations are obtained when the local value at the well is smaller than

the regional T value, provided that sizable pumping rates can be sustained.
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3. Tloc is better represented by Tm1. Early time effects (for example, skin effect) should be

ruled out by calculating the corresponding sampling radius. A small radius indicates that these

effects are still relevant and mask Tloc that cannot be estimated.

4. If pumping duration and recovery are long enough, late time Tm1 and Tm2 will tend to Treg.

The advantage of using Tm2 is that it converges to the large scale value much faster than Tm1.

If recovery is too short to resolve Treg (Tm1 , Tm2), Tm2 can be used to approximate Treg. The

resulting value should be suspected. Tm2 lies between Tloc and Treg. Therefore, Treg will be larger

than Tm2 if Tloc is small, and vice versa.

Upscaling of conservative transport using mass transfer models linking memory parameters to

physical parameters of heterogeneity leads to the following conclusions:

1. The above kind of BTCs cannot be accurately modeled with the ADE, because of their non-

Fickian nature, which can be well reproduced with non-local in time formulations (MRMT,

CTRW, fADE). All these formulations require specifying a memory function, whose pa-

rameters are linked to those that describe heterogeneity. We have parametrized the memory

function in terms of its slope in log-log scale and early and late cut-off times, t1 and t2.

2. The slope of the memory function depends most markedly on connectivity indicators. Our

simulations displayed no dependence of the slope on other parameters frequently used in

describing heterogeneity, such as variance, Hurst coefficient or correlation distance. Yet, it

is clear that they do affect BTC tailing (i.e., tailing disappears if the variance tends to zero

and connectivity would have increased if we had used much larger correlation distances).

3. The slope of the BTC is mildly reduced if non-local formulations are adopted for small

scale transport. In fact, if the cut-off time, t2, for the small scale transport is much larger

than the travel time of the slow flow tube, small scale transport will dominate transport

over long distances. The issue is non-trivial, non-locality can be caused by diffusive pro-

cesses (e.g. Berkowitz et al., 2006), which is predictable and would be naturally described
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by a memory function at the local scale, and by slow advection which we have extensively

discussed here. The problem is that non-locality caused by diffusion should be scale inde-

pendent, while non-locality caused by slow advection depends on both, mean travel time

and distance. Specifically, memory function slope remains unchanged, but immobile poros-

ity and late-time cut-off depend on advection time. Tracer tests are often performed under

forced gradient conditions (i.e., velocities much larger than those occurring under natural

conditions). The memory function derived from such tracer test should be scaled (i.e., t2

increased in the same proportion than travel time (Berkowitz et al., 2006)) if caused by slow

advection, but not if caused by diffusion. Actually since both effects probably overlay, we

would have to split the memory function into diffusion and a slow advection for proper

scaling.

4. The minimum slope encountered in this study for all the investigated fields is mBTC = 2,

while smaller slopes are sometimes observed in field tracer tests. The abundance of slopes

close to 2 suggests that we have reached a limit for the type of fields investigated here.

Further decrease in slope may be caused by long diffusion times into immobile regions,

including heterogeneous diffusivity (Gouze et al., 2008b), by threedimensionality, especially

with variable tortuosity, or by chemical heterogeneity, particularly for solutes that sorb into

the least mobile region (e.g., clays).

5. The scaling behavior of t2 (late time cut-off) is quite complex. Besides depending on ad-

vection time, t2 appears to increase linearly with the variance of lnT . It is also affected by

local scale transverse dispersion. This implies that theoretical developments are needed be-

fore memory functions derived from tracer tests can be safely used for predicting long term

transport.

Upscaling multi-component reactive transport using mass transfer based on physically based

parameters derived from conservative leads to the following conclusions:
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1. MRMT-R is found an excellent tool for upscaling mixing controlled reactive transport in

heterogeneous aquifers. Total precipitation is very well reproduced for all the examples

studied, in terms of both the total mass precipitated and its spatial distribution. In any case

the effective solution is smoother than the heterogeneous one. Reaction rate at early times

(relative to t1) is only matched well if the memory function is already representative for the

domain sampled.

2. The distinction between reactions in the mobile and immobile zones is to some extend ar-

bitrary. Fast flowing parts of the domain can either be modeled within the mobile porosity

with an upscaled dispersion or within the immobile porosity with large exchange rates. In

the latter case the reaction rate of the immobile zone has a similar shape than that of the

mobile zone. If additionally the separation between dispersion mobile and mass transfer

mobile is made, a better separation can be made: the mass transfer mobile and the immo-

bile reaction rate give the total mass transfer reaction rate. This is much larger than the

remaining mobile dispersion one.

3. Applying different boundary conditions changes the reactive transport behavior dramati-

cally. A uniform initial (resident) distribution leads to stronger precipitation close to the

boundary condition and less precipitation further away. Surprisingly, the shape further away

form the boundary is more or less the same. The MRMT-R model reproduces very well pre-

cipitation for both boundary conditions using the same memory function.

4. Transverse dispersivity has only a minor effect on total precipitation even it controls mixing.

The larger transverse dispersivity, the smoother the curve. That transverse dispersion can

be ignored is important as MRMT-R (and most of the existing upscaled models) does not

account for it.

5. The ADE (or macro ADE) represents reactive transport reasonable well at distances where

transport can be modeled as Fickian. This is also the case when a very minor tailing exists.

The bad performance of the ADE in the field supports the claim that the ADE does not hold
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at the local scale (e.g. Berkowitz et al., 2006).



Appendix A

A.1 Implementation of a discrete mass-transfer scheme

We describe the implementation of our mass transfer scheme into a standard transport code without

solving explicitly for each immobile zone. The exchange term Γ is a sum of exchange terms

between the mobile zone and each of the immobile zones fn:

Γ =

N∑
n=1

fn (A.1)

The exchange is described by:

fn = −φinαn(cin − c) (A.2)

where cin is the concentration in immobile zone n. Mass balance in the n-th immobile zone

yields:
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dcin

dt
= αn(cin − c) (A.3)

The equation may be solved together with Eq. 1 while treating cin as unknown. However,

numerical solution is greatly simplified by eliminating it, much in the spirit of Carrera et al.

(1998). Assuming that the time is discretized and that c varies linearly during the time step (i.e.,

∂c/∂t remains constant), we get:

cin(t) = ck + (ck
in − ck)eαnt +

∂c
∂t

[t −
1
αn

(1 − e−αn∆t)] (A.4)

Substituting ∂c/∂t by its time discretized approximation, ∆c/∆t, and using the resulting value

for cin to eliminate it from Eq. A2, while evaluating fn at time θ∆t:

f k+θ
n = φin

∆c
∆t

(1 − e−αnθ∆t) + αnφin(ck
in − ck)e−αnθ∆t (A.5)

Notice that now fn (source/sink per unit aquifer volume) is expressed in terms of only one

unknown, ∆c/∆t. Therefore, adding fn to any numerical solver requires two operations:

1. Add the coefficient of ∆c/∆t, φin(1 − e−αnθ∆t), to the diagonal of the storage matrix for each

immobile zone and each node (typically multiplied by the aquifer volume associated to the

node, in finite element or finite difference codes)

2. Add the remaining term, αnφin(ck
in − ck)e−αnθ∆t, to the right hand side (sinks and sources)

vector (also for each immobile zone and node, and multiplied with the associated volume,

if needed)



A.2. Implementation of the discrete MRMT-R 91

We do not solve here explicitly for immobile concentrations. If needed, as for reactive trans-

port simulations, this can be easily done as an extra step using Eq. A4 after the system has been

solved and ∆c/∆t is known.

A.2 Implementation of the discrete MRMT-R

Here the implementation of the MTMT-R model into a standard numerical code is outlined. The

implementation of the general, conservative MRMT scheme was outlined in Appendix A.1. Addi-

tionally, after solving transport for the component u, the mass balance for the reaction rate in the

mobile zone (Eq. 4.15) and all immobile zones (Eq. 4.20) have to be calculated at each time step.

Both are mass balance equations where s only unknown is the reaction rate. Generally, this im-

plementation of this reactive mass transfer scheme is straight forward. Still, two difficulties exist.

The treatment of boundary conditions involving explicitly u and solving the problem implicitly.

The boundary conditions have to be corrected for those operations that involve explicit values

of u (like for fixed concentration or flux dependent mass inflow). The mass balance in Eq. 4.15

only closes if this correction is performed. The respective mathematical operation setting the

boundary conditions has to be reverted and performed again with c2 replacing u. For solving

transport at an implicit scheme it is critical to set the time correctly for the weighting of u and c2.

One can either calculate the reaction rate at at time k + θ or the reaction rates at times k and k + 1

are weighted by θ. We found much lower mass balance error for the latter case.
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Wen, X.-H., and J. J. Gómez-Hernández (1996), Upscaling hydraulic conductivities in heteroge-

neous media: An overview, J. Hydrol., 183,(1-2), ix–xxxii.

Werth, C. J., J. A. Cunningham, P. V. Roberts, and M. Reinhard (1997), Effects of grain-scale mass

transfer on the transport of volatile organics through sediments 2. column results, Water Resour.

Res., 33 (12), 2727—-2740.

Yeh, T.-C. J., and S. Liu (2000), Hydraulic tomography: Development of a new aquifer test

method, Water Resour. Res., 36(8), 2095–2105.

Zhang, Y., B. Baeumer, and D. A. Benson (2006), Relationship between flux and resident

concentrations for anomalous dispersion, Geophys. Res. Lett., 33, L18,407, doi:10.1029/

2006GL027251.

Zhang, Y., D. A. Benson, and B. Baeumer (2007), Predicting the tails of breakthrough curves

in regional-scale alluvial systems, Ground Water, 45 (4), 473–484, doi:10.1111/j.1745-6584.

2007.00320.x.



104 BIBLIOGRAPHY

Zheng, L., J.-Q. Guo, and Y. Lei (2005), An improved straight-line fitting method for analyzing

pumping test recovery data, Ground Water, 43(6), 939–942, doi:10.1111/j.1745-6584.2005.

00094.x.

Zinn, B., and C. F. Harvey (2003), When good statistical models of aquifer heterogeneity go bad:

A comparision of flow, dispersion, and mass transfer in connected and multivariate gaussian

hydraulic conductivity fields, Water Resour. Res., 39 (3), doi:10.10292001WR001146.

Zinn, B., L. C. Meigs, C. F. Harvey, R.Haggerty, W. J. Peplinski, and C. F. von Schwerin (2004),

Experimental visualization of solute transport and mass transfer processes in two-dimensional

conductivity fields with connected regions of high conductivity, Environ. Sci. Technol., 38 (14),

3916 –3926, doi:10.1021/es034958g.


	Tesis_completa.pdf
	1 Introduction
	1.1 Objectives
	1.2 Thesis outline

	2 Flow: Interpretation of Recovery Tests
	2.1 Introduction
	2.2 Methodology for the numerical simulations
	2.2.1 Transmissivity fields
	2.2.2 Simulation of recovery tests
	2.2.3 Analysis of the simulated tests

	2.3 Discussion of results
	2.4 A reinterpretation of the field tests
	2.4.1 Tests at Park Escorxador
	2.4.2 Test at Villalba Street
	2.4.3 Test at Mallorca Street

	2.5 Conclusions and recommendations

	3 Conservative Transport: Memory parameters
	3.1 Introduction
	3.2 Background
	3.3 Methodology
	3.3.1 Generation of transmissivity fields
	3.3.2 Fine-scale transport simulations within the heterogeneous fields
	3.3.3 Obtaining memory functions from breakthrough curves
	3.3.4 Modeling of BTCs using the memory term

	3.4 Results
	3.4.1 Effects of mass input and detection mode; scaling
	3.4.2 Effects of different heterogeneous fields
	3.4.3 Effects of the local-scale equation
	3.4.4 Comparison with BTCs using mass transfer

	3.5 Discussion and Conclusions

	4 Reactive Transport: MRMR-R
	4.1 Introduction
	4.2 The Multi-Rate Mass Transfer Reactive (MRMT-R) Model
	4.2.1 Conservative transport model based on Multi-Rate Mass Transfer
	4.2.2 Reactive transport in a single porosity model
	4.2.3  Multi-Rate Mass Transfer Reactive (MRMT-R) model

	4.3 The MRMT-R Model: Sensitivity Analysis
	4.3.1 Reaction Rate Spatial Distributions in the Mobile and Immobile Zones
	4.3.2 Sensitivity to the equilibrium constant
	4.3.3 Variation of Parameters that Alter the Shape of the Conservative BTC
	4.3.4 Variation of parameters conserving the shape of the BTC

	4.4 MRMT-R upscaling methodology
	4.4.1 Creation of heterogeneous transmissivity fields
	4.4.2 Reactive transport simulations
	4.4.3 Derivation of memory function for conservative transport

	4.5 Reproducing the observations in the heterogeneous media by means of an effective model
	4.5.1 Reproducing anomalous transport behavior
	4.5.2 Reproducing Quasi-ergodic transport

	4.6 Sensitivity to boundary condition and transverse dispersivity
	4.6.1 Boundary conditions
	4.6.2 Transverse dispersion

	4.7 Conclusions

	5 General conclusions
	A Apendix A: Numerical implementation
	A.1 Implementation of a discrete mass-transfer scheme
	A.2 Implementation of the discrete MRMT-R

	Bibliography




