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2 MODULATION OF A WAVE

FRONT WITH A LCSLM

2.1 Models for the twisted nematic cell

There has been a massive effort beginning in the seventies to bring out

liquid crystals with better performance, mainly because of their display

applications. At the same time different display modes have been investigated,

among them the twisted nematic cell (TN-cell) has become the most extended

one.

In order to analyze and study the optical performance of the liquid crystal

devices we need to know the orientation of the molecular director n
r

 across the

cell. This orientation can be calculated through a direct approach or through a

reverse-engineering approach. In the direct approach, the designers of liquid

crystal devices calculate the exact orientation of the molecular director n
r

 by

applying the elastic and electromagnetic theory, and by using the values for the

parameters of the LC molecules and the LC cell. Normally the users of LC

devices do not have access to the values of these parameters. Then a reverse-
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engineering process is required to calculate by means of indirect measurements

and using simple models the distribution of the molecular director n
r

 across the

cell. In this sense different models have been proposed for the TN-cells

[Lu90,Coy96] but they show a lack of accuracy. Recently we proposed a

simplified model [PAPER A] that not only provides a good estimation but also

permits a quantitative prediction of the optical performance of the TN-cell, thus

bridging the gap between exact and inverse approaches. We note that in the

following we will concentrate our attention on the TN-cell, even though some

results may also be applied to other LC display modes. The exact description

provided by the direct approach is presented in Section 2.2.1. In Section 2.2.2 we

derive the model proposed in this thesis and presented in [PAPER A]. We

illustrate that the previous models used in the reverse-engineering approach can be

considered as particular cases of the new model we propose.

2.1.1 Direct approach: exact description

In the direct approach the researcher knows the values of the physical

parameters of the liquid crystal molecules. If the steady-state directors distribution

is to be calculated, the necessary parameters are the elastic constants and the

dielectric anisotropy ∆ε = ε|| - ε⊥. If calculating the dynamic response of the LC

directors the values for the viscosity coefficients are also necessary. In this thesis

our interest is focused on the steady-state performance of the TN-cell.

In Section 1.2.1 we mentioned the elastic constants k11, k22, k33 for the

splay, the twist, and the bend deformations of the liquid crystals respectively. We

consider that the deformations in the TN-cell are produced at constant temperature

and at constant pressure. The expression for the elastic free energy density UL is

derived from the Oseen-Frank elastic theory that in the case of the TN-cell

[Yeh99] provides
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where z is the coordinate along the twist axis. χ and θ are respectively the twist

and the tilt angles shown in Figure 1.2, which determine the distribution of the

molecular director n
r

 in the cell.

When an electric field E
r

 is applied to a material, the macroscopic

electrostatic free energy density UE is given by

EDU 2
1

E

rr
⋅= (2-2)

where D
r

 is the displacement field vector. The dielectric permittivity relates the

displacement field vector D
r

 and the applied electric field E
r

, E D
rr

ε= . In an

anisotropic electric material, as the nematic liquid crystal, the dielectric

permittivity ε  is a tensorial magnitude. Taking this into account, under an applied

electric field along the Z axis the electromagnetic energy density UE in a TN-cell

can be written as [Yeh99]
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= (2-3)

As explained in Section 1.2.1, the external surfaces (planes z=0 and z=d)

are coated with an alignment layer in order to force the molecular director to lay

along the surfaces, pointing in a specific direction. The anchoring of the LC

molecules at the surfaces imposes a boundary condition to the free movement of

the LC molecules in the TN-cell. In order to find the distribution of the director n
r

across the cell we have to minimize the total free energy of the cell U,

   ( )∫ +=
d

0

EL dzUUU (2-4)

This minimization, 0U =δ , requires the technique of variational calculus.

When there is no voltage applied, field-off state, only the elastic free

energy density UL contributes to the total free energy U. From the minimum free

energy condition 0U =δ  we obtain the tilt angle θ as constant and equal to 90

degrees, i.e. the director axis is perpendicular to the twist axis all along the cell
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[Gen93]. Furthermore, the twist χ is linear with respect to the cell thickness z, that

is χ = α z/d, where α is the total twist angle and d is the total cell thickness, also

called cell gap. In Figure 2.1 the twist and the tilt evolutions are represented as a

function of the cell depth z.

z=0 z=d

V=0

z=0 z=d

V=0

twist tilt

χ = 0

χ = α

θ =   0º

θ=  90 º

depth depth

Figure 2.1. Profiles for the twist χ and the tilt θ angles in the field-off state.

Using this description, and applying the Jones matrix formalism for

polarized light, Yariv and Yeh [Yar84] derived the expression for the Jones matrix

of the TN-cell in the field-off state. They regarded the TN-cell as a stack of

uniaxial birefringent layers, each one slightly twisted with respect to the previous

one. As a result of the matrix product of the different layers they obtained an

analytical expression for the Jones matrix of the TN-cell, in the following denoted

as MLCSLM,

( ) ( ) ( ) ( )βααββα ,MRiexp,M LCSLM −−= (2-5)

We note that this expression depends on the total twist angle α and on the

birefringence β of the TN-cell. As we commented in Section 1.2.1, we use the

definition for birefringence typically found in the literature related with LCDs and

LCSLMs. In Eq. (2-5), )(R ϖ  is the 2×2 rotation matrix (for a generic angle ϖ),

( ) 
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and the matrix ),(M βα  is given by

( ) 
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where
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γcosX = (2-8a)

γ
γ
β

sinY = (2-8b)

γ
γ
α

sinZ = (2-8c)

22 βαγ +=  is a parameter that combines the twist α and the birefringence β of

the TN-LCSLM. The notation X,Y,Z for the elements in the Jones matrix of the

TN-LCSLM was introduced in [Bou97].

In the presence of an applied voltage V, there is a competition between the

consequent electric torque and the elastic restoring torque imposed by the

anchoring at the surfaces. At first, as the applied voltage increases in magnitude,

there is no change in the orientation of the director n
r

 with respect to the field-off

state situation. However, when the applied voltage exceeds the Freedericksz

transition threshold Vth , the molecular director changes its orientation from one

molecule to the next along the Z axis (or twist axis). Both the elastic UL and the

electrostatic UE energy density contribute to the total free energy U in the cell. In

this case we do not obtain explicit expressions for the distribution of the twist χ

and the tilt θ angles as a function of z. Furthermore, these distributions depend on

the applied voltage V, i.e. χ=χ(z,V) and θ=θ(z,V). In Figure 2.2 we represent the

typical shapes of the nonlinear profiles for the twist χ and the tilt θ angles and for

different voltages.

V2

V3

V1

z=0 z=d z=0 z=ddepth depth

twist tilt

χ = 0

χ = α

θ =  0º

θ = 90 º

V<Vth

Figure 2.2. Typical profiles for the twist χ and the tilt θ angles and for different
voltages.
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Note that in Figure 2.2 the tilt angle θ is zero at both ends as a result of the

boundary conditions. Actually, the LC director exhibits a small pretilt angle Θ,

about 1-3 degrees, as commented in Section 1.2.1. The cell midpoint (z=d/2) tilt

angle increases with the applied voltage and approaches 90 degrees at high

applied voltages. For voltages high enough the twist angle χ remains, in most of

the cell, parallel to the director direction at both surfaces. Consequently, most of

the twisting occurs within a thin layer around the cell midpoint. Note in Figure 2.2

that the twist angle χ presents an odd symmetry around the cell midpoint, while

the tilt angle θ presents an even symmetry. We remember that the difference in

the index of refraction ∆n depends on the tilt angle θ . Thus, the index of

refraction varies along the cell depth z for varying voltages V, i.e. ∆n=∆n(z,V).

P1

ϕ1

P2

ϕ2

X

Y

Z

Figure 2.3. LCSLM inserted between two polarizers.

For most of the applications the TN-cell is inserted between two polarizers

as we show in Figure 2.3. The cylinders in the LCSLM express the director

distribution across the cell. ϕ1 and ϕ2 are the angles between the transmission axis

of the input and the output polarizers with respect to the director axis in the input

and in the output faces of the LCSLM respectively. The convention for the angles

that we apply in this thesis is as follows. We consider that the observer is looking

from the laser towards the detector, i.e. in the positive direction of the Z axis. The

angles are taken to be positive when, for the observer, the sense from the director
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axis to the transmission axis of the polarizer is clockwise. With this convention,

the angles ϕ1 and ϕ2 represented in Figure 2.3 are positive.

In Section 1.2.2 we outlined the different methods to calculate the optical

transmission of the cell. Either the Jones formalism or the more general 4x4

Berreman’s method can be used. In the case of the field-on state it is not possible

to determine an analytical expression for the Jones matrix of the LCSLM. Thus,

the problem can only be addressed numerically. First, the values χ=χ(z) and

θ=θ(z) are calculated for different values of applied voltage V. Second, the cell is

divided in a series of uniaxial birefringent layers and the propagation of the beam

of light is successively calculated through each of them. The second step has to be

repeated for every new set (ϕ1, ϕ2) of orientations of the polarizers.

In the case of the field-off state it is possible to find an analytical formula

for the intensity transmission of the LCSLM inserted between two polarizers. As

we said in Section 1.2.2, Gooch and Tarry [Goo75] calculated the first analytical

expression for the intensity transmission of the TN-cell. The Gooch and Tarry

formula corresponds to the configuration with transmission axes of the polarizers

parallel (or orthogonal) to the director axis at the input and at the output faces of

the LCLSM respectively, i.e. ϕ1=ϕ2=0 (or π/2). As it was mentioned in Section

1.2.3, these configurations (and their complementaries) are the ones that provide

the best performance for display applications. This is true for the thick LCDs,

which fulfill the Mauguin condition, i.e. α<<β. Under this condition we take

advantage of the polarization guiding effect. In the thin LCDs we will show,

Section 2.1.2.2, that these particular configurations remain as interesting

configurations even though the Mauguin condition is no longer fulfilled.

2.1.2 Reverse-engineering approach

The exact description reported in Section 2.1.1 needs the knowledge of the

physical constants of the liquid crystal material and the fabrication parameters of

the TN-cell (cell gap, range of applied voltage), that are not provided by the LCD

manufacturers. Thus, we are forced to use a reverse-engineering approach and
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design a simplified model for the twist χ and the tilt θ profiles that can provide a

good estimation of the optical transmittance of the TN-cell. In this sense Lu and

Saleh proposed a simplified model [Lu90] that has been a reference during the last

years. An improved model was proposed by Coy et al. [Coy96] some years later.

We recently proposed [PAPER A] a new simplified model for the TN-cell, based

on these two previous models. The innovations we have introduced enable us for

the first time to have a reverse-engineering approach model that not only provides

qualitative results but also quantitative calculations of the optical transmission

with a high degree of accuracy.

In this Section we develop this new model. We also show that the Lu and

Saleh and the Coy et al. models can be derived as two particular cases of our more

general proposal.

2.1.2.1 Model based on the voltage dependent edge effect

The goal is to approximate in a simple and intuitive way the nonlinear

distributions of the twist χ and the tilt θ angles. The origin of these nonlinear

profiles are the boundary conditions imposed by the anchoring of the LC

molecules to the alignment layers. In Figure 2.2 we presented the realistic profiles

of the twist χ and the tilt θ angles. We could see that the molecules in the vicinity

of the alignment layers have a restricted freedom to move when a voltage is

applied to the TN-cell. This edge effect must be taken into account by any model

that pursuits an accurate description of the TN-cell.

In the model we propose in this thesis we take into account this edge effect

by assuming that the TN-cell consists of three regions with a particular behavior:

(1) two edge layers, with a thickness d1 each of them, where the LC molecules are

unable to tilt and twist, thus acting as two wave plates.

(2) a central part, with a thickness d2, which exhibits a homogeneous tilt and a

linear twist with the cell depth.
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The total thickness d of the cell is d=2d1+d2. In Figure 2.4 we illustrate the

molecular director distribution with the cell depth z when the edge layers are

introduced. This division of the TN-cell in three regions was first proposed by

Coy et al. [Coy96].

X

Y

Z

Figure 2.4. Diagram of the proposed model for the LC cell with the two edge layers
of thickness d1 and the central part of thickness d2.

Another important feature can be extracted from Figure 2.2: the nonlinear

profiles of the twist χ and the tilt θ angles vary with the applied voltage. This fact

is included in the model by considering that the magnitude of the edge effect

depends on the applied voltage, i.e. the thickness d1 of the edge layers varies with

the voltage. This voltage dependent edge effect is a novelty with respect to any

previous model. The profiles for the twist χ and the tilt θ angles according to the

model we propose are illustrated in Figure 2.5. The central part exhibits a twist χ

that depends linearly with the cell depth, i.e. χ = α(z-d1)/d2 if d1 < z < d - d1, and

the tilt angle θ is constant with z in this region and varies with the applied voltage.

z=0 z=d z=0 z=ddepth depth

twist tilt

χ = 0

χ = α

θ =  0º

θ = 90 º

Figure 2.5. Profiles for the twist χ and the tilt θ angles as a function of the depth for
different voltages. The thicknesses d1 and d2 vary with the voltage.
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In the following we develop the corresponding birefringence parameters

for the two regions in the TN-cell:

(1) Edge layers.- The birefringence δ for each of the edge layers is given by

   ( ) ( ) λ∆πδ max1 nVdV = (2-9)

where λ is the wavelength of the incident light. Additionally, the thickness d1

varies with the voltage. ∆nmax is the difference between the extraordinary and

the ordinary index, i.e. it is a maximum because the LC molecules are not

tilted. As the director do not twist nor tilt the two edge layers can be

represented as two wave plates, each one with a retardance 2δ.

(2) Central part.- The twist χ is a linear function of z, and the tilt angle θ is

homogeneous for all the LC molecules. Moreover, the tilt angle varies with

the voltage. Therefore, the central part of the TN-cell can be described by a

Jones matrix with the same formal expression as the Jones matrix presented in

Eq. (2-5) but now the birefringence parameter varies with the voltage β(V).

The birefringence β(V) is given by

( ) ( ) ( ) λ∆πβ VnVdV 2= (2-10)

where both the index difference ∆n and the thickness d2 depend on the

voltage.

Hence, the total birefringence of the TN-cell is δ+β+δ. The retardance

generated between the extraordinary and the ordinary rays propagating across the

TN-cell is twice this value, i.e. the total retardance is 2δ+2β+2δ, as commented in

Section 1.2.1.

We want to add a quotation to the expression of the edge layers

birefringence ( ) ( ) λ∆πδ max1 nVdV = . Let us provide a more realistic image of

the edge effect. Once again we take a look at Figure 2.2. The twist angle χ

remains approximately constant in the vicinity of the surfaces of the TN-cell, and

the length of the region where it remains constant increases with the applied
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voltage. However, we can see that the tilt angle θ is not constant in the vicinity of

the surfaces: actually, the highest the applied voltage the largest the variation in θ.

Thus, we define as '
1d  the thickness of the region in the vicinity of the surfaces

where the twist angle χ remains constant. Inside of this region the tilt angle θ is

not constant and, therefore, the index difference varies with z, i.e. ∆n(z,V). Thus, a

more rigorous expression for the δ birefringence is

( ) ( ) ( )∫∫
=

−=

=

=

==
dz

)V('
1ddz

)V('
1dz

0z

dzV,zndzV,znV ∆
λ
π

∆
λ
π

δ (2-11)

where due to the symmetry of the TN-cell, the δ birefringence value is the same in

the two edge layers. A simplification can be made if we consider the mean value

( ) ( )V'
1d

Vn∆  of the index difference in the edge layer, i.e.,

                  ( ) ( ) ( ) ( )∫
=

=

=
)V('

1dz

0z
'
1

V'
1d

dzV,zn
Vd

1
Vn ∆∆ (2-12)

Then Eq. (2-11) can be rewritten as

( ) ( ) ( ) ( ) λ∆πδ
V'

1d
'
1 VnVdV = (2-13)

In Figure 2.6 we show the profiles for the twist χ and the tilt θ angles according to

the new details that we have considered in the voltage dependent edge effect

model. We see that in the edge layers, the value for the tilt angle θ is not zero.

z=0 z=d z=0 z=ddepth depth

twist tilt

χ = 0

χ = α

θ =  0º

θ = 90 º

V<Vth

V1

V2

V3

V1

V2

V3

Figure 2.6. Profiles for the twist χ and the tilt θ angles and for different voltages. The
thicknesses d1’ and d2’ for the edge layers and the central part vary with the voltage.
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Actually, Eq. (2-9) and Eq. (2-13) are different. However, we have no way

to distinguish if the variation in the birefringence is caused either by a change in

the thickness of the edge layer or by a change in the index difference. Thus, the

value for δ(V) calculated with both expressions is the same. For the sake of

simplicity, in [PAPER A] we have considered that the variation in δ(V) is simply

due to a change in the thickness of the edge layer, leading to Eq. (2-9).

Our next step is to calculate the expression for the Jones matrix of the

LCSLM according to the voltage dependent edge effect that we propose. We

know that the edge layers can be described as two wave plates, each of them with

a retardance 2δ. The extraordinary axis of these wave plates is oriented parallel to

the LC director at the input and at the output surfaces respectively. The liquid

crystal materials used to fill the LCSLMs have a positive dielectric anisotropy, ∆ε

= ε|| - ε⊥ > 0. Thus, the extraordinary axis of the wave plates acts as the slow axis.

The central part can be described with the same formal expression as the Jones

matrix presented in Eq. (2-5) by simply replacing β by β(V). The resultant matrix

for the LCSLM, M’LCSLM , is given by the following matrix product

( ) ( ) ( ) ( ){ } ( ) ( )δβααδαδβα 2W,MR2WR,,M' 0LCSLM0LCSLM ⋅⋅+⋅⋅−=   (2-14)

Here ( )δ2W0  is the Jones matrix for a wave plate with a retardance 2δ, i.e.,

( ) ( )
( )




 −
=

δ
δ

δ
iexp0

0iexp
2W0 (2-15)

The matrix M’LCSLM(α,β,δ) can be simplified as

( ) ( ) ( ) 





+−

−
−+−=

'iY'XZ

Z'iY'X
R)2(iexp,,M'LCSLM αδβδβα (2-16)

where we define new parameters X’ and Y’ as

        δδ 2Ysin2cosX'X −= (2-17a)

         δδ 2cosY2Xsin'Y += (2-17b)
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Note that the parameter Z does not depend on the birefringence of the edge

layers while both X’ and Y’ are affected by the existence of the edge layers. It is

important to remark that the LCSLM is a non-absorbing device. Then, the matrix

M’LCSLM(α,β,δ) is unitary, i.e. its determinant is equal to one. From this property

we find a useful relation that links the three parameters X’2 + Y’2 +  Z2 =  1.

Fernández-Pousa et al. [Fer00] provide some general relations based on symmetry

based arguments between the matrix elements of the Jones matrix for the TN-

LCSLM.

The expression M’LCSLM(α,β,δ) in Eq. (2-16) is the one proposed and

verified in [PAPER A] to describe the TN-cell behavior. From a mathematical

point of view, the model we propose has two degrees of freedom for each voltage

value. They are the birefringence of the two edge layers δ = δ(V), and the

birefringence of the central part β = β(V). The LCSLM is totally described when

we know the values for these two parameters for each applied voltage value.

Once we have an analytical expression for the Jones matrix of the LCSLM

we can calculate the intensity transmission and the phase modulation when the

LCSLM is inserted between polarizing devices. Here we show the calculation

done in [PAPER A] for the LCSLM inserted between two polarizers. Note that in

this thesis the convention for the angles is different with respect to [PAPER A].

As illustrated in Figure 2.3, ϕ1 and ϕ2 are the angles of the transmission axes of

the polarizers with respect to the director axis at the input and the output face of

the LCSLM respectively. The electric field vector OUTE
r

 at the output of this

system is given by the following matrix product






′+=
1

1
LCSLM2XOUT sin

MRPE
ϕ
ϕ

δβαϕα
cos

),,()(
r

(2-18)

where PX is the Jones matrix of a linear polarizer with its transmission axis

oriented parallel to the X-coordinate axis, let us say:
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





=

00

01
PX (2-19)

The output amplitude vector OUTE
r

 is expressed in the coordinate system formed

by the axes of the output polarizer. The resultant output vector OUTE
r

 transmitted

by the system is given by

( )( ) 






 +′−−+−′
+−=

0

YiZsinX
2iE 212121

OUT

)cos()()cos(
exp

ϕϕϕϕϕϕ
δβ

r
 (2-20)

The intensity transmission T of the system is calculated as the hermitic

scalar product of the output electric field vector OUTE
r

T = †
OUTE
r

· OUTE
r

(2-21)

where †
OUTE
r

 is the hermitic conjugate of the vector OUTE
r

. From Eq. (2-20) it is

trivial to see that the complex amplitude component Et transmitted by the analyzer

is given by,

( )( )[ ])cos()()cos(exp 212121t YiZsinX2iE ϕϕϕϕϕϕδβ +′−−+−′+−=  (2-22)

The phase value, or phase-shift ψ, for the transmitted component Et is given by

                   
[ ]
[ ]





=

t

t

E
E

atan
Re

Im
ψ (2-23)

where Re[] and Im[] express the real and the imaginary part respectively, and

atan() is the inverse tangent function. Thus, the intensity transmission T is

     ( ) ( )[ ] ( )[ ]221
2

2121 cosYZsincosXT ϕϕϕϕϕϕ +′+−+−′= (2-24)

and the resultant phase-shift ψ is given by

      





−+−′

+′
−−−=

)(Zsin)cos(X
)cos(Y

atan2
2121

21

ϕϕϕϕ
ϕϕ

δβψ (2-25)

To calculate the intensity transmission and the phase-shift for a particular

LCSLM, we need to know some magnitudes in Eq. (2-24) and (2-25). We group
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the unknowns in two different categories: the voltage independent unknowns and

the voltage dependent unknowns.

There are two voltage independent unknowns: the orientation of the

molecular director at the input face ΨD, and the total twist angle α. To determine

the values for the angles ϕ1 and ϕ2 we must find the orientation of the molecular

director at the input face ΨD and at the output face ΨDOUT with respect to the

laboratory coordinate system. Actually, ΨDOUT can be found from the values of

ΨD and α as ΨDOUT =ΨD + α. The value for the twist angle α is also required to

calculate X’, Y’ and Z. In Section 2.2.2 we show how to calculate ΨD and α

according to the technique proposed by Soutar and Lu [Sou94b]. The two voltage

dependent unknowns are the birefringences β(V) and δ(V). In Section 2.2.4 we

describe the experimental technique proposed in [PAPER A] for calculating these

two parameters as a function of applied voltage. The values calculated for δ(V)

characterize the voltage dependent edge effect existing in the LCSLM.

2.1.2.2 Previous models as particular cases

In this Section we will show how the previous simplified models, the one

proposed by Lu and Saleh [Lu90] and the one proposed by Coy et al. [Coy96],

can be derived as particular cases of the general model we have developed.

We illustrate that the model of Lu and Saleh corresponds to the case in

which no edge effect exists, i.e. δ = 0. As Lu and Saleh comment [Lu90,Lu91a]

they approximated the nonlinear distributions of the twist χ and the tilt θ angles

considering the following approximations:

(1) Since the tilt angle )V,z(θθ =  is a smoothly varying function with even

symmetry around the midpoint ( 2/dz = ) it is approximated by its mean

value.
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(2) Since the twist angle )V,z(χχ =  is a smoothly varying function with odd

symmetry around the midpoint ( 2/dz = ), it is approximated by a linear

function of z, d/z αχ = .

In Figure 2.7 we represent the twist χ and the tilt θ profiles according to

these two approximations. In the model of Lu and Saleh there is no edge effect,

therefore δ = 0. The whole LC cell is behaving as the central part described in the

voltage dependent edge effect model. The previous Jones matrix in Eq. (2-16)

reduces to a Jones matrix with the same formal expression as Eq. (2-5) with the

substitution of β by β(V).

z=0 z=d z=0 z=d

twist tilt

χ = 0

χ = α

θ =  0º

θ = 90 º

depth depth

Figure 2.7. Profiles for the twist χ and the tilt θ angles for different voltages
according to the Lu and Saleh model.

The Lu and Saleh model was not able to give accurate quantitative results

of the performance of the LC cell. This led Coy et al. to modify the Lu and Saleh

model [Coy96]. Coy et al. considered that the molecules close to the surfaces do

not tilt nor twist. Consequently, these molecules act as two wave plates located at

these surfaces. Coy et al. considered the thickness of these two wave plates

constant with the applied voltage. Thus, their proposal can be derived from the

general model in Eq. (2-16) simply by considering δ = constant. In Figure 2.8 we

show the corresponding profiles for the twist χ and the tilt θ angles.

Actually, the nonlinear profiles reported by the exact description (Figure

2.2) vary significantly with the applied voltage. Thus, as we proof in [PAPER A],

even though the Coy et al. model provides better results than the Lu and Saleh

model, it is still far from giving an accurate calculation of the optical

transmittance for the TN-cell.
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z=0 z=d z=0 z=ddepth depth

twist tilt

χ = 0

χ = α

θ =  0º

θ = 90 º

Figure 2.8. Profiles for the twist χ and the tilt θ angles for different voltages
according to the Coy et al. model. The thicknesses d1 and d2 are constant.

In the following, using Eq. (2-24) and (2-25) we show some theoretical

simulations for the intensity transmission and the phase-shift. We plot the

simulated values versus the β birefringence. We consider a range of 500 degrees

for the β birefringence. This value, 500 degrees, can be considered a typical value

for the maximum β birefringence in the case of a thick LCSLM. In the thin

LCSLMs the maximum β birefringence is about 200 degrees or lower, depending

on the wavelength of the incident light as well. We know that the β birefringence

is a function of the applied voltage, i.e. β =β(V). The β birrefringence decreases

monotonously with the increase in the applied voltage.

We compare the simulations obtained under two different situations: on

one hand, considering the existence of edge layers and, on the other hand,

omitting the edge layers. We have calculated the curves for two different values of

the δ birefringence for the edge layers: δ = 10 degrees and δ = 20 degrees. We

concentrate our attention in some specific configurations of the polarizers that are

especially interesting for our purposes. In the simulations we consider that the

total twist angle α for the LCSLM is equal to 90 degrees.

First, we consider the typical configurations used in display applications.

As we have commented, they are ϕ1 = ϕ2 = 0º, and ϕ1 = ϕ2 = 90º. Actually, the

complementary configurations, i.e. ϕ1 = 0º, ϕ2 = 90º and ϕ1 = 90º, ϕ2 = 0º, are

equally good for display applications. In Figure 2.9 we plot the results for the

configuration ϕ1 = ϕ2 = 90º. The intensity transmission curves, Figure 2.9(a), and

the phase-shift curves, Figure 2.9(b), are identical for the three cases considered, δ

= 0 deg., δ = 10 deg. and δ = 20 deg. Thus, this configuration is not sensitive to
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the existence of the edge layers. A display configuration should provide a high

contrast between the dark (minimum intensity transmission) and the bright

(maximum intensity transmission) states. We can see that if we use the β range

between 0 deg. and 155 deg. we achieve the maximum possible contrast between

the dark and the bright states. For values of β  higher than 155 deg., the intensity

transmission follows an attenuating oscillatory behaviour that gradually

approaches to the maximum transmission value: the LCSLM is under the

Mauguin regime condition, i.e. α<<β. In the complementary configuration, ϕ1 =

0º, ϕ2 = 90º, the dark and the bright states are interchanged: β = 0 deg. is the

bright state, and β > 155 deg. is the dark state.
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Figure 2.9. Simulation for the configuration ϕ1

= ϕ2 = 90º , applying the values δ = 0 deg., δ =
10 deg. and δ = 20 deg. The results coincide for
the three δ values. (a) Normalized intensity. (b)
Phase-shift. (c) Complex plane plot.

The thick LCSLMs benefit from the Mauguin regime to produce a good

intensity contrast in an easy way. The polarizers have to be oriented in the

configurations ϕ1 = ϕ2 = 0º, ϕ1 = ϕ2 = 90º, or the complementaries. In the next

explanation let us consider the configuration ϕ1 = ϕ2 = 90º, i.e. both polarizers are

orthogonally oriented to each other. When a high voltage is applied β is equal to 0
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deg.: for β =0 deg. the director is parallel to the twist axis and the light

propagating along the twist axis does not change its polarization state. Hence, the

incident linearly polarized light is blocked by the orthogonally oriented output

polarizer: the dark state is generated. When no voltage is applied the LCSLM

fulfills the Mauguin regime, i.e. α<<β, and the polarization guiding effect takes

place. The incident linearly polarized light follows the twist of the director across

the cell. Thus, the output polarizer transmits all the light: the bright state is

generated. As long as α<<β, this excellent intensity contrast is not sensitive to

errors in the resultant thickness of the liquid crystal layer during the fabrication

process. Moreover, as long as α<<β, the contrast is not sensitive to the

wavelength of the incident light (so we can use white light sources as it is the case

in display applications). The main drawback of the thick LCSLMs is their slow

response to the change in the applied voltage. The time response is proportional to

the square of the thickness of the LC-cell. The higher resolution, i.e. the larger

number of pixel elements to be addressed, in the newer generations of displays

requires a faster time response to the electrical signal applied. One of the solutions

has been to produce LCSLMs with a thickness reduced to the minimum length

possible while keeping a good contrast in display applications: the condition is

that the resultant β for the field-off state has to be about 155 deg. Thus, the thin

LCSLMs does not benefit from the large margin of tolerance given by the

Mauguin regime condition. This makes the fabrication process and the field-on

operation much more critical.

In display applications the phase-shift modulation of the light is

unimportant because we work with incoherent light and the physical magnitude of

interest is the intensity. In other applications where we use coherent light the

physical magnitude of interest is the complex amplitude, hence, the phase-shift

modulation has to be taken into consideration. If we look at the phase-shift curve

in Figure 2.9(b) we observe that the range of phase-shift is less than 90º. Thus, if

working in a range of β between 0 deg. and less than 155 deg. we obtain a high

contrast with a reasonable low phase-shift coupling. This configuration, ϕ1 = ϕ2 =

90º, has been widely used when amplitude-only modulation was required. In



2  M O D U L A T I O N  O F  A  W A V E  F R O N T  W I T H  A  L C S L M- 44 -

Figure 2.9(c) we show the representation in the complex plane for the complex

amplitude transmission where we appreciate the coupling between amplitude and

phase-shift modulations.
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Figure 2.10. Simulation for the configuration
ϕ1 = ϕ2 = 0º, applying the values δ = 0 deg., δ
= 10 deg. and δ = 20 deg. The results coincide
for the three δ values. (a) Normalized intensity.
(b) Phase-shift. (c) Complex plane plot.

In Figure 2.10 we present the results for the configuration ϕ1 = ϕ2 = 0º. As

in the previous configuration the intensity transmission curves and the phase-shift

curves are identical for the three cases considered, δ = 0 deg., δ = 10 deg. and δ =

20 deg. Thus, this configuration is not sensitive to the existence of the edge layers.

We can see that the intensity transmission curve is identical to the one presented

in Figure 2.9(a). Thus, the configuration ϕ1 = ϕ2 = 0º and its complementary ϕ1 =

0, ϕ2 = 90º are also appropriate configurations for display applications. In Figure

2.10(b) we can see that the phase-shift modulation has a monotonous behaviour

and a very large range of variation. If we limit the range of operation to β values

higher than 155 deg., we can obtain a large phase-shift modulation with a very

low coupling of intensity transmission modulation. The configuration ϕ1 = ϕ2 =

0º, using the range β >155 deg., has been the typical one used when phase-only
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modulation was required. Obviously, in the thin LCSLMs this configuration can

not be obtained because the birefringence does not get so high values. In Figure

2.10(c), we show the representation of the complex amplitude transmission. We

can see that, excluding the low β birefringence points, the curve is practically

overlapped with the unit circle.

Even though we do not plot the results in this thesis, we want to remark

that in the simulations for the two complementary configurations, i.e. ϕ1 = 0º, ϕ2

= 90º and ϕ1 = 90º, ϕ2 = 0º, once again the edge effect is not apparent.
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Figure 2.11. Simulation for the configuration
ϕ1 = 45º, ϕ2 = -45º, for different values of the δ
birefringence. (a) Normalized intensity. (b)
Phase-shift. (c) Complex plane plot for the
simulation with δ = 0º.

In Figure 2.11 we show the results for the configuration ϕ1 = 45º, ϕ2 = -

45º. In this case we see that we obtain clearly different intensity and phase-shift

curves for the three values considered for the δ birefringence (δ = 0 deg., δ = 10

deg. and δ = 20 deg.). Thus, this is an interesting configuration in order to verify

the existence of the edge effect and, therefore, to validate the model we propose.

If we look at the intensity transmission, Figure 2.11(a), we can see that for δ = 0º
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the curve attains maximum values equal to 1 and minimum values equal to 0. For

δ = 10 deg. and δ = 20 deg., the intensity curve is shifted with respect to the curve

corresponding to δ = 0 deg. Moreover, the minimum intensity is not zero. In the

phase-shift curves, Figure 2.11(b), we also observe different behaviours. For δ = 0

deg. the phase-shift is a discontinuous curve with a monotonous behaviour in each

of its sections. For δ = 10 deg. and δ = 20 deg., the phase-shift curve is continuous

but with a non-monotonous behaviour. We note that the phase jumps in the curve

for δ = 0 deg. are located at the β values where the intensity transmission is zero.

In Figure 2.11(c) we have plotted in the complex plane the complex amplitude

transmission for δ = 0 deg. We see that this is a continuous curve with a highly

coupled amplitude and phase-shift modulations. In general, for arbitrary values of

ϕ1 and ϕ2 the amplitude and the phase-shift are highly coupled.

We have seen in Figure 2.9 and in Figure 2.10 two configurations not

sensitive to the edge effect. In fact, these two configurations and their

complementary are the only ones which are not sensitive to the edge effect. In

general, the edge effect has an influence on the optical transmission as in the case

shown in Figure 2.11.

2.2 Characterization of the LCSLM

In this Section we introduce with further detail the different methods

mentioned in [PAPER A] and [PAPER B] which are required to characterize the

LCSLM. First of all we show in Section 2.2.1 the specifications of our LCSLM

and the video projector from which it has been extracted. In Section 2.2.2 the

method we follow to obtain the voltage independent magnitudes of the LCSLM is

explained. The experimental set-ups used for measuring the intensity transmission

and the phase-shift as a function of the gray level are presented in Section 2.2.3.

Finally, the technique we propose in [PAPER A] to characterize the edge effects

in the LCSLM is introduced in Section 2.2.4, and in Section 2.2.5 some results are

presented in which we verify the validity of the proposed model to explain the
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behavior of the LCSLM. The experimental results are in excellent agreement with

the numerical results obtained with the proposed method.

2.2.1 Description of the LCSLM and the video projector

In general, due to its low cost and large availability the LCSLMs used in

research are the LCD panels extracted from commercial LCD-video projectors.

These panels are designed for an optimum performance in display applications,

but with the proper adaptations they can also be used in optical information

processing, in programmable diffractive optics, and in adaptive optics. In this

work the LCSLMs we use have been extracted from a Sony Model VPL-V500

video projector. This is a projection system for color images in VGA format. It

consists of three main components: (a) the source of light (a white light lamp), (b)

the electronics for the control of the video projector, and (c) an optical system

formed by three LCD panels with a recombining prism, lenses, dichroic mirrors,

and a projection objective. In Figure 2.12 the scheme for this video projector is

presented.
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OLCD
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Figure 2.12. Schematic diagram of the optical elements of the video projector. F: eye-
fly lens, M: mirror, D: dichroic beam splitter, C: condenser lens, P: polarizer, O:
objective lens, LCD: liquid crystal display.

As we can see in Figure 2.12, the original beam of light coming from the

white lamp (250 W metallic halur lamp) is separated in three different beams (red,
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green, and blue) by means of two dichroic mirrors. Each beam impinges onto a

LCD panel. The electronics separates the three colour components (red, green and

blue) of the VGA image that we want to project and send the signals to the

associated panels. Once the light beams have been modulated, they are

recombined by means of a prism to produce the desired image in color. The

objective projects the final image onto a screen.

(a)   (b)

Figure 2.13. (a) LCSLM Sony Model LCX012BL, we can see the panel and the
flexible printed circuit (FPC), (b) Magnified image of the pixelated structure of the
LCSLM. The dark areas correspond to the electrode wires and to the thin film
transistor (TFT) and the capacitor for each pixel.

The LCD panels we use are Sony Model LCX012BL. In Figure 2.13 a

picture of this LCSLM is shown. The Sony Model LCX012BL is a 3.3 cm

diagonal active matrix TFT-LCD panel addressed by polycrystalline silicon super

thin film transistors (TFT) with built-in peripheral driving circuit. The TFT active

matrix technology provides pixel by pixel control of the display. The small

rectangles in the upper side of each pixel, Figure 2.13(b), are the TFTs and

capacitors. The pixels are square with a pixel center to center separation of 41 µm

and with a pixel width of 34 µm. The number of pixels is 311696 (644 x 484

pixels). The video projector accepts the computer requirements of VGA platform

(640 x 480 pixels). An additional graphic card has been inserted in the personal

computer to send VGA images to the video projector. The VGA image consists of

34 µµm 34 µµm

41 µµm 41 µµm



2 . 2  C h a r a c t e r i z a t i o n  o f  t h e  L C S L M - 49 -

three different channels (red, green and blue) in order to produce full color

images. In each channel the image is visualized with 8 bits, that is 28 = 256 gray

scale levels (GSL). The voltage applied to each pixel is a magnitude related with

the gray level sent in the image to the corresponding channel in which the LCD is

connected. We note that the electronics for the Sony VPL-V500 video projector

produces a decrease in the voltage when the GSL is increased.

In order to use the LCD panels as LCSLMs in an optical set-up we had to

extract them from the video projector. The original connection of the LCD to the

electronics of the video projector is very short, so we had to connect the LCD

through a longer cable especially designed for this purpose. The LCD has a sheet

polarizer attached on one side. This sheet polarizer and the white lamp are both

removed. We note that the video projector turns off automatically when there is

no lamp connected. A connection in the printed circuit board (PCB) has been

added to enable the video projector working with no lamp. The image in the video

projector is controlled through two commands, brightness (B) and contrast (C),

which modify respectively the voltage offset and the voltage gain of the GSLs

applied. The values of these controls range from 0 to 100. We have found that an

increase in the brightness produces a decrease in the voltage offset, and an

increase in the contrast produces an increase in the absolute value of the voltage

gain. Considering a linear relation between the voltage V and the GSL the effect

of the brightness B and the contrast C values can be expressed as

( ) GSLCbBaVV max ⋅⋅−⋅−= (2-26)

where Vmax is the maximum voltage that can be addressed to the LCSLM, and a

and b are positive constants.

2.2.2 Determination of the director orientation and the twist angle

In Section 2.1.2.1 we established that different magnitudes have to be

calculated in order to use Eq. (2-24) and (2-25). In this Section we expose the

method to find the voltage independent magnitudes, ΨD and α, according to the

method proposed by Soutar and Lu [Sou94b]. Since the LCSLMs have been
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developed under proprietary conditions, little or nothing may be known about any

particular LC cell that we desire to model. This is the reason why Soutar and Lu

mention in their paper that “determination of the unknown parameters requires a

reverse-engineering procedure”. In [PAPER A] and [PAPER B] this technique

was summarized. Here, we will give more details.

In these experiments the LCSLM is inserted between the polarizer and the

analyzer. In Figure 2.14 we show a general scheme for this experiment with the

different angles to be considered. We can measure the angles ζ1 and ζ2 of the

transmission axes of the polarizers with respect to the laboratory vertical. Then the

angles ϕ1 and ϕ2 that appear in Eq. (2-24) and (2-25), defined with respect to the

director in the input and in the output face of the LCSLM respectively, can be

related to ζ1 and ζ2 as follows

D11 Ψϕζ +=  (2-27a)

D22 Ψαϕζ ++=  (2-27b)

where the unknown magnitudes ΨD and α appear.
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Figure 2.14. Scheme for the angles notation that we use in the experiment in order to
determine the voltage independent magnitudes.

We introduce in Eq. (2-24) the changes of variables reported in Eq. (2-27a)

and (2-27b). The LC cell is considered in the field-off state (δ = 0). Therefore, the

transmission is given by
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( ) ( )[ ] ( )[ ]2
D21

2
2121 2cosYZsincosXT Ψαζζαζζαζζ −−+++−++−= (2-28)

Apart from ΨD and α, we have a further unknown: the birefringence β that

appears together with α in the expressions for X, Y and Z (Eq. (2-8)). In the field-

off state the birefringence is maximum so we can write βmax. For simplicity, we

consider two specific cases, crossed (ζ1 = ζ2 + π/2) and parallel (ζ1 = ζ2)

polarizers. The intensity transmission of the system in these two cases is given by
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The common factor N accounts for light losses due to reflections in the interfaces

and absorption in the polarizers. Thus, there are 4 unknowns (N, α, β, ΨD).

We proceed with intensity measurements with crossed and parallel

polarizers as a function of the polarizer angle ζ1. The four unknowns can be

determined through a nonlinear curve fitting procedure using the theoretical

expressions (2-29a) and (2-29b). According to Davis et al. [Dav99a] a unique

determination of the values for the four unknowns is not possible if the

measurements are obtained with only one wavelength. The reason is that we have

four unknowns and only two constraints. In order to reduce the degrees of

freedom in the fitting and to eliminate ambiguities they proposed to measure with

different wavelengths. Particularly we have used the unexpanded beams for four

different wavelengths: 633 nm from a He-Ne laser and the 514, 488 and 458 nm

from an Ar+ laser. The angles ΨD and α are wavelength independent, the

birefringence βmax is obviously wavelength dependent. The normalization factor N

is also wavelength dependent because we use dichroic sheet polarizers. In Figure

2.15. we show the dependence of the logarithm of the intensity transmission on

the wavelength for the specific polarizers we use: dichroic polymer (DP) with the

coating Vis-1 designed for the visible, fabricated by Meadowlark Optics.
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Figure 2.15. Dichroic polymer (DP) polarizer, of Meadowlark Optics, with the
coating Vis-1 for the visible. Characteristic intensity transmission curves (logarithmic
scale) for the transmission axis (parallel curve) and for the extinction axis (crossed
curve) as a function of the wavelength.
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Figure 2.16. Crossed (filled symbols) and parallel (empty symbols) polarizers
transmissions measured in the field-off state. The lines correspond to the fitting of the
experimental data for the four wavelengths: 633 nm (circle), 514 nm (square), 488 nm
(diamond), and 458 nm (triangle).

Using the Solver curve fitting routine in Microsoft Excel, we determine the

set of values for the four unknowns that provide the best fit between the

experimental measurements and the theoretical expressions. We have used this

method with different LCSLMs (more than 9 units). In Figure 2.16 we plot the

experimental curve and the theoretical fit obtained with one LCSLM Sony model

LCX012BL for the four wavelengths. The intensity values in Figure 2.16 are
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normalized by the total intensity at the output of the second polarizer. All the

experimental results that we present along this thesis have been obtained using

this particular LCSLM. This unit has also been employed in most of the papers of

this thesis. We can visually perceive that the fitting is excellent for all the

wavelengths either for crossed or for parallel polarizers.

The result we obtain depends neither on the sign of the twist angle α, nor

on the two possible values of the molecular director orientation in the input face

ΨD or ΨD + π/2. Two further experiments need to be done in order to solve these

two ambiguities in Eq. (2-29a) and(2-29b). The first ambiguity can be solved

using a configuration of the polarizers that provides an intensity transmission

dependent on the sign of the twist angle α. One such configuration is for example,

input polarizer remains parallel to the laboratory vertical (ζ1 = 0) and the intensity

measurements are taken at different angles ζ2 of the output polarizer. In this case

the general expression in (2-28) becomes

( ) ( )[ ] ( )[ ]2D2
2

22 2cosYZsincosXT Ψαζαζαζ −−++−++−= (2-30)

Thus, we plot the measured data and the theoretical calculations with negative and

with positive twist angle. As we show in Figure 2.17 for data taken at 633 nm, the

theoretical curve with the negative twist is the one that overlaps the

measurements.
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Figure 2.17. Determination of the sign of the twist angle.
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For the ambiguity in ΨD we use the procedure proposed by Davis et al.

[Dav99b]. We illuminate the LCSLM with linearly polarized light. We address

uniform GSL screens to the LCSLM and then we examine the diffraction pattern

produced by the pixel structure as a function of the applied voltage. No analyzer is

used in the experiment. When the polarized light impinges with the electric field

parallel to the director axis in the input face we observe changes in the relative

intensities in the diffraction pattern. In Figure 2.18 we can see that for GSL = 200

the diffracted orders pointed by the arrows have an intensity which is clearly

different to the intensity for GSL = 250. These differences are even more evident

when observed in the laboratory.

In Figure 2.19 we show the images obtained for the diffraction pattern

when the light impinges linearly polarized perpendicular to the director axis. They

correspond to the same GSLs of Figure 2.18, GSL=200 and GSL=250. We can

see that there are no differences in the diffraction pattern at these two GSLs. The

same comment can be made for the rest of the GSLs.

Davis et al. [Dav99b] proposed a theoretical explanation for this

phenomenon. They explain that the changes in the relative intensities for the

diffracted spots is caused by an electric field gradient across each pixel. This

electric field gradient would cause a gradient in the tilt angle θ for the liquid

crystal molecules. While the tilt angle gradient does not affect the ordinary index

no of refraction, it causes a refractive index gradient for the extraordinary index of

refraction ne across each pixel. As a consequence, there is an optical path gradient

across each pixel for incident light polarized along the director. This optical path

gradient can be viewed as a blazed grating with a phase profile that acts on the

incident light polarized along the director. When we change the voltage applied to

the LCSLM, then the electric field gradient is modified. This produces a new

phase profile for the blazed grating that generates a different distribution of

intensities among the diffracted orders for incident light polarized along the

director.
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(a)   (b) 

Figure 2.18. Diffraction pattern of the pixelated structure of the LCSLM for incident
light linearly polarized parallel to the director axis at the input face. (a) GSL=200, (b)
GSL=250.

 (a)   (b) 

Figure 2.19. Diffraction pattern of the pixelated structure of the LCSLM for incident
light linearly polarized perpendicular to the director axis at the input face. (a)
GSL=200, (b) GSL=250.

In Table 2.1 we summarise the results that we have obtained for the values

of the unknowns according to the different experimental techniques that we have

explained along this Section 2.2.2.

βmax (degrees)α

(degrees)

ΨD

(degrees) 633 nm 514 nm 488 nm 458 nm

−92 +46 147 193 208 231

Table 2.1. Values of the parameters for the LCSLM used in the experiments.
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We have compared the values in Table 2.1 with the values of the

parameters obtained with other 9 Sony LCSLMs that we have measured,

corresponding to the models LCX012AL and LCX012BL. In particular we have

calculated the ratios βmax(λ)/βmax(633 nm) at the four wavelengths. In all the

LCSLMs the experimental ratios obtained are equal to 1.3, 1.4 and 1.56

respectively for the 514 nm, 488 nm and 458 nm wavelengths compared with the

633 nm wavelength. These values will be used in Section 2.2.4.

Using the ratios βmax(λ)/βmax(633 nm) we can obtain interesting

information about the optical properties for the LC material used to fill the cell.

We know that the expression for the birefringence in the field-off state is given by

λ∆πβ maxnd=  where d is the total thickness of the LC cell and the index

difference ∆nmax depends on the wavelength λ. Then the ratio βmax(λ)/βmax(633

nm) can be written as

( )
( )

( )
( )nm633n

n633
nm633 max

max

max

max

∆
λ∆

λβ
λβ

=  (2-31)

and we can calculate the normalized dispersion relation ∆nmax(λ)/∆nmax(633 nm).

This is a specific characteristic of the particular LC material used to fill the cell.

The ratios obtained are 1.06, 1.08 and 1.13 respectively for the 514 nm, 488 nm

and 458 nm wavelengths compared with the 633 nm wavelength. We observe that

the index difference increases as the wavelength decreases.

2.2.3 Intensity and phase measurement set-ups

For the intensity transmission measurement as a function of GSL we use

the set-up shown in Figure 2.20 with the LCSLM inserted between the

corresponding polarizing devices, in this case two polarizers. This is the same set-

up used in the previous Section but now the angles of the polarizers are fixed and

it is the addressed GSL that is varied. We use an unexpanded linearly polarized

laser beam. The laser beam passes through a wave plate which rotates the incident

light and orientates it adequately for the first polarizer P1. We address uniform
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GSL images to the LCSLM. A photometer reads the intensity transmitted by the

system for the GSL addressed. This data is transferred to a personal computer

through an analog/digital converter card. The data is normalized to a maximum

value of 1. For normalization purposes we measure at each GSL the intensity

transmitted by the system with the analyzer in the orthogonal orientation to the

desired one. The addition of the two intensities at each GSL is equal to the total

intensity behind the analyzer. This is the normalization value we use for each

GSL, thus the normalized value is not affected by the fluctuations in the laser

intensity. Note that the photometer takes intensity measurements. If we are

interested in the modulus of the amplitude transmission we simply have to

calculate the square root of the intensity transmission.

Video projector
Computer with VGA graphic
 card and A/D converter

Laser

WP

P2

P1
LCSLM

Radiometer

Photo-detector

Figure 2.20. Intensity transmission measurement set-up: P1 and P2 are polarizers and
WP is a wave plate.

In order to measure the phase modulation as a function of the GSL we use

the set-up shown in Figure 2.21. This set-up is analogous with slight variations to

set-ups, based on a two-beams interferometer geometry, used by different

researchers [Sou94a,Ber95]. The LCSLM is inserted between the polarizing

devices, in this case two polarizers, in the desired configuration. An unexpanded

laser beam is diffracted by a low frequency (8 lines/mm) phase diffraction grating.

The two diffraction maxima corresponding to the first diffraction orders are

incident onto the LCSLM. The rest of the diffraction orders are blocked. The lens
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L (focal length=20 cm) recombines the two beams after their passage through the

LCSLM. The interference fringes produced are magnified with a microscope

objective onto the sensor array of a CCD camera, in order to detect 6-8 periods

with the camera. The input aperture of the microscope objective serves as a spatial

filter that only transmits the zero-order component of the diffraction pattern

produced by the pixel structure of the LCSLM.

Video projector

Computer with VGA graphic
 card and frame-grabber

Laser

WP
P2

P1 LCSLM

Grating

CCD camera

L

Blocking
filter MO

Diffracted
beams

Fringe
 pattern

Different GSL at the two halves
of the LCSLM

Figure 2.21. Phase modulation measurement set-up: WP is a wave plate, P1 and P2
are polarizers, L is a converging lens, and MO is a microscope objective.

Thus, the pattern produced at the CCD camera is the two-beam

interference pattern. The position of this interference fringe pattern on the camera

is directly related to the relative phase-shift ψ between the two beams that form

the pattern. It is easily shown that

Λ∆πψ /2= (2-32)

where ∆ is the interference fringe displacement, and Λ is the fringe period, both

measured in CCD pixels.

The two beams pass through opposite halves of the LCSLM. A different

GSL signal is addressed to each half of the LCSLM. Thus, the relative phase-shift

ψ caused by the GSL signals can be obtained by observing the fringe translation.
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In order to determine the fringe motion, the image on the CCD camera is captured

by a frame-grabber. The software written for this purpose maintains one half of

the screen at a constant gray level equal to zero (GSL=0). The GSL at the other

half of the screen is changed from GSL = 0 to GSL = 255 in steps of 16 GSL. We

acquire an image of the interference fringes at each GSL change as shown in

Figure 2.22(a). Each data image is digitally correlated with the first data image

acquired, the one that corresponds to the full LCSLM screen at zero GSL. In this

way the data is smoothed and at the same time the correlation operation generates

a global maximum as we can see in Figure 2.22(b). The displacement in pixels of

this correlation peak is equal to the displacement of the fringes ∆ and it is a very

precise measurement.

(a) (b) 

Figure 2.22. Phase measurement experiment in an arbitrary configuration. (a) The
upper half shows the fringe pattern captured when the two sides of the screen are at
GSL=0. In the lower half we observe the fringe displacement due to the change of
GSL in one side of the screen of the LCSLM. (b) The upper half is the autocorrelation
calculated using the fringe pattern shown in the upper half of (a). The lower half is the
cross-correlation between the two fringe patterns in (a).

2.2.4 Characterization of the voltage dependent edge effect

In [PAPER A] we propose a technique to measure the voltage dependent

parameters β(V) and δ(V). In this Section we present and analyse this technique

with a greater detail.

First of all we study the dependence of both birefringence parameters on

the wavelength. They are wavelength dependent parameters, i.e. β(V,λ) and

δ(V, λ). In Section 2.2.2 we calculated the values for the ratio βmax(λ)/βmax(633



2  M O D U L A T I O N  O F  A  W A V E  F R O N T  W I T H  A  L C S L M- 60 -

nm) corresponding to the birefringence in the field-off state. Now we will proof

that the birefringence ratios keep the same constant value for any applied voltage

in the field-on state, i.e.

( )
( )

( )
( )

( )
( )nm633,V

,V
nm633,V

,V

nm633max

max

δ
λδ
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λβ
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== (2-33)

or

( )
( )

( )
( )

( )
( ) '

1d

'
1d

max

max

nm633,Vn

,Vn

nm633,Vn
,Vn

nm633n

n

∆

λ∆

∆
λ∆

∆
λ∆

== (2-34)

where we have used the more general relation in Eq. (2-13) for δ(V). If we are

able to proof that Eq. (2-34) is valid, then we simply need to calculate the

birefringences β(V) and δ(V) for a particular wavelength (e.g. 633 nm). We use

the scale factor given by the ratio βmax(λ)/βmax(633 nm) to obtain the values at

other wavelength.

In order to prove the equality in Eq. (2-34), we remember that a change in

the voltage produces a change in the tilt angle θ. The extraordinary index of

refraction ne(θ) varies with the tilt angle θ according to Eq. (1-3). We consider

typical values no=1.5 and ne=1.7 for the ordinary and extraordinary index of

refraction of a nematic liquid crystal at 633 nm. Thus, using the scale factor

∆nmax(458 nm)/∆nmax(633 nm)=1.13 calculated in Section 2.2.2, we obtain no=1.5

and ne=1.726 at 458 nm. Applying these values and using Eq. (1-3) we can

simulate the ratio ∆n(θ,458 nm)/∆n(θ,633 nm) as a function of the tilt angle θ. We

have calculated this ratio for the whole domain of the tilt angle θ ranging from 0º

to 90º. The ratio remains practically constant with values ranging between 1.13

and 1.11. Therefore, we have validated Eq. (2-34) and consequently Eq. (2-33)

too. This constancy is an important result that we will apply in the technique to

calculate the birefringences β(V) and δ(V).

The technique proposed in [PAPER A] is based on the nonlinear curve

fitting of intensity transmission measured data. We consider the LCSLM inserted
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between two linear polarizers as in Figure 2.3. The intensity transmission of the

system is given by Eq. (2-24). We consider three different configurations of the

polarizers (and also the associated complementary configurations for

normalization purposes). The first configuration corresponds to polarizers with

their transmission axes orientated at angles (ϕ1 = 0, ϕ2 = 90). The complementary

configuration, which had been analyzed in Section 2.1.2.2, is (ϕ1 = ϕ2 = 0). In the

second configuration the transmission axes of the polarizers are at angles (ϕ1 = 45,

ϕ2 = -45). Its complementary configuration, analyzed in Section 2.1.2.2, is given

by the angles (ϕ1 = ϕ2 = 45). A third configuration (ϕ1 = 22.5, ϕ2 = 112.5), and its

complementary (ϕ1 = ϕ2 = 22.5) have also been considered. The analytical

expressions for the configurations considered in the nonlinear curve fitting are

given by

( ) γ
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α
ϕϕ 2

2

2
2

21 sinZ90,0T ====   (2-35a)

( )
2

2
21 2sinsin2coscos1'X145,45T 




 −−=−=−== δγ
γ
β

δγϕϕ   (2-35b)

( )

( )








+++=

=
′

+===

δγ
γ
β

δγδβα
γ

γ

ϕϕ

4sin 2sin2sincos2cos2
sin

2
1

     

2
Y

Z5.112,5.22T

22222
2

2

2
2

21

 (2-35c)

The first configuration T(0,90) is equivalent to the one used by Zhisheng et

al. [Zhi98] to fit the birefringence of the LCSLM as a function of the applied

voltage. They chose this configuration for simplicity in the calculations. They

used the Lu and Saleh model, i.e. no edge effect was considered. Nevertheless,

this configuration presents an interesting property that we studied in Figure 2.10:

the intensity transmission depends on the β birefringence and it does not depend

on the δ birefringence. Thus, this is a particularly interesting configuration to fit

the β birefringence. On the other hand, the second configuration T(45,-45) is very
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sensitive to the existence of the edge effect as we saw in Figure 2.11. This

configuration gives information for calculating the δ birefringence.

In principle, we can fit the β birefringence using Eq. (2-35a) and, then,

introduce the relation β(V) in expression (2-35b) to calculate the remaining

unknown δ(V). However, the accuracy of this method decreases as the β

birefringence increases: for β values higher than approximately 150 deg. Eq. (2-

35a) is not very sensitive. To assure a greater accuracy in the fitted relations β(V)

and δ(V) we have followed a different procedure. We have introduced the third

configuration T(22.5,112.5) because it presents a higher sensitivity in the region

where Eq. (2-35a) is not very sensitive (we will see this point when presenting the

experimental results). According to Eq. (2-33), which links the different

wavelengths, the addition of more wavelengths does not increase the number of

unknowns. Therefore, for maximum accuracy we have made measurements for

the three experimental configurations at the same four wavelengths discussed in

previous Sections. We use the values of the ratios βmax(λ)/βmax(633 nm) to scale

the values of β(V) and δ(V) for the different wavelengths. A simultaneous

nonlinear curve fitting of the 12 experimental curves has been carried out. We

look for the set of values of β(V) and δ(V) that minimizes the square of the

difference between the experimental data and the calculated data obtained with

Eq. (2-35a), (2-35b) and (2-35c).

For the intensity measurements we have used the set-up shown in Figure

2.20. All the experiments were conducted with the brightness and contrast

controls of the video projector at 50 and 100 respectively. We have measured the

intensity at intervals of 10 gray levels. In Figure 2.23 we show the experimental

data (symbols) obtained with the three configurations and for the four

wavelengths. In the same figures we show the corresponding curves obtained in

the fitting procedure (continuous line). The horizontal axis shows the GSL that is

sent to the LCSLM. For the last data point we switch off the video projector

(LCSLM in the field-off state).
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Figure 2.23. Normalized intensity measurements (symbols) and fitting curves
(continuous line) for the three configurations of the polarizers chosen for the fitting
procedure. (a) (ϕ1=0, ϕ2=90), (b) (ϕ1=45, ϕ2=-45), (c) (ϕ1=22.5, ϕ2=112.5).

In Figure 2.23(a) the experimental data are shown for the first

configuration (ϕ1=0, ϕ2=90). This data is insensitive to the existence of the edge

(a)

(b)

(c)
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layers and shows the characteristic attenuated oscillatory behaviour already

commented in Section 2.1.2.2. In Figure 2.23(b) and Figure 2.23(c), we show the

measurements for the (ϕ1=45, ϕ2=-45) and the (ϕ1=22.5, ϕ2=112.5)

configurations respectively. The effects of the edge layers are evident in Figure

2.23(b), especially for the 458 nm wavelength. The edge effect causes that the

minimum near the GSL 200 is not a zero. In Figure 2.23(c) we can see that at high

GSLs this curve presents a larger variation than the first configuration, thus, it can

be an appropriate configuration to provide more sensitivity to determine β(V).

We observe in Figure 2.23 that for high GSLs (low values of the voltage)

all the curves attain a saturation behavior and they reach an intensity transmission

value equal to the intensity measured in the field-off state. The reason is that for

these gray levels the voltage is lower than the Freedericksz voltage, at which the

LC molecules are perpendicular to the twist axis. On the other side of the

horizontal axis in Figure 2.23(a), at GSL=0 the intensity value is equal to one.

This corresponds to an applied voltage equal or higher than the saturation voltage,

at which all the molecules but the ones in the edge layers are totally tilted. Thus,

at brightness=50 and contrast=100 we are covering all the modulation range

available with the LCSLM.

The Solver routine in Microsoft Excel has been used for the nonlinear

curve fitting. In Figure 2.23 we can see that the fitting curves obtained are in a

very good agreement with the experimental data points. In Figure 2.24(a) and

Figure 2.24(b) respectively we show the set of values obtained for the

birefringences β(V) and δ(V) at the four wavelengths. We remember that there is a

scale factor that links the corresponding values at the different wavelengths.

In Figure 2.24(a), the β values increase monotonously with GSL. At

GSL=0, β is approximately zero. Thus, the LC molecules in the central region of

the LCSLM are totally tilted, and the applied voltage exceeds the saturation

voltage as we had supposed. Above GSL=230, β reaches the field-off state value
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as expected. This confirms that the applied voltage is lower than the Freedericksz

threshold. At 458 nm, the birefringence β ranges from 0 to 231 degrees.
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Figure 2.24. Values obtained for the voltage dependent parameters at the four
wavelengths. (a) β(V), (b) δ(V).

In Figure 2.24(b), at the field-off state point δ is nearly zero. This confirms

that in the field-off-state no edge effect exists and the assumptions made by Yariv

and Yeh to obtain Eq. (2-5) are correct. The δ birefringence increases with the

increase in the applied voltages (decrease in the GSLs), achieving a maximum

value δmax of approximately 25 degrees (458 nm). If we calculate the ratio

2δmax/βmax we obtain that the maximum thickness of the two edge layers represent

(a)

(b)
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a 22% of the total thickness of the LCSLM. We have found values around a 20%

with other Sony LCSLMs. These percentages are significant enough for the edge

effect to be considered in the proposed model.

2.2.5 Accuracy of the proposed model

The complete knowledge of β(V) and δ(V) allows the calculation of the

intensity transmission curves for any other configuration. To show this point let us

consider an arbitrary configuration (ϕ1=0, ϕ2=45). The intensity transmission

expression for this particular configuration is given by

( ) 
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Figure 2.25. Experimental measurements and theoretical intensity transmission
curves calculated with the three inverse models: Lu and Saleh, Coy et al., and the
model proposed in this thesis. (a) 633 nm, (b) 514 nm, (c) 488 nm, (d) 458 nm.

(a) (b)

(c) (d)
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In Figure 2.25 we show the experimental measurements (symbols) and the

theoretical curves (lines) for the four wavelengths (633, 514, 488 and 458 nm, in

Figure 2.25(a), (b), (c), and (d) respectively). The three different lines show the

theoretical curves calculated using the different models.

The Lu and Saleh model shows the least agreement with the experimental

data. In the case of the Coy et al. model, the best fit to the experimental is

obtained using the constant values δ = 9.5º, 5.3º, 5.8º, 8.9º for wavelengths 633,

514, 488, 458 nm respectively. The agreement is improved, but it is not good

enough to provide accurate optical transmission calculations. Clearly the

calculations made with the model we have proposed in this thesis coincide

perfectly with the experimental data. The excellent agreement validates the model

and the characterization technique proposed to obtain the relations β(V) and δ(V).

The voltage dependent edge layers reproduce the effect of the nonlinearities

existing in the twist and tilt distributions in the LCSLM.

2.3 Complex transmittance prediction

We have demonstrated that we can measure the parameters β(V) and δ(V)

which, according to the model we propose, characterize totally the LCSLM

operation in the field-on state. We have also demonstrated that using the values

for these parameters we are able to simulate the intensity modulation of the

LCSLM with a high degree of accuracy. As we said in Section 1.2.3, a certain

application requires a specific complex transmittance modulation. Along this

Section we demonstrate that we can design optimization procedures which, taking

advantage of the accuracy of the model, predict the configurations of the

polarizing devices that produce the required modulation.

We know that the LCSLMs produce a coupled amplitude and phase

modulation. This coupling is unimportant in display applications because the

modulated magnitude is the intensity: the phase modulation curve as a function of

the applied voltage can have arbitrary values. Nevertheless, in other applications
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the conditions are much more restrictive because the magnitude that we modulate

is the complex amplitude transmittance itself, i.e. neither the amplitude nor the

phase modulation curves can have arbitrary profiles. Two typical modulation

regimes are normally required, phase-only modulation, or amplitude-only

modulation. In the comments made for Figure 2.9 and for Figure 2.10 in Section

2.1.2.2 we said that, in the case of a thick LCSLM, these regimes are possible by

inserting the LCSLM between polarizers. However, the use of the newer thin

LCSLMs, especially in experiments where phase-only modulation is required,

impose new difficulties. Here, the typical configuration with the two polarizers

does not provide the required performance.

The predictive capability of the model is demonstrated in this Section. We

predict phase-only configurations and amplitude-only configurations. We use two

new approaches, one of them has been recently proposed by us in [PAPER B]. In

Section 2.3.1 we develop the theory for the two approaches, and in Section 2.3.2

and 2.3.3 we present the results.

2.3.1 Generation and detection of polarized light

The amplitude and phase modulation provided by a LCSLM depend on the

applied voltage and on the polarization state of the light incident on the LCSLM.

In general, the polarization states of light are elliptical [Hua93]. In Figure 2.26 we

represent an elliptical polarization state. A polarization state is fully determined

through two parameters: the ellipticity ε and the azimuth angle Ω. The ellipticity

of the ellipse is defined as the ratio ±b/a between the lengths of the two axes,

where the sign ± depends on the helicity of the ellipse. The ellipticity is taken as

positive when the rotation of the electric field vector is right-handed (clockwise)

and we look in the direction of the light going from the laser to the detector. In

Figure 2.26 we have expressed left-handed (counter-clockwise light). The azimuth

angle Ω represents the orientation of the principal axes of the ellipse with respect

to the laboratory coordinates. Linearly and circularly polarized light are particular
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cases of the ellipse with ellipticities ε = 0 (linearly polarized light) and ε = 1

(circularly polarized light).

X

YZ

Y

X

X'

Y'
a

b

Ω

Figure 2.26. Polarization ellipse and its characteristic parameters. The anglesϑ and Ω
indicated in the figure have a negative value according to the sign convention that we
follow in this thesis. The ellipse has a left-handed helicity.

The polarization state in Figure 2.26 with an ellipticiy ε can be generated

using a polarizer followed by a quarter-wave plate (QWP). We orientate the

quarter-wave plate (QWP) with its slow axis parallel to the X’ principal axis of the

ellipse that we want to generate. The polarizer has its transmission axis at an angle

ϑ with respect to the Y’ principal axis of the ellipse (see Figure 2.26). The angle ϑ

is related with the ellipticity of the ellipse,

ϑ=atanε (2-37)

Until now we have seen the LCSLM inserted between two polarizers. In

this situation the LCSLM is working with linearly polarized light. In Section

2.3.1.1 we show the possibility of using the polarization eigenstates of the

LCSLM. In Section 2.3.1.2 we develop a general theory, that includes the

eigenstates as a particular case, to use arbitrary elliptically polarized states of

light.

2.3.1.1 Eigenvectors and eigenvalues of the LCSLM

As said in Section 1.2.3, the eigenvectors of the LCSLM have been

investigated to provide phase-only modulation. Two different kinds of

eigenvectors are defined by Davis et al. [Dav98]: the classic eigenvectors and the



2  M O D U L A T I O N  O F  A  W A V E  F R O N T  W I T H  A  L C S L M- 70 -

rotated eigenvectors. We rewrite the expression for the Jones matrix

M’LCSLM(α,β,δ) of the LCSLM (Eq. (2-16)) as follows

      ( ) ( ) ( ) ( )δβααδβδβα ,,MR)2(iexp,,M'LCSLM −+−= (2-38)

where M(α,β,δ) is given by

( ) 





+−

−
=

'iY'XZ

Z'iY'X
,,M δβα (2-39)

The classic eigenvectors are obtained with the diagonalization of the Jones

matrix of the LCSLM M’LCSLM(α,β,δ). The rotated eigenvectors are obtained with

the diagonalization of the matrix M(α,β,δ). In the following we will focus on the

rotated eigenvectors. They are the interesting ones for phase-only modulation.

An input eigenvector σE
r

 having an eigenvalue σ for the matrix M(α,β,δ)

is defined as

        ( ) σσ σδβα EE,,M
rr

= (2-40)

Solving Eq. (2-40) we get the two eigenvalues σ±,

      σσ ±=± (2-41)

where σ is given by

       










′
′−=

X
X1

atan
2

σ (2-42)

If we look at Eq. (2-38), as the eigenvectors ±σE
r

 propagate through the LCSLM,

they are rotated by the rotation matrix R(-α) and receive phase-shifts ψ± given by

          ( )σδβψ m2+−=± (2-43)

In the following we do not take into account the overall sign in Eq. (2-43).

We can see that the negative eigenvector −σE
r

 receives a larger phase-shift −ψ  of

( )σδβ ++ 2  while the positive eigenvector +σE
r

 receives a much smaller phase-
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shift +ψ  of ( )σδβ −+ 2 , where β, δ, and σ are magnitudes with positive values.

The normalized eigenvectors −σE
r

, +σE
r

 are given by

         ( )





′−+′

=+ 2X1Yi

Z

N
1

Eσ

r
(2-44a)












−
′−+′=−

iZ

X1Y
N
1E

2

σ

r
(2-44b)

      22 X1Y2X22N ′−′+′−= (2-45)

where N is the normalization factor. We remember that the eigenvectors are

orthogonal to each other. We can see that the components of the eigenvectors are

dephased an angle of 90º. These eigenvectors represent elliptically polarized light

centered along the director of the LCSLM in the input side. The transmitted

eigenvector has exactly the same ellipticity as the incident eigenvector. However

the major and the minor axes are rotated by the twist angle α of the LCSLM.

In the case with no edge effect the expressions for the eigenvalues and

eigenvectors are greatly simplified:

γσ ±=±  (2-46a)

( ) ( )





++

=+ γβ
α

γβγσ i2
1

E
r

(2-46b)

( )
( )







−

+
+

=− α
γβ

γβγσ i2
1

E
r

(2-46c)

The helicity of these eigenvectors depend on the sense of the twist angle α

for the LCSLM. We remember that the angles are taken to be positive when the

sense is clockwise (looking in the direction of the light going from the laser to the

detector). We can see that the helicity of the negative eigenvector has the same

sense as the twist angle.
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ϑX

Y

Z

−ϑ

Figure 2.27. Scheme for the set-up to generate and detect the eigenvectors.

In Figure 2.27 we show the set-up to generate and to detect an eigenvector

of the LCSLM. Linearly polarized light produced by the polarizer P1 is incident

on the quarter-wave plate QWP1. The slow axis of QWP1 is parallel to the

director at the input face of the LCSLM. The angle ϑ between the polarization

direction of the incident light and the slow axis of QWP1 determines the

ellipticity of the elliptically polarized light that is incident upon the input face of

the LCSLM, as indicated by Eq. (2-37). At the output of the LCSLM, we need to

transform the transmitted eigenvector into linearly polarized light. For this

purpose the quarter-wave plate QWP2 has its slow axis parallel to the director axis

at the output face of the LCSLM. At the output QWP2 we have linearly polarized

light at an angle -ϑ with respect to the slow axis of the QWP2. This is the

orientation for the polarizer P2.

By definition the amplitude of the eigenvector does not change when

traversing the LCSLM. Thus, in principle we can obtain a perfect phase-only

modulation. Nevertheless, the eigenvectors vary with the voltage due to the

dependence of the matrix M(α,β,δ) on the two voltage dependent parameters β(V)

and δ(V). Thus, the ellipticity ε of the eigenvector and consequently the angle ϑ to

generate and detect the eigenvector are not constants over a certain voltage range.

In practice, we have to use the concept of the average eigenvector [Dav98]. The

average eigenvector is defined as the eigenvector that provides the most uniform

transmission over a given voltage range for the LCSLM. From this definition we
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can see that, actually, the average eigenvector is not obtained through any

averaging calculation. It is simply the best eigenvector according to the criterion

of most uniform tranmission along the whole voltage range. The average

eigenvector is generated and detected with the set-up shown in Figure 2.27 taking

into account that the angles of the input and output polarizers, P1 and P2, are

restricted to be symmetrical, ϑ and -ϑ respectively, with respect to the slow axes

of the quarter-wave plates QWP1 and QWP2.

In Section 2.3.1.2 we develop a more general approach to manipulate

elliptically polarized light with a LCSLM that includes the case of the

eigenvectors and the average eigenvector as a particular case.

2.3.1.2 General elliptically polarized states of light

The most general architecture consists in inserting the LCSLM between

two sets formed by a linear polarizer and a wave plate. We consider that we can

rotate arbitrarily the two wave plates and the two polarizers. We also consider that

the wave plates can introduce arbitrary retardance, even though we will see that

we are limited by the available wave plates in the laboratory. This architecture

provides us with all the possible degrees of freedom in order to look for a desired

amplitude or phase modulation. The classical system consisting of two linear

polarizers, and the system to generate and detect the polarization eigenstates of the

LCSLM are particular cases of this more general architecture.

The scheme for this architecture is presented in Figure 2.28. A wave plate

introducing a retardance 2φ1 is placed between the first polarizer and the LCSLM.

A second wave plate introducing a retardance 2φ2 is placed between the LCSLM

and the second polarizer. The angles of the elements in front of the LCSLM are

referred to the orientation of the molecular director at the input surface (which we

suppose that coincides with the X-coordinate axis). The angle ϕ1 denotes the

orientation of the transmission axis of the first polarizer and the angle η1 denotes

the orientation of the slow axis of the first wave plate. On the other hand, the

angles η2 and ϕ2 correspond to the orientation of the slow axis of the second wave
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plate and the transmission axis of the second polarizer. For these two last elements

the angles are measured with respect to the orientation of the molecular director at

the output surface (i.e. rotated an angle α with respect to the X-coordinate axis).

ϕ1

X

Y

Z

η1 η2

Figure 2.28. Scheme for the generalized elliptical light set-up.

The classical system consisting of two linear polarizers, Figure 2.3,

corresponds to the case 2φ1=2φ2=0. The system to generate and detect the

polarization eigenstates of the LCSLM, Figure 2.27, corresponds to the case

2φ1=2φ2=90 with the restrictions 2η1=2η2=0 and ϕ2=-ϕ1.

Once again we use the Jones matrix formalism in order to calculate the

complex amplitude vector OUTE
r

 at the end of the optical system,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 




⋅⋅⋅−⋅⋅

+⋅⋅−−⋅+⋅=

1

1
1101LCSLM

22022XOUT

sin
cos

R2WR,,'M

R2WRRPE

ϕ
ϕ

ηφηδβα

ηαφηαϕα
r

       (2-47)

where R(ϖ) and PX have been already introduced in Eq. (2-6) and (2-19), and

W(2φ) is the matrix of a wave plate expressed in its proper axes,

( ) ( )
( )





+

−
=

φ
φ

φ
iexp0

0iexp
2W (2-48)

The resultant complex amplitude of the component Et transmitted by this

system is given by
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( )( )IMREt iAA)2(iexpE ++−= δβ     (2-49)

where REA  and IMA  are real magnitudes whose expressions are

[ ]
[ ]

[ ]))(2(sinsinsin)(sincoscosZ       

)2cos(cossin)2cos(sincos'Y       
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(2-50a)
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−−−−−−=

(2-50b)

The intensity transmittance T for this system is obtained as

2
IM

2
RE AAT += (2-51)

and the phase-shift ψ is given by

   





+−−=

RE

IM

A
A

atan2δβψ (2-52)

As β(V) and δ(V) have already been measured, it is possible to perform a

computer search for a desired modulation. In the optimization process we assign

initial arbitrary values to the angles η1, η2, ϕ1 and ϕ2, then, the transmittance T

and the phase-shift ψ can be calculated using Eq. (2-51) and (2-52). The

optimization criterion to be applied depends on the complex transmittance

modulation we are interested on. In case two variable wave plates are available

(for instance using Soleil-Babinet compensators), the computation of the search

for a desired modulation may also include φ1 and φ2 as free parameters. In any

other case the values of φ1 and φ2 are fixed by the available wave plates.

For the computer search, arbitrarily we have chosen two available wave

plates with a retardance of 2φ1 = 125 degrees and 2φ2 = 94.5 degrees respectively

for the wavelength 458 nm. The rest of the magnitudes, η1, η2, ϕ1 and ϕ2, are left

as free parameters in the optimization process. The case 2φ1 = 2φ2 = 0 (only

polarizers) has also been considered in a new computer search, corresponding to

the situation when no wave plates are present.
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In another computer search we have considered the case of the average

eigenvector, given in Section 2.3.1.1. This case corresponds to the values

2φ1=2φ2=90 with the restrictions 2η1=2η2=0 and ϕ2=-ϕ1. Actually, to generate

and to detect the average eigenvectors we have used the two available wave plates

with closest retardance to a quarter-wave plate for the 458 nm. These two wave

plates have a retardance 2φ1 = 88 degrees and 2φ2 = 94.5 degrees. We have

considered these values in the computer search for the average eigenvector. We

remember that the average eigenvector is the eigenvector which provides the most

uniform transmission along the whole voltage range.

In the next two Sections 2.3.2 and 2.3.3 we present the experimental

measurements obtained for the unexpanded beam of an Ar+ laser at 458 nm at the

predicted configurations. The experimental measurements are compared with the

predicted ones.

2.3.2 Accurate prediction of phase-only modulation

An optimum phase-only configuration produces a flat amplitude

modulation and a phase modulation with a phase depth of 2π  radians. The

criterion we follow is to minimize the difference between the maximum and the

minimum transmitted intensity Tmax –Tmin  over the entire voltage range. The

intensity transmission may not be maximum, but we are interested in a

configuration where it remains constant.

First, we consider the case of the average eigenvectors. As we said in

Section 2.3.1.2, this case is given by the restrictions 2η1=2η2=0 and ϕ2=-ϕ1 in the

computer search. We consider the retardances 2φ1 = 88 degrees and 2φ2 = 94.5

degrees of the two available wave plates with a closest behavior to quarter wave

plates for 458 nm. The two wave plates have their slow axis parallel to the

director axis at input and at the output faces of the LCSLM respectively. The

result of the optimization search leads to two configurations of the polarizers with

the following angles ϕ1=-ϕ2=+29 degrees and ϕ1=-ϕ2=-61 degrees respectively.
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An interesting result is that the two configurations are orthogonal to each other,

thus the two average eigenvectors are orthogonal to each other.

In Table 2.2 we summarise the predicted and the experimental values for

the range of variation of the intensity Tmax –Tmin  and the range of variation of the

phase-shift ∆ψ. The value for Tmax –Tmin  is 25%, that is a good value for a thin

LCSLM. We can see that the configuration ϕ1=-ϕ2=+29 presents a large variation

of the phase-shift ∆ψ. This is the negative eigenvector and the configuration ϕ1=-

ϕ2=-61 corresponds to the positive eigenvector with a very small phase

modulation range. Thus, the negative eigenvector can be used to obtain phase-

only modulation. The agreement between the predicted and the experimental

values for Tmax –Tmin  and for ∆ψ is excellent. The only differences, even though

not very significant, appear in the magnitude ∆ψ for the negative eigenvector.

Tmax –Tmin (%) ∆ψ (degrees)
Configuration

Predicted Experim. Predicted Experim.

Negative eigen. ϕ1=-ϕ2=+29 25 25 331 313
Positive eigen. ϕ1=-ϕ2=-61 25 25 26 28
Non-symmetric ϕ1=+11,ϕ2=-44 15 11 337 332

Table 2.2. Predicted and experimental ranges of variation of the intensity and of the
phase-shift over the whole voltage range.

We continue with the two wave plates 2φ1 = 88 degrees and 2φ2 = 94.5

with their slow axis parallel to the director axis at both faces of the LCSLM

respectively. We have performed a new computer search where we do not impose

ϕ1=-ϕ2: now the angles ϕ1 and ϕ2 of both polarizers are left as free parameters, i.e.

this is not an average eigenvector. The predicted configuration has the following

angles ϕ1=+11 and ϕ2=-44. We see that the computer search does not lead to the

average eigenvector geometry ϕ1=-ϕ2. We call this new configuration non-

symmetric. We can see in Table 2.2 that it provides a lower Tmax –Tmin and a larger

∆ψ than the negative eigenvector. The agreement between the predicted and the

experimental values is excellent.
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In Figure 2.29 we show the intensity and the phase-shift values over the

gray levels applied for the three configurations listed in Table 2.2. We show the

experimental values (symbols) and the predicted curves (lines). In Figure 2.29(a)

we see the good agreement between predicted and experimental intensities. In the

case of the non-symmetric configuration the predicted curve (dashed line) follows

the same shape as the experimental data points but slightly shifted. An interesting

result is that the predicted intensity for the two eigenvectors (continuous line) is

exactly identical. Experimentally measured data points confirm this result. In

Figure 2.29(b) the agreement between predicted and experimental phase-shifts is

excellent. Furthermore, the phase-shifts for the negative eigenvector and for the

non-symmetric configuration increase monotonously and they stay close to 2π

radians.

0

0,2

0,4

0,6

0,8

1

0 30 60 90 120 150 180 210 240

Gray level

N
or

m
al

iz
ed

 In
te

ns
ity

+ eigenvector

- eigenvector

Non-symmetric

0

45

90

135

180

225

270

315

360

0 30 60 90 120 150 180 210 240

Gray level

P
ha

se
 s

hi
ft 

(d
eg

) + eigenvector

- eigenvector

Non-symmetric

Figure 2.29. Phase-only modulation. Eigenvectors and non-symmetric
configurations. (a) Normalized intensity. (b) Phase-shift. The symbols correspond to
experimental measurements. The lines correspond to predicted values: continuous line
for the eigenvectors and dashed line for the non-symmetric configuration.

Further analysis has been done to study other possible phase-only

configurations. In principle we are interested in taking advantage of the maximum

number of degrees of freedom provided by the general set-up in Figure 2.28. We

have employed two available wave plates with a retardance of 2φ1 = 125 degrees

and 2φ2 = 94.5 degrees respectively for the wavelength 458 nm. The rest of the

magnitudes, η1, η2, ϕ1 and ϕ2, are left as free parameters in the optimization

process. We also want to perform a comparison with the results that we would

expect if no wave plates are present. This means that we have to consider 2φ1 =

(a) (b)
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2φ2 = 0 in a new computer search. In Table 2.3 we summarise the results obtained

when we consider the classical system, with only polarizers, and the general

system, with wave plates.

Tmax –Tmin (%) ∆ψ (degrees)
Configuration

Predicted Experim. Predicted Experim.

Only polarizers ϕ1=+22,ϕ2=-21 49 50 266 260

General
ϕ1=+26,ϕ2=-16

η1=0,η2=+11
4 9 360 348

Table 2.3. Predicted and experimental ranges of variation of the intensity and of the
phase-shift over the whole voltage range.

First of all, we remark the high degree of agreement between predicted and

experimental results in Table 2.3. As expected for a thin LCSLM, only polarizers

provide a very bad performance (50% of intensity variation) for phase-only

modulation. For the general configuration with the wave plates the optimum

configuration provides an almost ideal phase-only modulation with a uniform

intensity transmission and a variation of the phase-shift ∆ψ of nearly 360 degrees.

The intensity variation range is even lower than for the non-symmetric

configuration shown in Table 2.2. This is an important result, as it suggests that in

general we are not limited to use quarter-wave plates to obtain satisfactory phase-

only modulation. Another important result when adding wave plates in

comparison with only polarizers, is that we get not only a very uniform

transmission but also a large increase, about 90 degrees, in the variation of the

phase-shift ∆ψ. Thus, we have demonstrated that we can obtain phase-only

modulation with thin LCSLMs by using wave plates and by using short

wavelengths.

In Figure 2.30 we show the intensity and the phase-shift values over the

gray levels applied for the only polarizers configuration and for the general

configuration with wave plates. We show the experimental values (symbols) and

the predicted curves (lines).
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In both Figure 2.30(a) and Figure 2.30(b) we see the excellent agreement

between predicted and experimental values. In Figure 2.30(b) we observe that the

evolution of the phase-shift with the GSL is monotonous for both configurations.

The linearity is better in the case of the curve for the general configuration.
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Figure 2.30. Phase-only modulation. Only polarizers and general configurations. (a)
Normalized intensity. (b) Phase-shift. The symbols correspond to experimental
measurements and the lines correspond to predicted values.
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Figure 2.31. Complex plane representation of the phase-only modulation. The
symbols correspond to the experimental measurements for the phase-only
configuration in the general case with wave plates. The amplitude is normalized to a
maximum value of one. The dashed line corresponds to a circle with unit radius.

In the general case with wave plates, we represent in Figure 2.31 the

results for the phase-only configuration in the complex plane. In this

representation the distance of the experimental points (symbols) to the origin of

the coordinate system corresponds to the amplitude transmittance, i.e. the root

(a) (b)

Re

Im

 GSL=0

       GSL=250
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square of the intensity, for the corresponding GSL. The amplitude transmittance

has been normalized to a maximum value of one. The angle between the

experimental point with respect to the real axis corresponds to the phase-shift ∆ψ

for the corresponding GSL. The dashed line indicates a circle with unit radius, that

corresponds to an ideal phase-only modulation. We can perceive that the

experimental points practically overlap the unit radius circle.

2.3.3 Accurate prediction of amplitude-only modulation

We remember that in the amplitude-only modulation we seek for a

configuration that combines the next three features:

Ø flat phase response,

Ø high intensity contrast, and

Ø monotonous and linear intensity transmission response with the GSL.

The intensity contrast is defined as the ratio Tmax/Tmin between the

maximum and the minimum transmitted intensity. The optimization criterion that

we apply for the computer search is a trade off between these three conditions. We

have performed two different computer searchs. On one side, we have considered

the general approach where the magnitudes η1, η2, ϕ1 and ϕ2, are left as free

parameters in the optimization process, and we use the two wave plates with a

retardance of 2φ1 = 125 degrees and 2φ2 = 94.5 degrees at 458 nm. On the other

side, we have considered the case 2φ1 = 2φ2 = 0, corresponding to the situation

when no wave plates are present. Then, we compare the results obtained for the

classical system (only polarizers) and the general system with wave plates. In

Table 2.4 we summarise the results obtained. We show the values for the intensity

contrast ratio Tmax/Tmin , the minimum intensity transmittance Tmin, and the

variation of the phase-shift ∆ψ.
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Tmax /Tmin ; Tmin (%) ∆ψ (degrees)
Configuration

Predicted Experim. Predicted Experim.

Only polarizers ϕ1=91,ϕ2=89
198 ;
0.5%

 ∞ ;
0%

116 124

General
ϕ1=116,ϕ2=62

η1=96,η2=-7

100 ;
0.8%

61 ;
1.3%

33 18

Table 2.4. Predicted and experimental characteristic parameters for the amplitude-
only configurations.

For the case of only polarizers, the optimization search leads to the

polarizer transmission axis angles 911 =ϕ  and 892 =ϕ degrees. The transmission

axes of both polarizers are practically perpendicularly orientated to the director

axis at the input and at the output face of the LCSLM respectively. This is the

configuration that has been usually considered in the literature as the optimum one

for amplitude-only modulation, as we simulated in Figure 2.9, Section 2.1.2.2. We

note that the agreement between the predicted and the experimental parameters is

very good for both configurations: only polarizers and general. An interesting

result is that in all the cases the values for Tmin are very low: close to 1%. In an

amplitude-only configuration it is important to have a low value for Tmin, because

this energy contributes as a background noise.

We note that in display applications the main concern is to have a high

contrast ratio, but in applications where amplitude-only modulation is required we

also need a flat phase response. For the configuration with only polarizers the

range of phase-shift is 124 degrees, which is far from a flat line. In the general

case with wave plates, the amplitude-only modulation has been greatly improved

with respect to the case with only polarizers because now the range of phase-shift

is as low as 18 degrees while keeping good values for Tmax/Tmin  and for Tmin. The

contrast ratio is lower but the minimum intensity transmittance is about 1%,

which is a good value. An important result is that we have demonstrated that

values as low as 18 degrees for the range of phase-shift are possible with a TN-

LCSLM.
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We note that the video projector is operating at brightness = 50 and

contrast = 100. We mentioned in Section 2.2.4 that with these values the range of

applied voltages is maximum because it goes from the saturation voltage to the

Freedericksz voltage. This is the most suitable range to obtain phase-only

modulation but it is the less suitable range to obtain amplitude-only modulation.

The reason is that for a certain configuration of polarizing devices the phase-shift

undergoes all the possible values, thus, we obtain the maximum range of variation

of the phase-shift ∆ψ. This fact gives more relevance to the good results we have

obtained for the amplitude-only configuration in the general case with wave

plates, where ∆ψ=18 degrees while keeping good values for Tmax/Tmin and for

Tmin .

In Figure 2.32 we show the intensity and the phase-shift values over the

gray levels applied for the only polarizers configuration and for the general

configuration with wave plates. We show the experimental values (symbols) and

the predicted curves (lines). Both in Figure 2.32 (a) and (b) we obtain an excellent

agreement between predicted and experimental values. In Figure 2.32(a) we see

that the evolution of the intensity transmission for the only polarizers

configuration is not monotonous. However, for the general configuration with

wave plates the evolution is monotonous and with a very linear slope.

In the general case with wave plates, we plot in Figure 2.33 the results for

the amplitude-only configuration in the complex plane. As in Figure 2.31 we have

normalized the amplitude transmittance to a maximum value of one. An ideal

amplitude-only modulation is obtained when the measurements cover the Real

axis from 0 to 1. We can see that the experimental points are practically

overlapped along the whole positive side of the Real axis. Thus, this is a good

amplitude-only configuration. The minimum amplitude transmittance is 0.11 that

corresponds to the square root of the minimum value of the intensity transmittance

displayed in Table 2.4, which is a very low value (1.3%).
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Figure 2.32. Amplitude-only modulation. Only polarizers and general configurations.
(a) Normalized intensity. (b) Phase-shift. The symbols correspond to experimental
measurements and the lines correspond to predicted values.
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Figure 2.33. Complex plane representation of the amplitude-only modulation. The
symbols correspond to the experimental measurements for the amplitude-only
configuration in the general case with wave plates. The amplitude is normalized to a
maximum value of one. The dashed line corresponds to a circle with unit radius.

In the different graphs presented along the present chapter of this thesis we

have obtained an excellent agreement between experiment and prediction. The

minor differences that appear can be partly explained because of the existence of

interference and diffraction effects in the LCSLM, as shown by Davis et al.

[Dav99c], which we have not included in the voltage dependent edge effect

model.

(a) (b)

Im

Re

    GSL=0
     GSL=250


