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Figure 4.12: Feynman diagrams, up to one-loop order, for the QCD and elec-

troweak SUSY vertex corrections to the decay process H+ ! t�b. Each one-

loop diagram is summed over all possible values of the mass-eigenstate gluinos

(~gr ; r = 1; : : : ; 8), charginos (	�
i ; i = 1; 2), neutralinos (	0

� ;� = 1; :::; 4), stop

and sbottom squarks (~ba; ~tb ; a; b = 1; 2).

4.4.1 SUSY vertex diagrams

In this section we will make intensive use of the de�nitions and formulae of Sec. 2.2.1. We

refer the reader there for questions about notation and conventions. Following the labelling

of Feynman graphs in Fig. 4.12 we write down the terms coming from virtual SUSY particles.

� Diagram (VS0): Making use of the convention that lower indices are summed over,

whereas upper indices (some of them within parenthesis) are just for notational conve-

nience one �nds:

HL = 8��s iCF
G�
ab

mt cot �
[R

(t)
1bR

(b)�
1a (C11 � C12)mt +R

(t)
2b R

(b)�
2a C12mb

+R
(t)
2bR

(b�)
1a C0m~g] ;

HR = 8��s iCF
G�
ab

mb tan �
[R

(t)
2bR

(b)�
2a (C11 � C12)mt +R

(t)
1b R

(b)�
1a C12mb

+R
(t)
1bR

(b)�
2a C0m~g] ; (4.54)
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where the notation for the various 3-point functions is summarized in Appendix A, so

that, in eq. (4.54) the C-functions must be evaluated with arguments:

C� = C�
�
p; p0;m~g;m~tb

;m~ba

�
:

and CF = (N2
C�1)=2NC = 4=3 is a colour factor obtained after summation over colour

indices

� Diagram (VS1): Making use of the coupling matrices of eqs. (2.31) and (2.40) we intro-

duce the shorthands

A� � A
(t)
�ai and A

(0)
� � A

(t)
�a� ;

and de�ne the combinations (omitting indices also for QL�i; Q
R
�i)

A(1) = cos�A�+Q
LA

(0)
� ; E(1) = cos�A��Q

LA
(0)
� ;

B(1) = cos�A�+Q
LA

(0)
+ ; F (1) = cos�A��Q

LA
(0)
+ ;

C(1) = sin�A�+Q
RA

(0)
� ; G(1) = sin�A��Q

RA
(0)
� ;

D(1) = sin�A�+Q
RA

(0)
+ ; H(1) = sin�A��Q

RA
(0)
+ : (4.55)

The contribution from diagram (VS1) to the form factors HR and HL is then

HR =ML

h
H(1) ~C0+

+mb

�
mtA

(1) +M0
�B

(1) +mbH
(1) +MiD

(1)
�
C12

+mt

�
mtH

(1) +M0
�G

(1) +mbA
(1) +MiE

(1)
�
(C11 � C12)

+
�
mtmbA

(1) +mtMiE
(1) +M0

�mbB
(1) +MiM

0
�F

(1)
�
C0

i
;

HL =MR

h
A(1) ~C0+

+mb

�
mtH

(1) +M0
�G

(1) +mbA
(1) +MiE

(1)
�
C12

+mt

�
mtA

(1) +M0
�B

(1) +mbH
(1) +MiD

(1)
�
(C11 � C12)

+
�
mtmbH

(1) +mtMiD
(1) +M0

�mbG
(1) +MiM

0
�C

(1)
�
C0

i
; (4.56)
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where the overall coe�cients ML and MR are the following:

ML = � ig2MW

mb tan�
MR = � ig

2MW

mt cot�
: (4.57)

In eq. (4.56) the C-functions must be evaluated with arguments:

C� = C�
�
p; p0;m~ta

;M0
�;Mi

�
: (4.58)

� Diagram (VS2): For this diagram {which in contrast to the others is �nite{ we also use

the matrices on eqs. (2.31) and (2.34), and introduce the shorthands

A
(b)
� � A

(b)
�b� and A

(t)
� � A

(t)
�a� ;

to de�ne the products of coupling matrices

A(2) = GbaA
(b)�
+ A

(t)
� ; C(2) = GbaA

(b)�
� A

(t)
� ;

B(2) = GbaA
(b)�
+ A

(t)
+ ; D(2) = GbaA

(b)�
� A

(t)
+ :

The contribution to the form factors HR and HL from this diagram is

HR =
ML

2MW

h
mbB

(2)C12 +mtC
(2) (C11 � C12)�M0

�D
(2)C0

i
;

HL =
MR

2MW

h
mbC

(2)C12 +mtB
(2) (C11 � C12)�M0

�A
(2)C0

i
;

the coe�cients ML, MR being those of eq. (4.57) and the scalar 3-point functions now

evaluated with arguments

C� = C�
�
p; p0;M0

�;m~ta
;m~bb

�
:

� Diagram (VS3): For this diagram we will need

A� � A
(b)
�ai and A

(0)
� � A

(b)
�a� ;
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and again omitting indices we shall use

A(3) = cos�A
(0)�
+ QLA� ; E(3) = cos�A

(0)�
� QLA� ;

B(3) = cos�A
(0)�
+ QLA+ ; F (3) = cos�A

(0)�
� QLA+ ;

C(3) = sin�A
(0)�
+ QRA� ; G(3) = sin�A

(0)�
� QRA� ;

D(3) = sin�A
(0)�
+ QRA+ ; H(3) = sin�A

(0)�
� QRA+ : (4.59)

From these de�nitions the contribution of diagram (VS3) to the form factors can be

obtained by performing the following changes in that of diagram (VS1), eq. (4.56):

{ Everywhere in eqs. (4.56) and (4.58) replace Mi $M0
� and m~ta

$ m~ba
.

{ Replace in eq. (4.56) couplings from (4.55) with those of (4.59).

{ Include a global minus sign.

4.4.2 Higgs vertex diagrams

Now we consider the contributions arising from the exchange of virtual Higgs particles and

Goldstone bosons in the Feynman gauge, as shown in Fig. 4.13. We write the formula for

the form factors by giving the value of the overall coe�cient N and the arguments of the

corresponding 3-point functions.

� Diagram (VH1):

HR = N [m2
b(C12 �C0) +m2

t cot
2�(C11 � C12)] ;

HL = Nm2
b [C12 � C0 + tan2�(C11 � C12)] ;

N = � ig
2

2

 
1� fM

2
H0 ;M

2
h0
g

2M2
W

!
fcos�; sin�g

cos�
fcos(� � �); sin(� � �)g ;

C� = C�
�
p; p0;mb;MH� ; fMH0 ;Mh0g

�
:

� Diagram (VH2):

HR = N cot�[m2
t (C11 � C12) +m2

b(C0 � C12)] ;

HL = Nm2
b tan �(2C12 � C11 � C0) ;
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Figure 4.13: Feynman diagrams, up to one-loop order, for the Higgs and Gold-

stone boson vertex corrections to the decay process H+ ! t�b.
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N =
ig2

4

fcos�; sin�g
cos�

fsin(� � �); cos(� � �)g
 
M2
H�

M2
W

� fM
2
H0 ;M

2
h0g

M2
W

!
;

C� = C�
�
p; p0;mb;MW ; fMH0 ;Mh0g

�
:

� Diagram (VH3):

HR = Nm2
t [cot

2�C12 + C11 � C12 �C0] ;

HL = N [m2
b tan

2�C12 +m2
t (C11 � C12 �C0)] ;

N = � ig
2

2

fsin�; cos�g
sin�

fcos(� � �); sin(� � �)g
 
1� fM

2
H0 ;M

2
h0g

2M2
W

!
;

C� = C�
�
p; p0;mt; fMH0 ;Mh0g;MH�

�
:

� Diagram (VH4):

HR = Nm2
t (2C12 � C11 + C0) cot� ;

HL = N [�m2
bC12 +m2

t (C11 � C12 � C0)] tan � ;

N = � ig
2

4

fsin�; cos�g
sin�

fsin(� � �); cos(� � �)g
 
M2
H�

M2
W

� fM
2
H0 ;M

2
h0
g

M2
W

!
;

C� = C�
�
p; p0;mt; fMH0 ;Mh0g;MW

�
:

� Diagram (VH5):

HR = N [m2
b(C12 +C0) +m2

t (C11 � C12)] ;

HL = Nm2
b tan

2�(C11 + C0) ;

N = � ig
2

4

 
M2
H�

M2
W

� M2
A0

M2
W

!
;

C� = C�
�
p; p0;mb;MW ;MA0

�
:

� Diagram (VH6):

HR = Nm2
t cot

2�(C11 + C0) ;

HL = N [m2
bC12 +m2

t (C11 � C12 + C0)] ;

N = � ig
2

4

 
M2
H�

M2
W

� M2
A0

M2
W

!
;

C� = C�
�
p; p0;mt;MA0 ;MW

�
:
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� Diagram (VH7):

HR = N [(2m2
bC11 +

~C0 + 2(m2
t �m2

b)(C11 � C12)) cot
2�

+2m2
b(C11 + 2C0)]m

2
t ;

HL = N [(2m2
bC11 +

~C0 + 2(m2
t �m2

b)(C11 � C12)) tan
2�

+2m2
t (C11 + 2C0)]m

2
b ;

N = � ig2

4M2
W

sin� cos�

sin� cos�
;

C� = C�
�
p; p0; fMH0 ;Mh0g;mt;mb

�
:

� Diagram (VH8):

HR = Nm2
t cot

2� ~C0 ;

HL = Nm2
b tan

2� ~C0 ;

N = � ig2

4M2
W

;

C� = C�
�
p; p0; fMA0 ;MZg;mt;mb

�
:

In the equations above, it is understood that the CP-even mixing angle, �, is renormalized

into �e� by the one-loop Higgs mass relations [77{81].

As for the SUSY and Higgs contributions to the counterterms, they are much simpler

since they just involve 2-point functions. Thus we shall present the full electroweak results

by adding up the various sparticle and Higgs e�ects. In the following formulae, we append

labels referring to the speci�c diagrams on Figs.4.15-4.17.

4.4.3 Counterterms

� Counterterms �mf ; �Z
f
L ; �Z

f
R: For a given down-like fermion b, and corresponding

isospin partner t, the fermionic self-energies receive contributions

�bfL;Rg(p
2) = �bfL;Rg(p

2)
���
(Cb0)+(Cb1)+(Cb2)

= +8��sCF

���R(b)

f1;2ga
���2 [B1 �B0] (p;m~qa ;m~g)
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�ig2
����A(t)

�ai
���2B1

�
p;Mi;m~ta

�
+
1

2

���A(b)
�a�

���2B1

�
p;M0

�;m~ba

��
; (4.60)

mb�
b
S(p

2) = mb�
b
S(p

2)
���
(Cb0)+(Cb1)+(Cb2)

= �8��sCF
m~g

mb?
R
(b)
1aR

(b)
2aB0 (p;m~qa;m~g)

+ig2
�
MiRe

�
A
(t)�
+aiA

(t)
�ai
�
B0

�
p;Mi;m~ta

�
+
1

2
M0
�Re

�
A
(b)�
�a�A

(b)
+a�

�
B0

�
p;M0

�;m~ba

��
; (4.61)

from SUSY particles, and

�bfL;Rg(p
2) = �bfL;Rg(p

2)
���
(Cb3)+(Cb4)

=
g2

2iM2
W

n
m2
ft;bg

h
fcot2�; tan2�gB1(p;mt;MH�)

+B1(p;mt;MW )
i
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+
m2
b

2 cos2�

h
cos2�B1(p;mb;MH0)

+ sin2�B1(p;mb;Mh0)

+ sin2� B1(p;mb;MA0)

+ cos2� B1(p;mb;MZ)
io

; (4.62)

�bS(p
2) = �bS(p

2)
���
(Cb3)+(Cb4)

= � g2

2iM2
W

n
m2
t [B0(p;mt;MH�)�B0(p;mt;MW )]

+
m2
b

2 cos2�

h
cos2�B0(p;mb;MH0)

+ sin2�B0(p;mb;Mh0)

� sin2� B0(p;mb;MA0)

� cos2� B0(p;mb;MZ)
io

; (4.63)

from Higgs and Goldstone bosons in the Feynman gauge. To obtain the corresponding

expressions for an up-like fermion, t, just perform the label substitutions b$ t on eqs.

(4.60)-(4.63); and on eqs. (4.62)-(4.63) replace sin� $ cos� and sin� $ cos� (which

also implies replacing tan � $ cot�).

Introducing the above expressions into eqs. (3.27)-(3.27) one immediately obtains the

SUSY contribution to the counterterms �mf ; �Z
f
L;R.

� Counterterm �ZH� :

�ZH� = �ZH� j(CH1)+(CH2)+(CH3)+(CH4)+(CH5)+(CH6)
= �0H�(M

2
H�)

= � ig
2NC

M2
W

h
(m2

b tan
2� +m2

t cot
2�)(B1 +M2

H�B
0
1 +m2

bB
0
0)

+ 2m2
bm

2
tB

0
0

i
(MH� ;mb;mt)

+
ig2

2M2
W

NC

X
ab

jGbaj2B0
0(MH� ;m~bb

;m~ta
)
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�2ig2
X
i�

�����QL�i���2 cos2� + ���QR�i���2 sin2�� (B1 +M2
H�B

0
1 +M0

�
2
B0
0)

+ 2MiM
0
�Re

�
QL�iQ

R�
�i

�
sin� cos�B0

0

�
(MH� ;M0

�;Mi)

+ig2
X
AB

���MH+

AB

���2B0
0(MH� ;mHA

;mHB
) : (4.64)

where mHA
is either the charged Higgs mass or the charged Goldstone mass (mW+

and mHB
is one of neutral Higgses or the Neutral Goldstone mass (mZ) (Cf. eq. 2.8).

Notice that diagrams (CH3) and (CH5) give a vanishing contribution to �ZH� .

� Counterterm �ZHW :

�ZHW = �ZHW j(CM1)+(CM2)+(CM3)
=

�HW (M2
H�)

M2
W

= � ig
2NC

M2
W

h
m2
b tan�(B0 +B1) +m2

t cot�B1

i
(MH� ;mb;mt)

� ig
2NC

2M2
W

X
ab

GbaR
(t)
1aR

(b)�
1b [2B1 +B0] (MH� ;m~bb

;m~ta
)
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+
2ig2

MW

X
i�

h
M0
�

�
cos� QL��iC

L
�i + sin� QR��i C

R
�i

�
(B0 +B1)

+ Mi

�
sin� QR��i C

L
�i + cos� QL��iC

R
�i

�
B1

i
(MH� ;M0

�;Mi)

�ig2
X
AB

MH+

ABM
W+

AB [2B1 +B0] (MH� ;mHA
;mHB

) : (4.65)

where a sum is understood over all generations and we have de�ned:

MW+

H+fH0; h0g = �fsin(�� �); cos(�� �)g
2

MW+

H+fA0;G0g = f i
2
; 0g

MW+

G+fH0; h0g = �fcos(� � �); sin(� � �)g
2

MW+

G+fA0;G0g = f0; i
2
g

(4.66)

Finally, the evaluation of �� on eq.(4.48) yields similar bulky analytical formulae, which

follow after computing diagrams akin to those in Figs.4.12-4.17 for the MSSM corrections to

H+ ! �+ �� . We refrain from quoting them explicitly here. The numerical e�ect, though,

will be explicitly given in the next section (4.5).

4.4.4 Analytical results

We are now ready to furnish the corrected width ofH+ ! t�b in the MSSM. It just follows after

computing the interference between the tree-level amplitude and the one-loop amplitude. It

is convenient to express the result as a relative correction with respect to the tree-level width

both in the �-scheme and in the GF -scheme. In the former we obtain the relative MSSM

correction

�MSSM
� =

�� �
(0)
�

�
(0)
�

=
NL

D
[2Re(GL)] +

NR

D
[2Re(GR)] +

NLR

D
[2Re(GL +GR)] ; (4.67)

where the corresponding lowest-order width was de�ned in 4.2 and

D = (M2
H� �m2

t �m2
b) (m

2
t cot

2 � +m2
b tan

2 �)� 4m2
tm

2
b ;
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NR = (M2
H� �m2

t �m2
b)m

2
b tan

2 � ;

NL = (M2
H� �m2

t �m2
b)m

2
t cot

2 � ;

NLR = �2m2
tm

2
b : (4.68)

From these equations it is obvious that at low tan� the relevant quantum e�ects basically

come from the contributions to the form factor GL whereas at high tan � they come from

GR.

Using eq.(3.29) we �nd that the relative MSSM correction in the GF -parametrization

reads

�MSSM
GF

=
�� �

(0)

GF

�
(0)

GF

= �MSSM
� ��rMSSM ; (4.69)

where the tree-level width in the GF -scheme, �
(0)

GF
, is given by eq.(4.3) and is related to

eq.(4.2) through

�(0)� = �
(0)

GF
(1��rMSSM) : (4.70)

Before presenting the results of the complete numerical analysis, it should be clear that

the bulk of the high tan � corrections to the decay rate of H+ ! t�b in the MSSM is expected

to come from SUSY-QCD. This could already be foreseen from what is known in SUSY GUT

models [133,134,149]; in fact, in this context a non-vanishing sbottom mixing (which we also

assume in our analysis) may lead to important SUSY-QCD quantum e�ects on the bottom

mass, mb = mGUT
b +�mb, where �mb is proportional toM

b
LR ! �� tan� at su�ciently high

tan �. These are �nite threshold e�ects that one has to include when matching the SM and

MSSM renormalization group equations (RGE) at the e�ective supersymmetric threshold

scale, TSUSY , above which the RGE evolve according to the MSSM �-functions in the MS

scheme [150]. In our case, since the bottom mass is an input parameter for the on-shell

scheme, these e�ects obviously have a di�erent physical meaning, but are formally the same;

they are just fed into the mass counterterm �mb=mb on eq.(4.53) and contribute to it with

opposite sign (�mb=mb = ��mb + :::) 3.

3In the alternative framework of Ref. [151], the SUSY-QCD corrections have been computed assuming no
mixing in the sbottom mass matrix. Nonetheless, the typical size of the SUSY-QCD corrections does not
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Figure 4.18: (a) Leading SUSY-QCD contributions to �mb=mb in the electroweak-

eigenstate basis; (b) Leading supersymmetric Yukawa coupling contributions to

�mb=mb in the electroweak-eigenstate basis.

Explicitly, when viewed in terms of diagrams of the electroweak eigenstate basis, the

relevant �nite corrections from the bottom mass counterterm are generated by mixed LR-

sbottoms and gluino loops (Cf. Fig.4.18a):�
�mb

mb

�
SUSY�QCD

=
2�s(mt)

3�
m~gM

b
LR I(m~b1

;m~b2
;m~g)

! �2�s(mt)

3�
m~g � tan� I(m~b1

;m~b2
;m~g) ; (4.71)

where the last result holds for su�ciently large tan� and for � not too small as compared to

Ab. We have introduced the positive-de�nite function (Cf. Appendix A)

I(m1;m2;m3) � 16�2i C0(0; 0;m1;m2;m3)

=
m2
1m

2
2 ln

m2
1

m2
2

+m2
2m

2
3 ln

m2
2

m2
3

+m2
1m

2
3 ln

m2
3

m2
1

(m2
1 �m2

2) (m
2
2 �m2

3) (m
2
1 �m2

3)
: (4.72)

In addition, we could also foresee potentially large (�nite) SUSY electroweak e�ects from

�mb=mb. They are induced by tan �-enhanced Yukawa couplings of the type (2.5). Of course,

these e�ects have already been fully included in the calculation presented in Section 4.5 that

we have performed in the mass-eigenstate basis, but it is illustrative of the origin of the leading

contributions to pick them up again directly from the diagrams in the electroweak-eigenstate

change as compared to the present approach (in which we do assume a non-diagonal sbottom matrix) the

reason being that in the absence of sbottom mixing, i.e. Mb

LR = 0, the contribution �mb=mb / �� tan � at

large tan � is no longer possible but, in contrast, the vertex correction does precisely inherits this dependence

and compensates for it. The drawback of an scenario based onMb

LR = 0, however, is that when it is combined

with a large value of tan � it may lead to a value of Ab which overshoots the natural range expected for this

parameter.
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basis. In this case, from loops involving mixed LR-stops and mixed charged higgsinos (Cf.

Fig.4.18b), one �nds:�
�mb

mb

�
SUSY�Yukawa

= �ht hb
16�2

�

mb
mtM

t
LRI(m~t1

;m~t2
; �)

! � h2t
16�2

� tan� At I(m~t1
;m~t2

; �) ; (4.73)

where again the last expression holds for large enough tan�.

Notice that, at variance with eq.(4.71), the Yukawa coupling correction (4.73) dies away

with increasing �. Setting ht ' 1 at high tan�, and assuming that there is no large hi-

erarchy between the sparticle masses, the ratio between (4.71) and (4.73) is given, in good

approximation, by 4m~g=At times a slowly varying function of the masses of order 1, where

the (approximate) proportionality to the gluino mass re
ects the very slow decoupling rate

of the latter [151].

In view of the present bounds on the gluino mass, and since At (as well as Ab) can-

not increase arbitrarily {as also noted above{ we expect that the SUSY-QCD e�ects can

be dominant, and even overwhelming for su�ciently heavy gluinos. Unfortunately, in con-

tradistinction to the SUSY-QCD case, there are also plenty of additional vertex contributions

both from the Higgs sector and from the stop-sbottom/gaugino-higgsino sector where those

Yukawa couplings do enter the game. So if one wishes to trace the origin of the leading

contributions in the electroweak-eigenstate basis, a similar though somewhat more involved

exercise has to be carried out also for vertex functions. Of course, all of these e�ects are

fully included in our calculation of Section 4.4 within the framework of the mass-eigenstate

basis4.

A few words are in order about these �nite threshold e�ects coming from diagrams in

Fig 4.18. As explained early, formally, eq.(4.71) describes the same one-loop threshold e�ect

from massive particles that one has to introduce to correct the ordinary massless contributions

(i.e. to correct the standard QCD running bottom quark mass) in SUSY GUT models

4The mass-eigenstate basis is extremely convenient to carry out the numerical analysis, but it does not

immediately provide a \physical interpretation" of the results. The electroweak-eigenstate basis, in contrast,

is a better bookkeeping device to trace the origin of the most relevant e�ects, but as a drawback the intricacies

of the full analytical calculation can be abhorrent.
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Figure 4.19: Leading supersymmetric electroweak contributions to �m�=m� in the

electroweak-eigenstate basis.

[129,133,134]. In fact their contribution is �nite and non-decoupling, that is, if you scale up

all the SUSY parameters (i.e. m~g,m~ba
,m~tb

, At, �) by a factor � the contributions described in

eqs. 4.71 and 4.73 remain invariant!. However, if one scales up all supersymmetric parameters

a non trivial �ne-tuning would be needed to allow for a relatively light {around 250GeV{

charged Higgs, so in this it is unnatural. Notice that in the absence of SUSY-breaking

terms (m~g = 0, At = 0) these non-decoupling e�ects exactly vanish. So, their origin is the

SUSY-breaking sector. In the SUSY-QCD contribution (eq. 4.71), it is specially clear that

the non-decoupling can be achieved by increasing physical parameters, namely the gluino,

squark and higgsino masses. In fact, one may increase the chargino mass by letting �!1

without decreasing the other masses, which may be allowed to grow independently.

The main source of process-dependent �� -e�ects lies in the corrections generated by the

� -mass counterterm, �m�=m� , and can be easily picked out in the electroweak-eigenstate

basis (see Fig.4.19) much in the same way as we did for the b-mass counterterm. There are,

however, some di�erences, as can be appraised by comparing the diagrams in Figs.4.18 and

4.19, where we see that in the latter case the e�ect derives from diagrams involving � -sleptons

with gauginos or mixed gaugino-higgsinos. An explicit computation of the diagrams (a) +

(b) in Fig.4.19 yields

�m�

m�
=

g02

16�2
�M 0 tan � I(m~�1 ;m~�2 ;M

0)

+
g2

16�2
�M tan � I(�;m~�� ;M) ; (4.74)

where g0 = g sW=cW and M 0;M (Cf. section 2.2.1) are the soft SUSY-breaking Majorana

masses associated to the bino ~B and winos ~W�, respectively, and the function I(m1;m2;m3)
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is again given by eq.(4.72). In the formula above we have projected, from the bino diagram

in Fig.4.19a, only the leading piece which is proportional to tan�. Even so, the contribution

from the wino-higgsino diagram in Fig.4.19b is much larger. Numerical evaluation of the sum

of the two contributions on eq.(4.74) indeed shows that it reproduces to within few percent

the full numerical result previously obtained in the mass-eigenstate basis, thus con�rming

that eq.(4.74) gives the leading contribution. In practice, for a typical choice of parameters,

this contribution is approximately cancelled out by part of the electroweak supersymmet-

ric corrections associated to the original process H+ ! t�b, and one is e�ectively left with

eq.(4.73) as being the main source of electroweak supersymmetric quantum e�ects at high

tan �.

As for the standard QCD corrections we use the full analytical formulae of Ref. [116,117]

5. In the limitMH+ � mt, the standard QCD correction boils down to the simple expression

�QCDg =
�QCD � �0

�0

=

�
CF �s

2�

� m2
t cot

2 �
�
9
2
� 6 log

M
H+

mt

�
+m2

b tan
2 �
�
9
2
� 6 log

M
H+

mb

�
m2
t cot

2 � +m2
b tan

2 �
:(4.75)

This formula is very convenient to understand the asymptotic behaviour. However, as we

have checked, it is inaccurate for the present range of values of mt unless MH+ is extremely

large (beyond 1TeV ).

4.5 Numerical analysis and discussion

We may now pass on to the numerical analysis of the over-all quantum e�ects. After explicit

computation of the various loop diagrams, the results are conveniently cast in terms of the

relative correction with respect to the tree-level width de�ned in eq.4.2. In what follows we

understand that � � �� {Cf. eq.(4.67){ i.e. we shall always give our corrections with respect

to the tree-level width �0� in the �-scheme. The corresponding correction with respect to the

tree-level width in theGF -scheme is simply given by eq.(4.69), where �r
MSSM was object of a

particular study in [111,112] and therefore it can be easily incorporated, if necessary. Notice,

5We have corrected several misprints on eq.(5.2) of Ref. [116, 117].



94 Chapter 4. Heavy H+
decaying into t�b in the MSSM

however, that �rMSSM is already tightly bound by the experimental data onMZ = 91:1863�

0:0020GeV at LEP and the ratio MW =MZ in p�p, which lead to MW = 80:356 � 0:125GeV .

Therefore, even without doing the exact theoretical calculation of �r within the MSSM, we

already know from

�r = 1� ��p
2GF

1

M2
W (1�M2

W =M
2
Z)

; (4.76)

that �rMSSM must lie in the experimental interval �rexp ' 0:040 � 0:018.

Now, since the corrections computed in Section 4.5 can typically be about one order

of magnitude larger than �r (see bellow), the bulk of the quantum e�ects on H+ ! t�b

is already comprised in the relative correction (4.67) in the �-scheme. Furthermore, in the

conditions under study, only a small fraction of �rMSSM is supersymmetric [111,112], and we

should not be dependent on isolating this universal, relatively small, part of the total SUSY

correction to �. To put in a nutshell: if there is to be any hope to measure supersymmetric

quantum e�ects on the charged Higgs decay of the top quark, they should better come from

the potentially large, non-oblique, corrections computed in Section 4.4. The SUSY e�ects

contained in �rMSSM [111, 112], instead, will be measured in a much more e�cient way

from a high precision (�M
exp

W = �40MeV ) determination of MW at LEP 200 and at the

Tevatron.

Even though we shall explore the evolution of our results as a function of the charged

Higgs mass in the LHC range, for the numerical analysis we wish to single out the Tevatron

accessible window (eq. 4.9)

mt
<� MH

<� 300GeV :

In Figs.4.20-4.25 we display in a nutshell our results for a representative choice of param-

eters within this framework, exhibiting the evolution of the quantum corrections with respect

to the tree-level width (4.2), �MSSM , as a function of the most signi�cant parameters. The

MSSM correction (4.67) includes the full QCD yield (both from gluon and gluinos) at O(�s)

plus all the leading MSSM electroweak e�ects driven by the Yukawa couplings (2.5). We

have de�ned �s = �s(MH+) by means of the (one-loop) expression

�s(MH+) =
6�

(33� 2nf ) log (MH+=�nf )
; (4.77)
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normalized as �s(MZ) ' 0:12, where nf is the number of quark 
avors with threshold below

the Higgs boson mass MH+ . The rest of the input parameters have already been de�ned in

section 2.2.1

First we will give the known results on the gQCD corrections [40] to make evident that

the gQCD contribution alone to (�g) can be comparable or even larger than the conventional

QCD corrections (�g). There it is shown, as can also be seen in Figs 4.24a-b, that for a given

tan �, the relative size of the SUSY-QCD e�ects versus the standard QCD e�ects depends

on the value of MH+ as can be seen from . Notwithstanding, it is clear that �g remains fairly

insensitive to MH+ .

The huge experimental impact on the measurement of the gQCD corrected �(H+ ! t�b) is

shown in Fig.4.20 where we plot the SUSY-QCD corrected width versus tan�, for �xed values

of the other parameters. For completeness, we have included in this �gure the partial widths

of the alternative decays H+ ! �+ �� and H
+ ! W+ h0, which are obviously free of O(�s)

QCD corrections. (To avoid cluttering, we have not included H+ ! c �s; it is overwhelmed

by the � -lepton mode as soon as tan� >� 2.) It is patent from Fig.4.20 that, for charged

Higgs masses above the t�b threshold, the decay H+ ! t�b is dominant. Only for very large

tan � (> 30) and for su�ciently big and positive � (� > 100GeV ) the negative corrections

to H+ ! t�b are huge enough to drive its partial width down to the level of H+ ! �+ �� .

Therefore the top quark decay of the charged Higgs is, by far, the most relevant decay mode

to look at.

As already seen in eq. 4.71, depicted in Fig.4.20 and further shown in Figs.4.23a-4.25a

the gQCD contribution is extremely sensitive to � both on its value and on its sign. It turns

out that the sign of the SUSY-QCD correction is basically opposite to the sign of �, and the

respective corrections for +� and for �� take on approximately the same absolute value.

At large tan�, the role played by the bottom quark mass becomes very important. Indeed,

in Fig.4.21 we con�rm (in the particular case of gQCD, though it happens similarly for thegEW e�ects) that the external self-energies (basically the one from the b-line) give the bulk

of the corrections displayed, whereas the (�nite) vertex e�ect is comparatively much smaller

and its yield becomes rapidly saturated.
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Figure 4.20: SUSY-QCD corrected �(H+ ! t�b) as a function of tan� for two

opposite values of �, compared to the corresponding tree-level width, �0(H
+ !

t�b); For completeness we have included in this �gure the partial widths of the

alternative decays H+ ! �+�� and H+ ! W+h0, which are obviously free of

O(�s) QCD corrections. We study these e�ects in two di�erent Higgs mass

scenarios: (a) MH� = 250GeV and (b) MH� = 350GeV.
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Figure 4.21: We separate the contributions from vertex and self-energies on the

dependence of � for the gQCD correction. The self-energy contribution is domi-

nated by the �nite threshold e�ect (eq. 4.71)

Before continuing we want to stress again that the gQCD contribution is in most of the

MSSM parameter space the leading contribution.

We are now ready to restrict our analysis of H+ ! t�b including all the SUSY e�ects

( gQCD and gEW) within the appropriate phenomenological domain pinpointed in Figs.4.5-4.9

which accommodate for di�erent experimental constraints as explained in section. 4.2.

We set out by looking at the branching ratio of H+ ! �+ �� (Cf. Fig.4.22). Even though

the partial width of this process does not get renormalized (as it is used to de�ne tan�), its

branching ratio is seen to be very much sensitive to the MSSM corrections to �(H+ ! t�b).

For large tan� as in eq.(4.10), BR(H+ ! �+�� ) may achieve rather high values (10� 50%)

for Higgs masses in the interval (4.9), and it never decreases below the 5 � 10% level in

the whole range. Therefore, a handle for tan� measurement is always available from the

Higgs � -channel and so also an opportunity for discovering quantum SUSY signatures on

�(H+ ! t�b). As for the other H�-decays, we note that the potentially important mode

H+ ! ~ti
�~bj [152] does not play any role in our case since (for reasons to be clear below) we

are mainly led to consider bottom-squarks heavier than the charged Higgs. Moreover, the

H+ ! W+ h0 decay which is sizable enough at low tan� becomes extremely depleted at
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high tan� [40]. Finally, the decays into charginos and neutralinos, H+ ! �+i �
0
�, are not

tan �-enhanced and remain negligible. Thus at the end of the day we do �nd an scenario

where H+ ! t�b and H+ ! �+ �� can be deemed as the only relevant decay modes.

In order to assess the impact of the electroweak e�ects, we demonstrate that a typical set

of inputs can be chosen such that the SUSY-QCD and SUSY-EW outputs are of comparable

size.

In Figs.4.23a-4.23b we display �, eq.(4.67), as a function respectively of � < 0 and tan �

for �xed values of the other parameters (within the b! s 
 allowed region). Remarkably, in

spite of the fact that all sparticle masses are beyond the scope of LEP200 the corrections

are fairly large. We have individually plot the SUSY-EW, SUSY-QCD, standard QCD and

total MSSM e�ects. The Higgs-Goldstone boson corrections (which we have computed in

the Feynman gauge) are isolated only in Fig.4.23b just to make clear that they add up non-

trivially to a very tiny value in the whole range (4.10), and only in the small corner tan� < 1

they can be of some signi�cance.

In Figs.4.23c-4.23d we render the various corrections (4.67) as a function of the relevant

squark masses. For m~b1
<� 200GeV we observe (Cf. Fig.4.23c) that the SUSY-EW contribu-

tion is non-negligible (�SUSY�EW ' +20%) but the SUSY-QCD loops induced by squarks

and gluinos are by far the leading SUSY e�ects (�SUSY�QCD > 50%) { the standard QCD

correction staying invariable over �20% and the standard EW correction (not shown) being

negligible. In contrast, for larger and larger m~b1
> 300GeV , say m~b1

= 400 or 500GeV ,

and �xed stop mass at a moderate value m~t1
= 150GeV , the SUSY-EW output is longly

sustained whereas the SUSY-QCD one steadily goes down. However, the total SUSY pay-o�

adds up to about +40% and the net MSSM yield still reaches a level around +20%, i.e. of

equal value but opposite in sign to the conventional QCD result. This would certainly entail

a qualitatively distinct quantum signature.

We stress that the main parameter to decouple the SUSY-QCD correction is the lightest

sbottom mass, rather than the the gluino mass [40], with which the decoupling is very slow

(Fig. 4.24), a fact that indeed has an obvious phenomenological interest. For this reason,

since we wished to probe the regions of parameter space where these electroweak e�ects are
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Figure 4.23: The SUSY-EW, SUSY-QCD, standard QCD and full MSSM con-

tributions to �, eq.(5.6), as a function of �; (b) As in (a), but as a function of

tan�. Also shown in (b) is the Higgs contribution, �Higgs; (c) As in (a), but as

a function of m~b1
; (d) As a function of m~t1

. Remaining inputs as in Fig.4.22.
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