Chapter 9

Conclusions

In this thesis we have explored various aspects of the low and high energy phenomenology of
the Higgs sector beyond the Standard Model including two-Higgs-doublet models, the MSSM
and Left-Right models, with particular attention to the impact of the radiative corrections
on processes involving top and bottom quarks. We have made clear that the interplay
between the Higgs sector and the third generation of quarks at the high-energy colliders
can render distinctive phenomenology (chapters 4-6), but a knowledge of the low energy
experiments provides also with invaluable information (chapters 7-8 and Sec. 4.2.1) that can

not be forgotten.

e First, we have presented a treatment of the supersymmetric (Qf(TD and EVV) effects
on the decay width of HT — tb showing that they could even be larger than the
ordinary QCD corrections, reinforcing or counterbalancing them. These calculations
were made in the b — s7v constrained MSSM space. We made patent that the soft-
SUSY breaking trilinear A;, together with the higgsino mass parameter p are tightly
constrained after incorporating the bounds on this decay and that they may throw a
helping hand in choosing relevant MSSM parameter regions. Even in this constrained
case, the Q,C/D quantum effects are typically the dominant ones. They lie in the range
10%-50%, are slowly decoupling and of both signs. However, there are scenarios with

particle masses above the LEP200 discovery range where the EW effects, triggered by
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large Yukawa couplings, can be comparable to the Q,(TD ones. This situation occurs
for: large tan 3(Z 20) and sbottom masses (X 300 GeV) and relatively light stops and
charginos (~ 100 — 200 GeV). In this context the SUSY pay-off amounts to +(30-50)%,
half of it being electroweak born. These effects should be visible at the Tevatron or at
the LHC through measurements made with a modest precision of 20% of I'(H+ — tb)
or of the branching ratio H™ — 77v,. Moreover, they could significantly modify
the prediction for single top quark production (in association with a charged Higgs
boson). Furthermore, we showed that a determination of tan through the Higgs

decay H™ — 77 v, should be possible even for Higgs bosons as heavy as 500 GeV.

Second, we have studied the QfG/D effects on the supersymmetric neutral Higgs bosons
decaying into quarks. We have shown that again they are large (comparable to the
ordinary QCD corrections), of both signs and slowly decoupling with my, so that their
inclusion in the analysis of Higgs bosons physics at the Tevatron could be of vital
importance. Not only are these effects important in the Higgs decay as we first stated,
but also in the production mechanisms. In fact, work is being done in the direction to
obtain the corrected production cross-sections for Higgs production (both neutral and
charged) at the Tevatron, since they could be of tremendous importance to interpret
the experimental results. In particular at high tan 8 the fusion mechanisms to produce
MSSM Higgs bosons are the leading ones and they just involve the very same interaction

vertices studied in this Thesis.

Third, we have also shown that important EW effects can be expected from general
2HDM’s of non-SUSY type. However, the spectrum of Higgs bosons would be very
different in both cases (SUSY and non-SUSY) and this allows to distinguish the two
models. We have computed the electroweak, Yukawa driven, one-loop corrections to the
unconventional top quark decay width I'(t — Hb) for Type I and II two-Higgs-doublet
models, complementing previous studies. Numerically they range approximately from
-50% to +30%. These effects alter severely previous tree level analysis presented by

the Tevatron Collaboration that placed limits on the plane tan 8-Mpy+, even rendering
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them non-applicable. In fact, They could give the clue to unravel the underlying
theory behind the discovery of a charged Higgs boson since they help to distinguish the
phenomenology of the MSSM and two-Higgs-doublet models.

e Fourth, from low energy phenomenology we were also able to obtain restrictions in the
MSSM parameter plane tan 8-Mp+ coming from semileptonic B-meson decays, thus,

improving the bounds previously given. The important results are that

1. while Q,(\]/D effects do not allow p > 0 case, inclusion of EW permits that, and
that

2. in general EW quantum corrections do not modify severely the limits except for

areas where the QfG/D contributions are small.

e Lastly, the limits on the couplings and masses of a Left-Right Higgs triplet have been
updated. Using low-energy neutrino physics the Higgs triplet effects would be de-
tectable with the proposed measurement of the ratio Rrcp = o(vue)/[o(T e) +o(vee)]
at LAMPF, and we find that in a large part of the still allowed parameter region the
Left-Right tree level effects amount to corrections as large as 50%. Indeed, scenarios as
natural as having he. ~ hy, ~ g, but with h,, = 0, and my+ S mp++ ~ 500GeV are

allowed and such an experiment would put tight bounds on this couplings and masses.

A general conclusion of our work is that radiative corrections, both on low and high-energy
physics phenomena, (especially those related to Yukawa couplings) are a potential source of
important contributions that should be taken into account to interpret experimental results

and could be of essential help to unravel new physics.
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Appendix A

D-dimensional integrals

In this appendix we collect definitions and expressions for the basic integrals in momentum
space that appear in the computation of one-loop Feynman diagrams, integrals that are
frequently referred to the previous chapters.

L. Except when explicitly

Dimensional regularisation is used throughout this appendix
noted, the given formulae are exact for arbitrary internal masses and external momenta.
Most of them are an adaptation to the g,, = {+ — — —} metric of the standard formulae of

refs. [104,213,214].

Basic scalar functions The requirements of our set of diagrams comprehends only one-,

two- and three-point functions, represented by

1
A = dPg ——— Al
om) = [y (A1)
Bo (pymaymz) = [ % ! (A.2)
0 \Py 1761, 7102 = ) .
(4> = m3][(q +p)” - m3]
1
Co (p, k,m1,m2,m3) = /dDﬁ , (A3)
[ —=m3] (¢ +p)* — m3][(q +p+ k)* —m]]
using the integration measure
D,
P = -0 44 (A.4)

(2m)”

! As already noted in Chapter 3 though strictly dimensional reduction should be used in SUSY, it is not

necessary in our calculations.
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Tensor integrals Other tensorial structures do appear in the calculation, leading to the

following two and three-point tensor integrals

>, ~ [ 27 ) V]
i = [ et

[Co,Cy Cr| =

2
/qu 9, 4, 9u9v)] (A.6)
2 2 2_ .2 B2 2l '
[¢? —=mi] |(¢+p)" —m3| |(a+p+k)"—mj
From now on, unless otherwise stated, the arguments of the one-, two- and three-point
functions are understood to be those of (A.1), (A.2) and (A.3) respectively.
Lorentz covariance allows us to express tensor integrals (this is true only for one-loop

integrals) in terms of the scalar ones (A.1)-(A.3) and the external momenta:

By = Ag(my) +m2By (p,m1,ms) ,
B, = puBi(p,m1,ma),
By, = pupyBoi (p,mi,mz) + guBaz (p, mi, my) ,
Co (p, k,my,mg,m3) = By (k,ma,m3)+m2Cq (p,k,my,ma,m3) ,

C;w = pupuCZI + kukyCZQ + (puku + kupu) Caz + guu024 > (A7)

defining in a unique form the Lorentz invariant functions:?
1
B, = 37 [Ag(m1) — Ao(m2) — f1Bo (p, m1,m2)] , (A.8)
1 2
By = m [(D —2)Ap(m2) — 2mi By (p,m1,m2)
— Df1B1 (p,m1,ma)| , (A.9)
1

Bgy = 2D—1) [Ao(m2)+2m%30 (p,m1, m2)+ f1 By (Paml,mz)] ) (A.10)

C By (p+ k,mq, — By (k,ma,m3) — f1C|
oy o(p mi,ms3) o (k,mg,m3) — f1Cy ’ (A11)

Ch2 By (p,m1,m2) — Bo (p+ k,m1,m3) — f2Co

2Depending on p, k only through their scalar products, p%, pk, k2.
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C: B + k,mq, + By (k, mo, — f1C11 = 2C
21 v 1(10 mi m3) 0( m2 m3) fiCu 24 7 (A.12)
Ca3 By (p,m1,my) — By (p+ k,my,m3) — foC1y
1
= _ B _ B _
022 92 [p2k2 — (pk)g] { pk[ 1 (p + k7m13m3) 1 (k7m27m3) flClQ]
+p2 [—Bl (p + k, mi, mg) — f2012 — 2024]} s (A13)
1
Coy = D=2 [Bo (k,ma,m3) + 2m3iCo + f1C11 + f2012] ; (A.14)

the factors fi2 and the matrix ¥ being

fl = p2—|—m%—m§,
fo = K242k +m3—m3,
1 k2 —pk
Y — PR (A.15)

212 _ 2
2 [p k (pk) ] —pk p2
In the D — 4 limit, UV divergences may be parametrized as:
e = D—-4,
2 2
A = —+y;—In(4r) — Inp*, (A.16)
€

where 5 stands for the Euler constant.

Ay, By, Cp evaluation At the end, from egs. (A.8)-(A.14), one is left with the evaluation

of the scalar one-loop functions:

Ag(m) = (1;2>m2(A—1+1nm2), (A.17)
i
By (pom,me) = (350 ) [+ 109" =24 lul(ar — D(w2 — 1)
I 9
1 I Al

+71 nxl_l—l—xg n$2_1], (A.18)

i1 1
Co (p, k,m1,ma,m3) = <167r2> 5 Pk 1% > (A.19)

where the value of x5 is

2 2
my —m 1
si2 =12 (p,mi,me) = -+——2& A2 (pZ,m%’m%) ’

1
2 2p? 2p?

Az,y,2z) = [x - (Vy— \/2)2] [m - (Vy+ \/2)2] ) (A.20)
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and ) represents the alternating sum of (complex) Spence functions
—1 —1
Z:SP< Y1 i>_Sp<y1 i>+5p< Y1 i>—8p<y1 Z)
Y1 — 2 Y1 — 21 Y1 — 29 Y1 — 29
—1 —1
_Sp< - ii>+Sp<y2 ii>_8p< - ii>+’9p<y2 u)
Y2 — 21 Y2 — 21 Y2 — 29 Y2 — 29
Y3 ys —1 Y3 ys — 1
+Sp| —— | -Sp| —— |+ Sp| —— | - Sp| —— ). A21
! (ya - zi”) ! (ya - zi”) ! (ya - z%”) ! (ya - Z%”) (21

The Spence function is defined to be

Sp(z) = — /0 1 M dt . (A.22)

Besides, we have set, on the one hand

Zi,z = z12(p,m2,m1),
ziZ,Z = $1,2(p+kam3am1)7
2% = z12(k,m3,ma); (A.23)

and on the other

y1=yo+¢, y2=1y_0€, yaz—%, yoz—%ﬁ, (A.24)
where

g=—k?>+m}—m3, h = —p? — 2pk — m2 +m?, (A.25)
and £ is a root (real for on-shell external momenta) of

PP+ 2pké + K = 0. (A.26)

Scalar function derivatives When dealing with the counterterms, some derivatives of

two-point functions are also required. Here we use the notation

8—p23*(pam17m2) EB;(pamlamQ)' (A27)
As we did before, we can obtain all the needed derivatives starting from the scalar function

B(, one, whose value is:

B! = ()1 :
0 (pamlamQ) - 1672 ? + )\1/2(p27m%7m%)

21(z1 — 1) n <$1_1> — os(zy — 1) In ("”2_1)]}. (A.28)

I T2
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A remarkable fact in (A.28) is the presence of a production threshold for |p| = m; + mg and

of a pseudo-threshold at |p| = |m1 — ma|.

Integral expressions Integral forms for the scalar functions are useful to compute them

in case of precision difficulties, or to derive limit expressions.

We are using the constant

_ —1
- 1672’

K
and the shorthand
R% (z,p,m1,mg) = P’z — fiz + m%
For the two-point scalar functions one has:
r 1
By = & A—i—/ dzlnR%} ,
L 0
1 1 )
B = & _EA_/ dzzInR3| ,
0

: 1 A
By = &k / dz 2° lnR%—I——] ,

Lo 3
B _ 1 P’ 2 2 Lt 2 2
2 = K| 7| Tmiom (A—l)—i—i ; dzR5InR5| .

Correspondingly, for the three-point ones we use
R3 (2,p, kymi,ma,my) = p*x” + k*y® + 2pkay — fiz — foy +mi,
to obtain
T
Cy = n/ /
0 0
1 T 9
[C11,Ch2] = N/O dﬂ?/g dy [—z,—y|R3~,
T
i,

[C21,C22,Co3] = K

024:,%

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)
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Limit expressions

consider B’s:
BO (0, my, mg)

BO(Oa m, m)
BO(Oa m, 0)

BO(pa Oa 0)

Bl (0, my, mg)

Bl(oa m, 0)

Bs:1(0,m1,my)

B21 (0, m, m)

B21 (0, m, 0)

B21 (pa 07 0)

Ba2(0,m1,m2)
322 (0, m, m)
BQQ(O, m, 0)

B22 (pa 07 0)

w| =

< (a

—2B1(0,m,m) =k (A + lnm2) ,

2
m
—1—!—27221nm§+

my —my

2
1

By(0,0,m) = —k + By(0,m,m),

Next we gather some limit forms for the scalar functions.

1

——— Ilnm7 |,
miy — ms

—2B1(p,0,0) =k (A -2 +i7r+lnp2) ;

K
2

g + Bl(oa Oam)

2

13
g(A—F—i-zﬁr-i-lan) ;

K
N2
4 m7
K

BQQ(O, 0, m)

Kk 9
317

_A+_

2
1 mj

_{_7
2 m?—ml

2

5 —Inm3 +

18

1

2
(A— 1+lnm2) ,
1

.
8 2
1 2 1
(‘1“5‘1‘1

A—l—l m% mi
3 2m?—m?
K 2
g(A—i—lnm),
K

K
—— 4 By1(0,0,7m) = —— + By1(0,m,m),

——— [miL (A —i—lnm%) —mj (A —i—lnm%) — %

_B22 (Oa m, m) )

When looking at three-point functions, if p?> = 0 one has

Co(p2 = 0,/€,m1,m2,m3) =

o
2pk

9 2
my m
—— In —
mi —mj m

g (—A+§—lnm2> ;

First we

(A.34)

(A.37)
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with

21,2 = z12(k, m2,m3), Yo= —5 7 >

2y = wi2(p+k,mi,mg). (A.39)

If one also has (p + k)2 = 0, then

p2=(p+k)2=0 k Yo — 21 Yo — 21
-1 -1
+ Sp (L> _sp<y0 > —Sp( 40 ii>+5'p<y0 )] : (A.40)
Yo — 29 Yo — 29 Yo — 2 Yo — 2

7} o being those of (A.39), and 2", yo

Co(p, k, m1,ma, m3)

2 2 2
i m ms —m
o 1 _ 2 1
Citere sy SR LB e (A.41)
1 3
Finally, if even s? = 0,
2 2 2 2 2
K m m m m m.
C()(0,0,ml,mQ,m3):ﬁ ln—3+2712 n—g—ﬁ n—g ,(A42)
m3 — My my Mmz—1my my My —my my

a symmetric expression under permutation of the masses. In this latter case, the expan-
sions (A.11)-(A.13) are singular and no longer useful. Thus, starting again from (A.31),
(A.33)

4
~ m
Cy(0,0,m1,mg,m3) = n(A—l—i— L Inm?
(m3 —m})(m3 —mi)
4
my 2
+ Inm
(m? —m3)(m3 —mj)
4
ms 2
+ Inm3z | ,
(mf —m3)(m3 —m3) 3>
1 -
024(0,0,77’11,7712,7713) = 500(0,0,m1,m2,m3). (A43)

Some useful relations From the definitions and the integral formulae (A.31), (A.33) some
relations are easily derived that show up very useful in doing selfconsistency checks of the

calculation:

0 = Bo(p,mi,mz) + Bi(p,mi, m2) + Bi(p,ma, m1),
K

2By = p?Boy + fiB1 +miBy — 9

(=p* +mi+m})



220 Appendix A. D-dimensional integrals

!

= p2021 + k2022 + 2pkCag 4+ 4Co4 + g ,

= p2021 + k2022 + 2pkCag 4+ f1C11 + f2Chro + m%Co . (A.44)

S
|

| =



