
 

Chapter 3. Alignment procedure 
for the convergent optical 
correlator 

Once we have obtained the optimal configuration of the SLMs to 

use them in amplitude only regime or phase only regime we 

proceed to build the real time correlator.  

3.1. Elements that require alignment 

The VanderLugt correlator described in Chapter 1 permits to 

perform frequency filtering operations, including correlation for 

optical pattern recognition. However, to operate appropriately it 

is necessary to have a correct matching between the Fourier 

spectrum of the input image, obtained by light diffraction, and 

the filter, which is digitally introduced onto the filter SLM.  

So, it is necessary to control those aspects that are involved in 

such a correspondence. They are (see Figure 3.1): 
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a) The focusing of the Fourier spectrum of the scene onto the 

filter SLM. 

b) The centering of the filter SLM onto the optical axis, which is 

the center of the optically obtained spectrum of the input scene. 

c) The azimuth angles of the filter SLM and of the scene SLM so 

as to have parallelism between the coordinate axes of the 

spectrum of the scene and the filter. 

d) The scaling of the Fourier spectrum obtained at the filter 

plane, so as to control not only the direction but also the  

magnitude of the frequencies that are filtered.  

We propose in this Chapter a series of tests that allow us to 

control these parameters. The proposed tests are original and 

satisfy the following conditions: 

a) They are based on the interpretation of the image at the 

correlation plane. This way there is no need to use additional 

control devices in the correlator. 

b) The tests have a simple interpretation. So, one can relate the 

observed pattern to the frequency filtering operation that is 

performed in the filter plane. 

c) The tests are sensitive to only one of the parameters that 

must be controlled. That is, they produce an identifiable 

response to a given misalignment of the system careless of the 

other misalignments of the system.  
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d) It results convenient to have a sequential alignment 

procedure. That is to control each parameter without affecting 

the others. In other case  a recursive procedure, much slower, 

can be used. The procedure must take into account that some 

parameters must be controlled before the rest of tests can be 

used. As an example, let us consider the case of the filter 

focusing, one can not talk about frequency filtering if the 

Fourier spectrum of the scene is not focused on the filter plane.  

e) Finally, the filtering tests take into account two possibilities 

of operation for the scene SLM: the amplitude only regime, and 

the phase only regime. For the filter SLM we consider phase 

only modulation because along this thesis we will use phase 

only filters.  

Aside from the spectrum focusing test, which has an 

interferometric interpretation, the tests proposed in this 

chapter are based on phase frequency filtering. For each 

parameter to be aligned, we design an input scene that 

generates a frequency spectrum distribution that is differently 

affected by a filter when only one of the alignment parameters 

changes. 

Because we want a simple interpretation of the filtered patterns, 

we use periodic gratings, that generate discrete spectra and we 

see how binary filters applied to them affect the reconstruction 

of the gratings. 
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3.2. Description of the correlator and sequence of the 
alignment procedure. 

We consider the convergent set up of the Vander Lugt 

correlator. It is a variant of the Vander Lugt correlator in which 

the distance between the scene and the filter fixes the scale of 

the Fourier transform of the scene.  

3.2.1. Description of the correlator 

We represent the scheme of a convergent correlator in Figure 

3.1. 

A previous description of the correlator has been given in 

Chapter 1 and we repeat in this section a more detailed 

description. The beam at 458 nm generated by an Ar+ ion laser 

is focused on a pinhole by a microscope objective. The pinhole 

(s) is the light source for the correlator. The image of the 

pinhole is focused by a lens (L1) on s’. Instead of a singlet lens, 

we use a 135 mm focal distance photographic objective, 

corrected off-axis and for spherical aberrations.  

The input image (scene), is represented in the spatial light 

modulator marked as SLM1. in Figure 3.1. It is illuminated by 

the spherical wave that converges in s’. The Fraunhofer 

diffraction pattern of the scene represented in SLM1 is obtained 

at the plane that contains s’. (we refer to this plane as S’). The 

amplitude distribution at S’, noted aS’(x,y), is the Fourier 

spectrum of the amplitude distribution at the input scene, 
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multiplied by a quadratic phase factor [Moreno96B], as 

follows: 
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Here C is a normalization constant and D represents the 

distance between the input SLM and the plane S’ (see Figure 

3.1). F(x,y) represents the Fourier spectrum of the amplitude 

distribution at the output of SLM1. Note that the scale of the 

Fourier spectrum of the scene depends on D, and therefore it 

can be controlled by changing the position of SLM1 along the 

optical axis of the correlator.  
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Figure 3.1. Scheme of the convergent correlator. 

The filter SLM (marked as SLM2 in Figure 3.1) is placed at the 

plane S’, where the frequency spectrum of the scene is focused. 

This way, one knows S’ as the filter plane. The transmittance or 

the phase modulation distribution of the filter SLM multiplies 

the frequency spectrum of the input scene. The filtered image of 
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the scene is focused on the correlation plane C by the second 

lens of the correlator (L2). We acquire the correlation plane by 

placing on C the CCD array of a Pulnix TM-765 camera, 

connected to a PC computer provided with real time acquisition 

software.  

3.2.2. Sequence of the alignment procedure 

To perform the alignment of the correlator it is necessary to 

adjust several elements. Aside from the lenses, that must be 

correctly tilted and centered on the optical axis, one needs to 

adjust the position of the scene and the filter SLMs, and the 

position of the CCD camera used to acquire the correlation 

plane.  

To move one of the elements of the correlator in order to adjust 

a given alignment parameter may introduce a misalignment on 

the other parameters. Therefore it is necessary to establish a 

sequence of the alignment to avoid this trouble. We describe 

next the sequence we propose.  
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Figure 3.2. Scheme of the convergent correlator with arrows that indicate the 
movements needed to perform the alignment.  

The first step is to focus the input scene on the correlation plane 

C (Figure 3.2) by shifting the camera along the optical axis, this 

movement is tabbed as W’ in Figure 3.2. This step is necessary 

because the tests are based on the observation of the correlation 

plane. To do this it is enough to focus the scene when SLM2 

does not display any filter. 

Then, one performs the test for focusing the scene spectrum on 

the filter plane. This can be done by shifting SLM2 along the 

optical axis. We represent this movement by the arrow tabbed 

as Z in Figure 3.2.  

The next step is to center the filter SLM (SLM2) on the optical 

axis (the arrows X and Y in Figure 3.2). Therefore it is necessary 

to mount the filter SLM on a translation stage that allows to 

move on these orthogonal directions. (See picture in Figure 

3.3a) 
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(a) (b)
 

Figure 3.3. (a) Filter SLM mounted on a XY translation stage on a Z translation 
rail (b) Scene SLM mounted on a rotation stage on the same translation rail as 
the filter SLM. 

Then we propose to perform the azimuth alignment by rotating 

the scene SLM (SLM1) instead of rotating the filter SLM (SLM2). 

This way, one avoids to move the center of the pixel array of the 

filter SLM out of the optical axis when the rotation center of the 

mount of the filter panel is not the same as the center of the 

pixel array. We represent this movement by the arrow tabbed as 

α in Figure 3.2. Figure 3.3b shows a picture of the rotation stage 

used for the scene SLM we have used in our correlator. 

Finally, we propose to fit the scale of the scene spectrum and 

the filter by translating the input scene SLM along the optical 

axis (represented by the arrow tabbed W in Figure 3.2). Even in 

the case that the translation stage shifts the scene modulator 

transversally, this translation does not affect the centering or 

the orientation of the diffraction pattern in the filter plane. 
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Therefore it does not alter the previous alignment steps of the 

proposed procedure. Nevertheless, to change the position of the 

scene must be accompanied of a refocusing of the correlation 

plane, that is, it is necessary to translate the CCD camera along 

the optical axis of the system (see the arrow W’ in Figure 3.2).  

In the following sections we describe the tests that we have 

invented for the alignment of the correlator and the results we 

have obtained. 

3.3. Fine focusing of the scene spectrum on the filter 
plane 

The test we propose to focus the scene spectrum on the filter 

plane is an interferometric test in which SLM2 is used to alter 

the wavefront that propagates from the pinhole along the 

correlator. At this stage of the alignment procedure one cannot 

talk precisely about frequency filtering because the Fourier 

spectrum of the scene is not well focused on SLM2 yet. 

The test we propose to perform this step of the alignment of the 

correlator consists of displaying a uniform image in the scene 

SLM (SLM1) with maximum transmission, and displaying a π 

radian phase line in SLM2 Figure 3.4a is a representation of the 

test filter. The phase profile is shown in Figure 3.4b. 
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Figure 3.4. (a) Filter for filter-focusing test. (b) Profile representation of the 
phase for the filter.  

Because the transmission and phase modulation of the scene 

SLM is uniform, the light that comes from the pinhole is 

distributed as a spherical wave that converges on s’ till the plane 

where the filter SLM is placed. There, this spherical wave is 

filtered by the test filter. The test filter is represented by the 

following function H(x,y): 

 )(21)1)((1),( xexyxH i δδ π −=−+= , (3.2) 

where δ is the Kronecker function. The two terms of the filter 

correspond to the uniform background and the π phase line for 

the pixels on the x=0 axis. Both terms multiply the spherical 

wavefront at the filter input. Therefore, the amplitude 

distribution at the output side of SLM2 is given by:  
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Here A0 is a normalization factor, λ is the wavelength of the 

light and d is the distance from SLM2 to the pinhole image, s’. 
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Taking this into account, one can consider that two wavefronts 

come out from the filter: the first one corresponds to the 

spherical wave that propagates from the pinhole along the 

optical system without distortion,  and the second one is a 

wavefront generated by the phase line in SLM2. These two 

wavefronts produce an interference pattern observable on the 

correlation plane. In addition, because this interference pattern 

depends on the distance d from the filter SLM to s’  it may be 

used to perform the focusing of the scene spectrum on SLM2. 

From equation 3.3 one can deduce that the dependence on the 

variable y for both wavefronts is identical. That is, the filter 

distribution only introduces differences in the amplitude 

distribution of the waves along the x direction.  

S’
CL2L1

SLM1 SLM2

s s’r r’ s’’

d
α’d

rC
sC

 

Figure 3.5. Representation of the correlator and the wavefronts that produce the 
interference pattern in the correlation plane for the filter-focusing-test. 

Regarding only at the x distribution of the wavefronts 

(equations 3.3), one observes that the first term describes a 

wavefront that converges on s’. This is represented Figure 3.5, 

colored in red. After passing through L2, this wavefront 
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converges on s’’, that is the image of the pinhole through L1 and 

L2.  

The second wavefront, however, is generated at SLM2 (colored 

in blue in Figure 3.5), therefore after passing through L2 it 

converges on the image plane through L2 of the filter SLM, 

noted as r’. This way, at the correlation plane C the amplitude 

distribution (considering only the x dimension) is given by: 

 
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Where sC and rC are the distances from the correlation plane to 

s’’ and r’ respectively.  

Therefore the intensity distribution in the correlation plane is 

given by: 
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That is, it describes a fringe pattern depending on x2 that 

depends directly on the distance between r’ and s’’ (Figure 3.5), 

and therefore on the distance d between SLM2 and s’ through 

the axial magnification relation rC–sC=α’d (see Figure 3.5). 

According to equation 3.5 some fringes appear in the 

correlation plane. These fringes are wider as smaller d is, and 

when the filter is placed on s’, that is, for d=0, the fringes 
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become infinitely wide, and a uniform field is observed in the 

correlation plane. 

In Figure 3.6 we show the experimental captures of the 

correlation plane for different positions of the filter SLM when 

the filter focusing test is being performed. Figure 3.6a and b 

show captures of the correlation plane when the filter SLM is far 

from focus (in Figure 3.6a it is farther than in Figure 3.6b). One 

can observe a fringe pattern depending on x2. The fringes 

become wider when the position of the filter SLM approaches 

image plane of the pinhole. This is represented in Figure 3.6b 

and c, where one can observe that the fringes are wider. Finally, 

when the filter SLM is exactly on the image plane of the pinhole, 

the fringes disappear, as shown in Figure 3.6d.  

(a) (b) (c) (d)
 

Figure 3.6. Experimental captures of the intensity distribution in the correlation 
plane for the filter focusing test. (a) and (b) Far from focus (c)  near to focus. (d) 
on focus. 

This way, the focusing procedure consists of shifting SLM2 

along the optical axis and observing in which direction the 

fringes of the correlation plane become wider. The focusing 

position is achieved when the fringes observed in the 

correlation plane become a uniform image. 
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Note that this test is suitable for either amplitude-encoded or 

phase-encoded scene correlators because a constant function is 

displayed in the input SLM (SLM1). 

3.4. Centering of the filter for amplitude only scene  

Once the Fourier spectrum of the input scene is correctly 

focused over the filter plane the center of the filter SLM must be 

moved transversally so as to place the center over the optical 

axis, which is where the center of the scene Fourier spectrum is.  

This alignment is performed in two steps, first the filter is 

aligned horizontally, and then it is aligned vertically. To control 

both the horizontal position and the vertical position we use the 

same alignment test, but for the vertical centering the tests are 

rotated by 90 degrees with respect to the horizontal centering 

test.  

3.4.1. The test scene and filter 

The scene and filter corresponding to this test are shown in 

Figure 3.7a and b respectively. The scene consists on a series of 

binary gratings along the x direction, with even symmetry. The 

lower frequency is 1/Nx periods per pixel, being Nx the size in 

pixels along the x direction. This frequency corresponds to the 

grating at the bottom of the image. The frequencies for the other 

gratings, from bottom upwards are obtained by doubling the 

frequency of the previous grating. 
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The filter we propose for this test (shown in Figure 3.7b) 

consists of a centered vertical line of one pixel width, in which 

the phase difference to the background is π. It is the same filter 

as for the filter focusing test. When one of the diffraction orders 

of the gratings of the scene coincides with the phase line, its 

phase is changed by an amount of π radians, or what is the 

same, its sign is inverted. 

φ= 0
φ= 0

φ= π

φ= 0
φ= 0

φ= π

(a) (b)
f0= 0
f0= 1/Nx

f0= 2/Nx

f0= 4/Nx

f0= 8/Nx

f0= 16/Nx

f0= 32/Nx

f0= 64/Nx

 

Figure 3.7. Horizontal centering test scene (a) and filter (b). 

The amplitude transmission for each grating is given by. 
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where Amax is the high value of the amplitude grating, and x0 is 

the period of the grating, and it is equal to 1/f0. We also use the 

sign function, defined as follows: 
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Because the considered gratings have even symmetry and have 

period x0, they can be written as the contribution of a series of 
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cosine gratings with frequencies multiple of the fundamental 

frequency (f0=1/x0), this is represented in Figure 3.8. The binary 

grating in Figure 3.8a is decomposed as the addition of the 

cosine grating series in Figure 3.8b. This decomposition can be 

expressed as follows. 
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Figure 3.8. (a) Binary cosine grating. (b) The grating can be considered as the 
contribution of a series of cosine gratings. (c) Corresponding Fourier spectrum. 
(d) The Fourier spectrum of the binary grating is also a series of spectra 
corresponding to the cosine gratings.  
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A(n) is the amplitude of the n-th order of the discrete Fourier 

spectrum of the grating. To obtain these terms we consider the 

binary grating as the convolution of a comb function of period 

x0 with a window function, constant between –x0/4 and +x0/4, 

and null elsewhere. Therefore the Fourier spectrum of the 

binary grating is the product of the Fourier spectrum of the 

comb function by the Fourier spectrum of the window function. 

This is represented in Figure 3.8c. There, one can observe the 

discrete diffraction orders, spaced by a distance of k/x0, being k 

a proportionality constant. This corresponds to the comb 

function. The peaks are modulated by the sinc function 

corresponding to the Fourier spectrum of the window function. 

And it has the first minimum at a distance 2k/x0 from the 

origin.  

The Fourier spectrum in Figure 3.8c can also be decomposed in 

terms of the spectra of the series of cosine gratings. This is 

represented in Figure 3.8d. This way, the DC peak corresponds 

to the average value of the grating, and each couple of peaks at 

the same distance from the origin represent the two linear 

phases that generate the cosine function terms.  

The sinc function that modulates the Fourier spectrum peaks 

determines the amplitude of each one of the terms in the series. 

This amplitude is given by:  
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Because in the test scene there are gratings with different 

periods, the Fourier spectrum of the whole scene presents the 

peaks for the different gratings (see Figure 3.9). For each one of 

the binary gratings there is the DC order, the fundamental 

orders and also the harmonic orders. We represent in Figure 

3.9b the correspondence between the peaks of the Fourier 

spectrum and four different gratings of the scene in Figure 3.9a. 

The spectrum of the whole image (see Figure 3.9c) is the 

superposition of the spectra for each one of the gratings, as 

represented in Figure 3.9d. The gratings with higher period 

have their fundamental orders closer to the origin, while the 

gratings with small period have the fundamental orders far 

from the origin. Of course the DC for all the gratings is at the 

center of the spectrum. In the correlator that is at the 

intersection of the filter plane with the optical axis. 

(a)

(d)(c)

(b)

 

Figure 3.9. Spectrum of the test scene. (a) test scene and (b) the peaks 
corresponding to the different gratings. (c) Squared magnitude of the Fourier 
spectrum of the scene. (d) Profile of the real part of the spectrum. It results from 
the contribution of the peaks for all the gratings.  
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This way, the test scene generates a correspondence of the 

different points along the x axis of the Fourier spectrum with 

the image of the gratings reconstructed in the correlation plane. 

When the filter inverts the sign of a peak far from the origin it 

alters a high frequency grating, and when it inverts a peak close 

to the origin it alters a low frequency grating. In addition, 

because all the gratings have the DC at the origin of the Fourier 

spectrum, when the filter affects the center of the Fourier 

spectrum all the gratings are affected.  

Let us analyze in detail how the reconstruction of the test scene 

gratings is affected when the different diffraction orders are 

inverted. 

3.4.2. Binary grating filtering 

Because the filter is a single vertical line of one pixel width, it  

inverts only one of the orders of the Fourier spectrum of a 

grating. As explained in section 3.4.1, each couple of diffraction 

orders on the Fourier spectrum of a grating at opposite 

distances from the origin constitute one of the cosine terms in 

the series given in equation 3.8. Because the inverse Fourier 

transform of each peak corresponds to a linear phase term one 

can retrieve that they contribute to the amplitude distribution at 

the correlation plane following the well known relation: 
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This way, when one adds a π radians phase to one of the peaks, 

one inverts the sign of one of these linear phase terms. 

Therefore the mentioned filtering operation, noted H(+k/x0)[], 

applied to a cosine function produces the following result: 
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That is, the real-valued cosine grating is changed by an 

imaginary valued sine grating.  

This same interpretation can be extended for the binary grating. 

When one of the peaks, corresponding to the harmonic orders 

of the binary grating are changed, one of the cosine terms of the 

series becomes an imaginary sine term. That is expressed as 

follows: 
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And the corresponding intensity at the correlation plane is: 
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And replacing the explicit expression of A(n) given in 3.9 we 

obtain 
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Here Imax = Amax2. The intensity distribution of the reconstructed 

grating, after being filtered depends on the diffraction order 

affected by the grating. We represent in Figure 3.10a the 

intensity distribution at the correlation plane for the cases in 

which there is no filtering, and when the inverted order is n=1, 3 

and 5. Figure 3.10b is a representation of the intensity 

dependency on the x direction at the corresponding Fourier 

plane. And Figure 3.10c represents the filtered Fourier 

spectrum of the grating. One can observe that there is a notable 

difference between the unfiltered reconstruction and the 

reconstruction when the fundamental order (n=1) is altered. 

Because the energy of the higher order harmonics is very low, to 

affect them does not produce a very important change.  

A special filtering case is when the inverted order is the DC. In 

this case the altered term of the Fourier series is not a term of a 

cosine component but the constant average value. The 

reconstructed grating in this case can be obtained by 

subtracting to the original amplitude distribution the double of 

its average value.  This way one writes: 
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(a) (b) (c)

Original grating

n= 1

n= 3

n= 5

 

Figure 3.10. Reconstruction of the grating binary grating after the inversion of 
the  harmonic terms of order n=1,3 and 5. (a) Image reconstruction. (b) 
Intensity profile (c) Corresponding real part of the Fourier spectrum. 
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and the corresponding intensity distribution at the correlation 

plane is given by: 
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That is the resulting intensity distribution, represented in 

Figure 3.11a, is a binary grating complementary to the original 

grating (represented in Figure 3.11b). That is, the inversion of 
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the DC order produces a contrast inversion of the original 

grating.  

(a)

(b)
 

Figure 3.11. Reconstruction of a binary grating when the sign of the DC term is 
inverted (a) reconstructed grating. (b) original grating. 

Because the DC peak for any grating is placed on the origin of 

the spectrum, the contrast of all the gratings in the test scene 

are inverted at the same time when the phase line crosses the 

optical axis of the correlator.  

Therefore, the observation of the reconstruction of the test 

scene on correlation plane when the test filter is applied can be 

used to center the filter SLM on the optical axis. Next we detail 

the procedure. 

3.4.3. The centering procedure 

By shifting the SLM along the x direction, one may place the 

phase line of the SLM over one of the fundamental orders of a 

grating, this can be clearly observed at the correlation plane. If 

the affected grating has period Nx/2n measured in pixels, then 

the x=0 axis of the SLM is placed at M2n pixels of the optical 

axis. Here M is the scale factor between the filter and the 

Fourier spectrum of the scene, which is not still matched at this 
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stage of the alignment procedure. For any value of M, when the 

filter SLM gets closer to the centered position, the period of the 

affected grating is bigger. Finally, when the x=0 axis of the filter 

SLM crosses the optical axis, one observes the contrast 

inversion of all the gratings of the test scene.  

We show in Figure 3.12 experimental results for the centering 

procedure performed onto our convergent optical correlator. 

Figure 3.12a is the image of the test scene at the correlation 

plane, when there is no filter. In this case, all the gratings are 

well reconstructed. 

(b)(a) (d)(c)
 

Figure 3.12. Test for the horizontal centering of the Filter SLM (a) Unfiltered 
image of the test scene. (b) Image for a misalignment of 320 µm. (c) Image for a 
misalignment of 160µm. (d) image for the correct centering 

Figure 3.12b shows a case in which the fundamental order of the 

grating with period Nx/8 is inverted, and therefore the 

distortion predicted by equation 3.14 is observed in the image. 

One can deduce that the x=0 axis of the filter SLM is at 8=23 
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pixels from the origin of the scene Fourier spectrum†. That is, 

considering that the distance between pixels of the filter SLM 

used in the correlator is 40 µm, one deduces that the filter is 

misaligned horizontally by about 320 µm. The image in Figure 

3.12c shows the case when the x=0 axis of the filter SLM is at 

about 160µm of the center of the scene Fourier spectrum. So, 

the grating with period Nx/4 is distorted. Finally, the case when 

the filter SLM is horizontally centered on the optical axis is 

shown in Figure 3.12d. In this case the DC term of all the 

gratings in the scene are inverted, and a contrast inversion of 

the scene is observed. Because the filter phase line has a width 

of one pixel the accuracy of the centering process is one pixel, 

that is 40 µm.  

3.4.4. Vertical centering considerations 

Once the filter is horizontally centered, the same test, with the 

scene and filter rotated 90 degrees, is used to center the filter 

SLM vertically. We show in Figure 3.13 the captures of the 

correlation plane for different positions of the filter. In Figure 

3.13a, b and c the filter is misaligned by 32, 16 and 8 pixels 

respectively. We show the reconstruction of the scene when the 

filter is vertically aligned in Figure 3.13d.  

                                            

† Considering that the scaling factor between the scene Fourier spectrum 
and the filter SLM is M=1 
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(b)(a) (d)(c)
 

Figure 3.13. Captures of the correlation plane for the vertical alignment test. The 
corresponding misalignment amounts are: (a) 32 pixels, (b) 16 pixels, (c) 8 
pixels. (d) Contrast inversion produced for the correct vertical centering. 

Sometimes, depending on the mount of the filter SLM, the shift 

axes (Sx and Sy in Figure 3.14) are not exactly parallel to the 

SLM pixel array axes (x and y in Figure 3.14). In this case, the 

centering process must be an iterative process. This is because 

the test is designed to detect when the x or y axes of the filter 

intersect with the center of the scene Fourier spectrum. This 

way, when the centering of the x axis of the filter is performed 

and the filter is moved along the Sx axis, the position of the y 

axis is changed (because the component of Sx along the y axis is 

nonzero). Therefore the y axis must be re-aligned. We represent 

this in Figure 3.14. We show the case in which the shift 

directions of the SLM mount (Sx,Sy) and the axes of the pixel 

array (x,y) are not parallel. We represent with arrows the 

trajectories on the SLM of the Fourier spectrum center when the 

centering procedure is performed. 
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Figure 3.14. Trajectory of the center of the scene Fourier spectrum when the 
centering procedure is applied to a filter SLM with the shift directions (Sx,Sy) 
different to the pixel array axes (x,y). 

The horizontal centering procedure brings the origin of the 

scene Fourier spectrum to the y axis (see the arrow marked as 1 

in Figure 3.14), however the vertical centering (arrow 2) moves 

it out. However, if the deviation between the shift axes and the 

filter SLM axes is less than 45 degrees the iterative process 

converges towards the centered position (see arrows 3 and 4). 

Usually, the angle between the shift directions and the x, y axes 

of the pixel array is very small, so the process converges fast. 
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3.4.5. Additional verifications  

 

Figure 3.15. Image of the pinhole at s’, acquired by using a microscope objective 
placed behind the filter SLM. The arrows show the one pixel cross sent to the 
origin of the SLM.  

A direct verification of the filter focusing test and the filter 

centering test is shown in Figure 3.15. It consists of the image of 

the center of the filter SLM, magnified using a microscope 

objective, when a uniform scene is displayed in the input SLM. 

A centered cross is displayed in the filter SLM. The cross is 

composed by vertical and a horizontal line of one pixel width. In 

addition, because the filter SLM is configured in phase only 

regime we have changed the polarization configuration behind 

the modulator so as to make the cross visible. One can observe 

that the pinhole image (an Airy disk) and the pixel array are 

well focused at the same plane. This shows that the filter is 

correctly placed on the image plane of the source, and therefore 

the input scene spectrum is well focused on the filter SLM.  
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One can also observe that the center of the Airy disk is placed 

inside the center of the cross, that is on the center of the 

modulator. That means that the filter is correctly centered on 

the optical axis of the correlator. 

3.5. Alignment of the scene azimuth to the filter. 

The next step in the alignment procedure described in Section 

3.2.2 is the azimuth matching of the scene and the filter SLMs. 

One must consider that one of the SLMs of the correlator may 

be slightly rotated about the optical axis with respect to the 

other SLM. In this case the axes determined by the pixel array 

of the scene modulator, and the axes of the filter SLM are not 

exactly parallel each other. Therefore, according to Section 3.2.2 

the azimuth (α in Figure 3.2) of the scene modulator must be 

matched to the azimuth of the filter SLM. 

3.5.1. The test scene and filter 

The test we propose for the azimuth matching step of the 

alignment procedure of the correlator consists on displaying the 

test scene shown in Figure 3.16a and the filter shown in Figure 

3.16b. The proposed scene consists of a series of wedges in all 

the directions separated by 5 degrees each other. We refer to 

this as a wedge star. Instead of the horizontal wedges, we have 

represented a thin line (one pixel width) in the x direction. We 

consider this line as a reference line. Because it is thinner than 

the wedges it provides better accuracy in the alignment when 

the angle mismatch is small.  



lcd-based Optical Processor for Color Pattern recognition by 3D correlation 

 30  

(b)(a)

φ =0

φ =π

φ =π

 

Figure 3.16. (a) Azimuth alignment test scene, and (b) filter. 

The test filter consists of setting to π the phase difference 

between the background and those pixels along the y axis at a 

distance to the origin bigger than a given threshold. See Figure 

3.16b. This filter produces the inversion of the sign of the 

diffraction orders along the y-axis (with a frequency higher than 

the threshold frequency). And therefore, this filter produces the 

contrast inversion of gratings that vary along the y axis with a 

frequency above the threshold, in the image reconstructed on 

the correlation plane. 

To analyze the effect of the proposed filter on the scene it is 

necessary to find out its frequency content. Let us note that the 

wedge star in the scene can be approximated in each small 

region about a point by a linear grating whose direction and 

frequency are determined by the position of the point. Let us 

consider the wedges close to a point with polar coordinates(ρ,θ), 

their directions are in a small environment of θ. Therefore one 

can approximate the wedges by a linear grating whose bands are 

at that angle θ, what means that the variation direction of the 

grating is at θ+π/2. In addition, the period of the linear grating 
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is given by the separation between two consecutive wedges. If 

we consider that the wedges are separated by an angle P, at the 

point (ρ,θ) they are separated by a linear period PL=ρP. In other 

words, the frequency of the local grating is 1/ρP. Taking all this 

into account, one can write the linear grating that approximates 

better the wedge star in a point (ρ,θ) as follows.  
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We represent in Figure 3.17 the approximation of the wedge star 

in the test scene by linear gratings considering square 

environments of different sizes. In Figure 3.17a the star is 

approximated in squares with side Nx/6. In each square we 

represent a linear grating with the frequency and orientation 

corresponding to its central pixel. Figure 3.17b and c represent 

the same approximation of the star, but in these cases we have 

used squares with sides Nx/10 and Nx/16 respectively. One can 

observe that Figure 3.17c is very approximate to the star of the 

azimuth test scene in Figure 3.16a. 
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(a) (b) (c)(a) (b) (c)
 

Figure 3.17. Approximation of the scene by linear gratings. The frequency and 
orientation of the grating is approximated at a square of side: (a) Nx/6 ,(b) 
Nx/10 and (c) Nx/16. 

The azimuth test scene, and the magnitude of its Fourier 

spectrum are shown in Figure 3.18a and b, respectively. Because 

the frequency and orientation of the local gratings that compose 

the scene vary continuously, one does not observe discrete 

peaks in the Fourier spectrum, but a continuous distribution 

(see Figure 3.18b). It contains frequencies in all the directions 

because the wedges of the scene are directed in all the 

directions. The region of the scene located at a given direction θ 

from the origin, represented in Figure 3.18c, contains 

frequencies along the direction θ+π/2 (see Figure 3.18d). In 

addition, the regions of the scene at a distance ρ from the origin 

(see Figure 3.18d) contribute with a frequency 1/ρP, as 

represented in Figure 3.18e. 
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(a)

(b)

(c)

(d)

(e)

(f)

(a)

(b)

(c)

(d)

(e)

(f)
 

Figure 3.18. Frequency content of the test scene.(a) Test scene. (b) Fourier 
spectrum (c) Part of the scene along a given direction. (d) The corresponding 
frequencies are distributed along the orthogonal direction. (e) Part of the scene 
for a given radius (d) corresponding Fourier spectrum. 

One can consider that the frequency filter proposed for the 

azimuth alignment test (see Figure 3.16b) inverts the sign of 

frequencies in the y direction defined by the filter SLM pixel 

array, but leaves unaltered the sign of the DC order. Therefore, 

in the reconstructed image of the scene at the correlation plane, 

the contrast of the gratings that contain that range of 

frequencies are inverted whatever it is a maximum intensity 

wedge (called ridge-wedge) or a minimum intensity wedge 

(called valley-wedge). If the orientation of the x axis of the filter 

SLM matches the direction of a wedge, one observes that a thin 

black line splits the wedge in two. If the x axis of the filter SLM 

is oriented between two wedges of the scene, a thin light line 

appears between the wedges. This way, one can measure in the 
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image reconstructed in the correlation plane the angle between 

the axes defined by the pixel arrays of the scene and the filter 

SLMs.  

(a) (b) (c)

 

Figure 3.19. Experiments on the azimuth alignment. (a) Capture of the 
correlation plane for an azimuth mismatch of 5 degrees. (b) idem for 1 degree 
(c) idem for correct azimuth matching. 

Experimental results obtained during the azimuth alignment of 

our correlator are shown in Figure 3.19. One can observe in 

Figure 3.19a that a thin black line appears on the first wedge. 

That indicates that the azimuth mismatch is 5 degrees. In 

Figure 3.19b we show that a thin line appears between the 

reference line and the first wedge when the azimuth difference 

is under five degrees (the figure corresponds to a mismatch of 

one degree). Finally, when the axes of the scene and the filter 

are aligned, the line whose contrast is inverted is the reference 

line on the x axis.(Figure 3.19c). 
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3.6. Filter scaling test 

The last step of the alignment procedure of the correlator 

proposed in this Chapter is the scale matching between the 

Fourier scene spectrum and the filter. As mentioned in Section 

3.2.2 this is done by displacing the scene SLM along the optical 

axis (W in Figure 3.2), and of course by refocusing the 

correlation plane. 

y y

(a) (b)

(c) (d)

φ= 0

φ= π

kNx/2

 

Figure 3.20. Scene and Filter for the scale matching test. (a) Test scene. (b) Test 
filter. (c) and (d) are the amplitude profiles corresponding to the two columns 
marked with arrows.  

3.6.1. Test scene and filter 

The test we propose to perform the scaling of the scene 

spectrum consists of displaying in the input SLM of the 

correlator the scene shown in Figure 3.20a. The proposed test 

filter is shown in Figure 3.20b.  
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The test scene can be interpreted as if each vertical line were a 

cosine grating, and the frequency of each one of these vertical 

gratings increased linearly along the x axis, being the zero 

frequency on the left edge of the image. We illustrate this in 

Figure 3.20c and d. There we have represented the amplitude 

profile of the images along two different columns. The profile in 

Figure 3.20d corresponds to a column at a distance to the left 

edge of the image  that is three times the distance to the left 

edge of the column corresponding to Figure 3.20c. That means 

that the frequency of the grating in Figure 3.20d is three times 

bigger than the frequency of the grating in Figure 3.20c. In the 

scene, we have introduced an additional contrast inversion for 

the right half of the image. The inversion change is produced at 

x=0. The amplitude a(x,y) of the grating is then given by: 

 
[ ]

[ ]








>+−

≤++
=

0)2/(cos1
2

0)2/(cos1
2),(
0

0

xfiyNxka

xifyNxka

yxa
x

x

, (3.18) 

where k is a scaling factor that quantifies how fast the frequency 

of the gratings increases along the x axis, and Nx is the size of 

the image along the x direction. This way, the frequency for the 

grating corresponding to the x=0 axis is kNx/2. We consider it 

as the threshold frequency for the test. So, in the test scene all 

the columns at the left half have frequencies below the 

threshold frequency, and at the right half the frequencies are 

above the threshold level. 
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The threshold frequency is also considered in the design of the 

test filter (shown in Figure 3.20b). It is given by: 
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That is, the filter is divided in three uniform regions, limited by 

the threshold frequency, and the phase difference between these 

regions is π radians. This way, the filter introduces a contrast 

inversion for all the frequencies whose y component is above 

the threshold frequency.  
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Figure 3.21. Spectrum of the scale matching test. (a) Real part of the Fourier 
spectrum. (b) Corresponding profile of the real part of the spectrum at the x=0 
axis.  
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To show the effect of this filter in the reconstruction of the test 

scene we consider the frequency spectrum A(x,y) of the scene. 

We show in Figure 3.21a the real part of the spectrum of the test 

scene. There, one can observe the discontinuities at the positive 

and negative orders of the threshold frequency (+kNx/2 and –

kNx/2). These discontinuities come from the contrast inversion 

introduced in the scene. 

Let us consider the frequency distribution of the spectrum along 

the x=0 axis. It corresponds to the addition of the one-

dimensional spectra for all the columns of the scene. We 

represent the profile corresponding to its real part in Figure 

3.21b. Because each column of the scene can be considered as 

an amplitude only cosine grating, it contributes to the frequency 

distribution along the x=0 axis with three real peaks, the DC 

term and the two fundamental orders. As the frequency in the 

scene is increased continuously along the x axis, the 

contribution of the peaks corresponding to each column of the 

scene constitute a continuous distribution in the Fourier 

spectrum. One can observe a discontinuity at the threshold 

frequency because the orders above the threshold frequency are 

negative while the orders below it are positive due to the 

contrast inversion introduced in the scene.  

When the Fourier spectrum of the test scene is multiplied by the 

test filter, the sign of the orders above the threshold frequency 

is inverted, and therefore a contrast inversion of the 

corresponding gratings is produced. The contrast inversion 
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introduced by the filter, compensates the contrast inversion 

designed in the scene, only if the size between the filter and the 

diffraction pattern of the scene obtained in the correlator is the 

same. 

Re{AH}(0,y)

y
(c)
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y

Re{AH} (0,y)

y
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Figure 3.22. Inversion of the x=0 line of the spectrum for the filter scaling test. 
x=0 line of the spectrum (a) when it is not filtered, (b) when the filter is smaller 
than the scene spectrum, (c) when the filter is bigger than the scene spectrum., 
and (d) when the filter scale is matched. 

If the scale is not matched, the contrast inversion introduced by 

the filter occurs at a different frequency to the contrast 

inversion designed in the scene. This is shown in Figure 3.22, 

the x=0 line of the Fourier spectrum of the test scene is 

represented for several scales of the test filter. In Figure 3.22a 

we represent the spectrum without filtering. In Figure 3.22b we 

represent the case in which the Fourier spectrum of the scene, 

obtained optically on the filter plane is bigger than the size 

assumed for the filter therefore one observes that the sign 
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inversion introduced by the filter occurs at a frequency below 

the threshold. The opposite case is represented in Figure 3.22c, 

there the filter is bigger than the Fourier spectrum of the scene 

and the contrast inversion introduced by the filter occurs for a 

frequency above the threshold frequency. Finally Figure 3.22d 

represents the case in which the scale of the filter is correctly 

matched. There one can observe that the sign of the filtered 

spectrum does not change along the x=0 axis.  

(a) (b) (c)
 

Figure 3.23. Experimental captures of the correlation plane for the scale 
matching test. (a) Image when the size of the filter is 1.5 times bigger than the 
proper size ,(b) when it is 1.01 bigger, and (c) when the scale is correctly 
matched.  

In Figure 3.23 we show experimental captures of the correlation 

plane for different scales of the filter. Because the sign inversion 

of the orders in the spectrum produces a contrast inversion in 

the image retrieved in the correlation plane for the 

corresponding gratings, one can observe an additional contrast 

inversion in the correlation plane, besides the contrast inversion 

designed in the scene. These two contrast inversions 

compensate each other only in the case that the filter scale is 

correctly matched. Figure 3.23a shows the correlation plane 
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when the filter size is 1.5 times the size of the scene spectrum. 

One can observe that the contrast inversion introduced by the 

filter is produced in the right side of the image, that is, at a 

frequency higher than the threshold frequency. We show in 

Figure 3.23b the case in which the filter is 1.01 times bigger than 

the size of the scene spectrum. One can still differentiate that 

the contrast inversion introduced by the filter occurs at a 

frequency higher than the threshold. Finally, Figure 3.23c 

shows a capture of the correlation plane when the scene 

spectrum matches the size of the filter. In this case there is no 

contrast inversion because the filter compensates the contrast 

inversion designed in the original scene.  

3.7. Alignment tests for phase encoded scene 
correlators 

The proposed tests can also be adapted for its use in a phase 

encoded scene correlator, that is, correlators, in which the scene 

modulator (SLM1) works in phase only regime. This way, the 

input image is encoded in a phase distribution. This phase 

distribution can be reconstructed as an intensity image in the 

correlation plane by applying a phase shift to the DC term of the 

frequency spectrum obtained in the filter plane. This technique 

is also used in Zernike’s phase contrast microscopy (see for 

instance [Zernike95]). 

Because the phase contrast is produced in the correlation plane 

when a phase shift is applied to the DC term of the Fourier 
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spectrum of the scene, obtained in the filter plane, the previous 

condition to perform any other operation involving phase 

contrast is to locate accurately the center of the Filter plane.  

We remark that the filter focusing test is independent of the 

modulation regime of the test scene because it is performed 

with a uniform image in the scene. Therefore the explanation of 

this filter given in Section 3.3 is also valid for the phase-encoded 

scene correlator.  

3.7.1. Filter centering 

To perform the centering of the filter, a modification of the test 

presented in Section 3.4 is proposed so as to allow us its use in 

phase encoded scene correlators. It consists on displaying as 

scene the phase distribution shown in Figure 3.24a, and the 

filter in Figure 3.24b. The scene is a phase version of the 

amplitude encoded scene centering test scene but in this case 

the gratings take the values 1 (for φ=0) and i (for φ=π/2). The 

filter consist on a line with a phase difference of π/2 rad to the 

background, along the y axis.  
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Figure 3.24. Phase only version of the filter centering test (a) Phase distribution 
of the scene. (b) Phase distribution of the filter. 

The amplitude distribution of the scene in Figure 3.24a can be 

written as follows: 
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This expression is essentially the same expression as Equation 

3.6 for the amplitude only grating described in Section 3.4.1. 

However, in this case the term independent of x presents a 

phase difference of π/2 radians to the remaining terms. In 

consequence, the frequency spectrum corresponding to such a 

grating presents the same peak distribution as for amplitude 

only case, but in this case the DC term is delayed by π/2 radians 

to the remaining terms.  

We present in Figure 3.25a and b the amplitude distribution for 

the proposed binary phase grating and the corresponding 

frequency spectrum, respectively.  
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Figure 3.25. Binary phase only grating between zero and π/2 (a) Representation 
of the amplitude in the complex plane as a function of x (b) Representation of 
the corresponding Fourier spectrum.  

It is trivial to demonstrate that this amplitude distribution 

corresponds to a uniform intensity distribution. However this is 

true only if the infinite orders of the Fourier series are 

considered, so if we consider a limited number of terms, the 

edges of the grating are not perfectly squared, and then the 

edges are contrasted. This is the case of the optical correlator, 

because its elements have limited aperture and they remove 

some of the diffraction orders of the gratings in the scene. In 

Figure 3.26 we show an experimental capture of the correlation 

plane when the phase only scene in Figure 3.24a is represented 

in the input plane of the correlator and a uniform filter is 

presented in the SLM2. One can observe that the edges of the 

gratings  are visible due to the vignetting on the correlator.  
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Figure 3.26. Image at the correlation plane of phase only scene of the filter 
centering test. 

For the phase encoded scene, the test filter consists of a line that 

coincides with the y axis and that has π/2 radians of phase shift 

with respect to the background, it is represented in Figure 

3.24b. When the line on the filter overlaps one of the diffraction 

orders of a single grating, it delays its phase by π/2 radians, and 

therefore, the corresponding cosine term is changed. The effect 

of this filter, noted H[], is given by next expression:  

 [ ] )cos(exp)cos( 44
ππ += xixH , (3.21) 

Therefore, when the n-th diffraction order of one of the gratings 

is affected, the amplitude at the correlation plane, aC(x), can be 

written as a function of the original amplitude distribution in 

the input plane a(x) (equation 3.20) plus an increment function 

b(x), let us say: 

 )()()( xbxaxaC += . (3.22) 

The increment function b(x) is given by:  
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 In this case the intensity at the correlation plane is given by: 

 [ ])(arg)(argcos)()(2)()( 2 xbxaxbxaxbIxI SC −−+= , (3.24) 

what is not a uniform intensity distribution. That means that 

the reconstruction of the grating presents a non uniform 

intensity distribution when one of its Fourier orders is affected 

by the filter, and in consequence it becomes visible in the 

correlation plane. The alteration of the grating is proportional 

to An2, that is to the intensity of the peak affected by the phase 

line in the filter. In practice that means that the effect is mainly 

visible when the fundamental order of the grating is affected. 

This way, as we did in Section 3.4, the filter allows to evaluate 

the real position of the filter by observing in the correlation 

plane which grating is affected. When the phase line crosses the 

origin of the scene spectrum, the phase delay between the DC 

order and the other diffraction orders of the gratings in the 

scene is compensated. Therefore the entire image suddenly 

becomes visible in the correlation plane  

This is illustrated in Figure 3.27. We represent experimental 

captures of the correlation plane obtained using the described 

test for different positions of the filter SLM. Figure 3.27a and b 

show the intensity distribution of the reconstructed image when 

the filter is misaligned by eight and four pixels respectively. One 

observes that only one of the gratings is affected at each image. 

The higher the period of the affected grating, the closer to the 

correct position the filter is. Figure 3.27c shows the correlation 
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plane when the filter reaches the correct position. One can 

observe that all the gratings of the scene appear with very good 

contrast.  

(a) (b) (c)
 

Figure 3.27. Filter centering test results. (a) Capture of the crrelation plane for a 
misalignment of 8 pixels, (b) idem for a misalignment of 4 pixels (c) Capture of 
the correlation plane when the filter is centered. 

3.7.2. Azimuth filter 

Note that once the center of the filter is correctly aligned, the 

phase delay of the DC with respect to the other orders can be 

compensated. When this phase difference is compensated, the 

resulting spectrum of the binary grating of values 0 and π/2 is 

identical to the spectrum of the amplitude only grating, except 

by a global phase. Applying this, one can adapt the remaining 

tests to the phase encoded scene correlator by simply 

compensating the π/2 phase delay in the DC term for the phase 

only gratings, and by considering the versions for the amplitude 

encoded scene correlator. 

This way, the scene for the azimuth alignment test is the scene 

presented in Figure 3.28a, that takes the two phase values 0 and 
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π/2. Also in this case the wedge star can be approximated locally 

by linear gratings, as in section 3.5. However, in this case, the 

linear gratings are binary phase gratings of values 0 and π/2, 

what involves that the DC term is delayed by π/2 radians to the 

other terms. 

(a) (b)

φ =0

φ =π

φ =π

φ =π/2

φ= 0
φ= π/2

 

Figure 3.28. Azimuth test for phase-only scene correlator. (a) Test scene (b) Test 
filter. 

According to that, a modification is introduced in the test filter, 

shown in Figure 3.28b. Aside from the segments on the x=0 axis 

with a phase difference of π to the background, the central pixels 

of the filter are set to a phase of π/2 radians with respect to the 

background. So, the delay of the DC term of the scene Fourier 

spectrum is compensated and the phase only scene is contrasted 

in the correlation plane. Once the filtered scene is contrasted in 

the correlation plane, the azimuth alignment is carried out by 

observing the wedge splitting effect produced by the π phase 

line on the x=0 axis of the filter, as the case for the amplitude 

only scene.  
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We show the experimental results for this test in Figure 3.29. 

The correlation plane for a misalignment of 5 degrees is shown 

in Figure 3.29a. One can observe that the first wedge is split in 

two by a dark line in its center. Figure 3.29c shows the intensity 

distribution at the correlation plane when the azimuth is 

correctly aligned, in this case one can observe that the reference 

line is split in two by a dark line in its center. . 

(a) (b)  

Figure 3.29. Azimuth alignment test for phase only scene correlator (a) 
correlation plane for a misalignment of 5 degrees. (b) idem for correct azimuth 
alignment. 

3.7.3. Scale matching 

The same principle is applied to design a version of the scale 

matching test for phase only scene correlators. The test scene 

(Figure 3.30a) is very similar to the test scene shown in Section 

3.6, but now it takes the two phase only values  zero and π/2. 

Also in this case, we can consider that each column in the scene 

is a binary phase grating with frequency that increases linearly 

along the x axis. As we showed in Section 3.7.1, this binary 

phase only grating has the same Fourier spectrum as the 



lcd-based Optical Processor for Color Pattern recognition by 3D correlation 

 50  

amplitude only version, except for the DC term, that in this case 

is delayed by π/2 with respect to the remaining orders. 

Therefore, we introduce an additional spot in the center of the 

filter so as to compensate the phase delay of the DC term. The 

resulting filter is shown in Figure 3.30b. As in the case of the 

amplitude only scaling test, it contains three regions, limited at 

the threshold frequency where the contrast inversion is 

designed in the scene. The top and lower regions have a phase 

difference of π radians to the center background, and the spot in 

the center has a phase difference of π/2 radians. This way, the 

phase only distribution in the scene plane is contrasted onto an 

intensity distribution in the correlation plane.  

(a) (b)

φ =0

φ =π

φ =π

φ =π/2

φ= 0
φ= π/2(a) (b)

φ =0

φ =π

φ =π

φ =π/2

φ= 0
φ= π/2

 

Figure 3.30. Phase only scene scaling test. (a) Test scene. (b) Test filter. 

Once the phase delay of the DC term is compensated, the 

Fourier spectrum for this scene is equal to the amplitude only 

version of the test. Therefore, the test works in the same way as 

in section 3.6. The frequencies above the threshold frequency 
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are delayed by π  radians, what involves a contrast inversion in 

one side of the reconstruction of the scene. The frequency where 

this contrast inversion is produced indicates the scale of the 

Fourier spectrum of the scene with respect to the size of the 

filter encoded in SLM2. 

We show in Figure 3.31 experimental captures of the correlation 

plane when this test is being used for the scale matching. We 

show in Figure 3.31a the correlation plane when the scale 

mismatch is a 1%, that is, when the size of the filter is 1.01 times 

the size of the Fourier spectrum of the scene. One can observe 

that the phase only distribution of the test scene (SLM1) is 

contrasted in the correlation plane. One can also observe that 

the test filter introduces a contrast inversion at a frequency 

bigger than the reference one. In the case when the scale is 

properly matched the contrast inversion introduced by the filter 

is produced at the threshold frequency, this way it compensates 

the contrast inversion introduced in the design of the scene. 

This is shown in Figure 3.31b.  

(a) (b)  

Figure 3.31 Experimental results for phase only scene scaling test. (a) 
Correlation plane for a mismatch of 1%. (b) Correlation plane for correct scaling 
of the filter. 
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3.8. Summary 

A procedure based on simple scene and filter tests are proposed 

in this Chapter to perform the alignment of an optical 

convergent correlator for either amplitude or phase encoded 

scenes. All the alignment sequence is based in the observation 

of the reconstructed image of the scene in the correlation plane 

and the interpretation of the effects of the filtering. 

The proposed tests constitute a series of objective criteria for 

the alignment of the correlator, in the sense that experimental 

observations are interpreted in accordance to a simple 

frequency filtering theory. 

For all the tests we have presented experimental results that 

demonstrate the correct alignment of the filter or the scene 

SLMs. 

In conclusion we have shown that the proposed tests constitute 

a good method to solve the main drawback (the alignment 

requirements) of the Vander Lugt based correlator. 

 




