
 

Chapter 4. Color image analysis 
by Three dimensional Fourier 
transform and correlation  

In this chapter we propose the description of color and multi-

spectral images by three dimensional functions. We face the 

analysis of color, and multi-channel systems from the point of 

view of signal theory We also study the three dimensional 

Fourier transform and three dimensional correlation for these 

functions and give an interpretation of their three dimensional 

spectrum, taking into account the special nature of the color 

variable. 

4.1. Images as three dimensional light distributions 

One conceives an image as a light intensity distribution on a 

surface that is quantified by a function that depends on two real 

variables (ηx,ηy), which map the points of the surface. Because of 

the wave nature of light, one can consider that the intensity at 
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each point results from the contribution of an infinite number 

of monochromatic (harmonic) waves. The contribution to the 

intensity of each one of these monochromatic waves is 

characterized by the spectral density of the light. 

Usually, the spectral distribution of the light is not uniform over 

the set of points where the image is defined. This way, one 

considers that the intensity of light of an image is quantified by 

a function of three variables i(ηx,ηy,λ) in which the third axis can 

be interpreted as the spectral distribution of the light at the 

point (ηx,ηy). 

4.2. Multi-channel acquisition of images 

Because of the wavelength dependency of the light distribution 

of an image, the same signal can generate different responses 

when acquired by detectors with different spectral sensitivity. 

The response, f(x,y), of a photo-detector array that we consider 

to be linear and shift invariant, when detecting a signal i(ηx,ηy,λ) 

is given by  

 ( ) ∫ ∫ ∫
+∞

∞−

+∞

∞−

+∞

∆−∆−=
0

),,(),,(, yxyxyyxx dddiyxWyxf ηηλληηληη , (4.1) 

Here W(ηx,ηy,λ) is the impulse response function of the detector 

array. x and y are zero or positive integer numbers smaller than 

Dx-1 and Dy-1, respectively, that index the pixels of the array. 

∆x, ∆y are the spacing between pixels. 
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In the most usual case, the spectral response of the detector is 

the same for all the pixels, then we can write the impulse 

response function as a function of separable variables:  

 ( )ληηληη SWW yxSyx ),(),,( = . (4.2) 

That is, the response f(x,y) describes a sample of the three 

dimensional signal, integrated over a range of the spectrum 

determined by the spectral sensitivity of the detector, that acts 

as a weight function.  

i(ηx,ηy,λ)

f(x,y,0)

f(x,y,1)

f(x,y,2)

i(ηx,ηy,λ)

f(x,y,0)

f(x,y,1)

f(x,y,2)  

Figure 4.1. Scheme of a multi-channel detector. The same beam is split in three, 
and each one of the three beams passes through a dichroic filter before being 
acquired by a detector array. 

Several elements are involved in the spectral sensitivity of the 

acquisition system. Between them one counts the transmission 

of the glasses and the reflectance of the mirrors of the optical 

system, and also the efficiency of the detector array. 

Additionally, one can use dichroic filters to modify the spectral 

sensitivity of the detector. Moreover, several detectors can be 
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combined in the same device, and the same image can be 

sampled by detectors with different spectral responses (see 

Figure 4.1). This way, a collection of N different samples are 

generated from the same signal. The samples of the same image 

obtained by the different detectors are called the channels of the 

image. And an imaging system with more than one detector, 

having these different spectral sensitivity is called a multi-

channel system, but it is also called color system, multi-spectral 

system or hyper-spectral system. 

We illustrate this in Figure 4.2, the image of the Earth, that the 

human visual system would perceive as represented in Figure 

4.2a, is acquired with three different detectors. Their spectral 

response is shown in Figure 4.2b. The response of the three 

detectors is different from zero at different ranges of the 

electromagnetic spectrum. This way Figure 4.2c corresponds to 

the detector sensitive to the wavelengths on the visible range. 

Figure 4.2d corresponds to a range of the infrared radiation 

with wavelengths about 6.4 µm, called the water vapor band. 

And Figure 4.2e corresponds to a range of the infrared about 

13.6 µm, known as the thermal band. 
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Figure 4.2. Image acquisition with a multi-channel camera. (a) Color 
reproduction of the earth, as seen by the human visual system. (b) Spectral 
response of the detectors. (c) visible band channel, (d) water vapor band 
channel, (e) thermal band. 
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Figure 4.3. Image acquisition by the human visual system. (a) Color 
reproduction of the scene. (b) Normalized spectral absorption of the iodopsin 
pigments. (c) Blue channel of the color image. (d) Green channel. (e) Red 
channel. 

Also the human vision system is a multi-channel system. Three 

varieties of a pigment called iodopsin, that have different 

spectral absorption response are present in the cone-cells of the 

eye retina, They constitute the three types of detectors, and 

allow the eye to behave as a multi-channel system. We have 

illustrated this in Figure 4.3. The image in Figure 4.3a is 

perceived as a color image because it is acquired by the three 

type of cone-cells in the retina. Their normalized spectral 

response is represented in Figure 4.3b. If one represents 

separately the response of each one of the three detectors, the 

images in Figure 4.3c, d and f are obtained One defines the 

colors as the different sensations (the response) that the human 
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visual system perceives when stimulated by different spectral 

distributions. In analogy to the human visual system, in this 

work we also refer to the response of a multi-channel system as 

color. The non-uniformity on the perception of the color 

distribution of Figure 4.3a comes from the fact that the three 

acquired channels are different each other. 

4.3. Spectrum sampling 

Two different interpretations raise from the multi-channel 

detection of images. One of them consists of considering the 

multi-channel acquisition as a sampling of the spectral 

distribution, and the other consists of considering that the 

multi-channel systems have vector response in which the 

spectra are mapped onto a N-dimensional vector space. In this 

chapter we establish the relation between these two 

interpretations.  

We consider the multi-channel image acquisition as a sample of 

the spectral distribution of the points of the image. Therefore, 

the response of the system is considered to be a three 

dimensional function, because the signal is three dimensional 

too. The multi-channel detector is now characterized by a three 

dimensional impulse response function. However, one must 

take into account that the spectral response of the multi-

channel device is not, in general, shift invariant (See Figure 

4.3b). So we write the impulse response function of the device 
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as a function of four variables, as follows (three are real: ηx, ηy, 

and λ, and one is integer: n). 

 ( ) ( ) ( )ληηληη nyxSyxD SWnW ,,,,3 = , (4.3) 

Here n is the index for the detector whose spectral response is 

characterized by Sn(λ) This way the three dimensional response 

of a multi-channel system is given by the next expression: 

 ( ) ∫ ∫ ∫
∆ ∆ +∞

∆−∆−=
yy xxD D

yxyxyyxxD dddinyxWnyxf
0 0 0

3 ),,(),,,(,, ηηλληηληη , (4.4) 

In addition, it is easy to find that the n-th channel acquired by 

the system from the image is given by  

 ( ) ( )nyxfyxfn ,,, = . (4.5) 
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Figure 4.4. Sampling of three dimensional light distribution. (a) Original 
distribution. (b) Sampling by a system with 3 detectors.(c) Sampling by a system 
with 5 detectors. 

Though multi-channel systems are not generally shift invariant 

along the wavelength axis, the spectral response of their 

detectors are similar each other, but centered at different 

wavelengths (See Figure 4.3b as an example). This way, to 

consider that the three dimensional response of the multi-

channel system is a sample of the three dimensional signal is a 

realistic approximation. 

The sampling of a continuous three dimensional image by 

multi-channel systems is illustrated in Figure 4.4. The 
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continuous function in Figure 4.4a is sampled by a 3-channel 

system, and its response is the discrete function in Figure 4.4b. 

There the wavelength axis is sampled at three points. Each one 

of the represented planes is called a channel of the three 

dimensional function. If the system is a 5-channel system the 

response to the same signal is that of Figure 4.4c. There, the 

color axis is sampled at five points, that is, the three 

dimensional function has five channels. 

Many artificial systems try to emulate the human visual system 

response, so they are composed of three detectors (N=3) with 

spectral sensitivities centered on the red, green and blue ranges 

of the visible range of the electromagnetic spectrum, like the 

iodopsin pigments responses are. One refers to the responses of 

each one of these three detectors as the red (R), green (G) and 

blue (B) channels of the color image respectively. We establish 

the convention that the red channel is the n=0 channel, and the 

green and blue channels are the n=1 and n=2 channels 

respectively. In general, for a color C with components r, g and 

b, the response of a RGB color system is c(0)=r, c(1)=g, and 

c(2)=b. 

Also the electromagnetic spectrum of a signal is a distribution, 

that in this case depends on the wavelength. Therefore the 

Fourier transform can be applied to it. That leads to the 

distribution of chromatic frequencies (see for example 

[Romero95]) for a given signal. Because the number of 

detectors of any real system is limited, the sampling of the 
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spectral distribution does not contemplate the higher chromatic 

frequencies of the spectral distributions of the images, and 

therefore many different spectral distributions lead to the same 

response of the system. For the human visual system, the 

identification of different spectral distributions by the same 

color is usually known as metamerism. 

That means that  the response of a multi-channel system to any 

signal can be emulated by a number of different signals, or by a 

linear combination of signals (because the system is linear). In 

addition, the minimum number of signals that complete the set 

of all the possible responses of a multi-channel system with N 

detectors is N signals per pixel. However, depending on the 

spectral responses of the system it is necessary to use negative 

coefficients in the linear combinations. That is, the set of all the 

possible responses of a multi-channel system has the structure 

of a N-dimensional vector space. Furthermore, the result of 

applying any linear operation to a color is completely 

determined by the result of applying the operation to the colors 

of the vector space basis. 

4.4. The color space of the Human Visual System  

In the case of the human visual system, the vector space of all 

the possible responses is a three dimensional space, as 

corresponds to the three varieties of iodopsin in the retina. This 

vector space is often called the color space. We extend the use of 

this term to the vector space of the possible responses of any 
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multi-channel system. The colors of the basis of the color space 

are often called the primary colors. One uses to choose the red, 

green and blue as the primary colors, because they maximize 

the quantity of colors that can be generated with positive 

components. This is expressed by the Grassman’s color mixture 

law, as follows: 

 BGRC bgrc ++= , (4.6) 

where r, g and b are the components of the color cC in the basis 

defined by R,G and B. To illustrate the color mixture law, we 

represent in Figure 4.5 the r, g, b components (known as 

tristimulus values) for the responses for all the monochromatic 

spectral distributions in the basis formed of three 

monochromatic signals (R at 645 nm, G at 525 nm and B at 

445nm).  

Note that the tristimulus value for the primary colors is one for 

one of the detectors and zero for the other two detectors 
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Figure 4.5. Tristimulus values for monochromatic impulses of equal power.  

.The tristimulus values of the monochromatic spectra define the 

coordinates of a curve parameterized by the wavelength on the 

color space. Usually this curve is orthogonally projected onto 

the plane r+g+b=1, which is the plane that contains all the 

colors with 1/3-intensity†, defined as the average of the 

response to a signal of the detectors. The r, g, b coordinates of 

this projection are called the color matching functions. Any 

spectrum can be conceived as the addition of monochromatic 

stimuli, as follows: 

 ( ) ( ) ( ) '''
0

λλλδλλ ∫
+∞

−= dii , (4.7) 

                                            

† The intensity is defined as the average of r, g and b. Therefore the 
primary colors have intensity 1/3 
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where δ(λ-λ’) is the spectrum for a unit power monochromatic 

stimulus of wavelength λ’. Therefore, the response of the system 

to any spectrum is a vector that intersects the 1/3-intensity 

plane (r+g+b=1) in the region bounded by the color matching 

functions. However, only the response of the system to stimuli 

that have positive components in the basis defined by the 

primary colors can be emulated by mixing these primary colors. 

Figure 4.6a is a representation of the color vector space for the 

human visual system. The primary colors are indicated by the 

vectors R, G and B. The 1/3-intensity plane is also represented 

(see the triangle defined by its intersection with the r=0, g=0, 

and b=0 planes), and the curve defined by the color matching 

functions is represented on it. Note that the curve is out of the 

first octant and that it intersects the coordinate axes on the 

primary colors. That indicates that they have at least one 

negative component and therefore they cannot be reproduced 

by additive mixtures of R, G and B. We have also represented 

in Figure 4.6a the secondary colors, cyan(C), magenta (M) and 

Yellow (Y), that are the addition of equal parts of two primary 

colors (C=B+G, M=B+R, Y=R+G). The primary colors, the 

secondary colors, the white (W=R+G+B) and the black are the 

vertices of a cube, that contains the color gamut that can be 

generated with values of r, g and b between 0 and 1 (or between 

0 and 255). Figure 4.6b represents the colors in the intersection 

of the 1/3-intensity plane with this cube, projected onto the RG 

plane. This triangle is usually called the Maxwell’s triangle. All 
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the colors with intensity equal to 1/3 that can be represented by 

mixture of R, G and B have been represented. The dashed line 

represent the points corresponding to the response to the pure 

spectral colors. Because they have at least one negative 

component, they can not be reproduced by positive 

combinations of R, G, and B (Except the primary colors). 

Therefore they are out of the Maxwell’s triangle. 
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Figure 4.6. Representation of the color space. (a) three dimensional 
representation of the primary colors (R, G and B). (b) Projection of the colors 
on the unit intensity plane onto the RG. The dashed line represents the 
monochromatic colors.  

Aside from the {R,G,B} basis, the human visual system color 

space can be generated by different vector bases. Some usual 

bases are the {X,Y,Z}, in which the components of any color are 

positive, being the component on Y the luminance of the color 

and also the {A,T,D} basis, built from psycho-physical models 

of human perception. 
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It is also interesting to map the color space using a cylindrical 

coordinate system (ζ,ρ,θ), in which the privileged axis is 

perpendicular to the equal-intensity planes. It is represented in 

Figure 4.7a. This coordinate system is directly related to the HSI 

(hue, saturation, intensity) representation of color, given by the 

next expressions [Gonzalez92]:  

 ( )bgrI ++=
3
1 , (4.8a) 

 ( )bgr
bgr

SH ,,min31
++

−= , (4.8b) 

 ( )








−−

−
= −

bgr
bgH

2
3tan 1 . (4.8c) 

The relation between (ζ,ρ,θ) and HSI is given by: 

 ζ3=I , (4.9a) 

 
( )θρ

ρ

MAX
HS = , (4.9b) 

 θ=H , (4.9b) 

One can identify the intensity (I) to the axial coordinate of the 

cylindrical coordinate system (ζ). The hue (H) is the angular 

coordinate (θ), represented in Figure 4.7b for an equal-intensity 

section of the cylinder; and the saturation (SH) is the radial 

coordinate normalized to take its maximum value (one) on the 

coordinate planes. This representation system is interesting 

because the coordinates have a direct spectral interpretation. 

The intensity is correlated to the total energy of the signal, the 

saturation gives information about the proximity of the colors to 
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the pure spectral colors, and the hue gives information about 

the main wavelength range of the signal that generates the 

color.  
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Figure 4.7. (a) Cylindrical coordinate system of the color space. (b) colors in the 
HS representation of the 1/3-intensity plane. The shadowed colors represent 
colors that are not reproducible by mixture of R, G and B. 

Therefore, the HSI representation establishes a relation 

between the geometrical distribution of the colors in the color 

space and some properties of the spectral distribution that 

generate the colors. 

4.5. Color Fourier spectrum  

Linear transformations of the color space can be considered as 

linear transformations of the signals that generate the colors. 

These operations can also be performed in the frequency 

domain. So, it results interesting to define the Fourier 

transform of the color distribution, we refer to this operation as 
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the color Fourier transform, and it is defined by the following 

expression: 

 ( ) ( )∑
−

=






−=

1

0
2exp1 N

n
C N

mninc
N

mF π . (4.10) 

FC(m) is the color Fourier spectrum of the color with 

components c(0),…, c(N–1). Analogously, one says that 

FC(x,y,m) is the color Fourier spectrum of a color image with 

components if  

 ( ) ( )∑
−

=






−=

1

0
2exp,,1,,

N

n
C N

mninyxf
N

myxF π . (4.11) 

The color Fourier transform is a linear operation on the color 

space, therefore, once the basis has been established, it can be 

expressed as a N×N matrix (F), whose matrix elements Fmn are 

complex numbers given by  

 





−=

N
mni

N
Fmn π2exp1 . (4.12) 

As an example we can consider the matrix for N=3: 

 ( ) ( )
( ) ( )
















−+
+−=

3
2

3
2

3
2

3
2

expexp1
expexp1

111

3
1

ππ

ππF . (4.13) 

The inverse color Fourier transform F–1 operator is given by  

 †1 FF N=− , (4.14) 
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that means that except by a normalization factor, the color 

Fourier transform is a unitary† operator: i.e., orthogonal vectors 

in the color space are transformed in orthogonal vectors in the 

color Fourier spectrum vector space (defined to be orthogonal if 

their hermitian product is zero). Note that while the color space 

is a N-dimensional vector space of vectors with real 

components, the color Fourier transform is a linear operation 

onto a N-dimensional vector of complex components, that 

therefore has 2N degrees of freedom. Nevertheless, the spectra 

of the colors have symmetrical real part and anti-symmetrical 

imaginary part, what involves to have N boundaries on the 

vector space of the spectra. Therefore, the total number of 

degrees of freedom for the manifold of the color Fourier spectra 

of the color space is N.  

The m=0 channel of the color Fourier spectrum of an image 

corresponds to the DC term of its Fourier series. It is formed by 

the un-weighted addition of all the channels of the image, 

therefore, aside from the total intensity of the signal, it does not 

contain any information about the spectral distribution of the 

image. Because physical color distributions are real-valued, the 

m=0 channel of the color-frequency spectrum is real-valued 

too. Therefore, the values at the DC channel of the color-

                                            

† One can normalize the Fourier transform operation as 







−=

N
mni

N
Fmn π2exp1

so as to have a unitary operator F†F=I, that 

preserves both orthogonality and the norm. 
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frequency spectrum of all the elements of the color space map a 

one-dimension manifold. Every point of this one-dimensional 

manifold corresponds to all the colors whose spectra have the 

same DC value. These colors determine a N–1 dimensional 

manifold of the color space, which is determined by the 

equation  

 ( ) knc
N

n
∑

−

=

=
1

0
, (4.15) 

and is represented by the hyper-plane Ωk in Figure 4.8. The 

m=0 channel of the color Fourier spectrum is the same for all 

the colors whose representation in the color space has the same 

orthogonal projection onto the straight line ω in Figure 4.8, 

which is orthogonal to the planes Ωk 

Pi

Pj

Pk Ωk

ω

 

Figure 4.8. Representation of the hyper-plane of all the colors that have the 
same DC value in the color-frequency spectrum (Ω). Pi, Pj, Pk are three of the N 
primary impulses of the N-dimensional color space. 
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This is demonstrated next. The projection of a color described 

by a vector c with components c(n) onto the line ω is given by its 

scalar product with the director vector of ω, uω 

 ( ) ( )∑
−

=

=⋅
1

0

N

n
ww nuncuc . (4.16) 

All the components of uω  are equal, therefore we can factorize 

them, as follows: 

 
( )

)0(

1

0

Cw

N

n
ww

FNu

ncu

=

=⋅ ∑
−

=

uc
. (4.17) 

This way, the DC channel is proportional to the orthogonal 

projection of the color onto the line ω. 

In the case of the RGB color space, the DC channel of the color-

frequency spectrum is identified as the intensity of the 

transformed color. That is, the same value in the m=0 channel 

of the color-frequency spectrum is shared by all the colors that 

have the same intensity, independently of their chromaticity. 

These colors compose the planes Ωk. 

The other channels (m≠0) of the color-frequency spectrum are, 

in general complex-valued, even when considering real-valued 

color compositions. They establish a mapping of the color space 

onto the complex plane, which is a two-dimensional vector 

space. Because the color Fourier transform is an hermitian 

operator,. the projections of the color space given by the 

different channels are orthogonal each other and orthogonal to 
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ω in particular. That is, the manifolds constituted by colors 

whose spectra have only one nonzero component are orthogonal 

each other if the nonzero component is different.  
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Figure 4.9. Representation in the complex plane of the different channels (a to f) 
of the color Fourier spectrum of the primary colors for a color space of 
dimension N=6. 



 §4–Color image analysis by Three dimensional Fourier transform and correlation 

  23  

To illustrate the mapping of the color space onto the complex 

plane, we consider as an example the case of a 6-dimensional 

color space (N=6). Taking into account that the color Fourier 

transform is a linear operation, the spectra of the whole color 

space can be obtained by linear combinations of the spectra of 

the primary colors. The color-frequency spectrum of each 

primary color has been performed and the resulting values have 

been represented in the complex plane for the different 

channels (m=0,...,5) in Figure 4.9. For each channel, the values 

of the color-frequency spectra of the different primary colors are 

distributed on the vertices of an M-angles polygon, where M is 

any of the integer factors of the number of channels N. In the 

case of N=6 the figure can be an hexagon (Figure 4.9b and f), a 

triangle (Figure 4.9c, e) and also the two ends of a segment of 

the real axis (Figure 4.9a and d). One can observe that each 

primary color takes a different position at each channel of the 

color spectrum. Therefore, the values of the m≠0 channels can 

be thought as different two-dimensional projections of the 

colors on the complex plane. 

In the case of N=3, the planes parallel to Ωk are the only planes 

orthogonal to ω, therefore the channel m=1, and also m=2, that 

is the complex conjugate of m=1, establish an orthogonal 

projection of the color space onto Ωk. The mentioned projection 

can be derived from the color Fourier transform expression in 

eq.4.13. We consider the color Fourier transform of a color with 

components r,g and b: 
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FC(0) maps the line ω, and the real and imaginary part of FC(2) 

can be taken as the parameters of Ω. Then, we can write:  
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Therefore  
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And by replacing the cosine and sine functions by their values, 

we obtain, 
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Note that the row-vectors in the matrix are orthogonal each 

other, but they are not unit vectors. They can be normalized by 

dividing them by their norm. This leads to the following 

operator: 
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This way one can establish a liner relation, A, between the 

(r,g,b) components of a color and a new set of components 

(ζ,η,ξ) determined by the values of the color-frequency 

spectrum.  
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and 
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A is the transformation operator between two orthonormal 

vector bases of the color space, therefore it is an orthogonal 

operator, i.e. it verifies ATA=I. 
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Figure 4.10. (a) Representation of the vectors of the base defined by the DC 
value of the color-frequency spectrum, and the real and imaginary parts of the 
m=2 channel. (b) Distribution of the colors with intensity equal to 1/3 in the 
complex plane according to the value at the m=2 channel of their color-
frequency spectrum. 

We represent in  Figure 4.10a the ortho-normal basis of the 

color space defined by the color Fourier transform. Note that 

the m=0 channel of the color-spectrum is proportional to the 

projection ζ of the colors onto the line ω. Additionally, the 

channels m=1 and m=2 establish a projection of the colors onto 

the plane Ω. We give in Figure 4.10b a representation of this 

mapping. We have placed at each point (η,ξ) the color with 1/3-

intensity whose spectrum, valued at the m=2 channel is η+iξ.  

Furthermore, we can retrieve the relations between the color 

spectrum and the hue, saturation and intensity representation 

of a color: 
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 ( )[ ]2CFArgH = , (4.25a) 
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 ( )0CFI = . (4.25c) 

Here, S corresponds to the saturation of the color. However, in 

this case the normalization is independent of the hue of the 

colors. It takes its maximum value (S=1) in the primary colors.  

This way, the relation of the HSI representation of the colors 

with the characteristics of the spectral distribution of the signals 

that generate the colors can be justified by the usual properties 

of the Fourier transform. 

The intensity (I) is proportional to the DC channel of the color-

frequency spectrum of the spectral distribution. Because the DC 

term is conceived as the average value of the spectral 

distribution of the signal, it results obvious that the intensity 

represents a measure of the total power of the signal.  

The saturation (S) is defined as the ratio between the high color-

frequencies and the DC term. It constitutes a measure of the 

proximity of the spectrum of the signal to a uniform spectrum 

signal (white), or to a monochromatic signal. If the spectral 

distribution of the signal is  uniform in the wavelength axis, 

only the DC term of its color-frequency spectrum is nonzero, 

therefore its saturation is zero. On the other hand, for a pure 

spectral signal, the color-spectrum has a uniform distribution. 
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Therefore the ratio between the high-color frequencies and the 

DC term is one. 

Also the meaning of the hue (H) can be derived from the 

properties of the Fourier transform. It is defined as the phase 

(or argument) of the FC(2) channel. The translation theorem 

establishes the relation between the phase distribution of the 

color-frequency spectrum and the shift of the signal from the 

origin. Therefore, one can consider that the hue contains the 

information about the location of the signal in the wavelength 

axis.  

Let us define the energy of a spectral distribution as  

 ( )∑
−

=

=
1

0

2
N

n
C ncE . (4.26) 

We refer to EC as the color energy†. In the case of the RGB color 

space it can be written as: 

 { } 222,, bgrbgrEC ++= . (4.27) 

EC is the measure of the distance of the signal to the origin of 

the color space (the black color), independently of the hue or 

the saturation of the color. Its relation to the intensity and the 

saturation is derived next. 

                                            

† r, g and b are usually based on intensity measures, and they represent a 
measure of the physical energy. Nevertheless, EC must beunderstood from 
the point of view of signal theory, and is defined so as to be preserved by 
Parseval’s theorem.  
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By applying the Parseval’s theorem we can write the color 

energy in terms of the color Fourier spectrum, as follows: 
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And by dividing the two sides of the equation by |FC(0)|2 we 

have 
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We replace the expressions for the intensity and the saturation. 

Then we obtain 

 2
2 63 I
C S

I
E

+= . (4.30) 

That means that colors with equal intensity do not have the 

same color energy because the ratio of the color energy to the 

intensity has a quadratic dependence on the saturation of the 

colors. 

4.6. Three dimensional Fourier transform of color 
images 

The combination of the color Fourier transform with the usual 

two dimensional Fourier transform of images leads to the 

definition of the three dimensional Fourier transform of three 

dimensional functions that describe color images. Let us 

consider a color image described by a three-dimensional 
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function f(x,y,n), defined for integer values of x, y and n 

between zero and Dx, Dy and N respectively, which are the size 

in the two spatial directions and the number of channels of the 

image. The frequency spectrum of f(x,y,n) is also a three 

dimensional function. The three dimensional discrete Fourier 

transform of f(x,y,n) leads to a sample of its three dimensional 

spectrum noted as F(u,v,m): 
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where u and v are the spatial frequencies in the x and y 

directions respectively, and m indicates the color frequency.  
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Figure 4.11. Illustration of the three dimensional Fourier transform of color 
images. (a) The continuous Fourier transform of a discrete signal leads to a 
continuous periodic spectrum. (b) The discrete Fourier transform links the 
periodic extrapolation of the signal with a discrete sample of its spectrum.  

Because f(x,y,n) is a discrete function, its spectrum is periodic 

(see Figure 4.11a), and the sampling theorem indicates that the 

period of F(u,v,m) is Dx, Dy and N in the u, v and m directions 

respectively. A single period of the three dimensional spectrum 

contains all the information carried by the sample of the image. 

Therefore, one can consider that the size and the number of 

channels of the three dimensional spectrum is the same as the 

size and number of channels for the sample of the image.  
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The inverse three dimensional Fourier transform gives the 

expression of three dimensional function in the direct domain 

in terms of its three dimensional spectrum, 
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In general, this expression is valid only for x, y and n between 

zero and Dx, Dy and N respectively, because F(u,v,m) is a 

discrete sample of the three dimensional spectrum of f(x,y,n). 

However, if we consider f(x,y,n) to be periodic, then the 

expression is exact for any set of arguments because in this case 

the sample of the spectrum corresponds to the spectrum, which 

is discrete for periodic functions. One considers that the three 

dimensional discrete Fourier transform and the inverse three 

dimensional discrete Fourier transform link the periodic 

extrapolation of a sample of the three dimensional signal to the 

discrete sample of its three dimensional spectrum (see Figure 

4.11b). This way, one can assign the index n+kN to the n-th 

channel of the three dimensional spectrum, where k is any 

integer number. In the case of RGB color images, in which we 

have established the correspondence of the red channel to n=0, 

the green channel to n=1 and the blue channel to n=2, it is 

sometimes useful to consider that the blue channel is assigned 

to n=–1, and that it is the opposite channel to the green. 
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Figure 4.12. Three dimensional Fourier transform of a color image.(a) Original 
color image. (b) RGB channels of the color image. (c) channels of its three 
dimensional spectrum. 

Because the three-dimensional functions that describe color 

images are real-valued functions, their spectrum have 

symmetric real part and anti-symmetric imaginary part. 

Therefore the m-th channel and the (N–m)-th channel of the 

three dimensional spectrum are complex conjugate each other.  

The three dimensional description of color images involves the 

coupling between the spatial information and the color 

distribution of the images. This feature differentiates it from 

other color imaging techniques, including those that involve 

parallel processing of the color channels. 
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To illustrate this, we just consider the color image in Figure 

4.12a. It consists of two objects, with the same shape and 

different color, that overlap in one pixel. Each object can be 

considered as a square with a 5-pixel long diagonal, which is 

oriented along the vertical. One square is red and the other is 

blue, and the pixel where they overlap is colored in magenta. 

The RGB channels of the figure are represented in Figure 4.12b. 

Each square appears in a different channel. This way, there is 

no signal in the n=1 channel, that corresponds to the green 

channel. The magnitude of the channels of the spectrum 

obtained by performing the three dimensional Fourier 

transform are represented in Figure 4.12c. One can observe that 

all the channels of the image are involved in the generation of 

each one of the channels of its three dimensional spectrum. This 

way, while the n=1 channel (green) is null in the direct domain 

image, the m=1 channel of the three dimensional spectrum 

takes nonzero values.  

Therefore, unlike the multi-channel techniques based on the 

parallel processing of the channels, there is a coupling of the 

information carried by the different channels that is useful for 

some color image processing applications. An example to 

illustrate this is given in Figure 4.13. We have considered the 

two sample scenes in Figure 4.13a and b, and we have 

performed the two dimensional Fourier transform of the 

channels, processed in parallel, and the three dimensional 

Fourier transform of the color image. In the first case, noted as 



 §4–Color image analysis by Three dimensional Fourier transform and correlation 

  35  

multi-channel, we represent the addition of the magnitude of 

the two dimensional spectra of the three channels. For the 

second case, noted as the three dimensional case, we consider 

the m=0 channel of the three dimensional spectrum of the color 

image.  

One can observe that for the multi-channel case, both scenes 

lead to the same result, even when the scene in Figure 4.13a has 

two squares and Figure 4.13b has only one. This is because the 

squares in Figure 4.13a are on different channels of the color 

image. Therefore, for both cases the R and B channels have a 

single square, and there is no interference between the two 

objects of the scene in Figure 4.13a.  

(a)

m= 0

(b)

m= 0

Sample Image Multi-channel Three dimensional

(a)

m= 0

(b)

m= 0

Sample Image Multi-channel Three dimensional

 

Figure 4.13. The three columns represent respectively the sample scene, the 
addition of the magnitude of the two dimensional spectra of the channels, and 
the m=0 channel of the three dimensional spectrum of the signal for a two 
object scene (a) and for a single object scene (b). 
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Contrasting this, the three dimensional Fourier transform leads 

to different results for the two scenes. In this case there is 

interference between the channels. Therefore, the two objects in 

Figure 4.13a produce an interference pattern that leads to a 

result different from the obtained for Figure 4.13b, in which the 

scene is composed by a single square. They are shown in the 

third column of Figure 4.13. 

4.7. Properties of the three dimensional Color Fourier 
transform 

Usual properties of the Fourier transform have a special 

interpretation in the case of color images, given the particular 

nature of the color variable. The interpretation for some of these 

properties are given next. 

4.7.1. Three dimensional impulse function and 

uniform function. 

An impulse function is a distribution that is null everywhere 

except one point (one pixel for discrete distributions). The unit 

impulse distribution is described by a delta function, the Dirac’s 

delta function for continuous functions and the Kroneker’s delta 

function for discrete distributions. When considering the three 

dimensional description of color images, one has to take into 

account that each point of the three dimensional function 

corresponds to a point of a single channel of the color image. 

This way, a three dimensional impulse function corresponds to 

a function that is null everywhere except one point where it 
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takes a color distribution corresponding to one of the primary 

colors. 

The magnitude of the three dimensional spectrum of a three 

dimensional impulse function is uniform along the three 

dimensions. That is, the value of the magnitude is the same for 

all the spatial and color frequencies. 

Another interesting case is the three dimensional uniform 

function, that takes the same value at all the pixels and all the 

channels. It describes an image composed by a uniform field, 

colored in white, that is the color that results from adding equal 

amounts of all the primary colors. For this function, the 

spectrum is null-valued at all the pixels of all the channels, 

except at the origin pixel of the m=0 channel, that corresponds 

to the DC value of the function. This way, the three dimensional 

spectrum of a uniform white image is a centered three 

dimensional impulse function.  

Let us also consider the case of the monochromatic images, that 

is, images with only one nonzero channel. The color distribution 

of each pixel of the image can be considered as an impulse 

function along the color axis. Therefore, the distribution along 

the color-frequency axis of the corresponding three dimensional 

spectrum is a constant (see Figure 4.14a).  
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Figure 4.14. Three dimensional spectrum of a monochromatic image (a), and of 
a grayscale image  

The opposite case are the grayscale images, in which the color 

distribution of every pixel is uniform (Figure 4.14b). Therefore 

the distribution along the color frequency axis of the three 

dimensional spectrum of a grayscale image is an impulse 

function. In other words, the three dimensional spectrum of 

grayscale images has only one nonzero channel. 

4.7.2. Translation theorem 

The translation theorem states that the spectra of translated 

functions differ only in a linear phase factor. For three 

dimensional functions it is expressed as follows: 

 

( )[ ]( ) ( )[ ]( )

















++−×

=−−−

N
mn

D
vy

D
uxi

mvunyxfFTmvunnyyxxfFT

xx

DD

000

30003

2exp

,,,,,,,,

π
. (4.33) 

Let us note that we consider cyclic translations because we deal 

with discrete functions and discrete spectra.  
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From the translation theorem it follows that the magnitude of 

the three dimensional spectrum of a color image is not affected 

by cyclic translations either spatial or along the color axis. We 

illustrate this in Figure 4.15. We have consider the three color 

images represented in Figure 4.15a. Each one contains the same 

object shifted from the origin by three pixels in the vertical 

direction. The objects have also been shifted along the color 

axis. That is, the red square is at the origin of the color axis, but 

the green and blue ones are shifted by one and two channels 

respectively.  

The magnitude of the spectrum of the considered images is 

uniform along the color axis for the three scenes, because they 

are monochromatic images. We represent in Figure 4.15b the 

magnitude of one of the channels of the three dimensional 

spectrum of each one of the sample images. One can observe 

that the magnitude is equal in the three cases. We have also 

represented in Figure 4.15c the phase distribution of the three 

channels of the three dimensional spectrum. Because the square 

is shifted from the origin along the vertical direction the phase 

increases linearly along the y-coordinate in the three cases. In 

addition, for the red object, the phase of the three channels is 

the same, but in the case of the green and the blue squares there 

is a phase delay between the channels that grows linearly with 

the channel index, m. This is because these scenes are 

translations of the first one along the color axis. Because the 

shift for the green square is in the opposite direction to the shift 
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for the blue square, the sign of the phase delay between 

channels have opposite sign and equal absolute value. 

m=
0

m=
1

m=
2

m=
0

m=
1

m=
2

m=
0

m=
1

m=
2

(a)

(b)

(c)

 

Figure 4.15. Illustration of the translation theorem. (a) Sample images (b) 
Magnitude of their three dimensional spectra. (c) Phase of their three 
dimensional spectra  

4.7.3. Convolution theorem 

The usual definition of convolution can be extended to color 

images described by three dimensional functions, as follows: 
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Because we use discrete functions, it results convenient to 

assume that the translations are cyclic along the two spatial axes 

and also along the color axis. Under these circumstances, the 

convolution theorem states that the three dimensional spectrum 

of the convolution of two functions is given by the product of 

their spectra, as follows: 

 [ ]( ) [ ] [ ]{ }( )mvugFTfFTmvugfFT DDD ,,,, 333 ⋅=∗ , (4.35) 

here FT3D[ ] indicates the three dimensional Fourier transform 

operation. Similarly, we have that the spectrum of the product 

of two functions is given by the convolution of their spectra: 

 [ ]( ) [ ] [ ]{ }( )mvugFTfFTmvugfFT DDD ,,,, 333 ∗=⋅  (4.36) 

Note that for the three dimensional description of color images, 

the different channels of the image contribute to the 

convolution result. This is illustrated in Figure 4.16. We have 

considered the same sample image as in Figure 4.12. The scene 

is composed of two squares (one in red and the other one in 

blue), one on top of the other. The three dimensional function 

that describes the scene (Figure 4.16a) is composed of two 

identical squares centered at points with different spatial and 

color coordinates. This way one can consider that the image is 

the convolution of a single centered monochromatic square, 

(Figure 4.16c) with a function with two punctual impulses 

located at the channels and positions of the squares in the color 

image (Figure 4.16b).  



LCD Based optical processor for Color Pattern recognition by 3D correlation 

  42  
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Figure 4.16. Convolution theorem (a) Sample image as a three dimensional 
function, expressed as the convolution of two impulses (b) and a 
monochromatic square (c). The three dimensional spectrum (d) is expressed as 
the product of the spectra for the two impulses(e), and for the square (f). 

From the convolution theorem, it follows that the three 

dimensional spectrum of the color image, represented in Figure 

4.16d, is the product of the three dimensional spectra of the two 

convolved functions. These spectra are represented in Figure 

4.16e and f by the points where their magnitude values are zero. 

The three dimensional spectrum of the monochromatic square, 

is given by the same sinc(x+y)sinc(x–y) function in all the 

channels  And the  spectrum of the two impulses consists of the 

interference pattern of the two impulses, that is given by a 

cosine function whose argument is constant in the planes 

normal to the line that links the two impulses. Because the 
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impulses are located at different points and channels, the zeros 

of the cosine function are located along horizontal lines, with 

vertical positions that depend on the channels. This interference 

pattern multiplies the spectrum of the square, therefore, the 

three dimensional spectrum (Figure 4.16d) for the color image 

will take null values in the zeros of the spectrum of the square, 

and also on the zeros of the spectrum of the two impulses, 

leading to the interference between the squares. 

4.7.4. Babinet’s  principle 

Babinet’s principle states that the magnitude of the spectrum of 

an image and its complementary is the same everywhere except 

at the origin. This can be also extended to the case of color 

images. In this case the complementary image comes from 

replacing each primary color by its complementary to the white, 

that is by the addition of all the other colors. This is represented 

in Figure 4.17. There the complementary to the image in Figure 

4.17a is the image in Figure 4.17b. Note that the three 

overlapped squares in red, green and blue become cyan, 

magenta and yellow, respectively. The addition of the images in 

Figure 4.17a and b is a white field. Therefore, the addition of 

their spectra leads to the spectrum of the white field, that is zero 

everywhere except at the origin of the m=0 channel. That is, out 

of the origin of the m=0 channel, the spectra of an image is 

equal with the opposite sign to the spectra of its complementary 

image, and therefore their magnitudes are equal, as can be seen 
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in Figure 4.17c and d, where the magnitude of the three 

dimensional spectra for both images is represented.  

(b)

(a) 3DFT

3DFT

m= 1 m= 2m= 0

m= 1 m= 2m= 0
(c)

(d)  

Figure 4.17. Illustration of the Babinet’s principle.(a) Sample image (b) 
Complementary image (c) Magnitude of the three dimensional spectrum the 
sample image, and of the complementary image (d). The origin of the m=0 
channel has been removed in (d).  

4.7.5. Inversion theorem 

The inversion theorem states that the application of two direct 

Fourier transform to an image, leads to the same image with the 

axes inverted. In the case of the three dimensional color Fourier 

transform we have to consider the inversion also along the color 

axis. We illustrate this in Figure 4.18. We have considered the 

sample image in Figure 4.18a composed of four objects in 

different colors (the four initial letters for the words ‘red’, 

‘green’, ‘blue’ and ‘cyan’). We show in Figure 4.18b, c and d the 

images resulting from the application of two direct Fourier 

transforms of the spatial distribution, of the color distribution 
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and of the three dimensional distribution of the original image, 

respectively.  

Spatial

Color
Three 

dimensional

(b)(a)

(d)(c)

Spatial

Color
Three 

dimensional

(b)(a)

(d)(c)  

Figure 4.18. Illustration of the inversion theorem. (a) Sample image. (b) Result 
of applying twice the Fourier transform along the spatial variables. (c) Result of 
applying twice the Fourier transform along the color axis. (d) Result of applying 
twice the three dimensional Fourier transform  

One can observe in Figure 4.18b that the spatial distribution is 

inverted with respect to the original image, but the colors of the 

objects are not altered. In Figure 4.18c the spatial distribution 

has not changed but the color distribution of the objects is 

changed. This way, the green object in Figure 4.18a has turned 

blue in Figure 4.18c, and vice versa. Neither the red nor the 

cyan objects have changed, because they have color 

distributions that are symmetrical along the color axis: the red 

is nonzero only at the origin of the color axis, and the cyan has 

equal amounts of green and blue. 



LCD Based optical processor for Color Pattern recognition by 3D correlation 

  46  

Figure 4.18d, shows the image resulting from the application of 

two direct three dimensional Fourier transforms to the original 

image. In this case the three variables of the image have been 

transformed. One can observe the inversion of both the color 

and the spatial distribution of the objects. This way, the letters 

have been inverted, and the ‘G’ is colored in blue, while the ‘B’ is 

colored in green. 

4.8. Three dimensional correlation for color pattern 
recognition 

The description of color images by three dimensional functions 

and the generalization of the Fourier transform operation for 

these functions, allows us to generalize the three dimensional 

correlation as a tool for color pattern recognition. Once again, 

the particular character of the color dimension requires a 

special interpretation of the correlation properties to ensure its 

applicability to color pattern recognition tasks. 

The correlation for discrete three dimensional functions is 

defined as follows: 
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Again, we consider cyclic translations along the three 

dimensions of the image. From the convolution theorem one 

can express the correlation of two functions f(x,y,n) and 
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g(x,y,n) in terms of their three dimensional spectra, F(u,v,m) 

and G(u,v,m) respectively. 

 [ ]( ) [ ]( ){ }( )nyxmvuGFFTnyxgf D ,,,,*,, 1
3 ⋅=⊗ − , (4.38) 

where FT3D-1{ } indicates inverse three dimensional Fourier 

transform. 

Because the correlation is a function of the spatial and the color 

variables (it stands on the direct domain), each channel of the 

three dimensional function can be associated to a primary color, 

in the same way as each couple (x,y) can be associated to the 

coordinates of a pixel. However, in general the correlation using 

nonlinear filters is a complex-valued function, or it takes 

positive and negative values, therefore it may lead to color 

compositions that have no physical significance. This problem 

can be avoided by representing  a positive real-valued function 

of the complex number, such as the magnitude, or the 

argument. Nevertheless one has to refer to this assignment as a 

pseudo-coloration.  

The utility of the correlation for pattern recognition usually 

comes from three major properties: the autocorrelation takes its 

maximum value at the origin, it is shift invariant and it is larger 

than the cross-correlation with any function of equal energy. 

These three mathematical properties of the correlation have a 

special interpretation when applied for pattern recognition of 

color images. We analyze them next.  
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4.8.1. Autocorrelation at the origin 

The autocorrelation is the correlation of a function with itself. It 

can be demonstrated that the value of the autocorrelation is 

maximum at the origin, independently of the distribution of the 

image considered.  

We consider the Cauchy-Schwarz inequality for the series in the 

definition of the correlation. 
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Because we consider periodic functions, the two factors at the 

right side of this equation are equal, each other, and equal to the 

auto correlation at the origin. Therefore we can write. 

 [ ]( ) [ ]( )0,0,0,, ffnyxff ⊗≤⊗ . (4.40) 
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(a) (b)

(c)

n= 0

(d)  

Figure 4.19. Recognition of targets with non-uniform color distribution (a) 
Scene, (b) target. (c) Pseudo-colored representation of the squared magnitude of 
the three dimensional correlation. (d) Profile of squared magnitude of the n=0 
channel of the three dimensional correlation. 

In the case of color images, the autocorrelation is a three 

dimensional function that has its maximum channel n=0, 

independently of the color distribution of the objects of the 

image. This ensures that the peak of the three dimensional 

correlation corresponding to the target object presents its 

maximum in the n=0 channel, independently of the color 

distribution of the target.  

That is, the distribution along the color axis of the correlation is 

not the same as the color distribution of the objects of the scene. 

Therefore, even for objects with non-uniform color distributions 

the autocorrelation will present its maximum peak in the n=0 

channel. This is illustrated in Figure 4.19. We have considered a 

scene with three rings with identical shape and different color 
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distributions (Figure 4.19a). All the rings contain the same set 

of colors, but they are differently distributed on the object. In 

addition, the average† color of each object is the white. The 

target object is presented in Figure 4.19b, it matches ring placed 

nearest to the bottom of the scene. The squared magnitude of 

the three dimensional correlation has been represented in 

Figure 4.19c. To represent all the channels at once, we have 

used a pseudo-coloration in which the n=0 channel is encoded 

in red, and the n=1,2 are encoded in green and blue respectively 

. A profile of the squared magnitude at the n=0 channel of the 

three dimensional correlation has been represented also in 

Figure 4.19d. One can observe that the target object is clearly 

recognized by a red peak, what means that its maximum is in 

the n=0 channel, even when the average color of the target is 

the white.  

Furthermore, the other objects in the scene, present very low 

peaks, even when they have the same colors as the target ring 

(but differently distributed). This is because in the three 

dimensional description of color images the color information is 

coupled with the spatial distribution. That is, it takes into 

account both the colors of the objects, and the way these colors 

are distributed in the objects.  

                                            

† Here the average color of an object is understood as the color whose 
components are the average of the components of all the colors of the 
object. 
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4.8.2. Shift Invariance along the color axis 

The three dimensional correlation is invariant to shifts of the 

images. That is, its values do not change, but are shifted by the 

same amount as the image is shifted. The correlation is shifted 

in the same direction if the shifted function is the first operand 

(scene) and in the opposite direction if the shifted function is 

the second operand (reference). In this sense, the three 

dimensional correlation is also invariant to shifts along the 

color axis.  

Nevertheless, a translation applied to a three dimensional 

function has a different effect on the color image that it 

describes, depending on the component of the shift along the 

color axis. If the function is shifted along the spatial axes (or 

along any direction contained in the plane defined by them), the 

objects present in the image change their position, but they do 

not change their shape, and therefore one whishes to recognize 

them as the same object. However, if the function is shifted 

along the color axis, the color composition of the objects is 

altered, and therefore the colors change. Then, one does not 

recognize them as the same object anymore.  
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(a) (b)

(c)
n= 0

(d)

(a) (b)

(c)
n= 0

(d)  

Figure 4.20. Example of color pattern recognition by three dimensional 
correlation. (a) Scene, (b) reference. (c) Pseudo-coloration of the squared 
magnitude of the three dimensional correlation. (d) Squared magnitude of the 
three dimensional correlation at the channel n=0  

Therefore, for color pattern recognition purposes, the shift 

invariance of the three dimensional correlation has to be 

restricted to pure spatial shifts so as to discriminate objects with 

equal shape, and color distributions related by cyclic 

translations. To do this, only the n=0 channel of the correlation 

has to be valued. 

We illustrate this in Figure 4.20. We have considered the three 

dimensional correlation between the images in Figure 4.20a 

(the scene) and b (the reference). In the scene there are three 

shirts with identical shape and different colors. The colors of the 

green and violet objects come from shifting the yellow shirt 

along the color axis by one channel, and two channels 

respectively. This scene has been correlated with a reference 
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image that contains the target object alone (Figure 4.20b). We 

have represented in Figure 4.20c the squared magnitude of the 

obtained correlation. In the image, the n=0, 1 and 2 channels 

have been pseudo-colored in red, green and blue respectively. 

One can observe that there are three peaks, corresponding to 

the three objects in the scene. However, the distribution of the 

peaks along the channels is different for the three objects. This 

way, the maximum corresponding to the yellow object is a 

reddish peak, what is indicating that its maximum is at the n=0 

channel. Because the green and violet objects are translations of 

the target object along the color axis, they are recognized by 

peaks at the n=1 and n=2 channels. If we just consider the n=0 

channel of the correlation (Figure 4.20d), the target object can 

be discriminated from the other objects because it presents a 

maximum peak. 

The relation between the vector space interpretation of color 

and the signal theory approach of color detection given in this 

chapter provide a new framework for the study of 

transformations of color images and for the design of 

correlation filters for color pattern recognition that take into 

account both the colors and the spatial distributions of images. 

This constitutes the subject of Chapter 6. 

 




