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THESIS OUTLINE 

 

The thesis, entitled Investigation of the Antioxidant Properties of Five Aromatic 

Plants in Model Food Systems, was submitted for PhD approval to the chemical 

engineering department at Technical University of Catalonia on 20 May 2015.  

The thesis is divided into five main chapters. The main content of each 

corresponding chapter will be detailed as follows. 

Chapter 1 (Introduction) consists of four subchapters, i.e., 1.1, 1.2, 1.3 and 1.4. In 

Chapter 1, an overview is given of the state of the art in the field of free radicals and 

antioxidant mechanisms relevant to human health. The problem statement of current 

antioxidant study is also presented. Finally, the main goal and objectives of the thesis are 

established and elaborated upon in the final subtopic. 

In Chapter 2, an explanation with comprehensive citation of the natural sources of 

antioxidant is described in the first subtopic, 2.1. Special emphasis is paid to the 

pharmacological description of the five research plants including white tea, yellow gentian, 

field binweeds, silver birch and common bearberry in subchapter 2.2. The findings of the 

biological benefits of those five medicinal plants for human benefit are highlighted in the 

corresponding chapter. Furthermore, the research on recent technology is clarified in the 

following subchapter, 2.3. This compromises the latest technology of antioxidant activity 

evaluation in food models such as emulsion, meat and active packaging.  

Chapter 3 provides the main content of this thesis, describing five accepted journal 

articles published in various journals. The 3.1 subchapter describes the new radical 

scavenging method measured by electron paramagnetic resonance (EPR). This newly 

developed method generated by Fenton’s reaction measures white tea methanol extract and 

its catechins to determine the scavenging activity toward the methoxy radical generated by 

Fenton’s reaction. This paper was accepted in the Journal of Agriculture and Food 

Chemistry on 2 June 2014. The second accepted paper was established in the Journal of 

The Food Science and Agriculture on 19 August 2014 (subchapter 3.2). This study reflects 
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the various concentrations of yellow gentian root extract tested to delay the oxidation rate 

of meat patties. The following subchapter (3.3) demonstrates the third accepted paper 

published in MDPI Antioxidant on 12 June 2014. Yellow gentian root antioxidant activity 

potential in oil–water emulsion and identification of relevant compounds toward 

antioxidant effects are the main concentrations of this study. Meanwhile, the 

implementation of field bindweed in food models and formulating the extract in film 

packaging is investigated in subtopic 3.4. The study determines the potential of field 

bindweed antioxidant activity in muscle foods and coated the lyophilise plant in active 

films to inhibit the oxidation process. The research was published in MDPI Antioxidant on 

10 March 2015. Finally, the effect of different polarities of solvents on the extraction of 

silver birch and field binweed is demonstrated in subchapter 3.5. This section exhibits the 

different yields using various polarities of solvents measured by antioxidant in-vitro assays 

including Trolox equivalent antioxidant capacity (TEAC), Oxygen radical absorbance 

capacity (ORAC), Ferric Reducing Ability Of Plasma (FRAP) and DPPH assay. The paper 

was accepted in a special edition of the International Journal of Biological, Food, 

Veterinary and Agricultural Engineering on 10 November 2013.  

Chapter 4 describes the study of silver birch and common bearberry in various 

antioxidant activity assays. The first subchapter, 4.1, observes the results of common 

bearberry leaves on oil–water emulsion and active packaging as a potent natural antioxidant 

in food models. The second subchapter, 4.2, shows the study of silver birch extract on 

muscle food and active packaging film. This study also is extended to identify the phenolic 

constituents that may be relevant regarding the antioxidant activity of silver birch. Thus, 

these two subchapters were submitted to Meat Science and Journal of the American Oil 

Chemists’ Society for review.  

Chapter 5 presents the conclusion and the recommendations of the respective 

research. The general conclusion of the research is elaborated further in subchapter 5.1, 

giving an overview of the main achievements of this thesis. Future recommendations on 

topics for future research as derived from this research are clarified in subchapter 5.2. 

Finally, the list of publications and conference involvement is detailed in Chapter 6. 
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CHAPTER 1: INTRODUCTION  

 

 

1.1 Overview of Free Radicals and Antioxidants in Human Health 

Free Radicals and Oxidative Stress 

The fields of free radicals and antioxidants, or ‘redox biology’, are the basic 

fundamentals to aerobic life, which are closely related to human health. Free radical and 

reactive oxygen species (ROS) and reactive nitrogen species (RNS) are constantly formed 

in the human body
1
 through the production of normal cellular metabolism

2
. Free radicals 

are atoms, molecules or ions with unpaired electrons that are highly unstable and active 

towards chemical reactions with other molecules. Free radical formation occurs continually 

in the cells by enzymatic and non-enzymatic reactions. Enzymatic reactions are involved in 

the human respiratory chain, in phagocytosis and in prostaglandin synthesis, and in the 

cytochrome P-450 system
3
 while non-enzymatic reactions involve organic compounds 

initiated by ionizing reactions
4
. Despite the free radicals derived from the normal metabolic 

process in the human body, environmental factors also generate oxidative stress that 

influences human health and disease. It is known as environmental oxidative stress, and the 

factors are pollution, UV radiation, infrared radiation, ionizing radiation and nutrition
5
.  

Free radicals are derived from three elements: oxygen, nitrogen and sulfur, creating 

ROS (reactive oxygen species), RNS (reactive nitrogen species) and RSS (reactive sulfur 

species). In normal physiological conditions, only 2% of the oxygen consumed by the body 

is converted through mitochondrial respiration and phagocytosis
6
. However, ROS 

formation is increased when our bodies are exposed to the environmental oxidative stress 

conditions which later convert to strongly oxidizing radicals. ROS are very reactive and 

subsequently react with other molecules to form secondary radicals such as hydroxyl 

radicals (
•
OH), alkoxyl radicals (RO

•
), peroxyl radicals (ROO

•
) and singlet oxygen (

1
O2). 

Some radical species are converted to molecular oxidants like hydrogen peroxide (H2O2), 

peroxynitrite (ONOO
-
) and hypochlorous acid (HOCl), and these molecular species may act 
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as a source of ROS
7
. RNS are derived from NO by reacting with O2 and forming ONOO

- 
, 

while RSS are easily formed by the reaction with thiols
8,9

. Figure 1 shows the reactions 

leading to the formation of ROS.  

 

 

Figure 1: Production of ROS via different mechanism routes. The blue arrow represents the 

Haber-Weiss reaction and the red arrows represent the Fenton reaction. The bold letter 

represents the radical or molecule with the same behaviour (H2O2). The green arrow 

represents lipid oxidation (Source: Carocho et al., 2013
9
)  

 

ROS (with RSS and RNS) play dual roles as deleterious and beneficial species, and 

they both can be harmful or beneficial to living system. The beneficial effect of ROS occurs 

at low concentration and involves physiological roles in cellular responses to noxia—for 

example in defence against infectious agents and in the function of a number of cellular 

signalling systems
2
. In contrast, at high concentrations, ROS can be important mediators of 

damage to cell structures, including lipids, membranes, proteins and nucleic acids known as 

oxidative stress
10

. Oxidative stress occurs as a result of an imbalance between free radical 

production and antioxidant defence
4
. Short-term oxidative stress occurs in tissues injured 

by trauma, infection, heat injury, hypertoxia, toxins and excessive exercise
4
. Oxidative 

damage accumulates during the life cycle due to ROS formation, which has been proposed 
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to play a key role in the development of age-dependent diseases such as cancer, 

arteriosclerosis, arthritis, neurodegenerative disorders and other conditions. ROS have been 

implicated in the induction and complications of diabetes mellitus, cardiovascular diseases 

and eye diseases
11

. Thus, the harmful effects of ROS are balanced by the antioxidant action 

of non-enzymatic antioxidants in addition to antioxidant enzymes
12

.  

Antioxidant Mechanism and its Importance to Human Health 

Antioxidants are stable molecules which donate an electron to a rampaging free 

radical and neutralize it, thus reducing the arisen of oxidative stress. Antioxidants act as 

radical scavengers, hydrogen or electron donors, peroxide decomposers, singlet oxygen 

quenchers, enzyme inhibitors, synergist and metal chelating agents
13

. Antioxidants are 

compounds or systems that delay autoxidation by inhibiting formation of free radicals or by 

interrupting propagation of the free radical chain by one or several mechanisms
14

. The 

summary of the five mechanisms involved in antioxidant reactions are (1) scavenging 

species that initiate peroxidation, (2) chelating metal ions that are unable to generate 

reactive species or decompose lipid peroxides, (3) quenching 
•
O2

−
 preventing formation of 

peroxides, (4) breaking the autoxidative chain reaction or (5) reducing localized O2 

concentrations
15

. It is reported that antioxidants can execute protective roles against free 

radicals by a variety of different mechanisms including the catalytic systems to neutralize 

or divert ROS (shown in Figure 1); binding or inactivation of metal ions prevents 

generation of ROS by Haber-Weiss reaction; and suicidal and chain breaking antioxidants 

scavenge and destroy ROS or absorb energy, electrons and quenching of ROS
16

.  

Currently, demand for intake of antioxidant food or dietary antioxidants in the 

market has increased because they are believed to keep the body healthy and free from 

diseases. Furthermore, the potential beneficial effects of food containing antioxidants 

protecting against disease have been well established
16

. Therefore, certain nutrients and 

dietary components with antioxidant properties are important to defend against oxidative 

stress and damage induced by free radicals and protect against oxidative stress injury of the 

body. Low molecular weight antioxidants can safely interact with free radicals and 

terminate the chain reaction before the radical starts to cause damage. Some antioxidants 

are produced normally in the body such as glutathione, ubiquinol and uric acid
17

. However, 
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micronutrient antioxidants such as vitamin E (α-tocopherol), vitamin C (ascorbic acid) and 

B-carotene cannot be produce naturally in the body, thus they must be supplied in the diet.  

Food consumption is a major source of exogenous antioxidants and provides more 

than 25,000 bioactive food constituents as nutrients in the daily typical human diet
16

. These 

abundant sources of nutrients may modify a multitude of processes that are related to 

different diseases. Generally, antioxidants are abundant in many daily consume plants such 

as vegetables and fruits and are also found in grain cereals, peas, legumes and nuts. 

Currently, food containing antioxidants are available commercially. There are more than 

3,100 antioxidants in various foods, beverages, spices, herbs and supplements that are 

regularly consumed by different cultures
18

.  

Various studies have been conducted that are related to the mechanism of 

antioxidants in the human body, free radicals, oxidative stress and antioxidant activity of 

food. They have shown the prominent beneficial role of an antioxidant and its specific role 

against different diseases individually. There are a number of epidemiological studies that 

have shown an inverse correlation between the levels of established 

antioxidants/phytonutrients present in tissue/blood samples and occurrences of 

cardiovascular disease, cancer or mortality due to these diseases. Antioxidant-based 

drugs/formulations for prevention and treatment of complex diseases like atherosclerosis, 

stroke, diabetes, Alzheimer’s disease (AD), Parkinson’s disease, cancer, etc. have appeared 

over the past three decades
19

. Since several plant products are rich in antioxidants and 

micronutrients, it is likely that dietary antioxidant supplementation protects against the 

oxidative stress that causes disease development
7
. The most recent report highlights the 

disparity between the recommendation for consumption of five portions of fruit and 

vegetables per day and the actual estimated intake in the population
20

. Fruit juices and 

vegetable juices have been shown to be a rich source of bioaccessible antioxidants and have 

shown to lower markers of oxidative stress and inflammation in a cohort of type 2 diabetes 

sufferers
21,22

. Furthermore, a recent meta-analysis of epidemiological studies concluded that 

there was sufficient evidence to recommend an increased consumption of green leafy 

vegetables in order to prevent the development of type 2 diabetes mellitus with a relative 

risk of 0.86 (95% CI=0.77–0.97, P=0.01) for consumption of 1.35 portions per day 
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(highest) compared with 0.2 portions per day (lowest)
23

. Below the summary (Table 1) of 

the health effect associated with the intake of antioxidants reported by Rajendran et al. 

(2014) is reported 
16

. 

Table 1 : Effects of the health associated with the intake of antioxidants
16

. 

Antioxidant  Effect of Health  Reference 

no. 

Vitamin C Protects against cancers, protects from heart disease, improves 

the health of cartilage, joints and skin, maintains a healthy 

immune system, improvement in the antibody production, 

increases the absorption of nutrients, increases protection 

against H2O2-induced DNA strand breaks 

24–30
 

Vitamin E Prevents coronary heart disease, prevents the formation of 

blood clots, decreases incidence of breast and prostate cancers, 

protects the brain, reduces long-term risk of dementia, 

decreases risk of Parkinson’s disease 

 
31–35

 

Polyphenol Inhibits oxidation of LDL, inhibits platelet aggregation, 

improves endothelial dysfunction, lowers risk of myocardial 

infarction, Has anti-carcinogenic effect, prevents 

neurodegenerative diseases, protects against neurotoxic drugs, 

treats diabetes, prevents osteoporosis, inhibit non-heme iron 

absorption 

 
36–45

 

Cu, Zn, Mn, Se 

and other 

carotenoids 

(lycopene) 

Cofactors of antioxidant enzymes SOD-Cu/Zn, Mn-SOD and 

GSH-Pox, as well as other carotenoids (lycopene); protection 

against oxidation of lipids, LDL, proteins and DNA; 

Abduction and free radical scavenging  

 
46

 

 

 

1.2 Problem Statement  

Problems Related to Antioxidants 

The most frequently used synthetic antioxidants to preserve food are butylated 

hydro xyanisole (BHA), butylated hydroxytoluene (BHT), propyl gallate (PG) and tert-

butyl hydroquinone (TBHQ). They have been utilized as food additives and preservatives 
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to overcome the oxidation of foods due to their oil and fat contents and their stabilised shelf 

life. Today, almost all processed foods have synthetic antioxidants incorporated, which are 

reported to be safe—although some studies indicate otherwise
9
. These synthetic 

antioxidants which are widely used in the food industry are cheap, efficient, pure, easily 

available and harmless, if used at concentrations permitted by legislation. On the other 

hand, a few studies have found that the chemical compounds used as of synthetic 

antioxidants may be contributors to many health problems such as cancer growth and 

formation of mutagens at high level of intake
9,47

. Due to these concerns, an alternative 

strategy of industries was developed in many studies that could replace the synthetic 

antioxidants or at least diminish their uses as food additives. One of the strategies is to 

formulate natural sources of antioxidants in food products. Thus, the market demand for 

natural antioxidants commonly found in plants has increased. Since natural antioxidants are 

not only used as food preservatives, it is also believed that they add value to food products 

because of their nutritional content and benefits. The formulation of natural antioxidants in 

foods provides health benefits for consumers such as reduction in the incidence of 

cardiovascular diseases and cancer
48

.  
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1.3 Objectives  

The main objective of this thesis was to determine the antioxidant potential of five 

herbal plants which are white tea leaves (Camellia Sinensis), yellow gentian root (Gentiana 

Lutea), field bindweed leaves (Convolvulus Arvensis Linn), silver birch leaves (Betula 

Pendula Roth.) and common bearberry leaves (Arctostaphylos uva-ursi L. Sprengel).  

The determination of antioxidant effects for each plant was to fill a research gap in 

the literature. White tea is widely studied for its antioxidant activity; thus, our study aimed 

to develop a new radical scavenging method using the Fenton reaction and measure the 

scavenging activity of white tea and the catechins in the plant extract. This new scavenging 

method is then further used to determine the scavenging of radical by field bindweed leaves 

(Convolvulus Arvensis Linn), silver birch leaves (Betula Pendula Roth.) and common 

bearberry leaves (Arctostaphylos uva-ursi L. Sprengel).  

Yellow gentian (Gentiana Lutea), field bindweed leaves (Convolvulus Arvensis 

Linn), silver birch leaves (Betula Pendula Roth.) and Common Bearberry leaves 

(Arctostaphylos uva-ursi L. Sprengel) were analysed for their phenolic content and 

antioxidant activity using various in-vitro assays.  

The enzymatic analysis and identification of relevant compounds for antioxidant 

effects was determined using Gentiana Lutea root.  

The concentration effects to inhibit lipid oxidation in food models were determined 

for Yellow Gentian (Gentiana Lutea), Field bindweed leaves (Convolvulus Arvensis Linn), 

silver brich leaves (Betula Pendula Roth.) and common bearberry leaves (Arctostaphylos 

uva-ursi L. Sprengel).  

Finally, field bindweed leaves (Convolvulus Arvensis Linn), silver brich leaves 

(Betula Pendula Roth.) and common bearberry leaves (Arctostaphylos uva-ursi L. 

Sprengel) were further investigated by formulating the extracts into gelatine film as active 

film packaging for food products.  
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1.4 The Scope of the Study 

The scopes of this study are described in 3 phases: 

Phase 1: Developing new techniques measuring the scavenging activity of white tea 

(Camellia Sinensis) by using EPR (Electron Paramagnetic Resonance) analysis.  

a. Study of radical scavenging activity of Fenton reaction (methoxy 

radical) with different concentrations tested by EPR analysis.  

b. Development of new calibration curve using Ferulic acid as a water-

soluble standard in Fenton reaction measured by EPR. 

c. Determination of radical scavenging activity of Camellia Sinensis 

and various catechins in Fenton reaction measured by EPR. 

d.  Determination of radical scavenging activity of Betula Pendula Roth 

and Convolvulus Arvensis Linn in Fenton reaction measured by EPR 

 

Phase 2: Evaluation of various activities of Gentiana Lutea root associated with 

their antioxidant effect and identification of active compound and application in 

food models. 

a. Study on extraction yield and solvent effect of Gentiana Lutea.  

b. Quantification of total phenolic content (TPC) and in vitro antioxidant 

activity analysis of Gentiana Lutea. The in vitro antioxidant assays are 2,2-

diphenyl-1-picrylhydrazyl (DPPH) radicals, trolox equivalent antioxidant 

capacity (TEAC), oxygen radical absorbance capacity (ORAC) and ferric 

reducing antioxidant power (FRAP).  

c. Study of the concentration effect on lipid stability of Gentiana Lutea extract 

in meat and emulsion. 
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d. Determination of enzymatic activity of Gentiana Lutea extracts using XO 

superoxide assays. 

e. Identification of relevant compound responsible for the antioxidant activity 

of Gentiana Lutea using ABTS
•+

 radical-post-column injection in HPLC.  

  

Phase 3: Screening of Betula Pendula Roth., Convolvulus Arvensis and 

Arctostaphylos uva-ursi L. Sprengel antioxidant activity using various assays and 

their application in food models. 

a. Determination of the extraction yield and solvent effect of Betula Pendula 

Roth, Convolvulus Arvensis and Arctostaphylos uva-ursi L. Sprengel. 

b. Quantification of TPC and in vitro antioxidant activity analysis of Betula 

Pendula Roth., Convolvulus Arvensis and Arctostaphylos uva-ursi L. 

Sprengel. The in vitro antioxidant assays are 2,2-diphenyl-1-picrylhydrazyl 

(DPPH) radicals, trolox equivalent antioxidant capacity (TEAC), oxygen 

radical absorbance capacity (ORAC) and ferric reducing antioxidant power 

(FRAP). 

c. Study of the concentration effect on lipid stability for Betula Pendula Roth, 

Convolvulus Arvensis and Arctostaphylos uva-ursi L. Sprengel plants extract 

in meat and emulsion. 

d.  Study of the antioxidant effect on lipid stability for Betula Pendula Roth, 

Convolvulus Arvensis and Arctostaphylos uva-ursi L. Sprengel extract 

formulated with gelatine film as active film packaging.. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1  Natural Antioxidant  

Antioxidant-related compounds 

The effectiveness of antioxidant compounds can be defined in various ways: they 

prevent free radical oxidation reactions (preventive oxidants) by inhibiting the formation of 

free lipid radicals; they interrupt the propagation of the autoxidation chain reaction (chain-

breaking antioxidants); they act as singlet oxygen quenchers; they create synergism with 

other antioxidants; they reduce the agents that convert hydroperoxides into stable 

compounds; they act as metal chelators that convert metal pro-oxidants (iron and copper 

derivatives) into stable products; and finally, they act as inhibitors of pro-oxidative 

enzymes (lipoxyigenases)
1–5

. Carocho et al. (2013) have illustrated that the human 

antioxidant system is divided into two major groups: enzymatic antioxidants and non-

enzymatic antioxidants, as shown in Figure 1
6
 (below).  

The enzymatic antioxidants’ action is divided into primary and secondary enzymatic 

defences and can be categorised according to three important enzymes that prevent the 

formation of or neutralise free radicals: glutathione peroxidase, catalase and superoxide 

dismutase. Whereas glutathione peroxidase donates two electrons to reduce peroxides by 

forming selenoles and also eliminates peroxides as a potential substrate for the Fenton 

reaction, catalase converts hydrogen peroxide into water and molecular oxygen, while 

superoxide dismutase converts superoxide anions into hydrogen peroxide as a substrate for 

catalase
10

. The secondary enzymatic defence involves glutathione reductase and glucose-6-

phosphate dehydrogenase. Glutathione reductase changes oxidized glutathione into its 

reduced form and recycles it to neutralise more free radicals. Glucose-6-phosphate 

regenerates NADPH (nicotinamide adenine dinucleotide phosphate) and creates a reducing 

environment
11,12

.  
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Figure 1: Classes of natural antioxidants. Green words represent exogenous antioxidants, 

and yellow ones represent endogenous antioxidants. This figure is reported from Carocho et 

al. (2013), who adapted it from Pietta (2000), Ratnam et al. (2006), and Godman et al. 

(2011)
7–9

. 

  

Vitamin A or retinol is a carotenoid derivative produced in the liver and results from 

the breakdown of b-carotene. Vitamin A is one of the non-enzymatic endogenous 

antioxidants, and there are about a dozen forms of the vitamin that can be isolated. It is 

known to have a beneficial effect on the skin, eyes and internal organs
6
. Coenzyme Q10 is 

present in all cells and membranes; it plays an important role in the respiratory chain and 

metabolism of other cells, and acts by preventing the formation of lipid peroxyl radicals. 

Turunen et al. (2004) reported that Coenzyme Q10 also regenerates vitamin E or causes the 

regeneration of vitamin E through ascorbate (vitamin C)
13

. Uric acid prevents lysis of 

erythrocytes by peroxidation and is a potent scavenger of singlet oxygen and hydroxyl 

radicals, as suggested by Kandar et al. (2006)
14

. Glutathione is an endogenous tripeptide 
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which protects the cells against free radicals either by donating a hydrogen atom or an 

electron
6
. It is also very important in the regeneration of other antioxidants like ascorbate 

(vitamin C)
15

. 

 Vitamin C (ascorbic acid) compounds with antioxidant activity include L-ascorbic 

acid and L-dehydroascorbic acid, which are effective in scavenging the superoxide radical 

anion, hydrogen peroxide, hydroxyl radical, singlet oxygen and reactive nitrogen oxide
16

. 

Vitamin E (tocopherols) has the ability to halt lipid peroxidation by donating its phenolic 

hydrogen to peroxyl radicals, forming tocopheroxyl radicals that are unreactive and unable 

to continue the oxidative chain reaction
6
. Vitamin E is the only major lipid-soluble, chain-

breaking antioxidant found in plasma, red cells and tissues, allowing it to protect the 

integrity of lipid structures, mainly membranes
17

. Vitamin K is a group of fat-soluble 

compounds, and the 1,4-naphthoquinone structure of this vitamin is what confers the 

antioxidant protective effect
6
. The structure of Vitamin E and C is illustrated in Figure 2

18
. 

 

 

Figure 2: Vitamin C and Vitamin E group structures in natural antioxidants
18

. 
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Carotenoids can be separated into two vast groups: the carotenoid hydrocarbons, 

known as carotenes, such as lycopene and b-carotene, and the oxygenated carotenoids, 

known as xanthophyls, such as zeaxanthin and lutein. The main antioxidant effect of 

carotenoids is due to their ability to quench singlet oxygen and to quench radical species. 

The mineral selenium is an indispensable part of most antioxidant enzymes 

(metalloenzymes, glutathione peroxidase, thioredoxin reductase), which would have no 

effect without it
19

. Meanwhile, zinc is also an inhibitor of NADPH oxidases and catalyzes 

the production of the superoxide radical using NADPH as an electron donor. With the 

addition of superoxide dismutase, zinc converts the superoxide radical into hydrogen 

peroxide
6
.  

Flavonoids are an antioxidant group of compounds composed of flavonols, 

flavanols, anthocyanins, isoflavonoids, flavanones and flavones. They are commonly found 

in plants and fruits. Antioxidant properties are conferred on flavonoids by the phenolic 

hydroxyl groups attached to ring structures. They can act as reducing agents, hydrogen 

donators, singlet oxygen quenchers, superoxide radical scavengers and even as metal 

chelators. They also activate antioxidant enzymes, reduce a-tocopherol radicals 

(tocopheroxyls), inhibit oxidases, mitigate nitrosative stress and increase levels of uric acid 

and low molecular weight molecules. Some of the most important flavonoids are catechin, 

catechin-gallate, quercetin and kaempferol, which are available commonly in herbs and 

fruits
20–23

. Brewer et al. (2011) illustrate the structure of the Flavonoids group found in 

plant extracts in Figure 3
18

.  
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Figure 3: Flavonoid structure and flavonoids (flavanones: chalcone, flavone and flavanol; 

and flavans: anthocyanin and anthocyanidin-3,5-glycoside) found in plant extracts. 

 

Phenolic acids are composed of hydroxycinnamic and hydroxybenzoic acids, 

commonly found in plant materials and sometimes present as esters and glycosides. They 

exhibit antioxidant activity as chelators and free radical scavengers with a special impact on 

hydroxyl and peroxyl radicals, superoxide anions and peroxynitrites
6
. One of the most 

studied and promising compounds in the hydroxybenzoic group is gallic acid, which is also 

the precursor of many tannins, while cinnamic acid is the precursor of all the 



 
 

24 

 

hydroxycinnamic acids
24,25

. The group structure of phenolic acids is shown in Figure 4 

(source Brewer et al. (2011)
18

). 

 

Figure 4: Structure of phenolic acid group found in natural antioxidants.  

 

Plants as sources of natural antioxidants 

Increasing demand has led to a rapid growth in the formulation of healthy, high 

quality and convenient foods, as well as natural oxidant-incorporated food and ready-to-eat 

food products
18

. Food quality is defined in terms of consumer acceptability: nutritional 
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value, taste, aroma and appearance characteristics. Many modern food ingredients contain 

unsaturated fatty acids that are quite susceptible to quality deterioration, especially under 

oxidative stress. For this reason, efforts to reduce oxidation have increased. Most often, the 

best strategy is the addition of antioxidants. 

In nature, there are a wide variety of natural antioxidants which differ widely in 

their composition, physical properties, chemical properties, side actions and mechanisms. 

Antioxidant-related compounds can be grouped into a few categories: enzymes, and low 

and high molecular weight compounds such as phenolic acid, vitamins and minerals
26

. 

Most plant sources in which natural antioxidants can be obtained include culinary herbs, 

spices, fruits, vegetables and oilseed products
27

. For many years, research has been carried 

out to study plants as sources of potentially safe, natural antioxidants for the food industry; 

various compounds have been isolated, many of them being polyphenols
28,29

.  

Polyphenols or polyphenolic compounds, synthesized by plants, are 

polyhydroxylated phytochemicals and can be divided into 4 general groups: phenolic acids 

(gallic, protochatechuic, caffeic and rosmarinic acids), phenolic diterpenes (carnosol and 

carnosic acid), flavonoids (quercetin and catechin) and volatile oils (eugenol, carvacrol, 

thymol and menthol)
18

. Whereas phenolic acids act as antioxidants by trapping free 

radicals, flavonoids have the ability to scavenge free radicals and chelate metals as well
30

. 

Hence, due to their capacity to donate hydrogen atoms or electrons, phenolic acid and 

flavonoids act as antioxidants in blood and tissue in the body. The number of antioxidant 

flavonoids and polyphenols found in the average human diet (vegetables, tea, fruit and 

wine) is much higher than the amount of antioxidants such as vitamin E, vitamin C and 

carotenoids in the same foods. Phenolic compounds are the major constituents that 

contribute to the antioxidant properties of plant foods. Phenolic compounds such as 

phenolic acids, flavonoids, tocopherols and anthocyanins have radical scavenging 

properties and can be considered food antioxidants
31

. Many authors have demonstrated the 

ability of phenolic compounds to scavenge free radicals such as catechins
32,33

, which are 

commonly found in tea. Therefore, the total amount of phenolic compounds is one of the 

most important factors affecting antioxidant activity. It has also been reported that most 

polyphenol compounds have anti-inflammatory, anti-fungal and antibacterial properties that 
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benefit human health
34

. Green tea extracts have the highest total phenolic content, 94% of 

which is in the form of flavonoids
35

, while Oolong tea contains about 18% total phenolics 

and 4.4% flavonoids
18

. Theaflavins and thearubigins predominate in black tea, which also 

contains chlorogenic, caffeic, p-coumaric and quinic acids
36

  

Besides phenolic acid and flavanoids, there are also many other compounds that 

have functional and nutritional value in edible plants, such as ascorbic acid
37

, nitrogen 

compounds (amino acids, amines, alkaloids and chlorophyll derivatives)
38

 and 

carotenoids
39

. These compounds play an important role not only as preservatives but also as 

nutrients and bioactive substances in the food industry. Ascorbic acid, also known as 

vitamin C, is a strong antioxidant found mainly in fresh fruits and vegetables. Ascorbic acid 

also exhibits synergic effects in its antioxidant activity, which prevents oxidation when 

combined with other antioxidant
40,41

. Chlorophylls and carotenoids are the most abundant 

plant pigments in nature and have antioxidant activity due to their singlet oxygen 

quenching properties
42

. Some carotenoids, such as α- and β-carotene, are precursors of 

vitamin A, which gives nutritional value to food
43

. Meanwhile, chlorophyll and its 

derivatives not only have antioxidant effects but may prevent certain types of cancers, aid 

in wound healing and reduce inflammation in some cases
44

.  

Many antioxidant constituents such as vitamins and carotenoids occur in the human 

dietary in fruits and vegetables. Fruits, vegetables, spices, herbs, cereals, grains, oilseeds, 

leguminous seeds, teas, coffee and cocoa are the major sources of plant-derived 

antioxidants such as phenolics and carotenoids, all of which have been extensively 

studied
27

. Wang et al. (2000) demonstrated the strong antioxidant activity found in fruits, 

and their research has been supported by many authors’ studies on berries, cherries, kiwi, 

fruit juices and olives
45–47

. Several studies have established the antioxidant potential of a 

wide variety of vegetables including broccoli, spinach and oregano
48,49

. 

Meanwhile, medicinal plants continue to be a major source of drugs. Natural 

products, based on their therapeutic effects, are traditionally believed to have medicinal 

effects in all cultures
50

. Plants possess many potent bioactive compounds capable of 

preventing and treating most oxidative-related diseases and have often been used in 

folkloric medicine
51,52

. Lugasi et al. (1995) and Muchuweti et al. (2007) demonstrated that 
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several spices and herbs commonly used in foods for their flavour and in medicinal 

mixtures for their physiological effects also contain high concentrations of phenolic 

compounds with strong H-donating activity
53,54

. Meanwhile, Chen et al. (2007) 

demonstrated that various extracts of many members of the Labiatae (Lamiaceae) family 

(oregano, marjoram, savory, sage, rosemary, thyme and basil) contain high total phenol 

content, which is relevant to antioxidant activity
55

. This study was supported by Gallego et 

al. (2013), who showed that herbs such as thyme, rosemary and lavender possess 

antioxidant potential to inhibit lipid oxidation in an emulsion model
56

. However, Dorman et 

al. (2003) observed that the antioxidant characteristics are not entirely related to the total 

phenolic contents but are strongly dependent on rosmarinic acid, the major phenolic 

component present
57

. 

Natural antioxidant research has also focused on plant waste as a potential source of 

natural antioxidants. Oliveira et al. (2008) determined the presence of phenolic compounds 

in green walnut husks and also identified thirteen phenolic compounds: gallic acid, juglone, 

myricetin, chlorogenic acid, ellagic acid, protocatechuic acid, syringic acid, vanillic acid, 

catechin, epicatechin, ferulic acid, sinapic acid, chlirogenic acid and caffeic acid
58

. Lemon 

and orange peel exhibited antioxidant activity and scavenging for radicals activity using 

different solvent extracts
59

.  

Many parts of grape plants possess polyphenol content including flavonoids, 

phenolic acids, stilbenes, coumarins and lignoids. Phenolic compounds in grape seeds and 

skins include catechins, epicatechins, epicatechin-3-O-gallate, phenolic acids, caffeic acid, 

quercetin, myricetin, proanthocyanidins and resveratrol, which all exhibit strong antiradical 

activity
18

. The antioxidant activities of grape seed extract ranged from 66.4% to 81.4%, 

compared to vitamin E, which ranged from 90.3% to 94.7%. Grape seed extract has been 

shown to inhibit both lipid hydroperoxide and propanal formation in food models
60

.   

In comparison with the few effects of the antioxidants analysed above, it has been 

shown that there are many plant-derived compounds that have excellent antioxidant 

properties. Researchers have successfully shown that these compounds benefit human 

health. However, research work on antioxidants also suggests that the antioxidative activity 

of some promising plants is superior to synthetic antioxidants, making these plant sources 



 
 

28 

 

particularly attractive for commercial food processors due to consumer demand for natural 

ingredients. 

 

2.2 Research plant 

White tea leaves (Camellia sinensis) 

Tea from the young buds and leaves of Camellia sinensis (L.) is the most widely 

consumed beverage in the world after water and is valued for its taste, aroma, health 

benefits and association with cultural practices
23

. The tea was originally planted in China 

but is now grown in tea plantations around the world to meet market demand. White, green, 

oolong, black and pu’erh teas are the major tea types sourced from leaves and buds of the 

tea plant. These are categorised based on variations in harvesting, processing and the 

associated degree of oxidation of polyphenols in the fresh tea leaves
61

. Of all these tea 

types, white tea is less well-known in western communities but is valued in Asia; the 

flavour is often preferred over green tea in Europe
62

. 

Recently, in the United States and Europe, white tea has received increasing 

attention, and research has been carried out into its nutritional quality. White tea is 

produced in very small quantities because the leaves are collected only at dawn during a 

few days in the spring when the buds are still closed. The traditional method used for white 

tea processing is to spread out the leaves to dry under the sun; during the lengthy drying 

process, in which the structure of the leaf cell is kept intact and not broken through any 

external physical interference such as curling or twisting, the tea becomes slightly 

“oxidized”. This oxidation converts small amounts of catechins, which have been described 

as potent antioxidants, into theaflavins and thearubigins, which are responsible for the 

characteristic aroma and colour of black and oolong teas
63

.  

The difference between green and white tea production processes is that, in 

traditional Chinese green tea production, the mature tea leaves are withered, briefly pan-

fried, rolled and dried. Some Chinese tea manufacturers steam rather than pan-fry their tea 

leaves, much like the Japanese style of green tea production
61,64

. Both tea heating methods 
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deactivate the polyphenol oxidase enzymes. Some published reports have shown that some 

white teas are also steamed during processing to deactivate enzymes. White teas have been 

reported to possess higher antielastase, anticollagenase, and antioxidative activity than 

certain green teas, and their suggested ability to promote strong and elastic skin and 

alleviate inflammation and rheumatoid arthritis has led to an increased interest in this tea 

type
65

. White tea lipolytic activity and its ability to inhibit adipogenesis have received 

particular attention, especially in developed countries battling with dramatic increases in 

obesity and obesity-related diseases
66

. 

The strong antioxidant activities of white tea are linked with a group of 

polyphenolic flavan-3-ol monomers and their gallate derivatives and catechins content
67

. 

The major catechins include (−)-epicatechin (EC), (−)- epigallocatechin (EGC), (−)-

epicatechin-3-gallate (ECG), and (−)-epigallocatechin-3-gallate (EGCG). These 

compounds are primarily responsible for many of the health protective properties 

associated with tea, including antioxidative
33

, antiinflammatory
68

, neuroprotective
69

, anti-

cancer
70

 and antimicrobial
62

 properties. In fact, recent studies have shown that white tea: 

exerts neuroprotection against hydrogen peroxide-induced toxicity in PC12 cells
71

; induces 

lipolytic activity and inhibits adipogenesis in human subcutaneous (pre)-adipocytes
66

; 

increases the antioxidant capacity of plasma and some organs in mice
72

; has potent 

antimutagenic activity in the Salmonella assay
73

; suppresses intestinal tumorigenesis in 

mice
74

; and inhibits pancreatic lipase activity in vitro
75

. Moreover, its ability to promote 

strong and elastic skin and alleviate inflammation and rheumatoid arthritis has led to an 

increased interest in this tea type
65

. Regarding the levels of catechins, total polyphenols and 

total antioxidant activity, white tea is, in general, not significantly different from green 

tea
76

, even if some authors have found higher mean levels of some catechins and gallic acid 

in white tea compared to green teas
77

. Chinese white teas have also been reported to possess 

greater antimutagenic properties than premium green teas
73

, as well as antioxidant effects, 

comparable to those of green teas, in body plasma and some organs
72

. White teas have also 

been found to contain higher amounts of caffeine than green teas
36

, which, along with other 

methylxanthines such as TB (theobromine) and TP (theophylline), the amino acid theanine 

and free sugars, is a compound commonly found in tea. The numerous factors that affect 

the final tea product, which is consumed or analysed in a laboratory, include climate, soil, 
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plucking time, as well as processing and preparation methods
61

. The growing role of tea in 

people’s diets in the United States over the past 2 decades
78

 means that the inter-variation 

of beneficial compounds in green and white teas and the intra-variation within each tea type 

should be studied further.  

 

Yellow Gentian root (Gentiana Lutea)  

Gentiana lutea is a species belonging to the Gentianaceae family, a flowering plant 

comprising approximately 70–80 genera and 900–1,200 species. It is a perennial herb that 

grows commonly in mountainous areas of central and southern Europe and in western 

Asia
79,80

. It grows naturally on uncultivated ground in France, Spain and the Balkan 

mountains. Gentiana lutea root has been used as a medicinal plant with many 

pharmacological benefits and has been recognised for the bitter tasting of its root. The roots 

are cited for use in drug-making in many pharmacopoeias and are available commercially 

in the form of dried fermented rhizomes and roots
81

. Due to its bitter taste, the drug has 

been used as a stomachic or appetizer. Much work has been done to identify the active 

component in the Gentiana Lutea root. The bitter constituent is mainly due to the 

occurrence of secoiridoid-glycosides (e.g. swertiamarin (2), gentiopicroside (3), 

amarogentin (4) and andsweroside) in the plant
82

, which have been shown to possess 

cholagogue, hepatoprotective and wound-healing effects in pharmacological studies
83

. 

Besides secoiridoids, other constituents that are relevant to the biological effects of gentian 

include iridoid loganic acid, which has an anti-inflammatory effect
84

, xanthone glycosides 

and their derivative, and xanthones like gentisin and isogentisin, which have wide-ranging 

anti-inflammatory, anti-hepatotoxic, anti-tumour and anti-microbial effects
85

.  Schmieder et 

al. (2007) revealed that the isogentisin compound in Gentiana Lutea root possesses 

protective effects against endothelial damage caused by cigarette smoking
86

. Aberham et al. 

(2011, 2007) evaluated the quality and efficiency of Gentiana Lutea by developing a new 

fully validated HPLC method for the simultaneous determination of bioactive compounds 

in the root extract
82,87

. 
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 Silver Birch leaves (Betula Pendula Roth.) 

The genus Betula of the family Betulaceae, more commonly known as the birch 

tree, has a wide distribution in the northern hemisphere from Canada to Japan
88

. The birch 

tree has a long history of medicinal use in different countries and cultures and has been 

used to cure skin diseases such as eczema, infections, inflammations, rheumatism and 

urinary disorder
89

. Betula bud oil is also widely used in cosmetic products, mainly in hair 

products, as a tonic and antiseptic 
89–92

. Birch bark contains betulin, betulinol and a 

betuloside. The young leaves are rich in saponins and contain a diuretic flavonoid 

derivative (hyperoside), sesquiterpenes and tannins. The buds are also rich in volatile oil. 

Birch tar contains creosol and guaiacol
93–96

.  

Leaves and other parts of different birch species (Betula spp., Betulaceae), as well 

as products of birch such as the buds, bark, essential oil, juice, wood and tar, are used 

mainly for treating urinary tract disorders, severe infections and inflammations
97

. Birch 

leaves are especially popular as a remedy for progressive diuresis
98

. According to the 

European Medicines Agency, birch leaf is a traditional herbal medicinal product that 

increases the production of urine and helps flush the urinary tract by acting as an adjuvant 

for minor urinary complaints
99

. The chemical composition of flavonoids, as the main 

polyphenolic constituents of birch leaves, has been investigated quite extensively in recent 

years. Betula Pendula Roth or Betula Pubescens leaves contain the highest phenolic 

composition that may be important for the higher antioxidant concentration found in the 

extract. For example, Hänsel and Sticher (2007) identified the presence of the following 

flavonoids in birch leaves: quercetin-3-O-galactoside (=hyperoside), quercetin-3-O-

glucuronide, myricetin-3-O-galactoside, quercetin-3-O-rhamnoside (=quercitrin), as well as 

other quercetin glycosides
100

. Quercetin and hyperoside were reported as the principal 

flavonoids in birch leaves by Evans (2000)
101

.  

According to the 7th European Pharmacopoeia, whole or fragmented dried Betula 

Pendula leaves, as well as the leaves of hybrids of both species, can be efficiently used for 

medical purposes. The leaves should contain not less than 1.5% of flavonoids, calculated as 

hyperoside, when used in a dried drug
102

. The birch leaves contain mainly polymeric 

proanthocyanidins; their total content (expressed as dry weight) is 39 mg/g in Betula 
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Pendula
103

. Carnat et al. (1996) analyzed the content of flavonoids in Betula Pendula and 

found total flavonoids 3.29 and 2.77%, hyperoside 0.80 and 0.77%, avicularin 0.57 and 

0.26%, galactosyl-3 myricetol 0.37 and 0.18%, glucuronyl-3 quercetol 0.25 and 0.36%, and 

quercitrin 0.14 and 0.12%
104

. 

 

Field bindweed leaves (Convolvulus Arvensis) 

Bindweed (Convolvulus arvensis) is a creeping weed widely distributed in the 

Middle East. It is often the dominant plant that grows under date palm trees in the eastern 

region of Saudi Arabia, where it is consumed by animals
105

. The root and the resin have 

cholagogue, diuretic, laxative and strongly purgative effects
106

. The tea from the flowers is 

a laxative and is also used in the treatment of fevers and wounds. A cold tea made from 

Convolvulus arvensis leaves is a laxative and is also taken as a herbal medicine to reduce 

excessive menstrual flow
107

. Although Convolvulus arvensis contains tropane alkaloids 

with an atropine-like action, it has rarely been associated with animal poisoning and may 

have a therapeutic value to animals due to its immunostimulation effect
108

. 

A high molecular-weight water extract can reduce the alkaloid content of 

Convolvulus arvensis. Meng et al. (2002) demonstrated that the alkaloid in Convolvulus 

arvensis is depleted during a high molecular-weight extraction. The plant also contains 

proteoglycan molecules (PGM), which can have anti-angiogenic, anti-tumor and 

immunostimulatory effects in human cells
109

. Hageb and Ghareib (2010) determined the 

phenolic content of Convolvulus arvensis methanol extract identifying the presence of 

pyrogallic acid, protocatechuic acid, ferulic acid and p-coumaric acid
111

. These compounds 

have been studied extensively and are responsible for many pharmacological effects on 

human health
112

. Sadeghi-aliabadi et al. (2008) determined the anti-cancer potential of 

Convolvulus arvensis (PGM) extract in its effect on human cancerous cells
113

. Meanwhile, 

Elzaawely and Tawata (2012) determined the total phenolic and flavonoid content of 

Convolvulus arvensis and evaluated its antioxidant capacity
114

. They showed a strong 

correlation between the phenolic compound and antioxidant activity, which may give 
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application for the phenolic fraction in the food industry. The study was also supported by 

Thakral et al. (2010)
115

.  

 

Common Bearberry leaves (Arctostaphylos uva-ursi L. Sprengel) 

Common bearberry (Arctostaphylos uva-ursi L. Sprengel), known as kinnikinnick, 

belongs to the Ericaceae family, a ubiquitous trailing evergreen shrub often forming mats 

50–100cm wide
116

. The plant grows preferentially on sandy and well-drained soil and is 

common in open woodlands, on rocky hills and on eroded slopes throughout the North 

American prairies, Asia and Europe
117

. The plant is an active ingredient in many 

commercial products and has an official classification as a phytomedicine in various parts 

of Europe
118

. Its commercial importance is based on its astringent properties and its 

beneficial effects on nephritis, kidney stones and other diseases of the urinary tract. The 

indigenous peoples of North America prepare a functional tea from bearberry for such a 

purpose
116

. The main compounds of bearberry leaf are arbutin (5–15%), methylarbutin 

(variable and up to 4%) and small quantities of the free aglycones. Its other constituents 

include ursolic acid, tannic acid, gallic acid, p-coumaric acid, syringic acid, galloylarbutin 

and up to 20% gallotannins, as well as some flavonoids, notably glycosides of quercetin, 

kaempferol and myricetin
119

. 

The bearberry plant is a tremendously underutilised renewable natural resource. 

Due to the presence of phenolic constituents, the bearberry plant is a warehouse of various 

bioactives. The antioxidant and antimicrobial effects of bearberry leaf extracts have been 

reported by several authors. The ethanolic extract from bearberry leaves exhibited high 

antioxidative activity in the inhibition of photo-induced chemiluminescence (PCL) of 

luminol reported by Pegg et al. (2007)
120

. Amarowicz et al. (1999, 2004) demonstrated the 

extract’s very strong reducing power and its antioxidant properties in a β-carotene-linoleate 

model system. They also demonstrated its antiradical properties, which they investigated 

using the DPPH radical scavenging assay and an EPR spin-trapping technique
121,122

. The 

crude bearberry-leaf extract, as well as its low-molecular-weight phenolics and tannin 

fractions, inhibited TBARS formation in cooked pork systems after seven days of 
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refrigerated storage at a 200-ppm concentration
123

. The observed retardation in lipid 

oxidation/autoxidation by the bearberry leaf extract in cooked pork patties demonstrates the 

thermal stability of the bioactive constituents in the extract, which impart the antioxidant 

activity. In a study by Carpenter et al. (2007), the addition of the bearberry leaf extract 

decreased lipid oxidation (TBARS) in raw pork patties on days 9 and 12 of storage, relative 

to controls
60

. The inhibitory effects of bearberry leaf extracts against Arcobacter butzleri, 

A. cryaerophilus and A. skirrowii were reported by Cervenka et al. (2006)
124

.  

Amarowicz et al. (2013) demonstrated that the potential of low molecular weight 

phenolics (LMW fraction) from bearberry leaf extract inhibited the proliferation of human 

carcinoma cell lines. This means that the extract may have the potential to become an anti-

cancer agent in drug development
118

. It has also been demonstrated that bearberry leaf 

extract is an anti-obesity agent due to its ability to interfere in fat hydrolysis, which reduces 

the utilization of ingested lipids and, therefore, inhibits lipases and decreases fat absorption 

125
. The application of a bearberry leaf extract has been used in cosmetic products for skin 

lightening
126

. Up to this point, analysis of bioactive constituents in the bearberry leaf 

extract has been limited to thin-layer chromatography and high-performance thin-layer 

chromatography (HPTLC)
122
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2.3  Antioxidant effect in food models 

Oil-in-water (O/W) emulsions 

Oil-in-water (O/W) emulsions are lipid phases dispersed in an aqueous medium. 

They often occur in formulated foods. Such emulsions are stabilised by surface-active 

molecules adsorbed at the oil/water interface which are called surfactants. In the food 

industry, various surfactants are used to create emulsions. Surfactants are molecules with a 

hydrophobic (oil soluble) and an effective hydrophilic (water soluble) portion. They act as 

emulsifiers by significantly lowering the interfacial tension and decreasing the coalescence 

of dispersed droplets. From their manufacture to their end-use, including their dissolution 

in the digestive tract, food emulsions are subjected to a broad range of physical/chemical 

treatments. Under these conditions, and in the presence of oxygen, chemically reactive 

components may become oxidized. Among them, polyunsaturated fatty acids (PUFAs) are 

particularly prone to oxidation. Lipid oxidation has a deleterious effect on the 

technological, sensory, and nutritional qualities of food
127

. The reaction generates odorant 

compounds characterised by low detection thresholds and generally unpleasant aesthetic 

properties that damage the sensory quality of the products. Lipid oxidation also causes a 

loss of nutritional components and leads to the formation of free radicals and potentially 

toxic compounds
128

.  

In order to reduce and control lipid oxidation, antioxidants are added to foods. 

Synthetic antioxidants such as butylated hydroxy toluene (BHT), butylated hydroxy anisole 

(BHA) and ethylene diamine tetraacetic acid (EDTA) are used in the food industry to 

prevent the oxidation of food fat. These products are more economical than natural 

antioxidants but have negative connotations due to being chemical products. Plant materials 

rich in phenolic compounds have gained a lot of attention recently. The antioxidative 

effects of natural plant materials rich in phenolics, such as extracts of rosemary
129

, 

berries
130

, green tea
131

, herbs
56,132,133

, raisins
134

 and olives
135

, have been tested in a variety 

of O/W emulsions. Heinonen (2007) reported that anthocyanins isolated from black 

currants, raspberries and the juice of raspberries and blackberries had an inhibiting effect on 

lipid oxidation in O/W emulsions
130

. In another study, polar carotenoid (paprika, marigold, 
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bixin, norbixin) and hydrophobic (b-carotene, lycopene) carotenoids exerted a clear 

antioxidant effect during thermal accelerated autoxidation (60
0
C) of o/w emulsions.  

 

Meat 

Meat is the muscle tissue of slaughtered animals and is composed of water, proteins, 

lipids, minerals and a small proportion of carbohydrates. It is susceptible to quality 

deterioration due to its rich nutritional composition
136

. Oxidation is one of the major causes 

of quality deterioration in meat due to the high concentrations of unsaturated lipids, heme 

pigments, metal catalysts and a range of oxidizing agents in muscle tissue. Oxidative 

deterioration in any type of meat manifests in the form of discolouration, development of 

an off flavour, the formation of toxic compounds, poor shelf life and nutrient and drip 

losses, respectively
137

. This quality deterioration is due to chemical and microbial changes. 

The most common form of chemical deterioration is the oxidation of meat lipids. Lipid 

oxidation is a complex process that depends on the chemical composition of meat, the 

presence of light and oxygen and the storage temperature
138

. It is also affected by some 

technological procedures to which meat is subjected during processing. It leads to the 

formation of several other compounds that have negative effects on the quality of meat and 

meat products and cause changes in sensory (colour, texture and flavor) and nutritional 

quality
139

.  

Lipid oxidation can be delayed by adding antioxidant sources to meat. The product 

quality and shelf-life can thereby be improved. Antioxidants can prevent lipid peroxidation 

through the following mechanisms: preventing chain inhibition by scavenging for initiating 

radicals, breaking chain reactions, decomposing peroxides, decreasing localised oxygen 

concentrations and binding chain initiating catalysts such as metal ions
140

.  

A huge number of compounds have been suggested as possessing antioxidant 

activity but only a few can be used in food products. The use of antioxidants in food 

products is controlled by countries’ regulatory laws and international standards (Karre, 

Lopez, & Getty, 2013). The antioxidants can have synthetic or natural origins. Synthetic 

antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), 
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tert-butylhydroquinone (TBHQ) and propyl gallate (PG) have been widely used in meat and 

poultry products
141

. However, the demand for natural antioxidants, especially of plant 

origin, has increased in recent years due to growing concerns among consumers about the 

potential toxicological effects of synthetic antioxidants
142

. A huge number of natural 

antioxidants have been studied in meat in recent years, as reviewed by Shah et al. (2014)
143

. 

These antioxidants have been extracted from different plant parts like leaves, roots, stems, 

fruits, seeds and bark. Some of these natural antioxidants are also available commercially 

and several studies have been carried out by different authors applying commercially 

available natural antioxidants of plant origin to meat
143

. Martín-Sánchez (2013) 

demonstrated that 10% (w/w) of fresh dates was enough to avoid lipid oxidation for 4 days 

of storage
144

. The effectiveness of a combination of oregano, sage and 5% (w/w) honey 

reduced the velocity of lipid oxidation in cooked chicken thighs and breasts after 48 and 96 

h of refrigerated storage
145

. The use of a mixed vegetable powder of between 20%–30% 

w/w (spinach < yellow pea < onion < red pepper < green pea < tomato) improved the 

oxidative stability of turkey meat patties and decreased the formation of protein carbonyls, 

as reported by Dutthie et al. (2013). The addition of pomegranate rind, seed and juices 

caused a delay of the lipid oxidation process and improved the quality of cooked beef 

patties
146

. Meanwhile, when essential oil of rosemary marjoram and other oils were added 

to poultry meat at a concentration of 200 mg/kg, the lipid stability, anti-microbial effects 

and sensory traits of the meat were improved
147

.  

 

Active film packaging 

Several strategies have been developed to reduce lipid oxidation and produce 

healthier and safer food products. These include adding direct natural antioxidant to foods 

and designing suitable packing technology. Vacuum or modified-atmosphere packaging 

combined with high-barrier packaging materials can limit the presence of oxygen. 

However, this approach does not always completely and effectively prevent the oxidation 

process due to the residual presence of oxygen at the time of packing or the permeation of 

oxygen through the package wall
148

. Moreover, some food products cannot be packed with 

less or no oxygen inside the packaging. The direct addition of antioxidant compounds to the 
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surface of foods may encounter a limitation once the active compounds are consumed in 

reaction, although some researchers believe that adding natural antioxidants directly can 

improve the nutritional quality of the food product
138,149

. Others have stated that the 

drawback of adding natural antioxidants directly is that it causes the protection and quality 

of the food to degrade at an increased rate
150,151

. Currently, antioxidant active packaging 

systems are being developed based on the incorporation of antioxidant agents in the 

package as a way to improve the stability of oxidation-sensitive food products.  

Research studies have successfully demonstrated that the incorporation of natural 

antioxidant extracts from plants, spices and herbs in packaging, film and coatings can 

improve their active properties as antioxidants, antimicrobials and/or antibrownings 

agents
152–155

. The development of active packaging systems and edible films using natural 

additives has been studied in relation to different subjects such as the delay in lipid 

oxidation, redness of colour and antimicrobial properties
156,157

.  Camo et al. (2008) studied 

lamb treated with antioxidant films that had been coated with oregano and showed that 

these films were significantly more efficient than those coated with rosemary. The fresh 

odour and colour of the food was also extended from 8 to 13 days compared to the 

control
150

. Ascorbic acid can be used in films as a browning inhibitor. The antibrowning 

effects of edible films and coatings containing ascorbic acid depend on the biopolymer type 

and the vitamin concentration added
158

. In addition, gelatine alone or constituted as a film 

exerts an antibrowning and antioxidant effect with natural coatings such as green tea, grape 

seed and basil leaf
155,159,160

.  
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CHAPTER 3: RESULTS AND DISCUSSION 

 

 

3.1. Radical Scavenging of White Tea and of its Flavonoid Constituents by EPR 

Spectroscopy 

 

Abstract 

White tea (WT), presents high levels of catechins, known to reduce oxidative stress. 

WT is the least processed tea, unfermented, prepared only from very young tea. The aim of 

this article is the use of the spin trap method and the electron paramagnetic resonance 

(EPR) spectroscopy as the analytical tool to measure, for the first time, the radical 

scavenging activity of WT and its major catechin components, epicatechin (EC), 

epicatechin-3-gallate (ECG), epigallocatechin (EGC) and epigallocatechin-3-gallate 

(EGCG), against the methoxy radical using Ferulic acid as antioxidant pattern. The 

antioxidant activity has been measured by the decrease of the intensity of the spectral bands 

of the adduct DMPO-OCH3 in the EPR with the amount of antioxidant in the reactive 

mixture.  The tea leaves and buds were extracted from waterless Methanol. It has been 

proved that tea compounds with more antiradical activity against methoxy radical are those 

with gallate group, EGCG and ECG.  

 

Keywords:  

White tea, EPR, spin trap, antioxidant activity, radical scavenging 
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3.1.1 Introduction 

Tea (Camellia sinensis (L.)) is one of the world’s most widely consumed beverages, 

and its medicinal properties have been widely explored. It can be classified in three types: 

Unfermented (green and white teas), partially fermented (oolong tea) and completely 

fermented (black tea).
1
 White tea (WT) is exclusively prepared from young tea leaves or 

buds, harvested before being fully opened. It is the least processed tea, not having suffered 

from any fermentation process; leaves are only air-dried.
2–4

 The strong antioxidant capacity 

of WT is linked to its high catechins content. The major catechins of tea are: 

epigallocatechin (EGC), catechin (C), epigallocatechin gallate (EGCG), epicatechin (EC) 

and epicatechin gallate (ECG).
2,5

 Scavenging capacity of WT can be measured by different 

antioxidant tests such as ORAC, TEAC, FRAP or DPPH, among others.
6
 Nowadays, WT is 

also used as a promising antioxidant medium additive, even better than green tea.
7
 It is also 

suggested that the mechanism of the protective actions of WT in oxidative stress in vitro, is 

related to its antioxidant potential and the maintenance of the normal redox status of the 

cell, when it is attacked by radicals or H2O2.
8
 

In this context, the radical scavenging measurements by traditional methods have 

their limitations. An essential antioxidant test extensively used in the literature, deals with 

the scavenging activity of antioxidants against the hydroxyl radical (HO

) or the superoxide 

(O2

), which are the main harmful reactive oxygen species (ROS). The activity of the 

antioxidant is measured in a competitive reaction with 5,5-dimethyl-1-pyrroline-N-oxide 

(DMPO), an excellent HO

 and O2

-
 spin trap nitrone. Spin trapping is a technique in which 

a transient radical, very unstable under normal conditions, react with a spin traps to form a 

much more stable radical adduct detected by electron paramagnetic resonance (EPR) 

spectroscopy. Nitrones have been the molecules of choice as spin trap species due to their 

specificity and ability to quantify transient ROS. It is well known that the spin trapping 

technique can provide direct evidence of the presence of transient radicals in any reaction 

system and therefore, it is very useful for discriminating trapped radical species, and 

various short-lived radical intermediates have been identified by this technique.
9,10

 Thus, 

the EPR spectroscopy has been an indispensable tool for the detection of many harmful 

ROS (O2
-

, HO

, HO2


, RO2


, RO


), via spin trapping.

10–13
 Thereby, the antioxidant activity 



 
 

55 

 

of a single polyphenol or a natural extract (mixture of polyphenols), is measured by the 

decrease of the intensity of the spectra of the radical adduct in the presence of the 

antioxidant relative to the decrease in the presence of an antioxidant pattern.
14–22

  

Some studies have been reported about the radical scavenging activity of green and 

black teas against 2,2-diphenyl-1-picrylhydrazyl (DPPH) by using the EPR technique.
10,23–

27
 However, there are no publications about the use of EPR in the analysis of the 

antioxidant capacity of WT with a transient oxygen radical, much more unstable than 

DPPH. 

Following our research work related to the antioxidant and antimicrobial properties 

of WT,
28–30

 the aim of this article is to measure the radical scavenging activity of WT and 

its major constituents i.e. epicatechin (EC), epicatechin-3-gallate (ECG), epigallocatechin 

(EGC) and epigallocatechin-3-gallate (EGCG), against methoxy radical, generated in the 

Fenton reaction in MeOH as solvent, using Ferulic acid as antioxidant pattern. The alcoxy 

radicals are considered among ROS species in biological processes, as also critical 

mediators in several serious human diseases. The classical Fenton reaction in aqueous 

media is used in most cases to generate the harmful hydroxyl radical HO

.. However, when 

the reduction of H2O2 with FeSO4 is conducted in MeOH as solvent, the transient radical 

generated is the methoxy radical CH3O

 as discussed below.  

 

 

3.1.2 Materials and Methods 

Materials 

Commercial available WT was obtained from local market. Ferulic acid, 

epicatechin-3-gallate (ECG), epigallocatechin (EGC), epigallocatechin-3-gallate (EGCG) 

and epigallocatechin (EC) were bought at Sigma Aldrich. Iron (II) sulfate (FeSO4), 5,5-

Dimethyl-1-pyrroline-N-oxide (DMPO), hydrogen peroxide (H2O2) and methanol (MeOH) 

were analytical grade and supplied by Panreac (Barcelona, Spain). 
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Extraction and quantification of WT   

The extraction was made in two different ways. 

a. Dried WT (10 g) were mixed with MeOH (100 mL) and extracted for 24 h at 

4 ± 1 ºC, stirred (10
3
 rpm) and light protected.   

b.  Dried WT (10 g) were mixed with hot Water (100 mL) and extracted for 4 

min at 90 ± 1 ºC, stirred (10
3
 rpm) and light protected.  

In both cases, the resulting infusions were filtered with qualitative filter papers 

(Watmann n.1) in a vacuum system. In order to determine the soluble concentration of WT, 

the solvent was removed at low pressure (BUCHI RE111, Switzerland) and further treated 

in a freeze dryer (Unicryo MC2L +/-60
o
C, Germany). Finally, WT lyophilized pulps were 

weighted and the concentration recovered from extract (g/l) was determined. The 

lyophilized extracts were kept in a desiccator, protected from light, until analysis. An 

adequate dilution of each extract was prepared to analyze in HPLC method to know the 

concentration of different flavonoids. The results of the main catechins for the water 

extraction are EC 51.3 ± 3.7; EGC 157 ± 9.5; EGCG 1631 ± 97; ECG 280 ± 23.2 mg/100 g 

tea dry leaves. In methanol, from 100 g of dry WT an average of 7.5 ± 0.2 g of soluble 

extract were collected. The major phenolic compounds found in methanolic WT extracts by 

HPLC analysis are listed in Table 1.  

 

Table 1: Concentration of Polyphenols Found in MeOH WT Extracts by HPLC Analysis. 

Compound Retention Time 

(min) 

Concentration  

(mg/100 g dry tea leaves) 

EGC 1.913 260.9 

EC 2.91 94.9 

EGCG 4.715 2113.8 

ECG 7.757 382.2 
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Determination of methoxy radical scavenging activity by EPR 

The solutions of the different components were prepared in deoxygenated MeOH. A 

spin-trapping reaction mixture consisted of 100 µL of DMPO (35 mM), 50 µL of H2O2 (10 

mM), 50 µL of pure polyphenols EC, ECG, EGC, EGCG at different concentrations or WT 

extract (0-8.13 g/L) or 50 µL of Ferulic acid used as reference (0-20 g/L) or 50 µL of pure 

MeOH used as a control, and finally 50 µL of FeSO4 (2 mM), added in that order. The final 

solutions (250 µL) were passed to a narrow (inside diameter, 2 mm) quartz tube, introduced 

into the cavity of the EPR spectrometer and the spectrum was recorded 10 min after the 

addition of the FeSO4 solution, when the radical adduct signal is greatest.  

X-band EPR spectra were recorded with a Bruker EMX-Plus 10/12 spectrometer 

under the following conditions: microwave frequency, 9.8762 GHz; microwave power, 

30.27 mW; center field, 3522.7 G; sweep width, 100 G; receiver gain, 5.02 x 10
4
; 

modulation frequency, 100 kHz; modulation amplitude, 1.86 G; time constant, 40.96 msec; 

conversion time, 203.0 msec.   

Each measurement was carried out in triplicate. The first derivative of the 

absorption signal was twice integrated, resulting values directly proportional to the 

concentration of the remaining radical adducts, when the competitive reactions of the 

methoxy radical with DMPO and the antioxidant are completed. Then, these values are 

compared with those obtained with Ferulic acid. 

 

 

3.1.3 Results and Discussion 

Antioxidant capacity assay 

In the present study, the free radical scavenging activity of WT extracts was 

evaluated against methoxy (CH3O

) radical by a competitive method in the presence of 

DMPO as spin trap, using EPR spectroscopy. CH3O

 radical was generated according to the 

Fenton procedure in MeOH instead of H2O as solvent. Methoxy radical, with a relatively 
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short half-life, has been identified by EPR because of its ability to form a stable nitroxide 

adduct with DMPO, DMPO-OCH3 (hyperfine splitting constants, aN = 13.9 G and aH = 8.3 

G).
31  

Since iron has a variable valence, its oxidation by H2O2 may occur via one or two 

electron transfer reactions. Therefore, two different mechanisms have been extensively 

discussed in the literature about the Fenton reaction.
32–39

 A radical mechanism with Fe(II) 

salt as one-electron donor and the generation of hydroxyl (HO

) radical (reaction 1),

40
 and a 

non-radical mechanism which involves a direct interaction between the Fe(II) and H2O2. 

This interaction finally produces an iron-oxide species of Fe(IV) (reaction 2).
41

 In each 

case, the predominance of one mechanism over the other may depend on different 

variables, mainly the nature of the metal ligand, the solvent and the pH of the medium.  

 

As said above, our experiments have been carried out in MeOH due to the low 

solubility of Ferulic acid in water. Assuming a radical mechanism in the Fenton reaction in 

MeOH, the generated hydroxyl radical would abstract a hydrogen atom mainly from the α 

position of MeOH to yield a hydroxymethyl radical (reaction 3)
42

 which, in turn, would 

react with DMPO to yield the radical adduct DMPO-CH2OH
43

 (reaction 4) (hyperfine 

splitting constants, aN = 14.7 G and aH = 20.7 G).
44 

 

However, in the reduction process of H2O2 with Fe(II) in MeOH as solvent in the 

presence of DMPO as spin trap, the unique bands of significant intensity shown in the EPR 

spectrum correspond to those of the methoxy adduct, DMPO-OCH3, and no relevant bands 
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to the DMPO adducts with hydroxyl and α-hydroxymethyl radicals are detected. Therefore, 

we assume a non-radical process as the dominant mechanism in the Fenton reaction in these 

conditions (reaction 2), and we suggest that the oxidant action of Fe(IV) oxide in MeOH 

leads to the generation of methoxy radical in a two consecutive one-electron paths 

(reactions 5 and 6) yielding in the presence of the spin trap, the radical adduct DMPO-

OCH3 (reaction 7). At this point, it should be emphasized that the involvement of an ionic 

mechanism in the formation of the radical adduct DMPO-OCH3 by nucleophilic addition of 

MeOH, is discarded because the intensity of the EPR spectrum decreases by the addition of 

methoxy radical scavengers. 

 

Pure polyphenols or WT extracts added to methanolic solutions of hydrogen 

peroxide (H2O2) and small amounts of FeSO4 in the presence of an excess of DMPO, may 

compete with the spin trap in the scavenging of methoxy radicals. This effect decreases the 

amount of radical adducts and, accordingly, decreases the intensity of the EPR signal. The 

double integration value of the signal of the spectrum for each experiment in the presence 

of an amount of antiradical relative to the value in the presence of the same amount of 

Ferulic acid gives a measure of the antiradical activity of the test sample.  
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Figure 1. Electron paramagnetic resonance (EPR) spectra of the radical adduct DMPO-

OCH3 generated from a solution of H2O2 [2·mM] and FeSO4 [0.04 mM] with DMPO [14 

mM] as spin trap in MeOH as solvent. Left: decrease of the EPR signal with the increase of 

the concentration of Ferulic acid as the reference sample. Right: decrease of the EPR signal 

by increasing the concentration of the white tea extracts. EPR measurement conditions 

were as described in Materials and Methods section. 

 

Figure 1 shows the EPR spectra of DMPO adduct of methoxy radical at different 

concentrations of Ferulic acid. The spectra were recorded 10 min after the addition of 

FeSO4 to the reaction mixture, when the radical adduct signal was the greatest. The signal 

intensity of the spectrum decreased with the increase of the amount of Ferulic acid. Table 2 

shows the values of the double integration at five different concentrations of Ferulic acid.  

 

Table 2. Methoxy Radical Scavenging Activity of Ferulic Acid by the Spin Trap 

Technique with DMPO in EPR
a 

Ferulic acid (g/L)
b 

Ferulic acid (mM)
b 

DI EPR signal
c 

0 0 28.26 

1 5.15 21.23 

2 10.30 16.35 

3 15.45 13.55 

4 20.60 12.13 

a
Final concentration values of DMPO (14 mM), H2O2 (2 mM) and Fe(SO4) (0.4 mM) in 

250 µL. 
b
Final concentration values of Ferulic acid in 250 µL.

c
Double integral of the EPR 

signal. 
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 Figure 2. Decrease of the intensity of the spectrum of the spin adduct of methoxy radical 

with DMPO by increasing concentration of Ferulic acid. The best fitting function is an 

exponential curve with the equation given inside the graphic, a) in g/L and b) in mmols/L, 

and in the text. 

 

The best fitting with these data was an exponential function (Figure 2) that, if 

concentration values of Ferulic acid are in g/L, corresponds to equation (1):  

y = 26.75e
-0.21x

; R
2
 = 0.972    (1) 

The evolution of the signal intensity of the DMPO adduct in the presence of 

different amounts of WT extracts is shown in Figure 1. The radical scavenging activity 

values of WT extracts against methoxy radical are presented in Table 3 as the equivalents 

of Ferulic acid in grams per liter per gram of WT. The scavenging activity of the WT 

extract is evaluated from four different concentrations of the extract. The last column in 

Table 3 shows that the activity of the extract is slightly higher than the activity of Ferulic 

acid in grams per liter. 

 

 

a b 



 
 

62 

 

Table 3.Methoxy Radical Scavenging Activity of WT Extracts by the Spin Trap Technique 

with DMPO in the EPR, Measured as Ferulic Acid (FA) Equivalents per Gram of the 

Active Sample
a 

WT conc.(mg/L)
b 

DI EPR signal
c 

FA equivalents 

(mg/L)
d
 

FA equi: WT
e 

0 28.26   

542 23.66 706.67 1.30 

651 22.64 876.67 1.35 

1085 20.70 1200.00 1.11 

1627 14.94 2160.00 1.33 

a 
Final concentration values of DMPO (14 mM), H2O2 (2 mM) and Fe(SO4) (0.4 mM) in 

250 µL. 
b
White tea extracts final concentration in 250 μL. 

c 
Double integral of the EPR 

signal. 
d 

Ferulic acid equivalents in mg/L. 
e 

Ferulic acid equivalents in g/L per gram of 

white tea extract. 

The radical scavenging activity of pure polyphenols towards methoxy radical was 

examined. Solutions of H2O2 (2 mM) and Fe(SO4) (0.4 mM) in the presence of DMPO (14 

mM), and varying amounts of polyphenol were introduced into the EPR cavity and the 

double integration of the spectrum obtained in  10 min after the addition of the Fe(II) salt 

into the reaction mixture was collected to calculate results. The overall chemical process 

can be defined as a system of two competing reactions between DMPO and the pure 

antioxidant over the methoxy radical. The action of the spin trap is to capture the methoxy 

radical to yield the radical adduct and, on the other hand, the scavenging action of the 

antioxidant on the methoxy radical reduces the amount of the radical adduct. In each 

experiment, the amount of spin trap was constant and the amount of antioxidant was varied. 

Then, the amount of radical adduct decreases exponentially as the amount of polyphenol 

increases, and the antioxidant efficiency is measured by the exponential coefficient α of the 

equation (2) 
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y = y0·e-αx                                                            (2) 

where y is the value of the double integration of the spectrum of DMPO-OCH3 at a 

given polyphenol concentration and y0 represents the value of the double integration in the 

absence of polyphenol. The variable x represents the polyphenol concentration.  

 

 

Figure 3. Decrease of the intensity of the spectrum of the spin adduct of methoxy radical 

with DMPO by increasing concentration of EC. The best fitting function is an exponential 

curve with the equation given inside the graphic and in the text. 
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Figure 4. (a) Decrease of the intensity of the spectrum of the spin adduct of methoxy 

radical with DMPO by increasing concentration of ECG. (b) Detail of the first values of the 

graph; the best fitting function is an exponential curve with the equation given inside the 

graphic and in the text. 

 

 

Figure 5. Decrease of the intensity of the spectrum of the spin adduct of methoxy radical 

with DMPO by increasing the concentration of EGC. The best fitting function is an 

exponential curve with the equation given inside the graphic and in the text. 

 

a b 
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Figure 6. (a) Decrease of the intensity of the spectrum of the spin adduct of methoxy 

radical with DMPO by increasing concentration of EGCG. (b) Detail of the first values of 

the graph; the best fitting function is an exponential curve with the equation given inside 

the graphic and in the text. 

 

Graphics for polyphenols EC, ECG, EGC and EGCG are shown in Figures 3-6. In 

each case, experimental values are fitted to exponential functions inserted in the Figures 

with good correlation coefficients (R), α being a measure of the antioxidant activity of 

polyphenols against the methoxy radical.  

The graphics corresponding to ECG and EGCG (Figures 4 and 6) show some 

anomalies. For the exponential regression approach of the results, only low concentration 

values of polyphenol are well fitted to exponential functions. Both polyphenols show strong 

antioxidant properties at very low concentrations. High values of concentration give rise to 

values of integration well above the values that correspond to the exponential functions. 

This anomalous behavior may indicate the complex processes taking place to remove 

methoxy radicals within the reaction mixture. This is because the degradation byproducts of 

polyphenols may in turn act as radical scavengers. 

The antioxidant efficiency coefficients of polyphenols relative to that of Ferulic acid 

are displayed in Table 4. All polyphenols exhibit antioxidant efficiency well above that of 

the Ferulic acid. The presence of the pyrogallol group and/or gallate group in the molecular 

b a 
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structure of ECG, EGC and EGCG greatly increases the methoxy radical scavenging 

relative to EC. EGCG with both groups, gallate and pyrogallol, being the most active 

polyphenol. 

 

Table 4.Values of the Antioxidant Activity Coefficients (α) of Pure Polyphenols EC, ECG, 

EGC and EGCG Towards Methoxy Radical and its Value Relative to the Ferulic Acid (FA) 

Polyphenol α (mmols/L)-1 α (FA relative) 

FA 0.04 1 

EC 0.34 8.5 

ECG 2.43 60.75 

EGC 1.51 37.75 

EGCG 3.83 95.75 

 

These results with the spin trap method indicate that EGCG has the greatest radical 

scavenging activity and it is consistent with those obtained by other more traditional  

methods, such as Trolox Equivalent Antioxidant Capacity (TEAC) with ABTS radical or 

Oxygen Radical Antioxidant Capacity (ORAC) with AAPH radical.45,46 The values 

obtained with the spin trap method show a much greater difference in antioxidant activity 

among the polyphenols than the other methods, although the order of activity is the same. 

An advantage of the spin method is that it works with ROS, the true mediators of human 

diseases, while TEAC and ORAC methods work with "atypical" and more stable radicals.  

Table 5 shows the scavenging activity of WT methanolic extract with the different 

methods. It is remarkable that the correlation is good in all of them. The sensibility for the 

EPR method is in the middle of the others, expressed as FA equi/g sample (1,3 ± 0,3) and 

near to the value obtained for the ORAC (1, 75± 0,6 FA equi/g sample) the more sensitive 

radical scavenging method. 
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Table 5. Antioxidant Activity of WT Tested by Different Methods with Ferulic Acid (FA) as Standard. 

                       ORAC                           TEAC                           EPR                                DPPH                              FRAP 

WTc 

FA 

equivalents 

a 

FA equi/g 

sampleb 

FA 

equivalents

a 

FA equi/g 

sampleb 

FA 

equivalents

a 

FA equi/g 

sampleb 

FA 

equivalents

a 

FA equi/g 

sampleb 

FA 

equivalents

a 

FA equi/g 

sampleb 

542 68.06 1.67 17.46 0.54 2160.00 1.33 755.04 4.64 242.42 2.98 

651 48.98 1.81 9.81 0.48 876.67 1.35 1057.11 4.55 154.02 2.84 

1627 29.65 1.82 7.91 0.49 706.67 1.30 845.54 4.68 130.11 3.20 

a Ferulic Acid equivalents in mg/L. b Ferulic Acid equivalents in g/g of sample. c mg 
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For the other hand, the results obtained in this paper confirm that the presence of 

gallate in catechins leads to a higher a radical scavenging activity. And this also corroborates 

the results of ORAC or TEAC; they work in a similar as the spin trap method.Moreover, 

there is no correlation between the composition in catechins found in the tea extract and the 

antioxidant activity values obtained by the spin trap method. That is, a greater proportion of 

ferulic acid equivalents in g/L would be expected per g/L of tea extract than the value shown 

in Table 3. This anomaly could be explained because the competition established between 

catechins finally leads to non-additive of the respective activities. It seems that the main 

catechin in the composition of WT, EGCG, is the most responsible for the radical scavenging 

effect, measured by the spin trap method. 

 

 

3.1.4 Conclusion 

In conclusion, we have studied the antioxidant activity of WT extracts and the activity 

of the most abundant catechins of the WT versus methoxy radical, using Ferulic acid as 

standard. An HPLC analysis of the extracts in MeOH shows the presence of EC, ECG, EGC 

and EGCG in significant amounts. The source of methoxy radicals has been the reduction of 

H2O2 by FeSO4 (Fenton reaction) in a ratio of 5:1, in MeOH as solvent. The experiments 

were conducted by electron paramagnetic resonance (EPR) using the spin trap technique in 

the presence of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), a good methoxy radical 

scavenger, and in the presence of varying amounts of antioxidant. In these conditions, the 

oxidant mixture generates methoxy radical as the only radical species in significant amounts, 

being identified by EPR as the stable radical adduct DMPO-OCH3. Therefore, we suggest 

that the dominant mechanism in the Fenton reaction in these specific conditions is a non-

radical mechanism with a two-electron transfer process from Fe(II) to the formation of ferryl 

ion [FeIVO]
2+

. This oxidizing species reacts with MeOH to give methoxy radical and 

regenerates Fe(II). 

The antioxidant activity of the WT extracts and polyphenols has been measured by the 

decrease of the intensity of the spectral bands of the adduct DMPO-OCH3 in the EPR with 

the amount of antioxidant. The activity of WT extracts is slightly higher than that of Ferulic 

acid as shown in Table 4. In addition, the antioxidant efficiency of all catechins is much 
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greater than that of the Ferulic acid; the highest being the activity of EGCG and ECG, which 

contain the gallate group, and the lowest that of EC.   

 

Abbrevations Used 

WT, White tea; EC, epicatechin; ECG, epicatechin-3-gallate; EGC, epigallocatechin; 

EGCG, epigallocatechin-3-gallate; EPR, electron paramagnetic resonance; HO, hydroxyl 

radical; O2-, superoxide radical; ROS, reactive oxygen species; DMPO, 5,5-dimethyl-1-

pyrroline-N-oxide; CH3O, methoxy radical; MeOH, methanol; min, minutes; h; hour; 

TEAC, Trolox Equivalent Antioxidant capacity; ORAC; Oxygen Radical Antioxidant 

Capacity; FA, Ferulic acid; DI, double integral; α, antioxidant activity coefficients. 
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3.2. Use of lyophilized and powdered Gentiana lutea root in fresh beef patties 

stored under different atmospheres:  

 

Abstract 

Gentiana lutea root is a medicinal herb that contains many active compounds which 

contribute to physiological effects, and it has recently attracted much attention as a natural 

source of antioxidants. The aim of this study was to evaluate the effects on the color, pH, 

microbial activities, sensory quality and resistance to lipid oxidation (through Thiobarbituric 

method, TBARS) during storage of beef patties containing different concentrations of 

Gentiana lutea. Fresh beef patties were formulated with 0 – 5 g kg^-1 of Gentiana lutea and 0 

or 0.5 g kg^-1 of ascorbic acid (AA) and packed in two different atmospheres, Modified 

Atmosphere 1 (MAP1) and Modified Atmosphere 2 (MAP2), and stored at 4 ± 1
O
C for 10 

days. MAP1 contained 20:80 (v/v) O2:CO2 and MAP2 contained 80:20 (v/v) O2:CO2. 

Gentiana lutea extracts possessed antioxidant activity measured by Ferric Reducing 

Antioxidant Power (FRAP) and Oxygen Radical Absorbance Capacity (ORAC) assays. 2 g 

kg^-1 of lyophilized Gentiana lutea was able to inhibit lipid oxidation in both atmospheres 

(p<0.05). Beef patties containing a combination of 2 g kg^-1 Gentiana lutea and 0.5 g kg^-1 

AA showed significant different in color and lipid oxidation (p<0.05). The results from this 

study manifest the potential of Gentiana lutea as a food ingredient in the design of healthier 

meat commodities. 

 

Keywords: 

 Gentiana lutea, lipid oxidation, modified atmosphere, antioxidant, beef patties. 
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3.2.1   Introduction 

Nowadays there is growing interest in new sources of natural antioxidants as 

components of a healthy diet and as a replacement for synthetic antioxidants to maintain food 

quality. Butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) are 

commonly used as synthetic antioxidants in food industry. However, their possible toxic 

effects at high doses, which offset the beneficial effects of extending food shelflife, have 

raised much concern
1
. Oxidative deterioration commonly occurs in the muscle food and 

affects the sensory characteristics of meat shelf-life such as colour, flavour, odour and 

texture. It also provokes the loss of nutritional value and the generation of toxic reaction 

products such as malonadehyde (MDA)
2,3

. A substantial number of studies have shown that 

the phenolic compounds exhibit in plant extracts are potent antioxidants which successfully 

retard lipid oxidation in meat products. Plant derived antioxidants, such as grape seed, 

rosemary and herb extracts, are of particular interest to food manufacturers because of their 

ability to delay the oxidation process and improve nutritional quality of meat
3–5

.  

The antioxidant potential of Gentiana lutea to inhibit lipid oxidation of muscle food 

has not been described yet. Thus, this research has studied the efficacy of lyophilized and 

powdered Gentiana lutea root to prevent deterioration of rounded beef patties during 10 days 

of refrigerated storage in two different atmospheres: MAP1 and MAP2. MAP1 contained 

lower oxygen concentration (20:80 (v/v) O2:CO2) than MAP2 (80:20 (v/v) O2:CO2). 

However, plant extracts with natural antioxidant activity are not normally able to provide 

sufficient protection against discoloration of meat products. Therefore, the combination 

effects of Gentiana lutea root products and 0.5 g kg^-1 ascorbic acid (AA) have been studied 

for their ability to prevent meat discoloration. The measurement of antioxidant effects, pH, 

microbial analysis, colour and sensory aspects were subjects of the study. Assessment of 

antioxidant activity of Gentiana lutea has been studied by the determination of Total Phenol 

Content (TPC), Oxygen Radical Absorbance Capacity (ORAC) and Ferric Reducing 

Antioxidant Power (FRAP) assay. 
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3.2.2  Materials and Methods 

Materials 

Dried Gentiana lutea was kindly supplied by Manatial de la Salut, a registered herbal 

company in Barcelona, Spain. AA, reagents and solvents used were analytical grade and 

obtained from Panreac (Barcelona, Spain) and Sigma Aldrich (Gillingham, England). The 

lean meat of male bull slaughtered in accordance with approved guidelines of the Animal 

Ethics Committee (Spain) was supplied by Embutidos La Masia (Barcelona). The meat was 

collected 7 days after slaughter to allow it to mature and kept at approximately -4 
O
C for 

further treatment.   

 

Extraction of Gentiana Lutea 

Dried roots of Gentiana lutea were cut into 1 x 1 x 1 cm cubes and grounded using a 

standard kitchen food processor (Moulinex Odacio, Barcelona). Fine grounded Gentiana 

lutea (powdered) was extracted with water and 50:50 (v/v) aqueous ethanol, always in the 

ratio of 1:10 (w/v). Extraction with aqueous ethanol and water was performed at 4 ± 1 
O
C for 

24 h in the dark with constant stirring. Each sample was extracted in triplicate and sample 

extracts were collected for antioxidant assay analysis. The extract solutions of Gentiana lutea 

were recovered by filtration using Whatman Filter paper, 0.45 µm, and excess ethanol was 

removed under vacuum using a rotary evaporator (Buchi RE111, Switzerland). All extracts 

were dried in a freeze dryer (Unicryo MC2L +/- 60 
O
C, Germany) under vacuum at -60 ± 2 

O
C for 3 days in order to remove moisture. Finally, lyophilized Gentiana lutea was weighed 

to determine weight and extraction yield as described by Zhang et al.
6
 

  

Determination of the Total Phenolic Content (TPC) 

The Folin-Ciocalteu method was used to determine the total phenolic content as 

reported by Santas et al.
7
 An appropriate dilution of antioxidant was prepared before adding 

the Folin-Ciocalteu reagent and sodium carbonate solution. The mixture was finally diluted 

with miliQ water, shaken and incubated in the dark for 1 hour. Absorbance at 765 nm was 

measured using a microplate reader (Fluostar Omega, BMG Labtech, Germany) with water as 
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a blank. Gallic acid was used to prepare a standard calibration line, and the results were 

expressed as mg of Gallic acid equivalents per g dry weight (mg GAE g^-1 DW).   

 

Determination of Free Radical Scavenging Activity Assays 

a. Determination of the Ferric Reducing Antioxidant Power (FRAP) 

The FRAP method was introduced by Benzie and Strain
8
 and implemented with some 

modifications. The FRAP solution was prepared in proportions of 10:1:1 of 300 mM acetate 

buffer (pH 3.6), 10 mM 2,4,6-tripyridyl-s-triazine (TPTZ) in 40 mM HCl and 20 mM FeCl3 

respectively. FRAP solution was incubated at 37 
o
C for 20 min before it was mixed with the 

adequate dilution of the extract. The absorbance was measured at 593 nm using a microplate 

reader. Results were compared with the Trolox calibration curve, and concentrations were 

expressed as micromoles of Trolox equivalents per dried weight of sample (µmol of TE g^-1 

DW). 

b. Determination of the Oxygen Radical Absorbance Capacity (ORAC) 

The ORAC value was determined according to Stockham et al.
9
 with amendment. An 

appropriate concentration of Gentiana lutea extract was mixed with 13 mM of phosphate 

buffer (incubated at 37 
o
C for 20 min) and 80 mM of fluorescein respectively. 60 mM APPH 

radical were added after the initial value of fluorescence was recorded and the fluorescence 

was monitored for 150 minutes using a microplate reader. The net area under the fluorescein 

decay curve (AUC) was determined and ORAC values were calculated by comparing the 

AUC to that of Trolox as a standard. All measured data were expressed as µmol of TE g^-1 

DW. 

 

Determination of Antioxidant Activity in meat patties 

a. Preparation of beef patties 

Storage of beef patties in different modified atmospheres were divided into 2 trials 

using the same samples of Gentiana lutea root in powdered and lyophilized form. The first 

trial (MAP1) was carried out in less oxygen concentration (20:80 (v/v) O2:CO2). Fat and joint 

tissues were trimmed off lean meat (2000 g per trial) and the meat was minced through 8 mm 
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industrial plates. Then, the minced meat was divided into 5 batches which were mixed with 

15 g kg^-1 NaCl and either i) control (no addition), ii) 5 g kg^-1 powdered Gentiana lutea, 

iii) 5 g kg^-1 lyophilized Gentiana lutea, iv) 2 g kg^-1 powdered Gentiana lutea, v) 2 g kg^-

1 lyophilized Gentiana lutea. All batches were mixed vigorously for 2 minutes to attain even 

distribution and moulded into smaller portions (about 20 g each). The samples was stuffed 

and packed with polystyrene B5-37 (Aerpack) trays and placed in BB4L bags (Cryovac) of 

low gas permeability (8–12 cm^3 m^-2 per 24 h). The air in the trays was flushed with 20:80 

(v/v) O2:CO2 by EAP20 mixture (Carburos Metalicos, Barcelona) using packaging machine 

(ULMA smart 500, Barcelona). Samples were stored in the dark at 4 ± 2 
o
C for 10 days to 

measure thiobarbituric acid reactive substances (TBARS), colour, pH and microbial quality. 

Every measurement was carried out in triplicate each day for 10 days (except for 

microbiological analysis).  

The second trial (MAP2) was prepared using the same procedure as the first trial. 

Modified atmosphere for MAP2 contained higher oxygen concentration approximately 80:20 

(v/v) O2:CO2. 7 batch of the meat was mixed with 15 g kg^-1 NaCl and either i) control (no 

addition), ii) 0.1 g kg^-1 BHT, iii) 0.5 g kg^-1 AA, iv) 0.5 g kg^-1 AA and 2 g kg^-1 

lyophilized Gentiana lutea, v) 2 g kg^-1 lyophilized Gentiana lutea, vi) 2 g kg^-1 powdered 

Gentiana lutea and vii) 1 g kg^-1 lyophilized Gentiana lutea. All samples were analyzed by 

the same procedures used in the first trial.  

b. Thiobarbituric acid reacting substances (TBARS) 

TBARS method was used to measure the extent of lipid oxidation over the storage 

period as described by Grau et al.
10

 Sample (1 g) was weighed in a tube and mixed with 3 g 

L^-1 aqueous EDTA. Then, the sample was immediately mixed with 5 mL of thiobarbituric 

acid reagent using an Ultra-Turrax (IKA, Germany) at a speed of 32000 rpm, for 2 min. All 

procedures were carried out in the dark and all samples were kept in ice. The mixture was 

incubated at 97 ± 1 
o
C in hot water for 10 min and shaken for 1 min during the process to 

form a homogeneous mixture. The liquid sample was recovered by filtration (Whatman Filter 

paper, 0.45 µm) after the sample was cooled for 10 min. The absorbance value for each 

sample was measured at 531 nm using a spectrophotometer. The TBARS value was 

calculated from a malonaldehyde (MDA) standard curve prepared with 1,1,3,3 

tetraethoxypropane and analysed by linear regression. All results were reported in mg 

malonaldehyde per kg of sample (mg MDA kg^-1 sample). 
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c. Colour measurement  

A Chroma meter with measuring head (CR 400 Head, Minolta, Japan) was used to 

measure the color changes in 3 different parts of the meat: surface, bottom and inner part. The 

values of a* was measured at 5 different locations of each part. The color was represented by 

a* values was associated with the redness of the meat. The significant red color of the 

samples reflected the visual traits of meat such as freshness.  

d. Determination of pH and microbiological analysis 

The pH value was determined using a micro pH 2001 meter (Crison Instruments, 

Barcelona). Each pH was measured 3 times for every sample
11

. The microbial content was 

determined in a Bio–II-A microbiology cabinet to maintain an aseptic environment. Each 

sample of meat (10 g) was transferred with sterile tweezers to a stomacher bag which 

contained 10 mL of sterile Ringer´s ¼ solution. A stomacher blender (Seward 80, Spain) was 

used to homogenize the mixture for 2 min. A series of 10-fold sterile Ringer´s ¼ solution was 

prepared to dilute homogenized samples (1 mL). Each diluted sample (1 mL) was incubated 

in triplicate with TCA (Trypticase soy agar, Oxoid, UK) at 15 
o
C (for Psychrophiles) and at 

30 
o
C (for Mesophiles) for 2 to 6 days. The colony count was represented as the logarithm of 

colony forming units per g (log CFU g^-1). 

e. Sensory Analysis 

Sensory analysis was performed by a 30 member semi-trained taste panel. A 

discrimination method (triangle test) was applied to determine the existence of perceptible 

sensorial differences in appearance and taste between the control (15 g kg^-1 salt) meat 

patties and the patties with 15 g kg^-1 salt and 2 g kg^-1 lyophilized Gentiana lutea. The 

appearance evaluation was to identify the difference of color and odor of the sample. Samples 

were presented sliced, on a white plate, at 40 ± 1 
o
C. Each panelist was presented with three 

samples simultaneously, two of which were identical. Each taster was asked to identify the 

odd sample. Each panelist did the taste test 3 times. The numbers of correct responses given 

by panelists was determined and the mean value was calculated for each sensorial test. 

According to Sancho et al.
12 

for 90 trials, the difference between samples was significant at 

the appropriate level (i.e. panelists were able to identify the odd sample) if the number of 

correct answers was 39 (p<0.05), 42 (p<0.01) and 45 (p<0.001). 
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Statistical Analysis 

Statistical analysis was performed using a one-way analysis of variance ANOVA 

using SPSS 19 (IBM) software program. When statistically significant differences were 

found, Tukey´s tests were performed and the statistically significance was set at p<0.05. The 

results were presented as mean values (n≥3).  

 

 

3.2.3  Results and Discussion 

Extraction yield  

The extraction was carried out at 4 ± 1 
o
C to minimise degradation of polyphenols at 

higher temperatures
13

. The choice of 50:50 (v/v) aqueous ethanol for extraction was based on 

the results of Nastasijevic et al.
14

 who reported that this solvent gave an extract of Gentiana 

lutea with the best inhibition activity toward the enzyme myeloperoxidase (MPO) and with 

the highest antioxidant activity in the DPPH assay; EC50 = 20.6 µg mL^-1. The average dried 

weight of lyophilized obtained after freeze drying was 35 ± 0.4 g L^-1 for aqueous ethanol 

and 26.8 ± 0.3 g L^-1 for the water extract (p>0.05).  

 

Analysis of Total Polyphenols and Free Radical Activity Assays 

The phenol content was three times higher after extraction with 50:50 (v/v) aqueous 

ethanol compared to extraction with water (Table 1). Gentiana lutea extracted with 50:50 

(v/v) aqueous ethanol also showed higher antioxidant activity than an aqueous extract when 

assessed by the FRAP and ORAC assays (Table 1). This data is consistent with previous 

reports which state that  antioxidant activity of plant extracts correlates with phenolic 

content
15

 and shows that the yield of phenolic components from herbs is higher with aqueous 

ethanol rather than water as extraction solvent
16

. Nevertheless, the ORAC result demonstrated 

ethanol extract gives almost double antioxidant value to scavenge the peroxide radical (OH
•
) 

generates in assays compared to water extract. Xanthones and its derivatives (such as 

isogentisin and gentisin) and xanthone glycosides (gentioside and its isomer) are one of the 

phenolic compounds present in Gentiana lutea root expected to be more soluble in aqueous 
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alcohol. Amarogentin present in Gentiana lutea is also a phenolic component expected to 

have antioxidant properties based on its chemical structure
17

. 

 

Table 1: Extraction yield, TPC, FRAP, ORAC of Gentiana lutea root extract. 

Activity Gentiana L. 

Extraction solvent 

H2O 50:50 (v/v) EtOH:H2O 

a 
Extraction yield (%) 20 ± 0.9% 29.1 ± 0.3% 

b 
Total phenolic content 

(mg GAE g^-1 DW) 
3.79 ± 1.7 12.03 ± 1.8 

c 
FRAP                                       

(µmol of TE g^-1 DW) 
10.34 ± 1.5 15.89 ± 0.5 

d 
ORAC                              

(µmol of TE g^-1 DW) 
26.12 ± 2.3 58.9 ± 1.8 

a.
 Extraction yield (%) is calculated according to the method of Zhang et al.

16
. 

b.
 Folin-

Ciocalteu measurement of phenolic content equivalent in mg GAE g^-1 DW. 
c,d

 Antioxidant 

activity of Gentiana lutea  determined by FRAP and ORAC assays in µmol of TE g^-1 DW. 

Mean value n=3 and the standard deviation for each assay is less than 5%. 

  

Estimation of polyphenol content in TPC is pertinent to the FRAP value which 

showed the phenolic compound in the extract act as electron donator to ferric 

tripyridyltriazine complex (Fe(III)-TPTZ) to ferrous complex (FE(II)-TPTZ). Previously 

reported antioxidant assays on extracts from Gentiana lutea are limited to DPPH scavenging 

assay. However, recent finding had demonstrated the antioxidant potency of Gentiana lutea 

extract with water and methanol aqueous on Trolox Equivalent Antioxidant Capacity (TEAC) 

and superoxide activity assays
18

. Nevertheless, this is the first report of the antioxidant 

activity of extracts from Gentiana lutea roots assessed using the FRAP and ORAC methods. 
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Antioxidant Effect in meat patties  

a. Colour evolution 

 

 

Figure 1: Changes in redness values (a*) of control and samples containing different 

concentrations (w/w) of Gentiana lutea in (A) MAP1 atmosphere and (B) MAP2 during 10 

days storage at 4 ± 1
O
C without light. Each sample was stored and measured in triplicate and 

the average standard deviation was less than 5%. Concentration of salt (15 g kg^-1), BHT 

(0.1 g kg^-1) and AA (0.5 g kg^-1).     
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Many consumers scrutinize meat freshness by its visual redness, thus the a* value 

justified by the evidence that pigment change and lipid deterioration in muscle foods are 

closely interrelated
19

. Meat was stored with added salt under MAP1 and MAP2 atmosphere 

and the red color (a* value) started to decrease after an initial lag phase (Figure 1 A and B). 

Addition of salt made red color of samples more intense (a* value) than unsalted meat. The 

red color of the meat was enhanced by the addition of NaCl and lactates with immediate 

effect as reported previously
2
. The mean a* value of the beef patties was measured as 15.12 ± 

1.57 immediately after mixing.  

Figure 1A and Figure 1B shows all samples suffered detrimental color changes 

throughout the storage time. It has been previously reported that high oxygen concentrations 

enhance the bright-red colour of fresh meat due low concentrations oxygen accelerate the 

oxidation of myoglobin to metmyoglobin which turns the colour brown
20

. However, from our 

finding here, there are no significant different of the red value of control samples between 

trials which may due to influences of salt adding in the samples
21

. Overall, samples 

containing lyophilized Gentiana lutea showed less color change than powdered Gentiana 

lutea samples in both modified atmospheres. There are no significant reduction of color 

showed by all samples in MAP1 after 7 days (p>0.05). The sample containing higher 

concentration of lyophilized Gentiana lutea  (5 g kg^-1) showed significantly less loss of 

redness (p<0.05) compared to the control after 4 days in MAP1. However, 2 g kg^-1 

Gentiana lutea (powdered and lyophilized) in both atmospheres experienced deterioration of 

red color compared to control samples (p<0.05) during 10 days storages. All samples showed 

a* values in the range of 2 – 6 after 10 days storage in MAP2 condition. In higher oxygen 

packaging, meat treated with AA plus 2 g kg^-1 Gentiana lutea able to maintain and prolong 

the attractive red color during storages compared to control and synthetic antioxidants (BHT 

and AA) (p<0.05). Whereas, positive control samples (BHT and AA) sustained a*value until 

6 days storages before the color value declined rapidly.  Many authors claim that adding 

ascorbic acid to natural antioxidant is beneficial to control the oxidation and the redness of 

beef patties
22–24

. It act as a reducing agent which inhibits the myoglobin oxidation and brown 

color development in beef.
23

 Therefore, a combination of 2 g kg^-1 lyophilized Gentiana 

lutea with 0.5 g kg^-1 AA showed synergic effect capable of maintaining the color stability 

during 10 days of storages in MAP2.  
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b. TBARS values 

 

 

Figure 2: Changes in TBARS values (mg MDA kg^-1) of control and samples containing 

different concentrations of Gentiana lutea in (A) MAP1 and (B) MAP2 atmosphere during 10 

days storage at 4 ± 1
O
C without light. Each sample was stored and measured in triplicate and 

the average standard deviation for each sample was less than 5%. Concentration of salt (15 g 

kg^-1), BHT (0.1 g kg^-1) and AA (0.5 g kg^-1).     
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The research was carried out principally to assess the effect of the Gentiana lutea 

concentration (lyophilized and powdered) on meat properties. Figure 2A and B below shows 

the effect of the modification of the atmosphere on beef patties containing antioxidants in two 

oxygen concentrations packaging; MAP1 and MAP2. Overall, samples containing lyophilized 

Gentiana lutea showed less oxidation compared to powdered Gentiana lutea samples in both 

modified atmospheres (Figure 2A and 2B).  

The TBARS values of samples containing 2 g kg^-1 lyophilized Gentiana lutea in 

MAP1 and MAP2 were significantly lower than the control (p<0.05) throughout the storage 

period. The TBARS values (control and 2 g kg^-1 Gentiana lutea) in MAP1 showed less 

oxidation compared to the samples stored under MAP2 atmosphere. Our results were in 

accordance with those of Martinez et al.
36

, who reported that the higher oxygen concentration 

resulted in higher TBARS values and an increased oxidation rate in muscle foods 

The first trial was carried out in less oxygen packaging (MAP1) between 2 - 5 g kg^-1 

of Gentiana lutea. The initial concentration proposed during the first trial was approximate 

from our pervious study in the emulsion system
18

. TBARS value for all samples shown in 

Figure 2A started around 0.1 mg MDA kg^-1 sample and remained less than 0.5 mg MDA 

kg^-1 sample during 3 days. Then, slow increases of the values were observed due to the low 

oxygen concentration. All samples treated with Gentiana lutea were less oxidized than the 

control during storages  (p<0.05). The highest concentration of Gentiana lutea (5 g kg^-1) 

showed the lowest TBARS value during 10 days storages. Control was the only sample 

reached value of 1.0 mg MDA kg^-1 during the final day of the storages which the sample 

was considered as rancid.  The acceptable limits of TBARS value in fat product was set at 1.0 

mg MDA kg^-1 as a guarantee of the product quality
25

.   

TBARS results obtained in MAP1 showed a minimum concentration 2 g kg^-1 

Gentiana lutea was successfully inhibit lipid oxidation in beef patties; hence, following trial 

was carried out at higher oxygen concentration (MAP2). High oxygen in MAP mixtures of 

60-80% O2 and 20-40% CO2 are commonly used in beef product packaging for retail display 

in the market. The trial was performed with 1 - 2 g kg^-1 Gentiana lutea and addition of 0.5 g 

kg^-1 AA was to preserve the redness changes during storages. The TBARS values for 

samples treated with 2 g kg^-1 lyophilized Gentiana lutea (with or without AA) were 

significantly lower throughout storages (p<0.05) when compared to all control samples 

(Figure 2B). The TBARS values of samples containing 1 g kg^-1 lyophilized Gentiana lutea 
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were not significantly different (p>0.05) whereas 2 g kg^-1 powdered showed nearly 

different from all controls during storages (p<0.1). Meat samples treated with Gentiana lutea 

with or without AA reached lower TBARS values (less than 0.8 mg MDA kg^-1 sample) 

after the first 6 days (p<0.05). The effect of adding AA plus Gentiana lutea antioxidant to the 

beef patties gave the lowest TBARS values at the final day, which was 0.74 mg MDA kg^-1 

under MAP2 condition. These results are consistent with other studies and suggest that 

antioxidants, such as rosemary and AA in combination, exerted a synergistic effect in 

preventing lipid oxidation in ground meat
22–24

. The oxidation degradation of the meat patties 

was more reduced at higher concentration of Gentiana lutea, as shown by comparison of the 

rates for 1 g kg^-1 and 2 g kg^-1 lyophilized addition. During the final phases of storage the 

all samples except 2 g kg^-1 lyophilized Gentiana lutea (with or without AA) reached values 

greater than 1.0 mg MDA kg^-1 sample. For the 10 days storage period in MAP2, samples 

treated with 2 g kg^-1 lyophilized Gentiana lutea (with or without AA) did not reached limit 

level of TBARS that justified the meat as a rancid. 

Positive controls in MAP2 displayed lower TBARS values during the first 6 days and 

subsequently increased rapidly to reach similar values to the control after 7 days (p>0.05). 

Level of concentration BHT and AA used in the experiment are approved by FDA and 

specified under code of Federal Regulations (CFR). BHT are relatively effective at lower 

concentration and become pro-oxidant in high level, while AA possessed antioxidant 

properties and can also act as pro-oxidant depending on the concentration, metal ions and 

tocopherol content
26

. Moreover, there are few reports that have found that ascorbic acid alone 

is inactive to prevent lipid oxidation in muscle foods
22,23

.  

The active properties of Gentiana lutea have been reported several times by Aberham 

et al.
27,28

 with commercial and fresh plants. The root compounds consist in the family of 

iridoids, scoiridoids and xanthones which could be developed as antioxidant agents and 

radical scavengers and may contribute to the decrease of lipid oxidation
29

. These compounds 

have been described  to have antioxidant properties and are capable of scavenging free 

radicals and removing the superoxide radicals naturally produced in cells
30

. Recent studies 

are focused on evaluating the potential of natural plants to improve the nutritional properties, 

to reduce lipid oxidation and to extend the shelf life of meat products. The protective effect of 

adding natural plants against lipid oxidation in meat is due to the presence of phenolic 

compounds. The antioxidant activity of phenolic compounds is closely related to the hydroxyl 

group linked to the aromatic ring which is capable of donating hydrogen atoms and 
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neutralizing free radicals. This mechanism prevents further degradation of reactive oxidizing 

species such as MDA, which can be measured by the TBARS method
31

.  

However, the effectiveness of some antioxidants can increase with concentration, but 

the effect only takes place up to a certain concentration. The active ingredients that exist in 

the plants can also act as pro-oxidants according to their chemical properties, environmental 

condition and their interaction with lipids
32

. Many papers have reported that natural plants 

work as antioxidants efficiently, but it is most important to identify the minimum 

concentration to reduce lipid oxidation significantly throughout the storage time. Adding the 

minimum amount of natural plant can not only delay lipid oxidation but also may avoid some 

changes in sensorial quality and flavor which limit their application in meat. Modified 

atmosphere packaging (MAP) is one of control test system keeping much attention from 

researchers to evaluate the effectiveness of functional ingredients such as rosemary, thymol, 

and natural seed extract in meat products
5,33,34

. MAP2 with 80:20 (v/v) O2:CO2 was reported 

to be the most suitable mixture
35

 and effective antimicrobial factor
36

 for meat products. 

Thus, analysis of our data showed that 2 g kg^-1 lyophilized Gentiana lutea was 

adequate to significantly inhibit deterioration in beef patties (p<0.05) in high and low oxygen 

concentration packaging compared to control. Moreover, a mixture of 2 g kg^-1 lyophilized 

Gentiana lutea with 0.5 g kg^-1 AA exhibited synergic effects on delaying the oxidation rates 

and improving color of the meat in higher concentration atmosphere. The study confirmed the 

potential of edible Gentiana lutea for preventing oxidation of muscle foods.  

c. pH and Microbial analysis 

Treatment of the meat with the different Gentiana lutea concentrations or 

combinations of Gentiana lutea antioxidants with salts did not alter the pH. The mean pH 

value measured at the first day was 5.96 ± 0.2 and the values increased less that 0.2 pH units 

(p>0.05) throughout 10 days storage. Slight changes in pH values during storage were also 

reported by Franco et al.
37

 They also reported that the pH value was not affected by different 

packaging atmospheres and did not increase with storage time (80:20 O2:CO2 v/v vs. vacuum 

packaged). 

All samples started at 5 log CFU g^-1 microbial count (p>0.05), a common value for 

fresh meat products, following with sample preparation such as mincing and grinding. There 

were no significant differences in bacterial counts for all samples during 14 days of 
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incubation; at 10
O
C (Psychrophiles) and 30

O
C (Mesophile) (p>0.05). Bitter agents of 

Gentiana lutea (secoiriodoid-glycosides) have been described perviously as anti-fungal and 

anti-bacterial
38,39

. In the findings here explained, lyophilized and powdered Gentiana lutea (1 

– 5 g kg^-1) did not display any significant antimicrobial activity against Mesophilic and 

Psychrophilic bacteria. Weckesser et al.
40

 reported that there was no activity of Gentiana 

lutea against several gram positive bacteria and yeasts except marginally against S. pyogenes.  

d. Sensory Analysis 

Minor changes during storage without effects on the taste and appearance of the meat 

containing added natural antioxidants are required for commercial success in the food 

industry.  A sensory testing result by a triangular test was carried out to assess if the panelists 

were able to distinguish between control and modified patties. Results confirmed that color 

and odor did not show statistical differences between control and modified products for most 

of the panel members. 90% of the panelists indicate that that the appearances (color and odor) 

of the patties were very similar between control and modified samples. In relation to taste, 

70% of the panelists found that there were no significant differences between the control and 

the addition of 2 g kg^-1 lyophilized Gentiana lutea in the patties. These results determined 

that products with 2 g kg^-1 lyophilized Gentiana lutea substitution were viable from the 

appearance of the patties. However, greater number of the respondents could correctly 

identify the modified patties on the tasting analysis due to some bitter tasting present in them. 

The trial was carried out with the minimum concentration, 2 g kg^-1 lyophilized Gentiana 

lutea, to prove its potential use in products without adversely affecting the sensory 

characteristics as well as positive effects in inhibiting the oxidation of lipids in muscle foods.  

 

 

3.2.4  Conclusions 

Addition of 2 g kg^-1 lyophilized Gentiana lutea effectively controlled lipid oxidation 

in high and low oxygen concentration atmospheres (MAP1 and MAP2) in 4 ± 1 
O
C 

throughout 10 days storage. Adding 2 g kg^-1 Gentiana lutea alone did not influence the 

meat redness, but in combination with 0.5 g kg^-1 ascorbic acid, it showed synergic effect 

that reduced loss of redness and TBARS values in the meat patties. Sensory analysis indicates 

the potential of using 2 g kg^-1 Gentiana lutea without significantly altering the appearance 
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and the taste of modified patties. Thus, this study confirmed Gentiana lutea roots as a source 

of edible natural antioxidants that can be used by the food industry for addition to meat 

products.  
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3.3. Screening of Antioxidant Activity of Gentiana Lutea Root and Its Application 

in Oil-in-Water Emulsions 

 

Abstract 

Gentiana Lutea root is a medicinal herb, traditionally used as a bitter tonic in 

gastrointestinal ailments for improving the digestive system. The active principles of 

Gentiana Lutea were found to be secoiridoid bitter compounds as well as many other active 

compounds causing the pharmacological effects. No study to date has yet determined the 

potential of Gentiana Lutea antioxidant activity on lipid oxidation. Thus, the aim of this study 

was to evaluate the effects of an extract of Gentiana Lutea on lipid oxidation during storage 

of an emulsion. Gentiana Lutea extracts showed excellent antioxidant activity measured by 

DPPH scavenging assay and Trolox equivalent antioxidant capacity (TEAC) assays. An 

amount of 0.5% w/w Gentiana Lutea lyophilise was able to inhibit lipid oxidation throughout 

storage (p < 0.05). A mixture of Gentiana Lutea with 0.1% (w/w) BSA showed a good 

synergic effect and better antioxidant activity in the emulsion. Quantitative results of HPLC 

showed that Gentiana Lutea contained secoiridoid-glycosides (gentiopiocroside and 

sweroside) and post column analysis displayed radical scavenging activity of Gentiana Lutea 

extract towards the ABTS radical. The results from this study highlight the potential of 

Gentiana Lutea as a food ingredient in the design of healthier food commodities. 
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Gentiana Lutea; lipid oxidation; antioxidant; HPLC 
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3.3.1  Introduction 

Gentiana Lutea root also known as Yellow Gentian, has over 300 species and is 

widely distributed in North America, Europe, Asia and some parts of South America
1
. The 

plant root was traditionally use as a medicinal plant to stimulate appetite and improve digestion
2
. 

Furthermore, the root is also well known for its bitter properties due to the existence of 

secoiridoid-glycosides (e.g., swertiamarin, gentiopicroside, amarogentin and sweroside)
3
. 

Many researchers have discovered the benefits of bitter tasting secoiridoid-glycoside through 

extensive pharmacological studies. These constituents are claimed to have many biological 

effects such as anti-apoptotic
4
, anti-cancer

5
, anti-fungi

6
, anti-bacterial

7
, anti-inflammatory

8
, 

and hepatoprotective
9
. It has been reported recently by Nastasijevic et al. (2012) that the 

Gentiana Lutea extracts have potential to inhibit myeloperoxidase (MPO) activity which 

contributes to many disorders such as cardiovascular, inflammatory, neurodegenerative and 

immune-mediated diseases
10

. 

However, not only are the secoiridoids relevant for the plant pharmacological action, 

there are many active compounds in Gentiana Lutea  that also have relevant effects such as 

iridoidloganic acid, xanthone (e.g., gentisin and isogentisin) and xanthone glycosides 

(gentioside and its isomer)
3
. Iridoidloganic acid has shown potent activity as an anti-

inflammatory and a number of studies demonstrated that xanthones and its derivatives have 

wide-ranging biological activities such as anti-inflammatory, anti-hepatotoxic, anti-tumor and 

anti-microbial
11

. Furthermore, xanthone, and its derivatives, are phenolic compounds with 

antioxidant properties which have attracted much attention recently
12

. There are few reports 

that have investigated the radical scavenging activities of secoiridoid-glycosides using DPPH 

assay
7,13

, although some authors have measured total antioxidant capacity of Gentiana Lutea   

but without sufficient assessment of individual antioxidants
10,14

. However, the observation of 

antioxidant activity of Gentiana Lutea extract towards lipid oxidation has not been fully 

determined. 

Lipid oxidation in high fat-containing food is a major cause of shelf life deterioration 

such as in meat products and emulsions. The oxidation process causes unsavoury alteration of 

flavor, texture, shelf life, appearance, and nutritional qualities
15

.Oil-in-water emulsion (o/w), 

is a food model which is highly susceptible to oxidation, besides it has also become one of 

the effective models to evaluate the antioxidant activity of natural plants towards lipids
16

. The 

first phase of lipid oxidation starts with the formation of unstable free radicals and 
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hydroperoxides with further decomposition to secondary products like ketones, aldehydes, 

alcohols and acids
17

. The formation of peroxides in primary oxidation can be measured using 

peroxide value (PV) assay. Secondary oxidation can be measured by thiobarbituric acid 

reacting substances (TBARS), specifically aldehydes, and also leads to unpleasant taste, 

aroma and quality traits of the products. 

Thus, our goal was to evaluate the potential antioxidant activity of Gentiana Lutea   

by different methods: (1) in vitro with such radicals as ABTS
•+

, DPPH and enzymatic activity 

and (2) in o/w emulsion. 

 

 

3.3.2 Materials and Methods 

Materials 

Commercially dried Gentiana Lutea was kindly supplied by Manatial de la Salut 

(Barcelona, Spain), a registered herbal company. Reagents used were: thiobarbituric acid, 

1,1-diphenyl-2-picrylhydrazyl (DPPH), Folin-Ciocalteu reagent, methanol, hydrogen 

chloride, aluminium oxide, ferrous chloride, anhydrous sodium carbonate, ethanol 96%, 

Phosphate Buffer Solution (PBS) and ammonium thiocyanate from Panreac (Barcelona, 

Spain). Gallic acid, 2,2′-azino-bis (3-ethylbenzothiazoline)-6-sulfonic acid diammonium salt 

(ABTS), (±)-6-hydroxy-2,5,7,8-tetramethylchromane-2–carboxylic acid (Trolox), NBT 

(nitrobluetetrazolium), Bovine Serum Albumin (BSA), Xanthine and  

Xanthine-oxidase from Sigma-Aldrich (Gillingham, UK). 

 

Extraction of Gentiana Lutea   

Dried roots of Gentiana Lutea   were finely ground using a standard kitchen food 

processor. Ground Gentiana Lutea   (5 g) was extracted in two ways; (1) with 50:50 (v/v) 

methanol:water and (2) with water, always in the ratio 1:10 (w/v). The extraction was 

performed at 4 ± 1 °C for 24 h, in the dark with constant stirring. The extract solutions of 

Gentiana Lutea   were recovered by filtration using Whatman Filter paper, 0.45 μm. Part of 

the supernatant was taken for subsequent use to determine the antiradical capacity. The 
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volume of the remaining supernatant was measured and the excess methanol was removed 

under vacuum using a rotary evaporator (BUCHI RE111, Postfachi, Switzerland) and kept 

frozen at −80 °C for 24 h. All extracts were dried in a freeze dryer (Unicryo MC2L −60 °C, 

Martinsried, Germany) under vacuum conditions at −60 °C for 3 days to remove moisture. 

Finally, Gentiana Lutea lyophilize (freeze dried) were weighed to determine the 

concentration recovered (g/L) and the extraction yield (%) as Zhang et al. (2007)
18

. Samples 

were then weighed and kept protected from light in a desiccator until use. 

 

Determination of the Total Phenolic Content (TPC) 

The Folin-Ciocalteu method was used to determine the total phenolic content (TPC) 

as reported by Santas et al. (2008)
19

. The sample was diluted 1:25 (v/v) in order to be in the 

range of absorbance. The final concentration (v/v) for the mixture was; sample 7.7%, Folin 

reagent 4% and saturated sodium carbonate solution 30.8%. The mixture was finally diluted 

with Mili Q water, shaken and incubated in the dark for 1 h. Absorbance at 765 nm was 

measured using a microplate reader (Fluostar Omega, BMG Labtech, Ortenberg, Germany) 

against water as a blank. Gallic acid was used to prepare a standard calibration, and the 

results were expressed as mg of Gallic acid equivalents/g dry weight (mg GAE/g DW). 

 

Determination of Free Radical Scavenging Activity Assays 

a. TEAC Assay 

The antioxidant capacities of Gentiana Lutea   were measured by using a modified 

TEAC assay, which was performed as described by Miller et al. (1996)
20

. The TEAC assay 

was based on the reduction of the ABTS
•+ 

radical cation by the antioxidants present in the 

samples. ABTS
•+

 radical cation (7 mM, final concentration) was dissolved before adding 

potassium sulphate (2.45 mM, final concentration) and allowing the mixture to stand in the 

dark up to 16 h. Phosphate Buffer Solution (PBS, 10 mM) with the ABTS
•+

 radical cation 

was incubated at room temperature for 30 min before used. Then, the mixture of the ABTS
•+

 

radical cation was adjusted to an absorbance of 0.73 ± 0.2 nm, using a microplate reader 

(Fluostar Omega, BMG Labtech, Ortenberg, Germany). The TEAC values for the different 

concentrations of each compound were interpolated from the trolox calibration curve and 
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expressed as milligrams of trolox equivalent per gram of dry weight sample (mg TE/g DW 

sample). 

b. DPPH Assay 

The effect of the extracts on the scavenging of DPPH radical was determined 

according to the method adapted from Madhujith et al. (2006) with slight modifications
21

. 

The sample was diluted 1:20 (v/v) and DPPH radical in methanol (5.07 mM) was made for 

the study. Then, the sample (10% v/v) and DPPH solution (90% v/v) were added to the well 

of the microplate. The absorbance was measured at 517 nm over every 15 min for 75 min. 

The results were expressed as mg TE/g DW sample. 

c. Superoxide Activity Xanthine/Xanthine Oxidase (X/XO) 

The method was based on the developed method of Valentao et al. (2001)
22

 and 

modified for application in microplates by Lopez et al. (2001)
23

. All test samples were 

dissolved in a 50 mM phosphate buffer to simulate the environment in which the reaction 

occurs in the body. The sample was mixed with 145 μM of a solution of xanthine, 50 μM of a 

solution of NBT and incubated in 37 °C. The sample extract was diluted from 1:10 to 1:100 

(v/v) for the study. Finally, 0.29 U/mL of enzyme xanthine oxidase solution was added and 

the absorbance was recorded at 560 nm every 2 min. The value of IC50 was calculated to 

determine the inhibition rate of Gentiana Lutea   in the reaction. 

 

Determination of Antioxidant Activity in o/w Emulsion 

a. Removal of Tocopherols from Sunflower Oil 

Alumina was placed in an oven at 200 °C for 24 h, and then removed and allowed to 

cool in a desiccator until it reached room temperature. Sunflower oil triacylglycerol was 

passed twice through the alumina in a column to remove the tocopherols as described by 

Yoshida et al. (1993)
24

. Finally, the filtered oil was stored at −80 °C until use. 

b. Preparation of Emulsion 

Oil in water emulsion was prepared by dissolving Tween-20 (1%, final concentration) 

in Milli Q water and adding oil (10%, final concentration). To form an emulsion, the oil was 

added drop wise to the solution of Tween-20 and water, which was kept cold, and sonication 
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process was continued for 5 min. All samples were redissolved in ethanol-50% (v/v) to obtain 

the final concentration in the emulsion. The final samples were prepared either (i) control (no 

addition); (ii) 0.35% (w/w) Trolox (positive control); (iii) 0.1% (w/w) BSA; (iv) 0.5% (w/w) 

lyophilise Gentiana Lutea  ; (v) 0.5% (w/w) lyophilise Gentiana Lutea   mixed with 0.1% 

(w/w) BSA; (vi) 0.2% (w/w) lyophilise Gentiana Lutea   and (vii) 0.2% (w/w) lyophilise 

Gentiana Lutea   mixed with 0.1% (w/w) BSA. The emulsion for each sample was prepared 

in quadruplicate, obtaining a total of 28 samples and stored in the dark and allowed to oxidize 

at 37 °C. The pH of the samples was measured four times for each sample (pH meter GLP21, 

Crison Instruments, Barcelona, Spain) as a parameter to investigate its correlation with PV. 

c. Determination of Peroxide Value (PV) 

The primary oxidation products were measured using peroxide value (PV) according 

to the thiocyanate method of the Association of Official Analytical Chemists (AOAC) 8195
25

. 

Ferrous chloride solution was prepared in hydrochloric acid (1 M) with the addition of iron 

chloride (II) (2 mM, final concentration). Ammonium thiocyanate solution was prepared in 

water (2 mM, final concentration). The assay was performed with a drop of emulsion in the 

range from 0.007 to 0.01 g, diluted with ethanol. From this solution the required amount of 

sample, varying according to the degree of oxidation, was taken in a cuvette and ethanol 

(96%) was added. Ferrous chloride and ammonium thiocyanate solutions were added, each in 

a proportion of 1.875% (v/v), final concentration. The absorbance was measured 

spectrophotometrically at λ = 500 nm. The results are expressed as meq hydroperoxides/kg of 

emulsion. 

d. Determination of Secondary Oxidation by Thiobarbituric Acid Reactive Substances 

TBARS 

The TBARS method was adapted from Gallego et al. (2013)
26

. The TBARS reagent 

was prepared (15% w/v trichloroacetic acid, 0.375% w/v thiobarbituric acid and hydrochloric 

acid 2.1% v/v). One mL of each emulsion was taken and the TBARS reagent was added in 

the ratio 1:5 (v/v). Immediately the samples were added to an ultrasonic bath (5 min) and 

after immersing in a water bath preheated to 95 °C (20 min) the samples were centrifuged and 

the absorbance of the supernatant was measured at λ= 531 nm. The results are expressed as 

mg malondialdehyde (MDA)/kg of emulsion. 
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Statistical Analysis 

Statistical analysis was performed using a one-way analysis of variance ANOVA 

using Minitab 16 software program (Minitab, Inc., Paris, France). When a statistically 

significant difference was found, Tukey’s tests were performed and the statistical significance 

was set at p < 0.05. The results were presented as mean values (n ≥ 3). 

 

HPLC and Post-Column HPLC-ABTS
•+ 

Radical Scavenging Method 

The method for identification of peaks with antioxidant activity was that used by 

Koleva et al. (2001) with some modifications
27

. The instrument was a Waters 2695 separations 

module (Meadows Instrumentation, Inc., Bristol, USA) system with a photodiode array 

detector Waters 996 (Meadows Instrumentation, Inc., Bristol, USA). The column used was a 

Kinetex C18 100A, (100 × 4.6 mm, Phenomenex, Torrence, CA, USA). Solvents used for 

separation were 0.1% acetic acid in water (v/v) (eluent A) and 0.1% acetic acid in methanol 

(v/v) (eluent B). The gradient used was isocratic, 75% A. The flow rate was 0.6 mL/min. 

Detection wavelength was 230 nm (to see the peaks) and 734 nm  

(to see the ABTS radical). The sample injection volume was 10 μL. The chromatographic 

peaks of gentiopicroside and sweroside were confirmed by comparing their retention times 

and diode array spectra with that of their reference standards. The pump for ABTS post-

column injection was a Merk-Hitachi HPLC gradient pump (Model L-6200, Hitachi High 

Technologies America, Inc., Schaumburg, Illinois, USA) with a 0.2 mL/min flow; ABTS 

concentration was of 0.03% (w/v). 

 

 

3.3.3 Results and Discussion 

Analysis of Total Polyphenols and Free Radical Activity Assays 

On average, from 5 g of dried Gentiana Lutea   extracted with aqueous methanol 50:50 (v/v) 

and water alone, it was possible to recover 1.5 ± 0.05 g and 1.0 ± 0.04g of lyophilised, 

respectively. The concentration recovered was proportional to the extraction yield shown in 

Table 1. Previous study reported that gentiopicroside compound, an active compound that 
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signifies the main bitter principle in Gentiana Lutea was still preserved at almost 83.5% after 

drying
28

. 

 

Table 1. Extraction yield, total phenolic content (TPC), 1,1-diphenyl-2-picrylhydrazyl 

(DPPH), Trolox equivalent capacity assay (TEAC) and enzymatic activity of Gentiana Lutea   

Activity Gentiana Lutea   
Extraction solvent 

H2O 50:50 MeOH:H20 

Extraction yield (%) 20.00 ± 0.9% 29.10 ± 0.3% 

Total phenolic content  

(g GAE / g DW) 
3.79 ± 1.7 12.03 ± 1.8 

DPPH                                       

(µmol of TE / g DW) 
12.34 ± 1.5 15.89 ± 0.5 

TEAC                   

(μmol of TE / g DW) 
33.28 ± 1.5 48.90 ± 1.8 

Superoxide activity 
30.00 ± 2.8 23.21 ± 2.8 

(mg / ml) 

Mean value n = 3 and the standard deviation for each assay is less than 5%. Gallic Acid 

Equivalent (GAE), Trolox Equivalent (TE), Dry Weight (DW). 

 

The concentration of total polyphenols and the value of antioxidant activity assays 

were determined and the results are shown in Table 1. The extract of Gentiana Lutea in 

methanol-50% showed higher phenolic content and antioxidant activity than the water 

extract. The total phenolic content of Gentiana Lutea extracts allowed the estimation of all 

phenolic acids, flavonoids, anthocyanins, nonflavonoids and many classes of polyphenol 

compounds present in the samples. On the other hand, Nastasijevic et al. (2012) determined 

the total polyphenol content of Gentiana Lutea in water extract as being slightly higher 

compared to different concentrations of aqueous ethanol and methanol extracts
10

. 

Water extracts of Gentiana Lutea showed the lowest activity in free DPPH
•
 

scavenging activity compared to methanol-50% extract, similar to previous research from 
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Kintzios et al. (2010)
14

. It is not the first time that the antioxidant activity of Gentiana Lutea 

by DPPH method has been carried out. However, variation in results may be due to the plant 

age, solvent, method and system used throughout the experiment
10,14,29

.  

For the TEAC assay, the finding was consistent with the DPPH method where the 

aqueous methanol extract showed higher activity than the water extract. TEAC assay 

indicated the extract potency used as a source of antioxidants based on the ability of the 

antioxidant compound to scavenge the long-life radical cation ABTS
•+

. In the results shown 

in Table 1 it can be appreciated that the methanol-50% extract has a higher capacity to 

scavenge ABTS
•+

 radicals and consequently shows a higher antioxidant activity than DPPH 

assay. To the best of our knowledge, this is the first report of the antioxidant activity of 

extracts from Gentiana Lutea  roots assessed using the TEAC methods. 

Some of the previous reports showed that the antioxidant activity of plant extracts 

correlates with the phenolic content
30

 and the yield of phenolic components from herbs is 

higher with methanol-50% rather than with water as extract. The mixtures of alcohol and 

water have been more efficient in extracting compounds and give a better yield than the 

corresponding mono-component solvent system. Xanthones such as isogentisin and gentisin 

and its derivatives are one of main sources of phenolic compounds in Gentiana Lutea  and are 

expected to be more soluble in aqueous alcohol. A study showed good correlation between 

phenolic content and antioxidant activity
31

 whereas another found no correlation
32

. 

In the present work, an effective antioxidant activity in Gentiana Lutea was found. 

Methanol-50% extract exhibited O2
•−

 scavenging activity, measured using the X/XO system 

(Table 1), with an IC50 at 23.21 ± 2.8 mg/mL. Water extract of Gentiana Lutea  showed lower 

scavenging activity than methanol aqueous extract, with IC50 = 30.00 ± 2.8 mg/mL. These 

results are consistent with Kusar et al. (2006)
29

, who demonstrated the effect of superoxide 

activity of Gentiana Lutea leaf and root in methanol extracts, with IC50 inhibition value of 

11.1 mg/mL and 8.2 mg/mL, respectively. Kusar and co-workers’ findings were 

accomplished by X/XO reaction mixture with DEPMO-OOH scavenger that transformed the 

reaction to a stable radical measured by electro spin resonance (ESR). Valentao et al. (2001)
22

 

observed the phenolic acids (p-coumaric acid, ferulic acid, sinapic acid and kaempferol) 

exhibited superoxide scavenger activity and an inhibitory effect on XO. Considering the 

results obtained from TPC assay, it may be anticipated that Gentiana Lutea extract has 

antioxidant activity achieved by the scavenging of superoxide radical and XO inhibition. 
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Antioxidant Effect in Stored o/w Emulsion 

Many strategies on laboratory scale have been developed to improve the stability of 

shelf life in food models including adding a minimum amount of natural plants to delay the 

oxidation rate. The effect of Gentiana Lutea on inhibiting lipid oxidation in oil-in-water (o/w) 

emulsion as a food model has not been described. In this study it also has been carried out to 

determine the synergic effect of Gentiana Lutea with BSA in o/w emulsions. The oxidation in 

o/w emulsions was measured in two stages of oxidation; primary oxidation product (Peroxide 

Value) and secondary oxidation products (TBARS). In addition the change in pH was 

monitored, since pH tends to fall during oxidation. 

a. Evolution of Peroxide Value (PV) 

Figure 1 (below) shows the evolution of PV vs. time. The control (without extract 

added) showed the highest oxidation throughout the storage time followed by the emulsion 

with only BSA (0.1%). The sample containing Trolox (0.35%, positive control) and the 

samples containing extracts, were not oxidized during the first 10 days. They show significant 

difference from the control (p < 0.05). The time required for the emulsions to reach a 

peroxide value of 10 meq hydroperoxides/kg of emulsion was determined as a standard to 

measure the stability of emulsion. The limits of fat product (animal, plant and anhydrous) 

margarine and fat preparation were set <10 meq hydroperoxides/kg as a guarantee of the 

product quality
33

. When the peroxide value of the sample is measured as greater than  

15 meq hydroperoxide/kg, the sample is considered rancid, which may alter the color, taste 

and nutritional quality due to the deterioration of the lipid. 

The control was the first sample to reach 10 meq hydroperoxides/kg of emulsion 

which occurred rapidly in two days. The emulsion with BSA exhibited a similar deterioration 

rate to the control, revealing that BSA, in this concentration of 0.1%, does not provide any 

antioxidant effect in the emulsions. Positive control samples (Trolox) showed good 

antioxidant effect over 11 days and begin to oxidize rapidly after 15 days, reaching 88 meq 

hydroperoxides/kg emulsion on the final days of the experiment. 
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Figure 1. Change of peroxide value over time stored at 37 °C (each value is expressed as 

mean (n = 3)). 

 

Adding 0.2% Gentiana Lutea   to the emulsion, with or without adding BSA, did not 

result in any relevant effect towards oxidation in the first stage (PV <10 meq 

hydroperoxides/kgin time <3 days). There is a significant difference between 0.2% 

antioxidant sample with BSA and in its absence (p < 0.05). The sample with 0.5% Gentiana 

Lutea   showed antioxidant activity towards lipid degradation first at 15 days and gradually 

oxidized after 15 days (p < 0.05). Finally, the sample with Gentiana Lutea   0.5% and BSA 

0.1% displayed the lowest PV, with significant differences with the other samples throughout 

storage time (p < 0.05); it took almost 10 days to reach above 10 meq hydroperoxides/kg of 

emulsion. 

Almajano et al. (2004) reported that some antioxidant compounds such as EGCG and 

caffeic acid mixed with BSA cause a marked increase of the antioxidant activity in an 

emulsion
34

. Since BSA is known to be surface active, the increase of antioxidant activity in 

emulsions containing a mixture of antioxidant and BSA could be due to BSA binding with 

the antioxidant and transporting it to the oil water interface, where it is highly effective in 

reducing the rate of oxidation
35

. The authors also stated that the antioxidant molecule had 

bound to the BSA protein, proved by TEAC assay, and showed a progressive increase in the 
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radical scavenging ABTS
•+

 with the storage time over several days
34

. The mixture of 0.1% 

BSA and 0.5% Gentiana Lutea  in emulsion exhibit the lowest oxidation rate compared to all 

samples shown in this experiment. These results showed for the first time the important effect 

of Gentiana Lutea extract on lipid oxidation with synergic effect to BSA tested in an o/w 

emulsion. This concentration of 0.5%, demonstrated the best antioxidant effect throughout 

the storage period. 

 

b. Evolution of pH over Time 

 

Figure 2. Change of pH over time, stored at 37 °C (each value is expressed as mean (n = 3)). 

 

Since decomposition of hydroperoxide measured in PV assay is acidic, the pH change 

in the sample is considered inversely proportional to the PV. Thus, the pH measured is a 

parameter of which its correlation with PV can be investigated. Antioxidant activity in food 

models is less effective under low pH conditions. However, some antioxidant compounds 

such as carnosic acid and carnosol (found in rosemary) have been reported to have high 

antioxidant activity at lower pH, which is at pH 4–5
36

. Figure 2 shows the changes of pH 

value on emulsions over 23 days storage. Overall, the decrease in pH value throughout 

storage was of a similar order with increased primary oxidation measured in the PV assay. 

These results agreed with the studies done by Frankel et al. (1997)
16

. They found that the 

lipid oxidation in emulsion is slower at higher pH, and decreased when oxidation is 
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accelerated. All samples started nearly at neutral pH and 0.5% Gentiana Lutea with 0.1% 

BSA showed the highest value throughout storage. Similar to PV, the pH of the sample with 

0.2% Gentiana Lutea with or without BSA showed higher pH than control but the value was 

not significant throughout storage (p > 0.05). The pH of 0.5% Gentiana Lutea with BSA and 

0.5% Gentiana Lutea alone, showed significant differences compared to all samples during 

storage period (p < 0.05). The behavior of pH of the sample with 0.5% Gentiana Lutea with 

BSA was stable until 19 days before it started to decrease. 

Skowyra et al. (2013) demonstrated that the pH and PV have the best correlation with 

R
2
 = 0.9648

37
. Our results are in agreement with them and it can be described that the 

antioxidant activity in o/w emulsion which is stable at pH 6 showed an inverse relationship at 

a lower PV value. Some authors also reported a similar agreement of pH change which was 

inversely proportional to the lipid oxidation
26,38,39

. Meanwhile, Mancuso et al. (1999) 

suggested the initial oxidation of emulsion depended on pH, by varying the effect of 

emulsifier
40, 41

. The authors observed a higher oxidation rate occurring at pH 7 rather than pH 

3 o/w emulsion. Results may be due to the iron solubility increasing at low pH and allowing 

iron to be partitioned into the continuous phase, whereas insoluble iron at high pH may 

precipitate onto the emulsion droplet surface resulting in an increase in the lipid oxidation. 

c. Evolution of Thiobarbituric Acid Reactive Substances (TBARS) 

One of the compounds produced from secondary oxidation in lipids is MDA 

(malondialdehyde) which can be measured by the TBARS method. The secondary lipid 

oxidation is responsible for the alteration of flavor, rancid odor and the undesirable taste in 

foods
42

.  

Secondary oxidation products were monitored by TBARS assay and are shown in 

Figure 3. Similar to PV, the control had the most rapid increase in TBARS followed by the 

BSA sample. TBARS values for samples treated with 0.5% gentian powder, with and without 

BSA, experienced below 1.2 mg MDA /kg sample over the first 21 days and showed 

prominently lower than positive control up to 4 weeks (p < 0.05). The sample with 0.2% of 

Gentiana Lutea alone does not display significant delay in lipid oxidation (p > 0.05), 

meanwhile 0.2% Gentiana Lutea  with BSA and positive control showed significant different 

during 20 days (p < 0.05). From the TBARS results exhibited, the synergic effect between 

both the concentration of Gentiana Lutea and BSA in the emulsion during the storage time is 
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demonstrated and the samples with both (gentian and BSA) show the lowest oxidation rate 

compared to all samples. 

 

 

Figure 3. Change of Thiobarbituric Acid Reactive Substances (TBARS) over time, stored at 

37 °C (each value is expressed as mean (n = 3)). 

 

After 23 days, all samples are oxidized with above 1.2 mg malondialdehyde/kg 

sample even though Gentiana Lutea with the BSA mixture showed minimum rise and had the 

best antioxidant effect in the emulsion. This behavior is not new. It has been previously 

reported that artificial antioxidants such as Trolox, epigallocatechingallate (EGCG), caffeic 

acid are more stable in emulsions during storage in the presence of BSA than in its absence
34

. 

Gentiana Lutea has compounds which of family of iridoids, scoiridoids and 

xanthones
3
. It could be developed as antioxidant agent and radical scavengers and may 

contribute to the decrease of lipid oxidation
43

. The water soluble antioxidant molecular 

structures differ in the number of phenolic hydroxyl groups, their location and the carboxylic 

acid group
34

. Thus, the range of structure presented may allow any possible interaction with 

the BSA to be detected. 
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Many findings determined such amount of natural plants work as antioxidant 

efficiently; depended on variation of system tested and plant preparation. However, the more 

important is to identify the minimum concentration required to reduce lipid oxidation 

significantly throughout storage time. Adding minimum amount of natural plant not only can 

delay lipid oxidation, but also to avoid some changes on sensorial quality and flavored. 

Analysis on our data showed for Gentiana Lutea required as minimum 0.5% (w/w) would be 

beneficial for reducing the velocity of lipid oxidation significantly in both primary and 

secondary oxidation in emulsion system (p < 0.05). Adding also 0.1% (w/w) of BSA gave 

better effect of the antioxidant activity towards emulsion, compare to sample with Gentiana 

Lutea alone. The study confirmed the potential of edible Gentiana Lutea to prevent oxidation 

of emulsion. 

 

HPLC Analysis of Gentiana Lutea   and the Total Antioxidant Activity Based on 

Post-Column On-Line Coupling ABTS
•+

 

The HPLC analysis is targeted to identifysecoiridoid-glycoside, the bitter constituent 

occurred in the extract shown in (a) and (b). Results in Table 2 present secoiridoid glycoside; 

gentiopicroside, swerosideand amarogentin were the important compounds in the Gentiana 

Lutea. The highest content of secoiridoidin Gentiana Lutea extract in methanol-50% 

weregentiopicroside (1805 ± 62 mg/L extract) and the amount of sweroside found was 72 ± 4 

mg/L extract. It was not possible to identifyamarogentin in the extract, meanwhile only low 

traces of amarogentinwere found in various commercial Gentiana Lutea (less than 0.09%)
3
. 

Carnat et al. (2005) also reported that amarogentin can only be found in some  

fresh root of Gentiana Lutea
28

. There are comprehensive studies measuring the active 

compound in Gentiana Lutea using bioassay-guided fractionation such as HPLC
3
, Capilary 

Electrophoris
44

 and Thin Layer Chromatography
45

. From the literature study, there is 

constituent of secoiridoid that has not been identified in this study (swertiamarin) are believed 

to be existed in the extract
2
. This is most likely due to the objective of the method was not 

optimize the quantification of the traces but to measure the antioxidant activity of each 

compound in the Gentiana Lutea  extract. 
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Table 2. Amount of secoiridoid-glycoside quantified by HPLC. 

Sample Concentration (mg / L) 

a) Gentiopocroside 1805 ± 62 

b) Sweroside 72 ± 4 

c) Amarogentin n.d 

n.d = not detected. 

 

Aberham et al. (2007) analyzed the active compound of 12 commercial samples of 

Gentiana Lutea root
3
. They found that swertiamarin was shown to have consistent occurrence 

between 0.21% and 0.45% and gentiopicroside was the most dominant compound in the 

sample up to 9.53%. Meanwhile, Ando et al. (2007) reported that gentiopicroside was not 

detected from the fresh roots of 3-year-old Gentiana Lutea
46

. In contrast, Hayashi et al. 

(1990) described that one year root contains high amounts of gentiopicroside and 

amarogentin and decreases over 5 years
47

. The Gentianaceae family is well known for its 

intensive bitter root used as a tonic for the digestive system with many pharmacological 

benefits. There are other plants such as Swertiachirayita
48

 and Lonicera japonica
49

 that also 

possess similar compounds of secoiridoid-glycosides (swertiamarin and sweroside). 

Investigation of the main individual compounds in Gentiana Lutea root was 

previously developed and optimized by Aberham et al. (20011,2007)
2,3

. Furthermore, a 

substantial number of studies have demonstrated the effect of the secoiridoid group on the 

scavenging function to generate free radicals
7,13,48

. Wei et al. (2012) reported that five 

secoiridoids, including gentiopicroside, sweroside, swertiamarin and sweroside, did not show 

any scavenging ability towards free radicals by in vitro DPPH assay. However, taking into 

account their report, it was desirable to explore more individual extracted compounds by 

isolating the compounds followed by a biochemical assay, such as ABTS radical, to measure 

their activity. Online post-column methods are very dependable because they combine 

systems for investigating different features of the sample simultaneously. Our initial 

observation of using in vitro ABTS assay showed that gentiopicroside and sweroside 

displayed no scavenging activity towards ABTS radicals (data not shown) while the activity 

of these compounds is similar towards DPPH radicals. However, our finding showed an 

activity of amarogentin analyzed by ABTS in-vitro assay (644.5 ± 17.5 mg eq TE/L sample). 
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However, the amarogentin was not identified in the extract, as discussed above. This is in 

contrast with Phoboo et al. (2013) who observed no scavenging activity of amarogentin 

towards DPPH radical
48

. 

The HPLC separated analytes reacted with ABTS radical post column (see Figure 4) 

and the reduction was detected as a negative peak at 734 nm. In Figure 5, the 

chromatographic analysis showed gentiopicroside (a) and sweroside (b) detected in Gentiana 

Lutea extract and unknown compounds, (c) and (d), detected as negative peaks using the 

ABTS radical assay, which indicated that these components had free radical scavenging 

activity. The result of antioxidant response peaks (negative peak) of the Gentiana Lutea   

compounds, expressed as mg galic acid equivalent (GAE)/L extract, indicates their relative 

contribution to the antioxidant activity of the extract with concentration taken into account. 

Analysis of Gentiana Lutea extract of total antioxidant activity had been reported several 

times mainly measured by DPPH in vitro assay
10, 14

. Even though we were unable to identify 

the compound relevant to the scavenging activity in the post-column ABTS assay, the results 

showed that the antiradical capacity of Gentiana Lutea is not related to gentiopicroside and 

sweroside. There are many other compounds that maybe related to the scavenging activity in 

the extract such as xanthone-glycosides. 

 

 

Figure 4. Scheme of HPLC-ABTS for screening of antioxidant compounds in Gentiana 

Lutea   root extract. 
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Figure 5. Chromatogram of Gentiana Lutea   root extract obtained direct and from the post-

column HPLC-ABTS
•+ 

radical scavenging method. (a) Gentiopicroside; (b) Sweroside; (c) 

antiradical activity by unknown compound; 31.33 ± 1.16 mg GAE/L and (d) antiradical 

activity by unknown compound; 8.30 ± 0.12 mg GAE/L. 

 

Nevertheless, our finding showed that the 0.5% Gentiana Lutea extracts is able to 

delay the process of oxidation and give better storage stability as emulsion. However, this 

activity is not due to the bitter compounds (gentiopicroside amarogentin and sweroside) 

presented in our extract. Studies (from the revised literature) proved that xanthone 

compounds such as gentioside, gentisin and isogentisin found in Gentiana Lutea have 

antiradical activity even though their constituents possess remarkable activity in 

pharmacological study. 

 

 

3.3.4 Conclusions 

Gentiana Lutea has valuable pharmacological properties due to the bitter properties of 

its secoiridoid-glycosides; their extraction using methanol-water mixture was better than 

water alone. Gentiana Lutea extract showed excellent antioxidant activity in aqueous 

methanol measured by DPPH scavenging activity assay and Trolox equivalent capacity assay 

(TEAC) methods (15.89 and 48.90 μmol of TE/g DW, respectively). Gentiana Lutea   

lyophilize can be applied as antioxidants in oil-in-water emulsions. 0.2% (w/w) of lyophilize. 

Gentiana Lutea   does not inhibit lipid oxidation significantly. An amount of 0.5% (w/w) 

Gentiana Lutea lyophilises exhibited antioxidant activity towards primary and secondary 

oxidation in an o/w emulsion. Adding 0.1% (w/w) BSA with Gentiana Lutea in an emulsion 

showed a synergic effect and better activity in delaying lipid oxidation. Gentiopicroside and 
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sweroside found in HPLC analysis do not show any antiradical capacity in Gentiana Lutea   

aqueous methanol extract. However, total antiradical capacities shown in post-column 

measurements presented activities of 31.33 ± 1.16 mg GAE/L and 8.30 ± 0.12 mg GAE/L 

towards the ABTS free radical. This study confirmed that Gentiana Lutea   roots as a source 

of edible natural antioxidants have potential to be used by the food industry. 
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3.4. The Effect of Convolvulus arvensis Dried Extract as a Potential Antioxidant 

in Food Models 

 

Abstract 

In this study, the antioxidant activity of the Convolvulus arvensis Linn (CA) ethanol 

extract has been evaluated by different ways. The antioxidant activity of the extract assessed 

by 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical cation, the oxygen 

radical absorbance capacity (ORAC) and the ferric reducing antioxidant power (FRAP) was 

1.62 mmol Trolox equivalents (TE)/g DW, 1.71 mmol TE/g DW and 2.11 mmol TE/g DW, 

respectively. CA ethanol extract exhibited scavenging activity against the methoxy radical 

initiated by the Fenton reaction and measured by Electron Paramagnetic Resonance (EPR). 

The antioxidant effects of lyophilised CA measured in beef patties containing 0.1% and 0.3% 

(w/w) CA stored in modified atmosphere packaging (MAP) (80% O2 and 20% CO2) was 

determined. A preliminary study of gelatine based film containing CA showed a strong 

antioxidant effect in preventing the degradation of lipid in muscle food. Thus, the present 

results indicate that CA extract can be used as a natural food antioxidant. 

 

Keywords:  

Convolvulus arvensis; lipid oxidation; active packaging film; antioxidant activity 
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3.4.1  Introduction 

Free radicals produced in the human body result from natural biochemical reactions 

and, together with external attacks due to stress, smoke and unbalanced diets, among other 

factors, could cause an imbalance between oxidants and antioxidants. For this reason, it is 

necessary to supplement the diet with antioxidant based food. This excess of radicals is 

associated with aging and many diseases such as heart problems, diabetes, neurodegenerative 

disorder and cancers. Previous studies indicate that the consumption of plant foods rich in 

antioxidants is beneficial for health and helps to prevent degenerative processes which 

contribute to many diseases
1-3

. Due to the increasing awareness of the benefits of consuming 

healthy food, many food companies are using antioxidants as an alternative approach, instead 

of using synthetic preservatives which at high doses may have toxic effects on the consumer. 

Natural antioxidants are compounds, generally from plants, that are used as food 

additives with the aim of inhibiting oxidation of the product
4
. Thus, the use of natural 

antioxidants as preservatives to maintain quality and nutritional traits is increasingly 

widespread, mainly in food that contains high levels of lipids, such as meat products. 

Therefore, the incorporation of natural antioxidants such as herbs could be an economical 

strategy to develop healthier meat products. Moreover, they can improve technological 

properties, as well as increase the eco-efficiency
5
 in the food industry. Besides formulation of 

food with a natural antioxidant strategy, active packaging is also gaining interest for its 

potential to provide food quality and safety benefits. The combination of natural preservatives 

and biodegradable plastic into one food packaging formulation is a promising approach to 

extending product shelf life
6
. 

Plants rich in polyphenol constituents possess antioxidant activity by free radical 

scavenging. For instance, green tea can inhibit lipid peroxidation and chelate transition 

metals, consequently helping to prevent degenerative diseases. If incorporated into an edible 

film, it could help to maintain the quality of food products
7
. 

Convolvulus arvensis Linn (CA) is an annual (or sometimes perennial climber), 

commonly found as a weed throughout Europe and Asia. This plant is being used for many 

purposes. The root and the resin are cholagogue, diuretic, laxative and purgative
8
. The flower 

is laxative, used as a tea infusion and also in treatment of wounds and fever, whereas the leaf 

can be helpful during the menstrual period
9
. Meanwhile, Meng et al. (2002) showed that the 

ubiquitous CA extract could be considered as a promising anti-cancer agent, with over 50% 
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inhibition of tumor growth activity at non-toxic doses
10

. CA also provided an 

immunostimulant effect when tested on rabbits and turned out to have cytotoxic effects on 

human cancerous cells
11,12

. In a preliminary study, Thrakal et al. (2010) reported the 

antioxidant activity of CA extract using the DPPH method, nitric oxide scavenging activity 

and the reducing power assay
13

. Furthermore, the CA extract showed abundant traces of 

phenolic compounds including p-hydrobenzoic acid, syringic acid, vanillin, benzoic acid and 

ferulic acid
14

. This high content of phenolic compounds may allow it to serve as an 

antioxidant source for the food industry. However, the antioxidant activity of the CA extract 

towards lipid oxidation has not been fully determined yet. Thus, our goals were (1) to 

evaluate the antioxidant activity of CA using in vitro assays including FRAP, TEAC, ORAC 

and EPR scavenging activity and (2) to demonstrate the ability of CA extract to inhibit lipid 

deterioration in beef meat, by adding the dry extract directly in the patty composition or in the 

formulation with active packaging. One of the components in CA is an alkaloid, which is a 

compound that exhibits anti-cancer activity but may display toxic effects in the host at high 

doses. Therefore, the extraction of CA has been carried out according to the method 

described by Meng et al. (2002) to reduce the presence of alkaloid in the extract before 

adding the lyophilized extract directly into the beef
10

. 

 

 

3.4.2  Materials and Methods  

Materials 

Commercial dried CA was kindly supplied by Pàmies Hortícoles (Balaguer, Spain), a 

registered herbal company. All reagents and solvents used were of analytical grade and 

obtained from Panreac (Barcelona, Spain) and Sigma Aldrich (Gillingham, England). 

 

Extraction of CA Extract 

Dried roots of CA were finely ground using a standard kitchen food processor. 

Ground CA was extracted in three different ways: (1) with 50:50 (v/v) ethanol:water; (2) with 

75:25 (v/v) ethanol:water and (3) with 90:10 (v/v) ethanol:water, always in the ratio 1:30 

(w/v). The extractions were performed at 4 °C ± 1 °C for 24 h, in the dark with constant 
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stirring. The extract solutions of CA were recovered by filtration using Whatman Filter paper, 

0.45 μm (Whatman, GE healthcare, Wauwatosa, WI, USA). Part of the supernatant was taken 

for subsequent use to determine the antiradical capacity. The volume of the remaining 

supernatant was measured and the excess of ethanol was removed under vacuum using a 

rotary evaporator (Buchi Re111, Switzerland) and kept frozen at −80 °C for 24 h. All extracts 

were dried in a freeze dryer (Unicryo MC2L −60 °C, Germany) under vacuum at −60 °C for 

three days to remove moisture. Finally, lyophilised CA was weighed to determine the soluble 

solids concentration (g/L) as described by Zhang et al. (2007)
15

.  

 

Determination of the Total Phenolic Content (TPC) 

The Folin-Ciocalteu method was used to determine the total phenolic content (TPC) 

as reported by Santas et al. (2008)
16

. 

 

Determination of Free Radical Scavenging Activity Assays 

a.  In-Vitro Antioxidant Capacity Determination 

Three different methods were used for the evaluation of the antioxidant activity of the 

extracts: 2,2′-azino-bis-(3-ethylbenzthiazoline)-6-sulphonic acid TEAC assay
17

, Oxygen 

Radical Absorbance Capacity (ORAC) assay
18

 and Ferric Reducing Antioxidant Power 

(FRAP) method
19

. Results were expressed as μM of Trolox equivalent (TE) per gram of dry 

weight of plant (DW). 

 

Electron Paramagnetic Resonance (EPR) Spectroscopy Radical Scavenging 

Assay 

EPR radical scavenging activity was measured following the method described by  

Azman et al. (2014)
20

. The extraction was executed in MeOH in 1:10 (w/v) ratio and the 

soluble concentration of CA was determined according to the procedure above. The spin-

trapping reaction mixture consisted of 100 μL of DMPO (35 mM); 50 μL of H2O2 (10 mM); 

50 μL CA extract at different concentrations or 50 μL of ferulic acid used as reference (0–20 

g/L) or 50 μL of pure MeOH used as a control; and, finally, 50 μL of FeSO4 (2 mM), added 



 
 

119 

 

in this order. The final solutions (125 μL) were passed through a narrow (inside diameter = 2 

mm) quartz tube and introduced into the cavity of the EPR spectrometer. The spectrum was 

recorded 10 min after the addition of the FeSO4 solution, when the radical adduct signal is 

greatest. 

 X-band EPR spectra were recorded with a Bruker EMX-Plus 10/12 spectrometer 

under the following conditions: microwave frequency, 9.8762 GHz; microwave power, 30.27 

mW; center field, 3522.7 G; sweep width, 100 G; receiver gain, 5.02 × 10
4
; modulation 

frequency, 100 kHz; modulation amplitude, 1.86 G; time constant, 40.96 ms; conversion 

time, 203.0 ms. 

 

Determination of Antioxidant Activity in Food Model 

a.  Preparation of Beef Patties 

The meat consisted of flank of beef provided by “Embutidos La Masia”, Barcelona. It 

was collected seven days after slaughter to allow it to mature and was kept at approximately 

−20 °C for further treatment. The extraction of CA was carried out according to the method 

used by Meng et al. (2002) to remove alkaloid compounds
10

. Fat and joint tissues were 

trimmed off lean meat (2000 g) and the meat was minced through 8 mm industrial plates. 

Then, the minced meat was divided into four batches and mixed with 1.5% of NaCl and 

either (i) control (no addition), (ii) 0.1% BHT, (iii) 0.1% lyophilised CA, (iv) 0.3% 

lyophilised CA. All batches were mixed vigorously for 2 min to attain an even distribution of 

additives throughout the meat. Each sample was moulded into smaller portions (about 20 g 

each), stuffed and packed with polystyrene B5-37 (Aerpack) trays and placed in BB4L bags 

(Cryovac) of low gas permeability (8–12 cm
3
·m

−2
 per 24 h). The air in the packaged trays 

was flushed with 80:20 (v/v) O2:CO2 by EAP20 mixture (Carburos Metalicos, Barcelona). 

Samples were stored in the dark at 4 °C ± 2 °C for 10 days and the samples were analysed for 

oxidation by thiobarbituric acid reactive substances (TBARS) method, % metmyoglobin, 

colour, pH and microbial quality. Every measurement was carried out in triplicate each day 

for 10 days (except for microbiological analysis which was done every three days). 
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b.  TBARS Assay 

The TBARS method was used to measure the extent of lipid oxidation over the 

storage period as described by Grau et al. (2000)
21

. Samples (1 g) were weighed in a tube and 

mixed with 3 g/L aqueous EDTA. Then, the sample was immediately mixed with 5 mL of 

thiobarbituric acid reagent using an Ultra-Turrax (IKA, Germany); at 32,000 rpm speed, for 2 

min. All procedures were carried out in the dark and all samples were kept in ice. The 

mixture was incubated at 97 ± 1 °C in hot water for 10 min and shaken for 1 min during the 

process to form a homogeneous mixture. The liquid sample was recovered by filtration 

(Whatman Filter paper, 0.45 μm), and then it was cooled for 10 min. The absorbance value of 

each sample was measured at 531 nm using a spectrophotometer. The TBARS value was 

calculated from a malonaldehyde (MDA) standard curve prepared with 1,1,3,3 

tetraethoxypropane and analysed by linear regression. All results were reported in mg 

malonaldehyde per kg of sample (mg MDA/kg sample). 

c. Colour Measurement 

Objective measurements of colour were performed using a CR 400 colorimeter 

(Minolta, Osaka, Japan). Each patty was cut and the colour of the slices was measured three 

times at each point. A portable colorimeter with the settings: pulsed xenon arc lamp, 0° 

viewing angle geometry and aperture size 8 mm, was used to measure meat colour in the 

CIELAB space (Lightness, L*; redness, a*; yellowness, b* (CIE, 1978). Before each series of 

measurements, the instrument was calibrated using a white ceramic tile. 

d.  Percentage of Metmyoglobin 

The metmyoglobin method was based on that developed by Xu et al. (2010)
22

. Five 

grams of beef patties were homogenized with 25 mL of ice-cold 0.04 M phosphate buffer (pH 

6.8) for 15 s using a homogenizer (Ultra-Turrax, IKA, Germany), which was set at speed 

setting 2 (18,000 rpm). The homogenised patty was allowed to stand at 4 °C for 1 h and 

centrifuged at 4500 g for 20 min at 4 °C using a high-speed freezing centrifuge (GI-20G, 

Anke, Shanghai, China). The absorbance of the filtered supernatant was read at 572, 565, 

545, and 525 nm with a spectrometer (Fluostar Omega, BMG Labtech, Germany). The 

percentage of metmyoglobin was determined using the formula: MetMb (%) = [−2.514 

(A572/A525) + 0.777 (A565/A525) + 0.8 (A545/A525) + 1.098] × 100 
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Development of Gelatin-Film with Antioxidant Coating 

The fabrication of gelatin based film with antioxidant coating was adapted and 

characterized from Bodini et al. (2013)
23

. While the filmogenic solution was cooled after the 

solubilization of sorbitol, 0.75% (w/w) of CA extract / gelatin and 0.1% (w/w) BHT/gelatin 

were added. 

 

Statistical Analysis 

A one-way analysis of variance (ANOVA) was performed using Minitab 16 software 

program (Minitab Pty Ltd., Sydney, Australia) (α = 0.05). The results were presented as mean 

values (n ≥ 3). 

 

 

3.4.3  Results and Discussion 

Analysis of Total Polyphenols and Free Radical Activity Assays 

On average, a higher weight of soluble solids was extracted from CA with 50% 

ethanol than with 75% and 90% of ethanol. The use of ethanol as extraction solvent is due to 

the fact that the solvent is recognized as a GRAS (Generally Recognized as Safe) component 

which can be safely used for applications in the food industry
24

. Ethanol also turned out to be 

effective in the extraction of flavonoids and their glycosides, catechols and tannins from raw 

plant materials. Generally, CA extracted with 50% ethanol showed higher phenolic content 

and antioxidant activity values in ORAC, FRAP and TEAC. Our results showed (Table 1) 

that the total phenolic content correlated with the antioxidant activity determined by the 

assays. Nevertheless, the values obtained in the ORAC assay were higher than the ones in the 

FRAP and TEAC assays, which also showed the extract scavenging activity against peroxy 

radicals (OOH
•
) generated in the assay. 
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Table 1: Soluble solids concentration, total phenolic content (TPC) and antioxidant 

activity of Convolvulus arvensis Linn (CA) extract. 

Activity Convolvulus arvensis 

Extraction Solvent 

50:50 

EtOH:H2O 

75:25 

EtOH:H2O 

90:10 

EtOH:H2O 

Soluble concentration (g/L) 13.76 ± 0.05 13.61 ± 0.02 11.43 ± 0.05 

Total phenolic content (g 

GAE/g DW) 
13.0 ± 0.05 12.1 ± 0.03 9.9 ± 0.02 

FRAP (mmol of TE/g DW) 1.62 ± 0.02 1.51 ± 0.06 0.98 ± 0.01 

TEAC (mmol of TE/g DW) 1.71 ± 0.01 1.68 ± 0.01 1.41 ± 0.04 

ORAC (mmol of TE/g DW) 2.11 ± 0.05 2.05 ± 0.05 1.71 ± 0.03 

* Mean value n = 3.The standard deviation for each assay is less than 5%. Gallic Acid 

Equivalent (GAE), Trolox Equivalent (TE), Dry Weight (DW). 

 

Total phenolic content reported for the plant extract with ethyl acetate turned out to be 

higher than our present results with 244 mg GAE/g DW
24

. The presence of compounds with 

antioxidant potential in the ethanol extract (Table 1) was revealed in the measurement of total 

antioxidant capacity in this study. In previous studies, the antioxidant activity of CA has been 

analyzed using the DPPH method, nitric oxide scavenging activity and reducing power assay 

applied to both methanol and ethyl acetate solvent extracts
13,25

. To the best of our knowledge, 

this is the first report of the antioxidant activity of CA extracts assessed using the TEAC, 

ORAC and FRAP methods. 

 

EPR Scavenging Radical Assay 

The EPR radical scavenging method has been developed by Azman et al. (2014) to 

evaluate the concentration of free methoxy radicals (CH3O
•
) generated in the Fenton reaction 

with the CA extract
20

. Figure 1 below  shows the decreasing signal of EPR with the increase 

of CA extract concentration. 
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Figure 1. Antioxidant activity determined by the Electron paramagnetic resonance (EPR) 

spectrum of the radical adduct DMPO-OCH3 generated from a solution of H2O2 (2 mM) and 

FeSO4 (0.04 mM) with DMPO (14 mM) as spin trap in MeOH as solvent. The EPR signal 

decreases with the higher antioxidant activity. 

 

The free radical scavenging activity of CA extracts was investigated against methoxy 

(CH3O
•
) radical by a competitive method in the presence of DMPO as spin trap, using EPR 

spectroscopy. CH3O
•
 was generated according to the Fenton procedure with a relatively short 

half-life that was identified by EPR because of its ability to form a stable nitroxide adduct 

with DMPO, DMPO-OCH3 (hyperfine splitting constants, aN = 13.9 G and aH = 8.3 G). This 

stable DMPO-OCH3 compound can be detected by the double integration value of the signal 

from EPR. The presence of CA extract at different concentrations may compete with the spin 

trap in the scavenging of methoxy radicals. Thus, the effect reduces the amount of radical 

adducts and, accordingly, reduces the intensity of the EPR signal. The best fitting with 

intensity of EPR signal was shown as an exponential function (Figure 1) that, if concentration 

values are in g/L, corresponds to Equation (1):  

y = 48.856 e
−0.001 x

; R
2
 = 0.953        (1)  

The graph indicates that the exponential value of the signal of the spectrum decreased 

as the amount of CA increased. This study confirmed that the scavenging activity of the 

Convolvulus arvensis extracts containing polyphenol constituents could be measured by the 

decrease of the intensity of the spectral bands of the adduct DMPO-OCH3 in the EPR 

spectrum with the amount of antioxidant. 
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Antioxidant Activity in Model Food 

a.  Colour and % Metmyoglobin 

Meat colour is one of the most important traits that reflect the meat freshness and 

quality for consumers. The colour parameters representing lightness (L*), redness (a*), and 

yellowness (b*) are shown in Table 2. Generally, the value of colour (L*, a* and b*) 

decreased as the storage time increased. Initial mean lightness (CIE L*) was 38.68 ± 0.87, 

and control sample showed the lowest value of L* at the end of 10 days storage. There are 

marginally differences in L* with all samples throughout storage times. The slight change of 

L* value in meat storage was addressed by few authors
26,27

. The decrease of L* value 

indicates that a darkening developed, which may be due to the Maillard reaction or the effect 

of moisture content, which influences lightness values
28,29

. 

A reduction of the a* value was experienced by all samples in 10 days’ storage (p < 

0.05), indicating that a decrease in redness occurred in the meat. The 0.1% BHT displayed the 

highest value of a* during three days’ storage and declined gradually afterwards (p < 0.05). 

This finding was expected due to the role of BHT as a synthetic antioxidant which is used to 

retain colour and delay lipid oxidation in the meat 
30

. The redness of 0.3% CA was 

maintained around a value of 7 during the eight days before the colour faded rapidly in 10 

days’ storage (p > 0.05). At the end of storage, 0.3% CA showed the highest a* value 

followed by 0.1% CA (p < 0.05) and 0.1% BHT and control exhibited a low value with no 

significant difference between both samples (p > 0.05). Many features contributed to the red 

colour in the meat such as the influence of salt and oxygen composition that enhanced the red 

colour of beef patties
31,32

. The samples had an initial yellowness (b*) value of 7.42 ion that 

enhanced the red in both samples (eight days before p > 0.05). In general, no significant 

difference (p > 0.05) was observed in b* values in all samples throughout storage. The 

present findings seem to be consistent with other research which found that yellowness in 

meat patties is not influenced by storage time and packaging conditions
26,33

. 
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Table 2. Effect of CA extract and BHT on instrumental colour value (L*, a*, b*) of beef patties during 10 days of refrigerated storage at 

4 °C. (Mean ± SE). 

Assay Sample 
Days of Storages 

0 2 4 6 8 10 

L* Control 38.68 ± 0.87 
a1

 38.68  ± 1.50 
a,1

 37.89 ± 0.32 
b,3

 37.10 ± 1.23 
b,2

 36.23 ± 0.45 
c,2

 35.61 ± 2.22 
d,1

 

 
0.1% BHT 38.68 ± 0.87 

a1
 39.06  ± 1.08 

b,2
 38.25 ± 0.97 

a,2
 38.43 ± 1.06 

a,1
 37.09 ± 1.19 

c,1
 36.18 ± 0.46 

c,2
 

 
0.1% CA 38.68 ± 0.87 

a1
 38.60  ± 1.05 

a,1
 39.26 ± 1.46 

b,1
 38.63 ± 0.55 

a,1
 37.11 ± 1.02 

c,1
 37.06 ± 1.22 

c,3
 

 
0.3 % CA 38.68 ± 0.87 

a1
 39.94 ± 0.71 

b,2
 39.79 ± 1.23 

b,1
 38.25 ± 1.40 

a,1
 38.91 ± 1.47 

a,3
 38.84 ± 1.13 

a,4
 

a* Control 7.49 ± 0.27 
a1

 7.77 ± 0.29 
a,1

 6.54 ± 0.33 
b,1

 6.27 ± 0.16 
b,2

 4.71 ± 0.02 
c,1

 2.09 ± 0.01 
d,1

 

 
0.1% BHT 7.49 ± 0.27 

a1
 8.18 ± 0.42 

b,2
 9.28 ± 0.28 

c,2
 7.05 ± 0.31 

a,1
 6.36 ± 0.37 

d,2
 2.87 ± 0.01 

e,1
 

 
0.1% CA 7.49 ± 0.27 

a1
 7.61 ± 0.33 

a,1
 5.57 ± 0.26 

b,3
 6.25 ± 0.19 

c,2
 6.60 ± 0.33 

c,2
 3.31 ± 0.02 

d,2
 

 
0.3 % CA 7.49 ± 0.27 

a1
 7.64 ± 0.21 

a,1
 7.20 ± 0.47 

a,4
 7.50 ± 0.20 

a,1
 7.61 ± 0.37 

a,3
 4.08 ± 0.01 

b,3
 

b* Control 7.42 ± 0.32 
a1

 4.86 ± 0.01 
b,1

 7.68 ± 0.36 
a,1

 8.55 ± 0.19 
c,1

 9.95 ± 0.21 
d,1

 6.77 ± 0.02 
e,1

 

 
0.1% BHT 7.42 ± 0.32 

a1
 6.68 ± 0.16 

b,2
 8.40 ± 0.27 

c,1
 8.39 ± 0.37 

c,1
 8.38 ± 0.24 

c,2
 6.10 ± 0.01 

d,1
 

 
0.1% CA 7.42 ± 0.32 

a1
 8.00 ± 0.37 

b,3
 8.19 ± 0.33 

b,1
 5.17 ± 0.13 

c,2
 7.49 ± 0.07 

a,3
 4.35 ± 0.09 

d,2
 

 
0.3 % CA 7.42 ± 0.32 

a1
 7.14 ± 0.49 

a,4
 7.59 ± 0.29 

a,2
 7.01 ± 0.21 

a,3
 7.99 ± 0.27 

a,3
 3.25 ± 0.01 

b,3
 

Control: 1.5% salt (w/w); 0.1% BHT: 1.5% salt with 0.1% BHT (w/w); 0.1% CA: 1.5% salt with 0.1% CA (w/w) 0.3% CA: 1.5% salt 

with 0.3% CA (w/w). 
a–d

: Means within a row with different letters are significantly different (p < 0.05). 
1–4

: For each attribute, means 

within a column with different number are significantly different  (p < 0.05). Mean value n = 6 and the standard deviation for each assay 

is less than 5%. 
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Table 3. Effects of CA extract and BHT on metmyoglobin changes in beef patties during 10 days of refrigerated storage at 4 °C. (Mean ± 

SE). 

Assay Sample 

Day of Storages 

0 2 4 6 8 10 

% Metmyoglobin 

Control 23.38 ± 0.46 
1
 29.19 ± 0.71 

2
 37.56 ± 1.31 

2
 47.84 ± 1.21 

1
 53.9 ± 1.16 

1
 60.03 ± 2.82 

2
 

0.1% BHT 23.38 ± 0.46 
1
 25.69 ± 1.04 

4
 29.98 ± 0.81 

1
 37.5 ± 1.85 

2
 45.7 ± 1.53 

2
 57.6 ± 1.24 

1
 

0.1% CA 23.38 ± 0.46 
1
 27.96 ± 0.33 

1
 33.48 ± 0.79 

3
 44.81 ± 1.29 

3
 48.7 ± 1.67 

3
 57.1 ± 1.18 

1
 

0.3 % CA 23.38 ± 0.46 
1
 28.91 ± 0.81 

1,2
 30.71 ± 0.29 

1
 33.37 ± 0.94 

4
 40.1 ± 1.53 

4
 50.78 ± 1.56 

3
 

Control: 1.5% salt (w/w); 0.1% BHT: 1.5% salt with 0.1% BHT (w/w); 0.1% CA: 1.5% salt with 0.1% CA (w/w) 0.3% CA: 1.5% salt with 0.3% 

CA (w/w). All samples values are significantly different throughout the storage time (p < 0.05) 
1–4

: Means within a column with different 

numbers are significantly different (p < 0.05). Mean value n = 6 and the standard deviation for each assay is less than 5%. 



 
 

127 

 

The effect of CA extracts and BHT on relative MetMb percentage in beef patties are 

presented in Table 3. A significant correlation between MetMb (%) and the instrumental colour 

features was reported previously
22

. The MetMb percentage increased as the storage time 

increased throughout the 10 days’ refrigeration, whereas the control showed the highest MetMb 

compared to all samples. The treated groups of CA extract and BHT had lower (p < 0.05) 

proportions of MetMb compared to the control at the end of storage. The acceleration of colour 

deterioration and lipid oxidation depended on many causes, including storage time, type of 

packaging and test system. Free radicals produced by lipid oxidation in meat are susceptible to 

initiating the reaction of oxidizing oxymyoglobin (red colour) to metmyoglobin (brown colour) 

which results in the discolouration of meat during storage. Previous research has indicated a 

relationship between lipid oxidation and myoglobin oxidation or discolouration in meat 

products
22,24

. A sufficient amount of antioxidant in the sample can delay the formation of 

metmyoglobin. The scavenging ability of samples treated with antioxidant can reduce the 

oxidation of metmyoglobin acting as scavengers of hydroxyl radicals produced from oxidation of 

oxymyoglobin. The 0.3% of CA extract displayed the lowest metmyoglobin percentage 

compared to all samples, and the change of % metmyoglobin was inversely proportional to the 

value of redness (a*). 

 

 

 

 

 

 

 

 

 



 
 

128 

 

b.  TBARS Analysis in Beef Patties 

 

Figure 2. Changes in TBARS values (mg malondialdehyde/kg sample) of control and sample 

containing different concentrations (0.1% and 0.3% w/w) of CA extract in MAP atmosphere 

during 10 days storage at 4 ± 1 °C without light. Each sample was measured in triplicate and the 

average standard deviation for each sample was less than 5%. 

 

In general, the levels of lipid oxidation in beef patties increased over time and the values 

followed the order: 0.3% CA < 0.1% BHT < 0.1% CA < Control (Figure 2). The presence of a 

controlled atmosphere with high oxygen packaging (MAP) resulted in higher TBARS values and 

increased the oxidation rate in muscle food
32,35

. No statistical difference was observed between 

0.1% BHT and 0.1% CA on any of the storage days However, the TBARS values of both 

samples showed significant differences compared to those of the control samples (p < 0.05). 

From seven days onwards, the control reached the highest TBARS values of all samples, with 

values greater than 1.2 mg malonaldehyde/kg sample. The levels of lipid oxidation were the 

lowest in 0.3% CA in beef patties throughout storage and significantly lower than for all other 

samples. The oxidation rate of meat patties was more reduced for a higher concentration of CA 

extract, as shown by comparison of the rates for 0.1% and 0.3% addition. The 0.1% BHT was 
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added for comparison with the natural antioxidant bearing in mind the FDA guidelines for using 

BHT is ≤200 ppm in meat products. The effect of CA extract on lipid oxidation in meat has 

never been reported. The active properties of CA reported by Hegab and Ghareib (2010)
14

 have 

been attributed to various phenolic acids such as ferulic acid, cinnamic acid and p-coumaric acid. 

The antioxidant activity of phenolic compounds is closely related to the hydroxyl group linked to 

the aromatic ring which is capable of donating hydrogen atoms with electrons and neutralizing 

free radicals. This mechanism blocks further degradation by oxidation to form MDA, which can 

be measured by the TBARS method
36

. This study confirmed the potential of CA extract to inhibit 

lipid degradation in beef patties. 

c. TBARS Analysis in Meat under Active Packaging 

The TBARS index (Figure 3) revealed that the coating of beef patties with edible films 

enriched with antioxidants lowered the oxidation rate during 17 days’ storage. By comparison, 

the gelatin film without any added antioxidants did not display any protective effect. Lipid 

oxidation with respect to TBARS values of control, meat patties sample and those wrapped with 

CA and BHT incorporated film showed a significantly different TBARS value (p < 0.05) than 

the control sample. This result suggested that lipid oxidation in meat samples could be 

minimized by the use of a gelatin film containing CA probably due to the antioxidant activity of 

the CA extract. However, BHT and CA coated in gelatin film did not show any significant 

difference between the values for the different periods of storage. 
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Figure 3. Changes in TBARS values (mg malondialdehyde/kg sample) of control and sample 

containing BHT and CA extract in MAP atmosphere during 17 days’ storage at 4 ± 1 °C without 

light. Each sample was measured in triplicate and the average standard deviation for each sample 

was less than 5%. 

 

Duthie et al. (2013) demonstrated the presence of phenolic acids measured using LC-MS 

in chicken patties mixed with vegetable powders including ferulic acid, p-hydrobenzoic acid, p-

coumaric acid, caffeic acid and cinnamic acid
37

. In reviewing the literature, CA contained a great 

amount of phenolic compounds that may be responsible for its strong antioxidant activity in 

many assays. The constituents included p-hydroxybenzoic acid, syringic acid, vanillin, benzoic 

acid, ferulic acid found by Elzaawely and Tawata (2012)
25

. HPLC analysis done by Hegab and 

Ghareib (2010) showed traces of eight phenolic constituents including pyrogallic acid, 

protocatechuic acid, resorcinol, chologenic acid, caffeic acid, salicylic acid, p-coumaric acid and 

cinnamic acid
14

. These compounds lead to many pharmacological benefits to human health. 

Benzoic acid and its derivatives showed antimicrobial potential
38

 while gallic acid and caffeic 

acid showed 50% inhibitory effects on cancer cell proliferation
39

. p-coumaric, ferulic acid and 

cinnamic acid and their derivatives bring many pharmacological benefits to humans including, 

anticancer and antioxidant effects 
40,41

. Moreover, many constituents detected in the CA extract 
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correlated significantly with antioxidant activity measured by ORAC and TEAC assays and have 

played an important role in the detoxification of endogenous compounds in humans
42

. 

 

 

3.4.4  Conclusions 

The CA extract showed an excellent antioxidant activity in 50% aqueous ethanol 

measured by FRAP, TEAC and ORAC assays. This is also the first time that the radical 

scavenging activity has been evaluated in a CA extract against methoxy radical generated in the 

Fenton Reaction assessed by EPR. 

The CA extract also showed a protective effect against lipid degradation in the muscle 

food model. Lyophilised CA (0.1% and 0.3% w/w) can be applied as an antioxidant in meat 

patties. It showed inhibition of lipid oxidation in MAP. 0.3% of CA retained meat redness and 

browning colour measured by the metmyoglobin assay which was much better than the control 

(p < 0.05) during 10 days’ storage. A preliminary study of gelatin based film coated with CA 

showed there was a significant delay in the lipid degradation in beef (p < 0.05). Therefore, this 

study confirmed that CA could be used by the food industry as a source of antioxidants. 
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3.5. Solvent effect on antioxidant activity and total phenolic content of Betula 

Pendula Roth. and Convolvulus Arvensis Linn 

 

Abstract 

The potential of using herbal Betula Pendula Roth. (BP) and Convolvulus Arvensis Linn 

(CA) as a natural antioxidant for food applications were investigated. Each plant extract was 

prepared by using pure ethanol, different concentration of ethanol aqueous solutions, including 

50% and 75%, 50% methanol aqueous and water. Total phenolic content (TPC) was determined 

using Folin–Ciocalteau method and antioxidant activity were analyzed by 2,2-diphenyl-1-

picrylhydrazyl (DPPH) radicals, trolox equivalent antioxidant capacity (TEAC), Oxygen radical 

absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) respectively. 

Ethanol extract of CA exhibited the highest TPC and antioxidant activity; however BP showed 

varies of antioxidant activity value in each assay. The BP and CA exhibit the potential sources of 

natural antioxidant for food commodities 

 

Keywords:  

Solvent effect, Antioxidant activity, Betula Pendula, Convolvulus Arvesis, Total Phenolic 

Content 
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3.4.1  Introduction 

Reactive oxygen species (ROS) is an intermediate product occurs from natural biological 

combustion in the organism respiration process. Excessive of ROS can lead to cumulative 

damage in proteins, lipids and DNA called as an oxidative stress in the body
1
. This imbalance 

mechanism promotes aging processes and various diseases in humans including cancer, 

neurodegenerative diseases, inflammation, and cardiovascular disease. Thus, the consumption of 

antioxidant foods is believed to be important to create balance between antioxidant and oxidation 

process for reducing the production of ROS and resulted to healthier biological system
1,2

. 

Medicinal plants, fruits and selected herbs are among foods that associated to their 

natural antioxidant contents. Hence, several methods have been developed to measure the 

antioxidant activity in plants, including the oxygen radical absorption capacity (ORAC)
3
, ferric 

reducing antioxidant power (FRAP)
4
, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical 

scavenging
5
, and trolox equivalent antioxidant capacity (TEAC)

6
. The use of natural plants 

presents a large source of novel bioactive compounds with different activities. In continuation of 

our screening programme to search for potential plant, Betula Pendula Roth. (BP) and 

Convolvulus Arvensis Linn. are among selected herbal plants to be studied for their potential 

activities. This study was extended to obtain the best alcohol aqueous solvent for retrieval 

antioxidant activity in the plant extract.   

Betula Pendula Roth. (BP) is also known as Betula Alba or Betula Pubescens, a species 

of native birch mostly found throughout northern Europe, Asia, Iceland and Greenland
7
. BP was 

reported to display several biological effects, including anti-viral, anti-parasitic, anti-bacterial, 

anti-inflammatory activities and anti-cancer to inhibit growth of cancer cells
8
. It has been 

demonstrated recently that BP is also inhibit effectively against head and neck squamous 

carcinoma cells
9,10

, leukemia cells and other cells lines
11,12

.  

Convolvulus arvensis Linn (CA) is a perennial climber commonly found as a weed 

throughout in the Nile region, the Libyan desert oasis and Sinai
13

. Reviewing from the previous 

works, it was mentioned in folk medicine that the CA leaves have a purgative activity used in 

asthma, jaundice and anti-hemorrhagic
14,15

. Some phytochemical studies were carried out on CA 
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showed the plant contains alkaloids, phenolic compounds, sterols, resin and sugars. Moreover, 

CA is also believed to have an anticancer effect
15

. 

Through many researches done to identify the active compounds of BP and CA, these 

studies are aimed to evaluate the phenolic content (TPC) and antioxidant activities of BP and 

CA. The study is extended by determining the best solvent extract between concentration of 

100%, 75%, 50% (v/v) of ethanol aqueous, water and 50% (v/v) methanol aqueous on their 

phenol contain and antioxidant activities. Antioxidant activities of the plants were measured by 

improved method of TEAC
6
, FRAP assay

4
, ORAC

3
 and a modified DPPH assay

5
. Furthermore, 

we are also estimated the phenol content of these plants using the classical Folin–Ciocalteu 

reagent
16

. This study proved the potential of BP and CA as a source of edible natural 

antioxidants that can BP used by the food industry as an alternative to synthetic antioxidants. 

 

 

3.4.2 Materials and Methods  

Materials 

Commercial dried BP and CA were kindly supply from Manatial de la Salut, a registered 

herbal company in Barcelona, Spain. All reagents and solvents used were analytical grade and 

obtained from Panreac (Barcelona, Spain) and Sigma Aldrich (England). 

 

Extraction of CA Extract 

Dried BP and CA was cleaned and cut and grounded using standard kitchen food 

processor (Moulinex). Fine grounded plants (2 g) were extracted aqueous solvent (v/v) with 

either i) 100% ethanol, ii) 75% ethanol, iii) 50% ethanol iv) H20 v) 50% methanol, in the ratio 

1:30 (w/v). All extraction were performed at 4±1
O
C, light protected for 24 hours and constantly 

stirred at 1000rpm.  Each extraction was carried out triplicates. Then, the extractions were 

centrifuge to separate the supernatant and the extracts were stored in -80
O
C for further analysis

15
.  
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Determination of the Total Phenolic Content (TPC) 

The Folin-Ciocalteu method was used to determine the total phenolic content as reported 

by Santas et al. (2008) with some modification
16

. Appropriate dilution of antioxidant extracts 

were mixed with 80 µL Folin-Ciocalteu reagent and 2% (w/v) Sodium Carbonate. The mixture 

was finally diluted with miliQ water, shaked and incuBPted in the dark for 1 hour. AbsorBPnce 

765 nm was measured using microplate reader (Fluostar Omega, BMG Labtech, Germany) 

against miliQ water. Gallic acid was used as a standard calibration; the results were expressed as 

mg of Gallic acid equivalents (GAE) per g dried weight sample (mg GAE/g DW)
16

. 

 

Determination of Free Radical Scavenging Activity Assays 

b. FRAP assay 

 The FRAP method used is from Benzie and Strain (1996) with little modifications
4
. The 

FRAP solution was prepared in a proportion of 10:1:1 of acetate buffer (300 mM) (pH 3.6), 

2,4,6-tripyridyl-s-triazine (TPTZ) (10 mM) in HCl (40 mM) and FeCl3 (20 mM), respectively. 

FRAP solution was incubated at 37oC for 30 minutes before mixing with the appropriate dilution 

of samples. The absorbance was measured at 593nm using microplate reader. Results were 

expressed as mg of Trolox equivalents per g dried weight sample (mg TE/g DW). 

a. DPPH assay 

The effect of extracts on the scavenging of DPPH radicals was determined according to 

the method adapted from Madhujith and Shahidi (2006) with slight modifications
5
. DPPH 

reagent (0.1 mM) was dissolved with MeOH and mixed with different concentration of the 

samples. Dilution from the extract was mixed with DPPH–methanol reagent and the absorBPnce 

was measured at 517 nm for 90 min. The results were expressed as mg TE/g DW. 

c. TEAC assay 

The antioxidant capacities of BP and CA were measured by using a modified TEAC 

assay
6
. The TEAC assay was based on the reduction of the 2,2’-azinobis(3-

ethylBPnzothiazoline-6-sulfonic acid)•- radicals cation (ABTS•- )by the antioxidants present in 
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the samples. Appropriate dilutions were prepared for BP and CA. ABTS•- radical cation (7 mM) 

was dissolved BPfore adding potassium sulphate (2.45 mM) and allowing the mixture to stand in 

the dark up to 16 hours. PBS (10 mM) was incuBPted at room temperature for 30 min BPfore 

used. Then, the mixture of the ABTS•- radical cation was adjusted to an absorBPnce of 0.72 ± 

0.2 nm, using microplate reader (Fluostar Omega, BMG Labtech, Germany).  The TEAC values 

for the different concentrations of each compound were interpolated from the Trolox standard 

curve. The results expressed as mg TE/g DW. 

d. ORAC assay 

The ORAC value was determined according to Stockham et al (2011) with some 

amendments
3
. An appropriate concentration of BP and CA extracts were mixed with 13 mM 

phosphate buffer (incubated at 37
o
C for 20 minutes) and 80 mM fluorescein respectively. 60 mM 

APPH radical was added after the initial value of fluorescence was recorded and the fluorescence 

was monitored for 150 minutes using a microplate reader (Fluostar Omega, BMG Labtech, 

Germany). The net area under the fluorescein decay curve (AUC) was determined and ORAC 

values were calculated by comparing the AUC to that of Trolox as a standard. All measured data 

were expressed as mg of TE/g DW.  

 

Statistical Analysis 

Differences between solvent extracts determined by analysis of variance (ANOVA) using 

the least squares difference method of the General Linear Model in SPSS. Differences were 

significant at p <0.05. 

 

 

3.5.4  Results and Discussion 

Several principles have to BP considered before making a decision to choose appropriate 

solvent for plant extraction. Some consideration were according to the purpose of extraction 

(preparation or analysis), the nature of the assayed components, the physicochemical properties 
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of the matrix, the availability of reagents and equipment, the cost and safety concerns
18

. The 

different polarity of solvent employed in the extraction had strong association to the yield and 

antioxidant activity of the natural plant extract
19

.  

 

Table 1: Extraction Yield in Different Solvent Extracts 

a
Yield (%) BA CA 

EtOH 4.79 ± 0.18
b
 1.66 ± 0.01

b
 

75% EtOH.H2O 10.67 ± 0.52
c
 6.79 ± 0.26

c
 

50% EtOH.H2O 8.69 ± 0.32
c
 6.22 ± 0.14

c
 

H2O 7.98 ± 0.11
c
 4.25 ± 0.17

c
 

50% MeOH.H2O 8.45 ± 0.41
c
 5.96 ± 0.29

c
 

a
Extraction yield (%) is calculated according to the method of Zhang and Liu (2007)

17
. Assay 

was carried out triplicates with less 5% of standard deviation error. 
b-c

 different letter indicate 

significant difference (p<0.05) 

 

However, the choice of determining the best solvent extraction properties had a lot to 

consider. The selection must consider each element of assorted structure and composition of the 

matrix and complex behaviour of each matrix-solvent system which particularly hard to 

predicted
20

. Thus, in this work, different solvents were assayed for the extraction of BP and CA 

(water, ethanol, 75% and 50% ethanol aqueous solutions and 50% ethanol aqueous) on the 

extraction yield, total phenols content and antioxidant activities.  Total phenolic content and 

antioxidant capacity assay were carried out three times in each assay; the values were determined 

by means of different assay. In all determinations, the percentage of standard deviation was 

accepted must BP lower than 5%.  

Table 1 shows the results obtained of BP and CA extraction yields correspond to their 

solvent extracts. There are no significantly different on the extraction capacities between 

aqueous solvents used (p<0.05). The highest value of the extract yield obtained in 75% ethanol 
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aqueous of BP with 10.67 ± 0.52. The extraction yield increase in order: ethanol < water < 50% 

methanol < 50% ethanol < 75% ethanol. In addition, the increased or decreased of extraction 

yields were depended on the solvent polarity of extraction
21

. The mixtures of alcohols and water 

have been more efficient in extracting compounds and better yield than the corresponding mono-

component solvent system. 

 

 

Figure 1: Total phenolic content of BP and CA in different solvent extracts; expressed in mg 

Gallic acid equivalent (GAE) per g dried weight sample. Assay was carried out triplicates with 

less 5% of standard deviation error. 

 

The Folin-Cioalteau method had been employed for many years to determine the total 

phenols in natural products. Although there are some interfering substance in the method such 

sugars, aromatic amines, sulphur dioxide and ascorbic acid, this method was most popular to 

determine the total phenol content in the plant sample
22

. Figure 1 shows the total phenolic 

content for BP and CA in different solvent extract. The extracts with the highest total phenols 

content were obtained with 100% ethanol in BP and CA, followed by CA in 75% ethanol and BP 

in 50% ethanol extracts. The lowest value was obtained by water extract. There is almost the 

same phenol content of CA and BP in 50% methanol extracts with the value of 0.81 ± 0.1. The 

TABLE I 

UNITS FOR MAGNETIC PROPERTIES 

Symbol 
Quantity 

Conversion from Gaussian and 

CGS EMU to SI a 

 magnetic flux 1 Mx  108 Wb = 108 V·s 

B magnetic flux density,  

  magnetic induction 

1 G  104 T = 104 Wb/m2 

H magnetic field 

strength 

1 Oe  103/(4) A/m 

m magnetic moment 1 erg/G = 1 emu  

   103 A·m2 = 103 J/T 

M magnetization 1 erg/(G·cm3) = 1 emu/cm3 

   103 A/m 

4M magnetization 1 G  103/(4) A/m 

 specific magnetization 1 erg/(G·g) = 1 emu/g  1 A·m2/kg 

j magnetic dipole  

  moment 

1 erg/G = 1 emu  

   4  1010 Wb·m 

J magnetic polarization 1 erg/(G·cm3) = 1 emu/cm3 

   4  104 T 

,  susceptibility 1  4 

 mass susceptibility 1 cm3/g  4  103 m3/kg 

 permeability 1  4  107 H/m  

  = 4  107 Wb/(A·m) 

r relative permeability   r 

w, W energy density 1 erg/cm3  101 J/m3 

N, D demagnetizing factor 1  1/(4) 

No vertical lines in table. Statements that serve as captions for the entire 

table do not need footnote letters.  
aGaussian units are the same as cgs emu for magnetostatics; Mx = 

maxwell, G = gauss, Oe = oersted; Wb = weber, V = volt, s = second, T = 

tesla, m = meter, A = ampere, J = joule, kg = kilogram, H = henry. 
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significant different was determined by ethanol and water extraction for both plants (p<0.05). 

Many reports claimed the used of binary solvent was the most favourable for extraction of 

phenolic compounds from plants compared to mono-solvent systems, however, the claimed was 

contrasted in this study which showed ethanol extract showed the highest phenol content for BP 

and CA
23,24

.  

Extraction of active compound in natural plants is potent to protect biological system 

against damaging effect of natural oxidation process in organism.  Thus, potential of antioxidant 

activity of the compounds extract can BP evaluate by various antioxidant activity assay in this 

study. In this study, the antioxidant of BP and CA in different solvent extract was evaluate by 4 

assays; DPPH, FRAP, TEAC and ORAC. Each antioxidant assay possesses its own unique 

mechanism to evaluate the antioxidant activity in sample.  

 

 

Figure 2: FRAP assay of BP and CA in different solvent extracts; expressed in mg Trolox (TE) 

per g dried weight sample. Assay was carried out triplicates with less 5% of standard deviation 

error. 

 

FRAP method was used to present rather quick and simple method measuring antioxidant 

presents in the BP and CA. The FRAP assay is based on the ability of phenolics to reduce yellow 
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ferric tripyridyltriazine complex (Fe(III)-TPTZ) to blue ferrous complex (FE(II)-TPTZ) by the 

action of electron-donating antioxidants
4
. The result of blue colour measured 

spectrophotometrically at 593 nm is taken as linearly related to the total reducing capacity of 

electron-donating antioxidants. As shown in Figure 2, ethanol extract showed significant 

different with all solvent used in this study (p<0.05). Absorbance values measured in the extracts 

varied from 0.61 to 2.66 mg TE / g DW. The aqueous solvent did not exhibit any significant 

different with water in FRAP method (p>0.05). CA extract with pure ethanol showed the highest 

antioxidant activity in FRAP assay exhibited the significant different from all solvents used. BP 

extract with water showed the lowest activity however, it was found high antioxidant capacity in 

both ethanol and ethanol aqueous extraction. In most instances, the ethanol aqueous solvent of 

BP and CA extracts contained substantial ferric reducing activities compared to the methanol 

aqueous and water extracts 

  

 

Figure 3: DPPH assay of BP and CA in different solvent extracts; expressed in mg TE per g 

dried weight sample. Assay was carried out triplicates with less 5% of standard deviation error. 

 

BP and CA extracts scavenging ability were measured by DPPH assay. The DPPH• 

radical is one of the few stable organic nitrogen radicals and the test is simple and rapid which 
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probably explains its widespread use in antioxidant screening
22

. In this method, the purple 

chromogen radical DPPH• is reduced by antioxidant/reducing compounds to the corresponding 

pale yellow hydrazine25. The loss of DPPH colour after reaction with test compounds was 

monitored at 517 nm. The discoloration indicates the scavenging potential of the extract, overall, 

all the extract of BP and CA were able to decolorize DPPH. The activity result was similar to 

FRAP assay. BP showed lower value compared to CA in water, and methanol aqueous solvents. 

Nevertheless, CA and BP displayed similar value of antioxidant activity in 50% ethanol extract 

with 0.63 ± 0.02 mg TE / g DW (P<0.05). The DPPH values are measured based on the reducing 

ability of the plant extract towards DPPH radicals. The extracts obtained with ethanol showed 

the highest antioxidant activity of CA. Ethanol and ethanol aqueous shows no significant 

different in BP extract (p<0.05). 

 

 

Figure 4: TEAC assay of BP and CA in different solvents extracts; expressed in mg TE 

per g dried weight sample. Assay was carried out triplicates with less 5% of standard deviation 

error. 
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In TEAC assay, CA extracts displayed higher antioxidant value than BP as similar to 

FRAP and DPPH assays (p<0.05). Nevertheless BP extract in 50% ethanol (1.75± 0.05 mg TE / 

g DW) was the only measurement gives higher antioxidant than CA (1.69 ± 0.13 mg TE / g DW) 

(p<0.05).  The assay indicted the plants potency and potential use as a source of antioxidants 

based on the ability of antioxidants compound to scavenge the long-life radical cation ABTS
+
. 

The radical anion ABTS
•-
 is generated by ABTS

2-
 oxidation by potassium persulfate. The radical 

is stable and formed non color diamagnetic compound when reacts by electron transfer with 

antioxidant
6
. As Figure 4 shows CA ethanol extract and BP extract in 50% ethanol aqueous had 

the highest capacity to scavenge ABTS radicals and consequently CA in ethanol extract shows 

the highest antioxidant activity in FRAP and DPPH as well. 

 

 

Figure 5: ORAC assay of BP and CA in different solvent extracts; expressed in mg TE 

per g dried weight sample. Assay was carried out triplicates with less 5% of standard deviation 

error.  

 

ORAC assay measure the capacity for active compound in plant to scavenge peroxyl 

radicals generated by spontaneous decomposition of AAPH radicals. The measurement value 

was estimated in terms of Trolox equivalents similar to TEAC, DPPH and FRAP.  This assay 
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applied to a wide variety of different phytochemicals from edible plants, purified or as an extract 

or fraction including alkaloids, coumarins, flavonoids, phenylpropanoids, terpenoids, and 

phenolic acids
14,32,33

. Among the plant extracts assayed here, the values were found to BP in the 

range between 3.33 ± 0.13 to 1.69 ± 0.06 mg TE / g DW of CA and 2.86 ± 0.11 to 1.03 ± 0.07 

mg TE / g DW of BP. CA showed highest antioxidant activity in ethanol and BP extract in 50% 

ethanol aqueous. 50% methanol extract in CA showed higher activity compared to aqueous 

ethanol extracts although is not significant (p<0.05). The ability of BP and CA extract to 

scavenge peroxyl radical was showed in ORAC assay and gives the highest value of all 

antioxidant assays.  

 

Table 2 : Correlation between polyphenol content and antioxidant assay of BP and CA 

 

The antioxidant assays (FRAP, DPPH, TEAC and ORAC) and FOLIN values of the 

extracts correlated well, with R2 > 0.7 (Table 2). The FRAP and FOLIN correlation shows the 

lowest value compare with R2 > 0.7488, meanwhile DPPH reported to have the best correlation 

with phenolic compound with R2 > 0.9032. Several studies have compared different methods, to 

evaluate the antioxidant activity of samples, although a general consensus has not yet been 

established. Some authors find similar values between the methods while others report noticeable 

differences between them or a dependency on the type of food sample. Nevertheless the good 

 
a
Assay 

b
R

2
 

FOLIN vs FRAP 0.7488 

FOLIN vs DPPH 0.9032 

FOLIN vs TEAC 0.8392 

FOLIN vs ORAC 0.7086 

a
Correlation between polyphenol content (FOLIN assay) vs antioxidant capacity assay 

 b
Good regression values is accepted from R

2 
≥ 0.7, and the standard deviation for each assay 

is less than ±0.5. 
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correlations between phenol content and antioxidant assays confirm that phenols are mainly 

responsible for the antioxidant activity of extracts. Some study has reported a good correlation 

between the phenol content of plant extracts and antioxidant activity
16

.  Differences in 

antioxidant activity determined by different methods emphasise the importance of using several 

methods to assess the parameters in order to obtain accurate data and to improve comparison 

with other literature. 

The different measurement values among antioxidant assay were attributed to the 

different chemistry principle upon the basis of each method. The DPPH, FRAP and ABTS 

methods are based on a single electron transfer (SET) reaction. In these methods, antioxidants 

are oxidised by oxidants, such as a metal (Fe III) or a radical (DPPH or ABTS
+
). As a result, a 

single electron is transferred from the antioxidant molecule to the oxidant. In contrast, the ORAC 

assay is based on a hydrogen atom transfer (HAT) reaction. The HAT is transferred after a 

peroxyl radical ROO has been generated in which this radical extracts a hydrogen atom from the 

antioxidant compounds. Furthermore, the ORAC assay only measures the activity of chain-

breaking antioxidants against peroxyl radicals
22

. Therefore there was relative difference in the 

measurement of antioxidant assay respectively. The values demonstrated the ability of BP and 

CA extract either to quench peroxyl radicals or to reduce radicals generated in the assay. 

Overall, the influence of the solvent used on extract properties was the same for the total 

phenols content and antioxidant assays. Extraction of CA in ethanol exhibited the highest total 

phenolic content and antioxidant activity assay respectively. Ethanol resulted to BP effective in 

the extraction of flavonoids and their glycosides, catecols and tannins from raw plant materials
26

.  

Unlike methanol or other strong solvent for extraction such as acetone or chloroform, ethanol is 

recognised as a GRAS (Generally Recognised as Safe) which positively can BP used for 

applications in the food industry
21

. However, BP extracts with ethanol and ethanol aqueous 

showed no significant different on the antioxidant activity values in each antioxidant assay and 

total phenolic content. ORAC assay showed good scavenging values of BP extract with 50% 

ethanol.   

Determination of the best solvent extract for BP and CA with measurement of TPC and 

various antioxidant activity assays was one important factor to increase extraction process 

efficacy. To the best of our knowledge, this study was the first time reported the best solvent 
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extract of BP and CA for determination of their phenolic compound and antioxidant activity. BP 

and CA are known in many physiological functions and attracted economic interested to the food 

industry. These plants were valued for its nutritional, health and sensory attributes however, 

require more research on their antioxidant activity. BPtulinic acid is a pentacyclic triterpene, one 

of active compound in BP which displayed range of biological effects, including antiviral, 

antiparasitic, and antibacterial
9,10,27

. It is also useful as anti-inflammatory activities, and in 

particular to inhibit growth of cancer cells
8,28

. Methyl syringate compound isolated from BP was 

antifungal, proved to inhibit for aflatoxin; the most dangerous contaminants occurs in food and 

feed
29

. CA was believed to have antidiarrhoeal activity
14

, cytotoxic effect against a number of 

tumor cells, immunostimulant effect, anti-bacteria and anti-tumor, anti-angiogenic properties
30

. 

GC-MS and HPLC results showed the presence of flavonoids, p-hydoxybenzoic acid, syringic 

acid, vanillin, benzoic acid and ferulic acid were responsible for the antioxidant activity
14

. 

Moreover, the preliminary literature suggested that BP and CA were having their unique 

compounds for the benefit of neutraceutical, pharmaceutical and medicinal used. Thus, this 

research was extended to evaluate the antioxidant capacity of these plants as a primary study for 

alternative source of natural antioxidant for food commodities. 

 

 

3.5.4  Conclusions 

In summary, this study has revealed that a range of values for total antioxidant capacities 

and phenolic contents exist among the Betula Pendula Roth. and Convolvulus Arvensis. Varies of 

measurement related to different solvent concentration in the extraction and which antioxidant 

activity assay had been performed. Overall, CA displayed the highest antioxidant activity in 

ethanol extract and BP shows varies measurement in antioxidant assays and total phenolic 

content respectively. The good correction between antioxidant assays and total phenolic content 

were determined for BP and CA extracts. Thus, this study was performed useful to evaluate the 

antioxidant capacity in various assays that supports the initial study for its potential sources of 

potent natural antioxidant 
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3.6. A Study of the Properties of Bearberry Leaf Extract as Natural Antioxidant in 

Model Foods 

 

Abstract 

 Common Bearberry (Arctostaphylos uva-ursi L. Sprengel) is a ubiquitous procumbent 

evergreen shrub located throughout North America, Asia and Europe. The fruits are almost 

tasteless but the plant contains a high concentra-tion of active ingredients. The antioxidant 

activity of Bearberry leaf extract in the 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid 

(ABTS) radical cation assay was 90.42 mmol Trolox equivalents/g DW. The scavenging ability 

of the methanol extract of Bearberry against methoxy radicals generated in the Fenton reaction 

was measured by Electron Paramagnetic Resonance. Lipid oxidation was retarded in an oil-water 

emulsion by add-ing 1 g/kg lyophilised Bearberry leaf extract. Also, 1 g/kg of lyophiliesd 

Bearberry leaf extract incorporated into a gelatin based film displayed high antioxidant activity 

to retard degradation of lipid in muscle foods. The present results indicated the potential of 

bearberry leaf extract for use as a natural food antioxidant. 

 

Keywords: 

Bearberry leaves, Scavenging activity, Lipid oxidation, Active packaging film, 

Antioxidant activities 
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3.6.1 Introduction 

Lipid oxidation in food causes serious problems that lead to short shelf lives and loss of 

nutritional quality
1
. Synthetic antioxidants such as butylated hydroxyanisole (BHA), butylated 

hydroxytoluene (BHT) and tert-butylhydroquinone (TBHQ) have been used as antioxidants in 

many foods products
2
, but consumers have become concerned about possible toxicological 

effects and often prefer natural antioxidants for foods consumed as part of a  healthy diet. Thus, 

many investigations have focused on identification of novel antioxidants and these have been 

tested in model foods such as emulsions and incorporated into packaging films.  

Natural antioxidants contain a high concentration of phenolic compounds and normally 

occur in fruits, vegetables and herbs
3,4

. Bearberry (Arctostaphylos uva-ursi L. Sprengel) is a 

ubiquitous procumbent evergreen shrub located throughout North America, Asia, and Europe. 

The fruits are almost tasteless despite containing a high concentration of active ingredients in 

many commercial products
5
. The antioxidant potential of bearberry leaves (BL) has been studied 

by numerous chemical assays including reducing power assay, DPPH scavenging activity, a 

liposome model, scavenging hydroxyl radicals (HO) and a linoleic acid model system
6,7

. The 

main constituents of BL are the glycosides arbutin (5–15%), and methylarbutin (up to 4%) and 

small quantities of the free aglycones. Other constituents include ursolic acid, tannic acid, gallic 

acid, p-coumaric acid, syringic acid, galloylarbutin, gallotannins, and flavonoids, notably 

glycosides of quercetin, kaempferol, and myricetin according to Barl et al. (2007)
8
. The traces of 

polyphenols in BL have been made them promising candidates as potential protectors against 

lipid oxidation and biological ageing of tissues.  

Additionally, different phenolic compounds may act as antioxidants with varying 

efficiency in different food a system which depends on their polarity and molecular 

characteristics. Several studies of the antioxidant activity of BL at several concentrations have 

been conducted in a meat model
9,10

 and these have successfully demonstrated the potential of 

bearberry to inhibit the degradation of lipids in pork. However, the effect of BL extract in oil-

water emulsions has not been investigated. There is also limited information on the utilisation of 

the plant extracts incorporated into a film as active packaging. Therefore, this investigation 
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aimed to: (a) investigate the potential antioxidant properties of BL extract using the TEAC assay 

and EPR scavenging activity (b) demonstrate the ability of BL lyophilise to inhibit lipid 

deterioration directly in oil water emulsions (c) study the effectiveness of gelatin based film 

treated with lyophilised BL in retarding lipid oxidation in meat patties. 

 

 

3.6.2 Materials and Methods 

Materials 

Commercial dried BL was kindly supplied by Pàmies Hortícoles (Balaguer, Spain), a 

registered herbal company. All reagents and solvents used were analytical grade and obtained 

from Panreac (Barcelona, Spain) and Sigma Aldrich (Gillingham, England) 

Extraction of Bearberry leaves.   

Dried BL were finely ground using a standard kitchen food processor. Ground BL was 

extracted with 50:50 (v/v) ethanol:water always in the ratio 1:20 (w/v). The extractions were 

performed at 4±1°C for 24 h, in the dark with constant stirring. The solutions of BL extract were 

recovered by filtration using Whatman Filter paper, 0.45 µm. Part of the supernatant was taken 

for subsequent use to determine the antiradical capacity. The volume of the remaining 

supernatant was measured and the excess ethanol was removed under vacuum using a rotary 

evaporator (BUCHI RE111, Switzerland) and kept frozen at -80 °C for 24 hours. All extracts 

were dried in a freeze dryer (Unicryo MC2L -60°C, Germany) under vacuum at -60 °C for 3 

days to remove moisture. Finally, lyophilised BL were weighed to determine the soluble 

concentration (g/l) as described by Zhang et al. (2007)
11

. 

 

Determination of the Total Phenolic Content (TPC) 

The Folin-Ciocalteu method was used to determine the total phenolic content as 

described by Santas et al.(2008)
12

.  
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Determination of antioxidant activity using TEAC Assay 

The antioxidant capacity of BL was measured by a modified TEAC assay as described by 

Skowyra et al. (2013)
13

, which was based on the method of Miller et al. (1996)
14

. 

 

Electron Paramagnetic Resonance (EPR) Spectroscopy Radical Scavenging assay 

EPR radical scavenging activity was measured following the method of Azman et al. 

(2014)
15

. BL were extracted with MeOH in a ratio of 1:10 (w/v) and the soluble concentration of 

BL was determined as described in the procedure above. A spin-trapping reaction mixture 

consisted of 100 μL of DMPO (35 mM); 50 μL of H2O2 (10 mM); 50 μL BL extract solution at 

different concentrations or 50 μL of ferulic acid used as reference (0−20 g/L) or 50 μL of pure 

MeOH used as a control; and, finally, 50 μL of FeSO4 (2 mM), added in this order. The final 

solutions (125 μL) were tranferred to a narrow (inside diameter = 2 mm) quartz tube and 

introduced into the cavity of the EPR spectrometer. The spectrum was recorded 10 min after the 

addition of the FeSO4 solution, when the radical adduct signal was greatest. X-band EPR spectra 

were recorded with a Bruker EMX-Plus 10/12 spectrometer under the following conditions: 

microwave frequency, 9.8762 GHz; microwave power, 30.27 mW; center field, 3522.7 G; sweep 

width, 100 G; receiver gain, 5.02 × 104; modulation frequency, 100 kHz; modulation amplitude, 

1.86 G; time constant, 40.96 ms; conversion time, 203.0 ms. 

 

Determination of Antioxidant Activity in o/w Emulsion 

a. Removal of Tocopherols from Sunflower Oil 

Alumina was placed in an oven at 200 °C for 24 h, and then removed and allowed to cool 

in a desiccator until it reached room temperature. Sunflower oil was passed twice through the 

alumina in a column to remove the tocopherols as described by Yoshida et al.(1993)
16

. Finally, 

the filtered oil was stored at −80 °C until use. 
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b. Preparation of Emulsion 

Oil in water emulsion emulsion was prepared by a method adapted from Azman et 

al.(2014)
17

. The final samples were prepared either (i) control (no addition); (ii) 0.2 g/kg BHA; 

(iii) 1 g/kg lyophilised BL. The emulsion for each sample was prepared in quadruplicate, 

obtaining a total of 12 samples and stored in the dark and allowed to oxidize at 37 °C. The pH of 

the samples was measured four times for each sample (pH meter GLP21, Crison Instruments, 

Barcelona, Spain) as a parameter to investigate its correlation with PV. 

c. Determination of Peroxide Value (PV) 

The primary oxidation products were measured using peroxide value (PV) according to 

the thiocyanate method of the Association of Official Analytical Chemists (AOAC) 8195
18

. 

Ferrous chloride solution was prepared in hydrochloric acid (1 M) with the addition of iron 

chloride (II) (2 mM, final concentration). Ammonium thiocyanate solution was prepared in water 

(2 mM, final concentration). The assay was performed with a drop of emulsion in the range from 

0.007 to 0.01 g, diluted with ethanol. From this solution the required amount of sample, varying 

according to the degree of oxidation, was taken in a cuvette and ethanol was added. Ferrous 

chloride and ammonium thiocyanate solutions were added, each in a proportion of 1.875% (v/v), 

final concentration. The absorbance was measured spectrophotometrically at λ = 500 nm. The 

results are expressed as meq hydroperoxides/kg of emulsion. 

d. Preparation of gelatine based film with antioxidant coating  

The fabrication of gelatin based film with antioxidant coating was adapted and 

characterized by the method of Bodini et al.(2013)
19

. During the cooling of the filmogenic 

solution after the solubilization of sorbitol, 1 g /kg of BL extract / gelatin was added. Fat and 

joint tissues were trimmed off lean meat (2000g) and the meat was minced through 8mm 

industrial plates. Then, the meat was moulded to a thickness of 1.5 cm. For each slice, films (5×5 

cm2) were placed on both sides either with control film (no addition of antioxidant) and BF film 

(1 g/kg lyophilised BF). Control sample were prepared in the same manner except that the slices 
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were not covered with any film. Subsequently, the samples were packed in polypropylene trays 

prior to storage at 4 °C for 12 days. 

  

e. Thiobarbituric acid reacting substances (TBARS) 

TBARS measurement was used to measure the extent of lipid oxidation during the 

storage period as de-scribed by Grau et al. (2000)
20

. Sample (1 g) was weighed in a tube and 

mixed with 3 ml/L aqueous EDTA. Then, the sample was immediately mixed with 5 ml of 

thiobarbituric acid reagent using an Ultra-Turrax (IKA, Germany); at 32000 rpm speed, for 2 

min. All procedures were carried out in the dark and all samples were kept in ice. The mixture 

was incubated at 97±1oC in hot water for 10 minutes and shaken for 1 minute during the process 

to form a homogeneous mixture. The liquid sample was recovered by filtration (Whatman Filter 

paper, 0.45 µm) after the sample was cooled for 10 minutes. The absorbance value for each 

sample was measured at 531 nm using a spectrophotometer. The TBARS value was calculated 

from a MDA standard curve prepared with 1,1,3,3 tetraethoxypropane and analysed by linear 

regression. All results were reported in mg malonaldehyde (MDA)/kg sample. 

 

Statistical Analysis 

Differences between samples at each day of storage were determined by analysis of 

variance (ANOVA) using the least squares difference method of the General Linear Model in 

SPSS. Differences were identified as significant at p <0.05. 

 

 

3.6.4 Results and Discussion 

Extraction yield, total phenolic content (TPC) and antioxidant activity 

The extraction yield, total polyphenols (TPC) and antioxidant activity in extracts of 

Bearberry leaves ob-tained with 50:50 v/v ethanol:water are shown in Table 1. On average, 1.6 ± 
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0.01 g of extract pulp was recovered from 5g of Bearberry extract after 3 days freeze drying 

(p>0.05).  

 

Table 1: Extraction yield, polyphenol content and antioxidant activity of Bearberry leaves 

extracts. 

Activity Bearberry extract 
Extraction solvent           

  50:50 (v/v) EtOH:H2O 

a 
Extraction yield (%) 32.1 ± 0.03% 

b 
Total phenolic content (mg 

GAE g^-1 DW) 
102.11 ± 7.12 

c 
TEAC                                       

(mmol of TE g^-1 DW) 
90.42 ± 1.83  

* Results are expressed as mean ± standard deviation (n = 3). 

 

Pegg et al.(2005) reported that the total phenolic content of BL extract was 312 mg/g DW 

for 95% (v/v) ethanol extraction
6
, much higher that what we reported for 50% (v/v) ethanol 

extract. However, the total phenolic content value obtained from the BL water infusion was very 

low with 160.78 ± 2.84 g/kg sample
21

. The mixtures of alcohol and water have been more 

efficient in extracting phenolic compounds and gave a better yield than water since some 

phenolic constituents do not dissolve in water. Meanwhile, the antioxidant activity of BL 

assessed using the TEAC method was 90.42 mmol of TE/gDW. A recent study reported the 

antioxidant activity of BL in the TEAC assay was 3.19 ± 0.01 molTE/ kg sample following 

extraction by an infusion method which is much lower than our value
21

. The antioxidant activity 

of bearberry leaf achieved in the TEAC assay indicates the potency of the extract to scavenge the 

radical cation ABTS
•+

 generated in the assay. The use of several methods allows a more general 

assessment of the antioxidant properties of the plant. The variations of data were influenced by 

the sample preparation, type of extraction (solvent, temperature, etc.), selection of end-points and 
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method of expression of the results.  Several studies have determined the antioxidant activity of 

BL extract using in-vitro analysis. A few studies reported the bearberry extract scavenging 

ability using the DPPH radical and the ability of the extract to reduce ferric(III) ions to 

ferrous(II) ions using the FRAP method
9,21

. The polyphenol constituents in the extract contribute 

most of the antioxidant activity. The infusion of BL showed an abundance of phenolic acid 

components at trace concentrations including catechin and its derivatives, 

epigallocatechingallate, epigallocatechin and epicatechin. These catechins have a strong 

antioxidant capacity mainly linked to their radical scavenging activity
15

.  

 

EPR scavenging radical assay  

 

 

Figure 1: Variation in the area of the electron paramagnetic resonance (EPR) spectra of the 

radical adduct DMPO-OCH3 generated from a solution of H2O2 [2 mM] and FeSO4 [0.04 mM] 

with DMPO [14 mM] as spin trap in MeOH as solvent. The decreases of the EPR signal with the 

increase of concentration of the BL methanol extracts. The EPR signal decreases with the higher 

antioxidant activity. 
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In the present study, methanolic extracts from BL were examined by EPR spectroscopy 

for their capacity to act as radical scavenger towards the methoxy radical (CH3O
•
) generated by 

the Fenton reaction. This method has been used for the first time to evaluate the scavenging 

ability of plant extracts for the free methoxy radical (CH3O
•
). Figure 1 shows the decrease  in the 

EPR signal with increasing concentration of BL extract. The free radical scav-enging activity of 

the extracts against methoxy (CH3O
•
) radical was investigated by a competitive method in the 

presence of DMPO as spin trap and recorded by the spectrum generated  by EPR spectroscopy. 

The CH3O
•
 radical generated by to the Fenton procedure has a relatively short half-life that 

means it must be identified by EPR as the stable nitroxide adduct with DMPO, DMPO-OCH3 

(hyperfine splitting constants, aN = 13.9 G and aH = 8.3 G). This stable DMPO-OCH3 

compound can be quantified by the double integration value of the signal from EPR. The extract 

containing antioxidant at different concentrations may compete with the spin trap DMPO in the 

scavenging of methoxy radicals. Thus, the effect decreases the amount of radical adducts and, 

accordingly, decreases the intensity of the EPR signal. The best fit with intensity of EPR signal 

was shown as a linear function (Figure 1) that, if concentration values, x, are in g/L, corresponds 

to equation (1):  

The graph indicates the exponential value of the signal of the spectrum decreased as the 

amount of bearberry extract increased. Azman et al. (2014) demonstrated the scavenging ability 

of catechins with methoxy radical using this assay
15

. These catechins was also found in the 

bearberry extract by Valjkovic et al. (2013) and and these compounds contribute to the ability to 

scavenge methoxy radical in this assay
21

. Furthermore, BL scavenging ability has been 

previously reported by Amarowicz et al. (2004) by free hydroxyl free radical (HO
•
) measured in 

EPR
9
.  

 

Antioxidant Effect in Stored o/w Emulsion 

Methods have been developed to understand the effect of natural antioxidants in model 

foods such as emulsions and active film packaging. Adding natural antioxidants to food not only 

delays the oxidation process but also enhances the nutritional quality of the food through direct 

ingestion. In previous work, the effect of Bearberry leaf extract in oil-water emulsion has not 
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been described. A model emulsion has been used to assess the deteriora-tion of lipid at two 

stages of oxidation, the primary oxidation products (Peroxide Value) and secondary oxidation 

products (TBARS). In addition the change in pH was monitored, since pH tends to fall during 

oxidation.  

a. Evolution of Peroxide Value (PV) 

 

Figure 2: Change of peroxide value over time stored at 37 °C. (each value is expressed as mean 

(n = 3)). 

 

The development of primary oxidation products was monitored by evaluation of 

hydroperoxide formation (PV) during storage with results as shown in Figure 2. Primary 

degradation of lipids measured by PV occurs due to the reaction between oxygen and unsaturated 

fatty acids that form hydroperoxides.  The induction time is defined as the time for samples to 

reach 10 meq hydroperoxides/kg of emulsion. This value can be used as a measure of the 

stability of emulsions. The limits of oxidation products in fat products (animal, plant and 

anhydrous) including margarine and fat preparations were set at <10 meq hydroperoxides/kg as a 

guarantee of the product quality
17

. When the peroxide value of the sample is greater than 10 meq 
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hydroperoxide/kg, the sample is in a highly oxidised state and starts to become rancid. The PV 

value of the control emulsion increased rapidly, reaching more than 10 meq hydroperoxide/kg 

after only 6 days (P<0.05). The sample containing BL 1 g/kg reached the end of the induction 

time after 20 days while the BHT samples reached this state after 36 days storage. Several 

studies have investigated the effects of adding natural antioxidants to delay the lipid deterioration 

in food model emulsions. Skowyra et al.(2013)
13

 found that emulsion containing 48 μg/mL of 

Tara extract took 13 days to reach more than 10 meq hydroperox-ide/kg and emulsion containing 

green tea extract required 8 days to reach the end of the induction time as reported by Roedig-

Penman and Gordon (1997)
22

. Emulsion containing 100 mg/L of rosemary and thyme extract 

displayed low PV which remained below 10 for 25 days storages
23

. 

b. Evolution of pH 

 

Figure 3: Change of pH over time stored at 37 °C (each value is expressed as mean (n = 3)). 
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Primary oxidation occurs rapidly in the fat phase of the product due to the formation of 

hydroperoxides which are highly unstable and break down easily. This process results in the 

formation of ketones, epoxides or organic acids which are acidic and lead to changes in the pH
13

. 

Overall, the pH value dropped over time as shown in Figure 3, and this change is inversely to the 

increase of PV. By comparison, emulsion containing BHA showed a significant difference in pH 

from the values for BL and the control sample (p<0.05). BL samples remained higher than pH 6 

for 10 days storage and the pH declined gradually until 40 days. 

 A number of authors have suggested a positive effect of pH on oxidation rate which is 

influenced by natural antioxidants
13,23

. Pehlivan et al. (2008) reported that edible vegetable oils 

contain heavy metals such as iron up to 0.2 mg/kg oil. The levels of some metal compounds if 

high enough will promote oxidation which affects the pH. Furthermore, the redox state of metals 

and the activity, solubility, stability, and chelation capacity of antioxidants are among the 

parameters that affect the rate of change of pH in oil emulsions
26

.  

c. TBARS in active film packaging with Bearberry coating 

 

Figure 4: Changes in TBARS values (mg malodialdehyde/kg sample) of control and sample 

containing and BL extract during 7 days storages at 4 ± 1
O
C without light. (Each sample was 

measured in triplicate and the average standard deviation for each sample was less than 5%). 
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The TBARS index (Figure 4) revealed that secondary oxidation of the control beef patties 

increased pro-gressively as storage advanced. Meat patties without any film on the patties 

(control sample) experienced the highest TBARS values and the values were significantly 

different to those of all other samples. Coating with gelatin based film enriched with BL extract 

lowered the oxidation rate significantly throughout storage (p<0.05). At the end of the storage 

time, patties stored under the gelatin film with BL contained only 0.17 mg malondialdehyde / kg 

sample compared to the control TBARS value of 0.86 mg malondialdehyde / kg sample. There 

are very few reports dealing with the effects of edible gelatin based films containing natural plant 

extracts. Published studies of gelatin based films have focused on the physical, chemical and 

mechanical properties of the film
19,27

. However, there are only a few studies which report the 

antioxidant effects of gelatin-film treated with various natural antioxidants. Several literature 

reports have recently proposed that gelatin should be combined with plant extracts containing 

phenolic compounds to improve its physical properties as well as to introduce active properties 

causing delays in the oxidation of foods within the food packaging
28,29

. This study has reported 

the preliminary results of the effects of bearberry extract incorporated in gelatin film which 

successfully delayed oxidation in a muscle food.  

 

 

3.6.4 Conclusion 

In conclusion, this study clearly showed the positive effect of BL extract due to its 

antioxidant activity, and scavenging ability, which delayed lipid oxidation in an emulsion and 

when used as an active componentb in gelatin film packaging. BL extract contained a high 

concentration of phenolic compounds and good antioxidant activity when assessed by the total 

phenolic content and TEAC assay respectively. The methanol extract showed scavenging ability 

against methoxy radicals generated by the Fenton Reaction when assessed by EPR. Lyophilised 

BL (0.1% w/w) was applied as an antioxidant in an emulsion food model and significantly 

inhibited lipid oxidation during 20 days storage. A preliminary study of the effect of gelatin 

based film coated with BL extract showed that it significantly delayed degradation of lipids in 
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meat patties (p<0.05). Therefore, this study confirmed that Bearberry leaves can be used as a 

source of antioxidants with potential for use by the food industry. 
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3.7. Evaluation of the antioxidant activity of Betula Pendula Roth. leaf extract (BP) 

and its effects on model foods 

 

Abstract 

Analysis of the phenolic compounds in Betula Pendula Roth. (BP) extract revealed 

various poly-phenols and their derivatives. The BP ethanol extract showed antioxidant activity in 

tests with the 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (TEAC) radical cation, the 

oxygen radical absorbance capacity (ORAC) and the ferric reducing antioxidant power (FRAP) 

with values of 1.45 mmol Trolox equivalents (TE)/g DW, 2.81 mmol TE /g DW and 1.52 mmol 

TE/g DW, respectively. The BP methanol extract also exhibited scavenging activity against 

methoxy radicals generated by the Fenton reaction and measured by Electron Paramagnetic 

Resonance (EPR). The effect of antioxidant activity measured in beef patties containing 0.1% 

and 0.3% (w/w) of lyophilised BP stored in a modified atmosphere (80% v/v O2 and 20% v/v 

CO2) was determined. Reductions in lipid oxidation were found in sample treated with BP as 

manifested by the changes of colour and metmyoglobin concentration.  A preliminary study of 

gelatin based film treated with BP showed that the extract had high antioxidant activity to retard 

degradation of lipid in muscle food. Thus, the present results indicated that the BP extract can be 

used as a natural food antioxidant. 

 

Keywords 

Betula Pendula Roth., lipid oxidation, MAP, active packaging, antioxidant acivity, food 

models. 
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3.7.1 Introduction 

Nowadays, there is growing interest of consumers in natural foods and a healthy diet and 

concern about possible toxicological effects of the synthetic antioxidants used in the food 

industry. Natural antioxidants gain their activity mainly from polyphenol compounds found in 

most herbal plants, fruits and vegetables. Previous studies indicate that consumption of plant 

foods rich in antioxidants is beneficial to health and helps to prevent many diseases such as heart 

problems, diabetes, neurodegenerative disorder and cancers
1-4

. Moreover, the use of natural 

antioxidants to replace synthetic antioxidant in model foods such as meat burgers and 

mayonnaise has been extensively studied in recent years. Incorporating natural antioxidants in 

muscle foods not only prolonged the shelf life of meat and successfully delayed the oxidation 

process but it also enhanced the nutritional quality of the meat
5-7

.  

Recent strategy has focused on the development of active packaging systems based on 

the incor-poration of natural antioxidants into food packaging formulations
8,9

. This eco-friendly 

biodegradable packaging not only provides safety benefits to the food, successfully controls food 

quality and extends the shelf life, but also replaces commercial non degradable plastic which is 

harmful to the environment. Biopolymers used in film preparation are from protein sources 

which have many advantages and are abundantly available. Gelatin which is obtained from 

collagen by hydrolysis is one of the popular ingredients in film making and its advantages 

include its film forming ability
10

. 

To date, biodegradable packaging with a natural antioxidant coating has attracted great 

attention, and numerous research projects are under way in this field
8,11,12

. Natural antioxidants 

from plants chosen for incorporation into the film contain an abundance of polyphenol 

constituents. Polyphenols have a wide range of beneficial health effects and their potential for 

delaying and inhibiting lipid oxidation has been well studied. A gelatin based film coated with 

25% (w/w) lemongrass essential oil enhanced the quality and extended the shelf life of sea bass 

slices
11

. The incorporation of tea polyphenol-loaded chitosan nanoparticles (TPCN) into gelatin 

in a film improved the antioxidant activity of the gelatin film, whereas phenolic compounds from 

Curcuma longa L. rhizomes extract conferred barrier properties and antioxidant capacity to 

gelatin based films
8-12

.  
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Betula sp. (Betulaceae) is well known as a birch tree, which has a wide distribution in the 

north-ern hemisphere from Canada to Japan. Birch, in particular silver birch (Betula Pendula 

Roth.) has traditionally been important in many countries with all of the plant parts utilized for 

various medicinal purposes. Betula Pendula Roth. (BP) has been used to treat skin diseases 

especially eczema, infections, inflammations, rheumatism and urinary disorders and the bud oil 

is also widely used as a tonic and in cosmetic products as an antiseptic particularly in hair 

products 
13-16

. Furthermore, there have been numerous investigations of the benefits of plants for 

human health over the years
17

. Başer & Demirci (2007) demonstrated the potential of a few 

Betula species with antifungal, antibacterial and antioxidant effects using various in vitro 

techniques
18

. It has been reported by Germano et al. (2012) that the BP extract contained many 

polyphenol constituents such as Catechin, p-Coumaric acid, Myricetin, Quercetin and 

Kaempferol which are known for their free radical scavenging and antioxidant propertiest
12

. This 

high content of phenolic compounds may make Betula species suitable for use as antioxidant 

sources in the food industry. 

However, the antioxidant activity of BP leaf extract towards lipid oxidation has not been 

fully determined yet. Thus, our goals were (1) to identify the phenolic compounds in a BP extract 

that contribute to the antioxidant activity in the plant using LCMS, (2) to evaluate the antioxidant 

activity of BP using in vitro assays including FRAP, TEAC, ORAC and EPR scavenging activity 

and (3) to demonstrate the ability of BP extract to inhibit lipid deterioration in beef meat, either 

by inclusion in the patty composition or in the formulation of the active packaging. 

 

3.7.2 Materials and Methods 

Materials 

Commercial dried BP was kindly supplied by Pàmies Hortícoles (Balaguer, Spain), a 

registered herbal company. All reagents and solvents used were of analytical grade and obtained 

from Pan-reac (Barcelona, Spain) and Sigma Aldrich (Gillingham, England).   
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Extraction of Betula Pendula   

The preparation, extraction and recovery of BP was carried out according to the method 

of Azman et al. (2015)
20

.   

 

Determination of Phenolic Compound using LCMS  

Preparation of BP methanol extracts was carried out as described in the extraction 

method above. The LCMS analysis procedure was similar to that reported by Skowyra et al. 

(2014) with small modifications
21

. Compounds were determined using a LC-ESI–QTOF-MS 

system acquired from Agilent with a 1200 Series HPLC (Wilmington, DE, USA). The LC 

instrument has two isocratic high pressure mixing pumps, a vacuum degasser unit and a 

chromatographic oven. The QTOF mass spectrometer was an Agilent 6520 model, furnished 

with a Dual-Spray ESI source. Compounds were separated in an Agilent Zorbax Eclipse XDB 

C18 column (100 mm × 2 mm, 3.5 m) connected to a C18 (4 mm × 2 mm) guard cartridge from 

Phenomenex (Torrance, CA, USA). Ultrapure water (A) and acetonitrile (B), both containing 

0.1% formic acid, were used as mobile phases applying the following gradients: 0–10 min, 3% 

B; 15-17 min, 100% B; 11 min 3% B. The mobile phase flow was 0.2 mL min−1, the injection 

volume for standards and sample extracts was 10 µL and the column temperature was set at 

30◦C. The mobile phase flow was 0.2 mL/min, using the gradients: 0–10 min, 3% B; 10–25 min, 

100% B; 27–38 min, 3% B. Nitrogen (99.999%), was used as nebulizing (35 psi) and drying gas 

(330 °C, 10 °C/min) (Carburos Me-tálicos, A Coruña, Spain). The QTOF instrument was 

operated in the 2 GHz mode (Extended Dynamic Range, mass resolution from 4500, at m/z 100, 

to 11,000, at m/z 900) and compounds were ionized in positive ESI, applying capillary and 

fragmentor voltages of 3500 and 160 V, respectively. The Mass Hunter Workstation software 

was used to control all the acquisition pa-rameters of the LC-ESI-QTOF-MS system and also to 

process the obtained data. Full scan MS spectra were acquired in the range from 100 to 1700 m/z 

units. The identification of polyphenol composition was based on the accurate masses, isotopic 

abundances and spacing of signals in their cluster of ions ([M + H]+), obtained in the MS mode, 

as well as, on their MS/MS fragmen-tation patterns and the exact mass of product ions.   
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Determination of the Total Phenolic Content (TPC) 

The Folin-Ciocalteu method was used to determine the total phenolic content (TPC) as 

reported by Santas et al. (2008)
22

. 

 

Determination of free radical scavenging activity assays 

a. In vitro antioxidant capacity determination 

Three different methods were used for the evaluation of the antioxidant activity of the 

extracts: 2,2′-azino-bis-(3-ethylbenzthiazoline)-6-sulphonic acid (ABTS
•+

) TEAC assay
23

, 

Oxygen Radical Absorbance Capacity (ORAC) assay
21

 and Ferric Reducing Antioxidant Power 

(FRAP) method
24

. Results were expressed as μM of Trolox equivalent (TE) per gram of dry 

weight of plant (DW). 

b. Electron Paramagnetic Resonance (EPR) Spectroscopy Radical Scavenging assay 

EPR radical scavenging activity was measured following the method of Azman et al. 

(2014)
25

. The extraction was executed in MeOH with 1:10 (w/v) ratio and the soluble 

concentration of BP was determined by lyophilization. A spin-trapping reaction mixture 

consisted of 100 μL of DMPO (35 mM); 50 μL of H2O2 (10 mM); 50 μL BP extract at different 

concentrations or 50 μL of ferulic acid used as reference (0−20 g/L) or 50 μL of pure MeOH 

used as a control; and, finally, 50 μL of FeSO4 (2 mM), added in this order. The final solutions 

(125 μL) were passed to a narrow (inside diameter = 2 mm) quartz tube and introduced into the 

cavity of the EPR spectrometer. The spectrum was recorded 10 min after the addition of the 

FeSO4 solution, when the radical adduct signal is greatest. X-band EPR spectra were recorded 

with a Bruker EMX-Plus 10/12 spectrometer under the following conditions: microwave 

frequency, 9.8762 GHz; microwave power, 30.27 mW; centre field, 3522.7 G; sweep width, 100 

G; receiver gain, 5.02 × 104; modulation frequency, 100 kHz; modulation amplitude, 1.86 G; 

time constant, 40.96 ms; conversion time, 203.0 ms. 
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Determination of antioxidant activity in food model 

a.  Preparation of beef patties 

The initial preparation method of beef patties was adapted from Azman et al. (2014)
26

. 

The meat was divided into 4 batches and was mixed with 1.5 % NaCl and either i) control (no 

addition), ii) 0.1 % BHT, iii) 0.1 % lyophilized BP, iv) 0.3 % lyophilized BP and moulded into 

smaller portions (about 20 g each). The modified atmosphere was maintained by using polysty-

rene B5-37 (Aerpack) trays which were placed in BB4L bags (Cryovac) of low gas permeability 

(8–12 cm^3 m^-2 per 24 h). The air in the trays was flushed with 80:20 (v/v) O2:CO2 by EAP20 

mixture (Carburos Metalicos, Barcelona) and the trays were packaged. Samples were stored in 

the dark at 4 ± 2 
o
C for 10 days to analyse the extent of oxidation by the thiobarbituric acid reac-

tive substances (TBARS) method, % metmyoglobin, colour, pH and microbial quality. Every 

measurement was carried out in triplicate each day for 10 days (except for microbiological 

analysis which was done every 3 days). 

b. Thiobarbituric acid reacting substances (TBARS) 

Lipid peroxidation was taken as an indicator of oxidative damage and was assessed by 

measuring the content of thiobarbituric acid reactive substances (TBARS)
27

. The modified 

method was adapted from Azman et al. (2014)
26

. All results were reported in mg malonaldehyde 

per kg of sample (mg MDA/kg sample). 

c. Colour measurement and metmyglobin percentage 

Objective measurements of colour were performed using a CR 400 colorimeter (Minolta, 

Osaka, Japan). Each patty was cut and the colour of the slices was measured three times for each 

point. A portable colorimeter with the settings: pulsed xenon arc lamp, 0° viewing angle 

geometry and aperture size 8 mm was used to measure meat colour in the CIELAB space 

(Lightness, L*; red-ness, a*; yellowness, b*). Before each series of measurements, the 

instrument was calibrated using a white ceramic tile. The metmyoglobin percentage was 

determined by the method devel-oped by Xu et al. (2010).  All sample measurements were 

carried out in triplicate. 
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d. Development of gelatin-film with antioxidant coating 

The fabrication and characterization of the gelatin based film with antioxidant coating 

was based on the method of Bodini et al. (2013)
29

. Whilst the filmogenic solution was cooled 

after the solubilization of sorbitol, 0.1% (w/w) of BP extract / gelatin and 0.1% (w/w) 

BHT/gelatin was added. The lipid degradation was measured using the TBARS method as 

mentioned above.  

 

Statistical Analysis 

A one-way analysis of variance (ANOVA) was performed using Minitab 16 software 

program (α=0.05). The results were presented as mean values (n≥3). 

 

3.7.3 Results and Discussion 

Extraction yield, total phenolic content (TPC) and antioxidant activity 

A number of studies have found that the antioxidant activity of BP extracts correlates 

with the phenolic content, and thus the identification of the phenolic compounds in the plant 

extract may reveal compounds responsible for its antioxidant activity in various assays
19,30,31

.  

Table 1 : Polyphenol composition identified in methanol extract of BP using LCMS. 

No.  tR (min) 
Molecular 

Formula 
[M-H]

-
 

Proposed 

Compound  

1 14.2 C15H14O6 298.0718 Catechin 

2 17.3 C9H8O3 163.0401 p-Coumaric acid 

3 29.31 C15H10O8 317.0303 Myricetin 

4 31.6 C15H10O7 301.0354 Quercetin 

5 32.8 C15H12O5 271.0612 Naringenin 
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There were 5 polyphenol constituents found in the methanol extract of BP (Table 2) which had 

all been reported previously
19,32

. Moreover, previous authors found more than 26 polyphenol 

constituents in the methanol extract including Kaempferol and its derivatives. Studies of the 

betula spp constituents including BP have been reported by few authors
17,19,

. The chemical 

composition of flavonoids as the main polyphenolic group of constituents in birch leaves has 

been investigated quite extensively for several years. For example, Raal et al. (2015)
33

 developed 

the use of phenolic compounds as chemical indicators of a few birch species while Evans 

(2000)
34

 identified the chemical structures of quercetin and hyperoside as the main flavonoids in 

a BP extract. Among the components listed above, quercetin has been reported as the main active 

ingredient of birch leaves and a possible synergistic action of several flavonoids and phenolic 

components has also been described in BP active ingredients
17

. Isolation of flavonoid 

constituents from BP was investigated due to their many pharmacological benefits in human 

health.  

 

Analysis of Total Polyphenols and Free Radical Activity Assays 

 

a. Total phenolic content and in-vitro antioxidant activity  

On average, BP extracted with 50% ethanol produced a greater dry weight of soluble 

extract compared to 75% and 90% ethanol. Ethanol was selected for use in the extraction solvent 

since the alcohol is recognized as a GRAS (Generally Recognised as Safe) material which can be 

used for applications in the food industry
35

. Ethanol is also effective in the extraction of 

flavonoids and their glycosides, catechols and tannins from raw plant materials. Raal et al. 

(2015) reported that 20% of ethanol gives the highest polyphenol yield analyzed by net area 

under the curve (AUC) in HPLC chromatograms
33

. 
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Table 2: Soluble concentration, TPC and Antioxidant activity of BP extract. 

Activity                     

Betula Pendula 

Extraction solvent 

90:10 EtOH:H20 75:25 EtOH:H20 50:50 EtOH:H20 

Soluble concentration 

(g/l) 
19.83 ± 0.05

a
 20.1 ± 0.02

b
 22.6 ± 0.05

c
 

Total phenolic content 

(mg GAE / g DW) 
10.8 ± 0.05

a
 9.11 ± 0.03

b
 11.23 ± 0.02

ac
 

FRAP                                       

(mmol of TE / g DW) 
1.59 ± 0.02

a
 1.06 ± 0.06

b
 1.52 ± 0.01

ac
 

TEAC                              

(mmol of TE / g DW) 
1.27 ± 0.05

a
 1.36 ± 0.03

ab
 1.45 ± 0.02

bc
 

ORAC                              

(mmol of TE / g DW) 
1.56 ± 0.05

a
 1.67± 0.05

b
 2.81 ± 0.03

c
 

*Mean value n = 3 and the standard deviation for each assay is less than 5%. Gallic Acid 

Equivalent (GAE), Trolox Equivalent (TE), Dry Weight (DW).
 a-c

: Means within a row with 

different letters are significantly different (P<0.05).   

 

Table 2 shows that 50% ethanol extract gave significantly higher value of phenol content 

com-pared to 90% and 75% ethanol extract (p<0.05). Generally, BP extracted with 50% ethanol 

showed higher antioxidant activity values in the ORAC assays (p<0.05). Mashentseva et al. 

(2011) demonstrated higher values of phenolic content and TEAC values of the ethanol extract 

than with petroleum ether by the Soxhlet extraction
36

. The ORAC assay gave the highest 

antioxidant activity values compared to the FRAP and TEAC assays, and showed the scavenging 

activity of the extract towards peroxy radicals (OOH•) generated in the assay. The literature has 

reported the antioxidant activity of BP analyzed using the DPPH method, nitric oxide scavenging 

activity and the reducing power assay
36

. To the best of our knowledge, this is the first report of 

the antioxidant activity of extracts from BP assessed using the ORAC methods. 
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b. EPR scavenging radical assay  

 

Figure 1. Area of the Electron paramagnetic resonance (EPR) spectra of the radical adduct 

DMPO-OCH3 generated from a solution of H2O2 [2 mM] and FeSO4 [0.04 mM] with DMPO [14 

mM] as spin trap in MeOH as solvent. The area of the EPR signal is plotted against 

concentration of BP methanolic extracts.  

 

The EPR radical scavenging method has been developed by Azman et al. (2014) to evaluate the 

free methoxy radical (CH3O
•
) generates by Fenton reaction and this was applied to the BP 

extract
25

. Figure 1 showed the decreasing signal of EPR with increasing concentration of BP 

extract. The free radical scavenging activity of BP extracts against methoxy (CH3O
•
) radical was 

investigated by a competitive method in the presence of DMPO as spin trap, using EPR 

spectroscopy. The CH3O
•
 radical generated according to the Fenton procedure has a relatively 

short half-life but was identified by EPR because of its ability to form a stable nitroxide adduct 

with DMPO, DMPO-OCH3 (hyperfine splitting constants, aN = 13.9 G and aH = 8.3 G). This 

stable DMPO-OCH3 compound can be detected by the double integration value of the signal 

from the EPR spectrum. The BP extract at different concentrations competed with the spin trap 

DMPO in the scavenging of methoxy radicals. Thus, the antioxidant decreased the amount of 

radical adducts and, accordingly, decreased the intensity of the EPR signal. The best fitting with 
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intensity of EPR signal was shown as exponential function (Figure 1) that, if concentration 

values are in g/L, corresponds to equation (1):  

y = 74.959e-0.003x; R2 = 0.964    (1) 

The graph indicates the exponential relationship of the decrease in signal in the spectrum 

as the concentration of BP increased. This study confirmed that the scavenging activity of the BP 

ex-tracts containing polyphenol constituents could be measured by the decrease of the intensity 

of the spectral bands of the adduct DMPO-OCH3 in the EPR spectrum. The radical scavenging 

activity of BP has been determined by various methods previously including the DPPH radical 

scavenging activity and the Ferrous ion chelating activity has also been reported
32

. However, this 

study is the first report of the measurement of BP extract potential as act as an antiradical 

compound by scavenging methoxy radicals generated from the Fenton reaction.  

 

Antioxidant activity in Food Model 

a.  Color and % Metmyoglobin  

Meat colour is one of the most important parameters that indicate meat quality. The 

colour values representing lightness (L*), redness (a*), and yellowness (b*) are shown in Table 

3. The initial mean lightness (CIE L*) was 29.773 ± 0.866, and the control sample showed the 

highest value of L* at the end of 10 days storage. The L* values showed the increase in lightness 

of the meat due to the increased fat percentage but the redness was reduced. At the end of the 

storage period, samples containing 0.3% BP demonstrated the lowest value of L* while the 

sample containing BHT and the sample containing 0.1% BP displayed similar values. Our results 

were in good agreement with those of Triki et al. (2013) and Heyes et al. (2010) who showed  

that reduced fat in muscle food tends to reduce L* and increase a* when compared to control fat 

products, while redness decreased and lightness increased with storage time
6,37

. Few authors 

have reported that lipid oxidation results in a decrease in redness
38,39

. Beef patties containing 

0.3% BP maintained a more red colour (a*) throughout the display, whereas the control beef 

patties became discoloured from 6 days onwards in the MAP. All samples showed a significant 

decrease of red colour after 8 days storage (p<0.05). 
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Table 3: Effect of BP extract and BHT on instrumental colour value (L*, a*, b*) of beef patties during 10 days of refrigerated 

storage at 4
o
C. (Mean±SE). 

Assay Sample 

  

Days of storages 

    0 2 4 6 8 10 

L* Control 29.773 ± 0.866
a1

 38.676 ± 1.499
a2

 29.197 ± 0.326
a1

 37.097 ± 1.232
a2

 37.228 ± 0.447
a2

 45.612 ± 2.217
a3

 

  0.1% BHT 29.773 ± 0.866
a1

 32.857 ± 1.780
b2

 30.550 ± 0.967
b3

 35.436 ± 1.062
b4

 37.992 ± 1.192
a5

 40.582 ± 0.462
b6

 

  0.1% BP 29.773 ± 0.866
a1

 34.475 ± 1.732
c2

 30.915 ± 1.518
b3

 37.297 ± 0.941
a4

 41.023 ± 1.081
b5

 40.980 ± 0.462
b5

 

  0.3 % BP 29.773 ± 0.866
a1

 28.420 ± 1.580
d1

 36.448 ± 1.744
c2

 33.117 ± 1.380
c3

 36.475 ± 1.999
c2

 36.230 ± 1.904
c2

 

a* Control 7.490 ± 0.080
a1

 6.765 ± 0.286
a2

 6.540 ± 0.328
a2

 6.265 ± 0.425
a2

 4.724 ± 0.376
a3

 0.887 ± 0.010
a4

 

  0.1% BHT 7.490 ± 0.080
a1

 8.183 ± 0.426
b2

 9.282 ± 0.282
b3

 7.050 ± 0.260
b1

 7.364 ± 0.406
b1

 2.865 ± 0.010
b4

 

  0.1% BP 7.490 ± 0.080
a1

 7.368 ± 0.234
c1

 8.742 ± 0.130
c2

 7.252 ± 0.321
b1

 5.643 ± 0.150
c3

 1.245 ± 0.040
b4

 

  0.3 % BP 7.490 ± 0.080
a1

 9.165 ± 0.185
d2

 8.685 ± 0.340
c3

 8.380 ± 0.176
c3

 6.748 ± 0.130
d4

 2.900 ± 0.010
b5

 

b* Control 7.417 ± 0.320
a1

 4.864 ± 0.065
a2

 7.666 ± 0.362
a1

 8.550 ± 0.090
a3

 9.947 ± 0.140
a4

 6.767 ± 0.160
a5

 

  0.1% BHT 7.417 ± 0.320
a1

 6.680 ± 0.001
b2

 8.403 ± 0.150
b3

 8.394 ± 0.070
a3

 8.379 ± 0.060
b3

 2.101 ± 0.440
b4

 

  0.1% BP 7.417 ± 0.320
a1

 6.360 ± 0.230
b2

 8.962 ± 0.526
b3

 8.408 ± 0.120
a3

 8.764 ± 0.020
b3

 2.118 ± 0.330
b4

 

  0.3 % BP 7.417 ± 0.320
a1

 9.186 ± 0.508
c2

 10.186 ± 0.270
c3

 7.903 ± 0.180
b1

 5.000 ± 0.060
a4

 6.901 ± 0.200
a5

 

Control: 1.5% salt (w/w); 0.1% BHT: 1.5% salt with 0.1% BHT (w/w); 0.1% BP: 1.5% salt with 0.1% BP (w/w) 0.3% BP: 

1.5% salt with 0.3% BP (w/w). 
a-d

: Means within a row with different letters are significantly different (P<0.05). 
1-6

: For each attribute, 

means within a column with different letters are significantly different (P<0.05). Mean value n = 6 and the standard deviation for each 

assay is less than 5%. 
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Consumers scrutinize meat freshness by its visual redness and the red colour reflects 

the state of oxidation of the pigment in the meat
40

. At the end of storage, the a* value of the 

control sample meat product was significantly lower (p≤0.05) than that of the other samples 

tested. Therefore the natural plant extract affected meat colour and was potentially useful in 

delaying the oxidation and discoloration of the meat product.  In general, no significant 

differences (p>0.05) were observed in the b* values of samples during storage. The present 

findings seem to be consistent with other research which found that yellowness in meat 

patties is not influenced by time of storage and packaging conditions
37,41

. Meanwhile, 

Muthukumar et al (2014) and Rojas and Brewer (2007) reported that the b* value of cooked 

and raw patties with antioxidants showed a more gradual reduction compared to control 

during storage
42,43

.  

 

Figure 2. Effects of BP extract and BHT on metmyoglobin changes of beef patties during 

10 days of refrigerated storage at 4
o
C. (Mean±SE). Control: 1.5% salt (w/w); 0.1% BHT: 

1.5% salt with 0.1% BHT (w/w); 0.1% BP: 1.5% salt with 0.1% BP (w/w) 0.3% BP: 1.5% 

salt with 0.3% BP (w/w). Mean value n = 3 and the standard deviation for each assay is less 

than 5%. 
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The changes in BP treated samples and BHT on MMb formation during storage are 

presented in Figure 2. Both control and treated samples, upon storage showed an increase 

(P<0.001) in MMb formation (p>0.05). The MMb value relates to the instrumental colour 

a* values. Free radicals produced by lipid oxidation in meat are susceptible to initiate the 

reaction of oxidizing oxymyo-globin (red colour) to metmyoglobin (brown colour) which 

results in the discolouration of meat during storage. Samples treated with antioxidant can 

reduce the oxidation of metmyoglobin by scavenging hydroxyl radicals produced from 

oxidation of oxymyoglobin. This finding is sup-ported by several authors who observed 

that the decrease of colour in muscle food is influenced by the decrease in metmyoglobin 

concentration during storage
28-44

.  

b. TBARS analysis in beef patties 

 

Figure 3: Changes in TBARS values (mg malodialdehyde/kg sample) of control and 

sample containing different concentrations (0.1% and 0.3% w/w) of BP extract in MAP 

atmosphere during 10 days storages at 4 ± 1
O
C without light. Each sample was measured in 

triplicate and the average standard deviation for each sample was less than 5%. 
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The effect of different concentrations of BP and BHT on TBARS values in meat 

patties during the 10 days storage at 4 °C is shown in Figure 3. The TBARS values of all 

samples treated with antioxidant were significantly (p<0.05) reduced compared with the 

control throughout the stor-age period in the MAP atmosphere. However, the BHT sample 

and 0.1% BP sample were not significantly different throughout storage. This showed that 

0.1% BP would be sufficient to in-hibit the generation of MDA significantly and was 

similar in activity to 0.1% BHT in MAP. 0.3% (w/w) BP displayed the lowest TBARS 

values with less than 1.0 mg malondialdehyde/kg sample at the end of the storage time; and 

this indicates that the sample experienced a strong antioxidant effect. The use of 0.1% BHT 

was added as comparison and is an effective dose within the legal limitation for use in 

food
45

.  The effect of BP extract towards lipid oxidation in meat has never been reported. 

Reduction of lipid oxidation with BP in meat patties in MAP could be attributed to the 

presence of polyphenols, rich in catechins as well as other flavonoids. The active properties 

of BP have been reported by many authors previously
19,30,33

. Our LCMS study also showed 

the presence of phenolic acids in the extract which may contribute to inhibition of lipid 

oxidation in the meat. The antioxidant activity of phenolic compounds is closely related to 

the hydroxyl group linked to the aromatic ring which is capable of donating hydrogen 

atoms and neutralizing free radicals. This mechanism blocks further degradation of active 

oxidised compounds such as MDA, which can be measured by the TBARS method
38

. The 

study confirmed the potential of BP extract to inhibit lipid degradation in beef patties. 

c.  TBARS analysis in active packaging  

Meat packed under films coated with antioxidants, namely BP and BHT applied at 

0.1 %, expe-rienced a decrease of lipid oxidation compared to the control sample. At the 

first days of assay, no significant differences between all samples tested were observed. 

The significant differences in TBARS values started at day 2 (p<0.05) and differences 

continued until 17 days storage. The samples containing synthetic and natural antioxidant 

showed a tendency to be marginally differ-ent (p<0.1) throughout the storage period. The 

TBARS values of meat packed under films with 0.1% of antioxidant product also showed a 

significant reduction in lipid oxidation of the meat throughout the entire storage period 

compared to control. The increased food stability of samples containing BP and BHT can 
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be seen in Figure 4, and it can be pointed out that the marginal dif-ference between samples 

containing BP extract and BHT, which is recognised as an important antioxidant, 

demonstrates the effectiveness of the natural antioxidant as an alternative preserva-tive for 

the food industry. The literature reports that BP contained many phenolic compounds that 

contribute to its strong antioxidant activity as shown by several assays
17,19,30

. 

 

Figure 4: Changes in TBARS values (mg malodialdehyde/kg sample) of control and 

sample containing and 0.1% w/w BHT and BP extract in MAP atmosphere during 17 days 

storages at 4 ± 1
O
C without light. Each sample was measured in triplicate and the average 

standard deviation for each sample was less than 5%. 

 

Radone et al. (2014) demonstrated that the phenolic components of the BP extracts 

(which include hyperoside and chlorogenic acid) possess strong antioxidant activity when 

measured by the HPLC-FRAP post column assay.  Our LCMS analysis of the BP extract 
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showed that a few phenolic constituents such as catechin and p-coumaric acid exhibited 

antioxidant activity that has the potential to contribute to many pharmacological benefits to 

humans including antioxidant, and anticancer effects
46-47

. Moreover, many constituents 

present in the BP extract correlated significantly with antioxidant activity measured by 

ORAC and TEAC assays and may play important roles in the detoxification of endogenous 

compounds in humans
48

. 

Thus, this study set out with the aim of assessing the potential effects of BP extract 

in delaying lipid oxidation in a food model. Beside the promising result of antioxidant 

activity and the pres-ence of polyphenols in the extract, this is a preliminary study of the 

properties of gelatin based film containing BP extract for environmental friendly packaging 

for foods. Duthie et al. (2013) demonstrated the presence of phenolic acids including p-

coumaric acid measured using LCMS in chicken patties mixed with vegetable powders
49

. 

The compound found in Duthie et al. (2013) work is relevant to our findings for the BP 

extract that gave a good protective effect to the meat patties. Furthermore, our work also 

showed the efficacy of gelatin-based films treated with 0.1% BP extract.   

 

 

3.7.4 Conclusion 

The BP extract prepared with 50% aqueous ethanol showed a high phenolic content 

and antioxidant activity measured by the FRAP, TEAC and ORAC assays. The various 

polyphenol constituents present in the BP extract contribute to the antioxidant activity and 

total polyphenol content. The BP extract showed scavenging ability towards methoxy 

radicals generated by the Fenton Reaction assessed by EPR. Lyophilized BP (0.1% and 0.3 

% w/w) can be applied as an antioxidants in meat patties since these extracts inhibited lipid 

oxidation significantly in samples packed under MAP. 0.3% BP decreased the discoloration 

of meat and the brown colour measured by the metmyoglobin assay significantly. A 

preliminary study of the effect of gelatin based film coated with 0.1% (w/w) BP showed 

that it significantly delayed degradation of lipid in meat (p<0.05). Therefore, this study 

confirmed that BP as a source of antioxidants has potential to be used by the food industry. 
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CHAPTER 4: CONCLUSIONS 

 

 

4.1  Overall Conclusion 

In summary, reactive oxygen and oxidative stress play a major role in the 

development of human diseases such as diabetes, degenerative diseases, Parkinson’s 

disease, heart diseases, cancer and many more. Many studies have identified natural 

sources of antioxidants in plants, fruits and herbs, all of which are potent preventives of 

various diseases. Thus, this has triggered enormous interest from researchers worldwide in 

the bioavailability of endogenous and exogenous natural antioxidants as functional foods to 

diminish disease. Protection against free radicals can be supplied by sufficient intake of 

dietary antioxidants. With these recent developments, the formulation of natural 

antioxidants into food products that are effective and acceptable on the market is very 

challenging.  

Therefore, in this study, we analysed 5 plants (white tea leaves, yellow Gentian 

root, field bindweed leaves, silver birch leaves and common bearberry leaves) for their 

antioxidant effects in various assays. We then formulated them into different types of food 

models. Based on all the research studies we have reviewed, we can draw the following 

conclusions: 

1. White tea: The phenolic composition of plants was determined using HPLC. 

Study of white tea revealed various catechins including EGCG, EC, EGC and 

ECG. A novel method of radical scavenging activity was developed by 

measuring white tea against methoxy radical using ferulic acid as an antioxidant 

standard. This study revealed that the tea extract showed antiradical activity 

against methoxy radical comparable to the gallate group, EGCG and EC. 

2. Yellow Gentian: The HPLC result showed the presence of the bitter constituent 

of secoiridoid-glycoside with gentiopicroside and sweroside in the plant extract. 

Using different solvents, the assays identified the phenolic content and 
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antioxidant activity in the yellow gentian extract. The existence of an 

antioxidant compound was revealed by the Post-Column On-Line Coupling 

ABTS
•+

 measurement from the absorbance peak which also was not related to 

the secoiridoid-glycoside compound. The effectiveness of yellow Gentian 

lyophilise was measured using two different food models. Oil water emulsion 

treated with 0.5% (w/w) lyophilise yellow Gentian was shown to act as a potent 

preservative against primary and secondary oxidation, whereas the combination 

with 0.1% (w/w) BSA showed a synergic effect and better activity in delaying 

lipid oxidation. Application of 2 g kg
-1

 lyophilise yellow Gentian effectively 

controlled lipid oxidation in high and low oxygen concentration atmospheres in 

meat patties. A combination of 2 g kg
-1

 lyophilised yellow Gentian with 0.5 g 

kg
-1

 ascorbic acid showed a synergic effect that inhibited loss of redness and 

reduced the oxidation rate in meat patties. Sensory analysis indicated the 

potential of using 2 g kg
-1

 Gentiana lutea without significantly altering the 

appearance and taste of the modified patties.  

3. Field bindweed: The plant extract with 50% ethanol showed excellent 

antioxidant activity when measured by FRAP, TEAC and ORAC antioxidant 

activity assays. It also showed the ability to scavenge methoxy radical generated 

by Fenton reaction measured by EPR. The plant extract also showed a protective 

effect against lipid degradation and the reduction of redness in the meat model 

by adding 0.3% (w/w) lyophilised extract. Using a gelatin-based film coated 

with field bindweed resulted in a significant delay in lipid degradation in beef.  

4. Common bearberry: Our study identified the positive potential of common 

bearberry extract in terms of antioxidant activity, scavenging ability, delay of 

lipid oxidation in emulsion and its use in active packaging with a gelatin film. 

BL showed high phenolic compound content as well as antioxidant activity in 

the total phenolic content and TEAC assay. The methanol extract showed 

scavenging ability against methoxy radicals by means of the Fenton reaction, 

which we assessed by EPR. Lyophilised Common bearberry at 0.1% (w/w) can 

be applied as an antioxidant in an o/w emulsion, which significantly inhibits the 

lipid oxidation during 20 days of storage. The study of gelatin-based film coated 
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with common bearberry extract demonstrated that the extract has the ability to 

significantly delay the degradation of lipids in meat patties. 

5. Silver birch: We used HPLC-LCMS to detect active phenolic compounds in a 

silver birch extract. The phenolic compounds of silver birch include catechin, p-

coumaric acid, myricetin, quercetin and naringenin. BP extract showed high 

phenolic content and antioxidant activity in 50% aqueous ethanol measured by 

FRAP, TEAC and ORAC assays. The silver birch extract showed scavenging 

ability towards methoxy radicals generated by the Fenton reaction, as assessed 

by EPR. Lyophilised BP at 0.3% (w/w) was shown to decrease the 

discolouration and browning of meat, as measured by the metmyoglobin assay, 

and significantly delayed the oxidation rate of the meat. A gelatin-based film 

coated with 0.1% (w/w) silver birch caused significant delay to the degradation 

of lipids in meat.  

 

4.2 Recommendation for Future Research 

Recommendations for future research derived from this thesis are listed below: 

1. The active compounds of plant extracts should be identified using high 

throughput equipment such as LCMS or HPLC-LCMS. Active constituents 

relevant to antioxidants should also be measured using Post-Column On-Line 

Coupling ABTS
•+

 HPLC for each plant extract. The Post-Column On-Line 

Coupling ABTS
•+

 method is important to identify precisely which compound 

available in the extract is responsible for the antiradical activity against ABTS
•+

. 

From this suggestion, we can address the relevant compound that is responsible 

for the activity and isolate it for future analysis in an antimicrobial or anticancer 

assay. 

2. The formulation of plant extracts in active film packaging should be researched. 

The study of the characteristics of film packaging using natural plants can be 

enhanced by measuring the film morphology and the controlled release of active 
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compounds into the system. The film strength and durability should also be 

improved as a way of replacing commercial plastics in the market.  

3. Anti-microbial analysis should also be incorporated into the research because 

the oxidation rate is greatly affected by the microbial count in foods.  
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