Covariance-based Descriptors for Pattern
Recognition in Multiple Feature Spaces

Pol Cirujeda Santolaria

TESI DOCTORAL UPF / ANY 2015

DIRECTOR DE LA TESI
Dr. Xavier Binefa Valls
Department of Information and Communication Technologies

Universitat
upf Pompeu Fabra

Barcelona




By Pol Cirujeda Santolaria and licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 Int. License.

oS0

11


http://creativecommons.org/licenses/by-nc-sa/4.0/

“Begin at the beginning,” the King said, very gravely,
“and go on till you come to the end: then stop.”

— LEWIS CARROLL, Alice in Wonderland

Gracies Mama

1l






Acknowledgements/Agraiments

Acknowledgements. That less-science, more-human-understandable part of a the-
sis. I’d like to think that everyone who I must thank already knows so —what a
polite formula to cover my back in case I forget someone! But certainly, I have to
mention some of you for your special support during these years.

First of all I would like to thank Xavier Binefa for the opportunity of following
this PhD at UPF, and the freedom offered during these years. It has been really
nice to share statistics course syllabus updates and state-of-the-art osteopathy dis-
cussions. I hope this thesis can return some payback in exchange for your support,
guidance and patience.

I would like to thank all my colleagues of the CMTech lab: Brais, Luis, Marc,
Oriol, Ciro, Fede, Adria, Dima, all the intern students... and specially Xavi Mateo
for the nice work together and future cheese-making plans. From each one of you
I have learned something. Thanks.

A very special consideration goes also to the MedGift group members at HES-
SO in Sierre, Switzerland. Henning, Adrien: thanks for a very generous opportu-
nity and warming alpine reception. Yashin, Thomas, Oscar, Ale, Stefano, Visara,
Alba, Roger, Ranveer, Imanol, Sebas, Michael Barry, Morgane and the rest of
the crew: thanks for that wonderful time between mountains, raclettes, apéros,
snowboarding, and excellent research. Santé!

It would have been a tough time if I would not have met a nice bunch of true
friends at UPF. No exaggerations. Vane, Jana, Magda, Jonathan, Laura Sanchez,
Ray, Trang, Simon... thanks for making of me a good researcher, besides the pure
academic sense. Of course, I would like to thank all the wonderful staff that keeps
the engine going: Montse, Lydia, Santa, Judith, Joana, Bea.

Als meus amics: Ricard, Alex (Arr!), Miki, Alba, Cris, Jordi Cremades, Jordi
Sala. Per cuidar-me en general i per la muntanya, els cines, els sopars, els viat-
ges... en particular. Moltes 1 moltes gracies, no es poden tenir millors amics.

A la meva petita familia. La meva mare, la meva avia: Isa, Lolin... no puc
expressar amb paraules el que m’heu donat. Espero algun dia saber-ho retornar.
Us estimo.

I per descomptat a la Laura, que m’ha hagut de compartir amb aquest doc-
torat... pels anims, el recolzament i els petons: infinites gracies. Buongiorno
principessa.

Finalment... un doctorat s’aguanta millor amb un gos. Byte, gracies chucho!






Abstract

Data representation is of primary interest in any research field. In computer vision
it is usual to work with features, to play with them, to construct useful represen-
tations so a computer can be later told how to recognize specific patterns of a
desired model. So what if we could observe and understand these features not
by their static content, but from a raised space where they had an extra value?
For a computer, a person in an image can be a set of color pixels. For a good
pattern recognition algorithm, should not it be better if persons were a descrip-
tion of “things happening together within a region”? For instance, would not a
description of a given amount of color combined with a given amount of contour
in a particular position be more flexible and discriminative at the same time for
detecting persons in images?

This dissertation explores the use of covariance-based descriptors in order to
translate feature observations within regions of interest to a descriptor space using
the feature covariance matrices as discriminative signatures. This space consti-
tutes the particular manifold of symmetric positive definite matrices, with its own
metric and analytical considerations, in which we can develop several machine
learning algorithms for pattern recognition. Regardless of the feature domain,
whether they are 2D image visual cues, 3D unstructured point cloud shape fea-
tures, gesture and motion measurements from depth image sequences, or 3D tissue
information in medical images, the covariance descriptor space acts as a unifying
step in the task of keeping a common framework for several applications.

In order to proof the validity and scope of this methodology, this thesis presents
the foundations of the covariance-based descriptor framework —construction, dif-
ferential geometry theory, and manifold-aware machine learning techniques— and
places them within four concrete application cases: 2D image classification via
Riemannian manifold boosting; 3D unstructured point clouds scene description
and registration via a game theoretic cost minimization approach; human ges-
ture classification from depth map sequences via a sparse representation mani-
fold based classifier; and medical imaging analysis for tissue classification from
computerized tomographies. All the presented approaches share a same baseline
but with specifically tailored features and accompanying machine learning tech-
niques.
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Resum

La representaci6 de les dades €s d’especial interes en qualsevol area de recerca.
A la visié per computador estem acostumats a treballar i jugar amb les carac-
teristiques de les dades, a construir representacions ttils que més endavant serveixin
per ensenyar a un ordinador a reconeixer patrons especifics en un determinat
model. Pero, i si poguéssim observar i entendre aquestes caracteristiques no pel
seu contingut sind des d’un espai més elevat en el que tinguessin un altre valor?
Per un ordinador, una persona en una imatge pot ser un conjunt de pixels de col-
ors. Per a un bon algorisme de reconeixement de patrons, no seria millor si les
persones fossin una descripcié de “coses passant alhora dins d’una regié”? Per
exemple, no seria més flexible, i alhora discriminativa, una descripcio6 de la quan-
titat de color combinada amb una quantitat de contorn determinat i en una posicio
particular per tal d’indicar la presencia d’una persona en una imatge?

En aquesta tesi s’explora 1’ds de descriptors basats en la covariancia per tal de
traslladar la observaci6 de caracteristiques dins de regions d’interes a un determi-
nat espai descriptiu que utilitzi les matrius de covariancia de les caracteristiques
com a signatures discriminatives de les dades. Aquest espai constitueix la vari-
etat de les matrius simetriques definides positives, amb la seva propia metrica i
consideracions analitiques, en la que podem desenvolupar diferents metodes de
machine learning per al reconeixement de patrons. Sigui quin sigui el domini de
les caracteristiques, ja siguin observacions visuals en imatges 2D, caracteristiques
de forma en nuvols de punts 3D, gestos i moviment en seqiiencies d’imatges de
profunditat, o informaci6 de densitat en imatges mediques en 3D, I’espai del de-
scriptor de covariancia actua com un pas d’unificacié en el repte de mantenir un
marc de treball comi per a diverses aplicacions.

Amb I’objectiu de provar la validesa d’aquesta metodologia, aquesta tesi pre-
senta els fonaments del descriptor basat en covariancia —la seva construccio, la
teoria necessaria en geometria diferencial, i diverses tecniques de machine learn-
ing que tinguin en compte la seva varietat— 1 els situa en quatre casos concrets
d’aplicacid: classificaci6 d’imatges 2D via la tecnica de boosting; descripcio i reg-
istracié d’escenes en nuvols de punts 3D amb un procés de minimitzacié basat en
teoria de jocs; classificaci6 de gestos en seqiiencies d’imatge de profunditat amb
un classificador sparse; 1 analisi d’imatge medica per a classificacié de teixit en
imatges de tomografia computeritzada. Totes aquestes aplicacions comparteixen
el mateix marc de treball perdo amb diferents observacions adequades a les dades
i aplicant diferents algorismes de machine learning en funcié de la natura del
problema a resoldre.
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Chapter
Introduction

“Which of my photographs is my favorite? The one I'm
going to take tomorrow.”

— IMOGEN CUNNINGHAM

fundamental first stone in many research areas. As a computer vision

researcher, when one applies this to the solution of problems from vi-
sual inputs, research becomes even more thrilling as one deals with the utopia of
“making computers see, understand and interact with our world”. Tasks as recog-
nising objects in images for classification and retrieval, understanding 3D scenes
for context navigation in robotics, providing real-time feedback to motion ges-
tures for human-computer interaction or analysing medical images for computer
aided diagnose or tele-medicine are examples of research outcomes pursued in
this dissertation.

Improving existing methodologies on a field as computer vision is challeng-
ing due to an active research community, although the growing number of open
tasks also implies that inspiration can be taken from many great contributions pre-
sented in top conferences and journal articles month after month. The confluence
between feature extraction, machine learning, pattern recognition, new compu-
tational approaches and the application of all together to the solution of many
endless problems encourage infinite creativity. Nevertheless, one has to choose
some focus, specially for a dissertation, so the motivation of this thesis resides in
the choice of a particular feature extraction and description method, its implica-
tion to machine learning, and a selection of problems to solve in order to present
some contributions which can hopefully raise the benefits of novel research in a
crowded area.

Therefore, the main goal is to provide the formulation and demonstrate the
properties of a framework based on the statistical notion of covariance of features
for data description and classification. As a very basic introduction, the aim is to

! FTER AN ACCURATE REPRESENTATION, finding patterns in data is the




model entities from different natures and their observable features: for instance,
color in images, curvature or density in 3D surfaces or volumes, or motion pat-
terns in image sequences. Different objects, such as persons in images, planar or
round surfaces in 3D point clouds, or different sign language gestures, will have
different sets of observable features which can be considered as samples of sta-
tistical distributions. The presented framework provides a compact representation
of these feature distributions by means of their covariance matrix, which is the
baseline for extracting models on different feature spaces but sharing a common
methodology core. The straightforward implication of this representation space is
that it has a particular non-Euclidean geometric distribution, as descriptors lay on
the Riemannian manifold of symmetric positive definite matrices. This supposes
using particular metrics and analytical properties which can be exploited for defin-
ing novel machine learning algorithms for classification and pattern recognition
on the provided descriptor space.

1.1 Motivation and Objectives

What translates features to a common space is the statistical notion of covariance,
which, used as a descriptive unit can provide a signature of how feature observa-
tions change together for given entities inside a region of interest. For instance,
for defining color images, certainly one of the most basic feature varieties would
be the complete RGB color space. A given image can contain all sort of sparse
values within this color space. But in the attempt of modelling a particular image
class space, for instance skin tissue captured in light microscopy images, these
class samples could be better defined by particular sets with concrete distributions
of red, green and blue color samples. These distributions will have characteristic
statistics such as a particular mean and variance for each color feature, and joint
pairwise feature covariances. Therefore, the class model might be characterized in
a better space: the covariance of features. If we could imagine an abstract space
of all these covariances, for instance for image classes of different nature (skin
tissue, muscles, bones...) these covariance representations would appear clustered
according to these differences as the distribution of colors should be particularly
discriminative for each class. This can be considered as one of the strengths of this
dissertation. Covariance notion, understood as a descriptor signature, can trans-
late any feature space whether it is color or a very complex d-dimensional signal,
to a common compact manipulable space. The goal is to move features to a place
where it should be possible to extract a “dictionary” of the world of classes that
should be modelled. As this can result a little abstract, this dissertation explores
feature selection in several problems, all with the aim of demonstrating the flex-
ibility of this framework: from 2D color images to 3D point clouds and dense

2



medical images, and 4D depth image sequences.

Features may change, but the descriptor space is homogenizing: this new va-
riety can be analysed with different techniques according to different problems
which are used as motivation and validation contexts. From part-based classifi-
cation methods to dictionary learning and algorithms for descriptor matching and
outlier rejection, it will be shown that this descriptor space is not only valid for
data representation: due to a characteristic Riemannian geometry, it is also a con-
venient space for developing machine learning applications. So along a progres-
sive motivation this dissertation presents, in a conceptually chronological order,
the research carried on along different feature space applications covering the fol-
lowing questions:

* In object classification and retrieval from color images, can flexible and
variable objects be defined via covariance-based descriptors? Is their con-
ception suitable for modelling classes with high intra-class variability? In
a particular application such as human body detection by classification, can
a natural part-based method be provided so it fragments the classification
solution in several part-oriented descriptor models? Furthermore, the fea-
sibility of the proposed descriptor framework will be tested in a variable
dataset of medical images from different acquisition device origins.

* 3D scene understanding is a straightforward jump regarding 2D images:
pixels, instead of being organized on a plane, are just unstructured col-
lections of points with 3D coordinates and color information. Can the
already introduced framework be leveraged for recognizing and matching
three-dimensional scene views fusing shape and texture? Several questions
may arise: the descriptor might include view-invariant information for local
surface description, and a holistic matching procedure must include global
scene information for taking into account challenging conditions in scenes,
such as pattern repetitions in different areas or symmetries. The goal is
to provide a scene registration methodology for discarding outlier matches,
registering 3D views, and perform object retrieval. Besides the obvious out-
come of a descriptor for 3D point clouds, this has also the desired goal of
demonstrating how extra layer algorithms can be integrated with the de-
scriptor space exploiting its analytical properties.

 After working with 3D information, can the same framework be extended to
4D, understanding that as a collection of depth image frames which, along
time, constitute human gesture sequences? This is not as straightforward
jump as from 2D to 3D, but with some design strategies covariance-based
descriptors for spatio-temporal gesture definition can be formulated. Dif-
ferent cadences and motion patterns have to be taken into account. In any



case, this is a challenging research line receiving recent attention thanks
to the appearance of easy access depth acquisition devices and with ma-
jor application impact as it can be used for real-time hand sign language
translation or natural human-computer interaction.

* Finally, as a complementary research outcome, the presented method has
had the opportunity of being tested in dense 3D medical images as comput-
erized tomographies (CT). This application context is similar to 3D scene
understanding, but data is now structured and represents dense volumes in-
stead of surfaces. Using tissue texture-based features, the covariance-based
descriptor framework can provide a straightforward 3D region descriptor
for region classification in CTs. This has a major impact in medical image
processing as can be tested in areas as nodule classification, unsupervised
tissue segmentation or nodule recurrence models, with a close collaboration
with clinicians expertise and their feedback.

1.2 Thesis Organization and Contributions

This thesis does not only provide a mandatory theoretic framework, but also a set
of practical, algorithmic solutions to the presented problems. The use of four par-
ticular contexts will serve for dividing the present dissertation in respective chap-
ters, each of them introducing the respective problem presentation, state of the
art analysis for each one of the applications, the adapted framework formulation
and feature space, the contributed machine learning algorithms and a subsequent
experimental evaluation and discussion.

This dissertation is organized as follows:

* Chapter 2 presents covariance-based descriptors for 2D color images. The
use of the manifold of covariance matrices in computer vision is introduced,
with a review of their application as descriptors, their Riemannian geome-
try implications and a practical reference of the common operators and no-
tions used in further chapters, and an overview of related methods with a
background in machine learning. In the first part of the chapter, an exist-
ing part-based classification of human bodies in 2D images is reviewed as a
first introduction to the complete framework. This includes a technique with
manifold atlas-based learning via a boosting adaptation. The second part of
the chapter presents a whole-image color-based covariance descriptor for
medical image retrieval and a manifold-regularized sparse representation
classifier. The outcomes of this research have been presented in the paper:
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PoL CIRUJEDA, XAVIER BINEFA. Medical Image Classification via 2D
color feature based Covariance Descriptors. In Working Notes of CLEF
2015 (Cross Language Evaluation Forum), CEUR Workshop Proceedings,
2015.

Chapter 3 presents a 3D covariance-based descriptor formulation for fusion
of shape and texture features in unstructured point clouds. This descriptor
is conceived for 3D scene understanding, with applications to pairwise view
registration and object retrieval, which require a scene-aware methodology
for point pairing and outlier rejection. The chapter also introduces a game
theory based approach for adding geometric constraints as an additional
layer to descriptor extraction and matching. This research line has yielded
to the following publications:

PoL CIRUJEDA, YASHIN DICENTE CID, XAVIER MATEO, XAVIER BINE-
FA. A 3D Scene Registration Method via Covariance Descriptors and an
Evolutionary Stable Strategy Game Theory Solver. In International Journal
of Computer Vision, 2015.

PoL CIRUJEDA, XAVIER MATEO, YASHIN DICENTE CID, XAVIER BINE-
FA. MCOV: a Covariance Descriptor for Fusion of Texture and Shape Fea-
tures in 3D Point Clouds. In International Conference on 3D Vision, 2014.

Chapter 4 presents a more abstract covariance-descriptor extraction in se-
quences of depth image maps. The goal is to encode spatio-temporal in-
formation in action volumes, and classify the resulting descriptor space by
means of the sparse representation method already introduced in chapter 2.
The publication associated to this contribution is:

PoOL CIRUJEDA, XAVIER BINEFA. 4DCov: a Nested Covariance Descrip-
tor of Spatio-Temporal Features for Gesture Recognition in Depth Sequences.
In International Conference on 3D Vision, 2014.

Chapter 5 provides a final application context of covariance-based descrip-
tors in 3D computerized tomography medical images. Dense texture fea-
tures are used in order to leverage the framework presented along this dis-
sertation as a three-dimensional descriptor for lung tissue classification and
as a similarity measure for organ region matching in multi-modal medical
case based retrieval. A bag-of-covariances method is used in order to clas-
sify different nodule tissue regions in patient lungs, in collaboration with
expert clinicians feedback. The contributions in this area have been gath-
ered in these publications:

PoL CIRUJEDA, HENNING MULLER, DANIEL RUBIN, TODD A. AGUIL-
ERA, BILLY W. LOO JR., MAXIMILIAN DIEHN, XAVIER BINEFA, ADRIEN



DEPEURSINGE. 3D Riesz-wavelet Based Covariance Descriptors for Tex-
ture Classification of Lung Nodule Tissue in CT. In International Conference
of the IEEE Engineering in Medicine and Biology Society, 2015.

OSCAR ALFONSO JIMENEZ DEL TORO, POL CIRUJEDA, YASHIN DI-
CENTE CID, HENNING MULLER. RadLex Terms and Local Texture Fea-
tures for Multimodal Medical Case Retrieval. In Multimodal Retrieval in
the Medical Domain, 2015. Lecture Notes in Computer Science, Springer.

This research is being currently used for temporal modelling of patient can-
cer recurrence and for unsupervised tissue segmentation in computer-aided
diagnose, and the following publication is in ongoing preparation:

PoL CIRUJEDA, YASHIN DICENTE CID, HENNING MULLER, DANIEL
RUBIN, TODD A. AGUILERA, BILLY W. LOO JR., MAXIMILIAN DIEHN,
XAVIER BINEFA, ADRIEN DEPEURSINGE. A Riesz-Covariance Texture
Model for Prediction of Adenocarcinoma Recurrence in Lung CT. To be
submitted to Transactions on Medical Imaging.

Finally, chapter 6 presents the conclusions of the dissertation, providing a
summary of its outcomes as well as a discussion on possible future contin-
uations of the presented research lines.



Chapter

Manifolds in Computer Vision.
2D Image Retrieval and
Classification

“I don’t trust words. I trust pictures.”

— GILLES PERESS

current topic in computer vision research along decades. There are par-

ticular object classes, such as human subjects, that pose an added chal-
lenge to classification methods due to their inherent variability and non-rigidity
conditions. Other pattern recognition tasks, such as medical image-based case re-
trieval are affected also by considerable intra-class variations due to an often non-
complete learning dictionary of class samples. These two applications, human
body detection and medical image retrieval, will serve as context problems for the
introduction of our covariance-based descriptor framework. We will present sim-
ilar feature selection functions for each application, and the solution to both tasks
by different machine learning methods tailored for each one of the application
natures: boosting and a sparse representation based classifier.

O BJECT DETECTION AND CLASSIFICATION in color images has been a re-

2.1 Introduction

Pattern recognition, object detection and image classification in general have been
long studied in the computer vision literature for a long time. For fairly rigid
objects there exist state-of-the-art methods with consolidated techniques which
include keypoint extraction, feature selection and sparse point descriptors. These
can be classified, clustered or matched by standard machine learning techniques
in order to establish the presence of the desired template. Complexity increases
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as this query entity can suffer variabilities due to its non-rigidity or heterogeneity:
then, the modelling approach should take into account this flexible nature.

This chapter introduces the benefits of covariance-based descriptors on 2D im-
ages, for two particular applications: human body image classification and medi-
cal image retrieval. Covariance-based descriptors were first introduced in [Tuzel
et al., 2006] as flexible discriminative signatures for object recognition and tex-
ture classification. The main intuition about the statistical definition of feature
variations under a region of interest is that covariance measures, together with
their loss of structural information, can be salient enough for the classification of
heterogeneous class samples. The context of application found in the two com-
mented problems provides a good introduction to our framework, as it enables to
test the fundamental benefits of covariance descriptors (robustness to noise, and
invariance to rigid transformations due to the loss of structural information) in the
classification of such variable entities that are human subjects and medical images
from different sources. The aim of this chapter, besides the own introduction of the
framework, is to show its versatility and integration with complementary machine
learning techniques chosen accordingly to the different application problems.

This chapter is organized as follows: section 2.2 reviews some of the typical
approaches for 2D region description, and starts the introduction of manifold-
based approaches in computer vision. Section 2.3 introduces the basic framework
of covariance-based descriptors for 2D images which will be common in further
chapters of this dissertation (changing the features accordingly to different do-
mains of application). Sections 2.4 and 2.5, respectively, present the integration
of this framework with an adapted boosting approach for human body detection
in 2D images and a sparse representation classification method for medical image
retrieval. Finally section 2.6 presents the conclusions observed from both appli-
cations and its relation to further chapters.

2.2 Related Work

Typically, pattern recognition for object classification in 2D images has been tack-
led by a standard paradigm of feature extraction and data description which is
further fed to classification methods: some standard techniques include boosting
[Schapire, 2003; Viola and Jones, 2001], support vector machines (SVM) [Cortes
and Vapnik, 1995], or neural networks [Haykin, 1998; Krizhevsky et al., 2012].
But classification methods would not be useful if data was not correctly repre-
sented on a first instance, providing a discriminative and easily separable repre-
sentation space.

An overview to some of the state-of-the-art region representation methods in
the image processing area reflects how low-level features are extracted in image



areas and encoded in compact representations. It is the case, for instance, of
image descriptors such as Histograms of Oriented Gradients (HOG) [Dalal and
Triggs, 2005], which evaluate local histograms of gradient orientations quantized
on a dense grid over the image, and characterize local appearance and shape of
objects by its edge information. Local Binary Patterns (LBP) [Ojala et al., 2002]
or Geometric Blur [Berg and Malik, 2001; Berg et al., 2005] are other examples
of defining an image region by observing neighbourhood points of a given pixel,
by a codification of its compared intensity values or by a spatially varying kernel
filtering procedure, respectively. Other well-known descriptor methods include
SIFT (Scale-Invariant Feature Transform) [Lowe, 2004], or SURF (Speeded Up
Robust Features) [Bay et al., 2008] which, besides oriented gradient information
based descriptors, also provide interest point extraction methods and integrated
template matching and registration algorithms.

Covariance-based descriptors for color image area classification were first pre-
sented in [Tuzel et al., 2006]. This first approach introduced the concept of co-
variance matrices as a feature representation procedure, and demonstrated its fea-
sibility for object detection and texture classification in color images. This was
rapidly extended to more image classification applications [Porikli et al., 2006;
Porikli and Kocak, 2006]; placed into the context of more complex systems for
object detection [Tuzel et al., 2007, 2008b]; or used by other authors [Yao and
Odobez, 2008; Kluckner et al., 2009]. This supposed the peak rise of a novel
methodology that could be easily extended in the future. Descriptors had been
understood as procedures for data codification so far, but the representation of
image features by their covariance matrix gave rise to a more meaningful charac-
terization: from then on, descriptors were not only codifying data, they started to
be entities with a geometric significance on an abstract data space. Features were
being translated from the space of their own static values (color spaces, gradient
magnitudes and orientations, pixel-level curvatures...) to a higher space where
particular joint aggregations of these values make sense to a given model. Fur-
thermore, being symmetric positive definite matrices, these descriptors would lie
on a particular non Euclidean space: the manifold of symmetric positive definite
matrices Sym) .

The particular case of covariance matrices is of course one of the important
cores of this dissertation, but the computer vision community has paid attention to
matrix manifolds in general in the recent years. This is also an inspiration for this
thesis, as it will be exploring the application of machine learning techniques with
particular Riemannian geometry in mind. Dealing with manifold distributed data
supposes a trade-off between using particular non Euclidean metrics at the ex-
pense of having a well defined space that introduces less error in data modelling,
comparison or estimation [Lee, 2003; Absil et al., 2009]. These matrix manifolds
can model 2D affine transformations, 3D rotations, or d-dimensional data feature
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covariances. The surveys conducted in [Lui, 2012; Li et al., 2014] establish a
comprehensive overview on a complete set of particular manifolds and several ap-
plications to face and action recognition, tracking and data clustering. Manifolds
such as G L(2) (the general linear group of all possible 2D affine transformations)
or SO(3) (the special orthogonal group of 3D rotations) can be used for defin-
ing the space of allowed transformations of an object along different stages of a
sequence. For instance, [Tuzel et al., 2008a] or [Kwon and Park, 2009] use the
particular group of affine transformations for tracking applications based on man-
ifold regression. [Belkin et al., 2006; Elgammal and Lee, 2004] have explored
several approaches for manifold regularization, keeping the positive definiteness
of the descriptors. [Sivalingam et al., 2009; Pitelis et al., 2013; Huang et al., 2014]
have presented metric learning and atlas based modelling techniques for the su-
pervised and semi-supervised learning of manifold distributed data keeping into
account their Riemannian geometry. In the same sense [Tenenbaum et al., 2000;
Roweis and Saul, 2000; Xiong et al., 2007; Hamm and Lee, 2008; Jayasumana
et al., 2013; Harandi et al., 2014a] have presented Riemannian geometry vari-
ants of well-known algorithms for data alignment and dimensionality reduction
in Sym7, as well as sparse coding representations [Harandi et al., 2012; Cherian
and Sra, 2014].

2.3 Covariance Descriptors for 2D Images

Raw pixel values, like color or gradients, had been historically used as the most
basic image features for detection and classification tasks. Despite of that, the
pursuit of robustness against shape variations was a constant desired goal that can
not be achieved by features themselves. Furthermore, in the area of computer vi-
sion, it is usual to manage significant amounts of imagery data. Thus, it should
be desirable to find a “perfect” representation which should provide the most ef-
ficient trade-off between high representation capability, robustness against unex-
pected noisy inputs -occlusions, pose changes, illumination conditions, etc- and
low computational cost, both in terms of memory and calculation requirements.

Covariance-based descriptors were firstly introduced in [Tuzel et al., 2006]
for object and texture classification. Their conception idea is to define an image
region not by a set of associated features themselves, but by a representation of
these feature joint variations. Feature vectors within a region can be considered
as samples of an d-dimensional distribution, which will characterize that partic-
ular region. The first step for the computation of the descriptor is, therefore, the
choice of some base features at a pixel level. In order to formally define this 2D
covariance-based descriptor, a feature selection function ®op (1) for a given image
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I is defined as:

(I)QD( ) {quyavx?yEI}? (21)

which provides a set of feature vectors gzﬁ for each one of the pixel coordinates
{x,y} inside all the image I. For a first task of 2D image description the following
8-dimensional feature vector can be designed, as shown in figure 2.1:

2 = [ g 11 (F)2, + (1902,
. 2.2)
- |17, (
Ny [T 2.y, arctan ’[y’a:,z

These feature vectors include low-level visual cues such as image gradient, its
magnitude and curvature, and spatial coordinates. This introduces the descrip-
tor formulation for a generalist 2D image descriptor without color information at
the moment. This will be used in the following section for human body detec-
tion in images, since contour information is considered more important than pixel
color values in order to classify persons by their shape rather than by their appear-
ance. Designing feature selection functions is class and problem-dependant, as
analysed in [Cargill et al., 2009] where different sets of features involving color
spaces, gradient magnitudes or second order derivatives were reviewed for im-
age classification applications. Despite of that, one of the main advantages of
covariance-based descriptor is that their construction is independent from this fea-
ture selection stage. For any given region R C I, containing a set {¢?"”};_; ¢ of
S d-dimensional feature vectors, the following d X d covariance matrix of features
will provide a characteristic signature for 12:

¢2D ¢2D )T (23)

Mm

Covgp =

S 1 &=
where 1 is the mean of the points {¢?°};—; s € R.

Estimating covariance matrices from data features as a form of descriptor pro-
vides many benefits both in its meaning and in computational implications. In
a first place, the discriminative value comes from providing a signature for the
distribution of features within the region of interest, as their joint covariance val-
ues. This notation loses all the information about feature structure, therefore this
provides invariance to rotation and spatial transformations. In terms of computa-
tion and dimensionality, this descriptor does not involve any major operation and
translates the S x d dimensional observations to a d X d matrix.

11



Figure 2.1: Original region of interest, 8-dimensional feature layers (from equa-
tion 2.2) for all region coordinates, and obtained covariance descriptor.

The final consideration about covariance matrices, as symmetric positive def-
inite matrices, is that they do not lay on a Euclidean space, but on a Riemannian
manifold. Far from supposing a drawback, this is one of the pillars of this disser-
tation.

2.3.1 Riemannian Geometry

Covariance descriptors have the form of d x d covariance matrices which, besides
providing a compact and flexible representation, causes them to lie in the Rie-
mannian manifold of symmetric positive definite matrices Sym_. This space is
an open convex cone so that X +tY € Sym] fort > 0 given X,Y € Sym;.
This has a major impact on considering covariance matrices of data features as
descriptive units, as their spatial variety is geometrically meaningful: samples of
classes sharing similar feature characteristics will remain under close areas in this
descriptor space. According to [Arsigny et al., 2006], the Riemannian manifold
can be approximated in close neighborhoods by the Euclidean metric in its tan-
gent space, Ty, where the symmetric matrix Y is a reference projection point in
the manifold. 7y is formed by a vector space of d x d symmetric matrices, and
the mapping of a manifold element X to its tangent space x € Ty is made by the
point-dependent tangent mapping operation:

7 = logy (X) = Ytlog (Y—%Xy—%> Y3, (2.4)
In an analogous manner, the exponential mapping of a point x € Ty returns its
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original point representation X in the Sym_ manifold:
X = expy (z) = Yiexp (Y*%XY*%> Y3, (2.5)

Derivatives of a point of the manifold X € Sym lie on the vector space T'y.
This notion can be used for decomposing the connected Riemannian manifold
in different planes of an atlas, with particular applications in machine learning
[Sivalingam et al., 2009; Huang et al., 2014]. See figure 2.2 for a schema of these
operations.

\N———_”
~
)
og
~

Figure 2.2: Mapping of points in Sym_ manifold to the tangent space Ty-.

In certain cases such as covariance descriptor similarity computation, which is
equivalent to computing point distances in a single tangent plane, the projection
point can be established to a common reference point such as the Identity matrix,
and therefore the tangent mapping operators become:

log(X) = Ulog(D)U", (2.6)

exp(y) = Uexp(D)U’, 2.7

where U and D are the elements of the single value decomposition (SVD) of
X € Symj.

The Riemannian metric providing the distance between two points X, Y €
Sym} is given by the length of the geodesic curve connecting those points on the
manifold [Forstner and Moonen, 1999; Pennec et al., 2006]. Provided that this
would be equivalent to the norm of the tangent vector from X to Y in the tangent
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space, the geodesic distance is defined as d(X, expy(y)) = ||y||x. Using equation
2.4, an invariant Riemannian metric on Sym is defined as:

J(X,Y) = \/ Trace <log (X—éyx—%>2>, (2.8)

or more simply §(X,Y) = z;j’:l log()\;)?, where \; are the positive eigenvalues
of X 2V X 2.

Other metric distances as Bregman divergences have been proposed in last
years research [Cherian et al., 2013; Harandi et al., 2014b]. These divergences are
focused to higher dimensionality covariance matrices via the use of Sym_ spe-
cific kernels. In applications as covariance-based descriptors in low-level feature
spaces it might not be mandatory to assess the use of those divergences, neverthe-
less their implementation could be left as a possible future extension.

In order to minimize the error regarding a projection point, the mean of a
set of covariance matrices is a good estimator. Due to the convexity of Sym
manifold, the mean of a set of points X;_; » on a Riemannian manifold has to be
approximated in order to satisfy:

N
p = argmin » 6 (X;, X') (2.9)

X’ESym; i=1

[Karcher, 1977; Moakher, 2005] propose several gradient descent procedures for
the computation of the mean iteratively. In [Pennec et al., 2006] the so-called Log-
Euclidean weighted mean using the tangent space re-projection for a finite set of
points in Sym., X1, ..., X,, is presented as:

1 N
b =1

Finally, for a minimal representation in the tangent space 7y it is possible to ex-
ploit the property of the projected symmetric matrices of containing only d(d +
1)/2 independent coefficients, in their upper or lower triangular parts. This yields
to the following vectorization operation in order to obtain a linear orthonormal
space for these independent coefficients:

T = vect(m) = [l'l,l \/EZL’LQ \/§ZL’173 —e X292 \/§I273 - Xdd (211)
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where z is the mapping of X € Sym to the tangent space, resulting from equa-
tion 2.4. The vectorization of a d X d covariance matrix is a minimal representa-
tion of all its d (d+ 1) /2 independent coefficients, which are found in the upper or
lower triangular part of the matrix. As the off-diagonal entries would be counted
twice in a norm computation, they are scaled down in this operation by the /2

coefficients. The obtained vector & will lie in the Euclidean space R, where
m=d(d+1)/2.

2.4 Human Body Detection

Human bodies are “objects” naturally constituted by parts with high variability,
which have traditionally posed a great challenge in computer vision applications
as classification and tracking. Even if supervised part-based learning approaches
for human body part inference and pose estimation have been presented [Felzen-
szwalb et al., 2010; Yang and Ramanan, 2013], the method presented in this sec-
tion is aimed at full human body detection in 2D images with a focus on the
discriminative capabilities of the introduced covariance-based descriptors. Us-
ing the previously defined Riemannian geometry operators, this section reviews a
part-based classifier paradigm in the form of manifold atlas-based learning, as an
introduction to the development of algorithms with manifold designed constraints.

Covariance-based descriptors capture the amount of feature variability rela-
tive to a 2D image region, losing any structural information. This should offer
tolerance to intra-class noise such as person pose or scale transformations. The
geometric distribution of the descriptor plays also a major role in the methodology
presented in this section. As different descriptor samples may constitute a sparse
topology on the Riemannian manifold —due to the implicit object variation—, a
single projection to the tangent plane would not be accurate. Therefore the inte-
gration of these conditions in a boosting framework is introduced, which provides
a strong classification criterion as the result of a collection of weak classifiers. In
this case, the weak classifiers will be represented by separation planes learnt by
regression in the tangent space relative to a subset of covariance descriptors. This
provides an atlas based model which, iteratively, learns the complete manifold
distribution and naturally contributes to a part-aware classification methodology.

This section is a recap of the approach presented in [Tuzel et al., 2008b] and
is intended to provide a proof of concept about the suitability of covariance-based
descriptors for certain applications, along with an example of the integration of
standard machine learning techniques to the particular manifold topology of the
descriptor space.
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2.4.1 Riemannian Manifold Boosting

The simplest classifier in a R™ linearly separable Euclidean space can be taken as
an example: a point and a directional vector can define a discriminative function
that divides the data space into two class regions. Equivalently, in a n-dimensional
differentiable manifold, a point and a geodesic vector could be used as the defini-
tional elements for expressing a separation curve on the manifold. Thanks to the
exponential mapping function, this curve can be found in its projection as a vector
into the tangent space relative to a reference point. But, as reviewed in previous
sections, the projection to a tangent space is only valid for small neighbourhoods
of the Riemannian manifold, therefore there does not exist a unique mapping that
preserves the distances of the points for all the elements on the manifold.

weak classifier f;

weak classifier f,

Sym*q

(a) (b)

Figure 2.3: Example of two iterations of the boosting procedure for learning weak
classifiers for a given set of samples on the manifold. The tangent space with
respect to each iteration mean provides the best weak classifier obtained by re-
gression on the tangent space. Then the mean is relocated thanks to the obtained
function, and provides a new chart of the manifold atlas for the next step pro-
jection. This procedure is repeated until a minimum projection error threshold is
achieved or a maximum number of weak classifiers are obtained, keeping the set
of projection means and weak classifiers as the manifold classification atlas.

A possible approach for accurately learning a classification function on top
of the complex distribution of points on the manifold is to provide an iterative
approach for training several classification functions in tangent spaces that act as
charts of an atlas of the manifold. These classifiers will be aggregated on a single
classification criterion in a boosting approach [Schapire, 2003]. Boosting is con-
sidered as a general meta-algorithm for performing supervised learning by a set of
simple classification functions, so-called weak learners, which work together in
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benefit of a single strong learner. This approach serves two purposes: preserving
the structure of the manifold and learning the classifiers on the associated tangent
spaces by standard machine learning techniques.

For obtaining the minimum error of a set of points X; € Sym. with respect
to the tangent space projection on a point Y € Sym,, we intuitively want to
minimize the following error expression along the different charts of the manifold
atlas:

N N
= Z 5(X;, X;) — |lvect(logy (X;)) — vect(logy (X;))]l2)”  (2.12)

i=1 ]=1

which evaluates the sum of squared pairwise differences between distances of
points in the manifold (equation 2.8) and their homologous distances on the tan-
gent space projection with respect to Y (using the vectorization and tangent map-
ping operations defined in equations 2.11 and 2.4 respectively).

Since the mean of a set of points of the manifold (equation 2.10) is precisely
the point at the minimum distance of all the samples in the set, it can be used
as the projection point of each atlas chart. In order to classify all the points of
the manifold with the minimum error, the mean will be refined iteratively in the
following boosting framework as shown in figure 2.3.

LogitBoost [Friedman et al., 2000] is a particular Boosting algorithm which
casts the iterative learning of weak classifiers into a statistical framework. Weak
learners are approximated by minimizing the negative binomial log-likelihood of
the supervised learning data. That is, considering a binary classification problem
with the labels y; € {0, 1}, (“no-person”, “person”) the probability of a sample X
of being in class “1” is given by:

oF(X)

PX) = T e Fo (2.13)

where F'(X) is defined as the strong aggregation of L weak learners { f;(X)},=1. 1

1 L
=3 Z: (2.14)

The set of weak classifiers { f;(X)},=1.1 can be learnt by fitting a weighted least
squares regression function of the training samples (in its tangent space projected
vectorized form, z; = vect(log,, (X)) € R™). y, is the projection point of the
current manifold chart, which can be relocated iteratively thanks to the response
values z; and weights w; of the current weak classifier evaluation and the super-
vised samples likelihood (equation 2.13):
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yi — p(Xi)
p(Xi) (1 —p(X7))
w; = p(X;)(1 — p(X3)) (2.16)

Zi =

(2.15)

As a summary, with this boosting procedure we are learning the functions
filx) : R™ +— R by regression in each tangent space and the projection mean
associated to each weak classifier, iy € Sym;. The full procedure is presented
in algorithm 2.1. Finally, the classification decision of an unknown sample can be
obtained by the aggregation of the learnt set of weak classifiers as depicted also in
figure 2.4:

L
class(X) = sign [% Z ] (2.17)

Figure 2.4: Classification evaluation of a sample X € Sym} by its projection to
the atlas of tangent spaces 7}, and the evaluation of the respective weak classifi-
cation functions. The final classification decision is the aggregation of the sign of
X with respect to these functions.

2.4.2 Cascade of Riemannian LogitBoosts for Part-based Classifi-
cation

The introduced Riemannian LogitBoost approach is a feasible method for clas-
sification of a set of covariance-based descriptors but human bodies, being part-
based objects, can not be ideally defined by a single descriptor model covering
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Algorithm 2.1: One-level Riemannian LogitBoost learning algorithm

input : Training set {(X;, v;) }i1.n, X; € Sym, y; € {0,1}
L max. number of weak classifiers
output: Strong classifier function as a set { F;} = {1, fi}i=1..L
1
2 Initialize

3 F(X;) =0;

4 p(X;) = %;

s w; = 1/N;

6

7 for [ < 1to L do

8 - Compute response of samples Vi at the current iteration:

9 |z =(yi —p(Xi))/ws;

10

11 - Compute weighted mean of the points through eq. 2.10:

12 [ = exp (2% SV wilog(Xi))

13 - Map each training point to the tangent space at z;:

14 for i <— 1 to # of training samples do

15 | i = vectlog,, (X;));

16 end

17

18 - Fit the f; function by by weighted least squares regression of samples
x; to response values z; using weights w;.

19

20 - Update strong classifier, sample class probabilities and weights for all
samples X;:

n | F(X) = F(X) + 3 filzi);

2 | p(Xi) = =i

23 w; =p(Xi) (1= p(Xy));

24

25 - Store in the output set: {F;} = {1, fiti=1.1;

26 end
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the complete human body variability. Therefore, a part-based classification is the
natural extension to deal with this situation. Provided that covariance-based de-
scriptors are fast to compute, [Tuzel et al., 2008b] developed a cascade scheme
of part-oriented LogitBoost classifiers, where region descriptors are obtained in a
greedy manner. A rejection cascade organization is a simple way of applying a
set of sequential classification methods to an unknown sample in order to improve
accuracy or, as it is our case, also to introduce specific part-based classification
information.

NO person NO person NO person NO person

Figure 2.5: Scheme of Cascaded Riemannian LogitBoost classification.

Besides this straight part-based classification motivation, a cascade scheme
provides the main enhancements of allowing the learning of specifically part-
oriented classifiers, with their own optimal manifold atlas, via an independent
error minimization and a variable number of weak learners tailored to each cas-
cade stage. A rejection cascade classification acts as follows: provided a set of
N = N, + N, positive and negative learning samples, respectively, each cascade
level k is trained in order to classify the set of { X, },—1 n, negative examples (as
depicted in figure 2.5). Samples correctly classified are removed from the learning
set, therefore the cascade focuses on correctly training the remaining elements at
level k£ + 1, improving accuracy. In order to adapt the number of weak classifiers
at each cascade level, a margin constraint is imposed. If one wants to determine
that a cascade level £ is optimized to detect at least the 99 percent of the avail-
able positive examples Nz’f, and to reject at least the 35 percent of the negative
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examples N*, the margin constraint is defined as:

marging = pr(Xp) — pr(Xn); (2.18)

where X, will be the positive sample having the (0.99N,,)"" largest probability
over the positive samples, and X, is the negative sample having the (0.35N,, )"
smallest probability over the negative samples. Weak classifiers at cascade level
k are being added while this constraint is under a threshold, e.g: margin < 0.2.
When this is no more satisfied, the cascade level £ is considered as completely
trained and a decision boundary for that stage is stored, thresholdy = Fj,(Rn).

Computationally, the final learnt model is based on the set of K LogitBoost
classifiers, where each level k also stores the relative coordinates of used part sub-
regions (which are selected in a greedy manner, provided that images are aligned
and normalized):

{Fe} = {(wgs fea i)} (2.19)

where 7, = [z,y,2’,y'], the part subregion coordinates. The complete method-
ology is provided in algorithm 2.2.

Finally, the classification of a given sample X is obtained by the evaluation of
the following expression for each level k:

Ly
classg(X) = sign Z fra(vect(log,, (X, ,))) — thresholdy (2.20)

=1

2.4.3 Discussion

The methodology introduced in this section has been implemented in MATLAB
with the main purpose of testing the value of an atlas-based manifold learning al-
gorithm, and gaining expertise on the development of machine learning algorithms
introducing Riemannian geometry constraints in its formulation. A complete
qualitative and quantitative experimental evaluation of this method is provided
in [Tuzel et al., 2008b] in terms of image classification and detection accuracy.
Tuzel et al. include an exhaustive experimental set-up on top of the INRIA pedes-
trian dataset [Dalal and Triggs, 2005] and the DaimlerChrysler dataset [Munder
and Gavrila, 2006], which demonstrates how this new family of descriptors can
outperform standard descriptors, such as linear classifiers using Histogram of Ori-
ented Gradient features. Using the INRIA dataset we assessed the accuracy per-
formance of the cascade boosting classifier, reproducing the experimental results
of Tuzel et al.
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Algorithm 2.2: Cascade Riemannian LogitBoost learning algorithm

input : Training set {(X;,v;) }i=1. v, Xi € Sym), y; € {0,1}

K = max. number of cascade levels;

margin = 0.2;

R =200; (max. number of part subregion window candidates)
output: K cascade model {Fy.} = {(1xs, frr,7ri)}

for k +— 1to K do

[S]

3 Prepare set of negative learning examples: classify { X, },—1_, with
(k — 1) classifier cascade levels and remove correctly classified samples.
4 Initialize
5| Fu(Xi) = 0;pk(X5) = 55w = 1/N;
6 X, = (0.99N,)-th X,
7 X, = (0.35N,,)-th X—;
8
9 while py.(X,) — pe(X,) < margin do
10 - Compute response of samples Vi at the current iteration:
1 zi = (i — p(Xi)) Jwi;
12 - Compute random subregion covariance descriptors:
13 {Xsubregionk’L}t:l...R
14 for subregion <— 1 to R do
15 - Perform weak learning steps as in algorithm 2.1:
16 - Compute 14, map subregion points to the tangent space, and
fit the fj; function by by weighted least squares regression of
samples { Xupregion, , | to response values z; and weights w.
17 end
18 - Choose best subregion classifier f;; s.t. minimizes:
19 Uy, p(w)) = = X, [log(p(x:)) + (1 = yi)log(1 — p(x,))]
20 - Update strong classifier, sample class probabilities and weights for
all samples X;:
21 F(X;) = F(X;) + 1 fu(zy);
z || p(X) = o
23 w; =p(X;) (1= p(Xy));
24 - Sort samples by descending p(X;). Update X, and X,
25 end
26 - Store in the output set: {F.} = { (i, fri, 7%1)} and
threshold;, = Fy(Rn).
27 end
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Nevertheless, the main interest of this section is focused on assessing the im-
pact of dividing the manifold in charts of an atlas, so using the same experimental
conditions as Tuzel et al. (splitting the INRIA dataset into a training set of 2416
positive samples and 1218 negative samples, using a set of 1132 positive samples
and 453 samples for testing, and rescaling the sample images to 64 x 128 pixels
for descriptor computation) it was intended to test the effect of a growing number
of cascade stages on the overall accuracy level of the classifier. Figures 2.6 and
2.7 present, respectively, the results of overall accuracy (7P+TN/TP+FP+FN+TN),
precision (7p/TP+FP) and specificity (7n/TN+FP) of the classification method ac-
cording to a different number of evaluated cascade stages for classifying the test-
ing set. As expected, these levels increase as long as cascade levels are increased
as well. One of the benefits of the cascade mechanism is that it preserves a high
level of specificity, as by design each classifier level is trained with the constraint
of performing good negative sample rejection. Additionally, an overall perfor-
mance convergence in terms of accuracy can be observed for a given number of
used cascade stages, which indicates that a further division of the manifold into
subsequent atlas charts would not be necessary.

Accuracy of Cascaded Riemannian LogitBoost
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Figure 2.6: Accuracy of the classifier vs. number of stages used for rejection.
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Precision and specificity evolution
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Figure 2.7: Precision and specificity values vs. number of cascade stages.
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2.5 Medical Image Retrieval

The challenge in medical image classification and image-based retrieval comes
from several handicaps: low availability of training samples, subtle changes be-
tween different image sources, differences on data origin, or low-level feature
variabilities [Miiller et al., 2004]. The ImageCLEF image retrieval challenge [Vil-
legas et al., 2015] provides a benchmark to test the impact of different image
classification and feature selection methods, specially those using visual and/or
textual information in medical image classification [Garcia Seco de Herrera et al.,
2015]. As previously reviewed, in the computer vision area research many pat-
tern recognition methods have been developed for image classification. Most of
them include the development of content and feature selection functions, or the
usage of keypoint extractors and associated descriptors which can be later cat-
egorized by supervised classification methods (support vector machines, boost-
ing, neural networks, etc). This chapter section is based on the submission of a
covariance-based descriptor image classificatio method to the medical subfigure
classification task of ImageCLEF, which provides 30 different classes including
diagnose images (radiology, visible light photography, microscopy, etc.) and also
generic biomedical illustrations. More details on the challenge task can be found
in [Garcia Seco de Herrera et al., 2015].

The presented approach adapts the already introduced framework with color-
aware feature vectors, considers covariance-based descriptors as discriminative
signatures for whole images, and formulates a sparse representation based clas-
sification approach for learning a dictionary of medical image classes on the de-
scriptor manifold. Special motivation comes by the demanding conditions found
in the different images of the medical classification subtask. The evaluation results
are presented and discussion of this methodology arises from the direct output on
the challenge participation. We are particularly interested in seeing if this pro-
posed description, using purely visual information, is discriminative enough with
respect to methods from other participants which are based on textual information
rather than only visual features. This would assert the feasibility of the presented
methodology and proof that its performance can be on par with other methods
which use also complementary textual features for complex image retrieval.

2.5.1 Covariance-based Descriptor for Medical Images

An inspection of the provided data of this medical image retrieval challenge makes
evident that class separation from purely visual cues is not a trivial task. Different
image sources might share visual features, or suffer from a lack of discriminative
salient cues (see figure 2.8), and images often have different sizes. This yields to
the intuition of what should be taken into account, and how the covariance-based

25



DMFL DMTR

DRAN DRCO

DRUS DRXR DSEE
DSEC B = DSEM
gl TN YT
DVDM DVEN DVOR GCHE GFIG

GGEL

w» M,ABCDEM, w

Alcohol consumption -
[Alcohol consumption]

GPLI

Figure 2.8: Example of different samples of the different 30 classes present on
the ImageCLEF medical classification task. More details on class hierarchy and
terminology can be found in [Garcia Seco de Herrera et al., 2015]

descriptor framework suits this application. There are several information cues
that are equally important: not only texture patterns, but also color, sparsity, struc-
ture features... And even more important than the features themselves is the fact
that the modelling must take into account all the feature interactions together. For
instance, a diagram figure in a medical publication can be in grayscale just as an
electron microscopy image, but structural features in a diagram contain pure lines
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or geometrical shapes which are not present on a biological tissue captured by the
microscope. At the same time, different microscopy devices might capture sim-
ilar natural tissue patterns, but a visible light microscope can capture a different
range of color spectra than a transmission microscope. Therefore, in an analogy
with a natural visual perceptual system, the goal is to model the space of different
visual cues and their joint relationships, just as the notion that is embodied by the
proposed covariance-based descriptor framework.

An ideal image representation must encode all images in a common compact,
size invariant notation regardless of the different image sizes. In order to formally
define this 2D color feature based covariance descriptors, the following feature
selection function ®5p (1) for a given image I is denoted as:

®yp (1) = {¢-medy, Vo, y € I}, 2.21)

which provides a set of feature vectors ¢_med, , for each one of the pixel coor-
dinates {x,y} inside all the image /. These 11-dimensional feature vectors are
expressed as:

gbfmeda:,y = [l‘; Y, Rw,ya G:v,ya Bx,ya |Im|x,y; |Iy|x,ya

Il (2.22)
e [T gy 1T |2y, \/(I’f)iy + (1v)?2 arctan&

AT |

which are similar to the features used in equation 2.2 but now include RGB color
values in addition to pixel spatial coordinates, first and second order image in-
tensity derivatives and their magnitude and pixel curvature. These cues provide
information about the color distribution of a given image class, as well as their
texture patterns and visual structure —as found in the first and second order gra-
dient and curvature features. A schema of these features is depicted in figure 2.9
Then, for a given color image / the covariance descriptor associated to the whole
picture can be obtained as the regular covariance matrix introduced in previous
sections:

N
1
CovMed (®2p(1)) = 2 (¢p-med; — ) (p-med; — )", (2.23)
where 1 is the vector mean of the set of vectors {®,p} within the image 1.
The resulting 11 x 11 matrix C'ov M ed shares the same structure and proper-
ties as previously defined covariance-based descriptors: it is a symmetric matrix
where the diagonal entries will represent the variance of each feature channel, and
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Figure 2.9: Different cues involved in the descriptor building for an image of the
endoscopy class (leftmost subimage). The resulting C'ov M ed covariance descrip-
tor is shown in the rightmost sub-figure. Images of the same class share similar
covariance descriptor signatures, while images from classes with different color
distributions and shape features have differentiated descriptors.

the non-diagonal elements represent their pairwise covariance. This descriptive
signature is robust to intraclass spatial transformations, such as rotations and scale
transformations: even if pixels are translated or scaled, their unstructured collec-
tion for the covariance description will share the second order moment statistics
leading to an equivalent matrix. Finally, this image level family of descriptors
does not depend on computationally loading intermediate stages, such as keypoint
extractions, and provides a compact signature for images of any given size.

2.5.2 Manifold-regularized Sparse Representation for Classification

For the classification of the proposed 2D color feature based C'ovMed covari-
ance descriptors this section introduces a sparse representation based classifica-
tion method, taking into account their Riemannian geometry for learning the dic-
tionary of the different class topologies found in the descriptor space. The sub-
mission of this method to the ImageCLEF medical classification task has served
two purposes: in a first instance it tests the performance of this approach in the
heterogeneous class distribution found in the provided medical image dataset. In a
second place it compares the performance of the presented approach against other
participants which use other textual-based retrieval methods. This can provide an
unbiased, quantitative comparison scale for proofing the concept that a purely vi-
sual classification method can be on par with more complex text-based retrieval
approaches.

The topological layout of the proposed covariance-based descriptor yields to
focus on a geometrically sensitive classification method which can exploit the
Riemannian spatial distribution of the descriptors. Sparse representation based
methods [Wright et al., 2010; Zhang et al., 2011] have shown a recent rise in the
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machine learning community in the context of face recognition. In this applica-
tion, two key concepts are very relevant: sparsity and collaboration. They are
related to the complexity of the model learning: not only because a complete set
of learning samples is hardly available, but also because an unknown element can
share characteristics from different classes. As this also the case in medical image
retrieval, where images from a particular class might be scarce and the low-level
visual cues provide a complex class definition, we propose a new sparse method
formulation adapted to the manifold of 2D color based covariance descriptors.

In its general formulation, sparse representation based classifiers propose to
consider a test sample ¢ as a linear combination of elements in a dictionary A of
training samples from different classes: ¢ = Aca, where « is the sparse vector
indicating the weight coefficients for each element in A. As the sample ¢ should
ideally be represented by using the less number of samples, and as accurate as
possible, « is found forcing its sparsity via its L1 norm minimization constrained
as follows:

& = argmin {||al|; + |lc — Aa|3} (2.24)

Then, given &, the classification label for c is determined by the subset of training
samples of a given class ¢ which provides the minimum representation error:

class(c) = argmin {error; s.t. error; = ||c — A;q;||2} (2.25)
7

This initial approach shares similar fundamentals than the classical nearest neigh-
bour or nearest subspace classifiers. Equation 2.24 intuitively represents an un-
known sample as a possible combination of all elements in A, but this “collabo-
ration”” is discarded afterwards as the minimization of the residuals in equation
2.25 determines the closest distance to only a single class with the minimal repre-
sentation error, for a unique class decision.

This suggests a main concern: if some subsets of different classes ¢ and j
in the training set, A; and A;, are correlated due to similarities in the elements
of each class then the distance between two class reconstructions ||error;|| and
|lerror;||2 could be very small leading to possible misclassifications. A solu-
tion would be to avoid the L1 norm sparsity minimization constraint in equation
2.24, and express the test sample c collaboratively on all the dictionary samples
X = [Ay, Ag, ..., A,] without forcing any class sparsity prior: then the linear
representation solution could be treated as a classical least squares minimization
problem:

& = argmin {||c — Aal3} (2.26)
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The main problem is that the solution to this minimization may become unstable
and computationally expensive if the number of classes is too big (more details
can be found in [Zhang et al., 2011]).

Considering all these details, this section is providing a sparse representa-
tion minimization expression taking into account the prior knowledge found in a
learning dictionary of samples in the manifold, by means of their tangent space
projection atlas and a regularization term taking into account the distances on the
manifold. Figure 2.10 depicts a schema of this classification paradigm.

Figure 2.10: Schema of the sparse classification method on top of the covariance
descriptor manifold.

Let A be the whole set of n training samples, in its vectorized form accord-
ing to equation 2.11, from K different classes: A = [A;, Ay, ..., Ax] € R*"
where each 4; = {vect(log; (CovMed;))} is the set of vectorized covariance
descriptors which form the subset of training samples for the class 7. And let
a = [aq, ag, ..., ak| be a vector of weights corresponding to each one of the train-
ing samples in A. Then, the sparsity restriction on « can be achieved via its L2
norm minimization, proposing a manifold-aware minimization constraint which
relaxes the computational expense of the method and adds numerical stability:

& = argmin {||C — Aal3 + || De[|3} (2.27)

(6%
where D is a diagonal matrix of size n X n which allows the imposition of prior
knowledge on the solution with respect to the training set, using the Riemannian

metric defined in equation 2.8. This term contributes also on making the least
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squares solution stable, and on introducing forehand sparsity conditions to the
vector & as well. D is defined as:

S(AL C") 0
D = (2.28)
0 6(Ay,, C")

where A’ and C” are the unvectorized covariance descriptors for training and test
samples respectively. The solution to the sparse collaborative representation, &,
can be calculated by the following derived expression according to [Zhang et al.,
2011]:

&= (ATA+DTD) T ATC (2.29)

Finally, the classification label of the test sample C' can be obtained by observing
the regularized reconstruction residuals from the resulting sparse vector &:

class(C) = argmin {M} (2.30)

i [l

2.5.3 Results

In order to evaluate the method, the medical classification task in the ImageCLEF
challenge provided a set of more than 4500 images of the different classes for
learning, which were used for modelling the dictionary of covariance descriptors
for each class and the candidate test labels after the closed form of equation 2.29.
Participants were allowed to submit the classification decision labels on a test
set of 2244 images, which were estimated according to the provided formulation.
A cloud-based service was provided for collecting the participation and evaluat-
ing each participant submission performance. The evaluation score used on the
task performance assessment is the classification accuracy ratio for all the classes,
computed as the ratio of true positives and negatives over the total number of sam-
ples. The top results are collected in table 2.1, which are also publicly available
on the challenge website '.

Before the submission of the approach to the ImageCLEF image retrieval chal-
lenge, the presented method was tested on the provided training data set, using a
10-fold cross-validation. Each fold was adapted so at least 20% of samples of
each class were kept in each subset. In classes with a very low number of samples
which would cause to have some folds without class representation, some samples
where duplicated. Therefore, classes with very few samples where guaranteed to
be balanced and represented on the training set of the classification method. After

'http://www.imageclef.org/2015/medical
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Method Features | True positive ratio
Participants 1 | Visual + text 67.60
Participants 1 | Only visual 60.91

Our method | Only visual 52.98
Participants 3 | Only visual 45.63

Table 2.1: Top accuracy performances after submission evaluation of the Image-
CLEF medical classification task. The presented method accuracy is placed after
the most accurate method. Using only visual features it is close to the best method,
which also exploits textual information associated to the training samples.

iterating the cross-validation runs, an average accuracy of 73.24 % was obtained.
As it has been commented in the methodology description, the presented classifier
arises as a method for expressing unknown samples as the best sparse represen-
tation regarding to a learning set. Therefore, this increase on the accuracy in this
preliminary test evaluation is explained as a direct effect of the balancing prepro-
cessing of those classes with very few elements.

Table 2.2 presents the different precision and recall values for each class once
the groundtruth annotations of the testing set were made publicly available, and
observes if there is a particular correlation between these values and the different
sample size of each class. As it can be observed, mainly due to the nature of the
data or the difficulty on acquiring and labelling images from certain classes, the set
of images is clearly unbalanced, which affects the method performance. Besides
the accuracy evaluation of the presented approach, this provides a valuable focus
on a previous balancing stage which we will integrate into the presented method
in future applications, as described in chapter 6.

2.6 Conclusions

This chapter has provided an introduction to covariance-based descriptors for 2D
images. This descriptor translates the domain of d-dimensional feature observa-
tions within regions of interest to the space of feature covariances, capturing the
joint distribution of those feature variabilities. Properties of this family of descrip-
tors include intra-class variability tolerance due to its construction, loss of struc-
tural information which leads to invariance to scale and spatial transformations,
and a compact notation. The particular structure of covariance-based descriptors
is also meaningful, as they lie on the Riemannian manifold of symmetric positive
definite matrices, Sym.}.
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Class D3DR | DMEL | DMFL | DMLI | DMTR | DRAN | DRCO | DRCT | DRMR | DRPE

Class # 112 60 312 266 77 7 27 6 43 4
Precision | 0.5300 | 0.1584 | 0.6629 | 0.6810 | 0.3875 0 0 0 0.1579 0
Recall 0.4732 | 0.2667 | 0.7436 | 0.5376 | 0.4026 0 0 0 0.1395 0
Class DRUS | DRXR | DSEC DSEE | DSEM | DVDM | DVEN | DVOR | GCHE GFIG
Class # 0 20 0 4 1 12 4 17 8 764
Precision 0 0.0526 0 0 0 0.3333 | 0.1250 | 0.0217 | 0.1667 | 0.6600
Recall 0 0.0500 0 0 0 0.1667 | 0.2500 | 0.0588 | 0.5000 | 0.8154
Class GFLO | GGEL | GGEN | GHDR | GMAT | GNCP GPLI GSCR | GSYS GTAB
Class # 6 116 173 52 8 34 0 13 66 32
Precision 0 0.4806 0 0.0857 0 0.2143 0 0.0833 0 0.1707
Recall 0 0.5345 0 0.0577 0 0.0882 0 0.0769 0 0.2188

Table 2.2: Analysis of the cardinality of different classes in the testing set and
their associated precision and recall values. These are clearly affected by the
unbalanced class sets, which has a direct impact on the presented method due to
its underlying formulation.

Two methodologies have been tested in order to proof the conception of this
descriptor in two applications: first, in human body image detection, the part-
based nature of this classification task has been the perfect excuse for exploring
the implementation of an existing atlas-based boosting algorithm, where several
areas of the manifold have been considered both for part-oriented classifiers and
for error minimization of each weak classifier. The approach of [Tuzel et al.,
2008b]has been selected in order to develop our own expertise so further method-
ologies could be formulated in our future research. In the second part of this
chapter, covariance-based descriptors including color and other low-level visual
cues have been tested in medical case image-based retrieval. In this case, whole
images are represented by single descriptors with the goal of capturing their joint
distribution of color and structure information, as the discriminative signature for
identifying their class. Considering full-image descriptors provides the basis for
modelling a dictionary of all the possible available classes, and a sparse repre-
sentation based classifier has been developed. This second part of the chapter
has been experimentally evaluated by its submission to the ImageCLEF medi-
cal classification challenge, which provides a testing benchmark and comparison
framework with respect to classification methods from other participants.

Several conclusions can be derived: in terms of overall accuracy on both meth-
ods, the covariance of feature distributions has demonstrated to be a characteris-
tic signature of image regions, allowing to use any particular feature extraction
function under a same descriptor conception. These results settle the basis of the
framework described in this dissertation and encourage the continuation of this
research line in extended application directions, as 3D region descriptors with
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a special focus in feature fusion for combining shape and texture information.
Furthermore, covariance-based descriptors provide a meaningful, compact space
which has straightforward geometric relation on class feature modelling. They
use only low-level visual features and require very low computational cost for its
construction. The conducted research has dealt with atlas-based and sparse dictio-
nary approaches which are believed to suit other applications, such as modelling
the complete space of 3D shaped textures or dense tissue in medical images. The
participation on the ImageCLEF medical classification challenge has provided
practical outcomes as well, such as opening the possibility of fusing textual and
visual information on case retrieval, and identifying the need of balancing classes
in particularly challenging datasets as patient and medical images.
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Chapter
3D Scene Understanding

“I ran into Isosceles. He had a great idea for a new
triangle!”

— Woo0ODY ALLEN

plex scenes is a challenging task for many computer vision applications

on 3D point clouds such as object modelling, recognition or scene re-
construction. Existing approaches make use of all the available cues in the usual
two channels of information: visual photometry such as color or textures, and
shape and depth information from 3D sensors. While state-of-the-art methods
have given successful outcomes in both areas, as further reviewed in this chapter,
it is still encouraging to find a global method which can fuse information from
both two worlds, and provide a descriptive unit which is able to encode surface
definition and its correlated texture or pattern information together by adapting
the covariance-based descriptor framework features. This will be supported with
a global matching procedure specially aimed to complex scene understanding, so
it can be observed from an overall perspective, providing scene-aware geometric
constraints. This is crucial in order to cope with challenging conditions such as lo-
cally repetitive patterns or symmetries. The aim is to avoid ambiguities which can
be reduced at all levels: both locally if a shape is defined in conjunction with its
associated visual cues, and globally with a holistic match refinement procedure.

D ESCRIPTION, DETECTION AND MATCHING of points from different com-

3.1 Introduction

This chapter presents a threefold contribution: first, the formulation of covariance-
based descriptors is tailored in order to be able to gather shape and visual infor-
mation together within a radial 3D area (see figure 3.1 for a concept example).
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Figure 3.1: Example of a coherent visual and shape aware descriptor for match-
ing in a 3D scene. While the visual appearance of the ball is similar on its real
appearance and the paper printed representation, the matches should be correctly
considered only on the true 3D points, since shape information should also en-
coded on the used descriptor for matching.

Thanks to its fundamentals, the descriptor is robust to noise changes, rigid spa-
tial transformations or even resolution variations; and because of its low compu-
tational cost it can be extended to a multi-scale context for better discrimination
performance. In a second place, intrinsic properties of the descriptor are reviewed:
thanks to them it offers a procedure for keypoint extraction. Therefore, salient
points in the scene (in terms of major color and shape variation areas) can be de-
tected at the same stage where descriptors are being obtained. And finally, a game
theory based solution method which integrates local descriptor similarity with
global 3D geometric consistency for a possible registration of several scene views
is provided. This method efficiently looks for the global minimal reconstruction
error, taking into account all the available descriptor matches and avoiding local
minima which other methods could reach due to symmetries or local repetitions.
Indeed, the main key point of this chapter is showing how the descriptor frame-
work can be extended with additional layers of geometric constraints in order to
solve problems more related to the nature of described data, which are beyond the
own descriptor formulation.

This chapter is organized as follows: section 3.2 reviews the state-of-the-art
approaches and related work for the particular application of 3D scene understand-
ing and registration. Sections 3.3 and 3.4 introduce the presented contribution in
two separate sections: the covariance-based descriptor formulation for 3D shape
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and texture fusion and scene analysis framework itself, and the game theory based
solution approach for scene reconstruction. Section 3.5 presents and discusses the
results, before concluding in section 3.6.

3.2 Related Work

3D scene registration is currently an active topic in the computer vision literature,
recently compelled by advances in the sensors technology which have provided
some affordable devices and acquisition techniques. This has eased the capture of
3D information to the mass public and also produced an increase in the processing
proposals for this kind of images during the last years.

This topic has been however studied since some time ago from several per-
spectives. One of the first proposals, which is still currently considered as one of
the main methods in the 3D registration area, is the Iterative Closest Point (ICP)
[Besl and McKay, 1992]. Their method estimates the registration between two
3D point clouds, performing an iterative process in order to minimize the mean
square distance between two sets. The main problem of this algorithm is the need
of a good initialization if we desire that the iterative process converges to a global
minimum and not to a local minimum. In order to achieve this initial approxima-
tion, the typical procedure consists in the establishment of some correspondences
between specific points of the two 3D points clouds. Once these correspondences
have been established, both subsets of points can be registered by solving the
classical problem of absolute orientation [Horn, 1987].

Other state-of-the-art approaches for point set registration commonly use it-
erative algorithms such as RANSAC [Fischler and Bolles, 1981] or its variants
[Chum et al., 2004; Chum and Matas, 2005, 2008] which allow the integration of
geometric consistency as a measure for minimizing the correspondence error. This
is basically an heuristic for comparing how a set of points fits within some geomet-
ric constraints: projections to a coordinate system, error measurements regarding
arigid transformation, or relative distances amongst connected point sets. Despite
the existence of other possibilities, RANSAC is undoubtedly the predominant al-
gorithm for the geometrically consistence situation in 3D registration, thanks to
its good results and its standardized implementations. Authors like Johnson, in
his Spin Images approach [Johnson, 1997], also propose his own geometric con-
sistency algorithm based in the same conceptualization of the Spin Image, but he
also finally refers to RANSAC as the appropriate technique for more problematic
cases. In fact, RANSAC has also been used as the basis for well-known methods
of 3D scene registration which do not even use the correspondences information
and only rely on the iteratively search of the RANSAC algorithm, as shown in
[Chen et al., 1999].
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In any case, it is obvious that any registration process must rely on a previ-
ous search for correspondent points, which must take into account the similarity
amongst these candidate matches. During last years, this selection of candidate
correspondences has been achieved by using descriptors which encode exclusively
the 3D information from the scene points and can provide similitude measures
amongst points. Inside this category, Spin Images [Johnson and Hebert, 1999]
is probably the most known method, representing the neighbourhood of each 3D
point into a 2D image and later comparing it against other Spin Images by a sim-
ple correlation factor. Other popular 3D descriptors are the point signatures [Chua
and Jarvis, 1997], 3D shape contexts [Frome et al., 2004], THRIFT [Flint et al.,
2007] or, more recently, the Fast Point Feature Histograms (FPFH) [Rusu et al.,
2009].

However, thanks to the availability of 3D scanners which can also capture
texture information, some descriptors which encode simultaneously information
from the 3D shape and the color have been recently published in the literature.
Textured Spin Images [Brusco et al., 2005] are a good example of this trend. Novel
approaches include the MeshHOG descriptor [Zaharescu et al., 2009], which per-
forms a histogram of gradient of a neighborhood of a 3D point by using separately
the texture information and the 3D curvature. In order to include both cues in the
final descriptor, both representations can be directly concatenated. This same
methodology is also used from the authors of the CSHOT descriptor [Tombari
et al., 2011], which concatenates their SHOT descriptor [Tombari et al., 2010]
and the color information. Other contributions as [Kovnatsky et al., 2012] follow
a more geometric perspective, where manifold embedding procedures are used
and photometric information is implicitly encoded as part of the coordinate pro-
jection parameters.

Once the different correspondences have been established by comparing the
descriptors, this first set of matches can be filtered by the aforementioned iterative
registration methods, in order to discard the correspondences which can be incor-
rect or not accurate enough. A current challenge at this stage is posed by effects
like symmetries or repetitive patterns in the scene: a correspondence between
two 3D points could seem correct if we look individually, but incorrect in a more
global context. A global algorithm taking into account all the previously found
correspondences must be defined, allowing to obtain at the end of the process a
subset of the initial group of correspondences which are geometrically consistent
between them keeping local similitude as well.
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3.3 Covariance Framework for Scene Analysis

As previously mentioned in chapter 2, covariance matrices as descriptors have
been applied to several domains in the computer vision context. Regarding 3D
surface description [Fehr et al., 2012] was the only approach, up to the beginning
of the research conducted in this thesis, which explored different combinations of
features obtained from range images related under a covariance analysis frame-
work. Taking this as preliminary work, the present dissertation has extended it
in order to deal with 3D point cloud scenes, making use also of correlated color
information and with a formulation which is proven to be invariant to rotations,
viewpoint, noise and density variations.

3.3.1 Fusion of Shape and Visual Features

The choice of features for unstructured 3D point clouds area description has to
be carefully designed in order to cope with the inherent viewpoint dependency in
3D scenes, in addition to the own fusion with associated texture information. To
achieve this goal, a feature selection function ®(p, r) for a given 3D point p and
its neighbourhood within radius 7 in the scene is defined as:

O(p,7) ={dp,, Ypi st [p—pi| <7} (3.1

where ¢,, is the vector of random variables obtained at each one of the points p;
within the radial neighbourhood, and is defined as:

¢pi - [Rpw G:Dn Bpi? CQp,, Bpm me] (3.2)

This feature selection function includes the following observations that are robust
to spatial transformations, as they are computed relatively to the point for which
the descriptor is being obtained: first of all, the visual information is taken into
account in terms of R, G and B color space values. «, /3 and vy values are angular
measures which encode the surface information of the points within the descriptor
center neighbourhood in the following way:

e o is the angle between the normal vector in p and the segment from p to
pi, and encodes the global concavity of the surface regarding the center of the de-
scriptor.

e [ is the angle between the same segment and the normal vector in p;, and
measures the local curvature at this point in the neighbourhood relative to the cen-
ter p.

e v is the angle between both normal vectors in p and p;. Being a 3D angle, it
helps encoding the local surface curvature in a non-ambiguous way.
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Figure 3.2 shows an example of how these measures are obtained. As these se-
lected features are relative measures in terms of shape description, their usage in
the covariance descriptor formulation guarantees a rotation and view invariance,
which is a desired behaviour in descriptor performance. RGB space color values
also lose structural information and become observations of a sampling distri-
bution within the covariance descriptor formulation, therefore they will become
invariant to rigid transformations in the scene. Even if in a more formal sense an
intermediate colour invariant projection must be performed for minimizing the im-
pact of illumination variations and offering a true robustness to view changes, this
is considered beyond the scope of the presented approach and could be considered
as a future extension -thanks to the ease of the presented descriptor for including
new features. In any case, for small descriptor localities, RGB color space values
have demonstrated to be significant enough. Finally, variables are normalized in
order to have an equivalent range both for angular and color measure.

.
n

Figure 3.2: Scheme of the used features for shape information encoding. For
each p; in the neighbourhood of p, , 8 and + are the rotational invariant angular
measures.

Then, for a given point p of the scene the covariance descriptor can be obtained
by the usual covariance formulation as:

N
1

Cr(2(p1) = 1 > (p— 1) (Ep — )" (3.3)

i=1
where p is the vector mean of the set of vectors {¢,, } within the radial neighbour-

hood of N samples.

The resulting 6 x 6 matrix C, will be a symmetric matrix where the diagonal
entries will represent the variance of each one of the feature distributions, and the

non-diagonal entries will represent their pairwise correlations.
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A covariance descriptor can be seen as a high level and abstract representa-
tion which treats the observed features as samples of joint distributions, and loses
all the spatial notion (information about the number of points and their ordering)
within the region. This compactness provides a combination of flexibility -feature
distributions will contribute to the descriptor still preserving their inner character-
istics even under changes of scale and rotation in data- and robustness -according
to central limit theorem, as long as a significant enough number of samples is
used the data within a certain range within the features distribution will be cor-
rectly represented. In addition, these two facts yield a valuable performance boost
in comparison to other descriptors based on more rigid representations such as his-
tograms. Figure 3.3 shows an example of a covariance descriptor building from
the proposed shape and texture features.

G channel Bchannel

Dessriptorarea

Figure 3.3: Example of a scene view where a multi-scale covariance descriptor
is extracted on the face of an owl model. The left image shows the original 3D
scene where the overlap gradient of colors from red to blue depicts 5 different
scales used for obtaining a multi-scale descriptor. The 6 central subfigures show
the different used features, in terms of color (upper row) and shape description
(bottom row). Finally, on the right, a single scale 6 X 6 covariance descriptor is
graphically represented.

3.3.2 Manifold Topology of the Descriptor

A remarkable consideration about the proposed descriptor is its geometrical topol-
ogy. Covariance matrices, being symmetric positive definite matrices, do not lay
on a Euclidean space, but on a Riemannian manifold. Indeed, covariance descrip-
tors form the d x d dimensional space of symmetric positive definite matrices,
where d is the number of used features (d = 6 in our descriptor approach), and
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the main concern is that this descriptor space is meaningful for scene definition
purposes as it abstractly represents a geometrical location of shape and texture
distributions within a scene point area. This assertion can be visualized by a proof
of concept as shown in figure 3.4. In an instance of a scene, descriptors have
been extracted at different areas from different nature in shape and colour. Once
the manifold distances amongst the set of descriptors have been computed, Mul-
tidimensional Scaling embedding onto a 2D coordinate space has been applied in
order to graphically represent the consistency of the descriptor space. The plot
demonstrates how different points coming from different areas in the scene are
located in the descriptor space.

3D areas 20 descriptorspace embedding
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Figure 3.4: Set of scene areas where descriptors are obtained and their embedding
to a two-dimensional space. Scene areas include two ears (marked in blue and
purple) which are similar and therefore overlapped on the descriptor space plot.
As these areas suffer changes in shape, its clusters are visually disperse. The
red marked points, belonging to an eye area with changes in both colour and
shape, appear separated from other clusters and also disperse due to this intra-
area variations. Finally, yellow and green points belong to different homogeneous
body areas, therefore they appear close in the 2D descriptor space (with a slight
location variation due to slight differences in texture tone), and with a certain
cluster compactness (due to their similar shape).

The most important implication of this manifold descriptor space is that it pro-

vides a formal way of comparing descriptors, while other approaches are forced to
use distance approximations as histogram differences or correlations. While there
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exist different approaches in the literature based in local Euclidean approxima-
tions ([Cherian et al., 2011; Arsigny et al., 2006]) with an efficiency compromise
in mind, the presented method opts for the use of the geodesic distance proposed
by Forstner in [Forstner and Moonen, 1999], already commented in chapter 2.
This is adequate to this application as no prior knowledge might be available be-
tween two arbitrary descriptor points in a context of scene description and match-
ing, therefore a local Euclidean approximation might not be accurate in most of
the cases. Furthermore, with such a low dimensionality in the descriptor defini-
tion, the computational expense regarding the accuracy gain of a manifold aware
distance is permissible.

Therefore, in order to measure the similarity of two arbitrary descriptors, the
metric for computing distances between two covariance matrices C'! and C?, is
defined as follows:

6
3(CHCH = | > n*X(CL,C2) (34)
=1

where ); (C}, C?) is the set of generalized eigenvalues of C! and C?, whose mag-
nitude express the geodesic distance between the compared points, preserving its
curvature along the manifold.

3.3.3 Multi-scale Covariance Descriptor, MCOV

As computing covariance descriptors does not involve any major operation, it is
easy to extend them to a multi-scale framework by just adding several radius mag-
nitudes for the neighbourhoods around the descriptor center point. Therefore,
each point in the scene will receive not one, but a set of descriptors:

Cru(p) ={C, (®(p,r)), Vr € {r1.75}} (3.5)

The idea behind using several neighbourhood radii is that discrimination perfor-
mance can be improved if a point is supported by more than one descriptor, re-
garding a narrow to coarse set of surrounding areas, as depicted in the most left
sub-image in figure 3.3. Then, we are intentionally seeking matches of points
which are locally similar, but also related in a more global area. This can help to
avoid repeatability problems and improve detection of points in edges or borders
of scene objects. The radius estimation procedure, which is the only parameter the
proposed method needs, is self-contained in this approach and commented below
in section 3.3.4.
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Finally, in the multi-scale descriptor framework, it is easy to extend the metric
defined in equation 3.4 in the following way:

o (Car, Z 5(CL,C?) ) — max [6(C}, CP)] (3.6)

where C} and C? are the covariance descriptors belonging to each one of the
1 = rq..r5 radius scales, at each one of both scenes respectively. The formulation
behind equation 3.6 takes into account the similarities of all scales except the
one providing a lower similarity j, which is ignored because it might contain a
major dissimilarity at a given scale -due to a possible dissimilarity on a border, an
occlusion, or other artifacts.

3.3.4 Covariance Descriptor Properties for Scene Pre-analysis

Covariance matrices as descriptors have still other desirable outcomes thanks to
their mathematical underlying fundamentals which allow several scene analysis
stages. One of them is that they can be also used as keypoint detectors in a direct
way. As defined after equation 3.3, a covariance matrix C) contains the variance
of the observed features on its diagonal, and the covariance on the other entries.
Computing the determinant of a covariance matrix is equivalent to obtaining the
so-called “generalized variance”, which can be interpreted as a measure of the
degree of homogeneity of each point in the scene [Wilks, 1932]. As the used
features have been previously normalized, there is no range variation which could
interfere on this analysis. Starting with an arbitrarily big radius parameter at a
single scale (empirically we determined this as the magnitude corresponding to
the 5% of the scene coordinates volume range) the covariance descriptor matrices
for all the points in the scene can be computed, and all their determinants can be
observed. Then, the ones with higher values can be interpreted as the points which
belong to real interest areas, with inner significant variation in visual texture and
3D shape changes. It is worth to notice that these interest points are selected
implicitly from a global point of view, combining both visual and shape saliency.
Therefore, even in the case of an homogeneously coloured object like the one in
figure 3.5, keypoints are still obtained on significant parts such as eye holes or
borders.

Due to the nature of the proposed descriptor radial neighbourhood, relevant
points might tend to form small clusters as samples could be shared for closer
points, therefore producing similar descriptors. This can be reduced with rele-
vance sampling procedures like the one proposed in [Torsello et al., 2011]. In this
approach, this is naturally related to the aforementioned concept of generalized
variance and also exploited as the associated relevance of a point in the scene. We
want to explore all possible saliency clusters and isolate those points with major
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relevance in a similar formulation as the one introduced in [Torsello et al., 2011]:
for each one of the previously obtained keypoints kp at each scene S, we will
compute its relevance region I?y, as:

Ry, ={q € 8S|6xp—06,>T,Vq s.t. |kp—q| <r} (3.7)

where ¢ is the generalized variance of each point, r is a radius parameter and
T’ is a threshold parameter which we empirically set to 0.7 times the maximum
generalized variance found in the points of the scene. Finally, a measure of dis-
tinctiveness can be assigned to each one of the relevance regions [2j,:

f(p) = |Rip| ™" (3.8)

where || Ry,|| is the 2-norm of the points in Ry, and k is an equalization parameter
in order to change the relative weight of really distinctive points (the larger its
value, the more distinctiveness of points in a small patch is emphasized). It has
been empirically set k& to 1. We can finally keep the points with maximal values
according to the distinctiveness features and observe how these belong to local
isolated points within the original saliency clusters as depicted in the right image
in figure 3.5.

Figure 3.5: Visual example of keypoint analysis by generalized variance. The left
sub-figure shows the 1500 most significant points of the scene, marked by sorting
their covariance descriptor determinants (generalized variances) in descendant or-
der. Even if the color information of the object is homogeneous, interest points
have been detected on salient areas of the scene. The computational cost of such
task is minimal. The right image shows the set of points after the relevance sam-
pling procedure, which in this case isolates 488 salient points with a major degree
of sparsity regarding the previous saliency clusters. This can help reducing further
registration errors.
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This saliency analysis can also be preceded by a point suppression stage thanks
to the analysis of the rank of the covariance matrix descriptors. If different feature
observations within the neighbourhood of a given point are correlated, which is
not desirable, the rank of the descriptor matrices will be lower than the number
of used feature dimensions. This straight criterion allows discarding uninteresting
points where the covariance descriptor does not capture any significant differenti-
ation between features.

Finally, an estimation procedure of a more narrow radius value can be inte-
grated, taking into account the nature of the scene in order to fit its probabilistic
definition of points with a more accurate area sensitivity. From statistics theory
it is known that the sample mean is a good estimator of the population of a ran-
dom variable distribution, and its sampling size parameter in order to lay within
a confidence interval is modelled by Chebyshev’s inequality with the following
expression:

P(| X —p|>e) <o?fen (3.9)

where p1 and o2 are the mean and variance of the distribution that is being consid-
ered; X is the sample mean according to the number of samples n that are being
observed; and € is the threshold on data representation.

As an example, if we want to infer the number of samples such that data will
lay within 0.1 units the original distribution, with a confidence of the 95%, this
can be expressed as P (| X — p |< 0.1) > 0.95.

This is equivalent to P (| X — p [> 0.1) < 1—0.95, therefore it can be related
to Chebyshev’s inequality and generalize the following expression for an arbitrary
feature distribution:

0_2

n > 1= p) (3.10)
where p is the desired confidence value. Usually a threshold value e = 0.1 and a
confidence interval of p = 0.95 will be used. This will provide an upper bound on
the minimum needed number of samples n necessary to limit the sampling mean
confidence error to a given value. Relating this to the presented framework, while
calculating the covariance descriptors for the proposed scene pre-analysis we are
already observing each one of the six used feature distributions at each scene point
neighbourhood, and this is being kept encoded at the diagonal values of the set of
descriptors. Therefore, the boundary equation defined in 3.10 can be applied to
each one of the feature variances, defining a set of 6 candidate sampling sizes. As
this provides several lower boundaries, the maximum value of the candidate sizes
will be kept. While this is a scene-dependant, quite flexible methodology, it allows
for an adaptive method in the case there are areas with specific high variation. Its
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formulation is coherent along the points of the whole scene and provides specific
descriptor constructions, rather than using a static radius parameter for the whole
scene. Usual analyses for scenes with average homogeneity of shape and color
(as most of the ones depicted in figure 3.8, whose point clouds have densities
ranging from 20000 to 30000 points) reflect the need of taking around 400-500
samples within the radial neighbourhood. This sampling size can be translated
to a radius magnitude according to the density of the scene point cloud. For the
multiscale approach, the usage of 5 different scales is proposed, with radius scales
s ={1,1.1,1.3,1.6, 2} times the single-scale descriptor radius. This scaling dis-
tribution focuses the attention on narrow neighbourhoods, while coarse areas are
still present for disambiguation.

All these inherent benefits reinforce the idea that the proposed descriptor me-
thodology is not only suitable for the core task of 3D scene point definition, but
also integrates a set of possibilities on the statistical analysis of data, as gathered
up on this section, which provide an added value to the framework.

3.4 Globally Aware Scene Registration by an
Evolutionary Game Theory Approach

The descriptor introduced so far has proven to be discriminative enough for a local
recognition of a point in different views of a scene. The associated salient point
detector, which pre-selects a set of relevant points according to what has been
explained on previous section, is also helpful on this high descriptiveness level.
Nevertheless, if the scene contains unavoidably similar points due to facts as repet-
itive patterns of an object or symmetries, this could pose a bigger challenge for the
descriptor which could only be addressed with the help of scene-wise knowledge
taking into account these particularities. This focuses the interest on the proposal
of a descriptor matching methodology which does not only takes into account
relationships between local point similarities, but also encodes a set of global re-
strictions in order to avoid possible ambiguities in the whole scene. The proposed
framework will perform a rejection of all the points which do not fit into this set
of scene-wise constraints, leaving only a selection of correctly considered point
matches. A global heuristic for match evaluation based in the so called geometric
consistency will be proposed.

As previously stated in section 3.2, state-of-the-art approaches in scene reg-
istration are commonly based on top of iterative algorithms such as RANSAC or
its later variants [Fischler and Bolles, 1981; Chum et al., 2004; Chum and Matas,
2005, 2008]. However, there are several aspects in these algorithms which do
not suit our purposes. The most important one is the presence of a possibly high
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number of outlier matches which could have an impact in the performance of the
method due to the number of needed iterations, or even worst, the achievement of
a convergent solution which is not a correct registration. In the context of regis-
tering complex scenes with a huge number of descriptor matches to be discarded,
the impact of high amounts of outlier candidates might become computationally
intractable as well. Other drawback considerations include the need of input pa-
rameters which must be tuned in order to obtain a valid solution, and the need
of a high number of random evaluations of possible combinations producing, in
the specific case of registration, an unoptimized performance of the method and
probably different solutions for two different executions limited in time.

This section introduces a registration method for the context of matching 3D
scene views which entails a significant conceptual innovation regarding the afore-
mentioned methods. In a first place, the change of paradigm implies not to com-
pute implicitly the spatial transformation between scenes at each iteration (and to
temporarily evaluate it), but to perform a rejection of all those matches which do
not satisfy a set of constraints. The spatial transformation will be computed in a
final instance, as the result of a limited set of leftover candidate points. In a sec-
ond place, the presented method will allow to enclose a formulation expressing
the adequacy of each match within the final solution: it is proposed to combine
the geometric consistency together with the point descriptor likelihood (which, as
a reminder, is well defined by the metric in equation 3.6). Therefore the set of
constraints will be joining both local and global information. And, last but not
least, the proposed method will be independent of the presence of outlier can-
didate matches, and theoretically guaranteed to converge asymptotically towards
the solution: at each iteration, it will discard one candidate match. Therefore, the
maximum number of trials will depend on the number of match samples, which is
a clear advantage in a high presence of noise or outliers regarding an approach like
RANSAC (this will be commented hereafter in an experimental set-up in section
3.5).

This method proposes to translate the global scene matching problem to the
game theory field using the so called “evolutionary stable strategy” (ESS) solver
introduced in [Albarelli et al., 2009]. This approach presents a framework where a
set of abstract candidates of a system are successively discarded in order to obtain
the best remaining combination of them according to a defined heuristic function.
While the ESS method defined in [Albarelli et al., 2009] is a standard methodol-
ogy for game-theoretic problem solving, Albarelli ef al. have used this approach
in a more scene registration focused application context in [Albarelli et al., 2010]
and [Rodola et al., 2013]. In these cases, they use the game theoretic solver for
refining matches that have already been filtered by a standard descriptor pairing
algorithm —-MeshHOG descriptor and associated MeshDOG keypoint locator [Za-
harescu et al., 2009]. Therefore, their heuristic functions for game definition are
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limited to simple spatial constraints for a final discard of those matches. The
underlying idea is to consider all the pairwise matches of two compared scenes,
and calculate a penalty value associated to the cost of hypothetically choosing
each one of these correspondences as part of the final registration solution. In the
game theoretic framework these values are named payoffs, and can be computed
at once for a set of correspondences resulting from a descriptor matching stage.
In an analogy to a game, these payoffs will be the set of “rules”, each scene view
will be a player and each match candidate a game turn. Therefore, the best play
of the game (the best registration between scene views) will take place by the best
set of turns for both players -that is, the best set of matches at each scene incurring
on the best global cost. The aforementioned set of payoffs is codified in a matrix
notation where all the possible pair choices are being taken into account.

The following subsection presents the definition of a payoff term which is
able to integrate both global scene geometric structure constraints and descriptor
similarities. A game theoretic based solver is powerful enough for taking into
consideration similarity constraints of point descriptors, and scene-wise geomet-
rical structure restrictions for relevant challenges as symmetries or repeated areas,
in a single game definition. This is different to other current approaches which
depend on a previous descriptor extraction and correspondence stage and use the
game theory framework as a gathering of rules in order to reject match candidates
which do not fit some local surface characteristics.

3.4.1 Modelling the Game

The main complexity of the game theoretic matching framework lies on the pay-
off matrix building step, which must take into account all the possible pairwise
affections between candidate matches of both scenes. It is emphasized that each
match payoff must encode all the information that must be assigned to a pair of
points, both in a positive or a negative way: in this sense, the costs related to local
likelihood, geometric consistence, and relative distance of points will be consid-
ered together. The latter term helps in a better discard of undesired matches: the
ideal keeping of point candidates is that set which is sparse enough with local
similarities of point descriptors. This can be seen as finding the most spaced-out
sub-graph common to both scenes graphs of coordinates, where the vertices are
similar enough (see figure 3.6).

A game theory based solution is proposed as a holistic way of grouping all the
information available both in terms of descriptor similarities and scene-whise ge-
ometric prior knowledge. With these conditions, the building of the payoff matrix
is defined as follows. Let A and B be the scenes that have to be registered. Let
{an} be the set of points in A and {b,,} the set of points in B. Then there exists
a set of k candidate pairs {(a;, b;)} which have been preselected according to the
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Figure 3.6: Schema of how a common sub-graph must be selected by the game
theory solution. On the left: the graph obtained by the cloud points from the first
scene; on the right; the graph obtained by the cloud points of the second scene.
Marked in red there is the most suitable common sub-graph found within both
graphs.

best covariance descriptor likelihoods between scenes. For each pair, its game
payoff can be evaluated regarding any other pair of matches, exhaustively. There-
fore, a matrix C' of game payoffs, of size k x k, is defined for all combinations
of pairs {(a;, b;), (ax, b;) }, and it will take into account all the relationships in the
scenes with the corresponding incidence over the global registration error:

Clai,bj)(ak,b) = Pese - Pgeom (311)

where Py is the payoff related to the covariance descriptor similarity and Pyeom
is the payoff related to the geometric consistency. In more detail, both values are
defined as follows:

Pdesc - f(ai7 b]) : f(ak7 bl) (312)
fla,b) = e~ M(Cnm(a),Cn (b)) (3.13)

where dy; is the multi-scale Forstner distance between the covariance descriptors
of a and b. This term is taking into consideration a normalized payoff value asso-
ciated to the local similarity of points.

The geometric consistency constraint is defined as:

min(d(a;, ag), d(bj, b))

Peom =
& max(d(a;, ax), d(b;, b))

- g(as, ax, bj, by) (3.14)

g(ay, az, by, by) = e 1d(a1,a2)=d(b1,b2)] (3.15)
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where d(z,y) is the Euclidean distance between 3D points x and y. As we are
working with 3D information, we are able to ensure that the Euclidean distance
between points of the object is the same from every point of view.

The first min/max term in this geometric payoff was originally used in [Al-
barelli et al., 2010] and [Rodola et al., 2013], and penalizes elements which are
closer in the scene as they would incur in more error if they where selected as
a wrong part of the registration solution. Note that these approaches are based
on a previous keypoint detection and matching stage, therefore a single spatial
constraint such as this one is enough for the rejection of erroneous pair candi-
dates, provided the keypoints are correctly matched on controlled scenes. As this
approach is focused onto the registration of complex, textured scenes with still
many point candidates at this point, a second term in this payoff value is added, as
defined in equation 3.15. This adds a normalized coefficient which indicates the
structure similarity between points in both scenes. All these constraints, together
with the aforementioned Fjs. term in equation 3.13, define a single game which
is capable of selecting registered point pairs taking into account both texture and
shape information. See figure 3.7 for a clarification of the elements involved in
such calculations.

a f(a, b) b

d(a, a)

Figure 3.7: Scheme of the elements involved in payoff calculations. f(a,b) ex-
presses the descriptor likelihood between a pair of matches. d(ay, ay) evaluates the
geometric consistency on the match candidates within the pair of matches which
is being evaluated.
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A visual representation of a general payoff matrix remains as follows:

a; Qg
b; b
C= ... 0 s C(akbl)(aibj) PN a; bj (316)
Clasby)axb) 0 el a b

3.4.2 Playing the Game

Finally, it is necessary to find a stable solution to the game represented by the
payoffs modelled in C', which are in fact the implicit restrictions of the candi-
date matches of the scene registration. According to [Albarelli et al., 2009], the
evolutionary stable solution of the game is the so-called support vector x whose
response to the game is maxima: 27 Cx > yT'Cy Vy € A, where

A = {x € RF: Zle x; = land x; > 0 ¢, the space of all vectors which are so-
lutions to the game.

The support vector x can be found via the Evolutionary Stable Strategy solver
algorithm proposed in [Albarelli et al., 2009]. If z; > 0, then the match belonging
to column or row ¢ in C' is marked as a positive correspondence. The own values
x; can be considered as normalized weights expressing the confidence associated
to each correspondence. In [Albarelli et al., 2009] some other valuable details are
examined: in a first instance, it is shown that if a mixed solution is wanted (that is,
more than one element in z satisfies x; > 0), then it is necessary that ¢;; = 0 and
¢;j > 0 Vi # j. Ina second place, the algorithm is proven to converge to a unique
and global solution which takes into account all the payoff values associated to all
the possible matches between scenes. And finally, this convergence is guaranteed
in an asymptotic way and with a linear time complexity per iteration.

Therefore the solution found in the support vector indicates the indices of the
subsets of correspondences in both scenes which can be used to find the spatial
transformation needed in order to change the coordinates of one scene into the
other, by solving the problem of absolute orientation [Horn, 1987] for registration.
All the involved steps of this approach are summarised in algorithm 3.1.
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Algorithm 3.1: Overview of the proposed registration procedure

o R N N AW N
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22
23
24
25
26
27
28
29
30

input : Two scene views in the form of 3xN point clouds
output: Rigid transformation (R, T') between scene views

Stage 1: scene pre-analyisis

- Compute pre-descriptors at view 1 and view 2.
- Perform generalized variance analysis.

- Prune salient areas by relevance sampling.

- Estimate covRadius by confidence intervals.
Out: keypoints kpScl, kpSc2, covRadius

Stage 2: descriptors obtention
for kpScl «+ 1 to #kpScl do
‘ - compute each MCOV (kpScl)
end
for kpSc2 <+ 1 to #kpSc2 do
\ - compute each MCOV (kpSc2)
end
- compute distance matrix between descriptors
Out: distMatrix size #kpScl x #kpSc2

Stage 3: get candidate correspondences
for r < 1 to #rows distMatrix do
- get best correspondence according to MCOV distances

(inclusive/exclusive ratio criterion)
end
Out: set of n candidate pair matches

Stage 4: registration via Evolutionary Game Theory
- build payoff matrix C'

- apply Evolutionary Stable Strategy Solver [Albarelli et al., 2009]

Out: set of m final matches

- Compute [R, T1, rigid transformation from set of matches (absolute

orientation)
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Figure 3.8: 3D plot of the 12 models included on our database. Full scenes are
shown without added noise.

3.5 Experimental Results

The proposed descriptor approach is being validated on top of a dataset combin-
ing 3D shape with visual information. This dataset contains 12 scenes which have
been obtained using Autodesk 123D Catch ! 3D modelling software. The dataset
combines scenes of originally acquired objects and others available on the 123D
Catch website under a Creative Commons license. These models are stored as
3D meshes with photometric texture, where each vertex has a unique identifier
for experimental ground-truth purposes. See figure 3.8 for a visual representa-
tion of the 12 base models used. This dataset has been made publicly available
at http://cmtech.upf.edu/3DVisDatabase. The contained objects have been par-
ticularly selected in order to include challenging handicaps for testing the per-
formance of the presented method: repeated areas, homogeneous surfaces and
textures, and symmetries.

3.5.1 Descriptor Comparison

In order to test the descriptor performance, the MCOV covariance descriptor ap-
proach will be compared against the state-of-the-art methods MeshHOG [Za-
harescu et al., 2012] and CSHOT [Tombari et al., 2011]. In addition, the per-
formance of the Textured Spin Images approach [Brusco et al., 2005] will also be
evaluated. Even if this method was presented a decade ago, it is a variation of the
original Spin Images approach [Johnson and Hebert, 1999] which is still consid-
ered one of the classical 3D descriptors in the literature for successful matching

'http://www.123dapp.com/catch
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of dense scenes. We want to include its results in our comparison as a base line of
a method which set up a standard in 3D scene matching. The compared descriptor
approaches are used following the original implementation by their authors, and
any needed parameter (radius, bin size) is set according to the recommendations
of their original proposals -or to equivalent values regarding our approach in order
to provide the most fair comparison as possible.

3.5.2 Performance Over Noise Variations

This experimental evaluation is testing the descriptor tolerance to noise variations.
Each model in the database is affected by a variation including i) an arbitrary ro-
tation, ii) an arbitrary translation, and iii) an addition of noise to color and surface
coordinates. Noise levels will follow different Gaussian distributions with stan-
dard deviations according to 2, 4, 6, 8 or 10% of each one of the data channels.
Therefore, for each model the following cross validation procedure including 10
folds of 100 randomly selected points along the surface of the scene has been per-
formed. For each one of the evaluated points, its descriptor likelihood against the
same set of points on the variation of the model has been computed. The evalua-
tion method consists on observing the amount of false and true positives, and false
and true negatives averaged along the cross validation test, in terms of matching
scene points by their according descriptor likelihood measures. For the presented
MCOV descriptor, we will use the metric defined in equation 3.6. According to a
ratio parameter, two criteria for evaluation are presented:

e The so-called exclusive ratio, considers a match as a true positive if and only
if the descriptor likelihood between the match points is ratio times better than the
second best match candidate likelihood. This criterion variant is inspired in cur-
rent approaches as SIFT [Lowe, 2004] and has the particularity of being more
restrictive on finding true positive matches, reducing also the apparition of false
positives. Due to its behaviour, this selection is suitable for the evaluation of the
descriptor performance itself.

e The so-called inclusive ratio, considers as true positives all those matches
which are within the boundaries of ratio times the best likelihood of this set of
candidates. In this case the rate of true positive candidates is increased, but this
has the expense of increasing the risk of appearance of false positives. This cri-
terion is suitable for a whole registration procedure as a point is associated to
many matches as long as they are similar within a range of likelihood measure-
ments, at the expense of requiring a rejection method afterwards in order to deal
with elements external to the descriptor itself, as pattern repetitions in the scene
or symmetries.
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Both matching criteria are presented and evaluated in the experiments as they
might be of different adequacy regarding the application context of the descriptor:
as stated before, the main difference between both methods is the amount of tol-
erated false positives they allow. Assuming a descriptor is reliable at representing
a given area, the presence of false positives is not a drawback by itself; it is just
a side effect due to the possibility of repetitions of visual patterns or surfaces in
the scene. Therefore, the inclusive ratio criterion is more flexible and is allowing
this fact to happen. In some applications, such as object detection or scene reg-
istration, this can be a desired feature, but it puts into consideration the needing
of some sort of global mechanism which must be capable of finding repetitions,
symmetries, etc. and filter out the non-positive matches according to global error
minimizing constraints such as geometric consistence, which is why the MCOV
descriptor proposal is paired with a scene-wise game theoretic solver definition.
Nevertheless, both criteria are complementary, with a common point when both
exclusive or inclusive ratio parameter is set to 1. In this case, both criteria are
conceptually the same one.

The results of the experiment are presented as follows: for each level of noise
the ratio coefficient is moved within a range of 1 to 5 and a set of ROC curves
is obtained as exemplified in figures 3.9 and 3.10 for exclusive and inclusive ratio
methods respectively. This is useful for comparing the behaviour of the different
tested descriptors under all noise variations, for each one of the twelve available
models. As it can be observed in the separate figures, due to aforementioned com-
plementarity the ROC curve plots belonging to inclusive criterion are the contin-
uation of the exclusive criterion ones (please note the later ones are zoomed in in
order to offer a better visualization). It is agreed that in a more formal sense, the
plots should be presented continuously, and with a more extense ratio parameter
space exploration in order to offer normalized coordinate axis between 0 and 1
values. However, the current figures intend to offer more detail in order to inter-
pret the results: using the current disposition, the figures clearly display that when
the ratio parameter is set to a defined higher value of 5, some of the descriptors
have a false positive rate of 1, while other ones still maintain this value in a lower
level.

For a numerical comparison between these curves, their Area Under the Curve
(AUC) measure can be obtained. This allows to numerically summarize the aver-
age performance of the four tested descriptors over all the models in the database,
as seen in tables 3.1 and 3.2 for exclusive and inclusive ratio criteria, respectively.

We can see how the proposed MCOV descriptor is more stable regarding the
increases on the noise levels. Since other methods are working with local surface
neighbourhoods and 3D coordinate histogram representations, they will quickly
suffer this distortion on data, i.e: at bin discretisation. On the contrary, the MCOV
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Figure 3.9: ROC curves for comparison of several 3D descriptors, using the ex-
clusive ratio criterion. Each column depicts a test on a different model of the
database. Each row shows the behaviour of the descriptor under different levels
of additive noise over data (2, 4, 6, 8 and 10% of the standard deviation of color
and surface coordinates).
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Figure 3.10: ROC curves for comparison of several 3D descriptors, using the
inclusive ratio criterion. Each column depicts a test on a different model of the
database. Each row shows the behaviour of the descriptor under different levels
of additive noise over data (2, 4, 6, 8 and 10% of the standard deviation of color
and surface coordinates).
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| | n002 | n004 | n006 | n008 | nO10 |

MCOV 0.896 | 0.868 | 0.781 | 0.758 | 0.710
CSHOT 0.911 | 0.799 | 0.602 | 0.534 | 0.511
MeshHOG 0.745 | 0.703 | 0.613 | 0.528 | 0.506
Text. Spinlmages || 0.619 | 0.544 | 0.540 | 0.523 | 0.503

Table 3.1: Average AUC measures for 12 models, exclusive ratio evaluation,
100% vs 100% resolution, for 5 levels of noise. Bold values indicate the best
performance in each case.

| n002 | n004 | n006 | n008 | nO10 |

MCOV 0.991 | 0.976 | 0.961 | 0.953 | 0.917
CSHOT 0.992 | 0.913 | 0.758 | 0.616 | 0.562
MeshHOG 0.963 | 0.819 | 0.704 | 0.607 | 0.577
Text. Spinlmages || 0.750 | 0.614 | 0.615 | 0.564 | 0.533

Table 3.2: Average AUC measures for 12 models, inclusive ratio evaluation, 100%
vs 100% resolution, for 5 levels of noise. Bold values indicate the best perfor-
mance in each case.

descriptor offers a more flexible representation since it considers 3D points as
samples of a distribution and, by construction, subtracts the mean of this samples
distribution: therefore, in case of noise, it will be naturally attenuated.

Thanks to this experimental set-up, a conclusion about fusion of color together
with shape information can also be extracted, as the three database models se-
lected to be represented column-wise in figures 3.9 and 3.10 provide three dif-
ferent challenging scenarios in terms of color homogeneity, repetitive patterns or
great color variation, respectively. In this sense, one can see how classical his-
togram representations, as in the basis for MeshHOG or Textured Spin Images,
are clearly affected by color variance. The usage of the Hedwig model is a clear
challenge for the Textured Spin Images approach as the color sparsity is saturating
the illuminant binning component of that descriptor. This was in fact identified
as a possible drawback by their own authors in [Brusco et al., 2005]. Other more
flexible approaches as CSHOT or the presented MCOV descriptor offer more ro-
bustness in its representation until bigger amounts of applied noise.

3.5.3 Performance Against Resolution Changes

A very similar experiment to the one presented on the previous section is also con-
ducted by applying a high resolution variation over the models. The aim is to test
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the performance of descriptors when matching original models against a down-
sampled variation to a 50% of their point cloud density. This down-sampling
procedure is applied by randomly suppressing samples over the point clouds.

Again, by moving the ratio coefficient within a range of 1 to 5, a set of ROC
curves for the 12 tested models can be obtained under the same 5 noise vari-
ations as in the previous experiment. Tables 3.3 and 3.4 reflect the associated
average AUC measures for exclusive and inclusive ratio criteria, respectively. As
in the previous experiment, the ROC curves corresponding to the Baboon, Daniel
and Hedwig models are presented for an easier visualization of descriptor perfor-
mances. These are plotted in figures 3.11 and 3.12, again taking into account the
proposed exclusive and inclusive ratio matching criteria.

| | n002 | n004 | n006 | n008 | n010 |

MCOV 0.874 | 0.813 | 0.732 | 0.657 | 0.599
CSHOT 0.772 | 0.651 | 0.572 | 0.515 | 0.510
MeshHOG 0.561 | 0.547 | 0.523 | 0.521 | 0.511
Text. Spinlmages || 0.572 | 0.522 | 0.527 | 0.498 | 0.498

Table 3.3: Average AUC measures for 12 models, exclusive ratio evaluation, 50%
vs 100% resolution, for 5 levels of noise. Bold values indicate the best perfor-
mance in each case.

| | n002 | n004 | n006 | n008 | n010 |

MCOV 0.984 | 0.967 | 0.924 | 0.871 | 0.812
CSHOT 0.906 | 0.823 | 0.668 | 0.614 | 0.597
MeshHOG 0.616 | 0.597 | 0.522 | 0.517 | 0.521
Text. Spinlmages || 0.662 | 0.613 | 0.563 | 0.534 | 0.520

Table 3.4: Average AUC measures for 12 models, inclusive ratio evaluation, 50%
vs 100% resolution, for 5 levels of noise. Bold values indicate the best perfor-
mance in each case.

As it can be seen, both numerical and ROC curve results suggest this is a more
challenging experiment, as data is highly altered. Nevertheless, the statistical basis
of the presented descriptor is valuable again in terms of resolution robustness: as
long as a large enough number of samples is preserved, fact which we are assuring,
covariance will still encode the underlying characteristics of feature distributions.

In the other evaluated descriptors the changes on data resolution will incur
on a bigger descent of their performance. A special consideration must be taken
into account in the MeshHOG method, which requires faces information in or-
der to compute its descriptor. The applied resolution down-sampling implies the
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Figure 3.11: ROC curves for comparison of several 3D descriptors, using the
exclusive ratio criterion and reducing the resolution of the second scene to the
50%. Each column depicts a test on a different model of the database. Each row
shows the behaviour of the descriptor under different levels of additive noise over
data (2, 4, 6, 8 and 10% of the standard deviation of color and surface coordinates).
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Figure 3.12: ROC curves for comparison of several 3D descriptors, using the
inclusive ratio criterion and reducing the resolution of the second scene to the
50%. Each column depicts a test on a different model of the database. Each row
shows the behaviour of the descriptor under different levels of additive noise over
data (2, 4, 6, 8 and 10% of the standard deviation of color and surface coordinates).
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computation of an equivalent triangulation by using the edge collapse procedure
[Luebke, 2001]. This has a drastic impact on its performance as ROC curves and
AUC values suggest.

3.5.4 Exclusive/Inclusive Ratio Matching Evaluation

Figure 3.13 presents a complementary qualitative result for visually observing
the different impact of the aforementioned matching criteria on the descriptive
performance of this approach. The assignation of different ratio values, as well
as the performed criterion, affects on the number of established matches. The
equivalent case between two methods takes place when ratio parameter is set to
1.

While the exclusive ratio criterion is a usual procedure found in other ap-
proaches, its application is of limited feasibility in the context of registration of
arbitrarily repetitive scenes. As several challenging conditions must occur, it is
better to intentionally allow a certain flexibility on point matches, in order to keep
all the locally similar areas of the scene. Later on, the parts with local similarities
will be filtered by the game theory geometric consistence methodology. The con-
clusion that can be extracted from this experimental set-up is that the most feasible
criterion in order to perform this match candidate selection is the inclusive ratio
criterion.

3.5.5 Game Theory Evolutionary Stable Strategy Solver Validation

The procedure of the game theoretic approach consists in the successive removal
of error inducing correspondences, from the set of initial descriptor matches, until
the algorithm converges to a limited set of point correspondences. These must be
consistent in terms of local descriptor likelihood as well as scene-wise geometric
consistency. Since the main reason for adopting this methodology in order to dis-
card the incorrect scene correspondences is its faster convergence to a global so-
lution, and its computational feasibility over scenes with huge amounts of outlier
correspondences, it is valuable to provide an experimental set-up which validates
the performance of the proposed methodology under different deliberate amounts
of outlier descriptor correspondences. For this reason the following procedure is
carried out for different models and levels of noise:

e A fixed number of 500 correspondences is established between two in-
stances of a scene. This amount of candidate matches will be intention-
ally corrupted with increasing levels of outlier correspondences, from 5%
to 95% regarding the total amount of candidate pairs. A corruption of a can-
didate match is considered as an alteration of the coordinates from the two
scene views which should have been matched according to a local similarity
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Exclusive Ratio = 3. Number of matches = 1

Figure 3.13: Effects of the different matching criteria over the matches of Hedwig
model, which is considered specially challenging due to homogeneous pattern
areas. The test is performed using a variation of the second scene under 50%
resolution and 2% noise. The number of keypoints has been limited to 20, as can
be seen in the simulation conducted when ratio parameter is set to 1.

of the descriptor likelihoods. Thus, an outlier correspondence would pose a
challenge to the registration approach in the sense that it will not fulfil the
geometric consistency constraints.
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e Along the different iterations of the evolutionary stable strategy solver al-
gorithm [Albarelli et al., 2009], successive incoherent correspondences will
be removed according to the consecutive game payoff evaluations. As the
manually altered correspondences are known, it is possible to evaluate the
evolution of the ratio of inlier candidates regarding the remaining set. Ide-
ally, the tendency to keep the correct candidate pairs in a monotonically
increasing way must be validated.

e Starting from the initial set of 500 correspondences until a minimum of 3
finally selected matches (which is the minimum amount of correspondences
needed in order to estimate a rigid spatial transformation for scene registra-
tion), the averaged results of this experimental set-up in the 12 models of
the database can be displayed as depicted in figure 3.14. Different simula-
tions are shown, starting with different outlier percentages within the 500
correspondences. The intention is to visualize the evolution of the inlier ra-
tio, which should converge to a remaining set of correspondences where this
ratio is 100%. This convergence must be reached in a monotonic increas-
ing way as defined in [Albarelli et al., 2009]. Although there exist unusual
cases where the inlier ratio evolution temporarily decreases (indicating the
sacrifice of a correct correspondence at a given iteration), the overall cres-
cent evolution shown in the figures certifies the correct performance of the
approach even in cases where a very low presence of initial correct matches
is set up.

An ideal comparative experiment must contrast the performance of the evolu-
tionary game theory based approach against any commonly used iterative RAN-
SAC-based approach. But the difference on paradigms complicates the establish-
ment of any comparative criterion: while the approach presented in this chapter
is based in a constraint-based rejection methodology, and we can evaluate the in-
lier ratio evolution of the remaining set of match candidates at each iteration; any
RANSAC-based approach is usually based in an iterative hypothesis evaluation
until a minimal error is found. At each iteration, a sub-sampling of point candi-
dates takes place: this means that the ratio of inlier candidates will evolve in an
erratic way during iterations. Furthermore, the number of iterations will vary for
different executions of the method. And as each iteration hypothesis is a spatial
transformation itself, its evaluation will also depend on an error threshold param-
eter which will directly affect the inlier discrimination. Finally, for this same
reason, noise on data will also affect the system. This will not happen on a game
theory approach as this method will implicitly select the elements in the payoff
matrix with less noise, and the solution will be consistent no matter how many
different executions are done.
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For all these reasons, we finally compare both approaches via the number of
iterations needed, which can be a good justification baseline. The proposed evo-
lutionary game theory method, being a rejection based approach, will not surpass
the number of initial candidates -500 in the current set-up- and this upper bound
will be constant regardless the initial inlier ratio. On the other side, in an iterative
approach the number of needed iterations can not be exactly established a priori:
in this sense, [Hartley and Zisserman, 2003] provides a theoretic approximation
for an estimation of RANSAC number of needed iterations /V in order to solve a
registration with a given amount of outlier elements:

__ log(1—p)

~log(1—(1—¢)%)
where s is the sampling size which is taken at each iteration, € is the probability
that any match pair is an outlier, and p is the probability that the sampling set is
free from outliers (usually set to 0.99). In a registration context the subsampling
size for estimating a rigid transformation is set as s = 4. This is taken as the
baseline of a common and standardized outlier removal procedure and can provide
estimations like the ones presented in table 3.5

(3.17)

inlier % | 715% | 50% | 25% | 10% | 5% 1%
N 8 34 292 | 4603 | 36839 | 4605168

Table 3.5: Estimation of RANSAC needed iterations N according to hypothetical
percentages of initial inlier elements.

For the experimental set-up proposed here, a 21% of inliers would suppose
the threshold value for which it is advantageous to choose the evolutionary game
theory method. As a conclusion we can see the validity of the proposed method
in the context of real scenes registration, where a limited set of initial candidate
matches can be provided by a descriptor matching, but the nature of the scene
itself can still provide a presence of repeated areas or symmetries, resulting in
outlier match candidates. The presented approach can provide an efficient solution
in a robust way, regardless of challenging conditions such as a high presence of
outliers or noise on data.

3.5.6 Global Matching Evaluation

For testing the overall performance of the descriptor in conjunction with the corre-
spondence selection stage, an exhaustive scene registration test has been designed
so each one of the twelve models has been split in halves of different common
overlap (from 10% to 70% of the surface in common). A random spatial transfor-
mation (arbitrary rotation and translation) is introduced to one of the halves. In
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Figure 3.14: Evolutionary game theory approach performance on the removal
of correspondences outliers. Each row depicts the average performance on the
proposed set-up for all 12 models in the database, for different levels of noise:
1%, 5% and 10% the standard deviation of each feature. Each plot displays the
evolution for 7 different initial situations: 95%, 75%, 50%, 25%, 10%, 5% and 1%
of inliers: along the different iterations of the evolutionary game theory approach
the percentage of correct correspondences is evaluated.
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addition, each model is tested under different levels of noise, from 0 to 10% the
standard deviation of color and surface coordinate values. For each scene, the ex-
periment is conducted 5 different times so different halves and noise applications
are considered. This leaves a total of 4620 registration executions, which have
been evaluated as follows.

# OK registrations

Figure 3.15: Histogram of correct registrations (for an error threshold of 0.02). As
it can be see, the performance of the presented approach is rather homogeneous
on most of the experimental conditions, even with low overlap between scenes
and high levels of noise applied to data.

In order to consider a registration as correct, its registration error measure is
evaluated by looking at the average Euclidean distance of ground-truth points in
the common overlap surface. This is done after applying the found rotation and
translation which undoes the arbitrarily applied rigid transformation. In the case
of executions with applied noise, the system is solved using the modified data but
the performance is evaluated on the equivalent un-noised scenes in order to be
coherent on performance comparison. Object spatial coordinates are normalized
so they fit within the boundaries of a prism of unitary volume, therefore the error
measure is also normalized and is finally expressed as a percent ratio regarding
the overall scene range. This way, results between different size scenes can be
coherently compared.

68



An error acceptance threshold of 0.02 has been chosen, which would mean
that objects of one cubic meter of volume should have an average error of 2 cen-
timetres. By establishing this threshold the execution of all registrations can be
represented by a histogram of how many of them are considered as correct, for
each experiment conditions of noise and overlap. See figure 3.15 for such re-
sults representation. By watching this histogram, one can conclude which is the
minimum overlap between scenes for which our approach is valid -at a 20% of
common surface our method is able to perform most of the scene registrations in
a correct way.

0.015
0.01

0.005

Average error magnitude

Noise level

Figure 3.16: Average error distribution of those registrations considered as cor-
rect. As it could be expected, major errors occur on the cases of higher noise
levels and less overlap.

Figure 3.16 shows the distribution of error magnitudes for the aforementioned
correct scene registrations. As expected, the most challenging conditions are those
where the system is tested with a smaller overlap and a higher noise. Nevertheless,
by watching the value distributions on these figures, it can be conclude that the
presented approach is more sensitive to the minimum overlap need rather than to
the noise tolerance, which is coped by the descriptor performance -as tested in
experiment 4.1. This is easily arguable, as the provided system needs a minimum
of heterogeneous observable areas in order to find symmetric or repeated areas.

This experiment has been conducted in an Intel Core 15 computer with 4Gb
of RAM. As stated before, the implementation of the proposed approach does
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not pose major computational demands, and for the models in the database which
have a density ranging from 20.000 to 30.000 points the whole registration execu-
tion time takes around 140 seconds in a prototype, non-optimized implementation.
From this time, the scene analysis stage takes an average time of 17 seconds; the
descriptor candidate matching and payoff matrix construction an average time of
90 seconds; and the evolutionary game theory solver algorithm an average time
of 30 seconds. Figures 3.17 and 3.18 show some of the steps involved in the reg-
istration procedure, as well as a qualitative result on one concrete model of the
database. The second view shown in figure 3.17b has been altered with an addi-
tive noise representing the 3% of the standard deviation on each of its coordinate
and color components; and suffered an arbitrary spatial rigid transformation. The
overlapping area between both views represents a 20% of the scene surface.

3.5.7 Real-data Matching Qualitative Evaluation

This last experiment proposes to test the complete approach in the context of
scenes acquired with a Microsoft Kinect device, which suffer from sensor noise
and artefacts along the capture of the different views. Therefore, the registration
of such scenes has the drawback of not allowing a direct quantitative evaluation,
as there does not exist any direct ground-truth information of correspondences be-
tween different views, and this converts this experimental set-up in a mere qual-
itative evaluation. Nevertheless, there are still several benefits in this framework
which can help extracting conclusions about the provided methodology: in a first
place, the usage of real data can validate the statement about the performance of
the covariance descriptor against noise and resolution changes (in this case, caused
stochastically by the acquisition sensor). In a second place, it will validate the ap-
plication of the method under practical conditions like computational feasibility,
or description of differently shaped objects -from planar to round. And finally, it
will provide an example of broadening the scope of our approach to other areas
such as scene understanding or object indexing under challenging conditions: the
query objects belong to different views and can suffer small shape variations or
lack of detail in certain parts. The main power of this game theoretic approach is
that it will act as a best subset selector of points present both in the object query
and the scene, enabling a robust searching procedure.

This experiment is performed on top of the publicly available RGB-D dataset
presented in [Lai et al., 2011], which contains 300 objects organized into 51 cat-
egories as well as 22 different complete scenes. The main interest of using this
database is that included objects and scenes suffer unstructured noise due to the
own acquisition sensor, and segmented objects may have been acquired at differ-
ent resolutions and static conditions with respect to the scenes. The goal is to
perform a 3D object searching task: segmented objects will be used as query in-
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(c) Initial descriptor match candidates via inclusive ratio. The different levels of green on the corre-
spondence lines indicate the likelihood magnitude.

(d) Descriptor match candidates found as the result of the Evolutionary Game Theory solver. The
parallellism level on the candidate lines indicates a good performance on registered point sets.

Figure 3.17: Example of some steps of the whole presented registration approach
on an instance of the Baboon model, which poses a challenge due to its homogene-
ity in color and shape on some areas. Sub-figures (a) and (b) show the synthetic
views to be registered. Sub-figures (c) and (d) represent the amount of match can-
didates found by the descriptor likelihood and after the evolutionary game theory

solution, respectively. 71



Scene2 geometrical structure graph

Scene1 geometrical structure graph

(a) Geometrically consistent structure. (b) Registered point sets. Each view
is plotted on a different color.

Overlap error = 0.0049455

(c) Registered point sets with marked groundtruth points and initial overlap area.

Figure 3.18: Sub-figure (a) shows a graph representation by projecting and con-
necting the final remaining points at each scene view in order to validate the ge-
ometric consistency constraints implicitly encoded in the game theory Solution.
Sub-figures (b) and (c) show the final registration between scene views.
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stances to be found within the whole scenes, where these instances will be mixed
with clutter elements and altered by changes on resolution, spatial transformations
or incomplete views. In this context, as we know that there will be at most one
instance of each object in the scene, it is justified to use the exclusive ratio crite-
rion for initial match candidates. The rest of the methodology presented before
remains unaltered, but instead of putting two scene views of a similar size into
correspondence, we seek a spatial registration for matching a smaller object in-
side the scene. The spatially translated points from the query model regarding the
whole scene will be considered as object identifying points, therefore inferring
the presence of the element in the scene.

Different cluttered scenes and different query objects from the aforementioned
dataset have been used, with different shape and texture distributions. Qualitative
results are shown in figures 3.19 and 3.20.

3.6 Conclusions

This chapter has introduced a novel descriptor for fusion of 3D shape and vi-
sual information which is defined to work under spatial rigid transformations and
changes in noise and scene resolution. The rather simple formulation of this de-
scriptor has several benefits: it can be extended with additional features in the
future besides texture and surface information; it can be used as a salient point
selector thanks to its underlying statistical notions; and the computational cost is
low as the descriptor calculation does not involve any major operation than vector
products and subtractions. Its flexible, compact and statistical-based conception
has been analysed as the main reason of its high representation capabilities.

There are also practical advantages in the presented approach. On one hand,
MCOV only requires a parameter for radial neighbourhood, which can be set ac-
cording to each scene nature in a self-contained manner. Other methods will re-
quire fine-tuning of parameters for histogram bins, connection neighbourhood,
etc. affecting directly to their performance. On the other hand, the Forstner dis-
tance defined in equation 3.6 is a geometrically sensitive metric for the inner topol-
ogy of MCOV, which is coherent with its theoretic geometrical topology. Other
methods are based on correlations or histogram distance definitions, which might
add some error drift on the likelihood computation.

The results have been presented in conjunction with a tailored database of
twelve scenes which include variant objects in order to represent challenging
handicaps of repeated textures, homogeneous regions and symmetric areas. The
proposed descriptor has been demonstrated to have a representative and discrim-
inative capability which outperforms other state-of-the-art methods, specially in
the case of noise over data, or density variations. The computational and perfor-
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Initial 38t of corres pondenc es (1278 Selected corespondences after E55(7)

04 0.2 1 02 04 04 0.2 0 02 04

(a) Initial query matches for an instance (b) ESS acts as the best subset selector of
of “mouse” object in “desk table” scene. query matches inside the whole scene.

(c) Query instance is transformed according to the rigid transforma-
tion found after ESS solution. Inferred query points in the scene are
marked in green.

Figure 3.19: Results from the experimental set-up performed on the RGB-D
dataset. Sub-figures (a) and (b) show the different stages of our approach, where
the set of descriptor candidates (many, due to low resolution of the query instance)
are selected by the game theoretic approach. Even if the task is challenging due to
changes on the quality and different views of the query object, our defined game
achieves the goal of selecting that subset of points in the cluttered scene which is
considered to belong to the query instance. In (c), the query instance is projected
into the cluttered scene for an inference of its location.
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coffe mug
cereal box o dark soda can

red flashlight

orange soda can tissue box mouse

(a) Different object queries in RGB-D dataset. Note the differences on views, resolution and nature
of the objects.

(b) Examples of query search results in four cluttered scenes in RGB-D dataset.

Figure 3.20: Sub-figures (a) and (b) show the set of different query instances
available in RGB-D dataset, and some examples of the query procedure depicted
in figure 3.19 applied to different scenes (query inferences plotted in solid colours
on top of grayscale scene point clouds).
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mance benefits of the proposed approach suggest it is a flexible and easy descrip-
tor with many practical applications for representation of scenes with current 3D
and color sensors. Its associated keypoint detector feature can also be used on
problems which require particular computational efficiency or point reliability.

We want to reflect that the different performance of the descriptor under differ-
ent matching criteria is not a drawback, but the expected behaviour in this context.
The choice between exclusive and inclusive criteria is a matter of knowing the task
where the descriptor will be applied. For object recognition task matches, exclu-
sive ratio will be suitable as it reduces the number of possible false positives and
is more restrictive. For scene reconstruction problems, for instance, inclusive ra-
tio will be more appropriate: in this kind of applications, area repeatabilities are a
possible known handicap due to the nature of scenes (as they can contain homo-
geneous patterns). If a descriptor encodes the nature of an area, and this appears
on some places along the scene, the repeatedly found points will be unavoidable
(indeed, this asserts that the descriptor is doing what it is supposed to do). So, this
reflects the needing of a posterior method which will filter false positive matches
regarding a more global set of constraints, i.e. geometric consistencies. This has
been hereby one of the motivations for the evolutionary game theory approach
introduced in this chapter, which demonstrates the easy integration of the pro-
posed covariance-based descriptor with meta-algorithms for taking advantage of
its manifold properties.
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Chapter

4D: Gesture Recognition in Depth
Map Sequences

“Never mistake motion for action.”

— ERNEST HEMINGWAY

always direct to visualize. The gap from 2D images to 3D point clouds

supposed a straightforward transition, selecting pixels within a radial neigh-
bourhood of coordinates instead of pixel regions of interest in image planes. This
chapter extends the covariance-based framework to a fourth dimension constituted
by time, observing pixels not only on a single image plane but also in a “ray”
along its temporal evolution in sequences of frames. Temporal variability is hard
to encode so the framework extension needs some design strategies, presenting
a nested “covariance-of-covariances” descriptor along the three plane direction-
alities of a sequence of images. As we will be dealing with the classification of
recorded sequences embodying particular gestures with a start and ending rest po-
sition (hand sign language patterns, full body interaction and hand motions), the
characterization of the motion patterns by the descriptor will be done by flattening
the temporal information, fusing spatial features with their temporal variability.

E XTENDING A DESCRIPTOR FRAMEWORK one dimensionality step is not

4.1 Introduction

Automatic human gesture recognition is one other of the many challenges in com-
puter vision research. While the traditional data feed has been based on monoc-
ular image sequences or not-so-accessible motion capture installations, recently
appeared devices as Microsoft Kinect have eased the access to a valuable source
of information as 3D depth. This could help not only on the interactive entertain-
ment industry, but also broaden the scope of application to other areas with great
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research impact as elder exergaming [Gerling et al., 2012], eHealth [Garcia et al.,
2012] or remote rehabilitation treatment [Lange et al., 2012].

It is encouraging to find a robust approach which is able to avoid usual existing
problems: inter-subject and intra-class variations, repetitions in periodic motions,
different speeds between different executions of the same gesture and temporal
segmentation of a motion sequence (see figure 4.1). The compact, yet descrip-
tive capabilities of covariance matrices of feature variations, rather than encoding
the features themselves like other keypoint or histogram-based approaches, can
provide a suitable methodology for dealing with these mentioned handicaps. The
definition of 3D feature observations together with a covariance-of-covariances
notation along the spatio-temporal domain of a gesture scene gives place to the
4DCov descriptor, and leverages the framework with respect to the methodology
introduced in previous chapters. Again, this approach benefits from the implica-
tions of covariance matrices laying on a specific manifold, as this can provide a
natural framework for a classification method adapted to such spatial variety. The
spatial distribution of the descriptor has a meaningful nature as similar gestures
appear spatially clustered, and samples which share motion patterns may yield to
overlaps between class clusters. In this chapter the sparse collaborative classifier
formulation introduced in chapter 2 will be used again, exploiting the spatial dis-
tribution of a set of descriptors for adding prior knowledge on the discrimination
of anew gesture. This assertion is depicted in figure 4.2, where the spatial location
of a set of 4DCov covariance descriptors is shown, mapped from their manifold
to a Euclidean two-dimensional space via multidimensional scaling. The plotted
embedded descriptors represent different sequences from the Gesture3D dataset
[Kurakin et al., 2012], belonging to 4 different American Sign Language (ASL)
gestures.

ML TIZTZ T2

I Ty Y ]
TR T T XX

Figure 4.1: Three sequences (one at each row) depicting the same entity in Amer-
ican Sign Language (ASL), “finish”. Despite the different number of frames and
different cadence on the sign execution, the different sequences share the same
hand motion, which is what really characterizes a gesture. This is an example of
what should be taken into account by a spatio-temporal descriptor.

This chapter is organized as follows: section 4.2 reviews the related work
available on the field of human gesture recognition from depth sequences. Section
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2D descriptor space embedding
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Figure 4.2: 2D space embedding of a set of 4DCov descriptors for 4 different
hand sign language gestures. Classes may partially overlap due to similar motions
on the represented gestures, but their localization is noticeably clustered which
validates our idea of the proposed descriptor forming a natural spatial topology.

4.3 reformulates the covariance-based descriptor framework, which in this appli-
cation includes the definition of the so-called 4DCov descriptor. In this case, the
action sequence of depth images is considered as a volume which can be observed
from different planes: not only in the natural frame-wise plane, but also as slices
along the temporal axis. Therefore, for a given sequence this idea allows to obtain
three sets of descriptors encoding not only the spatial variance along depth values
of a frame, but also its variability along frames. This volume of descriptors is con-
sidered as a volume of features and nested into an other level of covariance-based
descriptors, encoding an action sequence by a triplet of covariance matrices. This
nested descriptor space is paired to the sparse representation classifier already in-
troduced in chapter 2, which is recalled again in section 4.3.2. Finally, sections
4.4 and 4.5 evaluate the classification accuracy of the proposed method with re-
spect to state-of-the-art approaches on top of four public human gesture datasets
acquired with 3D depth sensor devices, including complex gestures from different
natures, and provide conclusions and discussion on the methodology.
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4.2 Related Work

Classic approaches on human gesture recognition in the computer vision area usu-
ally relied on part-based models for limb detection and tracking in order to infer
a higher layer of abstraction where concrete motions could be identified. Sur-
vey works as [Turaga et al., 2008; Poppe, 2010] point this fact but also remark a
new tendency where methods are starting to avoid human body models and fo-
cusing more on feature extraction from the available sequences. This results in
approaches which are less dependent on separated segmentation and tracking al-
gorithms.

Current approaches can be grouped into two common categories, whether if
they aggregate information of the entire action sequence using different features;
or use information from individual frames which are subsequently joined under
some temporal structure modelling. Examples from the first group include ap-
proaches like [Bobick and Davis, 2001; Davis, 2001; Bradski and Davis, 2002]
(using several dense or histogram based motion templates), [Ali and Shah, 2010;
Guo et al., 2010] (via optical flow based kinematic features), [Kellokumpu et al.,
2008] (LBP-like features) or [Thurau and Hlavac, 2008] (HOG based representa-
tions). Examples of the latter works can be found in approaches as [Wang et al.,
2012b; Xia et al., 2012] (proposing different descriptor approaches for capturing
frame-wise restrictions between 3D joints and a later temporal modelling in the
frequential domain or via probabilistic graphical models). Some other methods
extract interest keypoints at a frame level, such as STIP (Spatio-Temporal Interest
Points) [Laptev, 2005; Bregonzio et al., 2009]. In any case, these later approaches
require higher abstraction machine learning techniques for the temporal modelling
of gestures, such as neural networks or probabilistic graphical models [Martens
and Sutskever, 2011; Xia et al., 2012; Han et al., 2010]. Due to the large amount
of parameters which should be estimated, these models require an often infeasi-
ble amount of data samples in order to reach acceptable accuracy levels on future
estimations.

Novel approaches take advantage of low-cost and portable devices such as
Microsoft Kinect for contributing to the concrete area of 3D depth-based gesture
modelling. While some methods exploit the ability of extracting human skeleton
joints (a feature which is achieved by algorithm packages on top of these devices
[Li et al., 2010; Fothergill et al., 2012; Shotton et al., 2013]); others character-
ize motion patterns from direct depth cues for a later classification [Wang et al.,
2012a; Fothergill et al., 2012; Oreifej and Liu, 2013]. Some contributions on this
last direction [Liu and Shao, 2013; Negin et al., 2013] also deliver depth gesture
datasets which can serve as a benchmark base for novel approaches.
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4.3 4DCov Descriptor for Gesture Recognition

Recent approaches have ported the basis of covariance-matrix based descriptors
to the temporal domain for characterizing gestures with encouraging results. The
authors in [Hussein et al., 2013] propose a natural extension of the work in [Tuzel
et al., 2006]: the temporal modelling is done by concatenating descriptors in a
hierarchical relationship, and the classification of the resulting elements is per-
formed by means of linear support vector machine classifiers. Even if this pro-
vides promising accuracy levels, this approach uses the covariance notion just for
its compact representation and does not exploit any of its complementary geomet-
rical benefits. The approach in [Sanin et al., 2013] is based on a similar point
of view but the used features are dependent on the human joints estimated by an
intermediate algorithmic layer of the Microsoft Kinect device. Therefore, it can
not be applied to cases where there is only raw depth information available and
joints can not be estimated, such as hand sign language. Because of these reasons,
it was considered that there was enough place for proposing novel research and
improvements on covariance based descriptors for gesture recognition from 3D
depth sequences: in a first place, it is desirable to deal only with raw depth val-
ues. In a second place, the geometric properties of the covariance-based descriptor
space should be taken into advantage as reviewed in previous chapters.

4.3.1 Spatio-temporal Coding of Features in Nested Covariances

For the task of gesture recognition, it must be identified how features are encoded
both at a local frame and at a whole sequence level. Let A be the W x H x N
depth sequence of N instant frames of W x H pixels. Then a feature selection
function for each point in the sequence p = x, y, t, ®4p(p) is defined as:

Dyp(p) ={dy, Vpe W x Hx N} @.1)

where ¢, is a feature vector of random variables obtained at each one of the points
p and is defined as:

&= [, y, A |AL] 143], 14771, 1A, -
AY 4.2
/1 AZ[2 4 | Ap|?, atan <M)] 4.2
A7

This feature vector includes the information about depth itself combined with
other coarse observations such as first and second image derivatives, gradient
magnitude and curvature. Features are normalized in order not to be influenced

81



by the different ranges on the sample space of these variables. The correlation of
these cues is encoded inside the covariance matrix formulation as follows:

1 S
Catiee (Pap(@,y,2) = 5= D (6 =) (b =), Vw,y, 2 (43)
=1

where 1 is the vector mean of the set of .S observed feature vectors {¢}.

This formulation provides three sets of covariance descriptors for each one
of the “slicing” directions on the action volume. These directions belong to the
three planes on the action sequence, depending on the fixed values for x, y and
t as sketched in figure 4.3. The notion behind this comes from considering a
gesture depth map as a three-dimensional “silhouette”, as inspired by existent
approaches as [Blank et al., 2005], with associated characteristic variabilities in
depth values along three orthogonal planes (horizontal and vertical frames, and
the temporal projection of each pixel). Therefore, a given action sequence A
will be characterized by three sets of descriptors, {Cx},{Cy}, {Cr}, encoding
the spatial or temporal changes within a row, column, or temporal plane of the
sequence, respectively. The goal is to capture not only the spatial changes within
a frame, but also the temporal evolution of a given pixel content along its temporal
domain.

The three “slice” sets {C’X7y7 7} are formed by three sets of W, H and N
9 x 9 symmetric matrices, according to the sequence width, height and number
of frames.. The diagonal entries of these matrices will represent the variance of
each one of the feature distributions, and the non-diagonal entries will represent
their pairwise correlations, for all planes observed on the sequence along the three
directions z, y and ¢. The loss of structural information along the sequence is
positive in order to identify gestures with different cadences due to each subject
execution, or with different orderings or repetitions (e.g. waving a hand or indi-
cating to approximate). Also, if there is any individually corrupting sample due
to noise or other artefacts, it is naturally filtered out in the computation of the
descriptor due to the mean subtraction.

In order to scale up the definition of a descriptor for the whole sequence A, the
own covariance magnitudes calculated as the result of these plane-wise descriptors
are considered as new features for a set of higher order descriptors, extracting their
independent coefficients by the vectorization operation defined in equation 2.11
and repeated here:

vect(C) = 01,1 \/50172 \/50173 0272 \/50273 Cd,d] (44)

The vectorization of a d x d covariance matrix is a minimal representation of all
its d (d + 1)/2 independent coefficients, which are found in the upper or lower
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Cy ={C(2(4,2,y,1)) Vy}

c(C,)

C'(C,)

Cc(C,)

Figure 4.3: Sketch of the computation of covariance descriptors along the three
orthogonal planes in z, y and ¢ dimensions. The vectorized sets c <, dy, and dT
will serve as the observations for three scene-wise covariance descriptors, corre-
lated again in equation 4.5 for a final descriptor.

triangular part of the matrix. As the off-diagonal entries would be counted twice in
anorm computation, they are scaled down in this operation by the v/2 coefficients.
Each slice direction yields to n covariance descriptors of size of 9 x 9 (R™*4% in its
the vectorized form) where n is the number of descriptors obtained according to
the number of columns, rows or frames on the sequence, respectively. The three
sets of vectorized covariance descriptors for the three plane directions are the new
features of this covariance-of-covariances notion:

R 1 X T
c'(C) = 1 Z (Os - Ms) <Cs — #s) 4.5)

S=

being C' = {vect (C (®4p(x,y, 2))) Ve, y,t} the independent coefficients from
vectorized covariance descriptors for each one of the planes of the sequence in
x, y or t, and ug its vector mean. While the “slice”-wise covariance descriptors
in equation 4.3 expressed the local variability of the features at each plane, the
newly defined global scene covariance matrices gather the whole spatio-temporal
evolution of these variabilities and characterize a complete gesture in the depth
scene by a triplet of higher order descriptors, < C'(C),C"(Cy),C"(Cy) > of
size 3 x (45 x 45).
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For a compact notation, these three final sequence descriptors can be vector-
ized (3 x R1%%%) and concatenated laying in R3!%° regardless of the number and
size of frames of the sequence. This notation is reversible and allows to come
back to the definition of a sequence by its three higher order descriptors, which
will be used later on the classification method (in equation 4.10).

4.3.2 Collaborative Sparse Classification

The representation capabilities of the proposed descriptor have a direct relation-
ship with a topological layout where similar motions stay close in the descrip-
tor space. This yields to consider a geometrically sensitive classification method
which can exploit the descriptor manifold distribution to its best extent. Sparse
representation based classifiers, as already reviewed in chapter 2, have shown a
recent rise in the machine learning community in the context of face recognition
[Wright et al., 2009, 2010; Zhang et al., 2011]. The sparsity and collaboration
concepts are defended in order to cope with cases were the training set is com-
plex, not only because a low availability of learning samples, but also because
an unknown element can share characteristics from different classes. A recap of
the methodology already used on image classification is provided and the regu-
larization constraint is adapted to the new compound descriptor nature for gesture
sequence classification.

Sparse representation based classifiers propose to consider a test sample y as a
linear combination of elements in a dictionary A of training samples from different
classes: y = Aa, where « is the sparse vector indicating the weight coefficients
for each element in A. As the sample y should ideally be represented by using the
less number of samples, and as accurate as possible, « is found forcing its sparsity
via its L1 norm minimization constrained as follows:

d:argmin{||oz||1+ ||y—A04||§} (4.6)

Then, given &, the classification label for y is determined by the subset of training
samples of a given class ¢ which provides the minimum representation error:

class(y) = argmin {e; s.t. ; = [|y — A;di[|2} 4.7)

Adding a manifold-aware minimization constraint brings back sparsity conditions
and also provides an inclusion of prior knowledge on the descriptors geometric
distribution. It also helps on relaxing the computational expense and adds stability
to the presented method. There exist several metrics for the symmetric positive
definite matrices manifold where 4DCov descriptor lays, which are specifically
focused on the retrieval of matrix similarities on close neighbourhoods [Arsigny
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et al., 2006; Cherian et al., 2013]. The proposed regularization term will be based
on the manifold metric defined by W. Forstner in [Forstner and Moonen, 1999],
already used in previous chapters. This distance definition preserves the global
geometric relationship of the descriptors as the involved generalized eigenvalues
between two covariance matrices express the magnitude of their geodesic dis-
tance:

d
5(Ch,C%) = | > *x(C,C2) (4.8)
=1

where \; (C', C?) is the set of generalized eigenvalues of C' and C? according to
their dimensionality d.

Figure 4.4: Schema of sparse representation based classification method with
manifold regularization constraints.

Let A be the whole set of n training samples from K different classes, A =
[A1, Ay, ..., Ag] € R™", where each 4; = {vect(log, ((Ca))"} is the set of
vectorized 4DCov descriptors which form the subset of training samples for the
class ¢ and d is the vectorized 4DCov descriptors size (3105). Then, a test sample
in the form of a vectorized covariance descriptor C' e R3'% can be expressed
as a linear combination of the available set of training samples: C = Aa, being
a = [aq, ag, ..., ak| a vector of weights corresponding to each one of the training
samples in A. See figure 4.4 for a schema of this classification paradigm. Then,
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a regularized variation of the minimization expression defined in equation 4.6 is
defined as follows:

a:argmin{y|é—Aa||§+ HDaHg} 4.9)

where D is a diagonal matrix of size n X n which allows the imposition of prior
knowledge on the solution with respect to the training set, using the covariance
matrices metric defined in equation 4.8. This term contributes also on making the
least squares solution stable, and on introducing forehand sparsity conditions to
the vector &.. D is defined as:

5(AL,C") 0
D= (4.10)
0 (AL, C")

where 0( A}, C") represents the addition of the Forstner distances between each of
the three sequence descriptors contained in the vectorized forms A’ and C’. The
solution to the sparse collaborative representation, &, can be calculated by the
following derived expression according to [Zhang et al., 2011]:

a=(ATA+DTD) T ATC 4.11)

Finally, the classification label of the test sample C' can be obtained by observing
the regularized reconstruction residuals from the resulting sparse vector &:

i ||

class(C) = argmin {M} 4.12)

4.4 Experimental Results

This section evaluates the presented method on four publicly available datasets
which contain depth sequences of different gestures: Microsoft Research Ac-
tion3D [Li et al., 2010] and Gesture3D [Kurakin et al., 2012] datasets, respec-
tively, contain gestures involving full body actions and American Sign Language
gesticulations. Sheffield Kinect Gesture dataset (SKIG) [Liu and Shao, 2013]
gathers a set of different forearm gestures suffering variations on hand pose, back-
ground and illumination. Finally, the WorkoutSU10 dataset [Negin et al., 2013]
contains a collection of sequences recorded from different subjects performing
several full body exercises for therapeutic purposes. Most of these datasets have
established benchmarking conditions for state-of-the-art approaches working on
depth based gesture detection. Therefore the presented results will be compared
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against state-of-the-art classification methods proposed or already tested in papers
related to the different commented datasets.

4.4.1 Tests on Action3D Dataset

The Action3D dataset [Li et al., 2010] is a collection of depth sequences acquired
with a Microsoft Kinect device. It contains a total of 20 full-body actions (“high
arm wave”, “high throw”, “draw circle”, “hand clap”, “tennis serve”...) which are
performed 3 times by 10 different subjects. Some examples of depth sequence

frames are shown in figure 4.5.

Figure 4.5: Action3D sample depth frames for different gesture classes at each
TOW.

The provided 4DCov method is compared to the results proposed on two re-
cent works [Li et al., 2010; Oreifej and Liu, 2013] which use a graphical model
for the temporal modelling of 3D points evolution and a histogram of normals
based descriptor respectively. Their respective authors also test other state-of-the-
art methods, whose results are collected here as well. The same experimental
conditions as the ones applied to the methods tested in these works are used: the
classification takes place on the whole set of 20 classes and the training and vali-
dation sets comprise folds using half of the samples for each set respectively. The
classification accuracy results are represented in table 4.1.

4.4.2 Tests on Gesture3D Dataset

The Gesture3D dataset is defined in [Kurakin et al., 2012] along a graphical model
for the real time classification of American Sign Language (ASL) gesticulations.
This method shares some similarities with the provided sparse collaborative clas-
sifier as states of the presented graphical model are shared between similar ges-
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Method Accuracy %
4DCov + Sparse Collab. Classifier | 93.01 %
HON4D [Oreifej and Liu, 2013] 88.89 %
Wang et al. [Wang et al., 2012b] 88.20 %
HOG3D [Klaser et al., 2008] 81.43 %
Lietal. [Lietal., 2010] 74.07 %

Table 4.1: Comparison results of classification accuracy levels (%) on the com-
plete Action3D dataset

tures, in the same fashion as the presented method allows several samples from
different classes to collaborate on the classification decision thanks to the descrip-
tor manifold regularization term. The dataset is a collection of 12 ASL signs
performed 3 different times by 10 subjects. Some examples of the provided depth
sequences are shown in figure 4.6.

Figure 4.6: Gesture3D sample depth frames for different gesture classes at each
row.

The original paper from Kurakin et al. proposes several algorithms for the
implementation of their graph model-based methodology, reaching a maximum
classification accuracy ratio of 87.7 % when using 9 out of the 10 available sub-
jects for training 5 random folds of the dataset. For a stable comparison, results
from [Oreifej and Liu, 2013] are gathered, which use the same dataset for their
classification method and at the same time contrasts their results with other state-
of-the-art gesture classification approaches, using cross-validation folds of half
of the subject samples for learning and the other half for validation. Results are
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presented on table 4.2.

Method Accuracy %
4DCov + Sparse Collab. Classifier 92.89 %
HON4D [Oreifej and Liu, 2013] 92.45 %
Wang et al. [Wang et al., 2012b] 88.50 %
Kurakin et al. [Kurakin et al., 2012] 87.70 %
HOG3D [Klaser et al., 2008] 85.23 %

Table 4.2: Comparison results of classification accuracy levels (%) on the Ges-
ture3D dataset

4.4.3 Tests on Sheffield Kinect Gesture Dataset

The Sheffield Kinect Gesture (SKIG) dataset [Liu and Shao, 2013] gathers a
set of 10 different forearm gestures (circular, triangular, up-down, “approach”,
“turnaround” and other motions) under different hand poses, background and il-
lumination variations from 6 subjects. This dataset poses an interesting testing
benchmark as the gestures involve fewer and more rigid subject body parts re-
garding previously presented databases. In any case, the presence of different
actions with different patterns and variations of speed on their executions are of
valuable use to proof the discriminative power of the 4DCov descriptor and its
paired classification methodology. Figure 4.7 presents some sample frames from
these sequences.

e
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Figure 4.7: Different SKIG dataset sample frames for different gesture classes at
each row. Background is noticeably lighter than previous datasets as arm gestures
are performed on top of a table close to the subjects.

While the authors in [Liu and Shao, 2013] normalize the sequences to a given
size according to their method, this step is omitted as the scale factor both on
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frame size and temporal spanning is irrelevant to the 4DCov descriptor. The orig-
inal paper also compares results from RGB and depth cue recordings used both
together and separately, and concludes that depth-only information is way more
challenging in discrimination terms. This is also relevant to these experiments
as raw depth information is the only cue used in the provided methodology. We
can therefore see the performance gain of this method when other state-of-the-art,
histogram and keypoint-based approaches, are used on raw depth sequences.

Results on the classification accuracies of the different methods are presented
in table 4.3. According to [Liu and Shao, 2013], for a fair comparison, the same
experimental conditions have been used: a cross-validation procedure with train-
ing sets consisting on 4 subjects and validation sets of the remaining ones. As pre-
viously commented, results obtained from depth only information are used in the
comparison. As observed, the 4DCov method outperforms the classification ac-
curacies of state-of-the-art approaches presented in [Liu and Shao, 2013], both for
the method presented by the authors themselves and for other approaches which
are based on linear SVM classifiers on top of state-of-the-art spatio-temporal de-
scriptors.

Method Accuracy %
4DCOV + Sparse Collab. Classifier 93.8 %
RGGP [Liu and Shao, 2013] 76.1 %
HOG3D [Klaser et al., 2008] 75.4 %
HOG/HOF [Laptev et al., 2008] 72.1 %
3D-SIFT [Scovanner et al., 2007] 61.3 %
SURF3D [Bay et al., 2008] 55.1 %

Table 4.3: Comparison results of classification accuracy levels (%) on SKIG
dataset (depth channel only)

4.4.4 Tests on Workout SU-10 Dataset

WorkoutSU10 [Negin et al., 2013] is a valuable dataset as it provides a real-world
environment for testing the introduced methodology: it contains sequences from
15 subjects with different morphologies, which are recorded in a domestic envi-
ronment with background clutter, performing 10 different fitness exercises under
the supervision of professional trainers for therapeutic purposes. Therefore, mo-
tion executions suffer variations on time spanning and gesture definition regarding
each subject. Some samples are included in figure 4.8.

Together with the dataset, Negin ef al. provide a methodology for gesture
classification from depth sequences via linear SVM classifiers on random decision
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Figure 4.8: Sample frames from WorkoutSU 10 dataset. Each row represents some
frames from different gesture classes.

forests for feature selection. Their method is based on features extracted from
the spatial location of human body joints inferred by the Microsoft Kinect SDK.
Therefore we can contrast the accuracies of 4DCov depth-based approach against
a methodology based on inferred skeletal information, which Negin et al. defend
as a powerful and richer representation of human body motion.

It is shown how the 4DCov and sparse based representation method performs
with similar levels of action recognition accuracy with total independence from
the acquisition device software, as this method works with raw depth cues instead
of skeletal information. The experimental setup in [Negin et al., 2013] proposes a
cross-validation procedure where different folds use the half of the sequences for
training and the other half for validation. In that case, and after the normalization
of available sequences, Negin ef al. obtain a 98% =+ 2.34 accuracy ratio. Under
the same conditions 4DCov obtains a 95.48% =+ 0.7191 classification accuracy.

The classification accuracy of the presented method is sensibly lower with
respect to the baseline provided by Negin et al., nevertheless our approach deals
with raw depth information instead of joint information inferred by the acquisition
device software. We consider this as an advantage in terms of method indepen-
dence, as joint inference is a device-specific algorithmic model layer that can not
always be available.
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4.5 Conclusions

The strong point of this chapter resides in the demonstrated flexibility of the
covariance-based framework for more abstract applications such spatio-temporal
modelling of raw depth sequences. The conceptual difference regarding previ-
ous chapters is found in the nested conception of the 4DCov descriptor: regular
covariances from plane-wise features are obtained in a first instance, and later
used as new features for a second layer covariance descriptor. This provides a
common-size abstract signature for gesture sequences, regardless of their number
of frames. The descriptive capabilities of the presented 4DCov descriptor lay on
the characterization of motion patterns from its feature variations along spatial
and temporal planes, rather than encoding details of the features themselves along
the action sequence volume. A classification method which takes advantage of the
geometrical topology of the descriptor in order to reflect prior knowledge from the
gesture descriptor space in its formulation is also presented.

Experimental results have demonstrated the performance and power of this
enclosed methodology. The different nature of each one of the four tested datasets
is valuable in order to extract conclusions about the observed accuracy ratios of
the compared methods. Action3D provides depth maps with high degrees of intra-
class variation due to full body gestures. The hand sign languages found in Ges-
ture3D represent a more concentrated entity in motion, combining both the overall
movement of hands and the inner variability of fingers. SKIG dataset is somewhat
similar to Gesture3D but the paper presented by their authors compares accuracy
results from 3D keypoint-based descriptors, which is valuable for us in order to
contrast the unstructured statistical approach of 4DCov. Finally, WorkoutSU10
allows a comparison of performance on gesture recognition from inferred skeletal
joint locations against raw depth data. The common advantage of the presented
method is the inherent gesture characterization, “flattening” the gesture time de-
pendence by using the feature variabilities in the nested descriptor formulation.
This simplifies the classification approach as the descriptor space contains all the
gesture information in a compact notation, and does not require to use temporal
modelling approaches. Of course this is valid in bounded contexts such as the
ones found in the presented datasets (sign languages, body motion and exercising,
hand gestures) as these motions are homogeneous and repetitive, without spurious
motion artefacts. While this is feasible in controlled environments, and temporally
segmented gestures, it does not suit real-environment situations in which the sub-
jects may interact freely with external inputs. That is the reason why one of the
continuity lines of this works is based on returning to a descriptor approach closer
to previous chapters, in which descriptors from depth features are obtained at each
frame, and the classification takes place by a manifold alignment procedure, simi-
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lar to dynamic time warping on the space of symmetric positive definite matrices.
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Chapter
3D Medical Imaging Analysis

“Once a year, go someplace you’ve never been before.”

—Dalai Lama

ways interesting for its validation, and for discovering that a work has
practical outcomes besides its original conception. We have had the op-
portunity to test our covariance-based framework in a complementary field as 3D
medical imaging, for the analysis of computerized tomography (CT) imagery. CTs
produce dense three-dimensional volume scans of bodies based on their ability to
block certain ray beams, according to their density properties. Making use of
computer-processed combinations of many scan images taken from different an-
gles, cross-sectional images of specific areas of a scanned object can be produced.
This allows to represent internal structures of a body without invasive prospecting.
The parallelism of the nature of this data with the covariance-descriptor frame-
work for 3D scene understanding provided an interesting baseline for developing
a dense three-dimensional descriptor based on tissue texture characteristics. With
the valuable feedback of expert clinicians, this has been used in several applica-
tions as case-based retrieval and tissue classification, segmentation and modelling.

O PENING THE DOOR to new applications of a developed framework is al-

5.1 Introduction

Clinical research has identified morphological tissue properties as indicators of
cancer aggressiveness [ Yokose et al., 2000] in lung tissue. Texture and size of the
solid and ground-glass opacity (GGO) components of a nodule, as observed from
CT images, can provide reliable cues in order to assess medical examination cri-
teria [Depeursinge et al., 2015], but region texture delineation and classification
is still an open and time-demanding problem. According to the clinical knowl-
edge about the typology of ground-glass opacity and solid tissue, it is established
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that the compactness, size, density and homogeneity of a nodule is differenti-
ated from healthy lung regions, despite the large variability of normal lung tissue.
The discriminative capabilities of these visual cues can be tackled from a pattern
recognition approach, which motivates and settles the basis of the work presented
in this chapter.

The remaining part of this chapter introduces an enclosed methodology for tis-
sue texture characterization in lung CT images. The 3D covariance-based descrip-
tor framework is adapted to the usage of 3D Riesz features for tissue morphology
characterization: this provides a compact and flexible representation thanks to the
use of feature variations rather than dense features themselves and adds robust-
ness to spatial changes. Furthermore, the particular symmetric positive definite
manifold of covariance matrices is exploited once again in a classification model
following a “bag of covariances” paradigm in order to distinguish three different
nodule tissue types in CT: solid (the main part of damaged tissue on a cancerous
nodule), ground-glass opacity (the external part of the nodule), and healthy lung.
The method is evaluated on top of an acquired dataset of 95 patients with manually
delineated ground truth by radiation oncology specialists in 3D, and quantitative
sensitivity and specificity values are presented.

5.2 Lung Tissue Classification in CT Images

In computer vision research, several descriptors for 3D object classification have
appeared ([Zaharescu et al., 2009; Tombari et al., 2010; Rusu et al., 2009; Flint
et al., 2007], amongst others). Nevertheless, these descriptors are usually targeted
to 3D surfaces instead of 3D dense volumes as is the case in CT images. In
the medical imaging domain, the survey conducted in [Depeursinge et al., 2014]
points out relevant techniques in applied 3D solid texture analysis and highlights
the importance of multi-scale directional convolutional approaches that are non-
separable to characterize subtle and discriminative properties of 3D biomedical
textures.

In this area, Riesz-wavelet features have demonstrated great representative
capabilities: they characterize the morphology of tissue density thanks to their
response to changes in CT intensities. These features are expressed by the re-
sponse magnitudes to a set of 3D multiscale filters applied to the CT volume.
This theoretically solid texture definition is used for proposing its integration into
a covariance-based descriptor, with the goal of establishing a paradigm for 3D
region definition and classification. The main benefits of covariance descriptors
include the robustness to spatial transformations such as rotations, as well as the
tolerance to changes in shape, size and resolution in the 3D domain. This is due
to the fact that feature variation observations inside a region are used, instead of
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absolute feature values, and any structural information about feature location is
discarded. Furthermore, as covariance descriptors are embodied by covariance
matrices, they lie in a meaningful and geometrically coherent descriptor space:
similarly textured regions appear clustered in a low dimensional and analytically
operable space. A part-based model is proposed in order to represent the entire
possible space of lung tissue types in this particular manifold, and model the un-
derlying three classes of interest (GGO, solid and healthy tissue).

5.2.1 3D Riesz-Covariance Based Descriptors

3D multiscale Riesz filterbanks are used to characterize the texture of the lung
parenchyma in 3D at a given CT energy level. The N—th order Riesz transform
R™ of a three—dimensional signal f (x) is defined in the Fourier domain as:

— niy + ng + ns (—jwl)m(_jwz)m(_jw?))m p

R(nl,ng,ng)f(w) — f(w), (51)

nilnglng! ||w]|P1tn2tns

for all combinations of (ny,ng,n3) with ny +ny +n3 = N and ny3 € N,
Equation 5.1 yields to ("?) templates R("1:"2%%) and forms multiscale steerable
filterbanks when coupled with a multi—resolution framework based on isotropic
band-limited wavelets (e.g., Simoncelli) [Unser et al., 2009].

In order to define 3D texture features the second—order Riesz filterbank (de-
picted in figure 5.1) has been used. Rotation—covariance is obtained by locally
aligning the Riesz components R(""2"3) of all scales based on the local prevail-
ing orientation. This procedure allows the spatial rotation of each component of
the filterbank in order to obtain the maximum response with respect to the princi-
pal components of texture intensities, in a consistent analysis for all the samples.
The regularized structure tensor for aligning the second order Riesz transform
filterbanks R 2, R,2 and R .2 is presented in [Chenouard and Unser, 2011].

2" order 3D Riesz features yield to a 6-dimensional response to a filterbank
according to the texture of the tissue volume as depicted in figure 5.2. For a 3D
CT image of size W x H x S, a new volume with the responses to each one of the
second—order Riesz kernels, of size 6 x W x H x S can be obtained. Nevertheless,
for the task of tissue classification, a more compact and accurate representation
is desirable, where feature characteristics can be encoded to a specific common
format regardless of the size of any given volumetric region.

Covariance-based descriptors can provide a suitable representation for CT re-
gion characterization. Any given voxel of a tissue region is defined by its 6-
dimensional Riesz feature filter responses. According to values of density, neigh-
bourhood, orientation and intensity, Riesz transforms provide a characteristic pat-
tern along its correspondent tissue region. Due to their construction, covariance-
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Figure 5.1: Second-order Riesz kernels R(""23) convolved with isotropic
Gaussian kernels G(x). Responses to a linear combination of the filterbank rep-
resented by these kernels are used as discriminative representations of the under-
lying 3D tissue texture.

based descriptors are robust to noisy inputs and lose structural information about
the observed features. Therefore, they are suitable for unstructured, abstract tex-
ture characterization inside a region, regardless of spatial rigid transformations
such as rotation, scale or translations, and for volumes of any given number of
voxels.

In order to formally define the 3D Riesz-covariance descriptors, the usual fea-
ture selection function of the framework, ®(ct, v), is related to the current domain.
Then for a given 3D CT image ct and a selected subvolume region v of arbitrary
size and shape inside the boundaries of ct, the previously defined Riesz filter re-
sponses can be used as features:

O(ct,v) = { sy Vr,y,2 € V}, (5.2)
¢x,y,z = (R;((;?;:;L27n3)7 HRHx,y,za Ctx,y,z) . (53)

These features include the 6 Riesz features at each one of the coordinates in
the set, as well as their norm and the CT intensity values in Hounsfield Units. Ac-
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cording to the intuition observed that this feature selection is capable of encoding
the texture and the tissue nature.

Then, for a given region v of the CT image, the associated covariance descrip-
tor can be obtained as:

N

1
RieszCov (®(ct,v)) = N1 Z (e, — 1) (Pay, — M)Ta (5.4)

=1

where 1 is the vector mean of the set of vectors {¢,, .} within the volumetric
neighbourhood made of N samples.

For a better visualization, figure 5.3 provides a schema of a nodule region
slice from a CT image, along with the 6-dimensional Riesz-filter responses for
each voxel of the slice. Visually, the difference on the different tissue regions
yields to different responses of the 2"¢ order Riesz transform filterbank. Figure
5.4 complements this visualization with the separate response regions according to
3D manually delineated masks (from clinicians groundtruth annotations) for both
solid and GGO regions of a given nodule. Using these masks, only the voxels
belonging to each region are used for the computation of the respective Riesz-
covariance descriptors.

R(200) R020) R(002)

110) R(WOU 011) IRIl

Figure 5.2: Cues involved in the descriptor calculation for a given CT cubic re-
gion. The 8 first cubes depict the values within a 40 x 40 x 40 pixel volume, with
the CT intensities, 3D-Riesz wavelet responses (for one fixed scale) and Riesz
norm features. The 8 X 8 matrix in the right sub-figure depicts the resulting co-
variance descriptor, encoding the different correlations between the distributions
of the observed cues.
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2 4 6 8

99



R0,0,2

CT slice

R0,1,1

Figure 5.3: Nodule region slice from a CT image, along with the 6-dimensional
Riesz-filter responses for each voxel of the slice.

5.2.2 Texture Classification via Bag of Covariances

The “bag of features” paradigm is an established classification technique in the
machine learning domain [Lazebnik et al., 2006]. It is conceived as an implicit
part-based modeling from a learning set of instances, where collections of differ-
ent parts of objects can be gathered in order to cover the intra-class variability.
Later on, this set of part representations, often referred to as dictionary, is used
to encode a learning set of instances in terms of frequency histograms of the part
repetitions found on these instances. The same representation is done for clas-
sification samples and the final decision criteria are made in terms of histogram
similarities. This directly suits our classification problem: due to the small num-
ber of samples and low resolution of features, we can model a vast dictionary of
all the possibilities in tissue types —inner texture and margin of solid and GGO
nodule components, vessels, air, blood or even fiducial markers in the healthy
lung tissue.

We define the so-called “bag of covariances” in three stages: dictionary learn-
ing, modelling of tissue classes by word frequencies, and classification of test
regions. In order to build the so-called dictionary, we denote by P = {CT Y}
as the set of CT images for all patients p, and their delineated regions for each
class ¢ (solid, GGO and healthy lung). From this data, we can obtain the set
of vectorized 3D Riesz-covariance descriptors as defined in the previous section:
iy, = vect(log; (RieszCouv{ p)), for a set of learning patients p and classes c. v
denotes the set of 3D subvolumes inside the region class for which the descriptors
are computed, and it is obtained randomly inside the manually annotated class
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(a) Solid region nodule slice.
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Figure 5.4: Visualization of the response regions according to 3D manually de-
lineated masks for both solid and GGO regions of a given nodule and the corre-
sponding Riesz-covariance descriptors.

regions. See figure 5.5 for a clarification of this learning. All these elements, so-
called words, can be stored as a matrix, and data clustering algorithms such as K-
means can be applied in order to reduce dimensionality of those over-represented
samples.
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Figure 5.5: Representation of the descriptors at a patient level: cube colors denote
the 3D patches used for the construction of the dictionary according to the three
tissue classes.

In order to model the different classes, a new set of 3D Riesz-covariance de-
scriptors for different parts of all three classes is again obtained, from a second set
of learning patients. The descriptors are mapped to the nearest words in the dic-
tionary via their Euclidean distance, as the parts are projected to the tangent space
T7,. This gives a set of histogram representations in which each one of the tis-
sue instances for all the patients are defined as the frequency of part appearances
present in the dictionary.

For the classification of a new sample, a new set of 3D Riesz-covariance de-
scriptors ¢ , = vect(log; (RieszCov,,)) is obtained, where v indicates different
patches inside the CT image. Again, the descriptors can be quantized in terms of
dictionary frequencies, and the final classification criteria are made according to
the closest histogram representation in the available model:

class(ct) = argmin D(he, hy), (5.5)

)

where h.; denotes the histogram representation of the CT test sample, h; denotes
the learned model of dictionary frequency representations, and D is the x? dis-
tance used for the comparison of histograms.

5.2.3 Evaluation

100 patients from Stanford Hospital and Clinics with biopsy—proven early stage
non-small cell lung carcinoma were used to estimate the performance of our ap-
proach. The nodule region present in each patient lungs was delineated in 3D by
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the treating radiation oncologist, then the GGO and solid components were con-
toured separately using lung and mediastinal windows. MATLAB software was
used for post-processing of the available CT images and data, including region
ground-truth preparation and resampling of volumes in order to have isotropic
voxels of 0.8 x 0.8 x 0.8 mm? using cubic spline interpolation. 5 patients of
the dataset were discarded due to annotation artifacts, therefore the final dataset
contains 95 patients.

In order to estimate the classification accuracy achieved by the proposed me-
thod, we performed cross-validation over the presented dataset, keeping 35 pa-
tients for learning the model and the remaining 60 patients for testing, for 10
iterations. The “Bag of covariances” method was trained by modelling 60 parts
for each class, for each patient, therefore creating a dictionary size of 6300 words
at each iteration. The classification performance accuracy for the three modelled
classes is reported in terms of sensitivity (7p/TP+FN) and specificity (TN/TN+FP),
with average values of 82.2% (o = 2.55%) and 86.2% (o = 5.85%) respectively,
according to the available ground-truth annotations defined by clinicians.

Recent methods as [Song et al., 2013; Depeursinge et al., 2012] reported sim-
ilar accuracy, which settles our presented approach amongst state of the art per-
formance levels. Even if these methods are focused on interstitial lung diseases
rather than nodule separation, their definition of GGO and solid areas is consistent
with our approach so comparing against their outcomes is coherent.

5.3 Conclusions

This chapter has intoduced an integrated approach for the characterization and
classification of different lung tissue types in 3D, particularly focused to the sep-
aration of GGO and solid nodule areas. Despite the high intra-class variability,
this method obtained reliable classification results, thanks to a theoretically solid
descriptor for encoding feature variations.

The contribution of this work sets the basis for further CT image classifica-
tion, not only in terms of different tissue classes but also at an intra-class level
in order to model temporal stages of a nodule or to learn specific models for
characterizing the response to treatment of specific diseases. These techniques
may be clinically useful for identifying and characterizing suspicious tissue re-
gions in lesions. One of the handicaps on testing pattern recognition methods
with real clinical data is the usual lack of patients, which leads to limited experi-
mental evaluation. Nevertheless, the work presented in this chapter (which derives
from a research internship stage at the University of Applied Sciences of Western
Switzerland in collaboration with the Department of Radiology and Medicine at
Stanford University) has settled the basis for a methodology in ongoing develop-
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ment for modelling adenocarcinoma recurrence from texture models. This work
uses an extended dataset with complementary patient information provided also
by clinicians patient assessment.

On the other hand, clinicians searching through large data sets of multimodal
medical information generated in hospitals currently do not fully exploit previ-
ous medical cases to retrieve relevant information for a differential diagnose. As
identified also after the participation to the ImageCLEF medical image classifica-
tion challenge, current approaches using textual keyword-based retrieval could be
extended by its fusion with texture and visual characterization features. Projects
as Visual Concept Extraction Challenge in Radiology (VISCERAL ') are being
developed in order to take advantage of these large data sets and to provide useful
information for similar case retrieval and diagnose decisions. VISCERAL in par-
ticular provides a cloud—based infrastructure for the evaluation of medical image
analysis techniques on large data sets Langs et al. [2013]; Hanbury et al. [2012].
Derived outcomes of the technique presented in this chapter have been submitted
to the VISCERAL Multimodal Retrieval in the Medical Domain workshop and
obtained results with accuracy levels amongst the top participants. The contri-
bution resides in providing a scoring metric for the comparison of local texture
features at particular regions of interest such as specific organs or conflictive ar-
eas. An expert clinician has integrated this contribution into a weighted scheme
containing anatomical and clinical correlations, as well as RadLex case definition
terms (RadLex is a comprehensive lexicon of radiology terms for standardized in-
dexing and retrieval of radiology information resources [Langlotz, 2006]). More
details on this contribution can be found in [Jiménez del Toro et al., 2015].

Thttp://www.visceral.eu/
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Chapter
Conclusions and Future Work

“Hofstadter’s Law: It always takes longer than you expect,
even when you take into account Hofstadter’s Law.”

— DOUGLAS HOFSTADTER, Gddel, Escher, Bach: An
Eternal Golden Braid

cognition in different feature spaces with a dual contribution. In a first

place, one of its values is that the covariance-based formulation translates
any desired feature space to a common descriptor manifold. In a second place,
this manifold has been explored in different machine learning algorithms for solv-
ing particular application problems: part-based modelling, dictionary learning,
geometric constraint addition or game theory refinement.

These different methods have been validated by particularly designed exper-
imental set-ups, demonstrating the feasibility of the proposed approaches and
providing a comparison against state-of-the-art contributions published in recent
years. Despite the enclosed results, having worked with these techniques has
opened several continuity lines and improvement possibilities that lay beyond the
scope of the current dissertation, but can be commented as future work.

T HIS DISSERTATION HAS PRESENTED a common framework for pattern re-

6.1 Summary

The outcomes of this dissertation can be divided in four parts as presented in
chapters 2-5. The core of this thesis is twofold, both in the analysis carried on the
family of covariance-based descriptor and on its practical side. Besides the ap-
plications found on different computer vision tasks, pragmatic details have been
discussed: feature extraction and fusion, and machine learning methodology con-
siderations in part-based classification, 3D scene reconstruction via pairwise de-
scriptor matching or sparse dictionary learning. Furthermore, all these tasks have
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required computational implementations whose code has been or will be made
publicly available.

* In 2D color images, it has been shown how to extract color feature-based de-
scriptors for part-based classes and highly variable images, and how to ap-
ply supervised learning techniques as boosting and sparse dictionary learn-
ing.

1. Boosting has been used as an introductory context, implementing one
of the pioneer methods of the state of the art on manifold-based learn-
ing. The study of the methodology presented in [Tuzel et al., 2008b]
was used in order to develop expertise on Riemannian geometry based
methods.

2. Medical image retrieval has been used as a second proof of concept
for applying covariance descriptors to complete image regions. The
results obtained after the participation to the ImageCLEF image clas-
sification challenge placed the presented approach on par with more
complex methods.

* The part of 3D area description for scene registration intends to show not
only descriptor itself for extended dimensionality applications; it also demon-
strates its flexibility for being extended with additional constraints when the
descriptor itself is not capable enough of capturing external handicaps, such
as scene complexities as repetitive patterns or symmetries.

1. The so-called 3D MCOV descriptor has been presented and its dis-
criminative performance has been tested under noise and resolution
changes. This experimental set-up has been conceived having in mind
real scene understanding applications using currently available depth
acquisition devices.

2. Due to real world conditions, such as dense point clouds and repeata-
bility, a game theory based outlier rejection method has been provided
for the discard of undesired match candidates. Thanks to its efficiency,
this method is much more suitable and computationally efficient than
existing iterative methods.

3. These contributions together have allowed to build an enclosed system
for pairwise view registration specially aimed at the reconstruction of
3D scenes with commodity depth acquisition devices. The conducted
experiments have shown the benefits of this approach even in highly
noisy conditions.
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» Gesture recognition for classification of depth image sequences has been
tackled in a simplistic formulation via a spatio-temporal covariance descrip-
tion of low-level cues. This enables the classification of motion patterns
thanks to the descriptor space, provided that the own descriptors already
capture temporal information by a slice-based conception.

1. The proposed descriptor is suitable for temporally bounded gestures
with clear starts and endings, and clear motion execution depicting the
needed variability stages along the gestures.

2. Using balanced datasets of different gestures has provided the oppor-
tunity to learn complete dictionaries of gestures.

* In 3D medical imaging, covariance-based descriptors of three-dimensional
volumes have provided a natural formulation for encoding tissue character-
istics. Low-level tissue features found in 3D Riesz-wavelets were perfectly
paired with the unstructured, rotation and translation invariant descriptor
formulation in order to provide a part-based bag-of-covariances classifica-
tion method for the classification of lung nodule tissue in CT images. These
descriptors were also used in multimodal case-based retrieval. This work
was conducted as part of a research internship at the University of Applied
Sciences Western Switzerland (HES-SO Valais) in collaboration with the
Department of Radiology and Medicine at Stanford University and is still
in an ongoing stage, with the preparation of a publication on adenocarci-
noma recurrence modelling from texture information.

6.2 Work Limitations and Future Considerations

The aim of this thesis has been the study of different applications of covariance-
based descriptors in order to perform pattern recognition in multiple feature spaces.
Along with the research conducted during these years, many research questions
have arisen, including seeking for application contexts, design and methodology
formulation and experimental set-ups for validation. As presented in the chapters
of this dissertation, it has been attempted to provide answers and conclude all the
started approaches in order to solve all these questions. However, it is sometimes
hard to close a research line when it gives raise to new possibilities and provides
new ways to explore. The work introduced in this dissertation is considered to
provide a baseline for many extensions: whether it is in new feature selection
functions, new machine learning algorithms, or new conceptions of the covari-
ance statistical notion.
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In 2D image classification there are many features that could be selected in the
future. Colour and gradient visual cues have been used since these are the natural
ones in many image processing applications, but novel acquisition devices such
as depth map cameras or medical imaging machinery could yield to new feature
spaces in the future. The participation to the ImageCLEF medical retrieval chal-
lenge also served as a benchmark for considering the use of textual information
for its fusion with visual information. Considering text patterns and keyword fre-
quencies associated to given medical image classes could provide a natural feature
fusion formulation in the own descriptor level, valuable for case retrieval. This has
not been explored to our knowledge, but judging the ImageCLEF challenge results
it would be feasible and interesting.

Working with 3D point clouds also left many future work ideas. In order to
determine a value for neighbourhood radius, a boundary estimator based on sam-
pling theory has been provided. This is suitable as long as it is consistent in appli-
cations as scene reconstruction, as the same criterion is applied in the descriptor
computation of any scene view. Nevertheless, for more generalist 3D retrieval
applications, this could be improved with geodesic metrics for non-linear neigh-
bourhood selection taking into account the geometry of the point cloud surface.
Regarding texture features as color values, RGB colorspace values is used as a
simplification. Other color spaces such as CIELab or YUYV, or color constancy
methods could be explored in order to provide illumination invariance.

In gesture classification, results have been analysed in the controlled envi-
ronments found in state-of-the-art benchmarking dataset. In these cases, gesture
performances are segmented in time and subjects are recorded in ideal condi-
tions regarding camera position, clutter or other external factors. The 4DCov
spatio-temporal descriptor is focused on capturing the spatio-temporal variability
of depth-map sequence pixels, provided that the used frames belong to bounded
gestures —as usual in benchmarking datasets. While this provides homogeneous
testing conditions with respect to other existing methodologies, refinement tech-
niques should be used for real applications such as on-line hand gesture transla-
tion. In the provided framework, this could be implemented by temporal-modelling
methodologies such as manifold alignment. Analogously to a dynamic time warp-
ing approach, a gesture could be encoded as a collection of several covariance-
based descriptors belonging to the spatial variability in frames. Classifying a
gesture could be done by searching for the minimum warping weight of these
collection of descriptors with respect to a model of gesture templates. This was in
fact a continuation line of research that was left open due to the considerable effort
needed on acquiring and annotating a new testing dataset of real, mixed gestures
into the wild.
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Leveraging the presented framework to medical imaging has been a comple-
mentary opportunity to work with different texture features and within a thrilling
applied computer vision context: while the work in this area has been clearly fo-
cused in a tissue classification application, we have been in direct contact with
many other situations that could benefit of this research. Unsupervised tissue
segmentation is of real interest in the medical community for computer aided di-
agnose. It currently requires costly time and human supervision, while a computer
based segmentation could provide objective tissue delineation with unbiased tex-
ture statistics in order to help clinicians. Immediate continuation lines include an
unsupervised 3D segmentation algorithm based on region-growing tissue analysis,
and tissue modelling with correlated clinician information, such as patient cancer
recurrence and follow-up time, in order to explore the possible correlations be-
tween tissue texture observations and clinical outcomes.

In a more conceptual way, covariance matrices can also be explored as some-
thing more than descriptors and data signatures. This dissertation has a computer
vision research background and therefore has always presented the pattern recog-
nition applied side of the covariance notion for feature definition. Nevertheless,
covariance has a broader statistical meaning and could provide a step beyond in
causality and prediction models, specially for fMRI or non-stationary signal anal-
ysis in medical research as found in recent novel contributions. Furthermore, co-
variance as a second order moment based descriptor has been explored along this
thesis, always with a direct translation to manifold geometry. Along the research
with 3D point clouds, a direct translation to higher order moment statistics was
also considered, possibly giving birth to Kurtosis or Skewness-based descriptors.
At the cost of higher order tensor calculus, intuition leads to believe that these de-
scriptors could encode better shape information in terms of 3D point clouds cur-
vature, constancy and variability. Hopefully, the methods presented along these
pages might provide some inspiration for future research.
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