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Abstract

In this thesis, two approaches of information presentation on indoor view
have been presented using Radio-Frequency Identification (RFID) and cam-
era sensors on a robot. The goal is to capture images of the indoor en-
vironment and to create a 3D view so that users can view, navigate, and
locate a product on the view. RFID is an ‘Auto-ID’ system that can iden-
tify a tagged object from a remote distance without a direct line-of-sight.
An RFID system can be configured to acquire approximate locations of an
RFID tagged objects. In the first approach, a Google Street View-like in-
door view creation and RFID-obtained product information projection have
been presented. Also, in the second approach, we explore Simultaneous
Localization and Mapping (SLAM), RGB-D Red, Blue, Green, and Depth
Mapping, and the RFID-obtained product information projection on a 3D
point cloud map. In the first approach, we have explored how a ‘Store view’
system can be made of stitching images into panoramas and inter-linking
panoramas into a Street View-like store view. The study also explores how
dynamic web programming can be used to fetch and project RFID-obtained
item information on the view. SLAM is a method to localize a robot while
mapping the environment. With an RFID system installed on a mobile robot,
all items within the environment can be identified and can be located when
the robot position is localized first. Thus, in our second approach, the RGB-
D SLAM approach has been chosen for 3D mapping of the environment,
so that, localized RFID tagged item information can be projected on the 3D
map view.
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Resum

En aquesta tesi, dos enfocaments de presentació de la informació a la vista
d’interior s’han presentat mitjançant identificació per radio-
freqüència (RFID) i sensors de la càmera en un robot. L’objectiu és capturar
imatges de l’ambient interior i la creació d’una vista 3D, de manera que els
usuaris poden veure, navegar i localitzar un producte a la vista. RFID és
un ‘sistema’ Auto ID, que és capaç d’identificar un objecte etiquetat des
d’una distància remota sense una lı́nia de visió directa. Per altra banda,
un RFID sistema pot ser configurat per adquirir ubicacions aproximades
d’objectes RFID etiquetats. En el primer enfocament, s’han presentat una
creació vista interior com Google Street View i la projecció d’informació
de productes obtinguts per RFID. I, en el segon enfocament, la projecció
de la informació de productes obtinguts per RFID en una vista de núvol de
punts 3D s’ha presentat usant un econòmic RGB-D (Red, Blue, Green, and
Depth) sensor de càmera i RGB-D SLAM. En aquest estudi, hem explorat
com es pot crear un sistema ‘Store view’ connectant imatges en una imatge
panoràmica per després inter-connectar-les en un ‘Street View’ de la botiga.
L’estudi també explora com es pot utilitzar la programació dinàmica web per
recuperar i projectar la informació obtinguda pel RFID del producte en la
vista. La localització simultània i mapatge (SLAM) és un mètode per local-
itzar un robot, al mateix temps que es mapeja l’entorn. Amb un sistema de
RFID instal·lat en un robot mòbil, tots els elements dins de l’entorn poden
ser identificats i poden ser localitzats quan la ubicació del robot es localitza
primer. Per tant, l’enfocament SLAM RGB-D ha estat elegit per al mapatge
en 3D de l’entorn perquè la informació de la localització de l’article RFID
etiquetat pot ser projectada a la vista del mapa.
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Preface

The research presented in this thesis has been conducted under Dr. Rafael
Pous, director, Ubiquitous Computing Applications Lab (UbiCA Lab), DTIC,
UPF. The focus of the research was to project RFID acquired inventory in-
formation on the indoor view using camera sensors on a robot. Two au-
tomated approaches have been presented in chapter 3 and chapter 4. In
chapter 3, an automated Google Street View-like 360◦ synthetic view of a
retail store has been presented where RFID-obtained product information is
presented on the panoramic view. In chapter 4, a 3D synthetic view using
RGB-D SLAM has been used for creating an indoor 3D point cloud view on
a robot. To show RFID information on the 3D point cloud maps, rviz (ROS
Visualization), and PCL (Point Cloud Library) have been used.

The study results of the approach presented in chapter 3, have been pub-
lished in the Intelligent Systems, IEEE (Volume:30, Issue: 6), DOI:
10.1109/MIS.2015.90.
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1 Introduction

“Specialized elements of hardware and software, connected
by wires, radio waves and infrared, will be so ubiquitous

that no one will notice their presence.”
- Mark Weiser, Scientific American, 1991.

1.1 Motivation

Today, computing is far more ubiquitous than ever before. Ubiquitous com-
puting is embracing every aspect of our daily lives from personal to profes-
sional computing anywhere, anytime. With the advent of smart hand-held
devices (e.g. smartphone, PDA, etc.), and with the ubiquitous access to the
Internet, the usefulness of timely information is now an important part of
our busy daily life. Computers are now more connected with physical ob-
jects; where, the objects or ‘things’ are embedded with electronics, software,
sensors, and connected to the Internet to collect and exchange data. Ubiq-
uitous Computing (Ubicomp) and the Internet of Things (IoT) paradigms
drastically change the way we use computers now. Computers are more
sensor equipped, and thus smart applications are providing more location
and context-aware services than before.

The identification of an entity is the first step of locating it within the con-
text or the environment. Automatic Identification and Data Capture (AIDC)
is the family of technologies for automatically identifying objects, collect-
ing and entering the data into a computer system without any human inter-
vention [1]. Typical AIDC (also called Auto-ID) systems are the barcode,
RFID, smart card, and biometric systems. RFID stands for Radio-Frequency
Identification and is a real time wireless identification and tracking of enti-

1
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ties using radio frequency. RFID has been recognized as a promising tech-
nology for retail, supply chain management, customer interaction, etc. [2,3].
Unlike a barcode system, with an RFID system, multiple entities or items
can be uniquely identified from a remote distance. In an RFID deployed
retail store, an RFID tag is attached to an item’s label, so that, the item can
be scanned by RFID system to identify, track, and the retrieve related item
information almost instantly. As a result, stock keeping is automated, faster,
and almost error free. Although, RFID system significantly improve the up-
to-date inventory management, the RFID system alone does not present a
graphical representation of the objects or entities it is sensing; and of course,
it does not provide any visual feedback of the environment within which the
objects are located. So far, a user experience of online (or offline) search-
ing for an item of a store is limited to catalog searching. A catalog may or
may not be fully updated. In either case, the catalog also does not provide
users any graphical feedback of the items’ physical location inside the store.

In April 2010, Google started a pilot project, aiming at extending the Street
View service inside business shops [4]. The primary goal was to give this
service to their trusted businesses to show the 360◦ panoramic view of the
interior like a virtual tour as if the visitors were walking around inside the
store. Google indoor Street View for business still requires a manual pro-
cess, where, Google certified photographers manually snap photographs
with a tripod and upload these photos to a Google server to create the
panoramic virtual tour. Besides, Google indoor Street View for business
does not have any service for searching and locating a product item with
product related information on the panoramic view of the store. Google
My Business 1 is another related initiative of connecting business with lo-
cal customers that encourages business owners to add indoor photos, update
business address and opening hours to promote their products or services
through Google map service. An up-to-date indoor view with entity infor-
mation on that view can be desirable in many scenarios such as retail [5].
For instance, a shopper would like to view, navigate, and browse up-to-date
product information on the 3D-like view of the retail store either from in-
store or out-store. To better understand the impact of online information and
smartphones usage on in-store shopping, Google conducts a survey in asso-
ciation with Ipsos MediaCT 2 and Sterling Brands 3 brand research company
1https://www.google.com/business/
2http://www.ipsos.com/connect/
3http://www.sterlingbrands.com/design/about.php

2
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1.1. Motivation

to understand customer expectations. The survey reports that two-thirds of
shoppers could not find the details they needed while visiting the store, and
one-third of surveyed customer actually prefer to find additional informa-
tion using the smartphone rather asking a store employee [6].

A major limitation of currently available Google indoor Street View is the
scalability and the lack of continuously updated content. With the current
scheme of Google Street View, (1) many businesses may not update their
indoor images frequently (as it requires photographers to snap photos and
upload these photos manually to the Google server), and (2) present images
do not contain any additional information about the products or services,
only a panoramic view. An innovative convergence of state-of-the-art tech-
nologies can be integrated to bridge the gap of presently available indoor
Street View technology towards a real-time or continuously updated indoor
360◦ synthetic view using a camera and RFID sensors.

A detailed 3D visual model can provide extensive knowledge about the en-
vironment. In general, a 3D modeling is processing intensive and time-
consuming. The 3D mapping paradigm consists of image and depth data
collection, processing, and construction of the 3D geometric model with
added texture maps in a virtual environment [7]. A large indoor environ-
ment 3D modeling may not be a real-time automated process. A recent de-
velopment of indoor 3D modeling is 3D point cloud mapping using RGB-D
SLAM [8]. The RGB-D SLAM utilizes inexpensive RGB-D depth cameras
such as Kinect camera 4 to capture RGB images with per-pixel depth infor-
mation. The term SLAM refers to Simultaneous Localization and Mapping,
is an active research field in robot mapping. A 3D point cloud map is then
generated by utilizing either the robot pose (position) information or the
visual odometry computed using an RGB-D camera. However, creating a
large 3D point cloud map is still a challenging task as it requires extensive
knowledge about different approaches of RGB-D SLAM, different camera
sensors, and robotics in general.

Although, an accurate 3D model can depict the actual environment as it is, a
3D model alone may not be useful without an up-to-date entity information
on the view. In general, a 3D model annotation is also a challenging task,
in particular when an environment view constantly changes (e.g. in a retail
4http://www.xbox.com/en-US/xbox-one/accessories/kinect-for-
xbox-one

3
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shop). Sensors like RFID and RGB-D camera on a robot can be used to
create the automated indoor 3D view with item information on it.

1.2 Research Objective

The key research objective is - “to use a robot equipped with camera and
RFID sensors to create an automated indoor synthetic view of a retail store,
so that, users can browse, navigate, and locate the product items with related
information on that view.”

Figure 1.1: Research objective

The research aims at merging object and space information obtained by a
robot into a synthetic view that user can navigate as if he or she were in
the real store. A mobile RFID system on a robot can be utilized to identify
RFID-tagged objects in a space periodically. A camera sensor on the robot
can also be used to generate the real time or updated map. A synthetic view
can be created by combining the environment (2D or 3D map) with object
(ID + location) information, so that, users can browse, search, locate and
view items on that view (Figure 1.1).

1.3 Research Methodology

To achieve the research objective above, we first explore the different state-
of-the-art technologies related to image processing, and 3D point cloud

4
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mapping methods. Here, we explore different types of cameras that are
suitable for map view creation, their strengths and limitations. Then we ex-
plore different tools, techniques and methods of projecting RFID-obtained
information on the map view. Here, we explore HTML DOM parsing Ajax
(for client-side processing) and PHP (for server side processing), the point
cloud library functionalities, and ROS visualization packages etc. Finally,
the implementation approaches are focused as below.

1.4 Approaches

To implement the research objective, we focus on two approaches - 1) Google
Street View-like indoor view, and 2) 3D indoor view using camera sensor
on a robot. The implementation approach of Indoor 360◦ synthetic view
using camera and RFID sensor is presented in chapter 3, and the implemen-
tation approach of 3D point cloud map using RGB-D SLAM is presented in
chapter 4.

1.5 Structure of this dissertation

The remainder of this dissertation is structured as follows:

• Chapter 2: State-of-the-art review. This chapter outlines the related
state-of-the-art review of RFID and 3D indoor mapping.

• Chapter 3: Indoor 360◦ synthetic view using a camera and RFID sen-
sors on a robot. This chapter describes the proposed solution of street
View-like indoor view and projecting RFID obtained information on
that view.

• Chapter 4: 3D synthetic view using RGB-D SLAM and RFID sen-
sors on a robot. This chapter describes the proposed system of creat-
ing indoor 3D point cloud map using RGB-D SLAM and projecting
RFID obtained information on that 3D view.

• Chapter 5: Conclusion.
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2 State-of-the-art review

This chapter outlines the state-of-the-art reviews related to indoor
environment mapping by a robot using RFID and camera sensors
where the users would be able to view, identify, browse, and lo-
cate an RFID-obtained product information. At first, we explore the
RFID technology. Then we review the different 3D robot mapping
tools, techniques, and algorithms. Then we consider the different
feature detection algorithms and their applications. Finally, a review
of open-source image stitching tools is briefly presented.

2.1 Radio-Frequency Identification

Radio-Frequency Identification (RFID) is the automatic identification and
tracking of tags attached to a product, animal, or a person using radio fre-
quency [9]. Unlike a barcode system, an RFID system does not require
any direct line-of-sight and identifies an item uniquely rather identifying the
item type. Moreover, an RFID system can scan multiple items at a time,
rather than scanning items one by one with a barcode system. Besides the
entity identification, an RFID systems can also be configured to determine
an approximate location of the entity within an environment. Important
RFID applications include - the smart labels for products, the smart key for
vehicle ignition, vehicle toll collection, rail car and shipping container iden-
tification, library books identification, passport identification, cattle and pets
tracking, medical appliance identification, smart cards personal identifica-
tion and payment, etc. An RFID system consists of RFID tags, RFID reader,
and a server to update RFID inventory in a database table.

7
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2.1.1 RFID Tag

An RFID tag (also called a transponder) is an integrated circuit (IC) with
an antenna inlay to receive radio-frequency and respond back the identifier
number stored in its memory to an RFID reader. The unique identifier is
called an electronic product code (EPC) [10]. An EPC identifies a unique
RFID tagged entity, object or asset. An RFID tag can be passive, semi-
passive or active depending on its power supply. A passive tag does not
require any battery power to operate; rather it uses the electromagnetic field
(EMF) of the reader. Usually, a passive tag works up to a short range as
it does not have any power supply. A semi-passive tag is battery powered
to run its chip circuitry. The battery power improves the range of a semi-
passive tag. An active RFID tag is self-powered by a battery and continu-
ously able to broadcast its signal to a reader or other active tags depending
on the class of tag it is. The passive UHF RFID tags (WEB G2iL [11],
MINIWEB [12], and SHORTDIPOLE [13]) are shown in Figure 2.1.

(a) SmartTrac UHF WEB
G2iL tag

(b) SmartTrac UHF MINIWEB tag

(c) SmartTrac SHORTDIPOLE UHF tag

Figure 2.1: RFID UHF tags

RFID operates in different frequency bands depending on different RFID
tag class or the country radio frequency standard. The High Frequency (HF)
tags usually operate in between 138 KHz to 13.95 MHz frequency band. The
Ultra High Frequency (UHF) typically operates between 860 MHz to 960
MHz frequency band with a read range of approximately 10 meters. Passive
UHF RFID tags are usually used in retails due to its small size, no battery
power requirements with a suitable read range.

8



“v-10” — 2015/11/19 — 11:03 — page 9 — #29

2.2. Feature Detection and Matching Algorithms

2.1.2 RFID Reader

The RFID reader (also called the interrogator) uses antenna/s to send and
receive radio signals to and from the RFID tags. When a signal is re-
ceived from a tag, the tag’s EPC is added in the scanned EPC list. All EPCs
scanned by the RFID reader are usually saved with other information such
as time of reading, reader’s ID, read count, received signal strength indicator
(RSSI) value, etc. RFID readers can be either fixed (e.g. AdvanReader 150
UHF RFID Reader [14] or handheld (e.g. AdvanScan Handheld UHF RFID
Reader [15] as shown in Figure 2.2. A fixed RFID reader may have multi-
ple antenna ports, and each port can further be extended with multiplexers
if needed. The handheld RFID readers are usually used manually, where
the fixed readers affixed with a permanent structure such as at the back of a
shelf.

(a) Keonn AdvanReader 150 UHF
RFID Reader

(b) Keonn AdvanScan
Handheld UHF RFID
Reader

Figure 2.2: RFID readers

2.2 Feature Detection and Matching Algorithms

A feature is a point of interest of an image, typically used for matching or
comparing the image with other images. Feature detection is the process
of finding interest points in an image; and the algorithm that detects fea-
tures is called a feature detector. Matching features across images requires
to computing the feature description or computing patches around a point of
interest. The process of computing feature descriptors is called feature ex-
traction. The image matching is then can be computed by matching feature
descriptor values. Image matching is the fundamental aspect in computer
vision applications such as scene recognition, image stitching, 3D recon-
struction, object or motion tracking, etc.

9
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2.2.1 SIFT

Scale Invariant Feature Transform (SIFT) (2004) by Lowe [16], is a pop-
ular feature detector and descriptor for extracting invariant features from
images. The keypoints are usually extracted by the SIFT detector, and their
descriptors are computed by the SIFT descriptor. A SIFT feature (keypoint)
descriptor is computed by sampling the image gradient magnitudes and ori-
entation around the keypoint using the level of Gaussian blur of the image.
The SIFT keypoint descriptors are highly distinctive as it able to find its
correct match in a large dataset of features. The orientation invariance is
achieved by rotating the gradient relative to the keypoint orientation. An
example of OpenSIFT 1 in Figure 2.3 is showing the SIFT features matched
between two images.

Figure 2.3: SIFT features matched between two images, a demonstration of
OpenSIFT

2.2.2 SURF

The Speeded Up Robust Feature (SURF) (2006) by Bay et al. [17] is an
SIFT-like feature detector and descriptor, however, with the concern of speeded
up performance by lowering computational time. SURF lowers the compu-
tational time through an efficient use of Hessian matrix approximation for
the detector and sums of approximated 2D Haar wavelet responses for the
descriptor. Unlike SIFT, SURF uses stack without downsampling the im-
ages at higher levels of a pyramid that results in having images in the same
resolution. SURF uses integral images that allow the computation of rect-
angular box filters in a near constant time. The author presents the results of
performance improvement over SIFT. An example of real-time scale and ro-
tation invariance object detection with SURF can be seen as Figure 2.4 [18].
1https://robwhess.github.io/opensift/
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Figure 2.4: Scale and rotation in-variance in object detection with SURF

2.2.3 FAST

Features from Accelerated Segment Test (FAST) (2006) is a corner detec-
tion technique presented by Rosten & Drummond [19] for real-time full-
frame feature detection using machine learning. The FAST detector uses a
circle of 16 pixels to classify whether a candidate point, p is a corner. If
a set of N contiguous pixels in the circle is brighter than the intensity of
that point p plus a threshold value t or all darker than the intensity p mi-
nus threshold value t, then p is classified as a corner. However, there are
known limitations to the algorithm. Firstly, for N < 12, the number of in-
terest points detected are very high. Secondly, the speed of the algorithm is
determined by the order in which the 16 pixels are queried. The Machine
learning is added to the approach, to overcome these limitations. The fast
computational speed makes the FAST detector suitable for large video frame
processing for real-time tracking, SLAM applications, etc.

2.2.4 BRIEF

The Binary Robust Independent Elementary Feature (BRIEF) (2010) by
Calonder et al. [20] is a short, fast and efficient feature descriptor that di-
rectly computes binary strings from image patches. BRIEF is aimed at faster
to compute, faster to match, and memory efficiency. The binary string com-
parisons are done with Hamming distance that can be extremely fast with
modern CPU instruction sets. The use of a BRIEF descriptor supposes the
key points are already detected, this can be done with a detector such as
SIFT or SURF. BRIEF can be quite useful when there are limited computa-
tional resources to compute large datasets.

11
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2.2.5 ORB

As the name indicates, Oriented FAST and Rotated BRIEF (ORB) is based
on FAST detector and BRIEF descriptor presented by Rublee et al. [21].
FAST excels in its performance. However, FAST features do not have ori-
entation component. Rublee et al. added the Haris corner measurement to
filter FAST features at each level in the pyramid for computed orientation
of keypoints. FAST with Haris corner filtering is called oFAST (oriented
FAST). To make the BRIEF descriptor invariant to in-plane rotation, rather
than computing each set of rotations and perspective wraps of each image
patch (which is expensive to compute), a more efficient method is to steer
BRIEF according to the orientation of the keypoints is called rBRIEF (ro-
tated BRIEF) [21]. The combination of the oFAST detector and the rBRIEF
descriptor is called ORB. A typical matching result using ORB on images
with viewpoint change can be seen in Figure 2.5 [21].

Figure 2.5: Keypoint matching using ORB

2.3 Panorama Stitching

To implement the street view-like indoor view and navigation approach
(section 1.4), an automated panorama stitching is required. Panorama (im-
age) stitching is the process of combining multiple images with overlapping
fields of view to a single large image. Typically, an image stitching process
consists of - feature (keypoint) detection, image registration, and image cal-
ibration. The keypoint detection is the process of finding correspondences
between overlapped images by a feature detector. The image registration
involves matching features in a set of images or using direct alignment to
minimize the sum of absolute differences between overlapping images using
RANSAC (Random Sample Consensus) algorithm. The image calibration

12
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aims to minimize the differences between an ideal camera lens model with
the camera lens it was used for taking images. Usually, distortion, expo-
sure, vignetting, etc., are corrected in this phase with correcting alignment
and blending adjustments. AutoStitch and PTGui are two proprietary image
stitching software tools. AutoStitch 2 is a commercial software developed
by Lowe & Brown, that uses SIFT and RANSAC algorithms. PTGui 3 is
a proprietary panoramic image stitching software for Windows and Mac
OS X. Both AutoStitch and PTGui require manual image manipulation and
do not provide a command-line interface to automate the stitching process.
Hugin PanoTools scripts are open source alternative to AutoStitch or PT-
Gui. The PanoTools or Panorama Tools is a set of open-source program
and libraries for immersive imaging, originally written by professor Helmut
Dersch, University of Applied Sciences Furtwangen [22]. libpano13 is the
latest PanoTools library for projecting and blending multiple images into
an immersive panorama. Hugin 4 is the open source cross-platform front-
end of PanoTools 5 and enblend/enfuse 6 developed by Pablo d’Angelo and
others for panoramic stitching and HDR merging (Figure 2.6). Hugin stitch-
ing process can be automated and enhanced by bash scripting by calling its
command-line interface that allows the flexibility of parametric customiza-
tion (e.g. field of view, projection, canvas geometry, blending, exposure
fusion, etc.). Hugin control point detector is called cpfind for generating
control points for both single and multi-row image stitching. The other
essential tools are - cpclean for control point pruning, autooptimiser for
project geometry optimizing, nona is the hugin rendering engine, enblend
for merging overlapped images with multi-resolution splines, and enfuse for
merging images with exposure fusion. Hugin supports all major projections
including - rectilinear, cylindrical, fish-eye, Mercator, equirectangular pro-
jection, etc.

2.4 ROS

The Robot Operating System (ROS) 7 is a set of open-source libraries and
tools to build robot applications, primarily developed at Willow Garage 8, a
2http://matthewalunbrown.com/autostitch/autostitch.html
3https://www.ptgui.com/
4http://hugin.sourceforge.net/
5http://panotools.sourceforge.net/
6http://enblend.sourceforge.net
7http://www.ros.org/
8https://www.willowgarage.com/
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Figure 2.6: Hugin control point detection

robotic research institute. ROS provides operating system-like function-
alities including hardware abstraction, device drivers, libraries, visualiz-
ers, distributed architecture of message-passing, package management, etc.
ROS is language independent, and the main client libraries are written in
C++, Python, and LISP. At present, ROS has become a de facto standard for
robotic application development. ROS starts with an ‘ROS master’, the main
control program that lets other ROS software components, called ‘Node’ to
find and communicate with other Nodes by sending (publishing) and re-
ceiving (subscribing) messages through a reference bus called a ‘Topic’. As
ROS architecture is highly modular and distributed, one or more computer
running different nodes can listen to a particular ROS master and accom-
plish the task. For example, a camera perception can be acquired by a robot
onboard computer, and the 3D map can be subscribed and viewed by other
computers by listening to robot ‘ROS master’ using a network connectiv-
ity. ROS launch files are used to configure and run many nodes at once.
From powering up a robot to performing a particular task such as RGB-D
SLAM mapping (presented in chapter 4) requires ROS to be installed and
configured in the robot onboard computer first.

2.5 Review of Patents

• US Patent 20150170258
Kulig et al. [23] presents a method for searching and location prod-
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2.5. Review of Patents

uct information using a mobile device on a generated map from retail
and planogram data. The method would require downloading vendor
supplied product location and merchandising fixture data to the mo-
bile device. The product location sought by the user is indicated by a
location visualization.

• US Patent 20150312722
Samsung presents a method of location determination and mapping
through crowdsourcing [24]. Crowdsourcing is a business term which
means the process of obtaining services or contents from a large group
of online people or users. The patent proposes a method of indoor
map generation by crowdsourcing that includes indoor location deter-
mination using radio frequency (e.g. Wi-Fi) data from a communica-
tion device, showing one or more routes of the map.
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3 Indoor 360◦ synthetic view using a
camera and RFID sensors

A 360◦ panoramic view provides an all-around view of the environ-
ment giving a feeling of presence that users can roam around the
place and explore. Google Street View is one of such experiences
that let people explore 360 ◦ panoramas of outdoor places. Like
an outdoor place, technology assisted indoor view, and information
browsing may be a need for many scenarios such as shopping. For
instance, shoppers would like to search and browse products on the
indoor view of the store with product information such as price, col-
ors, sizes, approximate product location within the store, being or
not being there physically. RFID can be used to obtain information
about objects present in a physical space, including their approxi-
mate location. Handheld RFID readers, smart shelves, zenithal an-
tennas, and robots can be used to obtain information with varying
time and space resolutions. In this chapter, we present a system that
projects this information on a panoramic view of a retail store, al-
lowing users to navigate virtually around the store, but instead of
being given static information, obtaining quasi-real-time informa-
tion about the products as they are in the store. When a user clicks
on the image of a shelf in the panorama, information is shown about
the products that were at or near that position the last time an RFID-
based inventory was obtained. A novel system implementation, in-
tegration, and test results in a real retail store are presented in this
chapter.

17
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Chapter 3. Indoor 360◦ synthetic view using camera and RFID sensor

3.1 Introduction

Map applications have become an essential part of daily life for locating
streets, buildings, shopping stores, transportation, etc. At present, users can
search and view an outdoor place without being there physically. Google
Maps have enhanced the map service with 360-degree panoramic views of
the streets. Google has also started a commercial service called Google
Business View [25], which shows 360-degree virtual tour of the business in-
terior environment and a non-commercial service called Google Art Project
[26], which shows historically significant places with brief static annota-
tions. However, these indoor virtual browsing services are not designed to
update panoramas and annotations frequently. In a retail store, inventory
information changes constantly and technologies like the barcode and RFID
are being used for up-to-date stock keeping. RFID has become a promis-
ing technology in retail, inventory management, supply chain management,
and retail marketing, etc. [2]. RFID systems can detect the presence or ab-
sence of an object and can also be configured to determine the approximate
location of the object within an environment. However, an RFID systems
alone can not present a graphical representation of the products they identify
and of course, they can not provide any visual feedback of the environment
within which they are located. In this chapter, we present the implemen-
tation and the integration of the “Store view” system for retail store virtual
browsing by creating a 360-degree Street View-like panoramas and utilizing
a robot equipped with an RFID system that allows users to search, navigate
and locate products on the panoramic view of the physical store.

3.2 Related Work to Indoor 360◦ Synthetic View

Colbert et al. point out that without additional capture devices, images can
not be precisely geo-located, and they present a method of iterative vision
based pose estimation of business indoor images to get geo-located images
for panorama making [27]. A vision-based pose estimation can be statisti-
cally optimized; however, their proposed system still requires user-guided
optimization and does not indicate how to display object information on a
panorama. NavVis is a Google Street View-like mapping system that uti-
lizes a trolley equipped with two laser scanners and six cameras to cap-
ture photos for creating maps allowing users to navigate virtually through
the indoor such as in museums with smartphones [28]. The trolley is re-
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quired to be pushed by a human operator, and it also does not provide any
context information on panoramas. Another alternative to the panorama
based services is the computer vision-based systems. Even so, a smooth op-
eration of vision based systems is challenging in real-world environments
due to many factors including lighting changes, pose changes, motion blur,
etc. [29]. In particular, in a retail scenario, identifying products with the
same color but in different sizes or distinguishing folded and unfolded ap-
parels can be difficult. Retail inventorying by a robot such as MetaBot [30],
is designed to navigate autonomously in retail environments and to execute
micro-merchandising tasks commanded by retail staffs or scheduled at pre-
defined time-intervals. The current implementation of the “Store view” sys-
tem presented in this chapter is the continuation of the research published
by Carreras et al. [5] which combines the ideas of the mobile robotic RFID
inventorying with the product information projection on the 360◦ panoramic
view of retail environments.

3.3 The Proposed System

3.3.1 Overview and Architecture

The objective of the “Store view” system is to enable a panorama based
store view, navigation and projection of RFID obtained product information
on the 360◦ panorama by integrating with the information obtained by an
RFID-equipped robot and camera sensor. The “Store view” system consists
of both the client and the server side components. The server side compo-
nents are RFID host software with an inventory database and a panorama
image provider. The client-side component is the user interface of “Store
view”; which is programmed with HTML5, JavaScript and Google Map
JavaScript API (v3) [31]. The RFID software is responsible for updating
RFID tag information to the inventory database. The panorama provider
module is responsible for creating all panoramas of the retail store using the
Hugin shell script [32]. To implement the dynamic client-side features, an
AJAX updater and a JavaScript DOM parser has been implemented. In the
server-side, PHP scripts have been implemented for the database connec-
tivity and server-side processing. The “Store view” system architecture is
presented in Figure 3.1.
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Figure 3.1: The “Store view” system architecture

3.3.2 Implementation

To implement the proposed system, at first, an automated panorama stitch-
ing process is implemented. Then, a custom indoor street view is imple-
mented using Google Street View JavaScript API. Here, we incorporate
the RFID obtained product information with the store panoramic view by
HTML DOM parsing, JavaScript, and PHP programming. The connectivity
between the robot and the server computer is through Wi-Fi, and the web
server can be accessed from any computer using HTTP web browser. To
locate a product on the store panorama, we implement a scheme of the store
and product coordinates in the form of X, Y, Z that can be applied to any
store. The implementation and integration details are outlined below.

RFID Hardware in AdvanRobot

AdvanRobot 1 is RFID system equipped robot manufactured by Keonn Tech-
nologies. AdvanRobot is equipped with twelve RF antennas, two multiplex-
ers, and an RFID reader. The extended base structure of the robot holds all
antennas on two sides, left and right side of the robot at different heights.
Antennas (Advantenna-P22) are connected to multiplexers (AdvanMux-8),
and the multiplexers are connected to RFID reader (AdvanReader-100) [33]
(Figure 3.2). A laser sensor enables the robot to generate the indoor navi-
gation map in (X,Y ) parameters. All antennas are measured and attached
to get the location of the Z value which is the height at which an antenna
is fixed with the robot structure. The current position of the robot gives the
1http://keonn.com/systems/view-all-2/inventory-robots.html
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X , Y and the “ahead” orientation of the robot determines which side (left
or right) and at which Z height each antenna senses the tags. The reference
store coordinate (X,Y ) = (0, 0) is configurable from any corner of the
store. As a result, the robot module can determine the currentX , Y position
of the robot and the approximate location of a tag, on each side at different
Z height value.

Figure 3.2: RFID system on the robot

Figure 3.3: A panorama of the actual retail store created by Hugin shell
script (panorama 1, store section 1)

Automating 360◦ Panorama stitching

The panoramic view is created by taking overlapping photographs of all
around the place throughout the 360 degrees (with 15-degree clockwise ro-
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tation steps) and stitching them together. Although, images photographed
can be stitched together manually with commercial tools such as PTgui,
Autostitch etc., we take an automated approach and thus chose to use Hugin
shell script with the ImageMagick command line scripts which is useful for
any size store. We use the command nona for remapping, and enblend for
blending the remapped photos into a finished TIFF image. We utilized hugin
cpfind for identifying control points between overlapped images which is
an alternative to SIFT implementation autopano-sift-c. From the output
point of view, both cpfind and autopano-sift-c generate similar results while
cpfind accepts more parameters. Then we optimize the process by running
autooptimizer to optimize photometric parameters such as alignment, out-
put projection angles, etc. All the above commands are pipelined as a batch
process with a Linux shell script as stated in the following self-descriptive
pseudo-process (similar to the process of Brown and Lowe [34]).

Pseudo-process: 360◦ Panorama stitching

Input: n overlapped images

I. create project file by reading all input images using pto gen

II. find control points using cpfind

(a) do pairwise and multirow matching

(b) for each images

i. find m candidate matching images with maximum num-
ber of feature matches

ii. apply RANSAC to solve homography between pair of
images

III. optimize control points using cpclean

IV. find vertical lines using linefind

V. do optimize image positions, photometric optimization, straighten
panorama using autooptimiser

VI. set panorama output projection (360◦, 180◦), optimal crop and
output size using pano modify

VII. create stitching makefile
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VIII. make panorama, apply enblend and enfuse

Output: 360◦ Panorama

The output panorama of the above process is an equirectangular projected
(aspect ratio 2:1) 360◦ panorama. An output panorama is presented in Fig-
ure 3.3. When all panoramas of the store are created, we inter-link them by
custom JavaScript programming with the Google Street View API [31]. All
inter-linked panoramas with the Google Maps API enable users to navigate
through the “Store view”.

Store and Object Coordinates

A retail store can be measured with X , Y , and Z coordinates representing
the length, width, and the height of the store in measurable units such as in
centimeters (Figure 3.4). Any retail product has its location that can also be
represented with XY Z coordinates. In the Figure, all product locations in-
side the store ranges from (X,Y, Z) = (0, 0, 0) cm to (750, 1750, 300) cm.
Let’s say, the product “Short Ski Jacket” location coordinates (X1, Y1, Z1) =
(433, 60, 170) are recorded by the RFID system of the robot. And if we
would like to locate this “Short Ski Jacket” from a panorama capture center
point such as (X0, Y0, Z0) = (212, 225, 135), in spherical coordinate sys-
tem, we need to calculate the triplet of (ρ, φ, ψ) which gives the radial dis-
tance, azimuth angle and elevation angle calculated by the equations (3.1),
(3.2), and (3.3) respectively. A panorama capture point (X0, Y0, Z0) is the
panorama center point where the robot stops for capturing images all around
for a particular panorama. At present, all panorama capture points are man-
ually indicated in the robot navigation plan and recorded in the database for
a particular store.

ρ =
√

(X1 −X0)2 + (Y1 − Y0)2 (3.1)

φ = arctan
( |Y1 − Y0|
|X1 −X0|

)
(3.2)

ψ = arctan
( |Z1 − Z0|

ρ

)
(3.3)

By applying equation (3.1), (3.2), and (3.3), we get φ = 39.5◦ ≈ 40◦, and
the ψ = 5.5◦ ≈ 6◦. In Google Street View API, the azimuth angle is called
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heading, and the elevation angle is called pitch. The heading and the pitch
angles define the Street View point-of-view (POV). Thus, by calculating the
POV value we can manipulate the rotation angles to show the position of
the object on the panorama. The default POV pitch ψ = 0◦ is always the
panorama height divided by 2. A positive pitch value shows the upper half
and a negative pitch value shows the lower half of the panorama. We adjust
the POV heading angle to make sure that the angle φ = 0◦ and ψ = 0◦ starts
to the left of the panorama image in Figure 3.3. Next, we describe how to
map the object coordinates to the panorama pixel coordinates.

Figure 3.4: The φ and ψ calculation by the equations 3.2 and 3.3

Panorama Coordinates

To implement the virtual browsing of products, we need a way to calcu-
late the panorama coordinates in accordance with Street View API. Google
Street View service has coined the term “world size” , which is the size
of the panorama. We set the panorama size to 4096 pixels by 2048 pixels
world size. As the panorama starts from (0, 0) pixel value, the Pmax value
is 4095, andQmax value is 2047 as shown in Figure 3.3. A panorama image
can be measured in width and height pixel differences while matching with
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the street view heading and pitch rotations. As a result any point (P,Q) can
be located by calculating the location P pixel and Q pixel of the panorama
with the equations (3.4) and (3.5).

P =
(
φ− φmin

360

)
× (Pmax − 1) (3.4)

Q =
(
Qmax + 1

2

)
×
(

1 + tanψ
tanψmax

)
(3.5)

where, ψmax = arctan h

2f
with, h = height of the camera CCD,

f = focal length of the camera

These equations are trivial from the point of computer graphics; however,
they play an important role with Street view API. For any object location in
terms of (X,Y, Z), we can compute corresponding (P,Q) of the panorama
and show inventory information on that position.

Locating objects on the panorama

By using both the object coordinates and the store coordinates, the “Store
view” system computes the P and Q coordinates of the panorama as well
as the φ and ψ angles to rotate the POV to highlight the product. A real
store possibly has more than one panorama (Figure 3.5, 3.7). In this case,
the “Store view” system calculates the nearest panorama from the product
location and thus, any point on any panorama can be located and displayed.

Projecting Information Using HTML DOM Parsing

In previous sections, we have discussed how to locate the object on the
panorama. In this section, we discuss how to fetch information from the
database and display the product information using HTML DOM parsing
with JavaScript. Document Object Model (DOM) is a cross-platform, language-
independent convention for representing and interacting with HTML, xHTML
and XML documents. JavaScript is a client-side scripting language that can
run within the Internet browsers and accomplish many tasks such as dynam-
ically manipulating HTML DOM to display dynamic text and images etc.
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(a) Panorama 2, store section 2

(b) Panorama 3, store section 3

(c) Panorama 4, store section 4

(d) Panorama 5, store section 5

(e) Panorama 6, store section 6

(f) Panorama 7, store section 7

Figure 3.5: Panoramas of different sections of the store
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A web page is essentially a combination of HTML for the structure of the
page and CSS (Cascading Style Sheet) for the presentation of the HTML
elements. As JavaScript can be programmed to access all the HTML DOM
elements, the CSS of the page can also be manipulated and updated instantly
on the browser to achieve any dynamic information on a web page. To fetch
information from the database a combination of PHP (programmed to run in
the web server) and the asynchronous JavaScript calls (programmed in the
client browser) can be utilized. An Ajax function is used to fetch updated
product list from the database and create HTML ‘li’ elements for each item
by browser asynchronously.

When the user moves around with the mouse or touchpad, the movement is
calculated as panorama heading and pitch value change which in turns are
calculated as P, Q value of the panorama coordinate. The current panorama
can always be identified by panorama providers’ getPano() method. Also,
an HTML DOM element can be returned by the standard JavaScript meth-
ods named getElementById() and getElementsByTagName(). The Pmin,
Pmax,Qmin,Qmax are the ranges of panorama coordinates (P, Q) discussed
in earlier sections. The HTML DOM parsing that is essential for the virtual
product browsing in “Store view” system is presented in Algorithm 1.

Algorithm 1: Pseudo algorithm for highlighting a product in the virtual
mode
1: procedure HIGHLIGHTELEMENT

2: for i < list.length do
3: div = document.getElementById(’browser’);
4: list = m.getElementsByTagName(’li’);
5: item = list[i].id;
6: tokens = item.split("delim",length);
7: if
8: tokens[panoIdIndex] == panoid &&
9: (tokens[itemP] > Pmin && tokens[itemP] < maxP) &&

10: (tokens[itemQ] > Qmin && tokens[itemQ] < Qmax)
11: highlightBox.innerHTML = ‘‘<div

style=’...’".’itemInfo’
12: .‘‘>";
13: return; then
14: end if
15: end for
16: end procedure
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3.4 Experimental Results

3.4.1 Synthetic View of a Real Store

We conduct the experiments at the Roberto Verino’s Barcelona store where
1065 product items were tagged with UHF RFID tags. The store geometry
is 17.5 meters (X) long, 7 meters wide (Y ), and 3 meters high (Z). The
robot was set to move at the speed of 10 cm per second on a predefined
walkway in the store to record RFID tags and their approximate locations
(Figure 3.6). A 3D scatter plot depicts the store-wide RFID inventory in
different locations of the store in Figure 3.8.

Figure 3.6: AdvanRobot is reading RFID tags and their approximate loca-
tions by going around the retail store.

The computer hardware used for panoramas stitching is Intel Core i5 quad-
core processor with 8GB RAM and without any GPU hardware. Each
panorama was stitched with 24 photos, taking approximately 25 minutes
to complete stitching with a single thread. With a multi-threaded panorama
stitching script, we achieved approximately one hour for three simultane-
ous ( ≈ 20 minutes for each) panorama stitching with the above-mentioned
computer configuration. With a simultaneous processing, with free RAM
takes less time to complete the task due to less hard disk swapping. In the
stitching script, we make sure that there was at least five keypoints to match
images to maintain acceptable quality panorama stitching.
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The “Store view” user interface (UI) presented in Figure 3.9b and 3.9c is
created with 7 panoramas covering the whole store, where users are able to
search, locate and virtually browse products of the store. The “Store view”
UI highlights the product location with product details based on the RFID
inventory location recorded by RFID system on the Robot. As the clothes
can be of different sizes and shapes, and also can be displayed on a hanger,
or may be stacked on the shelves, the “Store view” system highlights the
approximate product location of the product with a blue highlight box where
the center of the box indicates the product location.

Figure 3.7: Panorama (1-7) capture points labelled as P (1-7)

Figure 3.8: RFID inventory (black dots) read by the robot, where pos.X ,
pos.Y , and pos.Z are the length, width, and height coordinates.
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(a) “Store view” link from Google Street View.

(b) Panorama to panorama navigation links.

(c) Search and click - displaying the RFID obtained product (here,
“Short Ski Jacket“) related information on the panorama.

Figure 3.9: The Store view user interface
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3.4.2 User Evaluation

The Store view system was evaluated by 21 users (subjects). The subjects
were given in total 357 product EPCs which are randomly distributed, mu-
tually exclusive sets of EPCs, to find and locate these (product) items using
the Store view user interface (Figure 3.10, 3.11). We found that 80.3% prod-
uct items were identified by the users accurately, and they were able to find
and locate items in the Store view. Within these 80.3% of EPCs, the mean
deviation of product location estimated by the users from the ground truth
(X, Y, Z) was 0.53 meter. The remaining 19.7% of items were deemed to
be outside of the current view. This could either be due to the item not be-
ing in the current view or the subject not being able to identify the object
amongst other items, for instance, in the case of their being multiple occlud-
ing items. This problem could be improved by taking more photos at lower
spatial separation which is currently 5 meters. This would reduce the view
angle between the fronto-parallel view and the target product. The subjects
were then given questionnaires to assess the speed and performance of the
system. The results are summarized in Table 3.1, from which we would
like to outline Q16 and Q17 reporting that the speed and the reliability of
the system was graded 4.5 over 5. The questions Q1 to Q15, related to the
usability of the system, also received positive feedback. The table shows a
complete set of statistics for each question for a thorough analysis and in-
terpretation of the evaluation.

Figure 3.10: Virtual browsing - a user is evaluating the ‘virtual browsing’
feature and locating products with the mouse.
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Figure 3.11: A user is evaluating the ‘click and display’ feature and locating
products with the mouse.

3.5 Chapter Summary

In this chapter, we present the projection of RFID-obtained product informa-
tion on the panoramic view of an actual retail store. In our approach, we first
describe the RFID integration on the robot, then we present the automated
panorama making process. Next, we present a Street View-like indoor vi-
sual model by inter-linking panoramas and it’s navigation scheme. We also
present a method for locating a product on the panorama of the retail store.
Finally, we present the up-to-date retail inventory information projection on
panoramas store-wide. The idea of inventory by RFID system on a robot
enables efficient space resolution by reducing RFID antennas, readers, and
the overhead installation cost. The web based user interface of “Store view”
brings the up-to-date inventory information accessible anytime, anywhere
bridging the gap between offline and online commerce. Finally, we evaluate
the “Store view” user interface with the users and present the user evalu-
ation results. The “Store view” system enables independent shopping for
the shoppers with improved store management for the shopkeepers. The in-
tegration of numerous technologies, sensors and a Robot is the novelty of
the “Store view” system. Indoor 3D modeling is an alternative to panorama
based services [35, 36]. In general, 3D modeling is more processing inten-
sive and time consuming than a panorama stitching process. In chapter 4, we
present a point cloud based indoor 3D mapping and information projection
on the map using RGB-D SLAM.
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4 3D synthetic view using RGB-D
SLAM and RFID sensors

The term ‘3D’ normally refers to three-dimensional space, the phys-
ical universe. Unlike 2D, where ‘seeing’ an object is perceived by
analyzing the colors and textures, with a 3D view, the real world ob-
jects are perceived by spatial and temporal relationships in the scene.
A 3D view clearly distinguishes the foreground and background ob-
jects with depth information while allowing all around view. An
ideal 3D view gives the exact look and feel of a physical environ-
ment. A detailed and accurate models can provide extensive knowl-
edge about the environment and the objects it contains. 3D models
of indoor environments have great potentials and interesting applica-
tions. Typically, a large 3D model is computing intensive and time-
consuming. However, inexpensive depth (RGB-D) cameras made
it possible to construct 3D models much easier than with high con-
figuration cameras and computer graphics hardware. An RGB-D
camera or depth camera captures per-pixel depth information with
RGB color information. RGB-D mapping involves creating 3D point
cloud maps with RGB-D camera sensors and Simultaneous Local-
ization and Mapping (SLAM) by a robot. A useful application of
robot mapping would be - creating a 3D view of the indoor envi-
ronment while RFID inventorying to create a 3D synthetic view of
the indoor with up-to-date object information on it. In this chapter,
a novel synthetic view of indoor is presented by utilizing RGB-D
SLAM and RFID sensors.
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4.1 Introduction

While a textured 3D map provides interior details, the map itself is not very
useful without contextual information. Different approaches have been uti-
lized to annotate 3D maps in different contexts. However, 3D map annota-
tion or semantic modeling is a laborious, time-consuming, and error prone
process [37]. Due to heavy graphics rendering requirements, a complete
automation of 3D map annotation or semantic modeling in real time may
not be possible for a large indoor. Also, in a large environment such as in a
retail store the products or items are prone to change its location quite fre-
quently. An up-to-date object information projection on the 3D indoor map
requires a solution that can update the object information with a system like
RFID. With RFID readers on a mobile robot, it is possible to localize the
RFID tagged objects using the robot position and orientation information
with RFID tag reading time synchronization. In this chapter, we present
projection of RFID information on top of a 3D point cloud map of the in-
door environment.

4.2 Simultaneous Localization and Mapping (SLAM)

While fixed robots have been serving in industrial automation, mobile robots
are becoming smarter with sensing technologies where it can build their map
and move around the environment for specific tasks. However, in an un-
known environment, a robot neither knows its position nor the environment
setting. A method which can simultaneously build the map of the environ-
ment and localize the robot position within the map is called Simultaneous
Localization and Mapping (SLAM).

The SLAM problem can be mathematically expressed as -

Given, the robots control, u1 : T = u1, u2, u3, u4, ..., uT
and the observations, z1 : T = z1, z2, z3, z4, ..., zT
Need to build the map, m
and the path of the robot, x0 : T = x1, x2, x3, x4, ..., xT .

Thus, the estimation of the robot path and the map is the probability,

P (x0 : T,m | z1 : T, u1 : T )

When the robot knows its position and the structure around it, it can move
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around and perform it’s given task. To do so, SLAM algorithms use the
depth or distance information of its surroundings. A traditional state-of-
the-art technology of acquiring depth information is the laser scanner. A
laser scanner provides long range depth information with higher accuracy
than sonar or other existing technology. A laser scanner can be a 2Da or
3D laser scanner. A 2D laser scanner provides x, y and theta, where theta
is the orientation angle. A 3D laser scanner can only produce 3D maps
with pixel color intensity as it is not built for capturing texture. However,
laser scanners are expensive especially 3D laser scanners. Instead of using
commercial 3D laser scanners, a recent trend is the use of depth camera to
capture both the depth information and the textures of the surroundings for
creating a 3D map of the environment. Depth cameras such as Microsoft
Kinect, Asus Xtion pro etc. are inexpensive, however they have limitations
too. A depth camera has typical range of 4 meters or less and the depth
accuracy is not as accurate as a laser scanner. As a result, a hybrid approach
has also emerged where the depth information is sensed by laser scanner
and the textures are captured using depth camera and combine the result for
estimating robot pose from 2D laser scanner and building a more accurate
3D point cloud maps.

4.3 Depth Measurement Techniques

The depth measurements can be obtained by microwaves, light waves, and
ultrasonic waves. With light waves different methods are used, such as time-
of-flight, structured light, triangulation, and laser scan. The existing depth
measurement techniques are briefly described as below.

4.3.1 Time-of-flight

The Time-of-flight (ToF) measurements consists of measuring the time de-
lay of an emitted signal that returns back to the receiver. This time value
can be used to measure the depth of each and every pixel in the image. With
velocity of the signal, v and the signal traveled time, t, the travel distance,

S = v × t
In a ToF camera, the sender and the receiver are close to each other. As a
result, the distance from sender to the object is equals to the distance from
object to the receiver. Therefore, the distance to the object -

D = v × t
2
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The major advantage of ToF camera is that only one is camera required for
the acquisition of 3D geometry in real-time.

4.3.2 Phase-shift

When a continuous wave, such as a laser light is emitted, the amplitude of
the carrier signal modulated by sinus signals of different frequencies can
also be used to measure distance. The reflected signal is compared to the
currently sent one; and the phase shift ∆ϕ can be measured. Since the
phase shift is proportional to the distance,

D = ∆ϕ λ
4π = ∆ϕ v

4πf

Where, λ is the wavelength of the modulated signal and f is the fre-
quency.

4.3.3 Triangulation

Triangulation is the process of determining the location of a point by mea-
suring angles to it from known points [38]. The point can then be fixed as
the third point of a triangle with one known side and two known angles.
Thus distance can be measured applying triangulation.

4.3.4 Structured light

Projecting a pattern of infrared (IR) light on a 3D surface produces a line of
illumination that appears distorted when looked from a perspective different
from the projector’s perspective. This distortion of light pattern allows com-
puting the depth and the 3D structure of the scene. Microsoft Kinect uses
structured light imaging where the projector projects a known pattern called
‘Speckles’ in near-infrared light, and the CMOS IR camera observes the
scene [39]. The depth in Kinect is calculated by the triangulation of each
‘Speckle’ between the virtual image and the observed pattern where each
‘Speckle’ corresponds to each point of the image [40]. The similar principle
is used in Xtion PRO LIVE cameras [41].

Figure 4.1 illustrates the geometric relationship between the imaging sen-
sor, the structured light projector, and an object surface point. The distance
or depth D, from camera to the object surface thus can be expressed as a
triangulation principle -
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.

Figure 4.1: Structured light depth measurement parameters

D = B sin(θ)
sin(α+θ)

4.4 Laser Scanner

The laser scanner also called a laser range finder (LRF) is an optical device
that measures the distance to an object in a scanning field using a pulsed
laser beam [42]. A laser (light amplification by stimulated emission of radi-
ation) beam is a single wavelength, same phase, a high-density light beam
that can travel a straight line longer distance with a narrow beam. A laser
scanner uses a rotating mirror to change the direction of the laser beams.
When both a laser scanner rotates all around while rotating mirror rotates up
and down, the result is a systematic 3D sweeping of beams into the scanning
area. The laser scanner measurement is based on Time-of-Flight principle,
when the emitted laser beam hits an object, part of the beam reflects back to
the scanner detector, the time is measured. Laser scanners are widely used in
robotic applications such as obstacle avoidance, object tracking, map build-
ing, feature extraction, or self-localization, etc [43].

4.4.1 2D laser scanner

A 2D laser scanner provides distances and angles to the surrounding ob-
jects by scanning the environment in a plane, usually parallel to the ground.
Widely used, industry standard 2D laser scanners Sick LMS100 and Hokuyo
UTM-30LX are shown in Figure 4.2. Sick LMS100 2D laser scanner has
270◦ field of view with scan range of 0.5m - 20m, and the light source is
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infrared 905 nm wavelength [44]. Hokuyo UTM-30LX 2D laser scanner
also has 270◦ field of view, with longer scan range of 0.1m to 60m, and the
light source is semiconductor laser diode with 905nm wavelength [45].

(a) Sick LMS100
2D laser scanner

(b) Hokuyo UTM
30LX 2D laser
scanner

Figure 4.2: 2D laser scanners

4.4.2 3D laser scanner

3D laser scanners are also known as terrestrial laser scanners, traditionally
used for mapping roads, building structures, etc. In a 3D laser scanner,
the scanning area can be extended by moving the scanner from different
vantage points to cover the whole area of scan interest. Multiple scans can
also be merged by post processing of point clouds. Two professional 3D
laser scanners Faro focus3D X 130 and Trimble TX8 3D laser scanner is
shown in Figure 4.3. Faro Focus X 130 has 300◦ / 360◦ field of view with
scan range 0.6 m to 130 m and the light source is Laser class 1, 1550 nm
wavelength [46]. Trimble TX8 3D laser scanner has 360◦ / 317◦ field of
view with scan range 0.6 m to 120 m, and the light source is also Laser class
1, 1500 nm wavelength [47]. Thus, 3D laser scanners can produce a very
dense point clouds maps covering a large scan area with high precision.

4.5 RGB-D Camera

RGB-D cameras are sensing systems that capture RGB images along with
per-pixel depth information. The underlying sensing techniques of RGB-
D cameras can be range-gated ToF, RF-modulated ToF, pulsed-light ToF or
projected-light stereo. An RGB-D camera is also called a range camera as
it produces 2D images showing the distance to points in a scene. RGB-D
cameras are inexpensive and compact in compared to other systems such
as a stereo vision or a triangulation systems or a laser scanning system.
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(a) Faro Focus3D X 130
laser scanner

(b) Trimble TX8 3D
laser scanner

Figure 4.3: 3D laser scanners

Moreover, using RGB-D cameras, it is possible to acquire video stream and
depth data for many robotic applications such as 3D mapping and local-
ization, path planning, navigation, object recognition, people tracking [48]
etc. RGB-D cameras can operate from as near as 0.1 meter from the clos-
est object for object detections and for the indoor mapping as near as 0.5
meter. In contrast to a laser scanner, an RGB-D camera systems do not re-
quire any mechanical moving parts as the processing is done with a whole
scene in real-time rather than single point by point scanning. Three widely
used RGB-D cameras are Microsoft xBox 360 Kinect, Asus Xtion PRO
LIVE, and SoftKinect DepthSense DS325. A comparison of these camera
attributes are presented in Table 4.1.

Table 4.1: RGB-D camera comparison

Attributes xBox 360 Kinect Xtion PRO LIVE DepthSense DS325

Field of
View

57◦ H, 43◦ V 58◦ H, 45◦ V,
70◦ D

74◦ H, 58◦ V,
87◦ D

Frame rate 30 FPS 30 FPS 30, 60 FPS

Resolution RGB and
depth: VGA
(640 x 480)

RGB and
depth: VGA
(640x480)

RGB: HD
(1280x720),
Depth: QVGA
(320x240)
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Microsoft xBox 360 Kinect is an integrated sensor with an RGB camera,
an infra-red projector, a CMOS sensor, and a microphone [39]. Microsoft
Kinect sensors are jointly manufactured by Microsoft and PrimeSense [49].
The xBox 360 Kinect depth camera operates on 640x480 pixel resolution at
30 FPS (frames per second). The recent xBox 360 Kinect sensors do not re-
quire any camera calibration as they come with the factory calibration. The
xBox 360 Kinect sensors works with open-source, platform-independent
OpenNI driver [50].

Xtion PRO LIVE manufactured by Asus is a color infrared sensor capable of
detecting adaptive depth when user or camera is in movement and does not
require any additional power source as it works on USB 2.0 [41]. Like Mi-
crosoft xBox 360 Kinect, Asus Xtion RPO LIVE depth camera operates on
the 640x480-pixel resolution at 30 FPS. Xtion Pro Live requires OpenNI2
driver [50]. Its lightweight, adaptive depth sensing and no additional power
requirements makes it attractive for robotic applications such as 3D map-
ping and obstacle detection.

DepthSense DS325 is manufactured by SoftKinect excels in near mode
dense depth as close as 15 cm at 60 FPS [51]. DepthSense DS325 is built
with CMOS 3D sensors and dual microphones. Like Asus Xtion PRO LIVE,
DepthSense DS325 is also a USB powered depth camera that works with
SoftKinect driver.

RGB-D cameras have limitations regarding depth scanning range, field-of-
view and image resolution. The effective maximum depth scanning range
of RGB-D cameras are approximately 4 meters, and the filed-of-view is
approximately 58◦, which is far more constrained than laser scanners field-
of-view (∼ 300◦ / 360◦). Also, the RGB and the depth images of RGB-D
cameras are typically VGA (640x480 pixels) and thus the final point cloud
is indeed a mid-resolution output. Despite these limitations, a natural ap-
plication of depth camera is the Simultaneous Localization and Mapping
(SLAM) RGB-D mapping.

In this chapter, we present a 3D synthetic view system created by RGB-D
camera, SLAM and RFID sensors on a robot.
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4.6 Related Work to RGB-D SLAM Mapping

The term ‘RGB-D SLAM’ refers to the SLAM using RGB-D image data.
Traditionally, the RGB-D SLAM approaches used the RGB data from the
camera and the depth data from the laser scanner. The newer approach is
the use of inexpensive Kinect style camera’s RGB and depth data instead of
expensive cameras and laser scanners.

The RGB-D mapping was first published by Henry et al. (2010), propos-
ing a solution by combining the visual odometry and pose-graph estimation
with color and depth information to create dense point cloud maps of in-
door environments [8, 52]. The term ‘odometry’ refers to the use of motion
sensor data to estimate the change in position over time. The goal of the
research was to create dense 3D point cloud map of indoor environments
using inexpensive depth camera such as Microsoft Kinect (Figure 4.4) [8].
Unfortunately, there are no source code or executables available to evaluate
the system.

Figure 4.4: The overview of RGB-D mapping proposed by Henry et al.

KinectFusion (2011) [35] is a real-time 3D reconstruction and interaction
system using a standard Kinect camera. In their approach, only the depth
data was used to track the 3D pose of the camera to reconstruct the 3D model
of the scene with high-performance GPU hardware. As the size of the voxel
grid has cubic influence on the memory usage, KinectFusion can be used
for small scale mapping only. The core use of KinectFusion was demon-
strated as a low-cost handheld scanner for real-time 3D modeling that can
be leveraged for geometry-aware augmented reality (AR) and physics-based
interactions, where the virtual world more realistically interacts with the real
world.

Kintinuous (Spatially Extended KinectFusion) (2012) [53] introduced a tech-
nique called ‘cyclical indices’ for moving the origin of the space that is rela-
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tive to volume rather than fixing the volumetric space to reduce the increas-
ing GPU memory usage of the KinectFusion. The approach was further
improved with a GPU-based implementation of an existing dense RGB-D
visual odometry algorithm and real-time surface fused coloring published in
2013 [54]. Although the research presented with evaluations looks promis-
ing, there was no available source code to evaluate the system.

Endres et al. (2012) [55, 56] proposed an environment measurement model
(EMM) to improve the accuracy and the robustness of the RGB-D SLAM
system. The EMM was introduced to validate the transformation estimated
by the iterative-closest-point (ICP) algorithm. Endres et al. point out that, in
case of low overlap between frames or few visual features, e.g., due to mo-
tion blur, occlusions, or lack of textures, the RANSAC and the ICP may lead
to unreliable feature detection failure. Therefore, a beam based EMM was
proposed to verify a transformation estimate, independent of the estimation
calculation method used. To compute a globally consistent trajectory, g2o
framework [57] have been used to optimize the nonlinear robot pose graph
errors (Figure 4.5) [55]. The experimentation evaluations conducted of-
fline, have been presented with a RGB-D benchmark datasets. The authors
evaluated the main stream feature detectors such as SIFT [16], SURF [17],
ORB [21], and a combination of Shi-Tomasi [58] and SURF detectors. Ex-
cept SIFT, the author tested with the OpenCV (GPU based) implementation
and presents that ORB and Shi-Tomasi SURF combination is suitable for
performance with limited hardware resources, however, with the trade-off
of accuracy and robustness. The author also states that, with the GPU, SIFT
was clearly the best choice with highest accuracy, which was the median
RMSE of 0.04m. With the SURF detector algorithm, the author also pre-
sented that, with some dataset, the feature matching was improved, however
for most sequences the improvement was not significant.

Real-Time Appearance-Based Mapping (RTAB-Map) proposed by Labbé
and Michaud (2013) is a real-time online RGB-D Graph SLAM, based on a
global Bayesian loop closure detector. In appearance-based localization and
mapping [59, 60], the loop closure detection process is used to determine if
the current comes from a previously visited location or a new observation.
The objective of appearance-based mapping is to propose a localization and
mapping that is independent of time and size. RTAB-Map has introduced
a memory management mechanism to ensure satisfaction of real-time large
scale mapping regardless of the size of the environment. A global loop clo-
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Figure 4.5: The overview of RGB-D SLAM system proposed by Endres et
al.

sure detection is the process of comparing new location with previously vis-
ited locations and adding the new location if there is no match found. With
this approach the required time for processing new observations increases
as the number of locations increases. RTAB-Map resolves this problem by
a combination of the Working Memory (WM) and the Long-Term Memory
(LTM). The WM keeps the most recent and frequently observed locations
and when a match is found between the current location and the WM loca-
tion; the associated locations stored in LTM is then remembered and updated
(Figure 4.6) [59].

RTAB-Map uses bag-of-words [61] approach for vision-based mapping
where each image corresponds to visual words extracted by local feature de-
scriptors such as SURF [17], SIFT [16], ORB [21] etc., and kept in a visual
dictionary. The visual dictionary is incrementally constructed online using
a randomized forest of kd-trees. In the bag-of-words approach, an image
signature Zt is represented by a set of visual words at the time t, when the
image is acquired. The perception module acquires an image from RGB-D
camera and sends it to the Sensory Memory (SM). The SM evaluates the
image signatures for useful features to The short term Memory (STM). The
STM is used to observe similarities through time between consecutive im-
ages with a weighted update. The STM size TSTM is set based on robot
velocity and the rate at which the locations are acquired. A memory loca-
tion Lt is then created with the signature Zt as a bi-directional graph and
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Figure 4.6: The RTAB-Map memory management model presented by
Labbé and Michaud.

the memory location is stored in WM and in STM. When a transfer from
WM to LTM is necessary, the lowest weight is selected. In case of multi-
ple same lowest weight of many locations, the oldest one is transferred. A
discrete Bayesian filter is used for estimating the probability of the current
location Lt matches with the a already visited location stored in the WM
to keep track of loop closure hypotheses. Tree-based netwORk Optimizer
(TORO) [62] graph optimization method is used in order to correct the map
for odometry errors. TORO is also used to optimize multiple session map
with multiple roots.

4.7 Related Work to 3D Map Annotation

Rusu et al. [63] present a system for mapping objects for household envi-
ronments given the partial view of the environment as point clouds. The
author contributes in point cloud improvement for object recognition (e.g.
kitchenware) within the point cloud by classifying high-level features. The
approach seems to work for a static or known environment where items
are limited and has distinct features. However, in constantly changing en-
vironment such as in a retail environment, there are possibilities to have
thousands of items with similar shapes, colors, folded, unfolded, packed,
unpacked items etc. Moreover, to provide the user an up-to-date mapping
and item information, the retail store map may need be done periodically
on a daily basis. Tian et al. [64] present a small scale 3D models’ labeled
data set to label unlabeled 3D models using semi-supervised semantic la-
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bel propagation technique. The approach is interesting, however, for a large
retail store with large number of items, matching 3D models with environ-
ment map may turn out to be difficult. And, of course, the 3D models for
each item has to be created first.

4.8 Point Cloud

4.8.1 Point Cloud Map

Point cloud is the convenient form of map representation of any types of
RGB-B SLAM. A point cloud is a set of data points in some coordinate sys-
tem. In a three-dimensional coordinate system, points are usually defined
by X , Y , and Z coordinates of an underlying surface if possible. Mathe-
matically, a point p is represented as an n-tuple, e.g., pi = {xi, yi, zi, ri, gi,
bi, disti, ...}. A Point Cloud P is represented as a collection of points p i,
e.g., P = {p1, p2, ..., p i, ..., pn}. Point clouds are usually scanned by a
RGB-D cameras, stereo cameras, 3D laser scanners, time-of-flight cameras.
The point cloud library is used for processing a point cloud map.

4.8.2 Point Cloud Library

The Point Cloud Library (PCL) is a cross-platform open-source library of
algorithms for point cloud processing and 3D geometry processing [65].
PCL contains numerous state-of-the art algorithms including filtering, fea-
ture estimation, surface reconstruction, registration, model fitting and seg-
mentation [66]. PCL is fully integrated with ROS for 3D point cloud and
robot perception processing. PCL has its own visualization library which
offers methods for rendering and drawing of based on Visualization Toolkit
(VTK) [67]. VTK is an open-source programmable software system for 3D
computer graphics, modeling, image processing, volume rendering, scien-
tific visualization, and information visualization. The PCL visualization li-
brary offers methods for rendering and setting visual properties such as col-
ors, point sizes, opacity etc., methods for drawing of the 3D shapes such as
cylinder, spheres, lines, polygons etc., methods for specifying the dimension
and color of the points in 3D Cartesian space as point cloud. The basic data
type in PCL is a PointCloud. The PointCloud data type is a C++ template
class which contains width(int), height(int), points(std::vector<PointT>), i
s dense(bool), sensor origin(Eigen::Vector4f), sensor orientation(Eigen::Q
uaternionf). In terms of data structures, a point cloud P is declared as Point[]
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points or std::vector<Point>points. In C++, where Point is the structure/-
data type representing a single point p. The relevant PCL PointCloud point
types are listed in Table 4.2.

4.8.3 Point Cloud File Formats

PCD and PLY are two popular point cloud file formats described as follows.

Table 4.2: PCL point types

Point Type Data

PointXYZ float x, y, z
PointXYZI float x, y, z, intensity
PointXYZRGB float x, y, z, rgb
PointXYZRGBA float x, y, z, uint32 t rgba
PointNormal float x, y, z, normal[3], curvature

PCD - Point Cloud Data

Point Cloud Data (PCD) is a native PCL file format for storing multi-dimen
sional (n-D) point cloud data. It consists of a header in ASCII, followed by
the data in ASCII or in binary. A PCD file header specifies the properties
of the point cloud data which includes - PCD VERSION, FIELDS, SIZE,
TYPE, COUNT, WIDTH, HEIGHT, VIEWPOINT, POINTS, and DATA.
Each header property must be written as ASCII and separated by a new
line. The VERSION specifies the PCD file version, the FIELDS specifies
the name of each dimension/field of a point, the SIZE - specifies the size of
each dimension in bytes, the TYPE specifies the type of each dimension as
a char, the COUNT specifies how many elements each dimension has, the
WIDTH specifies the total number of points in the cloud for unorganized
point cloud and for organized point cloud this the total number of points
in a row, the HEIGHT specifies the total number of or rows for organized
point cloud and for unorganized the value is 1, the VIEWPOINT specifies
the viewpoint for points in terms of translation (tx, ty, tz) and quaternion
(qw, qx, qy, qz), the POINTS specifies the total number of points in the
cloud, and the DATA specifies the data type of the point cloud data is stored
which is the ASCII or the Binary data type. Different FIELDS specification
is listed in Table 4.3.
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Table 4.3: A PCD file FIELDS declarations

Dimension Declaration

XYZ data FIELDS x y z
XYZ and colors FIELDS x y z rgb
XYZ and surface normals FIELDS x y z normal x normal y nor-

mal z

PLY - Polygon File Format

Polygon File Format (PLY), also known as Stanford Triangle Format is de-
signed to store large-scale 3-D geometric information such as 3D model
from 3D scanners. A PLY file consists of a header followed by a list of
vertices and then a list of polygons with other properties [68]. The proper-
ties can be saved including color and transparency, surface normals, texture
coordinates and data confidence values. A PLY file can either be written
as ASCII or binary, however, the header is always written in ASCII. A typ-
ical PLY file starts with a magic keyword ‘ply’, followed by the version
of ASCII text, number of vertex elements and vertex elements’ properties,
number of face elements and face elements’ properties, number of edges
and edge elements’ properties etc. The vertex element properties can be X,
Y, Z and red (r), green (g), blue (b) colors. Like a vertex element, an edge
element can also have ‘rgb’ color property in a PLY file.

4.9 Displaying 3D Maps

The RGB-D SLAM 3D maps are essentially a point cloud map which can
be viewed with the RGB-D SLAM interface. However, RGB-D SLAM in-
terface or PCL viewer is less flexible to show any additional information on
top of the map. In addition to RGB-D SLAM interface, ROS Visualization
tool (RViz) can be used to view point cloud maps. The layered display ar-
chitecture of rviz allow us to display all types of sensor data including point
cloud map and thus suitable for showing additional information about the
objects or entities visible on the map. In addition to rviz, large scale point
clouds can also be displayed with Web Graphics Library (WebGL) program-
ming [69]. To display the map in web sites, a WebGL renderer is Potree [70]
that converts PLY file into octree that can be viewed with WebGL. Different
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possibilities of map displaying is depicted in Figure 4.7.

  

SLAM

Map ROS Topic

Map DB

Map PLY export

RVIZ
(Instant viewing)

SLAM interface
(instant viewing)

Potree
(WebGL point cloud 

Render)

Map Publisher
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PLY Viewer
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Figure 4.7: RGB-D SLAM 3D map viewing approaches

4.9.1 Rviz

Rviz is a 3D visualizer for displaying sensor data and robot state information
from ROS [71]. Rviz supports different types of display types for different
visualization. For example, the ‘Axes’ display current X , Y , and Z of robot
pose in respect to base link or map frame. The ‘TF’ display shows the
tf transform hierarchy of joint frame states, the ‘Image’ display shows the
current frame from the camera sensor, and the ‘PointCloud2’ displays the
point cloud sensor messages. The Grid display is used to show the grids of
the 3D space with current view distance, yaw, pitch, and focal point value
(Figure 4.8).

4.9.2 Offline Map Publisher

A map can be displayed and saved as PLY file format for later reusing. The
following section describes the implementation techniques of loading and
displaying the saved offline 3D pointcloud map to rviz. To view a point
cloud map to rviz, a ros node is needed to create for reading PLY files and
publishing it as a sensor msgs/PointCloud2 message. The ROS visualiza-
tion tool rviz supports sensor msgs/PointCloud2 display type called Point-
Cloud2 which can subscribe the ros topic published by executing the launch
file in listing 4.1. After launching the roslaunch as listing 4.1, the ros topic
point cloud is published as active node presented in Figure 4.9. The pur-
pose of the map publisher is to read map source file as PLY format and
publish a ROS topic as PointCloud2 sensor message. The map publisher is
programmed in C++ and the purpose of it to read PLY file map source file
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Figure 4.8: Rviz is showing depth-registered points from Xtion Pro Live
camera.

and use PCL library to process point clouds so that it can be published as a
sensor message. The sensor message is then subscribed with rviz to display
the map. The map publisher launch file is run like a standard ROS launch -

roslaunch map_publisher map_publisher.launch
rosrun rviz rviz

After publishing the map publisher topic the corresponding rqt graph of
active nodes are shown in Figure 4.9.

.

Figure 4.9: Active node of the map publisher
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Listing 4.1: map publisher.launch
<launch>
<node pkg="map_publisher" type="map_publisher" name="

map_publisher" output="screen">
<param name="file_path" value="/home/kmn/catkin_ws/src/

map_publisher/ply_file_to_publish/lanao-cloud.ply" /
>

<param name="topic" value="/point_cloud" />
<param name="frame" value="/map" />
<param name="rate" value="5.0" />

</node>

<node pkg="tf" type="static_transform_publisher" name="
ground_truth_map_transform_publisher"

args="0.0 0.0 1.1 0.0 0.17 0.0 /base_link /map 100" />
</launch>

4.10 Methodology

First we explored different RGB-D SLAM systems (described in section 4.6),
their strengths and limitations. Then we explore different sensor message vi-
sualization techniques to project RFID obtained entity information on top of
the 3D map view. Here we utilize PCL libraries to fetch the RFID inventory
information on top of the 3D map in rviz using the RFID system scanned
entity locations (X, Y, Z).

4.11 3D Mapping with RTAB-Map

To achieve this goal, we choose the RTAB-Map for 3D mapping of the envi-
ronment and the rviz for data visualization on that 3D map. A RGB-D map-
ping can either be done using the visual odometry or using the robot odome-
try. A visual odometry is based on motion sensor in the camera whereas, the
robot odometry is based on the 2D laser scanner, sonar, or a wheel encoder
etc. Here we present the 3D point cloud mapping with RTAB-Map using
both the visual and the robot odometry. In the next section we explain both
ways of mapping we performed with RTAB-Map.
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4.11.1 Using Visual Odometry

The visual odometry utilizes the depth images and motion estimation of the
RGB-D camera and creates the nav msgs/odometry. In a visual odometry
based mapping with RTAB-Map is shown in Figure 4.10. The rtabmap ros
is a ROS package for publishing MapData (map graph and latest node data)
as PointCloud2 sensor messages and to subscribe map data in rviz through
MapCloud plugin The rgbd odometry node wraps the RGB-D odometry
which is computed using visual features from the RGB images with their
depth information from the depth images. A RANSAC approach computes
the transformation between the consecutive images using the feature corre-
spondences between the images. With a visual odometry (rgbd odometry),
no laser scanner odometry is required as it creates the odometry from the
camera. As a result, with a visual odometry, a free-hand mapping is also
possible.

The rgbd odmetry node subscribes to the rgb/image topic for RGB/Mono
rectified images, the rgb/camera info for RGB camera metadata, and the
depth/image for the registered depth images. The output of the visual odom-
etry (nav msgs/Odometry) is then published as /odom topic which can be
used for SLAM. With visual odometry based mapping, the important topic
rgb/image is mapped to /camera front/rgb/image rect color topic, depth/im-
age is remapped to /camera front/depth registered/image raw, and the rg-
b/camera info is remapped to /camera front/depth registered/camera inf
o. In addition to the above mentioned parameters, the 3D rendering pa-
rameters used in our experiments are listed in Table 4.4. Ideally, the lower
the voxel size and cloud filtering radius, the dense is the point cloud map,
provided that camera is able to capture noise free texture and depth infor-
mation. Here, we kept the maximum depth to 4.0 meter both xBox kinect
and Xtion pro live cameras maximum depth in practice is not more than 4
meters. The mesh smoothing algorithm MLS integrated with RTAB-Map
generated more accurate maps, however with the cost of post processing
rendering time.

Table 4.4: 3D Map rendering parameters and values

Parameters Values

Cloud filtering: radius 0.004 m, angle 30 degree
(cont.)
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Table 4.4: 3D Map rendering parameters and values (cont.)

3D voxel size: 0.001 m
Cloud decimation: (1-2-4-8-..) 4 (number of images before

adding to poin cloud of each
node)

Maximum depth: 4.0 m
Cloud point size: 1
Optional Mesh smoothing by
MLS

0.04 m

4.11.2 Using Robot Odometry

Mapping with robot odometry is similar to visual odometry except, the
/odom input is taken from the laser scanner or IMU, wheel encoders (shown
in Figure 4.11). AdvanRobot 1 has got the laser, gyroscope, and the wheel
encoder. A 2D laser scanner outputs sensor msgs/LaserScan messages and
an IMU or wheel encoders outputs nav msgs/Odometry messages. RTAB-
Map can be configured to use either the sensor msgs/LaserScan messages
or the nav msgs/Odometry messages or both. With a robot odometry based
mapping, we set the frame id to base link and set true to both the depth and
scan registration parameters. the /odom topic is remapped to /base controlle
r/odom/ and the scan topic is remapped to /base scan. The other default pa-
rameters are kept as it is. The specified value 2 of LccIcp parameter means
that ICP is done with 2D laser scan.

4.12 Projecting RFID-obtained Information

The new AdvanRobot has 12 RFID antennas, 6 in each side, are connected
with 3 RFID readers for simultaneously reading RFID inventory. The robot
odometry provides the (X, Y) of the RFID tag location and the antenna
height provides the Z value which comprises the capability of locating each
tagged item location in 3-dimension (X, Y, Z) inside a space. The height
of all antennas including their connectivity with RFID readers are shown in
Figure 4.12.

1http://keonn.com/systems/view-all-2/inventory-robots.html
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Figure 4.10: RGB-D mapping using xBox 360 Kinect camera by RTAB-
Map using visual odometry

We program a marker display ROS package for displaying RFID EPC infor-
mation on the 3D view. The marker display package creates one marker per
EPC and show related information of it from the inventory database or a csv
file. The format of the marker display input file consists of EPC, time, X,
Y, Z, and a label value. The marker display is programmed to load as many
EPC is scanned by the robot RFID system. An example 3x3 marker display
in X, Y, Z positions are shown in Figure 4.13 (Orbit view). We will see EPC
information display on markers in experiments and results section.

4.13 Experiments and Results

For the purpose of the experiments, we choose three ground truth indoor
environment described as below.
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Figure 4.11: RGB-D mapping with AdvanRobot using robot odometry

Test case 1: UbiCA Lab, La Nau building
The UbiCA Lab at La Nau building is 6.8 meter long, 3.9 meter wide,
and 3.5 meter high. The map have been taken by going around the
side of the lab.

Test case 2: A Retail Store
The retail store was 12 meter long, 2 meter wide, and 2.5 meter high.
The map of this store have been taken by going around the customer
walking path.

Test case 3: Poblenou Campus Library, 2nd floor
The floor 2 of Poblenou campus library contains 8 rows of book
shelves. The maps have been taken by going around and between
the shelves.

After few trials, we chose to use SURF over SIFT as SURF was compar-
atively faster than SIFT as expected. However, we did not find any differ-
ences between SURF and ORB while mapping. Keeping the default loop
closure threshold value 0.11, weight update value 0.6, and the STM size
of 10, we tested different detection rates of 30 Hz, 5 Hz, 1Hz, and 0 (auto

56



“v-10” — 2015/11/19 — 11:03 — page 57 — #77

4.13. Experiments and Results

Figure 4.12: The AdvanRobot RFID antennas in different heights.

Figure 4.13: Marker Display in X,Y,Z coordinates

detection rate). With a remote mapping, the value of 5Hz was fast enough
to map with fast Wi-Fi (5Mbps) speed, with a lower Wi-Fi speed (1Mbps),
when robot was far away, 1Hz was slow yet map able detection rate. When
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the mapping was done in the same computer of the camera connected, the
value of 30Hz and 0 (auto) did not make any difference as the camera was
running at 30FPS. The maps that have been created by visual odometry (sub-
section 4.11.1) are presented in Figure 4.14. The average camera position
change (motion) was approximately 0.5 meter per second, and upto 1 meter
per second have been tested with no pause in mapping.

(a) La Nau Lab

(b) Retail shop

Figure 4.14: RGB-D mapping using visual odometry

The maps that have been created by robot odometry are presented in Figure
4.15.
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4.13. Experiments and Results

(a) La Nau Lab Location Marker Display

(b) UPF Poblenou Campus Library (level 2)

Figure 4.15: RGB-D mapping using robot odometry

An optimum camera height with optimum tilt angle is important for better
camera coverage area and RGB-D mapping in general. Although the hori-
zontal field of view of RGB-D camera are approximately 58◦, in a closed
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Figure 4.16: Camera position, tilt angles, and camera focus in different
heights (in meters)
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space, such in a library corridor in between two shelves (1 meter wide), the
camera height and the tilt angle did matter in generating maps. The camera
coverage coverage of the map with a single camera depends on the height
of the camera as well as the tilt angle. It was observed that the higher the
camera was the less was the tilt angle and worse the quality of the map gen-
erated. The best quality was generated at the height of 160 cm with the tilt
angle of 40 ◦ facing down to the floor. In other word (90− 40) = 50◦ down
from the horizon level. However, with this height the upper part of the in-
door was not covered in the map. As a result the camera has been placed on
the upper part of the robot about 2.0 m up with a (90− 30) = 60◦ tilt down
from the horizontal level facing the floor. This allowed to cover the upper
and lower part of the environment. We also find that the minimum distance
from camera to object is required about 0.4 m in a library corridor to get an
acceptable textured point cloud map. Figure 4.16 depicts the relationship
between the camera tilt angle and the coverage area relationship in different
heights.

4.14 Chapter Summary

In this chapter, we have presented the indoor 3D mapping with RGB-D
mapping and information presentation with rviz. Here, we first review re-
lated work to RGB-D mapping and information visualization on 3D maps.
Then we choose RTAB-Map to configure to perform indoor mapping with
parametric customization. Here we present both the visual odometry based
mapping and robot odometry based mapping. Then we implement an of-
fline map publisher to load map for later use also. After loading the map,
we show marker with RFID information on top of the map. The integration
of ROS, SLAM and RFID is the novelty of the research.
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5 Conclusion

5.1 Concluding Remarks

In this dissertation, two approaches for indoor mapping and information pre-
sentation have been presented. The first approach involved 2D image stitch-
ing to panoramas and inter-linking them to create the pseudo-3D model. The
second approach involved 3D point cloud capturing and information presen-
tation using ROS visualization tools. A 2D modeling is relatively simpler
than 3D models; however, a 2D based indoor model do not have any depth
information of the scene. In contrast, a 3D model extensively relies on depth
information for an accurate volumetric representation of the real world. Al-
though, a 3D model is intended to represent the environment model accu-
rately, the depth measurement has to be highly accurate. RGB-D cameras
are inexpensive, and the highest point resolution can be achieved as small as
4 millimeter, which is acceptable in many scenarios in robotics, however for
a professional 3D modeling, a high precision 3D scanners or LiDARs with
levels of noise filtering would still be required. Because, the quality of a 3D
indoor mapping largely depends on the interior features such as textures,
light condition, indoor structure, image capture distance from the camera,
depth value accuracy, etc. One of the important concern regarding 3D mod-
eling is the scalability. For practical use, point cloud maps should be leaner
(smaller file size) to save and retrieve when needed. At present, the 3D maps
are vastly large in file size and, in general, it takes a long time to load for
viewing them. Although, map segmentation and other techniques can be
incorporated to load maps incrementally, at present, there is no easy way of
merging the segmented maps into a single map automatically. Manipulat-
ing a large map is still a challenging task with currently available desktop
(or laptop) hardware. Also, point cloud map viewers, in general, are not
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unified, that is, there is no single standard of map viewer implementation.
Researchers and professionals greatly rely on ad-hoc trials and errors, their
previous experience and expertise to achieve a better-looking point cloud
maps. The trials and errors, in turn, ends up trying vastly different algo-
rithms and then finding the right approach.

Thus, the key for an automated indoor modeling is to focus on the simplest
model that is dimensionally accurate and volumetrically correct.

5.2 Contributions

The specific research contributions are -

1. Retail space indoor view creation with Google Maps Street View API,

2. Automated panorama stitching,

3. RFID information presentation on the street view-like indoor view,

4. RGB-D Camera and SLAM integration for viewing RFID tagged ob-
ject information on the point cloud maps,

5. Offline 3D point cloud (color) map loading in rviz,

6. RFID sensor information presentation by Marker display on point
cloud map in rviz, etc.

5.3 Future Works

A number of point cloud map refinement approaches can be taken for im-
proving the quality of a 3D point cloud map. The future works of the cur-
rently presented work are outlined as below:

• MeshLab 1 / CloudCompare 2

Meshlab filters such as remove duplicate vertex, merge close vertices
etc., are useful for filtering noise in the point cloud. CloudCompare
subsampling is another efficient way to remove redundant points of
a point cloud. CloudCompare subsampling seems to be faster than

1http://meshlab.sourceforge.net/
2http://www.danielgm.net/cc/
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Meshlab poisson disk sampling algorithm. Both Meshlab and Cloud-
Compare filters can be applied using their command line interface.
CloudCompare explicitly has full set of commands and custom MLX
scripts can be programmed for Meshlab.

• Scan Matching
3D laser scanners or LiDARs are able to scan the environment surface
with higher precision than a RGB-D camera. Usually high precision
LiDAR scanners are expensive, however with less expensive LiDAR
scanner and RGB-D camera combined scan match may improve the
point could maps.

• Point Cloud Segmentation
Point Cloud Segmentation is a technique to segment a large point
cloud to smaller clouds. Point segmentation allows faster loading of
point clouds that can be adapted with a point cloud map viewer.

• Potree
Potree is a three.js 3 WebGL renderer which converts the point clouds
to octree to view point clouds incrementally over HTTP protocol by
web browser (Figure A.1, A.2, Appendix A). With the WebGL pro-
gramming, RFID information may also be presented.

5.4 Other Research and Development

In addition to time spent working on this dissertation, the author was also
involved in other research and developments briefly mentioned as follows.

5.4.1 Speech Interaction Application

Speech interaction has pros and cons. However, a small set of speech inter-
action may be a medium of interaction for visually impaired people. In this
project, a speech interaction Android application was developed for locating
RFID tagged items on smart shelves. A smart shelf is equipped with RFID
reader and antenna to scan and update item presence within the shelf. The
Android application was developed to make voice query and find approxi-
mate location of items on the shelf, specially for visually impaired. A small
set of speech dialog was designed using Google Speech API for visually
impaired as assistant towards independent living (Figure 5.1).

3http://threejs.org/
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Figure 5.1: The speech interaction application architecture
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A Appendix

Figure A.1: Shop point cloud map (rendered by Potree) to view on web page

Figure A.2: Shop point cloud (rendered by Potree) zoom view on web page
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