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Chapter 1

Introduction

The key features of dynamics of ultraslowing glass forming systems are their universality in di-

versity. Its origin is recognized as one of the greatest challenges of condensed matter physics and

material engineering in the XXI century [1-8]. Similar phenomena are observed on approach-

ing the glass transition in low molecular weight supercooled liquids, polymers, colloidal fluids as

well as in solids, for instance in orientationally disordered crystals, spin glass-like magnetic, vortex

glasses [1,3,4,7-16]. Pre-vitreous dynamics is also proposed as a general reference for the category

of complex liquids/soft matter systems [7].

The upsurge of the primary relaxation time or related dynamical properties is the basic physi-

cal phenomena of the still mysterious previtreous behavior. This means a much more pronounced

slowing down than the Arrhenius pattern observed far above the glass transition temperature(Tg)

[3,4,8,17-21]. Portraying this behavior constitutes one of key checkpoints for theoretical models

developed to unwind the glass transition puzzle. It is noteworthy to recall that still a set of com-

peting theoretical models exists and none of them is able to cover the majority of basic “universal”

experimental features observed in so different systems as low molecular weight liquid, oligomers

and polymers, spin glasses, liquid crystals, plastic crystals, colloids [8,17]. There seems to be a

common agreement that this universality may be related to multibody heterogeneities, possible to

be observed via the 4-point correlation function related techniques, such as the nonlinear dielectric

spectroscopy (NDS) [20-22], the successor of the broadband dielectric spectroscopy (BDS) [3].

However understanding the nature of heterogeneities as well as the status of NDS method is still

at the very beginning [3-5,8,9,17-19]. Undoubtedly, BDS remains the basic reference method for

testing the previtreous dynamics, due to the possibility of covering more than 12 decades in fre-

quency/time in a single experiment [8]. One of basic outputs of BDS is the dielectric permittivity

loss curve ε
′′
( f ) which peak coordinates are directly related to the primary relaxations, namely

τ = 2π/fpeak[8].

However, none of the aforementioned features can answer the understanding what governs the

increase of relaxation time in liquids upon cooling. The increase of relaxation time and viscosity

when the temperature is lowered and the formation of a non-equilibrium solid state are universal
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in the sense that it regards all types of materials ranging from metals to polymers. However,

the relaxation time has qualitatively different temperature dependencies in different systems. The

central common questions in the field are:

• What causes the non-Arrhenius temperature dependence of the average α-relaxation time?

• Does the relaxation time diverge at finite temperatures or only as T → 0 ?

• Does the relaxation time diverge at some finite temperature below the glass transition tem-

perature Tg?

• Is the relaxation time of all liquids described by the same underlying model?

• Is the existence of a thermodynamic singularity the cause of the dramatic viscous slowdown?

The vast majority of the studies have been carried out on canonical glass formers which mixed

orientational and translational degrees of freedom of the liquid state are freezing at the glass tran-

sition. In this work we focus on the above questions studying the dynamic of some materials for

which their molecules can retain a translational order being orientationally disordered between

them upon cooling, which are referred to plastic phases or orientationally disordered crystalline

phases (ODIC).

The central issue of this thesis is the study of the dynamic of the orientational disordered crystals

ODIC. The study was carried out by the use of BDS as well as two complementary experimental

techniques. We show distortion-sensitive and derivative-based empirical analysis of the validity

of leading equations for portraying the previtreous evolution of primary relaxation time. A new

method for studying the dynamic of glass forming systems is introduced and the minimization

procedure is validated and discussed.

Thesis’ Outline

The thesis is structured as follows: Chapter 2 gives an introduction to the theoretical concepts of

dielectric relaxation. The Kirkwood correlation factor for molecular systems is discussed in the

first part. In the second part we focus on the dielectric properties under a periodic electric field. The

theoretical and phenomenological aspects of the primary and secondary relaxation processes are

reviewed and discussed. In the last part of the chapter, the coupling-model equation is discussed

and corrective functions are proposed.

Chapter 3 presents the materials and experimental techniques that have been used in this work.

The first section of the chapter is devoted to the studied materials. We describe the polymorphic

behavior of the studied materials which display orientationally disordered phases. The experimen-

tal techniques are detailed in the second part of this chapter. The basic concept of the dielectric

spectroscopy technique as well as a brief description of the experimental setup used in this work
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is shortly introduced. Two additional experimental techniques, X-ray diffraction and calorimetric,

which have been used for complementing the study, are presented as well.

In Chapter 4 we focus on the data analysis procedure used in this work. Three subjects were

covered. The brief first section is devoted to the basic procedure of dielectric data analysis. We

show the basic procedure for processing dielectric experimental data, in particular for obtaining

the relaxation time, as well as the procedure to analyze the temperature dependence of the derived

relaxation time. A new method for studying the dynamic of glass forming systems is introduced

and the minimization procedure is discussed.

The results and discussion are presented in Chapter 5. They are presented in two groups (linearized

and non- linearized models equation). The first section of the chapter focus on the linearized model

equation, where the application of the derivative based, distortion-sensitive analysis to ODIC mate-

rials are presented. In the last part we showed the application of the minimization procedure to 30

glass forming liquids system. The evidences of the existence of crossovers in the Mauro equation

as well as a quantitative description are discussed.

The last part of the thesis corresponds to Chapter 6 (General Conclusions); therein, the main results

and conclusions reported in this work are reviewed and presented together in order to provide a

general view of them.

1.1 The glass transition

The transition from supercooled liquid to structural glass is observed in a wide variety of materials

with varying compositions and structures. The glass transition is defined experimentally by the

presence of two nearly universal features: a rapid increase in the relaxation time with decreas-

ing temperature and a not exponential relaxation. This scenario, occurring at the glass transition

temperature Tg, usually identified by the viscosity attaining 10
12 Poise, or by the step of ∆H in dif-

ferential scanning calorimetric (DSC) measurements or when the α-relaxation time τ takes values

around 100s. The criterion of τα = 100s is often used as a definition of the glass transition tem-

perature. The temperature evolution of dynamic properties including the dielectric relaxation time

above glass transition shows a divergence in the apparent activation energy, refusing the Arrhenius

law over a substantial range of temperatures, making this question as a still unsolved problem of

condensed matter physics. Phenomenological studies dominate these experiments, as due to both

structural complexity of the amorphous matter and the diverging time scales of its dynamics, a

commonly accepted theory has not yet been found [3,4,8]. In the next sections we focus on the

principal conceptual aspect used for describing the glass transition phenomenon. The thermody-

namic, entropy and dynamic point of view are presented.
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Figure 1.1: Schematic diagram showing the glass transition phenomenom. Cooling a liquid rapidly below

the melting temperature Tm, may results in the formation of a supercooled metastable state. The transition

from metaestable liquid to glassy state is reached by passing the glass transition temperature Tg.

1.1.1 Thermodynamic point of view

A glass is formed by cooling a liquid fast enough to avoid crystallization. At continued supercool-

ing the liquid viscosity increases dramatically, and at some point the liquid freezes continuously

into a no crystalline “solid”. This is defined as the glass transition, although it is not a phase

transition with a well-defined transition temperature [23-25].

If a liquid is cooled slowly (following an equilibrium state) when it reaches its melting temperature

Tm it starts to crystallize and shows discontinuities in first (enthalpy, volume, entropy) and second

order (heat capacity, thermal expansion coefficient) thermodynamics properties (Figure 1.1). If

cooled rapidly the liquid may avoid crystallization, even well below the melting temperature Tm.

The change in the temperature dependence of the volume gives rise to a discontinuity in the ther-

mal expansion coefficient when passing Tg. This kind of discontinuity leads a thermodynamic

definition of the glass transition phenomenon. This transition is similar to a second-order phase

transition in the Ehrenfest sense with continuity of volume and entropy, but discontinuous changes

of their derivatives [26]. The transition is continuous and cooling-rate dependent, so it cannot be a

genuine phase transition.

1.1.2 Correlations between dynamic and thermodynamic properties

1.1.2.1 Free volume model

Free-volume model have been developed on the assumption that molecular transport in viscous

fluids occurs only when hole having a volume large enough to accommodate a molecule form by

redistribution of some free volume. The basic idea of the model is that molecules need “free”
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volume in order to be able to rearrange [27,28]. As the liquid contracts upon cooling, less free

volume becomes available. Cohen and Turnbull [27] also consider that the local free volumes

are statistically uncorrelated following a Boltzman distribution. If the free volume per molecule

is denoted by v f (T ) the probability of the molecular distribution P
(

v f

)

will be defined as an

exponential law. Taking in to account that the diffusion constant D is given by the probability

of finding a free volume, the relaxation time and the viscosity can also be defined also by an

exponential law, giving the following model prediction .

τ (s) = τ0 exp

[

C

v f (T )

]

(1.1)

where the constantC is related to the barrier height of the energy due to the rearrangement of atom

units and the prefactor τ0 is associated only with the high temperature dynamical domain

Cohen and collaborators defined the free volume as that part of the volume “which can be redis-

tributed without energy cost” and argued that this quantity goes to zero at a finite temperature. This

leads to VFT equation if v f (T ) is expanded to first order. Doolittle [29] defined the free volume by

subtracting the molecular volume defined by extrapolating the liquid volume to zero temperature,

implying that v f → 0 only when T → 0.

The main problem of the free volume models is that it is not possible to define free volume rig-

orously. In this simple model no characteristic length scale is involved. On the other hand, all

transport properties should have the same temperature dependence and a decoupling of rotational

and traslational diffusion can not be explained within this model. Furthermore, the pressure de-

pendence of the viscocity and the α-relaxation time is not adequately reproduced. Free-volume

models are not generally popular because the relaxation time is not just a function of density ρ [8].

1.1.2.2 Adam-Gibbs theory (AG)

Assuming that molecular reorientations take place cooperatively, Adam and Gibbs (AG) argued

that the minimum size of a cooperatively rearranging region is determined by the requirement that

it should contain at least two different configurational states [30]. They invoked the concept of a

cooperatively rearranging region (CRR) being defined as the smallest volume which can change its

configuration indepent from neighboring regions. As the temperature is lowered the cooperatively

rearranging regions grow. Assuming that the activation energy is proportional to the region volume,

Adam and Gibbs relate the relaxation time to the numbers of particles
(

N (T )∼ Scon f (T )
)

per CRR

leading the following equation :

τ (s) = τ0 exp

[

C

T Scon f (T )

]

(1.2)

In this equation, the constantC is related to the barrier height of the energy due to the rearrangement

of atom units and the prefactor τ0 is associated only with the high temperature dynamical domain.
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Figure 1.2: Arrhenius plot of the relaxation time data obtained for a case example. The temperature TA de-

notes the caging temperature which stands for the temperature above which all entities are moving without

cooperative motions. As the temperature is lowered the cooperatively rearranging regions grow. The dra-

matic increase of the relaxation time upon cooling is explained by a divergence of the size of cooperatively

rearranging regions at TC,(TC < Tg).

The namely configurational entropy Scon f is the configurational part of the excess entropy which

assuming a two-state model, it can be estimated as a fraction of the total numbers of particles N as

Scon f (T ) = N (T )NKB ln2 allowing a microscopic description of the CRR .

Using thermodynamic considerations, the configurationl entropy can be related of the heat capacity

change ∆Cp at the glass transition. Considering that ∆Cp ≈ C/T the AG model leads the mostly

use temperature relaxation time dependence (VFT) which predicts a temperature T0 with infinity

relaxation time. It also gives an equation for calculating the size of a CRR as N (T ) ∼ 1
C(T−T0)

which will diverge at T0

Although the Adam-Gibbs model does not provide information about the absolute size of a CRR

at Tg, it has enjoyed appreciable success in accord with experimental values in many fields, it is

a beautiful theory which connects dynamics to thermodynamic properties. This theory gives a

possible answer to the dramatic increase of the relaxation time upon cooling which reflects the

existence of an underlying second-order phase transition to a state of zero configurational entropy,

a state usually called an ideal glass. This is an attractive scenario, for the believing of the critical

phenomena [26,31].

1.1.3 Dynamic models

1.1.3.1 Mode coupling theory (MCT)

Based on current liquid state theories, another theoretical approach, namely mode coupling theory

(MCT), was introduced in 1992 by Götze and Sjögren [32] which provides detailed microscopic

9



density fluctuations. This theory involves an analysis of a set of non-linear integral differential

equations describing the evolution of pair correlation functions of a wave-vector and time depen-

dent fluctuations that characterize the liquids [32]. The MCT theory explain the relaxation time

evolution in terms of a phase transition at a critical temperature TC = TMCT (TC > Tg), where a

phase transition from an ergodic (T > TC) to a non-ergodic (T < TC) states takes places. For the

ergodic state MCT theory predicts that the α- relaxation time can be scale by the following law.

τα (T )∼

(

TMCT

T −TMCT

)γ

, T > TMCT +20K (1.3)

where the power exponet γ is a constant and τα < τα (TMCT )≈ 10−7s << τ (Tg)≈ 100s.

Two relaxation processes are also predicted: a slow α-process and a fast β -process. The α-process

is identical with the structural relaxation process and exhibits strong temperature dependence. Due

to this relaxation the molecules or atoms of the liquids finally loose all correlation in space and

time. The β -process is an intermolecular secondary relaxation process. Both processes are de-

scribed by power laws with exponents which are interrelated. In opposition to structural phase

transitions these exponents are not universal. They depend on the individual interaction potential

of the particles. Great progress made by MCT is to describe the change of the dynamic mecha-

nism with temperature and to predict the existence of a crossover temperature TC, where the two

relaxation processes no longer merge and begin to diverge.

1.1.3.2 Dynamic scaling model (DSM)

Probably, the only model for portraying dynamics on vitrification and directly coupled to critical

phenomena is the dynamic scaling model (DSM) put forward by Colby [33]. This model is pre-

dicted under the consideration that the cluster random walk created by the diffusion of the free

volume have cooperatively rearranged. It found a power law dependence for the relaxation modu-

lus G(t)∼ t−
2
z , being z the dynamic critical exponent which relates the relaxation time of a cluster

with its size. For all glass-forming materials this exponent was suggested as z = 6.

Colby [33] explains the dramatic increase of the relaxation time upon cooling proposing a power

law relationship between the relaxation time and the correlation length ξ of cooperative rear-

ranging regions, which is associated with dynamic heterogeneities. Using data obtained by four-

dimensional (4-D) NMR experiments, Colby found an universal scaling temperature dependence

of this length scale of cooperative motion (see Figure (1.3)) [34]. It allows to argue that a dynamic

scaling form, where the relaxation time and the size of cooperatively rearranging regions diverge

at a critical temperature TC can be expressed as:

τ ∼ ξ z ∼

(

T −TC

TC

)−φ=−νz=−9

, TA > T > Tg and T0 < TC < Tg (1.4)

where T0 is the Vogel temperature, z = 6 is the dynamic (critical) exponent and ν = 3/2 is the
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Figure 1.3: Temperature dependence of the cooperative size, plotted in the form expected by dynamic

scaling model. The symbols represent cooperative size measured by DSC (open diamonds), 4-D NMR (closed

diamonds), and diffusive experiments with tetracene (circles) and rubrene (triangles). The solid line is the

slope of −3/2 expected by dynamic scaling model. The figure was taken from [34].

exponent describing the divergence (at TC) of the correlation length ξ of cooperative rearranging

regions, also understood as precritical fluctuations. The temperature TA denotes the caging tem-

perature which stands for the temperature above which all entities are moving without cooperative

motions.

The DSM assumes the same universal critical-type description for any polymer melt or low molec-

ular weight supercooled liquid. Nevertheless, universal behavior for the cooperative length scale

and non-universal behavior of the relaxation time were previously found [34] in such a way that the

non-universal dependence of τ is understood as the difference for each glass former owing to the

fact that energetic barriers for molecular motion depend on the chemical structure details. It means

that each liquid has a distinct low temperature activation energy Elow and the above equation can

be written as:

τ ∼ τ0

(

T −TC

TC

)−φ

exp

[

Elow

RT

]

, T > Tg and T0 < TC < Tg (1.5)

where the Arrhenius term is the same as the one appearing for the behavior in the glass state, i.e.

for T < Tg.

1.2 Temperature dependence of the primary relaxation time

Generally, one may expect to apply the Arrhenius-like equation for portraying the non-Arrhenius

dynamics with the apparent (temperature dependent) activation energy, namely [3,4,8]:
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τ (T ) = τ0 exp

[

Ea (T )

T

]

(1.6)

However, the form of the evolution of Ea (T ) is unknown, so efforts of researchers focused on

equations which empirically proved their validity [3-5,17-19]. Undoubtedly for the last decades the

most commonly accepted was the Vogel-Fulcher-Tammann (VFT) equation, namely [3,8,17,35-

37]:

τ (T ) = τ0 exp

[

B

T −T0

]

= τ0 exp

[

DT T0

T −T0

]

(1.7)

where T0 is the VFT estimation of the ideal glass transition temperature and DT is the fragility

strength coefficient.

For several basic theoretical models significant efforts were devoted to produce this relation as the

checkpoint. The free volume and Adam – Gibbs based approaches may serve as best examples [3].

Comparing the equations (1.6) and (1.7) one can also easily obtain Ea (T ) = DT0/(T−T0)[3,8,17].

This equation introduces also one of basic metrics for the fragility [3,8,38], the coefficient DT .

However, just this issue has been fundamentally criticized by Johari [39], who indicated that the

introduction B = DT T0 does not yield the Arrhenius equation for T0 = 0. A problem seems to exist

also for the prefactor τ0, for liquids usually linked to quasi-universal value τ0 ≈ 10−14s, which was

related to the average phonon frequency [3,8]. However, there are several dynamical domains in

glass forming systems, each associated with different set of parameters in the VFT equation [8].

The mentioned value of τ0 can be associated only with the high temperature dynamical domain,

however experiments show also values close to τ0 ≈ 10−11s [40]. Moreover, for the pressure

counterpart of the VFT equation the prefactor can be related to the absolute stability limit of the

liquid state, located in the negative pressures domain [41,42]. It seems that a similar assumption is

possible for the VFT equation if its corrected form is introduced [43]:

τ (T ) = τ0 exp

[

DT (TSL−T )

T −T0

T0

TSL

]

(1.8)

where TSL is the absolute stability limit temperature.

The dynamics of supercooled liquids is usually tested below the melting temperature, i.e. for

Tg < T < Tm. In this domain the condition TSL >> T and then the condition TSL−T ≈ TSL is ful-

filled. Consequently in the ultraviscous domain the equation (1.8) converts into equation (1.7). The

“Johari objection” can be minimized when taking into account that the Arrhenius domain occurs

far above the melting temperature T − T0 ≈ T what yields the crossover to the quasi-Arrhenius

equation with finite T0 [43]:

τ (T ) = τ0 exp

[

DT (T0/TSL)T0
T/∆T

]

(1.9)

Recently, Hecksher et al.[19] carried out analysis of τ (T ) data for 42 ultraviscous molecular liquids
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using the VFT equation and recalling the popular in recent years “Avramov” equation [44]:

τ (T ) = τ0 exp

[

A

T D

]

P=const

= τ0 exp

[

ε

(

Tg (P = 0.1MPa)

T

)D
]

(1.10)

where A and ε are constant coefficients, Tg (P) is the pressure dependence of the glass temperature

and D is related to fragility.

The state of the art analysis led to the surprising conclusion of the superiority of the “Avramov”

equation over the VFT one [19]. Then it was concluded [19] “Thus, with Occam’s razor in

mind—‘it is vain to do with more what can be done with fewer’—we suggest that in the search

for the correct theory for ultraviscous liquid dynamics, theories not predicting a dynamic diver-

gence of the VFT form should be focused on.”

It is noteworthy that substituting for Tg (P) the equation recently derived by Drozd-Rzoska et al.

[41,42] one obtains the link of the prefactor τ0 to the absolute stability limit of the metastable

supercooled/superpressed liquid.

Despite the strong empirical validation of the non-divergent description of τ (P) evolution the

subsequent analysis in glass formers where a dominant element of symmetry exists [45], lead to

the clear validity of the critical-like behavior:

τ (T ) = τ0

(

T −TC

TC

)−φ

, TC < Tg (1.11)

The value of the power exponent was close to predictions of the dynamical scaling model (DSM)

[33, 34], φ ≈ 9 , which is inherently associated with the presence of heterogeneities and the hidden

phase transition at TC < Tg. Here the prefactor has formal mathematical meaning τ0 = τ (2TC).

The superiority of description via equation (1.11) is particularly evident for liquid crystalline glass

formers and orientationally disordered crystals.

The situation becomes even more puzzling when recalling two “non-divergent” equations recalled

recently. Elmatad et al [46] as the output of the random energy model derived the equation:

τ (T ) = τ0 exp



J
′

(

T
′

0

T
−1

)2


 (1.12)

where J
′
= (J/T

′
0)

2
is the parameter to set the energy scale for excitations of correlated dynamics

originated at Tm > T
′

0 > Tg.

The overlapping of 67 sets of data log10 (τ/τ0) in vs. J
′
= (J/T

′
0 −1)

2
scales was shown [46], al-

though for many glass formers the temperature range of validity was extremely narrow. For this

model the prefactor is defined by τ0 = τ
(

T = T
′

0

)

condition.

Very recently Mauro et al. [47] employed constraint theory to the Adam-Gibbs basic equation and

obtained the relation earlier introduced empirically by Waterton in 1932 [48], namely:
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τ (T ) = τ0 exp

[

K

T
exp

(

C

T

)]

(1.13)

As indicated in ref. [47] the model offers an improved description of the viscosity or relaxation

time vs. temperature relationship for both inorganic and organic liquids using the same number of

parameters as VFT and “Avramov” descriptions. Lunkenheimer et al. [49] tested this equation for

a set of τ (T ) and concluded that it “seems to be a good alternative to the VFT equation, especially

as in many cases it can parameterize broadband relaxation-time data with a single formula without

invoking any transitions between different functions. Thus, taking into account Occam’s razor, (this

equation) often seems to be preferable to other approaches.”

The anomalous increase of primary relaxation time or viscosity is the most fundamental experi-

mental feature for the pre-vitreous dynamics. It seems that after the collapse of the long period of

the dominance of the VFT equation the situation is puzzling.

1.3 Fragility

Liquid fragility, an important parameter used to classify the dynamic behavior of the glass-forming

liquids, measures the degree of non-Arrhenius behaviour. The strength of liquid fragility shows

the differences in the tendency of the liquid structure to change with temperature.

In 1985 Angell first introduced the concept of “liquid fragility”[50]. He adopted a reduced plot,

namely “Angell” plot as Figure (1.4), to display the changes of viscosity for the liquid state, with

particular interest being focused on the possibility of using a general criterion to evaluate the dy-

namic behavior as well as nonlinear structural relaxation of the liquids. Concretely, the logarithm

of viscosity of the liquids is plotted against reduced temperature Tg/T . According to it, glass-

forming liquids are classified into two types: strong glass formers which show an Arrhenius be-

havior and display nearly a line in ‘Angell” plot, and fragile glass formers of which the temperature

dependence of viscosity, displays a curve in such plot.

The strong/fragile classification has been used to indicate the sensitivity of the liquid structure

changes. From the microscopic point of view, it is believed that strong liquids would have strong

chemical bonds, showing a strong resistance to structural changes, even if large temperature vari-

ations are applied. From a calorimetric point of view such behaviour corresponds to very small

jumps in the specific heat ∆Cp at Tg. Fragile liquids usually have a less stable structure and the

physical property changes dramatically, showing large jumps of such quantity.

The slope of the curve at the point where Tg/T = 1 is conveniently defined as a fragility parameter,

m, to display the fragility of different liquids [50]:

m =
∂ log10 τ (T )

∂ (Tg/T)
|T=Tg

=
∂ log10η (T )

∂ (Tg/T)
|T=Tg

(1.14)

Here τ is the average relaxation time at the temperature T and η the shear viscosity. A large
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Figure 1.4: Arrhenius plots of the viscosity data of some organic compounds scaled by Tg values showing

the “strong/fragile” pattern of liquid behaviour. As is shown in the insert, the jump in Cp (Tg) is generally

large for fragile liquids and small for strong liquids, although there are a number of exceptions, particularly

when hydrogen bonding is present. The figure was taken from[51].

value of m means that the liquid is fragile. Figure (1.4) shows the different changes of viscosity

approaching to Tg. The ratio of the heat capacity of supercooled liquids to that of amorphous solids

Cp(L)/Cp(S) is showed in the inset of Figure (1.4) [51]. The jump in this graph is generally large for

fragile liquids and small for strong liquids. According to it, SiO2 and GeO2 belong to typical

strong liquids in the limit of 16 for fragility parameter m; Arrhenius behavior is characterized by

m = 16. Only a few glass formers have fragility below 25. Glycerol is intermediate with m = 50,

while, e.g., the molten salt K3Ca2(NO3)7 has m = 90. A high-fragility liquid takes values around

m = 150.

Taking in to account that the stronger than Arrhenius behavior derives from △E increasing with

decreasing temperature, an alternative measure of the degree of non-Arrhenius behaviour can be

provided by the “index” I = I (T )[52-54]:

I (T ) =−
∂ ln∆E (T )

∂ lnT
(1.15)

where I quantifies Arrhenius deviations in a way inspired by the Grüneisen parameter [55]. A

straightforward calculation shows that the fragility is related to the Index by

m = 16(1+ I (Tg)) (1.16)

The Arrhenius case has I = 0 and m = 16. Typical values of I at Tg (τ = 100s) are ranging from

I = 3 to I = 8 corresponding to fragility values from m = 47 to m = 127.
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Figure 1.5: 3D plot of equation (1.17) for mixed crystals of (CNadm)x (CLadm)1−x. The figure shows the

coherence between the dynamic values obtained for each mixed crystal. It nicely evidences the increase

of the strength parameter D when the mole fraction of CNAadm decreases together with a continuous and

coherent change of the T0/Tg ratio [56].

For all glass model equations is possible to define the corresponding fragility index equation. In

the last section we showed that, a common characteristic for all glass forming equations describing

the variation of the characteristic relaxation time or viscosity is that they involve three parameters

(u1 = τ0,u2,u3). Bypassed through the derivative definition of the index fragility, the number of

parameters involved are reduced from three to only two, allowing for all of them an index fragility

equation with two variables m(u1 ,u2). It means that for all of them, the fragility index can be

showed as defined a 3D-surface, where the variables u1 and u2 will be related with the model

parameters. Using the original definition (equation (1.14)), we can define the fragility index as

follows:

• VFT equation

m(D, T0/Tg) =
1

ln10







D(T0/Tg)
(

1− T0
Tg

)2






(1.17)

• DSM equation

m

(

φ ,
TC

Tg

)

=
1

ln10

(

φ

1− TC

Tg

)

(1.18)

• Elmatad equation

m

(

J
′
,

T
′

0

Tg

)

=
2J

′

ln10

(

T
′

0

Tg

)(

T
′

0

Tg

−1

)

(1.19)
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• Avramov equation

m(A , D) =
1

ln10

(

AD

(Tg)
D

)

(1.20)

• Mauro equation

m

(

K ,
C

Tg

)

=
1

ln10

K

Tg

(

1+
C

Tg

)

exp

(

C

Tg

)

(1.21)

The 3D−fragility representation can be useful for testing the quality of the fitting parameters of the

glass model equations. The value of fragility parameter m can be subjected to big discrepancies,

depending on the method used to calculate it. The most popular method is to obtain it from the

analysis of the fitting parameters, mostly determined from data far away from Tg and so affected

by big uncertainties. The parameters will represent a point in a tridimensional fragility surface

and their quality can be tested by the possible correlations between the variables u1 and u2 easily

showed in a Contourplot bidimensional graph.

One example result is showed in Figure (1.5) [56]. The dynamic characterization of the mixed

crystals was carried out by the use of the VFT equation. The points in Figure (1.5) correspond to

different mixed crystals, showing a nice coherence between the dynamic values obtained for each

mixed crystal. It nicely evidences the increase of the strength parameter D when the mole fraction

of CNAadm decreases together with a continuous and coherent change of the T0/Tg ratio.
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Chapter 2

Theoretical concepts of the dielectric

relaxation

Macroscopic theories of dielectric phenomena are based on the pioneering work of Faraday [1] and

Maxwell [2] and later work by Clausius and Mossotti and Lorentz [3,4]. These works provided

the theory for introducing the Maxwell´s equations which summarizes the interaction of electro-

magnetic radiation with matter [5]. These equations allow getting information about relaxation

phenomena related to molecular fluctuations of dipoles, as well as, the motion of mobile charge

carriers which causes conductivity contributions to the dielectric response. From the macroscopic

point of view, the basic principles of dielectrics have already been well understood at the beginning

of the 20th century, being the work of Debye [6] which provided a vital connection between the

macroscopic dielectric theory and the molecular structure.

This chapter is organized as follows. In the first part, the essential points of electrostatics are

reviewed. The Kirkwood correlation factor for molecular systems is discussed. In the second part

we focus on the dielectric properties under a periodic electric field. We review the theoretical and

phenomenological aspects of the primary and secondary relaxation processes. The coupling-model

equation is discussed and the corrective functions are introduced.

2.1 Dielectric in an electrostatic electric field

2.1.1 Macroscopic polarization

When an electric field is applied across the faces of a parallel plate capacitor containing a dielectric,

the atomic molecular charges in the dielectric are displaced from their equilibrium positions and

the material is said to be polarized. In general, a macroscopic polarization can be defined as the

number of microscopic dipole moments of the molecules within a volume. In order to describe

that effect, a vectorial magnitude ~P is introduced, which quantifies the way a material reacts to

an applied electric field ~E. This magnitude is called polarization, which has the dimension of a
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surface charge density and is given by

~P = χε0~E (2.1)

where ε0 is the permittivity constant of vacuum and χ the susceptibility of the material.

1For this simple linear case, the polarization is defined as a linear function of the electric field.

The susceptibility is a material dependent and dimensionless quantity that describes the linear

response reaction of a material to an electric field. This magnitude is related to the material static

permittivity dielectric constant in a simple way

χs = εs−1 (2.2)

where εs is the permittivity of the material

The microscopic dipole moments can have a permanent or an induced character caused by the

local electric field which distorts a neutral distribution of charges, yielding numerous mechanisms

which can contribute to the polarization, but they can be divided in two categories: (a) electronic

polarization
(

~Pe

)

, which is the displacement of the electrons relative to the nucleus and (b) atomic

polarization
(

~Pa

)

, which is the displacement of the atoms relative to one another. But, if a polar

material is placed between the plates, a polarization in addition to the above mentioned two types

will occur. This additional polarization is called orientational polarization
(

~Po

)

. In short, the total

polarization can then be written as

~P = ~Pe + ~Pa + ~Po (2.3)

The polarization corresponds then to the superposition of two contributions, the electronic and

atomic polarization ~Pind = ~Pe + ~Pa and the orientational polarization ~P0. On the other hand, the

polarization describes too, the dielectric displacement which originates from the response of a

material under the influence of an external field, defined as:

~P = ε0(εs−1)~E = χε0~E (2.4)

Each one of the three aforementioned contributions is a function of the frequency for an applied

alternating electric field. Suppose that we apply an alternating field to the parallel-plate capacitor

filled with polar material. The orientation of the material under consideration will be related with

the direction of the electric field. When the frequency of the applied field is sufficiently low, all

types of polarization will reach the same value as they show in the steady field, which is equal to the

1For higher field strengths (> 106V m−1)5non linear effects may take place. The equation (2.1) can be extended to

include higher order terms:

P = χε0E + χ1ε0E2 + χ2ε0E3 + ......
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instantaneous value of the alternating electric field. But, as the frequency is raised, the polarization

no longer has the time to reach its steady value. This requires studying how the particles respond

to the influence of external static or alternating electric field.

There are two aspects that will be addressed, namely the response of the individual particle to an

electric field, and the possible modification of the response to an external field by the interaction

between the particles. As a starting point, the link between the dielectric phenomena on a macro-

scopic scale and on the molecular level is needed. The best way to establish such a link is to

relate the polarization to the static dielectric constant being done in two ways, (1) the oldest and

simplest way based on the concept of the internal or local field introduced by Lorentz, and (2) the

more modern approach put forward by Onsager and Froehlich, which is basically to consider the

fluctuations occurring at microscopic level.

2.1.2 Onsager and Kirkwood-Froehlich equation

The oldest theories based on the local field are valid only for certain conditions [6-10]. The mod-

ern approach put forward by Onsager and Froehlich is more general and based on the statistical

mechanical theory of matter [11-14]. The methods of statistical mechanics provide a way for ob-

taining macroscopic quantitative magnitudes when the related properties of the molecules and the

molecular interactions are known. Based on the principles of statistical mechanics and fluctuation-

dissipation theorem, e.g. described by Kittel [15], it can be shown that the ‘static susceptibility’ of

the process is given by:

χs =

N

∑
i, j=1

〈

~µi~µ j

〉

3KBT
(2.5)

where the brackets denote a statistical mechanical average of the dipole moments of the system,

KB is the Boltzmann constant and T the temperature in Kelvin. This dipole moment is non-zero

even in the absence of any external electric field, and therefore gives account of the spontaneous

fluctuations of the electric charge occurring in the system as a result of the thermal energy.

This equation originally results if the system is considered as a thin dielectric slab. But for conve-

nience, it is better to consider a model of a sphere of volume V containing N molecules, immersed

in vacuum or embedded in its own medium extending to infinity. The material outside the sphere

is treated as a continuum with dielectric constant ε . Based on the continuum approach, for non-

polarizable molecules Froehlich showed that

χs =
(εs−1)(2εs +1)V ε0

3εs

(2.6)

This equation applies to any system being solid, liquid, or gas, which is evaluated on the

assumption that there are not intermolecular forces and induced dipoles. The statistical mechanical
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Figure 2.1: Schematic drawing of two typical cases of dipolar correlation

average of the dipole moments of the system in case of non-interacting dipoles can be calculated

as the average of their scalar product

N

∑
i, j=1

〈

~µi~µ j

〉

= µ2
N

∑
i, j=1

〈

cosθ i j

〉

= Nµ2 (2.7)

The above equation can be written then as

Nµ2

V KBT
=

(εs−1)(2εs +1)ε0
εs

(2.8)

However, it is well known that liquids and solids, in fact condensed systems, are characterised

by short-range as well as long range forces. Therefore correlation between the orientations, also

between the positions, will lead to differing values of
〈

~µi~µ j

〉

. Kirkwood introduced a correlation

factor to account for this difference [11,16]. This correlation factor models the interaction between

dipoles with respect to the ideal case of non-interacting dipoles, which are known at the literature

as rigid dipoles [10]. In general the Kirkwood-Froehlich correlation factor can be defined by

g =
µ2

interact

µ2
=

〈

N

∑
i=1

µi

N

∑
j=1

µ j

〉

Nµ2
= 1+

〈

N

∑
i

N

∑
i< j

µiµ j

〉

Nµ2
(2.9)

Taking in to account that for non-rigid dipoles ε∞ > 1, and the equations (2.8) and (2.9), the

correlation factor can be written as

g =
(εs− ε∞)(2εs + ε∞)V KBT ε0

3εsNµ2
(2.10)

In a simple picture, g = 1+ z
〈

cos(θi j)
〉

[10], where z is the number of the nearest neighbour
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surrounding the molecule, and
〈

cos(θi j)
〉

is the mean value of the cosine of the angle between

the dipole moments of adjacent molecules. The figure (2.1) shows two representative cases of the

dipolar correlation. For the case of rigid dipoles the relative angle between them is zero, and g > 1.

For non-rigid dipoles the Kirkwood factor would take values smaller than the unity.

The Kirkwood parameter g is in fact a tensor, but practically in all applications one can consider

it as a scalar. When there is no correlation between the molecular dipoles, the g value is the unity.

But the value of g can be greater than unity, when dipoles are aligned in parallel. If the molecular

dipoles tend to align anti-parallel (as will be the case for some cases in this thesis) the value is less

than unity. In these cases, the dipole moment µ is not simply that of an isolated molecule, which

is modified by its polarization. It can be shown that, in this case

µg =
3µ

ε∞ +2
(2.11)

where µg is the dipole moment of the molecule in the gas phase and ε∞ is the permittivity at the

optical frequency (which is defined as the square of the refractive index).

Inserting the above equations, into the equation (2.10), one obtains the Kirkwood –Froehlich equa-

tion

µ2
g g =

9ε0KBMT (εs− ε∞)(2εs + ε∞)

NAρεs(ε∞ +2)2
(2.12)

where NA is Avogadro’s number, and M is the molecular weight. When g = 1, the above equation

reduces to a simple equation

µ2 =
9ε0KBMT (εs− ε∞)(2εs + ε∞)

NAρεs(ε∞ +2)2
(2.13)

The latter equation was already derived by Onsager before Kirkwood’s theory and is generally

denoted as Onsager equation. In the derivation of Onsager equation, it is supposed that particles

are spherical and that no specific molecular interactions between the particles occur. One can

therefore consider the Kirkwood-Froehlich equation (2.12) as the generalization of the Onsager

equation (2.13).

2.1.3 Kirkwood effective correlation factor (ge f f )

Theories providing insight into the microscopic origin of the molecules dynamics are still lacking,

and thus many experimental and simulation works focus on such a problem by characterizing the

dynamics of mono-component systems for which dynamics is analyzed throughout the change of

temperature and/or, sporadically, pressure. Another way to change the molecular surrounding of a

relaxing entity and thus of the involved cooperativity, consists on mixing different entities [17-19].

The mixture of N compounds formed by molecules displaying a dipole moment µi with mole

fraction of the species Xi where (i = n1......nN) is known as multicomponent system. Those systems
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Figure 2.2: Schematic drawing of a dipolar system formed by molecules of two pure compounds

(A, B). Its molecules have a permanent dipolar moment.

consisting of only two components (n1 = A, n2 = B) will define the binary systems as follows

A1−xBx where x is the mole fracion of the B component.

As compared to neat systems, binary systems have been dielectrically studied so far to a lesser

extent. In particular, the binary mixtures studied in this work are formed by:

1. Both compounds are formed by molecules with dipoles moment.

2. Only one of the compounds has a dipolar molecule, whereas the other one is devoided of the

dipolar moment.

Due to recent developments in experimental capabilities, dielectric spectroscopy technique offers

the advantage to study the dynamics, over much wider time/frequency ranges. The study of binary

systems corresponding to case (2) has the advantage that the dipolar molecules are selectively

monitored, whereas their density can be modified by means of mole fraction. As for systems of

the case (1), molecular cooperativity and dynamical heterogeneity can be analysed.

In the last section, the orientation and short-range interaction between electric dipoles in a pure

polar compound was introduced. How is this equation modified when considering a binary system?

As a consequence of mixing effects, the dipole moments of the system µ , the molecular weight M

as well as the density ρ , will depend on the composition. In addition, the new Kirkwood equation

must recover the limiting cases of pure compounds

lim
X→1,0

ge f f (X ,T ) =

{

gA XA → 1

gB XB → 1
(2.14)

Mehrotra et al [20-22] modified the equation (2.13) by considering that for polar binary mix-

tures the short-range interaction can be described by the molecular association effects, providing

the effective Kirkwood factor:
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Figure 2.3: Schematic drawing of polar and apolar molecules of two binary systems. The red one corre-

sponds to the case of a system where both molecules have a permanent dipole moment and the blue one to

the case where one of the pure compounds does not has a dipolar permanent moment.

NA

9ε0KBT
(

µ2
AρA

MA

XA +
µ2

BρB

MB

XB)ge f f (X ,T ) =
(εs− ε∞)(2εs + ε∞)

εs(ε∞ +2)2
(2.15)

Taking into account that V
NmolNA

= M
ρ the above equation can be written as

ge f f (X ,T ) =
9ε0KBT M(X)

ρ(X ,T )

1
[

µ2
AXA + µ2

BXB

]

(εs− ε∞)(2εs + ε∞)

εs(ε∞ +2)2
(2.16)

The temperature dependence of the static and infinity dielectric permittivity can be determined us-

ing the dielectric spectroscopy technique, and the available volume V (X ,T ) will straightforwardly

be calculated from the lattice parameters obtained from the X-ray diffraction for the solid state

cases or form direct measurement of the density in the liquid state case [23]. The above equa-

tion will have a great experimental application for estimating the short-range interactions in binary

systems.

2.2 Dielectric in a periodic electric field

2.2.1 Complex dielectric permittivity

The static dielectric constant discussed above applies only when the external field remains in a

steady state. Much of interest in the dielectric studies is, however, concerned with frequency-

dependent phenomena, where dielectric dispersion occurs, because dynamic information can be

obtained.

When an electric field is applied as step function to a group of dipoles, all the three types of

polarization mentioned earlier get affected. Induced polarization is, however, very fast and can

be assumed to rise instantaneously. In contrast, the orientational polarization is slow and lags
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Figure 2.4: Result of the experimental dielectric permittivity measurement of cyclooctanol (C8-ol). The

measurement has been performed at T = 283K. The blue and red points represent the imaginary and the

real dielectric permittivity part.

behind the rise of the electric field. As opposed to the response of a vacuum, the response of

normal materials to external fields generally depends on the frequency of the field. This frequency

dependence reflects the fact that a material polarization does not respond instantaneously to the

applied field. The response must always be causal (arising after the applied field) which can be

represented by a phase difference.

The application of the periodic electric field E(t) = E0 exp [−iωt]with angular frequency ω = 2πν ,

to a group of dipoles results in the phase shift between electric field ~E and the polarization ~P.

Under such conditions, a dissipation of electrical energy occurs, and the dielectric constant has to

be treated as a complex dielectric or permittivity function

ε⋆ (ω) = ε
′
(ω)− iε

′′
(ω) (2.17)

where ε
′
(ω) and ε

′′
(ω) are the real and imaginary parts, respectively (see figure 2.4).

The real part is related to the reversible energy stored in the material, and the imaginary part

is proportional to the dissipated energy which will provide quantitative information about the re-

laxation process associated with the reorientation of the dipoles. Using the dielectric spectroscopy

technique, we can extract both complex dielectric parts. The imaginary part appears as an asym-

metric peak for which its maximum will define the relaxation time evolution τ(T ) at the temper-

ature of the systems, and quantitative information about the molecular interactions. On the other
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Figure 2.5: Real (top panels) and imaginary (bottom panels) parts of the complex dielectric permittivity

for temperatures lower than the glass transition temperatures as a function of frequency for two mixed

crystals,(C7− ol)0.14(C8− ol)0.86(a) and (C7− ol)0.39(C8− ol)0.61(b). Insets correspond to the derivative

with respect to the frequency.

hand, the real part is related with the dielectric strength, which gives a link between macroscopic

and microscopic properties.

The Kramers–Kronig relationships describe how the real and imaginary part of ε⋆ (ω) are related

to each other. The consequence is that it suffices to know the imaginary part for getting the full

complex ε⋆ (ω) since the real part can be calculated from the imaginary part, and of course vice

versa. The derivation of the Kramers-Kronig relations can be found in the book of Bottcher and

Boderwijk [8,9]. They used the Cauchy integral theorem along a closed contour inside a complex

region, as well as, the complex conjugated properties of dielectric permittivity. In short, it is shown,

based on the superposition principle, that ε⋆ (ω) can be expressed as the Laplace transformation

of a pulse response function with certain properties. Complex integration allows deriving the

Kramers–Kronig relations:

ε
′
(ω)− ε∞ =

2

π

∞̂

0

ξ ε
′′
(ξ )

ξ 2−ω2
dξ (2.18)

ε
′′
(ω) =

2

π

∞̂

0

ξ ε
′
(ξ )

ξ 2−ω2
dξ (2.19)

The mutual dependence between both magnitudes can be useful for testing the existence of relax-
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ation process. In the range below the glass transition temperature Tg where we observe secondary

relaxation processes, the real part of the permittivity stays almost constant at values higher than the

imaginary part. The relaxation processes will be indentified as an inflexion point in the real part of

the permittivity giving rise to a useful procedure for testing the existence of relaxation processes

[24,25] (see figure 2.5).

2.2.2 Other phenomena

The expressions given in the previous paragraphs describe the orientational polarization. The

polarization at high frequencies (short time scales) is summarized by a dielectric constant ε∞. The

only additions to be made are at low frequencies (long time scales). In this regime, the movements

of charge carriers through the samples become important and it can be observed in the dielectric

spectra.

The first phenomenon is the electrical conduction. This simple movement of charge carriers leads

typically to a response that is the same as an ohmic conductor. As a consequence, the drift mo-

tion of mobile charge carriers causes conductivity contributions to the dielectric response and the

conduction current is not negligible. This current density is related with the electric field and

the derivative of dielectric displacement by the Ohms law and Maxwell’s equation giving rise the

following relationship

σ⋆ (ω)~E =−
d~E

dt
= iωε0ε⋆ (ω)E0 exp [−iωt] (2.20)

This relationship provides us the connection between the complex dielectric permittivity and the

complex conductivity, which can be written as

σ⋆ (ω) = iωε0ε⋆ (ω) (2.21)

The contribution of the conductivity to the imaginary part of the dielectric permittivity is acounted

by addition of a term, in such a way that we can write:

ε
′′
(ω) = εrelaxation +

σ0

(ε0ω)s (2.22)

The first term of that equation gives us information about the dielectric relaxation which will be

discussed in the next section. The second term will define the conductivity additive contribution

where s defines a phenomenological exponent that has a value of s = 1 for pure ohmic conduction

and σ0 is the DC electrical conductivity. Note that because of its purely imaginary character this

term only contributes to the imaginary part ε
′′
(ω) .

Electrode polarization can be seen as a large rise of ε
′
(ω) at low frequencies. The explanation

is that, for slowly varying fields, the mobile charge carriers can reach the electrodes. This occurs

because they cannot leave the sample and they build up a charged layer. This layer masks the
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electric field in the bulk of the actual sample and gives rise to an increase in ε
′
(ω). Since electrode

polarization does not tell much about the sample (actually because it contains free charges), the

part with the electrode polarization is often excluded from the analysis. If for some reason it is

necessary to include this part, it is fitted with a power law in the real part of complex permittivity:

Aωn (2.23)

The exponent n reaches values typically in the order of −1.5 to −2. A consequence of electrode

polarization is that the power law of the conductivity contribution changes, and that a second power

law for the conductivity is necessary. The Maxwell–Wagner effect [5,26] is equivalent to electrode

polarization, but in this case, the charges accumulate at the internal boundaries of a heterogeneous

sample. In the dielectric spectra this shows up as an ordinary relaxation process.

2.3 Primary α-relaxation

In the study of the dynamics of glass forming systems, attention has been payed to the process

known as primary or α-relaxation, which characterizes the dynamics of the structural rearrange-

ment of the molecules directly and which is the origin of the glass transition phenomenom. In the

present section we will present equations for the frequency dependence of the complex dielectric

constant which should hold for the cases of dilute solutions of dipoles in liquids. These equations

were first established by Debye [6,10] who considered dipoles with identical relaxation time, relax-

ing independently to each other for the description of the α-relaxation. This consideration seems

unrealistic because in most materials the Debye consideration fails to describe the experimental

results. The loss peaks caused by the primary relaxation are broader and often asymmetric, two

aspects which are against the simple Debye model. The impossibility for predicting an analyti-

cal model solution to this striking behaviour, gives rise to the introduction of phenomenological

frequency- dependent equations.

2.3.1 Debye model

Debye theory considers the reaction of dipolar non-interacting molecules with a common relax-

ation time when an electric field is applied. If we assume that the time scale of the relaxation

process is clearly separated from faster processes that may be present in the material, an almost in-

stantaneous polarization P∞ due to the fast processes will occur as shown in figure (2.6). According

to the Debye model, dipoles will relax (i.e., come back to the original equilibrium state) with a rate

proportional to the difference from the instantaneous polarization to that at the equilibrium state.

The rate of increase of orientation polarization P0(t) during transient period will be described by a

first order differential equation given by
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Figure 2.6: Polarization time dependence of a material after the application of an electric field at t=0. The

blue line shows the theoretical response of dipolar non-interacting entities with a commoon relaxation time

(Debye model).

dP0(t)

dt
=

Ps−P0(t)

τD

(2.24)

where Ps is the static polarization and τD is a characteristic relaxation time.

Defining u = Ps−P0(t) the above differential equation can be written as

Ps−P0(t)
ˆ

Ps−P∞

du

u
=−

t
ˆ

0

dt

τD

(2.25)

and integrating the equation (2.25) results in an exponential approach to the static polarization Ps

P0(t) = Ps +(P∞−Ps)exp

[

−
t

τD

]

(2.26)

The application of a Fourier transformation leads to the following expression:

ε⋆ (ω) = ε∞ +
εs− ε∞

1+ iωτD

(2.27)

Equation (2.27) is known as the Debye equation where εs and ε∞ are the low and high frequency

limits of dielectric constant, determined by all slower and faster processes that may be present

in the investigated material. The real and imaginary part leads to a sigmoidally shaped curve for

ε
′
(log10ν) and to symmetric loss peaks with half widths of 1.14 decades for ε

′′
(log10ν) as showed

in the figure (2.7).
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Introducing the frequency domain response function to the the Debye equation, it can also be

written in another equivalent way as:

Φ
⋆ (ω) =

ε⋆ (ω)− ε∞

εs− ε∞

=
1

1+ iωτD

(2.28)

This equivalent way for the Debye equation will be very important for the microscopic treatment

of dielectric phenomena. The left part of this equation is related by Fourier transformation with a

simple exponential decay function φ = exp
[

− t
τD

]

as

Φ
⋆ (ω) = F

[

−
dφ(t)

dt

]

(2.29)

What is the physical meaning of the exponential decreasing polarization function that appears as a

result of the Debye model? Thermodynamic quantities which characterize a macroscopic sample

are average values [27]. Due to the stochastic movement of the molecules these quantities fluctuate

around their mean values. Under the electric field effect the induced polarization is, however,

very fast and can be assumed to rise instantaneously and it will fluctuate as a consequence of

reorientacional dipolar movement.

Taking in to account this consideration, the dipolar fluctuation can be described by a normalized

correlation function which for the Debye model leads the same exponential decay function

φ(t) =
〈△P(t)△P(0)〉

〈△P(0)2〉
= exp

[

−
t

τD

]

(2.30)

The assumption of dipoles with identical relaxation time (homogenous scenario), relaxing inde-

pendently to each other allows an analytical connection between the frequency and time domain,

giving rise to a link between macroscopic and microscopic properties.

In complex real systems, the dipoles interact with each other and the equation (2.30) will also

remain valid, but with a stretched exponential and an asymmetric function for the time and fre-

quency domains respectively. In real cases, the equation (2.29) has not analytical solution [28,31];

several numerical methods have been used for calculating the Fourier transform and to interpret

relaxation data from spectroscopy in the frequency domain. However, it is also well known that

the computation of the Fourier transform has numerical problems originating from unwanted os-

cillations effects, especially when treating real data. Phenomenological functions need then to be

introduced. A brief description about these functions is given in the next section.

2.3.2 The Havriliak-Negami (HN) equation

Complex dielectric spectra of certain systems reported in the literature show multiple relaxation

time behaviour. The spectra of such systems show deviations from the Debye dispersion curve.

It is a striking fact that, despite of the variety of materials used and of experimental techniques

employed such as photon correlation spectroscopy, mechanical relaxation experiments, as well as
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Figure 2.7: Result of the experimental imaginary dielectric permittivity measurement of (C8-ol)(blue

points) at T = 185K. The functions are normalized at the frequency and permittivity values of the max-

imum. The blue and red line represents the fits of (HN) function and the ideal Debye case,respectively.

dielectric spectroscopy, the relaxation behaviour is very similar. Rigorous theories which fully de-

scribe the observed behaviour have not yet been developed. As a result, almost all the experimental

data have been represented in terms of empirical functions in the frequency and time domain. The

representation of the dispersion curve therefore needs some mathematical modifications to the De-

bye equation. For this purpose, empirical fitting functions were suggested.

In the frequency domain, the imaginary part of response function is broader than that corre-

sponding to a Debye process (1.14 decades width at half maximum as is showed at the figure (2.7)).

This width has been modelled by different empirical functions, such as the Cole and Cole function

[32], the Fuos and Kirkwood function [33], the Cole and Davidson [34] function, the Jonscher

function [35], where the common characteristic for all of them is the power law dependences at

high and low frequencies. The Havriliak and Negami (HN) function has been the most extensively

used in literature [36] and can be defined by the following equation:

Φ
∗
HN(ω) =

ε∗HN(ω)− ε∞

εs− ε∞

=
1

[1+(iωτHN)α ]β
(2.31)

where α and β are shape parameters ranging between 0 and 1 and τHN is a characteristic relaxation

time. The Cole-Cole(CC) function corresponds to the case 0 < α < 1 and β = 1 and the Cole-

Davidson to α = 1 and 0 < β < 1. The Debye case is recovered with α = β = 1.

The separation of the real and imaginary parts gives a rather complex expression for ε
′
(ω)and

ε
′′
(ω) written by
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ε
′
(ω) = ε∞ +∆ε

cos(βϕ)

[1+(ωτHN)α sin(πα/2)+(ωτHN)2α ]
β/2

(2.32)

ε
′′
(ω) = ∆ε

sin(βϕ)

[1+(ωτHN)α sin(πα/2)+(ωτHN)2α ]
β/2

(2.33)

where ∆ε = εs− ε∞ describes the dielectric strength and ϕ also known as loss angle is defined as

ϕ = arctan[(ωτHN)α cos(πα/2)

1+(ωτHN)α sin(πα/2)
] (2.34)

Although (HN) equation has 5 fitting parameters, the advantage for obtaining relaxation data in the

frequency domain makes of this equation one of the most extensively used in literature.

2.3.3 The Kohlrausch Williams Watts (KWW) function

In the time domain the dipole normalized correlation function is more stretched than a simple

exponential which would correspond to a Debye process as can be seem in figure (2.8). It has been

observed over the past 15 years that experimental frequency-dependent dielectric constant for a

broad class of materials may be interpreted in terms of the Kohlrauch-Williams-Watts function

which often proves to be more appropriate in modelling relaxation processes of non-exponential

character.

This function was introduced by Kohlrausch as early as 1847 to describe the mechanical creep in

glassy fibres [37]. Williams and Watts modified it to describe relaxation processes in polymers

[38] leading to the following functional form:

φKWW (t) = exp

[

−(
t

τKWW

)βKWW

]

(2.35)

where τKWW represents the characteristic relaxation time and βKWW is a stretching exponent rang-

ing between 0 and 1 which depends on the material and fixed external conditions such as tempera-

ture and pressure. In fact, the equation (2.35) is a modified form of equation (2.30).

At short times (high frequencies), the stretching exponent leads to an asymmetric broadening of

φKWW (t) compared with a simple exponential decay showed in figure (2.8). At the glass transition

temperature Tg, the βKWW exponent has been related with the fragility of the material by an em-

pirical linear decreasing function [39], which allows the conection between a Debye process with

complex interacting systems

The above function can be correctly described from the mathematical point of view as a su-

perposition of uncoupled Debye processes, weighted by a broad distribution of relaxation time

functions ρKWW (τ)
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Figure 2.8: Kohlrauch-Williams-Watts (KWW) functions for the ideal case of Debye process (red line

βKWW =1) and the case of an isotherm T = 185K of (C8-ol)(blue line βKWW = 0.67). The points have been

obtained by a numerical Fourier Transformation of the imaginary dielectric part [40].

exp

[

−(
t

τKWW

)βKWW

]

=

∞̂

0

exp

[

−(
t

τKWW

)

]

ρKWW (τ)dτ (2.36)

The above equation has some restrictions related to the feasibility of the function itself. First, the

physical meaning of the Williams-Watts distribution function is not completely clear. Therefore,

in many of the calculations it can be regarded only as a potential mathematical tool. Furthermore,

the analytical evaluation of equation (2.36) remains as a critical problem and appears more compli-

cated, although some attempts have been made to solve the issue [41]. Moreover, it is not possible

to provide a closed analytical expression for ε⋆ (ω) for the KWW function. These problems render

the KWW representation difficult to apply. However, fortunately there are ways to circumvent

the above mathematical problems. To this end, some numerical expressions have been derived

which allow the connection between the HN shape parameters and the KWW stretched parameter.

Discussions of these analytical expressions are given in the subsequent section.

2.3.4 Interconnection between frequency and time domain

Computation of the distribution function by calculating the preceding integral of the equation

(2.36) is not an easy mathematic problem. This integral can be evaluated in an alternative way

introducing an integral series transformation. There are terms of the series which can get values
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some orders of magnitude larger than the final result. On the other hand, algorithms which yield

values for trigonometric functions can fail when their arguments are high, and this can become

another source of error. The main problem is how to calculate or to modelate the relaxation time

distribution function. Two examples commonly used are described in the next sections.

2.3.4.1 Alvarez-Alegria -Colmenero relatioships (AAC)

Patterson and Lindsay [42] derived a relationship between the Cole-Davidson and KWW func-

tions. This work was extended by Alvarez et al [43] which interrelated the Havriliak-Negami (HN)

and the Kohlrauch-Williams-Watts (KWW) functions using the numerical iterative Adachi-Kotaka

algorithms [44] and the Provencher‘s CONTIN program [45]. They found a connection between

the HN exponents (α ,β ) and the stretching parameter βKWW , as well as a relationship between the

associated relaxation times:

βKWW = (αβ )
1/1.23 (2.37)

ln

(

τHN

τKWW

)

⋍ 2.6(1−βKWW )
1/2 exp [−3βKWW ] (2.38)

The validity of the above equations was tested by means of dielectric measurements, performed

around the primary relaxation. Two spectroscopic techniques were used: one acting in the time

domain called the transient current method which measures the depolarization current of a constant

dc voltage and the other in the frequency domain, the Broadband dielectric spectroscopy (BDS)

yielding an accurate description of real data [43,46]. Nevertheless, these relationships cannot

be an analytical one, since it is known that the HN and the KWW relaxation functions are not

exactly Fourier transforms of each other, but is one of the most extensively relationship used in the

experimental results reported in literature

2.3.4.2 Generalized gamma distribution. Rajagopal function

Another way to connect both domains is modelating the relaxation time distribution function. Us-

ing the logarithmic Stilje-transformation [47,48], the above analytical functions for the time and

frequency domains can be written as a superposition of the Debye processes with different relax-

ation time as follows:

ϕ(t) =

∞
ˆ

−∞

g(logτ)exp
[

−
t

τ

]

d logτ (2.39)

Φ
∗(ω) =

∞
ˆ

−∞

g(logτ)
1

1+ iωτ
d logτ (2.40)
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Figure 2.9: Typical representative examples of the generalized gamma distribution function. All examples

have been obtained for the simple case of K=1

where g(logτ) is the distribution function of relaxation times.

Modelling this function has to be compatible with the experimental dielectric spectra. Tak-

ing into account the shape of experimental dielectric profiles which are obtained by spectroscopy

techniques, this function will need to fulfill the following conditions

• Its spectral line shape should be asymmetric.

• At high frequencies its spectral line shape should yield a power law with variable exponent.

• Its spectral density should not diverge at zero frequency.

The generalized gamma distribution function fulfill this condition and can be defined as:

f (t) =

[

β

Γ(α/β)
(

α

βK
)

α/β

]

tα−1 exp

[

−
α

β

tβ

K

]

(2.41)

where α , β , and K should be positive so that f (t)≥ 0, and Γ is the gamma function.

The history of this family of distributions was reviewed and further properties were discussed in

1962 by Stacy [49]. Subsequent work on statistical problems associated with the distribution has

been done by Bain and Weeks [50]. This function has been obtained by applying a statistical

method to a physical model. The parameters α , β , and K are associated with the scale of the

distribution, the number of ways in which the event can occur and a moment of the distribution,

respectively. By varying the parameters, a large number of probabilistic models for the description
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of random phenomena can be obtained. Special cases of the generalized distribution include a

number of familiar distributions which can be obtained as special cases by making certain choices

for their parameters as it is showed in figure (2.9). The following functions show examples of this

special case which are extensively used in literature.

• The Rayleigh distribution:β = α = 2

f (t) =
2

K
t exp

[

−
t2

K

]

(2.42)

• The Maxwell molecular speed distribution:β = 2, α = 3

f (t) =

[

(54/π)1/2

K3/2
t2

]

exp

[

−
3

2

t2

K

]

(2.43)

• The exponential distribution:β = α = 1

f (t) =
1

K
exp

[

−
t

K

]

(2.44)

Rössler et al.[51] have used the generalized distribution function for processing experimental data

obtained by dielectric spectroscopy. Using the logarithmic Stilje-transformation, they transform

the originally generalized gamma distribution function to one commonly used for calculating the

equations (2.39) and (2.40) but with a mathematical parameter β > 1. Taking into account the

generalized gamma distribution function and the previous experimental mathematical conditions,

Rajagopal et al.[52] proposed a relaxation distribution function with a βr j parameter that perfectly

accounts for the relaxation shape:

gr j(logτ) = ln10(
βr j

2π(1−βr j)
)
1/2(βr j

τ

τ0
)

βr j/2(1−βr f ) exp

[

−(1−βr j)(βr j
τ

τ0
)

βr j/(1−βr f )

]

(2.45)

where τ0 is a characteristic relaxation time, in the limiting case βKWW = βr j = 0.5 and τKWW = τ0,

equation (2.45) yields exactly a KWW function.

Gomez and Alegria [53] established a detailed comparison between the Rajagopal distribution

function and the frequency and temporal distribution function obtained as a consequence of the

AAC relationship. They found a relationship between the parameters of the KWW and the Ra-

jagopal function described by a fourth order polynomial which gives an exact correspondence for

βKWW = βr j = 0.5. In this way the following equation results:
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βKWW = 0.5+1.3237(βr j−0.5)+0.4648(βr j−0.5)2−1.2436(βr j−0.5)3−2.0129(βr j−0.5)4

(2.46)

τKWW

τ0
= 1+1.4459(βr j−0.5)−3.2598(βr j−0.5)2 +2.385(βr j−0.5)3−2.1424(βr j−0.5)4

(2.47)

From the comparison of different functions with experimental data, they concluded that for poly-

meric materials the AAC function is the most adequate for describing the frequency dependence.

However, in the case of non-polymeric materials the Rajagopal distribution function is a better

choice that avoids the Fourier transform of the KWW relaxation function.

2.4 Secondary relaxation processes

2.4.1 β - relaxation process

Usually, supercooled liquids show more than one relaxation process near to the glass transition

temperature Tg. In many glass forming materials, besides the α-peak, further relaxation processes

lead to additional peaks in ε
′′
(ω), which are called β -relaxation (or γ , δ ...relaxations if there are

more than one).

The slowest relaxation process is called the alpha (α) process, which corresponds to molecular

overall tumbling. Secondary relaxation processes occur on shorter time scales usually located in

the high-frequency region as showed in figure (2.10). In some glass-formers, additional loss peaks

in the dielectric response show up due to the intramolecular degrees of freedom which can modify

the dipole moment of the molecule [54-56]. Such secondary relaxations are ascribed to internal

changes of molecular conformations. The secondary β -relaxation may appear as a clear peak

in the ε
′′
(ω) or as a shoulder in the high-frequency part of slower α−relaxation. For decades,

this process was called simply the β relaxation; ”slow” has recently been added to distinguish it

from much faster processes β f which correspond to a complex collective anharmonic cage rattling

process, predicted by model coupling theory (MCT).

One of the most typical processes appearing at frequencies above the structural α-relaxation is

the commonly referred to as Johari-Goldstein (JG) β -relaxation [57-62]. The microscopic process

behind this kind of β (JG) relaxation is still controversially discussed. This process has been shown

to occur even in single rigid molecules generally ascribed to the motion of small angle restricted

reorientations of all entities and according to the coupling mode theory (CM), is considered as the

primitive relaxation [63,64]. The JG β -relaxation can appear as a wing on the high-frequency

side of the main α-relaxation, the so-called “excess wing” or simply as a pronounced and well

40



ββββslow  or Johari-Golstein
relaxation

Boson
Peak

microscopic               
peak

vibrations

ββββfast
relaxation

ω/A=>

ε8
8 7

ω
9

T
2
<T

1
T

1

αααα−−−−relaxation

Figure 2.10: Schematic figure of a Broadband dielectric spectroscopy of frequency range. The slowest

relaxation process is called the α- process, and the secondary relaxation processes, occur on shorter time

scales usually located in the kHz-MHz. Due to vibrational and excitations of the molecules, small micro-

scopic peaks can appear in the infrared region.

separated second relaxation [65,66]. Such a difference gives rise to a controversial classification

of glass-forming materials [60-67]. Usually, the existence of two types of slow β relaxation are

assumed: The first type is believed to be due to internal change of molecular conformations as a

result of partial reorientation of molecules, and the second one is the so-called Johari-Goldstein β

relaxation (JG).

In the high-frequency domain some additional peaks can appear, as the fast relaxation process

predicted by MCT, as is showed at the figure (2.10). On the other hand, at some THz, another peak

called the boson peak shows up, and many experimental works by neutron and light scattering

experimental techniques [68,69] have been published, being at the present one of the unsolved

problems of the condensed matter physics. Finally in the infrared region, small microscopic peaks

appear as a consequence of vibrational and rotational excitations of the molecules.

In this work we will study the dynamics of materials in the frequency domain between 10−2 ≤ ν ≤

109 focusing in to the α and secondary relaxations.

2.4.2 Properties of the β -relaxation process

Several properties have been attributed to the slow β relaxation process which seem to be universal

features of these localized and subtle molecular motions. The most prominent one is the Arrhenius

dependence of the characteristic relaxation time τ(T ). The Arrhenius equation is usually given in
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Figure 2.11: The dielectric strengths (in log scale) for the α-(squares), β -(circles) and -γ (triangles) relax-

ation processes as a function of temperature for the low-temperature domain of the (C7−ol)0.14(C8−ol)0.86
OD mixed crystal is shown on the left graph. The right figure gives the Arrhenius plot for cyanoclyclohex-

ane (CNC6) OD crystal, which shows the temperature relaxation time evolutions of the αand β relaxation

processes.

the form

τβ (T ) = τ0 exp[
Eβ

KBT
] (2.48)

where τ0 is a temperature independent factor, and Eβ , the activation energy, which does not depend

on temperature either.

The Arrhenius equation describes the temperature dependence of the relaxation times of a process

for which a temperature-independent potential barrier has to be crossed. Typical values are in the

range 20 to 50 kJ/mol. Linearization of this equation shows that an Arrhenius process shows up as

a straight line when the logarithm of the relaxation time is plotted versus the inverse temperature,

where the slope of the linearization analysis gives the activation energy as is showed in figure

(2.11). Therefore the relaxation time data in this work will mainly be presented in such a so-called

Arrhenius plot.

The following properties are also known for this process:

1. Symmetric peaks: The slow β relaxation is assigned to local motion processes, displaying in

general a symmetric relaxation time distribution function g(τβ ).

2. Wide peaks: The loss peaks are very broad with half widths of (4−6)decades.

3. Small strength: The definition of the dielectric strength are related with the area below the

dielectric loss curve and as an experimental consequence leading that △εβ <<△εα . The

figure (2.11) shows representative examples of the temperature evolution of the dielectric

strength for (c7−ol)0.14(c8−ol)0.86 OD mixed crystal which has three relaxation process. It

shows that△εβ <<△εα and△εγ <<△εα . Nevertheless for some compounds the strength

of both α and β processes are inversed.
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4. Extrapolations of the Arrhenius curves τβ (T ) to high temperature related with the β re-

laxation process tend to intercept the trace of the α relaxation process at a temperature

Tβ , at which the structural relaxation times seems in many cases to attain values near to

τβ (Tβ ) = 10−7s .

2.4.3 Coupling model equation(CM)

Theoretical and experimental studies, such as Quasielastic neutron scattering measurements in

poly(vinylchloride), poly(isoprene), and polybutadiene [70] and simple Hamiltonian models that

exhibit chaos [71], as well as analysis of molecular dynamics data [72], have shown the existence

of a dynamic crossover transition at a time τc = 2ps. For longer time than τc many body dynamics

becomes to take place and a time-dependent relaxation rate probability distribution function W (t)

will describe this cooperative motions (explained as a consequence of an environment that provides

a time dependent entropy contribution to the free energy which controls the transitions) and will

decrease with the time [73-76].

A possible answer to the interconnection of the dynamic physical properties from short and long

time, can be explained by the concept of the coupling model (CM) equation, put forward by Ngai

[77-79]. At times shorter than τc, the basic molecular units relax independently of each other(non-

cooperative Debye regimen) and the normalized correlation function follows a simple Kohlrausch

exponential dependence φ(t) = exp
[

− t
τ0

]

. The characteristic time of the dynamics without many-

body effects is τ0 and it is called as the primitive relaxation time which for this case is also defined

as τKWW=τ0. At times longer than τc, the molecular interactions increase, yielding a cooperative

regimen. In these cases, Ngai et al considered the averaged correlation function as a Kohlrausch

stretched exponential φ(t) = exp
[

−( t
τα

)1−n(T )
]

where (τα) defines the primary relaxation time

and n(T ) = 1−βKWW (T ) is called as the coupling parameter which represents a measure of the

degree of non-exponentially, being a positive fraction of unit and temperature dependent.

Ngai et al introduced a relationship between the primitive and the cooperative primary relax-

ation time. They considered three aspects:

1. Dynamic crossover: Dynamic crossover at a time τc = 2ps.

2. Continuity: The time-dependent relaxation rate probability distribution function W (t) has

to be continuous at τc: limW (t)
t→τ+

c

= limW (t)
t→τ−c

and to fulfill the following probability dynamic

transition equation
∂φ(t)

∂ t
=−W (t)φ (t)

3. Relaxation time approximation: They assumed that τKWW =τα

Taking into account the above considerations, they found as a function of the temperature a power

law relationship of the coupling parameter n = 1− βKWW (Tg), which connects the cooperative

motion with the secondary β - process. It is known as the CM equation defined by :
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τ0 = (τα)1−n τn
c (2.49)

Thus, according to the CM, for a given value of τα , the separation of the inherent JG peak

(τ0) should be larger for greater values on the coupling parameter n, i.e., for smaller values of

βKWW (Tg).

At shorter times than τc, the primitive independent relaxation time τ0 has Arrhenius temperature

dependence and experimental evidence proves that a good approximation matches with the most

probable JG β -relaxation time being τ0 = τJG = τβ . At temperatures below Tg, a possible JG

process will fulfill the following relationship [80]:

τJG(T ) = τ∞ exp

[

Eβ (T )

RT

]

(2.50)

where Eβ (T ) can change with the temperature but it is constant in the glassy state.

Using the CM equation and following the convention where Tg is conveniently defined as the

temperature at which the dielectric relaxation time τα reaches 102s, the normalized activation

energy and the β -relaxation time at Tg can be written as:

Eβ (Tg)

RTg

= 2.303 [2−13.7n− logτ∞] (2.51)

log [τ0 (Tg)] = (1−n) log [τα (Tg)]+n logτc (2.52)

These equations involve two members that are related with the parameters characterizing the α

and β processes. The right members of the above equations can be calculated by two empirical

relationships, which involves the α-relaxation broadening parameter n, the infinity relation time τ∞

and the crossover time τc. The left member of these equations can be calculated directly from the

experiment, which defines the activation energy of the β process rescaled at Tg and the β -relaxation

time at Tg. From the experimental point of view, the above equations will be useful for testing the

existence of a possible JG β -relaxation. These correlations give us a useful experimental criterion

to distinguish motions of essentially all parts of molecules (i.e. intermolecular JG relaxation).

2.4.4 Corrective functions C(n) and△E(n).

The CM equation comes from three conditions as previously presented. First the dynamic crossover

at a critical time τc, second, the continuity at this time τc and the last one the assumption that the

characteristic relaxation time τKWW is always the α-relaxation time τα . The first two consider-

ations are clear, there are strong experimental and theoretical evidences of the existence of this

dynamic crossover at τc and the continuity can be resolved by the introduction of a relaxation rate

W (t) defined as a fractional power law. However in frequency domain is usually chosen for τα the
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relaxation time τmax which is defined as the inverse of the frequency where ε
′′
(ω) has its maxi-

mum, or the Havriliak-Negami relaxation relaxation time τHN . The best time to be considered as

τα is not very clear. Can both relaxation times be considered as the structural α-relaxation time

for testing a possible JG β -relaxation with the CM equation?

The α-relaxation time τα is approximately related with the HN relaxation time τHN , which is also

connected with the HN shape parameters and the KWW relaxation time τKWW . For times longer

than τc, the dynamic of the system will be cooperative and the coupling parameter will take values

ranging 0< n < 1 yielding a transition (NonDebye-Debye). In that case, the normalized correlation

function can not be written with the cooperative α-relaxation time τα represented by τmax or τHN ,

and thus considering τKWW = τα or τKWW = τmax will contradict the dynamic crossover predicted

for the experimental evidences. How is it possible that CM equation still works for a lot of glass

formers? The purpose of this section is to find answer to this question.

As we discussed in the last section, Alvarez et al. [43] interrelated the Havriliak-Negami (HN) and

the Kohlrausch-Willliams-Watts (KWW) functions, establishing a numerical connection between

the relaxation times as a numerical function of the stretching parameter βKWW (T ), yielding a

coupling dependence behaviour f (n) written as:

ln

(

τHN

τKWW

)

= f (n) ⋍ 2.6
√

nexp [−3(1−n)] (2.53)

On the other hand, AAC relationship allows us also the interconnection between the shapes param-

eters as:

n = 1− (αβ )
1

1.23 (2.54)

β = 1−0.812(1−α)0.387 (2.55)

The substitution of the equation (2.55) in (2.54) yields us

n = 1− (α(1−0.812(1−α)0.387))
1

1.23 (2.56)

For a set of values of the coupling parameter, the numerical solution of the equation (2.56) gives

us numerical functions of α(n) and β (n). Changing the coupling parameter for a set of values

0 ≤ n ≤ 1, the numerical solution of (2.56) for the cases of n < 0.2 gives numerical complex

solutions, which is in perfect agreement with the validity of AAC relationship [43].

The numerical solution of the equations (2.55) and (2.56) will give real values for a coupling region

ranging 0.2 < n < 0.8 as is showed at the figure (2.12b). On the other hand, by searching experi-

mental results reported in the literature for different materials such as amorphous polymers (PA),

small molecules (SM), plastic crystals (PC) and inorganic materials (IM) there are no reported

values of n smaller than 0.2 and higher than 0.8. The majority of glass formers has n lying within
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Figure 2.12: Numerical coupling parameter dependence of the HN shape parameters (bottom panel (b))

and G(n) function (top panel- (a)) calculated within the HN validity domain.

the approximate range of 0.40≤ n≤ 0.65 [80], which is in perfect agreement with the validity of

AAC relationship. Thus we can use the above relationship for testing the CM equation.

For times longer than τc the α-relaxation peaks are broader with respect to the Debye peaks.

The relaxation times which correspond to the maximum of the loss peak are different and can be

calculated as the product of a multiplicative function G(n) and the HN relaxation time τHN as

follows [8,9]:

τα = τHN [
sin[πα(n)β (n)

2(β (n)+1) ]

sin[ πα(n)
2(β (n)+1) ]

]
1

α(n) = τHNG(n) (2.57)

For the limiting case of a Debye process (n→ 0), the multiplicative function G(n)will tend to unity

and, it will decrease by increasing the cooperative molecular motions as is showed in the figure

(2.12a). It will provide us one way for connecting the AAC relationship with the CM equation.

If we substitute the equation (2.57) in (2.53) the following relationship is obtained

τKWW = τα
exp [− f (n)]

G(n)
(2.58)

For times shorter than τc, the dynamics of the system will be non-cooperative like a Debye case

(n = 0), and the numerical function will fulfill the following condition: lim
n→0

f (n)= 0 and lim
n→0

G(n)=

1⇒τKWW = τa = τ0. For times longer than τc, the coupling parameter will take values 0 < n < 1

and both functions f (n) and G(n) will have a strong dependence with n. In that case τKWW 6= τα ,

and the normalized correlation function can not be written with the cooperative α-relaxation time

τα .
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In order to compare the quantitative difference between both relaxation times, we calculated the

relative discrepancy for a set of coupling values ranging with in the experimental typical values.

The relative discrepancy can be defined as:

δτ (n) =

∣

∣

∣

∣

τKWW − τα

τα

∣

∣

∣

∣

·100 =

∣

∣

∣

∣

exp [− f (n)]

G(n)
−1

∣

∣

∣

∣

·100 (2.59)

For the Debye case there is no discrepancy between both relaxation times, and the above function

will tend to zero. For the cases of cooperative motions, both relaxation times will become more

different leading to a dramatically increase of the discrepancy, taking values higher than 100%, as

showed in figure (2.13a). How is it possible that both relaxation times are so different and the CM

equation remains valid for a large number of glass formers?

The CM equation can be rewritten with the true relaxation time which will appear as a result of the

KWW function. Taking into account this result we can rewrite the CM equation as follows

τC
0 = (τKWW )1−n τn

c (2.60)

where we call the corrective primitive relaxation time as τC
0 . Inserting the equation (10) in (12) we

obtain:

τC
0 = (τα)1−n τn

c

(

exp [ f (n)(n−1)]G(n)n−1
)

= τ0C(n) (2.61)

The corrective CM equation can be defined as the product of two terms. The first one will be

the original primitive relaxation time τ0, introduced by Ngai and the second new term will be a

function which will only depends on the coupling parameter n, being insensible to the relaxation

crossover time τc. We call this new term as the corrective relaxation time functionC(n) and for the

limiting cases it will take the following values:

C(n) = exp [ f (n)(n−1)]G(n)n−1 =

{

1 n = 0

1.15 n = 0.65
(2.62)

In the Debye limiting case (n = 0), the corrective function will tend to unity, recovering the original

primitive relaxation time from Ngai. But in the coupling domain, the corrective function will take

values ranged between 1.07 < C(n) < 1.30 as showed in figure (2.13b). On the other hand, for the

experimental cases 0.40 ≤ n ≤ 0.65, the corrective function takes values C(n) < 1.15. The CM

equation has been defined as a power law function with exponent smaller than unity. This is the

key point that gives validity also when it is used with different relaxation times.This conclusion

can be summarized in the following mathematical relationship

∀0≤n<1⇒ (τHN 6= τKWW 6= τα)⇒ ((τHN)1−n ≈ (τKWW )1−n ≈ (τα)1−n) (2.63)

Taking into account this finding, we can rewrite the normalized corrective activation energy.
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(bottom panel (b)) and the relative discrepancy δτ(n) (top panel- (a)) calculated within HN validity domain.

In this case the new term appears additively, which is a direct consequence of the definition of

corrective functions C(n) and the equation (2.51) will be modified as follows

EC
β

RTg

= 2.303 [2−13.7n− logτ∞]+2.303logC(n) (2.64)

The normalized corrective activation energy can be then written as the sum of two contri-

butions. The first one is the equation (3) and the second one comes from the definition of the

corrective function, which we call the corrective energy function ∆E(n).

△E(n) =

(

EC
β

RTg

−
Eβ

RTg

)

= 2.303logC(n) =

{

0 n = 0

0.17 n = 0.65
(2.65)

For the Debye limiting case (n = 0) the corrective energy function will tend to zero, recovering

the original equation (2.51). But in the coupling domain, the corrective energy function will take

values 0 < C(n) < 0.22 as showed in figure (2.14). On the other hand, for the experimental real

cases 0.40≤ n≤ 0.65 the corrective function takes values△E(n) < 0.17.

These values are close to zero, and do not have physical influence. These values will correspond

to an ideal and unfeasible relaxation process. On the other hand, for a genuine JG β -relaxation

process, Kudlik et at. [81,82] proposed an empirical relation of the normalized activation energy

which can be written by the following experimental ratio:
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Figure 2.14: Numerical coupling parameter dependence of the energy corrective function ∆E(n) calculated

within HN validity domain

EKudlik =
Eβ

RTg

≈ 24 (2.66)

If we compare, in the experimental coupling domain, the ratio of the genuine JG process with the

maximum value of the corrective energy function, a negligible corrective energy contribution is

found. For all experimentally reported coupling domains 0≤ n≤ 1, independently of the relaxation

time that has been chosen for the experiment (τHN ,τmax or τKWW ), the corrective functionsC(n) and

△E(n) will take values around the unity and zero respectively, and the CM equation will remain

unchanged to testify the JG processes.
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Chapter 3

Materials and methods

In this chapter we focus on the materials and experimental techniques that have been used in this

work. We focus on two questions: What is measured? How are the measurements performed?

The first section is devoted to the studied materials. We describe the polymorphic behavior of the

studied materials displaying orientationally disordered phases. We also enclose a brief description

of several materials whose experimental data, although they were not measured by us, have been

used to analyse the universal behavior of glasss forming liquids. These materials are a low weight

molecular liquid, a polymeric liquid and a liquid crystal.

The experimental techniques are detailed in the second part of this chapter. The basic concept of

the dielectric spectroscopy technique as well as a brief description of the experimental setup used

in this work is shortly introduced. Two additional experimental techniques, X-ray diffraction and

calorimetry, which have been used for complementing the study are presented as well.

3.1 Materials

In this work, all studied materials are obtained from Aldrich Chemical company (ACC) and Across

Organic (AO) with a purity of at least 99%. Cyclooctanol and cycloheptanol were submitted to

an additional purification process consisting of a vacuum sublimation at a reference temperature,

whereas the other compounds were used as purchased. The purity was checked by means of differ-

ential scanning calorimetric by measuring the melting temperature and, when possible the solid-

solid phase transitions between the plastic phase and the low-temperature ordered phases. Mixed

crystals were prepared from the melting of the pure materials in the selected molar composition

as well as by simple addition of liquids in the desired proportions when their melting temperature

was below room temperature.
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Table 3.1: Pure compounds usedin this study and suppliers (and purity) together with the glass transition tempera-

ture (Tg) of the orientational glass (OG). AO: Across Organics, ACC: Aldrich Chemical Company. Lattice symmetry

of the OD phase: simple cubic (sc) and face-centered-cubic (fcc). (*)The OD phase I of Cladam cannot be supercooled

to obtain the associated OG.

Name Symbol Chemical Formula OD Phase Tg/K Purity

Cycloheptanol c7-ol C7H13OH I(sc) 140 AO,> 99%

Cyclooctanol c8-ol C8H15OH I(sc) 165 AO,> 99%

Cyano-admantane CNadm C10H15−CN I(fcc) 169 ACC,> 99%

Chloro-adamantane* Cladm C10H15−Cl I(fcc) ACC,> 99%

Cyano-cyclohexane CNc6 C6H11−CN I(fcc) 134 ACC,> 99%

3.1.1 Plastic crystals

On cooling the liquid of a system formed by, in general, elongated molecules, the orientational or-

der appears while the translational order is still missing, giving rise to the well-known mesogenic

phases of liquid crystals and the related glass formers on further cooling [1,2]. On the contrary,

for globular shaped molecules, the liquid state can transform to a translationally ordered high-

symmetry phase (generally cubic or hexagonal) with orientational disorder. Such orientationally

disordered (OD) or plastic phases can be supercooled preventing the complete orientational or-

dering and an orientational-glass (OG) state exhibiting translational order and static orientational

disorder is achieved [3-10].

Figure 3.1: Schematic representation of the possible

transitions of a liquid of a dipolar molecules (represented

by asymmetric dumbbells) in to a supercooled liquid or a

plastic crystal [12].

Such a particular orientational disorder was

described by Timmermans in 1961 [11] who

showed that crystals composed of molecules

whose shape is more or less spherical have

small entropy and volume changes of fusion.

In plastic crystals the centers of mass of the

molecules form a regular crystalline lattice but

the molecules are dynamically disordered with

respect to their orientational degrees of free-

dom. Due to the translational long-range order,

plastic crystals are much simpler to treat in the-

oretical and simulation approaches of the glass

transition and therefore these materials are of-

ten considered as model systems for structural

glass formers.

Some materials used in this work belong to the group of lower order cyclic alcohols defined as the

family CnH2n−1OH where n = {5,6,7,8}. These materials are good examples of pseudoglobular

molecules displaying OD phases [12-14]. A very close related material has been also studied,

cyanocyaclohexane, which also displays a globular shaped molecular symmetry.
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All these molecules can display a finite number of molecular conformations, giving rise to a rich

polymorphism and the polar OH or CN groups may adopt either of two conformations, the axial

and the equatorial with respect to the carbon atom on which the group is bonded, yielding different

contributions to the dipole moment orientation, and thus to additional secondary relaxations. On

the contrary, adamantane derivatives are also globular shaped molecules giving rise to OD phases,

but composed from a rigid molecular structure. Within the next sections, a detailed explanation of

the polymorphism of the studied materials is given.

3.1.2 Polymorphic behavior of the studied materials

3.1.2.1 Cylooctanol

As far as the polymorphic behavior of Cyclooctanol(C8-ol) is concerned, it exhibits a transition

from the liquid state to the simple cubic (sc)OD phase I [14-16]. On further slow cooling the OD

phase transforms to an orientationally ordered state (phase II), in which the α-relaxation corre-

sponding to the dipolar disorder is absent. Such a transition can be bypassed by a relatively fast

cooling from the OD phase, which enables us to obtain the corresponding OG state below Tg (be-

tween 142 and 172K) [13,14,16-22]. On heating up above the glass transition, the supercooled

OD phase remains (metastable) until about 200K, where C8-ol transforms to the orientationally

ordered phase II. Details of the polymorphic behavior of C8-ol have been largely discussed [15].

As for the additional β - and γ-relaxation processes in C8-ol, it has been demonstrated that they

also show up in the low temperature ordered phase with the same relaxation time for a given

temperature, and thus they have been ascribed to the conformations of the ring (β -relaxation)

and to those (axial and equatorial, γ-relaxation) adopted by the polar OH group with respect to

the carbon atom on which the group is bonded [10,14]. It is worth noting that the existence of

such a conformational disorder has been claimed as the origin of the difficulty to reach the low-

temperature ordered phase for many OD phases formed by molecules with intrinsic conformational

degrees of freedom.

3.1.2.2 Cycloheptanol

Cycloheptanol (C7-ol) has been far less studied probably because of the existence of two OD

and two low-temperature ordered phases [8,15,22]. On cooling from the liquid state the simple

cubic OD phase I appears and can be readily supercooled, giving rise to an OG. On the con-

trary, the tetragonal OD (phase II) can be hardly supercooled, although some authors reported a

glass transition temperature of the corresponding glass state from an extrapolation of the dielectric

data [15,22]. One of the striking differences between cycloheptanol and cyclooctanol concerning

the relaxation processes appearing in their simple cubic OD phases is that the former shows, in

addition to the α-relaxation, only one secondary fast process, which according to the molecular

conformational disorder is ascribed to the axial and equatorial orientations of the−OH group and

56



(a)

1 10 100

0.1

1

 

 

κ
 (W

m
-1
K
-1

)

T(K)

(b)

Figure 3.2: (a) Molar heat capacity of Cyanocyclohexane (unpublished results from PhD of Pinvidic,

University of Orsay, Paris. (b) Thermal conductivity of solid (upper curve) and orientational glass (lower

curve) of Cyanocyclohexane. Red diamonds correspond to orientational glass of Cyclohexanol (unpublished

results)

by analogy with cyclooctanol is called γ-relaxation [15,17,22]. It should be mentioned that some

authors argued the existence of a β -relaxation also for cycloheptanol [23].

3.1.2.3 Cyanocyclohexane

Cyanocyclohexane (CNc6) is a well-known example of materials displaying an OD phase which

gives easily rise to an OG. It turns out to be an ideal candidate because of its stability in tem-

perature. From calorimetric measurements, it has been seen that the crystallization of the liquid

takes place at Tm = 285K, forming a crystalline phase (phase I) stable up to Tt = (217±3)K [24],

being below this temperature still sufficiently stable to be examined on considerably long time

scales. Nevertheless, it was shown that applying higher pressure or annealing the sample for long

times, another crystalline phase (phase II) may form. It has been suggested that phase II is the

orientationally ordered crystal that always exists in parallel to a supercooled plastically crystalline

phase [25]. In addition, cyanocyclohexane is not a rigid molecule and conformational disorder

also exists [26]. Depending on the orientation of the carbonitrile (C ≡ N) group with respect to

the cyclohexane ring, an axial and an equatorial conformation exist. The conversion from one to

the other molecular conformation is possible and involves an energy barrier of ca. △E/KB = 4500K

and, according to recent Raman measurements, the chair ring conformation together with axial for

CN was reported with an abundance of 58±8% in the liquid state [27].

The molar heat capacity Cp as a function of temperature is represented in figure (3.2a), and beside

the prominent glass step that can be seen around 133.5K (Tg of the orientational freezing), two

additional weak step-like signals appeared at 55K, i.e., within the orientational glass, and at 156K,
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Figure 3.3: Calorimetric results from [29]. A calorimetric jump is to be seen in the plastic phase at 310K

within the supercooled (phase I). The latter has been tentatively ascribed to the freezing of the axial-

equatorial conformation conversions, but the origin of the former, which also has been reported for

some Freon derivatives [28], is still a matter of debate, although it seems that the freezing of

molecular conformations is involved. In fact, the Raman study was performed as a function of

temperature, but by dissolving the sample, so all the transitions (even that given rise to the OD

phase) are missed.

Members of our group have recently measured the thermal conductivity (figure 3.2b) down to very

low temperatures (down to 2K). It depicts the typical behaviour for canonical glasses, although the

behaviour is found to be dependent on the thermal history and at present we strongly believe that

such behaviour should be linked to the freezing of different molecular conformations.

3.1.2.4 Chloroadamantane

Adamantane derivatives form a large and interesting group of substances displaying OD phases.

The pseudoglobular molecular shape of these compounds together with the dipolar character of

the derivatives inferred by the substitution of one hydrogen in the adamantane molecule provides

to this group interesting properties which can be used for fine tuning of the required properties.

In particular, several properties are known as relevant to make interesting these compounds [30-

32]. On the other hand, overall free tumbling is impossible due to the hindering produced by the

strong dipolar character for molecules with C3ν symmetry as for 1−X-adamantane substituted

compounds (X = Cl, Br, CN, ....)[33,34]. On the second hand, fast rotations around the dipolar

C3ν axis have been characterized to be faster than those concerning the overall molecular rotation,

both being then clearly decoupled [34,35] and, finally, these molecules are rigid and non-hydrogen
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bonded, so then secondary relaxations, if present, should be uniquely related to “pure” Johari-

Goldstein β−relaxations [35].

Chloro-Adamantane (Cladm) is a huge molecule, but in spite of its size, it is completely rigid. This

makes very easy to study both its dynamics and structure. The OD fcc phase (Fm3m space group

symmetry) of Cladm (µ = 2.39D)[34,33] ranges from 249K until the melting point at ca. 439K.

The specific heat of this substance in the plastic phase is however puzzling: it has a calorimetric

hump at about 310K [36] that has been associated with a change in the dynamics of the system

[37]. At low temperature the molecule performs “free small-step rotational diffusion”, and at high

temperature the dynamics is described by an “activated jump-like motion”. Although molecular

dynamics simulations [38] claim for the existence of an OG with Tg < 217K, as far as we know,

no experimental evidence has been published till now.

3.1.2.5 Cyanoadamantane

Cyanoadamante(CNadm) is another example of a rigid molecule with C3ν molecular symmetry

as those belonging to the 1− X-adamantane derivatives. As in the previous case of Chloro-

adamantane, fast rotations around the dipolar C3ν molecular axis have been characterized to be

faster than those concerning the overall molecular rotation existing in the plastic phase, both being

then clearly decoupled from a dynamical point of view.

The (C ≡ N) radical group confers to CN a strong dipolar moment (µ = 3.83D). The only inter-

nal degree of freedom corresponds to the motion of (C−C ≡ N) group, the associated dynamics

being far away from the frequency range analysed in this work [39]. This compound has been

studied by means of an extended number of experimental techniques as dielectric spectroscopy,

NMR, thermal analysis, inelastic X-ray scattering, calorimetry, thermally stimulated discharge cur-

rents and Raman spectroscopy [39-42]. Some molecular dynamics studies have also been reported

[34,43]. As far as its polymorphism is concerned, it has been clearly stated that the melt crys-

tallizes into an OD cubic plastic phase with Fm3m symmetry at ca. 462K [44]. This phase is

dynamically characterized by restricted tumbling in such a way that 6 equilibrium orientations

along the < 001 >directions can be distinguished, as well as threefold uniaxial rotations around

the(C−C ≡ N), i.e., the C3ν axis corresponding to the dipolar molecular axis, which means that

such disorder is not seen by dielectric spectroscopy [44,45]. At lower temperatures, CNadm trans-

forms to a more ordered crystalline phase, the structure of which is known to be monoclinic (space

groupC2/m) with an antiferroelectric order. In fact, the local antiferroelectric order in the OD phase

is known to be reminiscent of such an order in the low-temperature monoclinic phase [43]. In this

low-temperature ordered phase the uniaxial rotations along C3ν axis also remain. The OD phase

can be easily quenched by cooling into a glassy crystal, the non-ergodic state associated with the

ergodic OD phase, with a glass transition temperature at about 170K [46,50]. As far as this glass

transition is concerned, Yamamuro et al. [40] argued that in fact orientational degrees of freedom

can be frozen in at higher temperatures and, in the recent work from Carpentier et al. [51], this
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Figure 3.4: Volume per unit of molecule of the OD fcc phase and the OG for the CNadm on heating after

quenched at 100K from room temperature and on heating after cooling down until 233K. The squares

correspond to the values from [46,48]

transition is much more related with the freezing of the fluctuations of an antiferroelectric local

ordering, occurring on a size and time scale larger than those characteristic of the dynamic slowing

down (i.e. τ (Tg) = 100s). On further heating after the quenching process or simply ageing at

temperatures higher than Tg, the supercooled OD fcc phase transforms to the low-temperature or-

dered phase via an intermediate metastable phase [51,52]. Figure (3.4) depicts the lattice volume

per molecule of the OD phase and of the non-ergodic state, the orientational glass OG state. It

clearly evidences the well-known change of the isobaric thermal expansion coefficient at the glass

transition. It should be noticed that after the quenching at 100K X-ray patterns as a function of the

increasing temperature only showed Bragg reflections corresponding to the fcc lattice.

3.1.3 Other materials

In order to analyse the universality of several properties of glass forming materials, we have used

three set of dielectric data τ(T ) taken from earlier studies. Its chemical structure is shown in figure

(3.2). They are (i) the oligomeric liquid EPON 828, (ii) octyloxycyanobiphenyl (8*OCB) [53],

isomer of liquid crystalline 8OCB, which remains in the isotropic phase on supercooling, and (iii)

propylene carbonate (PC), a low molecular weigth liquid [54]. The first data was provided from

Dr. Silvia Corezzi and the last two datas were provided from Dr. Sylwester Rozka.
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Figure 3.5: The chemical formulas of three additional different materials:(i) EPON 828, oligomeric liq-

uid,(ii) propylene carbonate (PC), a low molecular weigth liquid, (iii) octyloxycyanobiphenyl (8*OCB)

isomer of liquid crystalline 8OCB, which remains in the isotropic phase on supercooling.

3.2 Measurements techniques

3.2.1 Dielectric spectroscopy(DE)

3.2.1.1 Basic concepts

There are a number of possibilities to determine ε∗(ω). A first classification splits in two possi-

ble techniques: time-domain and frequency-domain techniques. Since in this work time-domain

techniques have not been used, all our attention will be focused on a number of frequency-domain

techniques.

The basis of any measurement of ε∗(ω) is essentially a determination of the impedance Z of the

sample. It then requires some simple calculations to get the value of ε∗(ω). In the simplest case,

that of a pure capacitor, the value of the impedance is given by

ZC =
1

ωC
(3.1)

For the case of a dielectric sample cell, one can use either a measured value of the vacuum capaci-

tance C0 or the equation for the geometrical capacitance, for example equation (3.1) in the case of

a parallel plate capacitor. One gets

ε =
C

C0
(3.2)
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In fact the impedance is a complex value Z∗. The complex form of ZC can be written as:

Z∗C =
1

iωC
(3.3)

This means that also the phase information must be measured to allow the determination of both the

real and imaginary parts of ε∗(ω). Suppose that a sinusoidal voltage is applied to the sample and

the voltage over and current through the sample are determined, including the phase information.

This gives:

V (t) = V0 exp(iωt) (3.4)

I(t) = Io exp(iωt + iφ) (3.5)

By combining these equations, it follows :

Z∗ =
V0

I0
exp(−iφ) (3.6)

which in turn can be used to obtain ε∗(ω) :

ε∗(ω) =
−i

ωZ∗
1

C0
(3.7)

The value obtained for ε∗(ω) is that corresponding to the frequency of the applied field, which will

also depend on the vacuum capacitance C0. The value for C0 can be obtained from a measurement

of the empty cell or directly from the knowledge of the geometry of the cell. For the actual

measurements, a number of techniques which use equivalent circuit can be used, each having

certain limitations, often related to the frequency of the electric field.

The Impedance Measurement Handbook from Agilent shows several equivalent circuits which

summarize in detail all possible setup combinations [56]. At present, Novocontrol is the lead-

ing company that offers complete setups for dielectric spectroscopy measurements that include

instruments, high precision heating/cooling control, various accessories as well as a wide range of

different software [57].

3.3 Setups used in this work

In this work, the relaxation times were determined by means of broadband dielectric spectroscopy.

The measurements were performed with two different setups in two different frequency ranges by

using two Novocontrol setups. The first one is the Novocontrol α-analyser spectrometer (HP4192)

which makes measurements in the range from 10−5Hz to 10MHz [57,58] which has been used

for performing the dielectric measurements of several pure compounds and several mixed crystals.
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The measurement at 10−5Hz would require several days to finish, so in practice the low frequency

limit is at 1mHz, but even this is only used exceptionally. Typical scans go down to 10mHz or 100

mHz if some signal other that conductivity contributions is expected, otherwise even higher lower

limits are used.

The second one is the high frequency: Hewlett–Packard RF Impedance BDS80 (HP4291) which

has been used in the Katowice laboratory in Poland for characterizing the pure compounds C8-ol

and C7-ol. It covers the frequency range from 1MHz to 1GHz [57,59]. This instrument based

on the sample cell connected to a test Head, mounted on a heat sink, from which an insulated

cable leads to the analyzer itself. The instrument is very sensitive to the high frequency electrical

response of the test head and sample cell and therefore a sometimes tedious calibration procedure

is necessary. The calibration procedure starts with a calibration of the instrument and the Test Head

using four known standards: an open circuit, a shortcut, a 50Ω resistance and a low-loss capacitor.

After this, the sample cell is connected to the Test Head and the so called compensation is started.

Now the sample cell is measured as an open circuit, shortcutted and with a standard peace of Teflon

as sample. After this procedure, the real sample can be measured.

The low frequency range of the measurements were circumscribed to 10−2Hz up 107Hz while the

high-frequency were carried out up 109Hz. Both Novocontrol setups were equipped with a Quatro

temperature controller which is used with a Nitrogen-gas cryostat with the temperature stability at

the sample around 0.1K .

3.3.1 Sample cells

Two diferent cells are used in this work. Both cells form a sandwich capacitor mounted between

two different cell: BDS 1200 (for the case of low frequency measurements) and BDS 2200 (for the

case of high frequency measurements) [57]. For liquids or powders, additional spacers are used.

3.3.1.1 Low frequency: Liquid Parallel Plate Sample Cell (BDS1308)

For the low frequency case, we used the sample cell BDS1308 which is mounted in our laboratory.

This cell has an inner diameter of 20mm with two gold plated cup electrode of 14mm diameter.

The sample is placed between two parallel plates, separated by spacers. A few of 50µm fibres as a

spacer is taken to separate the cup electrode and the top electrode. The liquid sample is then sand-

wiched between two equally large electrodes from the sample holder. This kind of sample can only

be used for samples were evaporation is not a problem: because the sample is in direct contact with

the nitrogen flow, it will evaporate. For evaporating samples (i.e those for what the vapor pressure

is high) it is then putting in a holder of which the sample space is sealed from the environment

by two o-rings and allows adjusting the cell capacity by variation of the electrode spacing. In this

case, also teflon spacer rings can be used instead of fibres, allowing thicker samples. The figures

(3.6 and 3.7) show the electrode and the cell.
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Figure 3.6: The parallel plate electrodes BDS 1200. The figure was taken from [57]

Figure 3.7: The Liquid Sample Cell BDS 1308. The figure was taken from [57]
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(a) (b)

Figure 3.8: Schematic drawing of the liquid sample cells. The figure (3.8a) and (3.8b) show the cases of

the low and high frecuency sample cell. Both figure were taken from [57].

The figure (3.8a) shows a schematic drawing of the cell in the open and closed state. In the open

state, the cell closing plate and upper electrode are removed from the cell, and the sample material

covers the lower electrode. The electrode gap is adjusted by silica or Teflon spacers. On the other

hand, for the case of closed state, the upper electrode is pressed by the cell closing plate and the

spring to the spacers. Liquid sample material, which does not fit between the electrodes, can flow

around the upper electrode. The two seal rings attached to the Teflon isolation prevent evaporation

of sample materials out of the cell and its connection head is connected to a Pt100 temperature

sensor.

3.3.1.2 High frequency: The RF sample cell (BDS 2200)

For the high frequency (radio frequency) case, we used the sample cell BDS2200 which is equipped

in the Katowice laboratory in Poland. The sample is prepared between two sandwich electrodes

building a sample capacitor similar to the low frequency cell. This cell has an inner diameter

14mm with two gold plated cup electrodes of 12mm diameter ideal for RF measurements of liquids

with low viscosity. Small spacers, for instance 50µm silica fibers, can be used to separate the cup

electrode and the top electrode. The top electrode has a diameter of 10mm so that surplus material

is pressed out of the electrode area automatically.

The sample is mounted in parallel plate arrangement between two RF external electrodes which

are mounted in the RF sample cell as it is showed in the figures (3.9). The RF cell is thermally

isolated by the RF extension line which is connected by two-loss precision line with two APC-7

connectors and Pt100 temperature sensor. It is mounted between the impedance input of the RF

Analyzer and the RF sample cell for thermal isolation (see figure (3.8b)).

As this setup is very sensitive to mechanical stress, it is supported by the motor driven BDS 2300
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Figure 3.9: The RF parallel plate electrodes BDS 2201. The figure was taken from [57]

Figure 3.10: The RF Liquid Sample Cell BDS 2200. The figure was taken from [57]
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Figure 3.11: The temperature controller experimental setup. The figure was taken from [57]

mounting rack which allows to move the sample cell in and out of the cryostat by special mechan-

ics, avoiding mechanical forces on the extension line.

3.3.2 Temperature controller: Quatro Cryosystem

The Quatro Cryosystem is a high quality turn key temperature control system for applications in

materials research. It can be used with all Novocontrol sample cells for dielectric and impedance

spectroscopy. The system was developed to set or ramp the temperature of the sample under test

with high accuracy and reproducibility. The system is modular and can be combined with any

Novocontrol BDS dielectric or impedance spectrometer. The Quatro controller has four circuits

controlling the sample temperature, the gas temperature, the temperature of the liquid nitrogen in

the dewar and the pressure in the dewar. In addition the vacuum pressure is measured [57].

The setup consists of a rack, where the electronic parts of the Quatro are mounted, together with a

vacuum pump (see figure (3.11)). On a platform on the outside of the rack, a cryostat is mounted.

Liquid nitrogen is evaporated from a dewar and the cold gas is sent through a gas heater. Af-

ter heating the nitrogen continues its way, controlling the temperature of the sample inside the

cryostat. The cryogenic part is double-walled and connected to the vacuum pump. The sample

holder ends in an active head, from where cables lead to the impedance analyzer. In this work,

all measurements have been performed with both impedance analyzers equipped with a Quatro

Cryosystem temperature controller using a nitrogen-gas cryostat and with the temperature stability

at the sample around 0.1K.
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Figure 3.12: Result of the dielectric measurement of the real and imaginary dielectric permittivity parts of

Cycloheptanol (C7-ol). The measurement has been performed at T = 273K.

3.3.3 Example result

Since we will encounter enough dielectric data in the remainder of this work, this section will

be limited to one example. In figure (3.12), the result for cycloheptanol C7-ol is shown. The

measurements were carried out after slow cooling and stabilization at different temperature steps

(±2K) to avoid undesirable changes in the kinetics of cooling.

The graph consists of the results of the Novocontrol α-analyser for frequencies below 1MHz

and of the HP4291 above this frequency. The high frequency data have been shifted by a mul-

tiplicative factor to coincide at 1MHz with those of the Novocontrol. First, between 1MHz and

1GHz one recognizes a relaxation peak in the imaginary part of the permittivity and the corre-

sponding step in the real part. At lower frequencies, the real part stays roughly constant until

103Hz.

In this region, the so-called static value of the permittivity can be obtained. This is the number that

appears in literature when looking for “the dielectric permittivity of cycloheptanol”. In the same

region, and down to 10Hz, the imaginary part shows a rise, matching ohmic conductivity. Around

1Hz the real part shows a downward curvature due to the electrode polarization. In this case, it

becomes even so strong that the description with a simple power law is not valid at the lowest

frequencies. From about 1Hz on, it is observable that also the steepness of the conductivity in

the imaginary part decreases. This gives an impression of what dielectric data look like at a given

68



temperature. In practice, the analysis of this spectrum would be limited to the region above 1MHz,

since the lower frequency part does not contain much information about the molecular dynamics.

3.4 Experimental complementary techniques

In this work, two complementary experimental techniques have been used, the Differential Thermal

Analysis (DTA) and the X-ray powder diffraction (XRPD). The first one provides information

about the possible phase transitions and their main thermodynamic properties, as temperature and

enthalpy or entropy changes, that can appear in a scanned temperature domain. The second one

enables to characterize the existence of an underlying crystalline structure for an analyzed phase

at a fixed temperature. Both techniques have been used as standard procedures before to engage

the dielectric measurements in order to determine the phase behavior of the samples. A brief

description of the details concerning the experimental systems used in this work follows in the

next sections.

3.4.1 X-ray powder diffraction

High-resolution X-ray powder patterns are isothermically recorded bymeans of a vertically mounted

INEL cylindrical position-sensitive detector (CPS120) [60] equipped with a liquid nitrogen 700 se-

ries Cryostream Cooler from Oxford Cryosystems with a temperature accuracy of 0.1K and similar

for fluctuations. The available temperature range for the system ranges from 500K down to 90K.

The detector, used in Debye-Scherrer geometry (transmission mode), consists of 4096 channels

and enables a simultaneous recording of the diffraction profile over a 2θ -range between 2 and 115◦

(angular step of 0.029◦in 2θ ). MonochromaticCuKα1 radiation (λ (CuKα1) = 1.5406
◦
A) radiation

was selected by means of an asymmetrically focusing incident-beam curved quartz monochroma-

tor. The generator power is commonly set to 1.225KW (35kV and 35mA).

The samples are introduced into 0.5-mm-diameter Lindemann glass capillaries in the liquid or in

the solid state at room temperature and are continuously rotated perpendicularly to the X-ray beam

during data collection to improve averaging of the crystallites.

External calibration by means of cubic phase Na2Ca3Al2F14 [61] is performed for channels to be

converted into 2θ -degrees by means of cubic spline fittings. The peak positions were determined

after pseudo-Voigt fitting by using the PEAKOC application from DIFFRACTINEL software [62].

Figure (3.13(a))shows a set of examples of experimental X-Ray profiles as a function of temper-

ature obtained on cooling for Cyanocyclohexane within the temperature range of the OD and OG

phases. The high symmetry of the lattice (face centered cubic) gives rise to patterns in which a

few number of Bragg reflections emerge, in particular for this case, only[111] and[200]. Figure

(3.13(b)) shows the lattice parameter variation as a function of temperature obtained after the X-

ray profiles have been processed according to the procedure previously described. It can be seen
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Figure 3.13: (a) High-resolution X-ray powder diffraction profiles as a function of temperature for the

OD phase and the OG of CNc6 below 240K down to 100 K. Miller indexes [hkl] for the two Bragg peaks

are indicated. (b) Cubic lattice parameter as a function of temperature obtained from the X-ray profile

refinements of CNc6 within the same temperature range as in (a). Dotted lines represent the linear fits for

the OD (blue) and OG (red) lattice parameters.

that the glass transition temperature, from the OD to the OG on cooling, is clearly visible by a

bending of such variation. This finger plot is very characteristic for the glass transitions because it

points out the continuity on the volume variation along the transition, but a clear discontinuity on

the thermal-expansion, as a consequence of the change of the slope above and below the transition

temperature (134K in this case).

3.4.2 Differential Thermal Analysis

Differential Thermal Analysis (DTA) is the most common technique to reveal the thermodynamic

changes as a function of temperature for a given sample. When compared with adiabatic calorime-

try, DTA has the enormous advantage of requiring less time and less material. Through DTA,

samples as small as a few milligrams are scanned at a rate, which is as a rule between 1 and

10Kmin−1. In adiabatic calorimetry, samples have masses that range from 0.5g to some10g, and a

complete experiment easily takes two weeks. Adiabatic calorimetry, on the other hand, is a byword

for accuracy and precision. And not significantly, adiabatic calorimetry is a better guarantee for

thermodynamic equilibrium.

The adjective ‘differential’ expresses the fact that the measured quantity is a difference between

the sample and a reference, both being kept under the same experimental conditions [50]. In the

case of DTA, the measured difference is a difference in temperature between the sample and an

inert reference within the temperature scanned range. This temperature difference is translated to a

difference of “heat flow”, which is the magnitude measured by means of the differential scanning
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Figure 3.14: Typical heat flux against temperature for a thermogram that corresponds to the melting or a

solid-solid (first order) phase transition for a sample.

calorimetry technique.

In the case of organic materials, as all involved in this work, it is desirable to encapsulate the

sample under an inert atmosphere to prevent evaporation, and to avoid sample oxidation. It must

be realized that the material under investigation has a certain vapour pressure, and that the dead

volume of the sample container, as a result, will be saturated with vapour. During a heating exper-

iment, the vapour pressure increases, and it means that there is some uncertainty as to the pressure

exerted on the material at a solid–solid or a solid–liquid transition. Strictly speaking for the case of

containers with no other material than the system to be studied as well as for pure substances, triple

points are measured rather than normal melting points [63-65]. In the majority of cases, the influ-

ence of vapour pressure on solid–solid and solid–liquid transition temperatures can be neglected

as their contribution is less than the experimental uncertainties.

A first order phase transition of a pure substance is an isothermal event, which implies that over

the whole rising edge of the thermogram the temperature of the sample does not change (see fig-

ure 3.14). At the end of the event, the recording signal returns to the baseline in a more or less

exponential manner. At Tf , which is called the final peak temperature, the recording is back at the

baseline. At the ascending edge of the thermogram, Ti, which is called initial peak temperature, is

the temperature at which the recording starts to deviate from the baseline; and To is the so-called

onset temperature. Obviously, the onset temperature is representative of the first order phase tran-

sition temperature of the process. More precisely, instruments are calibrated with pure substances

such that the observed onset temperatures are identified with the melting temperatures of the sub-
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Figure 3.15: Typical thermogram for a glass forming material. The peak corresponds to the melting of

the solid phase, whereas the low-temperature points and the inset (which corresponds to a magnification)

depicts the glass transition after the liquid has been quenched at low temperature.

stances. In this work the melting of Indium has been used as the reference melting temperature

for calibration purposes. This calibration enables also to evaluate the area under the peak of the

thermogram, making allowance for the course of the baseline, and to establish the corresponding

value of the enthalpy change associated with the phase transition.

For a mixed crystalline sample having a certain composition X , the change from solid to liquid

or solid to solid, as a rule, are non-isothermal events. The thermogram of these events will be the

result of a complex interplay between the characteristics of the instrument, the applied heating rate,

the thermodynamic characteristics of the transition and the preparation of the sample. Details are

largely detailed in reference [66].

As far as the glass transition is concerned, it should be taken into account that we are dealing with

a non-equilibrium phase transition, because it involves a non-equilibrium state, the glass state.

It then means that the characteristic thermogram for such a transition strongly depends on the

measurements conditions as well as on the aging in the glass state.

In figure (3.15) we show a typical example for a glass forming material. It concerns the case

of ternidazole. After the melting process, which manifests as an endothermal peak, the liquid is

quenched at low temperature and a subsequent heating makes clear the emergence of the glass

transition between the glass state and the supercooled liquid.

In this work the DTA measurements have been conducted by means of a TA Q100 thermal ana-

lyzer from TA instruments equipped with a RCS low-temperature device which enables to reach

temperatures as low as 183K. Heating and cooling rates within the range of 2 and 10Kmin−1 have
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Figure 3.16: Differential termal analysis thermograms obtained for two mixed crystals, X=0.62 and

X=0.50, of the binary system of (CNadm)X(Cladm)1−X . For the former, only an endothermic peak re-

vealing the melting of the face centered cubic OD phase emerges, whereas, for the latter, an solid-solid

phase transition from low-temperature ordered phase to the OD phase appears in addition to the melting of

the OD phase.

been used. Sample masses between 10 and 25mg have been encapsulated into normal Al pans

from TA or into high-pressure stainless steel pans with Au covers from Perkin-Elmer. The latter

have been used in order to prevent reaction with the container or for compounds with high vapour

pressure. The latter correspond to the case of samples involving adamantane derivatives, for which

the high-temperature of the melting point combined with the high vapour pressure made necessary

the use of such a experimental requirements. Two examples corresponding to mixed crystals of

the cyanoadamantane + chloroadamantane two-component system are displayed in figure (3.16).

It can be seen that for the mixed crystal with a molar fraction of 0.62 of cyanoadamantane only

the melting of the OD phase appears, whereas for the equimolar composition a transition from an

ordered low-temperature phase to the OD is found.
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Chapter 4

Data Analysis

In this chapter we focus on the data analysis procedure used in this work. Three subjects will be

covered. The brief first section is devoted to the basic procedure of dielectric data analysis. We

show the basic procedure for processing dielectric experimental data, in particular to obtain the

relaxation time, as well as the procedure to analyze the temperature dependence of the derived

relaxation time. Some details are given for the developed program (vitreousparameter.nb) which

is supported by means of the Mathemathic platform. A new method for studying the dynamic of

glass forming systems is introduced and the minimization procedure is discussed. The last part

is devoted to the minimization procedure used for the data refinement according to the Mauro’s

equation.

4.1 Dielectric data analysis

4.1.1 Basic procedure

As a characteristic and well known feature of glass forming materials, we observed that dielectric

loss is asymmetrically broadened with respect to the simplest Debye behaviour. This dispersion

can numerically be well accounted as a function of radian frequency, using the empirical formula

given by Havriliak-Negami (HN). Due to the presence of charged impurities, a dc-conductivity has

to be accounted for, so that the total contributions to the dielectric permittivity can be modelated

as a superposition of the general Havriliak Negami part, which accounts for all relaxations regions

denoted by: k = {1,2,3} and a conductivity term [1]. It allows the following equation

ε⋆ (ω) =−i

(

σ0

ε0ω

)N

+
3

∑
k=1

[

∆εk
(

1+(iωτk)
αk
)βk

+ ε∞k

]

(4.1)

For ohmic contacts and no Maxwell-Warner-polarization N = 1 holds, but in the most practical

cases 0.5 < N < 1 is obtained.

The figure (4.1) shows an schematic representation of the equation od the real
(

ε
′
)

and imaginary

78



(

ε
′′
)

parts of equation (4.1). The increase at low frequencies in ε
′′

is due to the conductivity term,

where the slope of the increase is determined by the exponential factor N.
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Figure 4.1: Schematic representation of the real

(black) and imaginary (red) dielectric permittivity

parts of the equation (4.1).

For each relaxation process, the dielectric

strength ∆εk = εsk− ε∞k gives the diference in

ε
′

at very low and infinity frecuencies, being

also proportional to the area below ε
′′

relax-

ation peak. The value ε
′

at infinite frequen-

cies is determined by ε∞. For common val-

ues of the Havriliak Negami shape parameters

α ,β , the maximum of the relaxation peak in ε
′′

is approximately situated at 1/(2πτ). The width

parameter α specifies the slope of the low fre-

quency side whereas −αβ gives the slope of

the high frequency side of the relaxation in ε
′′
.

Each parameter can be estimated by a standard

fitting procedure, which involves a minimiza-

tion process of the following equation

∑
i

Γi

[

ε⋆
exp− ε⋆ (ωi)

]2

⇒ min (4.2)

where Γi is a weigthing factor which can be used to take into consideration the different accuracy

of data measured with different setups, while i counts the experimental points.

4.1.1.1 Evaluation of dielectric spectra

Figure (4.2) shows two examples of the dielectric loss spectra of C8-ol (A) and C7-ol (B) at a given

temperature in their simple cubic OD phases [2]. In addition to the well-pronounced α-relaxation

peaks with a continuous temperature shift (characteristic for the freezing of the molecular dy-

namics), secondary relaxations clearly show up. The combination of the HN function for the

α-relaxation process and Cole-Cole (CC) functions for the secondary processes (β and γ for C8-ol

and γ for C7-ol) provides more than acceptable fits with a very good physical consistency for the

obtained parameters.

The model functions used in this work were fitted to dielectric data by the standard software pack-

age WinFIT, which is especially designed for dielectric and impedance fits [3]. It gives a fast

routine for the optimization of the equation (4.2), allowing an analytical evaluation of dielectric

spectra. The main feature of WinFIT is non linear curve fitting of the measured data in the fre-

quency and time domain. We used it for evaluating the dielectric relaxation function with up to

three terms and a conductivity term. The measured data can be imported in several binary and flex-

ible ASSCII formats, displaying the data and fit function in an online window. A two-dimensional
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Figure 4.2: Double logarithmic representations of the dielectric loss spectra of C8-ol (A) and C7-ol (B) at

two representative temperatures (176 K and 148 K, respectively). Solid lines are fitted curves corresponding

to the sum of a HN and one (B) or two (A) CC functions for the cases of (C7-ol) and (C8-ol), respectivetly.

The dashed lines show the CC parts of the fits for the β -and γ-relaxation processes.

structure is supported, allowing to handle data not only in dependence on frequency, but also on

another independent variable like temperature.

A large number of diagrams and windows options are available. Data and fit functions can be

displayed in several two-dimensional representations as a series of curves, where the graphic of

the measured data can be manipulated intercatively. This includes shifting, deleting and inserting

data points with a mouseclick. Multiplication of whole data curves in a selectable frequency range

and connection of data curves being measured in different frequency ranges is just one mouseclick

away. In order to do a fit, the mean square deviation L of the measured data is optimized. It is

defined by the following equation

L (σ0,N,∆ε,ε∞,τ,α,β ) =
n

∑
i=1

[

ε
′′
(ωi,σ0,N,∆ε,ε∞,τ,α,β )− ε

′′

mes (ωi)
]2

i−1
(4.3)

were ε
′′

mes (ωi) are the measured data points for ε
′′

at circular frequency ω and the sum is taken

over all data points having been measured. As the mean square deviation has more than one local

minimun, WinFIT finds the optimal fit only if the initial paramters (the parameters before the

automatic fit is started) are close enough to the optimal minimun.

Figure (4.3) shows examples of dielectric spectra of C7-ol for two representatives temperatures

below and above the glass tansition temperature Tg. WinFIT also provides the way for processing

datas below Tg .
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Figure 4.3: Double logarithmic representations of dielectric loss spectra of (C7-ol) at two representative

temperatures, below (123 K, blue squares) and above (227 K, green squares) the glass transition temperature

(140 K). The solid line curves are fits corresponding to a sum of a power law to account for the conductivity

and a CC function for the β - relaxation for the spectrum at 123 K, and to a sum of a power law and a

Havriliak-Negami function for the spectrum at 227 K.

4.1.2 The temperature dependence of the relaxation times

Once the relaxation times have been determined with the procedures described in the previous

section, the temperature dependence of the relaxation times can be analysed. In practice two ex-

pressions are commonly used to express the temperature dependence of the primary and secondary

relaxation processes. The first one is the Arrhenius equation, originally introduced to describe

chemical reactions. The second one is the Vogel–Fulcher–Tamman (VFT) equation, introduced

to describe the non-Arrhenius dependence in many glass-forming systems. We have performed a

program working under the Mathemathic framework (vitreousparameter.nb) which allows us the

possibility to estimate the set of parameters for a selected model as well as the fragility index.

4.1.2.1 Arrhenius dependence

The mathematical expression characterizing, the temperature dependence of a chemical reaction

time in terms of an activation energy, was discovered by Arrhenius [4] acording to the law:

τ = τ0 exp

(

∆E

RT

)

(4.4)

where τ0 is a time independent factor, which was related to the average phonon frequency which

is associated only with the high temperature dynamical domain and △E is the activation energy,
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that does not depend on temperature either. The Arrhenius equation describes the temperature

dependence of the relaxation times of a process where a temperature-independent potential barrier

has to be crossed as the case of secondary relaxation processes.

Linearization of this equation shows that an Arrhenius process shows up as a straight line when the

relaxation times are plotted versus the inverse temperature, and the slope of this line is proportional

to the activation energy. Thus, the plane logarithm of the relaxation time – reciprocal of the tem-

perature (the so-called Arrhenius plot) is commonly used to show up the temperature dependence

of the dynamics.

4.1.2.2 VFT equation

The variation of the primary relaxation time with temperature is generally non-Arrhenius. That

is, on cooling, almost always increases faster than predicted by the Arrhenius equation. For ultra-

viscous liquids, it is generally found that △E (T ) increases significantly on cooling. There are no

liquids where△E (T ) decreases [5], which is in itself a striking fact.

The form of the evolution △E (T ) is unknown, so efforts of researchers are being focused on

equations which empirically proved their validity [6-11]. Undoubtedly for the last decades the

most commonly accepted was the Vogel-Fulcher-Tammann (VFT) equation [12-14], which was

introduced as a fitting function for the curved relaxation time behaviour for glass-forming liquids.

Later on it has received some different theoretical explanations, mainly based on free volume and

Adam – Gibbs theories [6].

The VFT equation is usually given in the form

τ = τ0 exp

(

DT0

T −T0

)

(4.5)

where τ0 is the high temperature limit of the relaxation time, D is related to the fragility of the

glass-former and T0 is the Vogel temperature associated with the estimation of the ideal glass

transition temperature.

4.1.2.3 Estimation of the vitreous parameters

Using the temperature relaxation time dependence we can estimate the glass transition temperature

Tg (the temperature at which the dielectric relaxation time reaches 102s) and the fragility index m

(estimated as
∂ log10 τ
∂ (T/Tg)

|Tg
) by the fits of the functions in the Arrhenius plot ( f1000/T = log10 τ

(

1000
T

)

)

and in the Angell plot ( fTg/T = log10 τ
(

T
Tg

)

). We have been developed a mathematic notebook

(vitreousparameter.nb) which gives us the possibility for getting these fitting functions.

The vitreousparameter function allows us to find a least squares fit for a set of relaxation time data

according to a model. The model argument of vitreousparameter must be completely specified by

the symbols in the variables argument and the symbols in the parameters argument as is showed in
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Figure 4.4: The figure shows a squematic representation of the mathematic file notebook

(vitreousparameter.nb) routine. Once the temperature dependence of the relaxation times have been de-

termined, the data is enter to the program which allows us the fit of functions in the Arrhenius ( f1000/T =

log10 τ
(

1000
T

)

) and the Angell ( fTg/T = log10 τ
(

T
Tg

)

) representations. The fragility index m and the glass

tansition temperature Tg are also calculated by the use of (vitreousparameter.nb).

figure (4.4). The variables argument specifies the independent variables represented in the relation

time data. The parameters argument specifies the model parameters for which we would like

estimates. The data argument can be a list of vectors of the independent variables. The estimates

of the model parameters are chosen to minimize a function of merit given by the sum of squared

residuals. The figures (4.5) and (4.6) show example results obtained by the use of this program.

4.1.3 Derivative Analysis

The following equation can be obtained from [15]:

d lnτ

d (1/T)
=

Ha (T )

R
= H

′

a (4.6)

where Ha (T ) is the apparent activation enthalpy and R is the universal gas constant.

As shown in [15] a derivative based analysis of the VFT equation yields:

[

d lnτ

d (1/T)

]−1/2

=

[

Ha (T )

R

]−1/2

=
(

H
′

a

)−1/2

=
[

(DT T0)
−1/2

]

−

[

T0 (DT T0)
−1/2

]

T
= A−

B

T
(4.7)

where a linear regression analysis gives T0 = B/A and DT = 1/AB.
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Figure 4.5: Double logarithmic representations of dielectric loss spectra of CNc6. The curves from left to

rigth correspond to the temperatures 118 to 193 K with a temperature step of 5K. For temperatures below

and above Tg = 134K, two diferent fitiing functions are used. For temperature above Tg the lines show fits to

the data by using the equation (4.1). For temperatures below Tg the lines show fits with the sum of a power

law and a Cole-Cole (CC) function. Both fittings have been performed using the basic procedure described

in the previous section.
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Figure 4.6: Arrhenius (left) and Angell (rigth) plot of the temperature relaxation time data for the case

of (CNc6). The blue and red points in the left figure show the non-Arrhenius and Arrhenius behaviour

respectively. The solid lines show the fitting functions f1000/T and fTg/T which have been obtained using the

mathematic notebook (vitreousparameter.nb).
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The analysis indicated above resembles the transformation introduced by Stickel et al. [16], al-

though the latter did not introduce explicitly the activation enthalpy and solely focused on detect-

ing the dynamical crossover. Following equation (4.7), the domain of validity of the VFT equation

in the plot
(

H
′

a

)−1/2

vs 1/T is directly visualized by a linear dependence. The linear regression

yields optimal values of T0 and coefficient DT . Consequently, they can be substituted into the VFT

equation, reducing the final fit solely to prefactor τ0 [15].

For the “Avramov” equation, a similar linearized, derivative based analysis leads to [17]:

log

[

d lnτ

d (1/T)

]

= logH
′

a = log(CD)+(1−D) logT = A+B logT (4.8)

On the plot logH
′

a vs logT , the linear domain indicates the range of validity of the Avramov

equation. Then the linear regression yields optimal values of coefficients: D = 1−B and C =

10A/(1−B).

Similar reasoning can be used for the DSM model equation, which is giving [17]:

T 2

H
′

a (T )
=

Tc

φ
−

T

φ
= A−BT (4.9)

Experimental data presented in the plot T 2/H
′
a(T ) vs T , should exhibit a linear behaviour in the

domain of validity of the critical like equation. The subsequent linear regression yields the optimal

values of parameters Tc = A/B and φ = 1/B. The final fitting is reduced τ(T ) solely to prefactor

τ0. The analysis via equation (4.10) indicates also the high temperature domain of validity of the

mode-coupling theory (MCT) [8,18]:

τ(T ) = τ0

[

T −T MCT
C

T MCT
C

]−φ
′

(4.10)

where T MCT
C denotes the crossover temperature from the ergodic to the non-ergodic behavior. The

‘critical’ temperature T MCT
C correlates with the dynamical crossover temperature acording to the

MCT.

Similar reasoning as above can be used for Elmatad et al. equation [19], leads to the dependence:

d lnτ

d (1/T)
= H

′

a (T ) =
2J

′
T
′2

0

T
−2J

′
T
′

0 =
B

T
−A (4.11)

On the plot H
′

a (T )vs 1/T , the domain of validity of equation (4.12) is indicated by a linear depen-

dence. Following the linear regression yields the J
′
and T

′

0 parameters.

The form of the equation introduced by Mauro et al. [20] does not allow a similar straightforward

linearization procedure. In fact, the application of the derivative procedure to the Mauro et al.

equation gives rise to the enthalpy function in the form:

85



Relaxation time space (4D)

M
(

M
)M

&

M
)

χ
)

τ'*V
!M

&
DM

)
DM

(
"χ

)

-6'(V
!M

&
DM

)
"

M
&

Enthalpy space (3D)

Figure 4.7: A schematic representation of the figure of merit functions χ2 which defines the cases of a (3D)-

space for the enthalpy energy and a (4D)-space for the relaxation time. The three-dimensional chi-square

space obtained after a derivative transformation of the relaxation time-temperature evolution, defines the

enthalpy space which is called (Ha−3D).

H
′

a (T ) =
d lnτ

d (1/T)
= K

(

1+
C

T

)

exp
C

T
(4.12)

Unlike the previous models, the parameters (K, C ) are not correlated with the slope and the inter-

cept of a linear function, thus both variables being necessarily and simultaneously involved in the

data analysis.

4.1.3.1 3D-Enthalpy space. Relative weighted functions

A common characteristic for all glass forming equations describing the variation of the charac-

teristic relaxation time or viscosity is that they are involving three parameters (u1 = τ0,u2,u3).

Bypassed through the derivative procedure, the numbers of parameters involved are reduced from

three to only two, allowing for all of them an enthalpy model function with two variables

τ (τ0, u1, u2) ⇒
︸︷︷︸

Derivative

Ha (u1, u2) (4.13)

The figure of merit functions χ2 involved in both magnitudes will define for the case of the relax-

ation time a (4D)-space and for the enthalpy energy a (3D)- space. We define the enthalpy space

as the three-dimensional chi-square space, obtained after a derivative transformation of the re-

laxation time- temperature data, which is called (Ha−3D). The relaxation time space(τ−4D) is

defined as the four-dimensional chi-square space with the variables introduced in the temperature

relaxation time evolution τ (T ). In figure (4.7) a schematic representation is showed.
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The derivate analysis has two advantages: (1) the number of parameters involved in the figure

of merit χ2 are reduced from three (u1 = τ0, u2, u3) to only two (u2, u3), because τ0 is bypassed

through the derivative procedure and, (2) the fitting procedure is optimized by means of the change

of the relaxation time space χ2
τ−4D to the enthalpy space χ2

Ha−3D .

This procedure is carried out by performing numerical derivates of τ (T ), so for obtaining a rea-

sonable quality result, the temperature step of the experimental relaxation time data needs to be as

small as possible. This can be solved performing dielectric measurements with the largest possible

number of isotherms corresponding to a temperature step not higher than 2K. On the other hand,

the experimental relaxation time τ (T ) has an experimental error and after performing numerical

derivatives, the standard merit function χ2(defined as the sum-of-squares of the vertical distances

of the data from curve model) can take significantly large values and also increase its error. The

procedure would be limited and the efficiency would also be questionable. How can we resolve

this problem?

Minimization process is most often done by minimizing a standard function of merit χ2. Points

far away from the curve model contribute more to the sum-of-squares whereas points close to the

curve model contribute less. This makes sense when experimental scatter is expected, on average,

to be the same for the whole set of experimental data. In many experimental situations like the

case of numerical derivative data, the average distance (or rather the average absolute value of the

distance) of the points from the curve is expected to be higher when the scatter is higher. The

points with the larger scatter will have much larger sum-of-squares and thus they will dominate

the minimization procedure. Minimizing the sum of the squares of the relative distances restores

equal weighting to all points and a relative weighting method should be selected.

Taking into account this consideration and for comparing the quality of the fittings between the

3D-enthalpy space and the 4D-relaxation time space, we define the figures of merit for each space

as the square average of the relative distance between the experimental data and the enthalpy model

function [21], by means of the following equations:

χ2
Ha3D =

1

N−2

N

∑
i=1

(

1

Hmi

)2

{Hei−Hmi}
2

(4.14)

χ2
τ4D =

1

N−3

N

∑
i=1

(

1

log10 τmi

)2

{log10 τi− log10 τmi}
2

(4.15)

These equations give rise, for the Mauro equation to the next explicit figures of merit in both spaces

χ2
Ha3D (C, K) =

1

N−2

N

∑
i=1



1−

d lnτi

d(1/Ti)

K

(

1+ C
Ti

)

exp
(

C
Ti

)





2

(4.16)
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χ2
τ4D (τ0, C, K) =

1

N−3

N

∑
i=1



1−
log10 τi

log10 τ0 + K
ln(10)Ti

exp
(

C
Ti

)





2

(4.17)

It should be noticed that, for the 3D-enthalpy space, the final fit of τ (T ) requires a final assesment

of the τ0 prefactor.

The equation (4.17) represents a surface χ2
Ha3D = f (C, K) associated to the 3D-enthalpy space,

that is, the mean square deviation is only dependent on two parameters (C, K) and should provide

an easier and more accurate mathematic solution that the one found by means of χ2
τ4D (τ0, C, K),

for wich the minimization is performed on χ2
τ4D, which is a three-parameter dependent function

(τ0, K, C).

4.1.3.2 Minimization process

Consider a set of m-data points {(T1, He (T1)) , ......(Tm, He (Tm))}, where the enthalpy values

He (Ti) are obtained as a numerical derivative of the experimental relaxation time τ (T ). Asso-

ciated with these data, an enthalpy model function can be defined as a derivative of the relaxation

time model τ (T ). This model curve defines a multivariable function Hm (Ti, pk), which in addition

to the temperature axis variable Ti also depends on n-parameter model pk = { p1, p2, ......pn} with

m≥ n (e.g .for the Mauro model pk = {C, K }). It is desired to find the vector of parameters which

minimize a function of merit defined as the sum of the residuals squares between the experimental

enthalpy data (obtained from a derivative procedure) and a model enthalpy function.

The estimates of the model parameters are chosen to minimize a function of merit given by the

sum of weighted squared residuals. The optimization method that has been used in this work is

iterative, so starting values are required for the parameter search. Careful choice of starting values

may be necessary as the parameter estimates may represent a local minimum in the function of

merit. As we discussed in the previous paragraph, we can define the following objective function

χ2
3DW (p) =

1

m−n

m

∑
i=1

1

Hm (Ti, pk)
2
{He (Ti)−Hm (Ti, pk)}

2
(4.18)

The minimum value of equation (4.18) occurs when the gradient of χ2
3DW (p) with respect to the

parameters is zero. Since the model contains n -parameters there are n- gradient equations. The

task is to find a parameter vector which minimizes the equation (4.18). This can be expressed by:

∂ χ2
3DW (p)

∂ pk

= 0 (4.19)

This results in a set of n-non linear equations given by:

m

∑
i=1

He(Ti)
∂Hm (Ti, pk)

∂ pk

=

m

∑
i=1

Hm (Ti, pk)
∂Hm (Ti, pk)

∂ pk

(4.20)
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In a non-linear system, the derivatives are functions of both the independent variable and the pa-

rameters, so these gradient equations do not have a closed solution. Instead, initial values must

be chosen for the parameters. Then, the parameters are refined iteratively, that is, the values are

obtained by successive approximations.

In order to calculate the local minima, we used the Gauss procedure routine [22], where at each

iteration the model is linearized by approximation to a first-order Taylor series expansion about

the starting parameter constant value p0, and Hm (Ti, p0) is expanded in to n−dimensional Taylor

series. It allows the following equation:

m

∑
i=1

He(Ti)
∂Hm (Ti, p0)

∂ pk

=

m

∑
i=1

(

n

∑
j=1

∂Hm (Ti, p0)

∂ p j

△p j

)

∂Hm (Ti, p0)

∂ pk

(4.21)

The above relationship can be rearranged to the normal equations forming a nxn system of linear

equations, which are defined by the following transformation as:

m

∑
i=1

He(Ti)
∂Hm (Ti, p0)

∂ pk

=

n

∑
j=1

(

m

∑
i=1

∂Hm (Ti, p0)

∂ p j

∂Hm (Ti, p0)

∂ pk

)

△p j (4.22)

If we define a parameter constant vector b and an iterative matrix A as follows

bk =

m

∑
i=1

He(Ti)
∂Hm (Ti, p0)

∂ pk

(4.23)

A0
k j =

m

∑
i=1

∂Hm (Ti, p0)

∂ p j

∂Hm (Ti, p0)

∂ pk

(4.24)

the normal equation become in the following matricial equation:

A(p0)⋆△p = b(p0) (4.25)

where △p is a parameter constant vector with the parameter changing as element with respect to

p0, and the iterative parameter will be calculated as:

p(n+1) = pn +
[

A0
k j (pn)

−1
]

⋆b(pn) (4.26)

For obtaining the optimal values of pk, an iterative calculus routine has been developed. The

final parameter p f , has been calculated by n-iterations, starting at the constant parameter value p0

until a convergence to the final parameter p f , where the chi-square function of merit reaches an

asymptotic constant value around its absolute minimum.

The second-order partial derivatives of the chi-square function of merit describes the local curva-

ture of the function and contains the characteristics of the local extremes. For many variables, this

can be tested by the determinant of its Hessian matrix [23], which is defined as a square matrix of

its second-order partial derivatives. For the above chi-square function of merit, the Hessian matrix
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is defined by a nxn matrix given as:

Hess

(

χ2
3DW

)

=































∂ 2(χ2
3DW)

∂ 2 p1

∂ 2(χ2
3DW)

∂ p1∂ p2
. . . .

∂ 2(χ2
3DW)

∂ p1∂ pn

∂ 2(χ2
3DW)

∂ p2∂ p1

∂ 2(χ2
3DW)

∂ 2 p2
. . . .

∂ 2(χ2
3DW)

∂ p2∂ pn

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .
∂ 2(χ2

3DW)
∂ pn∂ p1

∂ 2(χ2
3DW)

∂ pn∂ p2
. . . .

∂ 2(χ2
3DW)

∂ 2 pn































(4.27)

For all iterations, the determinant of the Hessian matrix has been calculated as the product of their

eigenvalues. If it is positive, it means that pk correspond with a chi-square local minimum. Its sign

gives a criteria for accepting o refusing the characteristics of a local extreme.

For the case of the 3D-enthalpy space, the above minimization procedure is reduced to a particular

quadratic case, where the above relationships can be rearranged to the normal equations forming

a (2x2) system of linear equations. For each glass forming system, pk will be defined as a two-

dimensional parameter constant vector which will be written as:

pk = { p1, p2}=











































{DT , T0} : V FT

{D, C} : Avramov

{Tc, φ} : MCT and DSM

{J, T0} : Elmatad

{C, K} : Mauro

(4.28)

For the Mauro equation, the parameter vector bk and the iterative matrix Ak j define a bidimensional

and a cuadratic matrix, which are reduced to the following particular equations:

b
0(Model)
k

=

{

m

∑
i=1

He(Ti)
∂Hm (Ti, p0)

∂ p1
,

m

∑
i=1

He(Ti)
∂Hm (Ti, p0)

∂ p2

}

(4.29)

A
0(Model)

k j =











m

∑
i=1

(

∂Hm (Ti, p0)

∂ p1

)2 m

∑
i=1

∂Hm (Ti, p0)

∂ p1

∂Hm (Ti, p0)

∂ p2

m

∑
i=1

∂Hm (Ti, p0)

∂ p2

∂Hm (Ti, p0)

∂ p1

m

∑
i=1

(

∂Hm (Ti, p0)

∂ p2

)2











(4.30)

In the same way, for the 3D-enthalpy space the Hessian matrix of the chi-square function of merit

will be reduced to a quadratic matrix, given rise to:
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H
(Model)
ess

(

χ2
3DW (p0)

)

=









∂ 2
(

χ2
3DW (p0)

)

∂ 2 p1

∂ 2
(

χ2
3DW (p0)

)

∂ p1∂ p2
.

∂ 2
(

χ2
3DW (p0)

)

∂ p2∂ p1

∂ 2
(

χ2
3DW (p0)

)

∂ 2 p2









(4.31)

In addition to the above Gauss procedure the Newton method [24] is supported. In the Newton

method the objetive function of merit is expanded into a n-dimensional Taylor series up to the sec-

ond order. For the case of models involving an exponential function, the normal equation matrix

Ak j contains second order derivatives and the calculation effort is higher and then the fitting pro-

cedure is more sensitive to numerical inestabilities. The use of the Gauss method for minimizing

glass forming model functions can be a good alternative solution.

4.1.4 Minimization process for the Mauro equation

The application of the derivative procedure to the Mauro et al. equation gives rise to the enthalpy

function in the form:

Hm (T,C,K) = K

(

1+
C

T

)

exp
C

T
(4.32)

The partial derivatives at a starting point p0 will be written as the following relationship:

∂Hm (T, p0)

∂ pk

=







K0

T

(

2+ C0

T

)

exp
(

C0

T

)

: k = 1
(

1+ C0

T

)

exp
(

C0

T

)

: k = 2
(4.33)

If we substitute (4.33) in the relationships (4.23), (4.24) and (4.27), the magnitudes that define the

method of minimization such as the parameter vector bk, the iterative matrix Ak j and the Hessian

matrix Hess of the chis-quare function of merit χ2
3DW , can be calculated. For all iterative parameters

pn, the local minimum condition of the Mauro hypersurface, must be verified. This condition is

satisfied if the determinant sign of the Hessian matrix evaluated in each parameter is positive. On

the other hand, the experimental data τ (T ) obtained for a particular material will allow getting the

experimental enthalpy He (T ).

In order to carry out the minimization process of the Mauro equation, the following tasks must

be performed:

• Transform the experimental data of τ (T ) to He (T ), by means of the derivative procedure

• Select a starting parameter p0 = {C0, K0} around the miniminum region of the Mauro hiper-

surface χ2
Ha3D (C, K)

• Calculate the vector b0
k and the matrix A

0(Mauro)

k j
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• Perform the iterations p(n+1) = pn +
[

Ak j (pn)
−1

]

⋆b(pn) from the starting parameter p0 to

a final parameter p f where the Mauro hypersurface χ2
Ha3D

(

p f

)

will converge to an absolute

minimum value.

• Test the minimium condition

4.1.4.1 Example result

An example result of the minimization analysis is showed in figure (4.8). The analysis is based

on a set of data of the liquid crystal 8*OCB, where the temperature relaxation time evolution

τ (T ) is calculated from the measurements of a set of isotherms of the dielectric permittivity loss

curve ε
′′
( f ). The measurements were done in a temperature range from [200K−400K] with an

experimental temperature step of 2K, allowing 184 isotherms.

Figure (4.8) shows the analysis results of the minimization procedure. The left graph shows the

temperature evolution of He (T ) obtained through the derivative procedure of the relaxation time

data τ (T ) which is showed in the inset graph as an Arrhenius representation. The starting param-

eter p0 is estimated from the Mauro hypersurface χ2
Ha3D (C, K) dysplayed in the right graph of

figure (4.9) which also shows the projection of the χ2
Ha3D (C, K) hypersurface as a function of K

and C parameters of the Mauro equation.

The right figure shows the sequence of iterations which is carried out by the use of the above

minimization procedure. After 15 iterations, a convergent asymptotic value of χ2
Ha3D (C, K) is

obtained, giving the following transformation.

p0 = {C0 = 45, K0 = 1105} ⇒
︸︷︷︸

Iterative task

p f = {C = 48.35, K = 1108.17} (4.34)

The final parameter vector p f will provide us the optimal values of the independent Mauro con-

stants C and K, which minimize χ2
Ha3D (C, K). These values will be useful for testing the domain

of validity of the Mauro equation which should appear as a linear curve.

To make the linearization process of the equation (4.12) similar to the previous equations, the plot

of ln
[

Ha/(1+C
T )
]

vs 1/T should appear as a linear curve for the domain of validity of the Mauro

equation, as it clearly follows rewritting equation (4.32) as:

ln

[

Ha

1+ C
T

]

= lnK +
C

T
(4.35)

which involves in the left side of the equation not only the enthalpy values derived from the exper-

imental data but also the parameter C obtained for the above minimization process.

Figure (4.9) shows the result of the linearization representation for 8*OCB. The experimental en-

thalpy values are rescaled by the constant C which is correlated with K. Both constants are obtained

by the above iterative minimization process. A linear curve for this kind of material appears for
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Figure 4.8: The experimental enthalpy values He obtained through the derivative procedure for the case of

8*OCB is shown on the left graph. The right figure shows the projection of the hypersurface χ2
Ha3D (C, K)

as a function of K and C parameters of the Mauro equation for 8*OCB. The values of the minimum found

from 3D−enthalpy space minimization procedure, fall in to the smooth and soft valley of the minimal region

of χ2. The red denotes the minimum values of χ2
Ha3D. On the right and left upper corners, the corresponding

3D-space
(

C, K, χ2
)

and the convergence iterations graph are shown, respectively.

almost the whole temperature domain (small deviations are observed at low temperature), which

reinforces the validity of the Mauro equation in this case.

Unlike the previous models, the parameters (K, C) are not correlated with the slope and the inter-

cept of a linear function, thus both variables being necessarily and simultaneously involved in the

data analysis. It is clear that minimization procedure within the enthalpy 3D-space is required for

the Mauro equation.

4.1.4.2 Error comparison

The above figures of merit χ2 were defined by the numerical experimental enthalpy He and the

enthalpy model function Hm [21]. Both kinds of enthalpy will have an intrinsic absolute error

contribution which will appear from the experiment ∆He and for the model ∆Hm, giving rise to an

absolute error contribution to the figure of merit χ2. These contributions can be estimated by the

calculus of their differential function

∆χ2
3D (p) ⋍ dχ2

3D (T, p) =
∂ χ2

3D (T, p)

∂He (T )
△He (T )+

∂ χ2
3D (T, p)

∂Hm (T, p)
△Hm (T, p) (4.36)

The error source which corresponds to the enthalpy model Hm can be estimated by the same way,

and thus it can be written as:
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thalpy space based on equation. (4.36) (continuous line). The domain of its validity should follow a linear

dependence.

dHm (T, C, K) =

{(

1+
C

T

)

exp

(

C

T

)}

△K +

{

K

T

(

2+
C

T

)

exp

(

C

T

)}

△C (4.37)

where T is the temperature and △C and △K are the absolute errors of the determined Mauro

constants.

On the other hand, the relaxation time τ , obtained by the dielectric experiment, has an error contri-

bution △τ (s), which through the derivative procedure, will provide us the experimental enthalpy

error source△He. Taking into accout the equation (4.36) the absolute error can be estimated by:

dHe (T ) =
∂He (T )

∂T
∆T =

∂
(

d ln(τ(s))/d( 1
T )
)

∂T
∆T ⋍ 2

T

τ (s)
△τ (s) (4.38)

The above equations give us a way to calculate the contributions of experimental error and those

that will appear as a result of numerical derivative. Both sources of errors will have an important

role in the absolute error of the function of merit which is used to solve this problem.

To what extent will be affected a standard χ2
3D (defining the standard function as the sum-of-

squares of the vertical distances between the experimental enthalpy data and the enthalpy curve

model) and a relative weighted function of merit χ2
3DW (defined as the equation (4.18)) for such

error contributions? Will the consideration of introducing a relative weighted function minimize

the error problem?
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Figure 4.10: Temperature dependencies of the absolute and local relative errors functions for the case of

8*OCB. The blue and red colours denote the cases of the standard χ2
3D and the case of a weighted χ2

3DW

function of merit.

The substitution of the equations (4.38) and (4.37) in (4.36) allows a way for estimating the abso-

lute error of both figures of merit, which will be defined by the following equations:

• For a weighted function

dχ2
3DW (p) =

2

m−2

m

∑
i=1

f3DW (Ti, p) (4.39)

f3DW (T, p) =

{

He (T )

Hm (T, p)
−1

}

{

△He (T )Hm (T, p)−△Hm (T, p)He (T )

Hm (T, p)2

}

(4.40)

• For a standard function

dχ2
3D (p) =

2

m−2

m

∑
i=1

f3D (Ti, p) (4.41)

f3D (T, p) = {He (T, p)−Hm (T )}{△He (T, p)−△Hm (T )} (4.42)

where the functions f3D (T ) and f3DW (T ) may be defined as local functions of temperature, and

its average value will give us the absolute errors of the function of merit.

Large or small values of these functions do not provide a complete answer for testing which of

both would be less affected by the error sources instead, we need to know how big or small the

absolute errors compared to both function of merit are. The comparison of their relative errors will

allow us to select the most optimal function for the minimization process. Taking into account the

above equations we can define their local relative errors as:

95



• For a weighted function

e
(i)
3DW (T, p) =

f3DW (T, p)
(

He(T )
Hm(T, p) −1

)2
=
△Hm (T, p)He (T )−△He (T )Hm (T, p)

Hm (T, p)He (T )−Hm (T, p)2
(4.43)

• For a standard function

e
(i)
3D(T, p) =

f3D (T, p)

(He (T )−Hm (T, p))2
=
△He (T )−△Hm (T, p)

He (T )−Hm (T, p)
(4.44)

The above absolute and relative error equations depend on the evolution of the relaxation time

with temperature, which is obtained from the experiment for each material. In order to implement

a quantitative comparison, the calculation of the above equations have been performed for the

case of 8*OCB. Figure (4.10) shows the results of the comparison which optimize both functions

of merit. The graphs show the temperature dependences of the local functions which define the

absolute and relative errors respectively.

By using the experimental data of the 8*OCB material, we can conclude that, for the case of the

use of a standard function of merit, the absolute and the relative errors will take values much higher

than for the case of a weighted function. This procedure has been also tested for all materials dealt

with in this work. This results in the conclusion that the use of a relative weighted function of

merit minimizes the sources of errors and that the use of a relative weihgted function will be more

advantageous to implement minimization processes.
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Chapter 5

Results and discussion

In this chapter we focus on the principal results obtained in this work. We present the results

divided in two topics. In the first section we present the results concerning to the dynamic of

the pure compounds and mixed crystals formed between cycloheptanol (C7-ol) and cyclooctanol

(C8-ol) as well as the α-relaxation dynamics of cyanoadamtane (CNadm) and its mixtures with

chloroadamantane (Cladm). In the second part the results are showed in two groups (linearized

and non-linearized models). The application of the derivative based, distortion-sensitive analysis

to LCs and ODICs materials are presented. The possible empirical correlations between the lin-

earized model with the universal pattern for the high frequency wing of the loss curve for primary

relaxation time for LCs and ODICs are also presented. In the last part we show the application of

the minimization procedure previously discussed in Chapter 4 to 30 glass forming systems. The

evidences of the existence of crossovers as well as a quantitative description are discussed. A new

procedure for detecting the crossover in a very easy way is showed.

5.1 Dynamics in binary systems.

5.1.1 Binary system C8-ol-C7-ol

The dynamics of the pure compounds and mixed crystals formed between C7-ol and C8-ol have

been studied by means of broadband dielectric spectroscopy at temperatures near and above the

orientational glass transition temperature. Dielectric loss spectra in the orientationally disordered

simple cubic phase are presented. We have performed a detailed analysis of the dielectric loss

spectra showing clear evidence of the relaxation processes for the orientational glass-former pure

compounds.

The results focus on the issue of the appearance of the secondary relaxations for the OD

(C7−ol)1−x (C8−ol)x mixed crystals and try to make clear if they are concomitant with those

found for pure components or, on the contrary, a change of the effects of many-molecule dynam-

ics and intermolecular coupling or a change in the hydrogen bonding scheme can induce their
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Figure 5.1: Arrhenius plots of the dielectric relaxation times of pure components (C8-ol, (A); C7-ol, (B) for

the α- (circles), β - (squares) and γ- (diamonds) relaxation processes. α-relaxation times for the different

phases are denoted by colors: blue, liquid phase; green, phase I, and magenta for phase II of C7-ol.

disappearance, as claimed for the β -relaxation in a preceding work [1].

5.1.1.1 Dynamics of OD phases of pure compounds

Figure (5.1) shows the relaxation times for the different processes vs. reciprocal of temperature

(Arrhenius plot). As for the α-relaxation, and with the exception of the liquid phases, it clearly

exhibits distinct non-Arrhenius behavior and thus the empirical Vogel-Fulcher-Tammann (VFT)

function was used [2]. This function can be written as:

τ = τ0 exp

[

DT0

T −T0

]

(5.1)

where τ0 is a prefactor of the order of the molecular vibrations, T0 is the temperature associated

with the estimation of the ideal glass transition and D (strength parameter) is a measure of the

fragility for the given temperature domain. Within the frame of the strong-fragile classification by

Angell [3] the high values of D classify the OGs obtained from phases I of C8-ol and C7-ol as

strong glasses (see Table 5.1). It should be noted the relaxation times for phases I are not available

for the whole temperature range, due to the irreversible transition to phases II for both cases, as

previously stated in previous works [4-7].

As far as the β -relaxation of C8-ol is concerned, it is worth noting that the characteristic time dif-

ference from the α process increases upon decreasing temperature, enabling the β -relaxation times

to be unambiguously determined in the low temperature range. On the contrary, the γ-relaxation

times for both C8-ol and C7-ol glass formers are quite enough far away from the preceding (α and

β ) processes. For all the secondary processes the relaxation times against temperature follow an

Arrhenius law as evidenced in Figure (5.1). The fitted parameters are summarized in Table ( 5.2).
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5.1.1.2 Dynamics of OD phase I of mixed crystals

It has been reported that C7-ol and C8-ol mixtures form continuous simple cubic (sc) OD mixed

crystals (C7−ol)1−x (C8−ol)x for the whole composition range [8]. The OD phase for such

mixed crystals does not transform into a crystalline phase at low temperatures and thus OGs are

easily obtained on cooling. Figure (5.2) displays the melting phase diagram together with the

variation of the glass transition temperature as a function of the mole fraction [8]. Recently, the

dynamics of the OD mixed crystals was analyzed for a set of concentrations, nicely reinforcing the

isomorphic relationship between the OD phase I of pure components [1].
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Figure 5.2: Equilibrium melting phase diagram

(L+OD(I)) (empty circles) and orientational glass

transition temperatures obtained from X-ray diffrac-

tion [8](full circles) and from dielectric spectroscopy

(empty triangles).

The number of dynamics studies on OD

phases is relatively limited due to experimental

problems in finding systems which give easily

rise to glass formers (OGs) avoiding the irre-

versible transition to the low-temperature more

ordered phase, as it has been shown for C8-

ol and C7-ol OD phases I [9,10]. Fortunately,

this inconvenience does not appear for the OD

mixed crystals phase I sharing C8-ol and C7-ol

for the whole composition range, owing to the

isomorphism relationship between that phase

of pure components and the appearance of the

OG state. Thermodynamic and structural prop-

erties of the mixed crystals were previously

studied with detail [8]

Figure (5.3) depicts the α-relaxation times

as a function of the reciprocal of temperature

for the whole set of studied mixed crystals to-

gether with those of pure compounds for the sc OD phase I. It clearly evidences the continuous

change of the relaxation time as a function of the mole fraction, supporting the conjecture that

isomorphism between phases I of C7-ol and C8-ol involves also the dynamic behavior.

The relaxation times obtained for the different processes as a function of temperature and for the

set of studied mixed crystals are plotted in figure (5.4). It should be noted that the non-Arrhenius

behavior for the α-relaxation and the Arrhenius behavior for the β - and γ-relaxations exhibited by

the pure compounds remain for the mixed crystals.

5.1.1.3 Disentangling the β -relaxation

The evidence of the secondary relaxations strongly depends on the mole fraction and on the tem-

perature domain. As far as the γ-relaxation, it clearly appears for the whole temperature range
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Figure 5.3: α-relaxation time as a function of the reciprocal of temperature for the C7-ol and C8-ol pure

compounds and mixed crystals. Dotted lines correspond to the VFT fits according to equation (5.1). Inset

displays the fragility index as a function of the mole fraction.
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Figure 5.4: Arrhenius plot of the β - (full symbols) and γ- (empty symbols) relaxation times as a function

of the inverse of temperature for the set of analyzed mixed crystals (mole fraction is given as a subindex for

each relaxation process and symbols are as in Figure (5.3)). The α-relaxation times are given only for pure

components as a guide for the eyes C8-ol, blue continuous line, and C7-ol, green continuous line).
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Figure 5.5: Function of merit obtained from the fits of dielectric loss spectra for x = 0.61(A) and x = 0.86(B)

by assuming the existence of one (αγ) or two (αβγ) secondary relaxations in addition to the primary α-

relaxation. Insets display an example in the low-temperature domain for each composition.

(within the ubiquitous limit of the available frequency domain). Nevertheless, β -relaxation could

be disentangled only for mole fractions with x≥ 0.74, while for smaller mole fractions the applied

fitting procedure gave better results for the whole temperature range when only two processes(α

and γ) instead of three (α ,β and γ) were hypothesized.

For (C7−ol)1−x (C8−ol)xOD mixed crystals the dielectric loss spectra were fitted by assuming

the existence of the ubiquitous α-relaxation process (at T > Tg) and one or two secondary processes

in order to disentangle their existence by means of the function of merit χ2
r defined as:

χ2
r =

1

n−m

n

∑
i=1

(

Y
exp
i −Y mod

i

)2

(5.2)

where n is the number of experimental points, Y
exp
i are the experimental values, Y mod

i are the values

obtained by the fitted model, m is the number of fitted parameters and thus, n−m is the number of

degrees of freedom.

Figure (5.5) displays the results for x = 0.61 (A) and x = 0.86 (B). For the low-temperature range

of the mixed crystal with x = 0.61 the data analysis reveals that the introduction of an additional

third relaxation process is completely fictitious and thus that only α- and γ-relaxation processes

are present. On the contrary, for mixed crystals with x ≥ 0.74 the presence of the three relaxation

processes clearly improves the description of the experimental data.

5.1.1.4 Discussion

The results of Figure (5.3) would imply that the dynamics of the α-relaxation (meanly dominated

by the hydrogen-bonded scheme) continuously changes from x = 0 (C7-ol) to x = 1 (C8-ol) without

a noticeable change of the fragility (see inset in Figure (5.3)). As a consequence, the secondary
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Table 5.1: Characteristic parameters of the α-relaxation process according to the VFT fits.

X T
0
  / K D ]/log[ s

o

τ  m  T
g
  / K  

0 68±2 36±1 -(12.49±0.76)  28±2 140±1 
0.26 65±2 47±2 -(13.80±0.97)  27±1 148±2 
0.43 66±1 44±2 -(13.32±0.87)  28±2 149±2 
0.61 57±2 68±2 -(15.04±0.94)  27±1 157±2 
0.74 70±2 51±1 -(14.64±0.73)  29±2 162±2 
0.86 73±2 50±2 -(14.95±0.89)  30±1 167±1 
0.91 72±1 51±2 -(15.67±0.82)  31±1 166±1 
1 58±2 77±2 -(16.14±0.82)  28±1 165±2 

 

relaxations coming from the change of the dipole orientation due to the set of active conformations

in pure components should also appear in mixed crystals. Figure (5.4) displays the relaxation time

for the β and γ secondary relaxations. As for the β -relaxation times as a function of the mole

fraction (for the range they could be determined, 0.74≤ x ≤ 1) it can be seen from the figure that

whatever the mole fraction relaxation times for a given temperature are very close to that of pure

C8-ol. It is worth noting that β -relaxation was attributed to the ring conformations of C8-ol and,

according to the results here obtained it clearly appears that relaxation time is almost the same for

the molecular mixed crystals (till x ≈ 0.74). Such a result reinforces the intramolecular character

of this relaxation process [4,7].

As far as the γ-relaxation is concerned, assigned to the –OH axial and equatorial conformations

(thus intrinsically related to the hydrogen-bond scheme), clearly shifts to higher frequencies with

decreasing mole fraction at a given temperature. This process shows up for all the mole fractions

(see figure (5.5)) rather clearly shifting to higher frequencies with increasing temperature as a

thermally activated process (figure (5.4)). Nevertheless, it should be notice that, although the α-

relaxation for C7-ol is faster than for C8-ol (see figure (5.4)), for high mole fractions of C8-ol

(X = 0.91, 0.86) the dynamics of the γ process is slightly slower than for pure compound C8-ol,

while for mole fractions lower than x = 0.86 γ-relaxation times fall into those corresponding to

the pure components at a given temperature. We have not, at present, a clear explanation for such

a detail, but it is obvious that such an effect should come from a special molecular short-range

order in the hydrogen-bond map for this composition range and not from a possible confusion with

the β -relaxation process, which for such a composition domain is clearly seen as an intermediate

dynamical process between the mean α-relaxation and the fastest γ-relaxation. Table (5.2) gathers

the experimental parameters of the thermally activated secondaries processes.
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Table 5.2: Experimental parameters of the thermally activated (τ = τ0 exp [Ea/RT ] ) β - and γ-relaxation

processes. aValues from [7].

 
             β-relaxation                                          γ -relaxation 

X 
eVE

a

/

exp  ]/log[ s
o

τ  
eVE

a

/

exp  )log( ∞τ  
0   0.32±0.06 -(17.07±0.24)  

0.26   0.28±0.05 -(15.72±0.17)  
0.43   0.26±0.09 -(14.96±0.21)  
0.61   0.36±0.07 -(17.24±0.34)  
0.74 0.55±0.08 -(19.74±0.73)  0.37±0.08 -(16.26±0.39)  
0.86 0.50±0.07 -(16.49±0.69)  0.45±0.04 -(15.54±0.33)  
0.91 0.48±0.08 -(16.09±0.48)  0.46±0.05 -(16.79±0.26)  
1 0.47±0.07 

(0.51)a 
-(15.84±0.22)  
(-16.74)a 

0.47±0.02 
(0.47)a  

-(18.09±0.616)  
(-18.5)a 

 

Results confirm those reported in earlier reports for the primary α- and intramolecular in nature

secondary β - and γ- relaxations for C8-ol and α- and γ- relaxations for C7-ol [1,7,11-13]. Thus,

for mixed crystals, in addition to the inherent primary α-relaxation due to the freezing in the

orientational disorder, it has been possible to disentangle the secondary relaxations.

5.1.2 Binary system CNadm-Cladm

The α-relaxation dynamics of cyanoadamantane (CNadm) and its mixtures with chloroadaman-

tane (Cladm) has been studied by means of broadband dielectric spectroscopy. The existence

of orientationally disordered (OD) face centered cubic mixed crystals (Cladm)1−x (CNadm)x for

0.5≤ x≤ 1 has been put in evidence by thermodynamics and structural analyses.

5.1.2.1 Dynamic of OD phases of Pure compounds

Figure (5.6) shows the dielectric loss spectra of CNadm for various selected temperatures on cool-

ing from room temperature obtained in this work. For all the studied temperatures, a single peak

is observed, although the half-width clearly exceeds the monodispersive Debye relaxation process.

Since the loss peaks of the α-relaxation of the dielectric permittivity also exhibits an asymmetric

broadening they were fitted according to the empirical Havriliak-Negami equation. For temper-

atures lower that 235K, the dielectric strength diminishes due to the onset of an antiferroelectric

arrangement of molecular dipoles as we will see through the analysis of the Kirkwood factor. As

for the latter, it has been recently argued that the glass transition for CNadm is strongly related with

the freezing of fluctuations of an antiferroelectric local ordering which gives rise to a diminution

of the permittivity strength at temperatures on approaching the glass transition, an effect that was

already postulated in the pioneering work of Amoreux et. al. [16].
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Figure 5.6: Double logarithmic representation of selected dielectric loss spectra of CNadm from 293K

to 173K (measurements were performed every 5K, but we show only one over two for clarity). The lines

show the fits using the HN function for the α-relaxation processes. Inset shows the molecular structure on

CNadm.

5.1.2.2 Dynamics of mixed crystals

In order to analyze the influence on the dynamics of the molecular substitution in the CNadm OD

lattice of similar dipolar molecules Cladm, OD mixed crystals between both compounds have been

studied.

The formation of OD mixed crystals (solid solutions of substitutional type) was studied in the

concentration range 0.5 ≤ x ≤ 1 and controlled by means differential thermal analysis and high-

resolution X-ray powder diffraction. As for the former, for compositions with mole fraction higher

than 0.5, only one melting peak was found, which means that the OD phase of the mixed crystals

does not transform to a more ordered structure.

OD mixed crystals were also characterised by means of dielectric spectroscopy. Selected di-

electric loss spectra corresponding to the (Cladm)0.38 (CNadm)0.62 mixed crystal are presented in

figure (5.7), showing the α-relaxation process. Neither the pure CNadm compound nor the mix-

tures present an excess wing or a secondary peak in the frequency and temperature range of interest

for this work.

Due to the cooperative character of the α-relaxation process, there is no doubt that molecules of

both types participate together into the same α-relaxation process. Thus, an unique Havriliak-

Negami equation was used to account for the dielectric losses. From that, the relaxation time of

the maximum of the loss peak for each composition as a function of temperature was obtained:

they are plotted in the Arrhenius diagram of Figure (5.8). A first and overall inspection of Figure
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Figure 5.7: Double logarithmic representation of selected dielectric loss spectra of

(Cladm)0.38 (CNadm)0.62 mixed crystal in the OD fcc phase at various temperatures. Solid curves are

the HN fitting function. The dielectric loss at T = 198K is shown for the whole frequency range to highlight

the existence of an excess wing.

(5.8) seems to indicate that for mole fractions higher than 0.5, at a given temperature, the dynamics

is slowed down when molecules of CNadm are substituted by those of Cladm, i.e. with decreasing

the mole fraction x of CNadm. This is, at least, a very surprising phenomenon when dynamics of

pure compounds is recalled, because for the OD phase of Cladm dynamics concerning the overall

molecular tumbling is several orders of magnitude faster than that of the CNadm at the same

temperature [17].

5.1.2.3 Shape paramters

The Havriliak-Negami shape parameters αHN and βHN of the α-relaxation have been determined

from the fit of HN function. As far as βHN parameter is concerned, it is almost temperature in-

dependent but strongly dependent on composition of the mixed crystal. Such a behavior can be

directly seen of figure (5.9), in which the values of the product (αHNβHN) are represented in the

abscise axis. Approaching the glass transition temperature, the common feature of many glass-

forming materials, i.e. a decrease of the shape parameters with temperature, is found, indicating

the strong deviation from the Debye behavior commonly attributed to the increase of temporal and

spatial heterogeneities.

Experimental dielectric spectra, obtained in the frequency domain, were transformed to the time

domain by means of the use of the connection between dielectric permittivity and relaxation func-

tion via the Laplace transformation and βKWW stretched parameter was directly fitted for each

temperature and mole fraction. Figure (5.9) shows the relationship between such a fit parameter
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Figure 5.8: Arrhenius plot of the -relaxation time versus inverse temperature for the pure compound CNA

(black circles) and various (Cladm)1−x (CNadm)x mixed crystals, X=0.80 (red diamonds), X=0.69 (green

squares), X=0.62 (violet triangles) and X=0.5 (pink inverted triangles). Values for Cladm (blue circles)

were calculated according to the data provided by Amoureux et. al. [17].
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Figure 5.10: Kirkwood factor as a function of temperature for several mole fractions (symbols as in Figure

5.8). Values for Cladm (blue circles) were obtained from Amoureux et al.[17]. The inset shows the relative

deviation from the calculation of g used in the main plot from the values obtained according two other

procedures described in references [26] and [27](Color online).

and those obtained from the fits of the HN equation. It is evidenced that the proposed relation

for structural glasses from Alegria et al. [15] (dashed line in Figure (5.9)) perfectly works for the

whole temperature and composition studied range.

5.1.2.4 Kirkwood factor

The existence of miscibility in the OD fcc phase evidenced by thermal and X-ray powder diffrac-

tion measurements, has enabled us to determine the volume of the cubic unit-cell and thus, the

density as a function of the temperature and of the mole fraction.

Figure (5.10) shows the variation of the Kirkwood g factor as a function of temperature for pure

compounds and several mixed crystals in the OD fcc phase. As far as the effective dipole moment

of the molecular entity, it has been calculated for the mixtures following the procedure of the

molecular volume for the packing coefficient, i.e., as a linear combination of the square dipole

moment for the pure compounds with the mole fraction [23]. It is noteworthy to point out that if

calculation of effective µ2 is performed according to the other methods, like for instance weighting

the square dipoles by volume fractions or by mass fractions [24,25] the trends are exactly the same

and only an small shift, with a discrepancy less than 10%, on the Kirkwood factor is observed

[26,27].
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It should be noticed that g values for CNadm are slightly different from those previously pub-

lished [28] probably because those authors kept the density constant (1.13gcm−3) for the whole

temperature domain in their calculations.

For the analyzed pure compounds and mixed crystals, three straightforward results from the g

factor are evidenced: (i) it is always smaller than unit; (ii) it decreases with increasing the mole

fraction of CNadm and (iii) it increases with temperature. As for the first experimental finding, it

means that short-range correlations orient dipole entities in a strong antiferroelectric order. As for

the second, the results coherently support the fact that the packing coefficient (see figure (5.11))

increases with the mole fraction of CNadm giving then rise to an increase of the steric hindrance

of the molecular reorientation.  
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Figure 5.11: Packing coefficient of the OD fcc

(Cladm)1−x (CNadm)x mixed crystals as a function

of the mole fraction at several temperatures: 178K

(circles), 233K (triangles) and 288K (squares). Lines

are guides for the eyes.

And, as for the last, it simply makes evident

the increase of thermal expansion with temper-

ature yielding to a softening of the thermal vi-

brations going along with a small increase of

the εs. Nevertheless, it should be mentioned

that the stair-like behavior of g for some mix-

tures is a direct consequence of the changes of

the permittivity strength as a function of tem-

perature (see figure (5.7)). This effect points

out a rapid development on cooling of a local

arrangement of molecular dipoles that should

be attributed to a strong increase of the anti-

ferroelectric order at temperatures higher than

the corresponding glass transition temperature,

in good agreement with what recently found in

pure CNadm [29].

5.1.2.5 Discussion

The dynamics of the relaxation process corresponding to the molecular tumbling of molecules in

the fcc lattice of the pure compound CNadm and the OD mixed crystals (Cladm)1−x (CNadm)x

for 0.5≤ x≤ 1 has been studied through dielectric spectroscopy.

The non-exponential character evidenced by the broadening of the α-relaxation peak and charac-

terized by the βKWW stretched parameter with the diminution of the mole fraction is caused by

the heterogeneities produced by the concentration fluctuations which are the consequence of a

statistic (chemical) disorder and not induced by dynamic correlations. This result shows that local

hetero-geneities generated by the compositional disorder controls the broadening of the structural

relaxation process, a result which is similar to that previously found for structural glasses [21].”

To enhance such a conclusion, Fig. 5.12 shows the overlap of several spectra under different condi-
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Figure 5.12: Normalized dielectric spectra for some selected common values of relaxation time

log10 τ = −1(a), reduced temperature Tg/T=0.85 (b), and density of 1.18gcm−3 (c) for the mixed crystals

(Cladm)1−x (CNadm)x.
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tions, equal relaxation time, equal distance to the glass transition temperature and equal density, in

such a way the conclusion about the broadening is reinforced because there is not other reason that

the composition disorder to account for the broadening (see Fig. 5.9 for the stretched exponent) of

the relaxation peak.

This result shows that local heterogeneities generated by the compositional disorder control the

relaxation process, a result which is similar to that previously found for structural glasses [21].

Local concentration fluctuations can broaden the loss peaks well above than what expected for a

variation of intermolecular interactions.

For the mixed crystal (Cladm)0.38 (CNadm)0.62 the distribution of the relaxation times appears

to be sharper when compared to the observed general behavior of mixed crystals. Although it is

difficult to establish a physical reason for such a result, it is clear that some kind of special short-

range order appears for this composition making the dynamic behavior closer to that of CNadm

pure compound as far as the distribution of the relaxation times is concerned

Finally, the results concerning the variation of the Kirkwood factor evidence a strong antiferro-

electric order of molecular entities, which increases with the mole fraction of CNadm and with

the decreasing of temperature. In addition, for all the compositions higher than 0.5 and even

for CNadm pure compound, a stair-like diminution is observed between 220− 240K as a conse-

quence of the reinforcement of an antiferroelectric ordering. Such a change comes from an abrupt

diminution of the dielectric strength together with a continuous variation of density as a function

of temperature.

5.2 Derivative analysis

The application of the derivative procedure to the glass formig systems allows us the introduc-

tion of an enthalpy function Ha (u1 ,u2) that for the case of VFT (u1 = DT ,u2 = T0), Avramov

(u1 = C ,u2 = D), Elmatad (u1 = JT ,u2 = T0) and DSM (u1 = Tc ,u2 = φ) equations, containts

constants paramters related to the slope and intercept of a linear function. For such a reason, we

call those models describing the relaxation time as linearized models. As previously discussed, the

Mauro equation allows us the introduction of an enthalpy function. The parameters of the Mauro

equation (u1 = K ,u2 = C) are not directly linked to those of a linear function, and therefore it is

not possible to find, by means a derivative procedure, the associated linear function.

We present the results divided in two groups (linearized and non-linearized models). The first

section focus on the linearized models, where the application of the derivative based, distortion-

sensitive analysis to LCs and ODICs, materials are presented. In this section we also discussed the

results concerning to the cases of the olygomeric liquid epoxy resin (EPON828), neopentylalcohol

(NPA) and neopentylglycol (NPG) mixture(NPA0.7NPG0.3), isooctylcyanobiphenyl (8*OCB) and

Propylene Carbonate (PC). In the second part we show the possibel empirical correlations between

one the lienarized model with the universal pattern for the high frequency wing of the loss curve
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Figure 5.13: Derivative-based analysis of the temperature variation of the dielectric relaxation according

to equation (5.3), displaying the crossover between two distinct ranges of validity of the VFT model for

cyclooctanol (a), cyanoadamantane (b), (Cladm)0.38 (CNadm)0.62mixed crystal (c) and cyanocyclohexane

(d).

for primary relaxation time for LCs and ODICs. In the last part we show the application of the

minimization procedure (see chapter 4) to 30 glass forming systems. The evidences of the existence

of crossovers as well as a quantitative description are discussed. Whe show also a new procedure

for detecting the crossover in a very easy way. A new kind of crossovers which seems to be

impossible to be detected by the Stickel transformation are showed.

5.2.1 Linearized models

5.2.1.1 VFT description

The derivative based analysis of the VFT equation yields:

(Ha)
1
2 =

[

d lnτ

d (1/T)

]−1/2

=
[

(DT T0)
−1/2

]

−

[

T0 (DT T0)
−1/2

]

T
= A−

B

T
(5.3)

where a linear regression analysis gives T0 = B/A and DT = 1/AB.

Following equation (5.3), a clear linear dependence of (Ha)
−1/2

and 1/T emerges, indicating then

the domain of validity of the VFT equation. Then the linear regression yields optimal value of T0

and coefficients DT . Consequently, they can be substituted into the VFT equation, reducing the

final fit solely to prefactor [31].

Figure (5.13) shows the linearized distortion-sensitive analysis applied to several Plastic Crystals.
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Figure 5.14: VFT focused linearized distortion-sensitive analysis in the apparent activation enthalpy plane.

VFT1 and VFT2 fits (continuous lines) are for subsequent dynamical domains. Stars are for NPANPG,

triangles for 8*OCB, circles for EPON 828 and squares for PC .

Table 5.3: VFT description parameters obtained from the analysis in Fig (5.13) via eq. (5.3). Values of the

prefactor are from the VFT fit with mentioned parameters.

Materials T
0 
(K) 

VFT1/VFT2 
D

T 

VFT1/VFT2 
log

10
[ττττ

0
 (s)] 

VFT1/VFT2 
NPANPG 134.0/70 5.0/41 -9.70/-14.12 
8*OCB 188.2/239.9 5.6/2.4 -11.42/-11.04 
EPON 828 -/232.7 -/3.3 -/-12.04 
Prop. Carbonate 132.2/134.5 6.9/5.9 -13.73/-13.21 
 

Two temperature dynamical domains are identified, which evidences the existence of two VFT

regimes separated by a dynamical crossover temperature TB.

The slope of the [Ha]
−1/2

decreases on decreasing temperature when crossing TB, in addition with

an increase of the Vogel temperature T0 (except for cyclooctanol). According to equation (5.3) it

means that the fragility strength parameter decreases for the following dynamical domain when

approaching the glass transition temperature Tg. The latter feature is opposite to the one usually

observed in supercooled liquids as it was already stated in previous studies of OD phases [32,33].

It is noteworthy that this is the first time that the previous findings obtained for an OD phase of

a mixed crystal [32] are generalized for a variety of OD phases displayed by pure compounds or

mixed crystals and regardless of the existence of hydrogen bonds.

Figure (5.14) shows results of the linearized analysis focused on the validity of the VFT equation.
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Figure 5.15: Derivative-based analysis of the temperature variation of the dielectric relaxation according

to the equation (5.4). The analysis have been performed for various OD phases of pure compounds and

mixed crystals.

There are two dynamical domains associated with different values of T0 and DT . All parameters

are collected in Table (5.3). For molecular liquids the values of the subsequent dynamical domains

decrease on shifting from the high-temperature to the low-temperature. For the case of the plas-

tic mixed crystal(NPANPG) the opposite behavior occurs. It resembles the one observed for the

isotropic phase of liquid crystals, where it was linked to the presence of prenematic fluctuations in

the fluidlike surrounding. Prefactors ranges from ∼ 10−10 to 10−14s.

5.2.1.2 DSM and MCT description

Similar reasoning previously described can be used for the critical like DSM or MCT equations

giving [34]:

T 2

d lnτ
d(1/T)

=
Tc

φ
−

T

φ
= A−BT (5.4)

Experimental data presented in the plot T 2/Ha(T ) vs T , should exhibit a linear behaviour in the

domain of validity of the critical like equation [35]. The subsequent linear regression yields the

optimal values of parameters Tc = A/B and φ = 1/B. The final fitting is reduced solely to prefactor

τ0. The analysis via equation (5.4) indicates also the domain of validity of the mode-coupling

theory (MCT) behaviour in the high temperature domain [36-38].

As far as the validity of the single critical-like equation, the unequivocal validity of the dynamical

scaling model is demonstrated by means of the linearized derivative analysis. The results lighted

up by equation (5.4) are shown in figure (5.14) which displays T 2/Ha(T ) as a function of temperature
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Figure 5.16: The linearized distortions-sensitive analysis focused on the validity of “DSM” (low-

temperature domain) and “MCT” (high-temperature domain) critical like descriptions. Compounds and

symbols are as in Figure (5.14)

Table 5.4: “Critical-like” equation related parameters obtained from the analysis in Fig. (5.16) via eq.

(5.4). Values of the prefactor are from the DSM and MCT fit with mentioned parameters.

Material T
C
  (K) 

DSM/MCT 
Power exponent 
DSM/MCT 

log
10
[ττττ
0
 (s)] 

DSM/MCT 
NPANPG 150.0/248 9.2/3.72 -8.91/-11.23 
8*OCB 212/258 8.9/3.65 -10.92/-10.31 

EPON 828 -/290 -/2.96 -* /-11.23 
Prop. Carbonate 151/178 11.8 / 3.31 -13.44 /-11.15 

 
for the set of pure compounds and mixed crystals studied. It is worth noticed that the critical-like

behavior of the DSM model proposed by Colby is described with an exponent very close to the

universal value (φ = 9), except for cyclooctanol (φ ≈ 14) regardless the molecular composition

and the presence of an hydrogen bonded scenario. These results for OD phases giving rise to

orientational glasses indicate the possible significance of the existence of a translational order

for the emergence of dynamical scaling model predictions. In addition, the results evidence the

validity of the DSM for OD phases regardless of the possible existence of heterogeneities due to

concentration fluctuations for mixed crystals.

The possibility of using critical-like parameterizations for another kind of materials is shown in

figure (5.16). Also in this case the linear regression analysis can yield values of relevant parame-

ters, collected in Table (5.4). Noteworthy is the superiority of the DSM–type behavior for ODIC

and LC compound. For propylene carbonate (PC) such behavior can be noted only approximately,
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Figure 5.17: “Avramov” equation focused linearized distortion-sensitive analysis in the apparent activa-

tion enthalpy plane. Av1 and Av2 domains are for subsequent dynamical domains. Compounds and symbols

are as in Figure (5.14).

Table 5.5: “Avramov” equation related parameters obtained from the analysis in Figure (5.17) via equation

(5.5). Values of the prefactor are from the Avramov fit with mentioned parameters.

Material D 
Av1/Av2 

C 
Av1/Av2 

log
10
[ττττ

0
 (s)] 

Av1/Av2 
NPANPG 1.02/9.7 7445/4.7·1022 -18.51/-7.33 
8*OCB 4.2/7.05 1.35·1011/8.25·1017 -9.97/-8.81 

EPON 828 4.5/10.7 1.60·1012/1.22·1027 -11.15/-9.20 
Prop. Carbonate 5.3/7.7 1.10·1013/1.82·1018 -10.55/-9.95 

 
close to Tg. In each case a clear manifestation of the MCT related critical-like behavior in the high

temperature domain appears.

5.2.1.3 Avramov description

For the “Avramov” equation, a similar linearized, derivative based analysis leads to :

log

[

d lnτ

d (1/T)

]

= log [Ha] = log(CD)+(1−D) logT = A+B logT (5.5)

On the plot logHa vs logT , the linear domain indicates the range of validity of the Avramov

equation. Then the linear regression yields optimal values of coefficients: D = 1−B and C =

10A/(1−B).

The possibility of using “Avramov” equation for portraying τ (T ) behavior is shown via linear
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Figure 5.18: Elmatad et al. [39] equation focused linearized distortions-sensitive analysis in the apparent

activation enthalpy space. The domain of its validity should follow a linear dependence.Compounds and

symbols are as in Figure (5.14).

Table 5.6: Elmatad et al. [39] equation related parameters obtained from the analysis in Fig.(5.18) via eq.

(5.6). Values of the prefactor are from the Elmatad fit with mentioned parameters.

Material '

0

/TJ  0

T   (K) log
10
[ττττ

0
 (s)] 

NPANPG 16.1 180.0 -1.74 
8*OCB 15.3 256 -4.16 

EPON 828 13.9 309 -7.26 
Prop. Carbonate 10.27 202 -7.22 

 
domains in Figure (5.17). Noteworthy is the clear manifestation of two dynamical domains do

not reported for such parameterization so far. For NPANPG plastic crystal two linear domains are

indicated although this assumption is valid only within the limit of the experimental error. Values

of parameters, obtained via linear regression of equation (5.5) are given in Table (5.5). Noteworthy

is the fact that prefactors are significantly smaller than for the VFT equation.

5.2.1.4 Elmatad description

Similar reasoning as above can be used for Elmatad et al. equation [39], leads to the dependence:

Ha =
d lnτ

d (1/T)
=

2J
′
T
′2
0

T
−2J

′
T
′

0 =
B

T
−A (5.6)
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Figure 5.19: Results of fitting experimental data via Elmatad et. al.[39] equation with sets of parameters

from Table (5.6).Compounds and symbols are as in Figure (5.14).

At the plot Ha (T )vs 1/T , the domain of validity of Elmatad equation is indicated by a linear depen-

dence. Following the linear regression yields the J
′
and T

′

0 parameters.

The distortions-sensitive linearized analysis for the equation (5.6) is presented in figure (5.18).

Parameters obtained from the linear regression analysis are given in Table (5.6). Figure (5.18)

reveals a limited validity of such description, hardly visible in the direct plot τ (T ) shown in Figure

(5.19).

5.2.1.5 Discussion

To resolve the puzzling situation for portraying the upsurge of dynamic properties on approaching

the glass temperature the analysis of leading equations was presented. It has been carried out by

the use of the derivate analysis of the the apparent enthalpy Ha = d lnτ (T )/d (1/T) which reduces

the number of fitted parameters and to reveal subtle distortions from the given equation. This way

of analysis also yields optimal values of leading parameters, reducing the final fitting of τ (T ) data

solely to prefactors τ0. The analysis showed that for two VFT equations are needed to describe

τ (T ) in the broader range of temperatures. In agreement with earlier reports we found a superior

validity of the critical-like description in the ultraviscous/ultraslowing domain for the liquid crys-

talline glass formers and the orientationally disordered crystals. In particular, as clearly indicated

in Figs. 5.15 and 5.16, the Dynamical Scaling Model [35] perfectly describes the low-temperature

domain, while the Mode Coupling Theory [38] is able to account for the high-temperature domain.

Then, both critical-like models seem to account for the dynamics of glass formers. The linearized

analysis revealed a limited validity of the equation recently proposed by Elmatad et al [39], hardly

visible at the τ (T ) plot. Nevertheless, we would like to stress that at present one model describing

all the features of glass forming systems does not exist.
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Figure 5.20: Double logarithmic representations of dielectric loss spectra log10 ε
′′
as function of frequency

of cycloheptanol (C7-ol) ODIC phase from 146 to 168 K each 2 K. Inset shows the derivative of the loss

spectra as a function of frequency for the same temperatures [43].

5.2.2 Universal pattern

Recently Nielsen et al [40] demonstrated an experimental evidence for the prevalence of universal
√

t time decay, or equivalently f−
1/2 in frequency relaxation, of the distribution of relaxation times

in glass forming liquids on approaching the glass temperature Tg. In fact this issue was first pointed

out a decade ago for the high frequency wing of dielectric loss curves ε
′′
( f ) that obeys the time-

temperature superposition (TTS) [41]. However, it was shown by means of the analysis of 53 low

molecular liquids that the correlation with TTS is not obligatory [40].

These results mean that a clear quantitative universal pattern for the distribution of relaxation times

was identified in the immediate vicinity of the glass transition point in supercooled liquids

Neither LC nor ODIC glass formers were considered in [40-42] for searching the possible universal

pattern of the distribution of relaxation times, namely:

ε
′′
( f )T→Tg

∝ f−n→−1/2 (5.7)

where f > f α
peak, ε

′′
( f ) is for dielectric loss curve and τ = 1/2πfpeak.

We will show here that a similar universality occurs for glass forming liquid crystals and orien-

tationally disordered crystals (ODIC), although some differences concerning the universal values

appear. Empirical correlations of the found behaviour are also briefly discussed.

Figure (5.20) shows the example of the plot log10 ε
′′
vslog10 f , for dielectric loss curves in cyclo-

heptanol ODIC phase. The inset presents results of the derivative based analysis of the distribution

of relaxation times d log10 ε
′′
/d log10 f vs log10 f . The minimal values on the plots in the inset

show the slope at the point of bending for log10 ε
′′
vs log10 f curve. In this way all slopes related
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Figure 5.21: The minimal values obtained from the derivative at the point of bending for log10 ε
′′
vs log10 f

vs. curve for several ODICs and 8*OCB LC. The compounds presented in the figure are: C8: C8-ol Cyclooc-

tanol; C7: C7-ol Cycloheptanol, and their mixed ODIC crystals C7C8(0.71): (C7−ol)0.29 (C8−ol)0.71;

C7C8(0.43): (C7−ol)0.57 (C8−ol)0.43; C7C8(0.26): (C7−ol)0.74 (C8−ol)0.26 [43]; CNC6: Cyanocyclo-

hexane [44]; ; Neopentylalcohol and Neopentylglycol mixed crystals, NPANPG(0.30): (NPA)0.70 (NPG)0.30
and NPANPG(0.48): (NPA)0.52 (NPG)0.48 [45].

to equation (5.7) were determined. Following this way of analysis, results recalling equation (5.7)

are shown in figure (5.21) for ODIC and for an LC. To get the minimal slope at the glass transi-

tion temperature Tg, the values of n as a function of temperature were linearly extrapolated at Tg

temperature.

5.2.2.1 Empirical correlations

Figure (5.22) shows that small deviation from the above pattern occurring for ODICs can be cor-

related with the discrepancy from the liniearized equation DSM with exponent φ ≈ 9. The values

were taken from previous analyses under the DSM framework. One may speculate that this be-

haviour may be associated with the fact that vitrification occurs slightly different for orientationally

disordered phases, due to steric hindrances or intermolecular interactions.

The observed behaviour can also be linked with the fragility changes. First, Alvarez et al. [46]
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Figure 5.23: Correlation between the minimal slope n at the glass transition temperature and fragility for

ODIC systems. Symbols as in Figure (5.21). The inset displays the same correlation extended for some

canonical glass formers (black squares). The data were obtained by combining the values obtained from

references [30], [49], [51], [52] and [53].
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proposed a link between the Havriliak-Negami [47, 48] distribution power exponents (αHN,βHN)

and the KWW stretched exponent βKWW , namely: βKWW = (αHN,βHN)
1/1.23

. Recalling the well

known fact that αHN,βHN =−n then βKWW = (−n)
1/1.23

. Böhmer et al. [49] found an empirical re-

lation linking βKWW and fragility coefficient m=d log10 τ/d log10 (Tg/T), namely: m = m0−sβKWW ,

where m0 = 250 and s = 320. This relation and the linearity emerging from Figure (5.22), yield:

m = m0− sβKWW = m0− s(−n)
1/1.23 ≈ m0− s′ (φ)

1/1.23
(5.8)

It would then mean that fragility and the slope of the dielectric loss spectra of the α-relaxation

at f > f α
peak should be correlated m0− s(−n)

1/1.23
. Figure (5.22) shows up the correlation m =

295− 387(−n)
1/1.23

for ODIC. The correlation can be extended for other glass formers (see inset

in figure (5.23)), the reciprocal of the obtained experimental slope is (ca. 365) very close to the

value proposed by Böhmer et al.[49].

Concluding, the clear quantitative universality for the distribution of relaxation times is present not

only for organic vitrifying liquids but also for glass forming experimental model systems, namely

rod like liquid crystalline glass formers and for orientationally disordered crystals. In addition,

it seems that this universality is linked to that proposed from the dynamical scaling model and,

subsequently, this fact reinforces the Böhmer correlation between fragility and the βKWW exponent.

5.2.3 Non-Linearized models

5.2.3.1 Mininimization procedure of the Mauro equation

The form of the equation introduced by Mauro et al. [54] does not allow a similar straightforward

linearization procedure. In fact, the application of the derivative procedure to the Mauro et al.

equation gives rise to the enthalpy function in the form:

Ha (T ) =
d lnτ

d (1/T)
= K

(

1+
C

T

)

exp
C

T
(5.9)

Unlike the previous models, the parameters (K, C ) are not correlated with the slope and the inter-

cept of a linear function, thus both variables being necessarily and simultaneously involved in the

data analysis.

The estimates of the model parameters are chosen to minimize a function of merit given by the

sum of weighted squared residuals [55], which, for the Mauro equation it can be written as:

χ2
Ha3D (C, K) =

1

N−2

N

∑
i=1



1−

d lnτi

d(1/Ti)

K

(

1+ C
Ti

)

exp
(

C
Ti

)





2

(5.10)

The optimization method that has been used in this work is iterative, so starting values are required

for the parameter search. As we have discussed in the Chapter 4, careful choice of starting values
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is necessary as the parameter estimates may represent a local minimum in the function of merit.

To make the linearization process of the equation (5.9) similar to the previous equations, the plot

of ln
[

Ha/(1+C
T )

]

vs 1/T should appear as a linear curve for the domain of validity of the Mauro

equation, as it clearly follows rewritting equation (5.9) as:

ln

[

Ha

1+ C
T

]

= lnK +
C

T
(5.11)

The above equation involves in their left side not only the enthalpy values derived from the exper-

imental data, it also involves the parameter C which is obtained from the minimization process.

Table (5.7) list the values of the minimization results for the 30 liquids studied, where the relaxation

time data τ (T ) were taken from [56-77]. For all liquids reported in Table (5.7), the Mauro constant

C and K represent a local minimum in the function of merit χ2
Ha3D = f (C, K) associated to the

3D-enthalpy space, which are obtained by the procedure dicussed in the Chapter 4. For the 3D-

enthalpy space, the final fit of τ (T ) requires a final assesment of the τ0 prefactor, which are also

reported in Table (5.7).

5.2.3.2 Complementary dielectric datas

The following experimental dielectric relaxation time datas τ (T ) have been used in this work for

testing the minimization procedure of the Mauro equation. The systems are presented following

the same order showed in the tables added at the end of the chapter. The short-name of the systems

used in this work follows the international scientific common nomenclature:

bisphenol (EPON828) [56], epoxy resins, poly[(phenyl glycidyl ether)-co-formaldehyde] (PPGE)

[56], o-terphenyl (OTP) [57], Kresolphtalein-di-methylether (KDE) [58], Propylene carbonate

(PC) [59], phenylsalicylate (salol) [60], Diethylphthalate(DEP) [61], 2-methyltetrahydrofuran

(MTHF) [62], different mixtures (42,54 and 62%) of polychlorinatedbiphenyl (PCB42, PCB54,

PCB62) [63], polystyrene with molecular weight 540k (PS540k) [64], Glycerol [65], propyleneg-

lycol (PG) [65], dipropyleneglycol (2PG) [65], Dibutylphthalate (DBP) [66], two different datas of

tripropyleneglycol (3PG) which are tripropylene glycol (3PG)a [67], and (3PG)b [68], Ethanol

[69], Xylitol [70], Diclorodiflurometano(freon12) [71], four different datas of polyvinylacetate

(PVac) obtained from different authors (PVac)a [72], (PVac)b [73], (PVac)d [74], (PVac)f [75],

isooctylcyanobiphenyl (8*OCB) [76], phenylbenzene (E7) [34], cycloheptanol(C7-ol) and cy-

clooctanol (C8-ol) mixture (C8−ol)0.74(c7−ol)0.26 [43], Neopentylalcohol (NPA) and Neopentyl-

glycol (NPG) mixed crystals: (NPA)0.70 (NPG)0.30 [32], isopentylcyanobiphenyl (5*CB) [77]. The

datas were taken from earlier authors’ studies.

124



 

"/""$" "/""$! "/""'" "/""'! "/""%"
(

&

#

)

 "

  

*

*

*E>"**,0;,6A..

 !"#$$%

 !"##&'

 !"((#'

)*
+,

-
.+

(
/

!
.0

11

(.0

02"3&#4
(a)

 

#$& #5& 3#& 3%& $&&
&

#

$

%

5

(&

(b)#534

3($4

 

 

6
!
.7

"
+8

9
:

+;
!

.0
1.

4
1(

&
$

0<4=

3&#4

Figure 5.24: Both figure show quantitative examples of the evidence of dynamical crossovers in the Mauro

equation. Figure (a) shows the plot ln
[

Ha/(1+C
T )

]

vs 1/T for the case of EPON828 for different values of C

parameter. Two temperature domains can be detected by a slope change at the crossover temperature (Tc)

which does not depends of the C constant values. Figure (b) shows the plot of the configurational entropy

rescaled by B as a function of the temperature for the cases EPON828(red), OTP(green) and PPGE(blue).

A configurational entropy jump appear at the crossover temperature (Tc).

5.2.3.3 Evidence of the existence of crossover in the Mauro equation

Figure (5.24a) shows the plot ln
[

Ha/(1+C
T )

]

vs 1/T for the case of EPON828. As it is showed,

two temperature domains can be detected by a slope change at temperature (Tc) which signs a

dynamic change. It gives an evidence of the existence of a possible dynamic crossover in the

Mauro equation. The graph also gives us another surprisingly conclusion. From the graph (5.24a)

we can conclude that the crossover temperatue (Tc) does not depend of the C constant values. It

means that independently of any selected minimization procedure the possible dynamic crossover

can be detected by a slope change in one simple plot of ln [Ha]vs 1/T .

On the other hand, following the energy landscape analysis of Naumis [78] and the temperature-

dependent constraint model of Gupta et al. [79], as weell as the assumption of a simple two-state

system in which the network constraints are either intact or broken, Mauro et. al. [54] gives an

equation for calculating the configurational entropy Sc of the system, which is written as:

Sc (T ) =
B

K
exp

(

−
C

T

)

(5.12)

where K and C are the Mauro constants and B is an effective activation barrier, which is typically

left as a fitting parameter.

Figure (5.24b) shows the plot of the configurational entropy rescaled by B as a function of the
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Figure 5.25: Figure (a) and (b) show representative examples of the crossovers (up and down). It has been

plotted for the cases of MTHFL and KDE respectivetly.

temperature for the cases EPON, PPG and OTP. The different set of crossovers constant values C

and K were taken from Table (5.8) and were calculated by the previously discussed minimization

procedure. A configurational normalized entropy jump appear at the crossover temperature (Tc),

which gives us another way to represent the evidence of the existence of dynamical crossover in

the Mauro equation.

The possible dynamic crossovers in all liquids under study were tested. We found two different

kinds of crossovers. One group of liquids where the slope in the graph ln
[

Ha/(1+C
T )

]

vs 1/T increases

on cooling toward Tc (crossover up) as well as another group of liquids where the slope of the

graph decreases (crossover down). Figure (5.24a) and (5.24b) show representative examples of this

crossover which has been plotted for the cases of MTHFL and KDE respectivetly. How different

are these crossovers as compared with the crossovers detected by the Stickel procedure [30]? Can

these crossovers be correlate with some dynamic relevance magnitude?

5.2.3.4 Dynamic correlations

For most glass-forming liquids, a single fragility parameter at Tg is sufficient to describe equilib-

rium dynamics across the full range of temperatures. However, certain glass formers [80] require

two different fragility parameters to reflect the changing fragility of those liquids in different tem-

perature regimes. On cooling toward Tg, the temperature dependence of the α-relaxation time

will change from Arrhenius high temperature to a pronounced non-Arrhenius behaviour at lower

temperature, yielding the so called fragile-to strong (F−S) liquid transition, which was first dis-

covered in water by Ito et al.[81].
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Figure 5.26: The figure yields examples for 6 liquids under study. It shows the dynamical crossovers

estimated by the Mauro (upper panel) and the VFT equation(botton panel). The temperature crossover

values are aproximately the same. The change of the slope in (upper panel) is not always unique like the

VFT representation. For the cases of PC and MTHFL we found a new slope changes which is impossibel to

detect by the Stickel transformation. It would be related with the characteristic of the liquid transition.

This transition can be quantified by the change of the fragility parameter m. Taking in to account

the definition of the fragility [82-85] as well as the relaxation time temperature dependece τ (T ) of

the Mauro model, the index fragility m for this case will be written as the following equation1:

m =
K

ln(10)Tg

(

1+
C

Tg

)

exp

(

C

Tg

)

(5.13)

where K and C are the Mauro constants and Tg is the standard glass transition temperature.

In this work, for the Mauro equation, we quantified the extent of the (S−F) transition performing

two steps of data analysis around the temperature crossovers Tc. In the first step, the parameters

K1 and C1 are obtained by the enthalpy space analysis procedure in the high temperature domain

(T > Tc) from which the fragility parameter m1 is calculated using equation (5.13). The parameter

m1 quantifies the fragility of the supercooled liquids far from Tg. In the second step, for the low-

temperature domain (Tg < T < Tc), the parameters K2 and C2 are obtained by the same procedure

allowings us another set of parameters, from which the fragility parameter m2 is also obtained by

equation (5.13). The parameter m2 quantifies the fragility of the liquids near to Tg.

For a liquid without (S−F) or (F−S) transitions, m1 and m2 have the same value. However, for

a liquid with a (S−F) transition m1 < m2 and for the case of (F − S) transition, m1 > m2. We

quantified the difference in fragility around the crossover temperature Tc by the ratio m1/m2 which

1The fragility equation published by Zhang et al.[80] was resported in a wrong way without the term ln(10)
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Figure 5.27: Plots of TV FT (Tg) and Tc (Tg). Except the cases of the 5*CB and 8*OCB, we can conclude

that all liquids under study surprisingly follow a good linear correlation.

we define as the fragility transition factor f as :

f =
m1

m2
=

{

0 < f < 1 (S−F)

f > 1 (F−S)
(5.14)

We propose this factor as a quantitative measure for characterizing the glass behaviour around

the crossovers. The larger the factor f , the larger is the extent of the(F − S) transition during

heating the liquid from Tg. A ratio of fragility was previously introduced by Chang et al.[87] by

the fragility parameter defined around the equilibrium temperature Tliq on cooling metallic glass-

forming liquids. They did not report any crossover in their equation, so their fragility transition

factor takes values always larger than the unity and thus reporting only materials with (F − S)

transitions. Our way for detecting the dynamical crossover gives rise to distinguish liquids with

both transitions (F−S) and (S−F) which are impossible to detect by Stikel analysis [30].

Table (5.8) lists the constant values log10 τ0, K, C ,Tg and m, of the liquids under study. These

parameters were calculated for both temperature domains above and below Tc. The Tg values were

obtained by the numerical solution of Mauro equation at 100s. Table (5.9) list the values of the

crossover temperature Tc, the experimental glass transition temperature Tg, the ratio Tc/Tg, the

relative difference of Tc with respect to TV FT as well as the transition factor f for all of the liquids

under study. The crossover temperature TV FT is calculated by the liniarized derivative analysis of

the VFT equation.

For all liquids under studied the results reported in Table (5.9) show that there is not big difference

between the crossover temperature values of the VFT and the Mauro equation, but this relative

difference can be positive o negative. The Figure (5.26) shows results for six liquids. It shows
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Figure 5.28: Plot of the relative temperature crossover difference vs the fragilty transition factor. Values

of f smaller or larger than f = 1 will define two system domains. For the cases of PPGE, MTHFL, DBP,

the fragility transition factor f < 1 and their relative temperature crossover difference take negative values.

For PG the fragility transition factor gets values f > 1 and its relative temperature crossover difference is

positive.

the dynamical crossovers calculated by the Mauro and the VFT equation. The crossovers are very

close, but the change of the slope in our crossover representation is not always unique like the VFT

representation. For the cases of PC and MTHFL we obtain a different slope changes that it would

be related with the characteristic liquid transitions. Both temperature crossovers can be correlated

with the experimental glass transition temperature.

Figure (5.27) shows the plots of TV FT (Tg) and Tc (Tg). Except the cases of the 5*CB and 8*OCB,

we can conclude that all liquids under study surprisingly follows a good linear correlation. It can

give us a practice and easy way for estimating the crossovers when the experimental glass transition

temperature of the liquid under study is previously known.

Figure (5.28) gives us another surprisingly correlation. Although, for all liquids under study the

relative temperature crossover difference is very small, it will be correlate with the fragility tran-

sition factor f as it is showed. Liquids with fragility transition factors f < 1 (S−F) will have a

temperature crossover Tc farther to Tg that in the case of VFT crossover temperature. Liquids with

fragility transition factors f > 1(F−S) have a crossover TV FT farther to Tg that in the case of the

Mauro crossover. We found four execptions, for the cases of PPGE, MTHFL, DBP, the fragility

transition factor f < 1 and for PG it gets values f > 1.
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Table 5.7: Values of the minimization results for the liquids under study. The Mauro constants C and K

represent a local minimum of the function of merit χ2
Ha3D = f (C, K) associated to the 3D-enthalpy space,

which are obtained by the procedure dicussed in the Chapter 4. For the 3D-enthalpy space, the final fit of

τ (T ) requires a final assesment of the τ0 prefactor, which are also reported in the table.

Materials 

010
log τ  K[1/K] C[1/K] 

EPON[56] -12.39 856.6 229 

PPGE[56] -2.01 7.13 1809.5 

OTP[57] -13.07 70.49 1160.59 

KDE[58] -11.13 83.34 1489.49 

PC[59] -10.72 9.90 960.94 

Salol[60] -11.23 23.38 1230.42 

DEP[61] -11.99 132.93 679.93 

MTH[62 -11.53 15.09 475.04 

PCB42[63] -12.35 150.09 855.94 

PCB54[63] -11.74 116.14 1040 

PCB62[63] -14.06 498.59 797.81 

PS540k[64] -11.83 17.36 1526.2 

Glycerol[65] -12.15 934.87 371.49 

PG[65] -11.32 632.85 374.53 

2PG[65] -9.82 155.17 684.92 

DBP[66] -8.86 42.31 848.32 

3PGa[67] -10.79 63.54 862.76 

3PGb[68] -9.93 27.81 1009.37 

Ethanol[69] -9.62 116.89 310.87 

Xylitol[70] -10.81 16.08 1510.09 

Freon12[71] -8.55 0.71 716.11 

PVaca[72] -8.64 6.07 2209.6 

PVacb[73] -7.91 2.66 2374.3 

Pvacc[74] -10.03 11.26 2066.45 

Pvacd[75] -10.04 35.98 1632.06 

8*OCB[76] -9.74 48.35 1108.17 

E7[34] -8.42 19.49 1154.87 

C8c7[43] -11.74 1488.59 175.46 

NPGNPA[32] -10.82 304.06 793.95 

5*CB[77] -9.55 40.43 1051.58 
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Table 5.8: Values of log10 τ0, K, C , and Tg and fragility parameter m, for the liquids under study. These

parameters were calculated for both temperature domains above and below Tc. The Tg values were obtained

by the numerical solution of Mauro equation at 100s. The liquids with a fragille-strong (F − S) transition

are in bold.

Materials 1log
010

τ  
K1 

[1/K] 

C1 

[1/K] 

Tg1 

[K] 

m 1 2log
010

τ

 

K2 

[1/K] 

C2 

[1/K] 

Tg2 

[K] 

m2 

EPON[56] -11.29 66.55 1129 240 76 -9.54 0.46 2446.5 252 142 

PPGE[56] -3.03 59.5 1203.1 297 26 -1.50 1.18 2270.9 286 45 

OTP[57] -11.69 2.2 2062.7 252 123 -15.25 210.8 929.3 243 83 

KDE[58] -10.24 9.53 2211 322 97 -14.52 487.2 1005.9 314 70 

PC[59] -11.03 43.2 686.3 148 73 -10.55 8.03 991.98 157 90 

Salol[60] -10.43 1.40 1886.8 224 116 -22.09 1611.5 439.02 218 73 

DEP[61] -10.49 5.62 1300.9 189 99 -20.73 2399.8 243.9 179 54 

MTH[62 -11.87 68.4 306.4 84 65 -11.83 17.99 460.5 91 82 

PCB42[63] -10.22 5.41 1602.8 227 99 -26.06 4182.1 271.15 221 63 

PCB54[63] -9.87 1.57 2169.2 258 112 -23.10 3467.1 350.37 247 61 

PCB62[63] -9.95 2.04 2295.2 279 110 -37.39 15570 119.39 268 57 

PS540k[64] -9.72 2.23 2069.3 255 116 -11.19 60.60 1237.2 255 77 

Glycerol[65] -11.72 759.6 408.9 195 43 -12.99 1183.9 336.69 194 41 

PG[65] -10.12 183.32 620.27 186 53 -12.34 935.46 317.35 175 40 

2PG[65] -10.31 292.15 557.74 191 48 -8.64 61.47 843.04 194 57 

DBP[66] - 9.50 121.05 655.25 179 54 -8.73 36.32 872.90 181 63 

3PGa[67] -11.52 177.31 660.95 189 61 -9.33 18.27 1078.3 192 75 

3PGb[68] -13.21 538.70 463.33 186 53 -8.76 9.08 1204.6 192 78 

Ethanol[69] -9.73 283.85 204.47 94 37 -7.89 31.53 420.84 99 51 

Xylitol[70] -12.70 278.52 802.46 238 64 -8.59 1.78 2002.9 247 97 

Freon12[71] -11.93 165.78 245.23 87 53 -4.64 1.4E-4 1438 91 82 

PVaca[72] -8.75 7.78 2132.8 309 84 -9.73 15.94 1941.3 310 85 

PVacb[73] -10.03 78.81 1408.5 302 68 -3.88 0.01 3806.2 295 82 

Pvacc[74] -11.07 90.59 1412.6 306 74 -7.92 0.97 2761 310 98 

Pvacd[75] -10.58 95.85 1329.1 296 69 -9.71 26.26 1718.1 300 79 

8*OCB[76] -10.34 120.19 852.43 217 61 -7.52 1.80 1747 221 85 

E7[34] -10.38 345.54 560.94 200 47 -5.45 0.15 2001 199 82 

C8c7[43] -11.99 1791.9 146.18 149 28 -7.51 249.22 390.76 151 34 

NPGNPA[32] -12.48 1363.8 200.75 152 34 -4.98 0.64 1335.9 161 65 

5*CB[77] -9.65 29.74 120.22 35 52 -10.15 162.09 733.04 205 56 
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Table 5.9: Values of the crossover temperature from Mauro equation Tc and from VFT analysis TV FT , the

experimental glass transition temperature Tg, the ratio Tc/Tg and the transition factor f for the liquids under

study. The liquids with a fragille-strong (F−S) transition is bold.

Materials Tc 

[K] 

Tg 

[K] 

Tc/Tg TVFT 

[K] 

 

100*(Tc-TVFT)/TVFT m1 m2 f =m1/m2 

EPON[56] 302 252 1.198 293 3.07 76 142 0.53 

PPGE[56] 268 259 1.035 277 -0.03 26 45 0.58 

OTP[57] 283 241 1.174 296 -4.39 123 83 1.48 

KDE[58] 365 314 1.162 371 -1.62 97 70 1.39 

PC[59] 187 154 1.214 192 11.46 73 90 0.81 

Salol[60] 245 217 1.129 251 -2.60 116 73 1.59 

DEP[61] 223 183 1.219 228 -2.19 99 54 1.83 

MTH[62 110 91 1.201 112 -1.78 65 82 0.79 

PCB42[63] 249 220 1.132 252 -1.19 99 63 1.57 

PCB54[63] 289 243 1.189 291 -0.69 112 61 1.84 

PCB62[63] 306 269 1.138 309 -0.97 110 57 1.93 

PS540k[64] 289 252 1.147 291 -0.69 116 77 1.51 

Glycerol[65] 233 194 1.201 232 0.43 43 41 1.05 

PG[65] 243 174 1.397 240 1.25 53 40 1.33 

2PG[65] 226 192 1.177 224 0.89 48 57 0.84 

DBP[66] 204 181 1.128 210 -2.86 54 63 0.86 

3PGa[67] 221 192 1.151 219 0.92 61 75 0.81 

3PGb[68] 220 192 1.146 217 1.39 53 78 0.68 

Ethanol[69] 118 99 1.192 116 1.73 37 51 0.73 

Xylitol[70] 280 247 1.134 278 0.72 64 97 0.66 

Freon12[71] 95 89 1.067 93 2.15 53 82 0.65 

PVaca[72] 327 310 1.055 324 0.93 84 85 0.99 

PVacb[73] 310 295 1.051 309 0.32 68 82 0.83 

Pvacc[74] 342 310 1.103 338 1.18 74 98 0.76 

Pvacd[75] 384 300 1.280 375 2.43 69 79 0.87 

8*OCB[76] 252 221 1.140 357 1.96 61 85 0.72 

E7[34] 232 199 1.166 224 3.57 47 82 0.57 

C8c7[43] 174 151 1.152 167 4.19 28 34 0.82 

NPGNPA[32] 183 161 1.137 182 0.55 34 65 0.52 

5*CB[77] 250 205 1.219 352 0.57 52 56 0.93 
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Chapter 6

General Conclusions

The work presented in this thesis potentially extends the knowledge of dynamics of orientationally

disordered phases and orientationally glasses, a research topic which has gained interest during the

last decades. The aim of this work has been to account for the orientational dynamics of simple

globular-shaped molecules with and without intramolecular degrees of freedom as well as to in-

vestigate the effect of intermolecular interactions on the dynamics by means of the study of several

mixed crystals. Through this study, especial attention has been devoted to the phenomenologi-

cal equations accounting to the temperature dependence of the mean relaxation time describing

the orientational dynamics. Within this topic, a new approach based on the derivative sensitive

analysis has been developed. The main conclusions are sketched in the following lines

Dynamics in binary systems

Binary system cyclooctanol (C8-ol) and cycloheptanol (C7-ol) The dynamics

of the pure compounds and mixed crystals formed between C7-ol and C8-ol have been studied

by means of broadband dielectric spectroscopy at temperatures near and above the orientational

glass transition temperature. We have performed a detailed analysis of the dielectric loss spectra

showing clear evidence of the relaxation processes for the orientational glass-former pure com-

pounds. The results focus on the issue of the appearance of the secondary relaxations for the OD

(C7−ol)1−x (C8−ol)x mixed crystals and try to make clear if they are concomitant with those

found for pure components or, on the contrary, a change of the effects of many-molecule dynam-

ics and intermolecular coupling or a change in the hydrogen bonding scheme can induce their

disappearance, as claimed for the β -relaxation in a preceding work [1].

• The α-relaxation times as a function of the reciprocal of temperature for the whole set of

studied mixed crystals together with those of pure compounds for the simple cubic orienta-

tionally disordered (OD) phase I are obtained. They clearly evidence the continuous change

of the relaxation time as a function of the mole fraction, supporting the conjecture that iso-

morphism between phases I of C7-ol and C8-ol involves also the dynamic behaviour.
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• For (C7−ol)1−x (C8−ol)xOD mixed crystals the dielectric loss spectra were fitted by as-

suming the existence of the ubiquitous α-relaxation process (at T > Tg) and one or two

secondary processes. It was concluded that the introduction of an additional third relaxation

process is completely fictitious and thus that only α- and γ-relaxation processes are present

for x < 0.74. On the contrary, for mixed crystals with x ≥ 0.74 the presence of the three

relaxation processes clearly improves the description of the experimental data [1].

• In spite of the evidences concerning the intramolecular character of the β and γ secondary

relaxations for the pure components as well as for the mixed crystals we obtained thermally

activated processes, which are described by a continuous change of the activation energy

between the values of pure compounds for the γ relaxation and by almost constant activation

energy for the β relaxation. This result confirms the intramolecular character of the β -

relaxation associated to the transitions between the two possible conformations of the –OH

side group of C8-ol and the continuous variation (relaxation time and activation energy) for

the γ process evidences its intrinsic relation to the hydrogen-bond scheme.

• The relaxation times for β and γ processes were also determined without superimposing a

phenomenological model by means of the application of a derivative process of the real part

of the complex permittivity based on the Kramers-Kronig relations at temperatures lower that

the glass transition temperature Tg. It was determined by the steps or inflection points in the

real part of the dielectric permittivity ε
′
function, inherently associated with the peak of the

imaginary dielectric permittivity ε
′′
, which translates to a maximum in the first derivative of

ε
′
with respect to the frequency. The results confirm, at (T < Tg), the Arrhenius behaviour for

β and γ relaxations. The activation energies obtained from the used methodology compare

well with those obtained at (T > Tg) from previous standard procedures. The procedure

shows up a new method to make evident the existence of such secondary relaxations as well

as to avoid phenomenological equations for determining the relaxation time and for testing

possible secondary relaxation process in glass forming systems [2].

Binary system CN-adamantane (CNadm) and Chloro-adamantane (Cladm)

The α-relaxation dynamics of CNadm and its mixtures with Cladm have been studied by means

of broadband dielectric spectroscopy. The existence of OD face centered cubic mixed crystals

(Cladm)1−x (CNadm)x for 0.5≤ x≤ 1 has been put in evidence by thermodynamics and structural

analyses [3].

• It was shown that the non-exponential character evidenced by the broadening of the α-

relaxation peak and characterized by the stretched parameter with the diminution of the mole

fraction is caused by the heterogeneities produced by the concentration fluctuations which

are the consequence of a statistic (chemical) disorder and not induced by dynamic correla-

tions. This result shows that local heterogeneities generated by the compositional disorder
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control the relaxation process, a result which is similar to that previously found for structural

glasses [3,4].

• It was shown a new way for calculating the Kirkwood factor g for mixtures. The effective

dipole moment of the molecular entity have been calculated following the procedure of the

molecular volume as a linear combination of the dipole moment for the pure compounds

with the mole fraction [4]. The results show small shift, with a discrepancy less than 10% in

comparison with other methods which weight the square dipoles by volume fractions or by

mass fractions.

• The variation of the Kirkwood factor evidences the existence of a strong antiferroelectric

order of molecular entities, which increases with the mole fraction of CNadm and decreases

with temperature. It was shown that in addition, for all the studied compositions higher than

the equimolar mixture, also including CNadm pure compound, a stair-like diminution is ob-

served, a consequence of the reinforcement of an antiferroelectric ordering. This change

comes from an abrupt diminution of the dielectric strength together with a continuous varia-

tion of density as a function of temperature [4].

• It was used a new numerical procedure for transforming the experimental dielectric spectra,

obtained in the frequency domain to the time domain by means of the use of the connection

between dielectric permittivity and relaxation function via the Laplace-Fourier transforma-

tion. The procedure has been supported by means of the Mathemathic platform (Mathematic

8.0). The stretched parameter was directly fitted at each temperature and each mole frac-

tion. The relationship between such a fit parameter and those obtained from the fits of the

HN equation evidenced that the proposed relation for structural glasses from Alegria et. al

perfectly works for the whole temperature and composition studied range [4].

Derivate analysis

Linearized models It was applied the derivative based, distortion-sensitive analysis

to the relaxation times datas τ (T ) for Liquid Crystals, isooctylcyanobiphenyl (8*OCB), pentyl-

cyanobiphenyl (5OCB) and ODICs materials, a set of systems formed by pure compounds display-

ing a well-known hydrogen bonding scheme as cyclooctanol (C8-ol) and cycloheptanol (C7-ol), as

well as systems lacking of this kind of particular intermolecular interactions, as cyanoadamantane

(CNadam) and cyanocyclohexane (CNc6), several mixtures between C7-ol and C8-ol and between

CNadam and Cladam, neopentylalcohol (NPA) and neopentylglycol (NPG) mixture(NPA0.7NPG0.3),

one olygomeric liquid epoxy resin (EPON828), and Propylene Carbonate (PC).

• The application of the derivative analysis to C8-ol, C7-ol, CNadam, CNc6, several mixtures

between C7-ol and C8-ol and between CNadam and ClAdam, NPA0.7NPG0.3, 8*OCB, and
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5*CB has been performed for testing the validity of the dynamical scaling model (DSM).

We have concluded that the DSM can perfectly account the scaling exponent of the relax-

ation time as a function of temperature for all the OD crystals studied by using the linearized

derivative analysis. It was concluded that the exponent close to 9 seems to be a general

property for phases with only one kind of disorder, translational for liquid crystals and ori-

entational for OD phases, reinforcing the existence of a hidden phase transition at (Tc < Tg)

and claiming the existence of a group of ultraslowing materials, fluid and solid, where a clear

evidence for the dynamic divergence exists [5-7].

• It was found an empirical correlations between the critical exponent of the DSM model with

the universal pattern for the high frequency wing f > f α
peak of the loss curve for primary

relaxation process for LCs and ODICs. It was concluded that the minimal slope at the glass

transition temperature as a function of the critical exponent corresponding to the DSM as

well as the fragility and the slope of the dielectric loss spectra of the α-relaxation at f > f α
peak

should be correlated [8].

• The linearized derivative analysis was also applied to EPON828 and Propylene Carbonate

data. We concluded that two VFT equations are needed to describe τ (T ) in the broader

range of temperatures. The same was found for the “Avramov” equation i.e., the existence

of a crossover, an artifact not reported so far. In agreement with earlier reports we have found

a superior validity of the critical-like description in the ultraviscous/ultraslowing domain for

the liquid crystalline and the orientationally disordered crystals glass formers. The linearized

analysis have revealed a very limited validity of the equation recently proposed by Elmatad

hardly visible at the τ (T ) plot [9].

Non-Linearized models It was shown that the form of the equation introduced by

Mauro et. al. does not allow a similar straightforward linearization procedure. Unlike the previous

models, the involved parameters (K, C ) are not correlated with the slope and the intercept of

a linear function, thus both variables being necessarily and simultaneously involved in the data

analysis. In order to resolve this problem, we have introduced the concept of the enthalpy space as

the three-dimensional chi-square space, obtained after a derivative transformation of the relaxation

time- temperature evolution, which is called (Ha−3D).

• For estimating the model parameters in the Mauro equation, it was introduced a function of

merit given by the sum of weighted squared residuals [9].

• It was performed an iterative optimization method, which have been supported by means of

the Mathemathic platform (Mathematic 8.0). For the case of models involving an exponential

function we concluded that the use of the Newton method for minimizing glass forming

model functions can be a realible alternative solution. It was also concluded that the use of a
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relative weighted function of merit minimizes the sources of errors being more advantageous

to implement minimization processes [10].

• For all liquids under study the plot ln
[

Ha/(1+C
T )

]

vs 1/T as well as the plot of the configura-

tional entropy Sc rescaled by B reveal the evidence of the existence of dynamical crossover

in the Mauro equation. It was shown that with this plot two temperature domains can be

detected by a slope change at temperature Tc which signs a dynamic crossover. We have

found one group of liquids where the slope of the above graph increases on cooling toward

Tc as well as another group of liquids where the slope of the graph decreases. A new kind

of crossover which seems to be impossible to be detected by the Stickel transformation is

shown by a change of slope in one simple plot of ln [Ha]vs 1/T [11].

• For all the glass forming liquids under study the results have shown that there is not a big

difference between the crossover temperature values obtained form the VFT and from the

Mauro equations. We concluded that, excluding the cases of the 5*CB and 8*OCB, the

plots of TV FT (Tg) and Tc (Tg) surprisingly follows a good linear correlation. It can give us a

practice and easy way for estimating the crossovers, when the experimental glass transition

temperature of the liquid under study is previously known [11].

• For characterizing the glass behaviour around the crossovers temperature Tc, we have pro-

posed a new fragility transition factor f . It was concluded that for all studied liquids the

relative temperature crossover difference between VFT and Mauro equation is correlated

with the fragility transition factor f . For the cases of PPGE, MTHFL, DBP, we found four

excepctions [11]. Some glass forming systems (PPGE, MTHFL, DBP) seem to be apart from

such a correlation and a more detailed analysis should be performed [11].

Corrective functions of coupling model (CM) equation It was intro-

duced the corrective functions of the CM equation which have not been are reported so far. We

have shown that the corrective CM equation can be written as the product of two terms, the original

primitive relaxation time τ0, introduced by Ngai, and a new term which is called as the corrective

relaxation time function C(n). It allows the introduction of the normalized corrective activation

energy function ∆E(n).

• It was concluded that for all experimentally reported coupling domains 0≤ n≤ 1, indepen-

dently of the chosen relaxation time from the experiment (τHN ,τmax or τKWW ), the corrective

functions C(n) and △E(n) will take values around the unity and zero respectively, and the

CM equation will remain unchanged to testify the JG processes [12].
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