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Abstract vii

Random Combinatorial Structures with low dependencies: existence and

enumeration

Abstract:

In this thesis we study di�erent problems in combinatorics and in graph theory by means of the
probabilistic method. This method was introduced by Erd®s and its �rst applications are found
in Ramsey Theory and graph colorings. It has become an extremely powerful tool to provide
existential proofs for certain problems in di�erent mathematical branches where other methods
had failed utterly.

One of its main concerns is to study the behavior of random variables. In particular, one common
situation arises when these random variables count the number of bad events that occur in a
combinatorial structure. The idea of the Poisson Paradigm is to estimate the probability of these
bad events not happening at the same time when the dependencies among them are weak or rare.
If this is the case, this probability should behave similarly as in the case where all the events are
mutually independent. This idea gets re�ected in several well�known tools, such as the Lovász
Local Lemma [52] or Suen inequality [82].

The goal of this thesis is to study these techniques by setting new versions or re�ning the existing
ones for particular cases, as well as providing new applications of them for di�erent problems in
combinatorics and graph theory. Next, we enumerate the main contributions of this thesis.

The �rst part of this thesis extends a result of Erd®s and Spencer on latin transversals [53]. There,
the authors showed that an integer matrix such that no number appears many times, admits
a latin transversal. This is equivalent to study rainbow matchings of edge�colored complete
bipartite graphs. Under the same hypothesis of [53], we provide enumerating results on such
rainbow matchings. Our techniques are based on the framework devised by Lu and Szekely [98].

The second part of the thesis deals with identifying codes. An identifying code is a set of vertices
such that all vertices in the graph have distinct neighborhood within the set. We provide bounds
on the size of a minimal identifying code in terms of the degree parameters and partially answer
a question of Foucaud et al. [61]. By studying graphs with girth at least 5 and large minimum
degree, we are able to estimate the size of a minimum code for random regular graphs. On a
di�erent chapter of the thesis, we show that any dense enough graph has a very large spanning
subgraph that admits a small identifying code.

In some cases, proving the existence of a certain object is trivial. However, the same techniques
allow us to obtain enumerative results. The study of permutation patterns is a good example of
that. In the third part of the thesis we devise a new approach in order to estimate how many
permutations of given length avoid a consecutive copy of a given pattern. In particular, we
provide upper and lower bounds for them. One of the consequences derived from our approach
is a proof of the CMP conjecture, stated by Elizalde and Noy [50] as well as some new results
on the behavior of most of the patterns.

In the last part of this thesis, we focus on the Lonely Runner Conjecture, posed independently
by Wills [127] and Cusick [41] and that has multiple applications in di�erent mathematical �elds.
This well�known conjecture states that for any set of runners running along the unit circle with
constant di�erent speeds and starting at the same point, there is a moment where all of them
are far enough from the origin. We improve the result of Chen [35] on the gap of loneliness by
studying the time when two runners are close to the origin. We also extend the invisible runner
result of Czerwi«ski and Grytczuk [44].





Resum ix

Estructures Combinatòries Aleatòries amb dependències febles: existència i

enumeració.

Resum:

En aquesta tesi s'estudien diferents problemes en el camp de la combinatòria i la teoria de grafs,
utilitzant el mètode probabilístic. Aquesta tècnica, introduïda per Erd®s, ha esdevingut una eina
molt potent per tal de donar proves existencials per certs problemes en diferents camps de les
matemàtiques on altres mètodes no ho han aconseguit.

Un dels seus principals objectius és l'estudi del comportament de les variables aleatòries. El
cas en que aquestes variables compten el nombre d'esdeveniments dolents que tenen lloc en
una estructura combinatòria és de particular interès,. La idea del Paradigma de Poisson és
estimar la probabilitat que tots aquests esdeveniments dolents no succeeixin a la vegada, quan
les dependències entre ells són febles o escasses. En tal cas, aquesta probabilitat s'hauria de
comportar de forma similar al cas on tots els esdeveniments són independents. El Lema Local
de Lovász [52] o la Desigualtat de Suen [82] són exemples d'aquesta idea.

L'objectiu de la tesi és estudiar aquestes tècniques ja sigui proveint-ne noves versions, re�nant-ne
les existents per casos particulars o donant-ne noves aplicacions. A continuació s'enumeren les
principals contribucions de la tesi.

La primera part d'aquesta tesi estén un resultat d'Erd®s i Spencer sobre transversals llatins [53].
Els autors proven que qualsevol matriu d'enters on cap nombre apareix massa vegades, admet
un transversal on tots els nombres són diferents. Això equival a estudiar els aparellaments
multicolors en aresta�coloracions de grafs complets bipartits. Sota les mateixes hipòtesis que [53],
es donen resultats sobre el nombre d'aquests aparellaments. Les tècniques que s'utilitzen estan
basades en l'estratègia desenvolupada per Lu i Székely [98].

En la segona part d'aquesta tesi s'estudien els codis identi�cadors. Un codi identi�cador és
un conjunt de vèrtexs tal que tots els vèrtexs del graf tenen un veïnatge diferent en el codi.
Aquí s'estableixen cotes en la mida d'un codi identi�cador mínim en funció dels graus i es resol
parcialment una conjectura de Foucaud et al. [61]. En un altre capítol, es mostra que qualsevol
graf su�cientment dens conté un subgraf que admet un codi identi�cador òptim.

En alguns casos, provar l'existència d'un cert objecte és trivial. Tot i així, es poden utilitzar les
mateixes tècniques per obtenir resultats d'enumeració. L'estudi de patrons en permutacions n'és
un bon exemple. A la tercera part de la tesi es desenvolupa una nova tècnica per tal d'estimar el
nombre de permutacions d'una certa llargada que eviten còpies consecutives d'un patró donat.
En particular, es donen cotes inferiors i superiors per a aquest nombre. Una de les conseqüències
és la prova de la conjectura CMP enunciada per Elizalde i Noy [50] així com nous resultats en el
comportament de la majoria dels patrons.

En l'última part de la tesi s'estudia la Conjectura Lonely Runner, enunciada independentment
per Wills [127] i Cusick [41] i que té múltiples aplicacions en diferents camps de les matemàtiques.
Aquesta coneguda conjectura diu que per qualsevol conjunt de corredors que corren al llarg d'un
cercle unitari, hi ha un moment on tots els corredors estan su�cientment lluny de l'origen. Aquí,
es millora un resultat de Chen [35] ampliant la distància de tots els corredors a l'origen. També
s'estén el teorema del corredor invisible de Czerwi«ski i Grytczuk [44].





Contents

1 Introduction 1

1.1 Rainbow Perfect Matchings in Complete Bipartite Graphs . . . . . . . . . . . . . 5

1.2 Bounds for identifying codes in terms of degree parameters . . . . . . . . . . . . . 7

1.3 Large spanning subgraphs admitting small identifying codes . . . . . . . . . . . . 8

1.4 Consecutive pattern avoiding in permutations . . . . . . . . . . . . . . . . . . . . 10

1.5 On the Lonely Runner Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background and Notation 15

2.1 Basic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 The probabilistic method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Concentration of random variables . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Avoiding a set of events and the Poisson Paradigm . . . . . . . . . . . . . 17

2.2.2.1 Dependency graph . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2.2 Lower bounds and the Lovász Local Lemma . . . . . . . . . . . . 21

2.2.2.3 Upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Models of Random Combinatorial Structures . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Models of Random Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Rainbow Perfect Matchings in Complete Bipartite Graphs 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Asymptotic enumeration of rainbow matchings . . . . . . . . . . . . . . . . . . . 32

3.2.1 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Random colorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Existence of rainbow perfect matchings . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Concluding remarks and open questions . . . . . . . . . . . . . . . . . . . . . . . 41

4 Bounds for identifying codes in terms of degree parameters 45

xi



xii Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Upper bounds on the identifying code number . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.3 Bounding the number of non�forced vertices . . . . . . . . . . . . . . . . . 54

4.3 Upper bounds for graphs with girth at least 5 . . . . . . . . . . . . . . . . . . . . 59

4.4 Identifying codes of random regular graphs . . . . . . . . . . . . . . . . . . . . . 61

4.5 Extremal constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Concluding remarks and open questions . . . . . . . . . . . . . . . . . . . . . . . 68

5 Large spanning subgraphs admitting small identifying codes 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 Random subgraphs and identi�cation . . . . . . . . . . . . . . . . . . . . . 73

5.2.2 Proof of the main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Asymptotic optimality of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 On the size of the code and the number of deleted edges . . . . . . . . . . 78

5.3.2 On the hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Consequences of our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.1 Adding edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.2 Watching systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Concluding remarks and open questions . . . . . . . . . . . . . . . . . . . . . . . 84

6 Consecutive pattern avoiding in permutations 87

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 A probabilistic approach on consecutive pattern avoiding . . . . . . . . . . . . . . 90

6.3 An upper bound on ρσ and the CMP conjecture. . . . . . . . . . . . . . . . . . . 91

6.3.1 A lower bound on ρ(1,2,...,m) . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.2 The CMP conjecture for small values of m. . . . . . . . . . . . . . . . . . 95

6.4 A lower bound on ρσ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 The typical value of ρσ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.6 Concluding remarks and open questions . . . . . . . . . . . . . . . . . . . . . . . 100

7 On the Lonely Runner Conjecture 103

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



Contents xiii

7.2 Correlation among runners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2.1 First application: Improving the gap of loneliness . . . . . . . . . . . . . . 113

7.2.2 Second Application: Invisible runners . . . . . . . . . . . . . . . . . . . . 114

7.3 Weaker conjectures and interval graphs . . . . . . . . . . . . . . . . . . . . . . . . 115

7.4 Concluding remarks and open questions . . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography 120





CHAPTER 1

Introduction

The probabilistic method was initiated by Paul Erd®s and it has been one of the most powerful
and widely used techniques to deal with combinatorial problems. During the last 60 years it has
been developed and has provided existential proofs for certain problems in di�erent mathematical
branches where other methods had failed utterly.

For instance, one may �nd multiple applications of it in mathematical �elds like number theory,
linear algebra, geometry or analysis. In particular, it is also one of the most used tools in algo-
rithmics, connecting combinatorics with computer science. Topics like the study of randomized
algorithms or property testing are good examples of that.

The probabilistic method relies on proving that a statement is true by setting a probability
space and showing that the probability of this statement is strictly positive. Whereas many
combinatorial proofs provide constructions of such objects in an explicit way, the probabilistic
method gives only existential proofs. This is one of the reasons why this method proves to be
so powerful to attack some problems where classical combinatorial arguments do not provide
any interesting information. Recently, some constructive methods have been devised to give a
randomized algorithm that �nds the desired object and that run in polynomial time with high
probability. When such algorithm exists, it is also interesting to study how to derandomize it to
provide a deterministic algorithm. On this section we will comment some of these techniques.

When considering random combinatorial objects, most of their combinatorial properties can be
expressed as a function of di�erent random variables, f(X1, . . . , XN ). One of the main concerns
of the probabilistic method is to study the behavior of these random variables f(X1, . . . , XN )
by understanding each random variable Xi as well as the interplay among them. For instance,
one can look at the expected value of f(X1, . . . , XN ). In many situations, we want to know how
likely is that f(X1, . . . , XN ) lies close to its expected value. For this reason, there is a bunch of
probabilistic tools to deal with concentration of random variables around their expected value,
also known as large deviation inequalities.

Nonetheless, in this thesis we will focus in the problem of estimating the probability that
f(X1, . . . , XN ) = 0. One common situation in the probabilistic method arises when the ex-
istence of the desired structure can be expressed in terms of the avoidance of certain set of �bad�

1
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events A = {A1, . . . , AN} from the probability space. For instance, a proper coloring can be
understood as a random coloring that avoids the events de�ned by monochromatic edges. This
motivates the de�nition of the following function f(X1, . . . , XN ) = X = X1 + · · ·+XN , where Xi

is the indicator random variable of the event Ai ∈ A. Then, X counts the number of bad events
in a particular instance of the probability space and the probability that X = 0 is exactly the
probability that no bad event from A occurs. This property turns to be very useful. For example,
the existence of at least one object satisfying our restrictions can be ensured by bounding this
probability away from zero.

The study of the probability that X = 0 is not only related to existential results, but also to
enumeration. Suppose that each element of our space appears with equal probability, that is, we
have a uniform distribution. Then, the size of the probability space times the probability that a
random object satis�es X = 0, provides the exact number of elements of this space that ful�ll
the desired property de�ned by the avoidance of A.

In many cases it is hard to exactly compute the probability that X = 0, even for small probability
spaces. However, meaningful asymptotic estimations can be given when the size of the probability
space is large. Some applications of this idea will be seen in di�erent parts of the thesis.

Let us focus in the tools we are going to use to bound Pr(X = 0). If the random variables Xi

are non�negative and mutually independent, it is easy to compute such probability,

Pr(X = 0) = Pr

(
N⋂
i=1

{Xi = 0}

)
=

N∏
i=1

(1− Pr(Xi 6= 0)) ∼ e−E(X) . (1.1)

In particular, the distribution of the number of bad events that are satis�ed, X, can be approx-
imated by a Poisson random variable with parameter E(X).

Obviously, if the random variables are highly dependent this estimation can be far from being
correct. Intuitively speaking, a high correlation among the variables will force Pr(X = 0) to
deviate from the estimation of (1.1). Consider the following experiment. Flip just one coin and
for all i ∈ [N ], set Xi = 1 if tail appears and Xi = 0 otherwise. It is clear that Pr(X = 0) = 1/2,
while the estimation in (1.1) gives e−N/2, which can be arbitrarily small.

This suggests that we do not have a general intuition to rely on when computing the probability
that no bad event is satis�ed. Nevertheless, the estimation in (1.1) of such probability is useful
when the dependencies among the random variables Xi are weak, meaning that each Xi is
mutually independent to large sets of random variables; or when the join probabilities are close
to the product of the individual ones.

The Poisson Paradigm states that, when there are few dependencies among the events in A or
these dependencies are weak, the probability of these bad events not happening at the same time
should behave similar to the estimation in (1.1). As a paradigm, this is not always working but
provides an intuition under some circumstances on what may be the truth. The exact conditions
under which we can ensure that the Poisson Paradigm is satis�ed, may change depending on the
techniques used and can be either local or global on the set of events A. In this chapter, we will
overview some of them. For a detailed explanation of the techniques and the conditions they
require to be applied, we refer the reader to Section 2.2.2.

Let us start by introducing a well known tool to provide existential proofs of combinatorial
objects, the Lovász Local Lemma (LLL). The local lemma was settled by Lovász and Erd®s in
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1975 (see [52]) to show the existence of 3-colorings in hypergraphs under some local restrictions
on the hyperedges. Since then, it has been a useful tool for solving a great diversity of problems.
As seen before, if A is a �nite set of mutually independent events, each with probability strictly
less than one, then the probability that no event occurs is always strictly positive. The LLL
allows us to slightly relax the independence condition. In order to apply it, the set A must
satisfy the following conditions: for every event Ai ∈ A, if the set of all the events but Di are
mutually independent from Ai, then the sum of the probabilities of the events in Di is not too
large. If this condition is satis�ed, then the probability that none of the events holds is strictly
positive under some speci�c quanti�cation provided by the LLL.

Because of this conditions, one can imagine the local lemma as a local union bound. The union
bound implies that for every set of events A such that

∑N
i=1 Pr(Ai) < 1, we have Pr(∩Ni=1Ai) > 0.

The conditions needed to apply the local lemma, can be understood as a local version of the
union bound.

The local lemma, not only gives the existence of these structures without bad events, but also
provides and explicit exponential lower bound for it. In many cases, this bound is asymptotically
tight. The power of the local lemma lies in the fact that it provides the existence of elements
which have exponentially small density in a large space of combinatorial objects. Observe that
some other probabilistic techniques, such as the �rst or the second moment, typically show the
existence of elements that have constant density in the space.

As we will see in the forthcoming chapters, the local lemma takes advantage of the locality of
certain de�ned properties in combinatorial structures. For instance, this tool is of particular
interest when analyzing graphs with bounded maximum degree.

In most of the applications it is useful to study the dependency graph of the set A (see De�ni-
tion 2.6) that captures the dependencies among the events. However, in order to illustrate the
statement of the local lemma, we introduce a simpli�ed version of it, known as the symmetric
local lemma, for which the dependency graph is implicitly de�ned in the statement.

Let A be a set of events such that Pr(Ai) = p for every Ai ∈ A, Suppose that each event is
mutually independent from all but at most d other events. If,

ep(d+ 1) ≤ 1 , (1.2)

then, Pr(∩Ni=1Ai) > 0.

The constant e in (1.2) cannot be improved as showed by Shearer [119]. Gebauer, Szabó and
Tardos [69] proved that the local lemma is also tight in the context of k-CNF formulas [69].
Their proof is based on the lopsided version of the Lovász Local Lemma, which was introduced
by Erd®s and Spencer [53] in the context of latin transversals of square integer matrices. In this
lopsided version, the condition of mutual independence to build the dependency graph, is relaxed
for events that are positively correlated, obtaining a lopsidependency graph (see De�nition 2.8).
We will make use of this version in the Chapter 3 of this thesis.

However, one of the main drawbacks of the local lemma is that it just takes into account the
number of dependencies among the events, but not the strength of these dependencies.

For instance, if A is a set of �almost� independent events one would expect to be able to derive
a lower bound on Pr(X = 0) similar to (1.1). Unfortunately, the local lemma is not able to
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provide such a result. As we will see in Section 2.2.2.3, we have other tools that allow us to
give a meaningful upper bound on the probability of X = 0, even in the case where there are no
mutually independent events.

While the local lemma is useful to provide existential results, it does not give the means to con-
struct an object that satis�es the desired property. In this direction, Moser and Tardos [108, 109]
propose an algorithmic version of the Lovász Local Lemma, following earlier work by Beck [14]
and by Molloy and Reed [104]. This version provides randomized algorithms to �nd objects for
which the standard version of the Lovász Local Lemma can prove their existence. Moreover,
the algorithm is e�cient; it runs in almost linear time in average. This has been a real break-
through in the area. The method, also known as entropy compression has been useful to improve
certain results where the non constructive version of the local lemma had been already applied
earlier [75, 56].

Although upper bounds on the probability of avoiding a set of events A at the same time do
not provide existential results of any kind, for some applications, like enumeration, they are
particularly useful. Some applications of it will be seen in Chapters 3 and 6.

Janson [81] introduced a useful inequality, which can be also thought as a concentration inequality
(see [8, Theorem 8.7.2]), that we can use to bound from above the probability that X = 0. Here,
in contrast with the local lemma, pairwise join probabilities have an important role. However,
this inequality can be applied just to a certain type of events which, in particular, should be
positively correlated (see Theorem 2.15 for the complete statement).

Suen [123] propose a similar version of this inequality where the particular setting of the Janson
inequality is not required anymore. This allows us to study any setting, even if the nature of the
dependencies is not clear. As Janson inequality, Suen inequality is also sensible to the di�erent
pairwise relations among events by taking into account the probabilities Pr(Ai ∩ Aj), when Ai
and Aj are not mutually independent.

Since it is stated in a wider context, obviously, Suen inequality is not as strong as Janson
inequality and can be used only in the cases where the dependencies among events are neither
very numerous nor very strong. This inequality is particularly useful for some cases where
dependencies are bounded. Some nice examples of the use of this inequality can be found
in [66, 24]. Another good reference of it is the paper of Janson [82].

In fact, if the dependencies are strong, both Janson and Suen inequalities can be worse than the
simple application of the second moment method.

A promising contribution was made by Lu and Székely [97, 98]. There, the authors consider a
di�erent version of the dependency graph, the so�called ε�near dependency graphs (see De�ni-
tion 2.9), and adapt the local lemma to give an upper bound for Pr(X = 0) instead of a lower
bound. Although it is not easy to show that a graph is an ε�near dependency graph, the authors
provide a good example by considering the problem of �nding a perfect matching in the complete
graph that avoids a family of �bad� partial matchings. This example is closely related to the
lopsidependency graph de�ned in [53]. By means of their approach, Lu and Székely manage to
count the number of regular graphs, latin rectangles or permutations without k�cycles.

As in the case of the local lemma, this last approach does not consider pairwise join probabilities.
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However, the de�nition of ε�near dependency graphs, reduces the number of dependencies to be
considered, similarly as in the lopsided case, and can be very useful in some cases.

In conclusion, these tools provide upper and lower bounds for the probability that a certain set
of bad events do not occur. Therefore, they can approximate the number of con�gurations that
avoid all these bad events. Hence, they do not just provide existence results, but also enumerative
ones.

Some of the material in this thesis has been already published or is to appear in journals [62,
115, 112]. Most of the remaining material has also been published as a preprint in the ArXiv
server [63, 114], and is currently submitted for publication. The contributions have also been
presented in several conferences and workshops.

This thesis addresses di�erent problems in which the above framework tools are thoroughly
exploited: Rainbow matchings of edge colored complete bipartite graphs (Chapter 3), Identifying
codes in graphs (Chapters 4 and 5), Consecutive pattern avoiding in permutations (Chapter 6)
and the Lonely Runner Conjecture (Chapter 7). In what remains of this chapter, we brie�y
review each problem of the thesis with an small introduction of the topic, the statement of the
main results and some comments on the techniques used to prove them.

1.1 Rainbow Perfect Matchings in Complete Bipartite Graphs

A subgraph H of an edge�colored graph G is rainbow if no color appears twice in the edges of H.
In particular, we will focus in rainbow perfect matchings of an edge�colored complete bipartite
graph Kn,n. This case is of particular interest due to the connexion with latin transversals in
integer matrices. Recall that a latin transversal is a set of n positions of an n×n matrix, no two
in the same row nor the same column, that contain all di�erent elements.

Our work is motivated by the following longstanding conjecture of Ryser on the existence of latin
transversals in latin squares:

Conjecture 1.1 (Ryser Conjecture [118]). Every latin square of odd size admits a latin transver-
sal.

This conjecture was extended by Stein [121] to n×n integer matrices containing n copies of each
element in {1, . . . , n}.

An interesting approach on Stein's conjecture was given by Erd®s and Spencer [53].

Theorem 1.2 ([53]). Let A be an integer matrix. If every entry in A appears at most n−1
4e times,

then A has a latin transversal.

In Chapter 3 we study the number of rainbow matchings in a given edge�coloring of Kn,n, where
every color appears at most some number of times, thus extending Theorem 1.2.

The techniques used to derive these bounds are inspired by the framework devised by Lu and
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Székely [98] to obtain asymptotic enumeration results using the Lovász Local Lemma. The main
result in Chapter 3 is the following theorem.

Theorem 1.3. Given an edge�coloring of Kn,n such that no color appears more than n/k times,
k ≥ 13.66, let t be the number of pairs of non�incident edges that have the same color. Then,
the number of rainbow perfect matchings is at most

exp

(
−
(

1− 3

k
− 60

k2

)
t

n(n− 1)

)
n! ,

and at least

exp

(
−
(

1 +
16

k

)
t

n(n− 1)

)
n! .

Observe that the dependency on t is natural, since a coloring in which all pairs of monochromatic
edges are mutually incident (t = 0) has n! rainbow perfect matchings.

Any proper edge�coloring where each color appears exactly n/k times, satis�es t ∼ n3/2k.

Corollary 1.4. Given a proper edge�coloring of Kn,n in which each color appears exactly n/k
times, k ≥ 13.66, the number of rainbow perfect matchings is at most γ2(k)nn! and at least
γ1(k)nn! for some constants 0 < γ1(k) < γ2(k) < 1 which depend only on k.

The second part of Chapter 3 is devoted to the study of the existence of rainbow perfect matchings
in random edge�colorings. We restrict ourselves to colorings with a �xed number s = kn of colors
and we de�ne two natural random models that �t with this condition: the uniform random model,
Cu(n, s), and the regular random model, Cr(n, s). Analogous results to the one in Theorem 1.3
can be proved for these random models.

Proposition 1.5. The expected number of rainbow perfect matchings in an edge�coloring of Kn,n

chosen at random from the Cu(n, s) (or the Cr(n, s)) with s = kn colors, k > 1, is

exp

(
−
(
k

(
(k − 1) ln

(
k − 1

k

)
+ 1

)
+ o(1)

)
n2

s

)
n! .

For k = 1, the expected number is

exp (−(1 + o(1))n)n! .

Since the edge�coloring is chosen at random, the probability that a perfect matching selected at
random is rainbow, is more concentrated than in the case of arbitrary edge�colorings.

Finally, we show that in the Cu(n, s) model, an edge�coloring has a rainbow perfect matching
with high probability.

Theorem 1.6. An edge�coloring of Kn,n chosen at random from the Cu(n, s) with s ≥ n colors,
contains a rainbow perfect matching with high probability.

This result can be easily extended to the Cr(n, s) using the same ideas. In particular, this implies
that the conjecture posed by Stein is true for almost all edge�colorings.

The results of Chapter 3 are joint work with Oriol Serra and can be found in [115].
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1.2 Bounds for identifying codes in terms of degree parameters

Given a graph G, an identifying code C is a dominating set such that for any two vertices, their
neighborhoods within C are nonempty and distinct. This property can be used to distinguish
all vertices of the graph from each other. Unlike dominating sets, not every graph can have an
identifying code. In fact, it is easy to check that a graph has a identifying code if and only if there
are no two adjacent vertices connected to the same set of vertices. For the sake of simplicity,
throughout the section we will assume that G admits an identifying code.

Motivated by the applications, given a graphG we want to study the smallest size of an identifying
code, also called the identifying number of G and denoted by γID(G). The following bounds are
known for this number,

log2(n+ 1) ≤ γID(G) ≤ n .

In Chapter 4, we provide bounds on the identifying number in terms of degree-.related graph
parameters such as the minimum and maximum degree, denoted by d and ∆ respectively. We
also focus on the case of d�regular graphs.

In the �rst part of Chapter 4 we answer partially a question raised in [58] on the size of a
minimum identifying code in a graph with bounded maximum degree. It was showed in [86] that
if G has maximum degree ∆, then

γID(G) ≥ 2n
d+2 .

While the proof of this result is straightforward, it does not seem so easy to provide a sharp
upper bound. It was conjectured in [61] that the following upper bound holds.

Conjecture 1.7 ([61]). For any connected graph G with maximum degree ∆,

γID(G) ≤ n− n

∆
+O(1) .

Graphs with maximum degree ∆ that admit an identifying code of size n − n
∆ are known (see

Section 4.5). Thus, if Conjecture 1.7 holds, it is best possible.

It was showed in [59] that γID(G) ≤ n − n
O(∆5)

, and γID(G) ≤ n − n
O(d3)

when G is d-regular.

In this thesis we prove an upper bound for γID(G) when G has bounded maximum degree. The
exact statement of this result can be �nd in Theorem 4.6. As corollaries of it, we have the
following results.

Corollary 1.8. For any connected graph G with maximum degree ∆,

γID(G) ≤ n− n

O(∆3)
.

In particular, Theorem 4.6 also allows us to prove an asymptotic version of the conjecture for
di�erent classes of graphs.

Corollary 1.9 (Regular graphs). For any connected d�regular graph G,

γID(G) ≤ n− n

O(d)
.
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Corollary 1.10 (Graphs excluding complete graphs as minors). Let G∆ be a the class of con-
nected graphs that have maximum degree ∆ and exclude Kk as a minor. Then for every graph
G ∈ G∆,

γID(G) ≤ n− n

c(k)d
,

for some constant c(k) that depends on k.

The proof of the main theorem, uses the weighted version of Lovász Local Lemma to show the
existence of an identifying code, together with standard concentration bounds, to show that the
code, selected at random, is small enough.

In order to understand the behavior of γID(G) for d�regular graphs it is worthy to study typical
d�regular graphs. The second part of this Chapter is devoted to compute the value of γID(G)
with high probability, for a d�regular graph chosen uniformly at random. Identifying codes have
been previously studied in two models of random graphs, the classic random graph model [66]
and the model of random geometric graphs [110]. We will deal with random regular graphs
through the so-called Con�guration model (see Subsection 2.3.1).

First, it is convenient to give an upper bound for the size of an identifying code in graphs with
minimum degree d, when the girth of the graph is at least 5.

Theorem 1.11. For any graph G with minimum degree d and girth at least 5, we have

γID(G) ≤ (1 + od(1))
3 log d

2d
n .

Since d�regular graphs do not have many triangles and 4�cycles, one can adapt the proof to show
the following.

Theorem 1.12. Let G be a d�regular graph chosen uniformly at random, d ≥ 3. With high
probability, we have

γID(G) =
log d+O(log log d)

d
n .

The results of Chapter 4 are joint work with Florent Foucaud and can be found in [62].

1.3 Large spanning subgraphs admitting small identifying codes

Consider any graph parameter that is not monotone with respect to graph inclusion. Given a
graph G, a natural problem in this context is to study the minimum value of this parameter
over all spanning subgraphs of G. In particular, how many edge deletions are su�cient in order
to obtain from G a graph with optimal value of the parameter? Herein, we study this question
with respect to the identifying code number of a graph, a parameter introduced in Section 1.2.

There are very dense graphs that have a huge identifying code number; sparse graphs, such as
trees and planar graphs, also have a linear identifying code number [117]. On the other hand,
one can also �nd sparse and dense graphs with logarithmic identifying code number [106, 66],
which is the smallest it can be.
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This motivates the following question:

Given any su�ciently dense graph, can we delete a small number of edges to get a spanning
subgraph with a small identifying code?

This question is related to the notion of resilience of a graph with respect to a graph property
P [122].

Despite being dense, the random graph G(n, p) (for 0 < p < 1) has a logarithmic size identifying
code, as with high probability,

γID(G(n, p)) = (1 + o(1))
2 log n

log (1/q)
,

where q = p2 + (1− p)2 [66]. Comparing this result with the examples of dense graphs with high
identifying code number, one can guess that, in a dense graph, the lack of structure implies the
existence of a small identifying code number. The following theorem, formalizes this idea.

Theorem 1.13. For every graph G on n vertices with maximum degree ∆ = ω(1) and minimum
degree d ≥ 66 log ∆, there exists a subset of edges F ⊂ E(G) of size

|F | = O(n log ∆) ,

such that

γID(G \ F ) = O

(
n log ∆

d

)
.

The next theorem shows that Theorem 1.13 cannot be improved much.

Theorem 1.14. For every d ≥ 2, there exists a d�regular graph Gdn on n vertices with the
following properties.

1. For every M ≥ 0, there exists a constant c > 0 such that for every set of edges F ⊂ E(Gdn)
satisfying γID(Gn \ F ) ≤M n log d

d , the size of F is |F | ≥ cn log d.

2. For every spanning subgraph H of Gdn, γ
ID(H) = Ω

(
n log d
d

)
.

When d = Poly(∆), Theorem 1.14 shows that Theorem 1.13 is asymptotically tight. Moreover,
we also show that the hypothesis of Theorem 1.13 are necessary. There are graphs with bounded
∆ and graphs for which d ≤ log ∆/2, such that all their spanning subgraphs have a linear
identifying code number.

Since the identifying code number is a non�monotone property, we also consider the case where
edges can be added instead of deleted in G. For such a case, analogous results are derived.

In [12], the notion of a watching system has been introduced as a relaxation of identifying codes:
in a watching system, code vertices (�watchers�) are allowed to identify any subset of their
closed neighborhood, and several watchers can be placed in one vertex. Under the hypothesis of
Theorem 1.13 and as a corollary of it, we can provide a watching system of size O (n log ∆/d).

The results of Chapter 5 are joint work with Florent Foucaud and Oriol Serra, and can be found
in [63].
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1.4 Consecutive pattern avoiding in permutations

A permutation π ∈ Sn of length n contains σ ∈ Sm of length m as a consecutive pattern if there
exists a set of m consecutive elements in π that have the same relative order as the elements in
σ. One interesting problem in the area of pattern avoidance in permutations is to determine the
number of permutations in Sn that do not contain σ as a consecutive pattern.

This problem was introduced by Elizalde and Noy in [50], where they completely determined the
asymptotic enumeration of such permutations when m = 3.

For every σ ∈ Sm, let αn(σ) be the number of permutations in Sn that avoid σ as a consecutive
patterns. Elizalde [48] showed that the limit

ρσ = lim
n→∞

(
αn(σ)

n!

)1/n

,

exists, for any σ ∈ Sm.

In [50], the authors stress the importance of the monotone patterns, (1, 2, . . . ,m) and (m, . . . , 2, 1),
in this problem and pose the following conjecture.

Conjecture 1.15 (CMP conjecture [50]). For every σ ∈ Sm,

ρσ ≤ ρ(1,2,...,m) .

Recently, this conjecture has been proved by Elizalde [49] using generating functions and the
cluster method of Goulden and Jackson [71].

In Chapter 6 we study consecutive patterns in permutations using a completely di�erent approach
to the problem, based on the probabilistic tools we provide in Chapter 2. While our approach
is not as precise as the generating function technique, it provides simpler alternative proofs of
some known results, as the CMP conjecture, and allows us to obtain more general results.

Our �rst result gives an explicit upper bound for the number of permutations in Sn avoiding a
given σ as a consecutive patterns, when σ is not monotone.

Theorem 1.16. For every non monotone pattern σ ∈ Sm,

ρσ ≤ 1− 1

m!
+O

(
1

m2 ·m!

)
.

To prove this theorem we make use of Suen Inequality [123] since the number of dependencies in
the set of bad events is small.

By comparing the upper bound given by Theorem 1.16 with the result obtained by Elizalde and
Noy [51] for monotone patterns we can give an alternative proof of the CMP conjecture as a
corollary. Our proof works for any value of m ≥ 5, but does not provide meaningful results for
the case m = 4. Moreover, the probabilistic approach also allows us to estimate the di�erence
between the number of permutations avoiding the most and the second most avoided pattern.
This last result has not been obtained by means of generating functions.
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We also provide general upper and lower bounds for any pattern of length m.

Theorem 1.17. For every σ ∈ Sm,

1− 1

m!
−O

(
m

(m!)2

)
≤ ρσ ≤ 1− 1

m!
+O

(
1

m ·m!

)
.

To prove the lower bound on the number of permutations avoiding a given pattern we use a one�
sided version of the Lovász Local Lemma introduced by Peres and Schlag [116] (see Lemma 2.14).
Both bounds are asymptotically tight. An extremal example for the upper bound is provided by
monotone patterns and for the lower bound by the pattern (1, 2, . . . ,m− 2,m,m− 1).

As Theorem 1.17 gives bounds for a given σ in terms of m, a natural question is to determine
how most of the patterns behave. In this direction a much stronger upper bound, close to the
general lower bound, is showed to hold for most of the patterns.

Theorem 1.18. Let σ be chosen uniformly at random from Sm. Then, with high probability,

ρσ ≤ 1− 1

m!
+O

(
cm

(m!)2

)
,

where c > 1 is some constant.

Theorem 1.18 is stated in the thesis in a more general way (see Theorem 6.6). This theorem
shows that, when m is large enough, for most of the patterns ρσ is concentrated close to the
lower bound provided by Theorem 1.17.

The results of Chapter 6 can be found in [112].

1.5 On the Lonely Runner Conjecture

The Lonely Runner Conjecture was posed independently by Wills [127] in 1967 and Cusick [41]
in 1982. Suppose that n runners are running on the unit circle with di�erent speeds and starting
at the origin. Then, the conjecture states that for each runner, there is a time where he is at
distance at least 1/n from all the other runners. Let us denote by ‖x‖ the distance from x to
the closest integer. Then, the conjecture can be restated in the following terms,

Conjecture 1.19 (Lonely Runner Conjecture). For every n ≥ 1 and every set of nonzero speeds
v1, . . . , vn, there exists a time t such that

‖tvi‖ ≥
1

n+ 1
,

for every i ∈ [n].

This conjecture was motivated by a problem in diophantine approximation [18, 41], but appears
in many di�erent areas such as view�obstruction problems [42], nowhere zero �ows [19], chromatic
numbers of distance graphs [13] or lacunary sequences [116, 46].
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In [21] it is showed that the conjecture can be reduced to the case where all the speeds are
integers. In such a case, observe that if the Lonely Runner Conjecture is true, we may assume
that the time t ∈ (0, 1), where (0, 1) is the unit sphere, since at integer times all the runners are
placed again at the origin.

Observe that each runner is a proportion of time 2δ at distance at most δ from the origin,
independently from its speed. Here, we exactly compute the time that two runners spend at
distance at most δ from the origin at the same time. This time strongly depends on the speeds.
In particular, we show that there are many pairs of runners which lie a large amount of time
close to the origin.

The previous result allows us to reduce the gap of loneliness. It is straightforward to see that
there is a time when all the runners are at distance at least δ = 1

2n from the origin. This result
was improved by Chen [35], who showed that, for any set of n positive speeds v1, . . . , vn, there
exists a time t such that

‖tvi‖ ≥
1

2n− 1 + 1
2n−3

.

for every i ∈ [n].

Our �rst result improves the result of Chen.

Theorem 1.20. For every ε > 0, every su�ciently large n and every set of positive speeds
v1, . . . , vn, there exists a time t ∈ (0, 1) such that

‖tvi‖ ≥
1

2n− 2 + ε
,

for every i ∈ [n].

For the proof of this theorem we use the computed correlations among pairs of runners and a
Bonferroni�type inequality (see Lemma 2.6).

Another consequence of our results is related to the notion of invisible lonely runner given by
Czerwi«ski and Grytczuk [44].

Theorem 1.21. For every su�ciently large n and every set of positive speeds v1, . . . , vn, there
exist t1, t2 ∈ (0, 1) and di�erent j1, j2 ∈ [n] such that for any ` ∈ {1, 2},

‖t`vi‖ ≥
1

n+ 1
,

for any i 6= j`.

This theorem provides de existence of two runners that leave the origin almost alone at some
time, thus extending the result of [44], if n is large enough.

Finally, we use a representation of the problem through a dynamic circular interval graph, that
also allows us to show the existence of two invisible lonely runners at the same time.

Theorem 1.22. For every su�ciently large n and every set of di�erent speeds v1, . . . , vn, there
exist a time t ∈ (0, 1), k1, k2 ∈ [n] and j1, j2 ∈ [n] such that k1 6= k2 and for any ` ∈ {1, 2},

‖t(vi − vk`)‖ ≥
1

n
,
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for any i 6= k`, j`.

The results of Chapter 7 are joint work with Oriol Serra and can be found in [114].





CHAPTER 2

Background and Notation

The aim of this chapter is to set a notation for some basic concepts that will appear in the
following chapters. Unless otherwise stated, we will also use standard terminology and notation
from probability theory (see e.g. [8]) and graph theory (see e.g. [45]). A background on the
probabilistic method is also provided with special emphasis on the most important techniques
and tools that will be used all along the thesis.

2.1 Basic notation

We denote by Z the set of integer numbers, by Q the set of rational numbers and by R the set
of real number. We use Z+, Q+ and R+ to denote the nonnegative elements of Z, Q and R
respectively. For any set S, we denote Sd, the cartesian product of d copies of S.

We denote by [n] = {1 . . . , n} the set of the �rst n positive integers. For every �nite set S we
use |S| to denote its cardinality. Then, for every 0 ≤ k ≤ |S|, we denote by

(
S
k

)
, the family of

subsets of S of size k and by 2S , the family of all the subsets of S. Observe that
(
S
0

)
= {∅},

where ∅ denotes the empty set.

The notation log(x) stands for the natural logarithm of x > 0, while, loga(x) will denote the
logarithm in base a > 0 of x. We will sometimes make use of exp(x) to denote the value of ex.

For every f, g : Z+ → R+ we will use the standard asymptotic notation displayed in Table 2.1.

In some occasions we will use either f(n) = (1 + o(1))g(n) or f(n) = (1 − o(1))g(n) instead of
f(n) ∼ g(n), in order to stress which function majorizes the other one in the limit.

If f and g depend on more than one variable, we use the notations ox, Ox,Θx,Ωx and ωx to
stress the fact that the asymptotic is taken on the variable x.

Finally, we say that a sequence of events An in a sequence of �nite probability spaces Ωn holds

15
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f(n) = O(g(n)) if lim supn→+∞
f(n)
g(n) < +∞.

f(n) = o(g(n)) if limn→+∞
f(n)
g(n) = 0.

f(n) = Ω(g(n)) if lim supn→+∞
f(n)
g(n) > 0.

f(n) = ω(g(n)) if limn→+∞
g(n)
f(n) = 0.

f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

f(n) ∼ g(n) if limn→+∞
g(n)
f(n) = 1.

Table 2.1: Asymptotic notation

with high probability if

lim
n→+∞

Pr(An) = 1 .

2.2 The probabilistic method

In this section we introduce some basic tools of what is known as the probabilistic method, with
an special emphasis to the problem of avoiding a set of events. For further details, we recommend
the book of Alon and Spencer [8] as a complete monograph on the topic.

2.2.1 Concentration of random variables

One of the main goals of the probabilistic method is to provide upper bounds on the probability
that a random variable X is far from its expected value, in order to show that, with high
probability, it will be close to E(X), the expected value of X. For instance, there are many
useful inequalities when we can express X as a function of independent random variables Xi,
X = f(X1, . . . , XN ). An interested reader may �nd an extensive reference on the topic in the
recent book of Boucheron, Lugosi and Massart [30]. The study of concentration inequalities is
not one of the main goals of this work, although we often use them in our proofs. Thus, here we
present a brief overview on the ones that will be used in the forthcoming chapters.

The most fundamental concentration inequality is Markov inequality, which states than for any
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nonnegative random variable X and t ≥ 1,

Pr(X > tE(X)) ≤ 1

t
.

From it we can derive the following bound, known as Chebyshev inequality or simply the second
moment method (e.g. see [8]).

Lemma 2.1 (Chebyshev inequality). For any random variable X and t > 0,

Pr(|X − E(X)| ≥ tσ(X)) ≤ 1

t2
, (2.1)

where σ2 is the variance of X.

Observe that the upper bound on the probability is polynomial on t. Next, we will show that for
the same deviation, an exponential bound can be achieved, by assuming some conditions on X.

As we have already mentioned, the concentration of random variables is well studied in the case
when X = f(X1, . . . , XN ) and the variables Xi are independent. From now on, we will focus on
the case where X = X1 + · · ·+XN .

If the each random variable Xi follows a Bernoulli distribution with parameter pi, Xi ∼ Be(pi),
then we can use the Cherno� inequality to bound the tails.

Lemma 2.2 (Cherno� inequality, Corollary A.1.14 in [8]). Let X1, . . . , XN be independent
Bernoulli random variables and de�ne X =

∑N
i=1Xi. Then, for all ε > 0,

Pr(|X − E(X)| ≥ εE(X)) < 2e−cεE(X) ,

where
cε = (1 + ε) log(1 + ε)− ε .

The above inequality can also be deduced from Markov inequality.

Similar results hold when the random variables Xi are bounded with probability one (see Ho-
e�ding inequality [79]).

In particular, if the Bernoulli random variables are identically distributed, Xi ∼ Be(p), we can
use a slightly better inequality.

Lemma 2.3 (Cherno� inequality for binomial distributions [9]). Let X ∼ Bin(N, p) be a Bino-
mial random variable, then for all 0 < ε < 1,

1. Pr(X ≤ (1− ε)Np) < exp
(
− ε2

2 Np
)
.

2. Pr(X ≥ (1 + ε)Np) < exp
(
− ε2

3 Np
)
.

2.2.2 Avoiding a set of events and the Poisson Paradigm

Let A = {A1, . . . , AN} be a set of events in a �nite probability space. As it has been seen in
the previous chapter, in many cases the existence of a desired object can be expressed as the
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avoidance of all the events in A in a probability space that contains a large set of objects. The
goal of this section is to show the basic probabilistic techniques to study the following probability,

Pr

(
N⋂
i=1

Ai

)
, (2.2)

in di�erent contexts.

Recall that two events A1 and A2 are independent if Pr(A1∩A2) = Pr(A1) Pr(A2). Then, we say
that a set of of events A is pairwise independent if for any i 6= j, Pr(Ai ∩ Aj) = Pr(Ai) Pr(Aj).
An event A is mutually independent from {Ai}j∈S if and only if Pr(A | ∩i∈S′Ai) = Pr(A)
for any S′ ⊆ S. A set of events A = {A1, . . . , AN} is mutually independent if and only if
Pr(∩i∈SAi) =

∏
i∈S Pr(Ai) for any S ⊆ [N ].

If A is mutually independent, we have

Pr

(
N⋂
i=1

Ai

)
=

N∏
i=1

(1− Pr(Ai)) . (2.3)

In general, the set A will not be mutually independent and it will not be straightforward to
compute (2.2). The well known inclusion�exclusion formula provides an exact way to get the
desired probability.

Pr

(
N⋂
i=1

Ai

)
= 1− Pr

(
N⋃
i=1

Ai

)
=

N∑
k=0

(−1)k
∑

S∈([N ]
k )

Pr
( ⋂
j∈S

Aj
)
. (2.4)

The main drawback of this expression is that, in general, it is hard to provide an explicit value
for the joint probabilities Pr

(⋂
j∈S Aj

)
. This implies that for most of the problems, we will

not be able to give an exact expression for (2.2). However, sometimes it su�ces to have a good
enough estimation of such probabilities.

From (2.4) we can derive the following bounds on (2.2), known as Bonferroni inequalities. For
any 0 ≤ m ≤ N/2, we have

Pr

(
N⋂
i=1

Ai

)
≤

2m∑
k=0

(−1)k
∑

S∈([N ]
k )

Pr
( ⋂
j∈S

Aj
)

Pr

(
N⋂
i=1

Ai

)
≥

2m+1∑
k=0

(−1)k
∑

S∈([N ]
k )

Pr
( ⋂
j∈S

Aj
)
.

These inequalities are specially useful in the case where the events are almost incompatible since
then, the joint probabilities are small and they converge quickly to (2.2).

A particular case of the Bonferroni inequalities is the union bound, which allows us to give a
simple lower bound on (2.2),

Pr

(
N⋃
i=1

Ai

)
≤

N∑
i=1

Pr(Ai) ,
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also written as

Pr

(
N⋂
i=1

Ai

)
≥ 1−

N∑
i=1

Pr(Ai) . (2.5)

The crucial fact that makes the union bound one of the most used inequalities in probabilistic
combinatorics is that one does not need to care about the dependencies among the events in A
to deduce a lower bound on (2.2). We will repeatedly use this bound all along the thesis. Even
though this bound is sharp (consider a set of disjoint events), it is not a meaningful bound if
most of the events in A have large intersection.

The interested reader in Bonferroni�type inequalities is referred to the book of Galambos and
Simonelli [68]. The following inequality can be found there and slightly improves the union
bound in the case where the events are not disjoint.

Lemma 2.4 (Inequality I.11 from [68]). For any tree T with vertex set V (T ) = [N ], we have

Pr

(
N⋂
i=1

Ai

)
≥ 1−

N∑
i=1

Pr(Ai) +
∑

ij∈E(T )

Pr(Ai ∩Aj) . (2.6)

For any event Ai ∈ A, it is interesting to consider its associated indicator random variable, Xi

and, in particular, the following the random variable,

X =
N∑
i=1

Xi . (2.7)

As we have already observed in the previous chapter, recall that the expression in (2.2) is equiv-
alent to Pr(X = 0). Notice that one can upper bound the previous probability using a concen-
tration inequality on the variable X. The probability that X = 0 is at most the probability that
X deviates E(X) from E(X).

If no assumption on the events in A is done, we can use the second moment method. By setting
t = E(X)/σ(X) in Lemma 2.1, we get the following corollary.

Lemma 2.5. For any random variable X with E(X) 6= 0,

Pr(X = 0) ≤ σ2(X)

E(X)2
.

By showing that σ(X)/E(X)→ 0, we know that with high probability, X 6= 0.

In a general context, Equation (2.5) as well as Lemma 2.5 are tight. Nevertheless, as we explained
in the previous chapter, better bounds can be provided if we assume that the set A has a
small number of dependences or these dependences are weak. If one of these conditions holds,
intuitively speaking, the probability that any of the events in A holds, is similar to the case when
the events are mutually independent (see (2.3)).

2.2.2.1 Dependency graph

To show that good approximations of (2.2) can be given under certain conditions, the de�nition
of an underlying structure that captures the mutual independence among the elements of A, the
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so�called dependency graph, is of special interest.

De�nition 2.6. A graph H = H(A) is a dependency graph for the set of events A = {A1, . . . , AN}
if V (H) = [N ], and if i ∈ [N ] is not connected to S ⊆ [N ] \ {i}, then

Pr(Ai | ∩j∈SAj) = Pr(Ai) . (2.8)

As a consequence, if H is a dependency graph for A, each stable set S ⊆ V (H) indexes a set of
mutually independent events, that is, Pr(∩i∈SAi) =

∏
i∈S Pr(Ai) .

Observe that the de�nition of H is not unique but the property of being a dependence graph
of A is monotone by subgraph inclusion. In particular, the complete graph KN is always a
dependency graph for A but we will be interested in studying edge�minimal dependency graphs.
Thus, each time we use a dependency graph for a set A, we must specify its set of edges.

For the sake of convenience, we will denote by µ the expected number of events from A that are
satis�ed

µ = E(X) =
N∑
i=1

Pr(Ai) .

In order to control the dependencies among the events in A, the following two parameters are
usually associated to the dependency graph H. To measure the global e�ect of the dependencies,
we consider

∆∗ =
∑

ij∈E(H)

Pr(Ai ∩Aj) ,

and for the local one,

δ∗ = max
1≤i≤N

∑
j: ij∈E(H)

Pr(Aj) ,

where E(H) denotes the edge set of H.

Let us now state a useful result that provides a good dependency graph if the set of events A
satis�es a certain property.

Observation 2.7 (The Mutual Independence Principle [105]). Let Y = {Y1, . . . YM} be a set of
independent random experiments. Suppose that A = {A1, . . . , AN} is a set of events where each
Ai is determined by a subset of experiments indexed by Fi ⊆ [M ]. For any i ∈ [N ] and S ⊂ [N ],
Ai is mutually independent from {Aj}j∈S if Fi ∩ (∪j∈SFj) = ∅.

Equivalently, the graph with vertex set [N ] where ij is an edge if and only if F1 ∩ F2 6= ∅, is a
dependency graph for the set of events A.

Some other special types of dependency graphs will be used in this work. Erd®s and Spencer [53]
introduced the notion of lopsidependency.

De�nition 2.8. A graph H is a lopsidependency graph (also known in the literature as negative
dependency graph [98]) for the set of events A if V (H) = [N ] and, if i ∈ [N ] and S ⊆ [N ] \ {i}
share no edges, then

Pr(Ai | ∩j∈SAj) ≤ Pr(Ai) . (2.9)
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Observe that any dependency graph for A is also a lopsidependency graph. The idea behind this
de�nition is that positive correlation among events increases the variance and thus, it increases
the probability that X = 0. For that reason, if we want to give a lower bound on (2.2), positively
correlated events do not need to be counted as �depending events�.

To provide upper bounds on (2.2), it is worthy to set the notion of positive dependency. This
was recently introduced by Lu and Székely [97, 98] in the context of events de�ned by matchings
in complete graphs or complete bipartite graphs.

De�nition 2.9. For any ε > 0, a graph H is an ε-near positive dependency graph for the set of
events A = {A1, . . . , AN} if V (H) = [N ], and the following conditions are satis�ed:

i) Pr(Ai ∩Aj) = 0 for each ij ∈ E(H), and

ii) if i ∈ [N ] and S ⊆ [N ] \ {i} share no edges, then

Pr(Ai | ∩j∈SAj) ≥ (1− ε) Pr(Ai) . (2.10)

Condition i) implies that only incompatible events can be connected. Condition ii) says that
the non�occurrence of any set of non�neighbors can not shrink the probability of Ai too much.
Thus the event Ai is almost negatively correlated from the events in the set S. The intuitive idea
behind this dependency graph is that the only bad dependencies when upper bounding (2.2) are
given by positively correlated events

events that are negative correlated and compatible with a given one, should not be considered.

like in the de�nition of lopsidependency, is that, when , the

2.2.2.2 Lower bounds and the Lovász Local Lemma

In this subsection we will show how to bound from below the probability in (2.2), conditioned
to the structure of a dependency graph for A. The classical tool for such a purpose is the Lovász
Local Lemma which was introduced by Erd®s and Lovász [52] in 1973.

All along this subsection we will consider that H is a dependency graph for A, unless otherwise
stated. Let us begin by giving its standard version.

Lemma 2.10 (Lovász Local Lemma (LLL)). Let A = {A1, . . . , AN} be a set of events and let
H be a dependency graph for A.

If there exist some constants x1, x2, . . . , xN ∈ (0, 1) such that

Pr (Ai) ≤ xi
∏

j: ij∈E(H)

(1− xj) , (2.11)

for each i ∈ [N ], then, for each T ⊂ [N ] \ {i} we have

Pr
(
Ai|

⋂
j∈T

Aj
)
≤ xi .
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In particular, for each pair S, T ⊂ [N ] of disjoint sets we have

Pr
( ⋂
i∈S

Ai|
⋂
j∈T

Aj
)
≥
∏
i∈S

(1− xi) , (2.12)

and

Pr

(
N⋂
i=1

Ai

)
>

N∏
i=1

(1− xi) . (2.13)

The same lemma can be also stated when H is a lopsidependency graph. This was noticed by
Erd®s and Spencer [53].

Lemma 2.11 (Lopsided Lovász Local Lemma (LLLL)). Let A = {A1, . . . , AN} be a set of events
and let H be a lopsidependency graph for A.

If there exist some constants x1, x2, . . . , xN ∈ (0, 1) such that

Pr (Ai) ≤ xi
∏

j: ij∈E(H)

(1− xj) , (2.14)

for each i ∈ [N ], then, for each T ⊂ [N ] \ {i} we have

Pr
(
Ai|

⋂
j∈T

Aj
)
≤ xi .

In particular, for each pair S, T ⊂ [N ] of disjoint sets we have

Pr
( ⋂
i∈S

Ai|
⋂
j∈T

Aj
)
≥
∏
i∈S

(1− xi) , (2.15)

and

Pr

(
N⋂
i=1

Ai

)
>

N∏
i=1

(1− xi) . (2.16)

Next, we present a symmetric version that can be easily derived from Lemma 2.10 and which
can be used when all the events in A play the same role.

Lemma 2.12 (Symmetric Lovász Local Lemma). Let A = {A1, . . . , AN} be a set of events and
let H be a dependency graph for A.

If Pr(Ai) = p for each i ∈ [N ], H has maximum degree ∆ = ∆(H), and

ep(∆ + 1) ≤ 1 , (2.17)

where e ≈ 2.718, then

Pr

(
N⋂
i=1

Ai

)
≥ (1− ep)N .
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Observe that condition (2.17) is very similar to the condition eδ∗ ≤ 1.

The following version of the local lemma is also a corollary from Lemma 2.10. It can be used in
the case we can assign a weight to each event in A and set the value of xi as a function of the
corresponding weight.

Lemma 2.13 (Weighted Lovász Local Lemma [105]). Let A = {A1, . . . , AN} be a set of events
and let H be a dependency graph for A.

If there exist some integer weights t1, . . . , tN ≥ 1 and a real p ≤ 1
4 such that for each i ∈ [N ]:

• Pr(Ai) ≤ pti , and

•
∑

j: ij∈E(H)(2p)
tj ≤ ti

2 ,

then

Pr

(
N⋂
i=1

Ai

)
≥

N∏
i=1

(1− (2p)ti) . (2.18)

By giving a total order on the set A we can derive a directed version of the local lemma.
One particular case was proposed by Peres and Yuval [116] in the context of lacunary integer
sequences.

Lemma 2.14 (One�sided Local Lemma [116]). Let A = {A1, . . . , AN} be a set of events and let
H be a dependency graph for A.

If there exist some real numbers x1, x2, . . . , xN ∈ (0, 1) such that for each i ∈ [N ] there is an
integer 0 < m(i) ≤ i such that

Pr
(
Ai |

⋂
k<m(i)

Ak
)
≤ xi

i−1∏
j=m(i)

(1− xj) . (2.19)

Then,

Pr

(
N⋂
i=1

Ai

)
≥

N∏
i=1

(1− xi) . (2.20)

2.2.2.3 Upper bounds

We can bound (2.2) from above by using standard concentration inequalities, around the ex-
pected value of X, as showed in Lemma 2.5. However, these bounds are far from being tight
when X is the sum of almost independent variables. Here we present some of them that will be
used in this thesis.

Janson inequality [81] is a good tool to deal with that kind of problems when the elements of A
are some special type of positively correlated events. Although we will not use it explicitly in
this work we think it is worthy to state it in order to compare it with Suen inequality.
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Theorem 2.15 (Janson Inequality [81]). Choose B1, . . . , BN subsets of a �nite set Ω. Let S ⊆ Ω
where each element ω ∈ Ω belongs to S independently with some probability. De�ne the events
Ai ∈ A for any i ∈ [N ] as Bi ⊆ S and let H be the dependency graph for A where ij is an edge
if and only if Bi ∩Bj 6= ∅. Then,

Pr

(
N⋂
i=1

Ai

)
≤ e−µ+∆∗ .

Moreover, if ∆∗ ≥ µ,

Pr

(
N⋂
i=1

Ai

)
≤ e−µ2/2∆∗ . (2.21)

Observe that in this case, an edge�minimal dependency graph H is given by ij ∈ E(H) if and
only if Bi ∩ Bj 6= ∅. Janson [81] also gave an interesting one�way large deviation inequality
extending the previous one.

A bound with the same spirit was proposed by Suen in [123], although we refer the interested
reader to the nice paper of Janson [82].

Theorem 2.16 (Suen Inequality, Theorem 2 in [82]). Let A = {A1, . . . , AN} be a set of events
and let H be a dependency graph for A. Then,

Pr

(
N⋂
i=1

Ai

)
≤ e−µ+∆∗e2δ

∗
. (2.22)

Since δ∗ > 0, Suen inequality is always worse than Janson inequality. Moreover, it is useless
if ∆∗e2δ∗ ≥ µ which happens to be the case for many problems where the dependency graph
contain many edges or has a large maximum degree.

Nevertheless, it is much more general since no assumptions on the set of events A is done. Thus,
it will be extremely useful for (locally) sparse dependency graphs.

One important remark that will carry some consequences in Chapter 6 is the fact that Suen
inequality takes into account the pairwise join probabilities among sets of mutually depending
events. That makes the inequality sensitive to the relation among pairs of events. On the other
hand, the local lemma is our main tool to provide a lower bound on 2.2 when there are not many
dependences in A. Unfortunately, it can not distinguish the di�erent nature of the dependencies
among events, but just the number of local dependencies.

Finally, as we suggested in Subsection 2.2.2.1, we will show how to use ε-near positive dependency
graphs to provide upper bounds on (2.2).

Theorem 2.17 (Lu and Székely [98]). Let A = {A1, . . . , AN} be a set of events with an ε-near-
positive dependency graph H. Then,

Pr

(
N⋂
i=1

Ai

)
≤

N∏
i=1

(1− (1− ε) Pr(Ai)) ≤ e−(1−ε)µ.
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The main drawback of this approach is that, typically, it is hard to prove the conditions needed
for a ε-near-positive dependency graph. In the case that such graph can be settled, Theorem
2.17 provides a meaningful upper bound for (2.2) even when there are many dependencies among
the events. A good example of that will be showed in Chapter 3.

2.3 Models of Random Combinatorial Structures

The idea behind the proofs that use the probabilistic combinatorics is to set a probability space on
a �nite set of combinatorial objects and to show that an object with the desired condition exists
with some probability. For this reason, it is crucial to study di�erent models of combinatorial
structures where the previous techniques can be applied.

In Chapter 6 we will study a problem in permutations. For this reason it is worthy to consider
the following model of random permutations.

A permutation π = (π1, . . . , πn) is an ordering of the set [n]. The symmetric group on n elements,
denoted by Sn, is the set of n! permutations of length n. For any sequence of distinct positive real
numbers X = (x1, . . . , xm), we de�ne the standardization of X, st(x1, . . . , xm) = σ ∈ Sm such
that xi < xj if and only if σi < σj , that is the permutation onm elements that maintains the same
relative order. For instance, the sequence (3, 8, 4, 1) standardizes to st(3, 8, 4, 1) = (2, 4, 3, 1).

A permutation π selected uniformly at random from Sn satis�es the following useful property:
for each integer m > 0, every set of positions i1, . . . , im and every σ ∈ Sm,

Pr(st(πi1 , . . . , πim) = σ) =
1

m!
.

For the sake of convenience, we introduce the following model that generates each permutation
of Sn with equal probability. Let Z1, . . . , Zn be independent uniform random variables in (0, 1)
and let π = st(Z1, . . . , Zn) . Observe that with probability exactly one all the random variables
are di�erent and thus, π is well de�ned almost surely. This model is of special interest since we
can exploit the independence property to study random permutations.

2.3.1 Models of Random Graphs

We devote this subsection to brie�y review some models of random graphs that will appear
throughout the thesis.

Let us �rst introduce the standard model of random graphs. The Erd®s�Rényi random graph
model, denoted as G(n, p), is the probability space over the set of all labeled graphs on n vertices,
where a given graph G ∈ G(n, p) appears with probability

Pr(G) = p|E(G)|(1− p)(
n
2)−|E(G)| .

All the graphs with the same number of edges have the same probability to appear. In particular,

in G(n, 1/2) each labeled graph on n vertices appears with the same probability, 2−(n2). Besides, a
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random instance of G(n, p) can be obtained by placing each edge independently with probability
p. These independence is very useful when analyzing the behavior of random graphs.

Although we will not study the Erd®s�Rényi model of random graphs, we will often refer to it
as example. An comprehensive study of random graphs and their main parameters can be found
in the monographs of Bollobás [23] and Janson, �uczak and Ruci«ski [83]. We also recommend
the Chapter 10 from the book of Alon and Spencer [8] for a nice introduction to the topic.

One of the goals of Chapter 4 is the study of identifying codes on random regular graphs. Thus,
we want to set an easy to handle model, G(n, d), that provides d�regular graphs on n vertices
with a uniform distribution. Unfortunately, it is not known how to explicitly generate a uniformly
random sample in G(n, d).

One of the most common techniques to study random d�regular graphs is to set a probability
space over a larger class of multigraphs denoted by G∗(n, d). This is known as the Con�guration
Model [15, 22].

In this model, a d�regular multigraph on n vertices is obtained by selecting some perfect matching
of Knd at random (see [129] for further reference). We will only consider cases where nd is even,
as otherwise there does not exist any d�regular graph on n vertices. In the Con�guration Model,
the set of vertices in Knd is partitioned into n cells of size d and each cell Wv is associated to
a vertex v of the random regular graph. An edge e of a perfect matching of Knd induces either
a loop in v (if it connects two elements of Wv) or an edge between v and u (if it connects a
vertex from Wv to a vertex in Wu). This model produces di�erent multigraphs with di�erent
probability, depending on the number of loops and multiedges. Since every d�regular graph on
n vertices has neither loops nor multiedges, each of them is produced with the same probability.

It is showed in [129] that the probability the Con�guration Model generates a simple graph
satis�es

Pr
(
G is simple

)
= (1 + o(1))e

1−d2

4 if d = o(
√
n). (2.23)

Thus, for constant d any property that holds with probability tending to 1 for G∗(n, d) as n→∞,
will also hold with probability tending to 1 for G(n, d).

If d → +∞ when n → +∞, one must show that the statements in G∗(n, d) hold with high
probability; in particular, with probability large enough to beat (2.23). In this case, another
useful tool for such values of d is the Switching method (see [102, 93, 39, 113]).

Finally we introduce another model of random graphs that generalizes the Erd®s�Rényi model.
Let G be a labeled graph and p < 1, then the graph Gp is an element from a probability space
over the spanning subgraphs of G, where each labeled subgraph H ⊆ G appears with probability

Pr(G) = p|E(H)|(1− p)|E(G)|−|E(H)| .

As before, an element H of this probability space can be modeled by deleting each edge from
G independently with probability 1 − p. A well�known instance of this model is the classical
Erd®s�Rényi random graph G(n, p), where G = Kn. Many results that are showed in the Erd®s�
Rényi model G(d, p) can be translated to the Gp model, provided that G has minimum degree
at least d. The model Gp has been widely studied [37, 65, 91, 92]. Alon [3] generalized this
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notion by deleting each edge uv ∈ E(G) with di�erent probabilities puv. We will use this model
in Chapter 5 to show the existence of some special subgraphs.





CHAPTER 3

Rainbow Perfect Matchings in Complete

Bipartite Graphs

3.1 Introduction

A subgraph H of an edge�colored graph G is rainbow if no color appears twice in is edges. The
study of rainbow subgraphs has a large literature; see e.g. [6, 64, 84, 85, 95]. In this chapter of the
thesis we deal with rainbow perfect matchings of an edge�colored complete bipartite graph Kn,n.
Edge�colored complete bipartite graphs Kn,n are equivalent to integer matrices of size n × n
(also called n�squares), and the problem of �nding a rainbow perfect matching is equivalent to
�nding a latin transversal of length n in the corresponding n�square (that is, a set of n pairwise
distinct entries no two in the same row nor the same column). If an n�square contains exactly n
copies of each entry, it is called equi�n�square. In particular, proper edge�colorings of Kn,n with
n colors are equivalent to latin squares, an interesting subclass of equi�n�squares. The following
is a longstanding conjecture of Ryser [118] on the existence of latin transversals in latin squares:

Conjecture 3.1 (Ryser). Every latin square of odd order admits a latin transversal.

The above conjecture is not true for even order latin squares. For instance, the latin square
A = (aij) where aij = i + j (mod n) contains no latin transversals for even n. Nevertheless, it
was also conjectured by Brualdi that every latin square has a partial latin transversal, a set of
pairwise distinct entries no two in the same row nor column, of length n−1. This conjecture was
extended by Stein [121] to equi�n�squares. Recently, all these conjectures have been generalized
by Aharoni et al. [2].

There are di�erent approaches to address these conjectures. For instance, Hatami and Shor [77]
proved that every latin square has a partial transversal of size n − O(log2 n). Snevily [120]
conjectured that every subsquare of the addition table of an abelian group of odd order has a
latin transversal. This conjecture was eventually proved by Arsovski [10]. Another approach was
given by Erd®s and Spencer [53]. They proved the following result:

29
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Theorem 3.2 ([53]). Let A be an n�square. If every entry in A appears at most n−1
4e times,

then A has a latin transversal.

In order to get the above result the authors developed the lopsided version of the Lovász Local
Lemma. The main idea of this version is to generalize the dependency graph through the so called
lopsidependency graph. In this graph, non edges may no longer represent mutual independence,
and the hypothesis of the Local Lemma is replaced by a weaker assumption (see De�nition 2.8).

In this chapter we address two problems: �rst, the asymptotic enumeration of rainbow perfect
matchings in a given edge�coloring of Kn,n, and second, the existence of rainbow perfect match-
ings in random edge�colorings of Kn,n. We consider not necessarily proper edge�colorings, but
the asymptotic enumeration applies to proper ones as well.

Theorem 3.2 gives su�cient conditions on the existence of at least one latin transversal. One of
the goals of this work is to show that, under only slightly stronger assumptions, we can estimate
the number of latin transversals. Although there is no speci�c conjecture on the number of latin
transversals of a latin square, Vardi [125] proposed the following conjecture for the particular
class of addition tables of cyclic groups.

Conjecture 3.3 ([125]). Let z(n) be the number of latin transversals in the table of the cyclic
group of order n. Then, there exist two constants 0 < c1 < c2 < 1 such that

cn1n! ≤ z(n) ≤ cn2n! ,

for all odd n.

Recall that z(n) = 0 if n is even. In a more general setting, McKay, McLeod and Wanless [100]
showed that c2 < 0.614. Giving a lower bound on z(n) is still an open problem. It is conjectured
in [40] that

z(n) ∼ cnn! , (3.1)

with c ≈ 0.39.

Under the hypothesis of Theorem 3.2, we provide upper and lower bounds for the number of
rainbow perfect matchings in an edge�colored Kn,n. The techniques used to derive these bounds
are inspired by the framework devised by Lu and Székely [98] to obtain asymptotic enumeration
results using the Lovász Local Lemma (see Section 2.2.2).

Our �rst result gives an asymptotic estimation of the probability that a random perfect matching
is rainbow.

Theorem 3.4. Consider an edge�coloring of Kn,n such that no color appears more than n/k
times. Let M denote the family of pairs of non�incident edges that have the same color and
let M be a perfect matching of Kn,n chosen uniformly at random. Denote by XM the indicator
random variable of the event that M is rainbow and let µ = |M|/n(n− 1).

If k ≥ 13.66, then there exist constants 0 < c1(k) < 1 < c2(k) depending only on k such that

e−c2(k)µ ≤ Pr(XM = 1) ≤ e−(c1(k)+o(1))µ .
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In the proof of Theorem 3.4 we obtain the following explicit constants: c1(k) = 1− 3/k − 60/k2

and c2(k) = 1 + 16/k. In particular, the lower bound on Theorem 3.4 holds for every k ≥ 10.93.

We note that the existence of a rainbow perfect matching in Theorem 3.2 is ensured with the
smaller value k ≥ 4e ≈ 10.87. We also observe that the bounds on the probability of a rainbow
perfect matching in Theorem 3.4 depend only on the cardinality ofM, but not on the particular
structure of the pairs of monochromatic non�incident edges composingM. The dependency on
|M| is natural, since an edge�coloring in which all pairs of monochromatic edges are mutually
incident (|M| = 0) has n! rainbow perfect matchings.

In particular, observe that any proper edge�coloring where each color appears exactly n/k times,
satis�es |M| = (1 + o(1))n3/2k, provided that k = o(n). This implies the following corollary of
Theorem 3.4, which has the same form as Conjecture 3.3.

Corollary 3.5. Let r(C) be the number of rainbow perfect matchings in a proper edge�coloring
C of Kn,n in which each color appears exactly n/k times, k ≥ 13.66. Then

γ1(k)nn! ≤ r(C) ≤ γ2(k)nn! .

for some constants 0 < γ1(k) < γ2(k) < 1 which depend only on k.

The results in Theorem 3.4 require the condition k ≥ 13.66. By using this probabilistic approach,
it seems di�cult to drop this condition to k ≥ 1, in order to cover equi�n�squares and latin
squares. This prompts us to ask what can we say about most edge�colorings of Kn,n in the
case k ≥ 1. Observe that we cannot use less than n colors. Thus we study the existence of
rainbow perfect matchings in random edge�colorings. We restrict ourselves to colorings with a
�xed number s = kn of colors. We de�ne two natural random models that �t with this condition.

In the Uniform random model, Cu(n, s), each edge gets one of the s colors independently and
uniformly at random. In this model, every possible edge�coloring with at most s colors appears
with the same probability. In the Regular random model, Cr(n, s), we choose an edge�coloring
uniformly at random among all the equitable edge�colorings using s colors. Recall that a coloring
is called equitable if the size of the color classes di�er in at most one. For the sake of simplicity,
we will assume that s divides n2. Although the models have the same expected behavior, we
consider that both are interesting to analyze. Analogous results to the one in Theorem 3.4 can
be proved for these random models.

Proposition 3.6. Let C be a random edge�coloring of Kn,n in the model Cu(n, s) (or Cr(n, s))
with s = kn colors (k > 1) and let M any matching of Kn,n. Then,

Pr(XM = 1) = e−(c(k)+o(1))n
2

s ,

where c(k) = 2k
(
(k − 1) log

(
k−1
k

)
+ 1
)
.

For k = 1, we have Pr(XM = 1) = e−(2+o(1))µ.

Obviously, we have that c2(k) < c(k) < c1(k), for any k ≥ 13.66, where c1(k) and c2(k) are
the constants appearing in Theorem 3.4. It is worthy of notice that, for any k ≥ 1, we have
c(k) > 1. Observe also that when s = n, the number of rainbow perfect matchings is w.h.p.
around e−nn! . Since e−1 ≈ 0.368, if (3.1) holds, then an edge�coloring induced by a cyclic group
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of odd order would contain more rainbow perfect matchings than a typical edge�coloring of the
complete bipartite graph.

Since now, the edges�colorings are random, we have a stronger concentration of the rainbow
perfect matching probability than in the case of arbitrary edge�colorings. By using the random
model Cu(n, s) we can show that for any s ≥ n, almost all edge�colorings have a rainbow perfect
matching.

Theorem 3.7. An edge�coloring of Kn,n chosen at random from the model Cu(n, s) with s ≥ n
colors, contains a rainbow perfect matching with high probability.

To prove Theorem 3.7 we use the second moment method on the random variable that counts the
number of rainbow perfect matchings when the edge�coloring is chosen according to the model
Cu(n, s). This result can be proved for the model Cr(n, s) using the same ideas. In particular,
this implies that the Ryser conjecture is true with high probability for equi�n�squares.

This chapter is organized as follows. In Section 3.2 we provide a proof for Theorem 3.4. The
random coloring models are de�ned in Section 3.3, where we also prove Proposition 3.6. Theo-
rem 3.7 is proved in Section 3.4. Finally, in Section 3.5, we give some remarks and discuss some
open problems on rainbow perfect matchings that arise from our work.

3.2 Asymptotic enumeration of rainbow matchings

In this section we prove Theorem 3.4. The theorem provides exponential upper and lower bounds
for the probability that a random perfect matching in an edge�colored complete bipartite graph
is rainbow.

3.2.1 Lower bound

For a given perfect matching, the property of being rainbow can be expressed in terms of the
non occurrence of certain partial matchings. One of the standard tools to give a lower bound for
the probability of the existence of a structure that avoids some given bad events is the Lovász
Local Lemma. As it is showed in [53], it is convenient in our current setting to use the Lopsided
version of Lemma 2.10.

Recall that M denotes the family of pairs of non�incident edges that have the same color in a
given edge�coloring of Kn,n. For each such pair {e, f} ∈ M, let Ae,f (or Af,e) denote the event
that the pair {e, f} belongs to the random perfect matching M . We de�ne AM to be the set of
events Ae,f for any {e, f} ∈ M. Consider the following dependency graph:

De�nition 3.8. The rainbow dependency graph H has the family M as its vertex set. Two
elements inM are adjacent in H if they contain at least two incident edges in Kn,n, that is they
are incompatible.

Consider the graph H ′ obtained from the graph H by adding an edge between two matchings if
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they have one common edge and they are compatible. Erd®s and Spencer [53] showed that H ′ is
a lopsidependency graph forM. By Theorem 3 in [98] we have that H is also a lopsidependency
graph for the set of events AM with M ∈ M. The following lower bound can be obtained in a
similar way to Lu and Székely [98, Lemma 2].

Lemma 3.9. Given an edge�coloring of Kn,n where each color appears at most n/k times and
an arbitrary color c, let M0 = M1 ∪M2 be a set of matchings, where the elements of M1 are
single edges with color c and the elements ofM2 are monochromatic pairs of nonincident edges.
We denote by m0 the size ofM0.

If k ≥ 13.66 and n > 40000, then for every disjoint sets S, T ⊆ [m0]

Pr

⋂
i∈S

Ai|
⋂
j∈T

Aj

 ≥ e−(1+20/k)
∑
i∈S Pr(Ai) . (3.2)

In particular, if S = [m0] and T = ∅, we have

Pr

(
m0⋂
i=1

Ai

)
≥ e−(1+20/k)µ , (3.3)

where µ =
∑m0

i=1 Pr(Ai).

Moreover, if the color c does not appear in E(Kn,n), for every constant k ≥ 10.93 and n > 200,

Pr

(
m0⋂
i=1

Ai

)
≥ e−(1+16/k)µ . (3.4)

Proof. Set AM0 = {A1, . . . , Am0}, where Ai = AM for some M ∈ M0. Since each color does
not appear many times, we have |M1| ≤ n/k. Each of the n2 edges belongs to at most n/k − 1
matchings inM2. Thus,

|M2| ≤
n2(n/k − 1)

2
=
n2(n− k)

2k
.

If M ∈ M1, we have p1 = Pr(AM ) = 1/n whereas if M ∈ M2, p2 = Pr(AM ) = 1
n(n−1) .

Therefore,

µ =
|M1|
n

+
|M2|

n(n− 1)
≤ n

2k
, (3.5)

if n is large enough with respect to k.

Let us set t = |M1|/n + 4/k. If no edge is colored with color c, that is |M1| = 0, we have
t = 4/k. Then it can be checked that for every k ≥ 10.93 n ≥ 200 and p ≤ p2

pe(1+4t)t < 1− e−(1+4t)p . (3.6)

If |M1| > 0, then t ≤ 5/k and for every k ≥ 13.66, n > 40000 and p ≤ p1, (3.6) is also satis�ed.

In both cases, we can choose xi ∈ (Pr(Ai)e
(1+4t)t, 1− e−(1+4t) Pr(Ai)) for each i ∈ [m0]. Observe

that the maximum number of matchings inM2 that are incompatible with a given matching M
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is at most 2|M |n(n− 1)/k: given a matching M ∈M2, there are at most 2|M |n possibilities to
select an edge e incident to either some edge in M , and at most n/k − 1 choices for a second
edge f with the same color than e. Hence, for any i ∈ [m0], we have that∑

ij∈E(H)

Pr(Aj) ≤ |M1| ·
1

n
+

4n(n− 1)

k
· 1

n(n− 1)
= t .

Using the previous inequalities, for any i ∈ [m0], we have

Pr(Ai) < xie
−(1+4t)t < xi

∏
ij∈E(H)

e−(1+4t) Pr(Aj) < xi
∏

ij∈E(H)

(1− xj) . (3.7)

Let H0 be the graph on the set of events indexed by M0, where two vertices are adjacent if
the corresponding matchings are incompatible. By Theorem 3 in [98], H0 is a lopsidependency
graph forM0. Hence, we can use the Lopsided version of the Local Lemma (see Lemma 2.11),
in particular (2.15) and (2.16), to �nish the proof of the lemma.

3.2.2 Upper bound

To provide an upper bound on the number of rainbow matchings we use the new enumeration
tool provided by Lu and Székely in [98] (see Theorem 2.17 in Chapter 2). For such a purpose,
we must set a ε�near�positive dependency graph H (see De�nition 2.9 in Chapter 2).

Lu and Székely [98] showed that an ε�near�positive dependency can be constructed using a
family of matchingsM. Unfortunately, the conditions of [98, Theorem 4] which would provide
an upper bound for our case, do not apply to our family M of matchings. We give instead a
direct proof for the upper bound which is inspired by their approach.

Lemma 3.10. With the hypothesis of Lemma 3.9, the rainbow dependency graph H is an ε�
near�positive dependency graph with ε = 1− e−(3/k+60/k2+o(1)).

Proof. SetAM = {A1, . . . , Am}, where Ai = Ae,f for some {e, f} ∈ M. The rainbow dependency
graph H for AM, clearly satis�es condition i) in the de�nition of ε�near dependency graph, since
two adjacent events contain incident edges and a matching is composed by a set of non�incident
edges. For condition ii) we want to show that, for each i and each I ⊆ {j | ij 6∈ E(H), j 6= i},
we have the inequality

Pr(Ai|B) ≥ (1− ε) Pr(Ai) ,

where B = ∩j∈IAj . This is equivalent to show that

Pr(B|Ai) ≥ (1− ε) Pr(B) .

Let {a1, . . . , an} and {b1, . . . , bn} be the vertices of the two sides of the bipartite graph Kn,n. By
symmetry, we may assume thatAi consists of the event related to the 2�matching {an−1bn−1, anbn}.
Then {Aj : j ∈ I} consists of some events related to the 2�matchings that coincide with
{an−1bn−1, anbn} in exactly one edge , indexed by I1; and some events related to the 2�matchings
in Kn′,n′ = Kn,n − {an−1, an, bn−1, bn}, where n′ = n − 2, indexed by I2. The edge-coloring in
Kn,n induces an edge coloring in Kn′,n′ where each color appears at most n′/k′ times, where
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k′ = k(1 − 2/n). Consider now the probability space of random matchings of Kn′,n′ and let us
de�ne the following event B′ = ∩j∈IA′j , where A′j is the event that the edges in Kn′,n′ corre-
sponding to Aj are included in the random matching. Observe that if j ∈ I1 then A′j corresponds
to only one edge while if j ∈ I2 then it corresponds to two edges.

Thus,

Pr(B|Ai) = Pr(B′) . (3.8)

For convenience, we may split the event B corresponding to ∩j∈IAj in several events depending
on the perfect matching containing {an−1br, anbs}. For any r, s ∈ [n], r 6= s, let Cr,s denote the
event related to the 2�matching {an−1br, anbs}. De�ne Ir,s ⊂ I as the maximal subset of indices
in I, whose corresponding edges meet none of the two vertices br, bs. Set Br,s = ∩j∈Ir,sAj . Let
us show that

Pr(B) ≤ 1

n(n− 1)

∑
r 6=s

Pr(B′r,s) , (3.9)

where, as before, B′r,s = ∩j∈Ir,sA′j .

We note that, by the de�nition of Br,s, we have B ∩ Cr,s = Br,s ∩ Cr,s. Thus,

Pr(B) =
∑
r 6=s

Pr(B ∩ Cr,s) =
∑
r 6=s

Pr(Br,s ∩ Cr,s) .

We claim that for any r, s ∈ [n], r 6= s,

Pr(Br,s|Cr,s) ≤ Pr(Br,s|Cn−1,n) .

If Ir,s ⊆ I2, by the de�nition of I2 none of the perfect matchings involved in ∩j∈I2Aj meets
vertices in {an−1an, bn−1bn}. In this case, for all r, s, r 6= s,

Pr(Br,s|Cr,s) = Pr(Br,s|Cn−1,n) .

Suppose then that Ir,s∩I1 6= ∅. If some event indexed in I1 corresponds to a matching containing
the edge anbn (or an−1bn−1) and s 6= n (or r 6= n− 1), we have

Pr(Br,s|Cr,s) = 0 ,

Otherwise, we have Pr(Br,s|Cr,s) = Pr(Br,s|Cn−1,n) as before.

Moreover, we observe that Pr(Br,s|Cn−1,n) = Pr(B′r,s). Therefore

Pr(B) =
∑
r 6=s

Pr(Br,s|Cr,s) Pr(Cr,s) ≤
1

n(n− 1)

∑
r 6=s

Pr(Br,s|Cn−1,n) =
1

n(n− 1)

∑
r 6=s

Pr(B′r,s) ,

giving inequality (3.9).

LetMI be the set of matchings corresponding to the events A′j for j ∈ I. By applying Lemma 3.9
with k′,M0 =MI , S = I \ Ir,s and T = Ir,s, we obtain

Pr(B′) = Pr(B′r,s) Pr(∩j∈SA′j | B
′
r,s) ≥ Pr(B′r,s)e

−(1+20/k+o(1))
∑
i∈S Pr(Ai) , (3.10)
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for any r, s, r 6= s, where xj are given in the proof of the lemma. By combining (3.8) with (3.10)
we get

n(n− 1) Pr(B|Ai) ≥
∑
r 6=s

Pr(Br,s)e
−(1+20/k+o(1))

∑
i∈S Pr(Ai) . (3.11)

Now we give a uniform bound on
∑

i∈S Pr(Ai). Recall that S = I \ Ir,s is the subset of indices
in I, whose corresponding edges are incident to either br or bs. We consider the following two
sets: S1 = I1 \ Ir,s and S2 = I2 \ Ir,s. The size of both sets can be bounded independently of r
and s by

|S1| ≤
n

k

|S2| ≤ 2n′
(
n′

k′
− 1

)
≤ 2

n(n− 1)

k
.

Then we have ∑
i∈S

Pr(Ai) ≤
|S1|
n

+
|S2|

n(n− 1)
≤ 3/k . (3.12)

By using (3.11) with (3.12) and (3.9) we get

Pr(B|Ai) ≥ e−(3/k+60/k2+o(1)) 1

n(n− 1)

∑
r 6=s

Pr(Br,s) ≥ e−(3/k+60/k2+o(1)) Pr(B) . (3.13)

Therefore,
ε = 1− e−(3/k+60/k2+o(1)) ,

satis�es the conclusion of the lemma.

Now we are able to prove Theorem 3.4.

Proof of Theorem 3.4. Set AM = {A1, . . . , Am}, where Ai = Ae,f for some {e, f} ∈ M.

By Lemma 3.10, the graph H from De�nition 3.8 is an ε�near�positive dependency graph with
ε = 1−e−(3/k+60/k2+o(1)). It follows from Theorem 2.17 that the probability of having a rainbow
perfect matching is upper bounded by

Pr

(
m⋂
i=1

Ai

)
≤

m∏
i=1

(1− (1− ε) Pr(Ai)) ≤ e−(1−ε)µ .

By plugging in our value of ε and by using e−(3/k+60/k2+o(1)) ≥ 1− 3
k −

60
k2 + o(1) we obtain

Pr

(
m⋂
i=1

Ai

)
≤ e−(1−3/k−60/k2+o(1))µ .

Combining this upper bound with the lower bound obtained directly from (3.4) in Lemma 3.9
we obtain

exp

(
−
(

1 +
16

k

)
µ

)
≤ Pr

(
m⋂
i=1

Ai

)
≤ exp

(
−
(

1− 3

k
− 60

k2
+ o(1)

)
µ

)
.

This proves the theorem.
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Observe that when k is su�ciently large, the asymptotic estimation coincides with the one
obtained by assuming that the bad events Ai are mutually independent.

3.3 Random colorings

In this section we will analyze the existence of rainbow perfect matchings in random edge�
colorings of Kn,n.

Recall that, in the uniform random coloring model Cu(n, s), each edge of Kn,n is given a color
uniformly and independently chosen from a set of s colors, i.e. every possible coloring with at
most s colors appears with the same probability.

In the regular random coloring model Cr(n, s) a coloring is chosen uniformly at random among
all colorings of E(Kn,n) with equitable color classes of size n2/s. Let us give a set up for this
model. Consider two sets A and B each with n2 points. Partition A in s cells C1, . . . , Cs, each
with n2/s elements, representing the di�erent colors. Let B represent the edges of Kn,n. A
perfect matching between the points of A and B induces an equitable edge�coloring of the entire
graph. The probability space Cr(n, s) of colorings is settled by choosing such a perfect matching
uniformly at random. Let us show that Cr(n, s) is a uniform model for the set of equitable
edge�colorings of Kn,n

Lemma 3.11. Every equitable edge�coloring with s colors has the same probability in the Cr(n, s)
model.

Proof. We show that every equitable edge�coloring arises from the same number of perfect match-
ings from A to B. Let C be an equitable edge�coloring of Kn,n. Let Ei ⊂ B be the set of edges
that have color i under C. We have |Ei| = n2/s and there are (n2/s)! perfect matchings from
Ci to Ei assigning color i to the edges in Ei. Therefore, there are exactly ((n2/s)!)s perfect
matchings from A to B giving rise to the edge�coloring C. This number does not depend on
C.

We consider these two models since they simulate the worst situation among the colorings ad-
mitted in Theorem 3.4: the bounds on the probability that a perfect matching is rainbow only
depends on the size of M, and this set has its largest cardinality when there are few colors
and the number of occurrences of each of them is maximized. This means that there are exactly
s = nk colors with n/k occurrences each. Observe that in both random models, the expected size
of each color class is also n/k. In this sense, they are congruous to the hypothesis of Theorem 3.4.

Proof of Proposition 3.6. Consider an edge�coloring obtained using the Cu(n, s) model and let
M denote a �xed perfect matching of Kn,n. If XM is the random variable indicating that M is
rainbow, then

Pr(XM = 1) =
s

s
· s− 1

s
· s− 2

s
· . . . · s− (n− 1)

s

=

n−1∏
i=0

(
1− i

s

)
. (3.14)
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For s = n we can get directly from (3.14)

Pr(XM = 1) =
n!

nn
= e−(2+o(1))µ .

Assume s > n. By writing (1− x) = exp (log (1− x)) for 0 < x < 1, we have

Pr(XM = 1) =

n−1∏
i=0

exp

(
log

(
1− i

s

))

= exp

(
n−1∑
i=0

log

(
1− i

s

))

= exp

(∫ n

0
log
(

1− x

s

)
dx + e1(n, s)

)
,

where e1(n, s) is the error term obtained from replacing the sum for the integral.

Since log
(
1− i

s

)
is decreasing, we have

n∑
i=1

log

(
1− i

s

)
≤
∫ n

0
log
(

1− x

s

)
dx ≤

n−1∑
i=0

log

(
1− i

s

)
.

Thus, the error term can be bounded by

e1(n, s) ≤

∣∣∣∣∣
n−1∑
i=0

log

(
1− i

s

)
−
∫ n

0
log
(

1− x

s

)
dx

∣∣∣∣∣ (3.15)

≤

∣∣∣∣∣
n−1∑
i=0

log

(
1− i

s

)
−

n∑
i=1

log

(
1− i

s

)∣∣∣∣∣
=
∣∣∣log

(
1− n

s

)∣∣∣
= log

(
k

k − 1

)
= O(1) ,

where k = s/n.

Also, ∫ n

0
log
(

1− x

s

)
dx = −(s− n) log

(
s− n
s

)
− n . (3.16)

Using µ ∼ n
2k , we get

Pr(XM = 1) = exp

(
−
(

(k − 1) log

(
k − 1

k

)
+ 1

)
n+ e1(n, s)

)
= exp

(
−2k

(
(k − 1) log

(
k − 1

k

)
+ 1 + o(1)

)
µ

)
,

proving the �rst part of the proposition for the Cu(n, s) model.

Now we study the probability that a �xed perfect matching M is rainbow in the Cr(n, s) model.
According to the construction of the Cr(n, s) model, the probability of M being rainbow is
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Pr(XM = 1) =
n2

n2
·
n2 − n2

s

n2 − 1
·
n2 − 2n

2

s

n2 − 2
· . . . ·

n2 − (n− 1)n
2

s

n2 − (n− 1)

=

n−1∏
i=0

(
1− i(n2 − s)

s(n2 − i)

)

= exp

(
n−1∑
i=0

log

(
1− i(n2 − s)

s(n2 − i)

))

= exp

(∫ n

0
log

(
1− x(n2 − s)

s(n2 − x)

)
dx+ e2(n, s)

)
,

where e2(n, s) is the error term obtained from replacing the sum for the integral.

If s = n we have ∫ n

0
log

(
1− x(n− 1)

(n2 − x)

)
dx = −n(n− 1) log

(
n

n− 1

)
,

which, by using the Taylor expansion of the logarithm, gives

Pr(XM = 1) = e−(2+o(1))µ .

By analogous arguments to those in (3.15), we can bound the error e2(n, s) = O(1). In the case
where s > n, and using k = s/n, we have∫ n

0
log

(
1− x(n2 − s)

s(n2 − x)

)
dx = −

(
(k − 1) log

(
k − 1

k

)
− (n− 1) log

(
n− 1

n

))
n

= −
(

(k − 1) log

(
k − 1

k

)
+ 1 + o(1)

)
n .

Hence

Pr(XM = 1) = exp

(
−2k

(
(k − 1) log

(
k − 1

k

)
+ 1 + o(1)

)
µ

)
.

Note that, for both models of random edge�colorings, the probability that a �xed perfect match-
ing is rainbow is asymptotically the same. Observe that for the two random models we obtain
the exact asymptotic value of the probability, while bounds provided by Theorem 3.4 (when the
size |M| of the set of bad events is maximum) are probably not sharp, although consistent with
the values for the random models.

We �nally observe that for both models, when k = 1 we have Pr(XM = 1) = e−(2+o(1))µ, while
if k → +∞, then Pr(XM = 1)→ e−µ since

2k

(
1− (k − 1) log

(
k

k − 1

))
= 1 +O

(
1

k

)
.

This re�ects the idea that, when k is large, the number of bad events decreases and the model
behaves as though they were independent.
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3.4 Existence of rainbow perfect matchings

The aim of this section is to prove that with high probability there exists a rainbow perfect
matching for any edge coloring of E(Kn,n) with s ≥ n colors. We only consider the Cu(n, s)
model, but the results can be adapted to the Cr(n, s) model as well. The number of rainbow
perfect matchings is counted by X =

∑
M XM , which, according to Proposition 3.6, has expected

value

E(X) = E(X) = Pr(XM = 1)n! = exp

(
−2k

(
(k − 1) log

(
k − 1

k

)
+ 1 + o(1)

)
µ

)
n! .

Recall that µ is the expected size of M, the set of pairs of non incident monochromatic edges.
In order to have a rainbow perfect matching we just need to show that X 6= 0.

Proof of Theorem 3.7. To show that there exists some rainbow perfect matching w.h.p. we will
use the second moment method, in particular Lemma 2.5. Observe that in our case X = 0 is
equivalent to the non�existence of rainbow perfect matchings. Therefore, we need to compute
σ2(X) and show that it is asymptotically smaller than E(X)2. Note that

E(X2) =
∑

(M,N)

E(XMXN ) .

Let M and N denote two perfect matchings of Kn,n with |M ∩N | = z. Then

E(XMXN ) = Pr(XM = 1) Pr(XN = 1 | XM = 1) .

If XM = 1, we know that the edges ofM ∩N are rainbow. In the remaining n−z edges to color,
we must avoid the z colors that appear in M ∩N . Thus,

Pr(XN = 1 | XM = 1) =
n−1∏
i=z

(
1− i

s

)
∼ exp

(
α(z)z2

2s

)
Pr(XM = 1) . (3.17)

where 1 ≤ α(z) ≤ 2, as can be derived from (3.16). Observe that the events XM = 1 and XN = 1
are positively correlated.

For any perfect matchingM and any integer z, such that 0 ≤ z ≤ n, we claim that there exist at
most

(
n
z

) (
e−1(n− z)! + 1

)
perfect matchings N such that |M ∩N | = z. We can assume that M

is given by the identity and N by a permutation π ∈ Sn. There are
(
n
z

)
ways of choosing which

edges of M will be shared by N , i.e. the set I = {i : π(i) = i}. In order that π corresponds
to a matching N with exactly z common edges with M , its restriction to [n] \ I must be a
derangement. It is well known that the proportion of derangements among all the permutations
of length n− z is

n−z∑
i=0

(−1)i

i!
≤ e−1 +

1

(n− z)!
.

Therefore there are at most e−1(n − z)! + 1 ways to complete the perfect matching concluding
our claim. Hence,

E(X2) = n!

n∑
z=0

(
n

z

)(
e−1(n− z)! + 1

)
Pr(XM = 1) Pr(XN = 1 | XM = 1).
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Since σ2(X) = E(X2)− E(X)2,

σ2(X)

E(X)2
=
n!
∑n

z=0

(
n
z

) (
e−1(n− z)! + 1

)
Pr(XM = 1) Pr(XN = 1 | XM = 1)

(n! Pr(XM = 1))2
− 1

= e−1
n∑
z=0

1

z!

(
1 +

e

(n− z)!

)
Pr(XN = 1 | XM = 1)

Pr(XM = 1)
− 1 .

By the sake of simplicity, let us de�ne

f(s) =
n∑
z=0

1

z!

(
1 +

e

(n− z)!

)
Pr(XN = 1 | XM = 1)

Pr(XM = 1)
.

Then, using (3.17)

f(s) ≤
n∑
z=0

1

z!

(
1 +

e

(n− z)!

)
exp

(
α(z)z2

2s

)

≤
∞∑
z=0

1

z!
exp

(
α(z)z2

2s

)
+

e

n!

n∑
z=0

(
n

z

)
exp

(
α(z)z2

2s

)

=
∞∑
z=0

1

z!

∞∑
t=0

1

t!

(
α(z)z2

2s

)t
+

e

n!

n∑
z=0

(
n

z

) ∞∑
t=0

1

t!

(
α(z)z2

2s

)t
=
∞∑
t=0

ats
−t ,

where at = 1
2tt!

(∑∞
z=0

(α(z)z2)t

z! + e
n!

∑n
z=0

(
n
z

)
(α(z)z2)t

)
. Observe that a0 = e

(
1 + 2n

n!

)
. Since

s ≤ n2,
f(s) ≤ e+O

(
s−1
)
.

Observe that s ≥ n, otherwise, Pr(XM = 1) = 0 in the Equation (3.14). Hence,

σ2(X)

E(X)2
= e−1f(s)− 1 = O

(
s−1
)
→ 0 .

This concludes the proof.

Corollary 3.12. For any ε > 0, an equitable edge�coloring of Kn,n with s colors, s ≥ n, contains
more than (1− ε)c(k)nn! rainbow perfect matchings with probability at least 1−O(ε−2s−1).

Proof. It follows from the proof of Theorem 3.7 that Pr(X > (1 − ε)E(X)) ≤ σ2(X)
ε2E(X)2 =

O
(
ε−2s−1

)
→ 0.

3.5 Concluding remarks and open questions

1 Theorem 3.4 provides upper and lower bounds for the number of rainbow perfect matchings of a
given edge�coloring of Kn,n such that the number of occurrences of each color is at most n/k and
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k ≥ 13.66. It is probably not true that each such edge�coloring contains e−(1+o(1))c(k)µn! rainbow
perfect matchings, where c(k) is de�ned in Proposition 3.6. However, it would be interesting
to see how tight are these upper and lower bounds c1(k) and c2(k) provided in Theorem 3.4 by
showing extremal examples.

2 One interesting question is how far can k be pushed down in order to still have an exponentially
fraction of rainbow perfect matchings.

Question 3.13. Which is the minimum value k0 > 1 such that any edge�coloring of Kn,n where
any color appears at most n/k0 times, has at least cnn!, for some c > 0.

Determining the smallest value of k with this property may shed some additional light on the open
conjectures on latin transversals. Corollary 3.12 shows that almost all equitable edge�colorings
with n colors contain an exponential fraction of perfect matchings that are rainbow.

In the same spirit, Wanless [126, Section 3] de�nes the function f(n) to be the minimum number
of latin transversals among all the latin squares of order n (case k = 1). Notice that f(2n) = 0
and Ryser's conjecture states that f(2n+ 1) > 0 for any n ≥ 0. As far as we know, this function
has not been studied yet.

Recently, the constant 4e ≈ 10.87 has been improved to 256/27 ≈ 9.48 by Bissacot et al. [20].
Their proof uses a Cluster version of the local lemma. Thus, it is possible that the same techniques
we used in this chapter could be applied to extend our result up to a better constant.

3 When s = n, the proof of Theorem 3.7 shows that the probability that a random coloring in
Cu(n, s) has no rainbow perfect matchings is

Pr(Cu(n, s) has no rainbow perfect matching) = O
(
n−1

)
. (3.18)

The proportion of Latin squares among the set of square matrices with n symbols is of the order
of e−(1+o(1))2n2

, so that this estimation falls short to prove an asymptotic version of the original
conjecture of Ryser. We have provided a probabilistic approach to the problem by showing that
every equi�n�square admits a latin transversal with high probability. Even if there are some
almost sure results on Latin squares (see e.g.[101, 32]), and some results on generating random
latin squares [80, 103], to our knowledge there are no random models for latin squares, which
could set the way to such an asymptotic version of the conjectures of Ryser or Brualdi on the
existence of latin transversals in latin squares.

4 The following example shows how to construct exponentially many latin squares (in general
edge�colorings of K2k,2k with 2k colors) which have no rainbow perfect matchings. Let k be odd.
Choose two arbitrary colorings α1, α2 of Kk,k with colors {a1, ...ak} and two arbitrary colorings
β1, β2 of Kk,k with colors {b1, ..., bk}.

Let {A1 ∪ A2, B1 ∪ B2} be the stable sets of K = K2k,2k with |Ai| = |Bi| = k and use αi for
the edges connecting Ai with Bi, i = 1, 2, and βi for the edges connecting Ai with Bj , i 6= j.
Suppose that the resulting edge�colored graph has a rainbow perfect matching M . Since M
must use the k colors a1, . . . , ak, we may assume that it uses at least (k + 1)/2 of these colors
from the subgraph K[A1, B1] induced by A1 ∪ B1. But then each of the subgraphs K[A1, B2]
and K[A2, B1] can only use (k − 1)/2 colors b1, . . . , bk and some color bi can not be used in the
perfect matching, contradicting that M is rainbow.
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It is easy to see that there are about nn
2
many equitable edges colorings of Kn,n. By the

construction displayed above, if n ≡ 2 mod 4, we can get (kk
2
)4 = 2−n

2
nn

2
equitable edge�

colorings which do not contain rainbow perfect matchings. Thus, for any coloring in Cr(n, s),

Pr(Cr(n, s) has no rainbow matching) ≥ 2−n
2 � e−(1+o(1))2n2 ≈ Pr(Cr(n, s) is a proper coloring) ,

and there is no chance to prove that a proper edge-coloring of Kn,n chosen uniformly at random,
admits a rainbow perfect matching with high probability.

Ryser conjecture w.h.p. by improving the upper bound in (3.18).





CHAPTER 4

Bounds for identifying codes in terms of

degree parameters

4.1 Introduction

Given a graph G, an identifying code C is a dominating set such that for any two vertices, their
neighbourhoods within C are nonempty and distinct. This property can be used to distinguish all
vertices of the graph one from each other. Identifying codes have found applications to various
�elds since the introduction of this concept in [86]. We refer to [96] for an on-line bibliography.
One of the interests of this notion lies in their applications to the location of threats in facilities [1]
and error-detection in computer networks [86]. One can also mention applications to routing [94],
to bio-informatics [78] and to measuring the �rst-order logical complexity of graphs [87]. Let us
also mention that identifying codes are special cases of the more general notion of test covers
of hypergraphs, see e.g. [29, 107]. Test covers are also the implicit object of Bondy's celebrated
theorem on induced subsets [28].

In this chapter, we address the question of providing lower and upper bounds on the size of an
identifying code, thus extending earlier works (see e.g. [106, 34, 73, 59, 61]). We focus on degree�
related graph parameters such as the minimum and maximum degree, and we also study the
case of regular graphs. An important part of the chapter is devoted to giving the best possible
upper bound for the size of an identifying code depending on the order and the maximum degree
of the graph, a question raised in [58]. We also give improved bounds for graphs of girth at least
5 in terms of their minimum degree and study identifying codes in random regular graphs.

Let us �rst set the basic terminology on graphs we will use for Chapters 4 and 5. Unless othewise
stated, we will consider G to be a simple, undirected and �nite graph. The open neighborhood
of a vertex v in G is the set of vertices in V (G) that are adjacent to it, and will be denoted by
NG(v). The closed neighborhood of a vertex v in G is de�ned as NG[v] = NG(v) ∪ {v}. If the
graph G is clear from the context we will write N(v) and N [v] instead of NG(v) and NG[v]. The
degree of a vertex u ∈ V (G), is de�ned as d(v) = |NG(v)|. Similarly, for any set S ⊆ V (G), we
de�ne, N(S) =

⋃
v∈S N(v) and N [S] =

⋃
v∈S N [v]. If two distinct vertices u, v are such that

45
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N [u] = N [v], they are called twins. If N(u) = N(v) but u 6∼ v, u and v are called false twins.
The symmetric di�erence between two sets S and T is denoted by S ⊕ T .

Given a graph G and a subset C of vertices of G, C is called a dominating set if each vertex of
V (G) \ C has at least one neighbor in C. The set C is called a separating set of G if for each pair
u, v of vertices of G, N [u] ∩ C 6= N [v] ∩ C (equivalently, (N [u]⊕N [v]) ∩ C 6= ∅). If x ∈ N [u], we
say that x dominates u. If x ∈ N [u]⊕N [v], we say that x separates u, v.

De�nition 4.1. A subset C of vertices of a graph G which is both a dominating set and a
separating set is called an identifying code of G.

It must be stressed that not every graph admits an identifying code. For instance, observe that a
graph containing twin vertices does not admit a separating set, and in particular, an identifying
code. In fact, a graph admits an identifying code if and only if it is twin�free, i.e. it has no pair
of twins (one can see that if G is twin�free, V (G) is an identifying code of G). Note that if for
three distinct vertices u, v, w of a twin�free graph G, N [u]⊕N [v] = {w}, then w belongs to any
identifying code of G. In this case we say that w is uv�forced, or simply forced. Observe that any
isolated vertex must belong to any identifying code for the reason that it must be dominated.
For example, an edgeless graph needs all the vertices in any identifying code. Hence, the bounds
here showed hold only for graphs with few isolated vertices. In order to shorten the statements
of our results, we assume that all considered graphs have no isolated vertices.

The minimum size of a dominating set of graph G, its domination number, is denoted by γ(G).
Similarly, the minimum size of an identifying code of G, γID(G), is the identifying code number
of G. It is known that for any twin-free graph G on n vertices having at least one edge, we have:

dlog2(n+ 1)e ≤ γID(G) ≤ n− 1.

The lower bound was proved in [86] and the upper bound, in [16, 73]. Both bounds are tight and
all graphs reaching these two bounds have been classi�ed (see [106] for the lower bound and [59]
for the upper bound). Other papers studying bounds and extremal graphs for identifying codes
are e.g. [34, 61, 62].

When considering graphs of given maximum degree ∆, it was showed in [86] that the lower bound
can be improved to γID(G) ≥ 2n

∆+2 . This bound is tight and a classi�cation of all graphs reaching
it has been proposed in [58]. For any ∆, these graphs include some regular graphs and graphs
of arbitrarily large girth.

It was conjectured in [61] that the following upper bound holds.

Conjecture 4.2 ([61]). There exists a constant c such that for any nontrivial connected twin�free
graph G of maximum degree ∆,

γID(G) ≤ n− n
∆ + c .

Graphs of maximum degree ∆ such that γID(G) = n− n
∆ are known (e.g. the complete bipartite

graph Kd,d, where ∆ = d, and richer classes of graphs described in Section 4.5). Therefore, if
Conjecture 4.2 holds, there would exist a constant c such that, for any twin�free graph G on
n vertices and of maximum degree ∆, we would have 2

∆+2n ≤ γID(G) ≤ n − n
∆ + c, with both

bounds being tight.

Note that Conjecture 4.2 holds for graphs of maximum degree 2 (see [74]). It was showed in [59]
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that γID(G) ≤ n− n
O(∆5)

, and γID(G) ≤ n− n
O(∆3)

when G is regular. It is also known that the

conjecture holds asymptotically if G is triangle�free: then, γID(G) ≤ n− n
∆(1+o∆(1)) [61].

Identifying codes have been previously studied in the following two models of random graphs:
Erd®s�Rényi random graphs [66] and random geometric graphs [110]. To our knowledge random
regular graphs have not been studied in the context of identifying codes.

In this chapter, we further study Conjecture 4.2 and prove that it is tight (up to constants)
for large enough values of ∆ and for a large class of graphs, including regular graphs and
graphs of bounded clique number (Corollaries 4.7 and 4.11). In the general case, we prove
that γID(G) ≤ n − n

O(∆3)
(Corollary 4.9). These results improve the known bounds given

in [59] and support Conjecture 4.2. Moreover, we show that the much improved upper bound
γID(G) ≤ (1 + od(1))3 log d

2d n holds for graphs having girth at least 5 and minimum degree d

(Theorem 4.19). This bound is used to give an asymptotically tight bound of about log d
d n for

the identifying code number of almost all random regular graphs (Corollary 4.23).

We summarize our results for the special case of regular graphs in Table 4.1 and compare them to
the bound for the dominating set problem (the table contains references for both the bound and
its tightness). All bounds are asymptotically tight. We note that identifying codes behave far
from dominating sets in general, as showed by the �rst lines of the table: there are regular graphs
having much larger identifying code number than domination number. However, for larger girth
and for almost all regular graphs, the bounds for the two problems coincide asymptotically, as
showed by the last lines of the table.

Identifying codes Dominating sets

in general n− n
103d (1 + od(1)) log d

d n
Thm. 4.6, Constr. 4.25 [8], [124]

girth 4 n− n
d(1+od(1)) (1 + od(1)) log d

d n

[61], Constr. 4.26 [8], [124]

girth 5 (1 + od(1))3 log d
2d n (1 + od(1)) log d

d n
Thm. 4.19, Thm. 4.21 [8], [124]

almost all graphs (1 + od(1)) log d
d n (1 + od(1)) log d

d n
Thm. 4.20, Thm. 4.21 [8], [124]

Table 4.1: Summary of the upper bounds for d�regular graphs

In order to prove our results, we use probabilistic techniques. For some results, we use the
weighted version of Lovász Local Lemma (see Section 2.2.2.2) to show the existence of an identi-
fying code, together with the Cherno� bound (see Section 2.2.1) to show that this code is small
enough. To bound the number of forced vertices in a graph we study an auxiliary directed graph
that captures the underlying structure of these vertices. This new technique we introduce can
be useful to study the number of forced vertices in a more general context, which is an impor-
tant problem in the community of identifying codes. We also make use of other probabilistic
techniques such as the Alteration Method [8] in order to give better bounds in more restricted
cases. Finally, we work with the Con�guration Model (see Section 2.3.1) in order to compute
the identifying code number of almost all random regular graphs.
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The organization of this chapter is as follows. In Section 4.2, we improve the known upper
bounds on the identifying code number of graphs of maximum degree ∆. This gives new large
families of graphs for which Conjecture 4.2 holds (up to constants). In Section 4.3, we give an
upper bound for graphs having minimum degree d and girth at least 5. In Section 4.4, we give
sharp bounds for the identifying code number of almost all d�regular graphs. A further section
is dedicated to various constructions of families of graphs which show the tightness of some of
our results (Section 4.5). Concluding remarks and open questions are collected in Section 4.6.

4.2 Upper bounds on the identifying code number

In this section, we improve the known upper bounds of [59] on the identifying code number by
using the Weighted Local Lemma, stated in Lemma 2.13.

4.2.1 Preliminary results

First of all, we give an equivalent condition for a set to be an identifying code. This follows from
the fact that for two vertices u, v at distance at least 3 from each other, N [u]⊕N [v] = N [u]∪N [v].

Observation 4.3. For a graph G and a set C ⊆ V (G), if C is dominating and N [u]∩C 6= N [v]∩C
for each pair of vertices u, v at distance at most two from each other, then N [u] ∩ C 6= N [v] ∩ C
for each pair of vertices of the graph.

The next observation is immediate, but it is worth mentioning here.

Observation 4.4. Let G be a twin�free graph and C, an identifying code of G. Any set C′ such
that C ⊆ C′ is also an identifying code of G.

The next proposition shows an upper bound on the number of false twins in a graph.

Proposition 4.5. Let G be a graph on n vertices having maximum degree ∆ and no isolated
vertices, then G has at most n(∆−1)

2 pairs of false twins.

Proof. Let us build a graph H on V (G), where two vertices u, v are adjacent in H if they are
false twins in G. Note that since a vertex can have at most ∆− 1 false twins, H has maximum
degree ∆− 1. Therefore it has at most n(∆−1)

2 edges and the claim follows.

Note that the bound of Proposition 4.5 is tight since in a complete bipartite graph Kd,d, n =

2d = 2∆ and there are exactly 2
(
d
2

)
= 2
(

∆
2

)
= n(∆−1)

2 pairs of false twins.

4.2.2 Main theorem

In the following, given a graph G on n vertices, we will denote by f(G) the proportion of non�
forced vertices of G, i.e. the ratio x

n , where x is the number of non�forced vertices of G.
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Theorem 4.6. Let G be a twin�free graph on n vertices having maximum degree ∆ ≥ 3. Then,

γID(G) ≤ n− nf(G)2

103∆
.

Proof. Let F be the set of forced vertices of G, and V ′ = V (G) \ F . Note that |V ′| = nf(G).
By the de�nition of a forced vertex, any identifying code must contain all vertices of F .

In this proof, we �rst build a set S in a random manner by choosing vertices from V ′. Then
we exhibit some �bad� con�gurations � if none of those occurs, the set C = F ∪ (V ′ \ S) is an
identifying code of G. Using the Weighted Local Lemma, we compute a lower bound on the
(nonzero) probability that none of these bad events occurs. Finally, we use the Cherno� bound
to show that with nonzero probability, the size of S is also large enough for our purposes. This
shows that such a �good� large set S exists, and it can be used to build an identifying code that
has a su�ciently small size.

Let p = p(∆) be a probability which will be determined later. We build the set S ⊆ V ′ such that
each vertex of V ′ independently belongs to S with probability p. Therefore the random variable
|S| follows a binomial distribution Bin(nf(G),p) and has expected value E(|S|) = pnf(G).

Let us now de�ne the set A of �bad� events of size N . These are of four types. An illustration
of these events is given in Figure 4.2.

• Type Bj (2 ≤ j ≤ 2∆− 2): for each pair {u, v} of adjacent vertices, let Bj
u,v be the event

that |(N [u]⊕N [v])| = j and (N [u]⊕N [v]) ⊆ S.

• Type Cj (3 ≤ j ≤ 2∆): for each pair {u, v} of vertices in V ′ at distance two from each
other, let Cju,v be the event that |(N [u]⊕N [v])| = j and (N [u]⊕N [v]) ⊆ S.

• Type D: for each pair {u, v} of false twins in V ′, let Du,v be the event that (N [u]⊕N [v]) =
{u, v} ⊆ S.

• Type Ej (2 ≤ j ≤ ∆ + 1): for each vertex u ∈ V ′, let Eju be the event that |N [u]| = j
and N [u] ⊆ S.

For the sake of simplicity, we refer to the events of type Bj , Cj and Ej as events of type B, C
and E respectively whenever the size of the symmetric di�erence is not relevant.

Events of type B1
u,v are not de�ned since then |N [u] ⊕ N [v]| = 1 and F belongs to the code,

so they never happen. Observe that the events Cju,v and Du,v are just de�ned over the pairs of
vertices in V ′ because if either u or v belongs to F , the event does not happen.

If no event of type B occurs, all pairs of adjacent vertices are separated by V (G) \S. If no event
of type C or D occurs, all pairs of vertices at distance 2 from each other are separated. If no
event of type E occurs, V (G) \S is a dominating set of G. Thus by Observation 4.3, if no event
of type B, C, D or E occurs, then V (G) \ S is an identifying code of G.

Let V (Ai) denote the set of vertices that must belong to set S so that Ai holds (see Figure 4.2,
where the sets V (Ai) are the ones inside the dashed circles). We will say that a vertex v ∈ V (G)
participates to Ai, if v ∈ V (Ai). We de�ne the weight ti of each event Ai ∈ A as |V (Ai)|. For
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u v

...

... ...

(a) Event Bj
u,v

u v

...... ...

(b) Event Cju,v

u v
...

(c) Event Du,v

u

...

(d) Event Ej
u

Figure 4.2: The �bad� events. The vertices in dashed circles belong to set S.

j ≥ 2 and for T ∈ {Bj , Cj , D,Ej , }, let tT be the weight of an event of type T (for an event
Ai ∈ A of type T , ti = tT ). We have the following,

tBj = j , tCj = j , tD = 2 , and tEj = j .

Some vertex x can participate to at most ∆(∆ − 1) events of type B: supposing x ∈ V (Bj
u,v)

and u is adjacent to x, there are at most ∆ ways to choose u, and at most ∆− 1 ways to choose
v among N(u) \ {x}. Observe that if x = u or x = v, then x /∈ V (Bu,v) (see Figure 4.2(a)).
Similarly x can participate to at most ∆2(∆−1) events of type C: for some event Cju,v, there are
at most ∆(∆− 1) possibilities if x = u or x = v and at most ∆(∆− 1)2 if u or v is a neighbour
of x. Vertex x can participate to at most ∆ − 1 events Du,v since x can have at most ∆ − 1
false twins. Finally, a vertex x can participate to at most ∆ + 1 events of type E since if it
participates to some event Eju, then u ∈ N [x].

For each type T of events (T ∈ {Bj , Cj , D,Ej}) and any vertex v ∈ V (G), let us de�ne g(v, T )
to be the number of events Ai of type T such that v ∈ V (Ai). Hence,

2∆−2∑
j=2

g(v,Bj) ≤ ∆(∆− 1) ,
2∆∑
j=3

g(v, Cj) ≤ ∆2(∆− 1) ,

g(v,D) ≤ ∆− 1 , and
∆+1∑
j=2

g(v,Ej) ≤ ∆ + 1 . (4.1)

Let us call Aic the event that no event of A occurs. Using the Weighted Local Lemma, we
want to show that Pr(Aic) > 0. First of all we need to set a dependency graph H for the
set of events A. Recall that V (H) = [N ]. For any i, j ∈ [N ], we will have ij ∈ E(H) if
and only V (Ai) ∩ V (Aj) = ∅. Observe that for any event Ai and any set T ⊆ {j : i 6∼ j},
we have Pr(Ai | ∩j∈TAj) = Pr(Ai), since the vertices are included in S with independent
probabilities. This means that Ai is mutually independent from the set of all events Aj for
which V (Ai)∩V (Aj) = ∅. Thus, our graph H matches De�nition 2.6 and is a dependency graph
for A.
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In order to apply the Weighted Local Lemma (Lemma 2.13), the following conditions must hold
for each event Ai ∈ A, ∑

ij∈E(H)

(2p)tj ≤ ti
2
.

The latter conditions are implied by the following ones (for each event Ai ∈ A),

2∆−2∑
j=2

∑
v∈V (Ai)

g(v,Bj)(2p)tBj +
2∆∑
j=3

∑
v∈V (Ai)

g(v, Cj)(2p)tCj

+
∑

v∈V (Ai)

g(v,D)(2p)tD +
∆+1∑
j=2

∑
v∈V (Ai)

g(v,Ej)(2p)tEj ≤ ti
2
.

Which are implied by

ti · max
v∈V (Ai)


2∆−2∑
j=2

g(v,Bj)(2p)tBj

+ ti · max
v∈V (Ai)


2∆∑
j=3

g(v, Cj)(2p)tCj


+ti · max

v∈V (Ai)

{
g(v,D)(2p)tD

}
+ ti · max

v∈V (Ai)


∆+1∑
j=2

g(v,Ej)(2p)tEj

 ≤ ti
2
.

Using the bounds of Inequalities (4.1) and noting that for p ≤ 1/4 and any j, (2p)tBj ≤ (2p)2,
(2p)tCj ≤ (2p)3 and (2p)tEj ≤ (2p)2, for any event Ai this equation is implied by

(∆+1)(2p)2+∆(∆−1)(2p)2+∆2(∆−1)(2p)3+(∆−1)(2p)2 = 4∆2p2+8∆3p3+4∆p2−8∆2p3 ≤ 1

2
.

(4.2)
Hence, we �x p = 1

k∆ where k is a constant to be determined later. Equation (4.2) holds for
k ≥ 3.68 for all ∆ ≥ 3. In fact, in the following steps of the proof, we will assume that k ≥ 30,
and so Equation (4.2) will be satis�ed for any ∆ ≥ 3. Since p ≤ 1

4 and Pr(Ai) ≤ pti by the
de�nition of ti and the choice of S, the Weighted Local Lemma can be applied.

Let NT be the number of events of type T , where T ∈
{
Bj , Cj , D,Ej ,

}
. By Lemma 2.13 we

have

Pr(Aic) ≥
2∆−2∏
j=2

N
Bj∏
i=1

(1− (2p)tBj )
2∆∏
j=3

N
Cj∏
i=1

(1− (2p)tCj )

ND∏
i=1

(1− (2p)tD)
∆+1∏
j=2

N
Ej∏
i=1

(1− (2p)tEj ) .

Note that
∑2∆−2

j=2 NBj ≤ n∆
2 since there is exactly one event type Bj

u,v for each edge uv ∈ E(G)

and at most n∆
2 edges in G. We also have that

∑2∆
j=3NCj is at most the number of pairs

of vertices in V ′ at distance 2 from each other. This is also at most the number of paths of
length 2 with both endpoints in V ′, which is upper-bounded by nf(G)∆(∆−1)

2 . Moreover, ND is
the number of pairs of false twins in V ′, which is at most nf(G)∆−1

2 by Proposition 4.5. Finally,∑∆+1
j=2 NEj = nf(G) since by de�nition there exists exactly one event Eju for each vertex of

u ∈ V ′.

Hence, we have

Pr(Aic) ≥ (1− (2p)2)
n∆
2 (1− (2p)3)

nf(G)∆(∆−1)
2 (1− (2p)2)

nf(G)(∆−1)
2 (1− (2p)2)nf(G) .
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Note that in Lemma 2.13, since p ≤ 1
4 and (1− x) ≥ e−(2 log 2)x in x ∈ [0, 1/2], we have

Pr

(
N⋂
i=1

Ai

)
≥ exp

(
−(2 log 2)

N∑
i=1

(2p)ti

)
. (4.3)

Since p = 1
k∆ , we obtain

Pr(Aic) ≥ exp

(
−(2 log 2)(2p)2

(
∆

2
+
f(G)∆(∆− 1)2p

2
+
f(G)(∆− 1)

2
+ f(G)

)
n

)
≥ exp

(
−4 log 2

k2∆

(
1 +

2f(G)

k
+ f(G) +

2f(G)

∆

)
n

)
.

Since f(G) ≤ 1 and it is assumed that k ≥ 30, one can check that for any ∆ ≥ 3,

Pr(Aic) ≥ exp

(
−164 log 2

15k2∆
n

)
.

Note that this bound could be strengthened by assuming ∆ to be large enough. Indeed, here the
term 2f(G)

∆ can be as high as 2
3 when ∆ = 3 and f(G) = 1, but can be chosen to be as low as

desired by assuming ∆ to be larger. However we aim to give a bound for any ∆ ≥ 3, hence we
use the weaker bound presented here.

The Weighted Local Lemma shows that the set S has the desired properties with probability
Pr(Aic) > 0, implying that such a set exists. Note that we have no guarantee on the size of S.
In fact, if S = ∅ then V (G) \ S = V (G) is always an identifying code. Therefore we need to
estimate the probability that |S| is far below its expected size. In order to do this, we use the
Cherno� bound of Theorem 2.3 by putting a = nf(G)

c∆ where c is a constant to be determined.

Let Abig be the event that |S| − np > −nf(G)
c∆ . We obtain

Pr(Abig) ≤ exp

−
(
nf(G)
c∆

)2

2pnf(G)


= exp

(
−kf(G)

2c2∆
n

)
.

Now we have

Pr(Aic and Abig) = 1− Pr(Aic or Abig)

≥ 1− Pr(Aic)− Pr(Abig)

= 1− (1− Pr(Aic))− Pr(Abig)

= Pr(Aic)− Pr(Abig)

≥ exp

(
−164 log 2

15k2∆
n

)
− exp

(
−kf(G)

2c2∆
n

)
.

Thus, Pr(Aic and Abig) > 0 if c <
√

15
328 log 2 · k

3/2f(G)1/2. We (arbitrarily) set c = k3/2f(G)1/2
√

22 log 2

in order to ful�ll this condition.
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Now we have to check that Abig implies that S is still large enough.

|S| ≥ E(|S|)− nf(G)

c∆

=
nf(G)

k∆
− nf(G)

c∆

=

(
1

k
−
√

22 log 2

k3/2f(G)1/2

)
nf(G)

∆
. (4.4)

Since |S| must be positive, from Equation (4.4) we need k3/2f(G)1/2 >
√

22 log 2 k, which leads
to k = a0

f(G) for a0 > 22 log 2. Using all our previous assumptions, by derivating the expression

of |S|, one can check that |S| is maximized when a0 = 99 log 2
2 . Hence we set k = 99 log 2

2f(G) .

Remark that under this condition and since f(G) ≤ 1, we have k ≥ 34 and our assumption
following Equation (4.2) that k ≥ 30, is ful�lled.

Now, with a0 = 99 log 2
2 , we can see that

|S| ≥
(

1

k
− 1

c

)
nf(G)

∆
=
a

1/2
0 −

√
22 log 2

a
3/2
0

f(G)2

∆
n =

2

297 log 2

f(G)2

∆
n ≥ f(G)2

103∆
n .

Hence �nally the identifying code C = V \ S has size

|C| ≤ n− nf(G)2

103∆
.

Note that for regular graphs, f(G) = 1, since the existence of a forced vertex implies the existence
of two vertices with distinct degrees. We obtain the following result.

Corollary 4.7 (Graphs with constant proportion of non�forced vertices). Let G be a twin�free
graph on n vertices with maximum degree ∆ ≥ 3 and f(G) = 1

α for some constant α ≥ 1. Then,

γID(G) ≤ n− n

103α2∆
.

In particular if G is d�regular,

γID(G) ≤ n− n

103d
.

The next proposition will be proved in the next subsection.

Proposition 4.8. Let G be a graph on n vertices and of maximum degree ∆. Then,

f(G) ≥ 1
∆+1 .

Using it, we obtain the following general result.

Corollary 4.9 (General case). Let G be a twin�free graph on n vertices having maximum de-
gree ∆ ≥ 3. Then,

γID(G) ≤ n− n

103∆(∆ + 1)2
= n− n

O(∆3)
.
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The next proposition will be proved in the next subsection as well.

Proposition 4.10. Let G be a graph having no k-clique. Then, there exists a constant γ(k)
depending only on k, such that

f(G) ≥ 1
γ(k) .

This leads to the following extension of Corollary 4.7, where c(k) ≤ 103γ(k)2.

Corollary 4.11 (Graphs with bounded clique number). There exists an integer ∆0 such that
for each twin�free graph G on n vertices having maximum degree ∆ ≥ ∆0 and clique number
smaller than k, we have

γID(G) ≤ n− n

c(k)∆
,

for some constant c(k) depending only on k. In particular this applies to triangle�free graphs,
planar graphs, or more generally, graphs of bounded genus.

We remark here that the previous corollaries support Conjecture 4.2. They also lead us to think
that the di�culty of the problem lies in studying the set of forced vertices.

4.2.3 Bounding the number of non�forced vertices

Here, we prove the lower bounds for function f(G) of the statement of Theorem 4.6.

The following lemma was �rst proved in [16], and a proof can be found in [59] (as [16] is not
accessible).

Lemma 4.12 ([16]). If G is a �nite twin�free graph without isolated vertices, then for every
vertex u of G, there is a vertex v ∈ N [u] such that V (G) \ {v} is an identifying code of G.

Let us now prove Proposition 4.8.

Proof of Proposition 4.8. Observe that a vertex v of G is not forced only if V (G) \ {v} is an
identifying code of G. Hence, by Lemma 4.12, the set S of non�forced vertices is a dominating
set of G, and thus |S| ≥ n

∆+1 .

Note that Proposition 4.8 is tight. Indeed, consider the graph Ak on 2k vertices de�ned in [59]
as follows: V (Ak) = {x1, . . . , x2k} and E(Ak) = {xixj , |i − j| ≤ k − 1}. Ak can be seen as the
(k − 1)�th power of the path P2k. Construct now the graph Bk by adding a universal vertex x
(i.e. x is adjacent to all vertices of Ak) in the graph Ak. One can check that all vertices from Bk
but x are forced. This graph has n = 2k + 1 vertices, maximum degree 2k and exactly 1 = n

∆+1
non�forced vertex. Taking all forced vertices gives a minimum identifying code of this graph.

However, note that since for a �xed even value of ∆, we know only one such graph, it is not
enough to give a counterexample to Conjecture 4.2. Indeed in this case the size of the code is
n− 1 = n− n

∆+1 = n− n
∆ + 1

n−1 = n− n
∆ + 1.
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x1 x2 x3 x4

x5x6x7x8

x

Figure 4.3: The graph B4.

Observe that the graph Bk contains two cliques of k vertices. In fact, we can improve the bound
of Proposition 4.8 for graphs having no large cliques. Let us �rst introduce an auxiliary structure
that will be needed in order to prove this result.

Let G be a twin�free graph. We de�ne a partial order � over the set of vertices of G such that
u � v if N [u] ⊆ N [v]. We construct an oriented graph H(G) on V (G) as a subgraph of the Hasse
diagram of poset (V (G),�). The arc set of H(G) is the set of all arcs −→uv where there exists some
vertex x such that N [v] = N [u]∪{x}. Then x is uv�forced, and we note x = f(−→uv). For a vertex
v of V (G), we de�ne the set F (v) as the union of v itself and the set of all predecessors and
successors of v in H(G). Observe that H(G) has no directed cycle since it represents a partial
order, and thus predecessors and successors are well�de�ned.

Lemma 4.13. Let G be a graph having no k-clique. Then for each vertex u, |F (u)| ≤ β(k),
where β(k) is a function depending only on k.

Proof. First of all, we prove that the maximum in-degree of H(G) is at most 2k − 3, and its
out-degree is at most k − 2.

Let u be a vertex of G. Suppose u has 2k−2 in-neighbours in H(G). Since for each in-neighbour
v of u, |N [u] ⊕ N [v]| = 1 in G, each of them is nonadjacent in G to at most one of the other
in-neighbours (in the worst case the in-neighbours of u induce in G a clique of 2k − 2 vertices
minus the edges of a perfect matching). Hence they induce a clique of size at least k − 1 in G.
Together with vertex u, they form a k-clique in G, a contradiction.

Now suppose u has k− 1 out-neighbours in H(G). Since for each out-neighbour v of u in H(G),
N [u] ⊆ N [v] in G, u and its out-neighbours form a k-clique in G, a contradiction.

Now, consider the subgraph of H(G) induced by F (u). We claim that the longest directed chain
in this subgraph has at most k − 1 vertices. Indeed, all the vertices of such a chain are pairwise
adjacent in G. Since G is assumed not to have any k-cliques, there are at most k − 1 vertices in
a directed chain.

Finally, we obtain that F (u) has size at most β(k) =
∑k−2

i=0 (2k− 3)i and the claim of the lemma
follows.

We now need to prove a few additional claims regarding the structure of H(G). In the following
claims, we suppose that G is a twin�free graph.
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Claim 4.14. Let s be a forced vertex in G with s = f(−→uv) for some vertices u and v. If t is
an in-neighbour of s in H(G), then v = f(

−→
ts). Moreover, if v is forced with v = f(−→xy), then

necessarily y = s.

Proof. For the �rst implication, suppose s has an in-neighbour t in H(G). An illustration is
provided in Figure 4.4. Since u 6∼ s, then u 6∼ t. Moreover, v 6∼ t since s = f(−→uv). Since
s ∼ v the claim follows. For the other implication, suppose there exist two vertices x, y such that
v = f(−→xy). Hence y ∼ v but x 6∼ v. Therefore u 6∼ x (otherwise v would be adjacent to x too)
and hence u 6∼ y. Now the only vertex adjacent to v but not to u is s, so y = s.

u t

s = f(−→uv)v = f(
−→
ts)

Figure 4.4: The situation of Claim 4.14. Arcs belong to H(G). Full thin edges

belong to G only, dashed edges are nonedges in G.

Claim 4.15. Let s be a forced vertex in G with s = f(−→uv) for some vertices u and v. Then s
has at most one in-neighbour in H(G).

Proof. Suppose s has two distinct in-neighbours t and t′ in H(G) (see Figure 4.5 for an illustra-
tion). By Claim 4.14, v is both ts�forced and t′s�forced. But then N [t] = N [s] \ {v} = N [t′].
Then t and t′ are twins, a contradiction since G is twin�free.

u t t′

s = f(−→uv)v

Figure 4.5: The situation of Claim 4.15. Arcs belong to H(G). Full thin edges

belong to G only, dashed edges are nonedges in G.

Claim 4.16. Let s be a forced vertex in G with s = f(−→uv), and let t be a forced in-neighbour of
s in H(G) with t = f(−→xy) for some vertices u, v, x, y. Then x = v.

Proof. Since t ∼ y, then s ∼ y too. But since t = f(−→xy), x ∼ s and x 6∼ t. Now by Claim 4.14,
v = f(

−→
ts), that is, v is the unique vertex such that v is adjacent to s, but not to t. Therefore

x = v.

We now obtain the following lemma using the previous claims.

Lemma 4.17. Let s be a nonisolated sink in H(G) which is forced in G with s = f(−→uv) for some
vertices u and v. Then either s has a non�forced predecessor t in H(G) such that F (s) ⊆ F (t),
or there exists a non�forced vertex w(s) such that F (s) ⊆ NG[w(s)]. Moreover, if there are `
additional sinks {s1, . . . , s`} which are all nonisolated in H(G) and such that w(s) = w(s1) =
. . . = w(s`), then there exists a set of `+ 1 distinct vertices inducing a clique together with w(s).
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Proof. First of all, recall that H(G) has no directed circuits. Suppose s has a non�forced prede-
cessor in H(G) and let t be one such predecessor having the shortest distance to s in H(G). By
Claim 4.15, predecessors of s are either successors or predecessors of t, and there is a directed
path from t to s in H(G). Hence F (s) ⊆ F (t), which proves the �rst part of the statement.

Now suppose all predecessors of s = f(−→uv) are forced. By Claim 4.15, s and its predecessors
form a directed path {t0, . . . , tm, s} in H(G) (for an illustration, see Figure 4.6(a)). Note that
by Claim 4.14, we have v = f(

−−→
tms). By our assumption we know that tm is forced, say tm =

f(−−→xvm) for some vertices x and vm. But now by Claim 4.16, x = v and tm = f(−−→vvm). Now,
repeating these arguments for each other predecessor of s shows that there is a directed path
{u, v, vm, . . . , v0} with tm = f(−−→vvm) and for all i, 0 ≤ i ≤ m − 1, ti = f(−−−→vi+1vi). In particular,
t0 = f(−−→v1v0). Observe also that for all i ≥ 1, vi = f(

−−−→
ti−1ti). By applying Claim 4.16 on vertices

v1, v0 and t0, if v0 is forced then t0 has an in-neighbour in H(G), a contradiction � hence v0

is non�forced. Also note that, since v0 ∼ t0, then v0 is adjacent to all successors of t0 in H(G),
that is, to all elements of F (s). Therefore, putting w(s) = v0, we obtain the second part of the
statement.

For the last part, suppose there exists a set of ` additional forced sinks {s1, . . . , s`} which are
nonisolated in H(G) and such that all their predecessors in H(G) are forced with w(si) = v0

for 1 ≤ i ≤ ` (for an illustration, see Figure 4.6(b)). For each such sink si, by the previous
paragraph, the vertices of F (si) induce a directed path {ti0, . . . , timi , si} in H(G). Moreover we
know that there is a vertex xi such that ti0 is xiv0�forced. We claim that the set of vertices
X = {x1, . . . , x`} together with v0 and v1, form a clique in G of `+ 2 vertices.

We �rst claim that for all i, j in {1, . . . , `}, xi 6= tj0. If i = j, this is clear by our assumptions.
Otherwise, suppose by contradiction, that xi = tj0 for some i 6= j in {1, . . . , `}. Then we claim
that xj = ti0. Indeed, by the previous part of the proof, we know that f(−−→xjv0) = tj0 = xi �
hence xj 6∼ xi. But since −−→xiv0 is an arc in H(G), we must have f(−−→xiv0) = xj . Again, we know
that f(−−→xiv0) = ti0, hence xj = ti0. Let t

i
1 denote the successor of ti0 in the directed path from ti0

to si in H(G). We know from the previous part of the proof that f(
−−→
ti0t

i
1) = xi = tj0. However

since ti0 = xj we also know that f(
−−→
ti0v0) = xi. This implies that NG[v0] = NG[ti1], a contradiction

since these two vertices are distinct and G is twin�free.

Now, observe that the vertices of X must all be pairwise adjacent. All vertices of X are adjacent
to v0, and for each xi, N [v0] = N [xi]∪{ti0}, hence xi is adjacent to all neighbours of v0 except ti0.
But by the previous paragraph, we know that ti0 6= xj for all j ∈ {1, . . . , `}, hence xi is adjacent
to all xj 6= xi, j ∈ {1, . . . , `}. For the same reason, each xi is adjacent to v1. Hence, the vertices
of X form a clique together with v0 and v1.

Finally, let us show that all the vertices of X are distinct: by contradiction, suppose that
xi = xj for some i 6= j, 1 ≤ i, j ≤ `. Since ti0 is xiv0�forced and tj0 is xjv0�forced, we have
ti0 = tj0. Since si and sj are distinct, this means that si and sj have one predecessor in common.
Hence their common predecessor which is nearest to si and sj , say t, has two out-neighbours.
Let ti (respectively tj) be the out-neighbour of t which is a predecessor of si (respectively sj)
� see Figure 4.6(c) for an illustration. We know that there are two vertices yi, yj such that
yi = f(

−→
tti) and yj = f(

−→
ttj). First note that yi and yj are distinct: otherwise, we would have

N [ti] = N [t]∪{yi} = N [t]∪{yj} = N [tj ] and then ti, tj would be twins in G. Observe that since
t 6∼ yi and yi 6= f(

−→
ttj), we have tj 6∼ yi. We know that t is forced, in fact by the �rst part of this

proof, we also know that t = f(−−→yizi) for some vertex zi. Hence zi ∼ t, and since N [t] ⊆ N [tj ],
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zi ∼ tj . But since tj 6= f(−−→yizi), tj ∼ yi, a contradiction. Hence xi and xj are distinct, which
completes the proof.

v0 = w(s)

v1 = f(
−−→
t0t1)

vm = f(
−−−−→
tm−1tm)

v = f(
−−→
tms)

u

t0 = f(−−→v1v0)

t1 = f(−−→v2v1)

tm = f(−−→vvm)

s = f(−→uv)

(a) Vertex s and all its predecessors
in H(G) are forced.

v0

v1

x1

t10 = f(−−→x1v0)

t1m1

s1

x`

t`0 = f(−−→x`v0)

t`m`

s`

· · ·

(b) Vertices v0, v1, x1, . . . , x` induce
a clique in G.

t = f(−−→yizi)

ti0 = tj0

xi = xj

ti
yi = f(

−→
tti)

zi

si

tj
yj = f(

−→
ttj)

sj

(c) If xi = xj , the dotted edge yitj is both
an edge and a nonedge of G.

Figure 4.6: Three situations in the proof of Lemma 4.17. Arcs belong to H(G).
Full thin edges belong to G only, dashed edges are non�edges in G.

Finally, let us recall and prove Proposition 4.10.

Proposition. Let G be a graph having no k-clique. Then there exists a constant γ(k) depending
only on k, such that f(G) ≥ 1

γ(k) .

Proof. To prove the result, we use H(G) to construct a set X = {x1, . . . , x`} of non�forced
vertices such that

⋃`
i=1A(xi) = V (G), where A(xi) is a set of at most γ(k) vertices. Then we

have ` ≥ n
γ(k) vertices in X and the claim of the proposition follows.

We now describe a procedure to build set X while considering each non�isolated sink of H(G).
We denote by s the currently considered sink.

Case 1: Sink s is non�forced. Then we set A(s) to be F (s) together with all the vertices which
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are forced by a pair u, v of vertices of F (s). Note that by Lemma 4.13, |F (s)| ≤ β(k), where
β(k) only depends on k. Hence, |A(s)| ≤ β(k) +

(
β(k)

2

)
.

Case 2: Sink s is forced. By Lemma 4.17, either s has a non�forced predecessor t such that
F (s) ⊆ F (t), or there exists a non�forced vertex w(s) such that F (s) ⊆ NG[w].

In the �rst case, we choose t as our non�forced vertex, and we set A(t) to be F (t) together with all
the vertices which are forced by a pair u, v of vertices of F (t). Again we have |A(t)| ≤ β(k)+

(
β(k)

2

)
.

In the second case, we choose w = w(s) as our non�forced vertex. Now, let S = {s, s1, . . . , s`} be
the set of forced sinks having no non�forced predecessor and such that w(s) = w(s1) = . . . w(s`).
By Lemma 4.17 we know that there are ` + 1 distinct vertices inducing a clique together with
w, hence `+ 2 < k. We set A(w) to be F (w) ∪ F (s) ∪ F (s1) ∪ . . . ∪ F (s`) together with all the
vertices which are forced by a pair u, v of vertices of this set. We have |A(w)| ≤ kβ(k) +

(
kβ(k)

2

)
.

We have now covered all the vertices which are not isolated in H(G), since for each nonisolated
sink s of H(G), F (s) is a subset of A(x) for some x ∈ X. Besides, all isolated vertices of H(G)
which are forced, have also been put into some set A(x). Hence only non�forced isolated vertices
of H(G) need to be covered. For each such vertex v, we add v to X and set A(v) = {v}.

Finally, all vertices belong to some set A(x), x ∈ X, and the size of each set A(x) is at most
γ(k) = kβ(k) +

(
kβ(k)

2

)
, which completes the proof.

4.3 Upper bounds for graphs with girth at least 5

This section is devoted to the study of graphs that have girth at least 5. We will use these results
in Section 4.4, to deal with random regular graphs.

One can check that for graphs of girth 5, applying the Local Lemma does not lead to meaningful
results. However, by using the Alteration method, a better bound can be given.

We start by de�ning an auxiliary notion that will be used in this section. A subset D ⊆ V (G) is
called a 2�dominating set if for each vertex v of V (G) \D, |N(v) ∩D| ≥ 2 (see [57]). The next
lemma shows that we can use a 2�dominating set to construct an identifying code.

Lemma 4.18. Let G be a twin�free graph on n vertices having girth at least 5. Let D be a
2�dominating set of G. If the subgraph induced by D, G[D], has no isolated edge, D is an
identifying code of G.

Proof. First observe that D is dominating since it is 2�dominating. Let us check that D is also
separating.

Note that all the vertices that do not belong to D are separated because they are dominated at
least twice each and g(G) > 4.

Similarly, a vertex x ∈ D and a vertex y ∈ V (G)\D are separated since y has two vertices which
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dominate it, but they cannot both dominate x (otherwise there would be a triangle or a 4-cycle
in G).

Finally, consider two vertices of D. If they are not adjacent they are separated by themselves.
Otherwise, by the assumption that G[D] has no isolated edge and that G has no triangles, we
know that at least one of them has a neighbour in D, which separates them since it is not a
neighbour of the other.

The following theorem makes use of Lemma 4.18. The idea of the proof is inspired by a proba-
bilistic proof of a result on dominating sets which can be found for instance in [8, Theorem 1.2.2].

Theorem 4.19. Let G be a graph on n vertices with minimum degree d and girth at least 5.
Then

γID(G) ≤ (1 + od(1))
3 log d

2d
n .

Moreover, if G has average degree d = Od(d(log d)2), then,

γID(G) ≤ log d+ log log d+Od(1)

d
n .

Proof. Let S ⊆ V (G) be a random subset of vertices, where each vertex v ∈ V (G) is added to
S uniformly at random with probability p (where p will be determined later). For every vertex
v ∈ V (G), we de�ne the random variable Xv as follows,

Xv =

{
0 if |N [v] ∩ S| ≥ 2
1 otherwise.

.

Let T = {v | Xv = 1}. This set contains, in particular, the subset of vertices which are not
2�dominated by S. Note that |T | =

∑
Xv. Let us estimate the size of T . Observing that

|N [v] ∩ S| ∼ Bin(deg(v) + 1, p) and deg(v) ≥ d, we obtain

E(|T |) =
∑

v∈V (G)

E(Xv)

≤ n
(

(1− p)d+1 + (d+ 1)p(1− p)d
)

= n(1− p)d((1− p) + (d+ 1)p)

≤ n(1 + dp)e−dp ,

where we have used the fact that 1−x ≤ e−x. Now, note that the setD = S∪T is a 2�dominating
set of G. We have |D| ≤ |S|+ |T |. Hence,

E(|D|) ≤ E(|S|) + E(|T |)
≤ np+ n(1 + dp)e−dp . (4.5)

Let us set p = log d+log log d
d . Plugging this into Equation (4.5), we obtain

E(|D|) ≤ log d+ log log d

d
n+

1 + log d+ log log d

d log d
n =

log d+ log log d+Od(1)

d
n .

This shows that there exists at least one 2�dominating set D having this size.
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Case 1: (general case) Note that we can use Lemma 4.18 by considering all pairs u, v of vertices
of D forming an isolated edge in G[D], and add an arbitrary neighbour of either one of them to
D. Observe that such a vertex exists, otherwise u and v would be twins in G. Since there are at
most |D|2 such pairs, we obtain a 2�dominating set of size at most |D|+ |D|

2 = (1 + od(1))3 log d
2d n

having the desired property. Now applying Lemma 4.18 completes Case 1.

Case 2: (sparse case) Whenever d = Od(d(log d)2), we can get a better bound by estimating
the number of isolated edges of G[D]. For convenience, we de�ne the random variables Yuv for
each edge uv of G, as follows,

Yuv =

{
1 if N [u]∆N [v] ⊆ V (G) \ S
0 otherwise

.

An isolated edge in G[D] might have been created in several ways. First, at the initial construc-
tion step of S: if both u, v belong to S, but none of their other neighbours do which happens
with probability at most p2(1 − p)2d−2. A second possibility is in the step where we add the
vertices of T to our solution. This could happen if both u, v were not dominated at all by S,
which occurs with probability at most (1−p)2d, or if exactly one of u, v was part of S and none of
their neighbours were, which has probability at most 2p(1− p)2d−1. Thus, the total probability
of having an isolated edge in G[D] is bounded from above as follows.

Pr(Yuv = 1) ≤ p2(1− p)2d−2 + (1− p)2d + 2p(1− p)2d−1 = (1− p)2d−2 .

Using the previous observation together with the facts that p = log d+log log d
d and 1 − x ≤ e−x,

let us calculate the expected value of Y =
∑

uv∈E(G) Yuv.

E(Y ) =
∑

uv∈E(G)

E(Yuv) ≤
nd

2
(1− p)2d−2 ≤ nd

2
e−(2d−2)p =

nde−2(log d+log log d)

2
=

nd

2d2(log d)2
.

We construct U by picking an arbitrary neighbour of either u or v for each edge uv such that
Yuv = 1. We have |U | ≤ Y . The �nal set C = S ∪ T ∪ U is an identifying code. Now we have

E(|C|) ≤ E(|S|) + E(|T |) + E(|U |) ≤ log d+ log log d+Od(1)

d
n+

d

2d2(log d)2
n .

Using that d = Od(d(log d)2),

E(|C|) ≤ log d+ log log d+Od(1)

d
n . (4.6)

Then there exists some choice of S such that |C| has the desired size, and completes the proof.

In fact, it is showed in the next section (Corollary 4.23) that Theorem 4.19 is asymptotically
tight.

4.4 Identifying codes of random regular graphs

From the study of regular graphs arises the question of the value of the identifying code number
for most regular graphs. We know some lower and upper bounds for this parameter, but is it
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concentrated around some value? A good way to study this question is to look at random regular
graphs.

We will use the Con�guration Model to study random regular graphs for a constant d. Recall
that this model has been de�ned in Section 2.3.1.

The following theorem provides an upper bound on the identifying number that holds with high
probability.

Theorem 4.20. Let G ∈ G(n, d) then for any d ≥ 3, with high probability,

γID(G) ≤ log d+log log d+Od(1)
d n .

Proof. First of all we have to show that almost all random regular graphs are twin�free.

Observe that the number of perfect matchings of K2m is (2m − 1)!! = (2m − 1)(2m − 3)(2m −
5) . . . 1. Fix a vertex u of G and let N(u) = {v1, . . . , vd}. We bound from above the probability
that u and v1 are twins, i.e. N [u] = N [v1]. The number of perfect matchings of Knd such that in
the resulting graph G of G(n, d), v1 and v2 are adjacent, is at most (d− 1)(d− 1)(nd− 2d− 3)!!.
Indeed, there must be an edge between v1 and v2, which gives (d− 1)(d− 1) possibilities. Since
u has d neighbours, the number of possibilities for the remaining graph is the number of perfect
matchings of Knd−2d−2.

Analogously the number of perfect matchings with v2, v3 ∈ N(v1) is at most (d− 1)(d− 1)(d−
2)(d− 1)(nd− 2d− 5)!!. Thus, we have

Pr(N [u] = N [v1]) ≤ Pr(N [u] ⊆ N [v1])

=
(d− 1)(d− 1)(d− 2)(d− 1) . . . 2(d− 1)1(d− 1)(nd− 4d+ 1)!!

(nd− 2d− 1)!!

≤ dd−1(d− 1)!

(nd− 2d− 1) . . . (nd− 4d+ 3)

≤
(
d

n

)d−1

,

for n large enough.

As we have at most nd
2 possible pairs of twins (one for each edge), by the union bound and since

d ≥ 3, for su�ciently large n we obtain

Pr(G has twins) ≤ nd

2

(
d

n

)d−1

,

which tends to 0 when n → ∞. Therefore, random regular graphs are twin�free with high
probability.

By (4.6), for any G ∈ G(n, d), we have a set C with

|C| ≤ log d+ log log d+Od(1)

d
n ,

that separates any pair of vertices except from the ones where both vertices belong to a triangle
or a 4-cycle. We have to add some vertices to C in order to separate the vertices of these small
cycles.
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Classical results on random regular graphs (independently showed in [23, Corollary 2.19] and
in [128]) state that the random variables that count the number of cycles of length k, Xk, tend
in distribution to independent Poisson variables with parameter λk = 1

2k (d− 1)k.

Observe that

E(X3) =
(d− 1)3

6
and E(X4) =

(d− 1)4

8
,

i.e. a constant number of triangles and 4-cycles are expected.

Using Markov's inequality we can bound the probability of having too many small cycles,

Pr(X3 > t) ≤ (d− 1)3

6t
and Pr(X4 > t) ≤ (d− 1)4

8t
.

Setting t = ϑ(n), where ϑ(n) → ∞, the previous probabilities are o(1). Then, with high
probability, we have at most ϑ(n) cycles of length 3 and ϑ(n) cycles of length 4.

Let T = {u1, u2, u3} be a triangle in G. As d ≥ 3 there exists at least one vertex vi outside the
triangle (moreover, we showed that the graph has no twins w.h.p.). Since our graph is twin�free,
for each ordered pair (ui, uj) there exists some vertex vij , such that vij ∈ N(ui)\N(uj). Observe
that we can add v12, v23 and v31 to C and then any pair of vertices from T will be separated.

If T = {u1, u2, u3, u4} induces a K4, each pair of vertices of T is contained in some triangle and
is separated by the last step. If T induces a 4-cycle, adding T to C separates all the elements in
T . Otherwise, T induces two triangles and adding T to C separates the two vertices which have
not been separated in the last step.

After these two steps, we have added at most 7ϑ(n) vertices to C. Hence, for any G ∈ G(n, d)
w.h.p. we obtain

γID(G) ≤ log d+ log log d+Od(1)

d
n+ 7ϑ(n) =

log d+ log log d+Od(1)

d
n .

Observe that the Od(1)
d n term contains the 7ϑ(n) term.

Theorem 4.20 shows that despite the fact that for any d, we know in�nitely many d�regular graphs
having a very large identifying code number (e.g. n − n

d for the graphs of Construction 4.25 of
Section 4.5), almost all d�regular graphs have a very small identifying code.

Moreover, γID(G) is concentrated, as the following theorem and its corollary show. In fact
the following result might be already known, since a similar result is stated for independent
dominating sets in [76]. However we could not �nd it in the literature and decided to give a
proof for the sake of completeness.

Theorem 4.21. Let G ∈ G(n, d), then w.h.p. all the dominating sets of G have size at least

log d− 2 log log d

d
n .

Proof. We will proceed by contradiction. Given a set of vertices D of size m, we will compute
the probability that D dominates Y = V (G) \ D. Recall that G has been obtained from the
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con�guration model by selecting a random perfect matching of Knd. Let y ∈ Y �xed, then let
Ay = {N(D) ∩ {y} 6= ∅} be the event that y is dominated by D. Its complementary event
corresponds to the situation where none of the edges of the perfect matching of Knd connects the
points corresponding to y to the ones corresponding to any vertex of D. De�ne WD = ∪v∈DWv

as the set of cells corresponding to D in Knd. Then for any v ∈ WD, the event Bv corresponds
to the fact that v is not connected to any point in Wy. If WD = {v1, . . . , vmd},

Pr(Ay) = Pr(∩v∈WD
Bv)

= Pr(Bv1) Pr(Bv2 | Bv1) . . .Pr(Bvmd | ∩
md−1
i=1 Bvi)

=

(
1− d

nd− 1

)(
1− d

nd− 3

)
. . .

(
1− d

nd− (2md− 1)

)
=

md∏
i=1

(
1− d

nd− (2i− 1)

)

≥
md∏
i=1

(
1− 1

n− 2m

)
.

Since 1 − x = e−x+(log(1−x)+x) (here we take x = 1
n−2m) and log(1 − x) + x = O(x2) (by the

Taylor expansion of the logarithm in x = 0), we obtain

Pr(Ay) ≥ exp

(
−

md∑
i=1

1

n− 2m
+O

(
1

(n− 2m)2

))

= exp

(
−(1 + o(1))

md

n− 2m

)
.

The probability that D is dominating all vertices of Y = {y1, . . . , yn−m} is

Pr (∩y∈YAy) = Pr (Ay1) Pr (Ay2 | Ay1) . . .Pr
(
Ayn−m | ∩n−m−1

j=1 Ayj

)
.

We claim that Pr
(
Ayi | ∩i−1

j=1Ayj

)
≤ Pr (Ayi). Suppose that y1, . . . , yi−1 are dominated. This

means that the corresponding perfect matching of Knd has an edge between one of the points
corresponding to yj (1 ≤ j ≤ i − 1) and one of the points corresponding to the vertices of D.
The probability that yi is not dominated by D is now the probability that none of the remaining
edges of the perfect matching connect any vertex of D with yi. Hence,

Pr
(
Ayi | ∩i−1

j=1Ayj

)
=

(
1− d

nd− 2i+ 1

)(
1− d

nd− 2i− 1

)
. . .

(
1− d

nd− 2md+ 1

)
≥
(

1− d

nd− 1

)(
1− d

nd− 3

)
. . .

(
1− d

nd− 2md+ 1

)
= Pr(Ayi) .

By considering the complementary events, Pr
(
Ayi | ∩i−1

j=0Ayj

)
≤ Pr (Ayi). Hence these events

are negatively correlated, and

Pr (∩y∈YAy) ≤
n−m∏
i=1

Pr(Ayi) ≤
(

1− e−
md

n−2m

)n−m
≤ exp

{
−(n−m)e

− md
n−2m

}
.
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For the sake of contradiction, let m ≤ log d−c log log d
d n for some c > 2. Then,

Pr (∩y∈YAy) ≤ exp

(
−
(

1− log d− c log log d

d

)
n exp

{
− log d− c log log d

1− 2 log d−c log log d
d

})

= exp

(
− (1 + od(1))n exp

{
− log d− c log log d

1 + od(1)

})
= (1 + od(1))e−

(log d)c

d
n .

Note that if no set of size m dominates Y , neither will do a smaller one. So we have to look just
at the sets of size m. The number of these sets can be bounded by(

n

m

)
≤ nm

m!
≤
(en
m

)m
=

(
de

log d− c log log d

) log d−c log log d
d n

= (1 + od(1))

(
de

log d

) log d−c log log d
d n

,

where we have used m! ≥
(
m
e

)m
.

Let ADS be the event that G has a dominating set of size m. Applying the union bound, we
have

Pr(ADS) ≤ (1 + od(1))

(
de

log d

) log d−c log log d
d n

e−
(log d)c

d
n

= (1 + od(1)) exp

(
log d− c log log d

d
(log d+ 1− log log d)n− (log d)c

d
n

)
= (1 + od(1)) exp

((
(log d)2

d
− (log d)c

d
+ od

(
(log d)2

d

))
n

)
−→ 0 ,

since c > 2. This shows that w.h.p. no set of size less than log d−2 log log d
d n can dominate the

whole graph and completes the proof.

Since any identifying code is a dominating set, we obtain the following immediate corollary.

Corollary 4.22. Let G ∈ G(n, d), then, with high probability,

γID(G) ≥ log d−2 log log d
d n .

Plugging together Theorems 4.20 and 4.21, we can provide the following result.

Corollary 4.23. Let G ∈ G(n, d), then, with high probability,

log d− 2 log log d

d
n ≤ γID(G) ≤ log d+ log log d+Od(1)

d
n .
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4.5 Extremal constructions

This section gathers some constructions which show the tightness of some of our upper bounds.
Some of these constructions can be found in [58].

Construction 4.24. Given any dH�regular multigraph H (without loops) on nH vertices, let
C1(H) be the graph on n = nH(dH + 1) and maximum degree ∆ = dH + 1 constructed as follows.

1. Replace each vertex v of H by a clique K(v) of dH + 1 vertices

2. For each vertex v of H, let N(v) = {v1, . . . , vdH} and K(v) = {k0(v), . . . , kdH (v)}. For
each ki(v) but one (1 ≤ i ≤ dH), connect it with an edge in C1(H), to a unique vertex of
K(vi), denoted f (ki(v)).

One can see that the graphs C1(H) given by Construction 4.24 are twin�free. Moreover, for
each vertex v of H and for each 1 ≤ i ≤ dH , note that f (ki(v)) is k0(v)ki(v)�forced. Therefore
C1(H) has dHnH = n− n

∆ forced vertices. In fact these forced vertices form an identifying code,
therefore γID(C1(H)) = n− n

∆ . An example of this construction is given in Figure 4.7, where H is
the hypercube of dimension 3, H3, and the black vertices are those which belong to a minimum
identifying code of C1(H3).

g

e

h

ba

dc

f

K(b)

K(h)

k0(b)

k1(b)
= f(k3(h))

k2(b)

k3(b)

k0(h)

k2(h)

k1(h)

k3(h)
= f(k1(b))

Figure 4.7: The graphs H3 and C1(H3).

The following construction is very similar, but yields regular graphs.

Construction 4.25. [58] Given any dH�regular multigraph H (without loops) on nH vertices,
let C2(H) be the d�regular graph on n = nHdH vertices (where d = dH) constructed as follows.

1. Replace each vertex v of H by a clique K(v) of dH vertices.

2. For each vertex v of H, let N(v) = {v1, . . . , vdH} and K(v) = {k1(v), . . . , kdH (v)}. For
each ki(v) (1 ≤ i ≤ dH), connect it with an edge in C2(H), to a unique vertex of K(vi),
denoted f (ki(v)).
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Note that for some vertex v of H, in order to separate each pair of vertices ki(v), kj(v) of K(v)
in C2(H), either f (ki(v)) or f (kj(v)) must belong to any identifying code. Repeating this
argument for each pair shows that at least d− 1 such vertices are needed in the code. Since for
any two cliques K(u) and K(v), the set of these neighbours are disjoint, this shows that at least
nH(d− 1) vertices are needed in an identifying code of C2(H). In fact it is easy to construct an
identifying code of this size. This shows that despite the fact that C2(H) has no forced vertices,
γID(C2(H)) = n − n

d . An example of this construction is given in Figure 4.8, where H is the
complete graph K5, and the black vertices form a minimum identifying code of C2(K5).

Construction 4.24 and 4.25 are close to Sierpi«ski graphs, which were de�ned in [89]. Recently
in [72], it has been showed that Sierpi«ski graphs are also extremal with respect to Conjecture 4.2,
i.e. for any Sierpi«ski graph G on n vertices with maximum degree ∆, γID(G) = n− n

∆ .

a

b

c

d e

K(a)

K(e)

k1(a)

k2(a)

k3(a)

k4(a)
= f(k1(e))

k2(e)

k3(e)

k4(e)
k1(e) = f(k4(a))

Figure 4.8: The graphs K5 and C2(K5).

Construction 4.26. [58] Given an even number 2k and an integer d ≥ 3, we construct a
twin�free d�regular triangle�free graph C3(2k, d) on n = 2kd vertices as follows.

1. Let {c0, . . . , c2k−1} be a set of 2k vertices and add the edges of the perfect matching
{c1c2, . . . , c2k−3c2k−2, c2k−1c0}.

2. For each even i (0 ≤ i ≤ 2k−2), build a copy K(i) of the complete bipartite graph Kd−1,d−1.
Join vertex ci to all vertices of one part of the bipartition of K(i), and join vertex ci+1 to
all other vertices of K(i).

Consider an identifying code of C3(2k, d). Note that in each copy K(i) of Kd−1,d−1, at least
2d − 4 vertices belong to the code in order to separate the vertices being in the same part of
the bipartition of K(i). Now if exactly 2d − 4 vertices of K(i) belong to the code, in order to
separate the two remaining vertices, either ci or ci+1 belongs to the code. Hence for each odd
i, at most three vertices from {ci, ci+1} ∪ V (K(i)) do not belong to a code of C3(2k, d). On
the other hand, taking all vertices ci such that i is even together with d − 2 vertices of each
part of the bipartition of each copy of Kd−1,d−1 yields an identifying code of this size. Hence
γID(C3(2k, d)) = k+ 2k(d−2) = n− n

2d/3 . An example of this construction is given in Figure 4.9,
where 2k = 8, d = 3, and the black vertices form a minimum identifying code of C3(8, 3).
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c0 c1 c2 c3 c4 c5 c6 c7

K(0)

Figure 4.9: The graph C3(8, 3).

4.6 Concluding remarks and open questions

1. Motivated by the graph Bk (see Figure 4.3), we ask the following question.

Question 4.27. Does there exist a value of ∆ and an in�nite family of graphs with maximum
degree ∆ having exactly n

∆+1 non�forced vertices?

Answering this question in a positive way would provide a counterexample to Conjecture 4.2.
Note that for the similar question where we replace ∆ + 1 by ∆, the answer is positive by
Construction 4.24 of Section 4.5. For any ∆, this construction provides arbitrarily large graphs
having exactly n

∆ non�forced vertices.

2. The main question that still needs to be answered is whether Conjecture 4.2 is true for every
graph with maximum degree ∆. We have showed that the conjecture is asymptotically true for
every graph with a constant proportion of non�forced vertices (Corollary 4.7), which includes
regular graphs or graphs with no clique of constant order as a minor (Corollary 4.11).

An easier question is the following weaker version of Conjecture 4.2.

Question 4.28. Is it true that for any nontrivial connected twin�free graph G of maximum
degree ∆, we have

γID(G) ≤ n− n
O(∆) ?

Recall that we have examples with a large number of forced vertices. Thus, it is not true that
any graph has a constant proportion of non�forced vertices. Thus, Theorem 4.6 does not su�ce
to answer the previous question.

Nonetheless, we believe that the same probabilistic approach could give a better result by un-
derstanding which is the role of the forced vertices in the proof of Theorem 4.6. In our proof,
we do not use the set of forced vertices to identify the rest of the vertices. It is obvious that any
identifying code will contain this set of vertices, but they also help to separate the other pairs.
For instance, in graph the Bk (see Figure 4.3), the set of forced vertices V (Ak) is already an
identifying code.

3. Consider a k�coloring of G, χ : V (G) → [k]. For any set S ⊆ V (G), we denote by χ(S) =



Chapter 4. Bounds for identifying codes in terms of degree parameters 69

∪v∈Sχ(v) ⊆ [k], the set of colors in S. Then, χ is locally identifying, if it is proper and for any
edge uv ∈ E(G), with N [u] 6= N [v], we have

χ(N [u]) 6= χ(N [v]) .

The locally identifying chromatic number of G, χlid(G), is the minimum integer k such that G
admits a locally identifying coloring.

It was conjectured in [55] that for any graph G with maximum degree ∆,

χlid(G) = O(∆2) . (4.7)

In the same paper, the authors show that for such graphs, χlid(G) = O(∆3).

Using the technique displayed in the proof of Theorem 4.6, one can show that for any graph G
with maximum degree ∆, (4.7) holds. In [60], we provide a constructive proof to show that

χlid(G) ≤ 2∆2 − 3∆ + 3 .

This bound cannot be improved much. Using the projective plane one can construct a graph H
with maximum degree ∆ and χlid(H) = ∆2 −∆ + 1.

4. Note that Theorem 4.19 cannot be extended much in the sense that if we drop the condition on
girth 5, we know arbitrarily large d�regular triangle�free graphs having large minimum identifying
code number. For instance, Construction 4.26 of Section 4.5 provides a graph G which satis�es
γID(G) = n − n

d . Similarly, we cannot drop the minimum degree condition. Indeed it is known
that any (∆− 1)-ary complete tree T∆,h of height h, which is of maximum degree ∆, minimum
degree 1 and has in�nite girth, also has a large identifying code number (i.e. γID(T∆,h) =
n− n

∆−1+o∆(1) [17]).





CHAPTER 5

Large spanning subgraphs admitting

small identifying codes

5.1 Introduction

Consider any graph parameter that is not monotone with respect to graph inclusion. Given a
graph G, a natural problem in this context is to study the minimum value of this parameter
over all spanning subgraphs of G. In particular, how many edge deletions are su�cient in order
to obtain from G a graph with near�optimal value of the parameter? Herein, we use random
methods to study this question with respect to the identifying code number of a graph, a well�
studied non�monotone parameter. An identifying code of graph G is a set C of vertices which
is a dominating set, and such that the closed neighborhood within C of each vertex v uniquely
determines v.

The basic notation on graph theory and a formal de�nition of identifying code can be found in
Section 4.1 of the previous chapter. Recall that for every twin�free graph G on n vertices having
at least one edge, we have

dlog2(n+ 1)e ≤ γID(G) ≤ n− 1 .

In view of the above lower bound, we say that an identifying code C of G is asymptotically optimal
if

|C| = O(log n) .

In this chapter we will deal with graphs that have a large identifying code number or that do not
admit an identifying code, this is, they contain twins. Our goal will consist in slightly modifying
such graphs in order to decrease their identifying code number and obtain an asymptotically
optimal identifying code, unless its domination number prevents us from doing so.

One of the reasons for a graph to have a large identifying code number is that it has a large
domination number (this one being a monotone parameter under edge deletion). For instance,
we need a linear size set in order to dominate all the vertices of a bounded degree graph. When
this is the case, we cannot expect to decrease much the size of a minimum identifying code by
deleting edges from G, as the deletion of edges cannot decrease the domination number.

71
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However, there are many graphs with small domination number where the identifying code
number is very large [59, 62]. Typically, this phenomenon appears in graphs having a speci�c
�rigid� structure. Supporting this intuition, Frieze et al. [66] have showed that the random graph
G(n, p) with p ∈ (0, 1), admits an asymptotically optimal identifying code. In particular, they
prove in [66] that

γID(G(n, p)) = (1 + o(1))
2 log n

log (1/q)
,

where q = p2 + (1 − p)2. This suggests that the lack of structure in dense graphs implies the
existence of a small identifying code.

By selecting at random a small set of edges that can be deleted to �add some randomness� in
the graph, we obtain the following result.

Theorem 5.1. For every graph G on n vertices (n large enough) with maximum degree ∆ = ω(1)
and minimum degree d ≥ 66 log ∆, there exists a subset of edges F ⊂ E(G) of size

|F | = O (n log ∆) ,

such that

γID(G \ F ) = O

(
n log ∆

d

)
.

Observe that when d = Θ(n), this result is asymptotically equal to the one in [66].

In order to show Theorem 5.1, we de�ne a suitable random spanning subgraph of G: we �rst we
choose a code C by selecting each vertex independenty at random, and then we randomly delete
edges among the edges containing vertices of C. We then analyze the construction by applying
concentration inequalities and the use of the local lemma.

A similar approach has been used in the literature when considering random subgraphs of a
graph (see Section 2.3.1). Our random subgraph model is adapted to the analysis of identifying
codes, and can be seen as a weighted version of Gp, like the one proposed by Alon [3].

Theorem 5.1 is asymptotically best possible in terms of both the number of deleted edges and
the size of the �nal identifying code for every graph with ∆ = Poly(d) (see Corollary 5.10). For
smaller values of the minimum degree, we prove that our result is almost optimal. We also show
that the two conditions, ∆ = ω(1) and d ≥ c log ∆ for some constant c, are necessary.

When considering the case of adding edges to the graph, we get analogous (symmetric) results,
showing that every graph is a large spanning subgraph of some graph that admits a small
identifying code. This result also turns out to be tight. We also describe an application to the
closely related topic of watching systems.

This chapter is organized as follows. In Section 5.2, we de�ne our model of random subgraphs
and use it to prove Theorem 5.1. In Section 5.3 we construct a family of graphs to show that
Theorem 5.1 is almost tight for all values of d and ∆. We present some other consequences of
our result in Section 5.4, in particular, we argue about the case where edges are added to the
graph. The chapter concludes with some �nal remarks and open problems (Section 5.5).
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5.2 Main theorem

In this section, we prove Theorem 5.1. We will need some tools and lemmas.

5.2.1 Random subgraphs and identi�cation

In what follows, for every set of vertices B ⊆ V (G) and each v ∈ V (G), we letNB
G (v) = NG(v)∩B

be the set of neighbors of v in B. Analogously, NB
G [v] = NG[v] ∩ B. We denote by dB(v) =

|NB
G (v)|, the degree of v within set B.

De�nition 5.2. Given a graph G and B ⊆ V (G), a function f : V (G) → R+ ∪ {0} is said
to be (G,B)�bounded if for each vertex u, f(u) ≤ dB(u) and for each pair u, v of vertices with
dB(u) ≥ dB(v), f(u)/dB(u) ≤ f(v)/dB(v). Given a (G,B)�bounded function f , we de�ne the
random spanning subgraph G(B, f) of G as follows:

• G(B, f) contains all edges of the subgraph G[V (G) \B] induced by V (G) \B, and

• each edge uv incident with B is independently chosen to be in G(B, f) with probability
1− puv, where

puv =
1

4

(
f(u)

dB(u)
+

f(v)

dB(v)

)
.

Observe that, since f(u) ≤ dB(u) for each vertex u ∈ V (G), we have puv ≤ 1/2.

The next lemma gives an exponential upper bound on the probability that two vertices of G(B, f)
are not separated by B. This lemma is crucial in our main proof.

Lemma 5.3. Let G be a graph, B ⊆ V (G), and f a (G,B)�bounded function. In the random
subgraph G(B, f), for every pair u, v of distinct vertices with dB(u) ≥ dB(v), we have

Pr
(
NB
G(B,f)[u] = NB

G(B,f)[v]
)
≤ e−3f(u)/16 .

Proof. Consider the following partition of S = NB
G [u] ∪NB

G [v] into three parts: S1, the vertices
of B dominating u but not v; S2, the vertices of B dominating v but not u; and S3, the vertices
of B dominating both u and v.

Let D be the random variable which gives the size of the symmetric di�erence of NB
G(B,f)[u] and

NB
G(B,f)[v]. The statement of the lemma is equivalent to Pr(D = 0) < e−3f(u)/16.

The random variable D = |NB
G(B,f)[u] ⊕ NB

G(B,f)[v]| can be written as the sum of independent
Bernoulli variables

D =
∑
w∈S

Dw ,

where Dw = 1 if and only if w dominates precisely one of the two vertices u or v in G(B, f).
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Therefore, for any w /∈ {u, v},

Pr(Dw = 1) =


1− puw if w ∈ S1,
1− pvw if w ∈ S2,
puw(1− pvw) + pvw(1− puw) if w ∈ S3.

Since we want to bound from above the probability that D = 0, we can always assume that
u, v /∈ NB

G(B,f)[u] ⊕ NB
G(B,f)[v]. Recall that dB(u) ≥ dB(v). By the de�nition of a (G,B)�

bounded function, we have that puw ≤ pvw for each w ∈ S3. Since x(1 − x) has a unique
maximum at x = 1/2 and puw, pvw ≤ 1/2, we also have:

pvw(1− puw) ≥ puw(1− puw) ≥ f(u)

4dB(u)

(
1− f(u)

4dB(u)

)
= g(u) , (5.1)

for each w ∈ S3.

For w ∈ S, denote by qw the parameter of the Bernoulli random variable Dw. Then,

E(D) ≥
∑

w∈NB
G (u)

qw

=
∑
w∈S1

qw +
∑
w∈S3

qw

=
∑
w∈S1

(1− puw) +
∑
w∈S3

(puw(1− pvw) + pvw(1− puw))

≥
∑
w∈S1

puw(1− puw) +
∑
w∈S3

puw(1− puw)

≥ g(u)dB(u)

=
f(u)

4

(
1− f(u)

4dB(u)

)
≥ 3

16
f(u) . (5.2)

Finally, we have that

Pr(D = 0) =
∏
w∈S

(1− qw) ≤ e−
∑
w∈S qw = e−E(D) ≤ e−3f(u)/16 ,

and the lemma follows.

5.2.2 Proof of the main result

We are now ready to prove the main theorem.

Proof of Theorem 5.1. The proof is structured in the following steps:

1. We select a set C at random, where each vertex is selected independently with probability
p. Using the Cherno� inequality, we estimate the probability of the event AC that C is
small enough for our purposes. From C, we construct the spanning subgraph G(C, f) of G
as given in De�nition 5.2, for some suitable function f .
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2. We use the local lemma (Lemma 2.12) and Lemma 5.3 to bound from below the probability
that the following events (whose conjunction we call ALL) hold jointly: (i) in G(C, f), each
pair of vertices that are at distance at most 2 from each other are separated by C; and (ii)
for each such pair and each member of this pair in G, its degree within C in G is close to
its expected value d(v)p. We show that with nonzero probability, AC and ALL hold jointly.

3. We �nd a dominating set D of G with |D| = O(|C|); by Observation 4.3, if ALL holds, then
C ∪D is an identifying code.

4. Finally, we show that, subject to AC and ALL, the expected number of deleted edges is as
small as desired.

Step 1. Constructing C and G(C, f)

Let C ⊆ V (G) be a subset of vertices, where each vertex v in G is chosen to be in C independently
with probability

p =
66 log ∆

d
.

Observe that p ≤ 1 since d ≥ 66 log ∆.

Consider the random variable |C| and recall that E(|C|) = np.

De�ne AC to be the event that

|C| ≤ 2np =
132n log ∆

d
. (AC)

Since the choices of the elements in C are done independently, by setting ε = 1 in Lemma 2.2,
notice that cε > 1/3, we have

Pr(AC) < e−
22n log ∆

d . (5.3)

We let
f(u) = min (66 log ∆, dC(u)) .

Observe that f is (G, C)�bounded. We construct G(C, f) as the random spanning subgraph of G
given in De�nition 5.2, where each edge uv incident to a vertex of C is deleted with probability
puv.

Step 2. Applying the local lemma

Let u, v be a pair of vertices at distance at most 2 in G. We de�ne the following events:

• Buv is the event that there exists a vertex w ∈ {u, v} such that the degree of w within C
is deviating from its expected value d(w)p by half, i.e. |dC(w)− d(w)p| ≥ d(w)p

2 ;

• Cuv is the event that NCG(C,f)[u] = NCG(C,f)[v];

• Auv is the event that Buv or Cuv occurs (Auv = Buv ∪ Cuv);

• ALL is the event that no event Auv occurs
(
ALL = ∩uvAuv

)
.
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In order to apply the local lemma, we wish to upper bound the probability of Auv. We have:

Pr(Auv) ≤ Pr(Buv) + Pr(Cuv)

= Pr(Buv) + Pr(Cuv|Buv) · Pr(Buv) + Pr(Cuv|Buv) · Pr(Buv) .

Let us upper bound Pr(Buv). We use Lemma 2.2 with ε = 1/2. Observe that cε > 1
10 , and thus

Pr(Buv) < Pr

(
|dC(u)− d(u)p| ≥ d(u)p

2

)
+ Pr

(
|dC(v)− d(v)p| ≥ d(v)p

2

)
≤ 2e−

1
10
d(u)p + 2e−

1
10
d(v)p

= 2e−
66d(u) log ∆

10d + 2e−
66d(v) log ∆

10d

≤ 4e−
33 log ∆

5

≤ 4∆−
33
5 .

Next, we give an upper bound for Pr(Cuv|Buv). For such a purpose, we apply Lemma 5.3 with
B = C and f(u) = min(66 log ∆, dC(u)). Observe that f is (G, C)�bounded. Since Buv does not
hold, we know that dC(u) and dC(v) are large enough, i.e. for w ∈ {u, v}, dC(w) ≥ d(w)p

2 ≥ dp
2 =

33 log ∆; thus f(u), f(v) ≥ 33 log ∆. We have:

Pr(Cuv|Buv) ≤ e−
3·33 log ∆

16 ≤ ∆−
99
16 . (5.4)

The probability that the event Auv holds is

Pr(Auv) ≤Pr(Buv) + Pr(Cuv|Buv) · Pr(Buv) + Pr(Cuv|Buv) · Pr(Buv)

≤ 4∆−
33
5 + 1 · 4∆−

33
5 + ∆−

99
16 · 1

≤ 2∆−
99
16 =: pLL ,

where we used ∆ = ω(1).

We now note that each event Auv is mutually independent of all but at most 2∆6 events Au′v′ .
Indeed, Auv depends on the random variables determining the existence of the edges incident
to u and v. This is given by probabilities puw and pvw that depend on dC(w), where w is at
distance at most one from either u or v. Thus, Auv depends only on the vertices at distance
at most two from either u or v belonging to C. In other words, Auv and Au′v′ are mutually
independent unless there exist a vertex w at distance at most two from both pairs; in other
words, d({u, v}, {u′, v′}) ≤ 4. Hence, there are at most 2∆4 choices for the vertex among {u′, v′}
that is closest from {u, v} (say u′), and at most ∆2 additional choices for v′, since d(u′, v′) ≤ 2.

Therefore, we can apply Lemma 2.12 if

e · 2∆−
99
16 · (2∆6 + 1) ≤ 1 ,

which holds since ∆ = ω(1).

Now, by Lemma 2.12 and since there are at most n∆2

2 events Auv (one for each pair of vertices

at distance at most 2 from each other) and pLL = 2∆−
99
16 ,

Pr(ALL) ≥ (1− e · pLL)M ≥ e−2e·pLLM ≥ e−2en∆2− 99
16 , (5.5)
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where we have used (1− x) = e−x(1−O(x)) ≥ e−2x, if x = o(1).

Step 3. Revealing the identifying code

Let us lower bound the probability that both AC and ALL hold, by using (5.3) and (5.5):

Pr(AC ∩ALL) ≥ Pr(ALL)− Pr(AC)

≥ e−2en∆2− 99
16 − e−

22n log ∆
d ,

which is strictly positive if
22 log ∆

d
> 2e∆2− 99

16 ,

which holds since n is large (and hence ∆ = ω(1) is large too), and d ≤ ∆.

Hence, there exists a set C of size 132n log ∆
d such that all vertices at distance 2 from each other

are separated by C, and such that the degree in C of all vertices is large enough.

In order to build an identifying code, we must also make sure that all vertices are dominated.
It is well�known that for every graph G, γ(G) ≤ (1 + o(1))n log d

d (see e.g. [8, Theorem 1.2.2]).

Hence, we select a dominating set D of G with size (1 + o(1))n log d
d . Then, by Observation 4.3,

C ∪D is an identifying code of size at most

(132 + 1 + o(1))
n log ∆

d
≤ 134

n log ∆

d
.

Step 4. Estimating the number of deleted edges

Let Y = |E(G) \E(G(C, f))| be the number of edges we have deleted from G to obtain G(C, f).
Recall that each edge uv ∈ E(G) is deleted independently from G with probability

puv =
1

4

(
f(u)

dC(u)
+

f(v)

dC(v)

)
,

if one of its endpoints is in C.

Since Pr(AC ∩ ALL) > 0, there is a small identifying code of G obtained by deleting at most
E(Y |AC ∩ ALL) edges. We next give an upper bound for E(Y |AC ∩ ALL). If both AC and ALL
hold, then

puv ≤
1

4

(
66 log ∆

dC(u)
+

66 log ∆

dC(v)

)
.

The expected number of deleted edges is

E(Y |AC ∩ALL) =
∑

uv∈E(G)
({u,v}∩C)6=∅

puv .

Observe that in order to estimate this quantity, we can split the two additive terms in each puv:
for every u /∈ C, we sum all the terms 66 log ∆

4dC(u) for all v ∈ C being neighbors of u; for every u ∈ C,
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we sum all the terms 66 log ∆
4dC(u) for all v ∈ V (G) being neighbors of u.

E(Y |AC ∩ALL) ≤ 1

4

∑
u/∈C

∑
v∈NCG(u)

66 log ∆

dC(u)
+
∑
u∈C

∑
v∈NG(u)

66 log ∆

dC(u)


≤ 1

4

(∑
u/∈C

dC(u)
66 log ∆

dC(u)
+
∑
u∈C

d(u)
66 log ∆

dC(u)

)

≤ 1

4

(
|V (G) \ C| · 66 log ∆ +

∑
u∈C

2
66 log ∆

p

)

≤ 1

4
(n · 66 log ∆ + 2|C|d)

≤ 66n log ∆ + 264n log ∆

4
≤ 83n log ∆ ,

where we used the fact (implied by ALL) that for each vertex v, d(v)p
2 ≤ dC(v) at the second line,

and that AC implies |C| ≤ 132n log ∆
d at the �fth line.

Summarizing, we have showed the existence of a small identifying code in a spanning subgraph
of G obtained by deleting at most E(Y |AC ∩ALL) edges from G, which completes the proof.

5.3 Asymptotic optimality of Theorem 5.1

In this section, we discuss the optimality of Theorem 5.1, �rst with respect to the size of the
constructed code and the number of deleted edges, and then with respect to the hypothesis
∆ = ω(1) and d ≥ 66 log ∆.

5.3.1 On the size of the code and the number of deleted edges

As commented in the Introduction, by removing edges, the dominating number never decreases.
It is well�known (see e.g. [8, Theorem 1.2.2]) that the domination number of a graph with
minimum degree d satis�es

γ(G) ≤ (1 + o(1))
n log d

d
. (5.6)

This bound is sharp. If G is a tight example for (5.6), then for every subgraph H of G,

γID(H) ≥ γ(H) ≥ γ(G) = (1 + o(1))
n log d

d
.

This shows that Theorem 5.1 cannot be improve much in terms of identifying code size. In this
section we will show that, indeed, Theorem 5.1 is also tight in terms of number of deleted edges.

Charon, Honkala, Hudry and Lobstein showed that deleting an edge from G can decrease by at
most 2 the identifying code number of a graph [33]. That is, for every graph G and any edge
uv ∈ E(G),

γID(G) ≤ γID(G \ uv) + 2 .
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This directly implies that for every graph with linear identifying code number, one needs to
delete a subset F of at least Ω(n) edges, to get a graph with γID(G \ F ) = o(n).

We will show that, indeed, one needs to delete at least Ω(n log n) edges from the complete graph
to get a graph with an asymptotically optimal identifying code. Using this, we will derive a
family of graphs with arbitrary minimum degree d, that asymptotically attains the bound of
Theorem 5.1, both in number of edges and size of the minimum code, when ∆ = Poly(d).

Let start by showing that every graph with an asymptotically optimal identifying code cannot
contain too few edges.

Lemma 5.4. For every M ′ ≥ 0, there exists a constant c0 > 0 such that any graph G with
γID(G) ≤M ′ log n contains at least c0n log n edges.

Proof. Set α0 as the smallest positive root of

f(α) = α log

(
M ′ + α

α
e

)
− 1/2 . (5.7)

Note that f(α) is well�de�ned since limα→0 f(α) = −1/2 and f(1) = log(M ′ + 1) + 1/2 > 0.

Suppose by contradiction that there exists a graph G containing less than c0n log n edges, with
c0 = α0/4, that admits an identifying code C of size at most M ′ log n. Let U be the subset of
vertices of degree at least α0 log n. Notice that

|U | ≤ 2|E(G)|
α0 log n

≤ 2c0

α0
n =

n

2
.

Since |C| ≤ M ′ log n and any v ∈ V (G) \ U has degree smaller than α0 log n, the number of
possible nonempty sets NG[v] ∩ C, is smaller than

α0 logn∑
i=1

(
|C|
i

)
≤
(
M ′ log n+ α0 log n

α0 log n

)

≤
(

(M ′ + α0)e

α0

)α0 logn

= n
α0 log

(
M′+α0
α0

e

)
=
√
n .

where we have used that
(
a
b

)
≤
(
ae
b

)b
for the second inequality and the fact that α0 is a root

of (5.7) for the last one.

Since |V (G)\U | ≥ n/2 there must be at least two vertices v1, v2 ∈ V (G)\U such thatNG[v1]∩C =
NG[v2] ∩ C, and thus C cannot be an identifying code, a contradiction.

The following lemma relates the identifying code number of a graph G to the one of its comple-
ment G.

Lemma 5.5. Let G be a twin-free graph. If G is twin�free, then

γID(G) ≤ 2γID(G) .
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Proof. Let C0 be a minimum identifying code of G. We will show that there exists a set C1 of
size at most γID(G)− 1 and a special vertex v, such that C = C0 ∪C1 ∪{v} is an identifying code
of G.

For the sake of simplicity, we de�ne the following relation. Two vertices u, v ∈ V (G) are related
if and only if NG(u) ∩ C0 = NG(v) ∩ C0 and u 6∼ v (i.e. considering C0 in G, u, v are separated
by one of u, v). This will be denoted as u ≡G v. It can be checked that this relation is an
equivalence relation.

Claim 5.6. Every pair of distinct vertices u 6≡G v is separated by C0 in G.

Proof. By the de�nition of ≡G, either NG(u) ∩ C0 6= NG(v) ∩ C0 or u ∼ v.

If NG(u)∩C0 6= NG(v)∩C0, there exists w ∈ C0 (and w /∈ {u, v}) such that w ∈ NG(u)⊕NG(v).
Then, w ∈ NG(u)⊕NG(v), hence w still separates u, v in G.

If NG(u) ∩ C0 = NG(v) ∩ C0, then u ∼ v. If at least one of them belongs to C0, then this
vertex separates u, v in G. Otherwise, u, v /∈ C0 and we have NG(u) ∩ C0 = NG[u] ∩ C0 and
NG[v]∩ C0 = NG(v)∩ C0. Hence NG[u]∩ C0 = NG[v]∩ C0. But then C0 does not separate u, v in
G, a contradiction.

In particular, this implies that any vertex in an equivalence class of size one is separated by C0

from all other vertices in G.

Claim 5.7. If u ≡G v and both u, v /∈ C0, then u = v.

Proof. Since u, v /∈ C0, NG[u] ∩ C0 = NG(u) ∩ C0 and NG[v] ∩ C0 = NG(v) ∩ C0. Using that they
are equivalent, we have that NG[u] ∩ C0 = NG[v] ∩ C0. Since C0 is an identifying code of G, we
must have u = v.

Claim 5.8. Let U = {u1, . . . , us} be an equivalence class of ≡G. Then all the pairs in U can be
separated in G by using s− 1 vertices.

Proof. We will prove the claim by induction. For s = 2 it is clearly true: since G is twin�free,
we can select w ∈ NG[u1]⊕NG[u2], and w separates u and v in G.

For every s > 2, consider the vertices u1, u2 ∈ U and let w ∈ NG[u1] ⊕ NG[u2]. Since U forms
a clique in G, w /∈ U . Then w splits the set U into U1, the set of vertices of U adjacent to w
in G, and U2, the set of vertices in U non�adjacent to w in G. Let |U1| = s1 and |U2| = s2; by
construction, s1, s2 < s.

Now, the pairs of vertices of U with one vertex from U1 and one vertex from U2 are separated
by w. By induction, the pairs of vertices in U1 can be separated using s1 − 1 vertices and the
ones in U2 using s2− 1. Thus we need at most (s1− 1) + (s2− 1) + 1 = s− 1 vertices to separate
all the pairs of vertices in U .

From the previous claims, it is straightforward to deduce that there is a set C1 of size at most
|C0| − 1 vertices that separates all the pairs in G that are not separated by C0.
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Eventually, there might be a unique vertex v such that NG[v] ∩ (C0 ∪ C1) = ∅ (if there were two
such vertices, they would not be separated by C0 ∪C1, a contradiction). Hence, C = C0 ∪C1 ∪{v}
is an identifying code of G of size at most 2|C0| = 2γID(G).

Proposition 5.9. For every M ≥ 0, there exists a constant c > 0 such that for every set of
edges F ⊂ E(Kn) satisfying γID(Kn \ F ) ≤M log n, |F | ≥ cn log n.

Proof. Set M ′ = M/2 and let c = c0 be the constant given by Lemma 5.4 for this M ′. Suppose
that there exists a set F of edges, |F | < cn log n such that G = Kn\F satis�es γID(G) ≤M log n.
By Lemma 5.5, the graph G admits an identifying code of size at most 2M log n = M ′ log n. By
Lemma 5.4, we get a contradiction.

If ∆ = Poly(d), the former proposition provides an example of a graph for which the result of
Theorem 5.1 is asymptotically tight.

For every d > 0, consider the graph Hd to be the disjoint union of cliques of order d + 1. We
may assume that d + 1 divides n for the sake of simplicity. Denote by H(1)

d , . . . ,H
(s)
d , s = n

d+1 ,
the cliques composing Hd.

SinceH(i)
d is a connected component, an asymptotically optimal identifying code forHd must also

be asymptotically optimal for each H(i)
d . By Proposition 5.9, we must delete at least Ω(d log d)

edges from H
(i)
d to get an identifying code of size O(log d).

Thus, one must delete at least Ω(sd log d) = Ω(n log d) edges from Hd to get an optimal identi-
fying code.

Corollary 5.10. For every d = ω(1) and every M ≥ 0, there exists a constant c > 0 such that
for every set of edges F ⊂ E(Hd) satisfying γID(Hd \ F ) ≤M n log d

d , we have |F | ≥ cn log d.

We remark that a connected counterexample can also be constructed from Hd by connecting its
cliques using few edges, without a�ecting the above result.

Corollary 5.10 implies that Theorem 5.1 is asymptotically tight when ∆ = Poly(d), since in that
case log ∆ = O(log d). In the case where d is sub�polynomial with respect to ∆, there is a gap
between the result of Theorem 5.1 and the construction provided here.

5.3.2 On the hypothesis

We conclude this section by discussing the necessity of the conditions ∆ = ω(1) and d ≥ 66 log ∆
in Theorem 5.1.

First note that, if ∆ is bounded by a constant, we need at least n
∆+1 = Θ(n) vertices to dominate

G. Thus, no code of size smaller than Θ(n) can be obtained by deleting edges of the graph.

On the other hand, the condition d ≥ 66 log ∆ in Theorem 5.1, is also necessary (up to a constant
factor) as can be deduced from the following proposition.
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Proposition 5.11. For arbitrarily large values of ∆, there exists a graph G with maximum degree
∆ and minimum degree d = log2 ∆

2 such that, for every spanning subgraph H ⊆ G,

γID(H) = (1− o(1))n .

Proof. Consider the bipartite complete graph G = Kr,s where s = 22r. Denote by V1 the stable
set of size r and by V2 the stable set of size s. Observe that d = r = log2 s

2 = log2 ∆
2 .

For every twin�free spanning subgraph H ⊆ G, let C ⊆ V (G) be an identifying code of H. Let us
show that most of the vertices in V2 must be in C. Let S ⊆ V2 be the subset of vertices in V2 that
are not in the code. Thus, for every u ∈ S, NC [u] = NC(u). Observe that NC(u) ⊆ V1, and hence,
there are at most 2r possible candidates for such NC(u). Since C is dominating and separating
all the pairs in S, all the subsets NC(u) must be nonempty and di�erent, which implies, |S| < 2r.
Hence, we have

|C| ≥ |V2 \ S| ≥ 22r − 2r = (1− o(1))22r = (1− o(1))n .

5.4 Consequences of our results

We now describe consequences of our results on the case when we want to add edges to a graph
to decrease its identifying code number, and to the notion of watching systems.

5.4.1 Adding edges

In the previous sections, we have studied how much can the identifying code number decrease
when we delete few edges from the original graph. In this section, we discuss the symmetric
question of how much can the addition of edges help to decrease this parameter.

The question of how much can a parameter decrease when deleting/adding edges has been already
studied for some monotone parameters. However, if the parameter is monotone, only one of either
deleting or adding, can help to decrease it. One of the interesting facts of studying the identifying
code number is that, since it is a non�monotone parameter, we can have similar results for both
procedures.

As before, let G be a graph with maximum degree ∆ and minimum degree d. We aim to �nd a
set of edges F with F ∩E(G) = ∅ such that γID(G∪F ) is small. This set F will be provided by
applying Theorem 5.1 to the graph G, that has maximum degree ∆(G) = n−1−d and minimum
degree d(G) = n− 1−∆. Thus, it will have size

|F | = O
(
n log ∆(G)

)
,

and

γID(G \ F ) = O

(
n log ∆(G)

d(G)

)
.

Since G \ F = G ∪ F , we have the following corollary of Theorem 5.1 and Lemma 5.5.
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Corollary 5.12. For every graph G on n vertices with minimum degree d = n − ω(1) and
maximum degree ∆ such that n−∆ ≥ 66 log (n− d), there exists a set of edges F with F∩E(G) =
∅ of size

|F | = O (n log (n− d)) ,

such that

γID(G ∪ F ) = O

(
n log (n− d)

n−∆

)
.

This result is also asymptotically tight. Otherwise, by using again Lemma 5.5, we could translate
our case to the case of deleting edges and we would get a contradiction with the optimality of
Theorem 5.1.

5.4.2 Watching systems

The result of Theorem 5.1 has a direct application for watching systems, which are a general-
ization of identifying codes [12, 11]. In a watching system, we can place on each vertex v a set
of watchers. To each watcher w placed on v, we assign a nonempty subset Z(w) ⊆ N [v], its
watching zone. We now ask each vertex to belong to a unique and nonempty set of watching
zones; the minimum number of watchers that need to be placed on the vertices of G to obtain a
watching system is the watching number w(G) of G.

It is clear from the de�nition that γ(G) ≤ w(G) ≤ γID(G), since the vertices of any identifying
code form a watching system (where the watching zones are the closed neighborhoods). In fact,
even the following holds:

Observation 5.13. For every twin�free graph G,

w(G) ≤ min{γID(H), where H is a spanning subgraph of G} .

Indeed, consider the spanning subgraph H0 of G with smallest identifying code number, and de�ne
the watching system to be the vertices of an optimal identifying code of H0, with the watching
zones being the closed neighborhoods in H0.

In [12, Theorems 2 and 3], the authors propose the following upper bound for graphs with given
maximum degree:

Theorem 5.14 ([12]). Let G be a graph with maximum degree ∆, then

dlog2(n+ 1)e ≤ w(G) ≤ γ(G)dlog2(∆ + 2)e .

Note that for every values of parameters γ and ∆, the upper bound from the above theorem is
sharp for the graph consisting of γ disjoint copies of a star on ∆ + 1 vertices.

Recall that the bound on the dominating number provided in (5.6) is tight. In particular,
a d�regular graph chosen uniformly at random is an asymptotically tight example with high
probability. Indeed, for almost all d�regular graphs G, the upper bound of Theorem 5.14 gives

w(G) ≤ γ(G)dlog ∆ + 2e = Ω

(
n log2 d

d

)
. (5.8)
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By Observation 5.13, a direct corollary of Theorem 5.1 is the following:

Corollary 5.15. For every graph G on n vertices with minimum degree d ≥ 66 log ∆ and maxi-
mum degree ∆ = ω(1), we have:

w(G) ≤ O
(
n log ∆

d

)
.

On the one hand, since γ(G) ≥ n
d+1 , Corollary 5.15 is always at least as good as Theorem 5.14.

On the other hand, if γ(G) is large, it asymptotically improves Theorem 5.14, as in case of a
typical d-regular graph (see the bound in (5.8)).

5.5 Concluding remarks and open questions

1. The kind of results we provide in this chapter can be connected to the notion of resilience.
Given a graph property P, the global resilience of G with respect to P is the minimum number of
edges one has to delete to obtain a graph not satisfying P. The resilience of monotone properties
is well studied, in particular, in the context of random graphs [122].

Our result can be interpreted in terms of the resilience of the following (non�monotone) property
P: �G has a large identifying code number in terms of its degree parameters, d and ∆�. For
every graph G satisfying the hypothesis ∆ = ω(1) and d ≥ 66 log ∆, Theorem 5.1 can be stated
as: the resilience of G with respect to P is O(n log ∆). Moreover, Corollary 5.10 shows that
there are graphs that attain this value of the resilience.

2. In Theorem 5.1, we show the existence of a small identifying code for a large spanning
subgraph of G. However, our proof is not constructive and, besides, the probability that such
pair exists is exponentially small, due to the use of the local lemma. The algorithmic version of
the local lemma proposed by Moser and Tardos [109], allows to explicitly �nd a con�guration
that avoids all the bad events Auv, when these events are determined by a �nite set of mutually
independent random variables. Unfortunately, this is not the case here, since Auv depends on the
random variables determining the existence of certain edges close to uv. These random variables
are not independent because of the de�nition of puv.

On the other hand, if we do not want to argue in terms of the maximum degree ∆, one can show

that by deleting a set of O(n log n) random edges, any set of size O
(
n logn
d

)
is an identifying

code with probability 1 − o(1). In such a case, the proof provides a randomized algorithm
which constructs the desired code for almost all subgraphs. It is an open question whether this
algorithm can be derandomized.

3. A notion similar to identifying codes, locating-dominating sets, has also been extensively
studied in the literature (see e.g. [96] for many references). A set C of vertices of G is a locating-
dominating set if C is a dominating set which separates all pairs of vertices in V (G) \ C. It
follows that any identifying code is a locating-dominating set, hence Theorem 5.1 also holds for
this notion. In fact, the proof of Corollary 5.10 can be adapted for this case too.

4. As further research, it would be very interesting to close the gap between the result in
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Theorem 5.1 and the lower bound given by the example in Corollary 5.10. Motivated by this
example, we ask the following question:

Question 5.16. Is it true that for every graph G with minimum degree d, there exists a subset
of edges F ⊂ E(G) of size

|F | = O (n log d) ,

such that

γID(G \ F ) = O

(
n log d

d

)
?

It seems to us that the techniques used in this chapter will not provide an answer to the previous
question. The main obstacle is the use of the local lemma, which forces us to take into account
the role of the maximum degree of G.





CHAPTER 6

Consecutive pattern avoiding in

permutations

6.1 Introduction

A permutation π ∈ Sn contains σ ∈ Sm as a consecutive pattern if there exists 0 ≤ i ≤ n−m such
that st(πi+1, . . . , πi+m) = σ, that is, there are m consecutive elements in π that have the relative
order prescribed by σ. For instance, if σ = (1, 2, . . . ,m), then π contains σ as a consecutive
pattern if and only if it contains m consecutive increasing elements (a run of length m). A
permutation π ∈ Sn is called consecutive σ�avoiding if it does not contain σ as a consecutive
pattern. We denote by αn(σ) the number of permutations in Sn that are σ�avoiding.

The problem of determining αn(σ) is inspired by the problem of �nding the number of permuta-
tions of length n that avoid a pattern σ non necessarily in consecutive positions. A permutation
π ∈ Sn contains σ if there exist 1 ≤ i1 < · · · < im ≤ n such that st(πi1 , . . . , πim) = σ. Clearly,
if π avoids σ, then π also avoids σ as a consecutive pattern. Knuth [90] introduced the non�
consecutive case and exactly determined the number of permutations avoiding some pattern of
length 3. There are many interesting results in the area (see e.g. [25, 5]) as well as the famous
Stanley�Wilf conjecture which was proved by Marcus and Tardos [99].

For every σ ∈ Sm, it is hard to provide an exact formula for αn(σ) when n is large. Asymptotic
formulas can be derived for some special patterns as showed by Elizalde and Noy [50]. In
particular, the authors give an estimation of αn(σ) for every pattern σ of length 3 and also for
some patterns of length 4. However, even for the case of length 4, there are still some patterns
for which the asymptotic behavior of αn(σ) is not known.

Elizalde [48] showed that for every σ ∈ Sm, the following limit

ρσ := lim
n→∞

(
αn(σ)

n!

)1/n

,

exists and that 0.7839 < ρσ < 1 if m ≥ 3. A stronger result is given in [47], where the authors
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show that αn(σ) ∼ cσ ρnσ n!, for some constant cσ that only depends only on σ.

A pattern of length m is called monotone if it is either (1, 2, . . . ,m) or (m, . . . , 2, 1). It is clear
that αn(1, 2, . . . ,m) = αn(m, . . . , 2, 1), since π = (π1, . . . , πn) is (1, 2, . . .m)�avoiding if and only
if its reversing (πn, . . . , π1) is (m, . . . , 2, 1)�avoiding. It was conjectured in [50] that monotone
patterns are the most avoided ones among all patterns of length m, when n is large enough. This
is known as the Consecutive Monotone Pattern (CMP) Conjecture.

Conjecture 6.1 (CMP conjecture [50]). For every σ ∈ Sm,

ρσ ≤ ρ(1,2,...,m) .

The results in [50], determining ρσ for every σ ∈ S3, settle in the a�rmative the CMP conjecture
for patterns of length 3. Elizalde and Noy [51] show that the conjecture is true for the large
class of non�overlapping patterns. A pattern is non�overlapping if two copies of the pattern in
a permutation share at most one position.

Regarding the least avoided pattern among all the patterns of length m, Nakamura [111] posed
the following conjecture motivated by some simulations for small values of n and m.

Conjecture 6.2 ([111]). For every σ ∈ Sm,

ρσ ≥ ρ(1,2,...,m−2,m,m−1) .

Both conjectures have been recently proved by Elizalde [49]. The proofs are based on comput-
ing the generating function for the number of σ�avoiding permutations, Pσ(z) =

∑
αn(σ) z

n

n! ,
combined with the cluster method of Goulden and Jackson [71].

Here we will use a completely di�erent approach to the consecutive pattern avoiding problem
through the probabilistic method. While this approach is not as precise as the generating function
technique, it provides simpler alternative proofs of some known results, as the CMP conjecture,
and allows one to obtain more general results.

All along this chapter, m will be a �xed integer while n will be considered to tend to in�nity.
For the sake of simplicity, however, we will use asymptotic notation on m. If this is the case, we
will consider m to tend to in�nity while n will be an arbitrarily large function of m.

Since we are interested in ρσ, we will consider m to be a �xed integer and n to be arbitrarily large
with respect to n. Our �rst result bounds ρσ from above when the pattern σ is not monotone.

Theorem 6.3. For every σ ∈ Sm \ {(1, 2, . . . ,m), (m, . . . , 2, 1)},

ρσ ≤ 1− 1

m!
+O

(
1

m2 ·m!

)
.

To prove this theorem we make use of Suen Inequality (see Theorem 2.16), a powerful tool that
provides an upper bound on the probability that none of the events of a certain collection happen
simultaneously.

By comparing the upper bound given by Theorem 6.3 with the result obtained by Elizalde and
Noy [51] for ρ(1,2,...,m) we get the following corollary,
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Corollary 6.4. There exists an integer m0, such that for any m ≥ m0 and every pattern σ ∈
Sm \ {(1, 2, . . . ,m), (m, . . . , 2, 1)},

1− ρσ ≥
(

1 + Ω

(
1

m

))
(1− ρ(1,2,...,m)) .

This immediately provides an alternative probabilistic proof for the CMP conjecture for large
values of m. Analyzing more carefully the proof of Theorem 6.3 for small values of m, we can
show that the CMP conjecture holds for m ≥ 5. The same approach, however, does not provide
meaningful results for the case m = 4.

This corollary also gives a lower estimation of the minimum gap between ρ(1,2,...,m) and ρσ, for
every non monotone σ ∈ Sm.

Theorem 6.3 can be extended to the whole set of patterns, Sm, by weakening the upper bound;
for every σ ∈ Sm,

ρσ ≤ 1− 1

m!
+O

(
1

m ·m!

)
.

The second part of the chapter is devoted to the proof of a general lower bound on ρσ for σ ∈ Sm.

Theorem 6.5. For every σ ∈ Sm,

ρσ ≥ 1− 1

m!
−O

(
m

(m!)2

)
.

To prove this lower bound we use the one�sided version of the Lovász Local Lemma (see
Lemma 2.14). This bound is asymptotically tight and an extremal example is provided by
the pattern (1, 2, . . . ,m− 2,m,m− 1), the least avoided pattern of length m. Unlike in the case
of the upper bound and the CMP conjecture, our proof of Theorem 6.5 can not be adapted to
extract a proof of Conjecture 6.2.

As Theorem 6.3 and Theorem 6.5 give bounds for the value of ρσ in terms of m, a natural
question is to determine how most of the patterns behave. In this direction a much stronger
upper bound, close to the general lower bound, is showed to hold for most of the patterns.

Theorem 6.6. Let σ ∈ Sm be chosen uniformly at random. Then, for each 2 ≤ k ≤ m/2,

ρσ ≤ 1− 1

m!
+O

(
4m

(m− k)!m!

)
,

with probability at least 1− 2
(k+1)! −m

2m

(m/2)! .

This theorem shows that when m large enough, for most of the patterns the value of ρσ is
concentrated close to the lower bound provided by Theorem 6.5. The idea behind the proof
of this result is that the number of permutations avoiding a pattern depends on the maximum
overlapping position of this pattern. It can be showed that almost all patterns do not have a
large overlap and thus, they are far from the upper bound attained by monotone patterns, the
ones with maximum overlap.
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This chapter is organized as follows. The upper bound on ρσ is studied in Section 6.3, where
Theorem 6.3 and Corollary 6.4 are proved. Section 6.4 is devoted to the proof of Theorem 6.5.
Finally, in Section 6.5 we provide an upper bound for most of the patterns σ by proving Theo-
rem 6.6. We conclude with some remarks and open questions in Section 6.6.

6.2 A probabilistic approach on consecutive pattern avoiding

Our goal in this section is to give a proper set of �bad events� A for our problem and build a
good dependency graph for A. The probability that a random permutation avoids all the events
in A will be the probability that a random permutation avoids σ ∈ Sm as a consecutive pattern.

Let π ∈ Sn be chosen uniformly at random, and let σ ∈ Sm be a �xed pattern. We consider the
set of events A = {A0, . . . , An−m} where Ai := {st(πi+1, . . . , πi+m) = σ}. As before, we let Xi

be the indicator random variable of the event Ai and let X =
∑n−m

i=0 Xi denote the number of
events in A which are realized. Then, π avoids σ as a consecutive pattern if and only if X = 0,
that is, no copy of the pattern σ appears. We have,

αn(σ) = Pr(X = 0)n! ,

where the dependency ofX on σ will be clear from the context. In particular we will be interested
in

ρσ = lim
n→∞

Pr(X = 0)1/n . (6.1)

Bounding from above the number of edges in a dependency graph H is crucial in order to give
a proper upper bound on the probability that no event in A holds. The following lemma shows
that we can choose a dependency graph H with few edges.

Lemma 6.7. Let S, T ⊆ {0, 1, . . . , n−m} be two disjoint subsets such that for each (i, j) ∈ S×T ,
we have |i− j| ≥ m. Then, the set of events {Ai}i∈S and {Aj}j∈T are mutually independent.

Proof. In order to prove that {Ai}i∈S and {Aj}j∈T are mutually independent, we use the random
permutation model de�ned in Section 2.3. Recall that a uniform permutation from Sn can
be obtained by considering Z1, . . . , Zn independent uniform random variables in (0, 1) and by
choosing π = st(Z1, . . . , Zn).

Observe that the event Ai depends only on the random variables Zi+1, . . . , Zi+m. By the hy-
pothesis of the lemma, we have that for each i ∈ S and j ∈ T , |i − j| ≥ m. Then, using the
Mutual Independence Principle (see Observation 2.7) with Fi = {i + 1, . . . , i + m}, and noting
that

(∪i∈SFi) ∩ (∪j∈TFj) = ∅ ,

we have that the set of events {Ai}i∈S and {Aj}j∈T are mutually independent.

According to the previous lemma, the graph H with vertex set V (H) = {0, 1, . . . , n−m}, where
ij ∈ E(H) if and only if 0 < |i− j| < m, is a dependency graph for A. Throughout the chapter,
we will use this graph H as a dependency graph of A.
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6.3 An upper bound on ρσ and the CMP conjecture.

In this section we show how Suen inequality (see Theorem 2.16) can be used to provide a
meaningful upper bound on ρσ. Then, we derive an explicit lower bound for ρ(1,2,...,m) using
a result of Elizalde and Noy [51]. For large values of m, a proof of the CMP conjecture follows
from these two previous results. In the last part of the section we prove the conjecture for small
values of m.

A simple upper bound follows directly from the construction of the dependency graph H in the
previous section. Consider I = {km : 0 ≤ k < n/m}, then

Pr(X = 0) = Pr

( n−m⋂
i=0

Ai

)
≤ Pr

(⋂
i∈I

Ai

)
=
∏
i∈I

(
1− Pr

(
Ai |

⋂
j∈I,j<i

Aj

))
.

By using Lemma 6.7 with S = {i} and T = {j : j ∈ I, j < i},

1− Pr

(
Ai |

⋂
j∈I,j<i

Aj

)
= 1− Pr (Ai) = 1− 1

m!
.

Since |I| ≥ n/m− 1, this implies

ρσ ≤
(

1− 1

m!

)1/m

= 1−O
(

1

m ·m!

)
.

A better upper bound is given in Theorem 6.3 by taking into account the interaction between
pairs of dependent events.

A pattern σ ∈ Sm has an overlap at k, 1 ≤ k ≤ m − 1, if st(σ1, . . . , σk) = st(σm−k+1, . . . , σm),
namely, the �rst and the last k positions have the same relative order. For instance, the permu-
tation (2, 5, 8, 7, 1, 3, 6, 4) has an overlap at 4, since st(2, 5, 8, 7) = st(1, 3, 6, 4) = (1, 2, 4, 3), at 1,
since st(2) = st(4) = (1), and does not have an overlap at any other position. Observe that a
pattern does not have an overlap at k, if and only if

Pr(Ai ∩Ai+m−k) = 0 . (6.2)

For every σ ∈ Sm, de�ne the set

Oσ = {k : Pr(Ai) ∩ Pr(Ai+m−k) 6= 0, 1 ≤ k ≤ m− 1}.

Notice that Oσ is the set of positions at which σ has an overlap. For instance, the monotone pat-
tern (1, 2, . . . ,m) has O(1,2,...,m) = {1, 2, . . . ,m− 1} and for the pattern σ = (2, 5, 8, 7, 1, 3, 6, 4),
Oσ = {1, 4}.

The following lemma is one of the crucial facts to prove Theorem 6.3.

Lemma 6.8. Let m ≥ 2 and σ ∈ Sm. Then m− 1 ∈ Oσ if and only if σ is a monotone pattern.

Proof. It is clear that both monotone patterns satisfy m − 1 ∈ Oσ. Let us show that for every
other pattern, m− 1 /∈ Oσ.



92 6.3. An upper bound on ρσ and the CMP conjecture.

Suppose that m− 1 ∈ Oσ. This implies that

st(σ1, . . . , σm−1) = st(σ2, . . . , σm) . (6.3)

Since σ is not a monotone pattern, there exists an index 2 ≤ i ≤ m−1 such that σi−1 > σi < σi+1

or σi−1 < σi > σi+1. Without loss of generality we assume the latter. Now observe that (6.3)
implies that if σi−1 < σi, then σi < σi+1, leading a contradiction.

Thus, we can consider that the maximum overlap of σ ∈ Sm \ {(1, 2, . . .m), (m, . . . , 2, 1)} is at
most at m− 2. We observe that there are non monotone patterns that have an overlap at m− 2.
For instance, consider m = 2t and σ = (1, t+ 1, 2, t+ 2, . . . , t, 2t), or (2, 1, 4, 3, . . . ,m,m− 1).

The following lemma gives some insight on the structure of the permutations that contain two
close occurrences of a pattern σ.

Lemma 6.9. Let σ ∈ Sm with k ∈ Oσ and suppose that τ ∈ S2m−k is such that the events
A0 and Am−k hold. If σ′ = st(σm−k+1, . . . , σm), then, for each i = 0, 1, . . . , k − 1, we have
τm−i = σk−i + σm−i − σ′k−i.

Proof. Fix some i < k. By the event A0, we know that τm−i must be larger than σm−i − 1
elements and smaller than m − σm−i elements from (τ1, . . . , τm−i−1, τm−i+1, . . . , τm). By the
event Am−k, it is also true that τm−i is larger than σk−i− 1 and smaller than m−σk−i elements
from (τm−k+1, . . . , τm−i−1, τm−i+1, . . . , τ2m−k).

Consider now the permutation σ′ = st(σm−k+1, . . . , σm) ∈ Sk. Then there are σ′k−i − 1 elements
that are counted twice when we look at the elements smaller than σm−i or σk−i, and k − σ′k−i
also double counted when we look to the larger ones. Therefore

τm−i > σk−i + σm−i − 2− (σ′k−i − 1) ,

and

τm−i ≤ 2m− k −
(
m− σk−i +m− σm−i − (k − σ′k−i)

)
.

Observing that the �rst inequality is strict, we get

τm−i = σi+1 + σm−i − σ′k−i.

By using this last lemma, we can provide an upper bound on the probability that two given
occurrences of a pattern appear.

Lemma 6.10. For every σ ∈ Sm and any k ∈ Oσ,

Pr(Ai ∩Ai+m−k) ≤
(2(m−k)
m−k

)
(2m− k)!

.

Proof. Set τ = st(πi+1, . . . , πi+2m−k). Recall that π ∈ Sn has been chosen uniformly at random,
which implies that τ is also uniformly distributed in S2m−k. Moreover, π satis�es Ai and Ai+m−k
if and only if τ satis�es A0 and Am−k.
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There are (2m − k)! possible candidates for τ . We will count how many of them are such that
the events A0 and Am−k hold. By Lemma 6.9, we know that the elements {τm−k+1, . . . , τm} are
uniquely determined by σ and k. Thus, we select a subset of m−k elements among the 2m− 2k
available ones in order to build (τ1, . . . , τm−k). Since τ satis�es A0, once these elements have
been chosen, there is just one order such that st(τ1, . . . , τm) = σ, and only one way to set the
last m− k elements of τ , in order to satisfy Am−k.

Since τ = st(πi+1, . . . , πi+2m−k), for every permutation π chosen uniformly at random in Sn,

Pr(π satis�es Ai ∩Ai+m−k) = Pr(τ satis�es A0 ∩Am−k) ≤
(2(m−k)
m−k

)
(2m− k)!

.

Now we are able to prove Theorem 6.3.

Proof of Theorem 6.3. First of all we compute µ, ∆∗ and δ∗, needed to apply Suen inequality.
The expected number of occurrences of the pattern σ does not depend on σ and can be computed
as

µ =

n−m∑
i=0

Pr(Ai) =
n−m+ 1

m!
≤ n

m!
.

Assume that i < j and j − i = m − k. Recall that by the choice of our dependency graph H,
two events Ai and Aj are not adjacent if i− j ≥ m.

By Lemma 6.7, Lemma 6.10 and (6.2), ∆∗ can be expressed as

∆∗ =
∑

ij∈E(H)

Pr(Ai ∩Aj) =

n−m∑
i=0

m−1∑
k=max{1,2m+i−n}

Pr(Ai ∩Ai+m−k) ≤ n
∑
k∈Oσ

(2(m−k)
m−k

)
(2m− k)!

, (6.4)

where we assume that

Since σ is not monotone, by Lemma 6.8 we have thatm−1 /∈ Oσ. Thus, by using that
(

2a
a

)
≤ 4a√

πa
,

we have

∆∗ ≤ n
m−2∑
k=1

(2(m−k)
m−k

)
(2m− k)!

≤ n
m−2∑
k=1

4m−k√
π(m− k) · (2m− k)!

≤ n
m−2∑
k=1

4m−k√
2π(2m− k)!

=

(
1 +

4

m+ 3
+O(m−2)

)
16n√

2π(m+ 2)!

≤ 17n√
2π(m+ 2)!

, (6.5)

for any m large enough.
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Observe that the degree of a vertex in the dependency graph H is at most 2(m− 1). Then,

δ∗ = max
0≤i≤n−m

∑
j: ij∈E(H)

Pr(Aj) = 2(m− 1) Pr(Aj) =
2(m− 1)

m!
≤ 2

(m− 1)!
.

Since e2δ∗ ≤ e4/(m−1)! ≤ 2 if m ≥ 4 and by using that e−a ≤ 1− a
1+a , for any a ≥ −1; both (2.22)

and (6.1) imply that

ρσ ≤ exp

(
−

1− 34√
2π(m+2)(m+1)

m!

)

≤ 1−
1
m! −

34√
2π(m+2)(m+1)m!

1 + 1
m!

≤ 1−
(

1−O
(

1

m!

))(
1

m!
− 34√

2π(m+ 2)(m+ 1)m!

)
≤ 1− 1

m!
+

14

m2 ·m!
.

for any large enough m. This completes the proof.

6.3.1 A lower bound on ρ(1,2,...,m)

Next, we proceed to prove Corollary 6.4. This is achieved by obtaining a lower bound on ρ(1,2,...,m)

and by showing that this bound is larger than the upper bound given in Theorem 6.3. A recent
result of Elizalde and Noy gives an implicit expression for ρ(1,2,...,m).

Theorem 6.11 (Elizalde and Noy [51]). Let z0 = ρ−1
(1,2,...,m). Then z0 is the smallest real root of

g(z) =
∑
i≥0

zmi

(mi)!
−
∑
i≥0

zmi+1

(mi+ 1)!
.

From this last theorem we can extract an explicit lower bound on ρ(1,2,...,m).

Lemma 6.12. For any m large enough,

ρ(1,2,...,m) ≥ 1− 1

m!
+

1

m ·m!
+O

(
1

m2 ·m!

)
.

Proof. Observe that for nonnegative values of z

f(z) = 1− z +
zm

m!
− zm+1

(m+ 1)!
+

z2m

(2m)!
≥ g(z) ,

since, for z ∈ R+, g(z) can be written as an alternating sum whose terms are strictly decreasing.
Since g(0) = 1 and z0 is the smallest real root of g(z), we can conclude that the smallest real
root of f(z), z1, satis�es z1 ≥ z0. Thus ρ(1,2,...,m) ≥ 1/z1 and it su�ces to compute an upper
bound on z1.
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Observe that we can consider z > 1. Write z = (1− ε)−1, with 0 < ε < 1. Then z−2mf(z) = 0
becomes

−(1− ε)2m−1ε+
(1− ε)m−1

(m+ 1)!
(m− (m+ 1)ε) +

1

(2m)!
= 0 .

By using that 1− nx ≤ (1− x)n ≤ 1− nx+ n2x2 for any x > 0,

0 ≤ −(1− (2m− 1)ε)ε+
1− (m− 1)ε+ (m− 1)2ε2

(m+ 1)!
(m− (m+ 1)ε) +

1

(2m)!

≤ aε2 + bε+ c ,

where

a =

(
2m− 1 +

(m− 1)(m2 + 1)

(m+ 1)!

)
,

b = −
(

1 +
m2 + 1

(m+ 1)!

)
and

c =

(
m

(m+ 1)!
+

1

(2m)!

)
. (6.6)

Let ε′ be such that a(ε′)2 + bε′ + c = 0. Then,

ρ(1,2,...,m) ≥ (1− ε′) = 1− −b−
√
b2 − 4ac

2a
. (6.7)

If m is large enough we can get an asymptotic expression for ε′. Suppose that b2 � 4ac, then
the smallest root of ax2 + bx+ c = 0 can be approximated by

x = −c
b
− ac2

b3
+O

(
a2c3

b5

)
. (6.8)

By putting together (6.6) and (6.8), and by using that (1 + x)−1 = 1− x+O(x2), we have

ε′ =

m
(m+1)! + 1

(2m)!

1 + m2+1
(m+1)!

+O

(
m3

(m+ 1)!2

)

=
m

(m+ 1)!
+O

(
m3

(m+ 1)!2

)
=

1

m!
(
1 + 1

m

) +O

(
m3

(m+ 1)!2

)
=

1

m!
− 1

m ·m!
+O

(
1

m2 ·m!

)
,

for large enough m. This proves the lemma.

6.3.2 The CMP conjecture for small values of m.

Theorem 6.3 and Corollary 6.4 are stated for su�ciently large values of m to avoid some techni-
calities. In this subsection we will make a re�nement of our former analysis which allows us to
derive the CMP conjecture for m ≥ 5. First we need an auxiliary lemma that will be useful for
small values of m.
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Lemma 6.13. Let σ ∈ Sm \ {(1, 2, . . . ,m), (m, . . . , 2, 1)} with m ≥ 5. If m − 2 ∈ Oσ, then
m− 3 /∈ Oσ.

Proof. Suppose that m − 3 ∈ Oσ and m − 2 ∈ Oσ, that is, st(σ1, . . . , σm−2) = st(σ3, . . . , σm)
and st(σ1, . . . , σm−3) = st(σ4, . . . , σm). Thus, st(σ3, . . . , σm) is a monotone permutation since
for each i ∈ {1, . . . ,m − 4}, if σi > σi+1 then both σi+2 > σi+3 and σi+3 > σi+4. Without loss
of generality assume that st(σ3, . . . , σm) = (1, 2, . . . ,m− 2).

Moreover, we have σ1 < σ2 < σ3 since st(σ1, σ2, σ3) = st(σ3, σ4, σ5) and st(σ3, σ4, σ5) = (1, 2, 3).
Thus st(σ1, . . . , σm) = (1, 2, . . . ,m) getting a contradiction.

Proposition 6.14. The CMP conjecture is true for m ≥ 5.

Proof. On the one hand, a more precise upper bound on ρσ, σ ∈ Sm\{(1, 2, . . . ,m), (m, . . . , 2, 1)},
can be derived from (2.22) by using directly the upper bound on ∆∗ provided in (6.4),

ρσ ≤ U(σ) = exp

− 1

m!
+ e
− 4

(m−1)!

∑
k∈Oσ

(2(m−k)
m−k

)
(2m− k)!

 .

On the other hand, let L(m) be the lower bound on ρ(1,2,...,m) that follows from (6.6) and (6.7).

Since σ is not monotone, by Lemma 6.8, we have that m − 1 /∈ Oσ. One can check, by using
an algebraic manipulator, that for every σ ∈ Sm \ {(1, 2, . . . ,m), (m, . . . , 2, 1)}, U(σ) ≤ L(m) as
long as m ≥ 7, which implies the CMP conjecture for all these values.

Consider now that σ ∈ S6 \ {(1, 2, . . . , 6), (6, . . . , 2, 1)}. By Lemma 6.8 and Lemma 6.13, Oσ is
a subset of either {1, 2, 4} or {1, 2, 3}. One can check in both cases that U(σ) ≤ L(6)

To conclude the proof, �x a pattern σ ∈ S5 \ {(1, 2, . . . , 5), (5, . . . , 2, 1)}. By using again
Lemma 6.8 and Lemma 6.13, Oσ is a subset of either {1, 3} or {1, 2}. If 3 /∈ Oσ, then one
can check that U(σ) ≤ L(5). Otherwise we need to improve a particular case of Lemma 6.10.

Assume that 3 ∈ Oσ. We claim that

Pr(Ai ∩Ai+2) ≤ 2

7!
.

We will count the number of τ = (τ1, . . . , τ7) ∈ S7 that satisfy the events A0 and A2. Notice
that st(τ3, τ4, τ5) is not monotone, otherwise, σ would be also monotone. By symmetry we can
assume that st(τ3, τ4, τ5) = (1, 3, 2), thus τ3 < τ5 < τ4. Besides, the events A0 and A2 imply
that st(τ3, τ4, τ5) = st(τ1, τ2, τ3) = st(τ3, τ6, τ7). As a consequence, we also have τ1 < τ3 < τ2 and
τ5 < τ7 < τ6. Then, τ1 = 1 and τ3 = 2.

Let us continue by distinguishing cases depending on σ2. If σ2 < σ5 (σ = (1, 3, 2, 5, 4)), then
all the other elements are �xed and τ = (1, 3, 2, 5, 4, 7, 6). If σ2 > σ4 (σ = (1, 5, 2, 4, 3)), then
τ = (1, 7, 2, 6, 3, 5, 4). Finally, if σ5 < σ2 < σ4 (σ = (1, 4, 2, 5, 3)), then there are two options to
complete τ , (1, 4, 2, 6, 3, 7, 5) and (1, 5, 2, 6, 3, 7, 4).

There are 7! possible permutations for st(πi+1, . . . , πi+7) each of them appearing with the same
probability. From these permutations at most 2 satisfy the events A0 and A2 for a given σ ∈
S5 \ {(1, 2, . . . , 5), (5, . . . , 2, 1)}. Thus, the claim follows.
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It can be checked that L(5) is larger than the bound we get by setting

∆∗ = (Pr(Ai ∩Ai+2) + Pr(Ai ∩Ai+4))n ≤

(
2

7!
+

(
8
4

)
9!

)
n

in (2.22), where Pr(Ai ∩Ai+4) has been computed by using Lemma 6.10.

6.4 A lower bound on ρσ.

The setting used to give an upper bound on the number of permutations avoiding a given pattern
can be also used to provide a lower bound on ρσ. Now we need a way to bound from below the
probability that X = 0 and for this purpose we will use the Lovász Local Lemma.

Usually, the Local Lemma is used to show the existence of a certain con�guration that does
not satisfy any of the bad events in A. In our problem it is trivial to see that, for any pattern
σ ∈ Sm, there exists at least one permutation of length n that avoids σ. We are interested in
providing an explicit lower bound on the probability that a permutation selected uniformly at
random avoids σ. This can be also attained through the local lemma. Thus, we will use it to
derive a lower bound on the number of permutations of length n that avoid σ.

The one�sided version of the Lovász Local Lemma (see Lemma 2.14) is particularly convenient
for our approach.

Next, we show how the use this version of the local lemma to prove a lower bound on ρσ.

Proof of Theorem 6.5. Let A = {A0, . . . , An−m} and let X be de�ned as in Section 6.3. Set
m(i) = i−m+ 1. By using Lemma 6.7 with S = {i} and T = {0, 1 . . . , i−m}, we have

Pr

(
Ai |

⋂
j≤i−m

Aj

)
= Pr (Ai) .

Recall that Pr (Ai) = 1
m! . Since all the events have the same probability to appear, we set xi = x,

for each 0 ≤ i ≤ n−m, in (2.19) from Lemma 2.14, to get

1

m!
≤ x(1− x)m−1 .

By setting x = e
m−1
m!

m! , the above inequality is satis�ed and the Local Lemma can be applied. In
particular, we obtain the following lower bound on the probability that X = 0,

Pr(X = 0) = Pr

( n−m⋂
i=0

Ai

)
≥

(
1− e(m−1)/m!

m!

)n−m+1

.

and, by using (6.1),

ρσ ≥ 1− e(m−1)/m!

m!
= 1− 1

m!
−O

(
m

(m!2)

)
.
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The lower bound given by Theorem 6.5 is tight. This can be showed by using a result of
Elizalde [49], where the author proved that the least avoided pattern is (1, 2, . . .m−2,m,m−1).
The author also gives an implicit lower bound on z0 = ρ−1

(1,2,...,m−2,m,m−1) as the smallest real
root of

f(z) = 1− z +
zm

m!
−m z2m+1

(2m− 1)!
.

The following explicit upper bound can be derived from the previous equation, as in Lemma 6.12,

ρ(1,2,...,m−2,m,m−1) ≤ 1− 1

m!
− Ω

(
m

(m!)2

)
,

showing that Theorem 6.5 is tight.

6.5 The typical value of ρσ.

The results of the previous sections provide tight upper and lower bounds on ρσ for every σ ∈ Sm.
In this section we want to show that, for a typical pattern, ρσ lies much closer to the lower
bound than to the upper bound. That is, the number of σ�avoiding permutations of length n,
for σ ∈ Sm chosen uniformly at random, is typically closer to the number of permutations that
avoid (1, 2, . . . ,m− 2,m,m− 1) than to the number of permutations that avoid (1, 2, . . . ,m).

De�ne Nk ⊆ Sm as the set of patterns of length m that overlap at position k. The following
lemma bounds from above the size of these sets.

Lemma 6.15. Let σ ∈ Sm be chosen uniformly at random. Then

1. Pr(σ ∈ Nk) = 1
k! if 2 ≤ 2k ≤ m.

2. Pr(σ ∈ Nk) ≤ 2m

(m/2)! if m < 2k ≤ 2(m− 1).

Proof. Choose σ ∈ Sm uniformly at random. Recall that the condition for σ ∈ Nk is that
τ (1) = st(σ1, . . . , σk) and τ (2) = st(σm−k+1, . . . , σm) are equal to each other.

If 2k ≤ m, then τ (1) and τ (2) are independent, by Lemma 6.7, and uniformly distributed in Sk.
For every τ, τ ′ ∈ Sk

Pr(τ (1) = τ | τ (2) = τ ′) = Pr(τ (1) = τ) .

Thus, we can compute the exact probability of being in Nk

Pr(σ ∈ Nk) = Pr(τ (1) = τ (2)) =
∑
τ∈Sk

Pr(τ (1) = τ ∩ τ (2) = τ) = k! Pr(τ (1) = τ)2 =
1

k!
.

Suppose now that 2k > m. For any integer ` ≥ 1, observe that Nm−k ⊆ Nm−`k. This in
particular implies that |Nm−k| ≤ |Nm−`k|. Thus, for any k such that 2k > m there exists an
integer k′ ∈ [m/2, 3m/4] such that |Nk| ≤ |Nk′ |. So we may assume that k ≤ 3m/4.

Partition the pattern σ in s = b m
m−kc parts of length m − k by de�ning the permutations

τ (i) = st(σ(m−k)(i−1)+1, . . . , σ(m−k)i) for each 1 ≤ i ≤ s and one part, τ (s+1), consisting in the



Chapter 6. Consecutive pattern avoiding in permutations 99

last m − s(m − k) positions. Observe that, in order to have an overlap at k we must have
τ (1) = τ (i) for each i ≤ s and τ (s+1) = st(σ(s−1)(m−k), . . . , σk). This condition is clearly necessary
but not su�cient for a pattern to overlap at k.

By the choice of σ, the permutations τ (i) are uniformly distributed, and, by Lemma 6.7, they
are mutually independent. This implies,

Pr(σ ∈ Nk) ≤ Pr(τ (s+1) = st(σ(s−1)(m−k), . . . , σk))
∏
i≤s

Pr(τ (i) = τ (1))

=
1

(m− s(m− k))!

(
1

(m− k)!

)s−1

.

If k ≤ 2m/3, then s = 2. If k = m/2 + t, then

Pr(σ ∈ Nk) ≤
1

(2t)!(m/2− t)!
=

(
m/2+t

2t

)
(m/2 + t)!

<
2m

(m/2)!
.

If 2m/3 ≤ k ≤ 3m/4, then s = 3. If k = 2m/3 + t, then

Pr(σ ∈ Nk) ≤
1

(3t)!(m/3− t)!(m/3− t)!
=

(
m/3+2t

3t

)
(m/3 + t)!(m/3− t)!

<
2m

(m/2)!
.

For each 1 ≤ k ≤ m − 1, de�ne the set Mk ⊆ Sm as the set of patterns of length m such
that Oσ ⊆ {1, 2, . . . k}. Observe that Mm−1 coincides exactly with Sm. The elements in M1

are called non�overlapping patterns. They have been enumerated in [26] and also extensively
studied in [49].

We use the previous lemma to give a lower bound on the size ofMk.

Lemma 6.16. Let σ ∈ Sm be chosen uniformly at random. Then, for each 1 ≤ k ≤ m/2,

Pr (σ ∈Mk) ≥ 1− 2

(k + 1)!
−m 2m

(m/2)!
.

Proof. Observe that we can bound from below the size ofMk by using the sets Nk,

|Mk| =

∣∣∣∣∣Sm \
m−1⋃
`=k+1

N`

∣∣∣∣∣ ≥ m!−
m−1∑
`=k+1

|N`| . (6.9)

By Lemma 6.15, for each k such that 2k ≤ m,

m−1∑
`=k+1

Pr(σ ∈ N`) ≤
1

(k + 1)!
+

1

(k + 2)!
+ · · ·+ 1

bm/2c!
+m

2m

(m/2)!
.

The relation in (6.9) gives

Pr (σ ∈Mk) ≥ 1−
m−1∑
`=k+1

Pr(σ ∈ N`) ≥ 1−
m/2∑
`=k+1

1

`!
−m 2m

(m/2)!
≥ 1− 2

(k + 1)!
−m 2m

(m/2)!
,

which proves the statement.
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Recall that M1 corresponds to the set of non�overlapping patterns. The proof of Lemma 6.16
implies that |M1| ≥ (3− e)m!. This bound can be re�ned. Indeed, Bóna [26] showed that

0.364098149 ≤ |M1|
m!

≤ 0.3640992743 .

The previous bound on |Mk| is clearly non sharp. A better estimation of the size of Nk when
2k > m, would help to understand the distribution of ρσ when σ ∈ Sm is chosen uniformly at
random.

Next lemma gives a better upper bound on ∆∗ than the one in (6.5) when the pattern does not
have a large overlap.

Lemma 6.17. For every σ ∈Mk,

∆∗ ≤ 4m−k

(2m− k)!
n .

Proof. Since σ ∈Mk we have Pr(Ai ∩Ai+m−j) = 0 for all k < j ≤ m− 1. By Lemma 6.10,

∆∗ ≤
n−m∑
i=0

max{k,2m+j−n}∑
j=1

Pr(Ai ∩Ai+m−j) ≤ n
k∑
j=1

(
2(m−j)
m−j

)
(2m− j)!

≤ n
k∑
j=1

4m−j√
π(m− j)(2m− j)!

≤ 4m−k

(2m− k)!
n .

Proof of Theorem 6.6. Assume that σ ∈ Mk. By using the notation for µ, ∆∗ and δ∗ from
Section 6.3, it follows from Lemma 6.17 that

∆∗

µ
≤ 4m−km!

(2m− k)!
=

4m(
2m−k
m

)
(m− k)!

≤ 4m

(m− k)!
.

and that e2δ∗ ≤ e4/(m−1)! ≤ 2 for each m ≥ 4. Analogously to the proof of Theorem 6.3, we can
derive the following upper bound,

ρσ ≤ 1− 1

m!
+O

(
4m

(m− k)!m!

)
.

The above upper bound is satis�ed when σ ∈ Mk. This event holds, by Lemma 6.16, with
probability at least 1− 2

(k+1)! −m
2m

(m/2)! . This completes the proof.

6.6 Concluding remarks and open questions

1. The techniques displayed in this chapter could be applied for the study other type of patterns
in permutations [27, 88] or in other combinatorial structures, like matrices [67, 99].

In permutations, the most interesting case appears when considering non�consecutive pattern
avoiding. One may think that the ideas introduced here could be useful to study this problem.
Unfortunately, due to the strong dependency among a large part of the de�ned events, our
techniques seem useless there.
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Generalized patterns have been recently introduced [31] to cover all the di�erent kinds of patterns
in permutations. A generalized pattern is a triple p = (σ, S, T ) with σ ∈ Sm and S, T ⊆
{0, 1, . . . ,m}. An occurrence of p in π is a set of positions 1 ≤ i1 < · · · < im ≤ n such that
st(πi1 , . . . , πim) = σ. Moreover, for all j ∈ S, ij+1 = ij + 1 and for all k ∈ T , πik+1 = πik + 1.
By convention, i0 = πi0 = 0 and im+1 = πim+1 = m+ 1.

Observe that consecutive patterns are obtained when S = {1, 2, . . . ,m − 1} and T = ∅. If
S = T = ∅, then we recover the de�nition of a non�consecutive pattern.

For a general set S, the number of dependencies created among the events is still too large to
apply our techniques. However, if S = {1, 2, . . . ,m− 1} one could apply the same ideas, even if
T 6= ∅. In such a case, it can be useful to consider a lopsidependency graph in order to get rid
of the positive correlations.

2. In order to prove Conjecture 6.2 by using probabilistic techniques, one could try to mimic
the same strategy we have used for proving the CMP conjecture. First, determine the subset of
patterns σ such that αn(σ) = αn(1, 2, . . . ,m− 2,m,m− 1), the least avoided pattern, and then,
improve the lower bound given by Theorem 6.5 for the patterns which are not in the previous
subset.

Our approach, however, is hopeless to tackle Conjecture 6.2. Notice that no assumption on the
properties of the pattern σ has been used in the proof of Theorem 6.5, unlike in the proof of the
upper bound in Theorem 6.3. Unfortunately, the local lemma cannot distinguish the di�erent
nature of the dependencies among events. Thus, no better lower bound can be achieved by
restricting to a smaller subset of patterns. This prompts us to formulate the following question.

Question 6.18. Let σ ∈ Sm be chosen uniformly at random. Is it true that

ρσ ≥ 1− 1

m!
+ f(m) ,

for certain f(m) ≥ 0, with probability at least g(m) > 0?

This is also the main problem to provide a lower bound for ρ(1,2,...,m) (see Lemma 6.12) using
our probabilistic setting.

Question 6.19. Is it possible to provide a probabilistic proof for Lemma 6.12?

To answer this question, one would need to understand the probabilities Pr
(
Ai |

⋂
j<iAj

)
when

σ = (1, 2, . . . ,m). It must be stressed that, in such case, the upper bound Pr
(
Ai |

⋂
j<iAj

)
≤

Pr (Ai) does not su�ce to provide a meaningful lower bound on ρ(1,2,...,m).

3. One of the crucial steps in proving Theorem 6.6 is to upper bound the size of the sets Nk, for
any k ≤ m − 1. Lemma 6.15 provides the exact value of |Nk| when 2k ≤ m. Nonetheless, the
upper bound given when m > 2k is far from being tight.

If m > 2k, not every pattern of length k is a candidate for τ (1) = st(σ1, . . . , σk) and τ (2) =
st(σm−k+1, . . . , σm). This observation suggests that, if 2k > m, then the probability that a
pattern σ chosen uniformly at random belongs to Nk is smaller than in the case when 2k ≤ m.
This motivates the following conjecture
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Conjecture 6.20. Let Nk be the set of patterns that overlap at position k. Then,

|Nk| ≤
1

k!
,

for every 1 ≤ k ≤ m− 1.

This conjecture is also supported by numerical computations for small values of m.

Notice that the expected number of overlaps of a randomly chosen pattern can be expressed as
the sum of |Nk|. An interesting fact is that, if Conjecture 6.20 is true, then this is at most e.
Furthermore, if this conjecture holds, then it would provide a stronger version for Theorem 6.6.



CHAPTER 7

On the Lonely Runner Conjecture

7.1 Introduction

Let n be a positive integer and let v1, . . . , vn, vn+1 be a set of di�erent positive real numbers, also
called speeds. For any real number x, denote by ‖x‖, the distance from x to the closest integer

‖x‖ = min{x− bxc, dxe − x} .

For any real number x, denote by {x} its fractional part.

{x} = x− bxc .

The Lonely Runner Conjecture was posed independently by Wills [127] in 1967 and Cusick [41]
in 1982. Suppose that n + 1 runners are running on the unit circle with di�erent speeds and
starting at the origin. Then, for each runner, there is a time where he is far from all the other
runners. More formally,

Conjecture 7.1. For every n ≥ 1, every set of di�erent speeds v1, . . . , vn+1 and each k ∈ [n+1],
there exists a time t such that

‖t(vi − vk)‖ ≥
1

n+ 1
,

for every i ∈ [n+ 1], i 6= k.

This conjecture can be restated by assuming that the runner we want to isolate has speed zero.
Thus, he stays at the origin all the time and one must show that there is a time where all the
runners are far enough from the origin.

Conjecture 7.2 (Lonely Runner Conjecture). For every n ≥ 1 and every set of nonzero speeds
v1, . . . , vn, there exists a time t such that

‖tvi‖ ≥
1

n+ 1
,

for every i ∈ [n].

103
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From now on, when we talk about the Lonely Runner Conjecture we will refer to the statement
of Conjecture 7.2.

Observe that, if true, the Lonely Runner Conjecture would be best possible. For the set of
speeds,

vi = i for every i ∈ [n] , (7.1)

there is no time for which all the runners are further from the origin than 1
n+1 . This example is

not unique and an in�nite family of extremal sets can be found in [70].

The Lonely Runner Conjecture appears in many di�erent situations. We next describe some
known results and some related motivations. Let us �rst notice that the conjecture is obviously
true for n = 1, since at some point ‖tv1‖ = 1/2, and it is also easy to show that it holds for n = 2.
Many proofs for n = 3 are given in the context of diophantine approximation (see [18, 41]). A
computer�assisted proof for n = 4 was given by Cusick and Pomerance motivated by a view-
obstruction problem in geometry [42], and later Biena et al. [19] provided a simpler proof by
connecting it to nowhere zero �ows in regular matroids. The conjecture was proved for n = 5 by
Bohmann, Holzmann and Kleitman [21]. Barajas and Serra [13] have showed that the conjecture
holds for n = 6 by studying the regular chromatic number of distance graphs.

In [21], the authors also showed that the conjecture can be reduced to the case where all speeds
are positive integers and in the sequel we will assume this to be the case. In such a case, we also
may assume that t takes values on the (0, 1) unit interval, since at t ∈ Z, ‖tvi‖ = 0 for all i.

On the other hand, the conjecture can be showed to be true in the case where the set of speeds
has a special structure. For instance, Czerwi«ski [43] showed a strengthening of the conjecture
for the case where all the speeds are chosen uniformly at random among all the n-subsets of [N ]
as N → ∞. In particular, Czerwi«ski's result implies that, for almost all sets of runners, there
exists a time where all the runners are arbitrarily close to 1/2 ∈ (0, 1). The dependence of N
with respect to n, for which this result holds, was improved recently by Alon [4].

Dubickas [46] used a result of Peres and Schlag [116] in lacunary integer sequences to prove that
the conjecture holds if the sequence of increasing speeds grows fast enough; in particular, if n is
large and

vi+1

vi
≥ 1 +

22 log n

n
,

for every 1 ≤ i < n. These results introduce the use of the Lovász Local Lemma to deal with
the dependencies created among the runners.

Another approach to the conjecture is to reduce the gap of loneliness. That is, show that there
exists a δ ≤ 1

n+1 such that, for any set of nonzero speeds, there exists a time t ∈ (0, 1) such that

‖tvi‖ ≥ δ for every i ∈ [n] . (7.2)

For this approach it is particularly useful to de�ne the following sets,

Ai = {t ∈ (0, 1) : ‖tvi‖ < δ} .

For every t ∈ Ai, we will say that the i�th runner is δ�close to the origin at time t. Otherwise,
we will say that the runner is δ�far from the origin at time t.
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The set Ai can be thought of as an event in the probability space (0, 1) with the uniform
distribution. In that case, notice that we have Pr(Ai) = 2δ independently from the value of vi.

If the following equation is satis�ed

Pr

(
n⋂
i=1

Ai

)
> 0 , (7.3)

then, there exists a time t for which (7.2) holds. Observe that this is not a necessary condition.
For instance, if we consider the set of speeds given by (7.1), the Lonely Runner Conjecture is
satis�ed but it can be checked that Pr(∩ni=1Ai) = 0 when δ = 1

n+1 .

Here, it is also convenient to consider the indicator random variables Xi for the events Ai. Let
X =

∑n
i=1Xi count the number of runners which are δ�close from the origin at a time t ∈ (0, 1)

chosen uniformly at random. Then, condition (7.3) is equivalent to Pr(X = 0) > 0.

A �rst straightforward result in this direction is obtained by using the union bound in (7.3). For
any δ < 1

2n , we have

Pr

(
n⋂
i=1

Ai

)
≥ 1−

n∑
i=1

Pr(Ai) = 1− 2δn > 0 .

This result was improved by Chen [35], who showed that, for any set of n nonzero speeds, there
exists a time t such that

‖tvi‖ ≥
1

2n− 1 + 1
2n−3

, (7.4)

for every i ∈ [n].

If 2n − 3 is a prime number, then the previous result was extended by Chen and Cusick [36].
They showed that for any set of n speeds, there exists a time t such that

‖tvi‖ ≥
1

2n− 3
,

for every i ∈ [n].

In order to improve (7.4), we exactly compute the pairwise join probabilities Pr(Ai ∩ Aj), the
amount of time that two runners spend close to the origin at the same time. As a corollary, we
give the following lower bound on E(X2).

Proposition 7.3. For any δ < 1, we have

E(X2) ≥ 2δn

(
δ

(
1 +

c

log δ−1

)
n+ 1

)
,

for some constant c > 0.

Using this bound, we are able to improve Chen's result on the gap of loneliness around the origin.
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Theorem 7.4. For every ε > 0, every su�ciently large n and every set of nonzero speeds
v1, . . . , vn, there exists a time t ∈ (0, 1) such that

‖tvi‖ ≥
1

2n− 2 + ε
,

for every i ∈ [n].

The proof of this theorem uses a Bonferroni�type inequality (see Lemma 2.6) that improves the
union bound with the knowledge of pairwise intersections.

Another interesting result on the Lonely Runner Conjecture, was given by Czerwi«ski and
Grytczuk [44]. We say that a runner k is almost alone at time t if there exists a j 6= k such that

‖t(vi − vk)‖ ≥
1

n+ 1
,

for every i 6= j, k.

In [44], the authors showed that every runner is almost alone at some time. This means that
Conjecture 7.2 is true, if we are allowed to to make one runner invisible, that is, there exists a
time when all runners but one are far enough from the origin.

Theorem 7.5 ([44]). For every n ≥ 1 and every set of nonzero speeds v1, . . . , vn, there exist a
time t ∈ (0, 1) and a j ∈ [n] such that

‖tvi‖ ≥
1

n+ 1

for every i 6= j.

As a corollary of Proposition 7.3, we get the following result that extends Theorem 7.5 when n
is large.

Theorem 7.6. For every su�ciently large n and every set of nonzero speeds v1, . . . , vn, there
exist t1, t2 ∈ (0, 1) and j1, j2 ∈ [n], j1 6= j2, such that for any ` ∈ {1, 2},

‖t`vi‖ ≥
1

n+ 1
,

for any i 6= j`.

This theorem extends Theorem 7.5 by showing the existence of not only one but two runners
whose deletion leave the origin alone at some point.

A similar result can be derived by using a model of dynamic circular interval graphs. Then, we
can show that at least two runners are almost alone at the same time.

Theorem 7.7. For every su�ciently large n and every set of di�erent speeds v1, . . . , vn, there
exist a time t ∈ (0, 1), k1, k2 ∈ [n], k1 6= k2, and j1, j2 ∈ [n] such that for any ` ∈ {1, 2},

‖t(vi − vk`)‖ ≥
1

n
,

for any i 6= k`, j`.
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This chapter is organized as follows. In Section 7.2 we compute the pairwise join probabilities for
the events Ai and give a proof for Proposition 7.3. As a corollary of these results, we also show
Theorem 7.4 (Subsection 7.2.1) and Theorem 7.6 (Subsection 7.2.2). In Section 7.3 we introduce
an approach on the problem based on dynamic interval graphs and prove Theorem 7.7. Finally,
in Section 7.4 we provide some conclusions and open questions.

7.2 Correlation among runners

In this section we want to study the pairwise join probabilities Pr(Ai ∩ Aj), for any i, j ∈ [n].
Notice �rst, that, if Ai and Aj were independent events, then we would have Pr(Ai ∩Aj) = 4δ2.
This is not true in the general case, but, as we will see later on, these probabilities can be showed
to be large enough.

Let us start by studying the case when the speeds vi and vj are coprime. For each ordered pair
(i, j) with i, j ∈ [n], we de�ne

εij =

{
vi

(vi, vj)
δ

}
, (7.5)

where (vi, vj) denotes the greatest common divisor of vi and vj .

Let us also consider the function f : (0, 1)× (0, 1)→ R, de�ned by

f(x, y) = min(x, y) + max(x+ y − 1, 0)− 2xy . (7.6)

Proposition 7.8. Let vj < vi be coprime positive integers and 0 < δ < 1. Then

Pr(Ai ∩Aj) = 4δ2 +
2f(εij , εji)

vivj
.

Proof. By the sake of simplicity, we write A = Ai and B = Aj . Observe that A and B can be
expressed as

A =

vi−1⋃
k=0

(
k

vi
− α, k

vi
+ α

)
B =

vj−1⋃
l=0

(
l

vj
− β, l

vj
+ β

)
where α = δ/vi and β = δ/vj .

If I = (−α, α) and J = (−β, β), we have

Pr(A ∩B) = Pr

 ⋃
k≤vi,l≤vj

(I + k/vi) ∩ (J + l/vj)


= Pr

 ⋃
k≤vi,l≤vj

I ∩ (J + l/vj − k/vi)


=

vivj−1∑
k=0

Pr (I ∩ (J + k/vjvi)) ,
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where in the last equality we use the fact that (vi, vj) = 1.

For each −1/2 < x < 1/2, de�ne d(x) = Pr(I ∩ (J + x)). We can write d(x) as follows (see
Figure 7.1):

d(x) =


β + α+ x, x ∈ [−(β + α),−(β − α)]
2α, x ∈ [−(β − α), β − α]
β + α− x, x ∈ [β − α, β + α]
0 otherwise

Figure 7.1: Plot of d(x) in (−1/2, 1/2).

By symmetry, we have

Pr(A ∩B)

2
=
d(0)

2
+

(β+α)vivj∑
j=1

d

(
j

vivj

)
= α+

(β+α)vivj∑
j=1

min

(
2α, β + α− j

vivj

)
.

Write αvivj = p+ εji and βvivj = q + εij , where p and q are integers and 0 ≤ εji, εij < 1.

Observe that

d

(
q − p
vivj

)
vivj =

{
2(p+ εji) if εji ≤ εij
2p+ εji + εij if εji > εij

= 2p+ εji + min(εji, εij) ,

and that

d

(
q + p+ 1

vivj

)
vivj =

{
0 if εji + εij ≤ 1
εji + εij − 1 if εji + εij > 1

= max(0, εji + εij − 1) .

Then,

Pr(A ∩B)

2
vivj = p+ εji +

p+q+εji+εij∑
j=1

min(2(p+ εji), q + p+ εji + εij − j)

= p+ εji +

q−p−1∑
j=1

2(p+ εji) + 2p+ εji + min(εji, εij)

+

p+q∑
j=q−p+1

(q + p+ εji + εij − j) + max(0, εji + εij − 1)

= 2(p+ εji)(q + εij) + f(εji, εij) .
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Thus,

Pr(A ∩B) =
2

vivj
(2(p+ εji)(q + εij) + f(εji, εij)) = 4δ2 +

2f(εji, εij)

vivj
.

It is easy to generalize Proposition 7.8 for non coprime numbers.

Proposition 7.9. Let vj < vi be positive integers and 0 < δ < 1. Then

Pr(Ai ∩Aj) ≥ 4δ2 +
2(vi, vj)

2f(εji, εij)

vivj
.

Proof. Consider v′i = vi
(vi,vj)

and v′j =
vj

(vi,vj)
. De�ne A′i = {t ∈ (0, 1) : ‖tv′i‖ < δ} and

A′j = {t ∈ (0, 1) : ‖tv′j‖ < δ}. Observe that

Pr(Ai ∩Aj) = Pr(A′i ∩A′j) .

The proof follows by applying Proposition 7.8 to v′i and v
′
j , which are coprime.

The proofs of Propositions 7.8 and 7.9 are based on the proofs of Lemmas 3.4 and 3.5 in a paper
of Alon and Ruzsa [7].

Observation 7.10. The pairwise join probability given by Proposition 7.9 is minimized when
vj = 1 and vi = bδ−1c. Thus, for any vi and vj we have

Pr(Ai ∩Aj) ≥ 4δ2 +
2f(δ, δbδ−1c)
bδ−1c

≥ 2δ2 , (7.7)

which follows by noting that δbδ−1c ≥ 1− δ.

Using the previous inequality, we can provide a �rst lower bound on the second moment of X,

E(X2) =
∑
i 6=j

Pr(Ai ∩Aj) +
n∑
i=1

Pr(Ai) ≥ 2δ2n(n− 1) + 2δn ≥ 2δn(δ(n− 1) + 1) . (7.8)

We devote the rest of this section to improve (7.8). Let us �rst show when f is nonnegative.

Lemma 7.11. The function f(x, y) is nonegative in [0, 1/2]2 and in [1/2, 1)2.

Proof. If 0 ≤ x, y ≤ 1/2, then min(x, y) ≥ 2xy, which implies f(x, y) ≥ 0.

Moreover,

f(1− x, 1− y) = min(1− x, 1− y) + max(1− x− y, 0)− 2(1− x− y + xy)

= min(y, x) + max(0, x+ y − 1)− 2xy

= f(x, y) .

Therefore, we also have f(x, y) ≥ 0 for all 1/2 ≤ x, y ≤ 1.
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The following lemma shows that the error term of Pr(Ai∩Aj) provided in Proposition 7.9, cannot
be too negative if vi and vj are either too close or too far from each other.

Lemma 7.12. Let M ≥ 2 be any integer, γ = M−1 > 0 and vj < vi. If either (1− γ)vi ≤ vj or
γδvi ≥ vj, then

(vi, vj)
2f (εij , εji)

vivj
≥ −γδ2 .

Proof. For the sake of simplicity, let us write vi/(vi, vj) = kδ−1 + x and vj/(vi, vj) = lδ−1 + y
with k and l nonnegative integers and 0 ≤ x, y < δ−1. In particular, observe that εij = xδ and
εji = yδ. Moreover, we can assume that vi and vj are such that f (εij , εji) is negative; otherwise,
the lemma is obviously true.

We split the proof in two di�erent cases.

• Case A: γδvi ≥ vj . Observe that, since vj/(vi, vj) ≥ 1, we have vi/(vi, vj) ≥Mδ−1.

• Case B: (1 − γ)vi ≤ vj . By Lemma 7.11, in such case we can assume that either k = l,
y < δ−1/2 and x ≥ δ−1/2 (Cases B.1 and B.2); or k = l + 1, y ≥ δ−1/2 and x < δ−1/2
(Cases B.3 and B.4).

Figure 7.2 illustrates the situation considered in each subcase below.

Case A.1 (y ≤ x):

We have,

(vi, vj)
2f (εij , εji)

vivj
≥ (vi, vj)

2(εji − 2εijεji)

vivj
=

(vi, vj)
2(yδ − 2xyδ2)

vivj
≥ (vi, vj)(1− 2xδ)

vi
· δ ,

where the last inequality holds from the fact that f (εij , εji) < 0 and y ≤ vj/(vi, vj).

We have that kδ−1 + x = vi/(vi, vj) ≥ Mδ−1 implying k ≥ M , since M is an integer. Observe
also that, since y ≤ x and f(εij , εji) is negative, by Lemma 7.11 we have δ−1/2 ≤ x < δ−1.
Then,

(vi, vj)
2f (εij , εji)

vivj
≥ (vi, vj)(1− 2xδ)

vi
δ ≥ 1− 2xδ

M + xδ
δ2 ≥ −γδ2 .

Case A.2 (y > x):

In this case,

(vi, vj)
2f (εij , εji)

vivj
≥ (vi, vj)

2(εij − 2εijεji)

vivj
=

(vi, vj)
2(xδ − 2xyδ2)

vivj
≥ (vi, vj)(1− 2yδ)

vj
· γδ ,

where the last inequality holds from the fact that, in this case, x ≤Mvi/(vi, vj) = γ−1vi/(vi, vj).

As before, since f(εij , εji) is negative, by Lemma 7.11 we have δ−1/2 ≤ y < δ−1 and vj/(vi, vj) ≥
y. Therefore,

(vi, vj)
2f (εij , εji)

vivj
≥ (vi, vj)(1− 2yδ)

vj
· γδ ≥ 1− 2yδ

y
· γδ ≥ −γδ2 .
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Case B.1 (k = l and x+ y ≤ δ−1):

In this case, since x+ y ≤ δ−1, max{0, εij + εji − 1} = 0.

By using vi/(vi, vj) = kδ−1 + x ≥ kδ−1 and vj/(vi, vj) = kδ−1 + y ≥ y, we have

(vi, vj)
2f (εij , εji)

vivj
=

(vi, vj)
2(εji − 2εijεji)

vivj
=

(vi, vj)
2y(1− 2xδ)

vivj
δ ≥ 1− 2xδ

k + xδ
δ2 .

Since vj ≥ (1− γ)vi, we have y ≥ (1− γ)x− γkδ−1. Combined with x+ y ≤ δ−1, it follows that
x ≤ 1+γk

2−γ δ
−1. Thus,

(vi, vj)
2f (εij , εji)

vivj
≥ 1− 2xδ

k + xδ
δ2 ≥

1− 2(1+γk)
2−γ

k + 1+γk
2−γ

δ2 = −γδ2 ,

for each k ≥ 0.

Case B.2 (k = l and x+ y ≥ δ−1):

Now, max{0, εij + εji − 1} = (x+ y)δ − 1. Then,

(vi, vj)
2f (εij , εji)

vivj
=

(vi, vj)
2(yδ + (x+ y)δ − 1− 2xyδ2)

vivj
.

This expression is minimized in the same point as in the case B.1, x = 1+γk
2−γ δ

−1 and y =

(1− γ)x− γkδ−1. Hence, the same computations su�ce to show that

(vi, vj)
2f (εij , εji)

vivj
≥ −γδ2 ,

for any k ≥ 0.

Case B.3 (k = l + 1 and x+ y ≤ δ−1):

Again, max{0, εij + εji − 1} = 0. Since vi/(vi, vj) = kδ−1 + x ≥ kδ−1 and vj/(vi, vj) =
(k − 1)δ−1 + y ≥ y, vj ≥ (1− γ)vi implies that y ≥ (1− γ)x− (γk − 1)δ−1.

Then,

(vi, vj)
2f (εij , εji)

vivj
=

(vi, vj)
2(εji − 2εijεji)

vivj
=

(vi, vj)
2y(1− 2xδ)

vivj
δ ≥ 1− 2xδ

k + xδ
δ2 .

From the equations y ≥ (1−γ)x−(γk−1)δ−1 and x+y ≤ δ−1, one can deduce that x ≤ γk
2−γ δ

−1.
Thus,

(vi, vj)
2f (εij , εji)

vivj
≥ 1− 2xδ

k + xδ
δ2 ≥

1− 2γk
2−γ

k + γk
2−γ

δ2 =

(
2− γ

2k
− γ
)
δ2 ≥ −γδ2 ,

for any k ≥ 0.

Case B.4 (k = l + 1 and x + y ≥ δ−1): As in the case B.2, we have max{0, εij + εji − 1} =
(x+ y)δ − 1. Then,

(vi, vj)
2f (εij , εji)

vivj
=

(vi, vj)
2(yδ + (x+ y)δ − 1− 2xyδ2)

vivj
.
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This expression is minimized in the same point as in case B.3, x = γk
2−γ δ

−1 and y = (1− γ)x−
(γk − 1)δ−1. Hence, we have

(vi, vj)
2f (εij , εji)

vivj
≥ −γδ2 ,

for any k ≥ 0.

Figure 7.2: Di�erent cases in the proof of Lemma 7.12. Grey areas correspond to

positive values of f (εij , εji) according to Lemma 7.11.

The following lemma shows that among a large set of positive numbers, there should be a pair
satisfying that they are either too close or too far from each other.

Lemma 7.13. For every c > 1, α > 0, δ < 1 and every set x1 ≥ · · · ≥ xm+1 > 0 of nonnegative
numbers, with m ≥ logc (αδ−1), there is a pair i, j ∈ [m+ 1] such that

either
xi
xj
≤ c or

xi
xj
≥ αδ−1.

Proof. Suppose that for each pair i < j we have xi > cxj . In particular, for each i ≤ m, we have
xi > cxi+1 and x1 > cmxm+1 ≥ αδ−1xm+1. Hence the second possibility holds for i = 1 and
j = m+ 1.

For any pair i, j ∈ [n], we call the pair ε�good if Pr(Ai ∩ Aj) ≥ (1− ε)4δ2. Now we are able to
improve the lower bound on the second moment of X given in (7.8).
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Proof of Proposition 7.3. Recall that by (7.7), for any pair i, j ∈ [n], we have Pr(Ai∩Aj) ≥ 2δ2.

We will show that at least a Ω
(

1
log δ−1

)
fraction of the pairs are ε�good.

Consider the graph H on the vertex set V (H) = [n], where ij is an edge if and only if ij is
ε�good. Using Lemma 7.13, we know that there are no independent sets of size larger than
m = logc(αδ

−1) = log δ−1

c′ε
+ 1, where c′ε depends only on ε. Thus, the complement of H, H, has

no clique of size m. By the Erd®s�Stone theorem (see [54]), |E(H)| ≤ m−2
m−1

n2

2 , which implies
that there are

|E(H)| ≥ n2

2(m− 1)
,

ε�good unordered pairs.

Now, we are able to give a lower bound on the second moment,

E(X2) =
∑

ij ε�good

Pr(Ai ∩Aj) +
∑

ij non ε�good

Pr(Ai ∩Aj) +
n∑
i=1

Pr(Ai)

≥ (1− ε)4δ2 n2

logc αδ
−1 − 1

+ 2δ2

(
n(n− 1)− n2

logc αδ
−1 − 1

)
+ 2δn

= (1− ε)4δ2 c′εn
2

log δ−1
+ 2δ2

(
1− c′ε

log δ−1

)
n2 + 2δn

≥ 2δn

(
δ

(
1 +

cε
log δ−1

)
n+ 1

)
,

for some cε that depends only on ε.

Next, we show some applications of our bounds, that extend some known results.

7.2.1 First application: Improving the gap of loneliness

In this subsection we show how to use the pairwise join probabilities to prove Theorem 7.4.

For such a purpose, we will use the Bonferroni�type inequality displayed in Lemma 2.6. As
we have already mentioned, Pr(Ai) = 2δ. Thus, it remains to select a tree T that maximizes∑

ij∈E(T ) Pr(Ai ∩Aj).

Lemma 7.14. For each ε′ > 0 and δ = o(1), there exists a tree T on the set of vertices [n] such
that ∑

ij∈E(T )

Pr(Ai ∩Aj) ≥ (1− ε′)4δ2n .

Proof. By Proposition 7.9 we have

Pr(Ai ∩Aj) = 4δ2 +
2(vi, vj)

2f(εij , εji)

vivj
.
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Set γ < 2ε′. We will construct a large forest F on the set of vertices [n], where all the edges
ij ∈ E(F ) are ε′�good. That is, they satisfy,

Pr(Ai ∩Aj) ≥ (1− ε′)4δ2 = (4− 2γ)δ2 .

Let us show how to select such edges by a procedure. Set S0 = [n] and E0 = ∅. In the k-th
step, we select di�erent i, j ∈ Sk−1 such that either vi/vj ≤ (1 − γ)−1 or vi/vj ≥ γ−1δ−1, and
set Ek = Ek−1 ∪ {ij}, Sk = Sk−1 \ {i}. If no such pair exists, we stop the procedure.

Let τ be the number of steps that the procedure runs before being halted. By Lemma 7.13 with
c = (1− γ)−1 and α = γ−1 we can always �nd such an edge ij, provided that the set Sk has size
at least logc (αδ−1). Thus τ ≥ n− logc (αδ−1). Since the size of the sets Ek increases exactly by
one at each step, we have |Eτ | ≥ n− logc (αδ−1) = (1− o(1))n, since δ = o(1). Besides, Eτ is an
acyclic set of edges. We are never closing a cycle since we always delete one of the endpoints of
the selected edge, from the set Sk.

By Lemma 7.12, for each edge in Eτ we have

Pr(Ai ∩Aj) ≥ (4− 2γ)δ2 .

Therefore we can construct a spanning tree T on the vertex set [n] satisfying∑
ij∈E(T )

Pr(Ai ∩Aj) ≥ (1− o(1)) (4− 2γ)δ2n ≥ (1− ε′)4δ2n .

Let us proceed to prove Theorem 7.4.

Proof of Theorem 7.4. By Lemma 2.6 and Lemma 7.14 with ε′ = ε/2, we have

Pr

(
n⋂
i=1

Ai

)
≥ 1−

n∑
i=1

Pr(Ai) +
∑

ij∈E(T )

Pr(Ai ∩Aj)

≥ 1− 2δn(1− 2(1− ε′)δ) .

The above expression is strictly positive for

δ ≤ 1

2n− 2 + 2ε′
=

1

2n− 2 + ε
,

and the theorem follows.

7.2.2 Second Application: Invisible runners

This subsection is devoted to the proof of Theorem 7.6. In particular, we use the result of
Proposition 7.3 to show that there is a large fraction of time where only one runner is δ�close to
the origin, for δ = 1

n+1 . This implies the existence of at least two runners whose delition leave
the origin alone at some time.
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Proof of Theorem 7.6. For δ = 1
n+1 , we have E(X) = 2n

n+1 = 2 − (1 + O(n−1)) 2
n . Moreover, by

Proposition 7.3, for any ε > 0

E(X2) ≥ (1 +O(n−1))

(
4 +

2c

log n

)
,

for some constant c > 0.

For every 0 ≤ k ≤ n, let pk := Pr(X = k). We may assume that p0 = 0 since otherwise, there
would exists a time when all the runners are 1

n+1�far from the origin, which implies Conjec-
ture 7.2. Then we have the following system of linear equations,

p1 + p2 + . . . + pn = 1
p1 + 2p2 + . . . + npn = E(X)
p1 + 4p2 + . . . + n2pn = E(X2) .

From these equations one can deduce that,

p1 = 2− E(X) +

n∑
i=1

(i− 2)pi = (1 +O(n−1))
2

n
+

n∑
i=1

(i− 2)pi

n∑
i=1

(i− 1)(i− 2)pi = E(X2)− 3E(X) + 2 = (1 +O(n−1))
2c

log n
.

Then, p1 is minimized when p3 = · · · = pn−1 = 0 and pn = (1 +O(n−1)) 2c
(n−1)(n−2) logn . Thus,

p1 ≥ (1 +O(n−1))
2

n
+ (1 +O(n−1))

2c

n log n
= (1 +O(n−1))

2

n− cn
logn

Since a runner spends no more than 2δ = 2
n+1 fraction of the time close the origin and c does

not depend on n, there should be at least two such runners that make the origin almost alone
at some point.

7.3 Weaker conjectures and interval graphs

In this section we give a proof for Theorem 7.7. The following weaker conjecture has been
proposed by Spencer1.

Conjecture 7.15 (Weak Lonely Runner Conjecture). For every n ≥ 1 and every set of di�erent
speeds v1, . . . , vn, there exist a time t and a runner j ∈ [n], such that

‖t(vi − vj)‖ ≥
1

n

for every i 6= j.

1Transmitted to the author by Jarek Grytczuk.
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For every set S ⊆ [n], we say that S is isolated at time t if,

‖t(vi − vj)‖ ≥
1

n
for each i ∈ S, j ∈ V \ S. (7.9)

Observe that S = {i} is isolated at time t, if and only vi is lonely at time t.

To study the appearance of isolated sets, it is convenient to de�ne a dynamic graph G(t), whose
connected components are sets of isolated runners at time t. For each 1 ≤ i ≤ n and t ∈ (0, 1),
de�ne the following dynamic interval of the torus (0, 1) associated to the i-th runner,

Ii(t) =

{
x ∈ (0, 1) : {x− tvi} <

1

n

}
.

In other words, Ii(t) is the interval that starts in the position {tvi} of the i-th runner at time t
and has length 1

n .

Now we can de�ne the following dynamic circular interval graph G(t) = (V (t), E(t)). The vertex
set V (t) is composed by n vertices ui that correspond to the set of runners, and two vertices ui
and uj are connected if Ii(t) ∩ Ij(t) 6= ∅ (see Figure 7.3).

Figure 7.3: An instance of the graph G(t).

Observation 7.16. The graph G(t) satis�es the following properties,

1. G(0) = Kn.

2. Each connected component of G(t), correspond to an isolated set of runners at time t.

3. If ui is isolated in G(t), then vi is alone at time t.

4. All the intervals have the same size, |Ii(t)| = 1/n, and thus, G(t) is a unit circular interval
graph.

We can restate the Lonely Runner Conjecture in terms of the dynamic interval graph G(t).

Conjecture 7.17 (Lonely Runner Conjecture). For any i ≤ n there exists a time t such that ui
is isolated in G(t).
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For every subgraph H ⊆ G(t) we de�ne µ(H) = µ(∪ui∈V (H)Ii(t)), the length of the arc occupied
by the intervals corresponding to H. Notice that, if H contains an edge, then

µ(H) <
|V (H)|
n

, (7.10)

since the intervals Ii(t) are closed in one extreme but open in the other one. If H consists of
isolated vertices, then (7.10) does not hold.

The dynamic interval graph G(t) allows us to prove a weak version of the conjecture. Let us
assume that v1 > v2 > · · · > vn.

Proposition 7.18. There exist a time t and a nonempty subset S ⊂ [n] such that S is isolated
at time t.

Proof. Let t be the minimum number for which the equation tv1 − 1 = tvn − 1/n holds. This is
the �rst time that vn is at distance exactly 1/n ahead from the fastest runner v1.

For the sake of contradiction, assume that there is just one connected component of order n.
Note that u1un /∈ E(G(t)) and since G(t) is connected, there exists a path in G(t) connecting
u1 and un. By (7.10), we have µ(G) < 1. Thus, there is a point x ∈ (0, 1) such that x /∈ Ii(t) for
any i ∈ [n].

Observe that, at time t, all the intervals are sorted in increasing order around (0, 1). Let ` ∈ [n]
be such that x > {tv`} and x < {tv`+1}. Then, {u1, . . . , u`} and {u`+1, . . . , un} are in di�erent
connected components, since u1un, u`u`+1 /∈ E(G(t)).

We observe that, if one of the parts in Proposition 7.18 consists of a singleton, say S = {i}, then
we would have showed Conjecture 7.15.

Let us show how to apply the idea of the dynamic graph to prove an invisible lonely runner
theorem, similar to Theorem 7.5.

Proposition 7.19. There exists t ∈ (0, 1) such that G(t) has either some isolated vertex or it
has at least two vertices of degree one.

Proof. De�ne Y : (0, 1)→ N by,
Y (t) := |E(G(t))| .

Let t ∈ (0, 1) be chosen uniformly at random. Then Y (t) is a random variable over
{

0, 1, . . . ,
(
n
2

)}
.

We will show that E(Y (t)) ≤ (n − 1). If we are able to do so, by a �rst moment argument, we
know that there exists a time t0 for which Y (t0) ≤ n− 1. Then, denoting by di the degree of ui,
we have

n∑
i=1

di ≤ 2(n− 1) ,

which, if di > 0 for each i, ensures the existence of at least 2 vertices of degree one, concluding
the proof of the proposition.

Now, let us show that E(Y (t)) ≤ (n − 1). We can write Y (t) =
∑

i<j Yij(t), where Yij(t) = 1
if ui and uj are connected at time t and Yij(t) = 0 otherwise. Then E(Y (t)) =

∑
i<j E(Yij) =



118 7.4. Concluding remarks and open questions∑
i<j Pr(Ii(t) ∩ Ij(t) 6= ∅). For the sake of simplicity when computing Pr(Ii(t) ∩ Ij(t) 6= ∅), we

can assume that vi = 0. Since the intervals are half open, half closed, we have Pr(Ii(t)∩ Ij(t) 6=
∅) = 2/n, no matter the value of vj .

Finally,

E(Y (t)) =
∑
i<j

2

n
=

(
n

2

)
2

n
= n− 1 .

In the dynamic interval graph setting, an invisible runner is equivalent to a vertex u with a
neighbor of degree one, say v. If u is removed, then v becomes isolated in G(t) and thus, alone
in the runner setting. Thus, Theorem 7.7 is a direct corollary of Proposition 7.19.

7.4 Concluding remarks and open questions

1. Using the same strategy as the proof of Theorem 7.4 one can show that it holds for some
ε = ε(n)→ 0.

Consider γ = γ(n)→ 0 and m ≤ γn. We can �nd a forest containing at least n−m = (1− γ)n
edges ij such that Pr(Ai ∩Aj) ≥ (4− 2γ)δ2. In this case,∑

ij∈E(T )

Pr(Ai ∩Aj) ≥ (4− 2γ)δ2(n−m) = (1−O(γ))4δ2n .

As in the proof of Theorem 7.4, we may set c = (1− γ)−1 and α = γ−1 in Lemma 7.13 to apply
Lemma 7.12. Then, the following inequality must be satis�ed,

logc αδ
−1 = m ≤ γn .

Some technical but straightforward computations show that this inequality holds if γ is large
enough,

γ = γ(n) = Ω

(√
log n

n

)
.

Since γ = Θ(ε) in the proof of Theorem 7.4, we have that it holds for any ε = Ω

(√
logn
n

)
.

2. Proposition 7.3, shows that for δ = 1
n+1 we have E(X2) ≥ (1 +O(n−1))

(
4 + 2c

logn

)
. However,

we think that the proof of this proposition can be adapted to show that the second moment of
X is even larger.

Conjecture 7.20. For any set of di�erent speeds v1, . . . , vn, and δ = 1
n+1 , we have

E(X2) ≥ (1 + o(1))6 .

The proof of this conjecture relies on showing that either most pairs are ε�good or the contri-
bution of the positive error terms is larger than the contribution of the negative ones. On the
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other hand, notice that E(X2) is not bounded from above by any constant. For the set of speeds
in (7.1), Cilleruelo showed [38] that

E(X2) = (1 + o(1))
12

π2
δn log n , (7.11)

which is a Θ(log n) factor away from the lower bound in Proposition 7.3, when δ = 1
n+1 . It is an

open question whether (7.11) also holds as an upper bound for E(X2).

3. Ideally, we would like to estimate the probabilities Pr(∩i∈SAi), for every set S ⊆ [n]. In
general, it is not easy to compute such probability. As in (7.11), the join probabilities cannot be
upper bounded by any constant. However it is reasonable to think, that, for any set S of size s,
we have

Pr(∩i∈SAi) ≥ csδs ,

where cs depends only on s. Moreover, we know that cs ≤ 2s, since this is the case when the
speeds {vi}i∈S are rationally independent. Observation 7.10 shows that c2 = 2.
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