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”And once the storm is over,

you won’t remember how you made it through,

how you managed to survive.

You won’t even be sure, whether the storm is really over.

But one thing is certain.

When you come out of the storm,

you won’t be the same person who walked in.

That’s what this storm’s all about.”

- Haruki Murakami
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Chapter 1

Introduction

From its origins, one of the basic objectives of computer science has been to support the

work of professionals in all areas. Medicine is one of the fields where computer science

has received particular interest. The first works in this area appeared in the 1950s, and

medical informatics was identified as a new speciality in the 1970s [1].

One of the main goals of medical informatics has been to provide physicians with tools

to improve the quality of health care.

Every day, physicians face different tasks. Some of them are routine tasks, such as

confirming roll calls, recording patient data, or visiting patients, and some other ones

are cognitive tasks, such as diagnosing, proposing a therapy, or prognosticating the

evolution of a patient.

Medicine is a living science in which new discoveries about diseases and drugs are contin-

uous. Consequently, new protocols are generated while previous ones require continuous

revision and adaption to the new realities. All these changes are not only a response to

new discoveries, but they are also caused by social and economic changes [2]. All this

implies that physicians need to be constantly trained in their clinical tasks.

Medical knowledge uses to be published as Clinical Practice Guidelines (CPG) [3]. These

guidelines have been defined by the Institute of Medicine in the US as “statements that

include recommendations intended to optimize patient care that are informed by a sys-

tematic review of evidence and an assessment of the benefits and harms of alternative

care options”. In practice, they are textual documents created by experts to gather all

the available evidence usually with regard to a particular medical problem or disease.

Evidence implies that the document or the contained recommendations have been cre-

ated using an unbiased and transparent process of systematically reviewing, appraising,

1
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and using the best clinical research findings of the highest value to aid in the delivery

of optimum clinical care to patients.

Their usual focus in a single disease implies that the knowledge required by health care

professionals to perform clinical practice is disseminated across multiple publications.

This puts these professionals in some difficulties at the time to manage all the available

knowledge, and also to keep them abreast of updates and new publications.

In order to properly address this issue, since the 1970s different information technology

(IT) systems have appeared to support health care. Two of these computer-based sys-

tems that are related to this thesis are clinical decision support systems, and medical

training systems.

Clinical decision support systems [4, 5] are designed to ensure the homogeneity of medical

interventions, optimize the quality of care and, very often, contain the medical cost. On

the other hand, medical training systems [6] aim to create new dynamics of actuation,

reinforce them, and modify the existing ones for health care professionals to get adapted

to new realities.

Nowadays, most of these computer-based systems are oriented to deal with someone of

the previously mentioned cognitive tasks, mainly diagnosis or treatment, but few with

all the tasks involved in the medical process [7–9] but none, to our knowledge, using a

homogeneous technology for all these tasks in an integrated way.

Here, we define the medical process as all the cognitive medical decisions that a physician

has to make since the moment a patient arrives to a health care center till the moment she

is discharged. This time interval can be either short-term (e.g., critical interventions) or

long-term (e.g., chronic or severe interventions). Several health care cognitive problems

may occur along the medical process. These cognitive problems use to be solved when

they appear, one by one. Solutions are obtained after the use the technologies that

best fit each problem. So, for example, a diagnostic problem can be addressed with

expert systems [10] or Bayesian networks [11] and a therapy prescription with computer-

interpretable guidelines [12] or Support Vector Machines [13].

In this thesis, the medical process comprise three main tasks:

• Diagnosis: Medical diagnosis is defined as the identification of a disease or

group of diseases by investigating the signs, the symptoms, and the history of a

patient. Diagnosis provides a solid basis for the assignment of a treatment and the

prognosis of the evolution of a patient [14].

2
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• Treatment: A treatment is a set of actions of different kinds (e.g., surgical,

physiological, pharmacological, advisory, etc.) used to relieve or cure a patient

from the diseases detected after a diagnosis. The notion of treatment is often used

as a synonym for therapy or intervention.

• Prognosis: In medicine, prognosis is the act of predicting the probable course

and outcome of a disease [15, 16]. Physicians use prognosis to answer questions

such as: is a patient going to improve?, what is her chance of recovery?, and how

likely a relapse is?. In this work, prognosis is related to the skill of physicians

to foresee the possible consequences of a treatment in the evolution of the health

condition of a patient.

Although health information technology (HIT) researchers have worked in numerous

fields of medicine showing the potential of these technologies to transform the delivery

of health care, increasing safety, effectiveness, and efficiency, many of these studies are

usually based on controlled tests [17]. Other studies exist that show the benefits of HIT

to increase the adherence to guideline-based care, enhance surveillance and monitoring,

and decrease medication errors [18]. All these technologies use to be build around

an electronic health record (EHR) whose benefits in real medical practice has been

studied [19–21], in spite that some problems still persist [22]. An EHR is defined as

a systematic storage of health information about one patient in a digital format that

can be shared across different health care settings. It may include heterogeneous data

such as demographics, medical history, medication and allergies, immunization status,

laboratory test results, radiology images, vital signs, personal statistics like age and

weight, and billing information about the patient along time. [23, 24].

In routine and administrative tasks, HIT and EHRs have allowed to optimize the man-

agement of patients [25]. However, in cognitive tasks requiring HIT to support intelligent

decision making, systems do not provide enough evidence of improvement [26–28]. In

addition, the incorporation of HIT to health care can modify the way that medical re-

sponsibility must be applied. So for EHR, clinicians responsibilities rely on the capacities

of the EHR used, that Sittig et al [29] classified into 10 key points. But for cognitive

HIT, liability is difficult to set up [30] or transfer to computer systems [31].

Physicians rely on their autonomy and authority to make decisions. Even in cases where

a decision support system assist their choices, they may not necessarily want to leverage

this technology, because they may perceive certain technological advances as a challenge

and threat to their authority, especially if they can lose the control over the conditions,

processes, procedures, or content of their care work [32].

3
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Statistical systems, often used as clinical decision support systems can obtain a very

good accuracy [33], but their results use to lack of a satisfactory justification. The level

of knowledge codification is an important variable that has a significant direct negative

influence on the perceived usefulness of IT and on the intention to use IT products [34].

With this in mind, among the medical knowledge-based systems, we select decision table

based systems because they are simple, easy to understand and well-known in medicine.

Decision tables (DTs) [35] are knowledge structures that represent knowledge as cohe-

sive rule sets, where a rule is an IF antecedent THEN consequent expression. In DTs,

the columns represent the rules, and the rows represent either the conditions in the

antecedent or the actions in the consequent. DTs are widely used in software engineer-

ing for documenting and specifying complex decisions in a simple way, which is easy

to check for consistency, completeness, and correctness [36]. In medicine, they facili-

tate knowledge representation, validation, maintenance, and explanation [37] and have

been successfully applied to diagnose single diseases [38, 39] and to train physicians in

diagnosis [40], among other medical cognitive tasks [41].

The knowledge contained in the DTs may be obtained from CPGs [42]. CPGs contain

both explicit and implicit rules embedded in the text. These rules have to be extracted

and translated into the DTs by experts or by automatic systems.

1.1 Objectives

The objectives of this thesis are:

1. Integrate the whole medical process into a knowledge-based model

Design a knowledge representation model that allows us to homogeneously inte-

grate knowledge structures to face the three tasks of the medical process; namely,

diagnosis, treatment, and prognosis.

To this end, we propose the construction of a functional clinical practice model,

based on the medical practice model (MPM) introduced in [7]. This new model will

address diagnosis, treatment, and prognosis and it will support decision making in

the mentioned cognitive medical tasks.

4
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2. Confirm that decision tables are valid knowledge representation struc-

tures to support the medical process

We propose the design and the later use of specific-purpose decision tables adapted

to the medical tasks of diagnosis, treatment, and prognosis. In order to validate

the capability of these structures to host medical knowledge, they will be used to

contain the knowledge extracted from several CPGs to support physicians in two

concrete medical tasks: the diagnosis of secondary causes of hypertension, and the

treatment and prognosis of shocks in the emergency unit of a tertiary hospital.

3. Develop a clinical training system based in decision tables

When implemented with DTs, the clinical practice model achieved in the first

objective could provide different services, as for example, decision support, super-

vision of medical behavior, or clinical training.

Among these applications, we aimed to develop two frameworks for clinical train-

ing. The first framework uses the DTs about the diagnosis of secondary causes of

hypertension and implements a case-based learning tool for general practitioners

(GPs) to improve their skills in differential diagnosis. The second framework uses

DTs about the treatment of seven different common shocks in an emergency unit.

In this same framework, DTs about prognosis are used to simulate the evolution

of virtual patients while the shock treatment is provided.

4. Assess the benefits of the training frameworks in a hospital with novice

physicians

To validate the utility of the training frameworks, we wanted to test both systems

with medical residents from the Hospital Cĺınic de Barcelona. The results were

evaluated for clinical quality assessment. For the first test, a pre-post study and the

statistical significance of the result were done. For the second test, an experiment

with a control group was conducted.

1.2 Overview

The organization of the rest of the thesis is presented in this section. After a state of

the art in chapter 2, chapters 3 and 4 present the design of decision tables for diag-

nostic, treatment and prognostic. Chapters 5 and 6 describe the knowledge acquisition.

Chapters 7 and 8 present two experiments of medical training with decision tables. Fi-

nally, chapter 9 exposes the conclusions yielded by this work and outlines some further

research lines.

5
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• Chapter 2: Background

In this chapter we define the health care concepts in which this thesis are based:

diagnostic, treatment, prognosis and clinical practice guidelines.

We also overview the current trends in health information technologies related to

this thesis, especially on decision tables, since it is the main issue in this work.

• Chapter 3: Implementation of Differential Diagnosis with Decision Ta-

bles

In this chapter we detail the stages and necessities of differential diagnosis. In

addition, we propose a design for the decision tables oriented to each one of the

stages that define a differential diagnosis.

• Chapter 4: Implementation of Treatment and Prognosis with Decision

Tables

In this chapter we describe our approach to treatment and prognosis. We study

how decision tables may be useful to describe both stages of the medical process

and we present our decision table structure.

• Chapter 5: Use of Diagnostic Decision Tables in Secondary Causes of

Hypertension

In this chapter we present the diagnostic of the eight most common secondary

causes of hypertension as a case of study. We detail the adaptation of their clinical

practice guidelines to Decision Tables.

In appendix A we describe the eight diseases considered in this experiment and

we show the decision tables obtained for the diagnosis of secondary causes of

hypertension.

• Chapter 6: Use of Treatment and Prognosis Decision Tables in Emer-

gency Shock

In this chapter we describe the treatment of seven types of emergency shock. We

create the decision tables with the knowledge about each shock in base of clinical

practice guidelines. In addition, we present how obtain the prognosis tables from

expert physicians.

In appendix B we describe the seven shocks considered in this work and we show

the decision tables obtained for the treatment of emergency shock.

6
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• Chapter 7: Using Decision Tables to Train Residents

In chapter 7 we present the design of a training experiment based in the diagnostic

decision tables of secondary causes of hypertension detailed in chapter 5. We detail

how it was carried out as part of the training program of residents in the Hospital

Cĺınic de Barcelona.

Finally, we analyze and discuss the results and formative benefits obtained.

• Chapter 8: Use of Treatment Decision Tables to Train Residents in

Emergency Shock

In this chapter, we detail a second experiment based on the treatment of shock.

This experiment includes the tables obtained in chapter 6 for treatment and prog-

nosis. We describe how the experiment was carried out and the results obtained.

• Chapter 9: Conclusions

In this chapter we summarize the research described in this thesis and we outline

some future lines of research to extend the applicability and the performance of

our systems.

7
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Chapter 2

Background

Clinical practice, or the practice of medicine in a clinical setting, is about the combina-

tion of health care actions by a group of professionals and caregivers in order to assist

a patient with her diseases and ailments. The most relevant tasks in clinical practice

correspond to the diagnosis of the diseases affecting the patient, the proposal of the

best treatment possible in order to prevent, cure, or palliate the diseases and ailments

of the patient, and the prognosis of the evolution of the health parameters of patient.

All of them are knowledge intensive tasks that require thorough and continuous training

according to the constant changes and evolution of medicine.

In order to support clinicians in this complex issue, several computer-based technologies

have been proposed. Closely related to this thesis, some of these technologies are clinical

practice modeling, differential diagnostic generators, expert systems, and decision tables.

This chapter is about the description of clinical practice, from a medical point of view,

and the presentation of some computer-based technologies to deal with clinical practice,

in relation to this thesis.

2.1 Clinical Practice

In modern medicine, physicians meet patients in order to diagnose, treat, or prevent

disease using their expert clinical judgment. Some of these actions are taken according

to the expected evolution of the patient (i.e., prognosis). An episode of care is defined

as the sequence of clinical actions performed on a patient during a short or long time

period in order to solve a medical problem affecting that patient. A typical episode of

care in clinical practice is composed of a set of visits or encounters between the patient

an one or several health care professionals. It begins with the examination of the health

9
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care record of the patient, followed by a medical interview and a physical examination of

the signs and symptoms manifested in the patient. The doctor may order some medical

tests in order to complement the information required to conclude with a diagnosis of

the disease or set of diseases affecting the patient. At this point a therapy uses to

be prescribed, considering the patient current condition and the expected evolution or

patient prognostic. Each medical encounter is documented in the health care record

of the patient for later consultations. A follow-up process may be started when the

condition of the patient is stable but her cure is not confirmed.

The main tasks performed along clinical practice episodes of care deserve a detail con-

sideration in the following sections.

2.1.1 Diagnosis

Diagnosis [43] is a complex process that begins with the identification of signs and

symptoms of the patient and it culminates with the categorization of her illness or

group of illnesses. The outcome of this process provides a solid basis for the treatment

and the prognosis of patients [14].

Physicians can use several types of reasoning during the diagnostic process [44]. These

are: pattern recognition, algorithmic, exhaustive, and hypothetico-deductive.

Pattern recognition is often used to diagnose conditions that have a very distinctive

presentation. It entails the instant recognition of a disease, for instance the diagnosis of

Down’s syndrome after direct observation of the patient, that could be combined with a

genetic test. This is a very efficient type of diagnosis and it is often used in busy clinical

settings. The risk of using pattern recognition is that you may jump prematurely to a

diagnosis without considering all possible options, or at least other concerning options.

The Algorithmic approach [45] is based on the use of flowcharts and clinical algorithms

to determine the patient’s diagnosis. The American College of Physicians define clinical

algorithms as schematic models of the clinical decision pathways described in a guide-

line [46, 47]. The algorithmic approach to diagnosis is useful for health conditions where

the information collected from patients is precise and reproducible, such as the results

of a blood test or auscultation. For example, the diagnosis of chronic hypertension can

be agreed after the observation of a high blood pressure in two (or three) consecutive

measurements taken in intervals of 6-12 minutes.

The Exhaustive approach relies on gathering every possible piece of information to

make the diagnosis, ordering every test the physician can think of that might provide

relevant information on a patient’s condition. It is only recommended for patients with

10
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Figure 2.1: Overall scheme of the DDx loop

an uncommon illness and when other modes of decision-making have failed. Given the

very appropriate attention paid to the cost of care and the cost containment policies,

the exhaustive approach is used only rarely nowadays.

The Hypothetico-deductive approach is the base of differential diagnosis [48]. It

consists in generating and rejecting hypotheses as more information is collected.

Differential diagnosis (DDx) is the common medical process of determining the most

feasible disease, or group of diseases, affecting a patient from the observed signs and

symptoms. Along a DDx process, health care professionals apply two complementary

sorts of knowledge [7, 42]. On the one hand, they apply their knowledge about how

to determine the diseases that could better explain the observed signs, symptoms, and

test findings (see upper arrow in figure 2.1). On the other hand, they also apply their

knowledge on the diagnostic tests that can better contribute to the identification of

relevant signs (see lower arrow in figure 2.1).

The beginning of a DDx process starts with the gathering of all the relevant signs and

symptoms. This is not easy, because the patient’s presentation of her symptoms can be

affected by her experiences and her understanding of these symptoms [43]. Moreover, a

vector of symptoms merely listed seldom leads to a diagnosis because the same vector of

symptoms can overlap between several diseases [49]. Still, this individual diversity does

not use to mislead the experienced doctor, as it is seen from the fact that in more that

70% of cases, medical diagnosis is based on the patient’s history alone [50].

After the observation of the initial signs and symptoms, the physician applies the first

mentioned sort of knowledge to identify a group of diseases that could explain the patient

condition. These remain as diagnostic hypotheses. At this point, the physician applies

the second sort of knowledge explained in order to deduce which are the diagnostic

test that more evidence could bring to accept or to reject the different hypotheses.

The resources available and the cost of the tests also condition this selection. After

performing the decided test, more findings are obtained that can modify the set of

hypotheses till a single hypothesis remains which becomes the final diagnosis.

11
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The DDx process can be affected by the simultaneous observation of several coexisting

diseases in the patient or comorbidity.

2.1.2 Treatment

In medicine, the treatment [51] is based on the application of therapeutic measures to

improve the condition of a patient.

Usually, a treatment is started once the diagnosis is completed and the diseases affecting

the patient are already identified. However, it is possible to start symptomatic treat-

ments independent to the diagnostic process. These treatments are aimed at relieving

some of the patient’s symptoms without affecting the basic underlying cause. Alterna-

tively, therapy trials exist that help physicians to accept or refuse diagnostic hypotheses

during the differential diagnosis.

In Harrison’s [51], two approaches to clinical treatment are identified. The first one is

based on the point of view of the physician, who generally uses objective parameters of

the patient condition that are easily measurable to judge the results of a feasible ther-

apeutic intervention. These parameters could be the findings in a physical examination

(e.g., a pupil abnormal size), a numerical measure (e.g., the central venous pressure),

the findings in a X-ray exploration (e.g., an unexpected mass located in a organ), etc.

The second approach is focused on the point of view of the patient. In this approach, the

treatment is based on subjective parameters as pain relieving, functional maintenance

or recovery, or a healthy life enjoyment. This is the central issue of the modern so called

patient-centered approach to clinical practice [52].

The components of health status or quality of life of a patient in the patient-centered

approach may include physical well-being, the capacity for physical activity, personal

and professional performance, sexual function, intellectual function, and overall health

perception [53–55].

All these quality of life indicators can be assessed by structured interviews or question-

naires to the patient, that will give the physician an idea of the subjective evolution of

the treatment.

Regardless of Harrison’s approaches [51], a clinical treatment is composed of health

care actions that can be pharmacological (e.g., analgesic or antibiotic), surgical (e.g.,

neurosurgery or oral and maxillofacial surgery), therapeutic (e.g., psychotherapy or oc-

cupational therapy), or rehabilitative (e.g., physiotherapy), among others.

12
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According to their purpose, treatments can be classified into curative or healing, chronic,

palliative, symptomatic, and preventive.

Curative or Healing treatment aims to eradicate the disease from the patient. Either

if it is a short- or a long-term treatment, the patient is relieved from her diseases at the

end of her curative treatment.

Chronic treatment applies to chronic diseases. A chronic disease is a long-lasting

condition that can be controlled but not cured. The evolution of chronic diseases uses

to be ranked in stages or levels, that go from mild to severe conditions. A chronic

treatment aims to stabilize the patient in her current stage or to move her to lower

stages. Patient follow-up is part of this sort of treatment.

Palliative treatment or palliative care is applied when the disease can not be cured

and it is in a very advanced or final stage [56]. Its main aim is focused on increasing the

quality of life of the patient and relieving her from suffering.

Symptomatic treatment pursues to alleviate the symptoms of a unknown disease or

if a curative treatment for a known disease has not a short term application. Physicians

apply this sort of treatment to increase the comfort and well being of the patient, but

also when a suspicion that some symptom can imply undesired organic consequences.

Preventive treatment is applied before a disease is diagnosed and the main purpose

is to prevent the disease to appear. According to the American College of Preventive

Medicine, preventive medicine aims at keeping patients healthy. It is a medical specialty

that focuses on the health of individuals, communities, and defined populations. Its goal

is to protect, promote, and maintain health and well-being and to prevent disease, dis-

ability, and death [57]. Preventive treatments encompass all Leavell’s preventive levels:

primary, secondary, and tertiary. Primary prevention keeps the disease process from

becoming established by eliminating causes of disease or increasing resistance to disease.

Secondary prevention interrupts the disease process before it becomes symptomatic.

Tertiary prevention limits the physical and social consequences of symptomatic disease.

The concepts comorbidity and multimorbidity are also narrowly related to clinical treat-

ment. Comorbidity [58] is defined as the presence of two or more diseases simultaneously

in the same patient. One of the diseases is primary (or index) and the rest are secondary.

Comorbid treatment consists in the treatment of the primary disease, conditioned to the

presence of the secondary diseases. Conversely, multimorbidity defines all the concur-

rent diseases to be primary and the treatments of all the single diseases are combined

to provide a unique treatment of the whole patient condition.

13
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2.1.3 Prognosis

A definition of the prognosis of a certain disease [59] is the typical course of the illness

in response to a certain treatment, together with the spectrum of random deviations

from that course. But medical prognosis covers different meanings that go from the

prognosis of the disease (i.e., how is the disease expected to evolve?) to the prognosis

of a treatment (i.e., how long is the treatment expected to be or to have an observable

effect?), or the prognosis of therapeutic actions (i.e., which changes the application of

certain action will cause in the patient condition?), or the prognosis of the patient (i.e.,

when will a patient start feeling better?) [60].

All these prognostic questions can be answered from the perspective of the evidence-

based medicine or the personal experience of the physician [61]. Evidence-based medicine

proposes the utilization of prospective or retrospective data and statistics in order to

construct prognostic values. Personal experience exploit the skill of physicians to foresee

the prognostic results on the basis of past cases the physician has been aware of.

Prognosis is a very important issue when making medical decisions. Both the doctor

and the patient must be informed about future possibilities in order to make the best

expected decisions [62]. Due to this importance, many modern decision support sys-

tems integrate, albeit sometimes implicit, prognosis models for the selection of the best

diagnosis or treatment [15].

2.1.4 Clinical Practice Guidelines and Clinical Algorithms

In health care, all the available knowledge of a disease is reported on a Clinical Practice

Guideline (CPG). Clinical practice guidelines are defined as systematically developed

statements to assist practitioners and patient decisions about appropriate heath care for

specific circumstances [63].

Guidelines help clinicians translate best evidence into best practice. A well-crafted

guideline promotes quality by reducing healthcare variations, improving diagnostic ac-

curacy, promoting effective therapy, and discouraging ineffective or potentially harmful

interventions [64].

One of the main objectives of Clinical Practice Guidelines is to standardize health care.

This improves the overall quality of service and makes CPGs to serve as baseline for new

strategies. CPGs contribute to sharing and extending medical expertise, being the base

of medical training, and providing the dissemination of clinical processes and procedures.

Also, by following clinical practice guidelines, physicians may have legal reasons to be

protected against possible lawsuits.
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Clinical practice Guidelines use to be specific for one disease, which is called the primary

disease, and it may contain indications on how to act if the patient has other diseases,

which are considered secondary in the CPG. Although CPGs are text based, they include

different resources, such as clinical algorithms or tables, to describe clinical knowledge.

A Clinical Algorithm (CA) [65] is a flowchart specially suited for representing a se-

quence of clinical decisions, for teaching clinical decision making, and for guiding pa-

tient care [66]. They are schematic models of the clinical decision pathway that combine

health care actions with decision points in a sequential process. CAs are a powerful

tools to summarize sequential clinical interventions (i.e., diagnostic or therapeutic pro-

cess). They can be found as part of CPGs, and they can be the result of a knowledge

engineering process [67], or derived from health-care data [68].

Medical knowledge registered in CPGs uses to be labeled with the sort of evidence sup-

porting that knowledge. Several classification of the levels of evidence exist [69], among

which table 2.1 describe the evidences for diagnostic knowledge, table 2.2 describe the

evidences for treatment knowledge, and table 2.3 describe the evidences for prognostic

knowledge.

Level Meaning

I High-quality, multi-centered or single-centered, cohort study
validating a diagnostic test (with “gold‘” standard as refer-
ence) in a series of consecutive patients; or a systematic
review of these studies.

II Exploratory cohort study developing diagnostic criteria
(with “gold” standard as reference) in a series of consecutive
patient; or a systematic review of these studies.

III Diagnostic study in nonconsecutive patients (without consis-
tently applied “gold” standard as reference); or a systematic
review of these studies.

IV Case-control study; or any of the above diagnostic studies
in the absence of a universally accepted “gold” standard.

V Expert opinion developed via consensus process; case report
or clinical example; or evidence based on physiology, bench
research or “first principles”.

Table 2.1: Evidence Rating Scale for Diagnostic Studies

According to these classifications of clinical evidences, we can conclude that while the

evidence of diagnostic knowledge in CPGs is based on retrospective cohort studies of

data about diagnosed patients and “gold” standard comparison, the source of evidence

for therapeutic knowledge in CPGs are the randomized control trials, and for prognostic

knowledge the prospective cohort analysis of data.
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Level Meaning

I High-quality, multi-centered or single-centered, randomized
controlled trial with adequate power; or systematic review
of these studies.

II Lesser-quality, randomized controlled trial; prospective co-
hort or comparative study; or systematic review of these
studies.

III Retrospective cohort or comparative study; case-control
study; or systematic review of these studies.

IV Case series with pre/post test; or only post test.
V Expert opinion developed via consensus process; case report

or clinical example; or evidence based on physiology, bench
research or “first principles”.

Table 2.2: Evidence Rating Scale for Therapeutic Studies

Level Meaning

I High-quality, multi-centered or single-centered, prospective
cohort or comparative study with adequate power; or a sys-
tematic review of these studies.

II Lesser-quality prospective cohort or comparative study; ret-
rospective cohort or comparative study; untreated controls
from a randomized controlled trial; or a systematic review
of these studies.

III Case-control study; or systematic review of these studies.
IV Case series with pre/post test; or only post test.
V Expert opinion developed via consensus process; case report

or clinical example; or evidence based on physiology, bench
research or “first principles”.

Table 2.3: Evidence Rating Scale for Prognostic Studies

Cohort studies are based on the isolation of a group of patients (cohort) with a common

conditions that we want to study against the general population from which the cohort

was extracted. This is a sort of data analysis to find out medical evidences, but there

are other approaches such as pre-post studies that compare the same population before

and after a clinical action takes place (e.g., drug prescription), or randomized control

trials that reduce the risks of bias that can exist in cohort and pre-post studies.

Randomized control trials (RCT) find clinical evidence by randomly allocating the sub-

jects of the study in one or another group representing the different topics of study. For

treatment analysis, two groups are defined the group that will receive the treatment

and the group that will not receive the treatment but a placebo (control group). For

treatment comparison, a separate group is defined for each one of the treatments to

be compared (and maybe a placebo group, if the null treatment wants to be compared

too). RTCs can be single-blind if the subjects involved in the study do not know which

treatment they receive, double-blind if both the studied subjects and the researchers
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performing the trial do not know which treatment a subject is receiving, so avoiding

on-purpose or purposeless treatment differentiation between groups.

RTCs can be classified according to their design [70, 71] in parallel group trials, or studies

where each participant is randomized to one of the groups; crossover trials, where each

participant is exposed to each intervention in a random sequence over time; cluster trials,

in which predefined clusters of individuals are randomly allocated to different groups;

factorial trials, where participants are randomly assigned to individual interventions or

a combination of interventions, and split body trials where separate body parts within

each participant are randomized.

Another common practice to find out medical evidences is the use of questionnaires and

surveys in medicine [72]. The aim is to gather valid, reliable, unbiased and discriminatory

data from a representative sample of respondents [73] . However, the information yielded

is subject to error and bias from a range of sources. To solve these problems, there

are different issues to consider when applying a clinical questionnaire, for example the

questionnaire design and the survey administration [74, 75].

There are different areas where the difficulties to obtain data makes the questionnaires

and surveys suitable. For example, due the difficulties to obtain predictive data from

CPGs, questionnaires have been successfully used in prognosis [76]. Questionnaires and

surveys have been used to assess the satisfaction and the performance of medical proce-

dures or computer medical tools. They have also been used in medical education [77].

2.1.5 Patient Simulation

Simulation is a technique to “replace or amplify real experiences with guided experiences

that evoke or replicate aspects of the real world” [78]. The term “simulator” used in

health care usually refers to a device that presents a simulated patient and interacts

appropriately with the actions taken by the simulation participant [79]. Barjis et al. [80]

classified health care simulation in four areas: clinical simulation, operational simulation,

managerial simulation, and educational simulation.

Clinical Simulation is used to study, analyze and replicate the behavior of diseases

and biological processes in the human body.

Operational Simulation is used for capturing, analyzing and studying health care

operations, service delivery, scheduling, health care business processes, and patient flow.

Managerial Simulation is used as a tool for managerial purposes, decision making,

policy implementation, and strategic planning.
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Educational Simulation is used for training and educational purposes. In medical

education, there are multiple simulation modalities, among which standardized patients,

patient simulators, and virtual patients are the most prominent. Standardized patients

are actors or actresses trained to portray patients with specific clinical symptoms and

conditions. They are out of the scope of this thesis. Patient simulators [81] are complex

systems integrating a manikin and a control unit. The manikin contains sensors that

are able to detect external actions performed by the learner. Sensor signals are sent

to the control unit to produce reaction in the manikin according to the patient model

simulated. Patient simulators can interact with medical devices for the sake of medical

realism. Virtual patients (VPs) are a ‘specific type of computer program that simulates

real-life clinical scenarios; learners emulate the roles of health care providers to obtain a

history, conduct a physical exam, and make diagnostic and therapeutic decisions’ [82].

They play out on the computer screen.

Operational and managerial simulations are closely interrelated and correspond to the

components for health care process management. Conversely, clinical and educational

simulations are more related to the care of the patient.

Kneebone [83] identified four advantages of simulator-based training: (1) the learning

agenda is determined by the learner availability rather than the patient availability, (2)

learner’s failures have no direct impact in real patients, (3) simulators can objectively

calculate the evolution of the learner’s performance, and (4) simulators can enhance

both collaborative and individual learning. The list can be extended with additional

advantages, such as gaining experience through the exposure to an as-large-as-required

number of cases or training sessions [82], or the learners preference of simulators in

comparison to paper-based cases.

A review of health-care simulation studies [84] concludes that, for different areas of

medical training, simulation has been demonstrated to lead to clinical improvement and

melioration of procedural performance, medical knowledge, comfort in procedures, and

improvements in performance during retesting in simulated scenarios. Simulation has

also been shown to be a reliable tool for assessing learners and for teaching topics such

as teamwork and communication.

On the contrary, several limitations of simulator-based medical training have been iden-

tified [81]: (1) risk of limited clinical realism, (2) lack of empathy towards the case, (3)

reticence of health care professionals to participate in simulated training programs, and

(4) danger of an ineffective use of cases causing a meaningful learning

In [85], McGaghie et al identified twelve features and best practices that simulator-based

medical training should fulfill: feedback (the learner’s decisions should have a formative
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response), deliberate practice (the training system should implement means to engage

the learner in the learning of medical practice), curriculum integration (simulation-based

training should be only one part of the education and duties of the medical student),

outcome measurement (reliable data should exist to assess whether the learner is achiev-

ing professional skills or not), simulation fidelity (educational goals should direct the

simulation technology used and not the other way around), skill acquisition and mainte-

nance (simulation should permit the evaluation of the skills learned and their durability

along time), mastery learning (the system should ensure that all learners accomplish

all educational objectives with little or no outcome variation), transfer to practice (the

skills acquired during the training are useful in real clinical settings), team training

(simulators should have to train learners in a work-team typical context where inter-

nal communication is essential), high-stakes testing (simulation-based training should

allow confirmation that a learner has reached a proficiency level that qualifies her as

competent enough to jump to a new learning stage), instructor training (education of

the instructor in the correct application of the simulation tool is essential to obtain the

best possible outcomes of the learner), and educational and professional context (the

learner’s context in which the learning takes place has profound effects on the quality of

the learning outcomes).

2.2 Computer Technology Support to Clinical Practice

Clinical practice was introduced in chapter 1 as a combination of several routine and

cognitive tasks. Among these, in section 2.1 we described some features about three

of the most outstanding clinical cognitive tasks: diagnosis, treatment, and prognosis.

Along the last five decades, medical informatics has been dealing with the development

of multiple computer technologies to support health care professionals in these three

important tasks [86, 87], but also delivering medical education tools [88]. The approaches

can be mainly classified in three groups: problem-oriented, task-oriented, and holistic

modeling.

Problem-oriented technologies address concrete clinical situations, as for example diag-

nosing diabetes [89] or cancer [90]. Less specific, task-oriented technologies have to do

with the support to health care professionals when dealing with a clinical situation such

as diagnosis, therapy suggestion, or prognosis, but these technologies are applicable to

several medical problems [4]. Holistic modeling is the most generic approach and it

pursues the definition of formal models to cover a broad area of medical practice.

In the next sections, we introduce some of these technologies that are directly related to

this thesis. For holistic clinical practice models we describe the medical practice model
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(MPM) and computer-interpretable guidelines (CIG). For task-oriented technologies we

consider differential diagnosis (DDx) generators and decision tables (DT).

2.2.1 Clinical Practice Models

Modeling is the engineering act of producing a representation of a system for under-

standing, gaining an insight into the properties of that system, and predicting future

outcomes. In medicine, modeling is useful in multiple tasks such as education, standard-

ization, dissemination, innovation, and decision support [51]. Moreover, good systematic

modeling of medical systems concludes with a formal model that, when applied, it may

serve to improve quality, equity, optimization, and automation of processes within the

modeled systems.

In heath-care, medical practice (MP or the practice of medicine) is a varied and complex

process that combines actions in a concrete health care setting that are performed by a

group of professionals and caregivers in order to assist patients with their illnesses and

ailments. This definition introduces MP at four different levels: functional (i.e., medical

actions involved in MP), clinical (i.e., physical and technical requirements implementing

MP), human resources (i.e., agents participating in MP), and medical case (i.e., sort of

patient or disease addressed).

Modeling these MP levels is seen not only as something beneficial, but also as a need in

health care [51, 91–93]. This is reflected in multiple models representing specific medical

services (e.g., ER [94] or ICU [95]), tasks (e.g., diagnosis [96], treatment [46, 97, 98],

and prognosis [99–101]), or diseases. However, only few studies exist that model MP at

the functional level as a combination of diagnostic, therapeutic, and prognostic tasks [7–

9, 91, 92, 102].

Among them, the Medical Practice Model (MPM) [7] is a holistic functional model of

MP integrating diagnosis, treatment, and prognosis tasks.

Extracted from [7], figure 2.2 shows a representation of the modules of the MPM, and

their interactions. The modules represent the tasks (as squares) and decisions (as dia-

monds) that patients and physicians have to perform during the medical process.

This model can be seen as a generalization and extension of other existing models [8, 9,

91, 92, 102]. It contains fifteen subtasks and nine decision points. Subtasks are involved

in diagnostic, therapeutic, or prognostic procedures.

Diagnostic subtasks implement a differential diagnosis process and they (1) address the

elicitation of patient information, (3) the generation of diagnostic hypothesis, (5) the
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Figure 2.2: The MPM functional model.

selection of appropriate diagnostic tests, (6) the optional definition of a plan to perform

the required diagnostic tests and (7) the execution of this plan, and (8) the modification

of the diagnostic hypotheses according to the results obtained by the diagnostic tests

performed.

Therapeutic subtasks represent both symptomatic and curative treatments. Symp-

tomatic treatment is described by (15) the generation of feasible symptomatic treat-

ments, which is the process of determining possible alternative treatments. Similarly,

curative treatment is described by (12) the generation of feasible (curative) treatments.
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Whenever a symptomatic treatment, a curative treatment, or both are available, (18)

they have to be integrated and (21) executed after (20) the generation of a follow-up

plan.

Three prognostic subtasks are identified in this model: (10) foresee the evolution of a

diagnosed disease or group of diseases in order to determine if a treatment is required,

(13,16) anticipate the consequences of a curative or symptomatic treatment before it

is applied, in order to decide the most promising treatment, and (19) anticipate the

evolution of a patient when a treatment is started in order to decide the follow-up plan.

The model also introduces several decision points. These are: (2) to decide whether a

diagnosis, a symptomatic treatment, or both are required, (4) to differentiate if one or

several diagnostic hypotheses are possible, and (9) if a single hypothesis is accepted or

not. Once the patient is diagnosed we have also (11) to decide whether a treatment is

deserved or if it is better to wait for the patient evolution. Whenever a curative or a

symptomatic treatment is recommended, we have to decide (14,15) whether to apply

them or continue looking for more promising alternative treatments. During patient

follow-up three additional decisions have to be made with regard to whether (22) the

treatment is being successful or not, and (23,24) if the patient cures or dies.

2.2.2 Computer-Interpretable Clinical Guidelines

In section 2.1.4 the importance of clinical practice guidelines in the medical decision-

making process was discussed. CPGs can improve the quality of patient care and reduce

costs. However, the access to the correct guidelines and to the information contained in

textual guidelines at the point of care may entail unacceptable costs in terms of time,

especially during the encounters between the health care professional and the patient

requiring the guidelines [103, 104].

In order to overcome this drawback, the medical knowledge contained in textual CPGs

can be represented as computer formal structures that, once they are integrated in

computer systems, they can be accessed whenever and wherever they are needed at

an acceptable time cost. These computer structures representing CPGs, also called

computer interpretable guidelines (CIG) [105] and the formal languages to represent

them are the basis to develop CIG-based decision-support systems which have a better

chance of impacting clinician behavior than narrative guidelines [12].

A number of groups are actively developing CIG representation languages for this pur-

pose [106–109], each one using different approaches. They include document-centric
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models, decision trees, probabilistic models, task-network models, ontologies, and ex-

tended clinical algorithms. Some of the most referred languages for CIGs repersen-

tation are: Asbru [110, 111], EON [112], GASTON [113, 114], GLARE [115, 116],

GLIF3 [117, 118], HELEN [119], NewGuide [120–122], PROforma [123], SAGE [124],

and SDA [125].

These languages have been subject to detailed analysis in order to detect the basic

common components and requirements. In [126], [127] and [105], it is argued that CIG

languages must comprise, at last, three basic representation primitives which are states,

decisions, and actions. States are representations of health patient conditions. Decisions

are points of the clinical procedures (either diagnostic, therapeutic, or prognostic) where

several courses of action may begin and a decision must be taken on which one to

follow. Actions correspond to descriptions of pharmacological and non pharmacological

interventions.

Moreover, CIGs have also to be able to represent scheduling constraints such as se-

quences, concurrences, alternatives, and loops. Most of the CIG languages also imple-

ment time constraints and dosage indications. The SDA modeling language [125] is a

simplistic modeling system addressing all these basic requirements plus the possibility

of adding non-deterministic clinical procedures. The interaction of CIGs with electronic

health records and care flows is usually described as necessary for the good progression

and integration of these computer systems in health care [12], but this still remains an

open challenge.

Implementing guidelines in computer-based decision support systems are increasingly

applied not only for clinical practice, but also for policy development, utilization man-

agement, education, clinical trials, or workflow facilitation [114]. Related issues to CIGs

when they are seen as clinical knowledge representation languages are to develop meth-

ods and frameworks for guideline modeling and representation, guideline acquisition,

guideline verification and testing, and guideline execution [12, 114].

The representation capacity of these languages have also been analyzed in comparison

to traditional control-flow theory [128]. Control-flow theory is a mature field with ex-

tensive application and validation in the real world and in multiple domains such as

business or industry. This theory establishes 43 different control-flow patters that are

able to represent any process. In their work, Mulyar et al [128] reach several interesting

conclusions such as that CIG languages are able to perfectly represent clinical guidelines

with many fewer workflow patterns than control-flow theory allows. Interestingly, CIG

languages offer a flexibility that allows them to represent decisions that are not cov-

ered by standard workflow management systems, but these can be suitable to represent

guidelines.
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A critical point of CIG languages is that they are conceived to represent CPGs, but

there is an open discussion on whether CPGs are valid in modern medicine nowadays.

This discussion is founded on two main facts:

• As discussed in section 2.1.4, CPG highest evidences come from randomized con-

trolled trials, but the subjects participating in these clinical trials use to be homo-

geneous in terms of their care condition and not necessarily similar to the typical

patient attended in clinical settings where the CPGs have to be applied [129].

So, the knowledge acquired for RCT patients is applied to patients that can be

completely different in terms of medical needs.

• Another source of discussion of CPGs have to do with their focus on a single

disease (primary or index disease) with considerations about additional diseases

(secondary diseases or comorbidities). In modern societies, the aging of the pop-

ulation combined with the increment of the prevalence of chronic conditions are

giving raise to an enlargement of cases with more than one simultaneous disease,

who require a combined treatment of all these diseases (multimorbidity). In a

recent study, Bähler et al [130] reported that 76.6% of patients over 65 are mul-

timorbid, they require 11.4 more consultations, and their costs are 5.5 higher in

average than non-multimorbid patients. So, the validity of the sort of knowledge

contained in single-disease oriented CPGs is called into question [131].

Although CPGs, and consequently CIGs, are focused on single diseases, there are a few

studies based in the combination of CIGs for the treatment of comorbid and multimorbid

patients [132–136].

2.2.3 DDx Generators

Over the years, several computer tools have emerged to support physicians in differential

diagnosis (DDx) [137]. In the last decades a group of these tools have appeared under

the name of DDx generators. These are “computer programs that assist the clinician by

combining symptoms, findings, and other factors to suggest a list of possible diagnoses

for consideration” [138].

Some of the most outstanding DDx generators are CADUCEUS, DiagnosisPro, DxMate,

DxPlain, Esagil, Illiad, Isabel, Meditel, PEPID, QMR, and ZeroMD, but there are

others.

As these systems evolve, the number of health care professionals using them grows. So,

DxPlain moved from 4,772 registered users in 2000 to 11,411 in 2004 [139] and Isabel
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registered over 12,000 new users between July 2001 and August 2003 [140], with more

than 25,000 users in 2004 [141]. The benefits of these systems have been reported

in terms of medical error reduction [142, 143], decision support [144, 145], training

capability [146, 147], and cost reduction [148].

Last versions of these tools use to be accessible through the Internet. Under significantly

different interfaces, all of them provide a similar service. Broadly speaking, DDx gener-

ators allow the user to introduce general information about the case to diagnose (e.g.,

gender and age) together with medical information (e.g., signs, symptoms, risk factors,

or comorbidities). Different internal knowledge bases are then used by the generators to

rank the feasible diseases this case can have. Some generators also display information

about recommended diagnostic tests to reduce the rank of diagnostic hypotheses. The

user can continue providing additional inputs, and the generator recalculates the rank

in a continuous loop.

Several studies exist comparing DDx generators. Hammersley et al [149] compared

Meditel and DxPlain, and conclude that the lists provided by Meditel are more accurate

and complete, and it is faster than DxPlain, in 1988. Berner et al [150] compared

Dxplain, Iliad, Meditel, and QMR in terms of the diseases considered (knowledge base),

the correct diagnosis, the correct diagnosis in the top ten positions of the ranking, the

length of the ranking list, the relevance of the top twenty results for a group of experts,

and the comprehensibility of these results for these same experts. DxPlain emerged

as the best knowledge base and comprehensive results (tied to Meditel), but Meditel

remained as one with more correct results, overcame by QMR when only the ten first

diseases in the rank are considered. The shorter lists were provided by QMR that was

also the best in relevance.

Two years later, Berner et al published an extension of this study [151] with more case

studies and making a distinction between the results whether the disease of the case

was or was not contained in the knowledge base of the generator. Previous results were

confirmed again, but a new quality measure was analyzed replacing the rank list length.

In this study the average distance of the correct diagnosis to the first position of the list

was calculated. QMR obtained significantly better results.

Bond et al [138] compared DiagnosisPro, DxPlain, Isabel, and PEPID. As opposed to

the previous studies, the results measured the subjective opinion of a group of experts

in the classification of twenty cases from the New England Journal of Medicine (2010

editions) and from the Medical Knowledge Self Assessment Program (version 14) of the

American College of Physicians. Experts scored the accuracy of the DDx generators in

a 0-5 range (5 being the higher score). DxPlain and Isabel obtained the highest score,

with average value 3.45.
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In [152], we performed an analysis of the results of DiagnosisPro, DxMate, DxPlain,

and Isabel when they were confronted to multimorbid cases. Our study concluded that

all these generators showed a equivalent diagnostic sensibility for multimorbid cases

than they have for single-disease patients. DiagnosisPro was the exception, with 35%

better sensitivity in front of single-disease cases. DxPlain and DiagnosisPro are the best

ones diagnosing single-disease cases, whereas DxMate and DxPlain outperform the rest

diagnosing multimorbid cases.

2.2.4 Decision Tables

A decision table [153] is a matrix that relates a set of decision input variables with a set

of output actions. It is divided into four areas (see figure 2.3): the condition stub, the

action stub, the condition entry, and the action entry. The condition stub is the upper

left side of the table and it contains the decision input variables (and their respective

cardinalities mi) as a column. The lower part of this column describes the action stub

as a list of the feasible output actions. In the right hand side of the table, each column

represents a decision rule that relates the values of a subset of decision input variables

(condition entry) with a subset of the output actions (action entry).

Decision tables have been applied in different domains and for different purposes. Some

of the most frequent uses have been [154]: as expert systems [155], for software devel-

opment [156], with programming languages [157], as control systems [158], in applied

mathematics [159], and in economics [160].

In medicine, depending on the sort of decision that a table is made for, decision variables

in the condition stub can be signs, symptoms, findings, laboratory results, etc. whereas

action variables in the action stub can be diagnostic hypothesis, diagnoses, interventions,

etc. These medical concepts can be found organized in hierarchical classifications of

international coding systems [161] such as ICD10CM [162], ICPC [163], and ATC [164],

or in medical ontologies as SNOMED CT [165] or CPO [166].

As knowledge structures in general computer science, decision tables have a number of

advantages at different levels: interpretation, creation, application, and maintenance.

At the interpretation level, decision tables are explicit and easy to understand and

to interpret, so increasing the clarity of the systems. They have the ability to clearly

organize the complexity of a system’s logic [39].
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Figure 2.3: Conventional Decision Table Structure

At the creation level, decision tables stand out as simple and appropriate mechanisms

to acquire expert knowledge [167]. Since decision tables are linguistically and struc-

turally understandable, knowledge engineers become less necessary to fill in the tables,

in part because domain experts can perform this labor with minor complication [168].

At the application level, decision tables can be used both in textual documents as a

means to clarify ideas (e.g., clinical practice guidelines), and also incorporated in com-

puter knowledge systems (e.g., decision support systems) [169]. Computer systems based

on decision tables have been proved to have an efficiency similar to other systems [170].

In addition, the knowledge stored in decision tables remains separated from the pro-

gram logic, this causing that changes in the knowledge does not necessarily affect the

program. Decision tables can also act as an intermediate structure to easily move from

a knowledge representation model to another different model [37].

At the maintenance level, DTs are easy to maintain and grow with new information.

They are reusable for different systems and easy to validate.

Decision tables also have drawbacks. In the past, they have been criticized for being

susceptible to redundancy, ambiguity, contradiction, and conflict, apart of their feasible

space exponential growth respect to the number of conditions [41].

Redundancy happens when the knowledge represented in one rule is already embedded

in the rest of the rules. Ambiguity is an undesired property of the terms used in the

table, when these are too generic or having several meanings. Contradiction is the

situation in which, for the same clinical case, two or more rules in the table are applicable
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and they conclude on opposite actions. Conflict is when two or more rules are applicable

and their actions intersect.

All these advantages and drawbacks of conventional decision tables in computer science

are inherited by decision tables when they are used in clinical practice [41]. However,

some of the main drawbacks have been addressed by introducing modifications to the

conventional decision tables. These modifications have given rise among others to the so

called augmented decision tables [39] that can fight redundancy, contraction and conflict;

the fuzzy decision tables [169, 170] that formalize ambiguity; the second order decision

tables [171] that reduce the size of the table; the semantic decision tables [172] that

eliminate ambiguity, and the weighted decision tables [173] that can solve contradictions

and conflicts.

Noticeably, semantic decision tables are able to express knowledge in terms of semantic

medical concepts. These concepts belong to an ontology as for example SNOMED

CT [165], or to the semantic network.

In the past, decision tables have been successfully applied to multiple immediate deci-

sions in health care. For example, we may find applications to perinatal transmission

of hepatitis B by immunization [174], coronary artery bypass graft in acute myocardial

infarction [175], diagnosis of appendicitis [39], treatment of hypercholesterolemia [176],

organ allocation [36], evaluation of chest pain [38], epileptic discharges [177] and many

others.

However their application to medical decision procedures has been limited. Two coun-

terexamples can be found in [39, 178] where decision tables were used to decide clinical

practice processes such as determining the appropriate intervention of patients with

suspected appendicitis, and others.

In relation to the application of decision tables to clinical practice, an interesting an-

tecedent exists that proposed a family of decision table structures able to implement all

the components of the Medical Practice Model (MPM) [7] introduced in section 2.2.1.

In this work [41], Riaño proposed a family of eighteen different sorts of decision tables

able to support health care professionals to answer fifteen diagnostic, therapeutic, and

prognostic questions that the MPM model was expected to answer. Figure 2.4 shows the

structure of these tables in terms of the medical concepts to be stored in the condition

and action stubs (i.e., a patient condition as a list of signs and symptoms, a diagnostic

hypothesis as a list of alternative diseases, a diagnosis as a list of diseases, a diagnostic

test as a list of tests, a treatment as a list of clinical actions or interventions, and a

prognosis as a pair (time, condition) representing the expected time for that patient

condition to be reached).
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Figure 2.4: Family of eighteen decision table structures to implement the MPM
model.
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Figure 2.5: Operational differences between (a) a DDx decision Support System tool
and (b) a DDx Training System tool

2.2.5 Medical Education Tools

One of the main applications of decision tables in DDx are as clinical decision support

systems, or as training systems. Between these kinds of systems there are important

operational differences that figure 2.5 outlines.

DDx Decision Support Systems (see figure 2.5(a)), as for example DDx generators,

receive the description of a case and propose a ranking of the feasible diseases. Feasibility

is computed in terms of the internal knowledge contained in the tool. Optionally, they

can also recommend a set of diagnostic tests to better arrive to a final diagnosis. This

is the case, for example, of Diagnosis Pro and ESAGIL.

On the contrary, the DDx Training Tools (see figure 2.5(b)) are expected to work the

other way around. That is to say, they provide clinical cases to the trainee [179], who

proposes either a set of possible diagnoses (i.e., diagnostic hypotheses), or a set of

diagnostic tests aiming to increase the evidence about disease acceptance or refutation.

This behavior mimics reality [7], where patients have a group of signs and symptoms

that the physician must interpret to reach a final diagnosis. Finally, the training tool

provides a feedback with the correct answers to support the learning process.

Training systems is one of the modalities of e-learning integrated in medical education.

E-learning refers to the use of Internet technologies to deliver a broad array of learning

modes that enhance learners’ knowledge and performance [180].

E-learning technologies offer learners control over content, learning sequence, pace of

learning, time, and often media, allowing them to tailor their experiences to meet their

personal learning objectives. In diverse medical education contexts, e-learning appears

to be at least as effective as traditional instructor-led methods such as lectures.

Students do not see e-learning as replacing traditional instructor-led training but as a

complement to it, forming part of a blended-learning strategy [180]. A developing infras-

tructure to support e-learning within medical education includes repositories, or digital
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libraries, to manage access to e-learning materials, consensus on technical standardiza-

tion, and methods for peer review of these resources.

Some of the e-learning modalities are: simulation technology, synchronous learning de-

livery, and web-based for standardized patients [181].

The centers specialized in simulation technologies, use full mannequins or models

connected to various display units that guide the trainees’ performance during simulation

sessions. Evaluating trainees’ skills are usually conducted via observation by faculty

members, who complete checklist forms for assessing trainees’ psychomotor and technical

skills.

The synchronous learning modality, such as Webcast, consists of a live video/audio

broadcast of training sessions and archival of training materials for later access by par-

ticipants. Many benefits include: connecting learners from distant sites to live training

sessions, creating opportunities for trainers and participants to interact in real time,

fostering peer-to-peer feedback, interacting with learning resources such as lecture notes

or simulated cases, and accessing training materials for self-paced review.

The use of standardized patients has been an integral part of medical education

for both teaching and assessment purposes. Web-based and video technology have been

piloted to test whether performance-based skills, such as decision making or error disclo-

sure skills, can be taught and evaluated. Clever, et al. [182] concluded that standardized

patients-physician interaction was feasible in long distance assessment. Videoconferenc-

ing was also effective in assessing a physician’s communication skills [183].

2.3 Conclusions

In this chapter we have considered only the elements that are relevant to the thesis. We

have left out of the explanation important medical informatics concepts and technolo-

gies that are not directly related to our work, such as electronic health care records,

ontologies, health care standards, or artificial intelligence topics such as expert systems,

decision support systems, or machine learning techniques.

We have described clinical practice as a complex tasks that has to deal, at least, with

three important issues which are diagnosis, treatment, and prognosis, and have ana-

lyzed how these issues are decomposed into smaller tasks in the Medical Practice Model

(MPM). This analysis of the basic components of clinical practice is important to be

prepared to define, in the next two chapters, formal knowledge structures to support

medical decision making and training.
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We have also introduced differential diagnosis (DDx) as one of the key cognitive pro-

cesses in clinical practice and how DDx generators are computer-based tools supporting

physicians in this sort of diagnosis. Clinical practice guidelines (CPGs) have also been

presented as the regular means to gather all the available evidence-based knowledge

about concrete single-diseases, particularly procedural knowledge related to therapeutic

treatments. CPGs are actionable by means of computer-interpretable guidelines (CIGs)

which can be described with multiple formal languages, among which some of the most

important ones have been mentioned and their representation patterns described. The

adaptation of CPGs and CIGs to multimorbid patients is a challenge for future investi-

gations, that we have partially address for diagnosis in chapters 3 and 5.

Prognosis is another cognitive tasks participating in clinical practice. It is hard to find

a single definition of prognosis since it uses to encompass multiple meanings. Here, we

have adopted one of them which is the anticipation of the future evolution of the health

condition of one patient either if she is subject to a perfectly defined treatment or if

she receives a null treatment. As we have seen in section 2.2.1, this kind of prognosis

participates in three concrete points of the MPM model implementing clinical practice.

But not only this, our interpretation of prognosis in this thesis also shares important

coincidences with the concept of virtual patient (VP), a computer-based medical edu-

cation paradigm to train novel physicians to make diagnostic and therapeutic decisions.

VP represents the sort of prognosis that we are describing in chapters 4 and 6, and

testing in chapter 8.

All this will be achieved under one homogeneous knowledge representation formalism,

decision tables (DTs), whose pros and cons have been discussed. Along this thesis

different types of DTs will be designed to host assorted types of medical knowledge for

decision support with regard to diagnostic, therapeutic, and prognostic & simulating

tasks in clinical practice.
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Chapter 3

Implementation of Differential

Diagnosis with Decision Tables

In this work, we consider differential diagnosis as the clinical process of determining the

set of diseases affecting a patient. It uses to be based on the continued refinement of

a set of candidate diseases or diagnostic hypotheses, by means of getting new findings

that reinforce or weaken the evidences of these candidate diseases and driving some of

them to rejection or to a final acceptance. We consider the process divided into three

steps (see figure 3.1): making diagnostic hypotheses, selecting appropriate diagnostic

tests, and discarding negligible hypotheses.

Making diagnostic hypotheses: All the available relevant signs and symptoms about the

patient under study are used in the first step of the differential diagnosis process to

identify the set of feasible diseases that could be affecting that patient. The feasible

diseases are called diagnostic hypotheses.

Selecting appropriate diagnostic tests: Then, during the second step and according to

the current diagnostic hypotheses, a set of diagnostic tests are identified that could bring

new evidences to accept or to reject some of these hypotheses. The goal is to employ

these evidences to progressively reduce as much as possible the set of hypotheses.

Figure 3.1: Subprocesses of the DDx loop
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Discarding negligible hypotheses: After performing the selected diagnostic tests, the third

step is deserved to evaluate the results obtained and to use the possible findings to refine

the current set of diagnostic hypotheses.

Sometimes, the results of the tests do not provide enough evidence to conclude the

diagnostic process and new diagnostic tests are needed. In this case, the second and third

steps are repeated until a final diagnosis is accepted. This diagnosis can be composed

of one or several diseases (multimorbidity).

The application of differential diagnosis (DDx) in medical practice entails a set of addi-

tional considerations:

1. Sometimes a diagnostic test needs to be repeated before a finding is taken for

sure, as a means of confirmation or second check. For example, the observation of

high blood pressure in a patient uses to be followed by a second, or even a third

measurement before an elevated value is accepted.

2. Some diagnostic hypotheses can be inferred from the observation of an undefined

number of signs, among several. For example, the symptoms of a common cold

may include: cough, itchy or sore throat, runny or stuffy nose, congestion, slight

body aches or a mild headache, sneezing, watering eyes, low-grade fever and mild

fatigue. If a patient presents cough, sore throat, stuffy nose and headache may be

enough to suspect about common cold even if not all the symptoms are detected.

3. Some other times the selection of a diagnostic test depends on the need to confirm

some symptoms. For example, if a patient refers dysthermia feeling, the physician

may measure the temperature to confirm if the patient presents fever.

4. Also, discarding or accepting a diagnostic hypothesis may depend on the observa-

tion of some concrete findings. For example, if the measurement of blood pressure

is low, the physician can discard hypertension.

5. It could also happen that the absence or the negation of some results in a test

is relevant enough to accept or to discard a hypothesis. For example, almost all

people who develop severe deep vein thrombosis have an elevated blood level of a

clot-dissolving substance called D dimer. If a patient do not present this substance

in a blood test, the physician can discard severe deep vein thrombosis.

6. Sometimes a test can be optional. The optional tests may supplement the di-

agnostic tests in order to evaluate complementary information. For example, to

diagnose different causes of hypertension, a physician may request a urine test,

but she optionally may request a blood test to assess the severity of the damages

produced in the body by the disease.
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7. It is also important to distinguish between irrelevant findings and relevant unknown

findings. A finding is considered irrelevant to a concrete disease or diagnostic

hypothesis if it is not related to that disease or hypothesis. That is to say, the

presence or absence of the finding does not provide additional information about

the targeted disease or hypothesis. Conversely, a relevant unknown finding is an

observation that is positively related to the disease (i.e., its presence or absence may

provide some evidence), but no information about it is available at the moment.

In order to represent the knowledge related to DDx with decision tables, we must provide

decision tables with a structure able not only to describe the three steps of the process,

but also capable to deal with these considerations.

3.1 Decision Tables in Diagnosis

In this section we present an alternative to conventional decision tables, adapted to

host the knowledge required in medical diagnosis. These new tables are called grouping

decision tables. We also detail how this sort of tables are adapted to manage each one

of the steps that we have identified in DDx and that figure 3.1 shows.

3.1.1 Grouping Decision Tables

One of the main features of decision tables (DTs) is their exponential growth when new

variables are considered. The variables involved in DDx are related to diagnostic hy-

potheses and diseases, patient signs and symptoms, and diagnostic tests and findings.

In medicine, the huge amount of possible diseases, signs and symptoms, and diagnostic

tests makes conventional DTs not to be an efficient representation of DDx knowledge.

It is necessary to modify the structure of the DT rules and therefore increase the expres-

siveness of the tables and consequently reduce their growth to manageable sizes when

dealing with DDx.

With this objective, we propose a new model of DT, the grouping decision tables (GDT)

that extend semantic decision tables [172]. GDTs are decision tables whose condition

and action stubs contain concepts that correspond to a semantic codification of terms.

In our implementation this semantic codification is SNOMED CT [165, 184]. Their

condition entries can take the single values yes, no, ?, void, or the grouping values

Y#n or N#n , and their action entries can take the single values X, void, or opt.

For condition entries, a value yes means that the concept in the corresponding condition

stub is satisfied, no means that the concept is not satisfied, ? is when it is an unknown
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but still relevant concept, and the void symbol when the concept is not relevant (either

if it is known or not) to make the diagnostic decision represented by the rule.

For action entries, the value X means that the concept in the corresponding action stub

must be applied, the void value means that the action concept must not be applied,

and the opt value means that the application of the action concept is optional (i.e., the

user of the table must decide whether to apply it or not).

For each rule, several decision entries can be of the type Y#n , where n represents an

identification number. For the same rule, several grouping values Y#n are possible with

the same or a different n . A grouping value Y#n with a given same n value represents

the statement that some of the condition stubs related to the condition entries containing

such grouping value are satisfied. This is useful, for example, to determine that in order

to suspect of a concrete disease (i.e., hypothesis) it is enough to observe a subset of

their possible signs and symptoms, but not necessarily all of them. In this case, the

condition entries of all the possible signs and symptoms of the disease di should be given

the value Y#n with the same n , in the GDT rule, and an X value in the action entry

corresponding to the action stub of the disease di.

A GDT rule can also have one or several grouping values N#n , with one or several

identification numbers n . For a given n , the grouping value N#n in a rule is satisfied

if all the condition stubs of such grouping value in the rule are no or ?. This sort of

grouping is useful, for example, to build a condition that we have not observed a set of

signs or symptoms in a patient.

Another difference with conventional decision tables is that GDTs permit the simulta-

neous activation of more that one rule. This may be useful in domains like medicine,

where several conditions can be observed that activate alternative clinical actions, all of

them medically correct. If only one of them needs to be applied, and there is no evidence

on which one, then the choice should correspond to the physician.

3.1.2 Sorts of Grouping Decision Tables for Differential Diagnosis

GDTs are used to represent the knowledge required to support DDx. The above men-

tioned three steps of DDx involve different decision problems that need to be addressed

with different knowledge structures. For this reason, we have designed several sorts of

GDTs. These sorts of GDTs complement one each other in order to fully support the

DDx process depicted in figure 3.1.
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3.1.2.1 Deciding the Diagnostic Hypotheses

The first step of diagnosis is to collect all possible information about the patient. This

information can come from the patient’s own explanation, from the observations of the

physician, or from the patient’s medical history.

All this information, summarized as signs and symptoms, provides the input required

to decide about the diseases that can possibly affect the patient at the diagnostic time.

Experienced physicians may categorize these hypotheses according to their probability

to the point of ignoring some of them. Our automation of the DDx process requires the

consideration of all the possible diagnoses, before this expert filter of the most probable

diseases is applied. Initially, we consider that all the hypotheses are feasible.

A Diagnostic Hypotheses Decision Table (DHDT) is designed to answer the question

about which the possible diseases affecting our targeted patient can be. Formally speak-

ing, if D0 and D1 are two subsets of the SNOMED CT concepts disease t disorder,

and S a subset of the SNOMED CT concept clinical finding, then the condition stub of

DHDT is D0∪S, and the action stub is D1. See table 3.1 for a structural representation.

Rule 1 ... Rule n

disease01 ...

... ...

disease0i ...

sign1 ...

... ...

signj ...

disease11 ...

... ...

disease1k ...

Table 3.1: Diagnostic Hypotheses Decision Table Structure

The condition stub of a DHDT contains the patient past and current diseases (these

can be obtained from the patient history record or after questioning the patient) and

the possible signs and symptoms observed in the patient. The action stub of a DHDT

represents possible diseases affecting the patient who satisfies the description in the

corresponding condition stub.

Each rule of a DHDT can represent a type of patient (expressed in terms of a set of

signs and symptoms) with none disease currently diagnosed, but possibly having one

or several diseases (hypotheses), or a patient already diagnosed of one or more diseases

that, according to the current signs and symptoms, is suspected of suffering some other

diseases (i.e., multimorbid case).
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At the time of execution of a DHDT, none, one, or several rules can be activated, and

none, one, or several diseases can be suspected. Suspected diseases are those in the

action stub with an X value in the corresponding action entry of the activated rules.

The union of the suspected diseases of all the activated rules represent the initial set of

diagnostic hypotheses of the DDx process.

3.1.2.2 Deciding the Diagnostic Tests

When the diagnostic hypothesis is not conclusive about the patient diagnosis, the physi-

cian must decide which evidence needs to be increased in order to reach acceptance or

refusal of the current set of hypotheses. This increment is obtained after the applica-

tion of diagnostic tests that provide additional findings to support these acceptances or

refusals. One same diagnostic test may provide information about one or more than

one hypotheses, and each hypothesis may require one or more diagnostic tests to get

confirmed or refuted.

The selection of diagnostics tests to validate or refuse a disease takes into account dif-

ferent considerations [185]: the feasibility of the tests, the medical costs, the patient

comfort and safety, the availability of the tests in the health care setting, etc.

When alternative diagnostic tests are possible, physicians may choose tests giving pri-

ority to the time of response, costs and patient comfort and safety, over the tests with

high precision. These considerations are reflected in clinical practice guidelines, that

give priority to some tests over others, providing one or more sequences of tests to assess

the diseases. For example, the diagnosis of acute appendicitis [186] is primarily based

on clinical findings. There are several diagnostic tests that may be helpful: ultrasound,

computerized tomography (CT) scan, and laparoscopy. CT scan should be preferred over

ultrasounds in the diagnosis of appendicitis because it has a higher accuracy, but ultra-

sound is usually preferred because it lacks of radiation, it has a better cost-effectiveness,

and it is more available, if compared to CT scan. Similarly, in spite that laparoscopy is

also more accurate than ultrasound, it is an invasive procedure that requires anesthesia

and that has a similar risk to performing an appendectomy. Consequently, it should be

avoided in favor of ultrasound test, and only utilized in highly justified cases.

Test Selection Decision Tables (TSDT) are a new sort of GDT that we have designed

to answer the following question: with the current information, which group of tests

will provide better new insights to accept or refuse the suspected diseases? Formally

speaking, if D is a subset of SNOMED CT disease t disorder concepts, and T0 and

T1 subsets of SNOMED CT procedure concepts, representing diagnostic tests, then the
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condition stub of TSDT is D∪T0, and the action stub is T1. See table 3.2 for a structural

representation.

Rule 1 ... Rule n

disease1 ...

... ...

diseasei ...

test01 ...

... ...

test0j ...

test11 ...

... ...

test1k ...

Table 3.2: Test Selection Decision Table Structure

The condition stub includes the possible suspected diseases and the diagnostic tests that

have been possibly applied. The action stub of the table contains the list of new possibly

suggested tests.

For all the rules in the table, when a test in the condition stub has the value yes in the

corresponding condition entry, it means that the tests is done and the resulting finding

is positive to validate the disease. If the value is no, it means that the test is done and

the result of the test refuses the disease or diseases affected in the considered rule. A

value of ? in the condition entry means that we have no information about the result

of the test or the test was not made.

At the time of execution of a TSDT, none, one, or several rules can be activated, and

therefore none, one, or several diagnostic tests might be recommended. The recom-

mended tests will be those in the action stub with a value X in the corresponding action

entry of some of the activated rules. A rule can be activated if the current diagnostic

hypotheses satisfy the condition entry of the rule and either none diagnostic test has

been performed yet (i.e., the condition entries related to the tests are all void, or ?),

or some diagnostic tests have been performed and they appear with value no in the

corresponding condition stub if the result of the test is negative, or with value yes if the

diagnostic test is positive.

Some diagnostic tests might be optional to validate a disease. These tests may not

provide enough evidence to take a decision, but they can suggest the physician the

direction to take in next decisions.
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3.1.2.3 Modifying the Set of Hypotheses

After the diagnostic test results are obtained, physicians decide if the previous hypothe-

ses are maintained, accepted as final diagnosis, or rejected.

With this purpose we have designed a new sort of GDT under the general name of

Evaluation Decision Tables (EDT). These tables have been conceived to contain the

sort of knowledge required to decide on whether there is enough evidence for a concrete

hypothesis to become a final diagnosis or, if new diagnostic tests are recommended.

Table 3.3 shows the structure of an evaluation decision table. Formally, if D0 and D1 are

subsets of the SNOMED CT disease t disorder concepts, and T a subset of SNOMED

CT procedure concepts, representing diagnostic tests, then the condition stub of a EDT

is D0 ∪ T and the action stub D1.

Rule 1 ... Rule n

disease01 ...

... ...

disease0i ...

test1 ...

... ...

testj ...

disease11 ...

... ...

disease1k ...

Table 3.3: Evaluation Decision Table Structure

An EDT rule is activated when a patient is suspected of having a set of diseases that

satisfy the condition stub of the rule and all of the diagnostic test that have obtained a

negative result appear as no or void in the condition entries of the corresponding tests

in the decision stub, and all the tests performed and obtaining a positive result appear

as yes or void in the condition entries of the corresponding condition stubs of the tests,

in the rule.

When a disease in the action stub has the value X in the corresponding action entry of

an active rule, it means that the disease is confirmed by the ruke and it becomes part

of the final diagnosis. If the value is the void, it means that the disease is discarded as

diagnostic hypothesis but, if the disease has the value ? this indicates that the disease

in is still possible but not confirmed, and therefore part of the diagnostic hypothesis.

Notice that the condition stub contains the target disease (or diseases) and the possibly

performed tests. Sometimes a positive result in a test does not carry enough evidence

to accept the hypothesis. Some other times, the diagnostic tests are used to discard the
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Figure 3.2: DT-based implementation of DDx in medical practice

hypothesis, but the precision to predict a disease is very low. Other tests have a high

rate of false negatives. In these cases, if the physician suspects that the hypothesis is

feasible, new orders to repeat the same sort of diagnostic test can be necessary.

3.2 The Differential Diagnostic System

The three models of diagnostic decision tables described in the previous sections are

integrated to implement the DDx process depicted in figure 3.1. This integration is

outlined in figure 3.2 to represent our proposed model to implement DDx with DTs.

The model requires as input the available information about the targeted patient. This

information includes the signs, the symptoms, and the known diseases affecting the

patient. From this information a set of diagnostic hypotheses is obtained after the

application of the Diagnostic Hypothesis Decision Table (DHDT) in section 3.1.2.1.
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This table recommends a set of diagnostic hypotheses. Each one of the diseases in this

set is evaluated separately, creating an independent hypothesis line for each one of the

diagnostic hypothesis. For each line, a Test Selection Decision Table (TSDT)

The system select the appropriate tests applying the Test Selection Decision Tables (see

section 3.1.2.2) for each disease. As result, the system obtains a set of tests to perform

after the combination of the results of all hypothesis lines. It is possible that several

diseases need the same diagnostic test (e.g. radiography) or different tests with the same

analysis (e.g. glucose test and cholesterol test using the same blood test). The set of

tests proposed to the patient considers these possibilities to avoid duplicate tests and to

optimize the number of diagnostic tests.

When all the tests have been performed, the new findings provided by the tests are evalu-

ated for each hypothesis disease with the Evaluation Decision Table (see section 3.1.2.3).

For each disease, if the evaluation table rejects the hypothesis, the system discards this

investigation line. If the evaluation table accepts the hypothesis, the system includes

the disease in the final diagnosis. Otherwise, if the system needs additional information,

it restart the new test selection applying the new information provided by the previous

tests.

Finally, when all the hypotheses are accepted or rejected, the final diagnosis is concluded

with all the accepted hypotheses. If there are more that one disease in the final diagnosis,

the system concludes that it is a comorbid case.

3.3 Conclusions

Differential diagnosis (DDx) is a complex cognitive task involved in clinical practice.

Our review of clinical publications describing DDx allowed us to identify three main

subtasks of DDx, namely making diagnostic hypothesis, selecting appropriate diagnostic

tests, and discarding negligible hypotheses. The knowledge underlying in each one of

these subtasks was analyzed and three sorts of decision table structures were proposed,

all of them under a same DT model that was called grouping decision table (GTD). The

knowledge to make diagnostic hypothesis can be represented with diagnostic hypothesis

decision tables (DHDT). The knowledge required to select the appropriate diagnostic

tests was represented with the test selection decision tables (TSDT). And the knowledge

employed to discard negligible hypotheses was captured in the evaluation decision tables

(EDT).
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All these tables integrate under a differential diagnostic system to provide a complete

model of implementation of DDx with decision tables. The capability of the model to

represent the diagnostic knowledge contained in clinical practice guidelines will be shown

in chapter 5 for the diagnosis of secondary causes of hypertension. The utility of the

model will be subject to analysis in chapter 7 with an application to train residents in

a tertiary hospital.
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Chapter 4

Implementation of Treatment and

Prognosis with Decision Tables

In this thesis, we consider treatment as the process of carrying out therapeutic actions

aimed at normalizing the situation of the patient. This represents an approach based

on the point of view of the doctor (as seen in section 2.1.2), where some objective

parameters, which are measurable, are used to assess the patient’s condition.

This approach is the same as the one used in clinical practice guidelines. CPGs provide

accurate details about the procedures to diagnose a disease, but with the treatment they

are less concise. In CPGs, the treatment uses to be focused on the objectives and they

provide different alternatives to achieve these objectives.

Usually, it is possible to reach the objectives of the treatment in different ways, using

different groups of drugs or applying different treatment procedures. This means that

physicians have a variety of possibilities that may work better or worse depending on

each concrete patient. It is the doctor who has to decide which actions are taken among

the ones proposed in the CPG and she is allowed to modify them as the treatment

evolves. In order to represent all this way of doing, when decision tables are applied to

health-care treatment, they must contain all the treatment alternatives appearing in the

CPG and be flexible enough to allow changes along the treatment.

When a physician decides a treatment action, she uses to foresee the a priori conse-

quences of this action in the patient. This kind of prediction is the sort of prognosis

that we address in this work, in spite that other interpretations of medical prognosis

exist [100].

Clinical actions are different depending on the patient, and the consequences of these

clinical actions can be different also depending on the patient. So, for example, a
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patient may require a certain dosage according to her age, weight, body mass, co-morbid

conditions, risk factors, interaction with other drugs that the patient is taking, etc. and

the effect of this drug (i.e., benefits and harms) might vary depending on the patient’s

natural resistance to the drug, frailty, or the normality parameters of the signs of the

patient.

4.1 Treatment Decision Tables

The process of deciding which treatment is recommended for a patient is complex and

it involves many issues to consider. In order to make proper decisions, it is important

to know the general condition of the patient. This condition is described by generic

parameters (e.g., sex, age, or weight), health state parameters (e.g., heart rate or blood

pressure), comorbid diseases (e.g., hypertension or diabetes), and other treatment ac-

tions in course (e.g., taking beta-blockers or ACE inhibitors).

The factors that are related to a patient but not to her health status, can also be

relevant at the time of deciding a treatment, e.g. the economic cost can preclude the

selection of some treatments, the patient’s medical insurance policy defining the catalog

of treatments that are covered or uncovered, the religious believes of the patient can

also ban some clinical actions, or the simple will of the patient may favor some clinical

actions in front of other ones less comfortable.

For inpatients, other conditioning factors exist that are related to the health care center

where they are tended, its facilities and available resources; e.g., some emergency treat-

ment such as CAT scans cannot be possible in some health care centers, or centers in

rural areas may have a reduce list of health care services.

Finally, the experience and the expertise of the physicians attending the patient may

also condition the selection of one treatment among others.

All these determinants have been considered at the time of designing decision table

structures to represent the medical knowledge concerning the prescription of a treat-

ment. These tables are called Treatment Decision Tables (TDT), and they are broadly

described as a sort of decision tables that are able to decide upon the question: which

treatment actions are recommended for a target patient under a certain given health

condition?

The aim of these tables is to record all the possible treatments that clinical practice

guidelines suggest for patients in concrete states and to recover this information when

a concrete patient needs to be treated. The physician has the final responsibility of
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choosing the appropriate treatment having into account the patient condition, the socio-

economic factors and preferences, the clinical facilities, and her experience and expert-

ness. Consequently, TDTs are computer actionable tools to help health care professionals

in the task of deciding proper treatment prescriptions.

Table 4.1 shows the general structure of TDTs. Formally, if D, S are subsets of the

respective SNOMED CT concepts disease t disorder and clinical finding, and A0 and

A1 subsets of pharmaceutical/biologic product t procedure, then the condition stub of

TDTs is D ∪ S ∪A0 with D a non-empty set, and the action stub is A1.

Rule 1 ... Rule n

disease1 ...

... ...

diseasei ...

sign1 ...

... ...

signj ...

action1 ...

... ...

actionk ...

action1 ...

... ...

actionn ...

Table 4.1: Treatment Decision Table Structure

Each Treatment Decision Table represents the possible treatments of a single disease,

which is considered the primary (or index) disease. The condition stub of the table

contains this disease, but it may also contain other secondary diseases in order to allow

the representation of treatments of the primary disease with co-morbidities.

This sort of tables can also describe the health condition of the patient which a treatment

is recommended for. This is accomplished with the introduction of signs and symptoms

in the condition stub, and the current treatment in terms of the clinical actions followed,

if there are any. For example, TDTs are able to represent that all the patients suffering

from arterial hypertension in grade 1 require diuretics [187], but also that all the patients

suffering from arterial hypertension but that have diabetes mellitus should take ACE

inhibitor instead of diuretics [188], and also that if the patient is already taking ACE

inhibitor, then she has to complement this drug with angiotensin receptor blockers.

TDTs extend semantic decision tables [172]. Their condition and action entries need

to be more descriptive than the ones of Grouping Decision Tables because of the high

number of possible alternatives to achieve the treatment objectives. This amount of

possible alternatives causes tables to grow and to lose clarity and easy handling. In order
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to overcome this issue, TDTs are able to incorporate a new type of value generalizations

to their condition entries which will reduce the size of the tables and will make them

more readable.

Their condition entries can be boolean, numeric, ranges, dosages, repetitions, or empty.

Boolean values (i.e., yes or no values) are useful to represent, for example, the presence

or not of a risk factor, a secondary disease, if a concrete clinical action was done, or if

the patient is taken a concrete drug. Numeric values are useful to represent punctual

numeric information, as the grade of the disease. For example, the New York Heart

Association (NYHA) Functional Classification distinguishes between four levels of heart

failure, 1-4. Range values are used to describe intervals with respect a concrete sign,

for example if the patient has a blood pressure above 140 mmHg. Dosage values (e.g.,

low, medium, high) are useful to describe the dose that the patient is currently taken

with regard to a particular drug. Repetition values are useful to represent the number of

times that a treatment action has been done, for example, several shocks are treated with

epinephrine bolus, but giving more than 2-3 bolus may be dangerous for the patient.

TDT action entries values can take positive, negative, optional, dosage, and logic values.

A positive value (represented by X) means that a treatment action must be applied. A

negative value (representing with a void table cell) means that the treatment action is

not recommended. Optional values (identified with the term Opt) are used when the

application of the action may complement the other treatment actions; for example, if

a patient needs non-steroidal anti-inflammatory drugs such as aspirin or ibuprofen for a

long time, and we suspect that this may affect her gastrointestinal tract, some optional

stomach-protective drugs could be necessary to complement the treatment. Dosage

values (represented by exact values or value groups like low, medium, or high) are

useful to represent treatment drug prescriptions. It means that a drug is recommended

with a specific dosage or dosage group. For example, the administration of acebutolol

for hypertension may start with 400 mg/day, or with a low dosage (between 300-500

mg/day) and be increased until it achieves the treatment objectives, or in emergency

arrhythmia, start with 1000 mg/day or a high 900-1200 dosage. Finally, logic values

(represented with the terms OR or XOR) are useful to describe different alternatives

where at least one of them must be chosen (OR), or one and only one of them must

be chosen (XOR). For example, it is possible to use XOR when different drugs have a

similar effect but only one has to be prescribed (e.g., beta-blocker or ACE-inhibitor).

In a similar way, the logic value OR is useful when a physician has to prescribe changes

in the patient’s lifestyle, not all the possible changes are applicable, but at least one of

them is required (e.g., walk or bike exercise).
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4.2 Prognosis Decision Tables

When a physician prescribes a treatment, she uses to use her experience to foresee the

expected evolution of the patient condition as a consequence of that treatment. These

changes can be known in a generic way, but the concrete changes in a specific patient

are not always easy to anticipate. For this reason, when a physician recommends a

treatment, it is necessary to control periodically the patient condition and her response

to the treatment.

Often, the evolution of the patient differs from the medical expectations and the treat-

ment decisions have to be reassessed. Sometimes, the effect of a treatment action is the

one expected, but non desired secondary effects may happen. As Dwight D. Eisenhower

said [189]: ”plans are useless but planning is indispensable”.

Prognosis Decision Tables (PDT) try to solve the question: What is the expected evo-

lution of a patient when a group of treatment actions is applied?

Table 4.2 shows the general structure of PDTs. Formally, if D and A are subsets of

the respective SNOMED CT concepts disease t disorder and pharmaceutical/biologic

product t procedure, and S0 and S1 are set of concepts of clinical finding, then the

condition stub of PDTs is D ∪ A ∪ S0 with D a non-empty set, and the action stub is

S1.

Rule 1 ... Rule n

disease1 ...

... ...

diseasei ...

action1 ...

... ...

actionj ...

sign1 ...

... ...

signk ...

sign1 ...

... ...

signn ...

Table 4.2: Prognosis Decision Table Structure

PDTs are able to represent anticipation rules about possible evolutions of a patient for

a concrete single disease which is called the primary disease. Other secondary diseases

are also possible to be part of the table as co-morbid conditions of the primary disease.

Treatment actions may affect patients with different diseases in a different way. All these

conditionals are captured as rules in the PDT. The condition stub contains the target
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disease, other diseases that may interact with the treatment actions, the actual patient

condition expressed in terms of constraints about a subset of signs and symptoms, and

the treatment actions that are going to be applied. The action stub of the table contains

the modification in the signs that the patient is expected to experience.

The condition entries for the PDT rules may include boolean values, range label values,

and empty values. A Boolean value (i.e., yes or no) are useful to represent, for example,

the presence or not of a disease, or if a treatment action is in course. Range label values

(with ranges low, medium, or high) are used to represent both pharmacological dosage

as for example amount of drugs in infusions (e.g., high dosage, when it is above 500

mg/day), and the qualification of vital signs as for example the heart rate (e.g., low

heart rate, when it is under 50 beats per minute).

The values in the action entries of the rules can be boolean, increment, decrement,

finish, and empty. A boolean value (i.e., yes or no) are useful to describe true-false

signs as for example the emergence of a jugular venous engorgement. The increment and

decrement values are useful to describe the behavior of numerical signs as for example

the variation in the central venous pressure. The finish values are used when an action is

not recommended and potentially harmful for a patient. This may happen for example

when a drug is prescribed and the patient is allergic to that drug.

In our case, PDTs could not be obtained from clinical practice guidelines because of the

lack of information about prognosis for each sign. Conversely, these tables had to be

filled by experts or obtained after the computer analysis of health care data.

4.3 Patient Simulation with Prognosis Decision Tables

The structure of PDTs makes them not only useful for prognostic purposes as the one

defined in this thesis; that is to say, the anticipation of possible future evolution of the

signs and symptoms of a patient according to her current diseases, signs and symptoms,

and the treatment applied, but also as a key component for the simulation of artificial

patients.

Our proposal for patient simulation [190] considers that under the same health condi-

tions, different patients can have different normality parameters for their vital signs,

and their response to a same treatment can vary. For example, a systolic blood pressure

(SBP) of 90 mmHg could be considered normal for a certain patient, but very low for

a patient with hypertension because the normality parameter of these two patients for

SBP are different. Also, some patients may present resistance to certain drugs or hy-

persensitivity to some treatments. Sometimes, the general health condition of a patient
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or her risk factors (which are not necessarily related to the disease under consideration)

can make certain clinical actions not to be recommended or even counter-indicated.

Additionally, the same dosages may have different effects depending on each clinical

condition.

These are some of the reasons why the application of PDTs alone is incomplete to

implement realistic simulation. So, we complemented PDTs with a Patient Model (PM)

that allows the description of different sorts of patients. See table 4.3. This way, patient

simulation in this thesis is defined as the personalization of the predictions of a PDT to

the PM describing the patient under consideration.

Patient ID : ##

AGE: ## WEIGHT: ## Kg

SEX: ## HEIGHT: ## m

...

PRIMARY DIAGNOSIS: ##

SECONDARY DIAGNOSES: ##

DESCRIPTION: ##

VITAL SIGN RANGES: MIN LOW HIGH MAX UNITS

sign-1 ## ## ## ## mmHg

...

sign-M ## ## ## ## bmp

ACTION SENSITIVITIES:

action-1 ==> ## %

...

action-N ==> ## %

INITIAL SIGNS:

<sign-1 = ##>

...

<sign-M = ##>

Table 4.3: Patient Model representation structure

While a PDT can be seen to contain the knowledge describing the evolution of a standard

patient diagnosed of a concrete disease in front of a standard treatment and, therefore,

proposing standard prognoses, a PM represents the knowledge about a concrete sort of

patient or clinical case. As figure 4.1 depicts, the PMs allow the customization of the

results produced by the PDTs in accordance to the features of single patients.

In the PM we determine the special behavior of a type of patient for each treatment

action by defining her sensitivity/resistance with a percentage: 0% representing full
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Figure 4.1: Patient Simulation Architecture

resistance, values between 0% and 100% partial resistances, 100% the standard effect,

and values above 100% crescent sensitivities. See the section ACTION SENSITIVITIES in

table 4.3 and how a subset of SNOMED concepts in pharmaceutical/biologic product t
procedure, representing clinical treatment actions, can define different patient sensitivity

percentages.

Furthermore, comorbidities and physical conditions may vary vital signs normal refer-

ences and their limits, in every single patient. Clinicians use this sort of variations to

determine the treatment goals. In the PM we are allowed to specify normality parame-

ters of cases by means of ranges that will be used not only to assess the effects of clinical

actions over tolerable limits but also to decide on patient discharges. See these ranges

under VITAL SIGN RANGES in table 4.3.

In PM, cases are allowed to contain sensitivity/resistance percentages for all the relevant

clinical actions related to the considered diseases, and vital sign ranges for all the signs

and symptoms that are relevant to the diseases under consideration. Table 4.3 shows

the basic template to define PMs. Patient normality parameters are defined under the

section VITAL SIGN RANGES, with boundaries MIN, LOW, HIGH and MAX. These values

define the ranges for unacceptably low (below MIN) and unacceptably high (above MAX)

causing the simulation to stop, at risk (between MIN and LOW or between HIGH and MAX)

requiring urgent intervention, and normal (between LOW and HIGH) to consider discharge.

The section INITIAL SIGNS describe the values for all the sings of the case at the time

of admission.

4.4 Long Term Treatment Decision System

PDTs or the combined use of PDTs with PMs can be used to support decision making

about medical treatment within a short term simulation. They provide a prognostic of

the patient evolution when several actions are applied. When it is interleaved with a

step of therapy adjustment, this prognostic may be repeated several times in order to

plan long term treatment, so supporting clinical follow-up.
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Figure 4.2: Treatment and Prognosis Architecture

Figure 4.2 shows how to iterate the treatment and prognosis decision tables in a long

term follow-up decision system. If DM is used, it have to be considered together to the

prognostic decision table.

First, when the patient is diagnosed of one primary disease and possibly some secondary

diseases, the treatment decision table (TDT) is used to suggests none, one, or several

treatment actions, according to the current condition of the patient (i.e., current values of

relevant signs and symptoms). Then, the prognosis decision table (PDT) acts as a virtual

patient, providing the expected evolution. With this new patient status, the treatment

decision table (TDT) can suggest a new set of treatment actions. This process can

continue for a short- or a long-term until the treatment decision table (TDT) concludes

that the patient should be discharged.

Each loop of this process can be considered to define a short-term treatment, but when

this process finishes after several loops, the resulting patient condition at the discharge

time represents the patient condition after the application of a long-term treatment. This

new condition may be compared with the treatment objectives to assess the potential

quality of this therapy both at short- and long-term.

4.5 Conclusions

Treatment is a medical process in which the physician establishes some therapeutic

objectives and, through different clinical actions, she tries to get them. The clinical

practice guidelines provide the different alternatives to approach these objectives, but

the best option depends on the patient and on the medical criterion. Here, we present

the treatment decision tables (TDT) to abstract the knowledge provided by clinical

practice guidelines.
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Prognosis is the medical process mainly based on evidence studies or medical experi-

ence, that determines the medical decisions along the medical treatment. This thesis

focuses on the prognosis of the patient evolution when the patient is subject to concrete

treatment actions. The prognosis decision table (PDT) is introduced to model medical

experience in prognosis knowledge.

PDTs are also introduced to make patient simulation possible. But this simulation

only represents the evolution of standard patients in front of standard treatments. In

order to personalize the simulation with different types of patients, a patient model

representation was introduced.

In addition, a system that combines treatment decision tables and prognosis decision

tables are presented to simulate automated long term treatments.
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Chapter 5

Use of Diagnostic Decision Tables

in Secondary Causes of

Hypertension

In chapter 3, three types of decision tables to implement a differential diagnostic process

were presented. Having these knowledge structures is only the first step of the generation

of medical knowledge to support health care professionals in the differential diagnostic

process. In a second step, these computer structures need to be filled with the required

medical knowledge. Capturing this knowledge from CPGs and representing it inside the

proposed decision tables is an important knowledge acquisition task that requires further

explanation. In this chapter we describe the usage of these tables to represent differential

diagnosis knowledge related to a particular medical problem: the secondary causes of

hypertension. The methodological procedure aiming to implement DDx knowledge with

DTs is also described.

5.1 Secondary Causes of Hypertension

Blood pressure is the pressure of the blood against the inner walls of the blood vessels.

Arterial blood pressure (BP) refers to pressure in arteries. BP uses to be represented

by two measures: systolic blood pressure and diastolic blood pressure. Systolic blood

pressure (SBP) is the blood pressure during contraction of the ventricles, whilst diastolic

blood pressure (DBP) is the minimum blood pressure measured during relaxation and

dilatation of the ventricles. Normal values of BP (or SBP-DBP) can vary for adults

and children. So, Mayo Clinic describe BPs below 120-80 mmHg as normal for adults,

and upper values till 139-89 mmHg as pre-hypertension that requires the adoption of
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healthy lifestyle habits. Higher values are considered the patient to suffer from Arterial

Hypertension (AH), an abnormal high blood pressure in the patient’s arteries [191] that

may require pharmacological treatment. AH is the most common condition seen in

primary care [192] and it may lead to serious problems such as myocardial infarction,

stroke, renal failure, or death, if it is not detected promptly and treated appropriately.

AH is considered a disease (called primary or essential hypertension) by many medical

standards such as ICD9-CM, ICD10, and SNOMED-CT, but also a clinical condition

induced by other causes or diseases (called secondary causes). Secondary AH is the

presence of a specific condition known to cause hypertension, which may be the primary

cause or a contributing factor in a patient who already has primary hypertension. Al-

though uncommon, only 5-10% of hypertension cases are due to secondary causes [193], it

may cause major morbidity for a subset of patients [194]. The clinical practice guideline

of AH [191] identifies acromegaly, adrenal Cushing’s syndrome, coarctation of the aorta,

glomerulonephritis, hyperparathyroidism, pheochromocytoma, renovascular disease, and

sleep apnea as eight of the main secondary causes of arterial hypertension.

This guideline [191] and the eight CPGs corresponding to the above mentioned secondary

causes of AH [195–202] were analyzed with the help of senior general practitioners of the

health care centers Hospital Clinic de Barcelona and SAGESSA. The diagnostic knowl-

edge available in these guidelines was converted into clinical algorithms representing a

decision procedure for a common and easy understanding by both the physicians and

the computer scientists. The clinical algorithms obtained for the secondary causes of hy-

pertension are showed in Appendix A. These clinical algorithms [203] describe each one

the sequences of clinical tests that are needed in order to accept or refuse one concrete

secondary cause of hypertension.

Figure 5.1 shows the clinical algorithm obtained from the CPG about acromegaly [195].

Acromegaly (commonly called giantism) is a hormonal disorder that develops when

the pituitary gland produces too much growth hormone during adulthood. When this

happens, bones increase in size, including those of hands, feet and face.

The algorithm starts with the suspicion of a disease, in this example acromegaly. Ini-

tially, it proposes one test, the plasma IGF 1 measurement, and depending on the

result the disease is rejected or a new test is suggested. This time the measurement

of the plasma growth hormone in order to gain more evidence about the suspected dis-

ease. Even if this second test has a positive result a third test is recommended by the

CPG, which is a magnetic resonance imaging of the head. If all tree tests are positive,

acromegaly is accepted. If the first two tests are positive, but the last one turn out to be

negative, still a last test is indicated (computed tomography of the chest and abdomen)

before acromegaly is accepted or rejected.
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Figure 5.1: Acromegaly Algorithm

This sort of clinical algorithms is useful to build the Test Selection Decision Tables ex-

plained in section 3.1.2.2 and the Evaluation Decision Tables introduced in section 3.1.2.3.

Moreover, a differential diagnosis process also requires a Diagnostic Hypotheses Decision

Table to determine which among all the possible diseases are feasible according to the

current condition of the patient.

5.2 Making a Diagnostic Hypotheses Decision Table

The Diagnostic Hypotheses Decision Table (DHDT), presented in section 3.1.2.1, is a

common table for all the diseases participating in the differential diagnosis process. In

our example of diagnosing secondary causes of hypertension, the eight possible secondary

causes define the rules of the DHDT.
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This table must be built from the CPGs of the diseases we want our table to be able to

suspect of. Figure 5.2 summarizes a methodology to make DHDT. For each disease, all

the relevant signs and symptoms have to be detected and then mapped into SNOMED

CT concepts, before they are classified in four categories: mandatory, alternative, irrel-

evant, and impossible.

Mandatory signs are those that define the disease. Patients with the disease must

have these signs and if some of them is not observed, there is no reason to suspect of

the disease. In the case of secondary causes of hypertension, arterial hypertension is a

mandatory sign.

Alternative signs are those that can provide evidence about the disease. The presence

of one or more of these signs in a patient represents a solid basis both to suspect that

the patient may have the disease and to consider it in the differential diagnosis process.

In the example of acromegaly, the sign acquired skeletal deformity is alternative.

Irrelevant signs are those that can appear with the disease sometimes, but they alone

do not provide a basis to suspect the disease. For example, in acromegaly headaches or

Figure 5.2: Methodology to make Diagnostic Hypotheses Decision Tables
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fatigue can appear sometimes, but according to the medical experts, they not provide

evidence that the diagnosis might be acromegaly.

Impossible signs are those that when observed, the disease is not possible.

Once classified, each sign receives a condition entry value. Mandatory signs are given

the value Yes, all the alternative signs are combined under the same grouping positive

value Yes#1 (if several alternatives are possible, groupings Yes#n with increasing n

are determined), irrelevant signs are assigned a void value, and impossible signs a No

value.

Then a new rule for the disease is introduced in the DHDT with the identified signs in

the condition stub and the corresponding values in the condition entry of the rule. The

disease is appended to the action stub and an X is placed in the corresponding action

entry. Several rules can be possible if the condition to suspect the disease is complex.

This is a simple incremental methodology by which new diseases can be included for

differential diagnosis consideration with no need to reconsider the rules previously con-

tained in the DHDT.

Figure 5.3 shows the DHDT for differential diagnosis of secondary causes of hyper-

tension obtained after the application of this methodology to the clinical guidelines

of acromegaly [195], adrenal Cushing’s syndrome [196], coarctation of the aorta [197],

glomerulonephritis [198], hyperparathyroidism [199], pheochromocytoma [200], renovas-

cular disease [201], and sleep apnea [202]. For this task we counted with the appreci-

ated support of two senior medical experts from the Hospital Cĺınic de Barcelona and

SAGESSA.

In the condition stub of the table we can observe the mandatory, the alternative, and

the irrelevant signs after the SNOMED-CT codification. None of the considered CPGs

describe impossible signs, so the table does not contain such sort of signs. Some of the

signs are relevant only for one rule, for example snoring, for more that one rule, for

example muscle weakness.

The action stub contains the eight secondary causes of hypertension. Each column to

the right represents a rule that defines the condition to consider one disease as possible

cause of secondary hypertension. For example, the first rule describes the patient con-

dition to suspect pheochromocytoma. This rule shows that a patient needs to have an

hypertensive disorder (mandatory sign), and also one or more additional signs among

abdominal pain, acute necrosis, constipation, fever, or tachycardia (alternative signs),

in order to include pheochromocytoma in the list of diagnostic hypotheses.
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Figure 5.3: Secondary Hypertension Diagnostic Hypotheses Decision Table

5.3 Making the Test Selection Decision Tables

According to the differential diagnostic process described in chapter 2, after the iden-

tification of the diagnostic hypotheses, a set of diagnostic test might be performed in

order to increase the evidences for accepting or rejecting some of these hypotheses. The

information about what the correct diagnostic tests for each hypothesized disease is con-

tained in the clinical algorithm of that disease, as we introduced in section 5.1 for the

diagnosis of secondary hypertension. Our proposal is to transform these clinical algo-

rithms into Test Selection Decision Tables (TSDT) and use the TSDTs of all the diseases

involved in the hypotheses to determine the diagnostic test that will better contribute

to the validation or refutation of these hypotheses.

The proposed methodology to obtain TSDTs from clinical algorithms starts with the

identification of the diagnostic tests in the algorithm, and their codification in SNOMED-

CT. See figure 5.4 for a summary of the methodology. For example, in the clinical
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algorithm shown in figure 5.1 the identification of diagnostic tests in the clinical algo-

rithm concludes with plasma IGF 1 measurement, plasma growth hormone measurement,

magnetic resonance imaging of head, and computed tomography of chest and abdomen.

Figure 5.4: Methodology to make Test Selection Decision Tables

The hypothesis and all the tests recovered will define the condition stub of the TSDT,

and the test alone will formalize the action stub. For each recovered test, we obtain

all the possible paths in the clinical algorithm from the start to the end. Observe that,

in medicine the diagnostic process can not last for extremely long periods or involve a

huge number of steps. For this reason, the number and lengths of all the possible paths

described in the clinical algorithms are contained to a manageable size. Each path is

transformed into a new rule of the TSDT. In this rule, all the no-leaf tests that are in the

path will appear in the condition entry with the value described in the corresponding

connectors of the path, and the test at the end of the path (leaf tests) with the unknown

value ?.

In the action entry of the rule, the test at the end of the path is marked with an X,

indicating its recommendation.

This methodology to construct TSDTs from clinical algorithms can be automated and

it is easy to validate.

Figure 5.5 shows the TSDT obtained for acromegaly from the clinical algorithm pre-

sented in figure 5.1, after the application of the previously explained methodology.
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Figure 5.5: Acromegaly Test Selection Decision Table

In the condition stub of the table, the first variable is the suspected disease (i.e.,

acromegaly) and the rest corresponds to the tests associated to this disease, after a

SNOMED-CT codification. The action stub contains all the diagnostic tests found in

the clinical algorithm.

The acromegaly algorithm in figure 5.1 produces the following paths:

1. Acromegaly → Plasma IGF 1 measurement

2. Acromegaly→ Plasma IGF 1 measurement
Y es→ Plasma growth hormone measure-

ment

3. Acromegaly→ Plasma IGF 1 measurement
Y es→ Plasma growth hormone measure-

ment
Y es→ Magnetic resonance imaging of head

4. Acromegaly→ Plasma IGF 1 measurement
Y es→ Plasma growth hormone measure-

ment
Y es→ Magnetic resonance imaging of head

No→ Computed tomography of chest

and abdomen

These four paths are then transformed into the rules described in figure 5.5. For example,

path 3 assigns value Yes to the hypothesis acromegaly but also to the diagnostic tests

plasma IGF 1 measurement, and plasma growth hormone measurement, and ? to the

test magnetic resonance imaging of head. This means that in order to recommend the

magnetic resonance imaging of head, the previous tests must have been done and a

positive result obtained, and the hypothesis for acromegaly persist.
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5.4 Making the Evaluation Decision Tables

The last tables in the diagnostic process are the Evaluation Decision Tables. See sec-

tion 3.1.2.3 for more detail. This sort of tables are designed to decide whether a hy-

pothesis is confirmed (X value), still active (? value), or rejected (void value), after the

results of the diagnostic test.

The procedure to build this sort of tables from a clinical algorithm is similar to the

procedure explained in the previous section. See a diagram in figure 5.6.

Figure 5.6: Methodology to make Evaluation Decision Tables

First, we have to detect all the connectors going out of a diagnostic test in the clinical

algorithm. These connectors are labeled with their respective values. For each one of

these connectors all the possible paths from the start to them are extracted. The path is

concluded with the test acceptance or rejection following the last connector. The clinical

tests contained in the paths are mapped into SNOMED-CT terms. Each path represents

a rule in the EDT whose condition stub is composed of the diagnostic hypothesis and the

observed diagnostic tests, and the action stub contains the hypothesis. Each rule will

introduce as condition entries the values contained in the respective outgoing connectors

of the tests in the path. The action entry of the rule will contain X if the last connector

of the path drives to an acceptance of the hypothesis, a void value if it drives to a

rejection of the hypothesis, and ? if the connector points to a new test.

For acromegaly in figure 5.1 there are eight connectors emerging from a diagnostic test,

and there is only one possible way. Therefore, the following paths are identified:

63

UNIVERSITAT ROVIRA I VIRGILI 
USE OF DECISION TABLES TO MODEL ASSISTANCE KNOWLEDGE TO TRAIN MEDICAL RESIDENTS 
Francis Real Vázquez 



Use of Diagnostic Decision Tables in Secondary Causes of Hypertension

1. Acromegaly → Plasma IGF 1 measurement
No→ reject

2. Acromegaly→ Plasma IGF 1 measurement
Y es→ Plasma growth hormone measure-

ment

3. Acromegaly→ Plasma IGF 1 measurement
Y es→ Plasma growth hormone measure-

ment
No→ reject

4. Acromegaly→ Plasma IGF 1 measurement
Y es→ Plasma growth hormone measure-

ment
Y es→ Magnetic resonance imaging of head

5. Acromegaly→ Plasma IGF 1 measurement
Y es→ Plasma growth hormone measure-

ment
Y es→ Magnetic resonance imaging of head

Y es→ accept

6. Acromegaly→ Plasma IGF 1 measurement
Y es→ Plasma growth hormone measure-

ment
Y es→ Magnetic resonance imaging of head

No→ Computer tomography of chest

and abdomen

7. Acromegaly→ Plasma IGF 1 measurement
Y es→ Plasma growth hormone measure-

ment
Y es→ Magnetic resonance imaging of head

No→ Computer tomography of chest

and abdomen
Y es→ accept

8. Acromegaly→ Plasma IGF 1 measurement
Y es→ Plasma growth hormone measure-

ment
Y es→ Magnetic resonance imaging of head

No→ Computer tomography of chest

and abdomen
No→ reject

Each path is then transformed in a rule of the EDT in figure 5.7. For example, the

forth path about the connector with label ’yes’ exiting from the diagnostic test plasma

growth hormone measurement is transformed into the rule that fires when acromegaly is

suspected (Yes value), plasma IGF 1 measurement and plasma growth hormone mea-

surement have been done and positive results were obtained (Yes values), and a magnetic

resonance imagining of head has not been done or unknown result (? value). In this case,

acromegaly is still suspected (it is part of the diagnostic hypotheses) as it is indicated

by the ? value in the action entry. This is the forth rule in the EDT.

Figure 5.7: Acromegaly Evaluation Decision Table
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5.5 Conclusions

Differential diagnosis is a cognitive tasks of medical practice. In chapter 3 three com-

plementary grouping decision tables were designed to gather the knowledge required

along differential diagnosis. The way these computer structures have to be filled with

the evidence-based knowledge contained in clinical practice guidelines remained an open

issue that we addressed in this chapter with the introduction of a methodology that

figure 5.8 depicts. For a target disease that we consider during DDx, we search a clinical

practice guideline. Then the manual construction of a clinical algorithm by health care

experts. This algorithm summarizes the decision procedure about the order in which

diagnostic tests must be performed.

Figure 5.8: Methodology to implement DDx with decision tables

The signs and symptoms related to the identification of the disease are classified and

organized as rules of a unique Diagnostic Hypotheses Decision Table. Simultaneously,

the clinical algorithm is transformed into both a Test Selection Decision Table and a

Evaluation Decision Table per disease. The TSDT helps to decide which diagnostic tests

have to be performed at each particular moment, according to the clinical guideline. The

EDT allows the modification of the suspected diseases.

The main applications of these methodologies and decision tables are as clinical decision

support systems for differential diagnosis, or as training systems to improve differential

diagnosis skills and the adherence of their decisions to the indications contained in the

clinical practice guidelines. In chapter 7 we describe an application to the training

of residents in the Hospital Cĺınic de Barcelona with regard to secondary causes of

hypertension.
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Chapter 6

Use of Treatment and Prognosis

Decision Tables in Emergency

Shock

Chapter 5 showed how to get the knowledge of medical differential diagnosis from clini-

cal practice guidelines and clinical algorithms, and how to apply this knowledge to build

decision tables through secondary causes of hypertension. Now, this new chapter shows

in a similar way how to build treatment and prognosis decision tables. A new methodol-

ogy for knowledge acquisition addressed to capture treatment and prognosis knowledge

in decision tables. This methodology is applied to the clinical problem of treating and

prognosticating seven different types of emergency shocks.

6.1 Emergency Shock

Shock is a common condition in critical care, affecting about one third of patients in the

intensive care units (ICU). It is described as the clinical expression of circulatory failure

that results in inadequate cellular oxygen utilization [204].

Some of the most common shocks are cardiogenic shock, anaphylactoid shock, cardiac

tamponade, hemorrhagic shock, neurogenic shock, shock due to acute pulmonary em-

bolism, and septic shock (see descriptions in appendix B).

Clinical reaction to shocks in ICU must be fast and precise because of the vital conse-

quences on the patient and to prevent worsening organ dysfunction and failure. These

reactions entail the combined application of ventilatory support, fluid resuscitation, and

vasoactive agents [204].
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All these actions have a direct and sometimes immediate consequence in some internal

hemodynamic parameters. These parameters combine under the name of cardiac output,

and they are: volemia (or the amount of fluids), heart rate (or frequency of heart beats),

contractility (or heart strength), and vasoconstriction (or the weight of the vessels).

Since the most of these parameters are not directly observable by the physician who is

attending the patient, medical decisions must be taken in terms of some observable vital

signs such as: heart rate, central venous pressure, or arterial blood pressure.

The main objective of the treatment actions in the emergency shock is stabilize the

hemodynamic parameters. This clinical actions can be continuous or discrete depending

on the duration of they effects on the hemodynamic parameters. Continuous actions

have an effect while they are applied, but the effect disappears when the action is

disrupted. For example, drug infusions [205] such as dobutamine infusion are used when

there is a cardiac decompensation and they are given in order to maintain a predictable

pharmacodynamic action. When an infusion is started, the effect in the patient increases

initially quickly, but then more slowly until a maximum effect. If the infusion supply

is stopped, the effect decay in a short time. On the contrary, discrete actions have

persisting effects over time. From a medical point of view, in an emergency context (few

hours), we can assume that the effect of discrete actions persists along the whole patient

treatment at the ICU. For example, one of the actions required for anaphylactoid shock

is to take antihistamine. The antihistaminics differ in duration, but usually have an

effect of 12 hours or more. This covers all the shock emergency treatment.

6.2 Making Treatment Decision Tables

Treatment Decision Tables (TDT) were introduced in section 4.1. These were computer

structures able to contain the description of treatment actions as condition-action rules

where the condition part represents both the current state of the patient and the current

treatment (if there is any), and the action part describes the new actions to start. In

order to obtain the knowledge necessary to fill TDTs, medical experts have to analyze

the clinical practice guidelines of the disease whose treatment knowledge we want to

include in the table. Usually, treatment sections in clinical practice guidelines are goal-

oriented. This means that they point out a set of target parameters and variables, and

then describe one or more strategies to achieve these targets.

To build a TDT we propose the new methodology that figure 6.1 summarizes.

In this methodology, we start selecting a CPG that describes the treatment of the target

disease. Then, we extract the relevant signs an actions involved in the treatment. These
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Figure 6.1: Methodology to make Treatment Decision Tables

are indicated in the corresponding treatment section of the guideline. These terms are

mapped into SNOMED CT concepts. Actions can be classified as starting interventions

or continued care. Starting interventions describe treatments that are conditioned to

the patient state, while continued care describe actions resulting from the evolution of

the patient when she is already receiving a concrete treatment, and a change in this

treatment is required.

The text in the clinical practice guideline is interpreted by a medical expert, who sum-

marizes the treatment objectives and the recommendations to achieve these objectives.

Table 6.1 shows the summary of objectives and recommendations of the anaphylactoid

shock, extracted for the guideline [206].

If patient not stabilized (arterial blood pressure <= 70)

first, attempt it with 1-2 doses of adrenaline

if (BP<=70), pharmacological treatment

epinephrine infusion

norepinephrine infusion

when (BP>70)

antihistamine

hydrocortisone (opt)

Table 6.1: Summary of Anaphylactoid Shock Treatment
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These objectives and recommendations are used as a guide to build the rules. For

example, if the arterial blood pressure is under 70 provide adrenaline bolus to the patient,

one or two doses. For this recommendation we obtain to rules:

1. Anaphylactoid Shock + Epinephrine bolus = NO → Epinephrine bolus

2. Anaphylactoid Shock + BP <= 70 + Epinephrine bolus = 1 dose → Epinephrine

bolus

These rules could be modified with the exceptions in the guidelines or the general knowl-

edge of the experts. For example, although the general rule is to provide two bolus of

epinephrine, if the patient is nearly stabilized after the first bolus, the second bolus can

be replaced by other less aggressive treatment action.

In the case of the treatment of shock in a UCI, medical experts from the Hospital Cĺınic

de Barcelona identified seven signs and symptoms that the CPGs described as relevant

for the management of shock [206–214]: heart rate, central venous pressure, arterial

blood pressure, systolic blood pressure (SBP), diastolic blood pressure (DBP), finding

of hematocrit, and superior vena cava oxygen saturation.

They also identified eighteen different treatment actions: antibiotic therapy, antihis-

tamine, atropine, diuretic, epinephrine bolus, thrombolytic, hydrocortisone, insertion of

intra-aortic balloon counterpulsation, pericardiocentesis, reperfusion (KT), resuscitation

using intravenous fluid, transfusion of plasma, transfusion of red blood cells, vasodila-

tors, dobutamine infusion, dopamine infusion, epinephrine infusion, and norepinephrine

infusion.

Figure 6.2 shows an example of TDT obtained after the application of the above de-

scribed methodology to the clinical practice guideline about the anaphylactoid shock [206].

The terms in the table are expressed under the SNOMED-CT codification.

The condition stub of this table has the target disease (i.e., anaphylactoid shock), the

signs and symptoms marked in the CPG as objectives of this kind of shock (i.e., arterial

blood pressure and central venous pressure), and some of the treatment actions to be

considered in order to make continuous care decisions. In the action stub we can observe

all the treatment actions identified in the CPGs. These can be discrete actions (i.e.,

antihistamine, epinephrine bolus, hydrocortisone, and resuscitation using intravenous

fluids), continued actions (i.e., epinephrine infusion and norepinephrine infusion), and

discharging actions (i.e., final emergency treatment).

This table captures the following treatment: If a patient with an anaphylactic shock

arrives to the ICU, first we have to administer a bolus of epinephrine, and complement
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Figure 6.2: Anaphylactoid Treatment Shock Table

it with fluids if it is necessary (rule 1). After this first bolus, if the patient presents

arterial blood pressure (ABP) under 70 bpm, then a second bolus of epinephrine is

recommended (rule 2 and 4) or, alternatively, use fluids if the ABP is near 70 bpm and

the central venous pressure (CVP) is not high (rule 3). Once a second bolus is taken, it

is dangerous to supply new boluses. If the ABP continues under 70 bpm, it is possible
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to provide fluids if the ABP is near 70 bpm and the CVP is not high (rule 5), or to use

infusions of epinephrine (rules 6 to 9) or norepinephrine (rules 10 to 13). The infusions

start with low dosage that increases until the patient is stabilized. When the patient

is stabilized with ABP over 70 bpm, it is necessary to give antihistamine, and possibly

hydrocortisone, before the patient is discharged (rules 14 to 17).

The number of possible ways to combine treatment actions are higher than the number

of combinations of diagnostic test in chapter 5. This means that more rules, bigger

tables, and less legibility are expected for TDTs than we had for TSDTs or EDTs.

For example, the treatment of APE RV Cardiogenic shock (see appendix B) it is not

more complex than the treatment of the Anaphylactoid shock in number of steps, but the

APE RV Cardiogenic shock has more treatment alternatives. This makes decision table

of APE RV Cardiogenic shock to contains 85 rules, in front of 17 of the anaphylactic

shock. The diagnostic clinical algorithms, same as the anaphylactoid shock treatment,

are direct and have few alternatives. The number of rules of APE RV Cardiogenic shock

could be higher without the mechanisms to reduce the number of combinations used in

Treatment Tables, i.e. the use in TDTs of more complex types of value generalizations

(e.g. ranges or dosage values) in the condition entries that in diagnostic tables.

6.3 Making Prognosis Decision Tables

Knowledge about prognosis is very difficult to obtain. Clinical practice guidelines do

not provide this kind of knowledge, but it is possible to calculate it from clinical records

about representative patients, or obtain it from medical experts.

In spite that we could not obtain data about clinical records from the health care centers

which we collaborated with, namely the Hospital Cĺınic de Barcelona and SAGESSA,

we could count with the appreciated collaboration of senior medical experts from one of

these centers.

Our proposed methodology to capture prognostic knowledge to be represented in Prog-

nostic Decision Tables (PDT) is based on the use of clinical surveys. Clinical surveys

or questionnaires are frequent in medical practice as we stated in section 2.1.4. These

questionnaires are addressed to medical experts whose medical knowledge about prog-

nosis we want to elicit. The basic unit of these surveys is the question, and the questions

that we defined for prognosis are of the form:

If a patient with a disease d has a sign s with value v0s and a clinical action

a is performed, what is the expected new value v1s for that sign?
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For example, in the UCI consideration of shocks, one of the questions in the questionnaire

was: If a patient with anaphylactic shock has a systolic blood pressure of 60 mm Hg

and she takes a dose of antihistamine, which is the expected new value for systolic blood

pressure?

For each question in the survey we could capture units of prognostic information of the

form (d, s, v0s , a, v
1
s) that could be stored in Prognostic Decision Tables after a processing.

Figure 6.3 shows a description of the phases to make the surveys and to use their results

to build prognosis decision tables.

Figure 6.3: Methodology to make Prognosis Decision Tables

First, we select a target disease d from the set D of all the diseases studied. We obtain

the set S composed by all the relevant signs and symptoms of at least one of the diseases

of D. We also obtain the set A composed by all the therapeutic actions recommended

by the CPGs for one or more diseases in D. For each sign s∈S, we select different initial

values v0
s . These sign values can be classified into ranges (i.e. low, normal and high).

For each range, a random number of values between 3 and 6 are selected. These values

are taken at random from the ones possible for the respective range For each initial

value, we construct a question in the survey in the form previously described.

For example, for the disease Anaphilactoid shock (d) with the treatment action anti-

histamine (a) , we want to assess the systolic blood pressure (s) . The range values for

systolic blood pressure are: low (from 40 mmHg to 85 mmHg), normal (from 85 mmHg

to 140 mmHg) and high (from 140 mmHg to 280 mmHg). Values under 40 mmHg or

over 280 mmHg are dangerous. We select different initial values (v0
s ) for systolic blood

pressure: {45, 55, 70, 80, 90, 100, 115, 130, 145, 160, 190, 220, 260}mmHg , where values

{45, 55, 70, 80} mmHg correspond to the low range, values {90, 100, 115, 130} mmHg
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correspond to the normal range, and values {145, 160, 190, 220, 260} mmHg. For the

first initial value 45 mmHg we obtain the question: (anaphilactoid shock, antihistamine,

systolic blood pressure, 45 mmHg) that corresponds to the range low of systolic blood

pressure.

The methodology continues with a survey that is conducted for a number of represen-

tative medical experts that are senior in the treatment and the follow up of the target

disease. With the results, we group the questions about the same sign s, clinical action

a, and initial value v0
s in the same sign range : (d, s, v0

s , a, v1s). For each group of range

questions, we calculate the mean value of the differences (v1
s − v0

s ); i.e., the increment

or the decrease that the sign has when the action is applied. With this information, we

obtain the rules in the form:

disease + action + { sign = range } → { average of (v1s − v0s) in range}

For example, if the answers of a survey are:

(Anaphilactoid, antihistamine, SBP, 45 mmHg) -> 40 mmHg

(Anaphilactoid, antihistamine, SBP, 55 mmHg) -> 48 mmHg

(Anaphilactoid, antihistamine, SBP, 70 mmHg) -> 62 mmHg

(Anaphilactoid, antihistamine, SBP, 80 mmHg) -> 72 mmHg

then we obtain the rule:

Anaphilactoid shock + Antihistamine + SBP = low → -7.0

In out study for the prognosis of evolution of patients with shock, we provided more than

one thousand questions to emergency experts to cover all the possibilities of combina-

tions of diseases, signs, and actions. Figure 6.4 shows an extract of the Anaphylactoid

prognosis decision table built with this methodology that originally counts with 242

rules. Every PDT is focused in one of the seven different shocks studied, and contains

between 200 and 300 prognostic rules.

In this table we can see how the actions have a different effect depending on the initial

range of values. For example, antihistamine (in anaphylactic shock) provokes a bigger

change in high values than in low values of systolic blood pressure, as rules 1 to 3 show.

On the contrary, the same action has a larger effect in heart rate if the patient has

medium values, as rules 7 to 9 indicate.
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Figure 6.4: Extract of Anaphylactoid Prognosis Decision Table

6.4 Simulating Emergency Shock Patients

PDTs can also be used for patient simulation. However, this simulation requires a

patient model (PM) in order to implement realistic simulations, as it was explained in

section 4.3. Broadly speaking, this PM defines the initial state of the patient at the

admission time, and her global parameters such as age, gender, weight and height, and
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primary and secondary diseases. But it also describes the standard ranges of signs for

that patient, and her sensitivities to clinical actions. PMs allow us to have different sorts

of patients that can react differently in front of the same clinical actions contained in the

PDTs. This causes prognosis to depend not only on the current condition of the patient

and the clinical actions performed, but also on the patient herself, as it is observed in

real clinical practice.

Defining a new PM consists on filling all the fields of the PM with the information about

the case we want to simulate (see 4.3). The result is a virtual patient ready to be subject

to the treatment recommendations suggested by PDTs.

In our test domain of seven different sorts of shocks, we developed a case-base with 51

PMs, representing patients with different shocks. These PMs were based on real patients

observed at the ICU of the Hospital Cĺınic de Barcelona. The Emergency Department

of this hospital represented the PM clinical description, history, initial values for signs

and symptoms, personalized normality ranges of signs, and possible drug resistances or

sensitivities.

Table 6.2 shows an example of a simulated patient with AMI LV Cardiogenic Shock.

This patient represents a 67-year woman with obesity as a risk factor.

In section VITAL SIGN RANGES, her parameters of normality of the shock vital signs are

defined normal, with exception of systolic blood pressure which is slightly high due to

obesity (i.e., 50-95-160-290 mmHg values in comparison to normal SBP values 40-85-

140-280 mmHg).

In section ACTION SENSITIVITIES, this patient is declared to have a high resistance to

thrombolytic drugs, since they only have a 10% effect in this patient, when their normal

effect should be 100%.

Section INITIAL SIGNS, describes the patient condition at the time she was admitted.

We observe that all her initial sign values were normal, except systolic blood pressure,

that was 76.0 mmHg, low.

6.5 Simulating Long-Term Treatment of Emergency Shock

The combined action of PDTs and PMs allows the simulation of a case personalized

for a concrete patient. This simulation can be short-term (i.e., punctual in time), or

long-term. In this work, short-term treatment simulation refers to the application of

the treatment knowledge contained in the PDT to a patient who comes modeled by the

PM. The result is a recommended personalized treatment described by a set of clinical
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Patient ID : 33

AGE: 67 WEIGHT: 82 Kg

SEX: female HEIGHT: 1.66 m

PRIMARY DIAGNOSIS: AMI LV Cardiogenic Shock

SECONDARY DIAGNOSES: Obesity

DESCRIPTION:

After informing the patient that her husband has a serious

disease with fateful prognosis, the patient begins oppressive

central chest pain radiating to the back and both arms.

She presents pallor and profuse sweating.

She refers feeling of dizziness.

Starts oxygen therapy with nasal specs at 2 L / min.

VITAL SIGN RANGES: MIN LOW HIGH MAX UNITS

Diastolic blood pressure 20.0 50.0 90.0 130.0 mmHg

Systolic blood pressure 50.0 95.0 160.0 290.0 mmHg

Arterial blood pressure 26.6 61.6 106.7 180.0 mmHg

Heart rate 25.0 60.0 100.0 153.0 beats/min

Central venous pressure 0.0 3.0 8.0 20.0 cmH2O

Sup. vena cava ox. satur. 50.0 65.0 85.0 88.0 %

Finding of hematocrit 15.0 35.0 45.0 60.0 %

ACTION SENSITIVITIES:

Thrombolytic ==> 10 %

INITIAL SIGNS:

<Central venous pressure = 4.0>

<Systolic blood pressure = 76.0>

<Diastolic blood pressure = 50.0>

<Finding of hematocrit = 36.0>

<Heart rate = 96.0>

<Superior vena cava oxygen saturation = 62.0>

Table 6.2: Example of patient for AMI LV Cariogenic Shock

actions, and an eventual forecast of the evolution of the patient, once these clinical

actions are applied.

On the other hand, long-term treatment simulation in this thesis alludes to the auto-

mated combined use of PDTs and PMs for simulating treatment sequences that can

last for several treatment steps or even the whole virtual patient treatment. In order to

achieve automated long-term simulations, we propose an iteration system implementing

the long-term treatment decision system designed in section 4.4.

Both sort of simulations are represented by figure 6.5.
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Figure 6.5: Iterations with PDT and PM

There, the current state of the patient (i.e., Sti) is treated with the set of clinical

actions Ti+1 provided by the TDT. The effects of these actions in a concrete patient

are then calculated according to the PDT and modified with the patient sensitivities

and normality ranges contained in the PM. In a short-term treatment simulation the

patient will evolve to state Sti+1∪Pi+1. Contrarily, in a long-term treatment simulation

the initial state of the patient is taken from the section INITIAL SIGNS of the PM, and

introduced as St0. The patient is then treated with the set of clinical actions T1 provided

by the PDT for this patient. This set may contain both, continuous actions and discrete

actions. Recall, that continuous actions are those which have an effect in the immediate

next state of the patient, and discrete actions those whose effect persists for the whole

treatment.

The application of both continuous and discrete actions in Ti+1 to the patient transforms

(some of) her vital signs obtaining a new patient state Pi+1 which can be observed by

the users of the simulator. This process is the result of applying PDT and PM to the

pair (Sti, Ti+1). However, another internal state Sti+1 of the patient is calculated by

the simulator. This new state describes the vital signs of the patient from a global

perspective required by the simulator to continue with a new iteration of the simulation

process, after a time Qi+1. This internal state is the result of applying PDT and PM to

the pair (Sti , Di+1), with Dk ={Ak
j ∈ Tk : Ak

j is a discrete action}. Sti+1 is hidden to

the external users of the simulator.

After this treatment step and once a Qi+1 time has passed, the new state Sti+1 can be

considered the current state of the patient and the process can be repeated again. In

order to calculate Qi+1 we take the largest response time of the clinical actions in Ti+1.
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In our simulation of shocks, continuous clinical actions are dopamine infusion, dobu-

tamine infusion, norepinephrine infusion, and epinephrine infusion. The rest of ac-

tions (antihistamine, hydrocortisone, epinephrine bolus, atropine, diuretic, fluid infusion,

plasma transfusion, red blood cell packed, vasodilators, thrombolytic therapy, reperfu-

sion (KT), pericardiocentesis, and insertion of intra-aortic balloon counterpulsation) are

discrete, being the last four procedures.

6.6 Conclusions

Treatment is a complex decision task that involves plenty of considerations. Clinical

practice guidelines provide different possibilities where, usually, the best one depends

on the patient and her evolution.

In chapter 4, we presented the Treatment Decision Tables (TDT) as a way to describe

the treatment options and the PDT as a possibility to explain the patients evolution.

In this chapter we summarized step by step how to fill the tables using the emergency

shock as a reference.

To obtain TDTs, medical experts construct global algorithms to represent the knowl-

edge from the CPGs. By means of a new provided methodology, these algorithms are

translated in general rules that are the base to create the TDT.

The PDT are constructed with information provided by surveys. For each set of diseases,

a questionnaire was designed and provided to medical experts. The objective of this

survey is to abstract the medical expertise to foresee the patient changes when different

therapeutic actions are applied. This chapter explains how to structure and conduct the

surveys and how to use the results to do the decision tables.

To personalize the knowledge of the PDT in the shock, a case base of 51 patients was

created. This case base contains information of types of patient in the PM format.

Finally, we described our implemented process to simulate short- and long-time treat-

ments by combining TDTs, PDTs and PMs.
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Chapter 7

Using Decision Tables to Train

Residents

In chapter 3 we introduced several new structures of decision tables to host the knowledge

required to support differential diagnosis. Later on, in chapter 5 we showed how to

implement these tables with the knowledge extracted from CPGs and clinical algorithms

and how to apply a new knowledge acquisition methodology to obtain the rules that

will be incorporated to the diagnostic decision tables in order to allow the diagnosis of

secondary causes of hypertension.

Continuing with this work, the current chapter introduces an experiment in which diag-

nostic decision tables were tested as part of a learning application tool that was used to

train residents at the Hospital Cĺınic de Barcelona. To do this, an on-line incremental

knowledge-based training tool was created using the decision tables obtained in chap-

ter 5. The training tool was oriented to medical residents with different specialties and

experience. The objective of the application was to improve the adherence of health

care professionals to official CPGs in DDx processes.

This chapter details the design and the construction of this tool, the development of the

experiment, and the analysis of the results.

7.1 The DDx Training Tool

In section 2.2.5, the general architecture of a training tool was presented. Now, following

the last model in figure 2.5(b), we design an Internet tool for the training of hospital

residents in the DDx process.
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Figure 7.1: Diagnostic Computer Tools

The objective of the application is to train clinicians to manage, assimilate, and correctly

apply the knowledge contained in the guidelines of the most frequent causes of AH.

To this end, we designed a set of computer tools that composed our training system.

These computer tools are: a patient creator module, a patient analysis module, an on-

line questionnaire module, and a result analysis module. Figure 7.1 shows a schematic

representation of the architecture of the training system showing these computer tools

and the sort of knowledge that they generate.

The Patient Creator Module (PCM) develops a case base containing clinical cases rep-

resenting patients with none, one or more secondary causes of hypertension. The cases

include the patient diseases, her sign and symptoms, and the patient response to all the

possible diagnosis tests, in accordance to the sort of patient and health condition. This

information about cases can be subject to controlled noise so that realistic situations

could be simulated.

The Patient Analysis Module (PAM) simulates the process detailed in section 3.2. This

module analyzes each patient case in the case base with the diagnostic decision tables

for secondary causes of hypertension and it obtains the initial diagnostic hypotheses,

the steps suggested by the clinical guidelines, and the final diagnosis.

The Online Questionnaire Module (OQM) manages the interaction with the medical

residents that will be trained with the system. It proposes cases from the patient de-

scription case base and obtains the clinical responses from the residents. When a user

of the tool diagnoses a case, the OQM provides a feedback with the diagnostic process

followed as compared to the diagnostic process expected, in order to permit adherence

analysis to standards.

The Result Analysis Module (RAM) analyzes the answers of the user with the help of

the diagnostic decision tables and evaluates the responses. This evaluation is the basis

to analyze the quality of the training system.
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These modules are explained with more detail in next subsections.

7.1.1 The Patient Creator Module

The first step in the training of residents is to create a case base with simulated patients.

In this work a base with 30 different patients was created.

The patients are obtained in a semi-random way. First, the target diseases to be part of

the differential diagnosis process are introduced manually. This allows us to control the

types of patient that will be created and to balance the amount of patients according to

these diseases. With the PCM it is possible to define patients with none, one, or more

than one diseases among the ones defined as secondary causes of hypertension. Cases

with hypertension but with none secondary cause of hypertension are supposed to suffer

from essential hypertension. Patients with one secondary cause of hypertension have to

be diagnosed of this disease that is causing an hypertensive status in a patient. Essential

hypertension should not be diagnosed. Multimorbid patients can have several secondary

causes of hypertension simultaneously.

Although the secondary causes of hypertension do not have a high prevalence and the

coexistence of more that one simultaneous secondary cause is an uncommon situation,

there are clinical evidences of cases with more that one secondary causes in the same pa-

tient, for example adrenal Cushing’s syndrome and glomerulonephritis [215], pheochro-

mocytoma and hyperparathyroidism [216, 217], or acromegaly, hyperparothiroidism and

pheocromocitoma [218]. Moreover, sometimes the presence of one secondary cause fa-

vors the presence of other secondary cause. For example, the sleep apnea syndrome is

considered a common disorder associated to patients who suffer from acromegaly [219].

In response to these situations, the learning tool included some multimorbid patients.

Table 7.1 shows the distribution of diseases in the 30 patients of the AH case base. This

table also shows the number of co-morbid cases.

Once the set of diseases of a case are defined, the process of identifying her signs and

symptoms starts. This process associates each patient a set of signs and symptoms

according to the patient’s diseases.

To do this, the PCM applies a three-step process that begins with a selection of all the

signs related to the patient diseases. This information is contained in the Diagnostic

Hypothesis Decision Table (DHDT). In a second step the system deletes some of these

signs at random, leaving at least one for each disease so that all the existing diseases can

be suspected. This information is contained in the condition stub of the DHDT with

yes or Y#n in the corresponding condition entry of the rules about the disease. The
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Diagnosis No of Cases

Acromegaly 4

Adrenal Cushing’s syndrome 5

Coarctation of aorta 4

Essential AH 5

Glomerulonephritis 4

Hyperparathyroidism 4

Pheochromocytoma 5

Renovascular hypertension 4

Sleep apnea 4

Co-Morbidities

none (essential) 5

1 18

2 5

3 2

Table 7.1: Distribution of diseases in the patient description case base.

deleted signs represent missing signs (i.e., signs that are related to the disease but that

may not be developed in a concrete patient), or hidden signs (i.e., signs developed by

the patient but not detected at that moment).

The final step is to randomly add none, one, or more new signs and symptoms that are

not related to the diseases of the case. These added signs represent sings related to other

conditions different to the patient diseases whose purpose is to add complexity to the

diagnostic process. They are called noise signs. Noise signs can be found in the DHDT

condition stub of the rules that are not describing the diseases of the case.

Table 7.2 shows the distribution of the signs in the patient description case base after

apply the three-step process previously described to the 30 selected patients of secondary

causes of hypertension.

When the signs and symptoms of all the cases have been determined, the PCM calculates

the answer that each diagnostic test should provide to each case. This is obtained

from the Evaluation Decision Table (EDT). All the relevant tests related to the patient

diseases are selected and used to identify the value necessary to accept that disease. All

the other tests receive values to discard the rest of diseases. The rationale to anticipate

the response of each case to all the tests is to homogenize the answers of the training

tool to the trainees. In other words, the cases act in a same way for all the users.

Diagnostic tests are not infallible. Sometimes they fail. In order to simulate this fact,

all tests are given a confidence level among the values Very Low, Low, Average, High, or

Very High. These values describe the possibility of the tests not to fail and produce a

correct answer, the first time they are performed on a patient. In our studies we consider
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Signs & Symptoms Cases Signs & Symptoms Cases

Abdominal pain 6 Heart murmur 3

Acquired skeletal deformity 8 Hirsutism 4

Acute necrosis 5 Hypertensive disorder 30

Age more than 50 years 1 Insomnia 2

Amenorrhea 4 Muscle weakness 9

Anxiety 6 Nausea and vomiting 9

Apnea 3 Oliguria 5

Bone pain 6 Polyuria 3

Constipation 4 Progress satisfactory 1

Edema 6 Skin striae 4

Epistaxis 6 Snoring 5

Excessive sleepiness 6 Tachycardia 5

Fever 2 Unequal pulse 5

Headache 4

Table 7.2: Distribution of signs in the patient description case base.

that diagnostic tests cannot fail more than once. For this reason, if a test is repeated,

the result must be correct.

Table 7.3 shows the confidence level of each diagnosis test involved in the differential

diagnosis of secondary causes of hypertension, according to the bibliography looked up

by medical experts from the Hospital Cĺınic de Barcelona.

Figure 7.2 summarizes the PCM stages to construct a case base with simulated patients

with diseases, signs and symptoms and their response to diagnosis tests.

Figure 7.2: Summary of steps of the Patient Creator Module
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Test Confidence

Blood calcium level Very High

Phosphorus measurement Very High

Plasma growth hormone measurement Average

Urine blood test Low

Plasma IGF 1 measurement Average

Urine protein test Low

Plasma parathyroid hormone level Average

Kidney biopsy Very High

Measurement of hydrocortisone in saliva Very Low

Plasma cortisol measurement Average

Doppler studies Average

Metanephrines Low

Polysomnography High

Clinical immunological test Average

Magnetic resonance imaging High

Magnetic resonance imaging of head High

Kidney imaging, SPECT technique High

Computed tomography of chest and abdomen High

Dexamethasone Average

Immunological treatment Very Low

Table 7.3: Confidence level of diagnostic tests provided by medical experts

Table 7.4 shows an example of patient obtained after the application of the PCM. First,

we choose the patient to be monomorbid with disease hyperparathyroidism.

Diseases:

Hyperparathyroidism

Signs:

Hypertensive disorder

Excessive sleepiness

Polyuria

Snoring

Procedures: Test-1 Test-n

Plasma parathyroid hormone level True True

Blood calcium level True True

Polysomnography False False

Metanephrines True False

...

Table 7.4: Example of patient obtained after the application of PCM

The system obtains the signs for hyperparathyroidism. The only mandatory sign in ta-

ble 5.3 is hypertensive disorder, and the alternative signs are abdominal pain, muscle
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weakness, nausea and vomiting, polyuria, and excessive sleepiness. Among them ab-

dominal pain, muscle weakness and nausea and vomiting are considered hidden signs

by the PCM, and removed. The PCM also selects snoring as a noise sign, and it is

included in the patient description. Consequently, our case will contain one mandatory

sign (hypertensive disorder), two out of the five alternative signs (excessive sleepiness

and polyuria), and one noise sign (snoring).

The tests related to hyperparathyroidism (see appendix A) are plasma parathyroid hor-

mone level and blood calcium level. Both need to be true in order to confirm the disease.

The rest of tests will obtain a negative result for hyperparathyroidism. As table 7.3

shows, plasma parathyroid hormone level has a confidence level Average and blood cal-

cium level Very High which compute correct results the first time they are applied (i.e.,

True value in column Test-1) and the subsequent times (Test-n). Metanephrines how-

ever should provide a negative value, but the PCM determines that the first time this

test is ordered for this patient a positive results will be obtained.

7.1.2 The Patient Analysis Module

The objective of the PAM is to simulate a gold standard physician that works as the

clinical guidelines suggest. This tool analyzes each case in the patient description case

base with the help of the diagnostic decision tables.

For each case, PAM selects the suspected diseases using the DHDT obtained in sec-

tion 5.2. The result is a set of diagnostic hypotheses for the case. For example, the

case in table 7.4 will produce the hypotheses hyperparathyroidism (due to signs exces-

sive sleepiness and polyuria), and sleep apnea (due to signs excessive sleepiness and

snoring).

With the set of hypotheses, the tool applies the methodology explained in section 3.2,

using the tables obtained for each disease in chapter 5, to combine tests and evaluations

until a final diagnosis is reached.

In the previous example, the TSDT of hyperparathyroidism determines that the test

recommended is the blood calcium level, and the test recommended for sleep apnea is

the polysomnography.

In the example, the results obtained the first time that the tests are performed on the

patient are <blood calcium level , TRUE> and <polysomnography , FALSE>. These

results are a new knowledge that can be added to the case description and the system

can use this knowledge in future iterations.
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On one hand, the EDT of hyperparathyroidism determines that the system has to main-

tain the hypothesis, and the TSDT suggests a new test: plasma parathyroid hormone

level. On the other hand, the EDT of sleep apnea rejects the hypothesis and sleep apnea

is considered never more.

In the next iteration, PAM generates new knowledge as a result of the test <Plasma

parathyroid hormone level , TRUE>. With this new information, the EDT of hyper-

parathyroidism accepts the hypothesis.

As all the hypotheses have been accepted or rejected, the system can conclude a final

diagnosis: the case is considered to have hyperparathyroidism.

Table 7.5 summarizes the above process of application of PAM to the patient example

in table 7.4.

Initial suspects:

Hyperparathyroidism

Sleep apnea

Iterations:

Iteration 1:

Suspects:

Hyperparathyroidism

Sleep apnea

Tests:

Blood calcium level

Polysomnography

Iteration 2:

New signs:

Blood calcium level - TRUE

Polysomnography - FALSE

Suspects:

Hyperparathyroidism

Tests:

Plasma parathyroid hormone level

Iteration 3:

New signs:

Plasma parathyroid hormone level - TRUE

Suspects:

Hyperparathyroidism

Final diagnosis:

Hyperparathyroidism

Table 7.5: Example of patient diagnosis after the application of PAM

For each case in the case base, this PAM process is followed. All the information

generated along the process is used as feedback to be shown to the users of the training

system.
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7.1.3 The Online Questionnaire Module

The objective of the OQM is to allow the interaction of the trainees with the training

system through the Internet. This interaction is possible because OQM works with

an Internet browser interface that allows the users to have full-time remote access to

the training system. It provides each physician with a different login and password for

individual secure access.

Figure 7.3 shows the user interface to interact with the training system.

Figure 7.3: Hypertension Test Interface

The left column shows the signs and symptoms of the case, and also the additional

information obtained by the tests in each iteration. In this figure, all the possible signs

considered in the experiment are deployed. The central column contains a form to

suggest possible diseases and the right column contains a form to indicate the possible

diagnostic tests.

This module is designed to repeat a learning loop for each case in the training process.

During the learning loop (see algorithm in figure 7.4) the user is informed of the signs

and symptoms of the case.

After the observation of the signs and symptoms of the case, the trainee is allowed either

to provide a final diagnosis or a hypothesis for the causes of AH (decision D1). Hypothe-

ses need to be confirmed with additional diagnostic tests that the user is asked to order

(decision D2). The system recovers the results of the tests from the available information

about the case in the patient description case base, and shows this information to the

user, before a new learning loop is started.
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Figure 7.4: Training Algorithm

At the end of the process, either if a final diagnosis is indicated or the case is dismissed,

the system shows the whole differential diagnosis process followed by the user, confronted

to the differential diagnosis process suggested by the decision tables obtained in the

previous module.

7.1.4 The Result Analysis Module

The results obtained after the use of the OQM can be deeply analyzed with the help

of the result analysis module (RAM). This module has two main objectives. On the

one hand, it assesses the learning progress of the students and, on the other hand, it

evaluates the performance of the system.

The differential diagnostic abilities that the RAM checks for the trainees are:

• The initial hypotheses, or the capacity of suspecting the correct diseases during

the first encounter with the patient. Only the symptoms at the patient’s arrival

were known, before any test could be requested.

• The final diagnosis, or the capacity to reach a correct diagnosis after the DDx

process. The commitment is not to affect the capability of the health care pro-

fessionals to reach a correct diagnosis but to reeducate them to follow the DDx

procedures contained in the CPGs.

• The adherence to the diagnostic suspicions in the CPGs, or the capacity of sus-

pecting the diseases for which the CPGs had some evidence, along the DDx process

(decision D1 in the algorithm in the training algorithm). Upon the observation

of the available findings for the patient, the physician is expected to suspect the

diseases whose CPGs contain enough evidence supporting these findings.

• The adherence to tests requirements in the CPGs, or the physicians’ capacity to

request, at the right time, the diagnostic tests that the CPGs recommend (decision

D2 in the algorithm in the training algorithm).
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The initial hypotheses and the final diagnosis can be evaluated by direct comparison of

the trainee results with the patient description database. The diagnostic adherence and

the test adherence are assessed with the evaluation of each case, step by step, with the

decision tables.

Five different studies were decided: a global study with all the physicians and all the

patients, separate studies according to the profile of the trained physician (depending on

their experience and depending on whether they are GPs or specialists), and according

to the complexity of the case (depending either on the number of morbidities, or on the

number of signs and symptoms).

7.2 The Experiment

To evaluate the system, an experiment was carried out with the medical residents in the

Hospital Cĺınic de Barcelona. For the study we counted with twenty-three physicians.

The profile of the residents was diverse in terms of speciality (specialists versus general

practitioners), and the number of years of residency. Table 7.6 shows the characteristics

of the residents in the experiment.

Specialty Residency year Quantity

generic 1 2
generic 2 4
generic 3 1
generic 4 2
generic junior associate 1
specialized 1 9
specialized 2 3
specialized 3 1

Table 7.6: Characteristics of the residents

The 30 cases in the patient description case base were used as baseline for the physicians.

These cases were shuffled and presented in a different order to the different residents

to avoid case discussions between the users of the training system. For each resident,

ten additional cases were taken at random from the patient description database with

the purpose of evaluating the achievements of the learning system when the users were

asked to diagnose repeated different cases.

The cases were exposed one by one to the residents by means of a web server. For three

weeks the web page remained open so that the physicians could work with the cases. The

system stored the information after each case was closed, so the residents could interrupt

their training at any time and continue with the following training cases whenever they
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wanted, later. If a case was left unsolved at the end of a work session, the DDx decisions

made for that case were lost and the case was the first one to diagnose from scratch, in

the following session. Physicians were able to look up the CPGs [191, 195–202] at any

time (direct links to the CPGs were provided in the web page).

After three weeks, the web access to the system was blocked. The stored information was

used to compare the training of the residents in terms of improvement and stabilization.

For the analysis of training improvement we compared the mean user’s adherence to

CPGs in the first 5 cases of the training (cases 1 to 5), with the user’s adherence to CPGs

in the last 5 training cases (cases 26 to 30). For the analisis of training stabilization we

compared the mean adherence to CPGs in the last 5 training cases of the training (cases

26 to 30), with the user’s adherence to CPGs in the repeated additional 10 cases (cases

31 to 40).

Figure 7.5 details the sequence of cases in the experiment.

Figure 7.5: Sequencying of the DDx pre-assessment, training, and testing stages

7.3 Results

After the experiment, the abilities as described in section 7.1.4 were analyzed. In all the

analyses we calculated the accuracy, sensitivity, specificity, and positive and negative

predictive values of residents’ decisions, and performed t-Student’s t-tests to obtain the

p-values in table 7.7

In the next subsections we present the results obtained in terms of the average im-

provement, after training, and the average stabilization of the adherence to the CPGs

recommendations. Results are presented globally for all the residents and cases together,

but also relative to the resident’s experience and specialty, and the patient’s complexity.
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Variable
Cases
1-5

Cases
26-30

Cases
31-40

Improv.
P-Value

Stabil.
P-Value

Initial Hypothesis
Accuracy 0.64 0.71 0.72 0.026 0.98
Sensitivity 0.43 0.57 0.56 0.001 0.64
Specificity 0.83 0.82 0.86 0.795 0.42
Positive Predictive Value 0.65 0.67 0.72 0.544 0.43
Negative Predictive Value 0.67 0.77 0.74 0.009 0.28

Final Diagnosis
Accuracy 0.90 0.92 0.90 0.90 0.36
Sensitivity 0.58 0.60 0.62 0.87 0.85
Specificity 0.95 0.96 0.94 0.49 0.38
Positive Predictive Value 0.67 0.68 0.66 0.94 0.71
Negative Predictive Value 0.94 0.95 0.95 0.96 0.48

Mean Adherence (thypothesis selection - decision D1)
Accuracy 0.90 0.93 0.90 0.01 0.008
Sensitivity 0.40 0.57 0.51 0.58 0.77
Specificity 0.91 0.93 0.91 0.02 0.04
Positive Predictive Value 0.40 0.56 0.48 0.65 0.68
Negative Predictive Value 0.98 0.99 0.98 0.003 0.004

Mean Adherence (test selection - decision D2)
Accuracy 0.89 0.94 0.93 0.03 0.14
Sensitivity 0.69 0.79 0.79 0.03 0.57
Specificity 0.90 0.95 0.94 0.04 0.22
Positive Predictive Value 0.53 0.71 0.67 0.01 0.22
Negative Predictive Value 0.97 0.98 0.97 0.12 0.20

Table 7.7: Estimates of mean improvement after the use of the training system

7.3.1 Global Results

Evidence was found that the training system improved the sensitivity, negative predictive

value and the accuracy of residents at the time of suspecting initial hypotheses (p-values

0.001, 0.009, and 0.026, respectively). Moreover, this improved ability could remain after

the training, as column stabilization does not provide evidence of differences (P>0.28).

After training, there was not a significant change in the diagnostic capacities of the

residents that remained high (P≈0.8).

An improvement in the accuracy, specificity, and negative predictive value of residents’

in hypothesis selection along the differential diagnosis process was also detected with

P=0.01, P=0.02, and P=0.003, respectively. That is to say, with the use of the system,

residents learned to disregard unfounded hypotheses. However this acquired ability did

not last (P<0.04).
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Finally, we observed a lasting improvement of residents accuracy, sensitivity, specificity,

and positive predictive value at the time of selecting diagnostic tests along differential

diagnosis (P=0.03, P=0.03, P=0.04, and P=0.01, respectively). In other words, resi-

dents improved and stabilized their ability to order the proper tests, and only the proper

tests, in accordance to the indications in the CPGs.

7.3.2 Resident’s Experience and Specialty

Residents’ experience ranges between 1 and 4 years, after graduation. When we analyzed

the data depending on this experience, the following results were obtained: residents in

the first year were the most influenced physicians by the training tool. This tool improved

10% their accuracy at the time of suspecting the right diseases (P=0.045) and 21.4% their

ability not to rule out diagnoses that are possible (P=0.007), during the first encounter

with the case. Moreover, first-year residents benefited from the tool by improving 10%

their adherence to the CPGs recommendations (P=0.046), in average. For the choice

of tests, the benefits were 12% improvement of the mean accuracy (P=0.03), 20% risk

reduction of forgetting relevant tests (P=0.008) and 12.3% risk reduction of asking

irrelevant tests (P=0.025).

For second-, third- and forth-year residents (i.e., experienced residents), improvements

were moderate and non conclusive. This could be attributable to the low number of

trainees with these levels of experience (n=7, 2, and 2, respectively), but also to their

reluctance to change their DDx schemes when they were already having 88% mean

accuracy in their final diagnoses (in the pre-assessment stage). This percentage rose to

90% after the training.

We also observed that first-year residents failed more than experienced residents in the

selection of the correct tests (P=0.042). Their failure ratios being 77.7% and 87.4%,

respectively. This left novice residents more room to improve than senior residents, as

the results after training showed, with novices reaching 89.6% of accuracy (P=0.03) and

seniors showing a non significant improvement (P=0.723).

Interestingly, the accuracy of first-year residents to correctly diagnose patients was in-

creased to the level of the accuracy of forth-year residents (91%), after the training.

However, the DDx process followed by first-year residents to reach these correct diag-

noses improved its adherence to CPGs from 68.5% before the training to 78% after the

training (P=0.046), but remained unchanged and below 70% for forth-year residents

(P=0.453). For first-year residents we could not find evidence that the improvements

were lost after the training (0.32<P<98).
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Resident’s specialty was used to compare the influence of the training tool between GPs

and specialists. For GPs the accuracy and the sensitivity of the initial suspected diseases

improved 14% (P=0.005) and 13.7% (P=0.073), respectively. Conversely, the specialists

improved their sensitivity to identify initial suspected diseases in 15% (P=0.02), but

also their accuracy in 10% (P=0.019), sensitivity in 13.3% (P=0.033) and specificity in

10% (P=0.015) at the time of ordering diagnostic tests, as CPGs recommend. In all

these results the benefits lasted after the training (P>0.7).

7.3.3 Patient’s Complexity

In this study, the patient complexity is measured in terms of either the number of

multimorbidities of the case, or the number of signs and symptoms describing the case.

As the number of morbidities (or signs and symptoms) increase, the patient is considered

to show a higher complexity which may affect the DDx process.

For patients with essential hypertension (n=5) (i.e., not a single secondary cause of

hypertension is found) the improvement of resident’s DDx decisions was only conclusive

for the determination of the suspected diseases along the diagnostic process: accuracy

improved 10% (P=0.018), and sensitivity 26.2% (P=0.035).

For the diagnosis of patients with one secondary cause of hypertension, some improve-

ments were observed on the accuracy 11.6% (P=0.003), and the sensitivity 18.2% (P=0.005)

of the initial suspected hypotheses. For the full DDx process, the most outstanding im-

provements were: 12% in accuracy (P=0.001), and 10% in specificity (P=0.001). For

the adherence to DDx tests, improvements were observed with regard to average accu-

racy 13.2% (P<0.001), sensitivity 15.6% (P=0.005), and specificity 11.8% (P<0.001).

Unfortunately for most of these improvements, we did not find significant evidence that

they lasted after the training.

For patients with multimorbidity, residents tend to suspect of only one disease. This

is observed when we compare the sensitivity of the suspected diseases along the DDx

process for single-disease (35.3%) and for multimorbid (19%) patients. That is to say,

the observed mean probability of failing to consider an existing disease is 24.3% lower

for single-disease cases than for multimorbid cases (P=0.002).

As far as the number of signs and symptoms, four patient complexities were studied:

those with 3 or less initial signs and symptoms, with 4 or 5, with 6 or 7, and those with

8 or more.

The cases in the range 4 to 5 was the group that our tool provided a better training

for residents. For these patients, the accuracy of trainees to provide good diagnostic
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hypotheses during the first encounter increased 11.7% (P=0.016), and for specificity

14.9% (P=0.01). Also, the average capacity of residents to discard irrelevant diagnoses

along the DDx process increased 10% (P=0.018). As far as the capacity of residents to

propose the diagnostic test pointed out in the guidelines, this was improved in terms of

accuracy 13.8% (P=0.005), sensitivity 22% (P=0.005), and specificity 13.8% (P=0.005).

7.4 Conclusions

In this chapter we ran a test about the training of residents at the Hospital Cĺınic de

Barcelona for the diagnosis of secondary causes of hypertension affecting single-disease

and multimorbid patients. The DDx Training tool was described in terms of its four

components: the patient creator module, the patient analysis module, the online ques-

tionnaire module, and the result analysis module. A DDx training experiment was

designed with the help of physicians from that hospital. In the experiment, we studied

the accuracy, the sensitivity and the specificity of the DDx processes and observed a

significant improvement (between 10% and 20%) of the residents’ mean sensitivity in

all the sort of decisions of the DDx process: determination of diseases along the whole

process (including the first encounter), and selection of the correct tests. These results

are even better for first-year residents who enhanced more than 20% their capacity not

to forget possible diseases during the first encounter, and not to rule out required tests

along the DDx process.

The system allows users to train with multimorbid cases and promotes their change of

mentality from traditional single-disease thinking to modern multimorbid consideration

in a natural progressive way.

Apart of the good results of the tool in the training of residents to identify essen-

tial hypertension following the standard DDx procedures, the residents that initially

suspected a correct essential hypertension were also instructed to consider possible sec-

ondary causes of hypertension.

Our study states that the lack of adherence to CPGs is better corrected in first-year

residents than in residents in subsequent years, which drives us to consider that DDx

training tools are more suitable to improve the expertise of novice physicians who are

more given to consult and apply the DDx processes contained in the CPGs.
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Chapter 8

Use of Treatment Decision Tables

to Train Residents in Emergency

Shock

In chapter 4, the structure of the treatment and prognosis decision tables were presented.

In chapter 6, the structure of treatment tables were used to model the treatment of clin-

ical practice guidelines about eight emergency shocks, and the structure of prognosis

tables were used to simulate the consequences of the treatment actions during the treat-

ment of these sorts of shock.

In a same way that in chapter 7, this chapter introduces a new experiment where the

knowledge contained in the treatment decision tables is tested in a training program of

the Hospital Cĺınic de Barcelona by means of an incremental knowledge-based on-line

training tool. The objective of this tool is to improve the adherence of the hospital

residents to CPGs in the treatment of shock at the Emergency Unit.

This chapter presents the training tool and how it was used to train medical residents.

At the end of the chapter, the results of the experiment are evaluated.

8.1 The training tool

An online learning training tool was implemented to train medical residents in the ad-

herence to treatment. Figure 8.1 details the scheme of the application.
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Figure 8.1: Emergency Shock Treatment Modules

At the beginning of each case, the interface module obtains the information of the patient

from the patient database. This information is displayed and provided to the trainee

from which some treatment recommendation is expected.

When the student provides a recommendation, the treatment module compares this

recommendation with the actions suggested by treatment decision tables. Let us re-

call that the actions in the treatment decision tables represent the knowledge obtained

from specialized clinical practice guidelines. This comparison generates some adherence

statistics for a later analysis.

The next step of the learning process is to modify the health condition of the patient

accordingly to the prescribed actions. The simulation module uses the prognosis decision

tables and the patient information (i.e., current patient condition, and her resistances

and sensitivities to clinical actions) to evolve the patient condition. In the experiment

about the treatment of shock only the hemodynamic parameters are taken into account.

Finally, the evaluation module decides whether the patient is discharged or if the training

process continues. The patient may be discharged if the trainee decides to discharge the

patient, or if some dangerous action has been prescribed that provokes the patient’s

signs to be out of range or if the training time is over. This module also generates some

statistics about the patient’s survival. The patient survival is a measure that provides

information about the status of the patient. This measure takes into account the vital

signs and their values, penalizing the ones that are out of the normality range.

The next subsections detail each one of the components of the learning tool in the

context of the training of hospital residents of the treatment of emergency shock.
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8.1.1 The Patient Database

This experiment uses the patient database described in section 6.4. All the patients in

the database are adults, because children require pediatric CPGs which are different to

the ones used in our study.

The treatment of shock involves the combination of ventilation support, fluid resuscita-

tion, and vasoactive agents. In our database, all patients have received ventilator support

before the process started, consequently the experiment is focused on the administration

of fluids and vasoactive agents.

Table 8.1 shows the distribution of cases in the patient database. Each patient is assigned

a simulator depending on the type of shock. Usually there is one patient simulator per

shock, but it is possible that one shock might be due to different causes that can drive

to different responses in front of a same treatment. In such a case, several patient

simulators are needed. This is the case of Septic Shock which requires two different

simulators (high and low) as the table shows.

Shock Simulator Cases Modif. Resist. Sensit.

Anaphylactoid shock Anaphylactoid 7 4 4 1

APE RV Cardiogenic Shock APE RV 7 0 0 0

AMI LV Cardiogenic Shock AMI LV 8 8 8 0

Hemorrhagic shock Hemorrhagic 7 6 6 2

Cardiac tamponade Tamponade 7 2 2 0

Neurogenic shock Neurogenic 7 5 5 2

Septic shock Septic High 6 5 1 5
Septic Low 2 2 1 2

51 32 27 12

Table 8.1: Typologies of patients in the shock database

The column Cases shows the total number of cases in the database, for each simulator.

The column Modif in the table shows the number of patient that have some resistance

or sensitivity to one or more clinical actions. Patients can have one or both resistance

or sensitivity to several clinical actions. For example, a patient can be resistant to

dobutamine, but sensitive to dopamine. The last two columns show the number of

patients with some resistance and the number of patients with some sensitivity to actions,

respectively.

8.1.2 The Interface

The Interface Module (IM) is the training tool component that interacts with the trainee.

It is based on the form presented in figure 8.2.
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Figure 8.2: Emergency Shock Interface

In the top, the patient information is shown. This includes the patient’s clinical descrip-

tion, the history, and the time from arrival to the ICU. This information is intended

to provide evidence to the trainee about the type of shock, the possible actions to do,

and the modulation of the treatment. For example, the trainee has to be careful with

actions that may produce tachycardia in older patients, or to prescribe larger dosages

in patients with obesity.

The information in the history should provide enough evidence for a trained practitioner

to diagnose the type shock. However, the objective of this tool is to train the treatment,

not the diagnosis. For example, the case displayed in figure 8.2 describes a 18 year young

man, allergic to nuts, who suffers from a stab wound and blood loss. The background

may suggest a anaphylactic shock caused by the allergy, but the wound and the lost

of blood determined by the low value in finding of hematocrit (22%), provide enough

evidence to diagnose a hemorrhagic shock.

The middle left column shows the patient signs related to the hemodynamic parameters

(i.e., blood pressure, heart rate, central venous pressure, superior vena cava oxygen
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saturation, and finding of hematrocrits). These signs are updated accordingly every

time that a treatment action is carried out.

The middle right area of the screen presents a form to be filled by the trainee with the

decided treatment. This form includes all the discrete treatment actions (see the fourteen

upper actions), the continuous actions or infusions (see the four numerical fields), and

the discharge action (see the action at the bottom). Discrete and discharge actions only

need to be selected, but the infusions require a selection of the corresponding dosages.

Finally, the button at the right bottom corner is to conclude the treatment step once

the trainee has decided the actions to perform. The rectangle at the left bottom area is

used to provide feedback information to the trainee.

8.1.3 The Treatment Module

The Treatment Module (TM) is responsible of evaluating the adherence of the actions

picked by the trainee to the actions suggested by the CPGs. This is calculated step by

step after each iteration.

To make the comparison between the answers of the user and the guideline indications,

the system introduces the patient data in the TDTs. As a result, the system obtains

different treatment possibilities. Then, the system compares the user answer with each

one of the treatment suggestions, obtaining the number of true positives (i.e., actions

suggested by the CPGs that the user has indicated), false negatives (i.e., actions sug-

gested by the CPGs that the user has not indicated), and false positives (i.e. actions

indicated by the user that the CPGs do not suggest).

Among the treatment possibilities, the one that maximizes the accuracy is considered

the most nearby, and the one used for comparison.

There are two levels of comparison, the pharmacological level and the dosage level. The

pharmacological level assesses whether the treatment actions chosen by the students

are the same actions that the guidelines suggest. The dosage level assesses not only

the action, but also the correct dosage. For example, if the decision table recommends

epinephrine with low dosage, and the trainee select epinephrine with high dosage, the

answer is correct at pharmacological level, but is wrong at dosage level.

The adherence is measured with the metrics accuracy, distance, sensitivity, specificity,

positive and negative predictive values, and t-measure, which are based on the number

of true positives, false negatives and false positives. These measures explain to what

extent the answers of the user match the suggestions of the CPGs.
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8.1.4 The Simulation Module

The Simulation Module (SM) uses the prognosis decision tables as a patient simulator

to calculate the evolution of the cases under study. This module considers the iterations

presented in section 6.5 (see figure 6.5) as it follows.

In each iteration, for the initial state Sti, the SM uses the prognosis decision tables (PDT)

to calculate the patient state Pi+1 and the internal state Sti+1. The patient state Pi+1

takes into consideration both discrete and continuous actions of the treatment whilst

the internal state Sti+1 only the discrete actions. The users receive only the information

of Pi+1.

The changes produced for discrete actions are obtained from the PDT and modified

accordingly the resistances and sensitivities of the patient (i.e., the patient model or

PM). The trainees do not know the patient’s resistances and sensitivities, but they can

suspect them if the patient’s response is not the expected one.

Table 8.2 shows the range boundaries for infusions. The concentrations in the table are

expressed in µg/Kg/min as they appear in the CPGs, but residents use to work in ml/h

units.

Low Med High Max Conversion factor

Dopamine 5.0 12.0 30.0 70.0 66.7 / weight
Dobutamine 7.0 15.0 30.0 60.0 66.7 / weight
Epinephrine 0.08 0.2 0.4 1.0 1.3 / weight
Norepinephrine 0.12 0.6 1.8 3.0 0.7 / weight

Table 8.2: Infusion ranges and conversions in µg/Kg/min

The IM allows the students to work in ml/h, but the dosage prescribed to the patient has

to be converted before the knowledge in the decision tables are applied. The last column

in the table shows the conversion factor used based in the drug infusion concentrations.

The effect of the drug depends on the dosage. The result calculated by the prognosis

decision table is adjusted according to a modification factor represented by functions as

the one in figure 8.3, representing the adjustment factors of dobutamine.

The procedure can be understood with an example. A resident recommends 18 ml/h

of dobutamine to a patient of 80 kg, and the prognosis decision table shows that it

has a modification of +10 in the heart rate. Under such circumstances, the simulator

converts the value from ml/h to µg/Kg/min with the conversion factor in table 8.2 (i.e.,

66.7/weight). It obtains a dosage of 15 µg/Kg/min (i.e., 18ml×66.7/80Kg). According

to the function in figure 8.3, for a dosage of 15 µg/Kg/min a conversion factor of 1.75

is obtained, and the heart rate is modified with +17.5 (i.e., (+10)× 1.75).
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Figure 8.3: Example of dobutamine effects

The infusions can also be affected by resistances or sensitivities of the patients. For

example, if the patient above was 110% sensitive to the effects of dobutamine, the heart

rate would have a final increment of +19.25 (i.e., (+17.5)× 110%).

In order to simulate other uncontrolled factors that may affect the effects of the treatment

actions, and also to provide more realism along the training, when the new values of all

the parameters are calculated as previously explained, the system introduces a variation

of ±10% in the parameter modifications. For example, if decision tables conclude that

the heart rate suffers a modification of +20, the simulator provides a value between +18

and +22.

8.1.5 The Evaluation Module

The Evaluation Module (EM) decides whether the case remains active, or if the patient

is discharged, if the student has exposed the patient to a dangerous action, if the time

for the treatment is over.

The patient is discharged if the resident uses the discharge action final emergency treat-

ment. In this case, the system evaluates the vital signs of the patient and provide a

survival score based on the patient’s shock stability.

When the patient is discharged, the final survival score is calculated. This score compares

each vital sign with the normality range. If all the sign values are in the normality range,

the score is 100%. If one or more signs are out of the normality range, the relative

distance between the normality range is computed for all the abnormal signs, and take

the minimum score of the signs.
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The case is forced to finish if the patient is exposed to dangerous situations. Dangerous

situations happen when risk measures are applied to wrong shocks, infusion doses are

prescribed over the maximum limits, or a vital sign goes out of the security limits. In

these cases the survival value is set to 0%.

The case is also finished if the security time to treat a shock is over. In this case, the

survival value are calculated, but the case is closed.

Although the objective of the training tool is to improve the adherence to the treatment

proposed by the CPGs, the survival values provide additional information about the

quality of the treatment.

8.2 The Long-Term Treatment Experiment

This new training tool has been tested with the support of residents from the Hospital

Cĺınic de Barcelona. These residents were involved in a training program to analyze the

consequences of introducing artificial intelligence tools in the improvement of the adher-

ence of medical students (trainees) to the clinical practice guidelines for the treatment

of seven different sorts of shocks in an emergency unit.

The experiment divided the trainees into two groups, the intervention group and the

control group. Figure 8.4 shows a summary of the sequence of the cases in the study as

they were exposed for treatment to the intervention and control groups.

Figure 8.4: Sequencying of cases in intervention and control groups

During test 1, both groups are assessed about their initial ability to treat shocks. Five

different cases of different shocks took at random were exposed to the participants.

Then, during seven days, the members of the intervention group were allowed to train

with 20 cases, providing them with an online feedback of their correct and incorrect

decisions (Training). These cases were taken at random from the case base, promoting
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cases with different sorts of shock. Trainees in the intervention group were given the

possibility to solve additional cases, if they were solved during the seven training days

(Extra). After the training, a new test of five cases taken at random without feedback

was proposed to assess the new skills of the students (Test2 ). If the training with the

20 cases did not finish in seven days, the system delayed the second test until all the

training cases were finished.

After the first test, the members of the control group had to wait for seven days before

they started the second test (Test2 ).

Table 8.3 shows the distribution of the participants in the experiment in the intervention

and control groups and their category.

Group Category Participants

Intervention R1 11
Intervention R2 3
Intervention R3 2
Intervention R4 1
Intervention Jr. Associate 1
Control R1 8
Control R2 3
Control Jr. Associate 4

Table 8.3: Participants in shock experiment

8.3 Results

The results obtained in the experiment have been analyzed to measure the adherence to

the clinical practice guidelines and the patient survival.

To measure the adherence we calculated the accuracy, distance, sensitivity, specificity,

positive and negative predictive values, and t-measure for the intervention and the con-

trol groups. These values were obtained for each test (i.e., tests 1 and 2), and level (i.e.,

pharmacological and dosage levels). For survival values only the arithmetic means were

considered.

Both, adherence and survival statistics, are analyzed with the application of t-Student’s

tests to obtain the corresponding p-values.

In the next subsections we present the results obtained These are separated in global

results and results conditioned to the resident’s experience and their specialty.
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8.3.1 Global Results

Table 8.4 shows the mean values obtained for each quality parameter analyzed in the

shock treatment experiment.

Intervention Control
Test1 Test2 Test1 Test2

Pha. Dos. Pha. Dos. Pha. Dos. Pha. Dos.

Accuracy 0.915 0.912 0.934 0.930 0.906 0.901 0.920 0.920

Distance 0.477 0.457 0.546 0.520 0.463 0.429 0.463 0.443

Sensitivity 0.655 0.626 0.699 0.661 0.696 0.652 0.604 0.584

Specificity 0.937 0.936 0.952 0.950 0.923 0.921 0.945 0.943

Pos. Pred. Val. 0.542 0.515 0.595 0.566 0.515 0.482 0.525 0.502

Neg. Pred. Val. 0.969 0.968 0.976 0.974 0.974 0.971 0.968 0.967

F-Measure 0.563 0.537 0.620 0.590 0.554 0.519 0.530 0.510

Survival 0.309 0.450 0.358 0.464

Table 8.4: Means for shock experiment

The results show that there are no evidences of a representative difference between the

pharmacological and dosage levels. No p-values under 0.05 have been found between the

different groups and tests, for any quality measure, to support significant differences.

From this analysis, we could not distinguish between pharmacological and dosage levels,

so, for the sake of brevity, the next conclusions are presented only at pharmacological

level.

Table 8.5 shows the p-values found for test 1, test 2 (comparing the intervention and the

control groups results), and the intervention and control groups (comparing the results

between test 1 before training and test 2 after training).

Test1 Test2 Intervention Control
Inter. vs Control Inter. vs Control Test1 vs Test2 Test1 vs Test2

Accuracy 0.359 0.078 0.011 0.173
Distance 0.718 0.036 0.064 0.990
Sensitivity 0.393 0.052 0.334 0.074
Specificity 0.135 0.315 0.023 0.034
Pos. Pred. Val. 0.532 0.100 0.184 0.826
Neg. Pred. Val. 0.294 0.055 0.083 0.200
F-Measure 0.834 0.029 0.142 0.559
Survival 0.320 0.784 0.004 0.041

Table 8.5: P-Values between groups in the shock treatment study

Before the training, the treatment skills of the members in the intervention and control

groups were tested with the test 1. The results do not provide evidence about differences

between the levels of the groups (all p-values are above 0.05). Consequently, there are
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not reasons to suspect that the quality of the members in the intervention group is

higher or lower than the one of the members in the control group.

However, the comparison of the means of the quality parameters between the two groups

before and after the training (colum Test2) shows that the adherence to the guidelines

of the intervention group is always better that the results of the control group. After the

experiment, the intervention group presented less wrong answers (distance p-value 0.036,

with respective means 0.546 and 0.463) and a general better performance (F-measure

p-value 0.029, with means 0.620 and 0.530).

After the training, the physicians in the intervention group improved all the quality

measures (see column intervention in table 8.4. That is to say, all the arithmetic means

were found better in test 2 than in test 1. Moreover, in column intervention of table 8.5,

several significant improvements were found in their accuracy (p-value 0.11, with means

0.915 for test 1 and 0.934 for test 2), their specificity (p-value 0.023, with means 0.937

for test 1 and 0.952 for test 2), and the patient stabilization (p-value 0.004, with means

0.309 vs. 0.450).

Comparatively, after the delay time, the members of the control group (without a real

training) had a better score avoiding false positives. This is represented in column

control of table 8.4 by an improvement of the specificity and the positive predictive

values, but results provide that the number of false negatives also increase. This comes

represented by a worse sensitivity and negative predictive values. However, they present

a great improvement in the survival score (p-value 0.041, with means 0.358 and 0.464)

in column control of table 8.5.

In general, we observe that both groups present improvements between test 1 and test

2. The intervention group betters both, their adherence to guides and the patient

stabilization, but the control group only the patient stabilization.

8.3.2 Resident’s Experience

In the groups of intervention and control, the first year residents (R1) before the training

did not present evidences to consider relevant different skills treating shock (all p-values

are greater than 0.05).

After the training, all the statistical averages of the intervention group was better that

the same averages of the control group. The improvement was relevant in distance

(p-value 0.016, averages 0.542 vs. 0.419), sensibility (p-value 0.032, averages 0.704 vs

0.561), positive predictive value (p-value 0.021, averages 0.596 vs 0.468), and F-measure

(p-value 0.009, averages 0.622 vs 0.481).
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After the training, the intervention group improved all the quality measures in average.

The most relevant improvements were in the accuracy (p-value 0.010, averages 0.91 vs

0.934) and the specificity (p-value 0.011, averages 0.93 vs 0.952). The control group, after

the delay of 7 days, improved the averages of accuracy, specificity, negative predictive

value, and survival, but get worse averages for distance, sensibility, positive predictive

value, and F-measure. There is not a relevant change in the adherence to CPGs, but

the changes in survival are significant (p-value 0.042, averages 0.311 vs 0.460).

The residents of second year (R2) do not exhibit neither before nor after a training

difference between groups. There are no evidences that the training improves their

abilities. The only significant difference appears in the intervention group, after the

training, with an improvement of the survival score (p-value 0.001, averages 0.318 vs

0.662). In fact, the results of the R2 intervention group after the training for the survival

score beat the other residents (p-value<0.001, averages 0.662 vs 0.421).

This shows that novel physicians obtain more benefits from the tool in order of acquire

treatment skills from guidelines. Experienced physicians seem to use the tool to increase

their abilities for patient stabilization.

8.3.3 Resident’s Specialty

Depending on the specialty, we split physicians into two groups, ERM and NO-ERM.

ERM gathers the users with a specialty related to ICU. Their specialties are close to

the diseases and treatments used in the study. In fact, before training, differences are

detected in the adherence of the trainees of both groups in terms of sensibility (p-

value 0.047, averages 0.671 vs 0.510). Contrarily, NO-EMR comprises all the residents

participant in the study who are specialists in medical domains that are not close to

ICU.

After the training, the ERM users in the intervention group improved their mean survival

score (p-value 0.013, averages 0.296 vs 0.441). However, the NO-ERM users in the

intervention group improved their adherence to clinical practice guidelines, specially in

terms of distance (p-value 0.040, averages 0.421 vs 0.566) and negative predictive values

(p-value 0.038, averages 0.963 vs 0.977). Interestingly, after the training, the differences

in adherence to CPGs are not detected between these groups (no p-values <0.05).

Once again, the group with less experience takes a greater benefit from the learning

tool in order to learn the clinical procedures while the experienced users train their

competency to stabilize patients.
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8.4 Conclusions

This chapter presents a learning tool that combines treatment decision tables with prog-

nosis decision tables. The knowledge in the treatment decision tables is used to teach the

treatment recommendations in clinical practice guidelines while the prognosis decision

tables are used as patient simulators to allow long term treatment training.

Prognosis decision tables (PDT) are combined with a patient model (PM) to personalize

the behavior of each case. The effect of the actions may be obtained directly from the

combination of PDT and PM or, in the case of infusions, obtained by consideration of

more factors, such as the dosage.

This tool has been adapted and used in a training program of residents in the Hospi-

tal Cĺınic de Barcelona to teach the clinical procedures contained in clinical practice

guidelines for the treatment of seven types of emergency shocks. After the training,

the inexperienced physicians (first-year residents or R1s and residents with a specialty

distant to ICU or NO-ERMs) improved their adherence to clinical practice guidelines.

The experienced physicians benefited from the simulator in order to better stabilize the

patients.

109

UNIVERSITAT ROVIRA I VIRGILI 
USE OF DECISION TABLES TO MODEL ASSISTANCE KNOWLEDGE TO TRAIN MEDICAL RESIDENTS 
Francis Real Vázquez 



UNIVERSITAT ROVIRA I VIRGILI 
USE OF DECISION TABLES TO MODEL ASSISTANCE KNOWLEDGE TO TRAIN MEDICAL RESIDENTS 
Francis Real Vázquez 



Chapter 9

Conclusions

This thesis is about the application of decision tables to support medical practice. Med-

ical practice is represented as a continuous process that includes the cognitive tasks of

diagnostic, treatment, and prognosis. The ultimate aim is to design decision tables for

these tasks and to find a methodology to represent the knowledge of clinical practice

guidelines in these tables that are easy to manage by practitioners, and that can be used

as base in computer tools as decision support systems or training tools.

We began studying the clinical process and we focused on the three cognitive clinical

tasks previously mentioned. For diagnosis we identified three main subtasks related

to differential diagnosis (DDx): making diagnostic hypothesis, selecting appropriate di-

agnostic tests, and discarding negligible hypotheses. We put special emphasis on the

representation of multimorbidity. Multimorbidity is the simultaneous coexistence of sev-

eral diseases in the same individual none of them considered an index disease [220]. The

increasing prevalence of chronic diseases in the last decades and the expected evolution

of chronic pathologies entail a growth of multimorbid cases nowadays and in the years

to come [221–223]. As a result to these expectations, the US Department of Health and

Human Services (HHS) activated a plan to improve the response to multimorbidity [224].

One of the goals of this plan was to encourage the search for scientific evidence for multi-

morbid conditions to ameliorate the utility of clinical practice guidelines [131, 225, 226].

The second step in this work was to formalize decision tables structures for each one

of the clinical tasks. To do this, we proposed a new formalism of decision tables, the

grouping decision tables model (GDT), as an upgrade of semantic decision tables. We

used the GDT to represent the three subtasks of differential diagnosis. We designed

the diagnostic hypothesis decision tables (DHDT) to make diagnostic hypothesis, the

test selection decision tables (TSDT) to select the appropriate diagnostic tests, and the

evaluation decision tables (EDT) to discard negligible hypotheses. In order to model
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DDx with decision tables, a differential diagnostic system was presented that integrates

all the diagnostic decision tables: DHDT, TSDT, and EDT.

For clinical treatment, we designed the treatment decision tables (TDT) that summarize

the therapeutic knowledge in clinical practice guidelines. These tables needed variable

types to solve the problems of multiple choice and ambiguity in the treatment.

To solve the prognosis of short-term evolution, we proposed the prognosis decision tables

(PDT). These tables represent the evolution of standard patients. In order to approach

real patient prognosis and to personalize the evolution of concrete patients, a patient

model (PM) has been introduced. This was useful to use the prognosis tables as simu-

lators.

In addition to the new structures of decision tables designed, we proposed a methodology

to combine the treatment and prognosis decision tables to plan long-term treatments.

Moreover, we employed the patient model combined with the prognosis decision tables

as the basis to create a patient simulator.

After designing decision tables for each clinical task, the third step was the use of the

these table structures to host the knowledge of CPGs.

For the diagnosis tables, we modeled the diagnosis knowledge of the eight more frequent

causes of secondary hypertension. To obtain the tables we proposed a methodology

based in an intermediate representation as clinical algorithm. DHDT were obtained

after a process that started with the identification of the signs and symptoms obtained

from the clinical practice guidelines involved and their later classification by experts

in mandatory, alternative, irrelevant, and impossible signs. The TSDT and EDT were

built automatically from clinical algorithms.

The CPGs of seven emergency shocks were taken to test the treatment and prognosis

decision tables.

Treatment decision tables were made after a semi-automatic process in which medical

experts analyzed the therapeutic knowledge in CPGs and provided short clinical algo-

rithms for the different treatment options of each shock. The different possibilities of

treatment and the possibility of a treatment to change along the management of pa-

tients in shock, implied additional difficulties that produced bigger tables and the lose

of simplicity and compehension. This was partially solved with the incorporation of new

variable types.

The prognosis decision tables of emergency shock were acquired from the experience of

medical experts by surveys. These decision tables had big dimensions, but the informa-

tion was stored structured and easy to understand and validate.
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Prognostic tables were used for patient simulation. A database with 51 sorts of patient

were created. All these cases were represented with the PM structure. The patients

in the database were synthetic, but based on real cases observed at the Emergency

Department of the Hospital Cĺınic de Barcelona.

In addition, we worked with the simulation of long-term treatment the concept of action

effect duration. For emergency shocks we distinguished between discrete actions, with

long duration, and continuous actions, with short duration. We presented the algorithm

used to solve the different time effects.

Finally, to test the decision tables for the diagnosis of secondary causes of hyperten-

sion and treatment of emergency shocks, two studies were carried out with residents in

Hospital Cĺınic de Barcelona. In both experiments we obtained similar conclusions:

• Decision tables are suitable to represent medical knowledge and to build training

tools.

• The training tools improve the abilities of physicians, ease and accelerate the

acquisition and update of procedural knowledge of the health care professionals.

• The efficiency of these tools is higher with inexperienced and untrained physicians.

These tools make residents to improve their abilities in a faster and more efficacious

way than traditional learning.

The main contributions of this thesis, in relation to the objectives enumerated in chap-

ter 1, are:

1. Design decision tables to expose the medical process: In this work we

propose a representation of the medical process based on differential diagnosis,

treatment and personalized prognosis. All these stages are represented with deci-

sion tables.

2. Use decision tables to represent the medical knowledge: The decision

tables designed have been used successfully to represent the knowledge of eight

CPGs of secondary causes of hypertension for diagnosis, the knowledge of seven

CPGs of emergency shocks for treatment, and the medical experience of evolution

of shock patients for prognosis.

3. Build training tools with decision tables: Two learning tools have been

built using the decision tables as a base of knowledge. These tools use simulated

situations to test the knowledge of the users and provide feedback to correct the

mistakes.
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4. Evaluate the performance of the tools with medical students: The

training tools have been tested with residents in Hospital Cĺınic de Barcelona.

The results of the tests support the capability of the decision-table based tools to

improve the abilities of the users, especially the inexperienced users.

This thesis opens new working lines as future work:

1. Reduction of decision tables rules: One of the problems of decision tables is

the rise of dimension as new variables are added. This problem is not exclusive

of this work. In this thesis, our approach to solve this problem was based on

providing more expressiveness to the variables. Complex treatments with a lot of

possibilities of therapeutic actions to perform may be translated in huge tables

difficult to treat.

2. Comorbidity in the treatment: In this thesis we present how to manage the co-

morbidity and multimorbidity in the diagnosis. For clinical treatment, the control

of comorbidity is highly relevant but still difficult to obtain from clinical practice

guidelines because these use to target only one disease.

3. Patient simulation: One of the main contributions of this work is the creation

of a patient simulator. The simulators allow residents to train their clinical skills

and gain experience. The approach in this work is to create general simulators

(PDT) from clinical surveys and personalize different patient behaviors with a set

of simulated patients. As a future work, we should be able to automate the process

of constructing PDTs with real patient data, and obtain different simulators for

each typology of patient. The simulators obtained in this way would not only be

used by training systems, but also by decision support systems.

4. Extend the prognosis concept: In this work, we attacked the problem of prog-

nosis only as a short-term evolution of the patients, and we provided tools to

estimate the long-term evolution, but this cognitive task comprise more subtasks,

for example the prognosis of times in the evolution of the diseases for different

patients and under different treatments. Our experience along this thesis suggests

that prognosis is a hard cognitive task with limited medical technologies contribut-

ing. Most of them are based on the analysis of retrospective clinical data, but this

approach has some limitations as for example the representativeness, completeness

and soundness of the data analyzed. Alternatively, this knowledge can also be ob-

tained from the personal experience of clinical experts by means of surveys. This

is the approach that we followed in this thesis, but it still has similar drawbacks

mainly related to the quality and quantity of experts involved in the elicitation of
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prognostic knowledge. If decision tables have been shown in this thesis as valid

structures to host prognostic knowledge, the process to obtain this knowledge de-

serves further attention.
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Appendix A

Hypertension Secondary Causes

Algorithms and Tables

A.1 Acromegaly

Acromegaly is a hormonal disorder that results from too much growth hormone (GH)

in the body. The pituitary, a small gland in the brain, makes GH. In acromegaly, the

pituitary produces excessive amounts of GH. Usually the excess GH comes from benign,

or noncancerous, tumors on the pituitary.

Acromegaly is most often diagnosed in middle-aged adults, although symptoms can

appear at any age. If not treated, acromegaly can result in serious illness and premature

death. Acromegaly is treatable in most patients, but because of its slow and often

”sneaky” onset, it often is not diagnosed early or correctly. The most serious health

consequences of acromegaly are type 2 diabetes, high blood pressure, increased risk of

cardiovascular disease, and arthritis. Patients with acromegaly are also at increased risk

for colon polyps, which may develop into colon cancer if not removed.

Figure A.1 shows the clinical algorithm obtained from the CPG [195].

Figure A.2 shows the test selection decision table for Acromegaly.

Figure A.3 shows the evaluation decision table for Acromegaly.

A.2 Adrenal Cushing’s Syndrome

Adrenal Cushing’s syndrome is a metabolic disorder caused by excessive production of

cortisol by a tumor of an adrenal gland. Cortisol is a hormone made by the adrenal
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Figure A.1: Acromegaly Algorithm

Figure A.2: Acromegaly Test Selection Decision Table

Figure A.3: Acromegaly Evaluation Decision Table

glands that plays an essential role in the stress response. Normal cortisol levels are

necessary to sustain life, to maintain normal sleep-wake cycles, and to enable the body

to respond to stressful events. Though limited bursts of cortisol are normal, long-term

elevations of the cortisol level are harmful to many organ systems.

Figure A.4 shows the clinical algorithm obtained from the CPG [196].
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Figure A.4: Adrenal Cushing’s syndrome Algorithm

Figure A.5: Adrenal Cushing’s syndrome Test Selection Decision Table

A.3 Coarctation of Aorta

Coarctation of the aorta (or aortic coarctation) is a narrowing of the aorta, the large

blood vessel that branches off your heart and delivers oxygen-rich blood to your body.

When this occurs, your heart must pump harder to force blood through the narrow part

of your aorta. It is a type of birth defect. Aortic coarctation is more common in persons

with certain genetic disorders, such as Turner syndrome.

Figure A.7 shows the clinical algorithm obtained from the CPG [197].
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Figure A.6: Adrenal Cushing’s syndrome Evaluation Decision Table

Figure A.7: Coarctation of aorta Algorithm

Figure A.8: Coarctation of aorta Test Selection Decision Table

A.4 Glomerulonephritis

Glomerulonephritis is a group of diseases that injure the part of the kidney that filters

blood (called glomeruli). Glomeruli remove excess fluid, electrolytes and waste from

your bloodstream and pass them into your urine. When the kidney is injured, it cannot
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Figure A.9: Coarctation of aorta Evaluation Decision Table

get rid of wastes and extra fluid in the body. If the illness continues, the kidneys may

stop working completely, resulting in kidney failure.

Glomerulonephritis can be acute or chronic. Acute glomerulonephritis can be a response

to an infection such as strep throat or an abscessed tooth. It may be due to problems

with your immune system overreacting to the infection. The chronic form of glomeru-

lonephritis can develop over several years with no or very few symptoms. This can cause

irreversible damage to your kidneys and ultimately lead to complete kidney failure.

Figure A.10: Glomerulonephritis Algorithm

Figure A.10 shows the clinical algorithm obtained from the CPG [198].
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Figure A.11: Glomerulonephritis Test Selection Decision Table

Figure A.12: Glomerulonephritis Evaluation Decision Table

A.5 Hyperparathyroidism

Hyperparathyroidism is an excess of parathyroid hormone in the bloodstream due to

overactivity of one or more of the body’s four parathyroid glands, located in the neck,

near or attached to the back of the thyroid. The parathyroid glands produce parathyroid

hormone, which helps maintain an appropriate balance of calcium in the bloodstream

and in tissues that depend on calcium for proper functioning.

Hyperparathyroidism could be caused by a tumor, gland enlargement, or other structural

problems of the parathyroid glands. This causes kidneys and intestines to absorb a larger

amount of calcium. It also results in more calcium being removed from bones.

Figure A.13 shows the clinical algorithm obtained from the CPG [199].

A.6 Pheochromocytoma

A pheochromocytoma is a rare, usually noncancerous (benign) tumor that develops

in cells in the center of an adrenal gland, which is called the adrenal medulla. The

adrenal medulla is responsible for the normal production of adrenaline, which our body

requires to help maintain blood pressure and to help cope with stressful situations. A

tumor that arises from the adrenal medulla and overproduces adrenaline can be a deadly

tumor because of the severe elevation in blood pressure it causes.

Figure A.16 shows the clinical algorithm obtained from the CPG [200].
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Figure A.13: Hyperparathyroidism Algorithm

Figure A.14: Hyperparathyroidism Test Selection Decision Table

Figure A.15: Hyperparathyroidism Evaluation Decision Table

A.7 Renovascular Hypertension

Renovascular hypertension is blood pressure elevation due to partial or complete occlu-

sion of one or more renal arteries or their branches. When the kidneys receive low blood

flow, they act as if the low flow is due to dehydration. So they respond by releasing

hormones that stimulate the body to retain sodium and water. Blood vessels fill with

additional fluid, and blood pressure goes up.
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Figure A.16: Pheochromocytoma Algorithm

Figure A.17: Pheochromocytoma Test Selection Decision Table

Figure A.18: Pheochromocytoma Evaluation Decision Table

The narrowing in one or both renal arteries is most often caused by atherosclerosis, or

hardening of the arteries. This is the same process that leads to many heart attacks and

strokes.

Renovascular hypertension is the most frequent form of secondary hypertension. It is

most often diagnosed among elderly patients and has significant effects on prognosis and

patient outcomes.

Figure A.19 shows the clinical algorithm obtained from the CPG [201].

A.8 Sleep Apnea

Sleep apnea is a common disorder in which you have one or more pauses in breathing

or shallow breaths while you sleep. Breathing pauses can last from a few seconds to

minutes. This means the brain, and the rest of the body, may not get enough oxygen.
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Figure A.19: Renovascular hypertension Algorithm

Figure A.20: Renovascular hypertension Test Selection Decision Table

Figure A.21: Renovascular hypertension Evaluation Decision Table

Typically, normal breathing then starts again, sometimes with a loud snort or choking

sound.

Sleep apnea usually is a chronic condition that disrupts the sleep. When breathing

pauses or becomes shallow, patients will often move out of deep sleep and into light

sleep. As a result, the quality of their sleep is poor, which makes you tired during the

day. Sleep apnea is a leading cause of excessive daytime sleepiness.

Figure A.22 shows the clinical algorithm obtained from the CPG [202].
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Figure A.22: Sleep apnea Algorithm

Figure A.23: Sleep apnea Test Selection Decision Table

Figure A.24: Sleep apnea Evaluation Decision Table
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Emergency Shock Tables

B.1 Anaphylactoid Shock

The Anaphylactoid shock [227], also called anaphylaxis, is a severe, potentially life-

threatening allergic reaction. It can occur within seconds or minutes of exposure to

something you are allergic to, such as peanuts or the venom from a bee sting.

The flood of chemicals released by your immune system during anaphylaxis can cause

you to go into shock; your blood pressure drops suddenly and your airways narrow,

blocking normal breathing. Signs and symptoms of anaphylaxis include a rapid, weak

pulse, a skin rash, and nausea and vomiting. Common triggers of anaphylaxis include

certain foods, some medications, insect venom, and latex.

Anaphylaxis requires an immediate trip to the emergency department and an injection

of epinephrine. If anaphylaxis is not treated right away, it can lead to unconsciousness

or even death.

Figure B.1 shows the Anaphylactoid Shock Treatment Decision Table obtained from the

CPG [206].

B.2 Cardiogenic Shock

Cardiogenic shock occurs if the heart suddenly cannot pump enough oxygen-rich blood

to the body. The most common cause of cardiogenic shock is a damage of the heart

muscle from a severe heart attack.
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Figure B.1: Anaphylactoid Shock Table
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Without enough oxygen-rich blood reaching the body’s major organs, many problems

can occur, organs can stop working well, their cells can die, and the organs may never

recover again.

Cardiogenic shock is rare, but it is often fatal if not treated immediately. If it is treated

immediately, about half of the people who develop the condition survive.

We consider two types of cardiogenic shock in this work, the AMI LV Cardiogenic Shock

and the APE RV Cardiogenic Shock, and we obtain a different treatment decision table

for each shock.

B.2.1 AMI LV Cardiogenic Shock

The damage in the heart muscle prevents the heart’s main pumping chamber, the left

ventricle (LV), from working well. As a result, the heart cannot pump enough oxygen-

rich blood to the rest of the body.

A heart attack, also called a myocardial infarction, occurs when the flow of blood to the

heart is blocked. The interrupted blood flow can damage or destroy part of the heart

muscle. A heart attack can be fatal, but treatment has improved dramatically over the

years.

Myocardial infarction with left ventricular (LV) failure remains the most common cause

of cardiogenic shock [207].

Figure B.2 shows the AMI LV Cardiogenic Shock Treatment Decision Table obtained

from the CPG [207].

B.2.2 APE RV Cardiogenic Shock

In about three percent of cardiogenic shock cases, the heart’s lower right chamber, the

right ventricle, does not work well. This means the heart cannot properly pump blood

to the lungs, where it picks up oxygen to bring back to the heart and the rest of the

body [228].

The Acute Pulmonary Embolism (APE) is a blockage in one of the pulmonary arteries

in the lungs. In most cases, pulmonary embolism is caused by blood clots that travel to

the lungs from the legs or, rarely, other parts of the body (deep vein thrombosis). APE

can damage your heart and other organs in your body.

Figure B.3 shows the APE RV Cardiogenic Shock Treatment Decision Table obtained

from the CPG [208].
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Figure B.2: AMI LV Cardiogenic Shock Table
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Figure B.3: APE RV Cardiogenic Shock Table
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B.3 Cardiac Tamponade

Cardiac tamponade is an unusual pressure on the heart that occurs when blood or fluid

builds up in the space between the heart muscle (myocardium) and the outer covering

sac of the heart (pericardium).

In this condition, blood or fluid collects in the pericardium, the sac surrounding the

heart. This prevents the heart ventricles from expanding fully. The excess pressure

from the fluid prevents the heart from working properly. As a result, the body does not

get enough blood.

Figure B.4 shows the Cardiac Tamponade Treatment Decision Table obtained from the

CPG [209].

Figure B.4: Cardiac Tamponade Table

B.4 Hemorrhagic Shock

Hemorrhagic shock, also called hypovolemic shock, occurs when the body begins to

shut down due to heavy blood loss. People suffering injuries that cause heavy bleeding

may go into hemorrhagic shock if the bleeding is not stopped immediately. Common

causes of hemorrhagic shock are: severe burns, deep cuts, gunshot wounds, trauma, and

amputations.

According to the Mayo Clinic, hemorrhagic shock is the leading cause of death in people

with traumatic injuries.

When heavy bleeding occurs, there is not enough blood flow to the organs in the body.

Blood carries oxygen and other essential substances to your organs and tissues. When

these substances are lost more quickly than they can be replaced, organs in the body

begin to shut down.

Figure B.5 shows the Hemorrhagic Shock Treatment Decision Table obtained from the

CPG [210].

132

UNIVERSITAT ROVIRA I VIRGILI 
USE OF DECISION TABLES TO MODEL ASSISTANCE KNOWLEDGE TO TRAIN MEDICAL RESIDENTS 
Francis Real Vázquez 



Emergency Shock Tables

Figure B.5: Hemorrhagic Shock Table
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B.5 Neurogenic Shock

Neurogenic shock may occurs after injuries in the spinal cord and when there is dis-

ruption in the blood circulation throughout the body due to injury or illness. It affects

important nerves that make up the autonomic nervous system.

Injury to these nerves causes the walls of the blood vessels to relax resulting in slowing

of the heart rate or bradycardia which can be fatal.

It is a serious and life-threatening condition, which requires prompt medical attention

without any delay. If the treatment is delayed, then it causes irreversible tissue damage

and even death. Out of the different types of the shocks, neurogenic shock is the most

difficult to manage, mainly because of the irreversible damage to the tissues.

Figure B.6 shows the Neurogenic Shock Treatment Decision Table obtained from the

CPGs [211, 212].

B.6 Septic Shock

Septic shock is what happens as a complication of an infection where toxins can initiate

a full-body inflammatory response. It often occurs in people who are elderly or have a

weakened immune system.

It is thought that the inflammation resulting from sepsis causes tiny blood clots to form,

which can block oxygen and nutrients from reaching vital organs. As a result, the organs

fail, causing a profound septic shock. This may cause a drop in blood pressure and may

result in death. In fact, septic shock is the most common cause of death in intensive

care units in the United States [229]

Figure B.7 shows the Septic Shock Treatment Decision Table obtained from the CPGs [213,

214].
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Figure B.6: Neurogenic Shock Table
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Figure B.7: Septic Shock Table
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