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Al Gonzalo i a la meva família per no haver 

deixat mai d’estimar-me i creure en mi.  

 

 

  



 

  



 

 

 

 

 

 

 

 

 

“Now, the name of this talk is “There is 

plenty of room at the bottom” not just 

“There is room at the bottom.” What I have 

demonstrated is that, there is room, that you 

can decrease the size of things in a practical 

way. I, now, want to show that there is 

plenty of room. I will not now discuss how 

we are going to do it, but only what is 

possible in principle, in other words, what is 

possible according to the laws of physics. I 

am not inventing anti-gravity, which is 

possible someday, only if the laws are not 

what we think. I am telling you what could 

be done if the laws are what we think; we 

are not doing it simply because we haven't 

yet gotten around to it”. 

Transcript of the talk that Richard Feynman gave on December 29th 1959 at the annual meeting of the American 

Physical Society at the California Institute of Technology (Caltech). 

 

  



  



 

 

 

 

 

 

 

 

 

 

 

Alfred Pennyworth: Why do we fall sir? 

So that we can learn to pick ourselves up.  

Bruce Wayne: You still haven’t given 

up on me? 

Alfred Pennyworth: Never 

 

Batman Begins (2005) 
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Summary 

 

In this PhD dissertation, a general procedure for the obtaining of different regioselective 

orthogonal bifunctionalized mesoporous silica nanoparticles (MSNs) has been carried out. The 

strategy consists of a covalent functionalization of co-condensed monodispersed and uniform 

aminated-MSNs, where tensioactive is still present in its structure. Three bifunctionalized 

MSNs, amine-azide (MSN-(NH2)i(N3)o), amine-isothiocyanate (MSN-(NH2)i(NCS)o) and 

amine-aldehyde (MSN-(NH2)i(CHO)o), with efficient “click” reactions, have been synthetized 

for its use in biomedical applications.   

First, a well characterized batch of precursor aminated-MSNs (MSN-(NH2)) has been prepared. 

The best conditions for the synthesis of homogenous and reproducible MSN-(NH2) with a size 

between 50-100 nm have been studied.  

These aminated-MSNs have been used for the synthesis of naphthalimide sensors where a 

general procedure for the introduction of 4-amine-1,8-naphthalimides has been developed. 

These naphthalimides have been tested as potential logic gates for the detection of H
+
 and F

-
. 

A straightforward protocol to prepare amine-azide MSNs has been described. These MSNs have 

been functionalized with quinoline cationic foldamers for the first time. The ability of these 

foldamer-MSNs to cross cytoplasmic membranes and its viability has been studied. The 

penetrating capacity of foldamer-MSNs have been used for intracellular delivery of 

Doxorubicin (DOX).  

A new protocol to prepare isothiocyanate functionalized MSNs is described. The synthetic 

methodology is general and can be applied, in principle, to all type of aminated MSNs. The 

efficiency of the functionalization is comparable to the copper cycloaddition (CuAAC) avoiding 

isolation and copper removal protocols. Following this methodology, new amino-

isothiocyanate-MSNs have been prepared for the design of a nano-container able to release the 

drug Ataluren in a controlled manner, for the treatment of Duchenne muscular dystrophy 

(DMD).   

Regioselective bifunctionalized amine-aldehyde-MSNs have been synthetized. These MSNs 

have been applied as a versatile nanoplatform able to release dual synergistic CPT/DOX 

mixture for cancer treatment only by using pH stimuli. While CPT is absorbed at the inner 

surface, DOX is covalently linked to the external surface acting both as an active and a capping 

agent (pH=4).  

  



  



Resumen 
 

En la presente tesis doctoral se describe un procedimiento general para la obtención de  

nanopartículas mesoporosas de sílice (MSNs) regioselectivamente bifuncionalizadas de forma 

ortogonal con distintos grupos funcionales.  La estrategia sintética consiste en la preparación de 

MSNs mediande co-condensación, seguido de una posterior funcionalización covalente, 

mientras el tensioactivo se encuentra todavía presente en la estructura de las MSNs. Siguiendo 

esta metodología, se han sintetizado las nanopartículas bifuncionalizadas amina-azida (MSN-

(NH2)i(N3)o), amina-isotiocianato (MSN-(NH2)i(NCS)o) y amina-aldehído (MSN-

(NH2)i(CHO)o), para su uso en aplicaciones biomédicas. 

En primer lugar, se han sintetizado y caracterizado de forma homogénea y reproducible las 

nanopartículas aminadas de referencia (MSN-NH2) que permitirán las sucesivas 

funcionalizaciones, con un tamaño de 50 nm y 100 nm aproximadamente. 

Estas nanopartículas aminadas se han usado posteriormente para la síntesis de sensores de 

naftalimida. Se ha conseguido desarrollar un procedimiento general para la introducción de 4-

amino-1,8 naftalimidas. Estas naftalimidas han sido probadas como sensores y puertas lógicas 

para la detección de H 
+
 y F

-
. 

Por otra parte, se ha descrito un protocolo para preparar amino-azida-MSNs de forma 

regioselectiva. Estas MSNs han sido funcionalizadas por primera vez con foldámeros catiónicos 

y su capacidad para cruzar membranas citoplasmáticas y viabilidad ha sido estudiada, así como 

el uso de estos sistemas para la liberación intracelular de doxorubicina (DOX) de forma 

controlada. 

También se ha realizado un nuevo protocolo para preparar MSNs con isotiocianato en su 

estructura. La metodología sintética es general y puede aplicarse, en principio, a todo tipo de 

MSNs aminadas. La eficiencia de la funcionalización es comparable a la cicloadición de cobre 

(CuAAC) evitando los protocolos de aislamiento y de eliminación del metal. Siguiendo esta 

metodología, se han preparado unas nuevas amino-isotiocianato-MSNs para el diseño de un 

nano-contenedor capaz de liberar el fármaco Ataluren de forma controlada. 

Se ha logrado sintetizar amina-aldehído-MSN. Estas MSNs se han aplicado como una 

nanoplataforma simple y versátil capaz de liberar de forma dual una mezcla CPT/DOX para el 

tratamiento del cáncer, mediante el uso de estímulos de pH. Mientras un fármaco es absorbido 

dentro de la superficie interior, el otro está unido covalentemente a la superficie externa, 

actuando así como fármaco y como agente bloqueante de poro. Este sistema responde a los 

estímulos de pH y ambos fármacos son solamente liberados en un medio ácido. 



  



Resum 
 

En la present tesi doctoral es descriu un procediment general per a l'obtenció de nanopartícules 

mesoporoses de sílice (MSNs) regioselectivament bifuncionalizades de forma ortogonal amb 

diferents grups funcionals. L'estratègia sintètica consisteix en la preparació de MSNs mitjançant 

co-condensació, seguit d'una posterior funcionalització covalent, mentre el tensioactiu es troba 

encara present en l'estructura de les MSNs. Seguint aquesta metodologia, s'han sintetitzat les 

nanopartícules bifuncionalizades amina-azida (MSN-(NH2)i(N3)o), amina-isotiocianat (MSN-

(NH2)i(NCS)o) i amina-aldehid (MSN-(NH2)i(CHO)o), per al seu ús en aplicacions biomèdiques. 

 

En primer lloc, s'han sintetitzat i caracteritzat de forma homogènia i reproduïble les 

nanopartícules de referència (MSN-NH2) que permetran les successives funcionalitzacions. 

Aquestes nanopartícules aminades s'han fet servir posteriorment per a la síntesi de sensors de 

naftalimida. S'ha aconseguit desenvolupar un procediment general per a la introducció de 4-

amino-1,8 naftalimides. Aquestes naftalimides han estat provades com a sensor i portes lògiques 

per a la detecció de H
+
 i F

-
. 

 

D'altra banda, s'ha descrit un protocol per preparar amino-azida-MSNs de forma regioselectiva. 

Aquestes MSNs han estat funcionalitzades per primera vegada amb foldàmers catiònics i la seva 

capacitat per creuar membranes citoplasmàtiques i viabilitat ha estat estudiada, així com l'ús 

d'aquests sistemes per a l'alliberament intracel·lular de Doxorubicina (DOX) de forma 

controlada. 

 

També s'ha realitzat un nou protocol per preparar MSNs amb isotiocianat en la seva estructura. 

La metodologia sintètica és general i es pot aplicar, en principi, a qualsevol MSNs aminada. 

L'eficiència de la funcionalització és comparable a la cicloaddició de coure (CuAAC) evitant els 

protocols d'aïllament i d'eliminació del metall. Seguint aquesta metodologia, s'han preparat unes 

noves amino-isotiocianat-MSNs per al disseny d'un nano-contenidor capaç d'alliberar el fàrmac 

Ataluren de forma controlada, per el seu us en la distròfia muscular de Duchenne (DMD). 

 

S'han aconseguit sintetitzar amina-aldehid-MSNs. Aquestes MSNs s'han aplicat com una 

nanoplataforma simple i versàtil capaç d'alliberar de forma dual una barreja CPT/DOX per al 

tractament del càncer, mitjançant l'ús d'estímuls de pH. Mentre un fàrmac és absorbit dins de la 

superfície interior, l'altre està unit covalentment a la superfície externa, actuant així, a la vegada, 

com a fàrmac i com agent bloquejant de porus. Aquest sistema respon als estímuls de pH i tots 

dos fàrmacs són només alliberats en un medi àcid. 
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Chapter 1. Introduction 

 

Currently, a large number of scientific advances are based on the use of nanoparticles as 

functional transport vehicles, in processes related to applications in catalysis, information 

technology, new materials and biomedicine. This general introduction focuses on the 

functionalization of mesoporous silica nanoparticles surface for its use as nanoplatforms for 

biomedicine applications. 
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Chapter 1. Introduction 

 

1.1. Nanoparticles 

 

Nanoparticles (NPs) are defined as microscopic particles with a size ranging from 1 to 100 nm.
1 

NPs size lies between little proteins and viruses (Figure 1.1). This similar size compatibility, 

allows the applications of NPs in many different fields such as biotechnology, medicine, 

catalysis, energy, environment, information technology, textile industry and cosmetics.
2
 

 

 

Figure 1.1. Size scale. 

 

By and large, nanoparticles are classified according to their organic or inorganic nature. Organic 

nanoparticles consist of polymeric systems, repetitive structures, such as dendrimers, and lipid 

bilayers like liposomes, while inorganic nanoparticles contain metals and inert materials such as 

titanium dioxide, hydroxyapatite and silica.
3
 In table 1.1, a brief list of the most relevant 

nanoparticles is presented. 

Although NPs have been used in many different applications, it is in the field of biomedicine 

that NPs have been widely studied. More specifically, NPs have been used as 

multinanoplatforms or drug delivery systems (DDS) for the detection and delivery of 

therapeutic agents into targeted sites (Figure 1.2).
4–7
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Table 1.1. Description of main nanoparticles. 

 

 

 

 

 

 

 

Organic 

Nanoparticles 

 

 

Polymeric 

nanoparticles 

Nanoparticles formed by a polymer matrix. Used in 

medical applications. Nevertheless, depending on the 

polymer they have a non-specific biodistribution and low 

loadings cargos. They are prone to hydrolysis and 

enzymatic degradation.
8
  

 

 

Dendrimers 

Definite macromolecules. They present a highly branched 

structure formed by a nucleus and multiple layers. Its 

molecular structure allows dendrimers to load different 

cargos.
9
  

 

 

Liposomes 

Spherical nanosystems formed by a lipid bilayer that 

allows the encapsulation of hydrophobic and hydrophilic 

drugs. Although liposomes are widely studied, their fast 

elimination from the body is one of their major 

drawbacks.
10

 

 

 

Micelles 

Colloidal aggregates of amphiphilic molecules. Micelles 

consist of two different domains. An internal 

hydrophobic part and a hydrophilic domain that allow the 

encapsulation of non-polar drugs for its transport.
11

 

 

 

 

 

 

 

 

 

Inorganic 

Nanoparticles 

 

Silica 

nanoparticles  

Silica nanoparticles are inert, biodegradable and present 

good biodistribution properties. They can be easily 

synthetized with any desirable shape and size.
12

 

 

Gold 

nanoparticles 

Metal nanoparticles exhibit optical and electronic 

properties that depend entirely on their shape and size. 

They have no intrinsic toxicity.
13

 

 

 

 

Quantum dots 

(QDs) 

Active nanoparticles that are generally used as sensing 

probes due to their high quantum fluorescence yields and 

high photostability. Moreover, their fluorescence 

emission can be tuned by changing QDs size. 

Nevertheless, QDs are neither biodegradable nor 

biocompatible with human organism which is a very 

restrictive condition for medical applications.
14

 

 

Carbon 

nanotubes 

Graphene monolayers wrapped in cylinder shape. They 

present a high surface area that enhances the anchor of 

different molecules. Nevertheless they are toxic if not 

properly functionalized.
15
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Figure 1.2. Nanotechnology applications in biomedicine. 

 

Among the different types of nanoparticles that have been described, inorganic mesoporous 

silica nanoparticles have emerged as promising biomaterials due to their exceptional properties 

such as good biocompatibility and excellent chemical and morphological singularity.
4,16–18

  

 

1.2.  Mesoporous silica nanoparticles (MSNs) 

 

Since its discovery in 1991, mesoporous silica nanoparticles (MSNs) have been widely used in 

catalysis and biomedicine applications due to their unique physicochemical properties, 

mechanical resistance, chemical stability, biocompatibility and high synthetic versability.
19,20

 

MSNs consist of a silica matrix filled with porous cavities with a size between 2 and 50 nm.
21

 

This exceptional peculiarity gives MSNs two different surfaces: the external outer surface and 

the inner porous surface (Figure 1.3).  

 

Figure 1.3. Schematic representation of MSNs channels and TEM micrograph. 
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Some of the most important MSNs features are: 

 Two different surface areas (inner and outer). 

 High surface area (>1000 m
2
∙g

-1
) which allows high cargo loadings (<35 %). 

 High porous volume (>1 cm
3
∙g

-1
), high porosity and porous order. 

 Fine-tuning of the porous size (2-10 nm). 

 Good chemical and thermal stability. 

 Non-toxic and biocompatible with human organism. 

 Size and shape control. 

 Easy to synthetize and functionalize. 

 Stable mesostructure.  

The first obtaining of mesoporous materials is contemporary to the 90s. At that time, the solid 

porous industry was looking for porous materials with a higher porous size than zeolites. It was 

Mobil Oil Corporation in 1992 that synthetized MCM (Mobil Composition of Matter) by 

mixing a silica precursor with an amphiphilic tensioactive. The great advantage of these new 

materials over zeolites was that their porous size could easily be tuned in 2-10 nm range.
22,23

 

These MCMs materials, also known as MSNs, present a very versatile synthetic route, which 

enables the fine-tuning of their size and porosity by controlling different conditions, such as the 

type of surfactant, pH and temperature.
24

 

Although MSNs were initially developed for catalytic applications,
25

 it is in the field of medical 

research, as multinanoplatforms for drug delivery and sensing applications, where MSNs have 

lately been used.
7,17,18,26–31

 MSNs high surface area and porous volume allow them to carry 

different payloads such as drugs, sensors or proteins,
18,32

 while being protected from aggressive 

environments, and enzyme degradations in the stomach, liver or intestines.
26

 

 

1.3.  MSNs applications in biomedicine as nanoplatforms 

 

Multinanoplatforms are a new generation of drug delivery systems that consist of a nanocarrier 

vehicle loaded with an effective drug, envisaged to control drug delivery, monitor its dosage 

and target the drug specifically to the site of action. High specific surface, chemical and 

morphological versatility and non-toxicity make of mesoporous silica nanoparticles a promising 

material for drug delivery applications
16,17,27,33–35

 and therefore, MSNs are foreseen to become 

“theranostic agents”.
6,7

 “Theranostics” is derived from the combination of the words therapy and 

diagnosis (Figure 1.4). Thus, the “theranostic” concept relates to the ability of detecting and 

treating a specific disease in the organism at the same time.
32
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Figure 1.4. Theranostic concept. 

 

The next generation of MSNs are designed to be capable of diagnosing, treating, detecting, 

monitoring, screening and releasing a payload specifically.
30

 Therefore, a complete 

multinanoplatform (Figure 1.5) would incorporate a drug inside the MSNs channels, while the 

external surface will be decorated with different elements to improve its biodistribution such as 

polyethylene glycol (PEG),
36

 cationic polymers,
37

 SiRNA chains
38

 and peptides
39

 to cross 

cytoplasmic membranes,
40

 antibodies to increase selectivity to the affected tissues
41

 and sensors 

to monitor MSNs pathway at any moment with contrast agents,
42

 or fluorescent probes
43

 for 

intracellular biosensing applications
32,44,45

 (Table 1.2.).
18,28

 Additionally, the incorporation of 

anions and cations sensors would provide information on the composition of the chemical 

environment.
46,47

 Therefore, multinanoplatforms would ideally be decorated with different gates, 

tags, drugs, sensors, receptors and active agents 

 

Table 1.2. Active agents used in MSNs. 

Active agents Properties 

Drug Disease treatment 

Antibodies Selective transport 

DNA/SiRNA Genetic transduction 

Photosensitizers Photodynamic therapy (PDT) 

Proteins Active site, selectivity 

Cationic polymers Cellular uptake 

Biodegradable polymers Biodistribution and stability 

Contrast agents Magnetic Resonance Imaging (MRI) 

Fluorophore Location and recognition 

Ion sensing and pH Sensor, diagnosis 

Phospholipids Molecular encapsulation 
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Figure 1.5. Example of nanoplatform. 

 

Given this multifunctional capability, such combinatorial nanostructures may eventually 

provide the means to achieve the so-called “personalized medicine” by tailoring drug delivery to 

individual response. Although this may appear futuristic, great encouraging improvements have 

been done in order to apply these systems in the near future as smart sensors and drug delivery 

systems.
5,48,49

 

1.3.1. MSNs applications as sensors 

Exploring biochemical intracellular processes, labelling or imaging cell components are major 

tasks in biological and medical research. To this end, fluorophores can be used for applications 

such as staining cell membranes, nuclei and lysosomes, but also to visualize intracellular pH 

and quantify intracellular analyte concentrations in real time, which can give new insights into 

the chemical microenvironment on the subcellular level.
50

  

Significant advances in fluorescence based sensing technology have given rise to the 

development of new fluorescence sensing mechanisms and measurement instrumentation. 

Fluorescence sensing technology has been achieved as a powerful and versatile toolbox in the 

field of physiology and molecular biology, environmental monitoring and clinical diagnosis 

with the advantage of high selectivity and sensitivity, spatiotemporal resolution, and 

visibility.
50–52

 

In addition, the development of new molecular systems for the detection of anions, cations or 

neutral molecules has gained prime importance in recent years due to the fundamental need to 

detect target species in biological and environmental samples. In this area, specific receptors are 
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able to transform, upon coordination, host–guest interactions into a measurable signal which 

allows analyte recognition and sensing through optical or electrochemical responses.
53

 In fact, 

some of the most promising sensors are based on fluoroionophores functionalized in 

nanoparticles.
54

 NPs are brighter than individual fluorophores, since one particle contains a high 

number of dye molecules. Furthermore, the entrapment of the dye in NPs surface enhances 

stability and biocompatibility of the fluorophore.
50

 Among different types of nanoparticles, the 

main advantages of silica MSNs for sensing applications is that silica is photophysically inert, 

transparent and can protect and stabilize incorporated dyes in its inner surface. In part, this is the 

reason why the encapsulation of fluorophores into MSNs and their application as optical sensors 

for various analytes in suspension has become an interesting and widespread research field in 

the last decades.
31

  

1.3.2. MSNs applications as drug delivery systems 

The need for more efficient therapies and the advances in nanotechnology has led to the 

development of drug delivery systems (DDS) focused on improving their effectiveness and 

tolerability, and simplifying drug administration. In this field, mesoporous silica materials 

present promising properties for drug delivery applications due to their ability to encapsulate 

different types of molecules within their pore channels. Drugs are generally loaded in MSNs by 

adsorbing them onto the particles and then releasing them to the desired medium. In such a case, 

there is no control over the pore openings and the resulting system performs a burst-like 

unsustained release. Nevertheless, it is possible to achieve MSN-based controlled release 

systems by applying mechanical controls over the pore openings. Through capping and opening 

the porous entrance, nanogates that would allow selective transport and efficient release can be 

built (Figure 1.6).
7
 

 

 

Figure 1.6. Nanogate triggered release by external or internal stimulus. 

 

In fact, a great deal of research attention has been focused on developing nanovalves on the 

surface of MSNs for on-command release of their guest molecules in response to different 
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stimuli.
4,17,18,30

 Mainly, there are two types of stimuli: internal stimuli such as pH,
55,56

 enzymatic 

activity
57

 or reductive environment,
58

 which depend on cell homeostasis; and external stimuli 

such as light,
59

 ultrasound
60

 or magnetic fields
61

 that can be applied as desired.
7,62

 External 

stimuli present the advantage that they can be controlled in time and location. In table 1.3, the 

more used stimuli for control drug delivery are described.  

Table 1.3. Types of gates and stimuli. 

Stimuli Type of gates 

pH Labile bonds (hydrazones, esters and imines) 

Temperature Thermosensible polymers 

Redox reactions Disulfide bridges 

Light Cis-trans isomers 

Magnetic fields Magnetic Nanoparticles  

Enzymes 
Glucose, biotine-avidine, glycosidic bond, aptamers 

interaction 

 

Taking into account that pH values in the vicinity of cancerous tissues (pH=6.5) and in 

endo/lysosomes (pH 4-6) are lower than in blood and normal tissues (pH= 7.4), pH sensitive 

gates are been widely used for cancer applications.
55,56,63,64

 

MSNs-based controlled release systems have been developed by applying mechanical controls 

over the pore openings (Figure 1.7)
4,35,45,65–67

 The first way to achieve a controllable release is to 

attach bulky groups such as Au or CdS nanocrystals over the pore openings.
68,69

 These bulky 

groups serve as gatekeepers for the encapsulated cargo. Removal of the bulky blocking groups 

via chemical methodologies initiates cargo release. In figure 1.7.a, the attachment and removal 

of bulky groups such as Au and Cds nanocrystals is represented.
68,69  

When bulky groups are assembled by non-covalent interactions, they become nanomachines, 

such as ‘‘nanovalves’’
70

 and ‘‘snap-top’’
71

 machines. These nanomachines usually contain a 

static stalk covalently attached to the particles surface and a bulky cyclic moving component, 

which encircles the stalk via non-covalent interactions. The blocking and un-blocking of the 

pore openings is achieved by such motions. Figure 1.7.b corresponds to the threading and 

dethreading of a cyclic torus molecule in a “snap-top” nanomachine design
71

 or the shuttling of 

a cyclic molecule between two recognizing sites along a molecular stalk towards and away from 

the pore opening in a supramolecular “nanovalve” design.
70
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Polymers that are either adsorbed or covalently bonded to the surface of the MSNs have also 

served as a mechanized controlled release system.
72

 Under their ‘‘close’’ condition, the polymer 

chains tightly wrap around the particle surface, blocking pore openings. Then the polymers are 

induced by certain stimuli to undergo swelling or coiling, so that the pore openings are re-

exposed and cargo is released through the unblocked pores. In Figure 1.7.c, the shrinking and 

swelling of polymer chain coated on particle surface is shown.
72

  

Finally, another way to mechanically block the pores is to form chemical bonds directly over 

the pore openings that can later be cleaved upon the presence of some stimuli, such as disulfides 

bonds with glutathione,
58

 proteases,
73

 amidases,
57 

esterases,
74

 or hydrazones.
75–77

 In Figure 1.7.d 

the formation and breaking of covalent bonds is represented.  

 

Figure 1.7. Relevant strategies for controlled release systems. 

 

1.4.  Clinical applications of MSNs and outlook 

 

In order to use MSNs in biomedical applications, a wide range of physical, chemical, biological 

and physiological properties must be fulfilled.
19,78,79

 

 MSNs must be biocompatible and biodegradable. 

 They must ensure a high loading capacity and deliver active agents selectively. 

 Should not release the drug prematurely. Release must be controlled. 

 MSNs must present a homogeneous size distribution and low polydispersity.  

 MSNs must be stable and should not aggregate. 
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Although MSNs meet many of these requirements, there is still no MSNs approved in clinical 

trials, maybe because of the complex interactions between nanoparticles and human organism.
80

 

Still, great progress has been achieved over a decade, from morphological characterization to in 

vivo treatments (Figure 1.8). 

 

Figure 1.8. Advances in MSNs clinical applications. 

 

A key issue for the application of nanoparticles in biomedicine is their toxicity.
81

 Although, 

MSNs are intrinsically non-toxic; its final toxicity depends on the final anchored active agents. 

So, in each case, toxicity of final MSNs must be studied. Concerning MSNs elimination and 

accumulation, in general, liver and spleen are the major organs where MSNs accumulate.
81

 The 

silica elimination occurs mostly through its orthosilicic acid decomposition and subsequent 

excretion via renal system.
19

 Nevertheless, the exact process is still unknown.  

 

One of the main challenges in developing nanoparticle systems for drug delivery is to predict 

and control the physicochemical properties that will act in vivo, as well as setting up analytical 

techniques capable of characterizing the properties of these systems.
82

 The main drawback of 

nanoparticles in general as delivery systems is that these materials are very complex and require 

a very detailed characterization. Each batch is different and prone to vary in size or 

organization. The constant improvement of characterization techniques would allow, in the near 

future, a way to establish correlations between in vitro and in vivo behaviors, reducing the 

number of studies to perform an accurate characterization and enhancing reproducibility 

between batches. In vitro and in vivo characterizations are crucial to avoid toxicological effects, 

immunological reactions or undesired accumulation in macrophages, liver, kidneys, spleen and 

lungs.
83
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Unfortunately, another challenge is the stability of most nanomaterials in biological fluids. The 

incorporation of nanoparticles into the bloodstream causes a strong reaction with serum 

proteins, lipids, membranes, cells, DNA, different organelles and small molecules, forming a 

shell of aggregated compounds known as the “protein corona”.
84

 This protein corona alters the 

size and interfacial composition of a nanomaterial, giving it a biological identity that is distinct 

from its initial synthetic identity.
80,85

 This is the reason why
 
many of the questions regarding the 

biocompatibility and biodistribution of MSNs in vivo still remain unanswered.
86

  

 

Despite these drawbacks, nanoparticles in general and MSNs in particular possess excellent 

properties to be approved one day as multifunctional nanoplatforms. It is about time that the 

effort made in nanotechnology paid off. Definitely, there is plenty of room at the bottom for 

improvement!
87

 

 

1.5.  Introduction of organic moieties to MSNs surface  

 

In order to synthetize new generation multinanocarriers with different active agents such as 

PEG, Ab, proteins, SiRNA, drugs, gatekeepers or probes, an easy, fast and robust chemistry 

must be applied. Thus, organic moieties must be introduced into the inorganic silica 

nanoparticle structure. Luckily enough, MSNs can be produced and functionalized easily.
30,35,88

 

In fact, one of the main advantages of using MSNs is that organic moieties can easily be 

introduced through co-condensation or silanization processes and therefore, MSNs can be 

functionalized with any desirable moiety. This quality is crucial for the use of these 

nanoparticles as bioactive multinanoplatforms. In fact, MSNs are considered to be organic 

nanoparticles in an inorganic matrix, which introduces the concept of hybrid organic-inorganic 

nanoparticles.
23,34

  

 

As previously outlined before, MSNs present two possible functionalization domains: the inner 

surface inside the porous channels and the outer external surface. Thus, there are three possible 

strategies to incorporate different organic moieties in MSNs surfaces: by anchorage, grafting 

and co-condensation.
22,23

  

1.5.1. Anchorage 

Anchorage is generally used for fluorescent molecules, imaging probes or contrast agents in 

order to either determine the location or monitor the nanocarriers in the organism.
89,44

 These 

sensing probes are generally anchored inside MSNs matrix through co-condensation processes 
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during MSN formation (Figure 1.9). Therefore, any possible interference with later reactions is 

avoided.
89

  

 

Figure 1.9. Image probe anchored in MSNs matrix. 

 

1.5.2. Grafting  

Grafting or post-synthetic approach is a methodology that modifies MSN-walls through 

silanization, once nanoparticles have already been formed.
22,23

 In this process, superficial 

silanols (Si-OH) act as anchorages when a functional silane is introduced (Figure 1.10). 

Grafting approach adds functional moieties in both inner and outer surface but it is widely 

believed that external surface is generally more accessible than the inner domain.
90,91

 

 

Figure 1.10. Post-synthetic grafting functionalization. 

Grafting silanization takes place either through free (≡ Si- OH) or geminal silanol groups (= Si 

(OH)2). The original structure of MSNs is generally maintained although some examples in the 

literature describe that grafting can easily erode MSNs surface.
92

 Moreover, grafting is 

described as a non-homogenous process where functional groups are added heterogeneously. 

However, the main advantage of the grafting process is that it allows an easy functionalization 

in the outer surface of MSNs. 

1.5.3. Co-condensation  

The co-condensation approach is based on the sol-gel process.
22,23

 In this case, a functionalized 

silane is added simultaneously with a silica precursor (TEOS) in MSNs formation. Therefore, it 

is a one-step process (Figure 1.11). Co-condensation, normally allows an homogeneous addition 

of functional groups in both inner and outer surface.
91,92

 Depending on the nature of the silane 

precursor it is possible to reach preferably one surface over the other.
22,23

 For example, in the 
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case of amino silane groups, such as aminopropyltriethoxy silane (APTES), amine moieties 

seem to be preferably added into the inner surface than on the external domain.
93

 

 

Figure 1.11. One-pot co-condensation process. 

 

In fact, Lim et al,
92

 compared the differences between post grafting and co-condensation 

processes when a same functional silane, in this case vinyl silane, was added to MSNs. The 

authors finally concluded that co-condensed MSNs had a homogenous vinyl group distribution 

while post grafting methodology gave a disordered material. Nevertheless, both grafting and co-

condensation approaches functionalize MSNs on the inner and the outer surface and therefore 

do not guarantee a regioselective functionalization.
90,91

 

1.6. Regioselective bifunctionalization  

 

In order to attain the level of complexity needed for the design of “smart” nanocarriers, it is 

necessary to develop, not only new methods for the introduction of organic moieties, but also 

efficient methodologies for the regioselective functionalization of the two surfaces of the MSNs 

with orthogonal groups.
20,94

 A regioselective and orthogonal coating of the external and inner 

porous surface with the proper functional group is crucial for the fine tuning of the payload 

release. For instance, the presence of inner amines moieties
95–97

 facilitates both the loading and 

release of drugs while, the external surface is suitable for installing stimulus-responsive systems 

for drug release
4
 or for the attachment of functional moieties for cell targeting.

98
 

 

A search in literature revealed that a way to introduce some regioselectivity in the 

bifunctionalization of MSNs consist of using monofunctionalized nanoparticles with the porous 

blocked by the surfactant.
99

 From monofunctionalized MSNs, introduced by a co-condensation 

methodology,
100–102

 a later grafting process, while the surfactant is still present in MSN matrix, 

results in the functionalization of R2 only on the outer surface (Figure 1.12). Due to the 

protecting effect of the surfactant, the inner surface is not affected by the grafting procedure and 

only the external domain is accessible.  
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Figure 1.12. Non-regioselective bifunctionalization. 

 

Nevertheless, since the starting material is already monofunctionalized, both at the inner and at 

the outer surface, the outer surface will be functionalized with a mix of functional groups (R1 

and R2), providing that these functional groups are chemically compatible. Otherwise, this 

methodology is not possible. 

 

In conclusion, strictly speaking there is no regioselective procedure for the regioselective 

functionalization of nanoparticles.  

1.7. MSNs covalent strategies for functionalization 

 

Once MSNs have been functionalized with organic moieties, multifunctional materials can be 

prepared. In order to incorporate different sensors, drugs or gates to MSN, bioconjugate 

techniques can be used.
103

  

 

As a matter of fact, much of the inspiration for building reactive nanoparticles is based on 

"click" chemistry reactions.
104

 The "click" chemistry concept was first introduced by KB 

Sharpless in 2001 and describes any chemical reaction with quantitative yields, high efficiency, 

selective, with no purifications and that can be used in mild reaction conditions. 

 

Among all possible functional groups that could be used for “click” reactions, only a few are 

used in the vast majority of peptides and proteins, which consist mostly of primary amines, 

carboxylic acids and thiols. Therefore, all nanoparticle functionalization strategy should focus 

on the use of easy, quick and effective reagents for the reaction with these functional groups. 

Here we summarize some of the most interesting coupling strategies for nanoparticles 

conjugation: amide formation, CuAAC cycloaddition, thiol, urea, thiourea, imine and hidrazone 

formation.
103,105,106
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1.7.1. Steglish reaction: carbodiimide coupling 
 
Amide formation requires the participation of an activating acid reagent. A widely used protocol 

is the Steglich reaction or carbodiimide method, which consist of the activation of carboxylic 

acid, for instance with the formation of the corresponding N-hydroxysuccinimide ester. This 

activation is carried out in the presence of a coupling agent such as 1-ethyl-3-

(dimethylaminopropyl) carbodiimide (EDC). Finally the desired amine reacts with the activated 

ester to provide amide bond with excellent yields (> 90%) (Figure1.13). 

 

 

Figure 1.13. Amide bond formation. 

 

Since a great number of molecules bear an ester or carboxylic acid functionality, this is probably 

one of the most popular ways to functionalize amine nanoparticles.
40,93

 

 

1.7.2. CuACC cycloaddition: the “click” chemistry 

Another noteworthy bioconjugation reaction is the well-known azide-alkyne cycloaddition 

catalyzed by Cu (I), (CuAAC)
104,107–109

 This type of chemistry involves the formal cycloaddition 

of an alkyne and an azide to form a 1,2,3-triazole ring, which serves as a strong linkage between 

the nanoparticle and the molecule that is going to be attached (Figure 1.14).  

 

Figure 1.14. 1,2,3-triazol formation. 
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This process has been proved to be highly versatile in the conjugation of small and bulky 

molecules, such as peptides, enzymes or proteins, at the external surface of mesoporous silica 

nanoparticles.
90,100,110,111

 However this reaction has a great disadvantage which is that it uses 

copper as a catalyst and therefore, it is vital to assure the total removal of any Cu trace.
112

 

Current strategies for Cu elimination are the use of EDTA and N,N-diethyldithiocarbamate 

complexants. Nevertheless, these strategies present several problems such as a loss of 

nanoparticles by washing with EDTA
90

 or an increased toxicity when using N,N-

diethyldithiocarbamate.
113

  

 

1.7.3. Disulfide formation 

Maleimides are electrophilic molecules which are highly reactive and selective towards thiols. 

These moieties can easily be formed through the reaction of an amine with maleic anhydride. 

Moreover, thiols are present in a large number of proteins and peptides as cysteine residues, 

which makes this strategy one of the most used approaches for coupling proteins and peptides 

(Figure 1.15).
114

 In addition, this reaction can take place in water, DMSO and DMF. 

 

 

Figure 1.15. Selective reaction between a thiol and a maleimide. 

 

Another possibility to selectively functionalize thiol groups is by using their ability to form 

disulfide bonds by oxidation (Figure 1.16). However, this strategy needs both the linker and the 

desirable specie to present a thiol functionality.   

 

 

Figure 1.16. Disulfide formation from two dithiols. 

 



  Chapter 1. Introduction 

_____________________________________________________________________________ 
 

19 

 

The last strategy used for the formation of disulfide bonds is the utilization of pyridyl disulfide 

(Figure 1.17).
115,116

 One great advantage of this methodology is that pyridine-2-thione is 

released during the reaction and can easily be monitored by spectrophotometry.  

 

Figure 1.17. Disulfide formation with pyridine-2-thione. 

 

1.7.4. Isocyanates 

Isocyanates can easily react with a wide range of nucleophiles such as amines, alcohols, and 

even water (Figure 1.18).
117

 Therefore, isocyanates are unspecific, non-selective and prone to 

hydrolysis, not allowing their use with non-anhydrous solvents and precluding their storage.
118

  

 

Figure 1.18. Urea, urethane and amide formation. 

 

1.7.5. Isothiocyanates 

Unlike isocyanates, isothiocyanates are highly selective to amine moieties and do not react in 

water or alcohol solvents. Moreover, isothiocyanates are stable and can be stored. The reaction 

is quantitative and can be used with different solvents such as DMSO, CHCl2, H2O or EtOH 

(Figure 1.19). Moreover, isothiourea formation is a widely used protocol in bioconjugation, for 

example in the case of isothiocyanate fluorescein (FITC) conjugation. Nevertheless, in the case 

of MSNs, by and large, FITC is introduced through grafting, by a silane linker.
89,119

 Very few 

examples of isothiourea functionalization in MSNs have been described.
120

    

 

Figure 1.19. Thiourea formation. 
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1.7.6. Carbonyl nucleophilic substitution 

The electrophilic carbon atoms of aldehydes and ketones are suitable for nucleophilic attack by 

amines. In this reaction, the initial C=O double bond is replaced by the formation of C=N bond 

(Figure 1.20).
105,106

 The final compound is an imine moiety, also known as Schiff base. Imines 

are formed when any primary amine reacts with an aldehyde or ketone under acid catalysis; 

otherwise the reaction is very slow or incomplete.  

 

Figure 1.20. Imine formation. 

 

Hydrazones are close relatives to imines, which are formed in reactions between aldehydes 

/ketones and hydrazines (Figure 1.21). The hydrazone bond is pH sensitive, and hydrolization 

occurs at low pH. Hydrazones are widely used as pH scissile linkers to control drug release in in 

acidic environments.
75,76

 

 

Figure 1.21. Hydrazone formation. 
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1.8.  Aims 

 

With high loading surface areas and low toxicity, MSNs exhibit outstanding properties for their 

application as carriers in drug delivery. However, diverse anchoring synthetic strategies are 

needed in order to functionalize MSNs domains with multiple substituents. A quick, clean, high 

yield and selective chemistry is necessary to functionalize different agents with the simplest and 

most direct procedure, which today is known under the concept of "click chemistry". In this 

PhD dissertation, it is proposed to explore efficient "click" reactions for the obtaining of 

Regioselective Orthogonal Bifunctionalized MSNs, in order to apply them for sensing and 

biomedical applications. To do so, a general methodology for the obtaining of complete 

regioselective materials must be carried out. Therefore, by synthetizing monofunctionalized 

MSNs by co-condensation approach, without removing the tensioactive, and by a direct reaction 

instead of a grafting process, it is possible to regioselectively bifunctionalize the outer surface 

with any desirable moiety. For example, if amino groups were added by co-condensation, while 

surfactant is protecting the inner surface, amines can easily react with activated acids or 

isothiocyanates that would give a new functionality, only on the external surface (Figure 1.22). 

This approach will yield complete regioselective bifunctionalized MSNs. 

 

Figure 1.22. Complete regioselective bifunctionalization of MSNs. 

 

Therefore, these regioselective bifunctionalized MSNs will be used for the design of new 

nanocarriers for biomedical applications. 

To this purpose, aminated-MSNs are used. Amino-MSNs have been widely studied,
121–123

 since 

they are easy to obtain and functionalize,
103,124

 in addition to having excellent properties for drug 

loading and release applications.
27,96,97,125

 Thus, from amino-MSNs, the preparation of three 

efficient regioselective bifunctionalized MSNs is proposed: amino-azide MSNs, amino-

isothiocyanate MSNs and amino-aldehyde MSNs (Figure 1.23).  
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Figure 1.23. Schematic representation of the thesis aims. 

 

Therefore, the aims of this PhD thesis are summarized as follows:  

1. Development of a methodology for the preparation of monodispersed and small (50-100 

nm) aminated-MSN (Chapter 2). 

2. Development of a general methodology for the functionalization of amino-MSNs with 4-

amino-1,8- naphthalimides to use them in sensor applications as logic gates (Chapter 3).  

3. Development of a regioselective methodology for the synthesis of amine-azide, amine-

isothiocyanate and amine-aldehyde MSNs. 

3.1. Synthesis, characterization and regioselective orthogonal bifunctionalization of amino-

azido MSNs (MSN-(NH2)i(N3)o) for their application as cell penetrating systems with 

quinolin foldamers (Chapter 4).  

3.2. Synthesis, characterization and regioselective orthogonal bifunctionalization of amino-

isothiocyanate MSNs. Application of these MSN-(NH2)i(NCS)o for controlled release 

of Ataluren for the treatment of Duchenne Muscular Dystrophy (DMD), stimulated by 

a high glutathione redox potential (GSH) media (Chapter 5).   

3.3. Synthesis, characterization and regioselective orthogonal bifunctionalization of amino-

aldehyde MSNs (MSN-(NH2)i(CHO)o) for their application as a dual doxorubicin-

campothecin pH controlled drug release system, for cancer treatment (Chapter 6).   
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Chapter 2. Synthesis of aminated-MSNs as 

precursor nanoparticles 

 

A reproducible experimental protocol for the synthesis and characterization of aminated MSNs 

to use them in later functionalizations is presented. The best conditions for the preparation of 

homogenous and reproducible MSN-(NH2) with a size between 50-100 nm are studied. 
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Chapter 2. Synthesis of aminated MSNs as precursor nanoparticles 

2.1. Introduction 

 

The preparation of mesoporous silica nanoparticles was first reported by Mobil Company in 

1992 as part of a project to find mesoporous materials with larger pores than zeolites.
1
 The 

synthetic methodology is based on the condensation of silica precursors, such as sodium silicate, 

tetraethylorthosilicate or tetramethylammonium silicate, in the presence of cationic surfactants 

in acidic or basic conditions. In fact, the procedure is an adaptation of Stöber’s methodology to 

prepare silica nanoparticles with a cationic surfactant incorporation.
2
 Thus, it is a combination 

of the so-called sol-gel process, widely used to prepare inorganic glasses, with cationic 

surfactants allowing the formation of monodisperse and ordered structures by micelle formation 

technique. Therefore, micelles act as a mold or template and give rise to the porous structure.
3,4

 

MSNs formation is achieved by two key reactions, hydrolysis and condensation (Figure 2.1).
5
 

 

Figure 2.1. Mechanism of silica condensation. 

The first stage of MSNs formation involves alkoxide hydrolysis around micelles, which are 

crucial to form the template porous structure. Then, (Si-OH) silanol groups are formed and a 

colloidal suspension is obtained. Finally, in the following step, silanol moieties polymerize by 

condensation to form three dimensional structures held together by siloxane bonds (Si-O-Si).
6
 

At this point, a compact and dense gel is formed (Figure 2.2). 

 

Figure 2.2. Preparation of MSNs scheme. 
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Cationic surfactant attracts the negatively charged silica species that are gathered around the 

micelles forming spherical silica structures (Figure 2.3). The hollow spaces that will provide the 

exotemplate framework of MSNs are filled with the inorganic precursor, which is then cured by 

hydrolysis and condensation. This way, the pore system of the template is copied as a “negative 

image”. After removal of the now-filled exotemplate framework, the incorporated material is 

obtained with a large specific surface area.
7
  

 

Figure 2.3. Formation of spherical MSNs.7 

The pH of MSNs solution decreases as the reaction proceeds, due to the loss of silica protons 

that have been protonated during the hydrolysis step. Once nucleation occurs, nanoparticles 

become opaque. Depending on the size of the nanoparticle, a higher or lower opacity is obtained 

and MSNs formation can be followed by naked eye. This process is also known as Tyndall 

effect (Figure 2.4).
8
 

 

Figure 2.4. Tyndall effect. 
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Finally, after the mesoporous nanoparticles have been formed, surfactant must be removed. To 

do so, three methods have been reported: calcination,
5
 reflux with ethanolic hydrochloric acid 

solution
9
 and ion exchange process with NH4NO3.

10
 These treatments allow the dissociation of 

electrostatic interactions between cationic surfactant head groups and anionic silicates, 

facilitating surfactant removal, giving the final MSNs.  

In order to obtain homogeneous nanoparticles, with the same size and shape, a great number of 

parameters, such as temperature, rate of addition, stirring, the amount of catalyst or pH must be 

controlled.
11–15

  

On the other hand, in order to confer complexity to MSNs, organic moieties must be 

functionalized into the inorganic surface of MSNs. A useful functional group that has been 

widely studied in co-condensation processes is amino moiety.
7,16,17

 Amines in general are used 

in bioconjugation since they can easily and selectively react with activated acids, 

isothiocyanates and aldehydes.
18,19

 Moreover, it has been reported that amine functionalized 

MSNs improve drug loading and enhance sustained drug release.
20–23

 

Furthermore, if amino moieties are introduced by co-condensation with the surfactant still 

present in MSNs matrix, it is possible to selectively and covalently functionalize the outer 

surface without eroding the inner domain. Therefore, amino regioselective and bifunctional 

MSNs with orthogonal groups can be obtained.  

Amino moieties are introduced by co-condensation processes usually by using amino-

propyltriethoxysilane (APTES) or aminopropyltrimethoxysilane (APTMS) during the MSNs 

condensation step.
9,20,21,23

 

A search in the literature revealed that, one of the most extended strategies for amino co-

condensation formation is the use of tetraethyl orthosilicate (TEOS) as silica precursor, 

cetrimonium bromide (CTAB) as surfactant and APTES as amine functional group, in a basic 

medium of NaOH or NH4OH.
9,17,20,21,24

 This synthetic process is known as S
+
I
-
, where (S

+
) is the 

quaternary amine surfactant in a basic medium and (I
-
) corresponds to the anionic silica 

precursor.
25

 

In addition, it has been proved that APTES is capable of orienting around water micelle 

interface and intercalate to the hydrophobic regions of the CTAB micelles during the co-

condensation reaction (Figure 2.5).
7,17,26

 This is the reason why amino moieties are preferably 

present inside the porous than at the external surface.
25,27

 Notwithstanding, in order to obtain 

stable structures, the upper limit of APTES incorporation into MSNs has been estimated to be 

less than 40 %.
17,25
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Figure 2.5. APTES intercalation in tensioactive micelles.21 

 

As far as MSNs synthesis is concerned, many different experimental procedures are described in 

the literature.
5,27

 MSNs preparation generally differ in the type of surfactant,
28

 the reaction 

medium (acidic or basic),
5
 the type of catalyst (NaOH or NH3),

12
 pH,

24
 temperature,

13
 the 

solvent (MeOH or EtOH)
2
 and the quantity

17
 and type

7
 of the functionalizing silane agent. 

Above all MSNs procedures that have been published,
21

 a methodology that is described as a 

two-step procedure for the obtaining of uniform aminated MSNs must be highlighten.
9 

In this 

process Leu Wei Lo et al.
9
 claim to obtain regular and monodispersed shape nanoparticles by 

adding directly amino groups into MSNs surface through co-condensation process. 

Nevertheless, this procedure has only been described for the preparation of 150 nm MSNs, and 

therefore it would be crucial to control the size of MSNs. Therefore, a study of the parameters 

that must be adjusted in order to obtain different MSNs size must be carried out.  

2.2. Synthesis of small aminated-MSNs 

 

As mentioned before, Leu Wei Lo et al. procedure for the obtaining of regular and uniform 

aminated-MSNs was only described for nanoparticles of 150 nm. Nevertheless, MSNs of 150 

nm size are too big for cellular applications. In fact, the optimal range for biological 

applications is within the 50-100 nm range, since smaller MSNs are cytotoxic and large MSNs 

are rapidly eliminated by RES (Reticuloendothelial System).
29–31

 Therefore, smaller MSNs need 

to be synthetized. Unfortunately, no studies of controlling the size of aminated-MSNs obtained 

by a two-step process have been reported. Therefore it is proposed to study what parameters can 

change the size of MSNs, in order to obtain MSNs in the range of 50-100 nm. 
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2.2.1. Experimental planning  

 

Therefore, to prepare smaller MSNs, first, the parameters that directly affect in MSNs size need 

to be determined. 

 

Variables that can affect MSNs size: 

 

 Concentration or quantity of surfactant, silica precursor and functional silane agent. 

 pH. 

 Temperature. 

 Speed of stirring. 

 Addition rate. 

 Reaction volume. 

 Lab material: flasks, magnets, syringes, heating and stirring plates. 

 Number of washing cycles. 

Above all these variables, a search in the literature revealed that parameters that affect the most 

in regular non functionalized MSNs size are pH, temperature and stirring rate.
11–13

 Thus pH, 

temperature and stirring rate variables were studied, while the other variables were fixed as the 

original methodology.
9
 

Variables that are kept invariable: 

 CTAB, TEOS and APTES concentration.  

 Lab materials: 250 mL round flask, magnet, heating and stirring plate and automatic 

injector. 

 Addition rate: 4.8 mL / h. 

 24 h harvesting process. 

 Washing cycles: 3 x H2O and 3 x EtOH. 

 CTAB removal with ethanolic [HCl]. 

Consequently, different nanoparticles, varying temperature, pH and stirring speed, are 

synthetized and a statistical study, following Yates factorial designs 2
(f-1)

, where f=2, is 

performed. With this technique, it is very easy to determine which of the three studied 

parameters is critical in MSNs synthesis for the obtaining of small nanoparticles. First, the 

effect of temperature and stirring rate is studied in a constant basic medium concentration, 

[NH4OH] = 0.5 M. Two levels of study, high and low, are chosen (Table 2.1). 
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Table 2.1. Temperature and stirring rate low and high levels of factorial design 2(f-1) where f=2. 

Parameters level Low High 

Temperature / 
o
C 50 70 

Stirring rate / rpm 600 1100 

 

A 2
1 

factors statistical experiment is performed, where A represents temperature and B 

corresponds to the stirring rate. In this case it is studied which factor is responsible for 

increasing MSNs size. MSNs size was measured by dynamic light scattering (DLS) by means of 

Z-average value or cumulants mean, which is the mean value of NPs size. Z-average is the 

variable to use in DLS if a number is required for quality monitoring purposes. Although MSNs 

size is preferably assessed by microscopy,
11,13

 for practical reasons DLS was used. The half-

width of the particle size distribution is about 10 % of the particle size.  

A positive effect increases MSNs size when the factor is increased, while a negative effect 

decreases the size when the factor is increased. The effects of temperature and stirring speed are 

summarized in Table 2.2.  

 

Table 2.2. Temperature and stirring rate effects. 

Samples Notation A B Z-average / nm E1 E2 Effects 

MSN2 1 - - 410 565 950 475 

MSN6 a + - 155 385 -370 -370 

MSN1 b - + 250 -255 -180 -180 

MSN4 ab + + 135 -115 140 140 

 

To visualize the effect of each condition a Lengh diagram is performed (Figure 2.6). 
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Figure 2.6. Length diagram effects of temperature and stirring rate. 
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Clearly, the highest effect is temperature (A). As it is a negative effect, a decrease in 

temperature results in the formation of larger nanoparticles. Thus, for the formation of small 

MSNs, temperature must be increased. Since temperature affects more than stirring rate in 

MSNs size, the effect of temperature and catalyst concentration (pH) on MSNs size is studied, 

with a constant stirring rate of 1100 rpm. Again, two levels of study, high and low, are chosen 

(Table 2.3). 

 

Table 2.3. Temperature and [NH4OH] low and high levels of factorial design 2(f-1) where f=2. 

Parameters level Low High 

Temperature / 
o
C 50 60 

[NH4OH] / M 0.2 0.5 

 

In this case, A represents temperature and B’ corresponds to [NH4OH]. The effects of 

temperature and [NH4OH] are summarized in Table 2.4.  

 

Table 2.4. Temperature and [NH4OH] effects. 

Samples Notation A B’ Z- average / nm E1 E2 Effects 

MSN11 1 - - 130 246 896 448 

MSN13 a + - 116 650 -184 -184 

MSN2 c - + 410 -14 404 404 

MSN7 ac + + 240 -170 -156 -156 

 

 

To visualize the effect of each condition a Lengh diagram is performed (Figure 2.7). 
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Figure 2.7. Length diagrame effects of temperature and [NH4OH]. 

 

In this case, the factor that affects the most in MSNs size is [NH4OH]. The higher the amount of 

catalyst the larger the particle size is achieved. Therefore, in order to minimize MSNs size, 
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[NH4OH] concentration must be decreased. The temperature effect compared with the amount 

of catalyst has practically no influence. Thus, [NH4OH] concentration is essential for the control 

of MSNs size.  

 

To sum up, the conditions that allow the preparation of small MSNs are 1100 rpm, 60 ºC and 

[NH4OH] = 0.2 - 0.5 M, where 0.2 M was used for 50 nm, and 0.5 M for 100 nm. Moreover, the 

factors that affect the most in MSNs size are the amount of catalyst, followed by temperature 

and stirring. These results are consistent with those described in the literature for non aminated 

mesoporous silica nanoparticles.
11–13

 

2.2.2. Simplex optimization methodology 

For the preparation of 50-100 nm MSNs, [NH4OH] concentration must range between 0.2 M - 

0.5 M, for a fixed 60 
o
C temperature and 1100 rpm stirring rate. Nevertheless, even though these 

conditions led to the formation of small MSNs, it is not known if these values are optimized or 

not. An excellent optimization method to use when good experimental results are obtained is the 

iterative sequential method, also known as Simplex algorithm. This methodology examines the 

feasible set adjacent vertices in sequence to ensure that, at every new vertex, the objective 

function increases or is unaffected. For each iteration, it chooses the variable that can make the 

biggest modification toward the minimum solution. That variable then replaces one of its 

covariables, which is most drastically limiting it, thereby shifting the simplex method to another 

part of the solution set and toward the final solution.
32

 

 

Based on the obtained best results (0.2 M, T = 60 
o
C and 1100 rpm) it is decided to vary the step 

of the three factors (pH, temperature and stirring rate) with an amplitude of 10 %. Temperature 

varies ± 5 
o
C, stirring rate ± 100 rpm and catalyst concentrations ± 0.05 M. The rest of the 

remaining variables are fixed as before. Initial conditions are presented in Table 2.5. 

Table 2.5. Simplex factors conditions. 

Samples Temperature / 
o
C Stirring rate /rpm [NH4OH] / M Size / nm 

Reference 60 1100 0.2 95 

A 60 1100 0.25 113 

B 60 1000 0.2 109 

C 65 1100 0.2 104 

 

By changing [NH4OH] concentration, temperature and rate stirring values 10 % from initial 

reference, very similar MSNs size are obtained. Small size differences fall within DLS 

variability, which is more or less 10 %.  Based on these results, a 10 % amplitude is no 
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significant enough to observe any difference in MSNs size. Nonetheless, a higher increase 

would give the same results that were obtained for factorial designs 2
(f-1)

. Therefore, in this case, 

the best conditions for the obtaining of 50 nm MSNs, are T = 60 
o
C, 1100 rpm and 

[NH4OH]=0.2 M and T = 60 
o
C, 1100 rpm and [NH4OH] = 0.5 M for 100 nm MSNs. 

2.2.3. MSNs scale up 

Regarding the original procedure,
9
 the volume was doubled satisfactorily from 50 mL to 100 

mL, obtaining regular MSNs. A scale-up procedure was also intended, ten times the initial 

volume, but it was difficult to maintain a continuous and homogeneous stirring rate and 

temperature, which resulted in non-regular MSNs. When the volume was quadrupled many 

nanoparticles were lost due to washing problems. Therefore the only way of getting large 

quantities of MSNs is by synthetizing several batches simultaneously, at a 100 mL volume 

scale, and characterize them together. By these means, regular and reproducible MSNs are 

synthetized.   

Nevertheless, it is worth nothing to mention that small MSNs synthesis presents a major 

drawback in comparison with large MSNs, which is the obtaining of a very low yield. The 

smaller the size, the difficult it is to recover MSNs. In this case, for small MSNs, 20-40 mg of 

MSNs are obtained in each 100 mL batch, while for large MSNs, 150 mg are prepared. 

Therefore, 50 nm MSNs would be only used for cellular experiments, while larger nanoparticles 

will be used to explore MSNs chemical reactive possibilities.  

2.3. MSNs characterization 

 

As mentioned before, two types of MSNs are synthetized, 100 nm MSNs for chemical 

approaches and smaller 50 nm for cellular applications. Both MSNs are characterized by means 

of dynamic light scattering (DLS), N2 adsorption and desorption isotherms (BET, BJH), small 

angle powder X-ray diffraction (SXRD) and transmission electron microscopy (TEM) 

techniques. 

2.3.1. CTAB removal 

Before any MSNs characterization, it is vital to ensure that the surfactant can be completely 

removed. CTAB removal can be achieved by ethanolic hydrochloric acid solution
9
 or by ion 

exchange process with NH4NO3.
10

 This procedure can be monitored by the tensioactive band 

disappearance at 2900 cm
-1

 (C-H tension) in FTIR spectrum (Figure 2.8). 
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Figure 2.8. FTIR spectra of CTAB removal in MSNs. 

 

2.3.2. Size determination  

DLS measurements relate particles movement with their hydrodynamic radius. Therefore, 

depending on external functional groups and medium, DLS results can vary. It is not an absolute 

technique but a very fast tool to measure the polydispersity of different samples. Nevertheless, 

in order to obtain robust and homogeneous results it is essential to determine the suitable work 

concentration for each sample. For MSNs, and after several testing and adjustment experiments, 

a concentration of 0.1 mg·mL
-1 

(EtOH)
 
and 0.05 mg·mL

-1
 (H2O) were found for size and zeta 

measurements, respectively. Better results are obtained if MSNs have just been synthetized and 

have not been dried.  

Due to the hydrodynamic radius effect, there is a pronounced difference between the size 

obtained by either DLS or TEM.  In fact, in the case of aminated-MSNs, DLS size is always 

higher than TEM.
11

 For these experimental conditions, more or less a TEM size of 50 nm 

corresponds to a 100 nm DLS size, and a TEM size of 100 nm is comparable to DLS 150 nm. 

 

Table 2.6. DLS and TEM MSNs size. 

Size / nm TEM DLS pdI -pot / mV 

MSN-(NH2) 

50 129 0.19 -1.7 

100 142 0.07 -12 

 

As for zeta potential (-pot), considering that APTES pKa is around 10, MSNs surface is 

predominantly positively charged at pH=7 and therefore an increase in total zeta potential is 
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obtained. Typically, non-functionalized MSNs present a zeta potential around -30 mV that 

increase to -10-0 mV when amino groups are added.
33–35

 

For TEM micrographs, samples were ultrasonically dispersed in EtOH at a concentration of 0.1 

mg·mL
-1

 and deposited on an amorphous, porous carbon grid. The mesoporous structure of 

MSNs can be clearly observed (Figure 2.9) demonstrating that MSNs have regular 

mesochannels of 2.2 nm.  

 

  

Figure 2.9. TEM micrographs of MSN-(NH2) of 50 nm (a) and 100 nm (b). 

 

MSNs are obtained with a good polydispersity either for small or large MSNs. Both MSNs are 

homogeneous and monodisperse (Figure 2.10). 

   

Figure 2.10. TEM micrographs showing monodispersed MSN-(NH2) of 100 nm. 

 

2.3.3. Surface Area and porous order characterization 

N2 adsorption and desorption isotherms (BET) allow to estimate MSNs surface area. After 

numerous tests processes, the following conditions were determined: CTAB removal must be 

completely achieved, MSNs must be washed several times with water and ethanol, final ethanol 

solution must be removed under reduced pressure, samples must be sonicated until the 
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formation of a powder solid and finally MSNs must be treated in a lyophilizer at 0.05 mBar, -

0.76 
o
C, 24 h, prior to conduct adsorption experiments. Surface areas for 50 nm and 100 nm 

MSNs are shown in Figure 2.11. 
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Figure 2.11. N2 adsorption-desorption and BJH pore size distribution plots of MSN-(NH2) of 50 nm (a/b) and 

100 nm (c/d). 

 

N2 adsorption/desorption measurements for MSN-(NH2) showed type IV isotherms, which 

display clear H1 hysteresis loop characteristic of mesoporous materials. BET surface areas were 

over 600 m
2
·g

-1
 and 1100 m

2
·g

-1
 for MSN-(NH2) (50 nm) and MSN-(NH2) (100 nm) 

respectively. BJH adsorption cumulative volume pore values recorded for MSN-(NH2) were 

0.55 cm
3
·g

-1
 and 0.72 cm

3
·g

-1
 respectively. MSN present a very narrow pore size distribution 

centered at 2.5 nm (Table 2.7). These values correspond to similar reported aminated MSNs.
17

 

 

Table 2.7. N2 adsorption-desorption and BJH pore size distribution plots of MSN-(NH2) of 50 and 100 nm. 

 MSN-(NH2) (50  nm) (100 nm) 

BET surface area (m
2
/g) 599.80 1120.90 

BJH pore volume (cm
3
/g) 0.55 0.72 

Pore size (nm) 2.50 2.20 
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2.3.4. X-Ray diffraction (SXRD) 

Small angle powered X-ray diffraction (SXRD) is a non-destructive technique that allows to 

study the internal structure of mesoporous MSNs. The diffractograms provide information on 

the frequency and the internal order of the porous nanoparticles. This technique is particularly 

useful to verify the integrity of the mesoporous MSNs structure after chemical manipulations 

that can weaken its structure. Powder XRD analysis indicates highly ordered structures with 

d100 at 2.3 and with lighter faceted hexagon-shape at 4.1 (d110) and 4.2 nm (d200) (Figure 

2.12). In this case, MSNs are prepared similarly to BET experiments.  
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Figure 2.12. SXRD of MSN-(NH2) of 50 and 100 nm. 

 

Once MSN-(NH2) have been synthetized and characterized the reactivity of amino moieties will 

be tested. 

2.4. Quantitative determination of amino groups in MSNs 

 

In order to estimate the quantity of amino groups present in MSNs, a comparison of the organic 

content of non-functionalized and functionalized MSNs can be achieved. By means of TGA 

(Thermogravimetric analysis) and OEA (Organic elemental analysis) the estimated percentage 

of APTES is estimated to be 17 % and 18 % respectively. TGA and OEA techniques are very 

useful if the total amount of organic content wants to be determined, but cannot differentiate 

between internal and external functionalization. 

Nevertheless, it is possible to estimate the internal and outer degree of APTES functionalization 

by using chemical reactions. For example, total amino surface can be reacted with FITC 

(Isothiocyanate fluorescein) and the degree of FITC functionalization will give total amino 

coverage. On the other hand, if the same process is repeated but without the tensioactive 

removal process, FITC will only react with external amino moieties and therefore an estimated 
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percentage of external amino functionalization can be obtained. The difference between total 

and external FITC conjugation will give the amount of inner amines.  

For total APTES determination, 4.41·10
-7

 mol·MSNmg
-1

 were obtained, whereas 1.32·10
-7

 

mol·MSNmg
-1

 corresponded to the external surface and consequently 3.09·10
-7

 mol·MSNmg
-1

 

are present in the inner surface. Thus, 70 % of amino moieties are located at the inner surface 

while 30 % remain at the external domain. There are twice more amino groups inside the pores 

than outside. These results are consistent with literature values for amino co-condensation 

processes, where generally amine moieties are present preferentially at the inner surface.
25,27

   

2.5. Conclusions  

 

 A methodology for the synthesis of monodispersed and uniform small (50 nm) and 

large (100 nm) aminated MSNs has been carried out. 

 For small MSNs (50 nm) 20-40 mg per 100 mL of MSNs are obtained, while large 

MSNs (100 nm) give 150 mg per 100 mL. 

 Monodispersed MSN-(NH2) of 50 nm and 100 nm have been entirely characterized by 

usual techniques (IR, DLS, BET, TEM and XRD). 

 An experimental protocol for each characterization technique has been achieved in 

order to obtain information about MSNs, porous size, MSNs morphology, surface area 

and the quantity of amines that have been functionalized.  
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Chapter 3. Amine-naphthalimide functionalized 

MSNs for chemical sensing.  

 

In this chapter, an efficient, high loading and fast methodology for the attachment of a variety of 

naphthalimides into aminated-MSNs is described. These naphthalimides have been tested as 

potential logic gates for the detection of H
+
 and F

-
. 
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Chapter 3. Amine-naphthalimide functionalized MSNs for chemical sensing 

 

3.1. Introduction 

 

In recent years, the study of complex systems, such as biological samples has prompted the 

design of fluorescent chemosensors. Fluorescent sensors provide a sensitive and selective 

method to recognize and evaluate the concentration of different substrates.
1
 An effective 

fluorescent sensor is a system capable of interacting with the desired specie in solution and 

signaling its presence by changing its fluorescence properties (Figure 3.1). 

 

 

Figure 3.1. Chemosensor scheme.  

By these means, fluorophores can be used for applications such as staining cell membranes, 

nuclei and lysosomes, but also to visualize intracellular pH, monitor pH changes, and quantify 

intracellular analyte concentrations in real time which can give new insights into the chemical 

microenvironment on the subcellular level.
2
 For example, it has been described that pH changes 

might be an indicator of cancer disease development.
2
 Therefore, the design of a chemical 

device sensible to pH, would be a helpful strategy for disease diagnosis. 

On the other hand, anions also play a crucial role in physiologic and environmental level.
3
 In 

particular, anions such as fluoride (F
-
), are harmful to the environment and consequently to 

humans. In addition, fluoride is of particular importance owing to its established role in dental 

care and treatment of osteoporosis. Fluoride is easily absorbed by the body but is slowly 

excreted. As a result, overexposure to fluoride can lead to acute gastric and kidney problems. In 

several underdeveloped countries, excessive fluoride levels in drinking water have been 

reported to cause bone disease fluorosis.
4
 For these reasons, a method for the detection and 

sensing of F
-
 inside live cells, with high selectivity, is of current interest in the chemosensor 

research field.  

Nowadays, with the development of nanotechnology applications, most of the efforts to find 

next generation sensors are based on fluoroionophores functionalized into nanoparticles.
5
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Fluorescent nanoparticles present better properties than individual molecular probes.
6
 NPs are 

brighter than individual fluorophores, since one particle contains a high number of dye 

molecules.
2 

Moreover, the main advantage of silica MSNs among other nanoparticles, is that 

silica is photophysically inert, transparent and can protect and stabilize incorporated dyes in its 

inner surface. Therefore, it is proposed to functionalize a pH and fluoride sensor into MSNs and 

test its sensibility. 

 

Generally, ion recognition moieties are formed by polyamines, polyethers, carboxylic acids, 

ureas, thioureas and amide acids. As for fluorescent probes, the most studied systems are 

dipyrromethanes, BODIPYS, calixarenes, FITC, rhodamine and naphthalimides.
7
 Among them, 

naphthalimides have been widely studied since synthetic modifications are easily 

accommodated on either the aromatic naphthalene (R1) or at the N-imide site moiety itself (R2) 

(Figure 3.2). This excellent property allows naphthalimides to be obtained with different and 

diverse functional groups and structural moieties. 

 

 

Figure 3.2. Naphthalimide functionalization points. 

Moreover, naphthalimides present a broad emission band (460-600nm), high quantum yields 

and good photostability, which allow the use of these compounds as excellent sensors for 

fluorescent detection applications such as pH sensors.
3
 

 

A search in literature revealed that, amine naphthalimides moieties are widely used as pH 

sensors since they are highly sensible to pH changes in the environment.
3,8,9

 On the other hand, 

urea and thiourea-containing fragments have been extensively used for the formation of 

complexes with anions, since the hydrogen-bonding ability of these functional groups 

commonly results in the formation of quite stable complexes. Particularly, thioureas have been 

reported as excellent fluoride sensors.
3,10–12

 Thus, a naphthalimide sensor bearing an amine and 

a thiourea group for fluoride and proton sensing could be used for its functionalization into 

MSNs.  

In addition, by combining more than one receptor for different analytes, it is possible to build a 

system that would respond to different targets as a logic gate. A molecular logic gate is a 

molecule which carries out a logical operation based on one or more physical or chemical inputs 

with one or more response signals or outputs, normally based on spectroscopic changes. 

Currently, molecular logic gates are capable of applying combinatorial and sequential 
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operations, such as arithmetic operations and memory storage algorithms as well as operations 

for applications such as intelligent materials, pro-drug activation and diagnostics actuation.
13,14

 

 

Since the first molecular AND gate was reported in 1993 by de Silva et al.
15

, the 

implementation of logic principles at the molecular level has attracted a great deal of interest. So 

far, various molecular logic gates have been well studied and are able to process information 

and perform arithmetic operations.
16

 There are many reports on molecular logic gates that 

employ fluorescent changes as outputs.
3,13

 For example, one of the most universal and versatile 

gates is the so-called NOR type, since it can be combined in various ways to create other gates 

such as NOT, AND, OR and NAND gate. These type of NOR gates have been used for example 

in the detection of explosive compounds and nerve agents. 17
 In this case, a positive output is 

obtained when no hazardous compounds are present and a negative output is obtained if one or 

the two compounds are present.
17 In this manner, a simple assay can replace two different test 

protocols, commonly used for assessing each threat individually.  

 

However, very little has been carried out with nanoparticles. In fact, to our knowledge there is 

only one example of naphthalimides functionalized in MSNs used as molecular logic gate and 

for the particular example of an INHIBIT logic gate.
8
 Therefore, the synthesis of a 

naphthalimide bearing a suitable pH and fluoride moiety-sensor for its application as a logic 

gate is envisaged.  

3.2. Design of pH and fluoride sensor naphthalimide-MSN 

 

A search in literature revealed that, although there are some examples of silica nanoparticles for 

fluorescent sensing,
18–23

 there are just few articles using naphthalimides in silica nanoparticles 

or MSNs,
6,8,9,24,25

 where just one reference as proton and fluoride MSN-logic gate has been 

described.
8
 In these examples, naphthalimides are mostly attached to the silica matrix by 

grafting and just few references attach naphthalimide by a covalent reaction between amino-

silica nanoparticles and either activated carboxylic acid naphthalimide
9,25

 or CuAAC click 

chemistry reaction.
6
 Since, in this case, MSNs have been synthetized with amino moieties; it is 

proposed to functionalize naphthalimides by a covalent reaction.  

By and large, amino moieties in naphthalimides systems are added by the 4-position of the 

aromatic naphthalene position (R1) either by direct bonding
3,9,10

 or by a spacer moiety
8
. This 

position is generally chosen for proton receptors due to the nature of the internal charge transfer 

(ICT) state of 4-amine-1,8-naphthalimides and because it gives rise to a selective photoinduced 

electron transfer (PET) mechanism. 
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On the other hand, urea and isothiourea moieties have generally been introduced to 

naphthalimide sensors through a linker after amine moiety addition at the 4-position of the 

aromatic naphthalene (R1).
8,11,26,27

  Nevertheless, instead of adding the isothiourea moiety next 

to the amine position, while introducing another functional group to functionalize the 

naphthalimide system to the MSNs, it is proposed to use directly the thiourea moiety as a linker 

bond, between the naphthalimide system and the MSNs. 

 

Since MSNs present amino groups in its structure and isothiocyanates react very well with 

amines, giving isothioureas, it is believed that isothiourea receptor could be added directly to 

the MSNs, acting both as a receptor and as a linker. Therefore, it is proposed to functionalize 4-

amine-1,8-naphthalimides with an isothiocyanate moiety and conjugate the system to amine-

MSNs, giving the isothiourea sensor. As a result, while R1 can be used to functionalize any 

amine moiety, a second sensor for the detection of F
-
 can be easily added to the imide moiety R2 

forming the thiourea receptor (Figure 3.3). 

 

 

Figure 3.3. Fluoride-Proton sensor. 

In order to create a little chemical library, three types of amine moieties are chosen: butyl, 

methylpropyl and methyl piperazine groups. Therefore, four types of naphthalimides 

functionalized in 4-position were proposed: 4- bromo-1,8- naphthalimide, 4-methylpiperazine-

1,8-naphthalimide, 4-butyl-1,8-naphthalimide and 4-methylpropyl-1,8- naphthalimide. In this 

case, butyl and methylpropyl amines are directly bonded to the naphthalimide structure, while 

the N-methyl of piperazine is separated from the naphthalimide structure.  

3.3. Synthesis of pH and fluoride sensor naphthalimide-MSN 

 

Starting with 4-bromo-1,8-naphthalic anhydride (1), a mono protected diamine linker (2) is used 

to form the corresponding naphthalimide 3. Compound 3 is then deprotected and transformed 

into isothiocyanate naphthalimide 6, which further reacts with aminated-MSNs forming the 

thiourea bond (Figure 3.4). 
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Figure 3.4. Global scheme of isothiocyanate synthetic approach. 

 

MSNs functionalization with isothiocyanate 4-bromo1,8-naphthalimide 6 is rapidly and 

successfully achieved. Yellow colored MSNs (MSN-(NaphBr)) are obtained with an absorption 

band at 340 nm and maximum fluorescence at 400 nm (Figure 3.5).  
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Figure 3.5. Normalized absorption and fluorescence spectra of MSN-(NaphBr). 

In order to functionalize 4-amine-1,8-naphthalimides, first the direct bromo-amino nucleophilic 

substitution to MSN-(NaphBr) with the pertinent amino moiety (butyl, methylpropyl and 

methylpiperazine) is tested (Figure 3.6). 

 

Figure 3.6. Direct bromo substitution in MSNs. 

In this case, although the reaction takes place and MSNs color is more intense, a very weak 

absorption spectrum is obtained. This effect may be attributed to the fact that nucleophilic 
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substitution in solid state is not efficient. Therefore, it is better to carry out the nucleophilic 

substitution in solution, before MSNs functionalization. Since isothiocyanate bromo 

naphthalimide 3 has been easily functionalized in MSNs surface, it is proposed to repeat the 

same procedure for aminated naphthalimides. Therefore, an isothiocyanate moiety must be 

added in the naphthalimide structure. At this point, just to highlight the importance of an easy 

and efficient chemical reaction in solid state for the correct functionalization of MSNs. 

The global scheme for the synthesis of naphthalimides bearing an amine in position 4 with an 

isothiocyanate linker at the N-imide position is presented in Figure 3.7.   

 

Figure 3.7. Global scheme for the conjugation of 4-amino-1,8-naphthalimides in MSNs. 

 

First, 4-bromo-naphthalic anhydride is reacted with mono protected ethylenediamine (2, 

EdaBOC). Next, nucleophilic substitution of 4-bromo EdaBOC naphthalimide 3 with the 

corresponding amine, methylpiperazine, butylamine and methylpropylamine is performed. Then 

4-amino EdaBOC naphthalimide 7-9 is deprotected with TFA 10-12 and isothiocyanate moiety 

is formed. Compounds 3;7-9 and 6;13-15 are purified and characterized by standard 

spectroscopic techniques (
1
H-RMN, 

13
C-RMN, IR and OEA or HRMS, Chapter 7). Finally, 

these new isothiocyanate naphthalimides (13-15) are reacted with MSNs to give MSN-

(NaphPIP), MSN-(NaphBut) and MSN-(NaphMetProp). This synthetic strategy has the 

advantage to easily functionalize MSN-(NH2) with any 4-naphthalimide that is not 

functionalized at the imide position. Moreover, MSN-naphthalimide functionalization can be 

carried out in EtOH and water solvents. In all cases intense yellow MSNs are formed.  

As an example, by monitoring FTIR spectrum of MSN-(NaphPIP), it can be observed the 

formation of a new band at 1456-1377 cm
-1

 corresponding to the naphthalimide rings (Figure 

3.8).  
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Figure 3.8. FTIR of functionalized MSN-(NaphPIP). 

Absorption and fluorescence spectra of MSN-(NaphPIP), MSN-(NaphBut) and MSN-

(NaphMetProp) are presented below (Figure 3.9, 3.10 and 3.11). 
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Figure 3.9. Normalized absorption and fluorescence spectra of MSN-(NapthPIP)                             

  λmaxabs=400 nm λmaxem=525 nm. 
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Figure 3.10. Normalized absorption and fluorescence spectra of MSN-(NapthBut)  

λmaxabs=442 nm λmaxem=529 nm                             
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Figure 3.11. Normalized absorption and fluorescence spectra of MSN-(NapthMetProp)                   

   λmaxabs=428 nm λmaxem=529 nm. 

 

To prove that naphthalimide functionalization was not affecting MSNs morphology, TEM 

micrographs of Naph-MSNs were carried out .The expected spherical-hexagonal morphology 

was observed after the treatment. Ordered and monodispersed Naph-MSNs are obtained (Figure 

3.12). 

   

Figure 3.12. TEM micrographs of MSN-(NaphtPIP), MSN-(NaphhBut), MSN-(NaphhMetProp). 

3.3.1. Functionalization quantification 

Thermogravimetric analysis (TGA) is used to assess the degree of naphthalimide 

functionalization in MSNs. To do so, initial MSNs are compared to functionalized MSNs and 

the difference is attributed to naphthalimide incorporation. In table 3.1 it is shown 

naphthalimide quantification by TGA analysis. 

Table 3.1.TGA quantification of naphthalimide. 

Nanoparticles Percentage of naphthalimide / % 

MSN-(NaphPIP) 21 

MSN-(NaphBut) 27 

MSN-(NaphMetProp) 22 
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The average sensor functionalization in MSNs is 23 %. This result is comparable to described 

values.
28

 Furthermore, similar values were obtained by using OEA technique. 

3.3.2. Reproducibility of MSNs functionalization 

Naphthalimide functionalization is carried out by duplicate. The aim is to determine if the 

method is robust, repeatable and reproducible. In all the cases, naphthalimides were successfully 

functionalized, obtaining the same absorption and emission spectra for each duplicate. In figure 

3.13 it is only presented an example for MSN-(NaphPIP).  
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Figure 3.13. Absorption spectra of different samples of MSN-(NapthPIP).  

3.4. Synthesis of reference naphthalimides 

 

In order to study naphthalimide-MSNs, reference naphthalimides (MM) are synthesized 

(Characterization in Chapter 7). The synthesis and characterization of these reference molecules 

follows the same synthetic procedure that has been presented before (Figure 3.8), with the only 

difference that at the end, naphthalimides are reacted with butylamine instead of amine-MSNs. 

Therefore, reference molecules possess the same number of carbons and the same linker 

distance than MSNs systems and thus the only difference between the two systems is the silica 

matrix (Figure 3.14). 

 

Figure 3.14. Last synthetic step of reference model molecules. 
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3.5. Titration with acid 
 

Acid titrations of naphthalimide-MSNs systems are carried out in order to test the pH sensing 

performance of these systems. 

Regarding MSN-(NaphPIP) system, it is observed that by increasing the amount of protons, 

there is virtually no change in absorption spectrum (Figure 3.16, a), while fluorescence intensity 

is enhanced (Figure 3.15,b). 

 

 

 

 

 

 

 

Figure 3.15. TFA a) absorption spectra and b) fluorescence spectra titration of MSN-(NaphPIP). 

This fluorescence enhancement effect is reported for naphthalimides having an electron donor 

moiety in its structure acting as quencher of PET mechanism. When the receptor moiety and 

signaling subunit are covalently linked by a spacer group no ground-state –*or n–* 

interactions are allowed to occur. When no analyte is bound, electron transfer mechanism (PET) 

takes place from the chelator to the fluorophore, switching off the sensor, while when the 

receptor is bound, redox potential is perturbed, slowing down PET process, switching on the 

sensor. In this regard, PET process is particularly useful, as it is an “on–off” response. 

Fluorescent enhancement upon addition of TFA can be attributed to the protonation of the 

nitrogen atom in the amino function, which can block the partial PET process (Figure3.16).
9
  

 

Figure 3.16. PET mechanism in MSN-(NaphPIP) upon acid addition. 
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The fluorescence properties of MSN-(NaphPIP) are evaluated over 4-6 range of pH. 

Fluorescence intensity decreases when pH increases (Figure 3.17). 
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Figure 3.17. Fluorescence intensity behavior in a pH=4.5-5.5 range. 

 

However, as for MSN-(NaphBut) and MSN-(NaphMetProp) the opposite phenomenom is 

observed. In this case, since butyl and methylpropyl amine are directly bound to the fluorescent 

sensor, the system would give a “push–pull” based internal charge transfer (ICT) excited state, 

caused by the electron donating amine and the electron withdrawing imide. After excitation, the 

charge distribution in the fluorophore is inverted (Figure 3.18). This ICT character gives rise to 

a large excited-state dipole and, in turn, new blue shifted band is formed at 330 nm, while 442 

nm band gradually vanishes (Figure 3.19, a).  

 

 

Figure 3.18. Schematic representation of the ICT excited state in 4-amine-1,8-naphthalimide. 

 

In this case, fluorescence is not enhanced but decreases instead, fluorescence intensity is 

drastically minimized (Figure 3.19, b). Both absorbance and fluorescence spectra decrease 

exponentially with TFA additions. 
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Figure 3.19. TFA a) absorption and b) fluorescence spectra titration of MSN-(NaphBut). 

As for MSN-(NaphMetProp) the same behavior is observed. Absorption band at 428 nm 

vanishes and a new band appears at 327 nm (Figure 3.20, a). Regarding fluorescence spectrum, 

fluorescence intensity is exponentially diminished (Figure 3.20, b). Nonetheless, MSN-

(NaphBut) fluorescence fall is higher than MSN-(NaphMetProp). MSN-(NaphBut) fluorescence 

intensity decreases from 500 to 150 a.u, whereas MSN-(NaphMetProp) fluorescence intensity 

decreases from 350 to 50 a.u. Thus, MSN-(NaphBut) seems more sensible to acid pH changes 

than MSN-(NaphMetProp). 

 

 

 

 

 

 

 

 

Figure 3.20. TFA a) absorption and fluorescence b) spectra titration of MSN-(NaphMetProp). 

The fluorescence properties of MSN-(NaphBut) and MSN-(NaphMetProp) are evaluated over a 

biologically range of pH=3-6. Fluorescence intensity increases when pH increases for both 

MSN-(NaphBut) and MSN-(NaphMetProp) (Figure 3.21, a). To compare fluorescence 

deactivation between MSN-(NaphBut) and MSN-(NaphMetProp) an emission intensity vs 

proton concentration is plotted, which is also known as a Stern-Volmer plot (Figure 3.21, b). 
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MSN-(NaphBut) and MSN-(MetProp) describe a fluorescence intensity fall, more pronounced 

in the case of MSN-(NaphBut). 
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Figure 3.21. a) Fluorescence intensity behaviour in a pH=3-6 range, b) Sterm Volmer plots of MSN-(NaphBut) 

and MSN-(NaphMetProp). 

 

In this case, the constant of decay of MSN-(NaphBut) presents a one-fold decay increase 

(Kd=2.5·10
3
 M

-1
) in comparison with MSN-(NaphMetProp) (Kd=4·10

2 
M

-1
, log Kd=3.6). 

Therefore, MSN-(NaphBut) is one-fold more sensitive to H
+
 than MSN-(NaphMetProp).  

 

It seems clear that with TFA additions, PET-based sensors such as MSN-(NaphPIP) present no 

absorption changes while fluorescence intensity is enhanced. Whereas ICT-based sensors such 

as MSN-(NaphBut) and MSN-(NaphMetProp), where amine moiety is directly bound to the 

naphthalimide ring, H-bonding interactions show a blue shift in the absorption maximum. 

MSN-(NaphBut) and MSN-(NaphMetProp) describe a fluorescence intensity fall, more 

pronounced in the case of MSN-(NaphBut), with a blue or hypsochromic absorption shift. So, 

for their use as a dual sensor system logic gate MSN-(NaphBut) seems a better candidate than 

MSN-(NaphPIP) and MSN-(NaphMetProp), since pH changes can be monitored easily either by 

absorption or fluorescence spectra.  

3.6. Fluoride titration of MSN-(NaphBut) 

 

In order to elucidate if MSN-(NaphBut) could be used as a valuable sensor system, its behavior 

with F
-
 addition is tested. 

Concerning absorption spectra it is observed that, with little F
-
 addition, 450 nm absorption band 

is not really changed, while when large excess of F
-
 (50 eq.) is added a dramatic red shift takes 
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place at 530 nm (Figure 3.22, a). These results are in accordance with literature references for 

similar sensors.
1,8,11

  

 

 

 

 

 

 

 

 

 

 

Figure 3.22. F- absorption spectra titration of MSN-(NaphBut). 

With no fluoride addition, acetonitrile solutions of MSN-(NaphBut) were yellow due to the 

presence of a band at 430 nm. Nevertheless, upon addition of increasing quantities of the 

fluoride anion, 430 nm band progressively decreased, while two new absorption bands at 550 

nm and 340 nm increased in intensity, with two clear isosbestic points at 370 nm and 485 nm. 

The formation of these new visible bands induced a change in color from pale yellow to purple. 

There was a bathochromic shift of the absorption band, together with simultaneous growth of a 

new red-shifted band. Moreover, the isosbestic points suggests the presence of more than one 

species in the medium.
10

 What it seems could be happening is a two-step process. First the 

formation of a hydrogen bonding complex between fluoride and thiourea takes place and 

secondly, the receptor is deprotonated by the anion (Figure 3.23).
1,11

 

 

Figure 3.23. Proposed binding mode of F- with MSN-(NaphBut). 

 

The variation in the charge transfer reaction upon interaction with F
- 

may be attributed to 

deprotonation of acidic thiourea or through hydrogen bonding interaction.
10
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revealed with the clear appearance of a new absorption band at longer wavelength. The 

absorption at 450 nm is almost “switched off” upon gradual addition of F
- 
while the 530 nm 

absorption is “switched on”.
1,11

 

As for fluorescence behavior, fluorescence intensity is considerably minimized upon the 

addition of F
-
 (Figure 3.22,b). The influence of F

- 
ions on fluorescence quenching has also been 

reported for similar systems.
1,8,11

 

The mechanism for this quenching process seems to follow PET process, which takes place 

from the thiourea receptor to the excited state of the naphthalimide fluorophore upon anion 

recognition. Unlike many PET sensors for cations, the fluorescence of the dye is “switched off” 

rather than “switched on” upon ion recognition. This quenching process may be due to the fact 

that, prior to the recognition process, the excited state of the fluorophore is not quenched by 

electron transfer from the receptor to the fluorophore. However, after adding the F
-
, the 

formation of the anion-receptor hydrogen bonding complex occur and the reduction potential of 

the receptor is increased, making the electron transfer more feasible and therefore, decreasing 

the fluorescence intensity (Figure 3.24).
1
 

 

Figure 3.24. PET behavior upon addition of F-. 

 

In order to assess the constant of decay (Kd) of MSN-(NaphBut), a Stern-Volmer plot of the 

emission intensity vs fluoride concentration is plotted (Figure 3.25).  
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Figure 3.25. Sterm Volmer plot of MSN-(NaphBut)  
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In this case, two constant of decay were obtained, corresponding to the two steps of the 

proposed fluoride binding. In the first step, fluoride and thiourea complex is achieved, with a 

Kd1=1.0·10
3
 M

-1 
(log Kd1=3). Whereas, after deprotonation a new specie is formed, with a 

Kd2=2.2·10
3
 M

-1 
(log Kd2=3.3). These constants of decay are comparable with the affinity of 

MSN-(NaphBut) with H
+
 (Kd=2.5·10

3
 M

-1
, log Kd=3.6). MSN-(NaphBut) presents a similar 

affinity for H
+ 

than for F
-
. To the best of our knowledge, no Kd values were found for 

naphthalimides functionalized in MSNs.
6,8,9

 Nevertheless, a search in literature revealed that for 

similar individual naphthalimides, not functionalized in MSNs, the affinity for fluoride is in the 

range of logK=3.5, which is very similar to MSN-(NaphBut) constant of decay (Kd=2.2·10
3 
M

-1
; 

logKd=3.3). Moreover, for similar sensitive fluoride compounds, comparable behavior and Kd 

values were obtained.
29

 Therefore it can be concluded that MSN-(NaphBut) sensibility for [H
+
] 

and fluoride, is comparable with similar described sensors.  

 

On the other hand, it is worth mentioning that MSN-(NaphBut) absorbance shifts and change of 

color, upon acid and anion addition, can be observed by naked-eye (Figure 3.26).  

 

 

Figure 3.26. Color changes upon TFA and F- titrations. 

 

When TFA is added to MSN-(NaphBut), the yellow solution turns incolor with subsequent blue 

shift to 250 nm, while when F
-
 is added; the solution becomes pink with a red shift to 530 nm 

(Figure 3.27). When both acid and fluoride are added, solution remains yellow but its intensity 

is decreased. These results are in accordance with literature descriptions.
30
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Figure 3.27. Absorption spectra titration of MSN-(NaphBut). 

 

Thus, if fluorescence decreases when acid and fluoride are added separately but also at the same 

time, this system is acting as a NOR gate, where with any input the output is always 0. Only 

fluorescence will be detected if no protons or fluoride anions are present in the medium (Table 

3.2).  

Table 3.2. Truth table of NOR logic gate. 

 

 

Therefore, this system could be useful to detect samples with fluoride anions, in an acidic 

environment or that present fluoride anions in an acidic medium. With some enhancements, 

MSN-(NaphBut) could be used as good system for the detection of pH changes at the biologic 

range and anionic species in cellular media by monitoring their changes with confocal 

microscopy.
2,31

 

In the case of MSN-(NaphBut), the system works as a NOR gate, which can be used as a rapid 

assessment of two species at the same time. With the general procedure presented before, where 

isothiourea is directly added to the MSNs, the synthesis of new systems from 1,8-naphthalimide 

scaffolds can be easily achieved.  

 

Input H
+
 Input F

-
 Output 

0 0 1 

1 0 0 

0 1 0 

1 1 0 
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3.7. Conclusions and Outlook 

 

 A general, versatile and straightforward procedure for the introduction of 4-amino-1,8-

naphthalimides onto aminated-MSNs, by using isothiocyanate “click” reaction has been 

developed. 

 Above all systems, MSN-(NaphBut) present interesting properties as proton and 

fluoride sensor, since its sensitivity is comparable with similar published small 

molecule sensors.  

 Moreover, the system respond as a NOR logic gate, which can be used as a rapid 

assessment of two species at the same time. Only an output is obtained when all the 

inputs are 0. To our knowledge, no MSN-naphthalimide have been reported as NOR 

gates in the literature. 

Given that MSN-(NaphBut) system has been proven to respond dually to different fluoride and 

pH concentrations, and that there are little examples of MSNs acting as logical gate, it is firmly 

believed that MSN-(NaphBut) could be a potential candidate for the development of a new 

generation of digital devices.  
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Chapter 4. Amine-azido-MSNs for their use as 

penetrating cell carriers. 
 

 

A protocol to prepare regioselective bifunctionalized azido-amine MSNs has been described. 

These MSNs have been functionalized with a quinolin cationic foldamer for the first time. The 

ability of these foldamer-MSNs to cross cytoplasmic membranes has been studied. Intracellular 

DOX release applications have also been carried out.  
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Chapter 4. Amine-azido-MSNs for their use as penetrating cell carriers 

 

4.1. Introduction 

 

4.1.1. The importance of crossing the cellular barrier 

 

One of the key points for an efficient drug delivery system is the cellular uptake of the carrier. 

Pharmaceutical drugs must be delivered intracellularly to perform their therapeutic action in the 

cytoplasm or in individual organelles, such as nuclei for gene therapy, lysosomes for the 

treatment of lysosomal storage diseases and mitochondria for cancer. Nevertheless, cellular 

membranes prevent proteins, peptides, and loaded drugs vehicles to enter the cells. Thus, these 

cellular membranes act as a cellular shield and protect living cells from their surroundings 

(Figure 4.1). Therefore cytoplasmic barriers only allow the transport of small compounds 

preventing hydrophilic and large drugs from being internalized. 

 

Figure 4.1. Cytoplasmic membrane.1 

 

4.1.2. Strategies to cross cytoplasmic membranes 

 

The recent discovery of new therapeutic molecules that do not reach clinical phase due to poor 

delivery and low bioavailability has prompted the design of new therapeutic technologies in 

order to solve the drug cellular uptake problem. One possible solution to cross this cellular 

barrier and deliver drugs intracellularly, is the use of certain proteins or peptides, such as CPPs, 

capable of moving through the plasma membrane and deliver their payload intracellularly.
2–4

 

 



Chapter 4. Amine-azido-MSNs for their use as penetrating cell carriers 

___________________________________________________________________________ 
 

72 

 

4.1.2.1. CPPs (Cell penetrating peptides) 

 

CPPs are positively charged peptides capable of penetrating cell membranes at low 

concentrations without causing damage to the barrier.
5–8

 The most common and extensively 

studied CPP is the human immunodeficiency virus type 1 (HIV-1) encoded peptide TAT,
5,9

 

which entrance mechanism is generally based on endocytic pathways (Figure 4.2).
6,10

  

 

 

 

Figure 4.2. HIV-1 encoded peptide TAT structure and endocytosis.11 

By and large, MSNs have been decorated with charged peptides such as TAT
12,13

 or poly-L-

arginine chains
14

 in order to enhance MSNs uptake. Nevertheless, MSNs by their own are also 

capable of crossing cell membranes, but its uptake depends on their size and morphology.
15

 

Other systems have also been prepared to study MSNs uptake
16

 but the use of CPPs seems the 

most appropriate strategy to enhance MSNs ability to cross cell membranes.
17,2

 Specifically, two 

reports must be highlighten.
12,14

 The first example in the literature,
12

 is the use of a FITC-

Arginine-TAT peptide for MSNs internalization, which is added to the MSNs through the 

reaction of an activated carboxylic acid FITC-TAT to amino-MSNs. The second example,
14

 is a 

poly-arginine peptide added into fluorescent azido-MSNs through CuAAC click reaction. In 

both examples, the penetrating properties of MSNs are used for the intracellular delivery of a 

therapeutic agent, in this case doxorubicin (DOX). Therefore, penetrating MSNs act as a 

targeted system able to deliver DOX intracellularly, enhancing its final effectiveness. 

 

Nevertheless, although CPPs have been widely studied and can easily penetrate cellular barriers, 

they present a critical drawback, which is that CPPs are susceptible to be degraded by proteases 

during uptake processes.  

 

4.1.2.2.  Cationic charged molecules  

 

An alternative approach is based on the use of aliphatic or aromatic chains that contain 

positively charged species. For example, cationic polyethylene glycol chains,
18–20

 pyridine 

rings
21

 or amide bonds have been used to internalize mesoporous silica nanoparticles
22

 as well 
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as positively charged pyridines
23

 and triethylamines.
24

 Since the cytoplasmic membrane is 

negatively charged, cationic species will enhance MSNs internalization processes through the 

cytoplasmic barriers.  

 

4.1.2.3.  Cationic quinoline foldamers 

 

In addition to CPPs and cationic charged molecules, the penetrating capability of cationic 

quinoline foldamers has recently been demonstrated.
25

 Quinoline foldamers are synthetic 

quinolone oligomers that are capable of adopting well-defined conformations, which are 

stabilized by non-covalent hydrogen bonding interactions.
26

 The efficiency of these artificial 

systems is comparable to HIV Tat peptide.
27

 In addition, quinoline foldamers present a major 

advantage over peptides, which is that foldamers are stable and do not degrade in biological 

environments. Moreover, quinoline foldamers can be easily and quickly synthetized
28,29

 and 

modified.
26,30

  

 

Artificial foldamers based on quinoline rings are prepared and studied by Dr. Ivan Huc group at 

Institut Européen de Chimie et Biologie (IECB) in Bordeaux. An example of a synthetic 

quinoline foldamer and its applications is shown in Figure 4.3. These helical aromatic 

derivatives, with conformational stability, are also suitable building blocks to synthetically 

produce larger shaped architectures that can fold to double and quadruple helix sequences and 

selectively interact with G-quadruplex DNA structure.
31–33

 Furthermore, water soluble 

analogues present a large number of promising properties not only as spontaneous cell 

internalization,
25

 but also as specific recognition of complex analytes such as 

monosaccharides.
34

 

 

Figure 4.3. Applications of aromatic quinoline foldamers.26 
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All of these promising properties highlight the importance of studying foldamer applications. 

Moreover, cationic quinoline foldamers have not been used for nanoparticle internalization. 

Therefore, since there are no examples of cationic quinoline foldamers functionalized in 

nanoparticles, the study of these systems is envisaged. Furthermore, the penetrating ability of 

foldamer-MSNs will be used for the intracellular delivery of DOX in the cellular media.    

4.2. Foldamer-MSNs design  

 

Quinoline foldamers present two reactive groups prone to functional modifications: nitro (NO2) 

and ester (COOMe) moieties (Figure 4.4).
25

 

 

Figure 4.4. General quinoline foldamer structure.25 

 

Between NO2 and CO2Me position it seems easier to functionalize the quinoline foldamer 

through CO2Me moiety, since it can be simply transformed into an acyl chloride moiety for 

nucleophilic substitutions or activated to be functionalized with amine groups. Therefore, 

CO2Me derivatization is chosen to insert a suitable moiety for bioconjugation processes.  

By and large, two main strategies are widely used for bioconjugation: amide and triazole 

formation from activated acid-amine reaction and azido-alkyne reaction, respectively. Since 

both foldamer and MSNs present amines, amide formation approach is not recommended. Thus, 

azido-alkyne reaction seems the best choice. Furthermore, triazole formation has been used in a 

wide variety of bioconjugation examples with MSNs.
35,36

 To this end, an alkyne and azide 

functionality must be added in both foldamer and MSNs surface. In the particular case of 

quinoline foldamer it is easier to introduce a terminal acetylene moiety, than an azide group, 

which is explosive and difficult to handle. Therefore, N3 moiety will be introduced in MSNs 

surface. Moreover, many azido-MSNs have been described in the literature,
14,37

 in comparison 

to few examples of alkyne MSNs.
36,38

 Thus, it is considered to synthetize an azido-MSN vehicle 

with an alkyne-foldamer (Figure 4.5).  
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Figure 4.5. Foldamer functionalization strategy. 

Moreover, a wide range of commercial amino-alkyne linkers can be used to introduce alkyne 

moiety in foldamer CO2Me position. For example, alkyne foldamer could be easily obtained by 

the reaction between foldamer acyl chloride and an alkyne-amine chain, such as hex-5-yn-1-

amine (Figure 4.6). 

 

Figure 4.6. Alkyne introduction in foldamer structure. 

 

Regarding MSNs derivatization, since it has been described that amine moieties are capable of 

enhancing DOX loading and release
39,40

 it is desired to synthetize regioselective amino-azido 

MSNs, in order to use these systems as a intracellular DOX delivery nanoplatform. Therefore, 

azide and amine moieties, for the introduction of quinoline foldamer and doxorubicin, are 

needed in MSNs surface. Consequently, amino-azido bifunctional mesoporous silica 

nanoparticles must be synthetized. 

4.3. Amino-azido MSNs synthesis and characterization 

 

A research in literature revealed that, even if azido-MSNs have been widely used,
35–37,41

 only 

one work by Wan et al.
42

 describe the synthesis of amino-azido MSNs. However, the 

regioselectivity of these MSNs is not demonstrated. Even if Wan et al.
42

 describe an amino-

azido bifunctionalization it is in fact not completely regioselective: 1) external MSN surface 

present amino and azido groups, since azide moiety is introduced by grafting (Figure 4.7)
43

 and 

2) no tensioactive removal control is achieved with MeOH, since only toluene has been reported 

as a non-tensioactive removal solvent.
44
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Figure 4.7. Non-regioselective amino-azido-MSNs functionalized by amino co-condensation and azido grafting 

process 

Furthermore, the same authors use a two-step procedure to functionalize azido moiety. First, 3-

chloropropyltriethoxysilane (CPTS) is grafted on the outer MSNs surface and then it is reacted 

with NaN3 in a DMF solution. This synthetic approach underlines basically two drawbacks; 1) 

NaN3 and DMF are toxic and they are not desired in a MSNs solution and 2) a two-step reaction 

is carried out, which could have been done in one step avoiding extensive washing. 

To solve this problem, a new, easy and completely regioselective approach that would give 

inner amino and outer azido MSNs is proposed. This strategy would use the external amino 

groups to covalently introduce azide moieties in MSNs, while tensioactive is still present. This 

new strategy needs the preparation of an azide containing amino reactive linker (R) (Figure 4.8).  

 

Figure 4.8. Complete regioselective bifunctionalization of amino-azido MSNs. 

 

Amines in general react easily with activated acids. Thus, an azide-activated acid linker would 

be an excellent choice to introduce azido moiety in the external surface of MSNs (Figure 4.9). 

Consequently, the activated acid would react with amines introducing the new azido 

functionality. 

 

Figure 4.9. Reactive linker for azido introduction in MSNs. 
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4.3.1. Synthesis of 3-azidopropionic acid succinimidyl ester 

First of all, the azido-activated acid linker which will provide the azido functionality to MSNs 

must be synthetized. Eventually, the linker must be long enough to hold both functionalities but 

not too much to cap the porous entrance. For example, an intermediate length about three 

carbon atoms could be appropriate. A suitable candidate thus, is 3-azidopropionic acid 

succinimidyl ester (22) (Figure 4.10).  

 

  

Figure 4.10. 3-azidopropionic acid succinimidyl ester linker (22). 

From bromopropionic acid, azido moiety can be introduced to the linker by NaN3 nucleophilic 

substitution of the bromine atom and afterwards activate the carboxylic acid moiety by using N-

hydroxisuccinimide with a coupling agent such as DCC, PyBOP or EDC. EDC is the best 

candidate, since it is easily purified with water. 3-azidopropionic acid succinimidyl ester (22) is 

synthetized first by treating bromopropionic acid (20) with NaN3 and then activating the 

carboxylic acid 21 to finally yield the azido linker 22 (Figure 4.11).
45

   

 
Figure 4.11. Synthetic approach of 3-azidopropionic acid succinimidyl ester. 

 

4.3.2. Amino-azido MSNs functionalization 

Co-condensed aminated MSNs are synthetized (Chapter 2) and prior to CTAB removal, 3-

azidopropionic acid succinimidyl ester (22) is added. Further tensioactive removal will yield 

amino-azido regioselectively functionalized MSNs (MSN(NH2)i(N3)o. 

Generally, in order to preserve the tensioactive inside MSNs porous, toluene is used as a solvent 

in external functionalization processes.
24,46

 Since 3-azidopropionic acid succinimidyl ester is not 

soluble in toluene, another solvent must be used. Most of CTAB elimination processes use 

harsh conditions such as HCl/EtOH reflux and calcination,
47

 therefore it is thought that EtOH 

will not remove the surfactant. But, surprisingly, CTAB is removed in EtOH. By following 3-

azidopropionic acid succinimidyl ester reaction in FT-IR, it can be clearly observed the azido 

band formation at 2100 cm
-1

, but also that the tensioactive bands disappear at 2900 and 2850 
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cm
-1

 ((MSN-(NH2-N3)EtOH) (Figure 4.12). When EtOH is used, azide moiety is both present at 

the inner and at the outer surface. 
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Figure 4.12. FT-IR spectra of MSN-(NH2)CTAB initial, MSN-(NH2-N3)CTAB(EtOH) and MSN-(NH2-N3)HCl. 

 

Since EtOH is removing CTAB while azido moiety is introduced, the solvent must be changed. 

Another possibility was to use water. Since MSNs are synthetized in water and CTAB is still 

present in that solvent, it is highly believed that H2O is not able to remove CTAB. To test this 

hypothesis, tensioactive bands are followed by FT-IR. CTAB tensions are still present at 2900-

2850 cm
-1

 as well as typical N3 band at 2100 cm
-1

,confirming that only the external surface have 

been functionalized with azido moieties (Figure 4.13). 
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Figure 4.13. FT-IR of bifunctionalized amino-azido MSNs with CTAB. 

 

CTAB removal can also be followed by OEA and BET analysis. For OEA, in Table 4.1, it can 

be observed that MSN-(NH2-N3)EtOH, when stirred with EtOH, have more or less the same C, 

H and N quantity as MSN-(NH2), whose tensioactive has been removed by acidic treatment. On 

the contrary, when MSN-(NH2)i(N3)o(CTAB) are stirred in water, MSNs present the same 

values that MSN-(NH2)CTAB. Moreover, when MSN-(NH2)i(N3)o tensioactive is removed by 
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acidic treatment C, H and N values are higher than control MSN-(NH2), showing that N3 

functionality has been correctly introduced and bifunctionalized amine-azido-MSNs have been 

obtained. Then, it can be concluded that regioselective amine-azido MSNs can be obtained since 

water does not remove the surfactant.  

Table 4.1. OEA study of CTAB removal. 

 

 

 

 

 

 

 

Concerning BET studies, in Figure 4.14 it is presented the isothermal linear plots of MSN-

(NH2), MSN-NH2(CTAB), MSN-(NH2-N3)EtOH and MSN-(NH2)i(N3)oCTAB. BET surface 

areas are near 600 m
2
·g

-1
 for both control MSN-(NH2) and MSN-(NH2-N3)(EtOH), which 

clearly indicates that EtOH procedure removes CTAB, 599.8 ± 27.3 m
2
·g

-1
 and 584.8 ± 43.16 

m
2
·g

-1
 respectively. Additionally, the pore volume for MSN-(NH2-N3)EtOH was 0.505 cm

3
·g

-1
 

in comparison to 0.550 cm
3
·g

-1
 MSN-(NH2), which are very similar values and therefore 

demonstrates that there is no remaining tensioactive in MSNs porous (Table 4.2). On the other 

hand, when MSNs reaction is performed in water (MSN-(NH2)i(N3)o(CTAB) surface areas 

decrease from 600 m
2
·g

-1 
to 272.07 ± 7.8 m

2
·g

-1
,
 
which means that CTAB is still present inside 

MSNs porous and the regioselective functionalization take place. 

 

Table 4.2. BET results of CTAB removal. 

OEA Solvent C (%) H (%) N (%) 

MSN-NH2 EtOH  12.4 3.2 3.9 

MSN-(NH2)CTAB  H2O  25.9 5.9 2.8 

MSN-(NH2-N3)-EtOH EtOH 14.2 2.9 4.6 

MSN-(NH2)i(N3)o(CTAB) H2O 23.3 3.9 5.2 

MSN-(NH2)i(N3)o HCl/EtOH 13.5 3.2 4.6 

 

MSN-(NH2) 

(CTAB) 
MSN-(NH2) 

MSN-(NH2)i(N3)o 

(CTAB)(H2O) 

MSN-(NH2)i(N3)o 

(EtOH) 

BET surface area (m
2
/g) 70.6 ± 7.8 599.8± 27.3 272.1± 7.8 584.8± 43.1 

BJH pore volume (cm
3
/g) 0.245 0.55 0.24 0.50 

Pore size (nm) -- 2.4 -- 2.4 



Chapter 4. Amine-azido-MSNs for their use as penetrating cell carriers 

___________________________________________________________________________ 
 

80 

 

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

MSN-(NH2)i(N3)o(CTAB)

MSN-(NH2)(CTAB)

MSN-(NH2-N3)EtOH

Relative Pressure (P/Po)

MSN-(NH2)

Q
u

a
n

ti
ty

 A
d

s
o

rb
e
d

 (
c
m

3
/g

)

 
Figure 4.14. Isothermal linear plots of CTAB removal study. 

4.3.3. Amino-azido MSN characterization 

MSN-(NH2)i(N3)o have been characterized by standard techniques (DLS, BET, IR, TEM and 

powder XRD) and clearly demonstrates its regioselective bifunctionalization with no 

morphological changes. In addition, these nanoparticles present a good chemical stability and 

can be kept at room temperature. In this case, MSNs of 50 nm have been chosen for uptake 

applications.
12

   

No significant size and -potential differences were obtained between initial aminated-MSNs 

and amine-azido-MSNs. MSN-(NH2)i(N3)o have a size around 150 nm by DLS analysis (Table 

4.3), which corresponds to a real TEM size around 50 nm (Figure 4.15). This difference in size 

between DLS and TEM is mostly due to the hydrodynamic radius effect.
48

 Moreover, TEM 

micrographs confirm mesoporous structure and uniform porous size. 

Table 4.3. MSN(NH2)i(N3)o size and potential values. 

 

 

 

  

Figure 4.15. TEM micrographs of MSN-(NH2)i(N3)o of 50 nm. 

Size / nm TEM DLS pdl -pot / mV 

MSN-(NH2) 50 142 0.070 -11 

MSN-(NH2)i(N3)o 50 153 0.409 -18 
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The successful MSNs regioselective bifunctionalization is supported by the presence of azido 

characteristic absorption band at 2100 cm
-1

 along with CTAB bands at 2850 and 2900 cm
-1

 in 

the FT-IR spectrum, which reveals that CTAB is still present inside the inner surface when 

external functionalization is carried out (Figure 4.16).  
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Figure 4.16. FT-IR of regioselective bifunctionalization MSN-(NH2)i(N3)o. 

 

The N2 adsorption/desorption measurements (Figure 4.17, a and Table 4.4) for MSN-

(NH2)i(N3)o show type IV isotherms, which clearly display H1 hysteresis loop, characteristic of 

mesoporous materials. BET surface areas are near 600 m
2
·g

-1
 for both MSN-(NH2) and MSN-

(NH2)i(N3)o, 599.8 ± 27.3 m
2
/g and 627.7 ± 34.2 m

2
/g respectively. Additionally, the pore 

volume for MSN-(NH2)i(N3)o is 0.550 cm
3
·g

-1
 in comparison to 0.669 cm

3
·g

-1
 for MSN-(NH2), 

which are very similar values. Both, MSNs present a very narrow pore size distribution centered 

at 2.4 nm (Figure 4.17, b). These values demonstrate that MSN-(NH2)i(N3)o morphology has 

been well retained during the modification procedure (Table 4.4).  

 

Table 4.4. BET results of regioselective MSN-(NH2)i(N3)o. 

 

 
MSN-NH2(CTAB) MSN-(NH2) MSN-(NH2)i(N3)o 

BET surface area (m
2
/g) 78.6 ± 7.8 599.8 ± 27.3 627.7 ± 34.2 

BJH pore volume (cm
3
/g) 0.249 0.55 0.669 

Pore size (nm) -- 2.4 2.4 
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Figure 4.17. a) Isothermal linear plot and b) pore volume of regioselective MSN-(NH2)i(N3)o. 

 

Powder XDR analysis indicates ordered structures with d100 at 2.3 and very lightly faceted 

hexagon-shape at 4.1 (d110) and 4.2 (d200) (Figure 4.18). 
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Figure 4.18. Powder XDR of MSN-(NH2)i(N3)o. 

 

In conclusion, 3-azidopropionic acid succinimidyl ester reaction with outer amino-MSNs in 

water, allows the obtaining of orthogonal regioselective MSN-(NH2)i(N3)o without damaging 

amino MSNs morphology. 

 

4.4. MSNs functionalization with alkyne-foldamer (24) 

 

4.4.1. Synthesis of alkyne-foldamer-MSNs 

 

In order to monitor foldamer-MSNs uptake, a fluorescent tag is used. A widely used fluorescent 

tag that reacts efficiently with amines is isothiocyanate fluorescein (FITC).
12,14,15,17,25

 Moreover, 

FITC present green fluorescence, which do not interfere with nuclear (DAPI=blue) or 

cytoplasmic (phalloidin=red) dyes. 
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Therefore, for the synthesis of foldamer-MSNs, firstly, MSN-(NH2)i(N3)o are reacted with FITC 

(23) in a 1:1 (mg FITC/ mg MSNs) proportion. Then octamer alkyne quinoline foldamer (24) is 

added in a mixture of ACN/H2O, CuI and DIPEA (Figure 4.19). 

 

 

Figure 4.19. FITC (23) and alkyne quinoline foldamer 24 functionalization with MSN-(NH2)i(N3)o.   

 

Due to the fact that, it is the first time that a quinoline foldamer is functionalized to 

nanoparticles, the functionalization protocol of MSNs was inspired in Limin Pan et al.
12

 work, 

where TAT was functionalized to MSNs. In this case, a proportion of 10:1 (mg TAT/mg MSN) 

which corresponds to a 1:1 (mg alkyne-foldamer/mg MSN) equivalents was used. Therefore, 20 

mg of alkyne-foldamer 24 were added to 20 mg of MSN-(FITC)i(N3)o in a CuI, DIPEA, 

ACN/H2O solution. MSNs were washed several times with ACN, water and 0.1 M EDTA or 0.1 

M N,N-diethyldithiocarbamate solution. CuEDTA or CuDTTC complex removal is monitored 

by their absorbance band at 730 nm and 430 nm respectively. MSNs were also dialyzed in water 

during 24 h in order to remove any residue. Finally, MSN-(FITC)i(Fold)o were obtained.  

A key step in CuAAC cycloaddition is the correct removal of remaining copper either with N,N-

diethyldithiocarbamate
49

 or EDTA solution.
41

 In fact, it has been reported that more than ten 

washings, during 3 days, are needed to completely eliminate copper.
49

 It is worth nothing to 

mention that after extensive washings, MSNs yield is tremendously reduced. Moreover, EDTA 

is able to solubilize MSNs,
41

 which led to the loss of a significant amount of nanoparticles. 

Nevertheless, an increase in solubility and stability of the nanoparticles is clearly observed since 

MSN-(FITC)i(Fold)o are very well dispersed in water. Moreover, MSN-(FITC)i(Fold)o color 

change rapidly from yellow to orange. Cationic alkyne quinoline foldamer 24 is capable of 
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increasing MSN-(FITC)i(Fold)o solubilization in comparison with control MSN-(FITC). At first 

glance, both MSN-(FITC) and MSN-(FITC)i(Fold)o solution seem stable and well dispersed, but 

24 h later MSN-(FITC) precipitate while MSN-(FITC)i(Fold)o continue in solution (Figure 

4.20). MSN-(FITC)i(Fold)o are better dispersed in water than control MSN-(FITC). This process 

could also explain why MSN-(FITC)i(Fold)o yield is so low; alkyne-foldamer might be 

solubilizing MSNs too. 

   

Figure 4.20. MSN-(FITC) and MSN-(FITC)i(Fold)o a) before b) and after 24 h. 

 

MSN-(FITC)i(Fold)o stability is studied by DLS measurements. The size of a water solution of 

MSN-(FITC)i(Fold)o is measured at different times 1 h, 2 h and 5 h. The same intensity, volume 

and number value is obtained for all cases. With a zeta potential of + 30 mV the hydrodynamic 

radius measured is higher than “the real” size value, but measures are stable (Figure 4.21). 

 

Figure 4.21. Size distribution of a solution of MSN (FITC)i(Fold)o. 

 

This enhancement in the dispersion stability can be understood in terms of zeta potential. In 

fact, there is a huge increase in zeta potential from initial amine-MSN (-11 mV) to foldamer-

MSN (+ 30 mV) (Figure 4.22). This high positive zeta potential could explain why final MSN-

(FITC)i(Fold)o are so stable in water. 

a)                                                     b) 

MSN(FITC)   MSN(FITC)i(Fold)o       MSN(FITC)  MSN(FITC)i(Fold)o 
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Figure 4.22. Zeta potential distribution of a) MSN-NH2, b) MSN-(FITC)i(N3)o and c) MSN-(FITC)i(Fold)o. 

 

Furthermore, in MSN-(FITC)i(Fold)o absorption spectrum it can be clearly identified FITC 

absorbance band at 492 nm and alkyne quinoline foldamer band at 325 nm (Figure 4.23).  
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Figure 4.23. Absorption spectrum of MSN-(FITC)i(Fold)o. 

The correct functionalization of alkyne-foldamer can also be verified by FT-IR spectrum, where 

alkyne-foldamer band appears at 1546 cm
-1

, while azido band at 2118 cm
-1

 disappears after 

CuAAC reaction (Figure 4.24).  
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Figure 4.24. FT-IR of MSNs before (MSN-(FITC)i(N3)o) and after (MSN-(FITC)i(Fold)o) reaction with alkyne-

foldamer 24. 
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Once alkyne-foldamer functionalization in MSNs was successfully achieved, it was though 

interesting to also functionalize externally a polyethylene glycol chain, in order to enhance the 

final biodistribution of the system. To this end,
50,51

 tetraethyleneglycol is chosen, where.one end 

is functionalized with an alkyne moiety and the other with FITC. Thus, the alkyne-PEG-FITC 

30 moiety is also useful as a marker for MSNs. Alkyne-PEG-FITC 30 linker was synthetized as 

follows (Figure 4.25).   

 

Figure 4.25. AlkynePEGFITC 30 synthetic scheme. 

 

At first, NaH and propargyl bromide were added to a tetraetylenglycol (25) THF solution, to 

yield product 26. Then, 1.2 eq. of tosyl chloride in DCM was added, which by a nucleophilic 

substitution of NaN3 followed by tosilate elimination gave product 28. Afterwards, 28 was 

reduced to give 3,6,9,12-tetraoxapentadec-14-yn-amine (29). Then an equimolar reaction of 29 

with FITC gave the final alkyne-PEG-FITC 30, which is directly added to MSN-(FITC)i(N3-

Fold)o to give MSN-(FITC)i(Fold-PEG-FITC)o (Figure 4.26). Control MSN-(FITC)i(PEG-

FITC)o were also synthetized. 

MSN-(FITC)i(Fold-PEG-FITC)o are identically characterized as MSN-(FITC)i(Fold)o. There is a 

large increase in zeta potential (+ 30 mV) in comparison with initial MSNs (-11 mV) and by 

FT-IR a new alkyne-foldamer band at 1570 cm
-1

 can be detected, as well as azido band 

elimination at 2100 cm
-1

. Regarding absorption spectrum, both FITC and alkyne-foldamer 

bands at 500 and 380 nm respectively, are observed. By OEA it is estimated the quantity of 

alkyne-foldamer 24 that it is functionalized in MSNs.  For 1 mg of MSNs there are 0.5 mg of 

alkyne-foldamer, functionalization is 50 %. 
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Figure 4.26. Functionalization of foldamer-MSNs (MSN-(FITC)i(Fold-N3)o) with fluorescent alkyne PEG 30. 

 

4.4.2. Biological experiments 

 

4.4.2.1. Experimental conditions  

 

Prior to viability and uptake experiments, the suitable conditions for biological experiments 

must be studied. After a wide range of proofs, the conclusions of biological experiments are 

summarized as follows: 

 For viability experiments, COS- 7 cells were used in a 10000, 2000 and 5000 cells/well 

concentration, 24 h and 72 h, demonstrating that 24 h 10000 cells/well were the best 

conditions for this cellular line.  

 Nevertheless, COS-7 viability results were heterogeneous between replicates and 

presented a high variability.
52
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 MSNs washed with N,N-diethyldithiocarbamate presented a low viability. N,N-

diethyldithiocarbamate is toxic,
53

 even if it works very well for Cu removal it cannot be 

used for biological assays. 

 Hela cells are good candidate for uptake results,
12,13,15,24,25

 being 10000 cell/well the best 

concentration for viability assays and 100000 cells/well for uptake experiments. 

Biological experiments are reproducible and homogeneous.  

 Viable MSNs concentration ranges between 0.01 and 0.16 mgMSN/mL. 

 More reproducible results are obtained if MSNs are seeded directly in solution, instead 

of in solid state. 

 Uptake experiments are more homogeneous if MSNs are seeded with an orbital agitator.  

 

4.4.2.2. Viability experiments 

 

For viability experiments, a concentration of 10000 cells per well is choosen.
12–15,24 

Viability 

assays are carried out in a 96 well plate (100 µL/well), where cells are seeded for 24 h. Then, 

control MSN-(FITC) and foldamer MSN-(FITC)i(Fold)o  are added and seeded for 24 h. Cells 

are washed with PBS and 100 µL of MTT dissolution is added. Cells are seeded for 3 h and 

purple formazan crystals are suspended in DMSO. Finally, formazan absorbance is recorded in 

a microplate reader at 560 nm. No FITC interference is observed between 550 and 600 nm. 

MSN-(FITC)i(Fold)o viability is tested for a wide range of concentrations, ranging from 0.01 

mgMSN/mL to 0.16 mgMSN/mL. Relative cell viability of MSN-(FITC)i(Fold)o and MSN-

(FITC) is higher than 85 %, even at high concentration doses (Figure 4.27). These results are 

coherent with control reported MSNs viability in Hela cells.
12,14,24,54
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Figure 4.27. Relative cell viability for MSN(FITC)i(Fold)o and MSN(FITC) a) in bars and b) in lines. 
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As for foldamer-MSNs, where fluorescent-alkyne-PEG 30 has been functionalized, MTT assays 

demonstrated a viability of 75 % (Figure 4.28).  
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Figure 4.28. Relative cell viability of MSN(FITC)i(PEGFITC)o and MSN(Fold-PEGFITC). 

 

4.4.2.3. Uptake experiments 

 

An extensive search in literature revealed that MSNs uptake experiments are normally carried 

out between 0 and 1 mg MSN/mL, been 0.1 mg MSN/mL the average concentration for 

biological applications.
12–15,24

 Since, it is the first time that cationic quinoline foldamers are 

attached to a nanoparticle, it is not known if either MSNs or alkyne-foldamer will interact with 

the proteins present in a complete cellular medium, DMEM (Dubecco's modified Eagle's 

medium). This is the reason why, at the first, uptake experiment is carried out with and without 

LFBS proteins (LFBS: bovine serum protein 10 %). 

MSN-(FITC)i(Fold)o cellular uptake is tested in Hela cells (100000 cells/well) by adding MSNs 

in solution. In addition, an orbital shaker is used to homogenize the uptake. Uptake experiments 

are carried out in a 12 well plate (1 mL/well) where clean covers have been added. Cells are 

seeded for 24 h and then, control MSN-(FITC) and MSN-(FITC)i(Fold)o are added and seeded 

for 24 h. Cells are washed with PBS and fixed to the covers. Finally, DAPI is added to stain the 

nucleus in blue. The resulting fluorescence was evaluated in a fluorescent microscope. Samples 

were visualized with a Zeiss Axiovert inverted fluorescence microscope (Axiovert 200M; Carl 

Zeiss Inc.) equipped with zeiss ApoTome system and with an inverted fluorescent Nikon 

microscope (Nikon Eclipse TS100). 

 

MSN-(FITC)i(Fold)o did not aggregate in FBS medium, which is an excellent property, since the 

vast majority of nanoparticles tend to aggregate in these conditions. No differences between a 

rich or a poor FBS medium are observed. Therefore, FBS medium will be used for further 

biological experiments, since these conditions are similar to physiological medium.  
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On the other hand, concerning uptake results, both control-MSN and foldamer-MSN presented 

fluorescence in Hela cells and therefore seemed to be internalized. Whereas MSN-(FITC) 

fluorescence is more punctual, (Figure 4.29, b and c), MSN-(FITC)i(Fold)o fluorescence is less 

intense but more spread over the cells (Figure 4.29, e and f). These results are comparable with 

TAT and Arginine reported results.
12,14

 The same pattern is observed, little dots for control 

MSN-(FITC) and blurred fluorescence for MSN-(FITC)i(Fold)o. 

 

Figure 4.29. Control-MSN and foldamer-MSN uptake  

 

As for foldamer-MSN it seems that MSN-(FITC)i(Fold)o internalize mostly in a specific area of 

the cytoplasm, very near to the nucleus. In addition, it seems that alkyne-foldamer could be 

capable of penetrating the nucleus, but it is not possible to confirm this hypothesis without any 

quantification method. 

In order to co-localize MSN-(FITC)i(Fold)o with the nucleus and the cytoplasm, Hela cells are 

stained with DAPI (for the nucleus) and phalloidine (for the cytoplasm). However, it cannot be 

quantified, it can be confirmed that the vast majority of MSN-(FITC)i(Fold)o are clearly located 

in a specific area of the cytoplasm, while few MSN-(FITC)i(Fold)o seem to penetrate the nucleus 

(Figure 4.30). 
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Figure 4.30. MSN-(FITC)i(Fold)o uptake stained with DAPI and phalloidine. 

 

By studying cellular uptake in the microscope, it is possible to observe that both MSN-(FITC) 

and MSN-(FITC)i(Fold)o internalize cytoplasmic cells and that more quantity of MSN-

(FITC)i(Fold)o is detected. Nevertheless, further experiments are needed in order to quantify the 

cellular and nuclear uptake. 

Uptake quantification is usually carried out by cytometry measurements by monitoring FITC 

signal. Unfortunately, in this case it is not possible to compare FITC signal between control 

MSN-(FITC) and foldamer MSN-(FITC)i(Fold)o, since FITC seems to be quenched during 

foldamer addition. While control MSNs present fluorescence at 254 nm, when alkyne-foldamer 

24 is added, foldamer-MSNs present very little fluorescence signal. MSNs fluorescence, after 

alkyne-foldamer 24 addition, is dramatically quenched (Figure 4.31). 

 

        Visible  

Figure 4.31. MSN(FITC) and MSN(FITC)i(Fold)o at a) visible light and at b) 254 nm. 

 

MSN-(FITC)    MSN-(FITC)i(Fold)o      MSN-(FITC) MSN-(FITC)i(Fold)o 

                 

    a)                                                           b) 
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A flow cytometry analysis is carried out for MSN-(FITC) and MSN-(FITC)i(Fold)o indicating 

that in both cases, 100 % of detected cells are fluorescent, which corroborates the fact that both 

control and foldamer-MSNs can penetrate the cells (Figure 4.32). Unfortunately, an intensity 

comparison between control MSN-(FITC) and MSN-(FITC)i(Fold)o cannot be done because of 

FITC quenching effect. 
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Figure 4.32. Cytometry Bars of MSN-(FITC) and MSN-(Fold). 

 

FITC quenching can be triggered by two factors: the presence of the terminal alkyne-foldamer 

NO2 group
25

 and/or traces of Cu.
55,56

 A search in literature revealed that FITC quenching has 

also been reported with tryptophan and guanosine moieties,
57

 peptides similar to quinoline 

foldamers.
57,58

  

In order to reduce the quenching effects of FITC, MSNs with less quantity of alkyne-foldamer 

24 (five times less) and more quantity of FITC were synthetized. But, FITC was still quenched 

and no comparison could be done. Control MSN-(FITC) presented always more fluorescence 

than foldamer MSN-(FITC)i(Fold)o. 

 

Concerning foldamer-MSNs, where fluorescent-alkyne-PEG 30 has been functionalized, a 

clearly difference between control MSN-(FITC)i(PEG-FITC)o and foldamer MSN-(FITC)i(Fold-

PEG-FITC)o uptake is observed. Control MSNs present little and punctual fluorescence (Figure 

4.33, a-c), while foldamer-MSNs show a very spread fluorescence signal (Figure 4.33, e-j). 

Foldamer-MSNs have been more internalized than control MSNs. Moreover, MSN-

(FITC)i(Fold-PEG-FITC)o are internalized near the nucleus. Nevertheless, it does not seem that 

they can penetrate the nucleus. As discussed before, further studies must be carried out in order 

to test this hypothesis.  
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Figure 4. 33. Control MSN-(FITC)i(PEG-FITC)o and alkyne-PEG-FITC-foldamer MSN-(FITC)i(Fold-PEG-

FITC)o uptake  

In this case, control MSN-(FITC)i(PEG-FITC)o have penetrated less than previous control 

MSN-(FITC), where no fluorescent PEG was used. One explanation to this effect could be that 

the external fluorescent PEG would reduce the ability of MSNs to penetrate cells compared to 

MSN-(FITC), since MSN-(FITC) have been described in literature as penetrating systems.
51

 

Therefore, control MSN-(FITC) would be penetrating the membrane, while control MSN-(PEG-

FITC) would not, and thus PEG-foldamer-MSNs uptake is more marked and contrasted with 

control MSN-(PEG-FITC) than foldamer-MSNs with control MSN-(FITC). Another possibility 

could be that FITC, in this case, is less quenched, since an extra FITC-PEG is added and 

therefore the difference between foldamer-MSN and control-MSN is more contrasted.  

If a 3D reconstruction with Zeiss ApoTome system is carried out in the amplified area (Figure 

4.34), it can be observed that foldamer-MSNs have efficiently internalized the cells, since 

MSNs are present in each level of the 3D plane and therefore, MSNs are not just at the surface 

of the cells, but inside.  
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Figure 4.34. 3D ApoTome reconstruction of internalized MSN-(FITC)i(PEG-FITC)o. 

 

To sum up, MSN-(FITC)i(Fold-PEG-FITC)o are non-toxic and can be internalized as well as 

foldamer-MSN, which is an excellent property in order to use these nanoparticles for in vivo 

applications. 

 

4.4.2.4. Uptake quantification assays 

 

As explained before, uptake quantification cannot be carried out by cytometry since FITC is 

quenched in MSN-(FITC)i(Fold)o .Another possibility, is the quantification of internalized 

silicon by treating MSNs in the cellular medium with HF/HNO3 or NaOH (4 M) and detect 

silicon by atomic emission spectroscopy.
15

 To this end, uptake experiments with a high quantity 

of cells in a Petri dish were carried out and after been trypsinized and centrifuged, cells with 

MSNs were extracted. Then, cells with MSNs were treated with HF and sonicated with both 

regular and ultrasonic cell disruption ultrasound to disrupt cells and solubilize silica. HNO3 was 

also added to eliminate organic materials. Nevertheless, and after hard tries, it was not possible 

to solubilize the mixture. Even low concentrations of MSNs could not be dissolved in HF.  

 

4.5. Intracellular delivery of DOX with foldamer-MSN  

 

Due to the excellent properties of foldamer-MSNs to penetrate the cell membrane, these MSNs 

could be used to enhance the cellular internalization of a payload. Moreover, since quinoline 

foldamers are large and elongated molecules, they will easily block MSNs porous entrance. 

Therefore, by adding different quantities of foldamer it is possible to control the payload 

release. Thus, quinoline foldamers are both used as a penetrating agent and as a capping agent, 

for controlled release. Moreover, cationic quinoline foldamer will be better dispersed in acidic 

environments, than in neutral pH, acting similarly to a polymeric chain. At low pH, the alkyne-

foldamer will be swelled and well dispersed, not blocking the porous, while at higher pH 

quinoline foldamers will be less dispersed and therefore will block more the entrance.  
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Therefore, it is believed that MSN-(FITC)i(Fold)o can be used as a delivery vehicle for the 

release of an anticancer drug such as doxorubicin (DOX), towards cancerous cells and enhance 

its nuclear release. Moreover, by varying the amount of alkyne-foldamer 24 added in MSNs it is 

possible to modulate the quantity of DOX that can be released. 

 

DOX is a widely studied anticancer drug that shows a pharmacodynamic effect in the nuclei by 

damaging the DNA structure.
12,59

 By and large, DOX functionalization in MSNs is usually 

achieved on the inner porous surface by two strategies. It is either chemically absorbed in the 

surface or covalently linked into the pores. Nevertheless, while typical loading for absorbed 

DOX is near 30 %, hydrazone cleavable loading ranges from 0.2 to 2 %.
60

 Moreover, in the case 

of covalent strategy, cleavable pH linkers must be introduced to MSNs surface adding synthetic 

steps.  

Therefore, since quinoline foldamers will partially block DOX release and larger quantities of 

DOX can be added by absorption processes, DOX will be loaded instead of being covalently 

attached. Moreover, in this case, where aminated MSNs are used, by adding DOX in a basic 

medium, DOX loading can be enhanced.
39,40,61

 Amino-MSNs present an excellent advantage 

which is that at basic pH, amino moieties would not be protonated (amino pKa<11) and cationic 

DOX would be easily absorbed. While in an acid pH, amines will protonate preventing the 

electrostatic binding from happening and as consequence, DOX release will be boosted.
39,40,61

 

To this end, first of all, DOX absorption inside MSNs porous must be studied.  

4.5.1. DOX loading in MSN-(NH2)i(N3)o 

In this case, DOX is absorbed in a basic trimethylamine solution, with a loading yield of 30 %. 

No release is obtained at pH=7 (incolor supernatants), while a 60 % of release is obtained at 

pH=4 (red supernatants). DOX is only released at pH=4 (Figure 4.35). 
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Figure 4.35. Absorbed MSN-(DOX)release. 
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4.5.2. DOX loading in foldamer-MSN 

By varying the amount of alkyne-foldamer 24 added in MSNs it is possible to change the 

quantity of DOX that can be released. To do so, two different quantities of alkyne-foldamer 24 

are functionalized in MSNs structure: a low density of alkyne-foldamer (0.1 mg Fold/ mg MSN) 

and a high density (0.4 mg Fold/ mg MSN) to form MSN-(DOX)(l-Fold)o and MSN-(DOX)(h-

Fold)o (Figure 4.36) These MSNs are loaded with the same quantity of DOX (30 %) but with a 

different proportion of alkyne-foldamer . By EOA the estimated quantity of alkyne-foldamer is 

16 % and 21 % for low and high density respectively. 

 

Figure 4.36. DOX loading in MSNs with low and high density of alkyne-foldamer at the outer surface. 

 

MSN-(DOX)(l-Fold)o and MSN-(DOX)(h-Fold)o release is performed. Clearly, from the 

inspection of the graphic, DOX release in MSN with a lower density of alkyne-foldamer (MSN-

(DOX)(l-Fold)o), is higher than with a high density of alkyne-foldamer (MSN-(DOX)(h-Fold)o) 

(Figure 4.37 and 4.38). Therefore, quinoline foldamer is acting as capping agent, controlling 

DOX release. 
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Figure 4.37. MSN-(DOX)(l-Fold)o release. 
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Figure 4.38. MSN-(DOX)(h-Fold)o release. 

 

With a high density of alkyne-foldamer, DOX release is prevented and less quantity of the drug 

is released. Low density of alkyne-foldamer allow a total release of 50 %, were a high density of 

alkyne-foldamer brings about 30 % (Table 4.5). 

Table 4.5. DOX loading and release values. 

MSNs 
No  

alkyne-foldamer 

Low density  

alkyne-foldamer 

High density  

alkyne-foldamer 

DOX Loading (%) 30 30 30 

DOX Release (%) 65 47 27 

 

For biological experiments, it is expected that MSNs with a high density of alkyne-foldamer 

would release less quantity of DOX and therefore will be less toxic than control-MSNs and low 

density alkyne-foldamer MSNs. Nevertheless, high density of alkyne-foldamer MSNs are 
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expected to internalize better than its counterpart and therefore could also present a higher 

cytotoxic effect.
14

  

4.5.3. Viability and uptake experiments of MSN-(Fold)oDOX 

For viability experiments, the previous later conditions were used. A 10000 cells per well 

concentration of Hela cells were chosen. Control MSN-(NH2)i(N3)oDOX, MSN-(DOX)(l-Fold)o 

and MSN-(DOX)(h-Fold)o in a 0.2, 0.1, 0.01 and 0.001 mgMSN/mL or 0.12, 0.06, 0.006 and 

0.0006 mgDOX/mL concentration were added and seeded for 24 h. Viability results are 

presented in Figure 4.39.  
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Figure 4.39. Control MSN-(NH2)i(N3)oDOX, MSN-(DOX)(l-Fold)o and MSN-(DOX)(h-Fold)o viability 

represented a) in bars and b) in lines. 

 

MSN-(DOX)(h-Fold)o present a higher toxicity, considering that DOX release is the lowest (27 

5), followed by MSN-(DOX)(l-Fold)o with a higher DOX release (45 %) and control 

MSN(NH2)i(N3)oDOX, with a DOX release of 65 %. This effect is clearer at 0.001 mgMSN/mL 

were MSN-(DOX)(h-Fold)o kills 66 %, MSN-(DOX)(l-Fold)o 40 % and MSN-(NH2)i(N3)oDOX 

only 20 % of the cells. Therefore, in all likelihood, the quantity of alkyne-foldamer increase cell 

mortality due to the intracellular release of DOX. Moreover, these results are in good agreement 

with published results,
14

 where instead of quinoline foldamer, lysine was used as an 

internalizing vector. MSNs with more quantity of alkyne-foldamer are more toxic, because 

MSNs is more internalized and therefore DOX present a higher intracellular release and 

toxicity. 

In order to determine if this effect is related with the quantity of MSNs and DOX that can be 

internalized, uptake experiments are carried out. Again, 100000 cells per well of Hela cells were 

used. In this case, uptake experiments were carried out with a high viability concentration, 0.01 

mgMSN/mL or 0.006 mgDOX/mL was chosen. For control MSN-(NH2)i(N3)oDOX uptake 

images are presented in Figure 4.40 a, b and c. As it can be concluded from control MSN-
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(NH2)i(N3)oDOX, little quantity of DOX was detected even by saturating doxorubicin/ 

rhodamine red channel. Whereas, for MSN-(DOX)(l-Fold)o and MSN-(DOX)(h-Fold)o (Figure 

4.40 e, f, g and h ,i, j respectively) more quantity of DOX is observed. It seems that in 

comparison with control MSNs, more DOX is internalized by using quinoline foldamers. This 

effect has been observed both by viability and uptake experiments Furthermore, DOX seems to 

internalize in the nucleus since DOX and the nucleus stained with DAPI seems to co-localize. 

This effect is expected since DOX is able to internalize the nucleus.
62

 However, this hypothesis 

should be proven.  

 

 

Figure 4.40. Uptake images of control MSN(NH2)i(N3)oDOX (a, b, c), of MSN-(DOX)(l-Fold)o (d ,e, f) and 

MSN-(DOX)(h-Fold)o (g, h, j).   

Therefore, it can be concluded that foldamer-MSN nanocarrier enhance the intracellular release 

of DOX and moreover, by tuning the quantity of functionalized alkyne-foldamer a controlled 

DOX release can be obtained.  

4.6. Conclusions and Outlook 

 

 A complete regioselective methodology for the synthesis of bifunctionalized amino-

azido MSNs has been carried out. 

 The resulting MSNs can react with cationic quinoline foldamer allowing its complete 

functionalization through a CuAAC coupling. Novel foldamer-MSNs present a positive 

zeta potential, a good solubility in water, are non-toxic at a maximum concentration of 
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0.16 mgMSN/mL and are internalized better in Hela than control MSNs. Nevertheless, 

further experiments need to be carried out in order to quantify this effect.  

 In addition, MSNs with an alkyne-foldamer moiety and a polyethylene glycol chain 

were also synthetized (MSN-(FITC)i(Fold-PEG-FITC)o). These Foldamer-PEG-MSNs 

showed a positive zeta potential, were nontoxic at a maximum concentration of 0.16 

mgMSN/mL and are better internalized in Hela cells than control MSNs and foldamer-

MSN. These Foldamer-PEG-MSNs could be useful for in vivo applications.  

 Nevertheless, CuAAC coupling protocol has proven to be challenging. Cu must be 

completely removed before cellular experiments. This process have been difficult to 

achieve since Cu complexing species such as EDTA and N,N-diethyldithiocarbamate 

either solubilize MSNs or are toxic, and therefore need to be carefully removed as well. 

These difficulties highlight the fact that a better reaction must be used in order to 

functionalize cationic quinoline foldamers into MSNs. 

 A quantitative determination of foldamer-MSNs uptake has not been possible to achieve 

since FITC is mostly quenched by the alkyne-foldamer and thus fluorescence intensity 

comparison cannot be done. Nevertheless, it seems clear that quinoline foldamer 

enhance MSNs internalization. 

 Moreover, foldamer-MSNs have been proven to enhance intracellular DOX release, 

since MSNs with a high concentration of alkyne-foldamer, (MSN-(DOX)(h-Fold)o) are 

more toxic and present more quantity of DOX internalized in the cells, than low alkyne-

foldamer MSN-(DOX)(l-Fold)o and control MSN(NH2)i(N3)oDOX. 

Due to the excellent properties of foldamer-MSNs as cell penetrating nanoplatforms for the 

delivery of active drugs, a quantitative uptake determination must be performed. Therefore, in 

order to quantify the uptake, another fluorophore could be used, which would not be quenched 

either by NO2 group or by Cu. An SiRNA transfection agent could also been used to express a 

fluorescent signal such as luciferase
25

 or mcherry
14

 in order to detect and compare the intensity 

between control and foldamer-MSNs. Moreover in this case, intensity signal would be more 

contrasted since control MSN would have no signal. Nevertheless, since quenching effects seem 

to be related with both alkyne-foldamer and CuAAC chemistry, the better course of action is to 

change the fluorophore as well as the click chemistry approach. Moreover, in order to enhance 

foldamer nuclear uptake, a foldamer with arginine moieties could be used.
63

 

Changing both the fluorophore and the chemistry strategy would not affect the promising 

properties that present quinoline foldamers as penetrating agents. Quinoline foldamer structure 

will be preserved, since only the propargyl moiety will be changed for another suitable 

functional group.  
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New bifunctionalized amino-isothiocyanate MSNs (Chapter 5) could be an excellent approach 

for quinoline foldamer conjugation, since isothiourea formation is an easy, clean and fast 

reaction, which does not present any subproduct formation. For example, an amine BOC 

protected foldamer that would react at the external surface of isothiocyanate-MSN could be 

used (Figure 4.41). 

 

Figure 4.41. New strategy functionalization. 

With this new strategy and a new fluorophore, foldamer MSNs uptake could be compared with 

other penetrating peptides such as TAT,
12

 arginines
14

 or amphiphilic peptides virus-like.
64
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Chapter 5. Amino-isothiocyanate MSNs for the 

controlled release of Ataluren. 

 

A simple and straightforward protocol to prepare isothiocyanate functionalized MSNs is 

described. The synthetic methodology is general and can be applied, in principle, to all type of 

aminated MSNs. The efficiency of the functionalization is comparable to the copper 

cycloaddition (CuAAC) avoiding isolation and copper removal protocols. Following this 

methodology, new amino-isothiocyanate regioselective functionalized MSNs have been 

prepared for the design of a nano-container able to release the drug Ataluren in a controlled 

manner for the treatment of Duchenne Muscular Dystrophy (DMD).   
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Chapter 5. Amino-isothiocyanate MSNs for the controlled release of Ataluren. 

 

5.1. Introduction 

 

MSNs have proven to exhibit outstanding properties for its application as carriers in drug 

delivery.
1,2

 However, different anchoring synthetic strategies are needed in order to 

functionalize multiple substituents to MSNs domains and confer complexity to the system. A 

quick, clean, high yield and selective chemistry is necessary to functionalize different agents 

with efficient protocols.
3
 Typical coupling strategies that have been widely studied are CuAAC 

chemistry
4
 and the formation of amides,

5,6
 disulfide bonds,

7
 thioureas

8
 and isothioureas

9
 

(Chapter 1). Nevertheless, some reactions such as amide and disulfide bond formation, although 

being very efficient, present the disadvantage of using activating agents such as succinimidyl or 

maleimide groups, which necessarily need to be incorporated to the system.
10

 As for isocyanate 

moiety, although it readily reacts with amines without the liberation of any by-product, it is 

prone to hydrolysis, not allowing its use with non-anhydrous solvents and precluding their 

storage.
11

 Moreover, in Chapter 4, the problems derived from using CuAAC reactions for 

cellular applications have clearly underlined that strict protocols for the removing of transition 

metal catalysts are needed. As an example, EDTA or N,N-diethyldithiocarbamate complexants 

must be used for this end. Nevertheless, these complexing agents present more drawbacks than 

advantages. EDTA solubilizes MSNs
12

 and N,N-diethyldithiocarbamate is highly toxic.
13

 

Moreover, Cu can be held in amino-MSNs channels by Cu-NH2 interactions
14

 at the same time 

that it can enhance fluorophore quenching processes.
15

 As a result, a large quantity of washing 

cycles are needed,
4
 which diminish final yields. Therefore, even if CuAAC chemistry is a 

selective and efficient reaction, it is crucial to find easy, fast and high yield chemistry that does 

not require the presence of any activating agent or transition metal catalyst removal. 

 

On the other hand, although isocyanate is not suitable for bioconjugation, its sulphur-containing 

counterpart, isothiocyanate easily overcomes isocyanate downsides. Isothiocyanate present a 

high stability and selectivity at the same time that is amino selective and stable in mild 

solvents.
16

 The fact that thiourea reactions are fast, specific, selective, water tolerant, with high 

yield reactions and that does not add any metal catalyst, highlights the idea that isothiocyanate 

is an optimal moiety to use for MSNs bioconjugation. In fact, bioconjugations involving 

thiourea formation has been widely used, for example in the case of FITC functionalization.
9
  

 

Thiourea formation in nanoparticles has been usually carried out by using aminated 

nanoparticles and an isothiocyanate linker.
9
 Nevertheless, most of the bioactive molecules such 
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as proteins, amino acids, peptides and drugs, present amine moieties instead of isothiocyanates 

groups in their structure. Therefore, in order to introduce these active molecules onto MSNs 

surface, amine moiety must be turned into isothiocyanate functionality. Yet, instead of 

synthetizing isothiocyanate moieties in every active molecule, it is proposed to prepare 

isothiocyanate MSNs and directly add any primary amine reagent.  

 

Moreover, in order to attain the level of complexity needed for the design of “smart” 

nanocarriers, it is vital to develop, stable and ready-to-use clickable MSNs that will incorporate 

different and orthogonal functional groups. Therefore, by using the same regioselective 

methodology that has been applied in Chapter 4, regioselective bifunctionalized amino-

isothiocyanate MSNs can be synthetized and used for the synthesis of excellent drug release 

nanocarriers. While inner amino moieties would enhance drug loading and drug release,
17–19

 the 

external isothiocyanate domain will be suitable for installing stimulus-responsive systems, 

opening or capping the nanochannels of MSNs through different stimuli. For example, these 

outer isothiocyanate groups would be able to react with primary amines, ranging from simple 

alkyl amines, short PEGs to polymers. Once attached to the MSNs, their presence could 

modulate the release profile of a payload. Furthermore, the chemical nature of these chains is a 

key factor to optimize not only the drug release but also the characteristics of MSNs corona that 

define their biodistribution and clearance from the body.
20

  

 

A search in literature revealed that there are no examples of aminated-isothiocyanate MSNs. 

Regarding isothiocyanates in mesoporous silica nanoparticles in general, only two authors 

reported the use of isothiocyanate in non-functionalized MSNs
21–23

 but in just one case 

isothiocyanate was added for bioconjugation applications.
23

 In the case of Li and Lui et al,
21,22

 

isothiocyanate was added by grafting a isothiocyanate silane in non-functionalized MSNs and 

these MSNs were only used for the detection of Cu and Hg. The result is the obtaining of 

monofunctionalized isothiocyanate MSNs, where functional moiety is present in MSNs surface 

without any regioselectivity. Alternatively, Faure et al
23

 exposed aminated MSNs to p-

diisothiocyanatophenylene, providing MSNs with phenyl isothiocyanate moiety on their 

surface.
23

 In this case, these MSNs are used for bioconjugation applications but again 

isothiocyanate is present in MSNs surface without any regioselectivity. In addition, this strategy 

adds phenyl moieties in MSNs structure, which impart a hydrophobic coating to the MSNs.  

Therefore, a new way of adding isothiocyanate moieties without using p-

diisothiocyanatophenylene and that would allow regioselective bifunctionalization must be 

studied.  

In this case, since initial MSNs present amino groups, isothiocyanate silanization cannot be 

achieved if amino moieties are present in MSNs surface area. By using grafting procedures it is 
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not possible to give bifunctionalized amino-isothiocyanate MSNs. Isothiocyanate functionality 

can only be introduced into MSNs surface if amino moieties are directly transformed to 

isothiocyanate moiety. Therefore, the only possibility to introduce isothiocyanate functionality 

is by chemically transforming all the outer amino moieties into isothiocyanate groups. Since 

isothiocyanate and amine react, it is not possible to introduce the final moiety by any linker, as 

it was done in Chapter 4, for azido moiety. Consequently, it is proposed to transform directly 

the outer amino groups in isothiocyanate moieties, while the tensioactive is still present in the 

porous to give inner amino, outer isothiocyanate MSNs (MSN-(NH2)i(NCS)o). Furthermore, the 

ability of these new MSNs as a drug release nanocarrier will be tested for the delivery of 

Ataluren drug, as a treatment of Duchenne muscular dystrophy (DMD). 

 

5.2. Synthesis and characterization of Isothiocyanate-MSNs  

 

First, the study of the synthesis and characterization of monofunctionalized isothiocyanate-

MSNs is carried out.  

 

A search in the literature reveals that, the typical procedure for the preparation of 

isothiocyanates from amines consists in a two-step methodology.
24,25

 In the main, isothiocyanate 

formation from amine moieties proceeds through the reaction between amines and carbon 

disulfide in aqueous ammonia or NaOH. This results in the precipitation of the ammonium 

dithiocarbamate salt, which is then treated with lead nitrate or cyanuric chloride to yield the 

corresponding isothiocyanate.
26,27

 Another possibility of forming isothiocyanates is using a tosyl 

chloride mediated decomposition of dithiocarbamate salts.
25

 Nevertheless, both synthesis are not 

straightforward and are difficult to apply in MSNs conjugation.  

 

An alternative and straightforward protocol is the use of the “thiocarbonyl transfer reagents” 

such as 1,1′-thiocarbonyldi-2(1H)-pyridone.
28

 This commercially available reagent reacts 

smoothly with primary amines under neutral conditions to give high yields of the corresponding 

isothiocyanate in a single step. The only by-product formed is the water soluble 2-pyridone.
29

 

This reaction is straightforward, easy and fast, with high yields, does not require the presence of 

any activating agent or any transition metal catalyst and therefore can be easily applied in MSNs 

functionalization. 1-1’-thiocarbonyldi-2(1H)-pyridone has never been used for isothiocyanate 

formation in MSNs. 

 

As a result, first of all, MSNs isothiocyanate formation with 1-1’-thiocarbonyldi-2(1H)-

pyridone (5) must be tested. Since amime and isothiocyanate moieties are not compatible in the 
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same surface, first the concept of converting all amino moieties into isothiocyanates must be 

proven. For this reason, CTAB must be completely removed before any reaction. As proof of 

concept, aminated MSNs of two different sizes (50 and100 nm), prepared by the co-

condensation method were reacted with 12 eq. of 1,1′-thiocarbonyldi-2(1H)-pyridone (5) in 

anhydrous dichloromethane for 24 h. Previously, MSNs were treated with toluene to dry any 

remained water inside the channels. The resulting material was washed with ethanol and dried at 

60 
◦
C (Figure 5.1). 

 

 

Figure 5.1. Synthetic approach of monofunctionalized isothiocyanate MSNs (MSN-(NCS)). 

 

The successful functionalization of MSN-(NCS) is supported by the presence of two 

characteristic absorption bands around 2100 cm
-1

 in the FT-IR spectrum, characteristic of 

isothiocyanate tensions (Figure 5.2).  
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Figure 5.2. FTIR spectra of MSN-(NH2) and MSN-(NCS). 

 

MSN-(NCS) nanoparticles were characterized by DLS, TEM, BET and powder XRD analysis. 

No significant size and ζ-potential differences were obtained between initial aminated MSNs 

(MSN-(NH2)) and isothiocyanate-MSNs (MSN-(NCS)) (Table.5.1). These data suggest that the 

mild conditions used for the functionalization do not erode the structural features of MSNs. 

These nanoparticles show good chemical stability and can be stored at room temperature 

indefinitely. 
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Table 5.1. Dynamic light scattering (DLS) size and ζ-potential values of MSN-(NH2) and MSN-(NCS) of 50 and 

100 nm. 

 

Size / nm TEM DLS pdI ζ-pot / mV 

MSN-(NH2) 
50 129 0.19 -1.7 

100 142 0.07 -12 

MSN-(NCS) 
50 152 0.09 -1.4 

100 215 0.50 -11 

 

As expected, no significant size, shape and morphology differences where obtained for MSN-

(NCS) in comparison with aminated MSNs. MSN-(NCS) are regular, homogeneous and round 

shaped as it can be observed in TEM micrographs (Figure 5.3). 

  

  

Figure 5.3. TEM micrographs of MSN-(NCS) of 50nm (a) and 100 nm (b). 

 

Regarding N2 adsorption/desorption measurements, MSN-(NCS) showed type IV isotherms, 

which display clear H1 hysteresis loop characteristic of mesoporous materials. BET surface 

areas are over 600 m
2
·g

-1
 and 1100 m

2
·g

-1 
for MSN-(NH2) (50 nm) and (100 nm) respectively, 

whereas for MSN-(NCS) (50 nm) were 554 m
2
·g

-1
 and 849 m

2
·g

-1
 for MSN-(NCS) (100 nm) 

(Figure 5.4). Additionally, the pore volume for MSN-(NCS) (50nm) was 0.45 cm
3
·g

-1
 and 0.53 

cm
3
·g

-1
 for the MSN-(NCS) (100 nm). As a reference, the values recorded for MSN-(NH2) were 

0.55 cm
3
·g

-1
 and 0.72 cm

3
·g

-1
 respectively. MSN present a very narrow pore size distribution 

centered at 2.5 nm (Table 5.2). These data also suggest that the mild conditions used for the 

functionalization do not erode the structural features of the MSNs. 
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Figure 5.4. N2 adsorption-desorption and BJH pore size distribution plots of MSN-(NH2) and MSN-(NCS) of 50 

nm (a,b) and 100 nm (c,d). 

 

Table 5.2. N2 adsorption-desorption and BJH pore size distribution values of MSN-(NH2) and MSN-(NCS) of 

50 and 100 nm. 

 MSN-(NH2) MSN-(NCS) 

(50 nm) (100 nm) (50 nm) (100 nm) 

BET Surface area (m
2
/g) 599.80 1120.90 554.54 849.20 

BJH pore volume (cm
3
/g) 0.55 0.72 0.45 0.53 

Pore size (nm) 2.50 2.20 2.75 2.20 

 

Powder XDR analysis indicates highly ordered structures with d100 at 2.3 and lighter faceted 

hexagon-shape at 4.1 (d110) and 4.2 (d200) (Figure 5.5).  
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Figure 5.5. SXDR of MSN-(NCS) of 100 nm. 
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It can be concluded that isothiocyanate formation from amino MSNs can be successfully carried 

out without affecting MSNs morphology. 

 

5.3. Assessment of MSN-(NCS) functionalization 

 

Once MSN-(NCS) have been synthetized, its reactivity must be assessed. To prove that 

isothiocyanate-MSNs can react with amino moieties rapidly, efficiently, with quantitative yields 

and without further purifications, this reaction is compared with the CuAAC. Therefore, azido 

and isothiocyanate MSNs are synthetized, reacted with a comparable reagent and its 

performance studied by OEA analysis. By these means, a fluorescent naphthalimide bearing an 

alkyne and aliphatic primary amine was chosen. CuAAC cycloaddition is carried out by the 

reaction of amino MSNs with the activated azido-propionic acid, N-succinidyl 3-

azidopropionated (22). Then, both azido and isothiocyanate MSNs are reacted with alkyne 32 

and amino 11 naphthalimides respectively (Figure 5.6 and 5.8). MSNs were synthetized using 

the same equivalents of azide linker 22 and 1,1′-thiocarbonyldi-2(1H)-pyridone (5), as well as 

adding the same amount of suitable naphthalimide (11 and 32) for each case.  

 

First, mono-functionalized MSN-(NCS) were exposed to primary amine 11 for 48 h, using 

ethanol as a solvent (Figure 5.6). The reacting mixture was washed five times with the same 

solvent and centrifuged to render a yellow solid.  

 

 

 

Figure 5.6. MSN-(NCS) functionalization with amine naphthalimide 11 (MSN-(UNaph). 

 

The disappearance of the two bands around 2100 cm
-1

 indicates the completion of the reaction 

demonstrating that MSN-(NCS) can react with amino moieties forming isothioureas (Figure 

5.7).  
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Figure 5.7. FTIR spectra of MSN-(NCS) functionalization with naphthalimide MSN-(UNaph). 

 

To assess the performance of this new functionalization methodology, CuAAC coupling was 

used as standard. Therefore, the corresponding azido monofunctionalized MSNs (MSN-(N3)) 

were coupled with an alkyne butylnapththalimide 32 (Figure 5.8). 

 

 

 

 

Figure 5.8. MSN-(N3) functionalization with alkyne naphthalimide 32 (MSN-(TNaph)). 

 

In this case, the disappearance of the azido band around 2100 cm
-1

 indicates the completion of 

the reaction (Figure 5.9).  
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Figure 5.9. FTIR spectra of MSN-(N3) functionalization with alkyne naphthalimide (32) (MSN-(TNaph)). 
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Both MSN-(NCS) and MSN-(N3) nanoparticles are successfully functionalized with 

naphthalimide moieties presenting yellow coloration and a maximum band in the absorption 

spectrum of approximatively 450 nm (Figure 5.10). 
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Figure 5.10. Absorption spectra of MSN-(UNaph) and MSN-(TNaph). 

 

Finally, the functionalization capacity of both MSNs was determined by organic elemental 

analysis (OEA) (Table 5.3). Naphthalimide loading turned out to be comparable in both cases; 

4.6 % of naphthalimide loading was achieved when the CuAAC protocol is used, while a 4.8 % 

is obtained when using isothiocyanate chemistry. As anticipated, these results confirm the 

suitability of the isothiocyanate group to participate in the functionalization of MSNs.  

 

 

Table 5.3. OEA analysis of MSN-(NCS), MSN-(UNapht), MSN-(N3) and MSN-(TNaph). 

MSNs C (%) H (%) N (%) 

MSN-(NCS) 9.78 1.87 1.92 

MSN-(UNapht) 14.59 2.59 2.32 

MSN-(N3) 7.22 2.56 2.64 

MSN-(TNaph) 11.79 2.56 3.08 

 

 

The resulting MSNs easily react with primary amines and are compatible with aqueous media. 

The efficiency of the functionalization is comparable to the CuAAC. However, in stark contrast 

with the CuAAC protocols, the isolation of the derivatized MSNs is simple and there is no need 

to remove any by-product or toxic catalysts. While the thiourea-containing MSNs are easily 

isolated, the removal of copper species from the CuAAC reaction requires tedious and extensive 

washings. More than twelve washings with dithiocarbamate were needed,
4
 in order to remove 
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Cu traces, when alkyne-azide reaction was used; while, four washings in EtOH were only 

needed to remove amine-naphthalimide in MSN-(NCS). Moreover, this large number of 

washings in CuAAC synthesis leads to a high loss of MSNs, whereas with isothiourea formation 

quantitative yields are obtained. In addition, isothiocyanate chemistry can be carried out in 

alcohol and water solvents. Therefore, any supernatant quantification of drug loading can be 

achieved by absorbance determination, while in the case of cycloaddition, due to extensive 

washings in different solutions such as EDTA, dithiocarbamate, ACN and water, supernatant 

quantification cannot be achieved. These CuAAC disadvantages make isothiocyanate reaction 

an excellent approach for “click chemistry” synthesis in nanoparticles.  

 

5.4. Orthogonal regioselective bifunctionalization of MSN-(NH2)i(NCS)o 

 

Amino MSNs can be easily converted into isothiocyanate moieties and isothiourea “click 

chemistry” is reactively comparable with CuAAC protocol. Therefore, bifunctionalized amino-

isothiocyanate nanoparticles (MSN-(NH2)i(NCS)o) are synthetized as a ready-to-use system 

derived from aminated MSNs.  

 

As mentioned before, regioselective bifunctionalization is based on a co-condensation process, 

followed by an external reaction, while tensioactive is still present in MSNs porous. Generally, 

in order to preserve the surfactant inside MSNs porous, toluene is used as a solvent for external 

functionalization processes.
30

 In this case 1-1’-thiocarbonyldi-2(1H)-pyridone (5) is soluble in 

toluene and this procedure can be easily applied. 

Briefly, the synthesis follows a similar scheme as described before. The aminated nanoparticles 

(50 nm and 100 nm) containing the surfactant (CTAB) were reacted with 12 eq. of 1,1′-

thiocarbonyldi-2(1H)-pyridone (5) in toluene for 24 h (Figure 5.11).  

 

 

Figure 5.11. MSNs orthogonal bifunctionalization (MSN-(NH2)i(NCS)o). 

 

Once functionalized, and prior to tensioactive removal, the resulting solid was washed once 

with toluene and EtOH. Then the surfactant was removed by refluxing the nanoparticles in a 

mixture of HCl/EtOH or NH4NO3/EtOH. The successful regioselective functionalization of 
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MSNs is supported by the presence of two isothiocyanate absorption bands around 2100 cm
-1

 

with the presence of the tensioactive blocking the porous at 2990 cm
-1

 in the FT-IR spectrum 

(Figure 5.12). In this case, external aminated nanoparticles with tensioactive (MSN(NH2)-

CTAB) are transformed into isothiocyanate moieties, while tensioactive is still present, 

preserving inner amino groups from reaction (MSN(NH2)i(NCS)o-CTAB). Tensioactive 

removal at 2990 cm
-1

 finally gives MSN-(NH2)i(NCS)o.  
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Figure 5.12. FTIR spectra of bifunctionalized MSN-(NH2)i(NCS)o. 

 

Bifunctionalized amino-isothiocyanate nanoparticles were characterized by DLS, TEM, BET 

and powder XRD analysis. As expected, no significant size and ζ-potential differences were 

obtained between initial aminated nanoparticles (MSN-(NH2)) and bifunctionalized amino-

isothiocyanate nanoparticles (MSN-(NH2)i(NCS)o) (Table.5.4). Again, these data suggest that 

the mild conditions used for the functionalization do not erode the structural features of the 

MSNs. These nanoparticles show good chemical stability and can be stored at room temperature 

indefinitely. Again, MSN-(NH2)i(NCS)o  are regular, homogeneous and round shaped as it is 

can be observed in TEM micrographs (Figure 5.13). 

 

 

Table 5.4. Dynamic light scattering (DLS) size and ζ-potential values of MSN-(NH2) and MSN-(NH2)i(NCS)o of 

50nm and 100 nm. 

Size / nm TEM DLS pdI ζ -pot / mV 

MSN-(NH2) 
50 129 0.19 -1.7 

100 142 0.07 -12 

MSN-(NH2)i(NCS)o 
50 141 0.29 -1.7 

100 173 0.04 -13 
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Figure 5.13. TEM micrographs of MSN-(NH2)i(NCS)o of 50nm (a) and 100 nm (b) . 

 

As for N2 adsorption/desorption measurements, MSN-(NH2)i(NCS)o showed type IV isotherms, 

which display clear H1 hysteresis loop characteristic of mesoporous materials. BET surface 

areas are over 600 m
2
·g

-1
 and 1100 m

2
·g

-1
 for MSN-(NH2) (50 nm) and MSN-(NH2) (100 nm) 

respectively, whereas for MSN-(NH2)i(NCS)o (50 nm) were 554 m
2
·g

-1
 and 1000 m

2
·g

-1
 for 

MSN-(NH2)i(NCS)o (100 nm) (Figure 5.14). Additionally, the pore volume for MSN-

(NH2)i(NCS)o (50 nm) was 0.45 cm
3
·g

-1
 and 0.63 cm

3
·g

-1
 for the MSN-(NH2)i(NCS)o (100 nm). 

As a reference, the values recorded for MSN-(NH2) were 0.55 cm
3
·g

-1
 and 0.72 cm

3
·g

-1
 

respectively. The MSN present a very narrow pore size distribution centered at 2.6 and 2.2 nm 

respectively (Table 5.4). 

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

MSN(NH2)

MSN(NH2)CTAB

MSN(NH2)i(NCS)oCTAB

MSN-(NH2)i(NCS)o

Relative Pressure(P/Po)

Q
u

a
n

ti
ty

 A
d

so
rb

e
d

 (
m

2
/g

)

a)

20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

MSN(NH2)CTAB

MSN(NH2)

MSN(NH2)i(NCS)oCTAB

MSN(NH2)i(NCS)o

Average diameter (Å)

In
c
re

m
e
n

ta
l 

p
o

re
 v

o
lu

m
e
 (

c
m

3
/g

) b)

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

MSN(NH2)

MSN(NH2)CTAB

MSN(NH2)i(NCS)o

Relative Pressure (P/Po)

Q
u

a
n

ti
ty

 A
d

so
rb

e
d

 (
m

2
/g

)

c)

20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

MSN(NH2)

MSN(NH2)CTAB

MSN(NH2)i(NCS)o

Average diameter (Å)

In
c
re

m
e
n

ta
l 

p
o

re
 v

o
lu

m
e
 (

c
m

3
/g

) d)

 

Figure 5.14. N2 adsorption-desorption and BJH pore size distribution plots of MSN-NH2(CTAB), MSN-(NH2) 

and MSN-(NH2)i(NCS)o of 50 nm (a/b) and 100 nm (c/d). 
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Only external surface functionalization with 1-1’-thiocarbonyldi-2(1H)-pyridone (5) was 

successfully achieved, since MSNs mesoporous were blocked by the surfactant during the 

reaction process. BET surface area for bifunctionalized MSNs with surfactant in its matrix 

(MSN-(NH2)i(NCS)o(CTAB)) was 133.71 (m
2
/g), which means that porous were completely 

blocked and no reaction took place in inner amino moieties (Figure 5.14 and Table 5.5). 

 

Table 5.5. N2 adsorption-desorption and BJH pore size values of MSN-NH2(CTAB), MSN-(NH2) and MSN-

(NH2)i(NCS)o of 50 nm and 100 nm. 

 
MSN-NH2(CTAB) MSN-(NH2) MSN-(NH2)i(NCS)o 

MSN-(NH2)i(NCS)o 

(CTAB) 

(50 nm) (100 nm) (50 nm) (100 nm) (50 nm) (100 nm) (50 nm) 

BET surface area (m2/g) 78.60 17.30 599.80 1120.90 554.50 1000.70 133.71 

BJH pore volume (cm3/g) 0.25 0.03 0.55 0.72 0.45 0.63 0.28 

Pore size (nm) -- -- 2.60 2.20 2.60 2.20 -- 

 

Powder XDR analysis indicates highly ordered structures with d100 at 2.3 and faceted hexagon-

shape at 4.1 (d110) and 4.2 (d200) (Figure 5.15).  
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Figure 5.15. SXDR of MSN-(NH2)i(NCS)o of 50 and 100 nm. 

 

Thus, it is concluded that bifunctional amino-isothiocyanate formation from amino MSNs can 

be successfully achieved without affecting MSNs morphology. A successfully one-step 

conversion of amino MSNs into bifunctionalized amino-isothiocyanate MSNs has been 

achieved.  
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5.5. Controlled release of Ataluren 

 

Duchenne muscular dystrophy (DMD) is a degenerative disease, which is generally associated 

with a nonsense mutation in the gene dystrophin, responsible for structural stability of muscle 

tissue. Therefore, without dystrophin protein, mutation results in muscle degeneration of young 

children. Even if still today there are no effective treatments for this disease, Ataluren has been 

recently approved by the FDA as a promising drug for DMD treatment.
31–33

 Nevertheless, 

Ataluren present some disadvantages, such as being little soluble in water and non-selective for 

muscles. This is the reason why it is believed that the use of nanoparticles for Ataluren release 

could overcome these problems. 

 

Recently, Bibee et al,
34

 have developed perfluorocarbons polymeric nanoparticles where drug 

rapamycin has been encapsulated for the treatment of Duchenne Muscular Dystrophy. They 

have reported that drug encapsulation in polymeric nanoparticles provide greater therapeutic 

effect than oral administration of the drug, since more quantity of the drug can be supplied. At 

the same time, they have proven that nanoparticles accumulate in organs affected by DMD due 

to inflammation processes. Therefore, it seems that nanoparticles can be applied as nanovectors 

to passively deliver drugs in muscles.  

 

Bearing in mind these results, aminated-MSNs were proposed for the delivery of Ataluren for 

the treatment of DMD. In collaboration with Francina Munell at Institut de recerca de la Vall 

d’Hebron aminated MSNs were administered to mice affected by DMD disease, in order to 

study MSNs accumulation. Preliminary in vivo experiments revealed that MSNs were able to 

selectively accumulate in the muscle of model mice affected with DMD, while they did not 

accumulate in control mice (Figure 5.16). Even if the in vivo experiments are preliminary and 

need to be repeated, these results are very encouraging since to date, no MSNs have been 

described as targeted muscle nanocarriers. 

 

Figure 5.16. Accumulation of Alexa-680-MSNs in mice affected by DMD. 
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Given these encouraging results, it is proposed the use of MSN-(NH2)i(NCS)o for the design of 

nanocarriers useful for the passive targeting of Ataluren.
17,19,35,36

  

 

5.5.1. Design of the nanocarrier 

 

As mention in Chapter 1, it is possible to achieve MSN-based controlled release systems by 

applying mechanical controls over the pore openings. By capping and opening the entrance 

porous it is possible to build nanogates that would allow selective transport and efficient release 

of a payload. Among all possible stimuli such as pH, enzymatic activity, reductive environment, 

light, ultrasound or magnetic field, the more suitable stimuli for Duchenne muscular dystrophy 

applications seems to be reductive environment. pH stimulus is normally used in cancer 

processes due to the difference of acidity in cancerous cells in comparison with normal cells,
37

 

but it is not clear if there are any pH changes in inflammation processes.
38,39

 On the other hand, 

enzymes are very specific. So, the only stimulus that could be used in this case is general 

intracellular signal. Redox-responsive glutathione (GSH) stimulus is one of the most used 

intracellular signal, since it exist a high redox potential gradient between intra and extra cellular 

media. This redox potential is due to the difference of GSH concentration between the 

extracellular (10 µM) and the intracellular (10 mM) media. Therefore, this difference is high 

enough to release a cargo intracellularly.
40,41

 Moreover, glutathione is capable of reducing 

disulfide bonds by being oxidized to glutathione disulfide.  

 

Recently, many studies on glutathione-mediated-MSNs controlled release have been reported.
40–

43
 In these cases, it is used glutathione ability to reduce and split disulfide bonds to open the 

gates of the nanoparticles. Disulfide bonds therefore work as a switch, in response to the redox-

potential gradient. Then, when drug-loaded MSNs enter the cells, the capping agent is split 

away from the outlet of the pores to facilitate drug release inside the cells. Normally, a hindered 

large chain with a disulfide bond in its structure is used as capping agent.
40–44 

 

In this case, a PEG chain is proposed as a capping agent since it has been described that coating 

polyethylene chains on silica nanoparticles provides a nontoxic, biocompatible, and protective 

covering for in vivo applications, slowing the action of the reticuloendothelial system (RES).
20

 

Therefore, it is expected that using PEG as a mechanical gate will give MSNs additional 

physiological stability. To begin with, two different PEG, with different size, are used. On the 

one hand, a short PEG (n=3, S-PEG) such as tetraethyleneglycol is chosen, as it is neither too 

short nor too long, and consequently it is relatively easy to functionalize in MSNs surface. 

Moreover, tetraethyleneglycol polymer has been described as capping agent in literature.
45

 On 
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the other hand, a long PEG (n=15, L-PEG) is chosen to compare the delivery of the payload 

with a small and a long chain.  

 

To add the disulfide bond into PEG structure, in the main, two strategies are used. The first one 

is to add a thiol moiety into PEG structure and functionalize it to thiol-MSNs.
40

 On the other 

hand, cleavable disulfide bond could be added by using cystamine (34). Since introducing 

another moiety to bifunctionalized amino-isothiocyanate MSNs, such as thiol moiety, seems 

difficult to achieve, the use of cystamine is preferred. Moreover cystamine approach has been 

widely studied in literature.
45

 

 

Generally, capping agents are introduced at the porous entrance of MSNs directly through 

silanization,
46

 by just one step reaction,
40

 or sequently,
41

 fragment by fragment. Nevertheless, 

grafting PEG process is not recommended since it can erode MSNs surface,
47

 while a step by 

step reaction with MSNs can affect MSNs purification. Therefore, the best option would be to 

add the final polymer directly to the MSNs and confirm that the cleavable disulfide bond has 

been successfully formed.  

 

In order to release the maximum quantity of PEG, cystamine (34) must be added as close as 

possible to MSNs entrances. It is not desired to have any remaining, non-reduced, PEG moieties 

that would block the porous entrance while the drug is released. A large size reduction in the 

appended gate is needed in order to enable the total release of the drug.  

 

So, the three key components needed for a scissile disulfide PEG functionalization in MSNs are 

tetraethyleneglycol monomethyl ether (33), cystamine (34) and amino-isothiocyanate MSNs 

(Figure 5.17).  

 

 

Figure 5.17. Key components for drug release capping system. 

 

If the dithiol bond needs to be as close as possible to MSNs surface, one of the amines of 

cystamine (34) must react with the isothiocyanate moieties of bifunctionalized MSNs. 

Therefore, at one point monoprotected cystamine 35 must be synthetized. In addition, the other 

amine moiety of cystamine molecule must react with the tetraethyleneglycol chain. As a 

consequence, the synthetic approach that is proposed is to introduce an amine moiety to the 
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methoxy tetraethylene glycol 33, giving 39, and react it with a monoprotected isothiocyanate 

cystamine 36 (Figure 5.18).  

 

 

Figure 5.18. Key functional groups for capping agent synthesis. 

 

To synthetize the monoprotected cystamine isothiocyanate, commercial cystamine (34) is used. 

One of the two amino groups is monoprotected with BOC and this reaction leads to product 

tert-butyl(2-((2-aminoethyl)disulfanyl)ehyl)carbamate (35). Remaining group NH2 is reacted 

with 1,1'-tiocarbonildi-2(1H)–piridone (5) to give final product tert-butyl(2-((2-

isothiocyanatoethyl)disulfanyl)ehyl)carbamate (36) Figure 5.19.  

 

 

Figure 5.19. Synthesis of tert-butyl(2-((2-isothiocyanatoethyl)disulfanyl)ehyl)carbamate (36). 

 

As for (S-PEG), to synthesize triethylene glycol 2-methyl amino methyl ether (39) commercial 

methoxy triethylene glycol monomethyl ether (33) is used (Figure 5.20). The reaction begins 

with a nucleophilic substitution between the alcohol group and chloride tosylate, which 

generates triethylene glycol 2-methyl tosylate methyl ether (37). A second nucleophilic 

substitution between tosylate molecule and sodium azide give product triethylene glycol 2-

methyl azide methyl ether (38). Finally, triethylene glycol 2-methyl amino methyl ether (39) is 

synthetized by Staudinger reaction, where azide is reduced to amine moiety with 

triphenylphosphine followed by hydrolysis.  

 

Figure 5.20. Synthesis of triethylene glycol 2-methyl amino methyl ether (32). 
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For (L-PEG), a commercially available methoxypolyethylene glycol amine n=15 [PM=750 

g·mol
-1

] is directly chosen. 

 

Finally, monoprotected cystamine-isothiocyanate (36) and triethylene glycol 2-methyl amino 

methyl ether (39, n=3) or methoxypolyethylene glycol amine (39, n=15) give the disulfide PEG 

tert-butyl(15-thioxo-2,5,8,11-tetraoxa-19,20-dithia-14,16-diazadocosan-22-yl)carbamate (40, 

n=3 and n=15). The product 40 (n=3 and n=15) is purified with a silica gel column 

chromatography using as eluent a mixture of 50:50 (DCM:AcOEt). Once purified, final BOC 

deprotection with TFA gives 1-(2-((2-aminoethyl)disulfanyl)ethyl)-3-(2,5,8,11-tetraoxatrideca-

13-yl)thiourea (41, n=3 and n=15) (Figure 5.21).Product 41 (n=3 and n=15) is directly added to 

the MSNs. 

 

 

Figure 5.21. Synthetic approach of capping agent 41. 

 

5.5.2. Controlled Ru(bipy)3
2+

 release  

 

For the sake of simplicity Ru(bipy)3
2+ 

was chosen as a proof of concept dye. Ru(bipy)3
2+ 

was 

added to the MSNs by absorption process and following the procedure described by Sancenon 

et al.
48,49

 Ru(bipy)3
2+

 loading was achieved in a 8 % loading, similar to the  typical value found 

in the literature.
40

 When Ru(bipy)3
2+

 release is carried out in bifunctionalized MSN-

(NH2)i(NCS)o without any capping agent, release is almost completed in 1 h. Complete 

Ru(bipy)3
2+

 release (100 %) is achieved at 3 h.  

 

There is no control of Ru(bipy)3
2+

 release when no capping agent is added. In order to 

functionalize a mechanized stimulus in MSNs, MSNs are functionalized with disulfide-PEG 41 

(n=3 and n=15) (S-PEG) and (L-PEG). Before adding the redox responsive PEG linker (41) to 

the nanoparticles, MSNs must be filled with the drug. 
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Typically, 18 mg (2.45·10
-5

mol) of Ru(bipy)3
2+ 

were added to a solution of 30 mg of 

bifunctionalized MSNs in 5 mL of ACN. After 24 h, 60 mg (1.49·10
-4

mol) of disulfide-PEG 41 

(L-PEG and S-PEG) were added in 15 mL of ACN for 24 h (Figure 5.22). Finally, after 

washing with EtOH, Ru(bipy)3
2+

 supernatant was measured at 451 nm to estimate the loading of 

MSN-(NH2)i(S-PEG)oRu and MSN-(NH2)i(L-PEG)oRu. In order to assess the total amount of 

Ru(bipy)3
2+

 that can be released, MSNs are treated with HCl (c) for 12 h and the supernatant is 

measured at 451 nm. 

 

Figure 5.22. General scheme for MSN(NH2)i(S-PEG)oRu and MSN(NH2)i(L-PEG)oRu synthesis. 

 

In vitro release experiments were performed at pH 7.4 and 10 mM GSH solution. For each 

release study, 1.5 mL of buffer solution was first added to 10 mg of MSN-(NH2)i(S-PEG)oRu 

and MSN-(NH2)i(L-PEG)oRu and maintained at 37 
◦
C, while being stirred at 100 rpm. Release 

medium was removed for analysis at specific time intervals by centrifuging at 12000 rpm for 13 

min and placing solid residues into identical volumes of fresh buffer solution. The amount of 

released Ru(bipy)3
2+

 was analyzed with a UV–Vis absorption spectrophotometer at 451 nm. 

Ru(bipy)3
2+

 release curves are shown in Figure 5.22 and Figure 5.23. 
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Figure 5.23. Release of MSN(NH2)i(S-PEG)oRu in the absence and presence of GSH . 



Chapter 5. Amino-isothiocyanate MSNs for the controlled release of Ataluren.  

_____________________________________________________________________________ 
 

126 

 

Regarding the short PEG (S-PEG) (Figure 5.23), when GSH is added in the medium, 

Ru(bipy)3
2+

 release follows the same pattern as if there was no capping agent, approximately 90 

% of Ru(bipy)3
2+

 is released in the first hour. When GSH is not added, there is a high remaining 

release. It seems that this S-PEG (41, n=3) is not blocking enough the entrance of the porous, 

because without stimulus, half of the payload is released. Nonetheless, when GSH is added to 

regular PBS medium, release percentage increases considerably which demonstrates the fact 

that it is really the disulfide split triggered by GSH and consequent size reduction of the PEG, 

that brings about Ru(bipy)3
2+

 release. 

 

Nevertheless, when the large PEG (L-PEG) is used as a capping agent, the difference between 

Ru(bipy)3
2+

 release at pH=7 and in GSH medium is quite marked. Ru(bipy)3
2+

 release 

supernatants in pH=7 present no coloration, while supernatants in GSH medium are yellow due 

to higher Ru(bipy)3
2+

 release (Figure 5.24). 

 

  

Figure 5.24. Ru(bipy)3
2+ release of MSN(NH2)i(L-PEG)oRu without GSH (a) and with GSH (b). 

 

With the long PEG (L-PEG) in a GSH medium, approximately the vast majority of Ru(bipy)3
2+

 

is released in the first hour, while just 15 % of Ru(bipy)3
2+

 is free in normal conditions. These 

results meet with described releases for other systems.
40,46

 In this case, a controlled release with 

long disulfide PEG (34, n=15) is obtained (Figure 5.25). Again, when GSH is added to regular 

PBS medium, the quantity of Ru(bipy)3
2+

 released is enhanced. 
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Figure 5.25. Release of MSN-(NCS)(L-PEG)Ru in the absence and presence of GSH. 

a)                                                          b)              
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Even though remaining release at pH=7 is low, this value could maybe become lower with the 

addition of a larger or more ramified PEG.  

 

Although it has been reported that small tetraethyleneglycol can seal MSNs entrance,
45

 long 

PEG (L-PEG) is able to cap more efficiently than small PEG (S-PEG). To sum up, Ru(bipy)3
2+

 

loading and release percentages are summarized in table 5.6. 

 

Table 5.6. Loading and release of Ru(bipy)3
2+ 

 No PEG S-PEG L-PEG 

Ru(bipy)3
2+

 -- No GSH GSH No GSH GSH 

Loading (%) 7 7 7 

Release (%) 104 53 96 25 100 

 

 

Now that it has been proven that it is possible to control Ru(bipy)3
2+

 release by using a 

disulfide-PEG, the payload is changed for Ataluren drug. 

 

5.5.3. Ataluren Release 

 

As a possible therapeutic application of this new methodology for Duchenne disease, a very 

simple nanovehicle for the delivery of Ataluren (43) (Translarna™) has been designed (Figure 

5.26).
50

  

 

 

Figure 5.26. Chemical structure of Ataluren. 

 

First, MSNs pores must be filled with Ataluren drug. Since there are no references of MSNs 

loaded with Ataluren, the same protocol used for Ibuprofen and Captopril loading have been 

used.
51–54

 Bifunctional MSN-(NH2)i(NCS)o nanoparticles were loaded with the drug in a 

proportion (2:1.5) respectively, by exposing MSNs to a solution of Ataluren in ethanol. Finally, 

after washing with EtOH once, Ataluren supernatant was measured at 255 nm, to assess the 

loading. Ataluren loading was obtained between 4-6 %, similar to described first impregnations 

results for Ibuprofen.
54

 Ataluren release in pH=7, without any capping gate is presented in 

Figure 5.27.  
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Figure 5.27. MSN-Ataluren release. 

 

No control of Ataluren release is obtained when no capping agent is added. More or less 40 % 

of Ataluren is released in the first 1 h. These results correspond to described values for 

Captopril release in the literature.
53

 While, in the case of Ru(bipy)3
2+

a 100 % of the payload was 

released, in this case part of Ataluren drug is still present in the MSNs pores and has been not 

released. This is probably due to the interactions between the carboxylic acid of Ataluren and 

the amino moieties of MSNs. This interaction has also been described in the case of 

Ibuprofen,
52,54

 whereas for Ru(bipy)3
2+

 no interactions were found, since Ru(bipy)3
2+

 present no 

funcional group able to interact with MSNs.  

 

Ataluren release can be divided in two clearly differentiated parts. The former, can be explained 

as a fast release due to Ataluren molecules that neither have been absorbed nor interact with 

MSNs. The latter is attributed to a slow release due to strong interactions between amino 

functional groups of the pores and the carboxylic acid of Ataluren. Nevertheless, when no 

capping agent is added, no control of Ataluren release is obtained. In order to control Ataluren 

release, these nanoparticles are functionalized with S-PEG and L-PEG (41, n=3 and n=15) 

following the same procedure as before. First Ataluren is added to bifunctionalized MSNs in a 

1.5:2 proportion and then after 24 h small (n=3) and long (n=15) methoxypolyethylene glycol 

amine (41, n=3 (S-PEG) and 41, n=15 (L-PEG)) were added to seal the porous. The 

suspension was stirred for 24 h. Finally, the mixture was centrifuged and washed twice with 

ethanol to obtain MSN-(NH2)i(S-PEG)oAta and MSN-(NH2)i(L-PEG)oAta (Figure 5.28).  
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Figure 5.28. MSN(NH2)i(S-PEG)oAta and MSN(NH2)i(L-PEG)oAta functionalization. 

 

Again, release profile clearly demonstrates the blocking action of both small and long PEG, 

although L-PEG blocking effect is more pronounced (Figure 5.29 and 5.30). 
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Figure 5.29. MSN-(NH2)i(S-PEG)oAta release. 
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Figure 5.30. MSN-(NH2)i(L-PEG)oAta release. 
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Long polymer is able to seal more efficiently MSNs channels than small PEG. Ataluren release 

with L-PEG without GSH stimulus is just 10 %, while with S-PEG uncontrolled release is more 

than 18 %. In fact, when PEG polymer is added to MSNs, Ataluren release is less abrupt. At 1 

h, for both small and large PEG, Ataluren release is less than 15 %, whereas for MSNs without 

any capping agents was 40 %. PEG addition at the outside surface enhances a controlled 

Ataluren release over time. Therefore, the functionalization of a scissile PEG is an excellent 

strategy to control drug release and diminish Ataluren abrupt liberation.  

 

Nevertheless, with PEG addition, the final quantity of Ataluren that can be released is inferior to 

the quantity obtained when no PEG is added. Related with that, Jadzinsky et al
55

 have described 

that thiols moieties are capable of forming hydrogen bond interactions with molecules that 

present phenyl and carboxylic acids in their structure, which is exactly the case of Ataluren 

molecule. These assumptions may explain why Ataluren release in pegylated MSNs is lower 

than initial non pegylated MSNs. In all likelihood, Ataluren phenyl and carboxylic acid moieties 

interact with thiol scissile groups of PEG chains. Moreover, it is highly probable that this 

interaction could be responsible for the gradual release of Ataluren, when the gate is opened. 

When thiols are present in the external surface, Ataluren interactions might slow the release 

profile reaching 50 % at five hours, while without PEG, Ataluren release reached 50 % at 1h.  

 

On the other hand, it is worth mentioning that desirable drug release profile depends on MSNs 

biodistribution and blood clearance. If MSNs are excreted rapidly it is not interesting to delay 

Ataluren release over time, but instead a fast release in the first hours would be needed. For 

similar nanoparticles, it has been described that blood clearance is reached in less than 4 h.
20

 

Therefore it is believed that a drug release profile, where the maximum quantity of drug is 

released at 5 h, as the one obtained in Figure 5.30 is desirable. There is no point in having a long 

release profile in 24 h if blood clearance is reached at 4 h.  

Ataluren maximum release in all cases has been approximatively 7·10
-8 

mol Ataluren/ mg MSN 

or 0.02 mg Ataluren/mg MSN. Ataluren loading and release values are summarized in table 5.7. 

 

Table 5.7. Loading and release of Ataluren. 

 No PEG S-PEG L-PEG 

Ataluren pH=7 No GSH GSH No GSH GSH 

Loading (%) 4 4 4 

Release (%) 53 16 37 10 44 

Loading (molAta/mgMSN) 1.4·10
-7

 1.4·10
-7

 1.4·10
-7

 

Release (molAta/mgMSN) 7.4·10
-8

 2.2·10
-8

 5.2·10
-8

 1.3·10
-8

 6.1·10
-8
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Typically, the concentration of Ataluren that is used for in vitro experiments is 10 µM per well 

(500µL), which corresponds to 5.10
-9

 mol Ataluren/well. Knowing that with L-PEG in a GSH 

medium, the quantity of Ataluren that is released is 6.1·10
-8 

molAta/mgMSN, in order to have a 

5.10
-9

 mol Ataluren per well, a concentration of 0.16 mgMSN/mL will be needed. This 

concentration can be added to the cells without expecting any toxicity intrinsic to the MSNs. 

Therefore the quantity of Ataluren released seems good enough to study this system in vivo for 

the treatment of DMD. 

 

5.6. Conclusions and Outlook 

 

 A straightforward protocol to prepare isothiocyanate functionalized MSNs from 

aminated MSNs has been achieved. The resulting MSNs easily react with primary 

amines and are compatible with aqueous media. The efficiency of the functionalization 

is comparable to the CuAAC cycloaddition, while presenting a simple isolation with no 

need to remove any by-product or toxic catalysts.  

 Following this methodology, amino-isothiocyanate regioselective functionalized MSNs 

have been prepared for the first time. These MSNs present external isothiocyanates 

ready to react with amines, whereas inner amino groups are available for subsequent 

manipulations.  

 The chemical stability of new bifunctionalized amine-isothiocyanate MSNs, along with 

the clean reactivity and easy purification of the particles, endows these systems with 

ideal properties to be used in the design of drug carriers. 

 These regioselective functionalized nanoparticles have been used for the design of a 

nanocontainer able to release the drug Ataluren in a controlled, manner when using a 

long PEG polymer (34, n=15). The quantity of Ataluren that can be released with this 

system is high enough to start in vivo experiments with MSNs loaded with the drug. 

 

Due to the promising results obtained with this responsive glutathione system, the next step is to 

use amine-isothiocyanate MSNs for in vivo experiments. Nevertheless prior to use this system 

in mice, it is crucial to prove that Ataluren, loaded in MSNs, is more effective than the drug 

itself. Should this hypothesis be proven, the optimization of MSNs biodistribution, solubility 

and enhancement of the payload loading and release will be carried out. 

 

One of the greatest advantages of regioselective amino-isothiocyanate MSNs is that they are 

extremely versatile, and therefore a wide range of drugs, apart from Ataluren, can be used for 

the treatment of Duchennne dystrophy. 
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Chapter 6. Amino-aldehyde MSNs for their 

application as dual drug delivery system 

 

Regioselective bifunctionalized MSN(NH2)i(CHO)o nanoparticles have been synthetized. These 

MSNs have been applied as a versatile nanoplatform able to release dual synergistic CPT/DOX 

mixture for cancer treatment, by using pH stimuli. While CPT is absorbed at the inner surface, 

DOX is covalently linked to the external domain acting both as an active and a capping agent. 

This system responds to pH stimuli and both CPT and DOX drugs are only released in an acidic 

media (pH=4).  
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Chapter 6. Amino-aldehyde MSNs for their application as dual drug delivery 

system 

 

6.1. Introduction 

 

Over the past few years, next generation multiplatforms have been considered as combined 

vehicles for the detection and treatment of aggressive diseases.
1
 In this field, multifunctional 

drug delivery systems (DDS) have emerged as a promising multiplatform able to combine the 

release of multiple therapeutic agents in one vehicle.
2,3

 DDS are designed to overcome 

unspecific uptake, rapid clearance, poor water solubility and reduce secondary effects related 

problems.
4–6

 So far, dual DDS have been used for the combined treatment and reduction of drug 

resistance effect,
7,8

 for the dual combination of chemotherapy and PDT,
9
 chemotherapy and 

imaging,
10

 as a targeted controlled drug release
11

 and for the combined release of synergetic 

chemotherapeutic agents.
12

 Nevertheless, even if combined nanoplatforms have been used in 

different applications,
1
 it is in the field of cancer treatment that dual combined nanoplatforms 

are being widely studied.
13

  

 

Among a large number of diseases, cancer is still the most common and aggressive disease 

present in the first global world.
14

 Nevertheless, despite the phenomenal advancement in 

molecular genetics, tumor biology and chemical therapy, adequate treatment of cancer is far 

from satisfactory.
15

 The therapeutic effect of chemical approach remains quite poor due to 

insufficient drug dosage to the diseased regions, rapid blood clearance, severe side effects and 

drug resistance.  

 

To sweep out these obstacles, combination of different chemotherapeutical agents has attracted 

increasing attention because of its enhanced therapeutic efficiency compared with the 

unsatisfactory results of single agents in the treatment of advanced tumors.
16,17

 By this means, 

the application of nanocarriers for dual drug release is of great interest. As an example of 

success, recently Celator Pharmaceutical Inc has been awarded with the Nanomedicine 2015 

award for the development of a combined Cytarabine-Daunorubicin (VYXEOS™) 

nanoplatform (CombiPlex®) for the treatment of myeloid leukemia (AML).
18–20

 This discovery 

clearly highlights the fact that even if the development of effective multi-cargo-loaded systems 

remains a challenge,
13

 great encouraging improvements are been done to apply these systems in 

the near future.  
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In this field, mesoporous silica materials present promising properties for drug delivery 

applications due to their ability to encapsulate different types of cargo molecules within their 

pore channels and control payloads release, by adding triggered gates at the external surface.
6,21

 

Among different stimuli, pH-sensitivity promises to be one of the most powerful tools for the 

development of smart nanovalves in cancer therapy. Taking into account that pH values at the 

vicinity of cancerous tissues (pH=6.5) and in endo/lysosomes (pH=4-6) are lower than in blood 

and normal tissues (pH=7.4), pH sensitivity can be used to control release systems in cancer 

applications.
22,23

 

Therefore, the synthesis of a combined MSN nanoplatform for a dual synergistic drug release in 

an acidic media would be of great interest. 

The general principle of combination chemotherapy is the delivery of the maximum tolerated 

dose of different drugs with independent mechanisms of action.
24

 In this regard, many antitumor 

drugs without overlapping toxicities and cross-resistance have been used together to afford a 

remarkable synergistic effect to enhance cancer cell killing.
13

 Among them (5-fluorouracil, 

methotrexate, cisplatin, camptothecin, doxorubicin, etoposide, paclitaxel, carboplatin, and 

vincristine), a combination of camptothecin (CPT) with doxorubicin (DOX) has attracted great 

interest, due to its effective synergistic effect (Figure 6.1).
25–30

  

 

Figure 6.1. DOX and CPT chemical structure. 

 

DOX and CPT derivatives are considered to be two of the most promising anticancer drugs of 

the 21st century. Although studies have demonstrated their effectiveness against many different 

types of cancer in vitro, clinical application of CPT and DOX is difficult to achieve due to their 

poor water solubility and their high secondary effects.
25–30

 Both CPT and DOX are DNA-

damaging drugs that result in the unwinding of DNA transcription, by inhibiting the progression 

of the topoisomerase I (CPT) and II (DOX) enzymes, enhancing the DNA-damaging 

efficiency.
25–30
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A search in literature revealed that dual DOX-CPT-MSNs have been only scarcely described in 

the literature. To our knowledge, there are just two examples where MSNs have been used to 

deliver dual DOX-CPT drugs.
28,29

  

On the one hand, Ze-Yong Li et al,
28

 proposed to functionalize DOX with an hydrolysable 

linker into mercaptopropyl MSN and then, absorption of CPT. As a consequence DOX is 

released only in an acid pH, but no control of CPT release is obtained, since it is only present at 

the external surface of MSNs. As a consequence, CPT release is not affected by the linker split 

at pH=4 and is equally released at any pH. In addition, CPT release at pH=7 is not desired since 

at these physiological conditions CPT is hydrolyzed, leading to the opening of the lactone ring 

forming the inactive carboxylate.
31

 

Moreover, Ze-Yong Li et al. approach is chemically complex and not versatile, since the 

hydrolysable linker is attached to the drug. Instead of adding the scissile linker directly to the 

nanoparticles and then add DOX, the authors functionalize the DOX structure, which could 

change the action mechanism of the drug and therefore its therapeutic effect. Thus, this 

approach is not only difficult to carry out but also not general. If another drug is used, the linker 

must be synthetized again. On the contrary, by adding directly to the MSN a suitable 

hydrolysable linker, any drug with a carbonyl group could be added afterwards, without any 

chemical reaction in its structure.    

On the other hand, Muhammad et al
29

 proposed to use DOX as a capping agent by a 

coordination interaction. Channels in this case are capped with cadmium disulfide CdS quantum 

dots and DOX is absorbed at the entrance of the porous by the interaction between the amino 

group of DOX and Cd
2+

. In an acid environment this interaction is not present and therefore, 

DOX is released with inner CPT. Nevertheless, in this case CPT was only released at pH=7 (80 

%).  

Although in none of the reports, a blocking effect is attributed to DOX itself, it has been 

described that similar structures are able to block the outer surface.
32,33

 Therefore, it seems that 

either by linking DOX covalently or electrochemically, the drug would be capable of blocking 

the pores. Moreover, it is firmly believed that by combining the two strategies it could be 

possible to control CPT and DOX release in different pH media.  

Thus, the synthesis of MSNs with CPT loaded at the inner porous and DOX covalently linked at 

the surface of MSNs through a scissile bond is envisaged for the delivery of a dual synergistic 

pH triggered system. Typical cleavable pH sensitive bonds are hidrazones,
28,34

 hidrazides,
35

 or 

imines
36

. Among them, hidrazones have been widely studied.
34,35,37–39

 By absorbing CPT drug 
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inside the channels and therefore adding a capping DOX-linker system at basic pH the entrance 

of the porous will be blocked, having a controlled release of CPT and DOX .  

6.2. Strategy for dual drug release 

 

MSNs nanoplatform is designed as a versatile system, where a same drug would act both as a 

capping linker and as a therapeutic agent. To our knowledge, no examples of drugs acting both 

as a therapeutic agent as well as a capping gate in MSNs or other similar systems have been 

described. This strategy is not commonly used in the literature.  

To this end, a drug A is loaded in MSNs porous, in this case CPT, then the blocking 

hydrolysable linker is introduced and finally the second drug B (DOX) is added. By pH 

stimulus drug B (DOX) and capping linker would be hydrolyzed and the gates would open. 

Therefore no release is expected at pH=7 while a high drug A and B release is expected at pH=4 

(Figure 6.2).  

 

Figure 6.2. Dual drug release system scheme.  

 

Both drug A and B are added to the system without any chemical reaction to their structure. 

Therefore it is proposed a versatile, one-pot approach where any carbonyl drug could be used as 

a capping agent. 
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Consequently, a linker that would react with MSNs and DOX is needed. Therefore, this strategy 

presents the advantage of using a linker with two scissile points, and therefore it will enable 

DOX to be released even if one of the two points is not hydrolyzed.  

In this case, it is proposed to use a polyethylene glycol chain, that apart from blocking MSNs 

porous, would also increase MSNs biodistribution and time clearance.
40

 Small and similar 

compounds have shown to be able to block the porous entrance.
35,41,42

 

Moreover, the cytotoxicity of hydrazone-linked polymer–drug conjugates, for different 

applications, have been studied
43

 and they do not induce cytotoxicity. Therefore hydrazine 

moieties are a suitable group to use for in vitro and in vivo applications. 

Then, a dihydrazide PEG (34) that could be easily synthetized from tetraethylene glycol is 

proposed as a suitable linker. Thus the components proposed to carry out the final systems are 

presented in Figure 6.3, which are aminated-MSNs; 3,6,9,12,5-pentaoxaheptadecanedihydrazide 

(34) and DOX (22). 

 

Figure 6.3. Proposed components for dual system application. 

 

One extremity of PEG (45), 3,6,9,12,5-pentaoxaheptadecanedihydrazide, is reacted with the 

ketone moiety presented in DOX structure and the other with MSNs. Therefore proper 

functionality in MSNs that would directly react with the hydrazide moiety is needed. An easy 

possibility is to introduce an aldehyde moiety into the MSNs surface. Thus, the synthesis of 

amine-aldehyde regioselective MSNs is needed. In addition, while aldehyde moiety would react 

with the linker, amino functionality will enhance drug loading. 

A search in literature revealed that, there are few examples of aldehyde-MSNs
35,39,44,45

 and in all 

the cases, aldehyde is added by silanization through triethoxysilylbutyraldehyde. Nevertheless, 

to our knowledge, there are no amine-aldehyde MSNs, not to mention regioselective amino-

aldehyde MSNs.  

Aldehyde-MSNs can be synthetized by using amino reactivity. MSN must react with a linker 

holding a functionality that would react with aminated-MSNs and the other that would give an 
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aldehyde moiety. A linker bearing an activated acid or an isothiocyanate moiety with an 

aldehyde could be used, but since amine-acetal, 2,2-dimethoxyethan-1-amine (47), is 

commercially available and accessible in the laboratory, it is believed that using isothiocyanate 

reaction would be easier. Amine-acetal 47, can be easily transformed to the isothiocyanate-

acetal linker 46, 2-isothiocyanate-1,1-dimethoxyethane, which after deprotection in acidic 

media will give aldehyde-MSNs (Figure 6.4.) . 

 

Figure 6.4. Components for dual system application. 

 

Therefore aldehyde MSNs and the capping dihydrazide linker must be synthetized and then, the 

entire system proved.  

6.3. Synthesis of aldehyde-MSNs 

 

First, a study of the synthesis and reactivity of monofunctionalized aldehyde-MSNs must be 

carried out. Therefore, MSNs aldehyde formation with 2-isothiocyanate-1,1-dimethoxyethane 

(46) must be tested. Since amimo and aldehyde moieties are not compatible in the same surface, 

first the concept must be proven by converting all amino moieties into aldehyde functionality. 

For that, CTAB must be completely removed before any reaction. As proof of concept, 28 eq. of 

2-isothiocyanate-1,1-dimethoxyethane (20 mg, 1.36·10
-4

 mol) (46) in 20 mL of EtOH were 

added to 40 mg of aminated-MSNs of 100 nm. 24 h later, the resulting material was then treated 

with acid ethanol for 4 hours in order to deprotect the acetal moiety and form the aldehyde 

moiety (Figure 6.5).   
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Figure 6.5. Synthesis of aldehyde MSNs. 

MSN-(CHO) nanoparticles were characterized by IR and DLS. No further characterization was 

carried out since the aim of this nanoparticles MSN-(CHO) is just to prove that the use of 2-

isothiocyanate-1,1-dimethoxyethane (46) can yield aldehyde reactive MSNs. The successful 

functionalization of MSN-(CHO) is supported by the presence of two characteristic absorption 

bands around 2900 cm
-1

 and 1400 cm
-1

 in the FT-IR spectrum (Figure 6.6).  Moreover, acetal 

formation (MSN-(Acet)) can be clearly observed by the widen signals at 3000 cm
-1

 and 1200 

cm
-1

.  
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Figure 6.6. FTIR of MSN-(CHO). 

 

As expected, no significant size and ζ-potential differences were obtained between initial 

MSNs-(NH2) and MSN-(CHO) (Table.6.1). These data suggest that aldehyde functionalization 

do not erode the structural features of the MSNs.  

Table 6.1. MSN-(CHO) size. 

Size / nm TEM DLS pdI ζ -pot / mV 

MSN-(CHO) 100 190 0.148 -15 
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6.4. Functionalization test of MSN-(CHO) 

 

Once MSN-(CHO) have been synthetized, its reactivity must be checked. To prove that 

aldehyde-MSNs can react with hydrazine moieties rapidly, efficiently, in quantitative yields and 

without further purifications, the reaction is carried out with (2,4-dinitrophenyl)hydrazine (47) 

which gives a yellow colored product and thus, MSNs functionalization can be easily detected 

(Figure 6.7). 

 

Figure 6.7. 2,4-dinitrophenylhydrazine (38) reaction with MSN-(CHO). 

20 mg (1.056·10
-4

 mol) of 2,4-dinitrophenylhydrazine (48) were added to a solution of 5 mg 

amino-MSNs in 5 mL of MeOH and were left for 24 h. MSNs were washed with MeOH until 

supernatant presented no color. The yellow coloration of MSNs corroborates that MSN-(CHO) 

have indeed reacted with 2,4-dinitrophenylhydrazine (48) and that aldehyde moiety has been 

correctly introduced to MSNs. 13 % of 2,4-(dinitrophenyl)hydrazine was finally attached to the 

MSNs. 

6.5. Synthesis of bifunctionalized amino-aldehyde MSNs 

 

Now that it has been proved that amino-MSNs can be easily converted into aldehyde moieties, 

regioselective bifunctionalized (MSN-(NH2)i(CHO)o) must be synthetized.  

As mentioned before, regioselective bifunctionalization is based on a co-condensation process, 

followed by an external reaction, while tensioactive is still present in MSNs porous. Generally, 

in order to preserve the surfactant inside MSNs porous, toluene is used as a solvent in external 

functionalization processes. In this case isothiocyanate-acetal linker 46 is soluble in toluene and 

this procedure can be easily applied. 

Briefly, the synthesis follows a similar scheme as described before. 0.2 g of aminated-MSNs 

containing the surfactant (CTAB) were reacted with 4 eq. of 2-isothiocyanate-1,1-

dimethoxyethane (46) (0.1 g, 6.8·10
-4

 mol) in 50 mL of toluene. 24 h later, MSNs were washed 

twice with toluene and ethanol and then the tensioactive was eliminated. MSN-(NH2)i(Acet)o 
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were treated in 40 mL solution of EtOH, where 0.5 g of NH4NO3 were dissolved. 24 h later, 

MSNs were washed with EtOH and acetal protecting group was removed by stirring MSNs in 

HCl solution for 6 h (Figure 6.8).  

 

 

Figure 6.8. Bifunctionalized MSN-(NH2)i(CHO)o scheme. 

 

The successful functionalization of MSNs is supported again by the presence of three small 

aldehyde absorption bands, two around 2990 cm
-1

 and one at 1400 cm
-1

 in the FT-IR spectrum 

(Figure 6.9). In this case, amine moieties of aminated nanoparticles with tensioactive (MSN-

(NH2)CTAB) are transformed into acetal (MSN-(NH2)i(Acet)oCTAB) while tensioactive is still 

present as it is clear from the absorption band at 2990 cm
-1

, preserving inner amino groups from 

reaction. Tensioactive removal gives MSN-(NH2)i(Acet)o that present widen acetal bands at 

3000 cm
-1

 and 1200 cm
-1

. Finally, treatment with HCl gives the final MSN-(NH2)i(CHO)o,  

 

The regioselective bifunctionalization of MSN-(NH2)i(CHO)o was successfully achieved since 

MSNs mesoporous were blocked by the surfactant (MSN-(NH2)i(Acet)oCTAB)), during the 

reacting process (2900 cm
-1

) and no reaction was carried at inner amino moieties. 
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Figure 6.9. FTIR of bifunctionalized MSN-(NH2)i(CHO)o. 
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Bifunctionalized amino-aldehyde MSNs were characterized by DLS, TEM, BET and powder 

XRD analysis. As expected, no significant size and ζ-potential differences were obtained 

between initial aminated nanoparticles (MSNs-(NH2)) and bifunctionalized amino-aldehyde 

nanoparticles (MSNs-(NH2)i(NCS)o) (Table.6.2). Again, these data suggest that aldehyde 

introduction does not erode the structural features of the MSNs. Moreover, MSN-(NH2)i(CHO)o 

are regular, homogeneous and round shaped (Figure 6.10). 

Table 6.2. MSN-(NH2)i(CHO)o size. 

Size / nm TEM DLS pdl ζ-pot / mV 

MSN-(NH2) 100 140 0.040 -13 

MSN-(NH2)i(CHO)o 100 148 0.608 -17 

 

 

   

Figure 6.10. TEM micrographs of monodispersed MSN-(NH2)i(CHO)o. 

Powder XDR analysis indicates highly ordered structures with d100 at 2.3 and lightly faceted 

hexagon-shape at 4.1 (d110) and 4.2 (d200) (Figure 6.11).  
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Figure 6.11. SXDR of MSN-(NH2)i(CHO)o. 

N2 adsorption/desorption measurements, MSN-(NH2)i(CHO)o showed type IV isotherms, which 

display clear H1 hysteresis loop characteristic of mesoporous materials. BET surface areas are 

over 1006.86 m
2
·g

-1
 for MSN-(NH2) and 989.67 m

2
·g

-1
 for MSN-(NH2)i(CHO)o (Figure 6.12). 



                   Chapter 6. Amino-aldehyde MSNs for their application as dual drug delivery system  

_____________________________________________________________________________ 
 

147 

 

Additionally, the pore volume for MSN-(NH2)i(CHO)o was 0.56 cm
3
·g

-1
 and 0.67 cm

3
·g

-1
 for 

reference MSN-(NH2). The MSN present a very narrow pore size distribution centered at 2.4 nm 

(Table 6.3). 
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Figure 6.12. N2 adsorption-desorption and BJH pore size distribution plots of MSN-(NH2)i(CHO)o. 

Table 6.3. N2 adsorption-desorption and BJH pore size distribution values of MSN-(NH2)i(CHO)o. 

 MSN-NH2(CTAB) MSN-(NH2) MSN-(NH2)i(CHO)o 

BET surface area (m
2
/g) 50.07 1006.86 989.67 

BJH pore volume (cm
3
/g) 0.03 0.67 0.56 

Pore size (nm) -- 2.40 2.40 

 

It can be concluded that bifunctional amino-aldehyde formation from amino-MSNs can be 

successfully achieved without affecting MSNs morphology.  

6.6. Synthesis of capping dihydrazide PEG linker 

 

As explained before, a long PEG dihydrazide linker (45) is believed to be an excellent blockage 

linker capable of opening and capping the porous by pH stimuli. Moreover, similar hydrazone 

linkers have been reported as non-cytotoxic species.
43

 In order to synthetize this product 45, 

tetraethylene glycol (25) is used, which by a nucleophilic substitution with bromo ethylacetate 

would give diester PEG (49). A final substitution with hydrazine results in the formation of 

dihydrazide PEG (45) (Figure 6.13). 

 

Figure 6.13. Schematic synthesis of the capping gate linker. 
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6.7. Dual MB and DOX drug release nanocarrier 

 

Before using CPT/DOX approach, the mechanism of the platform must be tested. As proof of 

concept, MB is chosen as a suitable dye. MB maximum absorbance is centered at 650 nm very 

different from DOX at 490 nm maximum absorbance. Moreover, MB presents an intense blue-

violet coloration, while DOX is red. 

 

6.7.1. MB Loading 

MB is reported to have been loaded in MSNs using EtOH
46

 and water solutions.
47

 Since MB is a 

cationic dye, its absorption and release depend on the acidity of the medium. Maximum 

absorption has been achieved in basic media, while maximum release takes place in acid pH.
47

 

In this case, since aminated MSNs have a pKa=10, a higher pH (pH>10) is needed in order to 

load the cationic dye. Therefore, first of all, the best conditions of MB loading must be studied. 

MB was loaded in EtOH and a basic solution of 0.44 M and 0.88 M of triethylamine in EtOH. 

MB loading increased from 2 %, to 4 % and 7 % respectively when more trimethylamine was 

added. This effect can be followed by the intensity of MSNs color (Figure 6.14).  

 

Figure 6.14. MSN-(MB) color a) in EtOH, b) 0.44 M triethylamine and c) 0.88 M triethylamine in EtOH. 

Triethylamine enhances MB loading and a concentration of approximately 0.88 M is the better 

option to improve MB loading. This effect can also be observed by monitoring MB release. In 

EtOH, very little quantity of MB is loaded and therefore, little release is obtained, while when 

triethylamine is added to the media, MB loading and release increase (Figure 6.15). 

Consequently, to enhance MB loading, MB must be added at basic pH.  

     

Figure 6.15. MSN-(MB) release a) in MeOH, b) 0.44 M triethylamine in MeOH and c) 0.88 M triethylamine in 

MeOH. 

   

a)                                              b)                     c) 

a)                                               b)                   c) 
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6.7.2. DOX/MB release 

The first step to synthetize dual MB/DOX system is to load MB inside amine-aldehyde MSNs 

porous at basic pH. Then, 3,6,9,12,5-pentaoxaheptadecanedihydrazide (45) is added in excess to 

the solution. An excess must be added in order to promote aldehyde MSNs reaction with only 

one of the terminal moieties of the linker. Afterwards, remaining PEG 45 must be removed to 

avoid any reaction with DOX. Finally, DOX in a basic pH is added to the solution to give MSN-

(NH2)i(PEGDOX)oMB (Figure 6.16).  

 

Figure 6.16. Schematic reaction of dual MB/DOX loading. 

Absorption spectra of the supernatants at pH=7 (Figure 6.17, a) and at pH=4 (Figure 6.17, b) 

clearly demonstrate that no MB and DOX release is observed in a neutral pH, while high 

absorption DOX and MB bands at 490 and 650 nm are present in pH=4 supernatants. Moreover, 

MB release increases with time, the higher absorption band intensity of MB is observed at 22 h, 
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which led to believe that more MB is released when the large quantity of capping PEG-DOX 

system is hydrolyzed. 

 

 

 

 

 

 

 

 

Figure 6.17. Absorption supernatants of MB and DOX at a) pH=7 and b) pH=4. 

This effect can also be observed by naked eye, at pH=4 supernatants present a red color, 

whereas at pH=7 supernatants are colorless (Figure 6.18). DOX release decrease with time, as 

well as red coloration.  

 

Figure 6.18. Visual release of MSN-(NH2)i(PEGDOX)oMB supernatants at 1 h, 2 h, 3 h and 4 h, at pH=4 and 

pH=7. 

Regarding DOX release curves (Figure 6.19), it can be clearly seen that no DOX release is 

observed at pH=7 while a 45 % DOX release is observed after 30 h, at pH=4. Moreover, DOX 

release at pH=4 is quite fast, since half of the maximum quantity (25 %) that can be released,  is 

released at 1 h. The incomplete release of DOX may be mainly attributed to the physical 

adsorption of DOX in MSN.
48

 The different behavior of DOX release at pH=4 and pH=7 

confirms the fact that this system respond to pH stimuli. Furthermore, when MSN-

(NH2)i(PEGDOX)oMB nanoparticles at pH=7 are treated with acid (pH=4), DOX release starts 

to increase from 0 % to 35 % , which demonstrates that it is really the acidic medium that 

triggers DOX release. 
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Figure 6.19. DOX Release at pH=4 and pH=7. 

As for MB release (Figure 6.20), it can be observed that little MB release is achieved at pH=7 

while a 50 % of MB release is observed after 30 h, at pH=4. Moreover, in this case, MB release 

at pH=4 is not as fast as DOX release, since only 10 % of MB is released at 1 h. MB release 

increases with time, since maximum MB release (50 %) is observed at 22 h. This effect 

emphasizes the fact that prior to MB release; capping linker DOX must be removed.   

Again, the incomplete release of MB may be mainly attributed to the physical adsorption of MB 

in MSN.
48

 The difference in MB release at pH=4 and pH=7 confirms the fact that this system 

respond to pH stimuli. As well as with DOX release, when MSN-(NH2)i(PEGDOX)oMB 

nanoparticles at pH=7 are treated with acid (pH=4), MB release starts to increase reaching the 

same release value obtained at pH=4. This demonstrates that it is really the acid medium that 

triggers both MB and DOX release. 
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Figure 6.20. CPT release at pH=4 and pH=7. 
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MB maximum release at 22 h in pH=4 can also be monitored by naked eye (Figure 6.21). First 

DOX is released, which corresponds to the red supernatants, and after the capping agent is 

removed; MB is mostly released, which can be observed in the blue supernatant at 22 h.  

 

Figure 6.21. Supernatants release at pH=4 at different times. 

 

When acid medium at 22 h is added to MSN-(NH2)i(PEGDOX)oMB at pH=7 both DOX and 

MB release start to increase (Figure 6.22). Hence, it can be concluded that only pH has a strong 

effect on dual MB/DOX release.  

 

Figure 6.22. Supernatants release at pH=7 at different times before and after acid addition. 

 

The total quantity of DOX and MB that can be released with this system has been calculated as 

7.2·10
-8

 molDOX/mgMSN and 8.5·10
-10 

molMB/mgMSN. DOX is two orders of magnitude 

more released than MB, mostly due to the fact that DOX present a higher loading percentage 

than MB. DOX loading by positive interactions and covalent attachment is typically 25-30 % 

while MB loading is not higher than 7 % in the best case (Table 6.4). This difference can be 

explained as it is much easier to release a drug that is present only at the external surface than at 

the inner porous channels. Drug matrix interactions are higher inside the nanochannels than at 

the external surface, not to mention that drugs inside the inner surface have to diffuse through 

the exit.
49
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Table 6.4. Loading and release values of MB and DOX. 

 MB DOX 

Loading (%) 7 25 

Release (%) 50 46 

Release (molDRUG/mgMSN) 8.5·10
-10

 7.2·10
-8

 

 

The concept of dual drug release controlled by pH stimuli is validated; therefore MB dye is 

substituted by CPT. 

 

6.8. Dual CPT and DOX drug release nanocarrier 

 

6.8.1. CPT loading 

 

CPT has been described as a very insoluble product. A research in literature revealed that CPT 

loading has been carried out in MeOH,
42

 CHCl3/MeOH,
50

 ACN/EtOH,
51

 DMSO
29

 and DMF.
28

 

Therefore, in order to determine which mixture could increase the quantity of absorbed CPT, 

some of these solvents were proven (Figure 6.23).  

 

    

Figure 6.23. MSN(CPT) fluorescence depending on the solvent, MeOH, CHCl3/MeOH, ACN/MeOH and 

DMSO. 

In all the cases, MeOH, CHCl3/MeOH, ACN/EtOH and DMSO, loading and release results 

were very low and difficult to measure. Loadings ranged between 0.5 and 3 % (Table 6.5). 

Table 6.5. OEA Loadings of CPT depending on the solvent. 

OEA  MeOH CHCl3/MeOH ACN/MeOH DMSO 

CPT Loading (%) 1.9 3.1 2.8 0.5 

 

Nevertheless, above all the solvents, CHCl3/MeOH mixture was chosen since CPT was better 

dissolved and presented the better loading result (3.1 %).  
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6.8.2. CPT-DOX release  

As in MB/DOX dual release, the first step to build this system is the addition of CPT into the 

porous of MSN-(NH2)i(CHO)o. Then, an excess of 3,6,9,12,5-pentaoxaheptadecanedihydrazide 

(45) is added to the solution. Afterwards, remaining PEG 45 must be removed to avoid any 

reaction with DOX. Finally, DOX is added to the solution in a basic medium (Figure 6.24).  

 

Figure 6. 24. Schematic synthesis of dual CPT/DOX system release. 

Maximum loading for CPT, assessed either by absorption spectroscopy or by OEA, was 

obtained as 1.36·10
-8

 molCPT/mgMSN, which corresponds to a 2.3 % loading. This loading is 

very similar to reference CPT values ranging from 2 and 5 %.
28

  

Regarding DOX loading, approximatively 7.06·10
-7

 molDOX/mg MSN were incorporated to 

the MSNs, which corresponds to 25 %.  

Release quantification was followed by both CPT and DOX absorption bands at 354 nm and 

490 nm respectively. Even if CPT and DOX maximum absorption bands are separate enough 

and do not interfere between each other, CPT absorption intensity has been quantified by 
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subtracting to CPT maximum absorption band (354 nm) the intensity of DOX band at that same 

wavelength. Therefore, the resulting absorption can only be attributed to CPT. A standard curve 

that relates 490 nm DOX maximum band with 354 nm intensity was carried out. 

Absorption spectra of the supernatants at pH=7 (Figure 6.25, a) and at pH=4 (Figure 6.25, b) 

clearly demonstrates that no CPT and DOX release is observed in a neutral pH, while high 

absorption DOX and CPT bands, at 490 and 354 nm, are presented in pH=4 supernatants. 

Moreover, CPT higher absorption band is observed at 7 h, which led to believe that more 

quantity of CPT is released when the large quantity of capping PEG-DOX system is hydrolyzed.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.25. Absorption supernatants of CPT and DOX at a) pH=7 and b) pH=4. 

 

This phenomenon can also be observed by naked eye, where at pH=7 supernatants are colorless, 

whereas at pH=4 supernatants present a red coloration (Figure 6.26).  

  

Figure 6.26. Supernatants of MSN-(NH2)iCPT(PEGDOX)o a) pH=7 and b) pH=4 at visible light. 

 

CPT maximum release at 7 h (pH=4) can also be monitored by observing the supernatants in a 

UV lamp at 366 nm (Figure 6.27). First DOX is released, which corresponds to the red 
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supernatants, and after the capping agent is removed; CPT is mostly released, which can be 

attributed to the blue fluorescence at 7 h. 

  

Figure 6.27. Supernatants of MSN-(NH2)iCPT(PEGDOX)o a) pH=7 and b) pH=4 at 366 nm. 

 

Regarding DOX release curves (Figure 6.28), it can be clearly observed that there is no DOX 

release at pH=7, while a 50 % of DOX release is observed after 20 h, at pH=4. Moreover, DOX 

release at pH=4 is quite fast, since more than a half of the maximum quantity that can be 

released (30 %) is released at 1 h. Again, the difference in DOX release at pH=4 and pH=7 

confirms the fact that this system respond to pH stimuli.  
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Figure 6.28. DOX release at pH=4 and pH=7. 

 

As for CPT release (Figure 6.29), it can be pointed out that very little CPT release is observed at 

pH=7, while a 30 % of CPT release is observed after 20 h, at pH=4. Moreover, in this case, CPT 

release at pH=4 is not as fast as DOX release, since only 10 % of CPT is freed at 1 h. Again, the 

incomplete release of CPT may be attributed to the physical adsorption of CPT in MSN
48

 or to 

its high insolubility in the medium. Again, the difference in CPT release at pH=4 and pH=7 

confirms the fact that this system respond to pH stimuli and that DOX-dihydrazidePEG linker 

45 was acting as a capping agent. No CPT release at pH=7 was observed, highlighting the fact 

that this system works better than reported CPT-DOX-MSNs sytems.
28,29

 

CPT  
0.25h  0.5h   1h   2h    4h     7h    21h 0.25h 0.5h 1h  2h    4h    7h     21h 

a)                                                      b)     
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Figure 6.29. CPT release at pH=4 and pH=7. 

It is worth nothing that this system possesses two different release profiles. Hydrophobic CPT is 

sustainably released from mesoporous channels, whereas DOX follows a fast burst-like release 

in acidic medium. 

Even if a 30 % of CPT release seems a very low percentage, it is in fact a high number since 

described CPT release is around 20 %.
52

 By and large, in the literature, when CPT is absorbed in 

MSNs, CPT release curves are not presented,
42,50,51,53

 since in most of the cases, CPT loading 

and release are very low. In fact, Zink et al carried out CPT release experiments in DMSO 

because they could not detect CPT release in water.
53

 

In this case, the concept of dual drug release controlled by pH stimuli is proven. Both CPT and 

DOX drugs can be controlled by pH stimuli. In table 6.6, it is summarized the maximum release 

of CPT and DOX that has been obtained with this system. 

Table 6.6. Maximum release of CPT and DOX in MSN-(NH2)i(PEGDOX)oCPT. 

Maximum Release Percentage (%) mol Drug /mg MSN mg drug /mg MSN 

CPT 20 3.34·10
-9

 0.014 

DOX 50 1.4·10
-7

 0.088 

 

The total quantity of DOX and CPT that can be released with this system has been calculated as 

1.4·10
-7 

molDOX/mgMSN and 3.34·10
-9 

molCPT/mgMSN or 0.088 mgDOX/mgMSN and 

0.014 mgMB/mg MSN. CPT value is very similar to described loadings since literature values 

are near 5.79·10
-9

 molCPT/mg
52

, 2.9·10
-8

 molCPT/mgMSN
53

 and 1.6·10
-8

 molCPT/mgMSN.
54
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DOX is two orders of magnitude more released than CPT mostly because DOX present a higher 

loading than CPT most probably due to its better solubility in water.  

 

6.9. Preliminary biological experiments 

 

For viability experiments, control MSN-(NH2)i(DOX)o and MSN-(NH2)i(DOX)oCPT, in a 100, 

50, 5, 0.5 µgMSN/mL or 30, 15, 1.5 and 0.15 µgDOX/mL concentration, were added and 

seeded for 24 h. Viability results are presented in Figure 6.30, where it can be observed that 

when DOX concentration is high, there is little difference between control MSN-(NH2)i(DOX)o 

and dual MSN-(NH2)i(DOX)oCPT, while at low DOX concentrations (0.5 µgMSN/mL) the 

combination of CPT/DOX is more toxic than with only DOX. These results can be rationalized, 

since the quantity of CPT that has been functionalized is little in comparison with the quantity 

of DOX, and therefore, only at a low concentration of DOX, CPT effect can be observed. 

Moreover, this phenomenon has also been reported by Ze-Yong Li et al.
28

 and Muhammad et 

al.,
29

 where CPT/DOX dual effect was more evident at diluted concentrations than at higher 
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Figure 6.30. Control MSN-(NH2)i(DOX)o and MSN-(NH2)i(DOX)oCPT viability represented a) in bars and b) 

in lines. 

To provide a qualitative information of the drug interaction, the combinatorial index (CI) of the 

diluted concentrations (0.5 and 5 µgMSN·mL
-1

 or 0.15 and 1.5 µgDOX·mL
-1

 respectively) of 

control MSN-(NH2)i(DOX)o and MSN-(NH2)i(DOX)oCPT is calculated. For 0.5 µgMSN·mL
-1 

or 0.15 µgDOX·mL
-1

 CI=0.38, while for 5 µgMSN·mL
-1 

or 1.5 µgDOX·mL
-1

 CI=0.51. In both 

cases, CI<1, which highlights the synergetic effect of CPT and DOX, previously described in 

the literature.
[55] 

In addition, this system is very efficient in killing Hela cells since for 100 

µgMSN/mL, where normally control MSNs are 100 % viable, in this case either with control 

MSN-(NH2)i(DOX)o or dual MSN-(NH2)i(DOX)oCPT, viability reaches 4 %. Therefore the 

system works and synergistic effects are observed at low concentrations. 

 



                   Chapter 6. Amino-aldehyde MSNs for their application as dual drug delivery system  

_____________________________________________________________________________ 
 

159 

 

To verify the release of both drugs, an uptake experiment of control MSN-(NH2)i(DOX)o and 

dual MSN-(NH2)i(DOX)oCPT is carried out. Again, the same conditions of Chapter 4 have been 

used for uptake experiments (100000 cells per well of Hela cells). In this case, since it is at low 

concentrations were CPT effect is observed, uptake experiments are carried out at 5 µgMSN/mL 

or 1.5 µgDOX/mL for 4 h. No staining protocols have been used, blue and red fluorescence 

correspond to DOX and CPT signal. As it can be observed for control MSN-(NH2)i(DOX)o 

(Figure 6.31, a-f), when a blue filter is used, cells present no signal. Whereas, for dual MSN-

(NH2)i(DOX)oCPT, blue spots are observed, which indicates that CPT has been efficiently 

released and internalized in the cells (Figure 6.31, g-l). For dual MSNs blue spots correspond to 

the release of CPT molecules from the pores, whereas intense red spots relate to the release of 

DOX. Therefore, both drugs have been efficiently internalized in Hela cells.  

 

 

Figure 6.31. Uptake images of control MSN-(NH2)i(DOX)o (a-f) and MSN-(NH2)i(DOX)o CPT (g-l) at x10 and 

x40 objective. 
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6.10. Conclusions and Outlook 

 

 Regioselective bifunctionalized MSN-(NH2)i(CHO)o nanoparticles have been 

synthetized. These MSNs have been applied as a nanoplatform for the controlled release 

of dual synergistic CPT/DOX. While CPT is loaded at the inner surface, DOX is 

covalently functionalized to a pH scissile dihydrazide-PEG-linker, acting both as an 

active and a capping agent.  

 The system respond to pH stimuli and both CPT and DOX drugs are only released in an 

acidic media (pH=4). The system is versatile and therefore can be used for a variety of 

drug combinations.  

 This strategy only presents three synthetic steps, avoiding any chemical reaction to the 

drug which could damage its active site or reactivity.  

 MSN-(NH2)i(DOX)oCPT are toxic and CPT/DOX synergistic effect is detected at low 

concentrations of MSNs.  

This versatile nanocarrier has been proven to respond to pH stimuli, while a dual controlled 

drug release has been achieved. This system allows a high release of DOX, but, although CPT 

maximum release (30 %) is comparable with other reported releases, CPT loading and release 

curves must be enhanced, in order to translate this system for in vivo experiments. 

Just by enhancing CPT loading, this system could offer an excellent way to release two different 

drugs without any burst or premature release. It is worth nothing to mention again how easy is 

to use this strategy in comparison with published approaches
28,29

 where a large quantity of 

chemical reactions were carried out directly to the drug. With this methodology and only in 

three steps, virtually any drug with a carbonyl moiety can be used, and therefore this system 

could be extended for the use of other drugs.  
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Chapter 7. Experimental Part 

7.1. Instrumentation  

 

TEM Microscopy was carried out using a JEOL microscope model JEM 2011 in Universidad 

Autónoma de Barcelona (UAB).  

Porous surface nitrogen physisorption analysis was conducted on a Micromeritics Gemini V 

surface area and pore size analyzer. Pore size distribution curves were obtained from analysis of 

the absorption portion of the isotherms using the BJH (Barrett-Joyner-Halenda) method. 

Dynamic Light scattering (DLS) size and ζ-potential measurements were obtained by Malvern 

Zetasizer Nano Series ZEN 3600. 

Small angle powder X-ray diffraction (SXRD) were performed with a Philips X’Pert 

diffractometer equipped with Cu Kα radiation (wavelength 1.5406 Å) at Centro de asistencia a 

la investigación de rayos X en la Universidad complutense de Madrid. XRD patterns were 

collected in the 2θ range between 0.6° and 6.5 with a step size of 0.02° and counting time of 5 s 

per step.  

Infrared Spectra (FTIR) was recorded in a Thermo Scientific Nicolet iS10 FTIR spectrometer 

with Smart iTr. Values are reported in wavenumbers (cm
-1

).  

Organic combustion Elemental Analysis (OEA) were obtained in a EuroVector Instruments 

Euro EA elemental analyzer. 

UV-Vis Absorption and Fluorescence spectra were recorded in a Thermo Scientific 300 UV-

Vis spectrophotometer. Fluorescence excitation spectra were recorded in a Hitachi F2500 

fluorescence spectrophotometer.  

Nuclear Magnetic Resonance spectra (
1
H-NMR and 

13
C-NMR) were recorded on a Varian 

400-NMR spectrometer with frequency generators for ranges 
1
H-

19
F and 

15
N-

31
P, temperature 

control system, automatic tuning probe and sample introduction robot 50 positions (
1
H-NMR at 

400 MHz and 
13

C-NMR at 100.6 MHz). Chemical shifts are reported in part per million (ppm) 

on the δ scale, and are referenced to tetramethylsilane (TMS) in 
1
H-NMR spectra and to solvent 

signal of CDCl3 (77.0 ppm), DMSO-d6 (39.5 ppm), or methanol-d4 (49.0 ppm) in 
13

C-NMR 

spectra. Coupling constants are reported in Hertz (Hz). Spectral splitting patterns are designed 

as: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), ddd (doublet of 

doublet of doublets), m (complex multiplet) and brs (broad signal). 
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High Resolution Mass Spectrometry (HRMS) was conducted on a VG AutoSpec (Micromass 

Instruments) Trisector EBE of high resolution spectrometer operating in FAB or EI mode and 

on Biotoff II (Bruker) apparatus in ESI-TOF mode at Servicio de Espectroscopía de Masas 

(Universidad de Santiago de Compostela). 

Fluorescence Microscopy was conducted on a Zeiss Axiovert inverted fluorescence 

microscope (Axiovert 200M; Carl Zeiss Inc.) equipped with zeiss ApoTome system and with a 

Nikon fluorescence microscope (Nikon Eclipse TS100). 

  



  Chapter 7. Experimental Part  

_____________________________________________________________________________ 
 

169 

 

7.2. Protocols 

 

TEM Microscopy 

Samples were ultrasonically dispersed in EtOH for 1 h at a concentration of 0.1 mg·mL
-1

 and 

deposited on an amorphous, porous carbon grid. Sometimes, initial concentration is too high 

and 1/10 or 1/100 dilutions need to be carried out. Sonication must be applied 15 min before 

using the microscope. 

 

Porous surface 

After numerous tests processes it was determined that:  

 CTAB removal must be completely achieved. 

 MSNs must be washed several times with water and ethanol and final ethanol 

solutions must be removed under reduced pressure. 

 Final solid samples must be sonicated until the formation of a free powdered 

solid. 

 MSNs must be treated in a lyophilizer at 0.05 mBar, -0.759 
o
C, 24 h, prior to 

conduct adsorption experiments directly inside BET tubs. 

 More or less 15 mg of MSNs are needed to obtain a correct measure. 

 

Dynamic Light scattering (DLS) 

Samples were prepared at a concentration of 0.1 mg·mL
-1

 in EtOH for size measurements and 

0.05 mg·mL
-1

 in H2O for the zeta measurements. Better results are obtained if MSNs have just 

been synthetized and have not been dried. Sonication must be applied 1 h before using DLS. 

Sometimes, samples need to be filtered in a 0.45 µm nylon filter. Normally, in order to adjust 

concentration range, the initial concentration must be diluted 1/10 or 1/3. No results can be 

achieved by DLS measurements if CTAB is still present in MSNs matrix or if there is any 

fluorescent molecule attached to MSNs. 

 

SXRD  

This technique needs perfectly well dried and dispersed powdered nanoparticles. By this means, 

the same procedure for nitrogen physisorption analysis has been applied. 

 

Infrared Spectra (FTIR) and Organic combustion Elemental Analysis (OEA) 

Well dried MSNs need to be obtained. To do so, final solvent is evaporated under reduced 

pressure and samples have been placed in a vacuum desiccator at 60 
o
C for 24 h. 
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UV-Vis Absorption and Fluorescence 

For titrations experiments, since MSNs precipitate very easily, the following procedure has been 

applied for the obtaining of a stable solution. First a well known quantity of MSNs is weighed, 

dispersed in the proper solvent and sonicated for 1 h. Then, an aliquot of the supernatant is 

taken. This aliquot is generally stable enough to work with. Absorbance needs to be less than 

0.1 to perform acid and fluoride titrations.  

 

Uptake experiments  

Uptake experiments are carried out in a 12 well plate (1 mL/well) where clean covers have been 

added. Normally, a concentration of 100000 cells per well is used with a cellular medium of 

DMEM (Dubecco's modified Eagle's medium) with LFBS (LFBS: bovine serum protein 10%). 

The following procedure has been used: 

 Cells are seeded for 24 h.  

 MSNs are added and seeded for 24 h in incubator at 37 
o
C. 

 Cells are washed with PBS and fixed to the covers.  

 Fixation procedure is done by vectashield mounting medium with DAPI to stain the 

nucleus in blue color.  

 MSNs are observed in fluorescence microscope.  

 

  

Figure 7.1. a) Twelve well plate of MSNs incubated in Hela cells and b) cells fixed in covers. 

 

MTT experiments 

 

Viability assays are generally based on MTS or MTT approach. Since MTS absorbance is read 

it at the same wavelength that FITC absorbs (490 nm), it is better to use MTT assay, which 

maximum absorbance at 550 nm does not interfere with FITC absorption or fluorescence. MTT 

assay is a colorimetric assay based on the reduction of MTT (3- (4,5 -dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) to formazan crystals that present an intense violet color. This 

reaction only occurs when the oxidoreductase enzymes, present in cells, are active, which is the 

same as saying that cells are alive. Therefore, to measure the amount of formazan crystals that 

a)                                                       b)            
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have been formed is equivalent to know how many cells are still alive, which allows to estimate 

the viability of the cellular medium. 

MTT experiments are carried out in a 96 well plate (0.1 mL/well) where a concentration of 

10000 cells per well is prepared. Cellular medium, DMEM (Dubecco's modified Eagle's 

medium) with LFBS (LFBS: bovine serum protein 10 %) is used. The following procedure has 

been used: 

 Cells are seeded for 24 h.  

 MSNs are added and seeded for 24 h at 37 
o
C. 

 Cells are washed with PBS and filtered MTT solution at final 0.5 mg/mL is added (25 

mg MTT in 5 mL of PBS at 5 mg/mL).  

 A 1/10 dilution is performed in culture medium (0.5 mg / mL). 

 Cells are seeded for 3 h at 37 ºC.  

 MTT is removed and 0.1 mL of DMSO is added. Formazane crystals are suspended by 

up and down. 

 Cells are seeded 10 min by stirring. 

 Formazan absorbance is recorded in a microplate reader at 560 nm. 

 Viability is calculated by the following equation. 

 

100.viabilitycellular%
blankcontrol

blanksample

AbsAbs

AbsAbs




  

 

Figure 7.2. Ninety six well plate of MSNs incubated in Hela cells. 
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In vitro release experiments of MSN-(DOX), MSN-(DOX)(l-Fold)o, MSN-(DOX)(h-Fold)o, 

MSN-(MB), MSN-(CPT), MSN-(NH2)i(PEG-DOX)oMB and MSN-(NH2)i(PEG-

DOX)oCPT)  

 

In vitro release experiments were performed at pH=7.4 and pH=4. For each release study, 1.5 

mL of buffer solution was first added to 10 mg of MSNs and maintained at 37 
◦
C, while being 

stirred at 100 rpm. Release medium was removed for analysis at specific time intervals by 

centrifuging at 12000 rpm for 13 min and placing solid residues into identical volumes of fresh 

buffer solution. The amount of released was analyzed with a UV–Vis absorption 

spectrophotometer at 490 nm for DOX, 650 nm for MB and 354 nm for CPT. 

 

In vitro release experiments of MSN-(Ru), MSN-(Ata), MSN-(NH2)i(S-PEG)oRu, MSN-

(NH2)i(L-PEG)oRu, MSN-(NH2)i(S-PEG)oAta and MSN-(NH2)i(L-PEG)oAta. 

 

In vitro release experiments were performed at pH=7.4 and 10 mM GSH solution. For each 

release study, 1.5 mL of buffer solution was first added to 10 mg of MSNs and maintained at 37 

◦
C, while being stirred at 100 rpm. Release medium was removed for analysis at specific time 

intervals by centrifuging at 12000 rpm for 13 min and placing solid residues into identical 

volumes of fresh buffer solution. The amount of released Ru(bipy)3
2+

 and Ataluren were 

analyzed with a UV–Vis absorption spectrophotometer at 451 nm and 255 nm respectively. 
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7.3. Synthesis Chapter 2  

 

7.3.1. General procedure for the synthesis of MSNs
1,2

 

 

 

To a solution of 0.1 g of CTAB and 50 mL of NH3 (A M), at B 
o
C temperature, was added 

dropwise by an automatic injector, 0.8 mL of 0.2 M TEOS, diluted in EtOH. The solution was 

stirred at C rpm. Five hours later, it was added dropwise 0.8 mL of 12 % v/v APTES in EtOH 

and 0.8 mL of 1 M TEOS in EtOH. The solution was stirred at the same temperature for another 

1 h. Then, the solution was aged, without stirring, at B 
o
C temperature, for 24 h. Solid samples 

were collected via centrifuging at 12000 rpm for 20 min, washing and dispersing with deionized 

H2O and EtOH, twice. Surfactant templates were removed by extraction in acidic ethanol, 0.17 

g of HCl in 9 mL of EtOH at 65 
o
C for 24 h. Again, samples were collected via centrifuging at 

12000 rpm for 20 min, washing and dispersing with deionized H2O and EtOH, twice. 

 

Samples A / M B / 
o
C C / rpm 

MSN2 0.5 50 600 

MSN6 0.5 70 600 

MSN1 0.5 50 1100 

MSN4 0.5 70 1100 

MSN11 0.25 50 1100 

MSN13 0.25 60 1100 

MSN2 0.5 50 1100 

MSN7 0.5 60 1100 

MSNREF 0.2 60 1100 

MSNA 0.25 60 1100 

MSNB 0.2 60 1000 

MSNC 0.2 65 1100 

MSN100nm 0.5  60 1100 

MSN50-70nm 0.2  60 1100 
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7.3.2. FITC functionalization for NH2 determination 

External NH2 determination 

To a solution of 10 mg amino-surfactant nanoparticles MSN-(NH2)CTAB in 10 mL of toluene, 

were added 5 mg of FITC. Solution was left 24 h at room temperature. Samples were collected 

by centrifugation at 12000 rpm for 20 min, washing and dispersing with toluene and EtOH. To 

eliminate the surfactant, MSNs were treated with HCl (c) in 5 mL of EtOH. Solid samples were 

collected by centrifugation at 12000 rpm for 20 min, washing and dispersing with deionized 

water and EtOH, twice. Finally, supernatant is measured at 495 nm to assess the quantity of 

FITC that has been functionalized at the external surface of amino-MSNs, which can be 

attributed to the quantity of amino groups that are present at the outer surface.  

Total NH2 determination 

To a solution of 10 mg amino-nanoparticles MSN-(NH2), where tensioactive has been 

previously removed, in 10 mL of EtOH, were added 5 mg of FITC. Solution was left 24 h at 

room temperature. Samples were collected by centrifugation at 12000 rpm for 20 min, washing 

and dispersing several times with EtOH. Finally, supernatant is measured at 495 nm to assess 

the quantity of FITC that has been functionalized in both internal and external surface of amino-

MSNs, which can be attributed to the total quantity of amino groups present in MSNs surface. 

Inner amino quantification is carried out by the subtracting difference between total and external 

quantification. 
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7.4. Synthesis Chapter 3 

 

7.4.1. Synthesis of tert-butyl(2-(6-bromo-1,3-dioxo-1H-benzoisoquinolin-2(3H)-

yl)ethyl)carbamate), EdaBOCNapht (3). 

 

 

4-bromo-1,8-naphthalic anhydride (1) (15 g, 3.6 mmol) was dissolved in 50 mL of EtOH, and 1-

(tert-butyloxycarbonyl)ethyldiamine, (EdaBoc, 2), (0.8 g, 5 mmol) was added. The mixture was 

heated at reflux overnight. After cooling to room temperature, 50 ml of water were added and 

the precipitated solid was filtered after 1 h in the fridge. The solid was washed with H2O, (1:1) 

H2O/EtOH, EtOH and vacuum-dried to yield 1.5 g (97 %) of the product EdaBocNaftBr (3). 

1
H-NMR (400 MHz, CDCl3) δ 8.63 (d, J = 7.2 Hz, 1H), 8.52 (d, J = 8.4 Hz, 1H), 8.38 (d, J = 7.8 Hz, 

1H), 8.01 (d, J = 7.8 Hz, 1H), 7.82 (t, J = 7.8 Hz, 1H), 4.99 (brs, 1H), 4.34 (brs, 2H), 3.54 (brs, 2H), 1.28 

(s, 9H).
13

C-NMR (100 MHz, CDCl3) δ 163.9, 156.0, 133.4, 132.2, 131.4, 131.1, 130.6, 129.1, 128.0, 

122.9, 122.0, 40.0, 39.5, 28.2 IR (KBr) ʋmax: 3386, 2976, 1703-1653, 1366-1346, 778 cm-
1 

Calculated 

OEA: C: 54.43 %, H: 4.57 % , N: 6.68 % Experimental OEA: C: 54.63 % H: 4.42 % N: 6.56 %.     

7.4.2. General procedure for synthesis of EdaBOC-naphthalimides (7-9) 

Compound 3, (0.7 mmol) was dissolved in 10 mL DMSO and N-methylpiperazine, butyl amine 

and methylpropyl amine (4.5 mmol) were added to the mixture. The suspension was heated to 

80 ºC for 24 h. Then, 100 mL of DCM were added. The solvent was washed three times with 

saturated lithium chloride and water and was finally removed under reduced pressure. To assure 

total elimination of DMSO, the solid was also washed with Cy/AcOEt and cleaned with LiCl 

and water. Compounds 7-9, were obtained as a yellow solid.  

 

(7) 
1
H-NMR (400 MHz, CDCl3) δ 8.59 (d, J = 7.2 Hz, 1H), 8.52 (d, J = 8.0 Hz, 1H), 8.41 (d, J = 8.4 Hz, 

1H), 7.69 (t, J = 7.8 Hz, 1H), 7.22 (d, J = 8.1 Hz, 1H), 5.02 (brs, 1H), 4.35 (brs, 2H), 3.53 (brs, 2H), 3.31 

(brs, 4H), 2.75 (brs, 4H), 2.44 (s, 3H), 1.31 (s, 9H). 
13

C-NMR (100 MHz, CDCl3) δ 164.4, 163.8, 133.1, 

131.6, 130.8, 130.0, 126.2, 125.7, 122.7, 116.2, 115.1, 55.0, 52.8, 46.0, 42.9, 38.9. IR (KBr) ʋmax.: 3387, 
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2971-2796, 1697-1654, 1589, 1387-1366, 84-759 cm
-1 

HRMS (EI): m/z calculated for 

C24H30N4O4  438.2267; found 438.2260. 

 

(8) 
1
H-NMR (400 MHz, CDCl3) δ 8.59 (d, J = 7.2 Hz, 1H), 8.47 (d, J = 8.4 Hz, 1H), 8.08 (d, J = 8.3 Hz, 

1H), 7.62 (t, J = 7.9 Hz, 1H), 6.73 (d, J = 8.5 Hz, 1H), 5.11 (brs, 1H), 4.35 (brs, 2H), 3.52 (brs, 2H), 3.42 

(brs, 2H), 1.87 – 1.75 (m, 2H), 1.56 – 1.49 (m, 2H), 1.33 (s, 9H), 1.03 (t, J = 7.3 Hz, 3H).
13

C-NMR (100 

MHz, CDCl3) δ 165.0, 164.5, 156.0, 149.6, 134.7, 131.3, 129.9, 125.9, 124.6, 122.9, 120.1, 109.8, 104.3, 

43.4, 39.4, 31.0, 28.3, 20.3, 13.8. IR (KBr) ʋmax: 3365, 2958-2855, 1685-1639, 1579, 1394-1363, 773 cm-

1 
Calculated OEA: C: 67.13 %, H: 7.10 %, N: 10.21 % Experimental OEA: C: 67.27 %, H: 7.23 %, N: 

10.11 %.     

 

(9) 
1
H-NMR (400 MHz, CDCl3) δ 8.58 (d, J = 7.1 Hz, 1H), 8.48 (d, J = 8.2 Hz, 1H), 8.42 (d, J = 8.3 Hz, 

1H), 7.66 (t, J = 7.8 Hz, 1H), 7.16 (d, J = 8.2 Hz, 1H), 5.04 (brs, 1H), 4.36 (brs, 2H), 3.52 (brs, 2H), 3.30 

(t, J = 7.4 Hz, 2H), 3.06 (s, 3H), 1.85-1.70 (m, 2H), 1.32 (s, 9H), 0.94 (t, J = 7.4 Hz, 3H). 
13

C-NMR (100 

MHz, CDCl3) δ 165.0, 164.4, 157.1, 156.0, 132.7, 131.2, 131.1, 130.3, 125.8, 124.9, 122.8, 114.8, 114.5, 

58.8, 58.4, 41.5, 40.0, 39.5, 28.2, 28.2, 20.7, 18.4, 11.4. IR (KBr) ʋmax: 3365, 2966-2874, 1693-1647, 

1389-1367, 781-760 cm-
1 
Calculated OEA: C: 67.13 %, H: 7.10 %, N: 10.21 % Experimental OEA: C: 

67.39 %, H: 7.25 %, N: 9.98 %.   

7.4.3. General procedure for synthesis of isothiocyanate-naphthalimides (6;13-15) 

Compounds 3; 7-9 were dissolved (0.37 mmol) in 10 mL of DCM, then 3 mL of TFA were 

added. The mixture was stirred and monitored by TLC (AcOEt:MeOH = 20:1). After 

completion of the reaction, the solvent was washed twice with bicarbonate and removed under 

reduced pressure to give deprotected ethylendiamine-naphthalimide (4; 10-12). The crude 

compound was dissolved in 10 mL of DCM. Then, 0.9 mmol of 1,1’-thiocarbonydil-2(1H)-

pyridone (5) was added. The mixture was stirred and monitored by TLC (DCM:MeOH = 

90:10). After completion of the reaction, the solvent was washed, twice with saturated 

bicarbonate, and removed under reduced pressure. The crude product was purified by column 

chromatography on silica gel (DCM) to give compound 6;13-15.
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(6) 
1
H-NMR (400 MHz, CDCl3) δ 8.66 (d, J = 7.3 Hz, 1H), 8.58 (d, J = 8.5 Hz, 1H), 8.42 (d, J = 7.9 Hz, 

1H), 8.05 (d, J = 7.9 Hz, 1H), 7.85 (t, J = 7.9 Hz, 1H), 4.51 (t, J = 6.3 Hz, 2H), 3.92 (t, J = 6.3 Hz, 2H). 

13
C-NMR (100 MHz, CDCl3) δ 163.5, 163.4, 133.8, 132.5, 131.6, 131.2, 130.9, 130.7, 129.0, 128.2, 

122.5, 121.6, 42.8, 39.1. IR (KBr) ʋmax: 2924-2853, 2207-2108, 1702-1659, 1361-1345, 778 cm
-1 

Calculated OEA: C: 49.88 % H: 2.51 %, N: 7.76 %, S: 8.88 % Experimental OEA: C: 49.86 %, H: 2.58 

%, N: 7.55 %, S: 8.49 % . 

 

 

(13) 
1
H-NMR (400 MHz, CDCl3) δ 8.60 (d, J = 7.0 Hz, 1H), 8.54 (d, J = 8.1 Hz, 1H), 8.43 (d, J = 8.1 Hz, 

1H), 7.71 (t, J = 7.8 Hz, 1H), 7.23 (d, J = 8.1 Hz, 1H), 4.51 (t, J = 6.4 Hz, 2H), 3.90 (t, J = 6.4 Hz, 2H), 

3.33 (brs, 4H), 2.76 (brs, 4H), 2.45 (s, 3H). 
13

C-NMR (100 MHz, CDCl3) δ 164.4, 163.8, 133.1, 131.6, 

130.8, 130.0, 126.2, 125.7, 122.7, 116.2, 115.1, 55.0, 52.8, 46.0, 42.9, 38.9. IR (KBr) ʋmax.: 2926-2795, 

2199-2109, 1696-1656, 1588, 1385-1360, 784-758 cm
-1

.
 
HRMS (EI): m/z calculated for C20H20N4O2 

S1 380.1370; found 380.1307. 

 

(14) 
1
H-NMR (400 MHz, CDCl3) δ 8.59 (d, J = 7.3 Hz, 1H), 8.47 (d, J = 8.4 Hz, 1H), 8.10 (d, J = 8.3 Hz, 

1H), 7.62 (t, J = 7.9 Hz, 1H), 6.73 (d, J = 8.5 Hz, 1H), 4.50 (t, J = 6.5 Hz, 2H), 3.89 (t, J = 6.5 Hz, 2H), 

3.42 (q, J = 7.0 Hz, 2H), 1.81 (p, J = 7.3 Hz, 2H), 1.59-1.50 (m, 2H), 1.03 (t, J = 7.3 Hz, 3H). 
13

C-NMR 

(100 MHz, CDCl3) δ 164.5, 163.7, 149.8, 134.9, 131.0, 130.0, 126.2, 124.7, 122.6, 120.1, 109.4, 104.4, 

43.4, 42.9, 38.8, 31.0, 20.3, 13.8.IR (KBr) ʋmax: 3413, 2958-2868, 2197-2134, 1682-1639, 1588-1572, 

1382-1358, 768-756 cm
-1 

HRMS (EI): m/z calculated for C19H19N3O2S1 353.1198; found 353.1194. 

 

(15) 
1
H-NMR (400 MHz, CDCl3) δ 8.58 (d, J = 7.2 Hz, 1H), 8.48 (d, J = 8.2 Hz, 1H), 8.43 (d, J = 8.3 Hz, 

1H), 7.66 (t, J = 7.9 Hz, 1H), 7.15 (d, J = 8.3 Hz, 1H), 4.50 (t, J = 6.4 Hz, 2H), 3.89 (t, J = 6.4 Hz, 2H), 

3.31 (t, J = 7.4 Hz, 2H), 3.07 (s, 3H), 1.83-1.73 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H). 
13

C-NMR (100 MHz, 
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CDCl3) δ 164.5, 163.8, 157.4, 133.0, 131.5, 131.5, 130.5, 125.9, 125.0, 122.6, 114.5, 114.3, 58.8, 42.9, 

41.5, 38.9, 20.7, 11.4 IR (KBr) ʋmax: 2960-2852, 2202-2105, 1695-1652, 1391-1364, 781-758 cm-
1 

HRMS (EI): m/z calculated for C19H19N3O2S1 353.1198; found 353.1196. 

7.4.4. General procedure for model naphthalimides (16-19) 

Compounds 6; 13-15 (0.287 mmol) were dissolved in 15 mL of EtOH, then 0.1 mL (25 mmol) 

of n-butylamine were added. The mixture was stirred and monitored by TLC (DCM:MeOH; 

9:1). After completion of the reaction, the solvent was removed under reduced pressure, 

reconstituted with DCM, and washed several times with ethanol. Product 16-19 (MM-Br, MM-

PIP, MM-But and MM-MetProp) were obtained as a yellowish solid (96 %). 

 

 

(16) 
1
H-NMR (400 MHz, CDCl3) δ 8.68 (dd, J = 7.3, 1.0 Hz, 1H), 8.63 (dd, J = 8.5, 1.0 Hz, 1H), 8.44 (d, 

J = 7.9 Hz, 1H), 8.08 (d, J = 7.9 Hz, 1H), 7.88 (dd, J = 8.5, 7.4 Hz, 1H), 6.53 (brs, 1H), 4.44 (brs, 2H), 

3.81 (brs, 2H), 3.39 (brs, 2H), 1.69-1.56 (m, 2H), 1.42 (h, J = 7.3 Hz, 2H), 0.95 (t, J = 7.3 Hz, 3H).
13

C-

NMR (100 MHz, CDCl3) δ 181.7, 164.4, 134.0, 132.5, 131.7, 131.3, 131.1, 130.8, 129.1, 128.2, 122.5, 

121.6, 52.1, 39.0, 38.9, 30.8, 20.1, 13.7.IR (KBr) ʋmax: 3382-3253, 2954-2869, 1698-1651, 1568, 1231, 

782 cm
-1 

AEO predicted: C: 52.54 %, H: 4.64 %, N: 9.67 %, S: 7.38 % AEO obtained: C: 52.41 %, H: 

4.61 %, N: 9.50 %, S: 7.65 %.    

 

(17) 
1
H-NMR (400 MHz, DMSO-d6) δ 8.47 (t, J = 7.8 Hz, 1H), 8.40 (d, J = 8.1 Hz, 1H), 7.82(t, J = 7.8 

Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.27 (brs, 1H), 4.23 (t, J = 5.9 Hz, 2H), 3.82- 3.69 (m, 2H), 3.27 (brs, 

4H), 2.67 (brs, 4H), 2.33 (s, 3H), 1.45-1.35 (m, 2H), 1.29- 1.21 (m, 2H), 0.84 (t, J = 7.3 Hz, 3H). 
13

C-

NMR (100 MHz, CDCl3) δ 181.5, 165.2, 164.7, 156.6, 133.1, 131.6, 131.0, 130.0, 126.1, 125.7, 122.6, 

115.0, 55.0, 52.9, 46.0, 30.8, 29.7, 20.1, 13.7. IR (KBr) ʋmax: 3341, 2929-2795, 1692-1651, 1588, 1551, 

1454-1424, 1388-1361, 1142, 785-759 cm
-1 

HRMS (EI): m/z calculated for C24H31N5O2S1 453.2198; 

found 453.2191.  

 

(18) 
1
H-NMR (400 MHz, CDCl3) δ 8.60 (d, J = 7.3 Hz, 1H), 8.47 (d, J = 8.4 Hz, 1H), 8.11 (d, J = 8.3 Hz, 

1H), 7.65 (t, J = 7.9 Hz, 1H), 6.74 (d, J = 8.5 Hz, 1H), 5.33 (brs, 2H), 4.42 (brs, 2H), 3.61 – 3.38 (m, 4H), 
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1.82 (dt, J = 14.8, 7.3 Hz, 2H), 1.64 (brs, 2H), 1.61- 1.55 (m, 2H), 1.48- 1.38 (m, 2H), 1.04 (t, J = 7.3 Hz, 

3H), 0.95 (t, J = 7.3 Hz, 3H). 
13

C-NMR (100 MHz, CDCl3) δ 181.5, 165.3, 164.7, 157.6, 133.1, 131.7, 

131.5, 130.4, 125.6, 124.9, 122.4, 114.3, 113.9, 58.8, 41.4, 20.7, 20.1, 13.7, 11.4. IR (KBr) ʋmax: 3379-

3286, 2953-2868, 1673-1641, 1581, 1547, 1358, 770-757 cm
-1 

HRMS (EI): m/z calculated for 

C23H30N4O2S1 426.2089; found 426.2089. 

 

(19) 
1
H-NMR (400 MHz, d6-dmso) δ 8.48 (t, J = 7.4 Hz, 1H), 8.36 (d, J = 8.2 Hz, 1H), 7.77 (t, J = 7.9 

Hz, 1H), 7.32 – 7.25 (m, 2H), 4.23 (t, J = 6.0 Hz, 2H), 3.76 (brs, 2H), 3.37 – 3.30 (m, 2H), 3.30 – 3.23 

(m, 2H), 3.06 (s, 3H), 1.80 – 1.67 (m, 2H), 1.46 – 1.33 (m, 2H), 1.32 – 1.19 (m, 2H), 0.90 (t, J = 7.4 Hz, 

2H), 0.85 (t, J = 7.3 Hz, 2H).  
13

C-NMR (100 MHz, CDCl3) δ 181.5, 165.3, 164.7, 157.6, 133.1, 131.7, 

131.5, 130.4, 125.6, 124.9, 122.4, 114.3, 113.9, 58.8, 41.4, 20.7, 20.1, 13.7, 11.4. IR (KBr) ʋmax: 3334, 

2958-2871, 1690-1647, 1585, 1387-1361, 1202, 781-759 cm-
1 

HRMS (EI): m/z calculated for 

C23H30N4O2S1 426.2089; found 426.2089. 

 

 

 

7.4.5. Absorption and fluorescent properties of MSN and MM naphthalimides 

Systems absnm emnm 


·cm


 fns f 

MSN-(NaphBr) 340 424 15000 2.38 ns χ² = 1.058 0.004* 

MSN-(NaphPIP) 400 529 11250 6.563 ns χ
2
= 1.140 0.06 

MSN-(NaphBut) 442 529 15108 8.095 ns χ
2
= 1.099 0.196 

MSN-(NaphMetProp) 428 529 10883 7.413 ns χ
2
= 1.046 0.023 

MM-Br 340 380 15000 --  0.001*  

MM-PIP 400 525 11250 0.78 ns χ
2
= 1.269 0.01 

MM-But 435 529 15108 11.70 ns χ
2
= 1.085 0.46 

MM-MetProp 422 537 10883 6.86 ns χ
2
= 1.137 0.055 

   Naphthalimide as standard (f= 0.45 in ACN) 

* Quinine sulphate as standard (f= 0.546 in 0.05 M H2SO4) 
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7.4.6. MSNs functionalization with naphthalimides 

 

Typically, 0.20 mmol of isothiocyanate naphthalimides 6; 13-15 were added in 5 mL of MSN-

(NH2) (1.6 mg/mL). The solution was covered from light, and stirred at 60 
o
C for 48 h. Solid 

samples were collected via centrifuging at 12000 rpm for 20 min, washing and dispersing with 

EtOH twice. Finally, solvent was removed under reduced pressure. Functionalization was check 

by TLC (CH2Cl2:THF; 9:1) and UV-Vis giving the resulting MSN-(NaphBr), MSN-(NaphPIP) , 

MSN-(NaphBut) and MSN-(NaphMetProp). 
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7.5. Synthesis Chapter 4 

 

7.5.1.  Synthesis of 3-azidopropanoic acid (21)
3
 

 

To a stirred solution of 3-bromopropionic acid (20) (2.7 g, 18 mmol) in CH3CN (8 mL) was 

added sodium azide (3.48 mg, 53 mmol), and the mixture was heated at reflux for 3 h. The 

brown crude reaction mixture was diluted in CH2Cl2, and the solution was washed with 0.1 N 

HCl. The organic layer was dried over anhydrous MgSO4, filtered and concentrated under 

reduced pressure to furnish 3-azidopropionic acid (21) (6 %). Spectroscopic data were in good 

agreement with reported data. 

 

1
H-NMR (400 MHz, CDCl3) δ11.4 (br s, 1H), δ 3.60 (t, J = 6.5 Hz, 2H), 2.65 (t, J = 6.4 Hz, 2H). 

13
C 

NMR (100 MHz, CDCl3) δ 33.6, 46.3, 176.9. 

 

7.5.2. Synthesis of 3-azidopropionic acid succinimidyl ester (22)
3
  

 

To a stirred solution of 3-azidopropionic acid (21) (0.17 g, 1.4 mmol) and N-

hydroxysuccinimide (0.21 g, 2.2 mmol) in anhydrous CH2Cl2 (2 mL) was added EDC (0.31 g, 

1.9 mmol), and the mixture was allowed to stir at room temperature overnight. The crude 

reaction mixture was poured into a saturated aqueous NaCl solution and extracted with CH2Cl2. 

The organic layer was dried over anhydrous MgSO4, filtered and concentrated under reduced 

pressure to furnish the succinimidyl ester 22. Spectroscopic data were in good agreement with 

reported data. 

 

1
H-NMR (400 MHz, CDCl3) δ 3.68 (t, J = 6.5 Hz, 2H), 2.89 (t, J = 6.7 Hz, 2H), 2.87- 2.81 (br s, 4H). 

13
C-NMR (100 MHz, CDCl3) δ 169.6, 169.0, 46.4, 31.4, 25.9. 

 

 

 

 



Chapter 7. Experimental Part  

_____________________________________________________________________________ 
 

182 

 

7.5.3.  Synthesis of bifunctionalized amino-azide nanoparticles (MSN-(NH2)i(N3)o) 

 

0.028 g of amine nanoparticles with CTAB (MSN-(NH2)CTAB) were suspended into 10 mL of 

H2O. Then, a solution of 0.035 g (0.164 mmol, 10 eq.) of 3-azidopropionic acid succinimidyl 

ester (22) was dissolved in 50 mL of water and afterwards was added to MSNs solution. The 

mixture was stirred in the dark for 24 h at room temperature. Solid samples were collected via 

centrifuging at 12000 rpm for 20 min, washing and dispersing with deionized water. To 

eliminate the surfactant, MSNs were treated with HCl (c) in 5 mL of EtOH. Solid samples were 

collected via centrifuging at 12000 rpm for 20 min, washing and dispersing with deionized 

water and EtOH, twice. 

 

7.5.4. Synthesis of alkyne-FITC-PEG 
4
 

 

7.5.4.1. Synthesis of 3,6,9,12-tetraoxapentadec-14-yn-1-ol (26) 

 

 

To 20 mL of tetraethylene glycol (25) (0.11 mol), 70 mL of THF anhydrous were added. Then, 

0.90 g (0.022 mol) of a 60 % suspension in oil at 0 °C were added to the solution. The resulting 

mixture was stirred at 0 °C for 30 min and then held at 80 °C for 2 h under nitrogen atmosphere. 

When the solution turned dark brown, 3 mL (0.034 mol) of propargyl bromide was added to the 

solution, and the resulting mixture was stirred at 80 °C for 12 h. The resulting solution was 

cooled to room temperature and extracted with DCM (500 mL). The organic layer was washed 

with brine, dried over anhydrous MgSO4, concentrated in vacuo to give product 26 in 80 % 

yield. Spectroscopic data were in good agreement with reported data. 

1
H-NMR (400 MHz, CDCl3) δ 4.21 (d, J = 2.3 Hz, 2H), 3.74-365 (m, 14H), 3.62 (d, J = 4.8 Hz, 2H), 

2.86 (s, 1H), 2.48 (t, J = 2.2 Hz, 1H). 
13

C-NMR (100 MHz, CDCl3) δ 79.6, 74.5, 72.5, 70.5, 70.3, 69.1, 

61.7, 58.3. IR (KBr) ʋmax: 3457, 3249, 2870, 2112, 1458, 1350, 1292, 1249, 1103, 1032, 942, 885, 842, 

682 cm
-1

. 
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7.5.4.2. Synthesis of 3,6,9,12-Tetraoxapentadec-14-yn-1-yl-4-methylbenzene-

sulfonate (27) 

 

 

Product 26, 3,6,9,12-tetraoxapentadec-14-yn-1-ol (3.37 g, 0.014 mol) was dissolved in 20 mL of 

DCM anh. Tosyl chloride (4 g, 0.020 mol) was added, and the mixture was cooled to 0 °C on an 

ice bath. KOH (3.2 g, 0.057 mol) was added slowly, and the mixture was stirred vigorously for 

2 h. The mixture was then poured on ice water and extracted with DCM (3 x 50 mL). The 

combined organic phase was washed with brine, dried over MgSO4, and evaporated under 

reduced pressure to give 27 as a yellowish oil in 60 % yield. Spectroscopic data were in good 

agreement with reported data.  

1
H-NMR (400 MHz, CDCl3) δ 7.79 (d, 2H, J = 8.2 Hz), 7.35 (d, 2H, J = 8.2 Hz), 4.20 (d, J = 3.2 Hz, 

2H), 4.15 (t, J = 3.9 Hz, 2H), 3.71-3.660 (m, 6H), 3.63 (m, 4H), 3.58-3.56 (m, 4H), 2.45 (s, 3H), 2.43 (t, J 

= 2.3 Hz, 1H). 
13

C-NMR (100 MHz, CDCl3) δ 144.7, 133.0, 129.8, 127.9, 79.6, 74.5, 70.7, 70.5, 70.4, 

69.2, 69.1, 68.6, 58.3, 21.6. IR (KBr) ʋmax: 3279, 2922, 2856, 2113, 1597, 1458, 1356, 1292, 1250, 1177, 

1097, 1017, 922, 817, 776, 633 cm
-1

. 

 

7.5.4.3. Synthesis of 1-azido-3,6,9,12-tetraoxapentadec-14-yne (28) 

 

 

Product 27, 3,6,9,12-tetraoxapentadec-14-yn-1yl-(4-methylbenzenesulfonate) (5.36 g, 0.013 

mol) was dissolved in DMF (40 mL). Then NaN3 (1.18 g, 0.018 mol) and tetra butyl ammonium 

iodide (TBAI) (0.48 g, 0.0015 mol) was added, and the mixture was stirred vigorously at 45 °C 

overnight. The resulting mixture was diluted with AcOEt and washed with saturated NaHCO3 

(aq). The water phase was extracted twice with AcOEt, and the combined organic phase was 

washed with water and brine, and dried over MgSO4. Evaporation under reduced pressure 

yielded 28 of crude product in a 60 % yield. Spectroscopic data were in good agreement with 

reported data. 

1
H-NMR (400 MHz, CDCl3) δ 4.14 (d, 2H, J=2.4 Hz), 3.64-3.55 (m, 14H), 3.32 (t, 2H, J=5.1 Hz,), 2.40 

(t, 1H, J=2.4Hz). 
13

C-NMR (100 MHz, CDCl3) δ 79.6, 74.5, 70.6, 70.6, 70.3, 70.0, 69.0, 58.3, 50.6.IR 

(KBr) ʋmax:2954, 2924,2853,2100,1462,1377,1110,722 cm
-1

.. 
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7.5.4.4. Synthesis of 3,6,9,12-tetraoxapentadec-14-yn-1-amine (29) 

 

 

Product 28, 1-azido-3,6,9,12-tetraoxapentadec-14-yne (0.920 g, 3.57 mmol) was dissolved in 

dry THF. PPh3 (1.176 g, 4.48 mmol) was added, and the mixture was stirred at room 

temperature for 2.5 h. The temperature was then raised to 30 ºC, and the mixture was stirred at 

30 
o
C for 25 h, after which the solvent was dissolved in AcOEt and extracted four times with 

1M HCl (aq). The combined water phase was then basified with ground NaOH to basic pH and 

extracted four times with AcOEt. The combined organic phase was dried over MgSO4 and 

evaporated under reduced pressure to give the crude product, which was precipitated in diethyl 

eter to give product 29 with 70 % yield. Spectroscopic data were in good agreement with 

reported data.  

1
H-NMR (400 MHz, CDCl3) δ 4.20 (s, 2H), 3.73 – 3.58 (m, 12H), 3.65 (t, 2H, J=5.4 Hz,), 2.88 (t, 2H), 

2.44 (t, 1H, J=2.4Hz), 1.69 (s, 2H).
13

C-NMR (100 MHz, CDCl3) δ 79.5, 74.6, 72.2, 70.4, 70.2, 70.1, 

69.0, 58.2, 41.2.IR (KBr) ʋmax: 3247, 2868, 2111, 1665, 1576, 1457, 1350, 1292, 1248, 1103, 1034, 920, 

843, 731, 646 cm
-1

. 

 

7.5.4.5. Synthesis of 1-(3’,6’-dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9’-

xanthen]-5-yl)-3-(3,6,9,12-tetraoxapentadec-14-yn-1-yl)thiourea (30)
5
 

 

 

Product 39 (0.021 g, 0.9 mmol) was dissolved in 2 mL of ethanol. Then FITC (0.060 g, 0.7 

mmmol, 0.8 eq.) was added dropwise in 4 mL of ethanol and the mixture was stirred at room 

temperature for 24 h. The mixture was evaporated under reduced pressure and was directly 

added to reference MSN-(FITC)i(N3)o and MSN-(FITC)i(Fold-N3)o.  
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7.5.5. Synthesis of MSN-(FITC)i(Fold)o  

 

 

 

To 96 mg of MSN-(NH2)(CTAB), 7.6 mg of 3-azidopropionic acid succinimidyl ester (22) in 60 

mL of water were added. The mixture was stirred in the dark for 24 h at room temperature. 

Solid samples were collected via centrifuging at 12000 rpm for 20 min, washing and dispersing 

with deionized water. To eliminate the surfactant, MSNs were treated with HCl (c) in 50 mL of 

EtOH. Solid samples were collected via centrifuging at 12000 rpm for 20 min, washing and 

dispersing with deionized water and EtOH, twice. 

0.036 g of MSN-(NH2)i(N3)o, without surfactant at the porous, were suspended in 20 mL of 

EtOH and sonicated during 1 h. Then, 0.016 g (0.04 mmol, 4 eq.) of FITC were added. The 

solution was left at room temperature for 48 h. Again, samples were collected via centrifuging 

at 12000 rpm for 20 min, washing and dispersing with deionized H2O and EtOH until 

supernatant presented no color.  

After FITC conjugation, 15 mg (0.005 mmol) of quinoline foldamer were added to 15 mg of 

MSN-(FITC)i(N3)o solution in a H2O/ACN mixture (30 mL). MSN/Foldamer proportion is (1:1) 

mg Fold/mg MSN. Final MSNs were washed with EDTA 0.1 M solution, and N,N-

diethyldithiocarbamate. CuEDTA and CuDTTC complex removal were monitored at 730 nm 

and 430 nm respectively. Moreover, MSNs are dialyzed in water during 24 h in order to remove 

any Cu or EDTA residue. 
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7.5.6. Synthesis of MSN-(FITC)i(Fold-FITC-PEG)o  

 

 

0.034 g of MSN-(NH2)i(N3)o, without surfactant at the porous, were suspended in 5 mL of EtOH 

and sonicated during 1 h. Then, 0.016 g (0.04 mmol, 4 eq.) of FITC (23) were added. The 

solution was left at room temperature for 48 h. Again, samples were collected via centrifuging 

at 12000 rpm for 20 min, washing and dispersing with deionized H2O and EtOH until 

supernatant presented no color. Then, 20 mg of cationic quinoline foldamer (24) were added to 

20 mg of MSN-(FITC)i(N3)o in a CuI (0.010 mg), DIPEA (2 drops), ACN/H2O solution (30 

mL). MSN/Foldamer proportion is (1:1) mg Fold/mg MSN. The solution was left at room 

temperature for 48 h. MSNs were washed several times with ACN, water and 0.1 M EDTA 

solution to obtain MSN-(FITC)i(Fold-N3)o. Finally, to 10 mg of MSN-(FITC)i(Fold-N3)o 3 mg of 

alkyneFITCPEG 30 were added in 10 mL of a ACN:H2O mixture (3:1). 2 mg of CuI and two 

drops of DIPEA were added. The solution was left at room temperature for 48 h. MSNs were 

washed several times with ACN, water and 0.1 M EDTA solution to obtain MSN-(FITC)i(Fold- 

PEG-FITC)o. 
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7.5.7. Synthesis of reference MSN-(FITC)i(PEG-FITC)o  

 

 

 

0.034 g of MSN-(NH2)i(N3)o, without surfactant at the porous, were suspended in 5 mL of EtOH 

and sonicated during 1 h. Then, 0.016 g (0.04 mmol, 4 eq.) of FITC (23) were added. The 

solution was left overnight at room temperature for 48 h. Again, samples were collected via 

centrifuging at 12000 rpm for 20 min, washing and dispersing with deionized H2O and EtOH 

until supernatant presented no color. Then to 10 mg of MSN-(FITC)i(N3)o 10 mg of 

alkyneFITCPEG 30 were added in 20 mL of a ACN:H2O mixture (3:1). Then, 5 mg of CuI and 

two drops of DIPEA were added. Finally, the solution was left at room temperature for 48 h. 

MSNs were washed several times with ACN, water and 0.1 M EDTA solution to obtain 

reference MSN-(FITC)i(FITC-PEG)o.  
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7.5.8. DOX loading in MSN-(NH2)i(N3)o (MSN-(DOX)) 

 

 

To 15 mg MSN-(NH2)i(N3)o in 30 mL MeOH, 7 mg (0.012 mol) of DOX (31) and 0.8 mL of 

trimethylamine were added. The solution was left 24 h at room temperature. Then, MSNs were 

washed extensively, until no red supernatant was obtained. Supernatant was collected and 

measured by UV-Vis to assess the quantity of DOX loaded at 490 nm, which was near 30 %. 

 

7.5.9. DOX loading with different quantities of foldamer (MSN-(DOX)(l-Fold)o 

and MSN-(DOX)(h-Fold)o) 

 

 

To 35 mg MSN-(NH2)i(N3)o in 45 mL MeOH were added 0.5 mL of trimethylamine and 16 mg 

(0.028 mmol) of DOX. The solution was left 24 h at room temperature. Then, MSNs were 

washed extensively, until no red supernatant was obtained. Supernatant was collected and 

measured to assess the quantity of DOX loaded at 490 nm, which was near 30 %. Finally, MSN-

DOX-(NH2)i(N3)o were obtained. 
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Synthesis of MSN-(DOX)(l-Fold)o (0.1 mg Fold/ mg MSN) 

To a solution of 35 mL (ACN/H2O;3:1) of MSN-DOX(NH2)i(N3)o nanoparticles, 3.5 mg of 

quinoline foldamer (0.0011 mmol), 0.6 mg of CuI and two drops of DIPEA were added. Then, 

24 h later, MSNs were washed extensively with water, ACN, and EDTA 0.1 M, until blue 

CuEDTA supernatant color disappeared. Finally, solvent was reduced under low pressure to 

give MSN-(DOX)(l-Fold)o. 

Synthesis of MSN-(DOX)(h-Fold)o (0.4 mg Fold/ mg MSN) 

To a solution of 35 mL (ACN/H2O;3:1) of MSN-DOX(NH2)i(N3)o nanoparticles, 13.5 mg of 

quinoline foldamer (0.0045 mmol), 1.5 mg of CuI and two drops of DIPEA were added. Then, 

24 h later, MSNs were washed extensively with water, ACN, and EDTA 0.1 M, until blue 

CuEDTA supernatant color disappeared. Finally, solvent was reduced under low pressure to 

give MSN-(DOX)(h-Fold)o. 
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7.6. Synthesis Chapter 5  

 

7.6.1. Synthesis of isothiocyanate MSNs ((MSN-(NCS))  

 

200 mg of MSN-(NH2)CTAB were treated with 5 mL HCl (c) in 90 mL of EtOH for 24 h, in 

order to eliminate the tensioactive. Solid samples were collected by centrifugation at 13000 rpm 

for 13 min, washing and dispersing with deionized water and EtOH, twice. Then, MSN-NH2 

were treated with toluene at 50 ºC for 24 h. 40 mg of the resulting MSN-(NH2) were suspended 

in 35 mL of toluene and 95 mg of  thiocarbonyldi-2(1H)-pyridone (5) (0.409 mmol, 12 eq.) in 

15 mL of dry DCM were added. The suspension was stirred for 24 h at room temperature. Solid 

samples were collected by centrifugation at 13000 rpm for 13 min and then were washed and 

dispersed with DCM and EtOH. This procedure was repeated six times and finally MSN-(NCS) 

were evaporated under reduced pressure and stored dry. 

 

7.6.2. Functionalization of MSN-(NCS) with 4-(n-butylamino)-N-(2-aminoethyl)-

1,8-naphthalimide (MSN-(UNaph))  

 

 

20 mg of MSN-(NCS) were suspended in 15 mL of EtOH. Then 6.6 mg of 4-n-butylamino-N-

(2-aminoethyl)-1,8-naphthalimide (11) (0.021 mmol, 2 eq.) were added. The mixture was stirred 

for 48 h at room temperature in the dark. Solid samples were collected by centrifugation and 

were washed and dispersed in EtOH until disappearance of yellow color (5 times). 
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7.6.3. Synthesis of azido MSNs (MSN-(N3)) 

 

200 mg of MSN-(NH2)CTAB were treated with 5 mL HCl (c) in 90 mL of EtOH for 24 h, in 

order to eliminate the tensioactive. Solid samples were collected by centrifugation at 13000 rpm 

for 13 min, and were washed and dispersed with deionized water and EtOH, twice. Then, 40 mg 

of the resulting MSN-(NH2) were suspended into 20 mL of EtOH. Afterwards, 86 mg (0.405 

mmol, 12 eq.) of 3-azidopropionic acid succinimidyl ester (22) in 15 mL of EtOH was added to 

the MSNs suspension. The mixture was stirred for 24 h at room temperature. Solid samples 

were collected by centrifugation at 13000 rpm for 13 min, and were washed and dispersed with 

EtOH six times, evaporated under reduced pressure and stored dry. 

 

7.6.4. Propargyl 8-butilamine naphthalimide (32)
6
 

 

Propargyl 8-bromo naphthalimide (0.3 g, 0.7 mmol) was dissolved in 7 mL of DMSO and N-

butylamine (3 mL, 30 mmol) was added to the mixture. The suspension was warmed to 80 ºC 

overnight. The resulting solution was diluted with 100 mL of DCM and washed three times with 

lithium chloride and water, and was removed under reduced pressure. Compound propargyl 8-

butylamine naphthalimide (32) (0.252 g, 75 %) was obtained as a yellow solid. Spectroscopic 

data were in good agreement with reported data. 

1
H-NMR (400 MHz, CDCl3) δ 8.62 (dd, J = 7.8 Hz, 1H), 8.51 (d, J = 8.4 Hz, 1H), 8.09 (d, J = 8.3 Hz, 

1H), 7.63 (dd, J = 7.9 Hz, 1H), 6.74 (d, J = 8.5 Hz, 1H), 5.27 (m, 1H), 4.95 (d, J = 2.3 Hz, 2H), 3.42 (d,  

2H), 2.16 (t, J = 2.3 Hz, 1H), 1.85 – 1.77 (m, 2H), 1.54 (m, 4H), 1.04 (t, J = 7.4 Hz, 3H). 
13

C-NMR (100 

MHz, CDCl3) δ 163.9, 163.2, 149.7, 134.9, 131.4, 129.9, 126.1, 124.7, 122.8, 120.1, 109.7, 104.4, 79.2, 

70.0, 43.4, 31.0, 29.1, 20.3, 13.8. 
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7.6.5. Functionalization of (MSN-(N3)) with 4-(n-butylamino)-N-(2-propargyl)-

1,8-naphthalimide (MSN-(TNaph)) 

 

 

26 mg of MSN-(N3) were suspended in 20 mL of ACN. Then 7.7 mg of propargyl 8-butylamine 

naphthalimide (32) (0.025 mmol, 2 eq.) with 3 mg CuI (0.001 mmol) and 3 drops of DIPEA 

were added. The mixture was stirred for 48 h at room temperature in the dark. Solid samples 

were collected by centrifugation and were washed with diethyldithiocarbamate until yellow 

color disappeared. The presence of copper was monitored by UV-Vis absorbance at 430 nm. 

More than 10 centrifugations were needed in order to eliminate Cu-diethyldithiocarbamate 

complex. Afterwards, MSNs were suspended in a methanolic solution of HCl 0.1 M / MeOH for 

12 h. 

 

7.6.6. Synthesis of bifunctionalized amino-isothiocyanate (MSNs (MSN-

(NH2)i(NCS)o)  

 

44 mg of MSN-(NH2)CTAB were dissolved in 20 mL of dry toluene and stirred at 60 
o
C for 24 

h. Then, 42 mg of thiocarbonyldi-2(1H)-pyridone (5) (0.180 mmol, 20 eq.) were added and the 

mixture was stirred at room temperature in the dark for 48 h. Solid samples were collected by 

centrifugation at 13000 rpm and then were washed with EtOH twice. Then, tensioactive was 

eliminated by adding to the dispersion 30 mL of a 0.1 M NH4NO3 methanolic solution for 24 h. 

Solid samples were collected by centrifugation and then were washed and dispersed with EtOH 

and water. MSN-(NH2)i(NCS)o were evaporated under reduced pressure and stored dry. 
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7.6.7. Synthesis of disulfide small and long PEG (41, n=3 and n=15). 

 

7.6.7.1. Synthesis of tert-butyl(2-((2-aminoethyl)disulfanyl)ethyl)carbamate (35)
7
 

 

 

2.2 g of cystamine dihydrochloride (34) (10.0 mmol) and 4.2 mL of triethylamine (30.0 mmol) 

were dissolved in MeOH (30 mL) and added to a methanolic solution (20 mL) of di-tert-butyl 

dicarbonate (1.091 g, 5.00 mmol). The reaction mixture was stirred for 6 h at 0 
o
C, after which 

the solution was evaporated, and 1 M NaH2PO4 was added to the residue. The aqueous solution 

was washed with diethyl ether to remove di-t-Boc-cystamine. The aqueous solution was 

adjusted to pH=9 by addition of 1 M NaOH, and the solution was extracted with AcOEt. The 

organic phase was dried over MgSO4 and then evaporated. The resulting yellow oil was dried in 

vacuo to give (35) with 41.7 % yield. Spectroscopic data were in good agreement with reported 

data. 

1
H-NMR (400 MHz, CDCl3) δ 4.97 (b, 1 H), 3.47 (q, 2H), 3.03 (t, 2H), 2.80 (q, 4H), 1.46 (s, 9H). 

 

7.6.7.2. Synthesis of tert-butyl(2-((2-isothiocyanateethyl)disulfanyl)ethyl) carba-

mate (36) 

 

 

0.786 g (3.11 mmol) of product (35) and 0.68 g (2.95 mmol) of 1,1’-thiocarbonylbis(pyridine-

2(1H)-one) were dissolved in 50 mL of anhydrous DCM. The reaction was stirred at 25 
o
C for 

24 h. Then, the organic phase was washed with H2O and NaHCO3 twice. Afterwards, MgSO4 

was used in order to dry the organic layer and then the solution was evaporated to give 36 in a 

10 %.   

1
H NMR (400 MHz, CDCl3) δ 4.96 (s, 1H), 3.46 (brs, 2H), 3.01 (t, J = 6.2 Hz, 2H), 2.81 – 2.76 (m, 4H), 

1.45 (s, 9H). 
13

C NMR (100 MHz, CDCl3) δ 155.7, 132.8, 79.7, 44.0, 39.3, 38.5, 37.9, 28.4 .IR (KBr) 

νmax: 3354, 2976, 2929, 2188, 2113, 2083, 1700, 1509 cm
-1

. Calculated OEA C: 40.79 %; H: 6.16 %; N: 

9.51 %, O: 10.87 %, S: 32.66 %. Experimental OEA C: 40.71 % , H: 6.37 %, N:9.31 %, S:32.15 %. 
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7.6.7.3. Synthesis of triethylene glycol 2-methyl tosilate methyl ether (37)
8,9

 

 

 

2 mL (10.0 mmol) of the commercially available tetraethyleneglycol monomethyl ether (33) in 

10 mL THF were added to a solution of 4.5 g of KOH (80.2 mmol) in 40 mL H2O. The resulting 

mixture was stirred for 1 h at 0 
o
C. Then 1.91 g (10.0 mmol) p-toluensulfonyl chloride in 10 mL 

of THF was added drop wise to the reaction mixture during 1 h at 0 
o
C. The mixture was stirred 

for additional 3 h. The solution was poured onto 1 M HCl and the organic solvent was 

evaporated. The residue was extracted three times with chloroform and the organic phase dried 

over MgSO4, filtered and the solvent was removed under reduced pressure. A transparent 

incolor oil (37) in a 75 % yield was obtained. Spectroscopic data were in good agreement with 

reported data.  

 

1
H-NMR (400 MHz, CDCl3) 7.80 (d, J=8.3 Hz,2H), 7.34 (d, J=8.9 Hz,2H), 4.16 (t, J=4.8 Hz, 2H), 3.70-

3.54 (overlapping multiplets, 14 H), 3.38 (s, 3 H), 2.45(s, 3 H).
13

C-NMR (100 MHz, Chloroform-d) δ 

144.8, 133.0, 129.9, 128.0, 72.0, 70.6, 69.3, 68.7, 59.1, 21.7. 

 

7.6.7.4. Synthesis of triethylene glycol 2-methyl azide methyl ether (38)
10

 

 

 

2.74 g (7.5 mmol) of triethylene glycol 2-methyl azide methyl ether (37) was dissolved in 

ethanol (50 mL) and 1.2 g of sodium azide (18.5 mmol) were added. The solution was heated 

under reflux overnight or until TLC (10 % MeOH in CHCl3) showed no starting material. The 

solvent was removed under vacuum and CH2Cl2 was added to the residue. The organic layer was 

extracted with water (3 times) and dried (MgSO4) to give product 38 in a 58 % yield. 

Spectroscopic data were in good agreement with reported data. 

1
H-NMR (400 MHz, CDCl3) δ 3.64–3.69 (overlapping multiplets, 12H). 3.53–3.56 (m, 2H), 3.40 (brs, 2 

H), 3.38 (s, 3 H). 
13

C-NMR (100 MHz, Chloroform-d) δ 50.7, 59.0, 70.0, 70.5, 70.6, 70.6, 70.7, 72.9.  
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7.6.7.5. Synthesis of triethylene glycol 2-methyl amino methyl ether (39) 
11

  

 

 

A solution of triethylene glycol 2-methyl azide methyl ether (38) (1.02 g, 4.4 mmol) in dry THF 

(30 mL) was cooled at 0 
o
C. 1.2 g of triphenyl phosphine was added (5.5 mmol), after which the 

mixture was allowed to stand at room temperature for 24 h. Water (0.4 mL) was added, and the 

reaction mixture was stirred for another 24 h to hydrolyze the intermediate phosphorus adduct. 

The reaction mixture was diluted with water and washed with toluene. Then the aqueous layer 

was evaporated to give product 39 in a 40 % yield. Spectroscopic data were in good agreement 

with reported data. 

1
H-NMR (400 MHz, CDCl3) δ.369-3.61 (m, 10H), 3.58-3.54 (m, 2H), 3.52 (t, J=5.2, 2H), 3.38 (s, 3H), 

2.87 (t, J=5.2, 2H), 1.70 (s, 2H). 
13

C-NMR (100 MHz, Chloroform-d) δ 73.3, 72.0, 70.7, 70.7, 70.6, 70.4, 

59.1, 41.7.  

 

7.6.7.6. Synthesis of tert-butyl(15-thioxo-2,5,8,11-tetraoxa-19,20-dithia-14,16-

diazadocosan-22-yl)carbamate (40; n=3 and n=15)  

 

 

1.73 mmol of product 39 and 562 mg (1.91 mmol) of product 36 were dissolved in 50 mL of 

anhydrous DCM. The reaction was stirred at 20 
o
C for 24 h. The result product 40 was purified 

through a silica gel column chromatographic with DCM:ACOEt mixtures (50:50). The product 

40 was collected and the solvent was removed under vacuum to yield the pure product. Yield: 

27%.  

(40a) n=3: 1
H-NMR (400 MHz, CDCl3) δ 7.14 (brs, 1H), 5.31 (brs, 1H), 3.66 (brs, 12H), 3.56 (brs, 2H), 

3.44 (brs, 2H), 3.37 (s, 3H), 3.12 (brs, 2H), 3.04 (brs, 2H), 2.80 (brs, 4H), 1.45 (s, 9H). 
13

C-NMR (100 

MHz, Chloroform-d) δ 183.5, 153.7, 79.8, 71.9, 70.6, 70.5, 70.4, 70.2, 59.1, 43.1, 39.6, 38.3, 38.0, 28.6 . 

IR (KBr) νmax: 3330, 2926, 2871, 1709, 1546, 1167, 1110 cm
-1

 Calculated OEA C: 45.49 %, H: 7.84 %,; 

N: 8.38 %, O: 19.13 %; S; 19.17 %. Experimental OEA C: 45.53 %, H: 7.93 %, N: 7.99 %, S: 18.88 %. 
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(40b) n=15: 1
H-NMR (400 MHz, CDCl3) δ 6.94 (brs, 1H), 5.24 (brs, 1H), 3.90 (brs, 2H), 3.74-355 

(overlapping multiplets, 72H), 3.45 (brs, 2H), 3.37 (s, 3H), 2.96 (brs, 2H), 2.78 (brs, 2H), 1.45 (s, 

9H).
13

C-NMR (100 MHz, Chloroform-d) δ 183.2, 155.9, 79.5, 71.8, 70.5, 70.4, 70.2, 70.0, 58.9, 44.0, 

39.4, 37.9, 37.8, 28.4 .IR (KBr) νmax 3517, 3335, 2871, 1709, 1542, 1454, 1107 cm
-1

  MALDI-TOF 

Matrix: DHB 10 mg/mL acetone, Ratio Sample-Matrix-NaTFA: 4:20:2, Method: Reflector positive ion 

mode (RP_master): 619.916, 692.848, 745.783, 736.931, 758.927, 878.043, 922.075, 965.111, 1009.188, 

1053.275, 1053.275, 1097.309, 1141.357, 1185.463, 1229.516,1273.535 

 

7.6.7.7. Synthesis of 1-(2-((2-aminoethyl)disulfanyl)ethyl)-3-(2,5,8,11-

tetraoxatrideca-13-yl)thiourea (41; n=3 and n=15). 

 

 

0.26 mmol of product 40, n=3 and n=15 were dissolved in 10 mL of anhydrous DCM. The 

mixture was cooled at 0 
o
C and stirred for 30 minutes. Then, 1 mL (13 mmol) of trifluoroacetic 

acid (TFA) was added dropwise. Afterwards, the mixture was stirred for 1.5 h at 0 
o
C and the 

solvent was removed at vacuum. The product 41 n=3 (41a) and n=15 (41b) is directly 

functionalized to the nanoparticles. 

 

7.6.8. Ru(bipy)3
2+

 loading in amino-isothiocyanate MSNs (MSN-(NH2)i(NCS)oRu)  

 

 

Typically, 18 mg (2.45·10
-5 

mol) of Ru(bipy)3
2+ 

(42)
 
were added to a solution of 30 mg of  

bifunctionalized MSNs in 5 mL of ACN for 24 h. Finally, after washing with EtOH, Ru(bipy)3
2+

 

supernatant was measured at 451 nm to assess the loading. In order to determine the total 

amount of Ru(bipy)3
2+

 that can be released, MSNs are treated with HCl (c) for 12 h and the 

supernatant is measured at 451 nm. 
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7.6.9. Ru(bipy)3
2+

 loading in amino-isothiocyanate MSNs with small and long 

PEG 41 (n=3 and n=15) (MSN-(NH2)i(S-PEG)oRu and MSN-(NH2)i(L-

PEG)oRu) 

 

First, 18 mg (2.45·10
-5 

mol) of Ru(bipy)3
2+ 

were added to a solution of 30 mg of  

bifunctionalized MSNs in 5 mL of ACN. After 24 h, 60 mg (1.49·10
-4 

mol) of S-PEG and L-

PEG 41 (n=3 and n=15) were added in 15 mL of ACN for 24 h. Finally, after washing with 

EtOH, Rubipy supernatant was measured at 451 nm to assess the loading. In order to know the 

total amount of Ru(bipy)3
2+

 that can be released, MSNs are treated with HCl (c) for 12 h and the 

supernatant is measured at 451 nm. 

 

7.6.10. Ataluren loading in amino-isothiocyanate MSNs (MSN-(NH2)i(NCS)oRu)  

 

Bifunctional MSN-(NH2)i(NCS)o nanoparticles were dissolved in 30 mL of ethanol and stirred 

vigorously for 1 h. Then 11 mg of Ataluren (0.0397 mmol) were added to the solution. The 

mixture was stirred at 20 
o
C temperature for 24 h. Ataluren (43) was loaded in a proportion 

(4:3). Finally, after washing with EtOH once, Ataluren supernatant was measured at 255 nm to 

assess the loading. 
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7.6.11. Ataluren loading in amino-isothiocyanate MSNs with small and long PEG 

41 (n=3 and n=15) MSN-(NH2)i(S-PEG)oAta and MSN-(NH2)i(L-PEG)oAta 

 

 

13 mg of bifunctional MSN-(NH2)i(NCS)o nanoparticles were dissolved in 30 mL of ethanol 

and stirred vigorously for 1 h. Then 11 mg of Ataluren (43) (0.0397 mmol) were added to the 

solution. The mixture was stirred at 20 
o
C temperature for 24 h. Then 60 mg (1.49·10

-4 
mol) of 

S-PEG and L-PEG 41 (n=3 and n= 15) were added to the silica nanoparticles. Finally, the 

mixture was stirred for another 24 h. Solid samples were collected by centrifugation at 13000 

rpm for 13 minutes and washed four times with EtOH and water to give MSN-(NH2)i(S-

PEG)oAta and MSN-(NH2)i(L-PEG)oAta. 
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7.7. Synthesis Chapter 6 

 

7.7.1. Synthesis of 2-isothiocyanate-1,1-dimethoxyethane (46)
12

 

 

 

0.2 mL (1.9 mmol) of 2,2.dimethoxyethan-1-amine (47) was dissolved in 10 mL of DCM anh. 

Then, 0.1 g (2.6 mmol, 1.4 eq) of 1,1’-thiocarbonydil-2(1H)-pyridone (5) was added. The 

mixture was stirred at room temperature for 24 h. The solvent was washed twice with 

bicarbonate, and removed under reduced pressure to give product 46 in 60 % yield. 

Spectroscopic data were in good agreement with reported data. 

1
H NMR (400 MHz, CDCl3) δ 4.46 (t, 1H), 3.60 (d, 2H), 3.43 (s, 9H). 

13
C NMR ((100 MHz, CDCl3) : δ 

130.9, 101.5, 54.1, 54.1, 46.5.    

 

7.7.2. Synthesis of MSN-(CHO) 

  

 

200 mg of MSN-(NH2)CTAB were treated with 5 mL HCl (c) in 90 mL of EtOH for 24 h, in 

order to eliminate the tensioactive. Solid samples were collected by centrifugation at 13000 rpm 

for 13 min, washing and dispersing with deionized water and EtOH, twice. Then, MSN-(NH2) 

were treated with toluene at 50 ºC for 24 h. 40 mg of the resulting MSN-(NH2) were suspended 

in 35 mL of EtOH and 28 eq. of 2-isothiocyanate-1,1-dimethoxyethane (46) (20 mg, 1.36·10
-4

 

mol) (37) in 20 mL of EtOH were added. 24 h later, the resulting material was then treated with 

acid ethanol for 4 hours in order to deprotect the acetal and form the aldehyde moiety. Solid 

samples were collected by centrifugation at 13000 rpm for 13 min and then were washed and 

dispersed with DCM and EtOH. This procedure was repeated six times and finally MSN-(CHO) 

were evaporated under reduced pressure and stored dry. 
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7.7.3. Functionalization of MSN-(CHO) with 2,4-dinitrophenylhydrazine  

 

 

20 mg (1.056·10
-4

 mol) of 2,4-dinitrophenylhydrazine (48) were added to a solution of 5 mg 

MSN-(CHO) in 5 mL of MeOH and were left for 24 h. MSNs were washed with MeOH until 

supernatant had no color. The yellow coloration of MSNs corroborates that MSN-(CHO) have 

indeed reacted with 2,4-dinitrophenyl)hydrazine and that aldehyde moiety has been correctly 

introduced to MSNs. 13 % of 2,4-(dinitrophenyl)hydrazine was finally loaded to the MSNs. 

 

7.7.4. Synthesis of bifunctionalized amino-aldehyde MSNs (MSN-(NH2)i(CHO)o) 

 

 

Briefly, the synthesis follows a similar scheme as described before. 0.2 g of MSN-(NH2) 

containing the surfactant (CTAB) were reacted with 4 eq. of 2-isothiocyanate-1,1-

dimethoxyethane (46) (0.1 g, 6.8·10
-4

 mol) in 50 mL of toluene. 24 h later, MSNs were washed 

twice with toluene and ethanol and then the tensioactive was eliminated. MSN-(NH2)i(Acet)o 

were treated in 40 mL solution of EtOH, where 0.5 g of NH4NO3 were dissolved.  24 h later, 

MSNs were washed with EtOH and acetal protecting group was removed by stirring MSNs in 

HCl solution for 6 h.  
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7.7.5. Synthesis of the linker 

 

7.7.5.1. Synthesis of diethyl 3,6,9,12,15-pentaoxaheptadecanedioate (49)
13

 

 

 

1.7 mL (9.8·10
-3

mol) of tetraethyleneglycol (25) in 20 mL of anhydrous THF and with 1.2 g of 

NaH (0.05 mol, 5 eq.) were added and stirred at 0 
o
C for 30 min. Then the solution was headed 

at 80 
o
C until color change from yellow to brown, 6 h. Then, 3.3 mL (0.034 mol, 3.4 eq.) of 

ethyl bromoacetate were added to the solution and left it in reflux for 24 h. The white precipitate 

was filtered and the solvent was reduced under low pressure. Then, the final oil was digested for 

24 h in Cy to obtain the product dimethyl-3,6,9,12,15-pentaoxaheptadecanedioate (49) in a yield 

of 40 %.  

1
H NMR (400 MHz, CDCl3) δ 4.26-4.17 (m, 4H), 4.15 (s, 4H), 3.78-3.6 (m, 16H), 1.29 (t, J=7.2 Hz, 6H). 

13
C NMR (100 MHz, CDCl3) δ 170.7, 70.7, 70.1, 68.8, 60.8, 14.1. IR (KBr) νmax 2873, 1752, 1449, 

1381, 1350, 1282, 1205, 1122, 1032, 945, 854, 722, 665 cm
-1

. 

 

7.7.5.2. Synthesis of dimethyl 3,6,9,12,15-pentaoxaheptadecanedihydrazide (45)
14–

16
 

 

 

0.8 g (2.4·10
-3

mol) diester PEG 49 were dissolved in 25 mL of EtOH and 0.6 mL (2.1 eq.) of 

NH2NH2 were added. After 24 h of reflux, the eluent is eliminated at reduced pressure to give 

and oil, which after been washed with EtOH/Cy/DCM gave the product 3,6,9,12,15-

pentaoxaheptadecanedihyhrazide 45 in a yield of 80 %. Spectroscopic data were in good 

agreement with reported data.  

1
H NMR (400 MHz, CDCl3)) δ 6.81 (brs, 6H), 4.07 (s, 4H), 3.71-3.64 (m, 16H). 

13
C NMR (100 MHz, 

CDCl3) δ 169.6, 77.0, 72.6, 70.1, 61.5. IR (KBr) νmax 3319, 2873, 1671, 1524, 1453, 1347, 1294, 1250, 

1108, 943, 888, 852, 666 cm
-1

. 

 



Chapter 7. Experimental Part  

_____________________________________________________________________________ 
 

202 

 

7.7.6. MB loading in amino-aldehyde nanoparticles (MSN-(NH2)i(CHO)oMB)
17

 

 

 

Typically, 6 mg (0.016 mmol) of MB were added to a solution of 20 mg of MSNs in 25 mL of 

EtOH with the addition of triethylamine. Finally, after washing with EtOH, MB supernatant was 

measured with a UV–Vis absorption spectrophotometer at 650 nm to assess the loading. 

 

7.7.7. Dual MB-DOX nanocarrier  

 

 

 

Typically, 9 mg (2.4·10
-5

mol) of methylene blue
 
(50)

 
were added to a solution of 25 mg of  

bifunctionalized MSNs in a 0.88 M ethanolic/triethylamine. After 24 h, 70 mg (0.2 mmol) of 

dihydrazide PEG 45 were added in 10 mL of ACN for 24 h. MSNs were washed and 

centrifuged to remove excess dihydrazide PEG. MB supernatant was measured at 650 nm. 

Finally, MSNs were suspended in 20 mL of MeOH and 18 mg (0.03 mmol) of DOX (31) with 

0.5 mL of triethylamine were added. After washing with MeOH, DOX supernatant was 

measured at 451 nm to assess the loading.  
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7.7.8. CPT loading in amino-aldehyde nanoparticles (MSN-(NH2)i(CHO)oCPT)
18–

20
 

 

Typically, 15 mg of MSNs dispersed in 5 mL of EtOH:CHCl3 (1:4) were added to a solution of 

100 mL of 6 mg of CPT (1.72·10
-5

 mol). This solution was left for 24 h at 60 
o
C. Finally, after 

washing once with EtOH:CHCl3 (1:4), CPT supernatant was measured with an UV-Vis 

absorption spectrophotometer at 354 nm to assess the loading. 

 

7.7.9. Dual CPT-DOX nanocarrier 

 

18 mg (5.16·10
-5

mol) of CPT were dissolved in 35 mL of CHCl3 by sonicating at 60 
o
C until 

total dissolution of the drug was achieved, 30 min. Then, the solution was added to a second 

solution of 30 mg MSN-(NH2)i(CHO)o dispersed in 25 mL of EtOH previously dispersed. 30 h 

later, a solution of 0.080 g (2.36·10
-4

 mol) dihydrazyde-PEG 45 in 20 mL of EtOH was added. 

Later, 10 drops (4.4·10
-3

 mol, 20 eq.) of triethylamine were. After 48 h, MSNs were centrifuged 

and the supernatant was collected and measured at 354 nm to assess the quantity of CPT that 

was absorbed. Then, to the residual MSNs, 21 mg of DOX (3.6·10
-5

 mol) were added in 20 mL 

of MeOH in basic medium (10 drops of triethylamine, 0.22M). 48 h later MSNs were washed 

extensively, until no red supernatant was obtained. Supernatant was collected and measured to 

assess the quantity of DOX loaded at 490 nm. 

  



Chapter 7. Experimental Part  

_____________________________________________________________________________ 
 

204 

 

7.8. Bibliography 

 

(1)  Cheng, S. H.; Lee, C. H.; Yang, C. S.; Tseng, F. G.; Mou, C. Y.; Lo, L. W. J. Mater. 

Chem. 2009, 19 (9), 1252–1257. 

(2)  Lu, F.; Wu, S. H.; Hung, Y.; Mou, C. Y. Small 2009, 5 (12), 1408–1413. 

(3)  Grandjean, C.; Boutonnier, A.; Guerreiro, C.; Fournier, J. M.; Mulard, L. a. J. Org. 

Chem. 2005, 70 (18), 7123–7132. 

(4)  Norberg, O.; Deng, L.; Yan, M.; Ramström, O. Bioconjug. Chem. 2009, 20 (12), 2364–

2370. 

(5)  NANOCS http://www.nanocs.net/Alkyne-PEG-FITC-3k.htm 09/15. 

(6)  Siegers, C.; Olàh, B.; Würfel, U.; Hohl-Ebinger, J.; Hinsch,  a.; Haag, R. Sol. Energy 

Mater. Sol. Cells 2009, 93 (5), 552–563. 

(7)  Suga, Y.; Sunayama, H.; Ooya, T.; Takeuchi, T. Chem. Commun. 2013, 49 (76), 8450–

8452. 

(8)  Cauda, V.; Argyo, C.; Bein, T. J. Mater. Chem. 2010, 20 (39), 8693–8699. 

(9)  Wolfe, A. L.; Duncan, K. K.; Lajiness, J. P.; Zhu, K.; Duerfeldt, A. S.; Boger, D. L. J. 

Med. Chem. 2013, 56 (17), 6845–6857. 

(10)  Kitto, H. J.; Schwartz, E.; Nijemeisland, M.; Koepf, M.; Cornelissen, J. J. L. M.; Rowan, 

A. E.; Nolte, R. J. M. J. Mater. Chem. 2008, 18 (46), 5615–5624. 

(11)  Li, G.; Bhosale, S. V.; Wang, T.; Hackbarth, S.; Roeder, B.; Siggel, U.; Fuhrhop, J. H. J. 

Am. Chem. Soc. 2003, 125 (35), 10693–10702. 

(12)  Park, S.; Hayes, B. L.; Marankan, F.; Mulhearn, D. C.; Wanna, L.; Mesecar, A. D.; 

Santarsiero, B. D.; Johnson, M. E.; Venton, D. L. J. Med. Chem. 2003, 46 (6), 936–953. 

(13)  Tanaka, M.; Yoshioka, K.; Hirata, Y.; Fujimaki, M.; Kuwahara, M.; Niwa, O. Langmuir 

2013, 29 (42), 13111–13120. 

(14)  Islam, R.; Koizumi, F.; Kodera, Y.; Inoue, K.; Okawara, T.; Masutani, M. Bioorganic 

Med. Chem. Lett. 2014, 24 (16), 3802–3806. 

(15)  Kandil, F.; Chebani, M. K.; Al Zoubi, W. ISRN Org. Chem. 2012, 2012, 1–8. 

(16)  Zhang, Y. C.; Zhang, D. W.; Wang, H.; Zhou, Y.; Li, Z. T. Polym. Chem. 2015, 6 (24), 

4404–4408. 

(17)  Peng, X.; Huang, D.; Odoom-Wubah, T.; Fu, D.; Huang, J.; Qin, Q. J. Colloid Interface 

Sci. 2014, 430 (0), 272–282. 

(18)  Agostini, A.; Mondragón, L.; Pascual, L.; Aznar, E.; Coll, C.; Martínez-Máñez, R.; 

Sancenón, F.; Soto, J.; Marcos, M. D.; Amorós, P.; Costero, A. M.; Parra, M.; Gil, S. 

Langmuir 2012, 28 (41), 14766–14776. 

(19)  Bernardos, A.; Mondragón, L.; Aznar, E.; Marcos, M. D.; Martínez-Máñez, R.; 

Sancenón, F.; Soto, J.; Barat, J. M.; Pérez-Payá, E.; Guillem, C.; Amorós, P. ACS Nano 

2010, 4 (11), 6353–6368. 

(20)  Agostini, A.; Mondragón, L.; Coll, C.; Aznar, E.; Marcos, M. D.; Martínez-Máñez, R.; 

Sancenón, F.; Soto, J.; Pérez-Payá, E.; Amorós, P. Chem. Open 2012, 1 (1), 17–20. 

 

 

 



 

 

 

 

 

 

 

 

Chapter 8. Conclusions 

 

 

 

  



 



  Chapter 8. Conclusions 

_____________________________________________________________________________ 
 

207 

 

Chapter 8. Conclusions 

 

1. First, monodispersed aminated MSNs (MSN-(NH2)) of 50-100 nm have been 

synthetized and functionalized with different 4-amine-1.8-naphthalimides for their use 

as sensors in the detection of protons and fluoride anions. To do so, a general procedure 

for the introduction of 4-amine-1.8-naphthalimides has been developed by clicking 

isothiocyanate-naphthalimides into aminated MSNs. This strategy provides the 

introduction of a thiourea moiety able to act both as linker and as a fluoride receptor. 

Above all the systems synthetized (MSN-(NaphBr), MSN-(NaphPIP), MSN-(NaphBut) 

and MSN-(NaphMetProp)), MSN-(NaphBut) presented interesting properties as proton 

and fluoride sensor, responding as a NOR logic gate (only an output is obtained when 

all the inputs are 0).  

 

2. A new methodology for the synthesis of regioselective bifunctionalized amino-azido 

MSNs has been carried out. This procedure permits the correct functionalization of 

azido moieties in the external surface, while the inner surface is being protected by the 

surfactant. The resulting MSNs can react with cationic quinoline foldamer allowing 

their complete functionalization through CuAAC cycloaddition. Foldamer-MSNs 

synthetized for the first time, present a positive zeta potential, a good solubility in 

water, are nontoxic at a maximum concentration of 0.16 mgMSN/mL and seems to 

internalize better in Hela cells than control MSNs. Nevertheless, further experiments 

need to be carried out in order to quantify foldamer-MSNs uptake. In addition, MSNs 

with a foldamer moiety and a polyethylene glycol chain were also synthetized (MSN-

(FITC)i(Fold-PEG-FITC)o). These Foldamer-PEG-MSNs showed a positive zeta 

potential, were nontoxic at a maximum concentration of 0.16 mgMSN/mL and were 

better internalized in the cells than control MSNs and foldamer-MSN. Furthermore, 

foldamer-MSNs were used as an intracellular DOX delivery nanocarrier. The study of 

DOX release with different quantities of foldamer demonstrated that foldamer-MSNs 

enhance intracellular DOX release, since MSNs with a high concentration of alkyne-

foldamer, (MSN-(DOX)(h-Fold)o) are more toxic and more quantity of DOX was 

internalized in the cells, than low alkyne-foldamer MSN-(DOX)(l-Fold)o and control 

MSN(NH2)i(N3)oDOX. 

 

3.  A protocol to prepare isothiocyanate functionalized MSNs from aminated MSNs has 

been achieved. With this procedure, new amino-isothiocyanate MSNs (MSN-

(NH2)i(NCS)o) have been synthetized for the design of a nanocontainer able to release 
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the drug Ataluren for the treatment of Duchenne Muscular Dystrophy (DMD). While 

amino inner moieties enhance Ataluren loading and release, external isothiocyanates 

have been used for the anchorage of scissile disulfide polyethyleneglycol chains (41, 

n=3 and n=15) in a rich glutathione (GSH) environment. MSN-(NH2)i(S-PEG)oAta and 

MSN-(NH2)i(L-PEG)oAta have been studied demonstrating that the longer the polymer 

chain, the more controlled is the release, achieving a 44 % release in a rich GSH 

medium and 10 % when no stimulus is applied. 

4. Finally, new regioselective bifunctionalized MSN-(NH2)i(CHO)o nanoparticles have 

been applied as a nanoplatform, able to release dual synergistic CPT/DOX combination 

for cancer treatment by using pH stimuli. In this case, DOX is both acting as an active 

and a capping agent. This system respond to pH stimuli and both CPT and DOX drugs 

are only released in an acid media (pH=4). This strategy only presents three synthetic 

steps, avoiding any chemical modification in drug structure, which could damage its 

active site or activity. DOX quantity release is high enough to use these nanoparticles in 

cancer applications. Nevertheless, CPT loading and release curves must be enhanced in 

order to translate this system for in vivo experiments. Due to the versatility of this 

nanoplatform, the system can be used for other drug combinations. 



209 

 

List of publications and presentations 

 

 

Publications: 

 

Llinàs, Maria C; Sánchez-García, David. Nanopartículas de sílice: preparación y aplicaciones 

en biomedicina. Afinidad 2014, 71,565, 20-31 

 

Maria C. Llinàs, Gabriel Martínez-Edo, Salvador Borrós and David Sánchez-García. Stable and 

ready-to-use amino-isothiocyanate bifunctionalized mesoporous silica nanoparticles for the 

design of nanocarriers (Submitted to the journal Microporous and Mesoporous materials).  

 

 

Patents: 

 

Maria C. Llinàs, Salvador Borrós and David Sánchez-García. Nanopartículas mesoporosas de 

sílice regioselectivamente bifuncionalizadas con grupos amino en el interior y grupos 

isotiocianato en el exterior, procedimiento de preparación y uso en la obtención de 

sistemas de liberación de fármacos. Spanish patent application 201500862 (2015). 

 

 

Congresses: 

 

Vuitena Trobada de Joves Investigadors dels Països Catalans, 27-29 of November 2013, 

Andorra la Vella (Andorra). Oral presentation. 

Fourth International conference of multifunctional, hybrid and nanomaterials, 9-13 of 

March 2015, Sitges (Spain). Poster presentation. 

Nanobioapp, 21-23 of September 2015, organized by ICMAB and Universitat Autònoma de 

Barcelona (UAB), Barcelona (Spain). Poster presentation. 

 

 



210 

 

Seminars:  

 

XIII Conferència Enric Casassas “Teranòstica: Nous reptes del diagnòstic per al 

tractament clínic”, 26 of November 2013, Universitat Autònoma de Barcelona (UAB), 

Barcelona (Spain). Assistant 

 

Courses: 

Curs bàsic sobre microscòpia electrònica de transmissió aplicat a ciencia dels materials, 

l6-19 of April 2013, Universitat Autònoma de Barcelona (UAB), Barcelona (Spain). 

Projects: 

IQS and Vall d’Hebron Research Hospital was awarded with 25000 € for the project: “Estudio 

de la eficacia de fármacos con capacidad de restaurar la expresión de distrofina en mioblastos de 

pacientes afectos de DMD con mutaciones nonsense, análisis de las causas que condicionan la 

variabilidad en la respuesta y evaluación de estrategias destinadas a aumentar esta eficacia en 

mioblastos humanos y en el ratón mdx” for the study of Duchenne and Becker muscular 

dystrophy disease. 

 

 



 

C
.I.

F.
 G

: 5
90

69
74

0 
  U

ni
ve

rs
ita

t R
am

on
 L

lu
ll 

Fu
nd

ac
ió

   
Rg

tr
e.

 F
un

d.
 G

en
er

al
ita

t d
e 

Ca
ta

lu
ny

a 
nú

m
. 4

72
 (2

8-
02

-9
0)

 

 
 
 
 
 

Esta Tesis Doctoral ha sido defendida el día ____ d________________ de 201__ 

En el Centro_________________________________________________________ 

de la Universidad Ramon Llull, ante el Tribunal formado por los Doctores y Doctoras  

abajo firmantes, habiendo obtenido la calificación: 
 
 

 
 
 

 
 
Presidente/a 
 
_______________________________ 
 
 
Vocal 
 
_______________________________ 
 
Vocal * 
 
_______________________________ 
 
Vocal * 
 
_______________________________ 
 
Secretario/a 
 
_______________________________ 
 
 
Doctorando/a 
 
 
 

(*): Sólo en el caso de tener un tribunal de 5 miembros 

C. Claravall, 1-3 
08022 Barcelona 
Tel. 93 602 22 00 
Fax 93 602 22 49 
a/e. info@url.edu 
www.url.edu 


	1. Portada Tesi Doctoral ingles Maria
	2.Agradecimientos portada y citaciones
	3.Summary
	Figuras y tablas
	List of abbreviations
	Index
	abstract chap 1
	1.Intro_31
	página en blanci
	abstract chap 2
	Cap2_18
	abstract chap 3
	Cap3NAFT_15
	abstract chap 4
	Cap4_27
	abstract chap 5
	Chap5_NCS_14
	abstract chap 6
	Chap6_CHO_24
	página en blanci
	abstract chap 7
	Chap7_14
	abstract chap 8
	Chap8_Conclusions_2_dsg
	9.List of publications and presentations
	Contraportada_tesi_cast

