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Professor Ramon Costa-Castelló for his support and patience during all these years. Since

his advise in my bachelor final project, our careers have crossed several times to finally

produce this dissertation. I have been pleased to know him and enjoyed greatly his

friendship.

This work wouldn’t have been possible either without the help of my former Advisor,

Professor Andrei Shkel. I was fortunate to share the beginning of his career as Professor

in the University of California, Irvine and to have him as my Master Thesis advisor. He

made me discover the world of MEMS. And thanks to his help and support, the results of

this dissertation have reached the MEMS community. Moreover, he is the founder of the

Microsystems Lab, where I met wonderful people that has helped me during my research

on the MEMS field. Chris Painter, Cenk Acar, Adam Schofield and Alex Trusov all of

them have helped at some point to make this work possible.

And finally, I also want to thank Professor Jasmina Casals-Terré. We met in the
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Chapter 1

Introduction

1.1 Research motivation

The field of Micro-Electro-Mechanical Systems (MEMS) has undergone a startling

revolution in the last twenty years. It is now possible to produce accelerometers less

than one millimeter long, functioning motors that can only be seen with the aid of a

microscope, gears smaller than a human hair, and needles so tiny they can deliver an

injection without stimulating nerve cells. However, important challenges are still to be

solved.

Lots of MEMS devices are actuated using electrostatic forces, and specially, parallel-plate

actuators are extensively used. Building a capacitor with the existing MEMS fabrication

methods is straightforward. One must put together two parallel surfaces and then apply

a potential difference between the two parts. If one of the two sides of the capacitor is

attached to a movable system, we obtain a parallel-plate electrostatic actuator (Figure

1.1). At the same time, these same parallel-plate capacitors can be used for sensing

movement, detecting the current that runs through them.

Nevertheless, the electrostatic actuation has some limitations due to the non-linearity of

the generated force. This force is directly proportional to the square of the applied voltage

and inversely proportional to the square of gap between the capacitor plates.

Consequently, as the potential difference between the plates is increased, the attraction

force between the plates increases. This force translates to motion of the moving plate

and gap reduction. Due to the dependence of the force on the gap distance, this gap

reduction also generates an increment in the generated force. This non-linearity leads to

the fact that at some point the restoring mechanical forces of the system cannot balance

the electrostatic force anymore. Once reached this state, the electrodes will snap one

1



Fixed plate
Moving plate

10 um gap

200 um
Resonator beam

Figure 1.1: A beam MEMS resonator with parallel-plate electrostatic actuation and
sensing. This MEMS resonator has been designed, fabricated and tested by the author.
Fabrication was carried out by the Centro Nacional de Microelectrònica - Barcelona. The
device has been used to experimentally verify the Resonant Pull-in Condition [62].

against the other, and in most cases, the system would be permanently disabled. This

actuation instability phenomenon is known as pull-in, and the associated critical voltage

is called the Pull-in Voltage.

The non-linear force implications are even more complex in oscillating systems like

resonant accelerometers or gyroscopes. Apart from the pull-in instability, the non-linearity

influences the pattern of the oscillation, becoming not symmetric. To solve both problems,

MEMS systems are usually oscillated with low amplitudes.

Added problems appear with the sensing of the movement. Parallel-plate capacitors are

also used, and although movement is proportional to capacitance variation, parasitics

interfere with the read-out. Consequently, if the system is oscillated with low amplitude,

this translates to reduced sensitivity/performance.

The dissertation studies the electrostatic non-linearities in the case of oscillating devices,

extending the previous approaches that concentrate on static or positioning applications.

The goal is to model and analyze the oscillatory behavior of MEMS devices, in order

to provide a suitable control law to obtain stable sinus-like oscillations of the full gap

amplitude with the minimum required energy, and consequently, improving MEMS sensors

sensitivity and performance.

1.2 Problem description

1.2.1 Designing a MEMS parallel-plate electrostatic

actuator/sensor

A basic building block of any electrostatically driven device is a microbeam. It forms

one side of a variable capacity air-gap capacitor. Opposite to the microbeam lays the

driving electrode that completes the capacitor. If a voltage difference is applied between

2



the capacitor plates, a force is generated on the beam that deflects under this action.

Examples of the typical configurations are shown in Figure 1.2.

a) b)

d)c)

V

V

V

V

Figure 1.2: Basic MEMS capacitor configurations a) Free-end beam. The gap, and
consequently the force, is not uniform. Maximum bending at the end of the beam.
b) Clamped-clamped beam. The beam bends forming a not uniform gap. The force
is variable depending on position. Maximum bending at the center of the beam. c)
Clamped-clamped beam. A parallel plate is added to maintain the capacitor gap uniform.
Maximum bending is at the center which defines the capacitor gap. d) Guided-end beam.
Gap and force are uniform. Maximum bending at the extremum of both suspension-
beams.

The voltage applied between the capacitor plates will depend on the application where

the actuator is used. When the goal is positioning the beam, a constant electric load is

applied to the electrodes. Depending on the DC polarization, a permanent displacement

of the beam is achieved. Positioning optical switches, adjusting elements or acting micro-

grippers are typical applications.

When the objective is closing the gap between the capacitor plates, as in relays, micro-

switches or valves; DC polarization is, also, usually applied. In these cases, full

displacement of the electrode is sought.

Finally, when permanent oscillation is necessary for the application, DC polarization is

complemented with an AC signal to excite harmonic motion. This is the case of resonant

pressure sensors, accelerometers or gyroscopes.

The same configurations can be used to sense the plate movement. If a constant voltage

load is applied between the capacitor plates, the movement of the plate translates to

capacitance variation. This capacitance variation can be sensed as a current moving

through the capacitor [200].
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1.2.2 Simplified actuator model

To study the behavior of the devices, a simplified lumped mass-spring system model of a

MEMS device with a parallel plate actuator can be used (Figure 1.3). Using this model,

the energy of the electro-mechanical system is

T =
1

2
M ˙̂w2; Uk =

1

2
K ŵ2; Ue = −1

2

ε0Ac

(g0 − ŵ)
V 2 (1.1)

E = T + Uk + Ue (1.2)

where ŵ is the displacement of the moving plate from its initial equilibrium, T is the

kinetic energy of the plate, Uk is the potential energy stored in the spring, Ue is the

potential energy stored in the parallel-plate capacitor, and E is the energy of the whole

system. And from electrostatics, ε0 is the dielectric constant, g0 is the designed static gap

between the plates, Ac is the area of the plates and V is the applied voltage between the

electrodes

+

_

M

B K

g0

ŵ

V

Figure 1.3: Scheme of a parallel plate actuator coupled to a mass-spring-damper system.

The dynamics of the system is derived using Lagrange’s formulation, being L = T−Uk−Ue
the Lagrangian of the system, and introducing the damping force, Fd = −B ˙̂w as the only

contributing force to the work (W ) of the system

M ¨̂w +K ŵ − 1

2

ε0Ac

(g0 − ŵ)2
V 2 = −B ˙̂w. (1.3)

This equation is the usual mass-spring-damper equation of dynamics, with an electrostatic

force.
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1.2.3 The pull-in limitation

The use of a parallel-plate electrostatic actuator with voltage control impose some

limitations to the actuation of the device. From equation (1.3) it can be observed that

the force generated between the parallel plates takes the following form

Fe =
1

2

ε0Ac

(g0 − ŵ)2
V 2. (1.4)

This implies that the electrostatic force is inversely proportional to the gap between the

plates of the actuator. As the gap decreases, the generated attractive force increases

quadratically. The only opposing force to the electrostatic loading is the mechanical

restoring force (K).

Consequently, if the voltage is increased, the gap decreases generating an incremented

force. At some point the mechanical forces defined by the spring cannot balance this

force anymore. Once reached this state, the electrodes will snap one against the other,

and in most cases, the system would be permanently disabled.

Figure 1.4: Angle gyro designed and patented by the Microsystems Lab, University of
California, Irvine [147]. Due to its design, only parallel-plate electrostatic actuation and
sensing can be used to drive the system to resonance and detecting the precession of the
oscillation.

The electrostatic loading has an upper limit beyond which the mechanical force can

no longer resist the opposing electrostatic force, thereby leading to the collapse of the

structure. This actuation instability phenomenon is known as pull-in, and the associated

critical voltage is called the Pull-in Voltage.

In positioning applications, reaching to the Pull-in Voltage must be avoided. In switching

applications, the Pull-in Voltage must be reached in order to force the change of state.

The problem associated with the pull-in phenomena is the limitation of the region between

5



the plates that can be reached without leading to snapping of the device. In positioning

applications, it implies that the device can only be moved up to 1/3 of the gap [96].

And in oscillating devices, as it would be a resonant angle-gyroscope as the one in Figure

1.4, the amplitude of oscillation is also limited, imposing restrictions on the sensor output

and sensitivity.

1.3 Research objective

The main objective of the dissertation is to understand the behavior of electrostatically

actuated MEMS resonators to develop a control algorithm that would overcome the non-

linearity of parallel-plate electrostatic actuation to achieve the most energy efficient sinus-

like performance.

Due to their intrinsic nonlinearities, the use of the parallel-plate electrostatic actuators is

usually restricted to low amplitudes. However, MEMS resonators need large robust sinus-

like oscillations to reach high grade applications. Improvements on the actual behavior

would foster the desired expansion of its use in MEMS resonators.

To reach this objective, the first step is the characterization of parallel-plate

electrostatically actuated MEMS, including dynamic pull-in analysis and steady-state

oscillatory motion.

Several issues exist in MEMS resonators and must be characterized. In oscillating

applications regions of instability appear. They define the maximum combination of

DC and AC voltages that can be used, and limit the maximum amplitude of oscillation

that can be reached.

Oscillations are greatly influenced by MEMS fabrication imperfections, affecting their

robustness. And the nonlinear forces generate oscillations of the MEMS resonator that

are not purely sinusoidal what can interfere with the output of the system or excite

undesirable modes.

All these problems lead to the necessity of applying control techniques to reach high

performance in electrostatically actuated MEMS resonators. But the chosen technique

must be energy efficient in order to be readily implementable in real MEMS devices.

This sets four main goals that must be accomplished by the new control algorithm:

1. Stable oscillation with large amplitudes of motion.

2. Robust oscillation independently of MEMS imperfections.
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3. Pure sinus-like oscillation.

4. Low energy consumption.

1.4 Dissertation outline

The first part of the Dissertation studies the characterization of parallel-plate

electrostatically actuated MEMS resonators, including steady-state characterization of

oscillatory motion and dynamic pull-in analysis. This characterization is used to define

the control specifications for oscillatory motion.

In Chapter 2, the modeling of the electromechanical lumped system is analyzed beginning

with the distributed parameters. This model includes the main characteristics that can be

found in a large number of MEMS devices which rely on electrostatic actuation. Complete

formulation of the electrostatically actuated MEMS resonator is presented. After that,

analysis of the approaches to simplify the ideal model are presented. This leads to

formulate the concentrated parameters simplification that will be used all through the

dissertation.

In Chapter 3, energy-based analysis of the pull-in instability is performed. The classic

approach is revisited to extend the results to the model with nonlinear springs. Analysis

of the effect of dynamics is studied as an important factor affecting the stability of the

system. From this study, the Resonant Pull-in Condition for electrostatically actuated

MEMS resonators is defined and experimentally validated.

In Chapter 4, the dynamic analysis of the system is extended in order to characterize

the main behaviors that intervene in the steady-state oscillations of an electrostatically

actuated MEMS resonator. This analysis is the basis of the election of Harmonic Balance

as a tool to characterize the steady-state oscillation of the MEMS resonators. Harmonic

Balance characterization leads to the understanding of the key factors that determine a

stable and large oscillation of the MEMS resonator. Based on these results, the desired

controller specifications are defined.

The second part of the Dissertation concentrates on control design. Once, the desired

performance has been selected, control strategy selection, design and verification are

developed.

In Chapter 5, a survey of prior work on MEMS control confirms that existing control

approaches cannot provide the desired performance. Consequently, in order to satisfy
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the performance goals and obtain the desired oscillation with the expected stability and

energy efficiency, a three-stage controller is proposed.

In Chapter 6, the proposed controller is analytically designed and its parameters tuned.

The controller has three different loops: a robust control loop, a resonant control loop

and an extremum seeking control loop. Each controller loop is designed, analyzed and

verified individually in order to obtain the desired performance.

In Chapter 7, the verification of the complete controller is accomplished. In the first part,

simulation tests of the complete set-up are presented, and its stability, robustness and

performance analyzed. In the second part, the needed steps for a real implementation

are analyzed. First of all, design modifications are presented to overcome possible

implementation difficulties. A two-sided actuation for full-range amplitude and bias

oscillation selection is presented. And a modification of standard Electromechanical

Amplitude Modulation is analyzed and validated for position feedback implementation.

Finally, a MEMS resonator with the desired specifications for testing the proposed control

is designed for fabrication. Based on this design, testing procedure is discussed.

And in Chapter 8, the Conclusions are presented, as well as, the Future work, including

the experimentation that has not been performed.
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Chapter 2

Electrostatically actuated MEMS
resonator model

In this Chapter the complete model of an electrostatically actuated beam is presented.

This model includes the main characteristics that can be found in a large number of

MEMS devices which rely on electrostatic actuation.

The analysis of the different participating terms is presented separately, to understand

each aspect of the dynamics. Once each part is understood, the complete formulation is

presented.

The Chapter finishes with an analysis of the approaches to simplify the ideal model. This

leads to formulate the concentrated parameters simplification that will be used all through

the dissertation.

2.1 Distributed parameters model formulation

To perform the analysis of a system, the first step is to obtain an accurate model of

the system which must include all the relevant characteristics. This section presents the

distributed parameters model of any resonant MEMS device electrostatically actuated.

2.1.1 Mechanical model

In MEMS devices, we have a basic structure: the beam. This mechanical component,

and its extension, the plate, generate the majority of MEMS sensors and actuators.

Consequently, the first step to analyze the behavior of any device is to understand and

model the dynamic characteristics of a beam.

The deformation of a beam (Figure 2.1), using the Euler-Bernoulli theory of thin beams

[163] is composed of two basic terms [170], the potential energy generated due to the
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b

h

L

ŵ
x̂

ẑ
ŷ g0

V

Figure 2.1: Basic scheme of a deflected beam

deformation of the beam

Udef =
EI

2

∫ L

0

(

∂2ŵ

∂x̂2

)2

dx̂ (2.1)

that it’s proportional to its curvature, ∂
2ŵ
∂x̂2

, and the kinetic energy due to its movement

T =
ρA

2

∫ L

0

(

∂ŵ

∂t̂

)2

dx̂ (2.2)

where ŵ is the oscillation amplitude, ρ is the density of the beam, A is the area of the

cross-section of the beam (A = b · h, b and h are the width and height of the section of

the beam), L is the longitude of the beam, E is the Young Modulus and I is the moment

of inertia of the cross-section ( I = bh3/12 ).

Typically in MEMS, a beam can also be externally stretched by an axial force N̂(t̂) (Figure

2.2). This force could be generated by different sources: thermal load, fabrication stresses,

external beam tuning, etc. In this case, another energy term appears that englobes the

deformation generated by the external force

UN =
N̂(t̂)

2

∫ L

0

(

∂ŵ

∂x̂

)2

dx̂. (2.3)

As can be observed, the deformation is proportional to the axial force.

Input Force

Figure 2.2: Vibrating beam oscillating under the influence of an axial force

Finally, in the case of large oscillations, the beam movement generates self-stretching

forces that actuate as structural damping. This effect can be accounted assuming that

an internal force, Fint, is producing an elongation of the beam. This force would have the
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following form [162], [222]

Fint =
EA

4L

∫ L

0

(

∂ŵ

∂x̂

)2

dx̂ (2.4)

and, substituting this force in (2.3), we obtain the energy of deformation due to self-

stretching

Uint =
EA

8L

[

∫ L

0

(

∂ŵ

∂x̂

)2

dx̂

]2

(2.5)

The dynamic equation of the free deflection of an homogeneous beam undergoing bending

can be obtained using the Lagrange equations, from the Lagrangian

L = T − Udef − UN − Uint (2.6)

and it is written as follows

E’I
∂4ŵ

∂x̂4
+ ρA

∂2ŵ

∂t̂2
−
[

N̂(t̂) +
E’A

2L

∫ L

0

(

∂ŵ

∂x̂

)2

dx̂

]

∂2ŵ

∂x̂2
= 0 (2.7)

where A is the area of the section of the beam, and in this case, the extended Young

Modulus, E’ = E/(1 − ν2), is introduced to account for a wide microbeam (plate) where

ν is the Poisson ratio. For a narrow beam E’ = E.

As can be observed, the microbeam dynamics is composed of four terms: the beam

resistance to bending, the inertia due to movement, the beam stiffness due to the

externally applied axial load and mid-plane stretching due to elongation of the beam.

The first three components are treated as linear terms in the equation of motion, whereas

the third component is represented by a nonlinear term in the equation of motion.

For convenience, and uniformity with other formulations [222] , we introduce the following

nondimensional variables

w =
ŵ

g0
, x =

x̂

L
, t =

t̂

T
(2.8)

where T is a time-scale defined as T = (ρAL4/(E’I))1/2. Writing down the equation in

the non-dimensional variables

∂4w

∂x4
+
∂2w

∂t2
− [αfΓ(w,w) +N ]

∂2w

∂x2
= 0. (2.9)

The parameters appearing in equation (2.9) can be defined as follows

αf = 6
(g0
h

)2

, N =
N̂L2

E’I
(2.10)

and the operator Γ is defined as

Γ(f1(x, t), f2(x, t)) =

∫ 1

0

∂f1
∂x

∂f2
∂x

dx

being f1 and f2 any two functions of x and t.
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2.1.2 Electrostatic actuation

In MEMS, the basic electrostatic system is a parallel-plates capacitor (Figure 2.3). In

this case, electrostatic forces are generated between two conducting elements separated a

distance g0 by a dielectric element. In MEMS, the dielectric is usually air. And an usual

assumption is that the distance is differentially uniform between the two plates.

Rigid plate

Elastic beam
Fixed edge

Free edge
Fixed edge

b

L

x̂

ẑ ŷ g0

Figure 2.3: Geometry of the idealized capacitor [157]

Having these assumptions in mind, there exists an electrostatic potential, ψ̂, associated

to each point of the plates of the capacitor, Figure 2.3, that satisfies

∇2ψ̂ = 0, (2.11)

ψ̂(x̂, g0, ẑ) = 0, x̂ǫ[−L/2,L/2], ẑǫ[−b/2, b/2] (2.12)

ψ̂(x̂, ŵ, ẑ) = V · f(ŵ/g0), x̂ǫ[−L/2,L/2], ẑǫ[−b/2, b/2] (2.13)

where ∇2 ≡ ∂
∂x̂

+ ∂
∂ŷ

+ ∂
∂ẑ

stands for the Laplacian operator, ŵ is the displacement of each

point of the beam from ẑ = 0 , V is the applied voltage, and the dimensionless function

f is used to represent the fact that the voltage drop between the two plates may depend

upon ŵ [157]. It is of special importance to remember that ŵ should satisfy equation

(2.7).

If nondimensional variables are introduced as in (2.8),

ψ =
ψ̂

V
, w =

ŵ

g0
, x =

x̂

L
, y =

ŷ

g0
, z =

ẑ

b
(2.14)

and substituted in equations (2.11)-(2.13), this yields

ǫ2
(

∂2ψ

∂x2
+ a2b

∂2ψ

∂z2

)

+
∂2ψ

∂y2
= 0, (2.15)

ψ(x, 1, z) = 0, xǫ[−1/2, 1/2], zǫ[−1/2, 1/2] (2.16)

ψ(x, w, z) = f(w), xǫ[−1/2, 1/2], zǫ[−1/2, 1/2] (2.17)
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where ǫ = g0
L

is an aspect ratio comparing the gap size to beam length and ab = L
b
is

an aspect ratio of the beam design, comparing its length and width. Usually, in most

applications the potential difference, V , is fixed and then f(w) = 1.

Using basic electrostatics equations, the Potential Energy stored in the Electric Field

created between the capacitor plates is defined as [153]

Ue(x̂, ŷ, ẑ) =
ε

2

∫

v

|ê|2dv (2.18)

where ε is the permittivity constant of the dielectric element between the plates (Free-

space permittivity is ε0 = 8.854 · 10−12F/m),
∫

v
stands for the volume integral, | | stands

for a 2-norm of a vector, and given that the Electrostatic field ê is defined as

ê = −∇ψ̂ (2.19)

where ∇ is the gradient operator.

For consistency, we can use normalized variables, then

e =
ê

V
; e = −∇ψ (2.20)

and consequently,

Ue(x, y, z) = −εV
2

2

∫

v

|∇ψ|2dv. (2.21)

As the electrostatic force generated by the conservative electrostatic potential field in

vacuum can be calculated as the gradient of the potential energy, using equation (2.21)

we can obtain

F = −∇Ue = −ε0V
2

2
|∇ψ|2. (2.22)

Consequently, the key problem to define the electrostatic force is solving the equation

(2.15) for the electrostatic potential ψ.

Numerically, the potential can be calculated using finite elements [157]. However,

approximations can be done in order to develop the formulation.

The typical approximation is to consider that the plate width and longitude are

considerably large against the gap between the plates, what implies that the force lines

are basically parallel and the fringing fields are negligible. In this case, ǫ2 in equation

(2.15) is small, and the terms that are multiplied by this term can be ignored, resulting

in equation
∂2ψ

∂y2
= 0. (2.23)
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Then, solving this equation for the potential ψ, it can be found that

ψ =
f(w)(1− y)

(1− w)
(2.24)

and the differential force generated by this potential is

Fe(x, z) = − ε0V
2

2g20(1− w)2
. (2.25)

As can be observed, this approximation gives way to the expression of the force mostly

used to calculate the electrostatic force between two parallel plates

Fe = −1

2

ε0AcV
2

g20(1− w)2
(2.26)

where Ac is the area of the capacitor plate. This formulation is only valid if the force

contribution by the fringing fields that appear at the ends of the parallel plates can be

assumed small compared to the total force.

This approximation is shown to be valid for the small aspect ratio devices. In [157]

and [154] comparison between both approaches are presented and justifications of the

validity of the approximation stated.

Another option to overcome the fringing fields is presented by [139]. In this case, knowing

that the charge distribution is not even and taking into account the effect of the fringing

fields, a capacitance correction Cn is derived that includes this effects. Given a parallel

plate capacitor, the capacitance C is defined as the proportionality constant between the

charge (Q) and the applied voltage

C =
εAc

g
; Q = CV. (2.27)

Then the fringing-field corrected capacitance C̃ is defined as

C̃ = CCn (2.28)

where

Cn = 1 + 4.246ϑ, 0 ≤ ϑ < 0.005 (2.29)

Cn = 1 +
√
11.0872ϑ2 + 0.001097, 0.005 ≤ ϑ < 0.05 (2.30)

Cn = 1 + 1.9861ϑ0.8258, 0.05 ≤ ϑ (2.31)

given that ϑ = g0/b is the aspect ratio of the gap against the width of the beam. The

constants are derived applying regression analysis to numerically obtained data. The
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model has been validated to measured data [139]. Other authors have obtained equivalent

results with different fitting formulas, An example is the [84] derivation,

Cn = 1 + 0.65
g0
b
.

Consequently, with these approximations, the force can be computed with

U =
1

2
C̃V 2 =

1

2
CnCV

2 =
1

2
Cn

ε0Ac

g0
V 2 (2.32)

F = −∇U =
1

2
Cn

ε0AcV
2

g20(1− w)2
. (2.33)

The derived expressions can be extended to non-uniform gap capacitors using sum of

elementary capacitors [126].

2.1.3 Damping in MEMS

In MEMS, there are two basic sources of damping forces: structural damping and viscous

damping (or aerodynamic damping).

The structural damping is generated by the molecular interaction in the material due

to deformations. It happens in the moving parts and at the anchoring points [57]. The

main contribution has already been introduced in the mechanical model with the term

including internal forces due to stretching. If the amplitude of oscillation of the beam is

small, the values of these forces in materials like the polysilicon are negligible compared

to the viscous damping effects.

The viscous damping effects appear due to the fluid that surrounds the MEMS device.

The generated forces can be specially large if the fluid is air. For this reason, most devices

are packaged in vacuum environments.

Two different types of viscous damping can be usually identified in micromachined moving

structures: couette flow damping and squeeze film damping.

To analyze the generated forces, one can turn to classical fluid mechanics and use the

Navier-Stokes equations, which are composed of the continuity equation

dρm

dt̂
+ ρm∇v̂ = 0 (2.34)

and the motion equation

ρm
dv̂

dt̂
= −∇P + ρmg + η∇2v̂+

η

3
∇(∇ · v̂) (2.35)
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Fcou

Fsq

Pa

P

a)

b)
ŵsq

x̂

x̂v̂cou

v̂cou

v̂sq

ẑ

ẑ

gcou

gsq

Figure 2.4: a) Couette flow damping between two plates that move parallel one to the
other and its velocity profile; b) Squeeze film damping between two plates that move one
against the other and its velocity profile.

where ρm is the mass-density of the fluid, η is the viscosity (assumed to be constant), g

is the acceleration of gravity, P is the pressure of the fluid, v̂ is the velocity of the fluid

and d
dt̂

stands as the time-derivative of a vector [153].

2.1.3.1 Couette flow damping

In the couette flow case, the damping force appears between two plates that move parallel

one to the other and are separated by a Newtonian fluid (Figure 2.4a) [44]. As the distance

between the plates is considered constant, the working regime is under incompressible flow,

meaning that the rate of change of density dρm
dt̂

is negligible. Under this circumstances,

the continuity equation (2.34) becomes

∇v̂cou = 0 (2.36)

and the Navier-Stokes equation of motion (2.35) reduces to

ρm
dv̂cou

dt̂
= −∇P + ρmg + η∇2v̂cou (2.37)

for incompressible flow. Here the velocity, v̂cou, is constrained in the x-direction.

The pressure and gravity body-force terms can be combined introducing a position vector

r̂, and defining

P ∗ = P − ρmg r̂.
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Using this definition, the Navier-Stokes equation reduces to the following steady-flow

equation

ρm
dv̂cou

dt̂
= η∇2v̂cou −∇P ∗. (2.38)

From Figure 2.4a, it can be seen that the flow becomes perfectly one-dimensional away

from the edges. This aspect linked to condition (2.36) delimits that the velocity profile is

composed of streamlines, so

v̂cou =

(

v̂cou,x̂(ŷ)
0

)

. (2.39)

Under these steady-flow conditions,

dv̂cou

dt̂
= 0 (2.40)

and considering that no pressure gradient is generated by the moving plate, the Navier-

Stokes equation reduces to
∂2v̂cou,x̂
∂ŷ2

= 0 (2.41)

giving a linear velocity profile as a solution.

If the fluid is liquid or gas, and the structures are relatively large (see [207] for correction

in case of gas rarefication), one can apply the usual no-slip boundary condition, to the

profile in Figure 2.4a. Then the velocity is

v̂cou,x̂ =
ŷ

gcou
v̂cou (2.42)

and the shear stress, using the Newtonian fluid condition, on the moving plate is

τ = −η∂v̂cou,x̂
∂ŷ

|ŷ=gcou =

(−η v̂cou
gcou

0

)

. (2.43)

Finally, having the shear stress, the couette damping force in the direction of the movement

of the whole structure can be calculated as

Fcou = τAcou = −ηAcou

gcou
v̂cou = ĉcouv̂cou (2.44)

where the force is directly proportional to the velocity of the structure, v̂cou, and Acou is

the area of overlapping between the structures.

It is important to analyze in what direction the system induces the couette damping

force to maintain the consistency of the formulation. This will depend on the system

configuration. In most cases, the system moves over the substrate and the couette damping

force is generated between the moving structure and the substrate, in this case, v̂cou = ˙̂w.
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2.1.3.2 Squeeze film damping

However, in MEMS actuated with parallel plate capacitors, the main source of damping

is the Squeeze film force. In parallel-plate capacitor designs, an articulated plate moves

towards a fixed plate (Figure 2.4b). During this movement, when the plates approach each

other the pressure of the trapped fluid increases, and the fluid is squeezed out through

the edges of the plates. When the plates separate, a sucking drag is generated due to the

fluid filling back the gap.

To solve this case, we must return to the Navier-Stokes equation (2.35), but this time

we need the full compressible fluid equation. Consequently, to handle the analytical

derivation, several assumptions must be done in our system:

• The aspect ratio is large, meaning that the gap is smaller than the plates extent.

• The motion is slow, meaning that the inertial term can be neglected in front of the

viscous one, and the fluid works under Stokes flow.

• The pressure between the plates is homogeneous.

• The fluid flow at the edges of the plates follows a parabolic profile, defined by a

Pousille-like equation (Figure 2.4b).

• The gas behaves under the ideal gas law.

• The system is isothermal.

Under these assumptions, the Navier-Stokes equations can be simplified, and the behavior

of the fluid is governed by the Reynolds equation [78]

12ηeff
∂P ĝsq
∂t

= ∇[ĝ3sqP∇P ] (2.45)

where P (x̂, ŷ, t) is the pressure between the plates, ĝsq(x̂, ŷ, t) is the distance between

the parallel plates, and ηeff is the corrected viscosity of the fluid, accounting for the

rarefication effects due to low pressure [206]

ηeff =
η

1 + 9.638K1.159
n

(2.46)

where Kn = λ/gsq is the Knudsen number, which compares the mean free path of a

fluid molecule (λ) against the static gap distance (gsq). The constant is experimentally
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obtained. In a typical MEMS example, where λ is approximately 0.1 microns, the air is

at atmospheric pressure and the gap is of 2 microns, the value of Kn would be 0.05. The

mean free path is inversely proportional to fluid pressure.

Solution of equation (2.45) on P will lead to derivation of the squeeze film forces.

Fsq = (P − Pa) ·Asq (2.47)

where Pa is the static pressure force and Asq the area of overlapping of the capacitor

plates. As can be observed, the squeeze forces calculation is coupled to the mechanical

deflection of the beam [132].

To approximate the damping forces, one must linearize equation (2.45) assuming small

amplitude motions. This way the gap distance and the pressure of the gap can be

expressed as follows

ĝsq(x̂, ŷ, t) = gsq − ŵsq(x̂, ŷ, t) ; P (x̂, ŷ, t) = Pa + P̄ (x̂, ŷ, t) (2.48)

where ŵsq is the gap reduction (usually, oscillation of the device) and P̄ the pressure

variations from the static pressure. Substitution in (2.45) leads to

12ηeff
Pag3sq

(

gsq
∂P̄

∂t
− Pa

∂ŵsq
∂t

)

= ∇2P̄ =
∂2P̄

∂x̂2
+
∂2P̄

∂ŷ2
. (2.49)

From this equation, in [132] they show that numerical coupled perturbation methods can

predict experimental damping forces accurately.

If we add the assumption that the capacitor plates are long and narrow (a beam), the

equation can be much reduced due to the fact that the fluid movement is only in one

direction (y-direction in our device)

∂P̄

∂t
=

Pag
2
sq

12ηeff

∂2P̄

∂ŷ2
+
Pa
gsq

∂ŵsq
∂t

. (2.50)

From this equation, one can solve for P̄ , obtaining the following force on the capacitors

[183], using Laplace transformation

Fsq(s) =

[

96ηeffLb
3

π4g3sq

∑

nodd

1

n4

1

1 + s
αn

]

sŷ(s) (2.51)

where

αn =
g2sqPan

2π2

12ηeffb
2 (2.52)
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given that ŷ(s) is the input displacement, in Laplace formulation. As we are assuming

small amplitudes, the first term of the expansion is a good approximation of the force

Fsq(s) =

[

96ηeffLb
3

π4g3sq

1

1 + s
ωsq

]

sŷ(s). (2.53)

From this derivation two important parameters arise, the cut-off frequency, ωsq,

ωsq =
π2g2sqPa

12ηeffb
2 (2.54)

that indicates the bandwidth of the squeeze-film force, and the squeeze number, σsq,

σsq =
π2ω

ωsq
=

12ηeffb
2

g2sqPa
ω. (2.55)

The squeeze number allows to analyze the behavior of the squeeze film damping forces.

When the squeeze number decreases, due to low pressure or low frequencies of oscillation,

the fluid force becomes a pure damping force. However, at high frequencies or high squeeze

number, a spring force component appears and becomes dominant with the damping force

still present. Example of the contributions of each force can be found in [183]. Similar

analysis and discussions are shown by [11] and [206] using the force decomposition derived

in [24].

Consequently, the squeeze film damping force can be reduced to

Fsq = csq(ŵsq, σsq)
∂ŵsq
∂t

(2.56)

with damping and spring effects depending on σsq [212].

Again, it is important to analyze in what direction the system induces the squeeze film

damping force to maintain the consistency of the formulation. In most cases, the squeeze

film damping force is generated between the moving plate and the fix plate, and in this

case, the force direction is opposed to the amplitude of oscillation of the device, ŵsq = ŵ.

2.1.3.3 Total damping forces

Finally, the fluid damping effects in the model are the combination of squeeze film and

couette film damping, giving a final force

Fd = Fcou + Fsq = −ηAcou

gcou
v̂cou + (P − Pa) ·Asq. (2.57)

Using the assumptions previously stated, vcou = ˙̂w and ŵsq = ŵ, the damping forces can

be represented as

Fd = (csq + ccou)
dŵ

dt̂
= ĉd

dŵ

dt̂
. (2.58)
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2.1.4 Lumped system

The complete set of equations defining the behavior of the system can be obtained linking

the different energies and non-conservative forces acting in the system.

The kinetic energy is defined in (2.2)

T =
ρA

2

∫ L

0

(

∂ŵ

∂t̂

)2

dx̂. (2.59)

The potential energy is composed of mechanical (2.1),(2.3),(2.5) and electrostatic terms

(2.18)

U =
EI

2

∫ L

0

(

∂2ŵ

∂x̂2

)2

dx̂+
N̂(t̂)

2

∫ L

0

(

∂ŵ

∂x̂

)2

dx̂+
EA

8L

[

∫ L

0

(

∂ŵ

∂x̂

)2

dx̂

]2

+
εV 2

2

∫

v

|∇ψ|2dv.

(2.60)

The fluid damping is the only non-conservative force (2.57)

Fd = −ηAov
g0

U + (P − Pa) · Ac. (2.61)

Consequently, using Lagrange formulation and non-dimensional variables, the dynamics

of the system is as follows:

∂4w

∂x4
+
∂2w

∂t2
− [αfΓ(w,w) +N ]

∂2w

∂x2
= γV 2|∇ψ|2 − 12L4

E’ h3T

[

−ηAov
g
U + (P − Pa) ·Ac

]

(2.62)

given that the electrostatic potential and the fluid pressure satisfy the following conditions

ǫ2
(

∂2ψ

∂x2
+ a2b

∂2ψ

∂y2

)

+
∂2ψ

∂z2
= 0 (2.63)

12ηeff
∂Pd

∂t
= ∇[d3P∇P ]. (2.64)

Linking the different formulations previously derived, the dynamics of the system can be

reduced to [1]:

∂2w

∂t2
+ c

∂w

∂t
+
∂4w

∂x4
− [αfΓ(w,w) +N ]

∂2w

∂x2
= γV 2|∇ψ|2 (2.65)

w(0, t) = w(1, t) = 0, w′(0, t) = w′(1, t) = 0.

And the parameters appearing in equation (2.65) can be defined as follows

c =
ĉd L

4

E’ I T
, N = N̂L2

E’I

αf = 6
(g

h

)2

, γ = 6ε0L
4

E’ h3g
. (2.66)
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Equation (2.65) translates to the following formulation once the electrostatic force is

approximated

∂2w

∂t2
+ c

∂w

∂t
+
∂4w

∂x4
− [αfΓ(w,w) +N ]

∂2w

∂x2
= Υ

V 2

(1− w)2
(2.67)

where Υ = 6Cnε0L
4

E’ h3g3
, using fringing fields correction in the capacitance term.

2.2 Evolution in MEMS modeling

The general equations of the system (2.62), as defined in the previous section, are difficult

to handle, and investigators have tried to approach the analysis of the system using

simplified models, leaving the complete equations to finite-elements analysis applications

and numerical solution approaches. The problem with the simplified solutions is their

closeness to reality. Table 2.1 presents a summary of the different approaches and the

goals that have been analyzed with each one.

The earliest study of the parallel-plate electrostatic actuation of a beam may be found

in the pioneering work of Nathanson et al. [131] [137]. In their study of a resonant

gate transistor, they constructed and analyzed a mass-spring model with electrostatic

actuation. They predicted and offered the first theoretical explanation of the so-called

pull-in instability.

For its simplicity, the mass-spring-damper system has been extensively used in order

to simulate and design MEMS devices. The model has been used to predict static

displacements and to study the main behaviors of the system. For instance, the equations

allow to analytically determine the static pull-in and the maximum travel range in the

static case, which is one-third of the initial gap [183]. In [77], they expand this analysis to

predict pull-in times and derive the Dynamic Pull-in Voltage (DPV) which indicates the

maximum voltage that can be applied as a step-function to the system without producing

snapping in vacuum environment [38]. A extended discussion on energy-dependence of

the Dynamic Pull-in Voltage can be found in [204] and [61].

Analysis involving theoretical squeeze film equations can be found in [125], which are

applicable for large displacement simulation. The simulated and experimental results

were compared, and they have good agreement.

The model is less accurate when oscillations are introduced, as these kind of models

cannot accurately predict the inherent nonlinearities of the electrostatic force and the
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Differential Equations Numerical Solution Simple Model Parametric excitation Modal/Energy Analysis

Static [2], [155] [9], [59] [179], [88] [197]
Solution [156], [68] [10] [45] [88]
Dynamic [2], [224], [1] [10] [179], [39], [221] [33], [127] [197], [218]
Solution [68], [215] [88], [77] [130] [88], [170]
Static [2], [155] [10] [179], [166] [197]
Pull-in [156], [68] [59] [45] [83]
Dynamic [2], [224] [10] [77], [166] [197]
Pull-in [68] [39]
Spring [222] [10] [197]

softening [170]
AC [2], [101] [180] [197]

actuation [222] [170]
Large [2] [130] [197]

amplitude [222] [231] [170]
Tension [2] [197]

sensitivity [222] [170]
Control [156] [39], [192] [127]

[221]
Stability [156], [224] [153] [33] [88]

[68] [127]
Damping [219] [45] [231] [218]

[77]
Comparison [2] [10] [45] [130], [231] [197]
to reality [127] [83]
Model [9] [88]

comparison [83]

Table 2.1: Comparison of the different analysis approaches in the literature
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beam deformation [45], [39]. The model assumes a linear spring, thus neglects midplane

stretching effects. However, the model can be used to extract the expression for the

fundamental natural frequency as a function of the DC polarization voltage, as the

experiments show [182], [191]. A way to expand the model to oscillation applications

is to restrict the amplitude of oscillation [208], [166].

Even with its limitations, the model includes most of the main nonlinear characteristics,

as it has been shown by several authors. In [180] and [63] they showed that resonant

pull-in can be predicted in electrostatically actuated oscillators and experimental results

are presented to validate the concept.

Further analysis of the nonlinear behavior based on the mass-spring-damper model have

been carried on in [213] and [110], which show that period doubling and chaos can appear

in parallel-plate electrostatically actuated MEMS.

The mass-spring-damper linear model is specially used when applications have to be

demonstrated. For example, in microrelay applications, where pull-in or gap-closing

is the objective [77], [166]. Or for device definition, no matter if they are resonant

accelerometers [192], gyroscopes [148] or micromirrors [233].

In order to present control strategies, this model has been mainly used [182], [178].

To improve the accuracy of the analysis, some authors have tried finite-elements modeling,

using the simplified equations. Or have tried to expand the one-degree of freedom system

to three-degree of freedom analysis. Software as MEMCAD [184] has been designed using

these approaches.

In [10], the method of linear normal mode summation is utilized to construct reduced

order macromodels to perform the nonlinear dynamic analysis. Using the reduced order

macromodel, it is possible to observe nonlinear effects such as the frequency shift due

to a DC bias voltage, and the amplitude-dependence of resonance frequency. In [74],

the models are expanded to simulate the pull-in voltage, the resonance frequency, the

quality factor, the switching time and the electrostatic spring softening of the microrelay.

However computation times can be quite demanding in the case of non-linear coupling.

In [86], it is shown that a way of solving the simulation of the system is rewriting the

solution as a sum of orthogonal basis functions, that correspond to the oscillation modes.

They show the feasibility using an initial model with internal tension and damping. The

obtained low-order models are quicker for numerical modeling. The model is extended

in [123] introducing stress stiffening.
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Another approach is numerical simulation of the dynamics of MEMS carried out by a

hybrid BEM/FEM (Boundary Element and Finite Element Method) method, FEM for

the structure and BEM for the electrostatic analysis. In [185] several numerical techniques

are proposed for time-integration in order to obtain the non-linear dynamic response of

a MEMS microtweezer. Study of this model helps to understand some of the complex

non-linear responses of the microtweezer.

In [236], a numerical code is proposed that associates the finite element methods for

deformation, the moment method for electrostatic fields and the arc-length control

approach in the quantitative calculations. And general numerical solutions using finite

elements with reduced-order energy equations are presented in [59] using relaxation

techniques. FEM solutions allow to handle the complete deformation of the device,

without just focusing on the maximum amplitude, but large computational time is needed.

Similar analysis are done in [95], and using BEM and FEM techniques, the pull-in is

characterized using homothopy parameters. The transient analysis time is calculated

in [79], using mass-spring-damper models linked to FEM analysis.

All these finite-element approaches are good to determine precise deformations of the

system or natural frequencies, but lack the simplicity needed to expand the method to

complex analysis or control strategies.

On the other hand, the fact of having the power of numerical computation at hand has

lead to improvement on the equations that are used. It would be ideal to work with the

complete set of nonlinear equations, and some authors have tried this approach.

Some elaborated solutions and behavior analysis are derived in [21] and [157] directly form

the differential equations. To obtain the solutions, a simplified membrane model is used

where the plate inertial and bending effects are neglected. However, numerical implicit

formula solution is also needed to evaluate the static solution. Nevertheless, this analysis

allows to define stability conditions based on implicit eigenvalue equations.

In [68], they expand the solutions of the system including the viscous regime. Their

simplified mathematical model allows to study a parabolic equation of reaction-diffusion

type. A central result of the paper is that when the applied voltage is beyond the critical

voltage where steady-state solutions cease to exist, the solution touches down in finite

time. Bounds on the touchdown time are computed and the structure of solutions near

touchdown is investigated.

Complete analysis based on the theoretical framework are presented in [2], [1]. Shooting
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methods combined with nonlinear boundary-value problem are used to solve the existing

eigenvalue problem. The vibrations around the deflected position of the microbeam are

solved numerically for various parameters to obtain the natural frequencies and mode

shapes. This approach allows to numerically calculate the exact Static Pull-in Voltage

using the same numerical method. The results are compared with experimental results

available in the literature with good agreement. Their analysis shows that neglecting the

nonlinear effects leads to underestimating the stability limits of the system. The travel

range taking into account the nonlinearities can be doubled.

The complete simulation of the system is presented in [132], where the modeling and

simulation under the effect of squeeze-film damping is analyzed. They use the compressible

Reynolds equation coupled with the equation governing the plate deflection. The model

accounts for the electrostatic forcing of the capacitor air-gap, the restoring force of the

microplate and the applied in-plane loads. Perturbation methods are used to derive an

analytical expression for the pressure distribution. This expression is then substituted into

the plate equation, which is solved in turn using a finite-element method for the structural

mode shapes, the pressure distributions, the natural frequencies and the quality factors.

Following the same study, in [224] they present a methodology to simulate the transient

and steady-state dynamics of microbeams undergoing small or large motions actuated by

combined DC and AC loads. They use the model to produce results showing the effect

of varying the DC bias, the damping, and the AC excitation amplitude on the frequency-

response curves. In their analysis they detect the existence of dynamic effects that can

produce pull-in with electric loads much lower than that predicted based on static analysis.

Since then, theoretical and simulation analysis of the nonlinear oscillation behavior and

the study of the mechanisms that lead to dynamic pull-in have been presented in [134] for

primary-resonance excitation and in [133] for subharmonic and superharmonic excitation.

Forced oscillations under superharmonic excitations are presented in [52]. Presence of

symmetry-breaking by increases of DC and AC voltages are presented as well as period

doubling and chaotic transitions. The significance of the mechanical and the fluidic

nonlinearities is also studied.

Similar results have also been obtained by converting the system equations to Mathieu

equations. This can be done by expanding the electrostatic force as Taylor series and

using only the first and second term. In [129] and [128] experimental results confirm the

validity of the model, and in particular, illustrate that parametric resonance phenomena
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occur in capacitively actuated micro-cantilevers.

In [164], analysis of the complex dynamics is presented, where the device’s nonlinear

frequency response is found to be qualitatively dependent on the systems AC excitation

amplitude.

Parametric excitation is used in [100] as a way of stabilizing the actuation voltage beyond

the pull-in value. The parametric stabilization of a cantilever beam is demonstrated

experimentally.

However, while trying to obtain good models to work with, the better method is to convert

the partial differential equations to a concentrated-parameters model. To do so, different

approaches are used, but all of them rely on the decomposition of the response of the

system on its harmonics.

The first approach to analyze the response of a microbeam to a generalized transverse

excitation and axial force was based on using Rayleigh’s energy method to approximate

the fundamental natural frequency of the straight, undeflected beam [88]. Later, they

solved the same static problem using the Rayleigh-Ritz method assuming a combination

of trial functions [197]. They used this formulation to generate an analytical expression

for the pull-in voltage, based on energy methods. Even with the needed approximations

to solve the equations, the calculated values of the pull-in voltage were in good agreement

with the results of experiments they conducted on MEMS resonators of various lengths.

The system approximation generates good results while large amplitudes are not taken

into account.

Similar approaches are used in [75] to theoretically and experimentally analyze the

nonlinearities and hysteresis effects of electrostatically activated voltage-driven resonant

microbridges.

Energy methods are used in [109] to analyze the transient behavior between pull-in and

release states. The concept of dynamic pull-in is studied as well as hysteresis phenomena.

No evolution analysis are performed. In [171], the energy method allows to develop an

analytical model for the deflection of clamped-clamped multilayer beams as a function of

applied voltage.

Using energy analysis, in [136] an analytical expression to calculate the Static Pull-in as a

function of the nonlinear spring is presented. Following similar analysis, the formulation

is extended to the Dynamic Pull-in case in [62]

However, the most usual way to obtained a concentrated-parameters model is to use the
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Galerkin procedure to decouple the partial differential equations into a set of nonlinear

ordinary differential equations for each modal shape and each modal frequency.

Using this method, the behavior of the beam can be approximated to that of a non-linear

spring for a given deformation mode, and approximations can also be obtained for the

electrostatic force and damping, giving way to a mass-spring-damper model that englobes

all the nonlinearities. This model can characterize axial forces on the structure and beam

stiffening due to large deformations [170].

Without taking the damping into account, [215] uses the invariant manifold method to

obtain the associated nonlinear modal shapes, and modal motion governing equations.

The model allows to examine the nonlinearities and the pull-in phenomena. Similar

results using shooting methods combined with nonlinear boundary-value problem where

presented in [2].

In [83], Galerkin method allows to obtain the mechanical model considering complicated

geometry and the residual stress effect, and to predict the effective stiffness constant and

critical collapse voltage of the bridge for several typical bridge geometries.

In [100] and [101] they develop a model using the Galerkin procedure with normal modes

as a basis. It accounts for the distributed nonlinear electrostatic forces, nonlinear squeezed

film damping, and rotational inertia of a mass carried by the beam. Special attention is

paid to the dynamics of the beam near instability points. The results generated by the

model, and confirmed experimentally, show that nonlinear damping leads to shrinkage of

the spatial region where stable motion is realizable. With this modeling, in [194] they

show AC actuation sensitivity to design parameters.

The usefulness of these models is clear. In [99], stability analysis of a beam actuated by

one and two electrodes is performed by evaluating the largest Lyapunov exponent on the

reduced order models. Based on the Lyapunov exponent criterion, the influence of various

parameters on the beam dynamic stability is investigated. And in [135], they study the

dynamic pull-in, and formulate safety criteria for the design of MEMS resonant sensors

and filters excited near one of their natural frequencies.

And in [62], it is shown that Galerkin method allows to expand the mass-spring-damper

formulation to include the large amplitude stresses, making the resulting models useful

for control analysis.

28



2.3 Concentrated parameters model formulation

b

h

L

ŵ
x̂

ẑ

ŷ
g0

V

Figure 2.5: Basic scheme of a deflected beam with electrostatic parallel-plate actuation,
as the ones used for testing.

As indicated, a concentrated parameters model is needed in order to analyze the system

and apply control strategies. The full distributed model is too difficult to handle, and in

some cases, the increased difficulty does not offer significantly better results.

Parting from the complete derivation previously presented, the Galerkin method can be

used to simplify the partial differential equations into single-degree of freedom ordinary

differential equations. The approach is based on decomposition of the beam vibration for

each mode of oscillation, resulting on an ordinary differential equation for each mode.

On the first place, the beam response is assumed to be composed of an infinite number

of oscillation modes, and consequently, the displacement ŵ can be decomposed in

ŵ(x̂, t̂) =
∑

i

q̂i(t̂)φ̂i(x̂) (2.68)

where q̂i(t̂) is the time-dependent modal displacement for the oscillation mode i and φ̂i(x̂)

is the position-dependent modal shape.

Equation (2.68) can be substituted in the Lagrangian formulation of the homogeneous

beam developed in (2.6) to obtain a Lagrangian for each vibration mode of the beam [170]

Li = Ti − Udef,i − UN,i − Uint,i =

ρA
2

∫ L

0
φ̂2
idx̂

¨̂q2i −
[

EI
2

∫ L

0

(

∂2φ̂i
∂x̂2

)2

dx̂+ N̂(t̂)
2

∫ L

0

(

∂φ̂i
∂x̂

)2

dx̂

]

q̂2i − EA
8L

[

∫ L

0

(

∂φ̂i
∂x̂

)2

dx̂

]2

q̂4i =

1
2
Meff,i · ¨̂q2i − 1

2
Keff,i · q̂2i − 1

4
K3,eff,i · q̂4i . (2.69)

Once substituted, the terms can be rearranged, in order to obtain the appropriate

configuration. In the derivation, ( ˙ ) denotes time-derivative.
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Consequently, using Lagrange formulation (2.7), the dynamics of each of the infinite modes

of the beam is governed by

Meff,i · ¨̂qi +Keff,i · q̂i +K3,eff,i · q̂3i = 0 (2.70)

where

Meff,i = ρA

∫ L

0

φ̂2
idx̂ (2.71)

Keff,i = EI

∫ L

0

(

∂2φ̂i
∂x̂2

)2

dx̂+ N̂(t̂)

∫ L

0

(

∂φ̂i
∂x̂

)2

dx̂ (2.72)

K3,eff,i =
EA

2L





∫ L

0

(

∂φ̂i
∂x̂

)2

dx̂





2

. (2.73)

And the behavior of the beam, for a given mode of vibration, can be approximated by a

mass-spring model, allowing to use known analysis techniques.

At this point, two important considerations must be done. Firstly, the beam, in all cases,

is supposed to be oscillated at its first vibration mode, as shown in Figure 2.5. The

equation of the first modal vibration of a clamped-clamped beam is as follows

φ̂1(x̂/L) = γ (sinh(βx̂/L)− sin(βx̂/L) + α(cosh(βx̂/L)− cos(βx̂/L))) (2.74)

where α = −1.018, β = 4.730 and γ = −0.618 [170]. Using this definition, φ1(x̂/(2L)) = 1,

and this is convenient because it implies that ŵ(L/2, t̂) = q̂1(t) , or what its the same,

q̂1(t) is the position of the center of the beam.

Secondly, and associated to the actual design of each device, in most cases, as in Figure

2.5, the beam can have an actuator attached to its center point. In that case, the

mass formulation must be corrected to capture all dynamic effects [170]. The corrected

equivalent mass is as follows

Meff,i = ρA

∫ L

0

φ2
idx̂+mpφi(x̂p)

2 , (2.75)

where mp is the added actuator mass and x̂p is the position of the geometric center of the

beam.

At the same time, the electrostatic potential energy associated with the actuator capacitor

is defined as follows assuming a concentrated parameters formulation

Ue = −1

2

C

(1− q̂1(t)
g0

)
V 2 , (2.76)
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where

C =
ε0Ac

g0

(

1 + 0.65
g0
b

)

is the capacitance at rest using a first-order fringing field correction [84], ε0 is the dielectric

constant, g0 is the initial gap between the plates, b is the device thickness, Ac is the area

of the plates, and V is the applied voltage between the electrodes.

Using the previous definitions, the dynamics of the whole system can be computed.

Assuming, as usual, that the system behavior is sufficiently captured by the first mode of

oscillation, the dynamic response of the beam in Figure 2.5 can be modeled by the lumped

mass-spring-damper in Figure 2.6, given that q̂1(t) ≃ ŷ(t), Meff,1 ≃ M, Keff,1 ≃ K and

K3,eff,i ≃ K3. The consideration of higher order modes would improve the accuracy of

the model, as shown in [223], but at expense of the mathematical tools to be used.

Consequently, the dynamics of the system is derived using Lagrange’s formulation,

introducing the damping force [84], Fd = −B ˙̂y as the only non-conservative force

contributing to the work (W) of the system

M ¨̂y +K ŷ +K3 ŷ
3 − 1

2

C0

g0(1− ŷ
g0
)2
V 2 = −B ˙̂y (2.77)

This is the dynamics equation of a concentrated-parameters mass-spring-damper with

parallel-plate electrostatic actuation and a nonlinear spring (Figure 2.6).

+

_

Position at rest

M

B K K3

g0
ŷ

ŷ = 0

V

Figure 2.6: Schematics of an electromechanical system with parallel-plate actuation. It
includes a linear spring, a nonlinear spring and linear velocity damping.

Normalizing the displacement y = ŷ/g0, the system behavior is defined by

d2y

dt2
+
ωn

Q

dy

dt
+ ω2

ny + κy3 = fkgk
V 2

(1− y)2
(2.78)
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where C0 =
ǫAc

g0
, fk =

C0

2g0
, gk =

1
g0M

, B
M

= ωn

Q
, K

M
= ω2

n and κ =
K3g20
M

, being ωn the natural

frequency of the system, Q = 1
2ζ

the quality factor and ζ the damping of the system.

Finally, in some analysis, it is better to work with the resulting normalized actuation gap

(g), in that case, the variable change is g = 1−y and once introduced into equation (2.78)

gives

− d2g

dt2
− ωn

Q

dg

dt
+ ω2

n(1− g) + κ(1− g)3 = fkgk
V 2

g2
(2.79)

Rearranging terms:

(

−d
2g

dt2
− ωn

Q

dg

dt
+ ω2

n + κ− ω2
ng − 3κg + 3κg2 − κg3

)

g2 = fkgkV
2 (2.80)

or

− d2g

dt2
g2 − ωn

Q

dg

dt
g2 + (ω2

n + κ)g2 − (ω2
n + 3κ)g3 + 3κg4 − κg5 = fkgkV

2 (2.81)

To simplify the complexity, a final rearrangement can be done

(

−
(d2g

dt2
+
ωn

Q

dg

dt
+ ω2

ng + κg3
)

+ ω2
n + κ− 3κg + 3κg2

)

g2 = fkgkV
2 (2.82)

and finally, the equation converts to

−H(g)g2 +
(

(ω2
n + κ)g2 − 3κg3 + 3κg4

)

= fkgkV
2 (2.83)

where we define H(g) as

H(g) =
d2g

dt2
+
ωn

Q

dg

dt
+ ω2

ng + κg3 (2.84)

englobing the standard nonlinear equation of a mechanical system.

2.4 Conclusions

Correct modeling of parallel-plate electrostatic actuation of MEMS is an important step

to design better MEMS devices. It has been shown that different approaches can be taken

to try to capture the behavior of the devices, but lots of issues are yet to be solved.

This work has tried to compile the main approaches in the literature in order to

analyze the advantages of each one. The main conclusion achieved is that depending

on the goal while designing MEMS actuators, the complexity of the model has to be

evaluated. Complete models involved time-consuming calculations while reduced models

imply reduced accuracy.
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Table 2.1 shows a summarized classification of the different approaches in the literature

and the analyzed phenomena.

A concentrated parameters model has been developed, based on the dissertation needs.

It is a good compromise between complexity and accuracy, and it will allow to perform

the needed analysis.
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Chapter 3

Pull-in analysis in MEMS resonators

3.1 Introduction

Consider the lumped model (2.77) derived in the previous Chapter. With the usual

assumption of voltage-controlled actuation, the pull-in instability is the main limitation

to the position of the capacitor plates in the gap. As shown in Figure 3.1, in the linear

spring case (K3 = 0), the static pull-in occurs when the distance between plates is 2/3 of

the initial gap. What means that most of the gap cannot be used.

+

_

Position at rest

M

B K K3

g0
ŷ

ŷ = 0

V
2g0
3

Figure 3.1: Schematics of an electromechanical system with parallel-plate actuation and
nonlinear mechanical spring.

This Chapter uses the analysis of the evolution of the total energy of the system based

on equation (2.77)

E =
1

2
M ˙̂y2 +

1

2
K ŷ2 +

1

4
K3 ŷ

4 − 1

2

C0

(1− ŷ
g0
)
V 2 (3.1)

to determine the equilibrium positions of the device, as well as, the regions of instability.

Dynamics is studied as an important factor affecting the stability of the system.
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3.2 Static Pull-in case

In static equilibrium, ¨̂y = ˙̂y = 0, the energy of the system (3.1) consists only of potential

energy terms:

E =
1

2
K ŷ2 +

1

4
K3 ŷ

4 − 1

2

C0

(1− ŷ
g0
)
V 2 (3.2)

As a result, the distribution of the system energy along the gap between the electrodes is

constant and unique for each voltage applied, as can be observed in Figure 3.2.
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Figure 3.2: Typical potential energy profile of the system for a given voltage.

For low voltages, the energy profile is composed of a stable equilibrium position near

the initial position of the system and an unstable equilibrium position near the opposing

capacitor plate (Figure 3.2). As the voltage increases, both equilibrium positions migrate

(e.g. 10 V to 50 V in Figure 3.3) until they merge into an inflection point of the energy

curve (e.g. 91.69 V in Figure 3.3). Once this voltage limit is reached, no equilibrium

positions exist. The limiting condition for existence of a stable equilibrium is the presence

of an inflection point in (3.2) defined by d2E
dŷ2

= 0. This condition provides the analytical

value for the maximum static stable displacement from the initial equilibrium (ŷspv) and

the voltage needed to reach this position. This voltage limit is the Static Pull-in Voltage

(SPV). The values can be obtained analytically using the following formulas [136]

ŷspv =
g0
5

+ g0

[

5β + 1

125
+

√

5β3 − 2β2 + β

25

]
1
3

(3.3)

− g0
5β − 1

25

[

5β + 1

125
+

√

5β3 − 2β2 + β

25

]− 1
3

(3.4)
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SPV =

√

2Kg20
C0

ŷspv
g0

(

1 +
ŷ2spv
βg20

)(

1− ŷspv
g0

)2

. (3.5)

In this expression, the nonlinear spring factor of a beam is introduced, β = K/(K3 g
2
0).

The β-factor indicates the significance of the nonlinear spring in front of the linear one.

The importance of taking into account the nonlinear spring (K3) can be observed in

Figure 3.3, where the potential energy curves using a linear stiffness model and nonlinear

stiffness model are plotted. For small displacements from the rest position the influence

is negligible, but as the displacement is increased, the effect becomes important. In the

example, pull-in instability occurs when the moving plate reaches to 47% of the total gap

displacement, farther than the usual 1/3 value.
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Figure 3.3: Potential energy of the system versus normalized displacement for different
applied voltages are displayed (10 V, 30 V ,50 V, 69.45 V, 75.61 V, 84.41 V, 91.69 V),
including the Static Pull-in Voltage and the Dynamic Pull-in Voltage of the example for
the linear case (75.61 V and 69.45 V) and nonlinear case (91.69 V and 84.41 V).

For the case of linear spring assumption (K3 = 0), the resulting value is the classical Static

Pull-in Voltage and its corresponding displacement:

SPV =

√

8

27

K g20
C0

; ŷspv =
g0
3
. (3.6)

The study of (3.3) and (3.5) reveals that the maximum displacement is obtained when

the spring is completely nonlinear (K = 0), and this maximum displacement is 3/5 of

the initial gap [136]. This can be observed in Figure 3.4, where it is shown that the

nonlinearity is important for values of β smaller than 20, and when β is smaller than
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2 it cannot be neglected. The same evolution appears for the SPV values, as shown

in Figure 3.5. Increasing the nonlinearity in the mechanical spring increases the Static

Pull-in Voltage.

3.3 Dynamic Pull-in case

The derivations for the static case neglect the transient effects that occur in the system

when the voltage is applied. In some cases such approximation is correct, for example, if

the voltage is slowly applied or the system is highly-damped. However, for low damping,

e. g. in a vacuum environment, the transient dynamics must be taken into account.

The energy analysis can be expanded to account for the transient dynamics of the system

when an actuation voltage is applied.

The time derivative of the system energy as defined in (3.1) is

dE

dt
(t) =

(

M ¨̂y(t) + K ŷ(t) + K3 ŷ(t)
3 − 1

2

C0

g0(1− ŷ(t)
g0

)2
V 2

)

˙̂y(t) (3.7)

and using the dynamic equation of the system equivalence (2.77),

M ¨̂y(t) + K ŷ(t) + K3 ŷ(t)
3 − 1

2

C0

g0(1− ŷ(t)
g0

)2
V (t)2 = −B ˙̂y(t)

the resulting equation is

dE

dt
(t) = −B ˙̂y(t)2 (3.8)

indicating that, unless energy is continuously pumped into the system, the energy

decreases with time from its initial energy value until it reaches an equilibrium state,

dE
dt

= 0. According to the model, the only factor that defines the pattern of the energy

decay is the damping, B, of the system.

As can be observed in Figure 3.6, the initial energy corresponds to the potential energy

(mechanical and electrostatic). When the motion begins, the potential energy is converted

to kinetic energy and dissipation due to damping forces. The energy of the system is

dissipated until the stable equilibrium position is reached.

The maximum amplitude of displacement of the moving plate is limited by the potential

energy bound. If the voltage is increased, at some point the initial energy of the system

and the energy at the unstable peak have the same magnitude (Figure 3.7). Assuming

that the system has no damping, the total energy of the system remains constant, which
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example the Quality Factor is 7.

implies that when applying a higher voltage the system will move until it overshoots the

unstable equilibrium (ŷuns), and the electrodes will collide. This voltage limit is called

Dynamic Pull-in Voltage (DPV). Any voltage lower than DPV magnitude cannot produce

snapping.
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Figure 3.7: Evolution of system’s energy when the Dynamic Pull-in Voltage is applied
and no damping term exists

In order to obtain the Dynamic Pull-in Voltage (DPV), the potential energy at rest

must be equated to the energy at the unstable equilibrium. This will give the maximum

amplitude that can be reached during the step evolution (ŷuns) and the maximum voltage

that can be applied (DPV ). Using the same terminology as in (3.3), the displacement
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expression is

ŷuns =
g0
4

+ g0

[

8β + 1

64
+

√

768β3 − 108β2 + 162β

144

]
1
3

− g0
16β − 3

48

[

8β + 1

64
+

√

768β3 − 108β2 + 162β

144

]− 1
3

(3.9)

and the corresponding Dynamic Pull-in Voltage is

DPV =

√

2Kg20 − 16Kŷ2uns + 20Kŷunsg0 + 3K3ŷ2unsg
2
0

32C0
. (3.10)

Again, if a linear spring is used, the analytical expression has a simplified form. In this

case, the voltage limit has always the unstable equilibrium at the center of the gap and

is described by the following expression [76]

ŷuns =
g0
2

; DPV =

√

1

4

Kg20
C0

. (3.11)

As can be observed, the expressions have some similarities with the static case. Figures

3.4 and 3.5 show the evolution of the Static and Dynamic Pull-in parameters with the

variation of the nonlinear factor (β). Static and Dynamic parameters behave in the same

manner. Values of β higher than 20 indicate the suitability of a linear model. Values

of β smaller than 2 indicate that the nonlinearities are predominant. In the case of the

Dynamic Pull-in displacement, the maximum displacement during the evolution reaches

up to 3/4 of the gap in the case of a completely nonlinear spring.

Consequently, equations (3.9) and (3.10) expand prior Dynamic Pull-in Voltage

formulations to the whole range of values of nonlinear springs.

Another important aspect is the relationship between the Static and Dynamic Pull-in

Voltage. Figure 3.8 shows the simulation analysis of the pull-in voltage as a function

of the damping of the system (ζ) and the nonlinear factor (β). The Quality Factor,

Q =
√
MK
B

= 1
2ζ
, is introduced as a usual parameter to evaluate the damping. As can

be observed, in highly-damped systems (Q ≈ 0) the voltage needed to produce snapping

corresponds to the Static Pull-in Voltage. As the Quality Factor increases, the voltage

value decreases until it settles at the Dynamic Pull-in Voltage. This happens for the whole

range of spring values, from the linear case to the completely nonlinear case, and with

the same pattern.
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3.4 Oscillatory Pull-in case

In those cases where the system is dynamically actuated to resonance, as in oscillators,

accelerometers or gyroscopes, the stability analysis becomes more difficult.

Under forced oscillation, the voltage varies with time, V (t) = VDC+VAC(t), meaning that

the energy equilibrium points given by dE
dy

are changing continuously

dE

dŷ
(t) = K · ŷ(t) + K3 · ŷ(t)3 −

1

2

C0

g0(1− ŷ(t)
g0

)2
V (t)2 = 0 (3.12)

As will be shown in Chapter 4, the oscillatory behavior becomes more complex, and

phase-plane analysis is needed to predict the regions of stability.

However, a special case can be analyzed that gives insight in the underlying phenomena

and allows to predict the limiting actuation voltages. This is the actuation of the system

at resonant-like frequency with a square voltage function. This case can be analytically

treated, due to the piece-wise characteristics of the actuation, and allows to define the

Resonant Pull-in Condition.

3.4.1 Resonant Pull-in case

If the alternating voltage VAC(t) is considered to be a square-function, at each half period

the system behaves like in the dynamic case when a constant load is applied. When the

voltage changes, the energy of the system jumps to the other energy region (Figure 3.9).
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Consequently, as in the dynamic case, the potential energy curves bound the evolution

of the total energy of the system and their analysis allow to determine the maximum

amplitude of oscillation that can be achieved without reaching the pull-in zone. Figure

3.9a shows an stable oscillation loop with the energy bounded, while Figure 3.9b shows

another example where the amplitude of oscillation increases until it reaches the unstable

equilibrium point at VDC +VAC, resulting in snapping.

Equation (3.12) provides the condition for the extreme points of the energy function.

Solving the equation for V (t) = VDC +VAC, and discriminating maximum and minimum

points using the second derivative, we can define ŷuns as the unstable equilibrium

(maximum) of the VDC + VAC potential energy curve. Oscillations smaller than ŷuns

are stable, while larger oscillations lead to pull-in [64].

In the resonant case, energy is continuously pumped into the system trying to reach the

resonant frequency. Then, conceptually, stable actuation occurs while the energy of the

system is confined in the valley of the potential energy.

As shown in Figure 3.10, using the Resonant Pull-in Algorithm [64] an oscillating loop

in the energy domain close to the maximum amplitude can be generated to analyze the

stability of the oscillation. For a complete driving voltage time-period, an oscillating

loop is constructed, estimating the energy decay from the value of the Quality Factor of

the system. When the loop is closed, amplitude increase determines that the system is

unstable, while amplitude decrease indicates that the system is stable.

3.4.2 Resonant Pull-in Condition

Using the energy evolution in an steady-state oscillation loop presented in the previous

section, under the square-function driving voltage assumption, the Resonant Pull-in

Condition can be derived.

The energy decay during the oscillation is controlled by the damping constant (B).

Assuming that the oscillation is sinusoidal, ŷ(t) = Ŷ1 sin(ωt), the value of the energy

losses due to damping forces at each half period can be estimated as

Elost = −BŶ 2
1 ω

π

2
(3.13)

where Ŷ1 is the amplitude of oscillation and ω is the resonant frequency of oscillation of

the system. The resonant frequency is usually different from the natural frequency of the

mechanical system, ωn =
√

K
M
.
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Figure 3.10: Resonant Pull-in Algorithm. The energy evolution presented for the
actuation voltage is stable as it generates a closed loop. The energy injected by the
actuation is balanced with the damping losses.

Consequently, the stability of oscillation will depend on the energy balance between

the energy gained due to V (t) = VDC + VAC(t) actuation and the energy lost due to

damping [180].

In an energy oscillation loop, four energy terms are considered: E1, E2, E3, E4 (Figure

3.10). The initially gained energy (E1), when moving from VDC+VAC curve to VDC−VAC

curve is

E1 =

[

1

2
K (ŷst + Ŷ1)

2 +
1

4
K3 (ŷst + Ŷ1)

4 − 1

2

C0(VDC −VAC)
2

(1− (ŷst + Ŷ1)/g0)

]

−
[

1

2
K (ŷst + Ŷ1)

2 +
1

4
K3 (ŷst + Ŷ1)

4 − 1

2

C0(VDC +VAC)
2

(1− (ŷst + Ŷ1)/g0)

]

=
2C0VDC VAC

(1− (ŷst + Ŷ1)/g0)
(3.14)

where ŷst is the position displacement of the electrode due to the VDC bias. In this

expression, ŷst + Ŷ1 represents the effective maximum position in the gap.

The energy losses due to damping during the VDC − VAC half-period (E2) are

E2 = −BŶ 2
1 ω

π

2
. (3.15)

The energy reduction when moving from VDC−VAC curve to VDC+VAC curve, obtained

in a similar way as in (3.14) is

E3 = − 2C0VDC VAC

(1 − (ŷst − Ŷ1)/g0)
(3.16)
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where ŷst − Ŷ1 represents the effective minimum amplitude position in the gap.

And finally, the energy losses due to damping during the VDC +VAC half-period (E4) are

E4 = −BŶ 2
1 ω

π

2
. (3.17)

If the system is actuated at a stable resonant-like frequency, there must exist an amplitude

of oscillation where the energy balance of the loop is zero. Consequently, the following

equation has to be satisfied

E1 + E2 + E3 + E4 =
4C0g0VDC VAC Ŷ1

(g0 − ŷst)2 − Ŷ 2
1

− BŶ 2
1 ωπ = 0. (3.18)

Rearranging terms in (3.18), the amplitude of oscillation of the stable loop, Ŷ1, can be

obtained from the following equation

Ŷ 3
1 − (g0 − ŷst)

2 Ŷ1 +
4C0 g0VDC VAC

Bωπ
= 0. (3.19)

The equation can be solved analytically. However, to predict the existence of stable

oscillation, we only need to know the type of solutions of equation (3.19). This analysis

can be done through the third order polynomial discriminant, D, of the equation

D = − 1

27
(g0 − ŷst)

6 +
4C2

0 g
2
0V

2
DC V2

AC

B2ω2π2
. (3.20)

In a cubic polynomial, D = 0 identifies the transition between all-real solutions and the

existence of complex solutions. Applied to the parallel-plate system, this equation leads

to the Resonant Pull-in Condition (RPC)

RPC = VDC VAC =
Bω π (g0 − ŷst)

3

6
√
3C0 g0

(3.21)

that provides the maximum value of the product VDC VAC producing stable oscillation.

Once the VDC load applied to the system is defined, the static displacement (ŷst) can

be calculated, and accordingly, the real resonant frequency (ω) can be estimated, for

example, using the voltage-corrected frequency

ωe =

√

K− C0V
2
DC

g20

M
. (3.22)

Consequently, the Resonant Pull-in Condition defines a constructive domain of VDC and

VAC actuation voltages versus Quality factor preserving stability of the parallel-plate

actuation.
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As can be observed, the introduction of the nonlinear spring in the model does not

change the Resonant Pull-in Condition, which is equal to that derived in the linear spring

case [63].

In case of only VAC actuation, two-sided push-pull actuation is needed with square-

function voltages, and equation (3.21) transforms to

RPC = VAC =

√

Bω π g20√
27C0

(3.23)

as presented in [180]. Again the derivation holds even considering large amplitudes and

nonlinear spring behavior.

It is important to notice that at resonant frequency the maximum amplitude of oscillation

is limited. In [180] it was indicated that in two-sided actuation the maximum amplitude

of oscillation is

Ŷ1 =
g0√
3
, (3.24)

that corresponds to the maximum displacement in the gap.

In the case of VDC +VAC actuation, this limitation translates to

Ŷ1 =
g0 − ŷst√

3
, (3.25)

obtained by substitution of the Resonant Pull-in Condition in equation (3.19).

Consequently, the maximum displacement in the capacitive gap is

ŷmax = ŷst +
g0 − ŷst√

3
. (3.26)

3.4.3 Experimental validation

A family of Silicon-On-Insulator (SOI) MEMS resonators were fabricated (Figure 1.1),

in order to experimentally validate the Resonant Pull-in Condition. The structures were

fabricated in the Centro Nacional de Microelectrònica - Barcelona using a one mask bulk-

micromachining process, based on deep-reactive ion etching (DRIE) through the 15 to 70

µm device layer of silicon-on-insulator wafers [4]. In Table 3.1 the main parameters of

two of the MEMS resonators used for experiments are summarized. The parameters have

been obtained from the initial fabrication designs and corrected taking into account the

observed fabrication imperfections.

In the case of the 1500-Model (Table 3.1), the classical pull-in analysis defines that the

static instability (3.6) occurs at 75.61 V , when the gap becomes approximately 7.6 µm.
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1500-Model 2500-Model

Stiffness K 2.066 N/m 1.766 N/m
Nonlinear Stiffness K3 4.678 · 1010 N/m3 4.463 · 1010 N/m3

Mass M 6.753 · 10−10 Kg 3.830 · 10−9 Kg
Initial gap g0 11.4 µm 11.3 µm
Parallel-plate actuator Ac 800 · 15 µm2 800 · 75 µm2

Beam length L 1500 µ 2500 µ
Beam width h 5.6 µ 5.3 µ
Device thickness b 15 µ 70 µ
Nominal frequency fn 8.804 kHz 3.41 kHz
β-factor 0.34 0.31

Table 3.1: Structural parameters of the fabricated devices

Introduction of the existing nonlinear effects allows to conclude that the allowed driving

voltage (3.5) is in fact larger, 91.69 V , and the final remaining gap much smaller, 6.01 µm

(3.3).

If the dynamics of the system is taking in consideration, the classical Dynamic Pull-

in Voltage formulation (3.11) gives 69.45 V , as the minimum voltage that can produce

dynamic snapping. It has been shown that the introduction of the nonlinear spring

constant has its effect on the Dynamic Pull-in Voltage. Using (3.10) it can be observed

that the Dynamic Pull-in Voltage increases up to 84.41 V due to the nonlinear forces.

In this case, the minimum gap during the evolution would be 4.15 µm from (3.9). The

snapping for voltages higher than this value will depend on the damping of the system,

which is directly proportional to the air pressure of packaged micro-devices. For low

pressure or vacuum conditions, voltages higher than DPV would imply snapping (Figure

3.8).

As can be observed, calculation of Static Pull-in Voltage and Dynamic Pull-in Voltage

are very much dependent on the nonlinearities of the system (Figure 3.4 and Figure 3.5 ).

In the MEMS resonator considered in this example, the β-factor is 0.34, what translates

to increases of the needed voltage by 20%. This conclusion is important as it extends

the stable range for non-snapping applications. On the contrary, it is a drawback for

applications where pull-in is desired, showing that higher voltages are needed than those

classically predicted.

These results show the importance of dynamics and nonlinearities when studying the

stability of MEMS devices. They play an important role when the structure is dynamically

actuated to its resonant frequency. In resonant devices, the instability (or snapping)
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Figure 3.11: The set of pictures presents evolution of the amplitude of oscillation of the
MEMS resonator in Figure 1.1 due to changes of AC-DC driving voltages. The pictures
show a close-up of the parallel-plate electrodes. a) Beam at rest. b) Beam oscillating with
75 VDC and 6.8 VAC. c) Beam snapped after applying a combination of 75 VDC and 6.9
VAC drive voltages.

occurs at much smaller voltages. In the example presented in Figure 3.11, snapping

occurred with 75 V DC-bias and 6.9 V AC peak-amplitude (The sum of the voltages

is smaller than DPV = 84.41 V). During oscillation large stable amplitudes have been

reached, or equivalently smaller gaps, approximately 4.7 µm in our case (60 % gap

reduction). As can be observed, significantly larger amplitude of actuation can be achieved

when dynamic actuation is used. The ’overshoot’ effect of the static equilibrium is

explained by the gained kinetic energy of the system which allows it to return to the

stable region of actuation.

This dynamic behavior can be predicted using the Resonant Pull-in Condition. With

resonant devices, it plays the same role as the Static Pull-in Voltage in positioning
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applications or the Dynamic Pull-in Voltage in switching applications.

The experimental snapping values obtained for the 1500-Model in air are presented in

Figure 3.12. In the same plot, calculations of the Resonant Pull-in Condition are used

to produce the combination of maximum allowed VDC and VAC voltages for values of the

Quality Factor ranging from 4 to 6, which correspond to the range of Q of the device

in air. As can be observed, experimental data is consistent with the analytically derived

regions of instability.
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Figure 3.12: Maximum combinations of VDC and VAC voltages for the different values of
the Quality Factor (Q) for the 1500-Model. Values estimated with the Resonant Pull-in
Condition are presented with the experimental data in air.

Furthermore, the same experimental testing was done for the 2500-Model (Figure 3.13).

In this comparison, results of Resonant Pull-in Condition obtained via direct time-

integration of the system equations (2.77) at the testing environment conditions (Q = 2

for the 2500-Model) are also provided. As can be observed, Resonant Pull-in Condition

predictions show good agreement with experimental data.

The results in Figure 3.13 also show that Resonant Pull-in Condition predictions are

close to the values obtained via numerical time-integration of the system equations

(2.77). This is important because within the Resonant Pull-in Condition calculation,

the resonant frequency is approximated by the voltage-corrected frequency (3.22). Figure

3.13 illustrates that this approximation has a small effect (5% error) in predicting the

snapping values.
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of the Quality Factor (Q) for the 2500-Model. Resonant Pull-in Condition values are
presented together with experimental data obtained in air, and data from the numerical
time-integration of system equations for Q = 2.

3.5 Conclusions

Operation of electrostatically actuated MEMS with amplitudes much higher than 1/3 of

the initial actuation gap can be achieved with appropriate selection of actuation voltages.

The kinetic energy of the system gained during actuation allows the system to travel

beyond the static equilibrium, reaching large amplitudes of oscillation without snapping.

Energy analysis has been used to define an unified framework to analyze pull-in voltages

introducing nonlinear mechanical springs. Form this analysis, it has been derived the

Resonant Pull-in Condition which provides the combination of maximum VDC and VAC

voltages that can be used to actuate the system without producing snapping at resonance

frequency.

Resonant Pull-in Condition (RPC) has been shown to predict snapping in fabricated

MEMS devices at resonant actuation. However, it is known that transient effects can

affect the nonlinear dynamic behavior of the system and lead the system to pull-in at

lower voltages [134].

RPC can be a useful tool to design dynamic MEMS, along with the estimation of the

Static Pull-in Voltage and the Dynamic Pull-in Voltage. The derived stability limits

represent upper limits to the dynamic pull-in, beyond which no stable motion can exist.

Resonant Pull-in Condition can also be used as the first order solution for iterative
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numerical simulation analysis or for prototyping.

It has also been shown that the Resonant Pull-in Condition can deal with nonlinear spring

models, expanding the previously reported formulations.

Not only that, the importance of the derivation of the RPC is that it can be extended to

different system configurations. In [36], the condition has been extended to include the

quadratic springs that appear in prebuckled beams. In this case, as the goal is bistable

switching, the RPC provides the voltages needed for resonant switching.
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Chapter 4

Oscillation characterization of
MEMS resonators

4.1 Introduction

This chapter studies the oscillations of electrostatically actuated MEMS resonators, taking

special attention on the reachable stationary trajectories and the required input voltage.

Combined analytic and numeric analysis on electrostatically actuated MEMS resonators

is presented. The main behaviors are characterized.

The analytic analysis is based on Harmonic Balance. This approach is shown to capture

in great measure the stable stationary trajectories. Consequently, harmonic balance

is applied to determine stable actuation voltages, stability zones and minimum energy

feasible actuation schemes.

4.2 Simulation characterization

In order to study the system behavior, long time simulation is used on the concentrated-

parameters system equations (2.80). Matlabr Simulinkr has been selected to perform

the numerical simulations. This scheme allows to analyze the system from transient to

steady-state regimes and study frequency spectrum of the position output.

The only drawback in the proposed simulation scheme is the convergence problems that

can be observed when approaching unstable regime (bifurcation points or pull-in) or

when the domain of attraction is too small [8]. Consequently, the simulation step must

be correctly chosen to deal with these situations.

The simulations have been selected to study the steady-state and transient response of

the system for sinusoidal voltage inputs with frequencies ranging from 0.4ωn to 2ωn (being
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a) b)

Figure 4.1: a) Design of a fabricated MEMS resonator. This is a capture of the L-Editr

fabrication design program with the complete system. b) Close-up of the upper-right
part of the real fabricated device, showing the suspension and the parallel-plate capacitor
fingers. The devices were fabricated on polysilicon wafers in the University of California,
Irvine. (Mask 9. AF07 resonator3 design. UCI 2007).

ωn the natural frequency of the mechanical system) and damping conditions ranging from

Q = 1 to Q = 1000 or higher.

To summarize, the analyzed cases are:

• Analysis of the variations on the AC-voltage load.

• Analysis of the variations on the damping.

• Analysis of the effect of the way the input load is applied.

• Analysis of presence of subharmonic oscillations.

• Analysis of presence of superharmonic oscillations.

• Comparison between linear spring and nonlinear spring models.

• Effect of shocks in the evolution of the system and its stability

• Resonant pull-in analysis.

All these cases are studied from four points of view:

• System position time response.

• Phase-plot and energy evolution.
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• Frequency spectrum analysis.

• Stability and pull-in.

The results are particularized with values of a fabricated device, Figure 4.1. The system

parameters are shown in Table 4.1. It can be observed that the MEMS resonator has a

β-factor value in the transition between linear and nonlinear behavior, as presented in

Chapter 3.

Parameter Value
K 13.406 N/m
K3 3.768 · 1010 N/m3

M 5.6 · 10−7 Kg
g0 5 · 10−6 m
Ac 3.86 · 10−7 m2

ε 8.85 · 10−10

C0 6.83 · 10−13 F
ωn 4892 rad/s
fn 0.78 kHz

β − factor = K/(K3 g
2
0) 14.23

Table 4.1: MEMS Resonator parameters of the fabricated design, used for simulations
(AF07 resonator3 fabricated design).

4.2.1 Time response of the system

Analysis of the time response of the system is performed under different input and

environmental conditions. This analysis presents the general characteristics of the steady-

state oscillations, transient trajectories and instabilities under the parameters that can

be usually modified.

As expected in an oscillating system, the input voltage magnitude and frequency have

an important effect on the output of the system. Figure 4.2 shows the variations of the

amplitude while varying the AC-component of the input voltage for a fixed DC-voltage

of 5V and a Quality factor of 100. Examples are presented at natural frequency and at a

frequency close to the frequency of resonance.

The normalized frequency is introduced

wk =
ω

ωn
=

f

fn
(4.1)
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Figure 4.2: Normalized gap time response for different normalized frequencies and input
voltages. a) wk = 0.95, VDC = 5V and VAC = 0.2, 0.5, 0.8, 1 V . b) wk = 1, VDC = 5V
and VAC = 0.2, 0.5, 1, 3, 4, 6 V .

as a means to identify how close a chosen driving frequency is to the natural mechanical

frequency.

The importance of the frequency of the input can be observed when compared both

results. In the first case, with very low AC-voltage (VAC = 1V ) snapping of the device

occurs, while in the second case voltages as large as VAC = 4V can be used without

risk of snapping. Moreover, large amplitudes of oscillation can be obtained outside

of the frequency of resonance without snapping, but at expense of larger voltage load.

Amplitudes as large as 80% of the gap can be obtained.

Another important effect on the behavior of the system is produced by the damping (see

Chapter 3). Figure 4.3 shows the effect of damping on the time response. Amplitude of the

response is extremely affected when changing the environmental conditions of the system

from overdamped (Q = 1) to underdamped (Q = 1000). Consequently, the damping is a

parameter that must be under control because influences the needed voltage load and the

stability of the system. Uncontrolled changes on the damping can lead to unpredictable

behavior.

Figure 4.4 shows the transient evolution of the system for an applied voltage input. Four

scenarios are compared, depending on how is the voltage applied to the system. In all four

cases, the final generated input consists of a 5V DC-bias and a 3V AC-component. In the

first case, the signal is directly applied. In the other cases, the AC-voltage is applied as an

increasing ramp. As can be observed, the response can change from unstable (Case 1) to

stable depending on how the voltage is applied. Consequently, to analyze the feasibility

of steady-state oscillation under a defined voltage load, this input must be applied as a
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Figure 4.3: Normalized gap time response for different frequencies and damping (Q =
1, 10, 100 and 1000). Fixed DC-voltage at 5V for both cases. a) Fixed AC-component of
the input voltage at 0.5V and wk = 0.95. b) Fixed AC-component of the input voltage
at 3V and wk = 1.
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Figure 4.4: a) Four different voltage inputs used to test the transient effects on the
system. In all four cases, the final input generated consists of a 5V DC-bias and a 3V
AC-component. In the first case the voltage is applied directly and in the rest of the cases
the voltage load is applied as an increasing ramp with different time constants (0.036s,
0.072s, 0.18s). b) Normalized gap time response for the different input voltages of a). The
first response reaches pull-in.
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Figure 4.5: a) Normalized gap time response and b) Normalized displacement and
velocity phaseplot showing the subharmonic oscillation for an input voltage of frequency
1.92ωn, VAC = 2V and VDC = 5V . In the phaseplot, curves of constant energy are plotted
for the maximum (VAC +VDC) and minimum (VAC +VDC) applied voltages.
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slow ramp (Case 4) to avoid transient effects.

Finally, an important fact is that the system can develop subharmonic and superharmonic

oscillations. Figure 4.5 shows the subharmonic oscillation of the system for VAC = 2V

and VDC = 5V when the input frequency is 1.92ωn. At this frequency, the observed

oscillation is close to pure sinusoidal, as can be observed in the time response and the

phaseplot. When moving outside of the subharmonic frequency, the mix of amplitudes

between the driving frequency and subharmonic oscillation is more clear. In the phaseplot,

the constant energy trajectories for the maximum (VAC+VDC) and minimum (VAC+VDC)

applied voltage are presented. They allow to delimit the feasibility of oscillation and its

stability.
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Figure 4.6: Normalized gap position in superharmonic oscillation. In both cases VDC = 5.
a) Input frequency of 0.48ωn and VAC = 3V . b) Input frequency of 0.47ωn and VAC = 2V .
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Figure 4.7: Normalized gap time response for different frequencies, comparing linear (red)
and cubic nonlinear (blue) spring models. a) Fixed DC-voltage is 5V , fixed AC-component
is 0.5V and wk = 0.95. b) Fixed DC-voltage is 5V , fixed AC-component is 3V and wk = 1.
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Figure 4.6 shows the superharmonic oscillation of the system for two different input

frequencies (0.48ωn and 0.47ωn). In the first case, large amplitudes are achieved with

an input voltage composed of an AC-component of 3V and a DC-voltage of 5V . In this

case, all the input energy transfers to the superharmonic oscillation. However, when the

input frequency is changed to 0.47ωn, the oscillation is more asymmetric and the same

voltages levels drive the system to pull-in. In the example, AC-component has been

reduced to 2V to avoid pull-in, and the time response is shown.

Figure 4.7 shows the comparison between the output of the linear and nonlinear spring-

model. Again natural frequency and resonance-like frequency are used. As can be

observed, in all cases, the nonlinear spring model obtains larger amplitudes of oscillation

than the linear spring model. This again has influence on the stability analysis of the

system.

4.2.2 Phase-plot and energy evolution

As the system has an oscillatory behavior, the best approach to observe its oscillation

pattern is the use of the phase-plane. The effect of the nonlinearity on the oscillations

can be clearly observed as amplitude increases and trajectories get close to the saddle

point. To observe the saddle point, the constant energy trajectories for the maximum

(VAC+VDC) and minimum (VAC+VDC) applied voltage are presented in the phaseplots.

They allow to delimit the feasibility of oscillation and its stability. Moreover, pull-in

occurs when the system has enough energy to overshoot the maximum of the potential

energy curve (saddle point on the phase-plane).

Figure 4.8 shows the variations on the phase-plot and energy profile of the system evolution

while varying the AC-component of the input voltage for a fixed DC-voltage of 5V .

Examples are presented again at a frequency close the frequency of resonance and at

natural frequency.

The energy plots allow to observe the evolution of the energy during the oscillation loops.

As discussed in Chapter 3, the energy of the system is confined between the potential

energy curves. However, as the input voltage is sinusoidal, this effect is less evident as

the value of the input voltage changes continuously. In Figure 4.8d the transition to pull-

in is presented for the 1V input voltage case. The maximum of the potential energy is

surpassed and pull-in occurs.

Figure 4.9 shows the effect of damping in the steady-state response of the system for
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Figure 4.8: Normalized displacement and velocity phase-plots for different frequencies
and input voltages. a) Normalized frequency is wk = 0.96, VDC = 5V and
VAC = 0.2, 0.5, 0.8, 1V b) Normalized frequency is wk = 1, VDC = 5V and VAC =
0.2, 0.5, 1, 3, 4, 6V . c) Same evolutions than a) are presented in the energy plots. In this
case, energy loops are presented for VAC = 0.2, 0.5, 0.8V at 0.96ωn. d) Energy loop for
VAC = 1V (0.96ωn) showing pull-in.

the whole spectrum of damping conditions (from overdamped (Q = 1) to underdamped

(Q = 1000). During simulations the DC-voltage is fixed at 5V and the frequencies are the

same as before. In both cases, energy levels increase when damping is reduced because

the amplitude of oscillation increases. The used AC-voltages are limited by resonant

snapping.

Figure 4.10 shows the phase-plots of the subharmonic oscillation of the system for

frequencies ranging from 1.91ωn to 1.96ωn. In Figure 4.10a, the phase plot trajectories

for each frequency are compared. In Figure 4.10b, a close-up of the phase-plot for

an input frequency of 1.96ωn is shown. As can be observed, at this frequency the

subharmonic oscillation amplitude is low, what leads to mixing of the subharmonic and

driving frequencies to a non-sinusoidal oscillation. For the simulated parameters, pure

subharmonic oscillation occurs at 1.92ωn (Figure 4.5).
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Figure 4.9: Normalized displacement and velocity phase-plots for different frequencies and
damping (Q = 1, 10, 100 and 1000). Fixed DC-voltage at 5V . a) Fixed AC-component of
the input voltage at 0.5V and wk = 0.95. b) Fixed AC-component of the input voltage
at 3V and wk = 1.
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Figure 4.10: Normalized gap subharmonic oscillation response with fixed DC-voltage at
5V and AC-component at 3V . a) Oscillation loops for frequencies of the input voltage
ranging from 1.91ωn to 1.96ωn. b) Detailed phase-plot for 1.96ωn.
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Figure 4.11: Normalized gap superharmonic oscillation response with fixed DC-voltage
at 5V . The phase-plots show that oscillation is composed of a mix between oscillation at
driving frequency and oscillation at superharmonic frequency. a) Fixed AC-component
at 3V and frequency at 0.48ωn. b) Fixed AC-component at 2V and frequency at 0.47ωn.

61



-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
 -0.015

 -0.01

 -0.005

0

0.005

0.01

0.015

Normalized displacement  (y)

V
el

oc
ity

Linear 2V
Linear 3V
Nonlinear 2V 
Nonlinear 3V

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
 -0.02

 -0.015

 -0.01

 .0.005

0

0.005

0.01

0.015

0.02

0.025

0.03
Linear 2V
Linear 3V
Nonlinear 2V 
Nonlinear 3V

Normalized displacement  (y)

V
el

oc
ity

a) b)

Figure 4.12: Normalized displacement and velocity phase-plots for linear spring and
nonlinear cubic spring models. Comparison for VDC = 5V and VAC = 2V and 3V .
a) Frequency is 0.96ωn. b) Natural mechanical frequency is used.

Figure 4.11 shows the phase-plots of the superharmonic oscillation of the system for

the same cases as in Figure 4.6. When the frequency is 0.48ωn, the system oscillates

with an almost-sinusoidal large amplitude. However, when closer to frequency 0.47ωn,

the oscillation losses its sinus-like form. In this second case, interaction between both

harmonics lead the system to snapping if the voltage is increased to 3V . For this reason,

AC-component has been reduced to 2V to avoid snapping.

Figure 4.12 shows the comparison of phase-plots between a linear and nonlinear spring

model for both frequency cases. In the first case, close to resonant frequency, both

simulations lead to pull-in when changing the AC-component from 2V to 3V . In the

second case, only the cubic spring model leads the system to pull-in with the same change.

Nonlinear spring model produce snapping for VAC = 3V .

4.2.3 Frequency response

Another important information is the frequency components of the MEMS oscillation,

in order to understand at which frequencies the energy is transferred between voltage

driving input and position output. Most analysis assume that the MEMS resonator

oscillates as a pure sinusoidal, but this is not true in most cases. For low input voltages,

higher harmonics are negligible, but when the input voltage is increased second order

harmonic gains significance. And if the input voltage is not directly a pure sinusoidal,

higher harmonics can easily appear.

In the simulations, the frequency spectrum is calculated using the Power Spectral Density

estimation obtained with Matlab c© Fast-Fourier Transform function. The results show
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Figure 4.13: a) Frequency analysis of the response with frequency of the input at 0.95ωn,
and input voltages VDC = 5V , VAC = 0.2, 0.5, 0.8, 1V and Q = 100. b) Frequency
analysis of the response with frequency of the input at 0.95ωn, input voltage VDC = 5V
and VAC = 15V and Q = 1.

that usually the oscillation concentrates on the first harmonic frequency of the driving

voltage, except during subharmonic and superharmonic oscillations.
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Figure 4.14: a) Frequency power spectrum of the response with input at frequency 0.95ωn,
fixed DC-voltage at 5V an AC-component at 0.5V . Damping is changed from Q = 1 to
Q = 1000. b) Frequency power spectrum of the response with input at frequency 0.95ωn

and at ωn. Fixed DC-voltage at 5V , AC-component at 1V and damping at Q = 100.

Figure 4.13a shows the frequency response of the oscillation of the MEMS resonator for

different driving voltages. Given a Quality factor of 100, a frequency of 0.95ωn and a fixed

DC input bias of 5V , the AC-component is changed from VAC = 0.2V to VAC = 1V . The

oscillation amplitude increases with the AC voltage, as expected. Only first harmonic

is detected in the output spectrum, due to the low voltages. In Figure 4.13b, the input

voltage is increased, because the example is overdamped (Q = 1), and in this case with

same input frequency (0.95ωn) and DC bias (5V ), the AC-component is 15V , and second
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harmonic appears in the frequency power spectrum.

Figure 4.14a shows the effect of damping in the frequency power spectrum of the output

response. Conditions are changed from overdamped (Q = 1) to underdamped (Q = 1000).

The output frequency bands remain fixed, as damping has no effect on the frequency, only

on the amplitude of oscillation.

Figure 4.14b shows the effect known as spring softening. The frequency power spectrum

shows the response of the system at two different frequencies, one is the mechanical

natural frequency ωn and the other slightly lower, 0.95ωn. The input has a fixed DC-

bias of 5V , an AC-component of 1V , while the damping is fixed at Q = 100. As can

be observed, the amplitude of oscillation of the system, with identical voltages at the

input is higher at a frequency lower than the mechanical natural frequency. The effect is

called spring softening because the electrostatic force can be approximated to a negative

spring proportional to the input voltage, what generates resonant frequency shifting due to

reduction of the effective spring constant of the system [183]. For this reason, resonance

of the electrostatically actuated MEMS resonators is at lower frequencies than natural

frequency.

Figure 4.15 analyzes the effect of the nonlinear spring in the frequency spectrum of the

oscillation of the system. No effect on the frequency of oscillation is observed, as both

examples suffer the same amount of resonance frequency softening. But as previously

identified, amplitudes of nonlinear model are larger.

Figure 4.16 shows two cases of subharmonic oscillation with fixed AC-component of the

input voltage at 2V and fixed DC-voltage at 5V . In the first case, the frequency response

of the output oscillation is at 0.96ωn (0.7477 kHz) while the driving frequency is at

1.92ωn. All the energy of the system is almost completely transferred from input driving

frequency to the subharmonic oscillation frequency (half input frequency), as no frequency

component is observed in the driving frequency. This observation is in line with those

presented in the previous sections. In the second case, the subharmonic frequency response

of the output oscillation is at 0.98ωn (0.7631 kHz) while the driving frequency is at 1.96ωn.

In this case, the energy is not completely transferred, and most energy still remains at

driving frequency.

Similarly, Figure 4.17 shows two cases of superharmonic oscillation with fixed AC-

component of the input voltage at 2V and fixed DC-voltage at 5V . In the first case, the

frequency response of the output oscillation is at 0.96ωn (0.7477 kHz) while the driving
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Figure 4.15: Frequency response comparing linear and nonlinear spring models. Fixed
DC-voltage at 5V . a) At frequency 0.96ωn with AC-component of the input voltage at
0.5V . b) At frequency ωn with AC-component of the input voltage at 2V .
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Figure 4.16: Subharmonic frequency response with input drive with 2V AC-component
and 5V DC-bias. a) Frequency response occurs at half the driving frequency, 0.96ωn,
while driving frequency is at 1.92ωn. b) Subharmonic response appears at 0.98ωn while
driving frequency is at 1.96ωn.
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Figure 4.17: Superharmonic frequency response with input drive with 2V AC-component
and 5V DC-bias. a) Frequency response occurs at 0.96ωn while driving frequency is at
0.48ωn. b) Superharmonic response appears at 0.94ωn while driving frequency is at 0.47ωn.

65



frequency is at half that value, 0.48ωn. In this case, most of the energy of the system

is transferred to the superharmonic frequency, as only a slight oscillation is observed in

the driving frequency. However, transfer of energy is not completed, for this reason the

phase-plot in Figure 4.11 is not completely elliptic. In the second case, the frequency

response of the output oscillation is at 0.47ωn (0.3660 kHz) while the driving frequency

is at 0.47ωn. In this case, the energy is not completely transferred, and the magnitude of

the oscillation at the driving frequency is half that of the superharmonic frequency.
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Figure 4.18: Phase-plot response of the system for a fixed DC-voltage of 5V . a) Frequency
is 0.96ωn and AC voltage is VAC = 0.5V . b) Frequency is 0.96ωn and AC voltage is
VAC = 1V . c) Frequency is ωn and AC voltage is VAC = 4V . d) Frequency is ωn and AC
voltage is VAC = 6V .

4.2.4 Stability and Pull-in analysis

In order to design new devices, it is important to understand the factors that define the

stability of the trajectories and how this stability can be lost. Unstable trajectories lead

to pull-in and this can cause permanent failure of the device.

As it is shown in the simulations, multiple factors influence the stability of the device and
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they must be taken into account in order to guarantee stable oscillation of the system.

Figure 4.18 shows the variations in the phase plane evolution when the AC-component

of the input voltage is changed for a fixed DC-voltage of 5V . Examples are presented at

two different frequencies and at two different voltages. In both cases, the change in the

AC-voltage leads the system to loose its stable oscillation and snapping occurs when the

amplitude of oscillation reaches out of the stable basin of attraction.
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Figure 4.19: Phase-plot of the evolution of the system oscillated with a fixed AC-
component of 5V , a fixed DC-voltage of 5V and at natural frequency. Curves shown for
Q = 1 and Q = 100.

Figure 4.19 shows the effect of damping in the steady-state response of the system. Again,

the change from damped (Q = 10) to slightly underdamped (Q = 100) conditions can

produce the system to loose its stability and to lead its oscillation to snapping. In the

example, this occurs for Q = 100.

Apart from the factors that are directly chosen, as the voltage or the damping, external

factors can force the system to loose its stability. An usual problem is the reaction of

the system to an external shock. The shock introduces a disruption in the trajectory of

the system, that can help the system to reach out its safe basin of attraction and lead its

trajectory to pull-in.

Figure 4.20 compares the stability of oscillations when a disruption on its trajectory by

a value of ten-percent of the gap is applied. In the first case the input voltage has an

AC-component of 2V and oscillates at natural frequency. The trajectory in this case

remains stable and it is able to return to its steady-state oscillation. In the second case,

the input voltage has an AC-component of 3V , and this time, as the trajectory is more

energetic and has a larger amplitude, the disruption is more harmful, and the system
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Figure 4.20: Phase-plot and time-response of the system when a jump of ten-percent of
the gap is suddenly applied. Fixed DC-voltage of 5V and oscillation at natural frequency
with Q = 100 a) Fixed AC-voltage of 2V b) Fixed AC-voltage of 3V . In this case the
system becomes unstable.

becomes unstable and leads to pull-in.

Moreover, Figure 4.21 shows that the damping has a dramatic effect on the stability of the

system when it undergoes an impulse response against an external shock of ten-percent

of the maximum gap of oscillation. Changes from overdamped (Q = 1) to underdamped

(Q = 1000) conditions are presented in the example. In the first case, the shock modifies

the trajectory, but it recovers immediately due to its high damping. In the second case,

the low damping of the systems helps the trajectory to become seriously distorted.

Figure 4.22 shows again the transient evolution of the system for four different kind of

actuation inputs. Using the same example previously presented, this time the phase-plot

can be analyzed to observe how the response changes from stable to unstable oscillation.

In the case of directly applying the voltage, oscillation builds up reaching out of the safe

basin of oscillation. The other driving voltage alternatives are capable of oscillating the

system without reaching pull-in. The transients are different but the steady-state is equal
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Figure 4.21: Phase-plot and time-response of the system when a jump of ten-percent of
the gap is suddenly applied. Fixed AC-component of the input voltage at 0.5V , fixed
DC-voltage at 5V and frequency at 0.96ωn. a) and b) Phase-plot and time response of
the system under Q = 1. c) and d) Phase-plot and time response of the system under
Q = 1000.

for the three stable cases.

Figure 4.23 shows that subharmonic oscillation must be taken into account while designing

the system, if one can predict that its frequency can be reached. In the case that is shown,

with a frequency of 1.93ωn, a DC-component of 5V and an AC-component of 2V , the

system is stable. However, if the AC-component is raised to 2.5V , the system becomes

unstable and leads to pull-in.

Figure 4.24 shows that the same reasoning applied to subharmonic oscillation must be

analyzed for superharmonic oscillations. Moreover, in this case, higher attention must

be paid, as lower frequencies are more easily excited during the life of a design. In the

example, superharmonic oscillations are presented for a frequency of 0.47ωn, 5V DC-

component and 3V AC-component. It has been previously presented, in Figure 4.6, that

the system with an input of frequency of 0.47ωn and 2V of AC-component can oscillate
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Figure 4.22: Phase-plot of the evolution of the system with a fixed AC-component of the
input voltage at 3V , fixed DC-voltage at 5V and natural frequency for the direct input
and the input with a ramp of 0.036s in Figure 4.4.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

 -0.04

 -0.03

 -0.02

 -0.01

0

0.01

0.02

0.03

0.04

Normalized displacement  (y)

V
el

oc
ity

2.5V

2V

VD-VAC ct. energy trajectory

VD+VAC ct. energy trajectory

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time(s)

N
or

m
al

iz
ed

 g
ap

 (
g)

Evolution of actuator

2.5 V

2 V

a) b)
Figure 4.23: Comparison of the evolution of the normalized gap subharmonic oscillations
(wk = 1.93) of the system with a fixed DC-voltage of 5V and an AC-component of
VAC = 2V and VAC = 2.5V . a) Phase-plot. b) Time response.
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Figure 4.24: Unstable evolution of the superharmonic normalized gap oscillations (wk =
0.47) of the system with a fixed DC-voltage of 5V and an AC-component VAC = 3V . a)
Phase-plot. b) Time response.
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in a stable fashion. In the current example, increasing the AC-component to 3V has led

the system to snapping.

Given the importance of the pull-in voltage of the system, Figure 4.25 shows the AC-

DC pull-in curves for different voltages, frequencies and damping. The plot covers from

superharmonic to subharmonic frequencies. The three resonant peaks are clearly visible

and their evolution is quite similar, except for the subharmonic oscillation in underdamped

conditions (Q = 10), where instability is clearly reduced. It is also visible the frequency

shift associated with the value of the AC-component, usually known as spring-softening.

Damping has an effect in frequency because it delimits the maximum voltage that can be

applied. As it changes between Q-factor 10 and 20 there is a major change in the system

behavior. After that initial jump, changes are at small steps.

Figure 4.26 shows the comparison between the AC-pull-in curves of a linear spring model

and a nonlinear cubic spring model, obtained via simulation. First of all, it can be observed

that both models behave in a similar way, showing in both cases the three resonant peaks

(superharmonic, resonance, subharmonic). The most interesting information that can be

extracted from the plot is the fact that the cubic spring model reaches pull-in at lower

voltages than the linear spring model. One can remember that in the Static Pull-in

case, the linear spring model produces snapping more easily than the cubic spring model

because the cubic spring increases the restoring force of the system. However, in the AC-

pull-in case, the interaction between the different harmonics in the cubic spring model

helps to increase the oscillation amplitude, what leads the system to pull-in more easily.

4.2.5 Analysis conclusions

The oscillation of a parallel-plate electrostatically actuated MEMS resonator is extremely

rich in behaviors. Different factors have been shown that interact in the final oscillation

of the devices. A pure sinusoidal oscillation is not directly obtained in most cases when

the system is excited with a sinusoidal input, specially when large voltages are applied

to obtain large amplitudes. Moreover, stability issues appear when the amplitudes of

oscillation increase.

Consequently, tools to predict the performance and stability of a MEMS resonator when

actuated with electrostatic parallel-plates actuators are necessary. These tools could be

used to design better MEMS resonators and improve their overall performance.
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Figure 4.25: Analysis of the AC-DC pull-in curves as a function of the damping of
the system (Q = 10 ÷ 1000). Fixed DC component is 5V . In the X-axis appears the
normalized frequency (f = wk · fn).
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4.3 Harmonic Balance characterization

There is a need for a formulation able to capture the main behaviors that exist in the

electrostatically actuated MEMS resonator system. In this section, Harmonic balance

characterization is shown to be able to do it in an appropriate way.

4.3.1 Series expansion of system equations

To use Harmonic Balance analysis some assumptions must be done. First of all,

the interest is fixed in studying the steady-state oscillations of the system, and these

oscillations are assumed to be always periodic. Secondly, the voltage input to the system

is assumed to be also periodic.

Consequently, all the system variables can be expanded using Fourier series in order to

use Harmonic Balance analysis.

4.3.1.1 Series expansion of system variables

The system to be analyzed is based on equation (2.79). In this equation, the output of the

system is the actual gap distance (g(t)), that can be approximated, using Fourier series

as follows

g(t) =
∞
∑

n=0

Gn sin(nω t + φn) (4.2)

where Gn ∈ R is the amplitude of each harmonic and ω is the first harmonic oscillation

frequency. For simplicity, the exponential series is preferred, then

g(t) =
∞
∑

n=−∞
Ğne

j n ω t (4.3)

where Ğn ∈ C is the amplitude of the harmonic oscillation in exponential form. The

correspondence is as follows:

Ğ0 = G0 (4.4)

Ğn =
Gn

2j
ej n φn n = 1..∞ (4.5)

Ğ−n = −Gn

2j
e−j nφn n = 1..∞ (4.6)

Parting from equation (4.3), we can obtain the different needed formulations. The velocity

and acceleration of the gap change take the following form

dg(t)

dt
=

∞
∑

n=−∞
j n ω Ğn e

j n ωt ;
d2g(t)

dt2
=

∞
∑

n=−∞
−n2 ω2 Ğn e

j nω t (4.7)
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and all the higher order terms are expressed as follow

g(t)2 =

∞
∑

n=−∞

( ∞
∑

p=−∞
Ğn−p Ğp

)

ej n ω t =

∞
∑

n=−∞
αn e

j n ω t where αn =

∞
∑

p=−∞
Ğn−p Ğp (4.8)

g(t)3 =

∞
∑

n=−∞
τn e

j nω t where τn =

∞
∑

r=−∞
Ğn−r αr (4.9)

g(t)4 =

∞
∑

n=−∞
δn e

j n ω t where δn =

∞
∑

q=−∞
αn−q αq (4.10)

At the same time, as previously stated, the input voltage is assumed to be periodic

V (t) =

∞
∑

n=−∞
V̆n e

j nω t (4.11)

being V̆n the n-th harmonic amplitude of the voltage in exponential form. This implies

that the square of the input takes the following form

V (t)2 =
∞
∑

n=−∞

( ∞
∑

p=−∞
V̆n−p V̆p

)

ej n ω t =
∞
∑

n=−∞
βn e

j nω t where βn =
∞
∑

p=−∞
V̆n−p V̆p (4.12)

being βn the amplitude of each harmonic of the square of the voltage in exponential form.

Finally, the H(g) term, previously defined (2.84), becomes

H(g) =

∞
∑

n=−∞
−n2ω2Ğne

jnωt +
ωn

Q

∞
∑

n=−∞
jnωĞne

jnωt + ω2
n

∞
∑

n=−∞
Ğne

jnωt + κ

∞
∑

n=−∞
τne

jnωt

=
∞
∑

n=−∞

(

(−ω2 n2 + j
ωn

Q
ω n + ω2

n) Ğn + κτn

)

ejnωt

=
∞
∑

n=−∞
Λne

jnωt (4.13)

where Λn = Λl,n + Λnl,n = (−ω2 n2 + j
ωn

Q
ω n + ω2

n) Ğn + κτn

where Λl,n is the linear system component and Λnl,n the nonlinear part.

4.3.1.2 General set of equations

Using these definitions on equation (2.83), the complete system dynamics can be

represented as follows

−
∞
∑

n=−∞
Λne

jnωt
∞
∑

n=−∞
αne

jnωt +
∞
∑

n=−∞

(

(ω2
n + κ)αn − 3κτn + 3κδn

)

ejnωt = fkgk

∞
∑

n=−∞
βne

jnωt

Or equivalently

−
∞
∑

n=−∞

∞
∑

q=−∞
Λqαn−qe

jnωt +
∞
∑

n=−∞

(

(ω2
n + κ)αn − 3κτn + 3κδn

)

ejnωt = fkgk

∞
∑

n=−∞
βne

jnωt
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Rearranging terms, the equation can be rewritten as

∞
∑

n=−∞

(

−
∞
∑

q=−∞
Λq αn−q + (ω2

n + κ)αn − 3κτn + 3κδn − fkgkβn

)

ejnωt = 0 (4.14)

giving place to the following set of equations to be solved for each harmonic:

−
∞
∑

q=−∞
Λq α−q + (ω2

n + κ)α0 − 3κτ0 + 3κδ0 − fkgkβ0 = 0 ; n=0 (4.15)

−
∞
∑

q=−∞
Λq α1−q + (ω2

n + κ)α1 − 3κτ1 + 3κδ1 − fkgkβ1 = 0 ; n=1 (4.16)

−
∞
∑

q=−∞
Λq α−1−q + (ω2

n + κ)α−1 − 3κτ−1 + 3κδ−1 − fkgkβ−1 = 0 ; n=-1 (4.17)

−
∞
∑

q=−∞
Λq α2−q + (ω2

n + κ)α2 − 3κτ2 + 3κδ2 − fkgkβ2 = 0 ; n=2 (4.18)

−
∞
∑

q=−∞
Λq α−2−q + (ω2

n + κ)α−2 − 3κτ−2 + 3κδ−2 − fkgkβ−2 = 0 ; n=-2 (4.19)

... for n

4.3.2 Cases of study

Solving the set of equations (4.15)-(4.19) can be complex. However, analytical or

numerical solutions can be obtained if assumptions on the characteristics of the response

of the system are defined.

Due to the nature of the studied system, six different cases are considered, in increasing

order of difficulty. Firstly, linear and nonlinear spring models are taken into consideration,

in order to evaluate the effectiveness of the approach with both cases. And secondly, the

output of the system is considered to have one, two or three harmonics, in order to evaluate

the effect on driving voltages.

In conclusion, the following cases are studied:

1. Linear spring model (no K3 term) : Assuming only first harmonic oscillation; first

and second harmonic oscillation; and first, second and third harmonic oscillation.

2. Nonlinear spring model: Assuming only first harmonic oscillation; first and second

harmonic oscillation; and first, second and third harmonic oscillation.
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4.3.2.1 Linear spring case

In a first approach, if the amplitude of oscillation is not large, the nonlinear spring can

be considered negligible, K3 = 0. This is a usual simplification in MEMS devices. In that

case the nonlinear spring term vanishes (κ = 0), and the set of equations (4.14) reduces

to
∞
∑

n=−∞

( ∞
∑

q=−∞
Λl,q αn−q + ω2

nαn − fkgkβn

)

ejnωt = 0 (4.20)

which can be developed in n equations as follows:
∞
∑

q=−∞
(ω2 q2 − j

ωn

Q
ω q − ω2

n)Ğq α−q + ω2
nα0 − fkgkβ0 = 0 ; n=0

∞
∑

q=−∞
(ω2 q2 − j

ωn

Q
ω q − ω2

n)Ğq α1−q + ω2
nα1 − fkgkβ1 = 0 ; n=1

∞
∑

q=−∞
(ω2 q2 − j

ωn

Q
ω q − ω2

n)Ğq α−1−q + ω2
nα−1 − fkgkβ−1 = 0 ; n=-1

∞
∑

q=−∞
(ω2 q2 − j

ωn

Q
ω q − ω2

n)Ğq α2−q + ω2
nα2 − fkgkβ2 = 0 ; n=2

∞
∑

q=−∞
(ω2 q2 − j

ωn

Q
ω q − ω2

n)Ğq α−2−q + ω2
nα−2 − fkgkβ−2 = 0 ; n=-2

... for n

First harmonic approximation

Once simplified the system with the linear spring assumption, the next step is to define

the expected output characteristics.

Assuming that the system evolution is a pure sinusoidal, the gap distance (g) reduces to

g(t) = G0 +G1 sin(ω t+ φ1) = Ğ0 + Ğ1e
j ω t + Ğ−1e

−j ω t (4.21)

where Ğ0 = G0, Ğ1 =
G1

2j
ej φ1 and Ğ−1 = Ğ1 is the conjugate of Ğ1.

Consequently, the complete set of equations is reduced to the following equations:

β0 =
1

fkgk

(

−ω2
nĞ

3
0 + ω2

nĞ
2
0 +

(

4ω2 − 6ω2
n

)

|Ğ1|2Ğ0 + 2ω2
n|Ğ1|2

)

β1 =
1

fkgk

(

(

3ω2 − j
ωn

Q
ω − 3ω2

n

)

|Ğ1|2 +
(

ω2 − j
ωn

Q
ω − 3ω2

n

)

Ğ2
0 + 2ω2

nĞ0

)

Ğ1

β2 =
1

fkgk

(

(

2ω2 − 2j
ωn

Q
ω − 3ω2

n

)

Ğ0 + ω2
n

)

Ğ2
1

β3 =
1

fkgk

(

ω2 − j
ωn

Q
ω − ω2

n

)

Ğ3
1
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where |Ğn| is the absolute value of Ğn. Only βi terms are presented, as β−i = βi.

For a chosen oscillation amplitude, G0 and G1, these equations provide the needed input

control action βi.

Similar sets of equations can be obtained for the second and third harmonic formulations.

In Appendix A, the second harmonic complete formulation is presented, as its equations

can be useful to understand the effect of each harmonic in the final voltage.

4.3.2.2 Nonlinear spring case

In the more general case, the nonlinear spring term cannot be neglected and the complete

set of equations (4.14) must be used.

As can be observed in the following equations, each input control action, βi, appears

affected by the nonlinear spring term, κ.

First harmonic approximation

Assuming, again, pure sinusoidal output oscillations

g(t) = Ğ0 + Ğ1e
jωt + Ğ−1e

−jωt

the complete set of equations is reduced to the following equations:

β0 =
1

fkgk

(

−ω2
nĞ

3
0 + ω2

nĞ
2
0 +

(

4ω2 − 6ω2
n

)

|Ğ1|2Ğ0 + 2ω2
n|Ğ1|2

)

+
κ

fkgk

(

−Ğ5
0 + 3Ğ4

0 − 3Ğ3
0 + Ğ2

0

)

+
κ

fkgk

(

−30|Ğ1|4Ğ0 − 20|Ğ1|2Ğ3
0 + 36|Ğ1|2Ğ2

0 + 18|Ğ1|4 − 18|Ğ1|2Ğ0 + 2|Ğ1|2
)

β1 =
1

fkgk

(

(

3ω2 − j
ωn

Q
ω − 3ω2

n

)

|Ğ1|2 +
(

ω2 − j
ωn

Q
ω − 3ω2

n

)

Ğ2
0 + 2ω2

nĞ0

)

Ğ1

+
κ

fkgk

(

−10|Ğ1|4 − 30|Ğ1|2Ğ2
0 − 5Ğ4

0 + 36|Ğ1|2Ğ0 + 12Ğ3
0 − 9|Ğ1|2 − 9Ğ2

0 + 2Ğ0

)

Ğ1

β2 =
1

fkgk

(

(

2ω2 − 2j
ωn

Q
ω − 3ω2

n

)

Ğ0 + ω2
n

)

Ğ2
1

+
κ

fkgk

(

−20|Ğ1|2Ğ0 − 10Ğ3
0 + 12|Ğ1|2 + 18Ğ2

0 − 9Ğ0 + 1
)

Ğ2
1

β3 =
1

fkgk

(

ω2 − j
ωn

Q
ω − ω2

n

)

Ğ3
1 +

κ

fkgk

(

−5|Ğ1|2 − 10Ğ2
0 + 12Ğ0 − 3

)

Ğ3
1

β4 =
κ

fkgk

(

−5Ğ0 + 3
)

Ğ4
1

β5 =− κ

fkgk
Ğ5

1

where |Ğn| is the absolute value of Ğn. Only βi terms are presented, as β−i = βi.
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Again, for a chosen oscillation amplitude, G0 and G1, these equations provide the needed

input control action βi.

Similar sets of equations can be obtained for the second and third harmonic formulations.

As in the linear spring case, in Appendix A, the second harmonic complete formulation

is presented, as its equations can be useful to understand the effect of each harmonic in

the final voltage.

4.3.2.3 Comparison of approaches

Depending on the selected approach, the difficulty to obtain an analytical or numerical

solution is challenging. The complexity of the different approaches can be summarized in

Table 4.2.

Case Number of equations Needed terms

Linear spring - 1 harmonic 4 R-equations β0 to β3
Linear spring - 2 harmonics 7 R-equations β0 to β6
Linear spring - 3 harmonics 10 R-equations β0 to β9

Nonlinear spring - 1 harmonic 6 R-equations β0 to β5
Nonlinear spring - 2 harmonics 11 R-equations β0 to β10
Nonlinear spring - 3 harmonics 16 R-equations β0 to β15

Table 4.2: Summary of approaches

As can be observed, a minimum of four real-valued equations must be solved in order to

obtain a solution of the system and a maximum of sixteen is needed to evaluate the system

using a nonlinear spring and evaluating up to three harmonics in the output response.

Consequently, it is important to obtain a clear idea of which are the advantages and

disadvantages of each approach, and to choose the correct approximation for each

application.

4.3.3 Approach validation

Given the six proposed cases, comparison of the solution of the system presented in

Section 4.2 using long-time numerical simulations and the harmonic balance solutions are

presented.

The following questions are analyzed:

• Comparison of Harmonic Balance solution in the linear and non-linear case.
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• Comparison of Harmonic Balance solution with one, two or three harmonics.

• Comparison of Harmonic Balance solution with the Numerical solution.

The calculated solutions are based on the fabricated device presented in Figure 4.1. The

parameters of the device are shown in Table 4.1. The numerical solution of the implicit

harmonic balance equations is obtained with Mapler.

4.3.3.1 Linear vs nonlinear spring model in Harmonic Balance calculations

As have been extendedly reported in the literature, large differences can be obtained in

the response of the system when using linear or nonlinear spring models when analyzing

MEMS devices.

In the examples, comparison between the linear and the nonlinear spring case are

presented for two different frequencies and voltage loads. Each example compares the

solution obtained by resolving the corresponding implicit equation with one, two or three

harmonics.

As can be observed in Figure 4.27, the pure sinusoidal output formulation is more sensitive

to the presence of the nonlinear spring term. All solutions are unstable with the nonlinear

spring model (amplitude of the gap smaller than zero means snapping of the capacitor).

However, for the linear spring model, oscillation is possible under certain voltage loads,

as presented in Figure 4.27b.

The system, when using two or three harmonics in the equations (Figure 4.28 and 4.29)

behave similarly under the presence or not of the nonlinear spring term. Depending on the

input load, amplitudes change considerably if compared the linear and nonlinear spring

models, as expected. The magnitude of the amplitude difference between both models

can lead the system to pull-in when oscillation is close to the unstable transition.

Consequently, as identified at the beginning of the Chapter, the nonlinear term must be

taken into consideration when it is large enough as its influence in the amplitude of the

system is not negligible. The Harmonic Balance is able to capture this effect, and it is

clear in all the example, and specially in the pure sinusoidal case.

4.3.3.2 Number of harmonics in Harmonic Balance calculations

When analyzing a system using Harmonic Balance, it is well known that an increase in

the number of harmonics usually leads to an increase in the precision of the obtained
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Figure 4.27: Harmonic Balance solutions with only 1 harmonic at the output. Comparison
of linear (1H L) and nonlinear (1H NL) spring model. a) VDC = 5V , VAC = 3V , Q = 100,
wk = 0.96. b) VDC = 5V , VAC = 4V , Q = 100, wk = 1.
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Figure 4.28: Harmonic Balance solutions with 2 harmonics at the output. Comparison
of linear (2H L) and nonlinear (2H NL) spring model. a) VDC = 5V , VAC = 3V , Q = 100,
wk = 0.96. b) VDC = 5V , VAC = 4V , Q = 100, wk = 1.
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Figure 4.29: Harmonic Balance solutions with 3 harmonics at the output. Comparison
of linear (3H L) and nonlinear (3H NL) spring model. a) VDC = 5V , VAC = 3V , Q = 100,
wk = 0.96. b) VDC = 5V , VAC = 4V , Q = 100, wk = 1.

80



0.227 0.228 0.229 0.23 0.231 0.232 0.233 0.234 0.235

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time(s)

N
or

m
al

iz
ed

 g
ap

 (
g)

1H 2H 3H

0.228 0.2285 0.229 0.2295 0.23 0.2305 0.231 0.2315 0.232 0.2325
0.5

0

0.5

1

1.5

2

Time(s)

N
or

m
al

iz
ed

 g
ap

 (
g)

1H 2H 3H

Snapping

a) b)

0.282 0.2825 0.283 0.2835 0.284 0.2845 0.285 0.2855 0.286 0.2865

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Time(s)

N
or

m
al

iz
ed

 g
ap

 (
g)

1H 2H 3H

0.369 0.3695 0.37 0.3705 0.371 0.3715 0.372 0.3725 0.373

0.4

0.6

0.8

1

1.2

1.4

1.6

Time(s)
N

or
m

al
iz

ed
 g

ap
 (

g)

1H 2H 3H

c) d)

Figure 4.30: Comparison of the calculated position oscillation depending on the number
of harmonics in the solution (1H, 2H, 3H) using the linear spring model. Different voltage
loads and frequencies. Q = 100. VDC = 5V . a) VAC = 1V , wk = 0.96. b) VAC = 3V ,
wk = 0.96. c) VAC = 1V , wk = 1. d) VAC = 4V , wk = 1.
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Figure 4.31: Comparison of the calculated position oscillation depending on the number
of harmonics in the solution (1H, 2H, 3H) using the linear spring model. Different voltage
loads and frequencies. Q = 100. VDC = 5V . a) VAC = 1V , wk = 0.96. b) VAC = 3V ,
wk = 0.96. c) VAC = 1V , wk = 1. d) VAC = 4V , wk = 1.
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response solution. However, increasing the number of harmonics always inevitably leads

to an increase of the complexity of the system equations, what could imply impossibility

to reach a computed solution. It is then important to guarantee that the number of

harmonics used are the minimum really needed to accomplish the solution goals.

As can be seen in Figures 4.30 and 4.31, the one-harmonic solution differs from the

two and three harmonics solutions except in the small amplitude cases. This is true for

both the linear and nonlinear sprig models. Consequently, this approach only holds for

small amplitude analysis, and cannot be used to predict snapping transition, as it always

predicts pull-in well in advance than the higher harmonics solutions.

On the other hand, when comparing the two and three harmonics approximations, they

have similar behaviors with both spring models. The two-harmonics approximations tend

to predict slightly larger amplitudes, but no pattern have been detected. Both solutions

can be similarly valid based on this analysis.

4.3.3.3 Comparison of Harmonic Balance and simulated solutions

As has been detected in the previous section, two and three harmonics harmonic balance

solutions differences are small. Consequently, there is a need to decide which of the two

models is better when compared to the long-time numerical simulation behavior.

The use of a linear spring model when solving the Harmonic balance equations is analyzed

in Figure 4.32. As can be seen, as the simulated real system has a nonlinear spring

component, harmonic balance approximation with a linear spring model clearly fails to

achieve a decent approximation, as it should be expected. Only in the case of small

amplitudes, the approximation can be taken into account to define the evolution of the

system, but always with extreme caution.

However, when a nonlinear spring model is used, a good fit is achieved with the two

and three harmonics approximation, as can be seen in Figure 4.33. In some cases the

two-harmonics approximation behaves better and in other cases the three-harmonics

approximation obtains a better fit, so two harmonics approximation could be used in

most cases, without losing the main information of the system behavior.

In consequence, Harmonic Balance is able to capture most of the steady-state behavior

of the system, and can be used to analyze it.

The Harmonic Balance approximations only have a drawback: the impossibility to predict

the pull-in in a confident way. In some cases, the lack of existence of a solution to the
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Figure 4.32: Simulated behavior of a real system compared to harmonic balance solution
using a linear spring model. a) Detail for VDC = 5V , VAC = 1V , Q = 100, wk = 0.96.
b)VDC = 5V , VAC = 3V , Q = 100, wk = 0.96. c) VDC = 5V , VAC = 1V , Q = 100,
wk = 1. d) Detail for VDC = 5V , VAC = 4V , Q = 100, wk = 1.

0.3574 0.3576 0.3578 0.358 0.3582 0.3584
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(s)

N
or

m
al

iz
ed

 g
ap

 (
g)

simulation 1H 2H 3H

0.065 0.0655 0.066 0.0665 0.067 0.0675 0.068 0.0685 0.069 0.0695

0

0.5

1

1.5

2

Time(s)

N
or

m
al

iz
ed

 g
ap

 (
g)

simulation 1H 2H 3H

Snapping

a) b)

0.491 0.4915 0.492 0.4925 0.493 0.4935 0.494 0.4945 0.495 0.4955

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Time(s)

N
or

m
al

iz
ed

 g
ap

 (
g)

simulation 1H 2H 3H

0.3878 0.388 0.3882 0.3884 0.3886

1.4

1.5

1.6

1.7

1.8

1.9

2

Time(s)

N
or

m
al

iz
ed

 g
ap

 (
g)

simulation 1H 2H 3H

c) d)
Figure 4.33: Simulated behavior of a real system compared to harmonic balance solution
using a nonlinear spring model. a) Detail for VDC = 5V , VAC = 1V , Q = 100, wk = 0.96.
b)VDC = 5V , VAC = 3V , Q = 100, wk = 0.96. c) VDC = 5V , VAC = 1V , Q = 100,
wk = 1. d) Detail for VDC = 5V , VAC = 4V , Q = 100, wk = 1.
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harmonic balance equations predicts the instability of the solution. However, existence of

the solution cannot be used to predict that the oscillation is feasible. An example is shown

in Figure 4.33b, where the simulation predicts snapping, while the harmonic balance

approximations with two and three harmonics predict feasible oscillations. However,

Harmonic Balance solutions have amplitudes that cover up to 95% of the gap, what is

highly unrealistic and not advisable, as any transient behavior would lead the system

to pull-in. Consequently, harmonic balance approximations can only be used if we

guarantee that the pull-in breakdown cannot be reached. This means that when predicted

oscillations cover more than 80% of the gap, more analysis must be done to guarantee

that pull-in doesn’t occur.

4.4 Driving voltage characterization

The previous section has identified that at least two harmonics have to be taken into

account in the output of the system when analyzing the characteristics of the oscillations

when a pure sinusoidal input is used. This result is directly related to the characteristics

of the electrostatic actuator.

A deeper insight on the influence of the input load of the system is needed, as its selection

would define the characteristics of the oscillation.

4.4.1 Voltage types

Two different cases of driving input voltages are analyzed: one-harmonic sinusoidal

actuation and multiple-harmonics sinusoidal actuation.

4.4.1.1 One-harmonic sinusoidal actuation

It is usual, in MEMS driving schemes, to use a single harmonic to excite the system.

Using this scheme, three different cases can be analyzed:

• Pure sinusoidal actuation

• Subharmonic sinusoidal actuation

• Superharmonic sinusoidal actuation
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Pure sinusoidal actuation

The system can be oscillated at the desired frequency of oscillation with a single harmonic

at this frequency, this is what we call a pure sinusoidal actuation.

A pure sinusoidal driving voltage takes the following form

V (t) = VDC +VAC sin(ω t+ φ) (4.22)

what translates to

V (t) = V̆0 + V̆1 e
j ω t + V̆−1 e

−j ω t (4.23)

where V̆0 = VDC, V̆1 = −j VAC

2
e j φ and V̆−1 = j VAC

2
e− j φ.

Consequently, the Fourier expansion of the square of the voltage, using equation (4.12),

is as follows

V (t)2 =V̆ 2
0 + 2 V̆1 V̆−1 + 2 V̆0 V̆1 e

j ω t + 2 V̆0 V̆−1 e
−j ω t + V̆ 2

1 e
2 j ω t + V̆ 2

−1 e
−2 j ω t

=
(

V2
DC +

V2
AC

2

)

− j VDCVAC e
jφ ej ω t + jVDCVAC e

−j φ e−j ω t

− V2
AC

4
e2 j φ e2 j ω t − V2

AC

4
e−2 j φe−2 j ω t

=β0 + β1 e
jωt + β−1 e

−jωt + β2 e
2jωt + β−2 e

−2jωt (4.24)

and the β-terms are

β0 = V2
DC +

V2
AC

2
(4.25)

β1 = −j VDCVAC e
j φ (4.26)

β2 = −V2
AC

4
e 2 j φ (4.27)

βi = 0 for i ≥ 3 (4.28)

As can be observed, no β3 component can be produced with this kind of actuation, what

implies that the solution of the system is not well defined for any of the cases in Table

4.2.

In particular, it is important to note that with a pure sinusoidal actuation voltage, the

system output can never be a pure sinusoidal at the input frequency, because the driving

voltage always generates a second harmonic excitation that cannot be compensated.
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Subharmonic sinusoidal actuation

The system can be oscillated with only the second harmonic of the desired oscillation

frequency, in order to excite subharmonic oscillations at the first harmonic.

In that case, the system input driving voltage takes the following form

V (t) = VDC +VAC sin(2ω t+ φ) (4.29)

what translates to

V (t) = V̆0 + V̆2 e
2 j ωt + V̆−2 e

−2 j ω t (4.30)

where V̆0 = VDC, V̆1 = V̆−1 = 0, V̆2 = − j VAC

2
ej φ and V̆−2 = j VAC

2
e−j φ.

Consequently, the Fourier expansion of the square of the voltage is as follows

V (t)2 =V̆ 2
0 + 2 V̆1 V̆−1 + 2 V̆2 V̆−2 + (2 V̆0 V̆1 + 2 V̆2 V̆−1) e

j ω t + (2 V̆0 V̆−1 + 2 V̆1 V̆−2) e
−j ω t

+ (V̆ 2
1 + 2 V̆0 V̆2) e

2 j ω t + (V̆ 2
−1 + 2 V̆0 V̆−2) e

−2 j ω t + 2 V̆1 V̆2 e
3 j ω t + 2 V̆−1 V̆−2 e

−3 j ω t

+ V̆ 2
2 e

j ω t + V̆ 2
−2 e

−4 j ω t

=
(

V2
DC +

V2
AC

2

)

− jVDC VAC e
j φ e 2 j ω t + jVDC VAC e

−j φ e−2 j ω t

− V2
AC

4
e 2 j φ e 4 j ω t − V2

AC

4
e−2 j φ e−4 j ω t

=β0 + β1 e
j ω t + β−1 e

−j ω t + β2 e
2 j ω t + β−2 e

−2 j ω t

+ β3 e
3 j ω t + β−3 e

−3 j ω t + β4 e
4 j ω t + β−4 e

−4 j ω t (4.31)

and the β-terms are

β0 = V2
DC +

V2
AC

2
(4.32)

β1 = 0 (4.33)

β2 = −j VDCVAC e
j φ (4.34)

β3 = 0 (4.35)

β4 = −V2
AC

4
e 2 j φ (4.36)

βi = 0 for i ≥ 5 (4.37)

As can be observed, β4 component exists, but not the β5 component, what implies again

that the solution of the system is not well defined for any of the cases in Table 4.2.

Again, it is impossible to obtain oscillation only in the first harmonic, as there is always

excitation in the second harmonic, and cannot be compensated.
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Superharmonic sinusoidal actuation

Finally, the system can be oscillated with only the first harmonic of the frequency, but

with the goal to excite superharmonic oscillations at the second harmonic frequency.

In this case, the formulation is identical to the pure sinusoidal case, equation (4.22).

As previously stated, the existing β terms don’t allow to solve the equations correctly.

And although the second harmonic can be excited and the amplitude selected, there will

be always an oscillation in the first harmonic, as the excitation cannot be suppressed.

4.4.1.2 Multiple-harmonics sinusoidal actuation

Actuation schemes that include only a single harmonic have clear limitations on the

selection of the desired output. This is clear when the produced βi terms are compared

to the needed βi provided by Harmonic Balance equations. Moreover, due to the nature

of the physical properties associated with the parallel-plate electrostatic actuator, the βi

terms are obtained by squaring the applied voltage, what limits the achievable values that

can be generated.

To understand the limitations in the generation of the input voltage a general case is

analyzed including a large number of harmonics in the input voltage. We assume, as

example, an actuation voltage composed of five harmonics. In this case, the input voltage

would be of the following form

V (t) = V0 + V1 sin(ω t+ φ1) + V2 sin(2ωt+ φ2)

+ V3 sin(3ωt+ φ3) + V4 sin(4ωt+ φ4) + V5 sin(5ωt+ φ5) (4.38)

what translates using exponential form to

V (t) = V̆0 + V̆1 e
j ωt + V̆−1 e

−j ωt + V̆2 e
2 j ωt + V̆−2 e

−2 j ωt + V̆3 e
3 j ωt

+ V̆−3 e
−3 j ωt + V̆4 e

4 j ωt + V̆−4 e
−4 j ωt + V̆5 e

5 j ωt + V̆−5 e
−5 j ωt (4.39)

where V̆0 = V0 and V̆i = −j Vi
2
ej φi and V̆−i = j Vi

2
e−j φi .

Using these parameters definitions and the equation (4.12) previously derived, the β-terms
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are calculated as follows

β0 = V 2
0 +

V 2
1

2
+
V 2
2

2
+
V 2
3

2
+
V 2
4

2
+
V 2
5

2

β1 = −jV0V1ejφ1 +
V1V2
2

ej(φ2−φ1) +
V2V3
2

ej(φ3−φ2) +
V3V4
2

ej(φ4−φ3) +
V4V5
2

ej(φ5−φ4)

β2 = −V
2
1

4
e2jφ1 − jV0V2 e

jφ2 +
V1V3
2

ej(φ3−φ1) +
V2V4
2

ej(φ4−φ2) +
V3V5
2

ej(φ5−φ3)

β3 = −V1V2
2

ej(φ2+φ1) − jV0V3 e
jφ3 +

V1V4
2

ej(φ4−φ1) +
V2V5
2

ej(φ5−φ2)

β4 = −V
2
2

4
e2jφ2 − V1V3

2
ej(φ3+φ1) − jV0V4 e

jφ4 +
V1V5
2

ej(φ5−φ1)

β5 = −V2V3
2

ej(φ3+φ2) − V1V4
2

ej(φ4+φ1) − jV0V5 e
jφ5

β6 = −V
2
3

4
e2jφ3 − V2V4

2
ej(φ4+φ2) − V1V5

2
ej(φ5+φ1)

β7 = −V2V5
2

ej(φ5+φ2) − V3V4
2

ej(φ4+φ3)

β8 = −V
2
4

4
e2jφ4 − V3V5

2
ej(φ5+φ3)

β9 = −V4V5
2

ej(φ5+φ4)

β10 = −V
2
5

4
e2jφ5

βi = 0 for i ≥ 11 and β−i = βi for i

where βi stands for the complex conjugate of the number.

Looking at the obtained equations, we realize that using only the first harmonic frequency

in the input voltage, V1, we generate up to the β2 term. If we use an input voltage with

second harmonic terms, V2, we generate up to the β4 term. And if we use an input voltage

with fifth harmonic terms, V5, we generate up to the β10 term. This can be extended to

any input harmonic frequency. Then, using these equations and comparing the results

with the number of harmonics needed for the solution of the Harmonic Balance equations,

it can be analyzed what approaches in Table 4.2 can be correctly solved.

It is important to notice that only the sets of equations of the Linear and Non-linear

harmonic balance approximations with 2 harmonics in the output are completely well-

defined with the voltage control. In these cases, we are able to produce the needed βi,

for the whole set of equations. In the linear case, we need up to the third harmonic in

the input voltage, V3, and in the nonlinear case, we need up to the fifth harmonic in the

input voltage, V5. See Table 4.3.

In the rest of the cases, it is not possible to generate the right βi to fit the set of equations.
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Case Num. equations Terms Needed actuation voltages

Linear spring- 1 harm 4 equations β0 to β3 not well-defined
Linear spring- 2 harm 7 equations β0 to β6 V0, V1, V2, V3
Linear spring- 3 harm 10 equations β0 to β9 not well-defined

Nonlinear spring- 1 harm 6 equations β0 to β5 not well-defined
Nonlinear spring- 2 harm 11 equations β0 to β10 V0, V1, V2, V3, V4, V5
Nonlinear spring- 3 harm 16 equations β0 to β15 not well-defined

Table 4.3: Summary of approaches

4.4.2 Actuation error

In the thesis, the goal is to obtain a pure sinusoidal oscillation as an output of the system.

As presented in Section 4.3.2, the Harmonic Balance equations allow to calculate the

needed actuation voltage for a desired output oscillation. If this voltage is applied to the

system, the desired oscillation is achieved.
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Figure 4.34: Input voltage needed for an oscillation with damping Q = 100 and frequency
of wk = 0.96, to obtain a static gap position of G0 = 0.9 and an amplitude of oscillation
of G1 = 0.7. a) The square of input voltage (V 2) directly obtained from the βi. b) The
real input voltage (V ) needed.

Using the equations for a nonlinear spring model and assuming pure sinusoidal oscillation,

an example of the needed actuation voltage, defined by the βi, is shown in Figure 4.34. In

the presented example, an static gap displacement of G0 = 0.9 is desired, as well as, an

amplitude of oscillation of G1 = 0.7. This features are imposed for a frequency close to

resonance, wk = 0.96, and medium damping conditions Q = 100. The simulated output

when applying the calculated input voltage is presented in Figure 4.36, where oscillation

is shown to satisfy the desired static and oscillation amplitudes.

One of the main results obtained by the Harmonic Balance analysis is that depending on
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the desired oscillation, the actuation voltages that are calculated from the β-equations

cannot always be reproduced as the square of a sinusoidal signal. As can be seen in Figure

4.35, Harmonic Balance indicates that V 2 must have negative values, what is completely

impossible using only V as driving voltage. This leads to impossibility to reach the desired

oscillation with a one-sided voltage driving scheme. However, there are implementation

improvements that can lead to full Harmonic Balance applicability, and they are presented

in Chapter 7.
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Figure 4.35: Square of input voltage (V 2) needed for an oscillation with medium damping
Q = 100 and low frequency, wk = 0.8. It is desired to obtain a static gap position of
G0 = 0.9 and an amplitude of oscillation of G1 = 0.7. This voltage is directly obtained
from the βi of the Harmonic Balance.

Apart from the necessity of a positive valued solution in order to be able to generate the

driving voltage, V , the calculated solutions can also be difficult to reproduce. There is not

a closed form that allows to obtain the voltage input once calculated the βi of the square

of the input voltage. Consequently, the input voltage must be calculated numerically in

order to apply it to the system. As can be observed in Figure 4.36, in the example at

least a five harmonics fit is needed to produce the calculated input voltage. However, the

positive conclusion is that if the reproduction obtained with the fit is fine, the desired

output can be perfectly achieved, as observed in Figure 4.36b.

To have better insight in the difficulties to produce the needed input voltage, Table 4.4

presents the obtained harmonic components. Matlabr’s fit() function is used with the

method of Nonlinear Least Squares and a maximum of 1000 iterations. The sum of squares

due to the error (sse) and the coefficient of determination (rsquare) are used to define

the precision of the fit. As can be observed, discrepancies between the five harmonics and

ten harmonics solutions are slight, but give differences in the final solution error. If an
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Figure 4.36: a) Input voltage needed for an oscillation with damping Q = 100, a
normalized frequency of wk = 0.96, a static gap position of G0 = 0.9 and an amplitude of
oscillation of G1 = 0.7. The fitted solutions (1 to 15 Harmonics) for the calculated input
voltage (HB voltage) are compared. b) Simulated oscillation obtained with the voltage
input constructed with the ten harmonics fit (V10) in a).

rsquare value of 1 is fixed as a goal, the ten-harmonics fit is the first one to obtain it.

The generation of the desired input voltage could not be always possible, as a ten

harmonics input voltage is not straightforward for most applications. Consequently, the

actuation error must be analyzed. Figure 4.37 shows the evolution of the output when

the input voltage is truncated at a desired number of harmonics. In this particular case,

a truncation of five harmonics is able to produce a solution without significant error.

However, shorter truncations generate solutions that underscore or overscore the desired

amplitude of oscillation.

From the Harmonic Balance analysis an important conclusion can be extracted: for a

pure sinusoidal oscillation output, the first harmonic is always necessary in the input

voltage. Consequently, it is not possible to design an input voltage without first harmonic

component that could oscillate the system as a pure sinusoidal at that frequency. This

translates also to the fact that the use of subharmonic or superharmonic oscillation always

leads to the existence of first and second harmonic component in the output. Amplitudes

of this oscillation may vary, and driving frequency output could be negligible, but the

output is never a perfect sinusoid. That could be enough for most applications, but must

be taken in consideration when applying these actuation schemes.

And the most important conclusion: if the Harmonic Balance calculated voltage can be

generated, the desired oscillation can be achieved.
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1 H 2 H 5 H 10 H 15 H

sse 1844,3 119,58 0,17156 0,000025162 0,00000029298

rsquare 0,81009 0,98769 0,99998 1 1

V0 = 7.504 V0 = 7.541 V0= 7.502 V0 = 7.502 V0= 7.502

V1 = 3.437 V1 = 3.37 V1 = 3.37 V1 = 3.429 V1 = 3.43

φ1 = -0.1122 φ1 = 0.02342 φ1 = -0.09609 φ1 = -0.09697 φ1=-0.09705

ω1 = 4719 V2 = -1.643 V2 = -1.6 V2 = -1.6 V2 = -1.6

φ2 = -1.223 φ2= -1.454 φ2= -1.456 φ2= -1.456

ω1 = 4568 V3 = 0.3969 V3 = 0.3974 V3 = 0.3975

φ3= 0.1009 φ3= 0.1006 φ3= 0.1005

V4 = 0.192 V4 = -0.1918 V4 = -0.1918

φ4= -1.486 φ4 = 1.656 φ4= 1.657

V5 = -0.04469 V5 = -0.04427 V5 = -0.04424

φ5 = 0.1945 φ5 = 0.1937 φ5 = 0.1936

ω1= 4696 V6 = -0.01463 V6 = -0.01462

φ6 = 4.971 φ6 = -1.314

V7= 0.006008 V7 = 0.00603

φ7= -6.006 φ7= 0.2765

V8= 0.002402 V8 = 0.002406

φ8 = -1.249 φ8 = -1.241

V9 = -0.0009948 V9 = -0.000978

φ9= -5.9 φ9= 0.3874

V10= 0.000421 V10 = -0.0004156

φ10= -4.243 φ10= -1.136

ω1= 4697 V11 = -0.0001597

φ11= -2.622

V12= -7.852e-005

φ12= 2.09

V13 = -3.571e-005

φ13= 0.5667

V14= -1.611e-005

φ14= -0.9077

V15 = -6.566e-006

φ15= -2.419

ω1= 4697

Table 4.4: Input voltage needed for an oscillation with medium damping Q = 100 and a
frequency close to resonance, wk = 0.96. It is desired to obtain a static gap position of
G0 = 0.9 and an amplitude of oscillation of G1 = 0.7. Harmonic fits are presented with 1
to 15 harmonics.
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Figure 4.37: Analysis of reproduction of the Harmonic Balance voltage to obtain a static
gap position of G0 = 0.9 and an amplitude of oscillation of G1 = 0.7, with damping
Q = 100 and a frequency of wk = 0.96. a) Ten harmonics approximation of the input
voltage needed for actuation and the truncated options. b) Close-up of the voltages. c)
Simulated oscillation obtained with the voltage input constructed with the ten harmonics
fit and the truncated ones. d) Close-up of the oscillations.

4.5 Driving voltage analysis

In the previous sections, the natural behavior of the system has been studied. In this

section, it will be analyzed how to actuate the system to obtain a desired performance.

In the design of vibratory devices, it is an usual goal to have a stable and pure sinusoidal

oscillation. If this aim is achieved, the device would perform at its best. As the system

is inherently nonlinear, as has been previously shown, the election of the input actuation

must be accurate to obtain the desired sinusoidal oscillation. Consequently, an analysis

of the needed characteristics of the control action is performed, using Harmonic Balance

as the election tool.
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4.5.1 Number of harmonics

The number of harmonics needed to accurately reproduce the calculated input voltage

to obtain a pure sinusoidal solution is analyzed in this subsection, based on Harmonic

Balance solution.

Iterative solutions of the Harmonic Balance equations have been calculated for different

system parameters. The presented examples are based on the device parameters on

Table 4.1. At each step, the needed input voltage is approximated using Matlabr’s fit()

command to determine the minimum number of harmonics needed to obtain an rsquare-

error of unity. The results are calculated on a square grid with 2 degrees of freedom:

X-axis corresponds to the static displacement (G0) ranging from 0.7 to 1 and the Y-axis

corresponds to the oscillation amplitude (G1) ranging from 0.05 to 0.9.

Figures 4.38-4.41 show the number of harmonics needed to produce an input voltage that

obtain the desired oscillation given by the X(G0)-Y(G1) axis. The plots are obtained for

four different frequencies (0.8ωn, 0.9ωn, 0.96ωn, ωn) and three different damping conditions

(Q = 10, 100 and 1000). The plots show that the variations in the damping and chosen

frequency have an effect on the desired input voltage and the number of harmonics needed

to reproduce it.

To understand the plots, it is important to note that the region on the right of the

plots (red zone) indicates that the voltage solution calculated by the harmonic balance

approximation is not completely real-valued, and consequently, impossible to be achieved

directly as input voltage (see Figure 4.35 in the previous section as example and Chapter

7 solution). The region on top (brown zone) is the area that cannot be achieved by

physical limitations, as it implies that the total amplitude is greater than the physical

gap. And the orange zone indicates that with 10 harmonics the calculated input voltage

is not satisfactorily generated (the rsquare-error of the fitted solution is lower than 1).

The small orange dots in the large blue area indicate poor fitting results, but they can be

due to not a good enough initial condition in the iterative analysis procedure, consequently,

no special conclusions can be drawn from them. The same analysis can be done with the

large orange area. As has been commented in the previous section, small errors in the

fitting doesn’t necessarily imply large errors in the desired output. It only indicates a

working zone where the voltage election is more demanding.

The analysis of the plots show that in the frequencies closer to resonance (wk = 0.96
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Figure 4.38: Number of harmonics needed to reproduce the harmonic balance voltage
using a nonlinear spring model. wk = 0.8 a) Q = 10 b) Q = 100 c) Q = 1000.
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Figure 4.39: Number of harmonics needed to reproduce the harmonic balance voltage
using a nonlinear spring model. wk = 0.9 a) Q = 10 b) Q = 100 c) Q = 1000.
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Figure 4.40: Number of harmonics needed to reproduce the harmonic balance voltage
using a nonlinear spring model. wk = 0.96 a) Q = 10 b) Q = 100 c) Q = 1000.
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Figure 4.41: Number of harmonics needed to reproduce the harmonic balance voltage
using a nonlinear spring model. wk = 1 a) Q = 10 b) Q = 100 c) Q = 1000.
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and wk = 1), it is easier to obtain a pure sinusoidal oscillation: the range of obtainable

oscillations is wider, and large amplitudes can be achieved with few harmonics in the

input. When the desired frequencies are further away (wk = 0.9 and wk = 0.8), the

range of obtainable oscillations diminishes and the difficulty to calculate the input voltage

increases, as observed by the increase of the orange zones.

The increase of the Quality factor has some impact in the reachable area when it is

increased from 10 to 100, as observed in Figure 4.41. In this example, the calculated

input voltage is feasible for G0 = 0.95 and G1 = 0.9 when Q = 100 but not in the Q = 10

case. However, increases in the Quality factor from 100 to 1000 have no significant effect.

At the same time, the number of harmonics needed, based on harmonic balance

approximation, has similar behavior in all cases. With five or six harmonics, most of

the range can be accessed, but higher harmonics are needed to reach to the upper limit.

The increase in the Quality factor has impact when changing from 10 to 100, reducing its

impact in the 100 to 1000 increase.

It is interesting to note that the Quality factor increase is especially noted by the range

of oscillations where five and six harmonics input approximations can be used. That area

is widely increased with the increase of the Quality factor from 10 to 100, depending on

the example. At the same time, the area where input approximations with three and four

harmonics are enough has no significant variation, and the effect on the higher harmonics

approximations is also limited.

4.5.2 Voltage magnitude

In parallel with the number of harmonics, there are magnitude related aspects of the

input voltage that have effect on the behavior of the system. It is important to know

the maximum voltage that is applied, or the peak-to-peak magnitude. This analysis is

performed in this section.

All the results are generated on the basis of the input voltage calculated using Harmonic

Balance approximation. Calculations have been done based on the parameters of Table

4.1, and the nonlinear spring model. The dark blue zones of the figures indicate that the

combination of static bias and amplitude of oscillation is not feasible in that area. The

right-side blue zone is not feasible due to not directly reproducible voltage results. The

top blue zone is not feasible because the amplitude combination would be larger than the

physical gap.
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Figure 4.42: Analysis of the peak value of the input voltage (Vpeak) depending on
the desired oscillation bias and amplitude. Fixed damping at Q = 100, and different
frequencies. a) wk = 0.80. b) wk = 0.90. c) wk = 0.95. d) wk = 0.96 e) wk = 1.00. f)
wk = 1.01. g) wk = 1.02. h)wk = 1.03.
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Figure 4.43: Analysis of the minimum applied voltage value (Vmin), depending on the
desired oscillation bias and amplitude. Fixed damping at Q = 100, and different
frequencies. a) wk = 0.80. b) wk = 0.96. c) wk = 1. d) wk = 1.02.

As a first approach, the needed voltage peak of the input voltage is used to identify the

difficulty to generate the desired output, as it is related to the maximum power demand

and device insulation. Moreover, as previously stated in Chapter 3, the oscillation in the

energy domain is limited by the potential energy curves of the maximum and minimum

voltages applied to the device. Consequently, the voltage peak gives insight on the possible

failure of the device due to snapping.

Figure 4.42 shows the voltage peak of the calculated input voltages. An extended range of

frequencies is presented, from wk = 0.8 up to wk = 1.03. The evolution of the reachable

area with one-sided actuation is interesting, as it increases up to wk = 1.02 and then

it begins to be reduced. An unexpected result also appears. Based on the Harmonic

Balance calculations, in order to obtain a pure sinusoidal output, the maximum reachable

amplitude with the lower voltage peak is obtained around natural frequency (wk = 1).

For each selected amplitude (G1), around natural frequency the system can be oscillated

with less voltage peak amplitude. Not only that, the static displacement (G0) is around

the initial position of the gap, what is in general desirable.

This result is important because changes expected placement of the resonance frequency
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Figure 4.44: Analysis of the needed voltage bias for the input (V0), depending on
the desired oscillation bias and amplitude. Fixed damping at Q = 100, and different
frequencies. a) wk = 0.80. b) wk = 0.90. c) wk = 0.96. d) wk = 1.

compared to the AC-DC pull-in curves, in Figure 4.25. In order to obtain the maximum

amplitude at the minimum voltage, voltage sweeps are usually carried out. However, that

approach fixes the DC-voltage and correspondingly the frequency shift due to softening.

The AC-DC pull-in curves in Figure 4.25 are based on a fixed DC bias of 5V and oscillated

with only the first harmonic at the driving voltage, giving a resonance peak around

wk = 0.95 without control of harmonics at the output. Using the Harmonic Balance

approach, we concentrate on obtaining a pure sinusoidal output and use an input voltage

with up to ten harmonics, and consequently, the system changes its resonant behavior.

Based on Harmonic Balance approach, with frequency at wk = 0.95, the maximum

achievable amplitude is G1 = 0.87 with a bias of G0 = 0.88, obtained with a peak of

11.83V . However, with driving frequency at natural frequency, wk = 1, the maximum

achievable amplitude is G1 = 0.90 with a bias of G0 = 0.94, obtained with a peak of

11.5V . In both cases, reachability is not guaranteed.

The minimum voltage level indicates the minimum energy that the system keeps during

the oscillation. Again, this value gives insight on the lower limit of the oscillation

trajectory and can give information of the possible failure of the device due to snapping.
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Figure 4.45: Analysis of the needed amplitude of the first harmonic of the input (V1),
depending on the desired oscillation bias and amplitude. Fixed damping at Q = 100, and
different frequencies. a) wk = 0.80. b) wk = 0.90. c) wk = 0.96. d) wk = 1.

Figure 4.43 presents the results of the simulation for the example. All plots are similar

without special differences between them.

Finally, analysis of the evolution of the static voltage load (V0) that is needed and the

magnitude of the first harmonic component (V1) based on Harmonic Balance calculations

are presented in Figure 4.44 and Figure 4.45. In the case of DC-bias, as expected, the

DC voltage is related to the final position bias (G0), with similar plots for wk = 0.96 and

wk = 1. And in the case of the first harmonic, it is related to the final amplitude (G1).

4.5.3 Energy consumption

The voltage magnitudes of previous section give an indication of the maximum load that

must be applied, but they provide no insight on the energy consumption generated by

the Harmonic Balance input voltage. Moreover, as has been shown in the examples, the

needed voltage pattern can be really complex, and in those cases, the voltage magnitudes

only capture the range of fluctuation of the signal but not the complexity of it.

The goal is to obtain the cheapest oscillation in energy consumption terms. In order to
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evaluate the Harmonic Balance driving voltage energy consumption, the actual voltage

driving scheme including the voltage source must be analyzed. Figure 4.46 shows the

electrical equivalent schematic of the system including the voltage source. In this scheme,

the voltage source charges and discharges the driving capacitor (electrostatic transducer)

with a series resistance, which is coupled to a mechanical load that moves due to the

generated force by the electrostatic transducer [183]. In the example, the mechanical

system is converted to its electrical equivalent.

+

-

+

-

Voltage

Source

Electrostatic

Transducer

Mechanical

Load

M

B

1
Kg

Up(V, g)

VVvs

I

C0

F

IvsRvs

Figure 4.46: Electrical port-model of the electromechanical system including the voltage
source, based on [183].

The energy introduced in the system by the voltage source is transformed to capacitor

electrostatic potential energy, and this energy is converted to kinetic energy and

mechanical potential energy during the oscillation. In the ideal case of having an ideal

voltage source and a system without dissipation, if the MEMS resonator is excited at

resonance, it would continue oscillating without need of more energy. However, this is

not true in most cases. In real applications, the voltage source is not ideal, compensates

the damping losses and forces the oscillation at the driving frequency. Consequently,

continuous energy supply exists, and the goal is to minimize it.

To analyze the energy consumption, we must turn back to the energy equation (3.1) from

Chapter 3, now assuming that the voltage is a function of time

E(t) =
1

2
M ˙̂y(t)2 +

1

2
K ŷ(t)2 +

1

4
K3 ŷ(t)

4 − 1

2

C0

(1− ŷ(y)
g0

)
V (t)2 (4.40)

and remembering that ŷ(t) = g0 − ĝ(t). We want to analyze how the energy is exchanged
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in the system, what implies studying the energy variation

d

dt
E(t) =M ¨̂y(t) ˙̂y(t) + K ŷ(t) ˙̂y(t) + K3 ŷ(t)

3 ˙̂y(t)

− 1

2

C0

g0(1− ŷ(t)
g0

)2
V (t)2 ˙̂y(t)− C0

(1− ŷ(t)
g0

)
V (t) V̇ (t) (4.41)

where V̇ (t) is the time derivative of the input voltage. Rearranging terms

d

dt
E(t) =

(

M ¨̂y(t) + K ŷ(t) + K3 ŷ(t)
3 − 1

2

C0

g0(1− ŷ(t)
g0

)2
V (t)2

)

˙̂y(t)− C0

(1− ŷ(t)
g0

)
V (t) V̇ (t)

(4.42)

and using the dynamic equation of the system equivalence (2.77)

M ¨̂y(t) + K ŷ(t) + K3 ŷ(t)
3 − 1

2

C0

g0(1− ŷ(t)
g0

)2
V (t)2 = −B ˙̂y(t)

the resulting equation is

d

dt
E(t) = −B ˙̂y(t)2 − C0

(1− ŷ(t)
g0

)
V (t) V̇ (t) (4.43)

meaning that the energy variation has a part that corresponds to the energy mechanically

dissipated in the damper and another part that corresponds to the energy exchanged

between the voltage source and the electrostatic actuator.

At this point, it is necessary to introduce the source as an active part in the circuit, as

indicated in Figure 4.46. Introducing the source voltage, Vvs(t), and the source current,

Ivs(t), the voltage applied to the actuator is

V (t) = Vvs(t) + Rvs Ivs(t) (4.44)

V̇ (t) = Ivs(t) (4.45)

where the positive sign in the voltage is due to the different direction between position and

current, Figure 4.46, to guarantee sign consistency. Rvs is the resistance associated with

the internal resistance of the voltage source, and also aggregates the rest of resistances

associated with the wiring and the electronics from the voltage source up to the capacitor.

Then, equation (4.43) can be rewritten as

d

dt
E(t) = −B ˙̂y(t)2 − C0

(1− ŷ(t)
g0

)

(

Vvs(t) Ivs(t) + Rvs Ivs(t)
2
)

. (4.46)
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Assuming steady-state oscillation, the energy balance in one oscillation cycle must be

zero, then from equation (4.46), we obtain

∫ 2π
ω

0

d

dt
E(t)dt = −

∫ 2π
ω

0

B ˙̂y(t)2dt−
∫ 2π

ω

0

C0

(1− ŷ(t)
g0

)

(

Vvs(t) Ivs(t) + Rvs Ivs(t)
2
)

dt = 0

(4.47)

and from this equation, the energy provided by the voltage source can be isolated as

∫ 2π
ω

0

Vvs(t) Ivs(t)dt = −
∫ 2π

ω

0

B

C0

˙̂y2
(

1− ŷ

g0

)

dt−
∫ 2π

ω

0

Rvs Ivs(t)
2dt (4.48)

meaning that the voltage source is used to compensate two energy losses: the damping

of the system and the source/circuitry losses. If we could assume that the source is ideal,

all the losses would be due to the damping of the MEMS resonator. And if the MEMS

resonator could have no damping, the voltage source would have zero energy balance,

as the current delivered during the charging of the capacitor would be returned during

discharging.

However, in real applications the losses exist, and as we want to optimize the energy

consumption for sinusoidal oscillation, we need to calculate the actual energy losses in an

oscillation cycle. If the oscillation is fixed to be a perfect sinusoidal

ŷ(t) = Ŷ1 sin(ωt) (4.49)

˙̂y(t) = Ŷ1ω cos(ωt) (4.50)

the consumed electrical energy by the voltage source is given by (4.48), where the

mechanical part can be solved leaving

Elosses =

∫ 2π
ω

0

Vvs(t) Ivs(t)dt = −B π

C0
Ŷ 2
1 ω − Rvs

∫ 2π
ω

0

Ivs(t)
2dt. (4.51)

Consequently, the consumed energy has two terms. The first term is proportional to the

oscillation frequency, amplitude of oscillation and damping of the system and inversely

proportional to capacitance. And the other one is proportional to the resistance of the

power source and the circuitry, and also proportional to the integration of the square of

the current needed to drive the system.

As Harmonic Balance calculates the voltage input, V (t) , the estimated energy

consumption for each driving scheme can be calculated and compared. If we analyze

the magnitude of the two terms, even in the case of having a low-loss voltage supply,
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the electrical term is several times larger than the damping term. Figure 4.47a shows the

value of the damping losses for the simulated example. The range of frequencies goes from

wk = 0.8 to wk = 1.2 and Quality-factor ranges from 10 to 100000. For a given Quality

factor, the frequency and amplitude of oscillation have little influence on the final losses.

Figure 4.47b shows together for the same range the electrical and damping losses. In the

case of electrical losses, the source and circuitry resistance is assumed to be as low as 1

Ω. As can be observed, the damping value and its variation is negligible in front of the

electrical losses (the four plots are one in top of the other).

Figure 4.47b also introduces an interesting result. The electrical losses have less influence

than expected from the Quality-factor when a desired pure-sinusoidal oscillation is fixed.

There is a jump from Q = 10 to Q = 100, but then the difference is negligible. In the

plot, the three graphs (Q = 100, 1000, 100000) are one on top of the other.
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Figure 4.47: a) Energy losses due to mechanical system damping for three different
Quality-factors and two different oscillation amplitudes, for the MEMS resonator values
in Table 4.1. b) Comparison of the magnitude of the electrical losses and the damping
losses, shown in a), for the same range of amplitudes, frequencies and Quality factor.

Figure 4.48 shows the energy consumption calculation for amplitudes of 0.4g0 and 0.7g0,

for an oscillation with a Quality factor of 100. Given a desired gap bias, ranging from 0.9

to 0.99, the energy plots show that for each bias a different minimum energy frequency

exists. There is a limitation, the curves show that as the bias is close to unity, the range

of feasible frequencies gets reduced, what implies difficulty of using that combination with

one-sided actuation. In special, Figure 4.48b doesn’t present a curve for bias 0.99, as all

Harmonic Balance voltage predictions have negative-valued V 2.

Another interesting result can be extracted of the plots. As the oscillation bias is close

to unity, the lowest energy frequency moves to natural frequency (wk = 1) or even
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Figure 4.48: Steady-state energy consumption curve based on the calculated Harmonic
balance voltage for fixed damping at Q = 100. The curves are shown for different gap
bias, and with normalized frequency in the x-axis. a) Amplitude of desired oscillation
0.4g0. b) Amplitude of desired oscillation 0.7g0.
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Figure 4.49: Steady-state energy consumption curves based on the Harmonic balance
voltage for a fixed damping of Q = 100 and a fixed gap bias of 0.95. The curves compare
the energy consumption depending on the amplitude of the oscillation.

higher frequencies. This frequency displacement is coherent with results of the maximum

voltage peak. But leads to an unexpected conclusion, in some cases, for large amplitudes,

frequencies higher than natural frequency can lead to more energy efficient system driving.

The same conclusion is extracted if the desired bias is fixed, as shown in Figure 4.49.

As the goal is large amplitudes, Harmonic Balance also allows to analyze the effect of

increasing the oscillation amplitude for a given gap bias. As amplitude increases, energy

consumption increases, as expected. But at the same time, the frequency range decreases

and the minimum oscillation frequency shifts to natural frequency.

As a conclusion, Harmonic Balance allows to choose the minimum energy consumption

frequency of oscillation depending on the desired oscillation. And as can be seen in
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the plots, the difference in energy consumption can be important. Moreover, Harmonic

Balance energy analysis is critical, as depending on the desired oscillation amplitude can

lead to unexpected range of efficient frequencies.

4.5.4 Stability
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Figure 4.50: The stability of the solutions is analyzed with long-time numerical
simulations, applying the Harmonic Balance driving voltage in open-loop. Fixed damping
at Q = 100 and different input frequencies. a) wk = 0.80. b) wk = 0.90. c) wk = 0.96. d)
wk = 1.

The Harmonic Balance solutions predict the range of feasible oscillations in open-loop

driving, but they don’t guarantee the stability of the solutions. Analysis of the stability

of the predicted solution is carried out using long-time numerical simulations. To do so,

the simulations are run on the system using the fitted voltage obtained by Harmonic

Balance for the desired combination of static displacement and oscillation amplitude. To

emulate the steady-state response predicted by Harmonic Balance, the voltage is applied

in open-loop to the MEMS resonator with a very slow increasing ramp to avoid transients

in the simulations.

As expected, the stable outcome is more restrictive than the Harmonic Balance prediction,
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Figure 4.51: The stability of the solutions of the previous figure is compared to the input
voltage peak (Vmax). a) wk = 0.80. b) wk = 0.90. c) wk = 0.96. d) wk = 1.

Figure 4.50. The plots show that the stable (brown area) area is much reduced than

the feasible one (green area). Not only that, there is a stable zone where the desired

oscillation output is not satisfied (orange area). In this area, the difference between the

desired output and the simulated output is larger than a 5%.

The analysis shows that, as frequency differs from resonance (e. g. wk = 0.8), the

Harmonic Balance calculations of pure sinusoidal oscillation fail more often. This is

related to the difficulty to fit a correct voltage to that one obtained using the Harmonic

Balance equations. Moreover, the results rely on open-loop driving and how the voltage

is applied. Improvements should be expected including closed-loop schemes.

These results turn out the question of the possibilities to predict the goodness of Harmonic

Balance solution. To try to obtain an insight on the question, the stability curves has

been compared to the input voltage peak curves, Figure 4.51. Analysis of the plots show

that no clear correspondence between the peak voltage and the stability can be drawn.
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4.6 Conclusions

This Chapter highlights the following points:

• The use of a sinusoidal input signal with only first harmonic always generates

outputs with at least first and second harmonic component, due to the nature

of the parallel plate actuator. The existence of the V 2 term leads to a nonlinear

response, with the possibility of non-pure-sinusoidal responses. Moreover, we cannot

choose the desired static bias and oscillation amplitude, as this is determined by

the magnitude of the input voltage. This has been confirmed numerically using

long-time simulation and analytically using harmonic balance analysis. The use of

a sinusoidal input signal with only first harmonic always generates outputs with

at least first and second harmonic component, due to the nature of the parallel

plate actuator. The existence of the V 2 term leads to a nonlinear response, with the

possibility of non-pure-sinusoidal responses. Moreover, we cannot choose the desired

static bias and oscillation amplitude, as this is determined by the magnitude of the

input voltage. This has been confirmed numerically using long-time simulation and

analytically using harmonic balance analysis.

• A perfect sinusoidal output can only be achieved with an input signal with the

appropriate form and number of harmonics. As desired amplitude increases, also

increase the number of needed harmonics. Although a closed-form analytical

solution cannot be obtained, the combination of Harmonic balance calculations and

the use of numerical fitting allows to choose the right input signal to reach the

desired oscillation in most of the available oscillation range. Examples show the

viability under changes of damping and frequency of oscillation.

• The use of Harmonic Balance calculations to choose the desired oscillation amplitude

breaks the usual concept of resonant frequency associated with a fixed sinusoidal

driving with a DC load plus and AC load. Any combination of oscillation and

frequency is possible. And for each amplitude of oscillation a minimum energy

frequency can be chosen. The only constrain is the ability to apply the calculated

voltage, and the impossibility to generate some voltages with one-sided actuation.

• The range of reachable amplitudes is large, and the stability and feasibility has been

109



shown using long-time numerical simulation. Based on Harmonic Balance, stability

predictions are not precise and still relay on time-demanding simulations.

Consequently, the analysis gives the needed insight to propose a control strategy that must

be able to guarantee a perfect sinusoidal oscillation of the MEMS resonator. The controller

must be able to produce the desired frequency components for the input voltage, adapting

them to the desired amplitude and bias, and ensuring the stability of the oscillation at

minimum energy consumption.
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Chapter 5

Control of electrostatically actuated
MEMS

5.1 A survey of prior work on MEMS control

In order to improve the performance of the system, two main approaches exist in MEMS.

The first approach is based on modifying the design of the electromechanical system,

either by introducing mechanical nonlinear leverages [85], or changing the profile of the

electrostatic forces by modifying the design of the capacitor plates [172], [32].

The second approach is based on control strategies. Multiple control techniques have

been used in the literature. Table 5.1 tries to summarize some of the different approaches

that exist, the purpose of each of the approaches, and the device or the model in which

are based. Recent control approaches are each time more complex and in some cases a

mixture of different methodologies.

The majority of the approaches choose as a control variable the driving voltage, specially

in the fabricated devices. Current drive [39], [37] and charge drive [181], [117] are studied

and tested, but no commercial devices use the approach to our knowledge.

The major part of the control analysis and simulations are based on the mass-spring-

damper model, and only in some studies other nonlinearities are treated. In resonators

only a few examples analyze the non-linear cubic spring [107], [22]. However, in gyroscopes

the quadrature errors are more generalized [91], [187].

5.1.1 MEMS oriented control strategies

Due to its electronics-derived fabrication techniques, most of the initial control schemes in

MEMS have been adapted from standard electronic devices, for example, clock-oscillators

or RF-antennas.
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Position Oscillation Resonators - Gyroscopes Mirrors -

Control control Accelerometers Switches

Voltage [113], [99] [233] [210] [91] [220]
drive [176], [244] [107] [175] [94] [209]

[29], [22] [211] [112] [105] , [167] [42]
[239], [53] [214] [19], [67] [46]

[39] [6] [72], [48] [177]
[100] [80] [148] [209]
[165] [31] [160] [28]
[161] [93] [187] [234]

[237], [238] [191] [121]
[47], [140] [232] [106], [193]

[35] [169] [150]
[182] [3], [142]
[40] [180]

Current [37] [16]
drive [39] [110]

Charge [238], [117] [23]
drive [116]

[157]
[189]
[115]
[181]

Theoretical [115], [99] [107] [93] [121], [48]
[140] [233] [232] [160], [105]

[238] [239] [3], [106]
[53] [19], [67]

[117] [242], [243]
[116], [176] [150], [187]
[244], [237] [148]

[22] [91]
[182] [94]
[29] [111]

[157] [158]
MEMS [39] [226] [169], [217] [41], [3], [97] [209]
applied [40] [112] [168], [48]
control [182] [175] [180], [142]

[35] [31] [102] , [91]
[6] [241] , [121]

Classical [29] [210] [160], [193] [42]
control [47] [93] [234]

[28]
Non-linear [161] [107] [214] [106], [150] [220]

Control [239] [110] [191] [105], [151] [177]
[22], [53] [16] [80] [19], [94] [46]

[100], [165] [72], [193]
[237], [238] [160]

[244] [152]
[186] [187], [121]
[240] [148], [67]

[120]
Energy [116] [232] [160],
control [176], [140] [148]

[117] [121]
[115]

Chaos [100] [23] [158]
[211]
[16]

[110]
[233]

Experimental [181] [211] [80] [150], [97] [28]
[161] [31] [120], [48] [42]
[35] [214] [168] [178]

[100], [165] [6] [142], [121] [177]
[47] [175] [160] [234]
[29] [112] [152]

[113] [169] [111]
[193]
[191]

Table 5.1: Classification of the different control approaches in the literature
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Initially, the introduction of control has been linked to positioning applications and the

necessity of extending the travel range, which is limited by the pull-in instability. In [182]

they showed that the pull-in instability can be avoided by the simple addition of a series

capacitance, externally or on-chip. Similar approach was presented in [40]. Later, the

study was complemented introducing a charge control technique, that clearly improves

the travel range (83% of the gap), and defined the Charge Pull-in that appears instead,

due to charge accumulations [181]. Similar results were presented in [37] with charge drive

and a pulsed current source delivering the needed amount of charge to the actuator. The

case is analyzed theoretically with an ideal model in [157], showing that the embedding

of a device into a control circuit gives rise to a nonlinear and nonlocal elliptic problem.

Various capacitive control schemes are shown to give rise to variations in the bifurcation

diagram and changes in the pull-in voltage and pull-in distance.

Other approaches to increase the travel range in MEMS positioning rely on high speed

switching. In [189] bidirectional driving is possible using high-speed switching and charge

control. In [35], what they call resonant drive technique is used, based on placing an

inductor in series with the actuator capacitor and operating the circuit at its electrical

resonance frequency with the help of an oscillator loop. In [165], voltage switching with

position feedback is used to extend the travel range up to 70% of the gap. Operation

is limited only by the position jitter due to the time delay introduced by the readout

circuits. This approaches are in line with the technique used in [51], where pre-shaping

of the input voltages is used to obtain larger plate movements.

Another field of study has been microswitches and their switching time. In [39] they

found that the value of the source resistance of the voltage drive used for switching has a

profound effect on both switching speed and energy requirements, and tuned its value to

optimize switching applications.

Finally, an important field for control is the inertial sensors applications. Concerning to

the control part, they can be differentiated between static applications and oscillatory

applications.

We refer as static applications those were the inertia proof mass remains static in the

sensing direction, and the force that is applied to maintain the mass static gives the value

of the sensed variable. This procedure is known as Force-Balancing technique. It can be

extensively found in accelerometers ( [114], [112], [175]) where the generated force balances

the inertial force created by the acceleration of the mass. Or in gyroscope applications [91],
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where is used to extract the Coriolis force. The fact that the generated force is directly

the sensed variable, added to the static behavior of the mass, makes this approach very

popular.

More elaborated approaches, based on sigma-delta digital to analog modulation have been

developed, making use of the existing knowledge of the IC technology. Explanation of

the capabilities and the limitations of the sigma-delta force-feedback loops are presented

in [80] and [214]. Applications to vibratory gyroscopes can be found in [97] and [168]. All

of them emphasize the increase in the dynamic range and reduction of susceptibility to

environmental parameters. Nowadays they are still a typical approach, even in commercial

devices, when accuracy in the modulation is needed [41] [55]

In oscillatory applications, one can basically find vibrating accelerometers and gyroscopes.

At the beginning, oscillation was usually obtained by implementing a positive feedback

loop with a transresistance amplifier between the output and input of the device, using an

inverting amplifier to produce a 90-degree phase-shift and drive the system to resonance

[169], [48]. This basic approach was improved using standard oscillatory circuits, widely

known from quartz technology, as Phase-Locked Loop (PLL) drive and Automatic Gain

Control (AGC) [48] (Figure 5.1).
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Figure 5.1: Example of a) a linear PLL and b) AGC control loops [48]

Phase-locked loop circuits allow to extract with precision the frequency of a signal, and

this is used to generate the feedback signal that drives the resonator to its resonant

frequency. An example of a phase-locked loop driven accelerometer consisting of a doubly

clamped beam coupled to a seismic mass can be find in [6]. In [111], a PLL-based control

system was designed, analyzed and implemented in a vibrating cylinder gyroscope. The

control system drives the resonator at resonance with a constant amplitude and nulls the

rotation-induced vibrations.
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Another example can be found in [209], where the phase-locked loop control method is

specially designed for operation of MEMS actuators at their resonant frequency.

Improvements in the use of PLL in MEMS control are still under way, as they are used

in most commercial resonators and gyroscopes. An example can be found in [102] where

PLL is used in parallel with other feedback loops. And in [217], an all digital PLL control

for tuning-fork resonator is shown with fixed amplitude control.

As the device is driven to resonance, and is very dependent on damping conditions,

amplitude control is needed to guarantee the needed amplitude of vibration. The IC

approach to ensure that oscillations are at a fixed amplitude is Automatic Gain Control

(AGC). A basic AGC design consists of a transimpedance amplifier loop with the gain

adjusted to cancel out the damping of the system, Figure 5.1. An example of an

accelerometer with electrothermal excitation can be found in [31]. Example and design

of the loop for vibrating mass gyroscopes can be found in [48].

Tuning of the nonlinear loop defined by the AGC is presented in [122], [121] for the

Jet Propulsion Laboratory vibratory gyroscope. Analytical and experimental results

are presented for a significant range of controller parameters. Example of a proposed

implementation for a dual-mass gyroscope is also presented in [3]. In [142] a discrete

AGC control is proposed for a z-axis MEMS vibrational gyroscope. And in [199]

implementation in DSP board is presented, connected to resonant frequency tracking

with EAM demodulation to avoid parasitics.

Automatic Gain Control is still a hot topic, as multiple approaches to fix the variable

gain are present in literature. In [41] an automatic gain control (AGC) circuit without

a PI is presented for the drive mode, combined with sigma-delta force feedback control

loop. In [226], application of AGC is presented in RF-MEMS oscillators. And in [241], a

modified AGC approach is presented, with parallel amplitude gain and phase controllers

for gyroscopes.

All these approaches have been complemented with introduction of parametric excitation

of MEMS devices. Oscillatory loops are maintained, but the frequencies of the driving

voltage exploit the parametric resonance of the device. Examples are found in [100]

and [72]. They show that parametric excitation can have an stabilizing effect and

resolution enhancement.

In commercial devices, they often use a mixture the presented approaches, as in the case

of the Northrop Grumman control approach [201] where in a digital board four primary
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servo loops are implemented for gyroscopes: drive amplitude, drive frequency PLL, sense

Coriolis force rebalance and sense quadrature.

5.1.2 Classical control strategies

In order to improve the performance of the devices, classical control strategies have also

been implemented. Proportional-Integral-Derivative (PID) controllers, pole-placement

or feedforward approaches have been proposed as the main control, or as a part of the

complete control strategy.

Classical control is a good approach for positioning applications. In [47], they proposed

a position feedback controller to stabilize a electrostatic microgripper, and analyzed the

differences between open-loop and closed-loop actuation. In [113], voltage control is used

to extend the travel range of a parallel-plate electrostatic microactuator beyond the pull-in

limit. A classical controller is designed over the linearized plant for each working point.

In microswitches, switching motion is regulated by feedback approaches. In [29],

a comparison of pre-shaped open-loop driving against a feed-forward and feedback

proportional-derivative loop are presented for an optical switch. Their conclusion is that in

MEMS devices open-loop can be easily implemented and with good performance, however

closed-loop is more robust but of difficult implementation.

In [42], feedback control using a linear voltage control law enables operation of electrostatic

micromirrors beyond the pull-in angle. Experimental measurements show that tilt angles

beyond the pull-in point can be achieved. In [234], a multi-loop digital PID control

method is proposed to significantly improve the positioning performance of a dual-axis

micromirror.

For accelerometers and gyroscopes, PID techniques are usually too limited to handle the

complete dynamics, and PID control is usually a part of one of the control loops. As

example, in [142] a PI controller drives the error of the AGC loop to zero. An interesting

direct application of a basic PID control is shown in [210]. Optical position sensing of

the oscillation is implemented and used to feed the value in the controller to sustain the

oscillation of the resonator. However, these are experimental controllers without formal

validation.
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5.1.3 Classical nonlinear control strategies

The nonlinear nature of the MEMS electrostatically actuated devices is usually too

strong to achieve good performances with a PID control. Consequently, nonlinear control

strategies have also been studied to overcome linear control limitations.

For positioning applications, much effort has been devoted to feedback and feedforward

techniques, combined with Lyapunov analysis. In [46], full-state feedback control with

current estimation and feedforward is applied to an electrostatically actuated double-

gimbaled MEMS mirror. In [53], different methods for improving position control

of electrostatic MEMS actuators are analyzed, including switching control and two

methods of feedback linearization. And in [238], charge-position control is improved by

a combination of trajectory planning and nonlinear control with Lyapunov analysis. The

results show stabilization of the system at any point in the gap while ensuring desired

performances. And in [5], combination of feedback linearization and trajectory planning

show the capability to extend stable operation range and enhance system’s performance.

When it comes to oscillation control, a full range of elaborated approaches are present.

In [22], oscillations of a fixed amplitude in a nanoelectromechanical devices are sustained

with nonlinear state feedback. And describing function is used in [191] to define a

nonlinear feedback loop for a resonant accelerometer, Analog Devices ACRC-RXL. The

nonlinearity is implemented in analog electronics and tested.

Sliding mode approaches are also proposed for different devices. In [178], [220], [177], a

sliding mode control algorithm for a two-axis gimbaled MEMS micromirror with a first-

order sliding function is shown to yield a fast and robust switching performance over a

range of system parameters, in simulation as well as experimentation. Or in [19], sliding-

mode control is proposed for a vibrating gyroscope. They show that a sliding-mode

controller for the vibration of the proof mass generates a better estimate of the unknown

angular velocity than that of a model reference adaptive feedback controller, resulting in

improved performance.

Different sliding-mode approaches are still under test. In [174], sliding mode observer, as

well as, a robust control scheme is used to improve performance in gyroscopes. In [65], a

sliding mode control for a vibratory gyroscope with adaptation is presented. And in [58],

a model-based and a non-model-based sliding model control approaches are presented to

improve tracking control of the drive and sense modes of an uncertain vibratory gyroscope.
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Optimal control is used in [107] to deal with the problem of controlling the nonlinear

dynamics of electrically actuated microbeams. A theoretical study using Melkinov analysis

and derivation of the optimal excitation is presented. Its use shifts the erosion of the safe

basin in the phase plane, which is the event that triggers the pull-in. They highlight good

performances of the simulated control method beyond theoretical expectations.

This optimal control study is linked to research works that analyze the possibility of

chaotic behavior in the actuation of the electrostatic devices. The works conclude that

chaotic behavior is possible [110], [213], [23], [233], including period doubling and strange

attractors, and experimental data confirm this analysis. In order to prevent chaotic

behavior, in [16] they compute the Melkinov function in terms of the parameters of a

PD controller, and using this relation conclude that is possible to design controllers that

will remove the possibility of chaos. On the other hand, some researchers exploit the

possibility of chaos to select high amplitudes of oscillation [92].

Moreover, due to its fabrication process, MEMS devices have plenty of imperfections. For

this reason, several authors have proposed control techniques to compensate for them.

Multiple H∞ controllers have been proposed for the different kinds of applications. In

[244], a robust model-based controller coupled to a feed-forward compensator is designed

to setpoint regulation maneuvers of an electrostatic actuator. Linearized models of the

nonlinear system are considered at multiple operating points for short-range maneuvers,

while the feedforward compensator provides the nominal voltage. The robust controller,

designed via H∞ loop-shaping, handles any perturbations around these points. H∞ loop-

shaping for a tunneling accelerometer is reported in [93], where the control shapes the

loop to achieve high disturbance rejection, noise attenuation, and robustness to parameter

variations. In [193], an H∞ feedback controller for a MEMS gyroscope is presented

and experimentally tested with the closed-loop fabricated using discrete analog circuits.

Performance is compared to a PID controller, showing its robustness over unmodeled

dynamics. Another approach is designing a robust controller using input-to-state stability

combined with backstepping [240]. Or designing an H∞ controller complemented with

linear parameter variation, as in is [186], for general electrostatic actuators.

A recent example of a resonant gas sensor with Amplitude Feedback Control using H∞

loop shaping is presented in [81].

The other approach that has been extensively proposed to improve the performance of the

MEMS devices against uncertainties is adaptive control, linked to any of the other control
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techniques. A good general formulation of adaptive controller strategy for sinusoidal

disturbances rejection, with stability discussion of general plants is presented in [159].

Adaptive control is specially proposed in gyroscopes, due to its necessity of high

performance. But other applications as MEMS microactuators have also been studied

[161].

In [187], they analyze the dynamics of ideal and non-ideal vibrating gyroscopes, and

suggested an approach that uses nonlinear feedback control to drive the system and

compensate for errors. Both non-adaptive and adaptive strategies are presented.

Extending this approach, adaptive add-on control algorithms for the conventional mode

of operation of MEMS z-axis gyroscopes is presented in [149], [150]. This scheme is

realized by adding an outer loop to a conventional force-balancing scheme that includes

a parameter estimation algorithm. The parameter adaptation algorithm estimates the

angular rate, identifies and compensates the quadrature error, and may permit on-line

automatic mode tuning. A discrete time version of the observer-based adaptive control

was presented in [152], and implemented using digital processors.

In [105], an adaptive controller is used to tune the frequency of the drive axis of a

vibrational gyroscope. This is an attractive alternative to a standard PLL approaches,

since it introduces feedback, which can reduce the effects of imprecise fabrication. An

extension with force-to-rebalance is proposed in [106]. Two adaptive controllers are

described to tune the drive axis frequency to a preselected frequency, regulate the

amplitude of the vibration, cancel out quadrature error due to stiffness coupling, and

drive the sense axis vibration to zero. The first controller is based on an averaged, low

frequency model, and the second is based on the full gyroscope model.

Similar approaches are presented in [94] or [67], with an adaptive control to guarantee

the stability of the gyroscope. Or in [91], where an adaptive force-balancing control

scheme is presented for a MEMS Z-axis gyroscope. The proposed scheme controls the

vibratory modes of the proof mass while ensuring that the control input satisfies the

magnitude constraints. The performance of the gyroscope is enhanced even in the presence

of fabrication uncertainties.

In [90], the optical position feedback presented in [210] is used for an adaptive control

approach that handles the uncertainties and faulty conditions.
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5.1.4 New nonlinear control strategies

The evolution of control techniques has lead to design of controllers that can specifically

solve some of the particularities of the parallel-plate electrostatically actuated MEMS.

In [237], improvement of the performance of a parallel-plate electrostatic micro-actuator

is shown using three different approaches: differential flatness, Lyapunov functions, and

backstepping. The simulation results demonstrate the efficiency of the considered control

schemes and provide some comparisons on their performance. Extension of the work,

including uncertainties is presented in [239], with two control schemes, both based on

input-to-state stabilization (ISS) and robust backstepping.

In [190], an interesting approach to solve the robust output regulation problem of the

oscillatory one-degree-of-freedom electrostatic actuator is presented. They show that it

can be converted into a robust regulation problem with output constrained by internal

model design. The problem is analyzed and a controller designed using a Lyapunov

function technique. The final design of the output-error-constrained tracking control law

ensures that, in the presence of large parameter variations, the harmonic displacement of

the parallel-plate electrostatic actuator can be beyond the pull-in position and up to the

full gap without contact between the movable and fixed plate during the transient period.

Using the specific characteristics of MEMS electrostatic devices, passivity and energy-

shaping approaches have been presented to solve the problem from the energy point of

view. In [145], the approach is tested with a reduced-order model of a MEMS device,

allowing to design controllers that adjust the energy transfer in a desired manner.

Passivity-based strategies have also been analyzed for positioning applications. In [118]

and [116] they showed that input-output linearization, passivity-based design, and the

theory of port-controlled Hamiltonian systems lead naturally to static output feedback

of device charge. Using this analysis, they implement an output-feedback control

using a reduced-order nonlinear observer of the electrode velocity. Simulations predict

greatly improved transient behavior, and large reductions in control voltage. A model

improvement and generalization of the approach is presented in [115] and actuation under

presence of parasitics is analyzed in [117]. No extension of the approach to oscillating

devices have been presented.

Other energy approaches are averaged potential function shaping, as is used in [140]

to stabilize and extend the operation range of a parallel plate actuator bi-directionally.
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An oscillatory stabilizing control law is designed by parametrically shaping the averaged

potential. The performance of the controlled system is shown to be robust with respect

to disturbances. Or the design of nonlinear controllers based on energy-control, as

in [176], that are used to stabilize all equilibria of an electrostatically controlled actuator,

while guaranteeing that pull-in does not occur. The approach guarantees stability and

performance, against other approaches in the literature.

In gyroscopes, energy control is used as a means of controlling the axis of oscillation [187].

In [148] they showed that a dual stage control architecture with self-calibration and

feedback capabilities is needed to control a MEMS angle-gyro. The self-calibrating

portion of the control identifies and electronically trims large imperfections, while the

feedback energy control compensates for remaining small nonidealities and in-operation

perturbations.

Similar approach is presented in [160], where a nonlinear feedback control system that

compensates for dissipative forces, mismatched springs and cross-axis stiffness ensures

that the mass continues to behave as a freely vibrating structure. Theoretical analysis

and simulation results presented in the paper show that the gyroscope can accurately

measure both angle and angular rate for low-bandwidth applications.

5.2 Thesis proposed strategies

As has been presented in the previous Section, multiple approaches have already been

applied to MEMS electrostatically actuated resonators. However, after analyzing the

existing control strategies, none of them specifically copes with the thesis desired goals.

In Chapter 4, the behavior of parallel-plate electrostatically actuated MEMS resonators

has been studied. From that analysis, four main goals for the new controller can be

defined:

• Stability of the oscillation for large amplitudes.

• Robustness of the oscillation against inherent MEMS fabrication uncertainties.

• Perfect sinus-like oscillation for high precision applications.

• Minimum energy consumption to sustain the oscillation.

In detail, the first goal is straightforward, as any control strategy aims to guarantee the

stability of the system and tracking of the desired set-point.
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The second goal is of great importance in MEMS devices. Batch in-die fabrication

techniques produce device imperfections. This drawback is inherent to MEMS devices.

Combined with imperfect parameter characterization and degradation over time, it leads

to control strategies capable of absorbing these imperfections and uncertainties.

The third goal is associated to system performance. As explained in Chapter 4, when

a MEMS Resonator has to be used as a high performance sensor device, the existence

of non-desired harmonics in the oscillation can interfere with the precision of the sensed

output. MEMS Resonant Gyroscopes are good examples of devices where the purity of

the harmonic oscillation is crucial [187]. For this reason, the Parallel-Plate Electrostatic

Actuators are often avoided, because they are extremely nonlinear and introduce a second

order harmonic in the oscillation of the device [183]. Electrostatic Comb Actuators are

used in this case, however, in some devices Comb Actuators cannot be used [146]. As

stated in Chapter 4, a pure harmonic oscillation can be achieved, if the right control

action is provided.

Finally, MEMS resonators are often connected to low energy sources. Consequently, an

energy efficient control law must be provided.

5.2.1 Proposed controller

In order to satisfy the four goals and obtain the desired oscillation with the expected

stability and performance, a three-stage controller is proposed. Figure 5.2 describes the

architecture of the controller.

 IMP-based

Controller

Robust

Stabilizing

Controller

MEMS

Resonator

Extremum

Seeking

Controller

Cost

Function

+ +
- -

gd(t) = G0+G1 sin(ωd t+φ1)
V (t) g(t)

ωd

ωd

Figure 5.2: Control architecture. A three-stage controller is proposed for control of the
system. First stage is a Robust Stabilizing Controller. The second stage is an IMP-based
Controller. The third stage is a low energy Extremum Seeking Controller.

On the first stage, a Robust Stabilizing Controller is used to improve the stability and
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robustness of the system. On the second stage, an Internal Model Principle (IMP) based

Controller [69] is used to generate the desired control action to obtain a pure-sinusoidal

oscillation and reject any harmonic or oscillation perturbation. On the third stage, an

Extremum Seeking Controller reduces the energy consumption by selecting an appropriate

oscillation frequency for the desired oscillation amplitude and static displacement. The

selected cost function is based on the energy content of the input to the MEMS Resonator.

In the rest of the Section, the three stages are discussed and justified based on literature

references. In Chapter 6, the controller is designed and in Chapter 7 its performance is

tested in simulations.

5.2.2 Robust control strategy

The previously presented literature review shows that robust control strategies, Figure

5.3, can deal with MEMS resonators imperfections [244], and successful approaches has

been presented [93], [193], [240], [186], [81].

u

K∆

g

∆

M

Figure 5.3: Robust control system framework

However, none of the literature examples treat the non-linearity of the spring into account.

This approach increases the uncertainty, and would be a clear extension some of the

existing approaches. Moreover, the fact that the output must be a perfect sinusoid at

with minimum energy consumption adds constrains to the robust controller, as it must

not interfere with the rest of the loop.
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5.2.3 Internal-Model-Principle based control strategy

The Internal Model Principle states that a controller must incorporate a model of the

disturbance or reference dynamics to have perfect disturbance rejection or signal tracking

[69].

. . .

+
-

+
+

+
-

+
+

+

+

+

+

+
+

Resonant Controller 
gd g

K0(s)

R̂1(s)

R̂2(s)

R̂3(s)

R̂4(s)

R̂n(s)

GC(s) GP (s)

Figure 5.4: Control loop using a Resonant Controller with n resonators.

Several approaches to the Internal Model Principle exist, as can be seen in [25]. Moreover,

IMP based approaches are equivalent to adaptive feed-forward control [124] [20] [26], and

its associated theory applies. In [50], examples of IMP based controller implementation

and their capabilities are presented, with clear explanation of the approaches.

Literature shows that IMP Resonant controllers, Figure 5.4, or IMP Repetitive controllers,

Figure 5.5, can handle the issues involved in the control of parallel-plate electrostatically

actuated oscillatory MEMS devices, specially when dealing with the goal of obtaining

a perfect sinusoidal. Most applications of existing controllers are related to the control

of sinusoidal voltage sources, as in voltage rectifiers [49] or voltage inverters [119]. In

these examples, the controller is designed and its performance analyzed to obtain perfect

sinusoidal rejection of undesired harmonics.

Resonant controllers are based in the concept of introducing an infinite gain at a selected

oscillation frequency, in order to eliminate the steady-state errors in that frequency, Figure

5.4. It applies directly to oscillatory MEMS applications and allows to choose the final

shape of the response. It has the advantage that the specific signals and harmonics that
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are desired to be canceled/tracked can be selected. Different types of implementations can

be found and for many devices. In [196], different applications are shown and analyzed in

voltage-source converters. Application to disturbance rejection in smart structures, with

Integral Resonant Controller is presented in [7], [14], [144]. Disturbance rejection in a

rotary fast tool servo machine is presented in [34]. And the rejection capability is tested

in [104] against non-linear triangular disturbances.

+
-

+

+

+

+

Repetitive
Controller

gd g

z−N H(z)

GC(z) GP (z)

Gz(z)

Figure 5.5: Control loop using a Repetitive Controller.

Using similar approach, Repetitive controllers force the inclusion of the modes of

the disturbance/tracking signal in the feedback loop. They are equivalent to include

infinite resonators in the control loop, but they are automatically generated by the

repetitive controller, Figure 5.5. It has two main characteristics: the closed-loop system

asymptotically tracks the reference periodic signal, and this property holds for small

variations of plant parameters (robust tracking property) [82], [108]. This technique

has been extensively used in different engineering areas, such as CD and hard-disk arm

actuators [43], robotics [60], electronic rectifiers, current harmonics active filters [245] and

small actuators [89]. It can be implemented in analogical or digital form [216]. Analysis of

robustness, performance and trade-offs is discussed in [103]. And interestingly, in [203], a

repetitive controller with time period adaptation is presented, showing good performance,

what validates one of the approaches that can be needed.

Both IMP based controllers could be ideal in oscillatory MEMS applications, in order to

obtain a perfect sinusoidal oscillation with rejection of all the existing harmonics due to

nonlinearities of the system and uncertainties. And none of the capabilities of Internal

Model Principle Resonant Controllers or Repetitive Controllers have been applied to the

oscillation of parallel-plate electrostatically actuated MEMS to present day.
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5.2.4 Extremum seeking control strategy

As a final strategy, energy minimization is introduced. This involves selection of a Cost

Function and optimization of the control action. If the Cost Function is explicitly known,

optimal control strategies can be applied, but as this is not the case with the MEMS

resonators, other approaches must be used.

Extremum Seeking Controllers are a known approach that has been lately recovered in

the literature due to its capability to drive complex systems to desired cost function goals

without need of complex strategies or mathematical manipulations, Figure 5.6. Extensive

survey is presented in [56] and detailed application in [15].

++
X

GP (s) Cost function
r(t)

sin
g(t)

ξl(t)

Ap sin(ωp t) Extremum seeking controller

−s
s+ωh

uESC(t)

ωESC(t) ξ(t) rh(t)KESC

s
ωl

s+ωl

Figure 5.6: Extremum seeking controller to minimize cost function, based on perturbation
methods, adapted from [15].

To implement Extremum Seeking Control, different approaches can be used [70]: there

exist perturbation and averaging methods ( [15], [98], [13], [17]), sliding mode model

methods ( [71], [70], [225], [141]) and numerical programming optimizer methods ( [195],

[227], [228], [229], [230]). No matter which approach is selected, the methodology is based

on obtaining a gradient estimation by perturbing the input, the model or by optimizers

techniques, and using it to drive the system to minimize the cost function.

Energy minimization has already been tested with extremum seeking controllers. There

exist examples in asynchronous motors [54], actuators with change of stiffness [143] or

wind energy generation [73]. These examples validate the applicability of the approach

to the case of minimization of supplied energy to the electrostatically actuated MEMS

resonator.

Moreover, in [87], an application of Extremum Seeking Controller that modifies variable

gain of a controller is presented, with similar approach to what is needed to change the

phase and frequency of the IMP Controller. And an application of Extremum Seeking
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Controller has been tested in a MEMS gyroscope, [13], where the controller automatically

handles the mode-matching of the frequencies of the gyroscope.

5.2.5 Conclusion

A novel three-stage controller has been proposed, in order to achieve the dissertation

goals. The controller implements known strategies to the electrostatically actuated MEMS

resonator problem. In the following Chapters the design and verification will be presented.
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Chapter 6

Control architecture design

6.1 Introduction

In this Chapter, the strategies proposed in Chapter 5 are analyzed and tested to design

a controller for pure-harmonic oscillation of a parallel-plate electrostatically actuated

MEMS resonator, in a robust and energy efficient manner.

As has been stated in previous chapters, the nonlinearity of the system prevents it to

produce a perfect sinus-like oscillation, unless it is forced. Moreover, stability of the

system can vary extremely due to parameter uncertainty. Consequently, the right strategy

has to be selected to obtain a perfect sinus-like oscillation that can remain stable under

parameter variation.

In this Chapter, the design principles and tuning of the control algorithms are analyzed

and tested, and stand-alone performance analysis is presented for the proposed controller

in Figure 5.2. Combined global performance will be presented in Chapter 7.

6.2 System reformulation for control

Using the formulation previously introduced in Section 2.3, the oscillation of a parallel-

plate electrostatically driven MEMS resonator behaves as a nonlinear mass-damper-

system
d2g

dt2
= −ωn

Q

dg

dt
+ (ω2

n + κ)− (ω2
n + 3κ)g + 3κg2 − κg3 − fkgk

g2
V 2 (6.1)

where C0 =
ǫAc

g0
, fk =

C0

2g0
, gk =

1
g0M

, B
M

= ωn

Q
, K

M
= ω2

n and κ =
K3g20
M

, being ωn the natural

frequency of the system, Q = 1
2ζ

the Quality factor and ζ the damping of the system.

The majority of control strategies are based on linear systems or systems linearized around

an equilibrium point. In order to apply these standard control strategies, equation (6.1)

needs to be linearized around an equilibrium point.
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It is important to note, as happened in Chapter 4 in the Harmonic Balance analysis, that

better formulation for control analysis is obtained if the square of the input voltage, V 2,

is selected as the input of the system. If the voltage is directly taken instead, formulation

is more complicated without advantages in the results. This selection has implications in

the device design and implementation, as it is explained and solved in Chapter 7.

6.2.1 System linearization

The system nonlinear equation (6.1) can be rewritten in state-space formulation

ẋ = f(x,u) (6.2)

using the standard states for a mechanical system (gap position, x1 = g, and its time

variation, x2 = dg
dt
) and selecting the square of the driving voltage as the input for the

system (u1 = V 2):

x =

(

x1
x2

)

,u =
(

u1
)

.

Using these definitions, the equations are as follows

(

ẋ1
ẋ2

)

=

(

x2
−ωn

Q
x2 − (ω2

n + 3κ)x1 + 3κx21 − κx31 + (ω2
n + κ)− fkgk

x21
u1

)

. (6.3)

As analyzed in Chapter 3, the MEMS resonator has different equilibrium points for each

input voltage. Then, if x0 is the equilibrium point for the input voltage u0

x0 =

(

x10
x20

)

,u0 =
(

u10
)

and given that by definition ẋ0 = 0, it can be derived that

ẋ10 = x20 = 0 and ẋ20 = 0.

Then, using equation (6.3), the equilibrium relationship between u10 and x10 is given by

fkgk
x210

u10 = (ω2
n + κ)− (ω2

n + 3κ)x10 + 3κx210 − κx310 (6.4)

that allows to choose the fixed input voltage for a desired equilibrium position:

u10 =
1

fkgk

(

(ω2
n + κ)x210 − (ω2

n + 3κ)x310 + 3κx410 − κx510
)

. (6.5)

The system around this equilibrium point, assuming small oscillations, can be

approximated by its linearized version

˙̃x = Ax̃+Bũ (6.6)
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where x̃ = x− x0, ũ = u− u0 and the matrices are as follow

A =
∂f

∂x

∣

∣

∣

∣

∣

x0,u0

, B =
∂f

∂u

∣

∣

∣

∣

∣

x0,u0

. (6.7)

Consequently,

A =

(

0 1

−(ω2
n + 3κ) + 6κx1 − 3κx21 + 2 fkgk

x31
u1 −ωn

Q

)∣

∣

∣

∣

∣

x0,u0

=

(

0 1

−(ω2
n + 3κ) + 6κx10 − 3κx210 + 2 fkgk

x310
u10 −ωn

Q

)

(6.8)

B =

(

0

− fkgk
x21

) ∣

∣

∣

∣

∣

x0,u0

=

(

0

− fkgk
x210

)

. (6.9)

And the system under the new variables x̃ and ũ can be approximated by

˙̃x ≈
(

0 1

−3(ω2
n + 3κ) + 12κx10 − 5κx210 + 2 (ω2

n+κ)
x10

−ωn

Q

)

x̃+

(

0

− fkgk
x210

)

ũ. (6.10)

Finally, as the output of the system is directly the position, its transfer function, using

Ỹ (s) =
(

1 0
)

X̃(s) and Ũ(s), is

GPn(s) =
Ỹ (s)

Ũ(s)
≈

− fkgk
x210

s2 + ωn

Q
s+

(

3(ω2
n + 3κ)− 12κx10 + 5κx210 − 2 (ω2

n+κ)
x10

) . (6.11)

This formulation will be used to derive the controllers.

6.3 Robust control strategy

This section defines the robustness analysis that has been performed and the final robust

controller selection, based on Figure 5.2.

6.3.1 System uncertainties

Any MEMS resonator has some inherent uncertainties that can be grouped in four main

types, with different effects on system parameters.

6.3.1.1 Fabrication uncertainties

Fabrication imperfections exist, and they come from the actual fabrication processes.

Common processing techniques include bulk micromachining, wafer-to-wafer bonding,

surface micromachining, and high-aspect ratio micromachining [96]. And these fabrication
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techniques involve multiple steps. Typical examples are deposition of materials, chemical

etching, patterning of materials and electrical bonding. Consequently, the achievable

tolerance varies depending on the process and the design. As a general rule, every added

fabrication step contributes to more imperfections in the final design. These imperfections

have effects, for example, on the real size of the masses, the parallelism of electrostatic

plates, the value of the spring constant and the linearity [188].

6.3.1.2 Environmental and external uncertainties

Environmental and external uncertainties include those external variables that cannot

be tuned. Temperature [146], atmospheric pressure, material aging, leakage of vacuum

environment [205], external vibrations and frame movement are in this group. All of them

have important effects on the final performance of the system but cannot be predicted

in advance in the model. Typical effects are changes on the damping of the system and

changes on the spring constants.

6.3.1.3 Testing and variable identification uncertainties

The effect of fabrication imperfections and environmental uncertainties could be

minimized if testing techniques could perfectly identify them. However, measuring

techniques and testing equipment have their own tolerances. Typical system identification

techniques involve atomic microscopy, optical microscopy, strobe video microscopy, white

light interferometry and electrical testing. Depending on the needed parameters, one or all

the techniques can be used, and tolerances will depend on it. The generated uncertainties

are directly related to the variables that have been identified. Typical examples are mass

of the devices, spring constants [91], damping value and electric parameters [240].

6.3.1.4 Control implementation uncertainties

Some uncertainties are directly related to the control system implementation. They

can differ depending on the technologies that are used. The first level of uncertainties

comes from the selection between analog or digital controller implementation. And

depending on the selection, a second level of uncertainty is introduced depending on

the implementation of the building blocks. Typical existing implementations that can

be found in MEMS devices are: in-wafer control implementation, in-die interconnection

of designed control, discrete components for the control included in-wafer and external
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circuitry implementation of the control. Any of them have impact on different parameters,

but they have special influence on electrical values. Examples of generated uncertainties

are the electrical parasitics [239], the precision of control gains and the uncertainty of

feedback acquisition variables [29].

6.3.1.5 Effect of the uncertainties

Based on the system equation (6.1), Table 6.1 summarizes the effect of the four types

of uncertainty on the model parameters. Some parameters are related between them, in

that case, both appear in the table to simplify variable search.

Fabrication Environmental Testing Control implementation
M ζ ǫ As

K Q ζ g0
K3 K ωn ωn

Ac K3 M g
g0 ωn g0 V
C0 B Cp Cp

fk fk
gk x10
ωn

Q
ζ
κ

Table 6.1: Classification of the effect of the uncertainties on model parameters. Each
uncertainty source acts in different ways and affecting different parts of the model.

Fabrication uncertainty influences the capacity of knowing exactly the parameters of the

model, and consequently, predicting with precision its behavior. For this reason, all the

parameters related to the structural size and force generation appear on Table 6.1 as

uncertain. Environmental uncertainties influence specially the damping of the system,

but also the aging of the materials, an those parameters that can evolve with time.

Testing uncertainty is clearly related to fabrication uncertainty, and the impossibility

to compensate those uncertainties with proper identification techniques. In this case, the

variables that are usually identified by testing of the final devices are included. And finally,

controller implementation uncertainties are related to those parameters that interfere with

the control loop. Specially, position sensing, control voltage generation and equilibrium

point for linearization.
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Based on the combined influences in Table 6.1, six parameters can be selected to

summarize the existing uncertainties. In equation (6.1), the following parameters: Q,

ωn, κ, fk and gk will be considered with uncertainty. And they are complemented with

the linearization position x10. Table 6.2 shows the system parameters values used in the

simulations, with indication of which ones are considered uncertain and their range. It is

the same device used in Chapter 4.

Parameter Value Uncertainty
K 13.406 N/m included in ωn

K3 3.768 · 1010 N/m3 included in κ
M 5.6 · 10−7 Kg included in ωn , κ, fkgk
g0 5 · 10−6 m included in κ, fkgk
A0 3.86 · 10−7 m2 included in fkgk
ε 8.85 · 10−10 constant
C0 6.83 · 10−13 F included in fkgk

ωn =
√

K
M

4892 rad/s 30%

Q 10 - 100 - 1000 50%

κ =
K3g20
M

1.6821 · 106 N/(m Kg) 30%

fkgk =
C0

2g0

1
g0M

2.4401 · 10−4 F/(m2 Kg) 10%

x10 g0 20%

Table 6.2: MEMS Resonator parameters (AF07 resonator3 fabricated design) used for
simulation

Large values of uncertainty are taken into account in order to formulate an approach

that can be valid for different MEMS resonators without need of tuning it depending on

fabrication outcome. For this reason, 30% variability is accepted in natural frequency and

nonlinear spring, 50% on damping, 10% on force factor, and finally, the 20% on initial

condition accounts for different static displacements than can be tolerated. All these

values cover a sufficiently large range of values that could be accepted. However, it is

clear that usual fabrication and system identification should lead to much lower values.

6.3.2 H∞ robust control

The first approach was to use H∞ techniques to obtain a robust behavior of the system

against uncertainties, Figure 5.3, using previous schemes already applied on literature

[244], [93], [193], [240], [186], [81]. Based on the existing uncertainties in the system

(Table 6.2), we can model their effects as multiplicative uncertainty

GP (s) = GPn(s) (1 +W1(s)∆(s)) where ‖ ∆(s) ‖∞< 1 (6.12)
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Figure 6.1: Robust control system framework

being ∆(s) the uncertainty matrix, W1(s) the uncertainty weighting function and GPn(s)

the system nominal transfer function. With this framework, following H∞ Robust Control

theory, the system is schematically represented as in Figure 6.1. Then, if we define the

output sensitivity matrix and its complementary as

So(s) =
1

1 +GPn(s)Grob(s)
(6.13)

To(s) = 1− So(s) =
GPn(s)Grob(s)

1 +GPn(s)Grob(s)
(6.14)

the system is robustly stable if we can design a robust controller Grob(s) that satisfies the

following stability condition [235]

‖W1(s) To(s) ‖∞ ≤ 1. (6.15)
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Figure 6.2: a) Magnitude bode plot of the response of a family of 5000 plants obtained
with the parameters and the uncertainties in Table 6.2. b) Corresponding weighting
function W1(s) of order 20 for the family of plants in a).

To apply robust stability tests and design a controller, identification of the uncertainty

weighting function W1(s) is needed. Figure 6.2a shows a family of plants based on the
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uncertainties and the model in Table 6.2. As can be observed, the existing uncertainties

have a large impact in the frequency spectrum on the desired frequencies of oscillation.

Moreover, identification of weighting function produces a result with large gain on the

range of working frequencies, as observed in Figure 6.2b.

Consequently, trying to apply H∞ approach to the global uncertainty would not be

successful. The first reason is that the controller could not have large action force in

the needed range of frequencies, due to the large uncertainty weighting gains in that

range. And the second reason is that the range of uncertainty variation can turn the plant

unstable, and that behavior cannot be captured by multiplicative uncertainty (6.12). For

this reason, structured uncertainty is used instead.

6.3.3 µ-analysis

-

-

+

+

+ +

+ +
+ +

uQ

uK

uu

gQWQ

gKWK

guWu

δu(s)

δQ(s)

δK(s)

fkgk
x210

ωn

Q

3(ω2
n + 3κ)− 12κx10 + 5κx210 − 2 (ω2

n+κ)
x10

gġg̈u 1
s

1
s

Figure 6.3: Structured uncertainty applied to the linearized system.

When different sources of uncertainty are present in a dynamic system, they usually

have structure, meaning that they affect differently the system behavior. H∞ optimal

control treats the different uncertainties as a whole, and in order to obtain a controller the

approach has to be too conservative to cover all the uncertain effects [235]. In some cases

the strategy works, but when uncertainties are large and structured, better approaches

exist. Structured singular value theory apply in this case, complemented with µ-analysis

to define the stability dependence of each uncertainty, and µ-synthesis to obtain a robust

controller.

First of all, the system equation (6.11) must be rewritten identifying the sources of
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Figure 6.4: Structured uncertainty control system framework

structured uncertainty, Figure 6.3, and from this reconfiguration, matrix M(s)

M(s) =













0 0 0 Wu
fkgk
x210

WQ
ωn

Q
s
x210
fkgk

GPn(s) WQ
ωn

Q
s
x210
fkgk

GPn(s) WQ
ωn

Q
s
x210
fkgk

GPn(s) WQ
ωn

Q
sGPn(s)

WK αm
x210
fkgk

GPn(s) WK αm
x210
fkgk

GPn(s) WK αm
x210
fkgk

GPn(s) WK αmGPn(s)
x210
fkgk

GPn(s)
x210
fkgk

GPn(s)
x210
fkgk

GPn(s) GPn(s)













(6.16)

where αm =
(

3(ω2
n + 3κ)− 12κx10 + 5κx210 − 2 (ω2

n+κ)
x10

)

, and the structure of ∆(s) in

Figure 6.4 are pulled out

∆(s) =





δu(s) 0 0
0 δQ(s) 0
0 0 δK(s)



 . (6.17)

Although six parameters have been identified as uncertain, they combine to the three

structured uncertainty actions in Table 6.3, where δi(jω) ≤ 1 andWi are their uncertainty

weightings based on the uncertainty range.

δu(s) includes fkgk and x10
δQ(s) includes Q and ωunc

δK(s) includes κ, x10 and ωunc

Table 6.3: Structured uncertainty components on linearized system model in Figure 6.3.

Based on the structured uncertainty, µ-analysis can be performed to identify the

robustness of the system [235]. Given the system structure of Figure 6.4, the uncertain

plant system poles are defined by

det(I−M(s)∆(s)) = 0. (6.18)
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Consequently, using singular value theory, the maximum singular value of the system

matrix σ̄(M(jω)) identifies the minimum destabilizing uncertainty matrix ∆(jω) that

leads the system to instability. Based on this reasoning, the structured singular value is

the same concept applied to structured uncertainty matrices, and can be calculated as

follows:

µ∆(M(jω)) =
1

min∆(jω){σ̄(∆(jω)) | det(I−M(jω)∆(jω)) = 0} . (6.19)

Meaning that the structured singular value, µ∆(M(jω)), is the reciprocal of the singular

value of the minimum structured uncertainty matrix that destabilizes the system.

Consequently, as structured uncertainty matrices (δi(jω)) are assumed normalized to the

unity, a system is robustly stable if

µ∆(M(jω)) < 1 ; ∀ω. (6.20)

In this case, the structured uncertainty matrix would need to have a singular value larger

than one to destabilize the system, but this is not possible by definition.

The structured singular value can be difficult to calculate depending on the system matrix,

but its upper bound can be computed numerically based on matrix transformations on

M(s), and in some cases, like the present one, the bound is identical to the structured

singular value. Using this approach, the upper-bound is as follows [235]

µ∆(M(jω)) ≤ infD σ̄(DM(jω)D−1) (6.21)

where D is a block-diagonal scaling matrix with the last element being 1, that satisfies:

D∆ = ∆D. And the robust stability condition is achieved if the µ upper-bound is lower

than the unity for all the range of frequencies.

Figure 6.5 shows the µ upper-bound for the uncertain system plant, using the parameters

in Table 6.2. As can be observed, there exist a range of frequencies where its value is larger

than the unity, meaning that for the range of uncertainty that has been chosen some of

the plants are unstable. This gives place to the necessity of analyzing what uncertainties

lead the system to instability and obtaining a stabilizing controller.

6.3.3.1 Sensitivity analysis

Figure 6.5 shows that the open-loop system can become unstable in the range of chosen

uncertainty. Given that six uncertainty sources have been defined, it is important to
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Figure 6.5: µ upper-bound for the open-loop system, using the parameters in Table 6.2.

understand which uncertainties and which ranges are the ones that are more critical to

the stability of the system.

Associated to the structured singular value, the Stability margin is defined as

Kµ = minK≥0{K | det(I−KM(jω)∆(jω)) = 0} =
1

µ∆(M(jω))
(6.22)

in order to obtain a value to quantify the robust stability of the system. The stability

margin calculates the minimum perturbation that converts the system plant unstable.

The larger the value of the stability margin is, more robust the system is. Consequently,

sensitivity analysis consists in identifying the effect of each uncertain parameter on the

stability margin, and the probability that this parameter variation could drive the system

to instability. Then, using this approach, the sensitivity of each parameter to the stability

of the system can be analyzed.

Based on the uncertain ranges in Table 6.2, sensitivity analysis is calculated comparing

relative variation of a parameter in the uncertain range and the decrease of the stability

margin that generates. Table 6.4 shows the analysis done to the system using the three

parameters in Table 6.3. Only the uncertainty that affects the spring constant of the

model clearly generates stability margin reduction in the range of work. An increase of

the 25% of the range on δK generates a reduction of 25% in the stability margin, while the

same variation on δQ only generates a 1% reduction in the stability margin. The effect

of variations in δu are not detectable in the stability margin. The sensitivity calculations

have been performed using Matlab c© robuststab command [18].

Given the large sensitivity detected, it is important to look in detail to the sensitivity
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Parameter Parameter variation Stability margin variation Sensitivity
δQ 25% of range 1% decrease in the margin 4%
δK 25% of range 25% decrease in the margin 100 %
δu 25% of range 0% decrease in the margin 0%

Table 6.4: Sensitivity of structured uncertainty components, based on example on Table
6.2.

results, and analyze which parameters are included in the δK term. For this reason,

independent sensitivity analysis is carried on.

The calculation of the sensitivity of the system against the six initially defined parameters

is presented in Table 6.5. The system is specially sensitive to the change of the natural

frequency, ωn, as an increase of 25% of its uncertainty range generates a 28% reduction of

the stability margin. The next sensitive parameter is the linearization point, producing a

6% reduction of the stability margin, but clearly less sensitive than the frequency. Finally,

the Quality factor has some effect (1%), and the rest have minor effect unless the variation

is really important.

Parameter Parameter variation Stability margin variation Sensitivity
Q 25% of range 0.2% decrease in the margin 1%
fkgk 25% of range 0% decrease in the margin 0 %
κ 25% of range 0% decrease in the margin 0%
ωn 25% of range 28% decrease in the margin 110%
x10 25% of range 6% decrease in the margin 22 %

Table 6.5: Sensitivity of uncertain parameters, based on example on Table 6.2.

Natural frequency uncertainty is then the most critical parameter in defining the robust

controller. This result could be expected, as resonant frequency generates high gains and

phase shifting in the system and can lead it to instability. Same analysis can be done

for the equilibrium point chosen for linearization, as its variation changes the oscillation

region and the energy profile in the gap, and it is directly related to the pull-in instability,

as defined in Chapter 3.

6.3.3.2 µ-synthesis controller

Although the assumed uncertainty is large, in order to satisfy a large set of possible MEMS

imperfections, following the control structure defined in Figure 6.4 a stabilizing controller

can be designed.

Synthesis of stabilizing controllers using the so-called D-K iteration [235] is a well-known

technique that produces good results in most cases. The only drawback is that in some
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cases the controller can have large order. In the present case, the technique is able to

produce a controller that leads the system to stability in the range of feasible uncertainty.

+

+

u

d

eg
GPn(s)Grob(s)

Figure 6.6: Control loop for disturbance rejection applied to obtain the D-K iteration
controller, based on Matlab c© dksyn command.

The D-K iteration is a two step iterative procedure that takes advantage of the H∞-

optimal control problem solution to obtain a controller that satisfies the stability criterion

in (6.20). Using the µ upper-bound defined in (6.21), an initial D scaling is chosen and

an H∞-optimal controller is calculated. If the µ upper-bound doesn’t satisfy the stability

criteria with the new controller, new scalings are chosen to satisfy the bound, and another

controller is calculated. This iteration process is continued until the closed-loop system

with the controller is robustly stable with a µ upper-bound lower than one.

In the examples, µ-synthesis controller, Grob(s), is generated using the encapsulated

Matlab c© dksyn command [18], and the structure in Figure 6.6.

For the example of Table 6.2, the generated controller applying D-K iteration has the

following transfer function:

Grob(s) =
2.731 · 109s+ 6.465 · 1011

s2 + 4.268 · 105s + 7.543 · 109 (6.23)

It is important to notice that the plant has negative gain, for this reason the controller

and the feedback loop are positive. The frequency response of the controller is presented

in Figure 6.7, which obtains a µ upper-bound for the closed-looped system with the new

controller of 0.9024 in the presented case, so stability is guaranteed for the uncertainty

range. A minimum stability margin of 1.10 is obtained at frequency 0.5365ωn. The unitary

step performance is shown in Figure 6.8 for a family of the uncertain plants with the new

controller, confirming the stability requirements.

In the proposed control strategy, the robust control loop plays an important role. Given

the fact that linear techniques are applied to a nonlinear plant, the Robust controller is the

key to be able to apply the linearized controllers to the nonlinear system. In the proposed

set-up, the linearization equilibrium has been included as uncertain covering most of the
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Figure 6.7: Frequency response of the designed robust controller.
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Figure 6.8: a) µ upper-bound of the closed-loop system with the designed µ-synthesis
controller. b) Simulation of unitary step response of the closed-loop system with the
µ-synthesis controller for a family of plants with uncertainties.
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Figure 6.9: Simulations of nonlinear plant oscillation using the designed robust controller.
a) The natural frequency is wk = 0.965, or 3.5% different from nominal. b) κ is 20% higher
than the nominal value.
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range of oscillation. And the three elements related to the nonlinearity (x10, κ, fkgk) are

explicitly treated as uncertain, and with large range of uncertainty to guarantee robust

stability. However, certain restrictions apply in the level of maximum uncertainty that

can be handled [66], and must be thoroughly tested and validated.

In Figure 6.9, examples with 3.5% natural frequency variation and 20% nonlinear spring

variation are presented, with stable performance. It is important to note that the

controller has been purposely designed only for stability, and that is the reason of the

steady-state error.

6.4 Internal-Model-Principle based control strategy

Once robustness of the system is assured in the working range, oscillation performance is

the following goal. Based on the controller proposed in Chapter 5, Figure 5.2, an IMP

Controller is designed.

+
-

+
+

+
-

+
+

+

+

+

+

+
+

+ +

Ỹd Ỹ

Robust plant GPR(s)Resonant Controller Gres(s)

KP

KI

s

Kr1
s sin(φr1)+ωr1 cos(φr1)

s2+ω2
r1

Kr2
s sin(φr2)+ωr2 cos(φr2)

s2+ω2
r2

Kr3
s sin(φr3)+ωr3 cos(φr3)

s2+ω2
r3

Kr4
s sin(φr4)+ωr4 cos(φr4)

s2+ω2
r4

GC(s) GPn(s)Grob(s)

Figure 6.10: Resonant Controller with four resonators applied to the plant with the robust
controller.

IMP Controllers have the ability to deal with oscillatory systems were certain harmonics

are undesirable [69]. A MEMS resonator is a perfect example where these type of

controllers can be applied. In the dissertation work, both Resonant Controllers and

Repetitive Controllers have been analyzed. Both show the capability to be applied to

MEMS, however, due to the low MEMS system gain and the design procedure, Resonant

Controllers have been chosen.
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6.4.1 Resonant control

When using MEMS devices in high performance inertial applications, the oscillation has

to be as large as possible and as perfect sinus-like as possible. In Chapter 4 it has been

shown that this goal is possible with the election of the right input. In this Section, a

Resonant Controller [69] is shown to produce the needed input to generate the desired

sinus-like oscillation at the desired amplitude.

Figure 6.10 shows the typical configuration of a Resonant Controller, given a plant

represented by GPR(s). Two control loops are involved. In the inner loop, a first

controller, GC(s) is designed to accomplish two goals: provide good stability margins

and robustness and, at the same time, adjust the plant phase between given bounds at

the working frequency bandwidth. The outer loop is the IMP based part. The resonant

controller, Gres(s), consists of a set of resonators in parallel, each one working at one

of the desired working/rejecting frequencies and their harmonics. A complementary

Proportional-Integral controller is applied in parallel to provide steady-state tracking

performance [50].

With this set-up, the resulting closed-loop transfer function using the linearized model in

(6.11) is

Ỹ (s)

Ỹd(s)
=

Gres(s)GC(s)GPR(s)

1 +GC(s)GPR(s) +Gres(s)GC(s)GPR(s)
(6.24)

where

GPR(s) =
Grob(s)GP (s)

1−Grob(s)GP (s)
. (6.25)

In the system under study, the controller GC(s) is needed only to adjust the phase of the

system, because the plant is already robust and stable thanks to the controller derived in

the previous section, Grob(s), in (6.23). Including GC(s), the inner closed-loop transfer

function is

P (s) =
GC(s)GPR(s)

1 +GC(s)GPR(s)
. (6.26)

And to guarantee stability of the resonant controller and maximize the phase margin of

the system, as explained in [34], the following condition on the phase of P (s) must be

satisfied in the working bandwidth

∠P (jω) ∈ [−90◦, 90◦] (6.27)
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In the presented example, this condition is not satisfied unless GC(s) is added, as it can

be observed in the Bode plot of Figure 6.11. The frequency working range is defined from

under half natural frequency (0.4ωn) up to the fifth harmonic of the natural frequency

(5ωn). Consequently, a filter GC(s) has been designed to correct the phase of P (s) to

satisfy the condition. For the system with the parameters in Table 6.2, it would have the

following form

GC(s) = −





(

1
3ωn

)

s+ 1
(

1
7ωn

)

s+ 1





2

. (6.28)

The negative term appears in order to move the phase that is placed at 180-degree to

zero, and the filter adds some needed phase in the neighborhood of the fourth harmonic.

With this filter, the phase of the nominal plant is corrected as observed in Figure 6.11.

Moreover, the filter also guarantees that the phase variation of P (s) due to the accepted

uncertainty is also between bounds. Figure 6.12 shows the phase variation for a set of

2000 plants generated with the parameters in Table 6.2. In all cases the phase is between

bounds in the frequency working range. This validation is important to guarantee the

stability during frequency seeking in the energy minimization loop.
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Figure 6.11: Bode plot comparing the nominal robust plant of GPR(s) and the plant P (s)
in (6.26), resulting of adding GC(s) to suit the Resonant Control needs.

Once P (s) is adequately trimmed, the Resonant controller can be designed. As it is

implied by the Internal Mode Principle, the reference or disturbance to be tracked or

rejected must be included in the control loop. For sinusoidal signals, this translates to

the introduction in the controller of a pair of poles at the desired frequency. With this
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Figure 6.12: Analysis of P (s) phase variation due to the range of chosen uncertainty in
Table 6.2. A set of 2000 plants are presented.

inclusion, the controller has infinite gain at the desired frequency, leading to precise signal

tracking or disturbance rejection at that frequency. Consequently, the resonator terms

in the controller are chosen with the following form, using the adaptive feed-forward

cancelation approach in [34] for the zeros:

R̂i(s) = Kri
s sin(φri) + ωri cos(φri)

s2 + ω2
ri

(6.29)

where ωri is the desired working frequency and its harmonics in the thesis case, φri is

calculated as [124]

φri = −∠P (jωri) (6.30)

and Kri is adjusted to have enough gain and performance. Finally, KP + KI

s
is a PI

controller that is tuned with the rest of the controller resonator gains to produce a desired

global performance, tracking and stability of the closed-loop transfer function (6.24).

Parameter Value

KP 5
KI 100
Kr1 500
Kr2 200
Kr3 100
Kr4 50

Table 6.6: Resonant controller parameters for the model in Table 6.2.

Table 6.6 shows the selected controller parameters based on the MEMS resonator in

Table 6.2. The Resonant controller is designed with four resonators, as Chapter 4
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analysis indicates that in most cases four harmonics is enough to obtain a sinusoidal

output. Moreover, in terms of final design, more than four resonators could be difficult to

implement in commonly available technology. Figure 6.13 shows the resulting controller

Bode plot for a desired frequency of oscillation at 0.96ωn. In the Bode plot the four

resonators are clearly visible.

The PI controller parameters have been selected to achieve a quick error settlement under

one second. And the resonator gains have been selected to achieve that the oscillation

error is at least six times lower than the oscillation magnitude without any of the first

four harmonics present on it. The rest of parameters depend on the selected frequency of

oscillation.
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Figure 6.13: Bode plot of the Resonant controller, Gres(s), with four resonators for a
desired oscillation frequency of 0.96ωn.

With these parameters, the resulting closed-loop system is stable, as it is obtained from

the nominal transfer function poles (6.24) in Table 6.7. Moreover, applying µ-analysis to

the closed-loop system, it can be obtained that the system with the resonant controller

is robustly stable for the range of uncertainties, Figure 6.14, with a stability margin of

1.053. The stabilizing effect of the resonant controller can be observed in the working

frequency range, where the µ-bound is flat and lower than the previous values of Figure

6.8.

To verify that the linearized control solution is applicable to the non-linear system,

simulation has been carried on the actual non-linear model. In the simulations, the

designed resonant controller with the four resonators is used. The system parameters are
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Closed-loop poles

−422780
−630
−10

−21390± 73070i
−14580± 2740i

−10± 4730i
±9410i
±14100i
±18790i

Table 6.7: Poles of the nominal closed-loop transfer function including the resonant
controller, for a desired frequency of oscillation at 0.96ωn.
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Figure 6.14: µ-bound of the closed-loop system with the Resonant controller, Gres(s), for
a desired oscillation frequency of 0.96ωn.

the same previously used from Table 6.2.

The results of the simulations show that the controller is stable and obtains good

performance. This could be expected, as the designed robust controller handles the

nonlinearities, and the resonant controller is designed based on the robust plant. Figure

6.15 shows the simulation results for a desired sinusoidal output with a normalized

amplitude of 0.4, a normalized steady-state bias gap of 0.95 and a normalized frequency

of 0.96. The system obtains the desired amplitude, bias and frequency of oscillation with

a fast transient response.

The generated input voltage is shown in Figure 6.16, as well as, its transient dynamics.

As can be observed, at the beginning of the simulation large voltages are applied, but no

snapping occurs. The tuning of the PI-controller plays an important role in this transient
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Figure 6.15: a) Detail of the normalized gap oscillation after applying the resonant
control, for a set-point with G1 = 0.4 as amplitude of oscillation, G0 = 0.95 as static
bias and ωd = 0.96ωn as oscillation frequency. b) Long time normalized gap oscillation
showing transient evolution and steady-state convergence in less than a second.
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Figure 6.16: a) Close-up of the control voltage generated by the controller to obtain the
desired oscillation. b) Control voltage long time simulation, showing transient evolution
and steady-state.
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Figure 6.17: a) Oscillation error comparing system output and pure sinusoidal set-point.
b) Frequency analysis of the oscillation error.
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difference exists.
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Figure 6.19: Comparison of current simulations with Chapter 4 results. a) Harmonic
Balance predicts that more than 10 harmonics are needed for a perfect driving voltage
reproduction. b) The oscillation is predicted stable when the Harmonic Balance voltage
is applied.
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Figure 6.20: a) Example of V 2 generated by proposed controller with negative values, for
an amplitude of oscillation of 0.5 and no static bias, Quality factor 100 and normalized
frequency wk = 1. b) Voltages applied to the two-sided actuator to produce the desired
actuation, as described in detail in Section 7.3.1. V + is applied to one side and |V −| is
applied to the other side.
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behavior.

The generated input voltage produces an almost null steady-state error, as can be seen in

Figure 6.17. The highest error component is in the fifth harmonic, as expected, as four

resonators have been used in the control and their gains have been tuned to achieve this

goal. And the steady-state error is six times lower than the absolute amplitude g0, what

implies that the output is an almost perfect sinusoid.

If we analyze the correspondence of the results with the predicted Harmonic Balance

voltage in Chapter 4, Figure 6.18 shows that both input voltages are almost identical.

The discrepancy comes from the number of harmonics used in the controller. For the

desired oscillation, the chart in Figure 6.19a indicates that more than ten harmonics are

needed for perfect sinusoidal recovery. The same result can be seen in Figure 6.18b, where

a fifteen harmonics fitting is needed to perfectly reproduce the Harmonic Balance ideal

voltage.

However, while Harmonic Balance prediction was expecting more harmonics in the driving

voltage to generate the perfect sinusoid, simulation shows that the Resonant Controller

with just four resonators is able to produce outputs with errors six orders of magnitude

lower than the oscillation gap, what could be considered almost perfect for a real

application. This discrepancy is due to the fact that both analysis are not equivalent:

the chart in Figure 6.19a has been generated assuming a perfect sinusoid output and

fitting a signal to the drive input, while the Resonant Controller generates the voltage by

eliminating harmonics of the output but limiting the number of them.

To close the analysis, Figure 6.19b shows that the system was predicted stable by the

Harmonic Balance with the desired oscillation, and the simulations in Figure 6.15 show

that the controller generates a stable oscillation.

Finally, as described in Chapter 4, the selection of V 2 as control action implies that the

output of the controller cannot be directly applied to the MEMS resonator. The control

action must be converted to a voltage signal. However, the controller output can lead to

negative V 2 control actions that cannot be directly converted to driving voltages, Figure

6.20. This problem has been solved improving the MEMS design introducing two-sided

actuation to the MEMS resonator as explained in detail in Section 7.1.3.
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6.5 Extremum seeking control strategy

To complete the proposed control strategy in Figure 5.2, the last controller loop include

an energy minimization extremum seeking controller that must be designed. As described

in Chapter 5, Extremum seeking control allows to optimize a cost function even when

it is not analytically known [56], [71], [70]. Energy efficiency is sought in all aspects of

life, and in electrostatically actuated MEMS, this is specially needed when they must act

as stand-alone sensors. And in this case, extremum seeking control would minimize the

energy consumption of the electrostatically actuated MEMS resonator.

Between the different existing approaches describer in Chapter 5, perturbation-based

extremum seeking is chosen [15]. This approach is well-tested, easily implementable, and

don’t interfere with the desired dynamics due to the time-scales. Moreover, stability of the

approach has been demonstrated [98] and a real application has been tested in a MEMS

gyroscope [13].

The critical part in the implementation is the fact that the variable to be optimized is

the desired oscillation frequency, ωd. The goal is to select the frequency where the desired

amplitude of oscillation consumes less energy. However, that frequency is a design value

for the Resonant controller implementation, and this issue must be treated carefully. The

results in [87], where ESC is used to tune the variable gain of a controller, are used as

example to change the phase and frequency of the proposed Resonant controller.

Figure 6.21 shows the control scheme connected to the previously presented system with

the Robust controller and the Resonant controller.

+
-

+
-

+ +

Ỹd

Ỹ

V (t)

Energy

Extremum seeking controller

GESC(s)
ωESC

ωESC

Gres(s) GC(s)

GPn(s)

Grob(s)

Figure 6.21: Extremum Seeking Control applied to the system framework, using Energy
in one oscillation cycle as Cost Function.
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6.5.1 Energy calculation

The selection of the Cost function is the basis of the minimization process. In order to

effectively minimize a variable, the values of the variable have to change smoothly and a

local extremum must exist.

As presented in Chapter 4, the energy consumption in one oscillation corresponds to the

energy losses in equation (4.51)

Econsumption =
B π

C0
Ŷ 2
1 ω + Rvs

∫ 2π
ω

0

Ivs(ω, t)
2dt (6.31)

where a negligible fraction comes from mechanical losses and the main part is associated to

the driving voltage and the power supply. With this formulation, the energy consumption

is frequency dependent, smooth and have a clear minimum for each desired oscillation, as

showed in Figures 4.48 and 4.49.

Based on equation (6.31), and dropping the mechanical term as negligible, the Cost

function for the Extremum seeking controller is defined with the following formula:

Cost function =

∫ t+ 2π
ω

t

(

d V (t)

dt

)2

dt (6.32)

where Td =
2π
ωd

is the time of one oscillation cycle at the desired frequency, and V (t) is the

voltage that is really fed into the MEMS resonator, as shown in Figure 6.21. Consequently,

the selected voltage is not only related to the device, but to the whole control action that

is built around it.

Although the energy calculation includes the source resistance, the resistance is not

included in the cost function because its magnitude is constant and has no effect on

the minimization process.

Figure 6.22 shows two simulated examples of time evolution of the energy cost function

calculation. As can be seen, the cost function can be calculated continuously to be fed into

the ESC controller. Moreover, the system has a fast response, and the energy calculation

is also fast allowing to implement the ESC controller without added restrictions. The

time response of the cost function calculation is a key parameter when designing the ESC

controller, due to the necessity to separate time scales.

Finally, Figure 6.23 compares the cost function frequency profile obtained via simulation

with the values from the Harmonic Balance energy calculation. As can be seen, both

profiles present similar results. Although the energy levels are not identical, the minimum
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Figure 6.22: Time evolution of energy cost function calculation for two different oscillation
frequencies. The desired oscillation is fixed at an amplitude of 0.4 and a static bias of
0.95. a) wk = 0.94 b) wk = 1.1.
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Figure 6.23: Energy consumption curves comparing Harmonic balance energy calculation
and controller Cost function calculation, for fixed damping at Q = 100. a) Amplitude of
desired oscillation 0.4g0 with 0.99 gap bias. b) Amplitude of desired oscillation 0.7g0 with
0.95 gap bias.

energy frequency obtained from the Cost function is approximately at the same value

predicted by Harmonic Balance. The discrepancies come from the differences between

the Harmonic Balance voltage and the output of the Resonant Controller as indicated

in the previous section. Moreover, with the two-sided actuation improvement presented

in Section 7.1.3 to handle the negative valued V 2 output, the energy cost function is

expanded to the whole frequency range, allowing smooth operation of the ESC controller.

As can be observed, the values corresponding to the zone where one-sided actuation is

possible are almost identical to the Harmonic Balance ones, except when they get far from

the minimum energy point. And when the actuation gets to the two-sided zone, energy

increases quickly. This indicate that the system will be driven by the extremum seeking
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controller to work in the one-sided frequency range.

6.5.2 Extremum seeking controller

++
X

PSfrag

r(t)

ξl(t)

Ap sin(ωp t) Extremum seeking controller

−s
s+ωh

ω(t)

ωESC(t) ξ(t) rh(t)KESC

s
ωl

s+ωl

ω∗

Figure 6.24: Extremum seeking controller to minimize cost function, based on
perturbation methods, adapted from [15]. Due to time scales, the plant is treated as
an static map from the controller point of view.

The ESC controller defined in Figure 6.24 includes four main stages:

• A perturbation that is fed into the system in order to extract the cost function

gradient, with a frequency of ωp and an amplitude of Ap.

up(t) = Ap sin(ωp t) (6.33)

• A high-pass filter to eliminate the DC content of the energy followed by

demodulation of the perturbation to generate an estimate of the gradient, with

frequency of ωh.

Fh(s) =
−s

s+ ωh
(6.34)

• A low-pass filter, with frequency of ωl, to extract the DC content of the estimated

gradient.

Fl(s) =
ωl

s+ ωl
(6.35)

• And an integrator of the gradient to generate the optimal input estimate for the

plant, to which the perturbation is added.

GESC(s) =
KESC

s
. (6.36)

Consequently, the input to the system is

ω(t) = ωESC(t) + up(t). (6.37)
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In order to work properly and with stability, the five parameters (Ap, ωp, ωh, ωl, KESC)

must be selected appropriately. This selection must guarantee the time scales separation

between the different stages of the controller. In particular, there exists three velocities

in the system [15]:

• A fast response is given by the system and the two-inner loops. In order to be able

to identify the system as a static map, in the extremum seeking scheme, the system

has to be an order of magnitude quicker than the perturbation.

• A medium time response must be provided by the perturbation, which must be quick

enough to respond to changes but must not interfere with the system performance.

• An a slow time response of the filters, that will extract the gradient estimate. The

filters must be an order of magnitude lower than the perturbation signal.

In the final controller, for the system parameters in Table 6.2, the chosen values are

presented in Table 6.8. The main reference is Tf , the settling time of the system, that

must be chosen to guarantee that the dynamics of the system is separated of the rest of

the extremum seeking dynamics. From this value, the rest come out automatically.

Tf 3.85 s
ωf 2 π / Tf

KESC 0.001
Ap 0.001
ωp ωf/20
ωh ωp/10
ωl ωp/10

Table 6.8: Extremum seeking controller parameters used in the examples.

Figure 6.25 shows the different stages of the controller in an example. The plots allow to

see the evolution of the energy and how it is driven to its minimum with the continuous

frequency variation generated by the controller. In the example, a desired amplitude of

0.4, a bias of 0.95, a damping of 100 and an initial frequency of 0.97ωn have been chosen.

Based on Figure 4.48a, the more efficient frequency for the desired oscillation and damping

is 0.968ωn, so the controller should lead the frequency to this value. Figure 6.25a shows

how the Cost function value is minimized while, at the same time, Figure 6.25b shows

how the set-point frequency is decreased with time from the initial 0.97 value in search of
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Figure 6.25: ESC performance with a desired amplitude of 0.4, a gap bias of 0.95, a
damping of Q = 100 and an initial frequency of wk = 0.97. a) Energy Cost function
time evolution. b) Frequency set-point generated by the ESC controller, including the
perturbation. c) High-pass filtered Cost function, with DC elimination. d) Demodulation
of c)-signal with the perturbation. e) Gradient estimation obtained through low-pass
filtering. f) Scaled gradient estimation. g) ESC frequency output through integration of
scaled gradient. h) Perturbation signal.
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the optimal 0.968 value. Due to the time scales separation, the frequency variation has

to be very slow in order to prevent transients in the system oscillation. For this reason in

300 seconds the frequency change is so small.

Figure 6.25c presents the effect of the high-pass filter that incorporates the ESC controller.

As can be seen, the cost function value is recentered around zero, by extraction of the cost

function DC bias. After this filtering, the signal is demodulated with the perturbation in

order to extract the effect generated by the perturbation, as can be seen in Figure 6.25d.

Low pass filtering of the demodulated signal generates the gradient estimate, Figure 6.25e,

that is scaled in order to define convergence velocity, Figure 6.25f. Final integration of

the scaled gradient generates the frequency output of the controller, Figure 6.25g, that

is summed up with the perturbation, Figure 6.25h, in order to generate the input to the

system as presented in Figure 6.25b.

In a real application, the seeking time should be even slower than the one presented in

simulations, what would lead to a gradient estimation that monotonically decreases until

reaching the optimal frequency.

6.5.3 Convergence analysis

The mode of operation, the controller steps presented in Figure 6.25 and the controller

convergence can be analytically explained, in a simplified manner, following the same

reasoning as in [12]. The explanation assumes that the system works as a static map

(Example in Figure 6.23) referencing the frequency to its consumption energy. With this

assumption, the controller loop is redefined as in Figure 6.24. This simplification holds

if the adaptation dynamics is sufficiently slow, as previously stated, due to selected time

scales. Then, the output of the static map, r(t), is the value of the cost function and can

be represented as

r(t) = f(ω(t)) (6.38)

where the static map is assumed C2 around its minimum ω∗. The input to the system is

the new estimate of the optimal frequency obtained by the controller, ωESC(t), plus the

seeking perturbation, so that the output of the cost function is

r(t) = f(ωESC(t) + Ap sin(ωp t)). (6.39)
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As the perturbation is small, the output can be approximated by

r(t) ≈ f(ωESC(t)) + Ap
∂f

∂ω
|ω=ωESC

sin(ωp t). (6.40)

Consequently, the high pass filter allows to separate the variation introduced by the

perturbation from the constant output term

rh(t) ≈ Ap
∂f

∂ω
|ω=ωESC

sin(ωp t) (6.41)

and if the resulting signal is demodulated with the perturbation, Ap sin(ωp t)

ξ(t) ≈ 1

2
A2
p

∂f

∂ω
|ω=ωESC

− 1

2
A2
p

∂f

∂ω
|ω=ωESC

cos(2ωp t) (6.42)

using the low pass filter, the estimation of the gradient at the actual input value can be

obtained

ξl(t) ≈
1

2
A2
p

∂f

∂ω
|ω=ωESC

. (6.43)

Then, the input to the system is updated based on the following law, using the estimation

gradient in (6.43)

ω̇(t) = KESC
1

2
A2
p

∂f

∂ω
|ω=ωESC

. (6.44)

As we have assumed that the map is C2 locally around ω∗, the law guarantees convergence

of the controller frequency estimate to the optimum of the system.

This can be seen in detail if the map f is approximated as a Taylor polynomial of second

order in a small neighborhood of ω∗

f(ω) ≈ f(ω∗) + f ′(ω∗)(ω − ω∗) +
1

2
f ′′(ω∗)(ω − ω∗)2 (6.45)

where f ′(ω∗) = 0 because ω∗ is an extremum point. Then the resulting gradient is

∂f

∂ω
|ω ≈ f ′′(ω∗)(ω − ω∗). (6.46)

Defining the convergence error as ω̃ = (ω − ω∗), its behavior with the chosen updating

law (6.44) is

˙̃ω ≈
(

1

2
KESC A

2
p f

′′(ω∗)

)

ω̃ (6.47)

meaning that the controller is locally asymptotically stable with the appropriate election

of parameters

KESC A
2
p f

′′(ω∗) < 0 (6.48)
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The full detailed justification of the stability and convergence of the method is discussed

in [98]. As can be seen, all the steps of the convergence analysis have their counterpart

in Figure 6.25.

6.6 Conclusion

The proposed controller with three control loops for robustness, stability, sinus-like

oscillation and minimum energy actuation has been designed. Based on the linearized

system approach, the controller has been formulated and analyzed. The stability and

robustness of the combined controller has been validated with µ-analysis. Applicability

of the designed controller to the nonlinear plant has been verified via simulation.

The performance of the global controller is tested in Chapter 7, what allows to confirm

that the controller based on the linearized system is effective on the real nonlinear plant

and to track oscillation trajectories.
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Chapter 7

Verification of control strategy

7.1 Introduction

This Chapter performs the verification of the proposed control strategy. In the first part, a

series of simulation tests of the complete set-up are presented, and its stability, robustness

and performance analyzed.

In the second part, the needed steps for a real implementation are analyzed. First of

all, design modifications are presented to overcome possible implementation difficulties.

A two-sided actuation for full-range amplitude and bias oscillation selection is presented.

And a modification of standard Electromechanical Amplitude Modulation is analyzed and

validated for position feedback implementation.

Finally, a MEMS resonator with the desired specifications for testing the proposed control

is designed for fabrication. Based on this design, testing procedure is discussed, as well

as, actual laboratory set-up. The fabrication and laboratory testing is included as Future

Work.

7.2 System performance

A set of simulations has been executed to validate the whole range of behaviors of the

system using the proposed controller. The simulations follow the same approach presented

in Section 4.2 in Chapter 4, and the same system model (Table 4.1).

In detail, good performance of the controller imply that the four main goals defined in

Chapter 5 are accomplished:

• Stability of the oscillation in amplitude and frequency.

• Robustness of the oscillation against inherent MEMS fabrication uncertainties.
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• Perfect sinus-like oscillation for high precision applications.

• Minimum energy consumption to sustain the oscillation.

Each of the items is analyzed individually.

7.2.1 Stability
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Figure 7.1: Time response of the oscillation of the MEMS resonator with 0.5 amplitude
set-point and bias fixed at 1. Damping fixed at Q = 100. a) Output of the MEMS
resonator compared to oscillation reference for three different frequencies: wk = 0.80,
wk = 0.90 and wk = 1.00. b) Input to the MEMS resonator for wk = 0.80. c) Input to
the MEMS resonator for wk = 0.90. d) Input to the MEMS resonator for wk = 1.00.

One of the main goals of any controller is to guarantee stability. In the present case, the

controller must be able to oscillate the MEMS resonator at any desired amplitude and with

any desired static bias. For this reason, a set of simulations has been performed to analyze

oscillation ranging from small amplitudes (0.1g0) to almost full gap amplitudes (0.9g0),

and with different steady-state biases (g0 to 0.8g0). At the same time, the whole range

of oscillation frequencies has been analyzed. Usual working frequencies have been defined

as those ranging from 0.8ωn to 1.1ωn. The work of the controller with subharmonic and
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Figure 7.2: Time response of the oscillation of the MEMS resonator with 0.4 amplitude
set-point and bias fixed at 0.95. Damping fixed at Q = 100. a) Oscillation for wk = 0.80.
b) Voltage input for wk = 0.80. c) Oscillation for wk = 0.96. d) Voltage input for
wk = 0.96 e) Oscillation for wk = 1.02. f) Voltage input for wk = 1.02. g) Oscillation for
wk = 1.05. h) Voltage input for wk = 1.05.
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superharmonic frequencies have also been investigated. And finally, the oscillations have

been simulated with damping varying from over-damped systems (Q = 1) to low vacuum

systems (Q = 1000). Simulations include steady-state oscillation as well its transients, as

they can lead to pull-in of the structure.
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Figure 7.3: Time response of the oscillation of the MEMS resonator with 0.4 amplitude
set-point and bias fixed at 0.95. The normalized frequency is fixed at wk = 0.96. a)
Oscillation for Q = 1. b) Voltage input for Q = 1. c) Oscillation for Q = 1000. d)
Voltage input for Q = 1000.

With this framework, Figure 7.1a shows an example of normalized oscillation of the MEMS

resonator for different frequency set-points. At rest, gap is assumed to be one (g0 in real

values). In the example, the simulations have an oscillation set-point with amplitude of

half the gap (0.5) and centered at rest position (bias is one), with a Quality-factor of

100. Different normalized frequencies are tested (wk = 0.80 to wk = 1.00). In all cases

stable oscillation of the desired amplitude is achieved, as the controller automatically

generates the needed voltage to reach the target (the same predicted by harmonic balance

in Chapter 4), Figures 7.1b, 7.1c, 7.1d. In all cases, two-sided actuation is needed to

achieve the desired set-point, V + is applied to one side and |V −| is applied to the other

side (See Section 7.3.1).
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Figure 7.4: Time response of the oscillation of the MEMS resonator frequency fixed at
wk = 1 with changing amplitude set-point and fixed bias at 0.95. Fixed damping at
Q = 100. a) Amplitude of 0.50. b) Amplitude of 0.70. c) Amplitude of 0.80. d)
Amplitude of 0.85.
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Figure 7.5: Transient oscillation performance of the MEMS resonator with 0.4 amplitude
set-point and bias fixed at 0.95. The normalized frequency is fixed at wk = 0.96 and
Quality factor at Q = 100. a) Oscillation error. b) Close-up of the input voltage during
transient.
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Figure 7.2 shows similar simulations with increased range of normalized frequencies from

wk = 0.80 to wk = 1.05. In this case, set-point is fixed at lower amplitude (0.4), and

not centered at rest position (bias is 0.95), with same Quality factor (100). Again all

oscillations are stable at steady-state and during transient. As can be seen, stability is

not affected by set-point or frequency of oscillation. Moreover, Figures 7.2b and 7.2d show

that depending on desired frequency, oscillation is achieved with one-sided or two-sided

voltage driving.

In Figure 7.3 the effects of damping are analyzed. The example shows the same set-point

oscillation with normalized frequency close to resonance (wk = 0.96), amplitude of 0.4

and bias of 0.95. Changing the damping conditions from over-damped (Q = 1) to low

vacuum (Q = 1000) don’t change stability of the system with the proposed controller, and

in all cases the desired oscillation is achieved with the controller automatically providing

the needed voltage.

As analyzed in Chapter 3, pull-in of electrostatic driven parallel-plate actuators is a

limiting factor for gap oscillation. At the same time, large amplitudes are needed to

improve sensitivity of MEMS resonators working as sensors. Figure 7.4 shows oscillations

with amplitude set-point up to 0.85g0. In the simulations, bias is fixed at 0.95, frequency

at wk = 1 and Quality factor at 100. As a reference, the MEMS resonator nonlinear Static

Pull-in occurs at 0.336g0, and the Resonant Pull-in Condition fixes maximum amplitude

of oscillation around 0.59g0 for the chosen bias, with a square function. Given these pull-

in limits, the simulations show that stable oscillations are achieved well beyond them.

However, pull-in can still occur if set-point is fixed with steady-state oscillations reaching

more than 80% of the gap. In Figure 7.4b, total gap oscillation of 0.75g0 is achieved with

0.7 as amplitude and 0.95 as bias. But Figure 7.4c shows unstable oscillation that leads

to pull-in with an amplitude of 0.8 plus 0.95 bias (equivalent to 0.85 total gap oscillation),

and 7.4d shows pull-in with a set-point with a total gap amplitude of 0.95.

Figure 7.5 shows transient behavior of the controller, with amplitude set-point fixed at 0.4

and bias fixed at 0.95. The normalized frequency is fixed at wk = 0.96 and Quality factor

at Q = 100. Transient stability is accomplished for the tested conditions, with settling

times under one second. In the example, Figure 7.5a shows that the output error is close

to zero (10−6) after one second. And in Figure 7.5b, a close-up of the needed control

action is shown. This behavior has been detected all over the different simulations and is

not affected by Q changes, what satisfies the needed smooth transient performance for a
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Figure 7.6: Subharmonic oscillation of the MEMS resonator with frequency design fixed
at wk = 1.92, amplitude set-point fixed at 0.40 and fixed bias at 0.95. With damping at
Q = 100. Desired set-point frequency fixed at wk = 0.96. a) Stable oscillation output at
wk = 0.96. b) Power spectrum of the generated input voltage.
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Figure 7.7: Superharmonic oscillation of the MEMS resonator with frequency design fixed
at wk = 0.48, amplitude set-point fixed at 0.40 and fixed bias at 0.95. With damping at
Q = 100. Desired set-point frequency fixed at wk = 0.96. a) Stable oscillation output at
wk = 0.96. b) Power spectrum of the generated input voltage.
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Figure 7.8: Position shock performance when a 20% position displacement is created in
the oscillation, with an amplitude set-point of 0.4, bias fixed at 0.95, normalized frequency
at wk = 0.96 and Q-factor at 100. a) Detail of the oscillation response. b) Controller
generated voltage.
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MEMS resonator.

The controller has also been tested with superharmonic and subharmonic driving schemes,

to analyze its feasibility. In the case of subharmonic oscillation, the controller has been

implemented with four harmonics at frequencies 1.92ωn, 2 · 1.92ωn, 3 · 1.92ωn, 4 · 1.92ωn,

while the set-point has been fixed at 0.96ωn. The choice of frequencies is based on Chapter

4 results. In this case, stable sinusoidal oscillation is achieved with small error but

frequency component at the oscillation frequency appears at the input voltage, Figure

7.6, although the controller doesn’t include a resonator at that frequency. This feature

is related to the known capability of IMP-based controllers to perform better than its

defined parameters [27]. In the case of superharmonic oscillation, the controller has been

implemented with four harmonics at frequencies 0.48ωn, 2 · 0.48ωn, 3 · 0.48ωn, 4 · 0.48ωn,

while the set-point has been fixed at 0.96ωn. The choice of frequencies is based on Chapter

4 results. In this case, stable sinusoidal oscillation is achieved with small error and again

driving voltage has frequency component in the oscillation frequency, Figure 7.7. This

was expected as the controller has a resonator in the desired frequency. Consequently, the

controller generates stable oscillation but superharmonic or subharmonic schemes are not

possible, as the controller generates an input with all the frequencies to obtain a sinusoidal

output, as indicated by the Harmonic Balance, even when the frequency is not explicitly

included.

1.994 1.996 1.998 2 2.002 2.004 2.006 2.008 2.01 2.012

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (s)

N
or

m
al

iz
ed

 g
ap

 

 
Real gap
Desired

0 1 2 3 4 5

-30

-20

-10

0

10

20

30

Time (s)

V
ol

ta
ge

 (
V

)

 

 
V+
V -

a) b)

Figure 7.9: Position shock performance when a 20% position displacement is created in
the oscillation, with an amplitude set-point of 0.5, bias fixed at 1.00, normalized frequency
at wk = 1.00 and Q-factor at 1000. a) Detail of the oscillation response when it suffers
the shock. b) Generated voltage by the controller.

And finally, the controller stability has been tested against shock response. To analyze

shock response, a 20% gap jump is simulated in the system with a duration of 0.1 seconds,
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and the transient response of the system is analyzed. Figure 7.8 shows the oscillation

evolution for a an amplitude set-point of 0.4, bias fixed at 0.95, normalized frequency

at wk = 0.96 and Q-factor at 100. The controller is able to handle the shock and drive

back the system to desired oscillation. In this case, although one-sided actuation could be

enough at steady-state oscillation, the shock response shows that two-sided actuation is

important even in this cases, because the two-sided control capability allows the controller

to work smoothly to drive the system back to unperturbed oscillation. In Figure 7.9 a

similar case is presented for low damping operation. The simulation shows the oscillation

evolution for a an amplitude set-point of 0.5, bias fixed at 1.00, normalized frequency at

wk = 1.00 and Q-factor at 10000. The controller is able to handle the shock and drive back

the system to desired oscillation even in low damping conditions. In this case, two-sided

actuation is already needed at steady-state oscillation.

As a conclusion, using the thesis controller, stable oscillation is achieved for any desired

combinations of amplitude of oscillation, bias, Quality factor and frequency. Only

oscillations reaching amplitudes larger than 80% gap size are forbidden, but this is an

acceptable range for MEMS resonator amplitudes.

7.2.2 Robustness

As already discussed, robustness is necessary to handle the imperfections of MEMS

fabrication techniques. Moreover, parameter variation with time and non-accounted

nonlinearities add up to the uncertainty of the system. The design of the controller

has been selected taking into account all possible parameter uncertainties and with large

range of variation, to guarantee long-time stable actuation.

In order to test robustness of the controller a set of simulations has been generated that

cover the majority of predictable uncertainties. The plots is Figure 7.10 show the sinus-

like oscillations of the system with a set-point of amplitude 0.4, a bias of 0.95, normalized

frequency of 0.96 and a design Quality factor of 100. The presented uncertainties cover

the whole range of design uncertainties in frequency (ωn), damping (Q), nonlinear spring

(κ) and electrostatic force (fkgk). The linearization parameter (x10) is fixed in all this

simulations at x10u = 0.95x10. All the performed simulations show stable oscillations

at the desired set-point, for all the different uncertainties. It is important to observe

that for the same output oscillation, the controller is able to generate different voltage

inputs to guarantee that the set-point is achieved depending on the system variation.
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Figure 7.10: Oscillation performance of the MEMS resonator with 0.4 amplitude set-point
and bias fixed at 0.95. Predicted damping fixed at Q = 100, and normalized frequency
set-point at wk = 0.96. The oscillations are presented with the following parameter
variations: x10u = 0.95x10 and a) ωu = 0.7ωn. b) ωu = 1.3ωn. c) Qu = 0.5Q = 50. d)
Qu = 1.5Q = 150. e) κu = 0.7κ. f) κu = 1.3κ. g) (fkgk)u = 0.9fkgk. h) (fkgk)u = 1.1fkgk.
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This fact is important, as the controller don’t generate a predefined voltage as the one

calculated by the Harmonic Balance, but generates the needed voltage to adapt to the

system uncertainty.

As identified in the sensitivity analysis, the natural frequency change is the one that has

more effect on the system. The input voltage changes completely from the rest of voltage

actuations when the natural frequency is varied from the nominal one. Moreover, it even

forces two-sided actuation in front of one-sided actuation in the other cases. Increasing

the Quality factor is the next parameter with clear influence, and the rest of uncertainties

have minor effects on the input voltage.

As a conclusion, the controller presents robustness against the chosen existing

uncertainties, allowing a large amount of parameter variation.

7.2.3 Sinus-like oscillation

Parallel-plate electrostatic actuators are often avoided in MEMS designs because they

are extremely nonlinear and introduce a second order harmonic in the oscillation of the

device if a sinusoidal voltage is used as driving force. However, as stated in Chapter 4,

a pure harmonic oscillation can be achieved, if the right control action is provided. The

proposed controller is able to generate the needed control action as predicted by Harmonic

Balance to produce an almost perfect sinusoidal oscillation, and not only that, allowing to

select any amplitude of oscillation, static bias, oscillation frequency and with any damping

conditions.

Figure 7.11 shows that the selected frequency of the set-point has no influence in the

performance of the controller. The presented oscillation has an amplitude set-point of

0.5, bias fixed at 1.00 and Q-factor at 100. With frequencies ranging from 0.8ωn to ωn, all

oscillations have null error in the first four harmonics, and the fifth harmonic is at least

eight orders of magnitudes lower than oscillation. It is interesting to note that the output

has different higher harmonics for each set-point frequency, related to the complexity of

the needed driving voltage, the number of harmonics it contains and its significance.

Similar analysis is performed in Figure 7.12, with set-point oscillation with an amplitude

of 0.4, bias fixed at 0.95 and normalized frequency at 0.96. The variation of damping has

no effect on the performance of the controller, obtaining almost identical output for both

cases. All oscillations have null error in the first four harmonics, and the fifth harmonic

is twelve orders of magnitudes lower than oscillation, leaving the actual oscillation close
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Figure 7.11: Analysis of frequency content of the output. The presented oscillation is
with an amplitude set-point of 0.5, bias fixed at 1.00, normalized frequency varying and
Q-factor at 100. a) wk = 0.80. b) wk = 0.90. c) wk = 0.96. d) wk = 1.00.
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Figure 7.12: Analysis of frequency content of the output depending on Quality factor.
The presented oscillation is with an amplitude set-point of 0.5, bias fixed at 1.00,
normalized frequency wk = 0.96 and varying Q-factor. a) Q = 1. b) Q = 1000.
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Figure 7.13: Analysis of frequency content of the output. The presented oscillation is with
an with varying amplitude set-point, bias fixed at 0.95, normalized frequency wk = 1.00
and Q-factor at 100. Amplitudes: a) 0.30. b) 0.40. c) 0.50. d) 0.70.
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Figure 7.14: Analysis of frequency content of the output depending on the number of
harmonics used in the controller. The presented oscillation is with an amplitude set-point
of 0.5, bias fixed at 1.00, normalized frequency wk = 0.96 and Q-factor at 100. a) Only
first harmonic. b) Two harmonics included. c) Three harmonics included. d) Proposed
controller with four harmonics.
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to a pure sinusoidal.

In Figure 7.13, comparison of sinusoidal output depending on amplitude of oscillation is

presented. In this case, set-point oscillation is chosen with bias fixed at 0.95, normalized

frequency at 1.00 and Quality factor at 100. The amplitude selection again has no impact

in the sinusoidal output of the MEMS resonator, as the controller behaves identically in

all cases. The first four harmonics are almost null in all four examples, and fifth harmonic

is more than ten times smaller than oscillation.

Finally, Figure 7.14 presents the effect of using less harmonics in the Resonant Controller.

As can be seen, the inclusion of each harmonic in the controller eliminates its matching

frequency in the output error. Then, depending on the desired output, the number

of harmonics can be chosen. For an almost pure sinus-like oscillation, four harmonics

guarantee that error is ten times smaller than oscillation magnitude.

7.2.4 Minimum energy

Energy consumption minimization is basic for stand-alone devices, or for sensors for mobile

applications. As MEMS sensors have inherent uncertainties and aging contributes to

these uncertainties, it is vital to guarantee that the MEMS resonator works at the most

energy efficient frequency. This frequency is the resonance frequency in linear mechanical

models. However, in nonlinear systems electrostatically actuated, this resonance frequency

doesn’t explicitly exists. A resonant-like frequency is obtained via testing, but changes in

driving scheme or environmental factors can make it change. The extremum seeking loop

overcomes these difficulties.

As presented in Chapter 6, the Cost function provides the energy consumption estimate

for the whole range of working frequencies, Figure 7.15, allowing to implement a real-time

minimum search algorithm. In order to verify the effectiveness of the energy minimization,

long time simulations have been performed to analyze the convergence of the system to

its minimum. At the same time, the effects of the seeking perturbation on the system are

also studied.

Figure 7.16 shows the energy evolution of the system when an initial normalized frequency

of 0.965 is selected. The system is oscillated with amplitude set-point of 0.4, bias fixed

at 0.95 and Q-factor at 100. As is shown in Figure 7.15, the minimum of the energy

is around 0.968, and the evolution of the input frequency in Figure 7.16b shows how

the ESC scheme drives the value to its minimum. In the evolution in Figure 7.16a, the
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Figure 7.15: Energy profile for the presented example, with an oscillation with an
amplitude set-point of 0.4, bias fixed at 0.95 and Q-factor at 100. The profile has its
minimum at the normalized frequency wk = 0.968

calculated cost function, an estimate of the consumed energy, decreases continuously to

the optimum. In Figure 7.16b, the input frequency smoothly evolves from 0.965 in search

of the minimum at 0.968. The gains of the perturbation and controller are small in order

to avoid interfering with the rest of the controller, that is the reason why the evolution is so

slow. However, that is not a problem, because as the frequency gets close to the optimum

the energy consumption variation is small, consequently no large energy reductions are

gained. When the system is far away from the optimum the controller works quicker, but

when the optimum is close, the reaction is slow. This behavior is given by the use of the

gradient.

Details of the evolution of all the ESC steps are also presented. Figure 7.16c presents

the high-pass filtered cost function and Figure 7.16d shows this value once it has been

demodulated with the seeking perturbation. Then, the gradient estimate is obtained via

low-pass filtering, Figure 7.16e. Finally, the gradient estimate is scaled, Figure 7.16f, and

integrated to produce the ESC optimum frequency estimate, Figure 7.16g. This value is

added to the perturbation, Figure 7.16h, to generate the input frequency to the controller

in Figure 7.16b.

Figure 7.17 shows similar energy evolution of the system for the same desired oscillation

when the initial normalized frequency is 0.97, at the other side of the optimum. As is

shown in Figure 7.16b, the ESC again drives the frequency again to its minimum. All the

ESC steps are again presented.

The ESC controller has time scales separation, as can be seen in Figure 7.18. The plots
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Figure 7.16: ESC controller performance for an oscillation with an amplitude of 0.4, bias
fixed at 0.95, initial frequency at wk = 0.965 and Q-factor at 100. a) Energy evolution.
b) Applied set-point frequency. c) High-pass filtered energy. d) Demodulated energy. e)
Gradient estimate. f) Scaled gradient to modify the frequency set-point. g) Controller
optimum frequency estimate. h) Close-up of perturbation.
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Figure 7.17: ESC controller performance for an oscillation with an amplitude set-point
of 0.4, bias fixed at 0.95, initial frequency at wk = 0.97 and Q-factor at 100. a) Energy
evolution. b) Applied set-point frequency. c) High-pass filtered energy. d) Demodulated
energy. e) Gradient estimate. f) Scaled gradient to modify the frequency set-point. g)
Controller optimum frequency estimate. h) Close-up of perturbation.
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show a close up of the evolution in Figure 7.16 at time 500 seconds. The oscillation is

almost a perfect sinusoidal, Figure 7.18a, like the reference, while the input frequency is

continuously changing as can be seen in Figure 7.18b. However, the change is slow enough

to not interfere with the MEMS resonator oscillation. Figure 7.18c shows that the input

voltage is stable and doesn’t show any effect of the ESC perturbation or the frequency

seeking. Figure 7.18d shows the descending evolution of the cost function.

The only drawback of the slow evolution is that as the frequency variation is decreased,

the cost function calculation becomes more jittery due to simulation limitations, but

that wouldn’t affect in a real device. The sharp variations in the voltage generate large

current variations, and this behavior makes it difficult to evaluate with precision the

energy consumed in one cycle, Figure 7.18d, but this not interfere with the optimum

search.
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Figure 7.18: Detail of the behavior of the MEMS resonator under ESC controller. It is
a close-up of the simulation in Figure 7.16 at time 500 s. a) Normalized oscillation. b)
Frequency input. c) Voltage input. d) Cost function.
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7.2.5 Conclusion

Simulations show that the controller fulfils the four goals that had been established in

Chapter 5 for the controller. Stable robust pure-sinusoidal oscillations with minimum

energy consumption can be achieved, and the controller is able to handle large

uncertainties without affecting the desired output. Moreover, the adaptation provided

by the extremum seeking guarantees low energy without interfering with the oscillation

and performance of the system.

From simulations it is identified that the controller in most cases outperforms its working

range. That can be seen in Figure 7.6, where it is able to generate a perfect sinus without

including the first harmonic as a resonator in the controller in the loop, or in Figure 7.19,

where the simulated uncertainties are well beyond the controller design.
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Figure 7.19: Controller performance for an oscillation with an amplitude set-point of 0.3,
bias fixed at 0.7, initial normalized frequency at wk = 1.00 and Q-factor at 100. a) The
bias is fixed at 0.7g0, well beyond the 20% uncertainty in x10 = g0. b) In this simulation,
apart from the bias, the following parameters have been changed without affecting system
performance: ωu = 0.6ωn, Qu = 3Q = 300, κu = 1.5κ and (fkgk)u = 1.2fkgk.

7.3 Improvement of MEMS drive and sense for

control applications

In order to implement the proposed control strategy, two main issues appear.

The first issue is outlined in Chapter 4, and it has appeared again in the controller

implementation in Chapter 6. It involves the fact that a closed form for the ideal actuation

only exists if the square voltage is used as the control action. But calculations lead to

negative V 2 control actions that cannot be directly converted to driving voltages.

179



The second issue is related to the position feedback that is needed to generate the control

action. Typical implementations in the literature don’t take into account the need of

actual real position with all the existing harmonics in order to be fed back. Consequently,

a position readout strategy must be implemented.

7.3.1 Full range oscillation

7.3.1.1 One-sided actuation
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Figure 7.20: a) Example of V 2 Harmonic Balance calculation with negative values for
an amplitude of oscillation of 0.6 and no static bias, Quality factor 100 and normalized
frequency wk = 0.96. b) Example of V 2 generated by proposed controller with negative
values, for an amplitude of oscillation of 0.5 and no static bias, Quality factor 100 and
normalized frequency wk = 1.

The whole control strategy is based on choosing the V 2 driving action. Harmonic Balance

Analysis and the control study show that this driving selection simplifies the control

architecture. However, the selected control scheme can produce V 2 driving actions with

negative component, see examples in Figure 7.20.

If the MEMS resonator uses one-sided actuation, Figure 7.21, the voltage driving signal

(V ) can only be generated by performing a square-root of the V 2 signal. In those cases

where V 2 is negative valued, it means that the driving signal cannot be generated.

An option could be truncating the V 2 signal to zero for the negative valued part, but the

results are not satisfactory, as the desired oscillation is not achieved.

Consequently, with one-sided actuation, as stated in Chapter 4, there exists desired

oscillation areas that are not reachable. In actual implementations that leads to delimit

the working zone to reachable areas, and avoid those that cannot be reached. This could be

applicable for pre-set actuation, but it is not a choice in real-time closed loop controllers.
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Figure 7.21: a) Schematic MEMS resonator with one driving port (Vd) and one sensing
port (Vs). b) Schematic MEMS resonator with two driving ports (Vd1 and Vd2) and two
sensing ports (Vs1 and Vs2).

Figure 7.22a shows that even in those cases where the steady-state actuation doesn’t need

negative-valued V 2 actuation, it can be needed in the transient to control the evolution.
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Figure 7.22: a) Example of V 2 generated by proposed controller with negative values in
the transient but positive-valued in steady-state, for an amplitude of oscillation of 0.7 and
static bias of 0.95, Quality factor 100 and normalized frequency wk = 1. b) Decomposition
of V 2 signal in V 2

+ and V 2
− components.

7.3.1.2 Double-sided actuation

A new approach is presented to overcome the limitation of one-sided actuation. The

approach is based on understanding the force that must be generated by the V 2 action,

instead of trying to generate the needed voltage. The desired actuation has the following
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form:

F =
fkgk
g2

V 2. (7.1)

If the device, instead of being actuated just by one side as Figure 7.21a, is actuated by two

opposite sides, Figure 7.21b, the total force can be reproduced. Consequently, it is needed

to have a two-sided actuator in the MEMS device to overcome the problem, splitting the

needed voltage between the actuators and generating the desired driving force into the

MEMS resonator.

Assume that the V 2 driving force is divided in V 2
+, its positive part, and V 2

−, its absolute

value negative part, Figure 7.22b.

V 2 = V 2
+ − V 2

−

Assume that Vd1 is applied to one side and Vd2 to the other side, and that the gap for each

actuator is g1 = g and g2 = 2 − g. Then, the desired force is divided between actuators

in the following way:
fkgk
g2

V 2 =
fkgk
g21

V 2
d1 −

fkgk
g22

V 2
d2. (7.2)

The negative signs appears because the two generated forces are in opposed directions.

So, the key is choosing the right Vd1 and Vd2 actuation. If we choose

Vd1 =
√

V 2
+ (7.3)

Vd2 =
g2
√

V 2
−

g1
=

(2− g)
√

V 2
−

g
(7.4)

the generated force over the MEMS resonator with the two-sided actuation is the desired

one

fkgk
g2

V 2 =
fkgk
g2

√

V 2
+

2

− fkgk
(2− g)2

(

(2− g)
√

V 2
−

g

)2

=
fkgk
g2

V 2
+ − fkgk

g2
V 2
−

=
fkgk
g2

(V 2
+ − V 2

−). (7.5)

This approach has been successfully tested in the simulations, as can be seen in Figure

7.23.

As a conclusion, the new drive approach overcomes the limitations of the one-sided

actuation. Two-sided actuation with separated voltage action to each electrode allows

to oscillate any MEMS resonator at any desired amplitude and bias, within physical
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Figure 7.23: a) New voltages for the two opposite ports (Vd1 and Vd2). b) Comparison of
desired force and force applied with two-side actuator.

constrains. Moreover, two-sided actuation is necessary to design controllers that can

work smoothly to control the stable oscillation of the MEMS resonators.

This approach has been used and verified in all the simulations where negative-valued V 2

voltage was needed through the dissertation.

7.3.2 Full position feedback

The proposed controller design relies on real position feedback to generate the control

action. Position feedback is not a new issue in MEMS. Several approaches try to

obtain position parameters on-line to fed them back to the controller. In Phase-lock-loop

controllers, frequency or phase is extracted. In AGC controllers amplitude of oscillation is

extracted. And in some cases, more parameters are obtained, as is the case in gyroscopes.

However, all tested approaches that could apply to the proposed MEMS resonator only

obtain information of one harmonic, the one that is considered more significant: main

harmonic in most cases, but examples of second harmonic is detected in subharmonic

oscillation and other cases can be found in parametric oscillation.

Complete position oscillation output, without high harmonics filtering, is not an usual

feedback variable in existing approaches. Only cases where complete position information

is obtained is in out-of-plane MEMS resonators, where laser interferometry can be used

to analyze the position. However, the technology cannot work in a real-time loop, as

position and harmonics are extracted via post-processing.

Examples of implementation of optical interferometry on-chip exist, but they haven’t

been fully developed, only experimentally. In [90], adaptive control approach to solve
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uncertainties and faulty conditions is done with optical position feedback. An in [173],

the optical signal is used for on-chip system characterization. But both implementations

don’t generate the needed feedback.

The best applicable approach to robust extraction of position is done in [198] using

electrostatic sensing. The approach is adapted on this section to fulfill the thesis needs

and produce full position readout.

7.3.2.1 Electrostatic sensing basics

To measure displacement using electrostatics, motional current is usually read. As

capacitance changes due to the movement of the MEMS resonator, charge flows and

current is generated:

Qs(t) = Cs(t) Vs (7.6)

Is(t) =
d(Cs(t) Vs)

dt
, (7.7)

being Qs(t) the charge stored in the capacitor, Cs(t) the sense capacitance, Vs the fixed

voltage applied across the capacitor and Is(t) the motional sensed current. Two kind of

gsVs

Lov · b

ŷ

finger

gsVs

Lov · b

ŷ

a) b)

Figure 7.24: Electrostatic sensing techniques. a) Parallel-plate capacitor. b) Lateral
comb capacitor.

sensing capacitors can be used. In parallel plate capacitors, Figure 7.24a, capacitance

variation is generated while the capacitor plates move one against the other. In lateral
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comb capacitors, Figure 7.24b, capacitance variation is generated by the displacement of

one plate in parallel to the other plate, producing change in the overlap of the plates.

Taking this scheme into account, the parallel-plate capacitor sensing capacitance is

Cs(t) =
ε bLov Np

(gs + ŷ(t))2
= Csnp

1
(

1 + ŷ(t)
gs

)2 (7.8)

where Csnp =
εbLov Np

g2s
, ε is the dielectric constant, b is the MEMS resonator width, Lov

is the overlap length, Np is the number of sensing parallel plates in the MEMS resonator,

gs is gap distance between the capacitor plates and ŷ(t) is the movement of the MEMS

resonator. The sign of the movement of the MEMS resonator is assumed to be positive

for the actuator (plates approach) and negative for the sensor (plates separate). If the

motion is sensed with lateral combs instead, [138], the sensing capacitance is:

Cs(t) =
ε bNl (Lov − ŷ(t))

gs
= Csnl

(

1− ŷ(t)

Lov

)

(7.9)

where Csnl =
εbNl Lov

gs
and Nl as the number of lateral comb fingers pairs.

If the voltage across the sensing capacitor (Vs) is assumed constant, the motional current

is

Is(t) =
dCs(t)

dt
Vs = VsCsnp

−2

gs

(

1 + ŷ(t)
gs

)3

dŷ(t)

dt
(7.10)

for the parallel plate case, and

Is(t) =
dCs(t)

dt
Vs = −Vs Csnl

Lov

dŷ(t)

dt
(7.11)

for the lateral comb case. In both cases, the sensed current is proportional to the velocity

of the MEMS resonator. However, in the lateral comb capacitors the relationship is linear,

and in the parallel plate capacitors is nonlinear on the position. For this reason, lateral

comb capacitors are preferred when can be used. And parallel-plates are limited to small

oscillations where the nonlinear term can be approximated to be 1.

Usually, this current is extracted using a transimpedance amplifier, Figure 7.25, and in

that case the output voltage is

Vout(t) = −Ramp Is(t) (7.12)

being Ramp the resistance used in the transimpedance amplifier set-up.

This sensing approach is theoretically ideal for velocity feedback, but real application

is influenced by parasitics. When using electrostatics as sensing technology, parasitics
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must be taken into account, as parasitic capacitances can be even higher than the sensing

capacitance. Figure 7.25 shows a typical sensing scheme with parasitics. The problem

with parasitics is that the driving voltage is fed through to the sensing port, masking the

desired position output, as they share the same frequency.
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GND
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Ramp

Ip(t)

Is(t) I(t)

g gs

Vout(t) = −Ramp I(t)

Figure 7.25: Device with parasitics and transimpedance amplifier voltage pick-up.

Consequently, Equation (7.6) must be corrected adding the parasitics term

I(t) = Is(t) + Ip(t) =
d(Cs(t)Vs)

dt
+ Cp

dVd(t)

dt
(7.13)

where Cp is the parasitics capacitance between the input port of the MEMS resonator and

the output port of the MEMS resonator, and Vd(t) is the MEMS driving voltage. To be

able to use this current output, the parasitics must be minimized either by decreasing the

parasitics capacitance or the driving voltage. The parasitics capacitance can be reduced

improving fabrication techniques, the materials used or separating as much as possible

input and output ports. And the driving voltage is usually decreased by oscillating the

MEMS resonators in vacuum. Vacuum sealing of the devices reduces the damping of the

system, allowing to drive the MEMS resonators with low voltages, while keeping high

voltages for the sensing part.

7.3.2.2 Electromechanical Amplitude Modulation standard approach

To solve the parasitics issue, different signal processing techniques are used in the

literature. Between them, Electromechanical Amplitude Modulation (EAM) is the

reference in robust extraction of position in electrostatically actuated MEMS [138], [198],
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[202], [199]. In these works, EAM is presented, developed and tested for electrostatic

lateral combs and for electrostatic parallel-plate combs.

EAM allows frequency-domain separation of the position signal from the parasitics signal,

using a high frequency carrier signal. The standard EAM set-up is shown in Figure 7.26.
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Figure 7.26: EAM output signal extraction set-up.

If we assume that the MEMS resonator is oscillated sinusoidally at driving frequency

ŷ(t) = Ŷ1 sin(ωd t+ φd) (7.14)

given driving and carrier voltages as follows

Vd(t) = Vd sin(ωd t) (7.15)

Vc(t) = Vc sin(ωc t) (7.16)

the new sensed current is

I(t) = Is(t) + Ip(t)

=
d(Cs(t) (Vs + Vc(t)))

dt
+ Cp

dVd(t)

dt

=
dCs(t)

dt
(Vs + Vc(t)) + Cs(t)

dVc(t)

dt
+ Cp

dVd(t)

dt
. (7.17)

In the case of lateral comb sensing, the capacitance is defined on (7.9), and then the

output of the system is

I(t) = −Csnl Y̌1 Vs ωd cos(ωd t+ φd)− Csnl Y̌1 Vc ωd cos(ωd t + φd) sin(ωc t)

+ Csnl Vc ωc cos(ωc t)− Csnl Y̌1 Vc ωc sin(ωd t+ φd) cos(ωc t) + Cp Vd ωd cos(ωd t)
(7.18)
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where Y̌1 = Ŷ1
Lov

is the normalized comb movement. Rearranging terms, four frequencies

are observed in the power spectrum of the extracted current, Figure 7.27

I(t) = −Vs Csnl Y̌1 ωd cos(ωd t+ φd) + Cp Vd ωd cos(ωd t)

+ CsnlVc ωc cos(ωc t)

− 1

2
Csnl Y̌1 Vc(ωc + ωd) sin((ωc + ωd)t+ φd)

+
1

2
Csnl Y̌1 Vc(ωc − ωd) sin((ωc − ωd)t− φd). (7.19)
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Figure 7.27: Power spectrum of the output voltage with identification of the four
frequencies that appear due to electromechanical modulation.

Once the output voltage is obtained through a transimpedance amplifier, the position is

extracted with four steps:

1. Mixing of the output voltage with the carrier signal to map the side-bands back to

driving frequency: V (t)⊗Vc sin(ωct). The mixing or signal multiplying operation is

identified with the ⊗ operator.

2. Low-pass filtering of the resulting signal to attenuate frequencies higher than drive

frequency.

3. Mixing of the resulting voltage with drive signal to map the oscillation into

oscillation amplitude: V (t)⊗ Vd sin(ωdt).

4. Low-pass filtering of the final signal to extract DC signal proportional to amplitude

of oscillation.
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In Figure 7.26 the procedure is outlined. This set-up can be implemented with two

high-precision lock-in amplifiers in series, each one implementing one mixing step and its

low-pass filtering [146].

Improved demodulation procedure with parallel-plate capacitors is as shown in [202].

Although the current is more complex, as infinite side-bands appear for each oscillation

frequency, the proposed amplitude extraction is more robust than the linear one. The

procedure is based in parallel demodulation of two side-bands to extract amplitude from

their ratio.

7.3.2.3 EAM for full position extraction

In order to be used as position feedback for the thesis controller, the presented EAM

procedure can be modified for full position extraction, Figure 7.28.
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Figure 7.28: EAM scheme modification for full-position extraction.

Assume that the MEMS resonator oscillates with four harmonics and a static bias

ŷ(t) = Ŷ0 + Ŷ1 sin(ωd t+ φd1) + Ŷ2 sin(2ωd t+ φd2)

+ Ŷ3 sin(3ωd t+ φd3) + Ŷ4 sin(4ωd t + φd4). (7.20)

The driving voltage has also four harmonics

Vd(t) = V0 + V1 sin(ωd t+ θd1) + V2 sin(2ωd t + θd2)

+ V3 sin(3ωd t+ θd3) + V4 sin(4ωd t + θd4) (7.21)
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and the applied carrier is

Vc(t) = Vc sin(ωc t) (7.22)

complemented with a fixed sensing voltage, Vs. Then, assuming lateral comb sensing, the

capacitance variation is

Cs(t)

dt
=− Csnl ωd

(

Y̌1 cos(ωd t + φd1) + 2Y̌2 cos(2ωd t+ φd2)

+ 3Y̌3 cos(3ωd t+ φd3) + 4Y̌4 cos(4ωd t+ φd4)
)

(7.23)

where Y̌i = Ŷi
Lov

is the normalized position amplitude of the i-harmonic. From this

capacitance variation, following equations (7.17) and (7.12), the output voltage is

V (t) =− Ramp

(

dCs(t)

dt
Vs +

dCs(t)

dt
Vc(t) + Cs(t)

dVc(t)

dt
+ Cp

dVd(t)

dt

)

=+ Ramp VsCsnl ωd

(

Y̌1 cos(ωd t+ φd1) + 2Y̌2 cos(2ωd t + φd2)

+ 3Y̌3 cos(3ωd t + φd3) + 4Y̌4 cos(4ωd t+ φd4)
)

+ Ramp Csnl ωd Vc sin(ωc t)
(

Y̌1 cos(ωd t+ φd1) + 2Y̌2 cos(2ωd t+ φd2)

+ 3Y̌3 cos(3ωd t + φd3) + 4Y̌4 cos(4ωd t+ φd4)
)

− Ramp Csnl Vc ωc cos(ωc t)

+ Ramp Csnl Vc ωc cos(ωc t)
(

Y̌0 + Y̌1 sin(ωd t+ φd1) + Y̌2 sin(2ωd t+ φd2)

+ Y̌3 sin(3ωd t+ φd3) + Y̌4 sin(4ωd t+ φd4)
)

− Ramp Cp Vd ωd cos(ωd t). (7.24)

Once this voltage is obtained, mixing the voltage with the phased-shifted carrier,

Vc cos(ωct), maps back the full position to the original frequency

Vm(t) =V (t)⊗ Vc cos(ωct)

= + Ramp Csnl V
2
c ωc cos(ωc t)

2
(

Y̌0 + Y̌1 sin(ωd t+ φd1) + Y̌2 sin(2ωd t + φd2)

+ Y̌3 sin(3ωd t + φd3) + Y̌4 sin(4ωd t + φd4)
)

+ Ramp VsCsnl ωd Vc cos(ωct)
(

Y̌1 cos(ωd t + φd1) + 2Y̌2 cos(2ωd t+ φd2)

+ 3Y̌3 cos(3ωd t+ φd3) + 4Y̌4 cos(4ωd t+ φd4)
)

+ Ramp Csnl ωd V
2
c cos(ωct) sin(ωc t)

(

Y̌1 cos(ωd t+ φd1) + 2Y̌2 cos(2ωd t + φd2)

+ 3Y̌3 cos(3ωd t+ φd3) + 4Y̌4 cos(4ωd t+ φd4)
)

− Ramp Csnl V
2
c ωc cos(ωc t)

2

− Ramp Cp Vd ωdVc cos(ωd t) cos(ωct). (7.25)
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Using trigonometric equivalences

cos(ωc t)
2 =

1

2
− cos(2ωc t)

2

cos(ωc t) sin(ωc t) =
sin(2ωc t)

2

the resulting voltage is

Vm(t) = +
1

2
Ramp Csnl V

2
c ωc

(

Y̌0 + Y̌1 sin(ωd t+ φd1) + Y̌2 sin(2ωd t+ φd2)

+ Y̌3 sin(3ωd t+ φd3) + Y̌4 sin(4ωd t+ φd4)
)

− 1

2
Ramp Csnl V

2
c ωc

+ higher harmonics. (7.26)

And the scaled full position with a fixed bias is obtained after low-pass filtering

Vpos(t) =
1

2
Ramp Csnl V

2
c ωc

(

Y̌0 + Y̌1 sin(ωd t + φd1) + Y̌2 sin(2ωd t+ φd2)

+ Y̌3 sin(3ωd t+ φd3) + Y̌4 sin(4ωd t+ φd4)− 1
)

(7.27)

=
1

2
Ramp Csnl V

2
c ωc

( ŷ(t)

Lov
− 1
)

. (7.28)

Finally, the full position of the MEMS resonator is calculated as

ŷ(t) =Lov

( 2Vpos(t)

Ramp Csnl V 2
c ωc

+ 1
)

. (7.29)
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Figure 7.29: a) Power spectrum of the oscillation to be sensed including four harmonics.
b) Comparison between the sensed position and the position signal extracted using EAM
position sensing.

Consequently, with a simplified version of the Electromechanical Amplitude Modulation

the full position can be extracted with electrostatic sensing using lateral comb capacitors.
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EAM procedure is well-known and tested, what guarantees that the position can be

extracted. The procedure can be extended to parallel-plate capacitors for small amplitudes

of oscillation.

Figures 7.29 and 7.30 show the effectiveness of the procedure via simulation. The

oscillation of the MEMS resonator with four harmonics, Figure 7.29a, is perfectly

extracted and suitable for position feedback, Figure 7.29b. Figures 7.30a and 7.30b

detail the effect of the EAM modulation on the oscillation signal and how the mixing

with the 90◦-phase shifted carrier signal allows to extract the full oscillation of the

MEMS resonator from the masked signals with parasitics. In the example simulation,

the parasitics capacitance is Cs = 6.8322 ·10−12 F , and the carrier signal is chosen with an

amplitude of 10 V and a frequency of 20 kHz. The selection of the carrier signal frequency

must be done carefully, in order to correctly separate the frequencies with the low-pass

filter. And the MEMS design has to be checked to verify that the generated frequencies

don’t excite undesired mechanical oscillation modes [199].
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Figure 7.30: a) Power spectrum of the EAM signal that is extracted from the
transimpedance amplifier with four side-bands of the carrier signal. b) Power spectrum
of the EAM signal after mixing with the 90◦-phase shifted carrier signal.

7.4 Proposed laboratory testing

In order to fully test the controller capabilities, an appropriate MEMS test resonator must

be designed. Usual MEMS resonators designs cannot completely adapt to validate the

control approach. New design with two-sided independent parallel-plate actuation and

position feedback with lateral-comb or parallel-plate is presented. The design is prepared
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for in-plane laser interferometry.

In the same way, some adaptation must be done in usual laboratory set-up to

accommodate the tests. The proposed final set-up is presented, and the test procedure is

outlined.

7.4.1 MEMS resonator design

To test the results presented in the dissertation, these main characteristics must be

included in the MEMS test resonator:

1. Low natural frequency of the MEMS resonator (around 300 Hz) to be able to

excite and detect up to four harmonics in the oscillations. The natural frequency

affects the needed sampling frequency of the electronic board where the controller

is implemented.

2. Non-linear spring design, with β-factor smaller than 5, to verify the suitability of

the controller in nonlinear MEMS resonators.

3. Two-sided independent driving with parallel plates capacitors, in order to verify

full-gap oscillation selection, with the proposed controller.

4. Voltage extraction with lateral comb fingers and parallel-plate capacitors, in order

to test the EAM full position signal extraction approach.

5. A large planar area must be free of obstacles in order to implement in-plane position

extraction with laser interferometry. This approach is under technical study as

Future Work.

Using the same fabrication technology used in the MEMS resonator (AF07 resonator3 )

that has been used in the simulations, Figure 4.1, the necessary MEMS test resonator can

be fabricated. The design is based on UCI Microsystems in-house wafer-level silicon-on-

insulator (SOI) process. For the design fabrication, a silicon wafer with 50µm thickness

is patterned using the design mask and a photoresist layer. Once the photoresist

is developed, deep-reactive-ion-etching (DRIE) is applied using a Surface Technology

Systems (STS) tool and then released in a HF-acid bath [198]. The minimal gap feature

is 5µm. The minimal structural feature is 8µm. And maximum solid area is 20µm, with

etch holes of size 20µm × 20µm.
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Parameter Value
Spring beam height bK 50µm
Spring beam length LK 2mm
Spring beam thickness hK 8µm
Drive gap g0 5µm
Sense gap gs 5µm
Number of parallel-plates driveNdp 40
Number of parallel-plates senseNsp 20
Length of parallel-plates drive Ldp 305µm
Length of parallel-plates sense Lsp 360µm
Number lateral comb fingers Nsl 238
Lateral combs overlap Lov 20µm
Resonator thickness b 50µm

Table 7.1: Design parameters of the MEMS resonator in Figure 7.31a.

The proposed MEMS resonator is presented in Figure 7.31. It is composed of four one-

leg suspensions that suspend the proof-mass over the substrate. Two-sided independent

parallel-plate electrostatic driving can be used to drive the MEMS resonator from the two

sides of the mass. Lateral comb fingers are present in one-side for position feedback. And

at the other side parallel-plate capacitors can also be used for position feedback. The

basic design features are described in Table 7.1.

The equivalent model parameters are summarized in Table 7.2. As can be seen, the MEMS

resonator is designed for 278Hz natural frequency, meaning that the fourth harmonic

would be at 1.112 kHz, well in standard control equipment working frequencies. Driving

capacitors are large and allow low-voltage driving, to avoid parasitics. Pull-in voltage is

placed at 3.43 V , with the non-linear β-factor clearly on the nonlinear regime.

Parameter Value
Linear spring K 1.716N/m
Non-linear spring K3 1.929 · 1010 N/m3

Mass M 5.6 · 10−7 Kg
Oscillation gap g0 5 · 10−6 m
Driving capacity (each side) C0 1.0797 · 10−12 F
Lateral comb sensing capacity Csnl 1.626 · 10−10 F
Parallel-plate sensing capacity Csnl 6.83 · 10−13 F
Frequency ωn 1750 rad/s
Frequency fn 0.278 kHz
β − factor = K/(K3 g

2
0) 3.56

Table 7.2: New MEMS resonator model characteristic parameters designed for testing the
control approach.
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Figure 7.31: a) Capture of the L-Editr fabrication design program with the proposed
MEMS resonator. Design values in Table 7.1. b) Schematic of the MEMS resonator,
indicating electrostatic driving and sensing ports, in the same positions designed in a).
The surface prepared for optical detection is also indicated.

A large area has been cleaned in one of the sides to allow in-plane laser position detection

against a flat lateral surface. In the process of wire-bonding the device to the dip-package,

that area would be left clear in order to glue a 45◦ mirror to redirect laser from an

laser Doppler vibrometer to measure real in-plane displacement, to validate electrostatic

measuring.

7.4.2 Laboratory test set-up

In order to test the fabricated device, the proposed laboratory set-up is presented in Figure

7.32. The fabricated device would be diced and wire-bonded to a 48-pin DIP-package.

The output of the MEMS resonator would be connected to a signal processing board,

with a tansimpedance amplifier. In some cases, the transimpedance amplifier can be

implemented on board and wire-bonded at wafer level, this lowers the parasitics and the

Signal-to-Noise Ratio (SNR). The output would be processed by a Lock-in Amplifier, that

would generate the carrier signal used to demodulate and filter out the MEMS resonator

oscillation. This output would be processed by a FPGA/DSP board, where all the control

would be implemented. The control board would generate the two driving signals for the
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two-sided oscillation driving of the MEMS resonator. Depending on final implementation

and capability of the control board, the lock-in amplifier processing can be integrated in

the control board.
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Figure 7.32: Proposed test-setup with the interconnections and the necessary laboratory
equipment.

It is important to summarize the key features that must be included in the FPGA or

DSP Control board, as this board would implement the proposed control strategy. The

board must work on a clock of at least 100 kHz. It would implement a first step of signal

processing to extract the real position, by correcting the output of the lock-in amplifier.

After that, the three control levels would be implemented. The desired oscillation

amplitude and bias would be a parameter, and from those values, the control loop would

generate the driving voltages, at the minimum energy frequency. The controller would be

implemented with a minimum of four resonators.
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To validate the strategy, the tests that must be performed can be divided in four different

areas:

Fabricated device identification

The first step is to fully identify the MEMS resonator parameters. Optical identification

of key features would define fabrication imperfections and delimit the final mass, spring

and gap information. Then, with electrostatic identification, the model parameters are

extracted: resonant frequency, working Q, driving force and sensing capacity. With all

this data the model parameters are fine-tuned to generate the controller parameters.

EAM full position extraction implementation and validation

Once the system is identified, validation of the EAM full position extraction scheme

would be tested. This step is crucial to guarantee that the closed-loop control can be

implemented with satisfactory results.

Different tests would be carried on, where multiple-harmonic driving voltages are applied,

and the real oscillation is extracted. The test must guarantee that the generated output

is the actual oscillation of the device.

In order to specifically validate that the EAM position feedback works as desired, an

optical validation is proposed. This implementation is challenging and would need to be

verified on the laboratory. The idea is to insert a 45-degree mirror in the dip package in

the space already prepared for it. With this mirror, the laser beam of a laser Doppler

vibrometry measuring table could be redirected to the MEMS resonator lateral surface,

Figure 7.33. This implementation could allow optical position extraction, as in out-of-

plane MEMS resonators. Another option could be fabrication of a MEMS mirror together

with the MEMS resonator, but this is limited by the fabrication technique that is used.

In the proposed SOI fabrication, this is not possible.

Robust controller with pure-sinusoidal oscillation implementation

Next step would be to validate robust pure-sinusoidal oscillation with full range of

amplitudes and bias selection. Using the controller implemented in the Control board,

different set-points with frequencies ranging from 0.8ωn to 1.05ωn, amplitudes of oscillation

ranging from 0.1g0 to 0.6g0 and bias ranging g0 to 0.8g0 would be tested. Pure-sinusoidal
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Figure 7.33: a) Detail of the insertion of a 45-degree mirror to redirect the laser beam
for optical identification. b) Measuring implementation with an laser Doppler vibrometry
measuring table.

oscillation should be verified in all cases. Also, two-sided actuation should be verified.

To validated the robustness of the control, changes on Q-factor would be applied, as well

as, shock tests.

Energy Efficient Control implementation

Finally, long-term tests would be done on the controller to validate the minimum

energy control loop. For the same oscillation patterns of previous tests, where energy

consumption would have been recorded, the control loop has to be able to reach the

lowest energy consumption frequency.

In conclusion, a full validation of the control strategy is proposed with four incremental

tests, that would verify control viability.
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Chapter 8

Conclusions

The field of Micro-Electro-Mechanical Systems (MEMS) is nowadays a reality. Lots of

designs already exist, and some of them are not a concept anymore. We can find them

in devices around us. However, there are still challenges that prevent them to be used in

high grade performance applications.

Plenty of MEMS devices are actuated using electrostatic forces, and specially, parallel-

plate actuators are extensively used due to the simplicity of their design. Nevertheless,

parallel-plate actuators have some limitations due to the nonlinearity of the generated

force. Their robustness, stability, performance and energy consumption are issues that

are not completely solved. This dissertation has tried to bring some light to them.

Taking the focus away from the application, and analyzing the MEMS resonator as it

is, different approaches have been studied. The results change the way some of the

issues were understood or extend their domain to nonlinear mechanical spring models.

The Resonant Pull-in Condition, the definition of the Harmonic Balance Voltage, the

two-sided actuation for full-range oscillation selection or the minimum energy frequency

selection are between them.

Challenges are still there, but the search for better solutions are a step closer.
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8.1 Contributions of the dissertation

Nonlinear extension of Pull-in derivations

Based on energy analysis, a unified framework for Static, Dynamic and Resonant Pull-in

has been derived. Their definitions have been extended including a nonlinear mechanical

spring in the model, and comparison of behaviors between linear and nonlinear behaviors

have been provided. Nonlinear spring inclusion is important as it reduces or increases

the maximum voltage that can be applied depending on the application, and at the same

time, increases the stable maximum oscillation amplitude.

The energy analysis has shown the importance of potential energy curves. Their profile

bound the range of feasible stable positions and oscillations. This has been shown

graphically and analytically.

Definition of Resonant Pull-in Condition

The energy analysis developed in the dissertation has lead to the definition of the Resonant

Pull-in Condition [62]. For the first time, a general analytical formula to delimit the

maximum combination of AC and DC voltage that can be applied without leading

the MEMS resonator to pull-in was derived. The formula is defined for the nonlinear

mechanical spring model, and unifies previous results.

The concept of Resonant Pull-in Condition was extended in [36] to define the minimum

voltage combination for bistable actuation of MEMS switches.

Harmonic Balance oscillation characteristics analysis

Harmonic Balance has been shown to be an excellent tool to analyze and predict the

steady-state behavior of the electrostatically actuated MEMS resonators. Insight on the

limitations of first harmonic, superharmonic and subharmonic actuation schemes in terms

of oscillation performance has been provided. Depending on chosen actuation, the number

of harmonics that can be controlled on the oscillation output are limited.

Pure sinusoidal oscillation can only be achieved with appropriate voltage selection with at

least three harmonics in the linear case and five harmonics in the nonlinear case. Closed-

form oscillation solution cannot be obtained, but harmonic balance coupled to implicit

numerical solver allows to predict expected oscillations for a given oscillation scheme.
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Harmonic Balance predicts existence of steady-state oscillations when working between

in stable bounds.

Harmonic Balance voltage definition

Using the square of the input voltage (V 2) as control action leads to simplification

of the Harmonic Balance analysis. Moreover, it has been demonstrated that for any

desired oscillation pattern, there exists a V 2 control action that leads the system to that

oscillation. Harmonic Balance equations directly provide the V 2 needed voltage for a

given oscillation pattern. The only limitation is the ability to convert that control action

in a voltage applied to the MEMS resonator. With usual one-sided actuation, there are

regions of oscillation that cannot be reached due to the impossibility of producing the V 2

voltage when it is negative-valued.

Full range oscillation with new two-sided actuation

Full range selection of oscillation amplitude and bias, as predicted by Harmonic Balance

analysis, cannot be reached with one-sided actuation. For this reason, a new two-sided

actuation scheme with individually selected input voltage to each side of the MEMS

resonator has been defined. With the new actuation scheme, the desired action force is

perfectly achieved, allowing the MEMS resonator to oscillate at the desired set-point.

The proposed scheme divides and scales the V 2 voltage into two different input voltages,

one for each side.

Minimum energy oscillation frequency

Based on the Harmonic Balance voltage, energy analysis allows to define the minimum

energy frequency for each desired oscillation. The approach shows that minimum energy

frequency is dependent on desired bias and amplitude. Increasing the bias reduces the

minimum energy frequency, but increasing the amplitude woks on the opposite direction.

Minimum energy is always obtained in the range of frequencies where one-sided actuation

is possible, as two-sided actuation demands more energy. Nevertheless, two-sided

actuation is important to allow smooth control over the whole range of frequencies.

Surprisingly, as the bias is reduced, frequencies higher than the mechanical natural

frequency are more energy efficient than the lower frequencies.
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New controller for energy efficient robust sinusoidal oscillation

A new controller with three hierarchical control schemes has been designed to

automatically generate sinus-like oscillations in the full range of desired amplitudes.

The driving voltage has been shown to match with the analytically predicted Harmonic

Balance voltage. The proposed controller is able to produce the driving action needed

to obtain the desired set-point oscillation with robustness over a large range of system

parameters variations. And it seeks the lowest energy frequency for the desired amplitude

of oscillation.

Consequently, it allows to obtain a pure sinus-like oscillation with the desired amplitude,

with robustness and with minimum energy consumption.

8.2 Publications in the field

• Snap-Action Bistable Micromechanisms Actuated by Nonlinear Resonance. J.

Casals-Terre, A. Fargas-Marques and A.M. Shkel, Journal of Microelectromechanical

Systems. Oct. 2008 Volume: 17, Issue: 5. DOI: 10.1109/JMEMS.2008.2003054

• Resonant Pull-In Condition in Parallel-Plate Electrostatic Actuators. A. Fargas-

Marques, J. Casals-Terre and A.M. Shkel, Journal of Microelectromechanical

Systems. Oct. 2007 Volume: 16, Issue: 5. DOI: 10.1109/JMEMS.2007.900893

• Using interactive tools to teach and understand MEMS. A. Fargas-Marques and R.

Costa-Castelló. ACE06. 7th IFAC Symposium on Advances in Control Education.

21 23 June 2006, Madrid, Spain. DOI: 10.3182/20060621-3-ES-2905.00101.

• Describing function analysis in MEMS resonators. A. Fargas-Marques and R. Costa-

Castelló. 2ndas Jornadas UPC de Investigación en Automática, Visión y Robótica

(AVR’06). Camps Nord - UPC. Barcelona, July 2006.

• Modeling the electrostatic actuation of MEMS: state of art 2005. A. Fargas-

Marques, R. Costa-Castelló and A.M. Shkel. IOC-DT-P-2005-18 - Technical report

- Institut d’Organització i Control. Universitat Politècnica de Catalunya. 2005.

URI: http://hdl.handle.net/2117/119

• On Electrostatic Actuation Beyond Snapping Condition. A. Fargas-Marques and

A. M. Shkel. Proceedings IEEE SENSORS’05, pp.4, Irvine, Oct. 30 2005-Nov. 3
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2005. DOI: 10.1109/ICSENS.2005.1597770

• On Electrostatic Actuation Beyond Snapping Condition. A. Fargas-Marques and

A. M. Shkel. Preprint of Eurosensors XIX: The 19th European Conference on Solid-

State Transducers, Barcelona, Spain, 11 - 14 September 2005.

8.3 Future work

Laboratory testing

In the current work, a test MEMS resonator has been specially designed for testing the

new control approach. The device has been designed with low natural frequency, two-

sided independent actuation and prepared for EAM position feedback. The device must

be fabricated and tested.

Once fabricated the device, the controller must be implemented in a control board in order

to validate the approach. The control board must include the EAM position feedback,

the three control loops and the two-sided actuation voltage generation.

The complete testing procedure to validate the control approach and the laboratory set-up

have been detailed in Chapter 7.

Optical position extraction

In the laboratory testing, a new approach to extract in-plane position has been proposed

with the installation of a 45-degree mirror on die. The proposed MEMS resonator for

testing has been specially designed to use this approach.

The approach is designed to validate EAM position extraction with a non-parasitic

affected measuring method. This would be a new way to use interferometry in on-plane

resonators.

New control feedback scheme would be investigated, using similar techniques as presented

in [90], depending on the testing results. The testing procedure has been detailed in

Chapter 7.

Stability formulation and control

The proposed control strategy has shown good performance to obtain the set-point

oscillation, robustness and minimum energy seeking. However, stability for amplitudes
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larger than 80% of the gap cannot be guaranteed.

Harmonic Balance predicts that steady-state oscillations are feasible, but the transient

dynamics make it difficult to achieve them. Moreover, the energy analysis in the Harmonic

Balance formulation links directly to the Resonant Pull-in Condition formulation, but the

interconnection between results has not fully developed in order to obtain a closed-form

formula that could be possible.

In parallel, a control loop for pull-in avoidance should be added if those amplitudes

are desired. New approaches to deal with large amplitudes have been presented in

literature, as in [30], where a polynomial linear parameter varying model is used for

full gap positioning. Similar approaches could be added to the proposed controller.

Robust EAM adaptation to full position

The effectiveness of EAM position feedback has to be tested and validated to be able to

implement the controller and the full range oscillation. The approach relies on lateral

combs electrostatic position extraction. In order to be able to oscillate with large

amplitudes devices where lateral combs cannot be used, an extension of the Robust

EAM extraction for parallel-plate position sensing should be derived [199]. Moreover,

the parallel plate extension is robust against parameters variation, and it would be a

perfect combination for the controller.

Extension to two degrees-of-freedom MEMS resonators

The presented results have the potential to be extended to 2-DOF MEMS resonators, as in

the case of gyroscopes. The effect of the proposed controller should be analyzed, and the

improvement in sensitivity gained by large amplitude pure-sinusoidal oscillation should

be quantified. Interaction of oscillation controller with sensing precession or oscillation

should also be analyzed.
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Appendix A

Harmonic Balance formulations

In this Appendix, the development of the set of equations including the second harmonic in

the oscillation response are presented. These formulations complement the ones presented

in Chapter 4.

In both cases, the system evolution is assumed to be composed of the natural frequency

and the second harmonic

g(t) = G0 +G1 sin(ω t+ φ1) +G2 sin(2ω t + φ2)

= Ğ0 + Ğ1e
jωt + Ğ−1e

−jωt + Ğ2e
j2ωt + Ğ−2e

−j2ωt (A.1)

where Ğ0 = G0, Ğ1 =
G1

2j
ej φ1 , Ğ2 =

G2

2j
ej φ2 , Ğ−1 = Ğ1 and Ğ−2 = Ğ2.
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|Ğ2|2Ğ0 + 2ω2
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Ğ2

231



β3 =
1

fkgk

(

ω2 − j
ωn

Q
ω − ω2

n

)

Ğ3
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Ğ0Ğ1 + 2ω2
nĞ1
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Ğ1Ğ
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A.2 Nonlinear case - second harmonic

The complete set of equations is as follows:
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−120Ğ0 + 72
)
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0 − 18Ğ0 + 2
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|Ğ1|2 +
(

ω2 − j
ωn

Q
ω − 3ω2

n

)

Ğ2
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|Ğ2|2 +
(
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Ğ1

+
κ

fkgk

(

(

−5Ğ4
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−60Ğ0 + 36
)
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−5Ğ0 + 3
)

Ğ4
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