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Abstract

All biological processes are governed by interactions of macromolecules
that occur at atomic scale. However, our ability to directly observe such
processes is often limited by experimental constraints due to the charac-
teristic scales at which they occur. Such limitations mandate the use of
modeling techniques such as molecular dynamics simulations to extend
our understanding of these phenomena. The goal of this thesis has been to
use molecular dynamics simulations, in conjunction with advanced analy-
sis techniques, to elucidate biological processes at the atomistic scale. We
have used the distributed computing project GPUGRID.net and Markov
State Model analysis to study molecular processes in disordered pro-
teins and membranes systems. In each case we have been able to give
a full atomic picture of events only hinted at by other methods, and in
some cases we observe things entirely hidden from other methods. These
successes reinforce the importance of molecular simulations as an ex-
ploratory tool in the biological sciences.
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Resum

Tots els processos biològics estan governats per interaccions de macro-
molècules que ocorren a escala atòmica. No obstant, la nostra capacitat
d’observar directament aquests processos sovint està limitada per restric-
cions experimentals degut a les escales caracterı́stiques en que ocurreixen.
Tals limitacions requereixen l’ús de tècniques de modelatge com simula-
cions de dinàmica molecular que permeten extendre la nostra comprensió
d’aquests fenòmens. L’objectiu d’aquesta tesi ha estat aplicar simulacions
de dinàmica molecular, conjuntament amb tècniques d’anàlisi avançada,
per dilucidar processos biològics a escala atòmica. Hem utilitzat el pro-
jecte de computaciò distribuı̈da GPUGRID.net i l’anàlisi mitjançant Mo-
dels d’Estat de Markov per estudiar processos moleculars en sistemes de
membranes i proteı̈nes desordenades. En alguns casos hem estat capaços
de retratar fenòmens amb indicis proporcionats per altres mètodes i en
d’altres n’hem pogut observar de totalment ocults a altres mètodes. Aquests
èxits reforcen la importància de les simulacions moleculars com a eina
exploratòria en les ciències biològiques.
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Preface

One of the fundamental obstacles—and accordingly one of the main lessons—
of the scientific process is that we are always working on a “black box”
problem. In our pursuit of fundamental truths, be they in the macroscopic
or microscopic world, we never have direct access to the thing we want
to know. Even for something “simple” like the law of gravity, observa-
tions of physical objects had to be made before we could dispel wrong
intuitions and write the equation down. And the equation itself is just
an abstraction of something much more complex. Empirical, repeatable,
falsifiable experiments are an inextricable part of the scientific process,
because they are our only way to find out what’s inside the black box.

The goal of a PhD program is to train ourselves to prod at that black
box. We learn what kinds of questions we need to ask ourselves before we
even begin (What do we really know? What do we need to know?). We
learn what tools are best for answering different kinds of questions and
how to use them. And we learn to be properly skeptical of what comes
out of our experiments and other’s experiments.

Like many theses before this one, this thesis is essentially the abridged
version of that struggle for me. I have attempted to improve our under-
standing of protein motions and their interactions with other biomolecules,
suffering a lot of failures and frustrations as well as a good amount of
luck and success. The successes are stressed here, because that’s how we
handle these things. But in reality we learn most from our struggles and
failures, and I hope that my struggles are somehow apparent between the
lines.
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Chapter 1

INTRODUCTION

1.1 Peering at Atoms

All biology is dictated by dynamic, atomic interactions of a vast array of
molecules. In order to understand biological systems and cure diseases,
we need to be able to understand the behavior and interactions of these
molecules. In a convenient universe it would be as easy to watch atoms
and molecules interact as it is to watch our favorite actors on the silver
screen, but that is not the case. We are constrained by fundamental phys-
ical limitations, such as the uncertainty principle, and where there are no
fundamental limitations there are often practical engineering limitations.

Researchers have developed an impressive array of both quantitative
and qualitative methods over the years in order to address this challenge.
Experimental assays usually lead the charge in biological discovery be-
cause they help us find new molecules of interest and answer simple ques-
tions about them like where they are located in the cell and what they in-
teract with. As the picture becomes more complex, so too do the methods
we use and the kind of information they provide us, as do the fundamental
physical challenges in achieving that picture.

There are many situations where it is important to have a more dy-
namic picture of these phenomena. Mutations in a protein, for example,
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often lead to losses or increases in activity, either by affecting a protein’s
structure or its electrostatic interaction with a binding partner. Under-
standing the specific change to the structure or interaction can help us
understand what is going on and design better therapeutics. Mutations to
or overexpression of the epidermal growth factor receptor (EGFR), for ex-
ample, are indicated in numerous cancers [1]. A single missense mutation
in EGFR leads to the loss of effectiveness in one drug, Cetuximab, but not
another, Panitumumab, that targets the same epitope [2]. Similarly, recent
work in the study of G protein-coupled receptors (GPCRs) has shown that
not all drugs are “created equal”, meaning different drugs designed to tar-
get the same receptor and can have differing downstream effects in the
cell depending on slight atomic changes in how they interact with the re-
ceptor [3, 4, 5]. The only way to understand the specific cause of such
behaviors is to look at the atomic interactions. Information gleaned from
such investigations can then be used to guide future drug design, leading
to solutions that can maintain or recapitulate efficacy under such changes.

Figure 1.1: Rough timescales for various biological processes that involve pro-
teins. Figure adapted from [6].

2
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A critical part of this is the ability to characterize events that occur
at atomic scale and that can span a huge range of timescales, from fem-
toseconds to hours or longer. Different kinds of protein motions span a
large range of timescales (Figure 1.1) [7]. Basic protein motions range
from picoseconds to milliseconds, proteins and small ligands interact on
hundreds nanoseconds to seconds, and protein folding or protein-protein
interactions can take substantially longer. A wide array of tools has been
developed to characterize such motions, which we will cover in the next
section.

1.1.1 Current methods in Structural Biophysics

A variety of experimental and computational techniques have been devel-
oped in an attempt to address these issues and build a complete picture of
biomolecules at atomic or near-atomic resolution, each with their own ad-
vantages and limitations. They are generally limited in spatial or temporal
resolution (Figure 1.2), and often come with other less obvious method-
specific limitations.

The study of biology in 3D began in 1958, when the first crystal struc-
ture of a protein, Myoglobin, was solved [8]. Structures were added
slowly over the decades, only reaching 507 structures by 1990, mostly
small globular proteins. Since then the PDB has surpassed 100,000 struc-
tures [9], >88% of which are crystal structures [10].

Crystallography has provided an essential foundation for structural
biology, but it does have limitations. Crystal structures are static pictures
of dynamic structures, and represent either an ensemble average structure
or the most stable conformation(s) susceptible to crystallization. Flexible
loops are often missing from the spectra entirely [12, 13, 14, 15, 16].
Cryo-electron microscopy (CryoEM), a related technique useful for large,
difficult to crystallize structures, also suffers from this. CryoEM also
suffers from slightly lower spatial resolution than crystallography, but has
been useful in determining several large macromolecular structures [17,
18, 19, 20].

3
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Figure 1.2: A plot showing showing the time and distance resolution of several
common investigative methods used in structural biology. Below the x-axis are
timescales of many common biological processes for comparison, and to the
right of the distance scale are the sizes of molecular constituents and assemblies.
Figure taken from [11].

The most successful experimental technique for investigating the dy-
namics of biomolecules, particularly proteins, has been nuclear magnetic
resonance (NMR) spectroscopy, which has contributed approximately 10%
of the structures in the PDB [10]. NMR can be used to determine the
structure and dynamics of many biological molecules, including proteins,
nucleic acids, carbohydrates, and many metabolites [21, 22]. A main ad-
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vantage of NMR is that it can quantitatively describe populations and ex-
change rates between various conformers. Further, certain NMR methods
can be used to find out binding sites for small molecules or other proteins,
and so is useful for drug design [23, 24].

Much like crystallography, however, NMR also comes with notable
limitations. First, it suffers from blind spots in the timescales of pro-
cesses it can resolve. Carr-Purcell Meiboom-Gill Relaxation Dispersion
(CPMG RD) and Rotating Frame Relaxation Dispersion (RF RD) are
the most popular experiments used to investigate protein dynamics in
the micro- to milli-second time scales by NMR. CPMG RD is well
suited to detect exchange processes in the ca. 0.3-10 ms time window
(kex ≈ 100 − 3000s−1). RF RD can be used to study exchange events in
the ca. 30-100 µs time window (kex ≈ 10, 000− 50, 000s−1). Therefore,
processes in the (roughly) 100 ns to 40 µs and 10 ms to 100 ms ranges
may be challenging to resolve (Figure 1.2) [25]. Further, molecules with
a molecular weight larger than 35 kDa are progressively more difficult
to resolve owing to overlapping of peaks and quicker magnetic relax-
ation [26, 27, 28]. This restricts the technique mainly to small soluble
proteins, though techniques to escape some of these limitations have re-
sulted in larger complexes being successfully analyzed [29, 30].

Several other techniques exist that also give important structural and
dynamic information. Fluorescence resonance energy transfer (FRET)
uses fluorescent probes that can give information on dynamics or structure
as well. It can be used to study protein folding or the collapsed propen-
sity of disordered proteins at sub-nanometer resolution [31, 32, 33], but
because only two fluorophores are used the results are essentially limited
to a one-dimensional projection of the process. Kinetics can be deter-
mined by using single-molecule techniques, and mutation scanning can
help identify residues that play important roles in the process. Use of
FRET for protein-small molecule binding is complicated by the effect
the fluorophore may have on the small molecule, and is therefore better
suited for protein-protein interactions, when possible. Small-Angle x-
ray scattering (SAXS) can also give information on structure and dynam-
ics [34], but like CryoEM it suffers from limited spatial resolution [35].

5
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Other promising techniques are being pioneered, like the x-ray free elec-
tron laser (XFEL), which will potentially provide structure and dynamics
at similar spatial resolution to x-ray crystallography. However, this will
require highly specialized facilities such as the linear accelerator at Stan-
ford, where one is being built.

In addition to these experimental tools, various computational tools
have also been developed to both complement and corroborate their find-
ings. Homology modelling is a technique that uses existing experimen-
tal structures in an attempt to build as-yet unknown structures. While
this works fairly well when the basis structure and target are closely re-
lated, there are huge amounts of the protein space that have not yet been
crystallized or cannot be crystallized, so the technique is of limited use
in many cases [36]. Further, it cannot give dynamic information of any
kind. Another computational technique known as docking similarly re-
lies on existing structures. Docking attempts to determine binding sites
of small molecules or other proteins. However, the inflexible nature of the
structures severely limits the success to the simplest cases [37]. Flexible
docking methods have improved the reliability and usefulness to some
extent [38].

Other computational methods avoid the extensive use of experimen-
tal information by attempting to determine structures de novo via other
means. Monte Carlo molecular modelling uses a sampling scheme whereby
random, small changes are made to the system (such as dihedral angle
changes in a folding study) and the energy of the new state is compared
with previous states [39]. This can be quite successful for simple sys-
tems with a strongly funneled energy landscape, but can be prohibitively
computationally expensive otherwise since the number of possible moves
to be made grows exponentially with the number of degrees of freedom.
The software program Rosetta is perhaps the most famous to successfully
employ this technique [40, 41]. It has seen wide success in the de novo
design of protein structures [42], the design of catalytic proteins [43], and
self-assembling protein macromolecular structures [44].

It also might seem natural to use quantum mechanical simulations to
investigate the fundamentally quantum processes of atomic interactions.

6
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Quantum simulations are highly trusted in the research community and
can view processes of arbitrary quantum complexity. However, they re-
quire extensive expertise to perform and can only simulate quantum pro-
cesses up to nanosecond length, so are impractical for many studies. The
size of systems that can be investigated is also severely limited, as scal-
ing with number atoms is N3 or worse [45]. A hybrid technique called
QM/MM [46, 47], whose pioneers recently were awarded the Nobel prize
for their work [48], is a much more practical approach that only treats a
small subset of atoms in a simulation with quantum calculations. Quan-
tum and QM/MM simulations are therefore best used when a specific,
small set of atoms must be studied with high accuracy, such as when in-
vestigating the mechanism of a chemical reaction in an enzyme.

Molecular dynamics simulations, the prime investigative technique
used in this thesis, are able to span a wide range of distance and timescales
in principal. However, they were also not very practical until recently
because they could not be performed on timescales long enough to see
meaningful biological events like the folding of small proteins or the
binding of ligands. This has changed drastically in the last five years,
as outlined in the next sections.

1.2 High-throughput Molecular Dynamics and
Markov State Modelling

1.2.1 MD

Molecular dynamics simulations represent atoms as point masses, and
the interactions between them are determined by an empirically derived
force field (FF) [49]. The force fields use a Newtonian representation
of bonded and non-bonded interaction potentials, and the environment of
each atom determines the forces upon it. The positions of the atoms at
some time in the future are determined in a stepwise fashion based upon
those forces, using common numerical integration schemes [50]. Various

7
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schemes have been developed to allow for simulations in common ther-
modynamic ensembles, such as to maintain constant temperature (NVT),
energy (NVE), or pressure (NPT), and are chosen depending on the re-
quirements and goals of the simulations. The number of particles (N) is
often fixed, though some schemes have been developed that add flexibility
to this in order to maintain constant pH, for example [51, 52, 53].

The ability of MD simulations to accurately reproduce the physical
world essentially comes down to the accuracy of the forcefields and the
amount of simulation done, or sampling. There are several different com-
mon implementations of force fields which differ slightly in their for-
mulas but for the most part have the same basic equation (Figure 1.3).
The forces between atoms is controlled by bonded terms, which include

Figure 1.3: The basic equation for an MD force field. Adapted from Durrant
and McCammon [54].

the inter-atom bonds, angles, and dihedral angles, and non-bonded terms,
typically a van der Waals term and a Coulomb term. The most commonly
used force fields for biology are Amber [55, 56] and CHARMM [57, 58].
Parameters for each term in the force field are derived empirically from ab
initio (QM) simulations or are honed to match experimentally known pa-
rameters. For example, bond distances and angles are often known from
x-ray crystal structures.

The force fields do differ in some important ways between these im-
plementations, however. The constants that govern each interaction in
the equations are different, owing to how each goes about parameterizing

8
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those constants. The Amber force field parameterizes primarily from gas-
phase QM simulations, which makes creating new parameters straight-
forward but risks producing inaccurate parameters for in-water simula-
tions [55, 59, 60]. The CHARMM force field, alternatively, parame-
terizes using water molecules around the molecule, but the added com-
plexity means properly creating new parameters requires experience [61].
Further, because performing QM calculations on every new molecule
would be computationally prohibitive, both have also created generalized
schemes involving atom types that map parameters onto new molecules
based on similarity to ones already known. Amber has developed general
AMBER force field (GAFF) [59, 62], while CHARMM has its general-
ized force field (CGenFF) [61]. As a final difference, CHARMM also
adds an additional term known as CMAP that adds nuance to the protein
backbone terms [60, 63].

This simplification of inherently quantum processes may seem du-
bious at first impression, and indeed the accuracy of the force fields was
long an issue and led many to doubt results from MD simulations. Progress
over the years has helped improve their accuracy and dispel these con-
cerns significantly, particularly with respect to the parameterization for
proteins, which are the main use of MD in biology. Several researchers
have addressed issues in the protein backbone parameters in Amber force
field, resulting in improved fitting to QM data in the Amber ff99SB force
field [64], and improved helix-coil balance in ff99SB* and ff03* force
fields [65]. Lindorff-Larsen et al. made further improvements to sev-
eral side-chain parameters in Amber, resulting in ff99SB-ILDN [66]. The
CHARMM force field had similar issues, resulting in over stabilized he-
lices and salt bridges, which were corrected by Piana et al. resulting in
CHARMM22* [67]. A comprehensive overview of these improvements
up to 2012 is summarized by Lindorff-Larsen et al. [68]. A landmark
study by the DE Shaw Research group showed that these forcefields can
be used to fold a range of small proteins to <2 Åof their experimen-
tal structures, providing strong evidence for the accuracy of these im-
provements and the usefulness of MD for biological research at the same
time [69]. Further improvements continue to be made. Most notable are

9
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improvements that have been made to the interaction between water and
the protein backbone, resulting in folded-unfolded ensembles that more
accurately reflect experiments [70, 71].

In addition to the force fields, the other fundamental limitation of MD
is that a small integration time step must be used, often around 5 fem-
toseconds or less. This is because the time step must be substantially
smaller than the fastest motions in the system, namely bond vibrations,
so that it reflects physical reality over the long term (known as conver-
gence) [72]. However, the most basic protein motions like side chain
flipping or loop motions take hundreds of nanoseconds or longer, mean-
ing many orders of magnitude must be spanned in order to see simple
motions in a single simulation [7, 73].

A standard consumer CPU has historically been unable to simulate
even small systems (˜25,000 atoms) on these timescales in any mean-
ingfully useful amount of time. Fortunately, MD computations are highly
parallelizable, and several approaches have been developed to take advan-
tage of this. The traditional approach was to spread a simulation across
multiple nodes of a cluster or supercomputer, but such resources are ex-
pensive and inaccessible for most users. With the introduction of gen-
eralized GPU architectures like CUDA and OpenCL and codes to take
advantage of their built-in high parallelization [74, 75], performing a 1 µs
simulation on a small system now takes just a few days at a cost that is
easily accessible to most researchers.

1.2.2 HTMD: High-throughput MD simulations

While the ability to reach beyond 1 µs on a single GPU is important,
many biological processes occur on tens of microseconds to milliseconds
and beyond. Several enhanced sampling techniques have been developed
to see such events, including metadynamics [76, 77, 78, 79], Accelerated
MD [80, 81], or umbrella sampling [82, 83], among many others (for a
nice overview, see [84]). However, they require aphysical biasing along
a reaction coordinate or prior knowledge about a system, which in many

10
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cases a researcher will not have. Coarse graining methods, which use
highly simplified representation of biomolecules, have also seen exten-
sive recent development [85, 86, 87]. However, this often results in a
loss of accuracy (though impressive results can be achieved in certain
cases, see [88, 89]). Specialized hardware, such as the Anton super-
computer [90, 91] or the MD-GRAPE [92], have been developed that
can run single simulations on these long timescales, and these tools have
been instrumental in helping to improve and verify the accuracy of force
fields [66, 67]. However, those specialized computers are typically not
economical or accessible for most researchers.

The most practical way to sample rare processes or those with long
timescales is to use multiple parallel simulations, a method we refer to
as high-throughput molecular dynamics (HTMD) [93, 73]. By starting
multiple simulations from the same or different starting points, states and
transitions between them can be extensively sampled such that meaning-
ful statements can be made about their stability and the frequency. Run-
ning a single round or progressive rounds of parallel simulations increases
the probability that these events can be seen and that adequate sampling
can be achieved to see micro- to millisecond timescale processes.

Still, HTMD on its own is not always useful. The copious and dis-
jointed nature of the data produced by HTMD studies means that making
sense of it is a significant challenge. Further, it is often counterintuitive
to newcomers that running multiple short simulations can allow you to
investigate events that are much slower than the length of each individ-
ual simulation. This is possible thanks to Markov state models (MSM),
which allow one to take advantage of the statistical probability of events.

1.2.3 Markov State Models

The most effective way to deal with the large amount of data generated
by an HTMD study is by using Markov state model (MSM) analysis,
which has seen a lot of development specifically for MD over the past
few years. Markov state model theory for molecular dynamics is built

11
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around prior work in transition networks [94, 95, 96, 97, 98]. The basic
idea of MSM construction is to discretize your data into what are known
as microstates via some metric, such as atom contacts, distances, or di-
hedral angles. Then, all of your data is binned by that discretization and
transitions between them after a lag time are counted. The rate of these
transitions gives information about the timescales upon which they occur.
In the final stage, states that quickly interconvert are clustered together
into macrostates, leaving only a few large, slowly interconverting states
of interest (Figure 1.4). Transitions between these states are often pro-
cesses like transitions from bulk to bound in the case of a protein-ligand
binding, or from unfolded to folded in the case a protein folding study.
From this model, important information like binding affinity or folding
time can be determined and compared with experiments.

Multiple studies have successfully used MSMs to help reconstruct
biophysical processes. They have primarily been used to investigate pro-
tein folding [94, 99, 100, 101, 102] and also protein-ligand binding [103,
104, 105]. In one study, for example, they were able to show that using
just 50 µs of simulations they could correctly calculate the experimental
binding affinity and kinetics [103]. However, there were several aspects
of the methods in that work which made it difficult to generalize to other
systems. The protein was restrained, and 2D and 3D spatial clustering
of the ligand was used to build the MSM. Those who worked on using
MSMs for protein folding encountered similar successes and limitations.
While they could accurately approximate folding times, they found that
RMSD based clustering was very limited in part because structures that
were close in RMSD may not interconvert rapidly, hindering MSM con-
struction [106].

Fortunately, a lot has been learned in the last few years about the
proper construction of Markov state models, and new methods have been
incorporated into the process. Clustering based on atom contacts or dis-
tances, for example, has proved to be much more effective than spatial
clustering and removes the need for restraints on the protein such as those
used in the Buch et al. work. For folding, using Cα-Cα distances and
dihedrals is much more effective metric than RMSD.

12
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Figure 1.4: Basic overview of how an MSM works. Imagine a blue ball that
is traversing an energy surface, such as the one pictured above, due to thermal
fluctuations. We can split the energy surface at the saddle point, and then make
note of the ball’s position at some time intervals. If we count the transitions
between the states after some lag time, we can build a count matrix, and thereby
estimate the probability of transitions depending on the current position. The
procedure is more complex in practice (we don’t know where the saddle point
is a priori, for example). One can imagine the above two-state model being
an approximation of the transition from bulk (B) to bound (A) in binding, or
unfolded (B) to folded in (A) in a folding.

Studies of folding and intrinsically disordered proteins provided addi-
tional insights into how to further improve MSMs. Clusters may be dis-
tant geometrically from the perspective of the clustering algorithm, but
kinetically very close (fast interconverting). This would result in kineti-
cally close states being clustered together when they were in fact dissim-
ilar. A projection method known as time-sensitive Independent Compo-
nent Analysis (tICA) was therefore incorporated into the process before

13
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clustering in order to alleviate this problem [107, 108]. tICA projects the
data along the system’s slowest varying coordinates, which can then be
fed to the clustering algorithms. This almost universally improves the
accuracy of the Markov models.

Methods have also been investigated to use MSMs to help improve
sampling. Adaptive MSMs have long been proposed as a way to en-
sure adequate sampling of processes seen and to explore as-yet unseen
states [97]. Recent works have provided the first proof-of-principle in
this direction, resulting in one case in a 10x decrease in the amount of
simulation needed to properly characterize a binding process [109].

1.2.4 Molecular Recognition

A long-term goal has been to use HTMD to help better understand molec-
ular recognition processes, which are the factors that result in specific
interactions. This includes binding processes such as protein-protein in-
teractions or the binding of small organic molecules to a target. Not only
are the specific atomic contacts of the final bound complex interesting,
but how molecules progress from unbound to bound, and whether that
causes shifts in the shape of the protein or binding partner. At least three
different models have been proposed for this: (i) the lock-and-key model,
which proposes that ligands and the protein simply fit neatly into one an-
other with no structural changes [110], (ii) the induced fit model, whereby
the ligand induces a change in the protein towards some bound con-
formation [111], and (iii) the conformational selection model, in which
the protein and binder sample a series of conformation until they fit to-
gether, and thus shift the ensemble of states toward that favorable con-
former [112]. While this is a topic of intense debate and disagreement
over the years [113, 114], there are copious examples of each type [115],
and each system must be considered and studied on its own. The ability to
better study how molecules progress from unbound to bound will provide
a more concrete understanding of the factors that increase or decrease
binding, and can lead to a better understanding of how certain diseases
come about and how to treat them.
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Currently MD simulations are the only way to a have a full atomic
picture of such events, and so there is strong impetus to solidify the MD
methods and produce proof-of-concept studies. There has already been
substantial progress in this direction. As mentioned in previous sections,
there is already evidence that MD works well for studying the binding of
single molecules of interest to target proteins. However, questions have
remained about how successful this will be when applied broadly. Our
group has been able to makes strides in this direction, recently uncover-
ing the bound poses from a 42 fragment screen against Factor Xa (unpub-
lished) in which the primary binding modes overlapped well with avail-
able crystal structures in all but two of the fifteen cases, and the other two
agreed with previous competition binding assays. This included affinity
and kinetic data, as well as and showing intermediate weak poses.

In this doctorate I have focused on a different class of systems in
which to lay the groundwork for studying molecular recognition, specif-
ically membrane proteins and disordered proteins. These two general
classes each have their own unique challenges and unknowns. In mem-
brane systems, for example, the diffusion of the protein and lipids is ex-
ceedingly slow compared to molecules in water. For disordered proteins,
the range of conformations that they sample is large, and the stability of
those conformations can vary substantially. The only way to ensure that
you have properly characterized such processes is with adequate sam-
pling, which requires the kind of extensive simulation of HTMD. The
following sections outline the background of these kinds of systems and
the specifics about those we have studied.

1.3 Biological Systems Investigated

This section will give background on the kinds of systems studied in this
doctorate using the techniques outlined above. A specific overview of
each biological system is also given.
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1.3.1 Membrane systems

Lipid membranes serve as fundamental barriers in cells, both between
different cells and cellular compartments. They are therefore the site of
numerous important processes and a wide array of biomolecules, with
membrane proteins serving as the functional core of these. DNA and pro-
teins have long received the lion’s share of research attention, but we are
beginning to learn that membranes and their lipids have direct roles in
cellular processes. They are not homogenous, but heterogenous and the
regulation of that can be quite complex [116]. Instead of being homoge-
nous, lipids can partition into groups of differing composition, known as
lipid rafts [117]. The composition of membranes is tightly controlled,
and there can be significant asymmetry in the lipid composition of the
leaflets [118]. Various lipids are principal actors in signalling [119], and
are implicated in a number of disorders [120].

Still, lipids and membranes do not act alone, but are key players co-
ordinated with other biomolecules for function, primarily membrane lo-
calized proteins. How lipids and membranes interact with and modulate
membrane proteins is increasingly being studied, but there are clear indi-
cations that they must be considered together [121]. Membrane proteins
make up 20-30% of the proteins in a cell [122]. Roughly 60% of all ap-
proved drugs target membrane proteins, with more than half of those tar-
geting a specific class of receptors known as G protein-coupled receptors
(GPCRs) [123]. They are frequently targeted because they are outside the
cell and can have dynamic downstream signalling effects, thus serving
as a convenient point of regulation. They are therefore of great interest
from a therapeutic perspective, and any methods that increase our ability
to understand them are welcome.

Membrane proteins may be easy to target with drugs, but they pose
a significant challenge to study from a structural standpoint compared
to proteins that are stable in water. The fact that their preferred state is
in a membrane means that they must be studied in this context, or in a
context that mimics membranes and does not disrupt their structure or
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function. This makes them more challenging to crystallize for x-ray anal-
ysis. Of the membrane protein crystal structures that do exist, most are
from bacteria, and unlike many water soluble proteins, using a strategy
of heterologous expression in bacteria is often unsuccessful [124]. Some,
such as some GPCRs, are very lowly expressed even in native tissues,
adding to the complications. Other methods to study structure, such as
NMR, have difficulty due to the membranes influence on the spectra, but
can provide important insights [26, 125, 24, 126]. Fortunately, the num-
ber and diversity of membrane protein structures determined is steadily
increasing [127].

Studying the binding of ligands to membrane proteins with many ex-
perimental techniques is also a challenge. Due to the difficulty in getting a
structure in the first place, it may not always be practical to use crystallog-
raphy to find a binding pose. Various NMR methods, such as solid-state or
saturation transfer difference (STD) methods, can be used to find binding
poses or other locations of protein-ligand interaction in membrane pro-
teins [128, 129, 130], or to look at their conformational fluctuations [131].
Still, these often provide information only on the most stable state, and
not intermediates. Methods like radioligand binding, isothermal titration
calorimetry (ITC) and SPR can be used to learn affinity or kinetic proper-
ties of binding [132], but naturally provide only bulk information and no
structural detail. These methods must be used in conjunction to build a
picture of what is going on, as they suffer from individual time or spatial
resolution limitations, or are simply substantially more difficult to carry
out on membrane proteins.

As structures become available, simulations can potentially resolve
some of the issues faced by these experimental techniques, and have al-
ready been used extensively to understand membrane proteins in ways
that would be difficult or impossible without them. MD has been used
to study the binding of several drugs to the β1- and β2-adrenergic recep-
tors [133], and the allosteric modulation of M2 receptors has also been
studied [134]. It has also been used to understand the dynamic activa-
tion of M3 and β-adrenergic GPCRs [135, 136], which is something that
is becoming increasingly important for the design of better medicines.

17



“thesis” — 2015/3/3 — 11:00 — page 18 — #32

They have also been used to uncover the conformational changes impor-
tant to EGFR activation [137, 138, 139]. Finally, they have been used to
uncover the mechanisms of ion channel function [140, 141, 142]. All of
these studies would be difficult or impossible without MD, and are excel-
lent examples of how simulations can make key insights into membrane
protein function.

The possibility of getting full atomic detail of binding is intriguing,
and is what drove the following studies. In both, we used MD to study
the binding of lipid molecules to membrane proteins in order to push the
boundaries of what has been done and to better understand these pro-
cesses. The goal was to understand how these molecular recognition pro-
cesses occur and how they are similar or different from ones previously
studied.

FAAH: Fatty Acid Amide Hydrolase

The endocannabinoids (ECs) are among the most abundant neurotrans-
mitters in the brain, and play a role in a wide array of physiological
and medically important processes, such as pain and inflammation, en-
ergy metabolism, neurological modulation and even cardiovascular func-
tion [143]. They are present in numerous types of neurons, and help mod-
ulate ion channels and neurotransmitter release [144]. It has therefore
been proposed that successful strategies to regulate the EC system could
have a range of therapeutic applications [145, 146, 147]. However, this
broad range of functions has meant that drugs targeting the EC system
can have undesired side effects, such as in the case of Rimonabant, which
successfully treated obesity but resulted in unacceptable levels of anxiety
and depression [148]. Any work that provides a better understanding of
the system may help overcome these limitations.

The main signalling molecules of the EC system are the lipids anan-
damide (AEA) and 2-arachidonoylglycerol (2-AG), which are degraded
by Fatty acid amide hydrolase (FAAH) [149] and monoacylglycerol lipase
(MAGL) [150], respectively. Both FAAH and MAGL are monotopic inte-
gral membrane proteins, and are located in different sides of the synapse

18



“thesis” — 2015/3/3 — 11:00 — page 19 — #33

(Figure 1.5), with FAAH being located primarily postsynaptically to CB1
receptors [151]. FAAH is a homodimer and a member of the serine hydro-
lase family of enzymes, and cleaves anandamide into ethanolamine and
arachidonic acid. As anandamide is a lipid, its binding to FAAH proceeds
from the membrane. Since it terminates EC signalling, its inhibition is a
potential pathway to broad modulation of the EC system.

Motivating our work with FAAH, experimental collaborators had indi-
cations that the amount of cholesterol present in the membrane modulates
the enzymatic activity of FAAH. Increasing the amount of cholesterol
in the membrane increases the activity of the enzyme. This seemed pe-
culiar, as cholesterol rigidizes membranes and should decrease diffusion.
It was therefore unclear by what mechanism it increases the activity of
FAAH. Did cholesterol interact directly with FAAH, or did the presence
of cholesterol change the membrane in some way? Did it change the po-
sitioning of the enzyme somehow?

This was a good opportunity not only to help them clear up confusion
regarding FAAH itself, but also to test whether MD can be successfully
used to simulate the binding of lipids to membrane proteins. While nu-
merous examples exist of MD being used to simulate ligands that diffuse
freely in water, there was still no case of lipid binding. Ligands diffuse
much faster in bulk water than lipids do in membranes, and therefore
even in a single long simulation may not see even a partial binding event.
For lipids, the timescale is much slower, and the only way to see binding
events is via newer methods like HTMD. Therefore, we were in a unique
position to perform the study of FAAH.

S1P1R: Sphingosine-1-phosphate receptor

Members of the G protein-coupled receptor superfamily serve to regulate
a vast array of functions in the human body, from neurotransmission to
differentiation to adhesion, and are the target of over 30% of all approved
drugs [123]. They have therefore been the focus of intense research since
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Figure 1.5: Overview of the endocannabinoid system. Adapted from [145]

their discovery. However, their structures have historically been diffi-
cult to study because they are lowly expressed and were hard to crystal-
lize [124]. Recent advancements in methods have led to an explosion of
structures becoming available in the past five years [152]. There are now
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over 75 structures available that span almost all branches of the family.
One of the more interesting structures crystallized was that of the

Sphingosine-1-phosphate receptor 1 (S1P1R), which was the first lipid
GPCR to be crystallized, in 2012 [153] (Figure 1.6). The S1PR family is
important in endothelial cell cytoskeleton structure, maturation, and vas-
cular tone and a host of other cell regulatory functions [154, 155, 156]. It
also has a role in the maturation and migration of lymphocites in immune
response [157]. Activation of S1P1R with the drug FTY720 affects vascu-
lar permeability, and can be important to the delivery of chemotherapeutic
agents to the brain or the treatment of multiple sclerosis [158, 159, 160].
Alternatively, S1P1R has a role in promoting cancer cell growth, motil-
ity, and angioneogenesis, and its inhibition could therefore be a potential
treatment [161, 162].

Figure 1.6: Overview of the S1P1R receptor structure (left) and proposed bind-
ing port (right). Adapted from [153].

While crystal structures give a wealth of essential insights into recep-
tors, they provide only a static picture of something that is involved in

21



“thesis” — 2015/3/3 — 11:00 — page 22 — #36

many dynamic processes. Recent studies have shown that the activation
and inhibition of the GPCRs is not simply a digital on/off process, but
is rather nuanced and complex dynamic process in which an activator or
inhibitor is a key player [135, 163]. Understanding how a ligand binds to
and modifies a receptor, therefore, is important for basic biology as well
as for the development of therapeutics.

While it is easy to determine affinity and kinetics for many water-
soluble ligands and proteins, it is substantially more difficult for mem-
brane proteins and the GPCRs in particular. Numerous NMR studies have
been undertaken to determine structure [164, 165], dynamics [131], and
ligand binding in GPCRs [129, 128]. Still, such methods often cannot
describe the full binding process, from intermediates to the bound pose,
and look at only small subset of atoms. Molecular dynamics (MD) sim-
ulations allow for the study of the entire protein and ligand interaction
at atomic scale, and have recently been used to visualize such processes
with impressive results [103], including with GPCRs [133], though we
are the first to do so with a lipid ligand.

To better understand the binding process of ligands to this GPCR, and
to show that it was indeed possible to undertake such a study, we chose
to study the binding of the ligand ML056 to the receptor. The structure
of ML056 (a.k.a. W146) is similar to the endogenous ligand S1P, and
therefore lessons we would learn from it would likely be applicable to
the binding mechanism of the native ligand as well. Much like our work
on FAAH, the motivation for working on S1P1R went beyond providing
insights purely focused at the system itself.

1.3.2 Disordered proteins

Note: Parts of this section are taken or adapted from [166] and Publica-
tion 3.3.

Another area where HTMD simulations can provide invaluable in-
sights is with intrinsically disordered proteins. Intrinsically disordered
proteins (IDPs) are proteins that lack or have highly-transient secondary
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and tertiary structure. This makes them particularly difficult to character-
ize by traditional biophysical techniques like x-ray crystallography, and
they were ignored for many years because of this. This changed around
the turn of the century as their importance was acknowledged thanks to
a few seminal works [167, 168, 169, 170]. The first clues to their exis-
tence came from crystal structures with missing sections in their electron
density maps, in some cases parts critical to function [12, 13, 14, 15, 16].
This, along with data from NMR and CD experiments, led to the creation
of a database for disordered regions like DisProt [171] and inspired tools
to try to predict disorder from sequence alone (PONDR) [172]. There are
many such predictors now, and even meta predictors like PONDR-FIT
that combine them [173, 174, 175].

Extensive investigation since then has made it clear that IDPs have
frequent and important roles in biological processes. Disorder is found
in both prokaryotes and eukaryotes, but is higher in eukaryotes, where
disordered regions are found in more than 50% of proteins [176]. Dis-
ordered regions are enriched in regulatory and signaling proteins, and
are less commonly found in proteins responsible for metabolism, biosyn-
thesis or transport. Disordered regions are also frequent targets of post-
translational modification, and post-translational modifications in proteins
participate in many fundamental cellular processes [177, 178, 179]. They
affect at least one-third of all eukaryotic proteins [180, 181], preferen-
tially targeting intrinsically disordered protein domains [180, 181].

Having such prevalence in key regulatory functions in the cell means
they are commonly found to play roles in various diseases [182]. They
are found mutated in numerous cancers [183], unexpectedly common in
cardiovascular disease [184], and they are common components in the
fibrils of various amyloidoses like Alzheimer’s disease, Parkinson’s dis-
ease, and diabetes [185, 186]. There has therefore been great interest in
studying their properties so we can better understanding of how and why
they cause or participate in such diseases.

When it comes to binding or molecular recognition, disordered pro-
teins appear to have various functional differences from folded proteins
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or small molecules. Among them is the ability to bind to multiple dif-
ferent binding partners in varied conformations, and to form weak but
highly-specific interactions [187, 188, 189]. Their propensity to undergo
post-translational modification is likely integral to this. There is also sig-
nificant debate about the implications of disorder for the thermodynamics
of binding, and whether disordered proteins undergo conformational se-
lection, induced fit, or some complex combination of both [190, 191, 192,
193]. It has also been proposed that their disorder-to-order transitions
may result in novel allosteric mechanisms [194].

Despite all this progress in understanding them, IDPs are still difficult
to study from a biophysics point of view. The methods used suffer ei-
ther in limitations in their scale or time resolution. As already mentioned,
crystallography can give accurate information on atomic positions, but is
limited by the fact that positions of atoms must be stable, or at least tran-
sition only slowly between a few positions. Nuclear magnetic resonance
(NMR) methods can give general information about residual secondary
structure or transiently formed long range contacts [195], as well as the
time scale of conformational transitions. However, the information is en-
semble averaged and, despite recent advances [25, 22], limitations on the
accessible time scale remain. Other methods such as SAXS and single-
molecular FRET can help understand the degree of collapse. In short, ex-
perimental methods have clear limitations in their ability to give detailed
information about the states and transitions of IDPs.

The challenges faced by the methods above stress the need for new ap-
proaches. Secondary structural motifs like α-helices and β-hairpins form
on the 0.1-10 µs timescale, and even the fastest folding proteins take mul-
tiple microseconds to milliseconds to fold [69, 196]. Meaningful tran-
sitions in IDPs will likely occur on similar timescales, so any technique
that is to fill this void must be able to identify transitions and metastable
states formed on these timescales or longer. Long timescale, explicit sol-
vent MD simulations is perhaps just the tool to help understand IDPs.
Micro- to millisecond MD simulations have in recent years significantly
contributed to our understanding of dynamic protein conformations [69,
197, 198, 199], including for some disordered proteins [200, 201]. We
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believe that HTMD is just the tool for this, and work detailed below are
our first successes in this direction.

KID: Kinase Inducible Domain

The kinase inducible domain (KID) is one of the first disordered pro-
teins to have been studied, and also one of the most extensively studied.
KID is a 60 amino acid domain of the CREB transcription factor, and
has numerous binding partners, most famously the KIX domain of CBP
(Figure 1.7) [202].

KID is known to be disordered in solution and to form two alpha he-
lices upon binding to KIX [203], a process that involves at least one bind-
ing intermediate [204]. Binding of KID is regulated via phosphorylation
of S133 in the αB helix, which increases its binding affinity 40-fold (bind-
ing of residues 119-147 to KIX). Interestingly, phosphorylation barely af-
fects the fraction of folded αA and αB helices in solution [205]. Compu-
tational studies on KID protein using replica exchanged implicit solvent
MD simulations and short all-atom MD simulations further showed that
KID is largely unstructured and phosphorylation barely affects its heli-
cal propensity [206, 207]. Moreover, various computational studies us-
ing coarse grained models, short high temperature simulations, and Gō
models suggested that binding of KID to KIX initiates at the αB he-
lix [207, 208, 209, 210]. Mutation studies suggested interactions between
the phosphorylated serine and residues on KIX are the main driving force
of this increased affinity [203]. However, the mutation of S133 to a neg-
atively charged residue such as glutamate (often considered to mimic in-
teractions with amide NH, lysine and arginine residues [211]) cannot re-
capitulate pKID activity even marginally [212].

Post-translational modifications (PTM) such as this are highly com-
mon in disordered regions like KID, and it is unclear what effect they
have on their conformations or what implications that may have for bind-
ing. Histone tails are known to be extensively modified, and the amount
of modification can result in the binding or release of the DNA it is bound
to [213]. Phosphorylation is a very common PTM and is known to have
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Figure 1.7: Overview of the activation of KID and its binding to the KIX domain
of CBP (a), along with a short sequence of KID known to bind to KIX (b).

numerous effects on proteins. It can induce conformational changes [214],
promote order-disorder transitions [215], and modulate binding via elec-
trostatic interactions with partners [216]. However, something that has
been significantly less well studied is how phosphorylation can regulate
the conformational kinetics of proteins, and what effect this may have on
interactions with binding partners. This is especially interesting for pro-
tein domains that can transition between unfolded and folded, but also
difficult to address because it means that lowly populated, transient states
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must be adequately characterized.
In an attempt to understand how phosphorylation modulates disor-

dered states of proteins and their binding, we used the KID system as a
model and determined the conformational kinetics and energetics of the
domain before and after phosphorylation at atomic resolution. We chose
to study an experimentally well-characterized disordered fragment of the
KID domain of transcription factor CREB [202] (residues 116-147). We
used HTMD simulations to perform over 1.7 milliseconds of aggregated
simulation time of the phosphorylated, non-phosphorylated and S133E
mutant forms of KID. Our initial goal was simply to ensure that we
could reproduce experimental observables. However, it became apparent
quickly in the course of our research that we were observing processes
that had yet to be observed, and as we make clear in publication 3.2 of
this thesis, could have broad implications for the binding of IDPs.
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Chapter 2

OBJECTIVES

The main objective of this doctorate has been to pioneer the use of high-
throughput molecular dynamics (HTMD) simulations to study the behav-
ior of complex biological systems and binding processes they are involved
in. Molecular dynamics is uniquely poised to study systems where current
experimental techniques are limited and traditional simulation methods
are inadequate. This is true particularly for membrane systems and pro-
teins that are disordered or transiently ordered, and these were therefore
chosen as the focus of this doctorate. We outline these objectives below:

2.1 Establish foundations and feasibility of us-
ing simulations to study binding in mem-
brane systems

Proteins and other biomolecules localized on membranes are particularly
difficult to study at atomic scale by experimental methods, and is a po-
tential role that MD can fill. However, there are many challenges for
MD that must be understood and overcome. The motions of molecules
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in and around membranes, such as the diffusion of lipids in the mem-
brane, is drastically reduced when compared with diffusion in water. Fur-
ther, with the increased number and variety of interacting molecules, there
are uncertainties regarding the ability of force fields to accurately reflect
their interactions. Finally, the ability to use MD for the binding of lipid
molecules was unknown, but important for the study and development of
therapeutics.

High-throughput MD is an ideal method to address these questions.
We chose to tackle this by finding the most challenging problems, which
was to study the binding of lipid ligands to two different membrane pro-
teins, FAAH and S1P1R. FAAH is a monotopic membrane protein that
terminates the endocannabinoid system by hydrolizing the endogenous
ligand anandamide. A key challenge was reproducing the binding of this
ligand, and also to explain the mechanism by which cholesterol modu-
lates this binding. In another work, we studied the binding of an lipid
inhibitor to the GPCR S1P1R.

2.2 Investigate behavior of disordered proteins
on biologically meaningful timescales

Disordered proteins or protein domains that are only transiently ordered
are another area where HTMD can serve a vital role for biological re-
search. There are few good experimental techniques that can character-
ize their motions and metastable states, particularly motions that occur on
certain timescales. MD is only limited by the upper limit that it can reach,
and with the methods outlined in section 1 we are able to make some the
first significant simulations in this area.

We have used exhaustive MD simulations of disordered proteins to
better understand their behavior. Publication 3.2 shows that these simu-
lations have uncovered new, previously unseen processes and led to the
proposal of a new mechanism by which post-translational modification
my lead to modulated binding. Publication 3.3 is a review in which we
discuss the significance of this work in the context of other such works.
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Chapter 3

PUBLICATIONS

3.1 Membrane Lipids Are Key Modulators of
the Endocannabinoid Hydrolase FAAH

Enrico Dainese, Gianni De Fabritiis, Annalaura Sabatucci, Sergio Oddi,
Clotilde Beatrice Angelucci, Chiara Di Pancrazio Toni Giorgino, Nathaniel
Stanley, Michele Del Carlo, Benjamin F. Cravatt and Mauro Maccarrone
Biochemical Journal 457, no. 3 (2014): 463-72.

Summary

In this project we worked with experimental collaborators to better un-
derstand how a membrane protein, Fatty Acid Amide Hydrolase (FAAH),
is modulated by the membrane itself. Our collaborators in the Dainese
group had seen that increasing the amount of cholesterol the membrane
would increase the activity of the enzyme. This was peculiar, and there
were many arguments for or against why this might make sense. Choles-
terol rigidizes membranes, which we thought might increase the stability
of the enzyme or change its resting position in the membrane. But choles-
terol also decreases diffusion, which could have actually decreased the
rate of catalysis. An alternative possibility was that cholesterol has some
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direct interaction with the enzyme. Indeed, our simulations confirm this
later hypothesis, and we showed that cholesterol preferentially interacts
with the enzyme where the endogenous ligand enters. Further, multiple
binding events in our simulations show that cholesterol interacts with the
ligand and a salt bridge on the enzyme during binding.
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3.2 Kinetic modulation of a disordered protein
domain by phosphorylation

Nathaniel Stanley, Santiago Esteban-Martı́n, Gianni De Fabritiis. Nature
Communications 5:5272, (2014). DOI:10.1038/ncomms6272

Summary

Intrinsically disordered proteins have recently been acknowledged to have
important roles in many cellular processes, but because they have no sta-
ble structure and can change conformations on a wide variety of timescales
they are difficult to study with many experimental techniques. In this
work we give one of the first examples of how MD can be used to fill
these gaps left by other methods by uncovering a long-lived metastable
state in the KID protein that had never been seen before. This state arises
due to a post-translational phosphorylation, and cannot be reconstituted
by mutating to glutamate, indicating that the phosphate is specifically re-
quired for this state to arise. We further show via a kinetic model that
such a kinetic change can have real consequences for binding, resulting
in a 10-fold increase in binding even in cases where there is no substantial
change in populations of different states.
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3.3 Progress in studying intrinsically disordered
proteins with atomistic simulations

Nathaniel Stanley, Santiago Esteban-Martı́n, Gianni De Fabritiis. Progress
in Biophysics and Molecular Biology Submitted, under review.

Summary

In this review we discuss the history of the study of disordered proteins
and recent results in atomistic simulations that have provided new insights
into their behavior. Simulations have uncovered behaviors that were pre-
viously unseen or invisible to other methods, and have included several
discoveries that have therapeutic importance. We focus primarily on sim-
ulations that exceed tens of microseconds of sampling, including works
with several milliseconds worth of sampling.
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3.4 High throughput molecular dynamics for
drug discovery

Nathaniel Stanley, Gianni De Fabritiis. In Silico Pharmacology 3:3, (2015)
DOI:10.1186/s40203-015-0007-0

Summary

Molecular dynamics is progressively becoming a tool that will be use-
ful to understand biological disorders and to design therapeutics. Re-
cent advancements in GPU hardware, simulation software, and commod-
ity cloud services mean that running extensive, parallel simulations, or
high-throughput MD (HTMD), is now practical for almost any researcher.
Further, advancements in Markov state model analysis make analyzing
HTMD data much more tractable. In this review we cover all these key
advancements and discuss recent works that show that HTMD can now be
used for drug discovery purposes, such as to run fragment screens, assess
the binding of lead compounds, or to better understand the behavior or
biological systems.
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3.5 The pathway of ligand entry from the mem-
brane bilayer to a lipid G protein-coupled
receptor.

Nathaniel Stanley, Leonardo Pardo, Gianni De Fabritiis.

Summary

Membrane proteins make up 30% of the proteins in the cell, but localiza-
tion in the membrane makes studying them challenging in many cases.
This is particularly true when studying the binding of ligands, and even
more so when the ligand is itself a lipid. We have undertaken the first
study of the binding of a lipid ligand to a G protein-coupled receptor in
order to verify its proposed binding pathway and uncover important inter-
actions along it. We show that the lipid inhibitor ML056 binds via a port
at the membrane surface, and that this binding is regulated by residues
at the top of transmembrane helix 7 and residue in a flexible N-terminal
helix.
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Chapter 4

DISCUSSION

The compendium of work highlighted in the previous chapter demon-
strates that we have been able to use HTMD in several cases to eluci-
date complex biological processes that would be difficult to see by other
means. With HTMD we have been able to get a picture of molecular
recognition processes at atomic scale and gain broader insights into how
such processes occur. Here we discuss the implications of these results,
ongoing work in these areas, and future challenges.

Establish foundations and feasibility of using simulations to study
binding in membrane systems

We studied lipid binding to two different membrane proteins, FAAH and
S1P1R. In the FAAH system we not only achieved our primary objec-
tive of reproducing a binding event, but we saw multiple partial binding
events. We were also able to propose a mechanism by which cholesterol
modulates the enzyme by direct interaction. A 2D histogram from all
the simulations showed that cholesterol preferentially interacted with the
enzyme near the ligand entrance port. While diffusion of the lipids was
indeed slow, the HTMD method increases the probability that rare and
slow events could be fully seen, and this work exemplifies that. Further,
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the fact that the simulations were unbiased indicates that the force field
was accurate enough to result in these events being seen.

Figure 4.1: The main binding pathway
for ML056 to S1P1R.

Our simulations of S1P1R
were similarly successful. We
were able to spontaneously repro-
duce the crystal bound pose of the
lipid ligand ML056 to the receptor
while showing important stages
along the binding pathway (Fig-
ure 4.1). We further showed that
instability in the N-terminal helix
may be an important factor in the
binding process. The ligand bound
in the study, ML056, shares many
structural similarities to the en-
dogenous ligand, S1P, and there-
fore the lessons we have learned
are transferable to it as well. In
particular, residues R292, E294
and Y295 at the top of helix 7 likely serve as a gating mechanism to the
binding site that specifically recognizes the head group of the lipid. The
fact that mutation of these residues substantially reduces activation of the
receptor supports this [217]. Loss of those residues likely results in either
an inability of the receptor to properly recognize and capture S1P ligand,
or an inability to keep out non-productive binders (molecules that “clog”
the receptor, but don’t activate it).

Still, while these membrane simulations were a success from a quali-
tative standpoint, bigger questions and challenges remain. The accuracy
of the simulations will be fully supported once the affinity and kinetics of
such processes can be estimated and compared with experiment. How-
ever, development remains on both sides in order for that to happen. In
the S1P1R system we were able to build an MSM and estimate binding
affinity, but we lacked experimental measurements to compare to. Such

78



“thesis” — 2015/3/3 — 11:00 — page 79 — #93

measurements are rare and difficult to obtain, and even more difficult to
interpret.

Investigate the behavior of disordered proteins on biologically mean-
ingful timescales

Our work on KID is one of the first studies of disordered proteins us-
ing unbiased MD on timescales longer than ten microseconds, and the
most extensive to date with over 1.7 milliseconds of aggregate simulation.
We found that phosphorylation at residue S133, a known phosphorylation
site, results in a 60x slowdown in conformational exchange in KID, and
that this is not recreated in the S133E mutant (Figure 4.2). This phenom-
ena had remained hidden from other methods such as NMR, and is a clear
example of how HTMD methods can provide key insights to biological
processes.

Figure 4.2: A schematic representation of kinetic modulation of KID by phos-
phorylation.

Our observation of the kinetic slowdown made us wonder whether
such a process could have consequences for binding, and led us to pro-
pose a kinetic model that shows that such change could alone result in
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increased binding affinity to a known binding partner (Figure 4.3). This
is the first time such a model has been proposed, and while its applica-
bility to KID/KIX binding remains to be fully fleshed out, it is joined by
other recent discoveries that support the idea that factors affecting disor-
der can have fundamental influence on binding [218]. Simulations have
been used by others to show that post-translational modification such as
phosphorylation or mutations can result in changes in disorder propensity
that are in fact important to binding [137, 219].

Whether the kinetic effect we have uncovered in this case is a com-
mon mode of modulation remains an open question, though it is likely
simulations will be needed to fully understand this phenomenon. It is
also unclear if it is important for the modification to be charged. Other
post-translational modifications such as methylation of lysines result in
changes in charge of the residue, and so even if charge is integral part of
the mechanism it would not be unique to phosphorylation sites.

Figure 4.3: A kinetic model we pro-
posed in [166] that shows that a 100x
slowdown between productive and non-
productive binders can result in a 10x in-
crease in binding affinity.

The question remains whether
HTMD is ready to be used to
visualize the binding of IDPs to
their target proteins. In the
case of KID/KIX, the on rate is
roughly 106M−1s−1, meaning that
it would likely require several mil-
liseconds of simulation to see a
binding event. This is at the limit
of what is currently possible, and
the fact that it is known to have
more complex kinetic binding profile [204] could further complicate such
a study. Other cases are substantially more tractable, such as in the case
of c-Myb/KIX. The kon rates for c-Myb binding to KIX are faster than
some of the fastest folded protein-protein pairs or small molecules, on
the order of 107M−1s−1 [220]. We have already begun some work in
this direction with positive results. As adaptive MSM methods become
more sophisticated, this kind of study should become tractable for even
the more complex cases.
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A range of other questions remain as well. Is the three-state binding
(or more) such as that seen by KID/KIX normal for IDPs? It is also un-
clear by what mechanism IDPs bind to their interaction partners. Do IDPs
typically follow a conformational selection model (where they bind only
after reaching a required conformation), or whether they begin to bind
and then slowly fold into their bound conformer. Work done on KID/KIX
already suggests that for IDPs the situation may be more complicated, and
perhaps progresses through an amalgam of both mechanisms [192]. The
αB helix appears to bind first, and it is possible that it must be folded in
order to initiate a productive binder [207, 208, 209, 210]. However, there-
after it may then progress more like an induced fit mechanism, whereby
the αA helix and other parts slowly fold and form their native contacts.
Is this how it happens, and is that a common mechanism for IDP bind-
ing? Atomistic simulations such as those outline in this thesis will help
us answer such questions.
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Chapter 5

CONCLUSIONS

1. High-throughput molecular dynamics simulations are a useful tool
for studying the slow processes seen in many membrane system. It
is possible to investigate the binding of lipid ligands such as anan-
damide or ML056 and uncover important events along their binding
pathways.

2. Anandamide binds spontaneously to fatty acid amide hydrolase in
simulations. Cholesterol directly interacts with FAAH near it’s
binding port to facilitate binding.

3. The lipid inhibitor ML056 binds to the S1P1R receptor via a multi-
stage process involving key recognition residues and a flexible n-
terminal helix that caps the binding site.

4. High-throughput MD simulations combined with new methods in
Markov state modelling analysis has uncovered an as yet unseen
behavior in a well studied disordered domain, the kinase inducible
domain.

5. A novel mechanism uncovered in KID protein led to the discov-
ery of a model under which purely kinetic changes can lead to in-
creased binding affinity. This novel mechanism may be broadly ap-
plicable to a wide range of systems, particularly where conversions
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betweens various different states has consequences for binding or
other activities like catalysis.
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Chapter 7

APPENDIX: OTHER
PUBLICATIONS

This section is to list work in which I contributed a minor part.

7.1 Dopamine transporter (DAT)

In collaboration with George Khelashivili & Harel Weinstein at Cornell
University. Manuscript in preparation.

Summary

In this work we show that membrane lipids are directly involved in the
function of the human dopamine transporter (hDAT).
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ABSTRACT 

 

Functional mechanisms of neurotransmitter:sodium symporters (NSS) proteins at a 

detailed molecular level have been primarily sought from studies of the cognate bacterial 

homolog, leucine transporter (LeuT), for which detailed structural knowledge is available. 

However, to what extent the inferences accumulated on LeuT can explain the 

corresponding functional mechanisms in the mammalian NSS transporters is not clear. 

Specifically, in contrast to LeuT, the NSS proteins contain functionally important long 

intracellular terminal domains whose mechanistic role in the function of these 

transporters has not been yet characterized on the molecular level. Here we provide, to 

our knowledge for the first time, investigation of the molecular mechanisms that involve 

the N-terminus of the human dopamine transporter (hDAT), in the functionally relevant 

state-to-state transitions in the transporter. The analysis of the extensive atomisic 

molecular dynamics (MD) simulations (totaling ~14μs of trajectories) of the full-length 

hDAT model in physiologically relevant lipid membranes, enriched in highly anionic 

phosphatidylinositol 4,5-biphosphate (PIP2) lipids, revealed the outward-open to inward-

open isomerization event in terms of rearrangements in specific structural motifs, 

previously identified in LeuT, that culminate in the destabilization and release of Na+ ion 

from the functional Na2 site. But we also show that in hDAT this transition is related to 

PIP2-mediated electrostatic association between the N-terminal domain and intracellular 

loop 4 (ICL4) segment of the transporter. We find that this association disrupts the 

intracellular gates that stabilize hDAT in the inward-closed state, and triggers, through 

allosteric coupling between the ICL4 and functionally relevant regions, including 

secondary substrate binding S2 site, large-scale concerted motions in the transporter 

that are similar to those underling outward-open to inward-open isomerization in LeuT. 

Presented data thus provide novel molecular-level mechanistic insights regarding the 

role of the N-terminal segment and PIP2 lipids in functionally relevant dynamic transitions 

in the DAT and, with that, enhances our understanding of functional mechanisms of the 

NSS transporters. 
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